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ABSTRACT  

It is postulated that two points on a thermal light 

source, if they are sufficiently close to one another, may 

exhibit some degree of coherence between their radiations. 

The treatment of partial coherence due to Hopkins, in which 

a thermal source is considered to be perfectly incoherent, 

is extended to include the possibility of small regions of 

spatial coherence in the source. Without assuming any 

specific source emission mechanism other than that the 

coherence time of the radiation is much shorter than the 

integrating time of the detector used, the following rules, 

which are based on physical arguments rather than mathematical 

idealizations, are shown to apply: 

1) Fourier spectral components of the same frequency 

coming from the same element of the source may be 

considered to be perfectly coherent. 

ii) Fourier spectral components of the same frequency 

coming from different elements of the source may be 

considered to be partially coherent, the degree of 

partial coherence being determined by the rroperties 

of the source. 

iii) Fourier spectral components of different 

frequencies may be considered to be completely 

incoherent. 
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It is shown that the assumption ordinarily made for a thermal 

source, that in rule ii) the different source elements are 

assumed to be perfectly incoherent, is justified for the 

usual situation in which they are spatially unresolved by 

an observing system. 

Formulae are developed which describe the power at a 

point, and the coherence between points, resulting at an 

area illuminated by such a source. For a model source 

Gaussian in both radiance and micro-coherence, a computation 

shows that in order to obtain reasonable experimental 

-measurements of source micro-coherence characteristics, 

the source must be extremely small. 
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If anything physical comes out of mathematics, 

it must have been put in in another form. 

Bridgman (1927, p. 169) 

1• 



INTRODUCTION 

Until recently, it has generally been assumed that 

light disturbances (even if exactly the same frequency) 

emitted by two different atoms of a thermal light source, 

or that light disturbances of very slightly differing 

frequencies (even if emitted by the same atom), are com-

pletely incoherent - that is, they can not interfere to 

cancel or augment each other. 	This concept is most strictly 

stated by Dirac (1958, p. 9) as "Each photon then interferes 

only with itself. 	Interference between two different 

photons never occurs." 

The development of classical coherence theory (Hopkins 

1967; Born and Wolf 1959) has led to the concept of a 

degree of partial coherence between two points in a wave 

field, formulated in terms of the degree of correlation of 

the phases of the disturbances over a specified time. 	In 

the classical treatment, the partial degree of coherence is 

considered to arise from the two field points receiving 

coherent light from any given point in the light source, 

,but with this light being completely incoherent with light 

received from all other points in the source. 	Thus the 

concept of the mutual incoherence of different atoms in the -

source has been retained, partial coherence only existing 

in a radiation field determined by a source but not at the 

source itself. 
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Both experiments demonstrating interference between 

light from two separate lasers (Mandel, 1963), and thb 

existence of phase correlation over regions within the 

laser itself, suggest that the assumption of complete in-

coherence between different elements in a thermal light 

source may not be justified.X  Further, the coherence 

between different atoms stimulated to emit by the standing 

wave field of the laser, and the small but non-zero coherent 

component of radiation generated by stimulated emission in 

a black-body cavity (Heavens 1964, p. 3), both suggest that 

for source atoms sufficiently close together, the radiation 

emitted spontaneously from one atom could stimulate nearby 

atoms to emit radiation coherent with the stimulating 

radiation. 	This could lead to very small regions of 

coherence in an ordinary light source, or "micro-coherence." 

Although this is a difficult problem in radiation 

physics, and standard theory does not so far provide a 

prediction of the degree of micro-coherence to be expected, 

it is nevertheless worthwhile to examine the problem from 

It should be noted that Mandel (1964) points out that 
from the point of view of quantum theory, Dirac's 
statement (quoted earlier) should not be interpreted 
to mean that the light in two independent laser beams 
can not interfere, because in laser radiation the 
"average photon occupation number per unit cell of 
phase space is appreciably greater than one," so "the 
two beams cannot meaningfully be described as being 
incoherent or statistically independent," and a photon 
can be regarded as being partly in both beams and thus 
"interferes only with itself." 



the viewpoint of instrumental optics to see whether a degree 

of micro-coherence can be defined phenomenologically and 

measured experimentally. 	For the design of such an experi-

ment, formulae are required which provide a basis for 

measurement in terms of a suitably specified micro-coherence 

of the source and the characteristics of the apparatus used. 

Hopkins' treatment_of partial coherence (Hopkins 1967, 

p. 210)-formulated in terms of monochromatic complex ampli-

tudes associated with the radiation disturbances, while not 

directly applicable, suggests a useful extension to treat 

the problem of the micro-coherent source. 	Hopkins' treat-

ment uses the assumed perfect incoherence of a thermal 

source in an argument showing that the light intensity 

produced at any point by an extended source may be found 

by summing the intensities produced at any point by pure 

monochromatic waves of different frequencies assumed to 

emerge independently from each element of the source, and 

that the total intensity is then found by integrating these 

monochromatic intensitii ver the appropriate spectral 

'range. This principle has been used to develop a theory 

of partial coherence for points in the wave field produced 

by a source, wherein the coherence factor is shown to 

determine the visibility obtaining in any interference 

pattern. 



Hopkins develops the following three rules for a 

classically incoherent source: 

i) Light beams of the same frequency coming from the 

same element of the source are perfectly coherent. 

ii) Light beams of the same frequency coming from different 

elements of the source may be considered to be com-

pletely incoherent. 

iii) Light beams of different frequency are completely 

incoherent. 

In deriving these rules, it has been assumed that light 

disturbances are emitted entirely independently from two 

different atoms, in accordance with the classical assumptions 

regarding thermal light sources. 	In the next section it 

will be shown that these rules are indeed correct even 

should the source be micro-coherent rather than completely 

incoherent, provided that the regions of micro-coherence 

are well below being resolvable by the apparatus viewing 

the source. 	The theory based on a completely incoherent 

source will be extended to include the general case of a 

,micro-coherent source viewed without any limitations as to 

resolution, and it will be shown that rule ii) given above 

is only a special case of the general rule: 

IiI ) Light beams of the same frequency coming from 

different elements of the source may be considered 

to be partially coherent; the degree of partial 
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coherence .being determined by the properties 

of the source. 

It must be emphasized that both in Hopkins' derivation 

of the three rules given above, and in the present extension 

of the theory to include the micro-coherent source, it has 

been assumed that the integration time of the photodetecting 

process is much greater than the coherence time of the light 

in•question. 	This condition is well satisfied for all but 

laser radiation, which is therefore excluded from the present 

treatment. For the situation wherein the detecting integ-

ration time is comparable to the radiation coherence time, 

the detailed statistical characteristics of the radiation 

must be known and very different methods must be used to 

treat the problem. 

Included in the following treatment of source coherence 

will also be a careful consideration of the physical 

validity of the application of Fourier transform methods 

to this type of problem. 	It will be shown that straight-

forward application of Fourier methods is physically not 

,.justifiable, because the infinitely extended Fourier sin/cos 

components usually used lead to the following contradictions: 

1) The postulated incoherence of infinitely extended 

pure monofrequency disturbances of identical frequency, 

which by their very definition must be perfectly 

coherent. 
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2) The existence of a Fourier component, and therefore 

the existence of its ability to create an effect con 

a detector, at a time for which the disturbance pro- 

ducing the Fourier component does not itself exist. 

This implies the response of a detector in advance 

of the arrival of the signal, and of its continued 

response after the ringing transients (during the 

detector integration time) has, ceased. 

These questions will be examined in detail, and it will be 

shown that both a modification of the usual Fourier transform 

and consideration of the general statistical nature of the 

emission process is required. 	However, no specific 

statistical properties will be assumed for the radiation 

other than that of a coherence time. 

F• 
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MICRO-COHERENCE 

Specification of the Micro-Coherence Factor 

Let the scalar S(t,x) be the real temporal physical 

field disturbance at a point in the source having vector 

coordinate x . 	(Fig. 1). 	The vector x may be either 

two or three-dimensional corresponding to either a surface 

or volume source. 	S'(t,x') will be used to denote the 

disturbance at time t at the point x' of a detector 

which receives the light. 	S'(t,x') may be written in 

terms of its Fourier spectrum, that is 

	

51 ( t)  2S1  ) z--- 1 ... ( V 	
ei .2_7r-  Y 

V 7 	(1) 

; 

where 

( v, 	 e— exTr-vt 
cat 	(2) 

00 

and similarly for the disturbance at the source. 	There 

are two problems with this standard mathematical represent- 

ation. 	First, suppose the disturbance at the detector is 

examined at time t = t' 	Using the above relations 

implies that, at a given moment t = t' , the Fourier 

spectrum can be determined by applying to S'(t,x) an 

integral operator with limits t = OD . 	This is not 
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Source and Receiver Coordinates 
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physically correct, because that part of S(t,x) in the 

source disturbance function which has not yet arrived at 

the detector at time t = t' does not yet exist insofar 

as the detector is concerned. 	The disturbance producing 

the response of the detector at t = t' is thus S'(t,x) 

for t < t' 	but is zero for t > t' . 	We therefore 

define modified Fourier components for the disturbance as 

"seen" by the detector, denoting this truncated disturbancd 

by 

s'(t )  4') 	*Foy, 	-6- 	•,e-1  
X' 

O 	 for i > 
	

(3 ) 

with a running Fourier spectrum 

• E 

( 1 )1  X 	fS(t-1  24') 
-Czu- vtdt  

(4) 

t 

and with 

00 

Sti  I (t-, ) = f 4,6 	zg, e 	dv  
0 

Second, the standard Fourier representation implies 

the existence of sin/cos spectral components which exist 

for all time, for t = ± op ; even the modified (running) 

Fourier representation introduced above still implies the 
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existence of these components for all times between -op 

and t' . 	However, this is physically incorrect, and if 

these semi-infinite spectral components are used in an 

analysis of the fluctuations of se(v,x) 	as a function 

of t' , wrong conclusions may ensueH. 	As it will shortly 

be necessary to consider such fluctuations, it is important 

to examine more carefully the relationship of the components 

of s,e(v,x) to the signal S(t,x) . 	Let S(t,x) be the 

superposition of very many pulses, each pulse deriving from 

a single radiating atom, and each of roughly the length 

determined by the coherence time T.c. . 	By additivity, the 

spectral components of this superposition of pulses may 

themselves be considered a superposition of sin/cos terms, 

each term deriving from a particular pulse. 	These sin/cos 

terms are not physically infinitely extended in time, however, 

because for times when a particular pulse is zero, it is 

physically necessary that each spectral component deriving 

from that pulse (not only the sum of all components) also 

(The typewritten symbol v is equivalent to the 
handwritten symbol V .) 

To paraphrase Stone's (1963, p. 46), warning against 
the misuse of complex representation: "The use of 
Fourier theory in ways that do not give physically 
correct results is a pit which contains many 
victims." 
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be zero for such times. 	Were this not so, a mono-frequency 

detector could respond to a non-zero monochromatic spectral 

component even though, for that specific time, the signal 

itself were zero .N  This means that as t' changes by 

roughly the coherence time tc , an entirely different 

set of signal pulses, and hence an entirely different set 

of sin/cos terms, must be considered. Although, with many 

pulses present, the resultant expected amplitude of sii(v,x) 

will be independent of t' , the phase of s(v,x) will 

be random between 0 and 211 for each different set of 

pulses, and hence the phase of se(v,x) will suffer large 

fluctuations at intervals on the order of the coherence 

time. 	(Davenport and Root, p. 161). 

Let the total complex transmission for a given frequency 

v 	from the source point x to the detector point x' , 

be denoted by u(v;x,x') 	This means that a (fictional) 

It should be noted that this problem, the physical 
unreality of infinitely extended spectral components, 
does not usually cause difficulty in common problems 
of spectral analysis wherein a signal is known a 
posteriori and only its spectrum is desired; how-
ever, in any problem involving the behaviour of a 
function in its reciprocal Fourier domain, as for 
example s(v) in the t domain, the assumptions 
underlying the defining Fourier equations must be 
examined in the light of physical restrictions as 
well as mathematical convention. 
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monochromatic wavesource at x , producing a wave of unit 

amplitude and zero phase, would produce at x' a distur-

bance of real amplitude equal to lul and phase equal to 

arg(u) . 	This complex transmission will in general be 

frequency-dependent in both modulus and phase. 

Analogous to Sle (t,x1 ) , the disturbance at the 

detector, denote the disturbance at a source point x 5 

at t = to  , by Sio  (t,x) , where 

5 	X) Tor C. 

lo r 	> -60  

The time t is earlier than t' by A , the transit 

time from x to x' , which is simply equal to ,1 y arg(u) . cit 

The disturbance 	(t,x) may 

--(.2-Tryt 
(v, lc) = „c(tiiy) e 	df  

be analysed into a spectrum 

1) O._ 	GU )  (5) 

with 

so  t-, x ) 
ix7ry-L 

z•-- 1,.ebto  (V, .6) e 	d v • (6) 

V 

A Fourier component se  (v,x) in the source will produce 

at the detector a Fourier component with complex amplitude 

given by 
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1 	
(7) , (V X i  ) 	() 	 • x (v —) 

If the media between the source and detector are non-

dispersive, the transit time A will be independent of v , 

and the disturbance Sio(v,x) synthesized in equation (6) 

may be regarded as a real disturbance which has been pro-

duced at the source at time t = t, and propagated to 

arrive at the detector at time t = t' . 	However, if as 

is frequently the case, there are glass or other dispersive 

components in the optical system between the source and the 

detector, t will depend on v , and the different Fourier 

components arriving at the detector at time t = t' will 

then have left the source at different times t = to . 

In these cases, the disturbance synthesized in equation (6) 

will not actually have existed physically at the source in 

that precise form. 

The total instantaneous disturbance at the detector 

at t = t' will be given by 

00 

(t, x' ) 
c. 
Adt.  ( 	) 	iS Ai) e 	dvctx,(8) 

and the total instantaneous power falling on the point x' 

of the detector at time t = t' will be given by the square 

of (8), that is by 
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00 

Pa! 	ff u-14 ( v;.6, &') (1); 
X 1.4 y 

e 	 (9) 
dvct;dxclZ 2  

the integrations over x , x being over the spatial extent 

of the source. 	The symbol A  is used only to distinguish 

between the variables of the double integration. 

For any detector, the signal produced by a beam of 

monochromatic light will depend on wavelength. 	Let A (v) 

be this spectral sensitivity as a function of frequency. 

Each term in (9) is a cross-product of a signal of frequency 
A 

v with one of frequency v , and the question arises as 

to what spectral sensitivity factor should be used when two 

signals of different frequencies are combined. 	A similar 

problem exists when two highly coherent beams of slightly 

different frequencies are heterodyned, giving a beat 

frequency. 	In such a case, the photons in the beam will 

still be those of energies corresponding to the separate 

frequencies of the two coherent beams, and not of frequency 

corresponding to the beat frequency. 	Since each of these 

,beams acting alone has an effective amplitude 7Ah.7 A. (v) , 

it is reasonable to multiply the cross-product terms in (9) 

by VA (v) A (o) 	to obtain the signal produced. 	This 

signal, for example a photocurrent, produced in the detector 

at any instant t 	t v  is thus: 



different from zero 

that for a given v 

6v to  = v 2 from u = v 

only in a finite bandwidth u. , so 

the effective range of 1r will be 

6v 
- 2 ' with 6v = kr-vimax = µp  • 
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I t A 
00. 

ff lit(v) A 0) 	( v,10 
' 
vv
T.  

Lek(vi x i  ') 

x t) ,12.17-(\:>—v)t'
6(1)60 clz 661 . (10)  

This formula may be interpreted as an integration over the 

beat frequencies 	= v-v in the photocurrent. The detector 

circuit will have a frequency response which is significantly 

This maximum beat frequency 	corresponds to a maximum 

wavelength different ST, 	where n 	
7,\  2 

o  = 	µ'° . 	For 

7‘. = 5 x 10-5  cm 

uo  as great as 

= 8[10  x 1612 ti . 	Thus, even for 

1 106 , 67\0 has only the value 8 x 10-6  A 

Over this wavelength range, and for laboratory-scale path 

lengths,. both A(N) and Ucv) 

write 

A (g) --- A (v4--)A) = Acv) 
1• 

(N.7i 2AS ) 	v) 	)s) 

giving, with the substitution 

order of integration,  

will be constant, and one may 

A 
V-V = µ and a change in the 



Ice, 	= jLlisAcv) 	iv- x le) u. (v.k-J  1;., P ) A, (V )  

t 
Alb(vi-)A,21) Gtx GL x_̂ JAI E 	ctix 

for the photocurrent detected by the circuit. 

The compleX amplitude at time t' of the beat fre-

quency µ will'be determined by the expression in the 

square brackets in (12), that is by 

iffAcy) (Avi 	t4 (1) .. 	xI) /et%) x 	I J.  (VI-A ) ct_1( v (A,V 	) 
'1 

A 
Because the factors s6. (v,x) and s,(v+µ,x) will each 

jump in phase at intervals of the order of the coherence 

time, the complex amplitude of the beat frequency µ will 

also fluctuate with time. 	Also, any correlation between 

the arguments of sto  (v,x) and st,e (v+µ,X) will tend to 
A be smaller the more x differs from x 	and thus the 

^ 
integral over x will be restricted to a small area 

centered on x 	Finally, the phases of the contributions 

to a given beat frequency µ , arising from different 

frequency pairs, such as v, v, +µ and v2., 	, will c 

also be less correlated the greater the difference between 

v, and v2  . 	The effect of these factors in the 
A 

integ- 

rations over x , x 	and v will be to give small and 

temporally fluctuating amplitudes to the non-zero beat 

21 

(12) 

V x x • 
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frequencies µ . 	Thus the fluctuations in (13) will tend 

to average to a small noise on a steady signal. 	This 

steady signal will be given by the time average 

(14) 

a 

where t  is a time which is short compared with 1/µ0  , 

the resolving time of the detector circuit, but long enough 

to include a representative sample of the noise. 	This • 

means that r should be much greater than the coherence 

time. 

It follows from these arguments that, to increase the 

detected noise fluctuations demands a spatially small source, 

a narrow spectral width, and a high bandwidth for the 

detector circuits. 	These are, of course, the conditions 

chosen for photon-bunching experiments, wherein the fluc-

tuations rather than the d.c. signal are of interest. 

The above considerations refer only to fluctuations in 

the power associated with beat-frequency terms, assuming 

the mean power for each frequency to remain constant over 

short intervals of time. 	They do not, therefore, include 

Poisson fluctuations in the photon emission; in the present 

treatment, the level of radiation density is assumed suf-

ficiently high that the Poisson fluctuations are negligible. 
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The steady signal defined by.(14) is given, using (12), 

by 

I ) f >ii 	--- 
	Atv) fJ  (A:k  tv.x x I) 12 ( v • x x ) . , 

,-) 	i, 
v 	x 

r 

[ f f /1"6:: WI 6 ) -4,t  ( v f" CO 
IA -r T. 

(15) 

The variations of sG  (v,x) and s o(v+p,,X) occur on a .  

time scale of the order of the coherence time Lc . 	For 

the condition 1/µ0  >> tc  , that is for a detector circuit 

of resolving time much longer than the coherence time of the 
0.172At 

radiation, the exponential factor e 	will change 

only very slowly compared to s.L.(v,x) ste (v+4,50 , so that 

this latter product may be replaced by its time average, and 

then the expression in the curly brackets in (15) will give. 

e 	6(5.c g tJ 

f f
2 	

4,, 
( V ) A51.0  ( y It/ 1 	) -r 

i TI)A. 

dit c;1,LA. 

r._ 
 

r  
v 1 	ec 277:ptt A 	 I - ( 	s ) 	t v 1:Ati  ) > 	 r 5a - 	(16) -r 

For the effective range of p. , which corresponds in a 

typical case to b lzr% 10 A , sto(v+R,k) , as determined 
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by (5), may be replaced by sto (v,x) . 	In the time 

averaging operation denoted by the angular brackets < 

the subscript t, is omitted, it being assumed that the 

spectrum of the light from the source is stationary in a 

statistical sense. 	Integrating with respect to t 	(16) 

becomes 

w 
c
,
,4.i tv17-) A..- WI  g) / j 

, r  22.,,, TAT'  , - m _. , ,i <, 	,, (v,x)(v,izo . (17). 
rift  V °  _... 

and substitution of this value of (17) into (15) now gives 

I (x() fA ffi: <,e(vds)A.,cv, )> 	x') (y; 	dt ciA18) 
V 	g 

for the steady detected signal. 

Consider now that s(v,x) , the Fourier spectrum of 

S(t,x) , is only proportional, and not equal, to the com- 

plex amplitude spectrum of S(t,x) 	which will be denoted 

a(v,x) . 	Equating the total mean power in the signal 

S(t,x) and in its complex amplitude spectrum a(v,x) , we 

have 

t. f ts (t,()12 at 	= f I eit())) 2.) 1 2.  cl..1/ 	 (19) 

which gives, using Rayleigh's theorem on the left hand side, 



(20) 

so ,that, for any given frequency 

I 4' (\2)1 - 1 04,  v, 6,) 1 . 
	 (21) 

This expression relates the modulus of the Fourier transform 

of S(t,x) and the modulus of the physical complex ampli- 

tude associated with S(t,x) 	Equation (15) can now be 

written 

It.e) = fA(v)ff<cj(v, ct( 	tt(vi  x jg ivit iv; 	 °Cy . 
x 

(22) 

The factor KoC.*  (0)d,-(a)> provides a phenomenological basis 

for defining the micro-coherence between any two points x , 

x of a thermal source. 	If E(v,x) denotes the mean power 

from x at frequency v 	then 

E. (v,) 	4e(V)  i)Of,(%); 	= 	kk(V16) I > 7 	(23) 

and equation (22) may be written 

(a4;) fA") f f )1/ 
R 

 

71 
/ (V.J x j- ) E(v,x) E(vI ) 

U'I (v1 5sj y..1 ) U (vi 	ots ct)t ct0 
	 (24) 

where the micro-coherence of the source is specified by the 

factor 
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r ; 1 —1 ; — 
< cC*( Vdt• ) 	( 	> •  

17< ICC")))5)12 >< c'(VIE)1 2-> (25) 

or, 

< c( 	) 	S‘( ) , 	 >  P(vi  6 ) - 	  
) 	(v, 7!) E , x) 

1 (26) 

And (24) maybe written 

JA c v Irv, 2(') 	 (27) 

with 

A I ,r(vi  x') =f f VEN x ) EaiI -1  it) P(v• x ;) U (i. x x') a (v). 41-x) - 	 1- 	1 -1 	 (28) 
x cz 	 clx ca . 

Equation (28) gives the power of the light of frequency 

at the point x' 	and (27) shows the signal from the 

detector to be given by the weighted sum of the powers of 

the different frequencies in the source. 	That is, the 

,.different frequencies in the light behave incoherently, 

when the coherence time is much shorter than the integrating 

time of the detector. 	This will be the case for any thermal 

source and existing detection techniques, and also for laser 

light unless extremely short detection times are used. 
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A. 
The factor. r(v;x,x) thus defined specifies the 

spatial coherence for light of frequency v between dis-

turbances originating at the points x , x of the source. 

Consider the case for a coherent source, putting I (v;x,X.) = 1. 

Equation (28) then becomes 

TrY,x`)= (A- (V; I L' ) dx (29) 

   

so that the power is found by assuming all points of the 

source to emit coherent and cophasal waves of real amplitude 

equal to the square root of the mean power radiated by the 

source. 

Consider now the form of (28) when the source is com- 

pletely incoherent. 	Noting that by the definition (25), 

r (v;x,x) = 1-1(v;X,X) = 1 , so that the form to be expected 

for 1-1(v;xA) is 

= I 
1-1 (v.x -/- 0 

-for )?=)‹. 

'POI!' 	6 , ( 30 ) 

,.However, this form substituted into (28) merely gives 

I(v;x') = 0 ; the reason for this may be undeinstood as 

follows. 	In the analysis used here, S(t,x) is the dis-

turbance produced by a unit volume element of the source, 

and S(t,x)bx is the disturbance produced by a volume 

element ox . 	It follows that 
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1/E win= 1/<10((vdnil- > 	< 1,41(vdsw5 (31)  

is the time-averaged real amplitude per unit volume of the 

source. 	If Eo(v,x) is now defined to be the mean power 

per unit volume, equating expressions for the mean power 

emitted by a volume element 5x of the source gives 

2. 
[1E (v, 2s;  Ex J = E. (%),m 

so that 

E Nix) 	= E0 (v,) . 	 (32) 

Thus the square of the real amplitude per unit volume, 

E(v,x) , is only proportional to the power per unit volume, 

Eo(v,x) ; these two quantities are not equal, and their 

factor of proportionality is seen to be the volume element 

5x . 	This factor of proportionality tends to zero as 

5x -> 0 , and this accounts for the null result when (30) 

is used in (28). 	Assume now an incoherent source comprising 

volume elements of size Elx., so that, in the integration 

,with respect to x in (28), Tl(v;x,X) = 0 except for the 

single element 5X = 5x . Equation (28) may then be written 

.r(v,x') = fEtvi  $-) SX Of V; il) U (Vi 	x. 
2 
	

(33) 
or, by (32), 
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5X a 0 , to the form r(v;x,x ) 
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.1 
X I  )1

I

) 1
2 	

>c (34) 

where now the power per unit volume is employed. 	Thus, 

T/  (v;x,X) being the unit-function (30) corresponds to a 

completely incoherent source, the resultant power at x' 

being given by the sum of the separate powers produced 

there by the different elements of the source. 

An alternative procedure may be used for the case of 

an incoherent source. 	The product 

r(t/i 	Etv, 	E ), g) 

tends, as 5x a 0 and 
A 

for X = x 	 x and r(v;x,X) = 0 for 	/ x ; this suggests 

that a delta function may be used. 	Thus, one may put 

x i  g) 	(v) 	E 	) - u (2z- 	1E0 (vim-Eiwig) (35) 

and so, formally, one may write 

to describe an ideally incoherent source. 	Equation (28) 

will then give 

ff E (X-1) /Eivi  Ewi g) (etiVi 6)  6 f ) 	g_) 

Ct& dicl 2 
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that is, 

3:6),25_') = fE:(%),u I ULtv. 	1 2 
	

0(36) 

It has only to be remembered that for a perfectly incoherent 

source, E(v,x) must be interpreted as the power per unit 

volume at the source point x , as seen in (34) and (35), 

and not as the square of the real amplitude per unit volume. 

- The above difficulty has been noted previously, in a 

different form, by Beran and Parrent (1964, p. 57). 	These 

authors, in discussing an incoherent source in terms of an 

enclosing .surface, conclude that for the spatial coherence 

of the source to be represented by a delta function, the 

intensity over the source would have ,to be infinite. 	They 

therefore conclude on mathematical grounds that a perfectly 

incoherent source [ TI(v;x,X) = 5(x-x)] is impossible. 

The treatment given here shows that the difficulty resides 

in the reduction of the two-dimensional integral (28) to 

the one-dimensional integral (33), and in going from the 

field disturbance per unit volume to the power per unit 

volume, rather than in whether the source coherence function 

is taken to the actual limiting form of the delta function. 

As shown above, a completely incoherent source causes no 

mathematical inconsistencies, and indeed one might postulate 

an extremely low pressure gas discharge as a realistic model 

for such a physical source. 
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To see in more detail the general significance of 
A % 

(v ;XIX) , consider a source comprising only two elements 

ox, = ox 2  , at x 1  and x 2  respectively. 	This is 

exactly analogous to the standard problem of computing the 

power distribution in a Young's fringe experiment, wherein 

the screen with the two holes is the equivalent to the 

present two-point source. 	The double integral (28) now 

reduces to four terms 

/(114.1) ----- /I( vi 	(1), x1) / bl ty; xi, 	I
t  ( 	(37) 

r (1); 	x 2 ) E 	 ). 2.) I a tv; 	x') 	S' )_07.  

t. P01; Xi i xz ) Eh') 	E (v, x.) L) 2  U,*(V; X 50 U (v;  g.2.)  

+ 1-1(vj KL I  x i ) V-F iv/  &.)E oil  11; (gt) (1),, x,,xi) u(y) 	x2. 

From the definition (26), 

1-7( V) 	) 	r(ij ZL/ 	) 

=  
,Then, writing from (32) 

1E 
	 Err, (v, ic,a x - I, ry) 

E tv,x,) (10 2  = E.(1), x 2 )vx - iz(v) 	
(38) 

for the total powers radiated by the source elements at x i  

and 2S2. 	(37) becomes 



(y) f u, (vj 	)11 ) ( 1)) 	( 	Z 7_)  X I  ) 
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z 	m 	Re e 11'24 (1) „ 	) 	X-1 1  )') 	?(') 1 
	

(39) 

If now the distances from the two source points x , 
 

to an observation point xl  are denoted by R I  , R 2, 

the complex transmission factors may be written 

1171-c 
i`•  
0, 	 eirrc. 

(Vi 
/ 	4 	v 

bk. 	t 	ctktct, 	IV) 	= 7 

the partial powers may be normalized as 

L,' 	= ckvici 	( v) 

and (39) becomes 

(v)  x ) = Z 1(V) ± Xi( 	+ Z /1/1(.0 ,r2.1  (v) 	ni (v) I 

Cos 	( 	R2..)- ctit3  L T7,, will 

This is• the usual expression describing the Young's fringe 

experiment, with (111d161 giving the modulation of the 

fringes and ouL3[T113 giving their positioning. 	It 

,.may be remarked that the need to use the relations (38) to 

obtain this standard result correctly, re-emphasizes the 

distinction between the square of the amplitude per unit 

volume in the source and the power per unit volume. 

A useful general conclusion regarding thermal light 
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sources may be drawn from (27) and (28). 	In these formulae, 

(itlV;,)t i) is the complex amplitude produced at x' by a 

(fictitious) monochromatic wave of frequency v with unit 

amplitude and zero phase, at the point x in the source. 

Thus the product lic\i,a) UAW will be equal to the 

complex amplitude which would be produced at x' by a 

monochromatic wave of real amplitude y/E(/1 ) and zero phase 

emitted by the source element at x . 	If the real ampli- 

tude 1/50/)4) 	is absorbed in the factor L/(vi6)il) 

so that 

tt i  (v; 	)(E(v)t) 	(,t (v 	X') 	 (Ito) 

(28) will then become 

/ 
Z 6/, 2c1' = ff p(v ). 6, ) 	1 

 ) 	( 11; 	
/ 

cl& (la) 
E 

This formula, in conjunction with (27), demonstrates that 

it is legitimate to say that the resultant intensity pro-

duced at any point by a thermal light source may be regarded 

,as arising from perfectly monochromatic waves of real ampli-

tude equal to the square root of the intensity in the source 

for each frequency, and between which there is a complex 

degree of spatial coherence for each frequency. 	This, in 

addition to the incoherence between different frequencies, 
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shown in the discussion preceding equation (17), provides 

the following rules for the composition of light distur-

bances for any source wherein the coherence time is much 

shorter than the integrating time of the detector: 

i) Fourier spectral components of the same frequency 

coming from the same element of the source may be 

considered to be perfectly coherent. 

ii) Fourier spectral components of the same frequency 

coming from different elements of the source may be 

considered to be partially coherent, the degree of 

partial coherence being determined by the properties 

of the source. 

iii) Fourier spectral components of different frequencies 

may be considered to be completely incoherent. 

In Hopkins' treatment of partial coherence for incoherent 

sources, each point of an incoherent source is simply 

assumed. to radiate independently of the other points, and 

rule (ii) is accordingly modified to state this. 

Rule (ii) might seem problematical, because infinitely 

rextended pure frequency components are postulated which are 

only partially coherent, yet by the ordinary meaning of 

coherence as the measure of the phase correlation between 

two signals, such components would have to be ipso facto  

perfectly coherent. 	However, it must be remembered that 
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this is a rule, for use in solution of appropriate problems, 

and not a description of physical reality. 	Although 

infinitely extended Fourier components do not physically 

exist, the treatment given above shows that it is permissible 

to postulate that they do, and then to postulate additionally 

an effective degree of partial correlation of phase between 

these imagined pure frequency components. 	These three 

rules thus not only apply usefully to practical instrumental 

problems, but are physically correct in spite of seeming 

inconsistency in a strict mathematical sense. 	It is 

important to bear in mind, however, that these rules apply 

only where the coherence time of the radiation is much 

shorter than the integrating time of the detector. 

Coherence at a Plane Illuminated by a Micro-Coherent Source 

In addition to determining the power distribution at a 

plane illuminated by a micro-coherent source, using (28), 

it is also desirable to be able to calculate the spatial 

coherence at such a plane. 	With reference to Fig. 2, let 

,f1 (v,x1 ) , f2(v,x1 ) be the complex transmission factors 

between points 1, 2 respectively, and x . From equation 

(40), UL (V; LI  ) 	is just the total complex amplitude of 

frequency v from x at x' , which is simply the sum of 

the complex amplitudes arriving from points 1 and 2. 	If 
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Figure 2 

,Source Illuminating an Intermediate Plane with Two Pinholes, 

and Subsequent Optical Paths f1 	f% to a Receiver Point. 

36 



37 

the complex amplitudes at points. 1 and 2 deriving from 

	

x only are U, (VI  X) 
	

and 	Uh- ( 	) 	we have 

v; 	= u-i (v, t) 	+ 	f (v,') 	(42) 

Consider the factor U, (%). 6!)(1 j(V.g, Wn equation (41): )  

'4t 
Mx,t) 0.(ng.,Z) 

= 	 U 	(V, t) -(!tv, 	(v,1)-c, cv, x') +u, (v, 	(VV 

(i0‘ (\,, X.) (Al (V, g) I -CI (Vi ,I))2 	 (V)ii) UT-(Vi 	1{2 (v, )11. 	 ) 

t,t r(v) A) Uz(v,i) 	x')--r,(,),x1 ) +u, (y,00 (,),g)fityA f,2*.(v, 	- 
When these four terms are substituted into equation (41), 

four integrals result. 	The first two integrals include 

the signal at points 1, 2 from the entire source, 

denoted by 

Ii(v) - fir(v;)i) uct 	(v, 	dx cLX  
x 2 (44). 

v 	ff r tv, x, 	(v, x) c4, 	v, 	cloc ott._ . 
x 

,.The third and fourth integrals are complex conjugates, in 

addition to an unimportant reversal in order between x , 

. 	Using the relation 3 	2 Re , we have 



I 

38 

c• 

I kti = IAN) [I, w) (v, 	(v) 	(v)  4() 
v 

tif r( 	g 	RQ_ fill (v, Z.) U I (V/  ) ft4tVi  /5 -CI. 	4')] (45) 
xx 	

d.t 114 civ.  . 

which may be written as 
CO 

)e) 	 (v) 1-()O“')) + I CV) If2 (v)  t ') 12-  4- 

+ 	(v) 	(v) 	 (v) f, *(N)., )4') cz(v,') -1 ct V 
(46) 

with 

 

1 

 

f/r(v;25ib CL koo) (v,  g.) d6. (47) 

   

   

)1L (A X.(v) j  

giving /11 (V)  as desired. 	144/091.1 

For an incoherent source, 
	NIXM z.-  (5(4) , 

and using this in (47) gives 

S (c-_x")  Gtr N )()U (v,1) cis cu 

jr ( ) x) 	( 1),/ ) ct X 
	(48) 

which is the usual formula for the degree of spatial 

coherence between two points illuminated by an incoherent 

source. 

Yi; (0_/-2..(v) 
	

II 
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Coif 	e¢6(&740 
For a coherent source 	( v)“).(3_ , and again 

using this in (47) gives 

Cot/ 

a (y) 
)S-g 

	 # J5C  t/ 	 11 ( 1); ) 	(1), ) d-t( 	( 49 ) 
y 

whose squared modulus is 

In,colity)  2 

iv) Iv (v) ff ff 	 iv, e, (y 
C A 

X 
 I 

X
#.../ 

e sb(L__)150(R!..xi) 
dzdi:tcix'Sf. (50)  

From (44) 

L 	 ff 

	

(x-F U1 (v, L) 	(I), ) Gt x ak` 
	

(51) 
X y 

r 	(or. ff 
	cb (X/-52) 

az * (V Z) tit( 	
f
) d,x' 
	

(52) 

41: 

A 
and thus if the variables of integration x' and x' are 

(interchanged, 

co it (v) ff ff e 
z z 

nt 

fir' ) 1,(2* (Y, 

(Xi (11;i) (A2 (1,/  X I) CtX iCtg1 /4  (LIS et.g f 
	

(53) 
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which is identical to the integral factor in (50), thus 

1 1 z, (v) 12- 	I 	c'm j giving 	11 (V) 	= 	- 	P 1 2- (v ) 

Thus, (47) reduces to the correct expressions for each 

of the extreme cases of complete coherence and incoherence. 

Coherence over One Resolution Element at a Source  

If the micro-coherent source is viewed with an optical 

system having a resolution element of radius p , (Fig. 3), 

(27) may be simplified by separating the double integration 

i ^ over the source coordinates x ,  into two stages of 

integration, the inner integral over an area the size of a 

resolution element, and the outer integral over all of the 

resolution elements comprising the source. 	Since the path 

differences between all points within a resolution element 

and all points in the viewing entrance pupil are equal to 
A 

within < Vit , as x , x vary over a given resolution 

element, a.A.3[1.6151(),,01 	does not vary more than 7c/2 in 

phase. 	Additionally, I It  (vi 	is essentially constant 

for a geometrically uniform light source. 	Therefore to a 

close approximation we may say that U. (v;Ld) is independent 

of x within the small area of a resolution element, and 

therefore may be removed from the inner integral over that 

resolution element. 	If we let xo  be the vector coordinate 

of the centre of a resolution element, we have from (28) 
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Figure 3 

- A Small Resolution Element, over which All Paths through the, 

Observing Entrance Pupil are Equal to within 	, on a 

Large Source. 
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0 

= 	AN) ff Av.) 	(A! (v, -/ YA  &') )  
...13  

(5) P (v;  x, it ) df 	ct), „ 

The inner integral, over a single resolution element p , 

is simply the average value of P(Y1:5)g) over an area the 

size of a resolution element, and does not depend explicitly 

on the form of P(v)e,t) over that area. 	This is only an 

analytic description of what we should reasonably expect, 

namely that because the viewing system cannot distinguish 

points inside an area the size of its resolution element, 

it can only average the radiation coming from such an area. 

Vector Considerations of Fields Arising from a Collection  

of Dipoles  

It has been assumed above that the disturbance S(t,x) 

can properly be represented by a scalar, and does-not require 

a vector representation. 	This is usually justifiable if 

the disturbance is in the far-field of the (assumed) 

radiating dipoles in the source, and is viewed over a 

,-small solid angle. 

Imagine using a simple Youngts two-pinhole screen to 

measure the coherence 7164 at a plane illuminated by a 

source, in order to deduce information about the source 

micro-coherence function P()Z )7) • 	If the light source 



is not spatially very small, then TIN) will be 

appreciable only over very small distances, as can be 

seen from the standard Zernike-vanCittert theorem. 	In 

this case the two pinholes must be kept close together in 

order to obtain reasonable contrast in the fringes and 

hence precision in the final measurement of nvix,g) 

and scalar theory is quite adequate. 	However, the Young's 

pinhole system would then have very low angular resolution; 

and could not determine significant information about the 

coherence function 77 typicg) Over small distances 

source. 

a small 

in• this 

then be 

obvious 

on the 

It is therefore clear that we would have to use 

source and Young's pinholes widely spaced. 	However, 

case, any given dipole radiator in the source will 

under examination over a wide angle, and it is not 

that scalar theory is still justifiable. 	For 

instance, if the source were to consist of a single dipole 

radiator, the measurement of TL tv) will be strongly 

affected by the angle subtended by the two pinholes and 

the orientation of the pinholes relative to the dipole, as 

''can be seen with reference to Fig. 11. 	It is clear that 

171164 = 1 	as expected from a "point source," but that 

Ti3(1))=0 , since in (47) both 1.300 and (13(V)= 0. 

Thus; for wide separations of the pinholes, dipoles in at 

least some orientations would degrade the measurement of 



Figure 4 

Three Observation Points P. , 

about a Dipole Radiator 

Figure 5 

Dependence of Field Components, about the Three Unit Dipole 

Radiators, with Observation Position. 
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71(v)13) by contributing only constant background power 

to, the Young's fringe pattern. 

However, if only the polarization component perpendicular 

to the plane containing the dipole and the two pinholes is 

used, this degradation does not occur. 	This can be seen 

with reference to Fig. 5, in which are shown three unit 

dipoles px)pyi  pz 	aligned along the coordinate axes, and 

two pinholes in the X-Z. 	plane making arbitrary angles • 

a 	p to the 	axis and at equal distances from the 

origin. 	The magnitudes of the sums of the 3( and 7. 

field components at the two pinholes, Ex, 4 Ezi  and 

Exz i.J.Te , will depend on a and p , and will in 

general not be equal. 	However, the )/ components, Ey, 

and Ey.2.  , are equal for both pinholes. 	Any randomly 

oriented dipole may, in the far field, by analysed into a 

linear vector super-position of three axial dipoles, and if 

only the y polarization compOnent is selected, each 

dipole will contribute fully to the contrast in the Young's 

fringe pattern, and scalar theory may be applied to this 

component. 
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Isotropy of Source Micro-Coherence  

To consider the question of the expected isotropy of 

source micro-coherence, examine the coherence relationships 

between three points in a micro-coherent source. 	Let these 

three points be at vector coordinates xi  , x2  , x3  , 

further lying at corners of an equilateral triangle, as 

shown in Fig. 6. 	The three points may be grouped in three 

pairs, each having an appropriate coherence relationship, 

denoted Tv,. , T7.3 , and T23 . 	These coherence functions 

may be written in terms of their moduli and arguments as 

1-112 "\/12 ea 	V e , 	1.3 	13 	
/6/ 3 

and 	I; = \43e.'"323  
where V may be regarded as giving the degree of phase 

correlation between a pair of points and p as giving the 

phase delay. 

In a thermally radiating source, each small volume of 

the source should radiate isotropically into the sphere 

surrounding it, and the coherence between two points of the 

source volume should depend only on the distance between 

them and not on the direction of their separation. 	This 

means that r12- = r3 	, because 	1(-1 --)S2.1= 	. 

It also means that 	a = T'23 	for similar reasons. 

From this follows that pt2 	which can be 

satisfied only for A2  zA3.:7023  s O 	; thus, the 

micro-coherence function 1-1  must be real. 
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PARAMETRIC STUDY OF EQUATION (47) 

Introduction  

One method, and probably the most convenient, to attempt 

to measure the degree of micro-coherence of a laboratory 

light source would be to utilize eqn. (47) to compute the 

to be expected at a plane illuminated by the presumed 

micro-coherent source, and then make comparative experimental 

measurements of T14 using conventional coherence measuring 

technique. Before attempting such an experiment it is 

desirable to predict the degree to which practical measure-

ment might permit distinguishing a micro-coherent source 

from a classically "completely incoherent" one. 	To 

accomplish such a prediction, the behaviour of PI' as 

given by eqn. (47) will be studied as a function of the 

variables describing the source and measurement conditions. 

Models will beEssumed for the source; these models will be 

chosen for their mathematical convenience, and will be 

physically reasonable even if not necessarily describing 

the conditions obtaining in a physical source. 

1• 
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Derivation of an Expression for EA at a Plane Illuminated  

by a Gaussian Source  

Assume a spherical source whose radiance is Gaussian 

in the radial distance from its centre, and of l/e semi- 

width.17,k-A,  . 	(The factor z is introduced for later 

mathematical convenience.) 	Thus the source radiance may 

be written as 	B (1251)-e_xp its and 
X2 

complex amplitude as 	li(lx1) = 113(1x1) 	exp { - 7 [55]  :t - j 	. 

Assume that the source micro-coherence function is also 

Gaussian, of l/e semi-width .c1 , thus the source 
-Tr 1 is -2.Z 11  

coherence-function is T1 (. 25_, ) = 2 X p 	a-  L 

If there were complete correlation in phases for all 

radiating points (i.e., c = Co ) , then eqn. [56] would 

imply that the source were completely coherent. 	However, 

for the Gaussian radiance distribution specified, there 

would necessarily be some degree of incoherence attributable 

to the lack of uniformity in intensity alone. 	This may be 

easily determined as follows: 

The visibility V = 
- /- rn 	and, writing 

OM X. + "1" tin (.1. 
the coherence function T1, as the --z \Ai 	 ` 811  
intensity is given by I = I, + Iz  + 2V,,.11717 cos 	. 

For cos Pzt  = ± 1 at the maximum and minimum, the visi-

bility is 

V 
.r. 	+ 2 V.r, r2. 	+ 2zr77-E, 	2 4-1727  

	

V5, 2:2? t .r # 4. .1.2. -- 2 VEIT 	+ 

[56]  



rr 7T-  X 2-  -s. 

Let 	= K , then 

	

z k -r2.- 	2 -1 

	

ti-m) 	I 
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As an extreme case, let (5 = s , and compare the secondary 

reduction in coherence from the inequality in intensities 

to the primary coherence reduction from the lack of perfect 

phase correlation. 	For (x
Vr 

- X) = s  , K = e , and 
21-T 

V - 	= 0.89 . 	The primary coherence function, T(x—c) e+1 

for this separation, equals l/e = 0.37 . 	Thus, even for 

this extreme case, the falloff in coherence due to the 

intensity distribution alone may be neglected. 

Let the source be centered at the origin of the co-

ordinates X, Y, Z , and let the two points 1, 2 lie at 

some distance symmetrically about the Z axis and on the 

. S axis of subsidiary coordinates in 5 )  et  7 	Let  

St= -SI , and also let the point 	= 0 be at the 

origin of X, Y, Z . 	R. is the distance from the origin 

to PI  .or P2 • 
	Fig. 7 shows this arrangement. 	Applying 

eqn. (47) to this situation, for one spectral frequency v 

(which will be temporarily dropped from the notation), the 

coherence r2.1  is 	• 

f az f .118  (1-v)  
- CO 	 R 

A 

I 	 
^2 

18 (12,11)
,  X + C• 2x5 R1 

R2. 	 e 	x GtS 
( 57 ) 

r3-1 
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Figure 7 
r • 

Two Points Illuminated by a 

Gaussian Micro-Coherent Source 
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The infinite limits are permissible because the indefinite 

integral over the Gaussian is finite. 	The distances R, , 

R2., are as shown in Fig. 7. 	The variation in the factors 

R. 	
1 

0 	are inconsequential, and /7, 1 may be replaced 

"--2-  • In the exponents, RI , RI  may be developed as 

follows: 

	

+ (Y)7-  (1--  D)2 	from Pythagorean geometry. 

Expanding and rearranging terms gives 

R►2 = )(2-  I- y 2-  + i2- 	2.ZD 	J 

and with 
	+ D 2 

R I 2  may be written 

2 	+2,Y.D 	. 

For Ro  >> (j-D) and R, >> Z , a Taylor series expansion 

may be used; and from the principle of stationary phase, 

,the terms in this expansion of degree higher than two may 

be discarded. 	Thus we have 

R, = RQ  
Z.D ) • (21R. 	R. 	2R. 	2,R. 	R. 	(58)  

Similarly, 

R
2  
1 f 

x i- Y2  + 

 



'2  X 
212. 4  R 	R° 	( 2Th 	R5: ) ( 112. 	— IR. R. 

Eqn. (55) and (56) may be written in terms of the coordinate 

variables X, Y, Z, rather than the vector coordinate x , 
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as 

and 

p(x_>? ) y_p 7_2) = e  

X1- 4 Yzi-z' 
Sl 

(x-i)2  + cv--9)1'f (1-1T- 
c7- 

(59)  

(60)  

When these expressions are used in the expression for 17.% 

in (57), the resulting equation may be written as the product 
A 	A 

of six paired integrals, in X, X; Y, Y; and Z, Z . 

Now consider the normalization factors II  , 12  

appearing in (57). 	Substitution of (55, 56) into (44) 

gives an expression very similar to the integral of (57); 

only whereas (57) is in the variables R I  , R 2  , the 

integrals giving Ii  and Iz 	will be in the variables 

R I  R1 	and.  RI  R 2  . 	Thus the normalizing factor 

,will be 

 

-rr  1e--- 6-2 	V8(txt)  ID-1r  
R, 
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dLx d x  
( 61 ) 



form as 

Q 7-1 II 

and similarly for 12 .• 	Noting that insofar as the 

Y, Y, Z, Z , and Ro  dependence are concerned, (61) is 

identical to the integral of (57), and so these factors 

will cancel when substituted into (57),leaving only the 

integrals in X, X remaining. 	This is, of course, simply 

a consequence of P%  , P2 having been chosen to lie on 

the s axis. 

If (57) is written 

1-7.1 	
Tz. 
	 (62) 

then we can write the specification of Q 2.1 in functional 

5k 

(x) 	 cox cu? ; 

where the three functions f, g , and h are those 

enclosed in the large square brackets in (57). 	A modified 

form of the triple product integral (Appendix I), 

f c x 	(x) 11 (X)  cl..x eLZc = rF(u) 	HCIA-) du_ (63) 
a 

wherein f, F; g, G; and h, H are Fourier Transform 

pairs, may be used to simplify (57). 

The Fourier transform of the first factor is easily 

found by using the standard relationship 



, • 

Tsl 

X2 
 

Ro 
21T 

L  A 	2R,, ' 

• ; 	( 2c!, 
A (66) 

(67) 

— 
FT  e11 

 
-Tr al  u.,1  

._ 	e 
55 

from which the desired transform is given as 

F T [ C-7-  12441  

  

—1T G u.1  (64)  

   

The Fourier transforms of the second and third factors, 

products of Gaussian and Fresnel type functions, may be 

foUnd by contour integration in the complex plane (Appendix 

II); the general relationship so obtained is that 

F T 
—in— (8-1 2- +2V-t-)1 

   

(y —u)2 
c4-1-Cp 

(65)  

   

 

Vs.+ ip 

for 

In the present casei the second two factors in 

eqn. (63) are given as: 

from which the following relationships are seen: 

ot, I 	57- 	 XIR0 /8 7 	f s. 

Sy R 
Y2 
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using the notation that y = - yi  and p p, . 

Using these values in conjunction with (65), the Fourier 

transform of g(x) and h(X) are 

7r  (--Y-tu.)2  
04_ ces, 

G (-LAI z 
N/c4+ eia e 	_, 	e 	oC+) 

 

Yo( -1-et3 

)4,-(•,,.?-
- 

/31  

and the term Q,2_1  desired in (62) is 

P2.1 fo- 
Lt 

-Ti
e 

 Cr Ili?' 

   

-V ( Y- u)2)2  

  

GO7  
cA -Ca am- 

       

       

       

        

Expanding and rearranging terms gives 

(Y2--2va..-HA.7-)(0(-C/3) +(Y1+2_,(1,4.tt,t1)(01,.+C.(3) z 7r - a G- 	-Trcrt ti_ 	 tkLilss_ rr  
Q11  -: Vo -i-ie 2  fe 	 cLu. 

U (69) 
and collecting the terms in U2 and u , and taking the 

u -independent terms outside the integral, gives 

• 

Q2- • = a- y ciszi-/31 

.1cr  2 4. roc 1ix  7  e (2/5 Yu,.  )1 
ool-/31- 	— 	J 

(70 ) 

Using the integral relation found in Appendix III-a, 

(68) 

ttx) = vet _ 
(Y-fm? 
ot —gip  

r 

e-Ti Atz.  e-rui (28f) 

ctt 
A 

7 

 

C.o 

 

(71) 
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with, in the present case, 
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A - 	00.tiaL 

eqn. (70) gives 

am_d. 	a - a/8 

 

LoL 1/1- cx2fe  	rcri ( 4 Ple  )7  oet  
(0c 1+(391  Ac (60-+61' + ot. 

/0" 2  (c0-1- 2-) Let C 
(72): 

Combining the terms both in front of and within the exp, 

this may be written as 

-  , 	
y (FL coo+ is2.) 

and 

(S),21 

rearrangement of the terms in the exp gives 

oLal 	 4-C  g•Li-ta'.) 
+ 01-) [o.)-(0c.1 +pv) +2-.4.3 0 

7 - 	 ycital+131) -k- 2- 

  

  

7 

from which cancelling the term 	+ P2) in the exp 

gives the desired form for Q 2..1  , 

a. (etcrl  + 	
1/ e CF.11  (73) 

Recollecting that from .(62), 121  m /1717;  

and 12  must now be evaluated. It is clear that I, = I2 5 



-c3 (78) 
-17-c7 c4.1  (Y-le -2T 	. • 
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and, as with 	2.1 
	consideration of only the X dependent 

parts of Ii gives an equation functionally identical to 

(63) and a similar method of evaluation is followed. 	The 

analogues of eqn. (66), (67) will be 

xi -rr , 5 00 = e  -TC2iiR o — "R'' ) (74 ) 

)t 	rr 
-77 --71 	 Ro 	Ro I 

k (X) e 
(75) 

giving I  5- ) 	= x 
1', - -

AR, 

and 
52  ) 

 

 

xRa 

using, as before, the notation y 	- 1/1  and p = DI  . 

Using these values for a, p, y , the transforms are 

	

(Y-01  _n 	 oc+ G(u) = 041-cp.  
y oc 

and 

1-1(o- 

   

Tr (Y -4z  
DC -Cf3 

 

    

Vo(-Cia 

 

(77) 

and using these values gives for the intensity I. 

(76) 
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Expansion and rearrangement of terms in the exp gives 

	f
oc 

(r-L-lxv.+AA..1)(ck-iis) + (e-2Y1(.+(  +L.01( c4+ CA) 
-Tre-Le 	ir 	 t (8 2- 

Yati-2 3  e 	 tt,t, 

and collecting the terms in u2  and u , and taking out-

side the integral the parts independent of u , gives 

---Tr 1#/v. „1-; ) GL2  - 2-  ( 

a 
(79) 

Using the integral relation derived in Appendix 	that 

61  

r
45.1TAtI. 	-7.1T. (2-80 	1-7T 

I - cr. 	if cc/ tigz du 

with, in the present case, A= 7_04. 
to-t02- ct 

(8o) 

P- ay  
7 

eqn. (79) gives 

      

irr 	r  
Luv+07)2 	cr.Gt= fp= )+2.ct 

lr - 

    

. 	• 
0 	2. C-4 
Utah (82pr 

    

    

Y ot 7-4131- 

rCombining terms in the exp gives 

`n  	

ao4r2  cr. 1( °C14731)] t 4- 04:12r .- 4-00'1(2  

14-4- Ca:Lipl) 2-0c e 

and as before, cancellation of the term (a21432) in the 

exp gives 
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Cr- 
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Y 0-1(.00.-1-(32)+2.-t 

  

 

(81) 

With 	 
Jrt 

the desired value of 72.1  from (57) is given by 

Y  
.. 	at, 

7." 

	 crI(.00-+Al-) + 2.e 	
(82) 

or, substituting for a, p , and 	the coherence 

factor is 

    

4- 
+ 

  

NT. )1 (f)
2. 

 

       

      

I ti 

    

( 83) 

     

      



will be 	
)(2-. 

(fl = 
	Qtxl - 	5" 
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Behaviour of Eqn. (83) for Coherent and Incoherent Extremes  

	

For a completely coherent source, o = OD 	and. 

eqn. (83) then becomes 

= 	1 	for all y 	as expected. 

For a completely incoherent source, o = 0 , and then 

eqn. (83) becomes 

--rr 	 sl.§2 

	

x- RoL 	 (84) e 

This can be compared to the result obtained using classical 

coherence theory (Hopkins 1967, p. 210) by a simple extension 

to three dimensions, using the same approach as in deriving 

eqn. (83) but starting from the classical equation rather 

than eqn. (47). 	Thus, from classical theory, 

(85) 

The complex amplitude at point 1 from the source point x 

and similarly for (.t2. . 	The situation is shown in Fig. 8 • 

Using these values, the product of the complex amplitudes is 

* 	B cx) 	-cs?--I IR,- R.) N 	 i 	1 U, t) (Az 00 -  RD: 	, letting 
RJ4 - fe 

as was done before. 



Figure 8 

Two Points Illuminated by a 

Gaussian Incoherent Source 
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The path difference 	- R2 may be written, as before: 

	

(x-3,)1-  .4 CY)• + 	•-D) 2  

or, expanding the squares, 

= 	yt 	11  4 	 x S I  - 	D 

Similarly, 

R.2= x'+ >ft  I-  V 	 L 	2_XS2_ 	• 

With 

D 2-  

2- n 
the difference 	-Pcz. 	is 

TN  2 	0  2 
/‹..1 - /12 

or, combining terms, 

RI L• = 	Lx ( 

— 2_ ZD 	)_>ks z, 4- 2, 1- /1). 

e-) 2- Factoring 	
1-12 K 2. 

	gives 	RI-Rz as 

IR% 1-  R2. 	 Ro 

higher degree terms again having been discarded. 	Substi-

tution of this value into (85) gives 



Yz 

J 

-7T s= r e 	GAYe, 

The normalizing factor 	is equal to 	S 	, the 
R.L.2 -Z 

same factor which is before the exponent of (87), just 

yz r 

	 e e
, it ¢xg  >. 0 Gt. x. 
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(86)  

The standard integrals over Y and Z each equal ' 

and using eqn. (71) (derived in Appendix III-a) for the 

integral over X , the coherence function is 
a.5 2.?  

' 	53  
1, R! Lfz 

W- 
(87)  

cancelling it, as shown next: 

yt - II 52 	--Tr sz . 
RI  f 	cbc f

e 	e 	2 

these three integrals each contributing 	as before, 

thus 

 

s 

 

   

R 0 Ro'aa ? 

leaving the coherence function 
s'  -Tr 
V-  R.' I 7_1  (88) 

which agrees with eqn. (84). 	Thus both the classical'  



treatment, assuming initially a completely incoherent 

source, and the special case of the general expression 

(83), yield the same result. 
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Numeric Evaluation of Eqn. (83) . 

Eqn. (83) provides a means to easily predict the 

effect of different degrees of micro-coherence on experi-

mental measurements seeking to determine the extent of 

source micro-coherent regions; at the same time the con-

ditions most favourable to such a measurement can be 

stipulated. 	Let such a source illuminate a distant 

plane, wherein lie two points PI  , P2  , and assume 

that the coherence between these two points, as a function 

of their separation, is to be measured by conventional 

experimental methods. 	Thus, 	lit (V would be measured, 

and the measured values compared to the values predicted 

by (83) for different values of o . 

To facilitate numerical evaluation, eqn. (83) may be 

written as 

e 	
7 

	 (89) 

	 1 

with 	63.k 	
crs- 	cr )z 	

R
s 

o) 
\ 2 )t R. 

rIt would be reasonable to examine the value of ft (s) at 

the inflexion point of the curve TL y vs V 3 , as 

this will give the greatest change in 	ra, q) for a 

small change in ozi ; the value of 3 for the inflexion 

point, S-  67,  , lies at --1— times the value of the 
1571571 	 VT 
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l/e point (Appendix IV), and thus the value of TlIT at 

the inflexion point, equal to 0.606 , is sufficiently 

great to avoid measurement of very low visibility. 

If a realistic value of R, is chosen as R, = 100 mm , 

and A is chosen A = 0.5 µ , it remains to choose s and 

g • 	Examination of eqn. (83) shows that the greatest 

effect on 72.1 (1) 	will be noted when s is only a very 

few times larger than o 	and since o may be presumed 

to be smaller than, say, A 	it is reasonable to take s 

as s =.2T as an initial choice. 	(It shall be shown that 

this choice is not in itself critical.) 	If the factors in 

(83) are compared, it will be seen that the factor 

(-§-1(ds 	_ 	and is negligible compared to the 

factor 2 	Neglecting this term, and setting o = 0 

gives the experimentally reasonable value for 	of 

14.04 mm in order to put 	at the inflexion 

point. 	It is now a simple matter to evaluate the function 

12.1(p 	for S = 14.04 mm 	for various values of o , 

using the following data 

Ro  = 10-1  m 

A = o.5 x lo-6 m 

S = 2A = 10
-6  . m 

S =-X77  = o.olkok 	(for the inflexion point). 
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The coherence function 12, ( ), as a function of (o/s) 

is then 

1- 
= 

 

-7-44+(i-)-1 

 

 

or, with 	t= a. 	2 

This is easily evaluated from standard tables of the 

Gaussian in t , and is tabulated in Table 1. 	A rough 

plot of r1 	at the inflexion point, for the values which 

depart by a significant amount from the a = 0 case, is 

shown in Fig. 9 along with the full Gaussian for a = 6 . 
If s were doubled or quadrupled, halving or quartering ,s 

would be required to stay at the inflexion point; in this 

case it is noted that only the ratio of 	is important 	in 

determining the relative change in T', 	Thus, if a 

certain change in 724 is decided upon as the minimum 

,measurable in an experiment, the smallest value for 

which can be detected (or measured) is determined in terms 

of the size of the source used. 	For example, if a 2 % 

departure of 1-11 	from the classical value is desired, 

then a must be at least 1/4 of the source size to be 



Cr 
S 

/aril 

,-0 + 2* 
1 
L2 t 

Fly 

71'1 to) T;1 

CT : 	C) - 	0 2.0000 0.1590 0.399 0.606 1.000 

)1/ 
46 

tit, 2.0039 0.1588 0.398+ 0.606+ 1.001 

)>( 4. 14 2.0156 0.1580 0.398 0.607 1.002 

IYII 
14 2.0625 0.1543 0.394 0.614 1.017 

X 1/2  2.2500 0.1414 0.376 0.641 1.058 

2 ), 1 3.0000 0.1061 0.326 0.716 1.182 

Table 1 

Computed Values for 111  at the 

Inflexion Point for Various 0-  . 
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Figure 9 

Plot of IT:I at the Inflexion Point 

for Various 0-  . 
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measured properly. 	This clearly. places stringent require- 

ments on any experimental attempt to measure the micro-

coherence characteristics of a source. 

F• 
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Consideration of the Depth of the Source  

In the preceding parts of this section, a model of a 

micro-coherent source was postulated to be Gaussian in 

intensity,.the independent parameter of the Gaussian func-

tion being the distance of a given point from the centre 

of the source. 	This might be described as a "spherical 

Gaussian" source. 	It is of some interest to examine the 

effect of changing the depth of the source, i.e., its 

thickness in the Z direction, while keeping unchanged 

the dimensions in the transverse, or X, Y, directions. 

This may be conveniently done while still maintaining the 

Gaussian characteristics of the source, to obtain a "squashed 

Gaussian" or "thickened Gaussian," as the case may be. 

This is possible because the Gaussian function may be 

written in the three coordinate variables as the product 

of an exponential in Z and one in X, Y, thus the complex 

amplitude distribution function (55) may be written 

--:7 	 _21/.  (XIS v2-)  e  s- 
,where s is the parameter determining the source depth, 

and s is retained to determine the source width in X, Y. 

It was seen in the discussion preceding eqn. (62) that, for 

the measurement points Pi 	Pz  lying on the 3  axis 

normal to the Z axis, the Z -dependent parts of the 

7 
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integrals determining the coherence function 1-1-2.1 cancel 

to .unity, and that the coherence function 11, therefore 

depends only on the X-dependent source characteristics. 

It is clear that this situation still holds regardless of 

whether or not the source is spherical, that is, whether or 

not sz = s . 	(This will be true for any other source 

distribution function provided that it may be written as 

separable products in Z and in X, Y.) 

This independence of the coherence function 	on 

s 	has application if sources are considered which are 

unlikely to have spherical characteristics, as for example 

an incandescent solid tungsten filament or an excited gas 

discharge. 	The tungsten filament may be considered to 

radiate from only an extremely thin layer at the surface, 

in which case sz  would be nearly zero. 	The gas discharge 

may be considered to effectively radiate from only a thin - 

layer at the surface of the discharge, as in cases with 

very strong self-absorption, leading again to a very small 

z ; or the discharge may be quite transparent to its own 

-radiation, as with a very low pressure discharge, in which 

case s1  might be considerably larger than s if s were 

limited by the construction of the apparatus. 

-This latter case raises an important practical question: 

if a small part of a large source is isolated by the apparatus 



to obtain the equivalent of a small source, then the fore- 

going statements regarding the independence of lif 	on 

sz do not apply. 	For example, if a pinhole were placed 

immediately before a large gas discharge tube to isolate 

only a small part of the discharge)as shown in Fig. 102a 

quite different situation results. 

It was assumed)in using in eqn. (57) the transmission 

functions from the source point P(x) to the measurement 
LTT "Z R2. 

Ri  e 	-T; points P, and P2  as 	and  

that point P(x) was in fact visible from both P, and 

P2 . 	As this is far from the case in this example, the 

transmission function would have to be drastically modified, 

or equivalently, the limits of integration over x, X 

would have to be drastically limited and be themselves 

dependent on P,)P2., . 	The integration limits for PI, 

in the integral given in (57), and for P, P, and Ply?. in 

the normalizing integrals given by (61), would be completely 

different, and therefore the cancellations in Y, Y, Z, 

previously enjoyed do not follow. 

r• 	 A more graphic way to consider the problem is illus-

trated in Fig. 11, in which the part of the volume of the 

source which can be seen by the measurement points P, 	Pz 

is indicated. 	A small circle is drawn immediately behind 

the pinhole to indicate the volume Voliz of the source 

, 
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c os Dtscho,r5e 
Tube_ 

Figure10 

A Pinhole Isolating a Small Area at 

the Surface of a Gas Discharge Tube 



G czs D i s 	e. Tu. 1,-c, 

vol, 	 P n e. 
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PZ 

	> 5, 

Vo 12  

vo112  

Figure 11 

Volume of Overlap of the Two Volumes 

Seen by Points PI and P7.. . 
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which it is desired to isolate by means of the pinhole; 

this volume Vo112  comprises the very small portions of 

the overlapping volumes Vol, and Vol,. , seen respectively 

from P, and P2 . 	The portion of (Vol, + voiz) occupied 

by Vol" will depend on the pinhole diameter relative to 

the angle subtended between P, and P 2 	It is evident 

that the greater part of the light arriving at P, and P2 

will have arisen from the non-overlapping portions of the 

volumes Vol, and Vol.2  , and that this light will very 

severely mask any effects arising from possible micro- 

coherence within the volume Vol12  . 	Thus the mathematical 

description in the previous paragraph is supported by this 

simple qualitative argument. 
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Consideration of Chromatic Coherence  

Any experimental measurement of the micro-coherence 

characteristics of a classical source must necessarily 

utilize light of a non-zero spectral band-width; even were 

classical sources available which exhibited essentially 

perfect chromatic coherence in combination with spatial 

micro-coherence, or even were it possible to use essentially 

zero-bandwidth spectral filters or monochromating devices, 

it is still likely that a wider spectral bandwidth would 

be required in order to obtain sufficient power for 

reasonable experimental signal-to-noise conditions. 

Therefore the effects of non-zero spectral bandwidth on 

the foregoing formulation of spatial micro-coherence must 

be considered. 

In developing eqn. (27) and (28), we have shown that, 

provided the instrumental integration time is much greater 

than the coherence time of the radiation, the total power 

at a point illuminated by a micro-coherent source may be 

determined by integrating with respect to spectral frequency 

,.over all of the partial monochromatic powers at the point; 

this is specified by eqn. (28) as 

- 	[x• ) 	j A IV) I.  ( Y )  XI ) d_ V. 
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(The factor A(v) 	is the spectral sensitivity function of 

the detector, and is of no consequence for the present 

discussion.) This condition is the same as that assumed 

in Hopkins' (1967, p. 229) treatment of chromatic coherence, 

which therefore can be applied equally well to the case of 

a micro-coherent source as to a classical source. 	This 

treatment starts from the basic expression specifying the 

power at a point P illuminated by light arriving from 

points P, and P2  , as 

1:1(1 =  1:11  : P) +.1-2(P) + a IT;1"/) -1-2' ( 9)  Re [ 7-2; (-)e4.2n17P(';)  70 	I 

in which 7-746:a 	is the spatial coherence between P 

. and PI, for light of the wave-number v , and p(V) is 

the optical path difference [P, P] - [PZP] 	This expression 

is integrated over the range V = 0 to v = co to obtain 

the total power at P as 

= 	+ 	z 	Rt, 1 Ti, 

where J24  is the "total coherence function" 

2 

I • 

	

I 	- f
v J 2t 	Vit 	 Say (v7) d\-7 

0 

The following assumptions and definitions are now 

introduced: 
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1. p(V) represents the total mean path difference 

from the source to the point of interference, 

via the two paths including P I  and P2  . 

2. The relative spectral energy distribution of the 

source is defined as 

Is' 

3. The two paths via PI  and P2 are assumed to 

have the same uniform optical transmissions, and 

it is assumed that the path difference p(17) 

arises solely in non-dispersive media. 

4. The spatial coherence factor Val  (v) is assumed 

essentially independent of wave-number; this 

will be true even for a very broad spectral line. 

5. The wave-number origin is shifted from zero to 

tr; , the wave-number at the centre of the 

spectrum. 

Under these conditions, the total coherence function may 

be written 

r• izTr V. 
Jlt 	 'h1 R,p) 
where K(p) may be regarded as the modulus of the chromatic 

coherence function, and is given by the Fourier transform.  of 

the relative spectral energy distribution function as 



K ame(v iop 
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If, for example, the spatial coherence 	at a 

plane illuminated by a micro--coherent source were to be 

measured as suggested in the foregoing sections, the total 

coherence factor Ju  specifies the additional decrease 

in coherence to be expected from the spectral bandwidth of 

the source, in addition to the coherence attributable to 

the effects of the spatial coherence characteristics of 

the source. An unaccounted-for decrease in the chromatic 

coherence factor K(p) could easily mask a slight increase 

in the spatial coherence visibility factor V21 attributable 

to micro-coherence effects, greatly decreasing the sensitivity 

of the experiment. 

Consider a measurement of 11 by a classic Young's 

two-pinhole method, the light from the two pinholes simply 

falling on a screen to produce interference fringes whose 

visibility may be measured. 	As the fringe order increases 

from zero, the path difference factor p will increase and 

the chromatic coherence factor will cause a decrease in 

fringe visibility, as shown schematically in Fig. 12, in 

which Tio  is the frequency at the centre of the spectrum. 

If five fringes of reasonably high contrast are 



Fric_ 
cow il, 

Ertveloff of 
All Fre.r,,es 

Figure 12 

Power Envelope and Visibility for 

Polychromatic Interference Fringes 
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considered to be the minimum sufficient for an accurate 

visibility measurement, the maximum spectral bandwidth 

permissible may be easily calculated. 	Let the chromatic 

coherence visibility function be required to be > 0.5 at 

the value of p for the ±.2nd fringes of C77., , that is 

for p = 2X , K(p) > 0.5 . 	Again following Hopkins (1967, 

P. 233)3 assume a Gaussian profile spectral line, with a 

spectral energy distribution given by 

E 	sc, 
	SC) 

where 6-17 is the value of v for which the value of 
-T/4 ( -Cje) =e 	= o.eps- (The factor Sc," is included 

to normalize the integrated intensity in the spectral line 

to unity, as required in the derivation of the total 

coherence factor J24  .) With this spectral energy 

distribution, the chromatic coherence function is simply 
pS02  

Kg>) = e 	 With K(p) = 0.5 and p = 2X , we 

have 	-7r (LA E9f 
I< CI)) = 0.5 =-..e 

1 1 
T  from which 2(6V)X = 0.47 , or X(T. - .) = 0.24 , giving 

A = 0.76 Ao 	For X0  in the centre of the visible spectrum, 

use of the entire visible spectrum would be admissible. 	It 

may be remembered that an assumption was made that VII  was 

independent of V , which is strictly only permissible for 
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a spectral emission line and not for a spectral region 

several hundred nanometres wide; although this result is 

therefore somewhat optimistic as to the spectral bandwidth 

permissible, it does indicate that, provided the effects 

of chromatic coherence are properly accounted for, they do 

not place difficult requirements on the spectral bandwidth 

permitted. 
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SUMMARY 

Without assuming any specific source emission mechanism 

other than the concept of the coherence length of an emitted 

pulse of light, an analytic specification (26) has been 

derived which describes the coherence between two elements 

of an ordinary thermally radiating source. This coherence 

factor is specified in terms of the time-averaged complex-

amplitude cross-product of the spectra from the two radiating 

elements, and the legitimacy of representing the radiation 

by these infinite monochromatic spectral waves and by a 

scalar theory is substantiated. 	It is shown that for the 

usual case involving low or moderate resolution optics, the 

standard classical coherence theory is entirely correct and 

applicable. 

It has been shown how this coherence factor may be used 

• as a weighting function in integrating (28) over the complex 

amplitudes arriving at an observation point to deter mine the 

total power arriving there. This expression reduces to the 

standard forms for a perfectly coherent and perfectly inco-

herent source; provided that the radiation density from the 

source is properly normalized. 	If a two-point source is 

assumed, (28) reduces to the'standard Young's fringe 

expression, as expected. 	It has been shown that the source 

micro-coherence function must be real. 



86 

Equation (28) has been used -to derive an expression 

(47) giving the degree of coherence between two points at 

an intermediate plane illuminated by a micro-coherent 

source, in terms of the source micro-coherence and the 

complex optical paths between the source and the inter- 

mediate plane. 	This expression has been applied to a 

spherical source postulated to have a Gaussian radiance 

distribution and a micro-coherence function which is also 

Gaussian; this treatment indicates the influence of ex-

perimental conditions on the feasibility of measurement, 

and points to potential experimental problems. 	A para-

metric study of this situation has shown that in order to 

obtain reasonable experimental measurements of source 

micro-coherence, the source must itself be extremely small, 

probably only'a few wavelengths in extent. 	It is also 

shown, however, that the requirements on chromatic coherence 

are not severe, a factor which could help alleviate the low 

power to be expected from such a small source. 



APPENDIX I - The "Triple Product Integral" 

f
f f (-x- 	(x) 	clx GU` 

-00 

F( u) 6; cu. ) 	u 

where f,F; g,G; and h, H are Fourier transform pairs. 

The integral to be developed, 

fl fc-x4c') jcA) /lac') dx ci)"c` ; 
xx 

may be rewritten with the function g(x) written as the 

Fourier transform of its Fourier transform G(u) , as 

x 	-, 
f (--)c 	csz) 	 fG c 	e, 	d, 	x 

Upon rearrangement of the terms and order of integration, 

we have 

fa cu.; f fkoaru.ciZ-fx) 1.-(),#),0] ax/i 

x 

4iVirta 
aCc 

and each of the terms in curley brackets [ 	is seen to be 

one of the desired Fourier transforms, giving the desired 

final form as 
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It is more often desired to have the triple integral in 

the form: 

x—)1) 	Lx)  h c 	x 	J (t.0 GC-u.) Het-0 ct“, 
..,t 	 ct 

To evaluate this modified form of the triple integral, 

start with the standard form 

  

ij  (20 	 =1F(u) C cu,) H 	du- 

 

f -x 

  

and make a change of variable, letting t = - x ; and 

dx = - dt . 	In the new variables, the standard triple 

product integral relationship becomes 

ff f (4) 	t) -A c ) d.t d!)7 = J7  /7( GO 6; (L,O. Wu) 
e 2 

Using the standard relationship that F T j j (-0] = 	7 

the triple product integral is now 

if1(.1.4 y(+0 h ic̀) c1L-- GC?: 	f F (u.) (-to ax.) 	. 

t ; 



With a second variable change, with t = x , we now have 

-icx.L)-7,) 	(x) k w otx. 	f F(u) Gc—u) 	( L4) 	et 
x 2 
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as desired. 
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To show  that for a > 0 , 
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let the integral to be evaluated be denoted A 	thus • 

e-grUct+4.4).0- 4-(2iY-24'LL)k] 	
) 

which, after completing the square, becomes 

co

S  

+ 

A= j e 
e y., to 2 	, 	[i t Y-IA) 1 21 ( 	) 
ktitti 

kb , 

Taking the term not depending on t outside the integral, 

and taking (a + iP) inside the square, gives 

W1Alif 	
.47144.+47./ 	e(Y-u,)  12  a t ,A= e "LP

L  e 
or, letting the• remaining integral be denoted by B 

A= 
(Y-1,02  . e  PC+Lia B 



To evaluate the integral B , let 
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e  
v 	 

in the complex plane, with ott = ot 477 	
Then 

 

0)17.—EtIrs' 
the integral to be taken along the line 

(* CY-14)  
Y 	+ 1:13 

A contour P may be taken to include part of this line, 

the Real axis, and two connecting circular arcs of radius 

R about the point to .9 the intercept of the line on the 

Real axis (Fig. A-II-l). 	The contour sections are shown 

as A, B, C, and D . 	Let 0 be the angle between a 

point on this contour and the real axis, about to  

The integral along this contour 1' includes in turn 

each of the four parts and is equal to zero, thus 

fE 	C4 	fD 	f c- 	= 

or, solving for the integral along Z. 

fE 
	

ic 



tine 
froz. 	I 4. i (Y—u)  

ot_ 
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R 

Figure A-II-1 

The Contour around r7 in the Complex Plane 
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The integrals along the circular arcs, CI_ and C_ 

may be written in circular coordinates with Z.--to 	e°  
ce 

and 	GI I z' 	e e de) 	as: 

eTTri.2.0  f e-7r W.-  4- 2-6.Re +Re 

 

C 

R e do 

 

which becomes, upon expansion and rearrangement of terms, 

et, 

0  V:  
fl-Tr ( to2  t 3- to R Cos 9 f Picas 2,o) -iir(2-toR A-Ci% 0 + RzA.1;4 2.0) 

e ' 	 R e ecte. 
ce , 

In this integrand, the terms 

-irr(2t.R.41),,e-f-Rzscm.263) co 

lie inside or on the unit circle in the complex plane, and 

therefore have a modulus = 1 . 	If now the radius R is 

let to approach infinity, the term remaining is dominated 
na. 

by the factor tC COS 20 , and approaches zero, as long 

,as 	Cos ae >0 , requiring that o < 1 Z E)  I < Trh 	or 

O < 	774 	. The value of g does in fact lie 

between 0 and 71/4 provided a > 0 , as shown below. 

For a > 0 , the complex number (a + if3) must lie 

to the right of, .and not on, the imaginary axis; the 



imaginary number ± irck“.31  will therefore lie inside, 

914. 

and not on, the lines through the origin at an angle Of 

± 11/4 . 	This is more easily seen in circular coordinates 

(Fig. A-II-2): z_. Re4 	5 and for a > 0 , 

-E < ck < li ; so IT = i e.'4 	, with 

-4 < 0 < IE 	. 	(It may also be noted that the integral 

.S'Ir cil. 	is analytic for all / except /= °"° ; it 

is therefore necessary to consider limits as Z -...p,  oo 

rather than simply values for I = 00  .) As R -> oo 

the integral along D approaches jre 0&& 

which equals 1 . 	Thus, as R oo , the integral IE. 
-y0 , 

approaches the integral Se a z 
limit as R 	, we have 

S E 
 ▪ D - IC+ 	f C _ 	I - 0 • 0 . 

Thus B 	 ▪ and the desired integral A is 
14x+e,A 

seen to be 

A= 1 
(Y-uJI  7ir e./3 

 

 

and in the 



Figure A-II-2 

For of > 0 , the Line 7°61-4fi lies within _ - 
the Octant 4- TrA. about the Real Axis 
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APPENDIX III - Evaluation of Two Integrals  
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(a) To show that 	e 	a 	Ott -= 

 

8' 

1 

	

67T 

As 

6  

 

  

_00 

   

First, complete the square and take outside the integral the 

parts not depending on t : 

+ 
er3 	4r  

A 

ao 

P 	( Y74" + 

011 

The remaining integral must be examined in the complex 

plane, where, with 27. 	-17ac and 01,1 =VW oa 

the integral may be written 

+ .7A4- 
1 	 e 

C)-• 	5 
-co+ 

, 	id 
the integral is along the line Z= 	t + , which 

,is parallel to the Real axis as shown in Fig. A-III. 

The point (X,O) , denoted simply as X , is a running 

point on the Real axis. A contour r may be taken through 

points A, B, C, D as shown on the Figure, the integral 

around the contour ~ 	being the sum of the four parts of 



 

A 

  

-X 

A 
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+X 

Figure A-III 

An Integration Contour in the Complex Plane 
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c 	0 

the contour, thus 	.1,-- f-f-fi-f 
T 	A 	G 	c 	D 

no singularities within or on this contour, so the contour 

integral is equal to zero, and we may write 

f

C 8 

A 

f 

8  

 

 

 

A 

Consider the integral f 	along a path between B and 

C which may be written as Z = X + iy (with dz = idy) , 

giving the integral as 
a 

'1z17 

8 	yo 

There are 

or expanding and re-arranging terms, 

C _Tr(xL+1%cy.„1) 
e cij  

B 
- e __rr 	e TT 	

edi 

The modulus of the factor e-1-ci2xy is equal to unity, and 

if X is now let to approach infinity, the X2  factor 

swamps the y2  factor in the term e-7E( 2 X-y2) , and the 

,value of the integral approaches zero. 	It is clear that 

rA  the integral 
Jo 	

will similarly approach zero. 	This 

leaves that 

as K 



i.e., that the value of the integral of the complex 

variable f  

equals the value of the integral over the Real part of Z 2 

This latter integral has the standard solution 

or 

re-mice 	1 
at 2  

1rT 

Applying this to the present integral, where K = A the 

desired result is obtained that 
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(b) To show that f 	eTTF S 	

V7k1  e-- 
 fir A 

As before, completing the square and taking outside the 

integral the parts not depending on t : 

2- 
e,-/rAt. :irz8+6tt  e:-IrPrck 13 N1 	 1;31-  

/ 	A 	ott 
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Again using the standard result that e ot€ -y-17 2 

 

  

the desired result is 

  

e_TrA4.- 
out 

A 

4- IT A 

  

—eo 
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APPENDIX IV - Inflexion Point of the Gaussian 

tt  

The Gaussian function e 	will have its 

steepest slope at the value of t for which the first 

derivative is zero - i.e., the zero of the second derivative, 

or inflexion point. 	This is easily found; let f(t) 

denote the Gaussian, !cf..) 

The first derivative, giving the slope, is 
tt  

e 
and the second derivative, giving the curvature, is 

fit (o• 	
r 
L 	) 

-e- - — 2ir 
] 	 • 

Setting the second derivative equal to. zero, 

P 4 	 t't 
a" 	a-2- 

gives the value of t for the inflexion point as 

= 

and at the inflexion point. 

This may be compared to the value of t at the point 
-TVS 

where f(t) 	1/e : thus for e à   

we have f 0— 
at the 1/e point. IrTr' 
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Superresolution. image-Forming Systems for Objects with 
Restricted Lambda Dependance 

J. D. ARMITAGE, A. LOHMANN, and D. P. PARIS 
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When talking about "resolution" we refer 
to the fact that optical instruments usually 
act as low pass filters, letting pass only 
frequencies IRIRA. The cutoff frequency 
RA , when induced by diffraction on the lens 
aperture, depends on wavelength 2 and stop 
number ae such that RA=1 /22;. This is true for 
any incoherently illuminated object. How-
ever, if only certain special classes of objects 
are admitted, one can improve the resolution 
considerably. Then the image-forming ap-
paratus needs some parts in additon to the 
lens, as for example spectral prisms, moving 
masks or Wollaston prisms. Such apparatus, 
which we will call "superresolution" devices, 
have been built by several investigators. The 
following special object classes were used: re-
stricted 2 dependence" restricted time depend-
ence,' nonbirefringence,' relief structure.' 

In two cases one can go so far that 
"resolution" of the intrinsic optical system 
(the lens) is reduced even to zero. That is, 
the lens can be replaced for example by a 
ground glass or by a scrambling light pipe,  

which can transmit only the temporal and 
spectral contents of a beam of light, but no 
spatial structure. Then the spatial structure 
of the object has to be encoded either as 
spectral structure')  of the light beam or as 
temporal variations.' 

This paper deals with spectral encoding 
and transmission through a light pipe. After 
explaning the basic idea, which has been 
independently conceived by Downes (1918), 
Lindenblad (1948) and Kartashev (1960), we 
will show how one can overcome two seri-
ous drawbacks: restriction to one-dimensional 
objects; very low light throughput. Then 
we will describe several modifications, some 
of them admitting a larger variety of ob-
jects, others performing certain analog com-
putations. 

I. Basic Principle 
The first prism spectroscope displays a 

continuous spectrum in the object plane. 
The object, here two black lines, blocks out 
two particular wavelengths. The light is 

BLACK-WHITE 
OBJECT 
	

X-->A CODING PRINCIPLE 
WHITE 

SLIT 

4 LENS 
PRISM 

,• 

gra 	
Y 

RUM Cga SPECT  
IMAGE 

ENCODING LIGHT PIPE 
I (X)=fI (X.A )cl). 

TRANS M 	
DECODING 

Fig. 1. 

collected and transmitted without any spatial 
resolution to the second spectroscope, which 
"decodes" the signal by displaying the trans-
mitted spectrum. The two missing wave-
lengths give rise to two dark stripes, which 
constitute the "image." The color is irrele; 
vant. Obviously this method works only for 
one-dimensional x-dependent amplitude ob-
jects, being black-grey-white. The light 
throughput is very low due to the entrance 
slits of the two spectroscopes. 

II. Extension to Two Dimensions 
While the x-dependence of the object is 2 

encoded, the y-dependence can be time en-
coded,"." for example by moving two 
masks in both object and image plane in y-
direction the way it was described in the 
preceding paper by Lukosz. 

III. Increased Light Throughput 
Replace the entrance slits 8 (x) by two 

identical masks M(x). The optical transfer 
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f ( X',Y' 
Fig. 2. Optical generation of correlation 1(x, y). 
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function of the total system is essentially 
the spatial power spectrum IM(R)12  of the 
masks. Fresnel zone plates and pseudo noise 
pattern, both known from spectrometry and 
Radar as "sharp autocorrelators," are suit-
able masks. 

IV. Extension to Colored Objects 
With masks according to III also colored 

objects are allowed, if their transmittance 
.10(X, 2) changes slowly as a function of 2. 

V. Extension to Phase Objects 
Many ways are known to produce an am-

plitude image from a pure phase object: 
interference microscopy, phase contrast, 
Schlieren methods. These methods can be 
somehow incorporated into the spectral 
encoding part in order to extend the appli-
cability of encoding to phase objects. 

VI. Interference Filter instead of Prism 
While a prism displays a spectrum in the 

form 2—>X an interference filter in a diver- 
gent beam performs as 	Since most 
objects will depend on both polar coordinates 
r and so an additional encoding sb—)t is needed. 
Two sector discs M(p) synchroneously spin-
ning in object and image plane will accom-
plish this. 

VII. Correlation and Convolution Experi-
ments 

So far we described several ways of im-
age transmission, now we will show how 
the basic principle of 2 encoding can be ap-
plied to something quite different: optical 
analog computation; in particular correlation 
and convolution. The first spectroscope in 
Fig. 2 is used to create shift al of the 
function g, replacing now the entrance slit. 

ff f ( X', Y )9 ( 	aX ,r) 	( aX ,o) 

The multiplication takes place where the 
second function f (x', y') is located as a mask. 
The integration is performed by the collector. 
The conversion of the correlation parameter 
(shift) aA from a wavelength into a geometri-
cal coordinate is executed by the second 
spectroscope. Convolution and autocorrela-
tion operations can be performed by similar 
devices. 
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DISCUSSION 

Nomarski, G. Il est bon de preciser c'est qui est la super- ou hyper-resolution. 
Dans le cas de filtrage en coherence partielle propose par moi et aussi dans le cas 
de l'apodisation optimale propose par M. Lansraux la frequence limite reste ;uteri-
eure ou egale la frequence limite 

fm 5 2(N. A.) 

Par contre, dans le cas de la une methode de M. Lukosz on obtient (pour la le fois) 
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l'information sur les frequences spatiales f>f f . Qu'en est it dans votre cas, M. 
Lohmann? 

Lohmann, A. About the term "superresolution." If a given lens with additional 
devices (like Wollaston prisms, spectroscopes, moving masks) has a larger passband 
for spatial frequencies than this lens would have when used alone, then we talk 
about superresolution. In our case, it is the light pipe, which has zero bandwidth 
when used alone, but a finite bandwidth in connection with the 2 spectroscopes. 
For avoiding further controversies on names I might call this experiment simply 
"image transmission by lambda encoding." 

Lansraux, G. I agree with Dr. Lohmann about the necessary conditions for 
superresolution or hyperresolution, i.e. the aberration of any conventional optical system, 
either in its use (for example scanning of the object and reconstruction of the im-
age) or by adding parts of optical equipment in order to isolate a limited infor-
mation from the object and to transfer it in the image with a considerably enhanced 
resolving power. Basically, according to the theory of optical transfer function, the 
frequencies transmitted by the instrument vanish when being higher than a finite 
limit. Conversely the effect of hyperresolution is to provide, in the reconstructed 
image, information which should correspond to a larger range of frequencies than 
the range transmitted by a conventional system. Coming back to my paper, present-
ed previously, I would like to point out that an amplitude filter providing the 
equilibrium distribution T(x) on the pupil corresponds obviously to a limited range 
of transmitted frequencies. Nevertheless this function is useful for hyperresolution 
because it is a steady distribution in an iterated diffraction process using diaphragms 
of radius W.. 

Ingelstam, E. I want to put your attention to the fact that we use the term 
information in a too narrow sense, namely, the sampling points given by resolution 
in a lens. Other information-carrying parameters in the (at least) four fold integral 
are: spectra, time, polarization. [Reference. Ingelstam: "On Problems in Contem-
porary Optics," Proc. of the Florence Meeting (1954).] 

Lohmann, A. This is a comment on the relation between the superresolution and 
the classical theories of resolution due to Abbe and Duffieux. The following assump-
tions are made (but seldom mentioned) in classical resolution theory: (a) non-double-
refracting objects (—scalar theory); (b) monochromatic illumination; (c) time-inde-
pendent operation. It is not surprising that one can overcome the classical limit of 
resolution (=band-width for spatial frequencies), if one performs experiments which 
are not restricted by these three assumptions. For results see the references at the 
end of my paper. 

Coleman, K. One should consider the light source as governing the total infor-
mation content of an optical system. Any operation carried out on the light from 
a source is then of a sampling nature whether it is restriction by an aperture or 
dispersion by a prism or reception by a photographic plate. In the first case the 
light flux, as an information channel, includes some information about the boundary. 
In the second case, like Lohmann's experiment, the flux contains information con-
cerning the dispersion system. Many approaches to information content of optical 
systems lack generality because they take apertures, objects or objectives as basis 
rather than operators or perturbations. 
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Rotary shearing interferometryt 
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The most common type of shearing interferometer produces two laterally 
shifted wavefronts. Longitudinal, radial and mirror reversed shifts have 
been investigated. We here consider shearing the two wavefronts rotationally 
to different azimuth angles [1]. This is particularly meaningful if the angular 
structure of the wavefront is of interest. An important example of such 
a wavefront is the aberrated wavefront of a lens. At different values of the 
shearing angle, different portions of the aberrations with specific degrees 
of rotational symmetry will appear or disappear. This allows one, for 
example, to concentrate on coma aberrations while spherical and astigmatic 
aberrations do not appear. The theory and several ways of realizing rotary 
shearing interferometry are described. Emphasis will be devoted to the 
solution of a coherence problem, which is specific for rotary shearing inter-
ferometry as pointed out by Murty [2]. 

1. PREHISTORY OF THE PROBLEM 
Two-beam interferometers can be used for the observation of phase objects 

in two ways (compare figure 1): (1) either only one of the two beams hits the 

INTERFEROMETER CATEGORIES 
!OBJECT 

r 	rBJECT 

CLASSICAL 

SHEARING LATERAL 

WITHOUT 

	

	 WITH 
COMPENSATION 

Figure 1. In a ' classical' interferometer (e.g. Michelson) the distorted object wave 
OBJ interferes with a plane reference wave REF. Lenses omitted; beam splitter 
indicated schematically. In a ' shearing' interferometer two identical distorted 
object waves interfere with each other. These two object waves are sheared, in 
this figure laterally. The contrast of the interference fringes will be improved by 
introducing' compensation'. That is, each pair of rays, originating from the same 
illuminating ray, will be unified in the image plane. 

f Presented at the ICO Interference and Coherence Conference, Sydney, Australia, 
August 1965 under the title Theta Shearing Interferometry. 
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object (typical' examples are Michelson, Mach- Zehnder), (2) or both beams 
interact with the object, in which case the two images from the two beams are 
shifted with respect to each other (shearing interferometry). Lateral, longitud-
inal, and radial shifts are suitable, as is reversal of one of the two images. Here 
we will investigate azimuthal or rotary shearing. That is, one image is rotated 
with respect to the other one : (r, 0)-4, + 0). This type of shearing interfero-
metry covers the same range of applications as do the others. Beyond that 
it is particularly useful if the angular aspect of the object is of special interest. 
This is the case in studying the wave aberrations of an optical system. For 
example, one can observe coma while suppressing spherical aberration and 
astigmatism. In other words, only object details with first order, rather than 
those of zero and second order, rotational symmetry will appear when 0 is chosen 
appropriately. 

The principle of rotary shearing interferometry and some of its virtues has 
been mentioned in 1947 by Bates [1]. A particular coherence problem, which 
arises when one of two interfering wavefronts is rotated, has been observed and 
analysed recently by Murty [2]. He used a Michelson interferometer for 
investigating the quality of reflecting phase objects such as roof prisms and corner 
cubes, where his objects themselves reversed or rotated by 180° one of the two 
temporarily separated wavefronts. He observed the interference between the 
object wave and a plane wave as reference. In this respect his instrument does 
not fall into the class of interferometers, where two sheared images of the same 
object interfere. However, the coherence problem of Murty is also pertinent 
to our type of shearing interferometer. As a consequence of this coherence 
problem, one gets gOod fringe contrast only in the centre of the image field. 
This requires using a very fine pinhole as source, sacrificing illuminance, or 
one has to illuminate by means of a single-mode laser. 

In this paper we propose first how the rotary shearing principle can be applied 
for transparent phase objects, and second, we show schematically how this 
coherence problem can be overcome by incorporating a rotary shearing 
compensator. Finally we will describe some instruments which include such 
compensation. 

• 2. AN INTERFERENCE MICROSCOPE FOR TRANSPARENT OBJECTS, BASED ON 
ROTARY SHEARING 

The essential component in all our rotary shearing interferometers is an 
image reverser such' .as a Dove prism (in transmission) or a roof prism (in 
reflection). If the image reverser has the angular position cc, measured around 
the optical axis, an image it(r, — 0) instead of u(r, q) will appear. It might 

• 	be mentioned that many other prisms can fulfil the same function and are some-
times more practical : Delaborne, Abbe-Konig, Schmidt-Pechan. 

In our first proposal (figure 2 (a) and (b)) two such image reversers are 
incorporated with variable orientations cc and 8. They are located at places where 
the beam going from object to image plane is temporarily split into two beams. 
Hence from the object u(r, 0) two images will be created : u(r, 2cc — + u(r, 2,8 — 0). 
These images will interfere with each other if the light stems from a mono-
chromatically illuminated pinhole. However, the contrast Kwill decrease rapidly 
with increasing radial coordinate r, radius p of pinhole, and shearing angle cc -13. 
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By slightly generalizing.Murty's first formula one gets as contrast K: 
2J 

K—  1(v)  

where J1  is the Bessel function of first order and first kind and 
4iipr sin (a — /3) 

Aft  
The interferometer as shown in figure 2 (a) and figure 2 (b) can be replaced 

by a more stable and compact one (figure 3 (a)). Since only the difference of 
the angles cc and $ is of interest, one can afford to have one of the two roof prisms 
fixed. 

T2 	 f2 

Figure 2. Interferometer which creates two azimuthally sheared images. The basic 
interferometer is of the Michelson type with two roof prisms as reflectors. The 
purpose might be to observe the wave aberrations of lens L1. (a) Orientation of 
roof prisms a =0, /3=0, hence shearing angle 0= 2a —2,8=0. (b) a=0, /3=90°, 

=180°. 

Even better in terms of path length compensation is the Sagnac-type inter-
ferometer of figure 3 (b). Rotating the Dove prism will rotate the image in 
opposite directions, depending on which way the light passes through the square 
loop. 

For good coherence the state of polarization of both beams must be identical. 
.To achieve this one should include two polarizers, one before and one after the 
interferometer, both oriented at 0°. Furthermore one should include a ' polar-
ization coupling ' [3] between the rotatable prism and the main prism. This 
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coupling consists of two quarter-wave plates, one being fixed at 45c to the main 
prism, the other one at 45° to the hypotenuse of the rotatable ,C-prism. Between 
the two quarter-wave plates the light will be circularly polarized. However, 
within the roof prism it will be linearly polarized, always parallel to the roof 
ridge, so that phase jumps at internal reflections cannot alter the state of polariz-
ation. When returning into the main prism after passing again the two quarter-
waveplates, the old direction of linear polarization is restored, independently 
of the angle p of the roof prism. 

DOVE 

(a) 	 (b) 

Figure 3. Two other interferometers, operating on the same principles as the interfero-
meter of figure 1. (a) A more compact version of the Michelson type; one roof 
prism fixed. (b) Sagnac type interferometer; shearing angle is equal to four times 
the Dove rotation; Dove prism should be in rear focal plane of L2  (see figure 1) 
and in front focal plane of L3, for both beam directions within the loop. 

3. PRINCIPLE OF ROTARY SHEARING COMPENSATION 

To better understand Murty's coherence problem, let us remember a sufficient 
condition for good spatial coherence of two-beam shearing interference in general. 
When looking through the whole apparatus at the source, the two images of the 
source should coincide. That excludes not only a relative shift or tilt, but also a 
rotational shear of the two source images, as one would observe in Murty's 
experiment. However, at the same time we do not want the two images of the 
object under investigation to be coincident, since they are to be sheared. One 
can overcome this problem by splitting up the original rays before they hit the 
object. Each pair of rays then experiences a rotary shear before hitting the 
object, just enough to compensate the main shear, which takes .place after the 
object. The two shearing operations then cancel each other as far as coherence 
is concerned, but only the second shear acts upon the light after it has interacted 
with the object. Hence two images of the object rotated with respect to each 
other will be observed. 

A more quantitative and schematic explanation of this shearing compensation 
can be gained by reference to figure 4. Perfect coherence is achieved if the 
difference in shearing angle of a pair of illuminating beams is compensated to 
zero when arriving at the image plane. A net shearing angle 0=2y —28 of the 
two images remains. There are essentially two particular solutions of the 
coherence equation, whereby one can save two out of four Dove prisms: 

13=0=8; oc=y 
a=0=8; 

Two plane parallel glass plates might replace the two Dove prisms with 
fixed orientation at zero degrees in order to compensate for path differences which 
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otherwise would destroy the coherence. However, in that case, the two images 
' would be not only rotated with respect to each other, but also reversed. It 
should be noted that an analogous compensation scheme for lateral shearing 
interferometry has been used already by many authors. 

IMAGE' uo(r, 2 y -V) us  ( r,v+2). -2 or) + 
4 uo(r,28- V) us(r,4+28-213) 

Figure 4. Scheme of a general rotary shearing interferometer. Two Dove prisms before 
object, two others behind object; BS =beam splitter; lenses omitted. A Dove 
prism oriented at a changes 0— a into — (0 — a) or ¢ into 2a —rib. 

4. COMPENSATED ROTARY SHEARING INTERFEROMETERS 
We shall now describe some rotary shearing interferometers which incorporate 

the shearing compensation principle, permitting an extended source to be used 
without sacrificing contrast. 

The set-up of figure 5 (a) is the most direct implementation of the schematic 
set-up of figure 4. Four Wollaston prisms W1  . . . W4 act as beam splitters. 
Since for this type of beam splitter it is essential to preserve the state of polarization, 
one has to surround the rotatable Dove prisms by polarization couplers ' as 
mentioned previously. In this case the coupling can be accomplished by putting 
four quarter-wave plates at 45° orientation before W2  and W4 and after W1  and 
W3. Furthermore, two quarter-wave plates should be attached to both ends 
of each Dove prism with a 45° relative angle. 

The arrangement of figure 5 (a) can be simplified considerably (figure 5 (b)). 
Not only can two Wollaston prisms and three lenses be saved, but also ' polariz-
ation coupling ' will be much easier. For example, the rotary shearing might 
be accomplished by setting the Dove prisms as follows : 

Dove 1 : a, Dove 4 : —a, Dove 2 : 0°, Dove 3.: 0°. 
The two prisms Dove 2 and Dove 3 might be taken out and be replaced by thick 
glass plates for path length compensation. The problem of polarization coup-
ling can be solved by using, instead of many quarter-wave plates, a single half-
wave plate inserted between Dove 1 and Dove 4 and oriented parallel to the 
wedge of the Wollaston prisms. This half-wave plate rotates the plane of polar-
ization of that portion of the beam which is polarized parallel to the main plane 
of Dove 1, so that it will be perpendicular when interacting with Dove 4. Since 
both portions of the Dove 1—Dove 4 beam will experience in total the same 
amount of phase jump at refractions and reflections within the two Dove prisms, 
the state of polarization will be linear again and properly oriented when arriving 
at the final Wollaston prism. This simplified polarization coupling is similar 
"to the one proposed by Drougard and Wilczynski [4]. 
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Figure 5. Compensated rotary shearing interferometer with Wollaston prisms as beam 
splitters. The Dove prisms are indicated by a straight line. (a) Four Wollaston 
prisms and at least eight quarter-wave plates are needed. (b) Only two Wollaston 
prisms and one half-wave plate are needed. 

In figure 6 we show a device which is based on two beam-splitting units as 
shown earlier in figure 3 (a), essentially two compact Michelsons each with two 
roof prisms R. The rotatable prisms R2  and R4 should be set at cc and — cc to 
achieve shearing compensation. To both R2 and R4  a polarization coupler 
should be attached as described in connection with figure 3 (a). 

Two beam splitters in sequence create four rays out of one original ray. For 
an easy image assessment it is desirable to have only two out of the four rays 
interacting in the image plane. This selection can be achieved by applying an 
idea of Hariharan and Sen [5]. For this we have to include means to rotate 
the plane of polarization by 90° when reflected at R1  or R3. Then the analyser 
P2  can be used to eliminate two out of four rays. This rotation of polarization 
at R1  and R3  can be achieved by splitting up the roof into two equal parts and then 
inserting a half-wave plate of proper orientation between the parts. 

Sagnac interferometers have the advantage of being automatically path 
length compensated, because the pair of the two beams travels through the same 
closed loop in opposite directions. We insert a phase object and a Dove 

IMAGE 

4 	I  N 

R4 

 4;\ 

R2  
R R 

o 	
lr  

R2  OBJECT 

Figure 6. Compensated rotary shearing interferometer with Michelson type beam splitter. 
Roof prisms R1  and R3 fixed at zero-degree orientation; the other two, R2  and R4, 
rotatable, shown here at 90' orientation. Two quarter-wave plates at R2  and R, 
in connection with two polarizers P1  and P2  allow selection of two out of four 
beams: R1R, and R,R,, or R IR, and R2R3. A half-wave plate near the object 
acts as phase jump compensator similar to that shown in figure 4 (b) . 

R I  R4 	p2  
P2  P31(09 



Rotary shearing interferometry 	 191 

prism into the loop in figure 7. The sequence of passing the object and the Dove 
prism is of course opposite for the two oppositely travelling beams. The only 
image of the object which will be rotated when the Dove prism is rotated is the 
one for which the light has passed first the object and then the Dove prism. How-
ever, the other fight beam will experience also a rotation before passing the object. 
This is just what is needed for compensation in order to get good interference 
contrast. The rotated image is also reversed : 

u(r,ch)+u(r,2x-16). 

By comparing figures 7 and 3 (bj, one sees that the Sagnac loop may have different 
shapes: triangle or square. This is done purposely. One has to consider 
whether the number of reversions due to reflections is even or odd. Also one 
has to take into account the fact that in one case the object is within the loop, 
in the other case, before it. 

DOVE 	OBJ 

IMAGE 

Figure 7. Compensated rotary shearing interferometer of the Sagnac type. Lenses 
and polarization coupling omitted. 

Figure 8. Compensated rotary shearing interferometer of the Hariharan and Sen type. 
Polarization coupling omitted. 

So far we have proposed only methods applicable to transparent phase objects. 
Now we will show how the interferometer of Hariharan and Sen [5] can be modi-
fied to produce rotary shearing interference for a reflecting object 0 (figure 8). 
The Hariharan and Sen interferometer differs from the Michelson in that only 
those four beams are used which interact four times (rather than twice) with 
the beam splitter : 

SMOMI, SMORI, SROMI, SRORI. 

The polarizers P1  and P2  in connection with the quarter-wave plate in front 
of the mirror M are needed to implement the special idea of Hariharan and Sen 
which was mentioned earlier. It enables one, by setting the two polarizers 
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either parallel or perpendicular, to select two out of the four rays : MOM and 
ROR, or MOR and ROM. The rotatable roof prism should be provided with 
polarization coupling consisting of two quarter-wave plates as described before. 
This interferometer is shear compensated. Its two images are sheared by 2c4 
and also reversed as in the Sagnac version. 

Les interferometres les plus courants a dedoublement apres traversee de l'objet produi-
sent deux fronts d'onde decalages lateralement. Les decalages longitudinal, radial et par 
renversement de rune des deux images ont ete etudies deja. Nous envisageons ici le 
dedoublement des deux fronts d'onde par_ rotation suivant des azimuths differents [1]. 
Ceci est particulierement utile si on s'interesse a la structure angulaire du front d'onde. 
Un exemple important d'un tel front d'onde est fourni par la surface d'onde aberrante 
d'une lentille. Pour diverses valeurs de l'angle de decalage theta, differentes portions des 
aberrations avec des degres caracteristiques de symetrie de revolution apparaitront ou dispa-
raitront. Ceci permet, par exemple, d'etudier uniquement les aberrations de coma, tandis 
que l'aberration spherique et l'astigmatisme n'interviennent pas. On decrit la theorie et 
quelques facons de realiser des interferometres a dedoublement par rotation. Nous 
insisterons sur la solution d'un probleme de coherence, qui est specifique a l'interfero-
metric par dedoublement par rotation, ainsi que l'a remarque Murty [2]. 

Die meist benutzte Bauart des Shearing-Interferometers erzeugt zwei seitlich versetzte 
Wellenfronten. Es sind aber auch schon longitudinale, radiale und spiegelverkehrte 
Versetzungen untersucht worden. Wir betrachten hier ein Shearing an zwei Wellenfronten, 
die auf verschiedene Betrage des Azimutwinkels verdreht sind [1]. Das hat namentlich 
dann eine Bedeutung, wenn die Winkelstruktur der Wellenfront untersucht werden soil. 
Ein wichtiges Beispiel daft r ist die mit Aberrationen behaftete Wellenfront einer Linse. 
Bei verschiedenen Werten des Shearingwinkels v erscheinen oder verschwinden verschie-
ciene Anteile der Aberrationen mit einem spezifischen Wert der Rotationssymmetrie. Dies 
erlaubt z.B. die Koma herauszuheben, wahrend die sphUrischen und astigmatischen Abwei-
chungen unterdriickt werden. Die Theorie und verschiedene Wege zur Ausfuhrung eines 
Rotations-Shearing-Interferometers werden dargestellt. Besonderer Nachdruck wird 
auf die Losung eines KohUrenzproblems gelegt, das fur die Rotations-Shearing-Inter-
ferometrie wesentlich ist, wie Murty [2] festgestellt hat. 
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Character Recognition by Incoherent Spatial Filtering 

J. D. Armitage and A. W. Lohmann 

The character recognition method described here is based on the principle of incoherent spatial matched 
filtering. The input to this matched filter is not the unknown character itself, but its Fraunhofer dif-
fraction pattern. The intensity distribution in this diffraction pattern is insensitive against shifting of 
the unknown character, avoiding the need for character registration. The incoherent matched filter is 
easier to implement than the coherent matched filter, since. only binary rather than continuous-tone 
masks are required. The theory and some experiments will be discussed and compared with other op-
tical character recognition methods. 

I. Introduction 

. It remains yet to be seen to what extent optical 
methods will ultimately contribute to the general field 
of data processing. However, an optical approach has 
undeniable attraction in those areas where the data 
are inherently two dimensional. It has been pointed 
out (for example, by Horwitz and Shelton' in 1961) 
that application of Fourier optical processing should 
apply particularly well to optical character recognition, 
solving additionally the character registration problem 
simultaneously with the recognition problem. Horwitz 
and Shelton pointed out three principal difficulties: 
(a) lack of light, especially for multichannel processing, 
(b) the need for transparency input, and (c) the need 
for continuous-tone photographic masks which may 
be difficult to prepare. Recent developments, such as 
the laser, widespread application of microfilm tech-
niques, and devices using the Eidophor2  process help to 
alleviate the first two of these problems. The method 
described here circumvents the third problem. 

The recognition method is based on spatial matched 
filtering for incoherent objects. General spatial filter-
ing has been applied more often for the coherent' than 
for the incoherent' case. More recently, spatial 
filtering has been extended to complex matched filtering 
for the coherent case in important work by Leith and 
Upatnieks,5  and Vander Lugt.6  Kelly,' and Trabka 
and Roetling' have described an approach to incoherent 
matched filtering based on geometric-optical shadowing. 
We here present a method of matched filtering which 
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is rigorous in terms of the diffraction theory of in-
coherent image formation. 

In Sec. II is described the basic concept of matched 
filtering as it applies to the character recognition 
problem. In Sec. III is discussed the mathematical 
equivalence and experimental differences between a 
spatial matched filter and a correlation operation. In 
Sec. IV the preprocessing method of Horwitz and 
Shelton, is explained, which results in a signal whose 
position is independent of the character position. 
Section IT describes the synthesis of a set of matched 
filters to permit recognition of the unknown char-
acter by further processing this signal. In Sec. VI a 
method of masking applied to the input plane of the 
matched filter system to improve the recognition 
discrimination is dealt with. In Sec. VII a new 
method of parallel processing to permit an increase 
in processing speed is present. In Sec. VIII the 
experimental implementation of this matched filter 
method is reported. Finally-, in Sec. IX, some of the 
more practical differences between our method and 
other methods of optical character recognition are 
emphasized. 

Pattern Recognition by Spatial 
Matched Filtering 

The well-known concept of matched filtering serves 
two purposes in electrical engineering: detection and 
recognition of signals. The basic concept has been 
translated into optics and used for the detection of 
spatial patterns by Kelly, Trabka and Roetling, and 
by Vander Lugt, as mentioned in Sec. I. These 
authors wished to find the unknown position of a 
signal which is surrounded by noise. The matched 
filter solves this problem by maximizing- the ratio 9f 
peak signal energy to mean-square (white) noise 
energy in the output of the processing system. 
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Our goal is to recognize an unknown input or optical 
pattern /„(x) at a known position, say around x = O.* 
The object In(x) is only partially unknown, in that it 
is known to be a member of the set or font /„(x)(n = 
1, 2, ... , N). The pattern /„(x) is not the unknown 
character itself, but is derived from it by means of a,  
preprocessing operation as described in Sec. IV. 

Recognition of the input pattern may be achieved 
by the following experimental operation's:. (a) an 
image of the input /„(x) is generated by an image-
forming system with an optical transfer function 
(OTF) Tm (v); (b) a pinhole with a photodetector 
behind it is placed at the center (on the optical axis) 
of this image plane; (c) the "correlation coefficients" 
S„,,, (m = 1, 2, . . . , n, . . . , N) are sequentially measured 
as the photocell signal by Modifying the OTF of the 
system, T„,(v)(in = 1, 2, 	in, 	.,N) to N different 
states. 

The problem is now to find a set of N OTF's Tm(v), 
or spatial frequency filters, such that the unknown 
input /„(x) can be recognized by appropriate com-
parison of the correlation coefficients, S.. It is 
convenient to choose a set of OTF's Tm(v) such that 
the autocorrelation coefficient 8.„ will be larger than 
the competing crosscorrelation coefficients S„,„ (in 	n) 
or S,„/S„„ < 1 (m; n = 1, 2, . . , N; but in 	n). 

A calculation of the correlation coefficients S. 
follows; the input may be written as a Fourier integral 

/„(x) = f in( v) exp(2irivx)dp. 

The OFT T;„(v) modifies the spatial spectrum 1-„(v) of 
the object, generating an image 

/„,„(x) = f 1„(07',„(v) exp(27ripx)dp. 

In the pinhole at x = 0 one gets 

L„,(0) = S„„, = f v)T,„(v)dv, 

or, in abbreviated form, S. = 17,274 
Our problem can be solved by choosing as OTF's 

the well-known set. of matched filters Tm(v) = 7„,*(v)/ 
St„,, (ni = 1, 2, ... , N). Each of these filters is pro-
portional to the complex conjugate of the spatial 
spectrum of one of the possible inputs. The proof 
that these matched filters satisfy the recognition 
inequality S„,„ < 8,,,, (in = 1, 2, 	N) rests on the 
Schwartz t inequality: 

(S,„)! 	{ i„r,,,* }2 — _ s.„ 	{ 	1.1.1 < 1.  
This inequality holds for all cases where in(v) and 
r„,(v) are significantly different: 1„,(v) 	cr„(v) (for 
any arbitrary constant factor c). In other words, any 
wrong guess about /„(x) with a filter /7 „(v)(m 	n) 

* One-dimensional notation is used for convenience only, al-
though the patterns are two.  dimensional. 

See, for example, H. Margenau and G. M. Murphy, The 
Mathematics of Physics and Chemistry (Van Nostrand, New York, 
1947), p. 131. 
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Fig. 1. Optical systems for (a) matched filter and (b) cor- 
-- 	relation operations 

yields a correlation coefficient 	smaller than the 
correct correlation coefficient 8„„ which would have 
resulted from filter T,i (v). 

Ill. Comparison between Matched Spatial 
Filters and Spatial Correlation 

It is well known that the two operations, matched 
filtering and correlation, are mathematically equivalent, 
but sometimes quite different in terms of implementa-
tion. We will now investigate this difference for the 
case of optical filtering and correlation, in order to 
enable us to compare later the matched filter method 
with Horwitz and Shelton's correlation experiment. 
Parseval's theorem can be written as 

{/,,i,„* } 	 fin/. *1, or fi n( 	*(v)dv = fIn(z)I„,*(x)dx. 

It follows from, this equality that two different 
optical experiments, matched filtering and correlation 
(Fig. 1), will always yield the same results.. In Fig. 
1(a) illustrating matched filtering, the object is the 
incoherently, illuminated transparency /„(x). The 
lens has a transfer function Tm (v) which is one of the 
set of matched filters, Tm(v) = /„,*(p), neglecting now 
the constant factor 1/8„2„,. A pinhole is placed in 
the center of the image plane, and a photocell behind 
it measures the correlation coefficient 	This same 
correlation coefficient. can also be measured by the 
experiment shown in Fig. 1(b) illustrating correlation. 
Here the optical system forms a perfect image [T (v) = 1 
for the frequency range of significance] of the unknown' 
pattern /„(x), and a photocell measures the total 
flux passing through the known pattern /7 „(x). Both 
experiments, although mathematically equivalent., may 
be quite different in terms of implementation. Which 
will be preferred must be decided for each specific 
case, taking into account the type of mask (or filter) 
and photodetector required for each experiment. 

IV. Preprocessing for Shift Invariance 
It is well-known that a lens is able to perform a 

Fourier transform in two dimensions. More precisely, 
a monochromatically and spatial-coherently illuminated 
amplitude transmission un (x0) in the front focal plane of 
the lens will give rise to a complex amplitude an(x)-
in the rear focal plane such that 

462 APPLIED OPTICS / Vol. 4, No. 4 / April 1965 



LASER 

GROUND-GLASS 
x. X f PINHOLE 

11411111  Snm 

a„(x) = ii„(x/xf),- fin(v) = f u.(x„)exp( —27rirov)dro. 

It follows from a known property of Fourier transfor-
mation that the intensity /„(x) in the rear focal plane 
will not be altered if the amplitude object. u„(x0) is 
shifted laterally: if u n(xc) 	11,2(xo 	x,,), then a„(x) 

an(x) exp [ig5(x,x„)], where 4, = 271-xx„/Xf; the in-
tensity /„(x) equals la„(x)12, which is independent of 
cb and, hence, of x„. The intensity distribution, /„(x), 
is also invariant against shift of the amplitude object 
along the optical axis, if the object is illuminated by a 
plane wave. This can ,be shown using the equation 
describing the propagation of plane waves behind an 
object,9  

n(x,z) = f 	exp[2.-io, + 	— vp200]dy, 
where 

imp) = f ti(x,o) exp(-27rivx)dx; 

if un(x0,0) 	v„(x0,z„), then a„(x) 	a„(x) exp[4(x, 
z„) I, where = 	(x/.0 2 z./X, so /„(x) = al.(x)I 2 ; 
or it can be considered .as a special case of Toraldo di 
Francia's principle of "inverse interference"." 

This means that, for our character recognition experi-
ment, the unknown primary signal amplitude u.(xo) 
is transformed by the preprocessor into the secondary 
signal intensity /„(x), such that the secondary signal is 
not affected by any •lateral or longitudinal shift of the 
primary signal. The secondary signal acts as input 
for the matched filter system described in Sect. II. We 
must be certain that any phase relationships in the 
rear focal plane of the preprocessing transform lens are 
destroyed, because the phase would remember the 
position of the primary signal. This is achieved by 
inserting a rotating ground glass, which eliminates 
this phase information in the time average. 

In Fig. 2, the basic setup is shown. Theslaser illumi-
nates coherently the unknown character tt„(x0), and 
the preprocessing lens transforms u„(4) into the in-
tensity /„(x) just after the ground glass. The inco-
herent matched filter, T„,(p), which follows, has as its 
main 'constituent the pupil function p,.(x'). This 
matched filter transforms its input /„(x) into the output 
/„„,.(x). 

V. Synthesis of the Incoherent Matched Filter 
The problem now is to achieve the matched filter 

functions T„,(v) = 1-„,*IS„,„,(ni = 1, 2, . . . , N) by choos-
ing the proper pupil functions p„,(x') (in = 1, 2, ... , N) 
which are to be implemented as complex transmission 

Un (Xe) 
	

I„(x) 
	

Pm (x) 	Lax/ 
Fig. 2. Optical system for character recognition, including 
preprocessing for shift invariance and incoherent matched 

filtering. 

SPOT 

Fig. 3. Only light which has been twice diffracted at the same• 
angle, by the unknown character and by the filter, will pass 

through the hole to the photodetector. 
• 

factors in the image-forming system of Fig. 2. The 
problem would be an easy one, at least in principle, if 
we dealt with coherent matched filtering, where the 
pupil function itself constitutes the filter function. 

However, here the object /„(x) is incoherently illumi-
nated due to the rotating ground glass having random-
ized the phase relationships in the complex amplitude. 
Therefore, the relationship between filter function 
(or OTF) and pupil function is less direct, as has been 
derived by Duffieux":* 

T,;(v) = f 	-2  + 	) p.* (x` 

In general, it is not an easy problem to prescribe first 
the OTF and then look for a suitable pupil function 
pm. 	However, in the present case, the matched filter 
condition, T„,(r) = 1,,,*(v)IS„,„„ can be satisfied fairly 
easily, as follows. Our input, /„(x), to the matched 
filtering operation was generated from the original 
character in front of the transform lens. By definition, 

.1„,*(v) = f /„(x) exp(27rivx)dx, 

where 

lam(x)I 2  = lit,v(x/Xf)1, 

= f um(x0) exp( —27rivro )dx0. 

Substituting these values leads to 

.T„,*(v) = f 71rn1 xo  + Ax 	n„,*(x0 	— 

with arbitrary shift Ax. Now the condition for matched 
filtering reduces to: 

T„,(v) 	✓f p„,(xf + xf 	— 	dx' 
2 

= [fn. 	+ Ax 	u„,* x0  + Ax — 	dx0  
Xj" 	1 
2 	Orrttn 

Vs, 	
( 

 

A simple solution offers itself immediately: 

pm(x1 ) = u„,(x' 	Ax)/VSm,,. 

This is not necessarily the only solution, but it is a very 
practical one. It means the pupil functions •p,,z(e) 
should have exactly the same complex amplitude trans-
missions as the set of possible unknown original charac- 

* Note: If one thinks of x' and v as two-dimensional vectors, 
this Duffieux formula holds also for the two-dimensional case. It 
should be noted that here we do not normalize to T(0) = 1 as is' 
usually done, since here the ratio of mean radiande in both object 
and image planes is of interest. 

2 

• , 
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KNOWN 
CHARACTERS 

:0- 

UNKNOWN 	
:0_ 

CHARACTE IIIIIII CORRELATION 
< .111:i 	:0— 

SIGNALS 

0-- 

Fig. 4. Conventional system extended to parallel processing. 

ters um(xo), and that they may be placed at an arbitrary 
position Ax in the filter plane. Also; the constant fac- 
for 1/ viSmm  must be included, which can be implemented 
easily either as an absorbing filter or electronically. 
The production of the proper pupil functions pm(x') 
becomes particularly simple if the unknown original. 
characters um(x0 ) contain only opaque and fully trans-
parent areas. 

This simple result—that the proper pupil functions, 
p,,,(x), and unknown characters, um(x)—are identical, 
should not be considered as trivial. Since a ground 
glass is inserted between u„(x) and p„,(x') to achieve 
insensitivity against shift of the original character, 
there is no image of the unknown character falling onto 
the pupil function, as in the case of the most elementary 
optical character recognition method [Fig. 1(b) 1 On 
the contrary, the ground glass has to be sufficiently fine 
that the illumination falling onto the pupil function at 
any one instant does not show any structure. 

This solution is rigorous in the realm of diffraction 
theory, whereas Kelly's and Trabka and Roetling's 
realization of a matched filter (which could. be  called 
shadow correlation) is based on geometric-optical 
considerations. This means, in practice, that we can 
fully utilize the image-forming qualities of the optical 
system, and do not reduce the resolution by strong de-
focusing. 

VI. Improvement of the DiscriMination Ratio 
We have shown how to realize a set of matched filters 

Tm(v) such that recognition is based on the inequality 
of correlation coefficients, S„„ > S„„, (in 	n). How- 
ever, sometimes the largest 8„. (m n) might be very 
nearly equal to S„„ for example, if the character Q is 
compared to an 0. We will call 	 the dis- 
crimination ratio which we want to increase. 

To understand this approach qualitatively we recol-
lect that diffraction takes place twice in our setup (Fig. 
3). Let us make a distinction between diffracted light 
and direct light, the first deviated when interacting with 
u„ or pm, the latter not deviated. The nature of the 
direct light is determined primarily by the size of the dif-
fracting character, whereas the nature of the diffracted 
light is determined also by the structure of un  or pm. 
Since the. size of the characters, or pupil masks, is irrele-
vant, we will prevent any direct light from reaching the 
photocell. This can he achieved by inserting an opaque 
spot into the ground glass plane (Fig. 3). The image of 
the opaque spot, formed by the optical system without 
any filter in place, would cover the pinhole. 

Intuitively, one feels that this procedure should im-
prove the recognition discrimination. We will now show . 
quantitatively that this modified setup with a central 
spot [or any other transparency T,(x) J in the ground 
glass plane still allows recognition by choice of the larg- 
est correlation coefficient S„„ > S„„, 	n). The 
input of the matched filter system now is „(x)T z(x) in-
stead of /„(x). The influence of the matched filter 
T„,(p) is taken into account by multiplying the modified 
input spectrum, 

f I„(x)T,(z) exp( — 2ripx)dx, 

by 
I„,. 	1 IVO = 	= 	f lm(x) exp(27rivx)dx 

to get the spatial spectrum at the output plane. A 
Fourier transform yields /„„,(x), the intensity dis-
tribution in the image plane. The correlation coeffi-
cient Sr ,,, is then: 

Snm 	I„„,(0) = —1 f 1„(x)r,(x)1.(x)dx. 
Smm 

From this, it follows that 

= f im2(x)r.(x)dx 

and 

s„„, 	.r I„(x)T.(x)I.(x)dx 
f i,„27%dx 	in2T.dx 

If we substitute In(x) = /„(x).VT,(x), this expression 
will assume again the form of the Schwartz inequality, 
and hence the desired result that 8,,„ > S,,,,, will be 
achieved. 

The mask, 71  z(x), which we have introduced into the 
input plane of the matched filter, is simple to implement 
and is effective in improving the discrimination ratio, 
as described in Sec. VIII, but since this mask is based 
on an intuitive argument, it is not necessarily the 
theoretical optimum. 

FA 	lomat 

0 
FB 

FABCD 

FC 	t=2( 
FD 

Fig. 5. Parallel processing (four patterns) using theta-modulated 
filters. At. the left are the four filters theta-Modulated with 
four different values of theta; at the right are (schematically) 

the output spectra. The unknown character is an F. 
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VII. Pa rallel Processing 

Fig. 6. The stencil-like 
photoetched characters used 
in the experiments. Each 
character is 1 mm high. 

. So far we have considered only serial processing or 
sequential interaction of the unknown character with 
all possible matched filters. To improve the proc­
essing speed, it would be desirable to measure simul­
taneously all correlation coefficients originated by the 
unknown character.· The operation of parallel proc-. 
essing can be introduced without any influence on the 
recognition principle. To use a set of lenses in parallel 
is one obvious solution, as is shown in Fig. 4 in con­
nection with recognition by direct correlation. 

Another way to implement parallel processing would 
be to set more than one pupil function Pm(x') (such as 
ABCD) side by side in the matched filter system and 
superimpose gratings of different orientation onto the 
letters (left-hand side of Fig. 5). These gratings of . 
different orientations will deviate the light into different 
directions, forming several diffraction patterns in the 
image plane (right-hand side of Fig. 5). Pinholes at 
the centers of these patterns, with photocells behind 
them; would allow nleasurement of several correlation 
coefficients simultaneously. The pattern on the optical 
axis gets light fr01n all pupil functions ABCD, and, 
hence, this light, which is not useful for the recognition 
procedure, is wasted. Gratings "without zero-order 
diffraction, or prisms, would avoid this loss. This 
method of parallel processing is based upon the principle 
of theta 1110dulation.12 

VIII. Experiment 

'Ve have performed some experiments to verify 
the theory developed in the preceding sections and to 
determine some of the practical difficulties which might 
be encountered in a physical applieation of these ideas. 
The systenl shown in Fig. 2 was set up on an optical 
bench, using a basic foeal length of 200 111111. . Our 
characters were about 1 mm .size, giving a Fraunhofer 
diffraetion pattern of about Af Id = 0.1 mni without 
requiring an excessively long beneh «3 m). For 
convenience, we used a standard He-Xe laser, operat- . 
ing at 6 m vY single-mode output. Our spot was 
made of photoopaquing paint of 120-J.L diam on a 
thin plane-parallel glass plate. The diffuser must 
be negligibly thin in the z direction in order not to 
spread the Fraunhofer spectum falling upon it, have 
a structure size small relative to that of the diffraction 
pattern falling upon it in order to completely destroy 

the phase part of the spectrum, and be a random 
diffuser to obtain complete shift invariance. \Ye have 
found that Scotch brand l\fagic l\fending tape, 
rotated dudng the measurement procedure, works ·well. 

An experimental problenl stems from the require- . 
ment that the output correlation patterns ' be measured 
exactly at the (x = 0, Y. = 0) point in the pattern. It 
would be possible, although very inefficient, to lneasure 

· the value of the function in (x,y) and determine its 
center from its synllnetry, but this is not attractive even 
for a laboratory experiment. The alternative is to 
align the system by maximizing the output signal with 
circular filters (whose Airy patterns are kno'wn to have 

· their maxiInum at x = 0, y = 0) rather than com­
plicated characters, and then be certain that insertion 
of a character does not di~turb this alignment. If the 
characters are on photographic emulsion, this will not 
usually be the case because of the gradients in backing 
thickness. I3 A liquid immersion cell14 could eliminate 
this problem (and, additionally, eliminate phase effects 

· due to emulsion reliefing) and is a practical solution, 
but we chose instead to photoetch the patterns through 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 7. Spectra recorded at the output plane, wi thout and with 
the spoti no filter. Unknown character: (a,b) 1-mm circular 

aperture; (c,d) letter A.; (e,f) letter B. 
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Fig. 8. Fraunhofer patterns of entire alphanumeric character font, recorded at two different exposures to show both the low and 

high spatial frequency regions. 

o 

thin nietal sheet, forming a miniature stencil mask 
as shown in Fig. 6. Since the transparent parts of 
the characters were completely open, there · was 11.0 

chance for phase effects to be introduced, and the 
alignment of the system was independent of the 
presence of the character. By scanning the . out.put 
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diffract.ion spectra and looking for any radial ,asymetry, 
very small alignment errors can easily be detected. 

The appearance of several diffraction spectra at 
the output plane are shmnl in Fig. 7. The spect.ra 
are shown, with and without the spot, for a I-mm 
circular a.perture and the characters A and B. There 



1.PU 1.00 0.0 1.00 

1.P0 .86 0.0 .96 

U.W .75 0.13 .91 

U , Z .43 0.0 .85 

(a) 
	(b) 

Fig. 9. Nutneric values for correlation coefficients: (a) typical 
combinations; (b) difficult combinations. 

was no filter used. The entire set of alphanumeric 
characters is shown in Fig. 8, with the spectra recorded 
at two different exposures to show both the low and 
high spatial frequency parts of the spectra. 
• Figure 9 shows correlation coefficients for two 
different sets of four characters each, chosen to repre-
sent four typical and four difficult combinations of 
characters. These numerical data, taken with the 
spot in position, indicate the discrimination achieved 
in a laboratory experiment.* 

The sensitivity of this experimental system to 
shifting of the input pattern was also investigated 
and found to be negligible over the field measured 
(ten character widths by ten character heights). The 
sensitivity to rotation" is somewhat less than is the 
case for direct character ..correlation. Preliminary 
experiments and computations indicate that rotations 
should not exceed about. 5°. These experiments have 
shown also that parallel processing by theta7modulating 
the known characters does not present any unexpected 
problems. The ratio of character line-width to grating 
spacing should be about 3 or greater to avoid over-
lapping diffraction patterns. 

IX. Conclusions 
A new method of optical character' recognition has 

been described, involving three principal stages: 
(a) Preprocessing the unknown character It.(x0 ) to 

obtain the incoherent shift invariant signal I n(x). 
(b) Realization of a set of incoherent matched filters 

Tm(v) = im*/S„,„, such that the correlation coefficients 
measured will satisfy the recognition inequality 
S.. > 	On 	n), permitting recognition. 

* Note added in proof. A later more careful theoretical analysis 
of the requirements on the diffuser shows that the experimental 
data reported here (Fig. 9) are only of order-of-magnitude signif-
icance. The lateral and longitudinal grain size distribution of 
the diffuser as used in this experiment must permit /„(x) to be 
equivalent to a self-luminous object in the time average. How to 
achieve this, especially with the very long coherence lengths of 
laser light, is not a simple problem. 

(c) Application of the set of incoherent matched 
filters, and measuring the intensity at x = 0 at the 
output plane to obtain the set of Snm. 

Also described is a simple method which increases 
discrimination when applied to the matched filter 
input, and an elaboration to permit parallel processing. 
SOme experiments are reported which demonstrate the 
feasibility of this incoherent matched mo

st 
method. 

Compared to the four other most well-known 
methods of optical character recognition, those of 
direct character correlation, correlation of diffraction 
spectra, coherent matched filtering, and shadow 
correlation, this new method is more complicated 
to describe mathematically. However, it is the only 
one of these methods which combines both of the 
practical advantages: shift invariance and only opaque-
transparent masks. These advantages are gained by 
devising a matched filter system which can be applied 
to intensity rather than amplitude inputs, and which 
is correct within scalar diffraction theory. 

We acknowledge with pleasure the patient and 
.skilful experimental contributions of Harald Werlich, 
and stimulating discussions with Ronald Kay and 
Dieter Paris. We also would like to thank A. Vander 
Lugt and A. Kozma for clarifying discussions. 
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Absolute Contrast Enhancement 

J. D. Armitage, A. W. Lohmann, and R. B. Herrick 

The basic idea of photographic masking is discussed, and two new methods for producing such masks 
are described. The conditions necessary to justify application of modulation transfer theory to the 
process are specified, and the theory is applied to demonstrate that it is possible to obtain a modulation 
transfer function greater than unity for a band of spatial frequencies. Experimental verification is 
described. 

Introduction 
The unsharp masking technique may be considered 

in two ways: density compression to accommodate 
materials of short exposure latitude (such as in 
photographic printing), and as a form of spatial filter-
ing.1,2  We will consider one aspect of the latter. 
Spatial filtering is often used to accomplish edge-
sharpening (contour enhancement), or, in less photo-
graphic terms, to increase the amplitude of the higher 
(spatial) frequency Fourier spectra in the output 
image. As unsharp masking is usually performed, 
this increase in the higher frequency modUlation is an 
increase only relative to the lower frequency modula-
tion. It is not an absolute increase. This relative in-
crease is obtained by decreasing the lower frequency 
modulation relative to that of the higher frequencies, 
and, in actuality, even the higher frequency modulation 
may be somewhat decreased. We will show here that 
it is possible to achieve an absolute increase in modula-
tion for a band of frequencies. In modulation transfer 
theory, this means a modulation transfer function 
(1\11T) greater than unity. Since modulation transfer 
theory is usually applied to linear systems with non-
negative signals, and since under the condition of non-
negative signals an A1TF greater than unity is impos-
sible, an absolute increase in modulation such as we 
will discuss here has usually been considered impos-
sible.3.4  We will show analytically and experimentally 
that the masking process may justifiably be approxi-
mated as a linear process under suitable conditions, 

_ and that under these conditions of quasi-linearity a 
MTF greater than unity is possible. 

• Usual and Modified Masking Techniques 
Assume that the input to the system is a photographic 

transparency with a linear grating pattern varying 
sinusoidally in transmittance Tt  along the x direction 
(Fig. 1). There are two spatial frequencies, a lower 
frequency R1  and a higher frequency R2. By some.  
special method of photographic printing, from this 
input transparency we produce the mask transparency , 
which is the same size as the input and with a trans-
mittance distribution T,o(x) resembling, but not equal 
ing, that of the input. The input and mask transpar-
encies are placed in register, and printed to form the 
output of transmittance distribution To(x), equal 
point-by-point to the product T i(x) • T,o(x). 

In the usual unsharp masking process, the mask is 
formed by slightly defocusing the enlarger lens or by 
contact printing with a thin spacer between the emul-
sions. This results in a blurring which is more 
severe for higher frequencies, affecting the transmit-
tance of the mask and output as shown in the left-hand 
part of Fig. 1. In this case the mask is simply a nega- 

Ti (Al 
INPUT 

	-K 

T.1%) 
MASK 

	 1 	 
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Fig. 1. Schematic representation of usual and modified 
masking techniques, using patterns sinusoidal in transmittance. 
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Fig. 2. Plot of ratio of approximate to exact transfer functions vs 
mask transfer function, for several values of input contrast. 

Variable M in the text is written in this figure as variable K. 
Live copy of the input, with higher frequencies repro-
duced at lower modulation. 

If it were possible, in a modified method for produc-
ing the mask, to achieve a second reversal for a specified 
range of frequencies, as is shown on the right-hand side 
of Fig. 1, the masking procedure would increase rather 
than decrease the modulation for these frequencies. 

Application of Modulation Transfer Theory 

Linearity and Nonnegative Signals 
To he able to describe the masking process in terms 

of modulation transfer theory, the operations involved 
must be at least approximately linear. Let the input 
transmittance function be T, = a,(1 	K, cos2irRx) 
and that of the mask be T. = a,„(1 + Km  cos2rRx), 
where the modulation M = (T.o, — 	(Tn.. + 
T.i.). The output transmittance function To  will be 
the product of Ti • Tm  since the transmittances multiply 

To = Ti(x)• Tm  (x) = 

	

aia,,,[1 	(M; 	3/„,) cos27/4 + 	 f„, cos227rRx].. 

The last term represents the harmonic generation in-
troduced by the nonlinearity of the multiplicative proc-
ess. To approximate the process as being linear, the 
coefficient of this term relative to that of the strictly 
linear preceding term should be small: 

	

( 31i31.)/( 111i 	<< 1, or (1/Mi) 	(1/11/.,) » 1. 

Restricting the modulation in either the input or mask 
transparencies will achieve the desired minimization of 
the nonlinear coefficient. A numerical example will in-
licate the range of modulation permissible. Let 
M, = 0.3 and Alm  = 0.2; 

To(x) = 	+ 0.5 cos2r/lx + 0.06 cost 27rRxj. 

S9, (31,31,01(211, ± M m ) = 0.12 << 1. If modulation 
is restricted to these ranges, the process may be re-
garded as linear to about 10%, and, within this linearity, 
modulation transfer theory may be applied. 

In a strictly linear system, if the input modulation 
Al I  = 1.0 and the'modulation transfer function D(R) > 
1.0, then Mo  > 1.0, which is not reasonable since it 
implies negative intensity. To have D(R) > 1.0, MI  

must be considerably less than 1.0. Fortunately, this 
is already assured from harmonic distortion require-
ments. 

MTF of Mask Production Dm (R) and MTF of Entire 
System D(R) 

How is the system transfer function D(R) related to 
the mask production transfer function Dm(R)? Is it 
possible to specify the characteristics of Dm(R) neces-
sary to produce a desired D(R)? 

As before, assume an input grating sinusoidal in 
transmittance, with maximum transmittance Ti—„,„x  
and minimum transmittance 	Let (T.2,x,iii,)/ 
(Ts—sei0 = 	". 
Then, 

111 = 	  
Ti-ma. 	Ti-min 	1 + (11;_,,,i.ITi„„) 1 ± 

1— (T,—min r,—...) 1 — Er 

The mask may be produced using a photographic ma-
terial having a gamma 7m  independent of frequency 
and a AITF equal to 1.0. The mask will be sinusoidal 
(or quasi-sinusoidal because of possible harmonic dis-
tortion) resembling the input, and it will have its cor-
responding Tni_ in„x  and Tm_ mi ne  which determine the 
mask modulation M. = (1 — Em )/(1 Em). 

The mask production transfer function is defined by 
Dr(R) = 111„,(R)/jA i(R)•-y>4. 

Now combine the mask and input in register so the 
Ti_max falls on T.--mk,  and vice versa. 

= 	• Tm—mi. and To_,,,;. = 

ec, = To-min/To-ma: = ei/e.„/Lio = (i — €0)/(1 7  E.). 
Although the output transmittance distribution may 

no longer be sinusoidal, To_max  and To_ mio  may be 
measured at the 0 and 7r points of the input sinusoid 
corresponding to its maximum and minimum. The 
transfer function for the entire masking procedure 

K m  (Ft) 

USUAL 
	

MODIFIED 

Fig. 3. Mask and system transfer functions for the taunt and 
modified methods. Variable M in the text is written in this 

figure as variable K. 
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METHOD INPUT MASK 

DEFOCUS • 0 

LATERAL SHIFT • • • 

. 	- 
BINS SMEAR • 0 

Fig. 4. Transformation of a point in the input into the appropri-
ate pattern in the mask, for three different masking methods. 

(system transfer function) D(R) = M0 (R)/111,(R). 
(For convenience, omit the argument 1? in the following 
development.) 

111;•D = 111,, =1 
. 1 + e. 	1 -I- (ei/e..) 	e.4 	ei 

	

1 — ei 	[1.— ei 	Em  — ei 

	

1 + ei 	L1 	ei 	e,,, + E,'•  

Examine the expression in the brackets[]. 

ll 	
(1 — Mm)/(1 M„,) -- (1 --mi)/(1 + mi) = m. (1 — Mm)/(1  + m„.) + (1 — mi)/(1 + mi) 
(1 — 	(1 ± mi) — (1 — 	(1 + M,,) 

2(1 — 111J-y„,D.) 

111 i(1 — 211,:27.D.) — 2II;(1 — -y„,D,„) Mi7„,D„,(1 — M;2) 
• 1 — 	 1  — Mi7mDm 

So, 

111̀   •D = 	— [1; D = 1 	[] 

1 — 21./i2  
= 1 — •y„D„,(1 	_ 	 (1) 

It would obviously be convenient to approximate 
D(R) by D(R) = 1 — 	D,„(R). The constraint that 

< 1, required for approximate linearity, justifies 
this approximation by making the term [(1 	111i2)/ 
(1 — .21/i27„,/),,)] go to unity. Figure 2 shows the error 
in this approximation, as a function of ymDm  for four 
appropriate values of M1  and fot ym = 1.0. The ap-
proximation is certainly reasonable. 

With the approximation D(R) = 1 — -y„,• Dn,(R), it 
is apparent that to obtain a D(R) greater than unity, 
7,7,•Dm(R) should be negative. Such negative transfer 
functions are known, and the effect is often termed 
"spurious resolution".3  

In Fig. 1, the masking process is described schernati-
cally, showing the spatial transmittance functions of the 
input, mask, and output. Figure 3 is similar, but in the 
frequency domain rather than in the space domain,  

showing the transfer functions for the usual and modi-
fied masking techniques. 

Mask Production 

Methods 
Consider three possible methods for producing the 

mask from the input: 
1. defocusing (as in the usual unsharp masking), 
2. lateral shift with double exposure, 
3. ring smearing. 
Figure 4 shows, for each of these three methods, the 

transformation of an ideally small point in the input 
to the appropriate shape in the mask. The first 
method, defocusing, should be self-explanatory. In 
the second, lateral shift with double exposure, the 
mask is a double-exposed copy of the input with a shift 
in the x direction between the exposures. In the third, 
ring smearing, the mask (or input) is moved in a circu-
lar path during the exposure so that each point in.  the 
input is smeared into a circle (not a disk) on the mask. 

Transfer Functions 
To calculate the transfer function Dm(R) for the 

mask production process, consider the intensity distri-
bution (1)(x,y) produced from a point object in the 
input plane. The transfer function is 

.t.(x,y) exp[— 27ri(x/1x 	yR,)ldxdy 
Dm(R,,14) 	  , (2) 

ff 4'(x,y)dsdy 

where the denominator normalizes the transfer function 
to unity at zero frequency. 

Defocused Transfer Function 
Figure 5(a) shows schematically the physical setup 

for the production of the mask by the usual defocusing 
method. With a single infinitesimal point input; as-
sume a uniform intensity distribution in the defocused 
image in the mask plane. If diffraction effects can be 
neglected, the derivation of the transfer function is 
straightforward.5  If the radius p of the defocused disk 
is sufficiently greater than the radius of the Airy disk 
pA in the Gaussian focal plane, the Airy disk can be 
assumed infinitesimal also and a strictly geometrical 
treatment will be valid. Assume that a factor of 3 is 
sufficient. pA. = (1.22 Xb)/(2h), and p = hz /b. There-
fore, fOr p .= 3pA, we have (hz/b) > (3.66 Xb)/(2h), or 
z > (3.66 Xb2/2h2). Substituting typical experimental 
values, X = 5 X 10-4  mm, b/h .  = 16, we have z > 0.234 
mm. 	Therefore, if we defocus by at least this amount, 
we may approximate the process as a geometrical one. 

The transfer function D(R,z) is the Fourier transform 
of the intensity distribution function (D(x,y). Since 
this function is a flat-topped cylinder in the out-of-
focus plane, this calculation is the same as that for the, 
Airy disk diffraction pattern, resulting in D(R,z) 
2,11(2. rpR) / (27 rpR). Figure 5(b) is a plot of D(R,z) 
vs 2rpR. The transfer function is negative as desired 

— Ea 	1 — (eil 	— ti 

= 111, 
(1 — 111„,) (1 + .31,) + (1 — 111) (1 + Mm) 

	

=- Al, 1 — 7.D.31-i)(1 ± 	—  (1 — Mi)(1  

	

(1  — 7.D.Mi)(1 + 	+ (1  — Mi)(1 	774Dmilli) 

Al, 	
2/11i(1 — 7.D„,) 
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Fig. 5. . Schematic diagram of mask production by defocusing method. (a) Mask production by defocusing method. (b) Mask 
transfer function for defocusing case. (c) Mask production for lateral shift with double exposure method. (d) Mask transfer 
function for lateral shift case. (e) Appearance of the mask plane for a point in the input plane. (f) Mask transfer function for ring 

smear case. 

over a certain frequency band; however, it goes nega-
tive only to about — 0.1, which is for practical purposes 
not strongly negative. 

Transfer Function of Lateral Shift with Double 
Exposure • .. 

Figure 5(c) shows schematically the experimental 
setup for producing the mask by this method. The 
input is imaged onto the mask plane, an exposure is 
made, the image is shifted relative to the mask by 2p 
in the x direction, and a second equal exposure is made. 
This method is obviously appropriate for objects having 
structure only along the x direction. 

Let the intensity after the input transparency be 
4,i(x) 	1/211 	Mi  cos(27rnz)). 

After the two exposures, the exposure at the mask will 
be 
cb„,(x) = I/41 	Mi  cos[27rR(z 	p)] } + 
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1/4{1 + M.; cosj22s-R(x — p)]} 

= 1/211 	Mi  cos(27rRx) cos(22rRp)]. 

By definition, Dm(R) = mask contrast/input-  contrast: 
Dm(R) = cos27rpR, as shown in Fig. 5(d). Note that 
the transfer function goes strongly negative, to a pos-
sible —1.0. 

Transfer Function for Ring Smearing 
Let the input intensity function be a point, so that 

cDt(x,y) 	S(0,0) = (t. (r 
. 
. The mask function will 

be 4=.77 ,(1-,g5) = b(r — p), independent of as shown in 
Fig. 5(e). As with the case of the defocused transfer 
function, it follows from Eq. (2) that the transfer func-
tion 

f
o

2. p 
1..(r,c6) exp[-27riilr cos(4) — #)]rdrdc 

f 

- fp 

f0 0 

Dm(R.p) 
- 
	0  

43„,(r,o)rdrdo 
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Fig. 6. The three mask transfer functions plotted on normalized 
frequency coordinates. 
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Fig. 7. The three system transfer functions plotted on normalized 
frequency coordinates. 
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We have D 7,,(R , p) = J 0(27 r pR), which is plotted in 
Fig. 5(f). Note that although this transfer function is 
not as strongly negative as that for the lateral shift 
method, it is considerably more strongly negative than 
for the defocused case. 

System Transfer Function 
The three mask transfer functions Dm  are plotted in 

Fig. 6 on a normalized frequency axis so that they cross 
the frequency axis at a common point. The ratio Mm/ 

:in the case of the lateral shift case has been set equal 
to unity. The dummy frequency variable is a with 
the following normalizations: 

• Defocused: . a = (27rp/0/3.8, 
Lateral shift: a = (27pR)/0.5r, 
Ring smear: a = (2rpR)/2.4. 

With these mask transfer functions, the approxima- 
tions D(R) = 1 — 	m(R) and -ym  = 0.7, the system 
transfer functions D(R) for the three masking methods 
are plotted in Fig. 7. Over the appropriate frequency 
bands the transfer function D(R) is significantly greater 
than unity, especially in the cases of lateral shift and 
ring smear. 

Experimental 
In order to verify experimentally the above theo-

retical points, we performed photographic masking ex-
periments using the lateral shift and ring smear methods 
for mask production. The defocusing method was not 

Fig. 8. The input sine wave pattern. 

LATERAL SHIFT 

DIFFUSER 

RING SMEAR 

Fig. 9. Diagram of experimental setups for lateral shift and ring 
smear mask production. 

I 
LAMP 
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Fig. 10: Mask transfer function for lateral shift case, showing ex-
perimental points and theoretical curve. 
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Fig. 11. Mask transfer function for ring smear case, showing ex-
perimental points and theoretical curve. 

convergent beam was rotated rapidly several times ur-
ing the exposure to produce the desired circular image 
motion. To compensate for uncontrolled experi-
mental variables, additional transparencies were pro-
duced under the same conditions but without the lateral 
shift or glass plate rotation. With a mask modulation 
.211,i (R) and control modulation .31,(R) the mask transfer 
function Dni(R),is Dm(R) Mm(R)/Mc(R); the control 
transparencies thus serve to normalize the mask pro-
duction process. The transparencies were scanned on 
a Joyce double-beam microdensitometer to determine 
the modulations and transfer functions, which are• 
shown in Figs. 10 and 11. For both cases, the para-
meter p was chosen to have the mask transfer function 
Dm(R) = 0 at 2.5 cycles/mm. 

To avoid obscuring the effects of interest in the ex-
periment with other effects not germane, such as adja-
cency effect,-  photographic nonlinearities, and lens im-
perfections, we decided to separate the masking pro-
cedure into two parts: the production of the mask and 
the production of the output' once the mask has been 
obtained. This makes the experiment less close to real 
practice, but permits closer control for demonstrating 
the validity of the theoretical treatment. For the 
second part of the process, the control transparency was 
used as input. It and the mask were contact-printed 

DOM SYSTEM TRANSFER FUNCTION 

2.0 

6 

used because of its low 	13% maximum) contrast 
enhancement. As input, we used a group of ten linear 
sinusoidal transmittance targets (Fig. 8) of frequencies 
0.411, 0.494, 0.971, 1.60, 1.99, 2.50, 3.11, 4.07, 4.51, 
and 4.95 cycles/mm, with an average modulation 0.7 and 
average density 0.8. These rather low spatial fre-
quencies were chosen to minimize mechanical experi-
mental difficulty and to enable us to assume the AITF of 
lenses and photographic materials used equal to unity. 
(In reality, considerable care must be taken to avoid 
the adjacency effect,' which can make the latter as-
sumption a dangerous one.) Square-wave line pat-
terns were placed at the edges of the input target to 
facilitate determination of p to give the desired zero-
crossing of the mask transfer function and the final 
alignment of the transparencies in registration. 

The input transparency was diffusely illuminated 
with a Grafiarger system, and projected with a high 
quality enlarging objective onto Panatonic-X film de-
veloped to unit gamma. The resulting densities were 
controlled to fall on the linear part of the H & D 
curve of the film. Figure 9 shows schematically the 
setup used. In the lateral shift case, the photographic 
film was translated laterally with a precision cross.- • 
slide with two exposures being made at the proper 
shift distance. In the ring smear case, a thin glass 
plate tilted relative to the optical axis and placed in the 
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onto Plux-X Pan film developed to a y of approximately 
0.5 to reduce the modulation to an acceptable level. 
The mask was then contact-printed again at unit 
gamma to produce the correct polarity. These final 
transparencies were considered as the input and mask 
for the system, and their superposition in register con-
sidered the output. If the mask modulation is 21/„,(R), 
the input modulation 3/,(R), and the output modula-
tion 1110(R), then the transfer functions will be D (R) =-
111o(R)1211,(R) and 1)(R) = 1 — y,n•D,n(R). Because 
of the normalization by the control, 7„ = 1. Figs. 
12 and 13 show the experimental transfer functions 
compared with those predicted by the approximative 
theory. 	• 

Conclusions 
Although in the linear systems approach in optics 

one would not normally speak of a modulation transfer 
function greater than unity, with reasonable approxi-
mations it is realistic to consider the possibility of 
applying .linear theory to nonlinear systems, and to 
consider the possible usefulness of doing this. The  

photographic masking methods described in this paper 
represent one simple application of such thinking, and 
it is hoped that others may be stimulated to consider 
similar somewhat unusual applications of transfer theory 
to optical problems. 

The authors would like to thank H. Werlich for his 
excellent performance of much of the experimental 

. work described, and H. Zweig for helpful critical dis-
cussion. M. Rabedeau supplied the sine targets, 
which simplified our experimental problem consider-
ably. 
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Theta Modulation in • Optics 

J. D. Armitage and A. W. Lohmann 

The experiments reported in this paper are similar to the famous Abbe experiments. However, they 
were done for quite different reasons, namely, to perform certain information processing operations by 
optical means. Our technique, called theta modulation, allows production of a color image from a 
black and white film, on which the color object is recorded in encoded form. Furthermore, nonlinear 
characteristics (H 	D curves) of any shape can be realized. A special application of theta modula- 
tion, called multiplex storage, will be described. By this technique, more than one image can be re-
corded in the same area on a piece of film. Subsequently, the individual images can be recovered with a 
minimum of crosstalk. 

I. The Principle of Theta Modulation 
The meaning of modulation is well known in elec-

tronics. One has, for example, a sinusoidal carrier 
and a signal, and both are brought together such that 
the amplitude (or frequency or phase) of the carrier 
varies proportionally to the signal. In this modulated 
form, the signal may be easier to transmit. Or, several 
signals riding on different carriers might be transmitted 
simultaneously over one single cable. This technique, 
called "multiplexing", will be one of the applications 
for our optical modulation scheme. Whereas in elec-
tronics (and also in laser communications systems) the 
signal is a temporal function, let us say voltage as func-
tion of time t, we here mean by signal a spatial function, 
an intensity distribution I(x,y) or gr,cb). By "car-
rier" we mean a spatial monofrequency, or, in more 
common terms, an amplitude grating. It is obvious 
that one could modulate such a carrier essentially the 
same way as in electronics by varying its amplitude, 
frequency, or phase proportional to the signal. Ther-
moplastic recording' falls into this category. But 
there is another parameter suitable for modulation, 
and this parameter is unique in our optical situation; 
this is the angular orientation of the grating, here de-
fined as the azimuth angle theta. This parameter has 
no counterpart in electronics, where one has only one 
independent variable, the time t. Figure 1 shows what 
we mean by theta modulation. At the left side of the 
figure, one sees a signal, /0(x,y) at the right side of the 
modulated signal I3,(x,y). Modulation here means 
the assignment of various theta angles of the carrier 
to corresponding intensity levels. 

The authors are with the IBM Corporation, San Jose, Cali- 
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To implement the modulation in the experiments 
here described, we simply used commercial grid paper 
(Ronchi ruling), scissors, and glue. A more useful 
way to perform the modulation will be described in the 
Appendix. 

Now, let us describe the demodulation process, first 
for the simplest case and in the following sections, with 
some of the features mentioned in the abstract. The 
basic setup is a coherent image-forming system (Fig. 2). 
If the lines of the grating in M are oriented vertically, 
the diffraction patterns are situated on a horizontal line 
in the Fraunhofer plane F, as indicated in the upper 
part of Fig. 3. If the grating is rotated by an angle 
theta, the diffraction orders will rotate by the same 
amount around the center of F. If the object consists 
of two gratings, side by. side with different azimuthal 
orientations, the diffraction pattern will look as shown. 
at the bottom of Fig. 3. Now, assume an even more 
general object as in Fig. 1(b) or Fig. 4. In the dif-
fraction plane, the several diffraction patterns appear 
in discrete angular positions, according to the angular 
orientation of the grating elements. Hence, if one 
wants the roof of the house to appear dark in the image 
plane B (see Fig. 2), one has to block out the diffraction 
orders which correspond to the roof. A light sky can 
be achieved by letting pass both diffraction orders of 
the sky. The wall will be grey if only one of the two 
wall diffraction spots passes through the demodulation 
mask as indicated at the right-hand side of Fig. 4. 
The zero diffraction order at the center of F is blocked 
out at all times, since it is not dependent on the grating 
angle theta. 

Results of this type of demodulation experiment are 
presented in Fig. 5. Two different images could be 
achieved, depending upon which demodulation mask 
was used. 

These qualitative arguments readily suggest to any-
one familiar with Fourier optics the manner in which 
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Fig. 1. Principle of theta modulation. (a) Object with grey 
. ladder; (b) same object in theta-modulated form. 

 

f 	 f 	 f 	 f •1-• 

  

   

 

 

 

S 	 M 	 B 

Fig. 2. Optical arrangement for theta demodulation. AS 
source; M = plane for modulated object; F = Fraunhofer 
plane, the place for the demodulation mask; B = image plane, 

where the demodulated object appears. 

the theory of our experiments would be developed. 
Some details which would benefit from quantitative 
treatment have been investigated theoretically and 
prepared for publication in Optik byAforgenstern. 

II. Production of Color Images 

Now we will describe three ways to produce a color 
image from a theta-modulated signal which consists of 
black and white amplitude gratings. First, one can 
split up each object element into three portions, as• 
shown for four object elements in Fig. 6. The mask 
consists of opaque and transparent portions, superim-
posed by blue, red, and green filters (B, R, and G, in 
Fig. 6). For example, the lower third of each object 
element always is responsible for the blue component. 
There the grating angle theta varies between zero and 
?r/3. In this simple mask (Fig. 6), only three ampli-
tude levels for each color component., say zero, 0.5, and 
1, can be generated. Continuous values are possible, 
of course, 'if the transmission of the mask varies :con-
tinuously as a function of the angle 0:' • 

hi a second version of these color image experiments, 
one also uses three elementary gratings for the three 
color components in each object element, however; not 
side by side but superimposed. Qualitatively, this 
woxks satisfactorily when using similar demodulation 
masks as before (i.e., Fig. 6). However, for a quanti-
tatively true color reproduction, the mask must elimi-
nate the moire diffraction orders which am due to 
multiplicative interaction of the superimposed gratings. 

Our best results were achieved with a third version of 
these experiments. Here we make use of the fact that  

different wavelengths appear in the diffraction plane at 
different radii. If, for example, we want to generate a 
color image of our house object (Figs. 1, 4, 5), we insert 
a black and white mask (Fig. 7) into the Fraunhofer 
plane, such that only the blue portion of the sky dif-
fraction spols can go through, and so on. A some-
what more general color mask in which the transmitted 
wavelength is proportional to the angle theta of the 
grating would consist of a spiral slit in an opaque mask, 
given a polychromatic source. 

III. Nonlinear Demodulation 

Let us assume a linear modulation of the input. 
That is, the original object, Io(x,y), is converted into a 
modulated signal m(s,y) with a local grating angle 0, 
proportional to the intensity distribution in the object: 

6(x,y) 	KIo(x,y), 	K = r/max(Io). 

For the demodulation mask, situated in the Fraun-
hofer plane F of Fig. 2, let us assume a transmission 
T(0), which is not necessarily a linear function of the 
azimuth angle theta. Hence, the image intensity, 
/ n(x,y), may be related in a nonlinear or even non-
monotonic manner to the object intensity /0(x,y). 
The following scheme summarizes the described pro-
cedures: 

modulation: 	 = KI0, 
demodulation: 	0 	T(0) = I B., 
total: 	Io(x,y) 	gx,y) = TIKI0(x,y)]. 

In other words, the angular variation T(0) of the de-
modulation mask may act as the nonlinear characteris-
tic, much the same way as the H & D curve of a 
photographic material influences an optical signal. 
However, now we have the ability to create any de-
sired nonlinear characteristic, as has been shown ex-
perimentally.' One possible application of nonlinear 
demodulation would be the generation of an equi-
density line image.' That is to say, in the image 
I B(x,y) appear sharp lines, representing a contour map 

Fig. 3. .Tliree objects with corresponding Fraunhofer diffraction 
• pattern. 
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Fig. 4. Modulated object, diffraction pattern, and demodulation 
mask. 

Fig. 5. Result of demodulation procedure for one modulated 
object with two different demodulation masks. 

of the intensity mountains of the object Io(x,y). 
Representative characteristic curves for modulation 
and demodulation, as well as the corresponding mask, 
are shown in Fig. 8. The nonlinear demodulation 
process has particular significance in the field of optical 
data processing. Such operations as logic connections, 
noise suppression, and amplitude quantization can be 
performed by this technique. 

IV. Multiplex Storage 
Multiplex transmission in electronics means that 

more than one message is transmitted at the same 
time over one channel. By multiplex storage in optics, 
we mean that more than one image is stored in one 
place. Multiplex transmission of several messages re-
quires that they be modulated or encoded properly. 
There are three types of multiplex transmission which 
can be translated into optical multiplex storage. 

The best known multiplex method employs dif-
ferent carrier frequencies for each of the individual 
messages. If one translates the different carrier fre-
quencies into different angular grating orientations, 
then one arrives essentially at the second color demodu-
lation method of the previous section (Fig. 6). Ob-
viously, one can consider the three color components of 
the color image as three independent messages. 
Then one might say that the color signal in its theta-
modulated. form is an example of threefold multiplex 
storage. 

The second multiplex transmission method employs 
an encoding method where each continuous message 
is sampled at equidistant. points and reduced to an 
equidistant sequence of spikes. The amplitudes of 
these spikes are representative of the amplitude of the 
original message within the corresponding sampling 
interval. All messages are sampled.by the same inter-
val, then interlaced and so multiplex-transmitted. 

- The finer the spike width compared with the sampling 
interval, the more messages can be-  multiplex-trans-
mitted. This multiplex transmission has been trans-.  
lated already into optical multiplex storage in high-
speed photography.' Another way to translate 
interlace multiplexing would be to theta-modulate all 
image elements which belong to the same signal by the 
same angle theta. This we have described essentially 
in our first color demodulation. scheme (Fig. 6). All 
green subelements in Fig. 6 constitute together the 
green signal, which, in principle, can be completely 
independent, from signals which are represented by sub-
elements with different theta angles. 

The third type of multiplexing is applicable for digital 
signals. Here we will consider only binary signals, be-
cause of their importance in the field of data processing. 
First, we will treat this type of multiplexing in mathe-
matical terms, and then a simple experiment will be 
described. 

Let us assume N binary signals • 
S„(x,y) = fl or 	n = 0,1,2, ..., N = 1 

Fig. 6. Color encoding by theta modulation. Each hexagonal 
object element consists of three gratings, assigned to the three 
color components here, four object -elements: blue, green, red, 
and blue-green. The demodulation mask consists of transparent 

and opaque sectors, superimposed by color filters. • 

Fig. 7. Color demodulation. The radial structure of the de-
' modulation mask is responsible for color generation, assuming 

polychromatic light. 
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Fig. 8. Equidensity process. Linear modulation 10 -- 0; de­
modulation mask '1'(0) with two small sectors, generat.ing equi­

density lines in the 1'mage I B at levels II and '2. 
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sex) = So(x) + 2 S,(x) r 3 

2 J s 
2 . 3 

x 

Fig. 9. Multiplex principle. Two signals So(x) and SI(X) are 
combined to S(x) = Sg(x) + 2S1(x). Extraction of either So or 
SI is possible by nonlinear process of characteristic So(S) or SI(S), 

which we want to store in mult.iplex fashion. \Ve add 
them, but "Tith special assigned weighting coefficients ' 
2n, so 

N -1 

S(x,y) = L 2"S"(x,y ) = 0 or 1 or 2 or, ... , or 2" - 1. 
o 

it " o~e wants to extract from the multiplex signal, 
S(x,y),- a particular signal, Sm(X,y), one has to apply a 
nonlinear charact~ristic curve of the form Sm(S): 

S,,, (S) = 51 if 2
m (~ ~ 2p~ 5:S < 2'''+l.s~m±1 p) 

100therwlse, p - 0,1, .,.,2 - 1. 

This principle is explained for the spedal case of only 
two signals (N = 2) by means of Fig. 9. The two sig­
nals, So(x) and Sl(X), the multiplex signal, Sex) = 
So (x) + 2S1(x) , and finally the two nonlinear char­
acteristic curves, So(S) and Sl(S) , are shown. These 
nonlinear characteristic curves allow us to extract 
ei~her So or S1 fr0111 the multiplex signal S, as can be 
seen easily by jnspection of Fig. 9. . . 

To implement these nonlinear ci aracteristic curves, 
we can u~e theta demodulation. As original signals, 
let us assume the symbo.ls AlP and OSA: 

{ 
1 if AlP white II 5 1 if OSA white 

So(x,y) =- 0 if AlP black SI(x,y) = 10 if OSA black. 
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The multiplex signal S(x,y) = So(x,y) + 2S1(x,y) ob­
viously ' contains the amplitude levels 0, 1, 2, and 3. 
Let us theta-modulate this multiplex signal into 
I M(X,y) by assigning to each point (x,y) an angle .theta 
of the grating carrier 

O(x,y) = t1rS(x,y). 

In Fig. 10(a), one sees a photograph of the theta-modu­
lated multiplex signal I M(X,Y) together with its Fraun­
hofer pattern. If one wants to extract either of the 
two signals, one has to put IM(x,y) into the optical 
demodulation device at 111 in Fig. 2 and to introduce 
appropriate demodulation masks. Such masks together 
with the extracted individual signals are seen in Figs. 
lO(b) and 10(c). It is commorl"to judge the quality of 
any multiplex device by the degree of absence of cross­
talk between different messages after extraction. As 
Figs. 10(b) and 10(c) show, there is little crosstalk 
between AlP and OSA. 

V. Potential Advantages 

Does · the concept of theta modulation lead to in­
creased recording density in terms of bits per area? 
Since the maximum number of bits per field depends 
only on the system transfer function, on the noise, and 
on the ~ and D curve,5 only practical, rather than 
fundamental, advantages can be expected. To put 
this in the .proper prospective, let us examine the use- ,' 
fulness of multiplex telephony. If a certain channel 

(a) (b) (c) 

Fig. 10. Multiplex storage, (a) Two binary signals multi­
plexed and theta-modulat.ed; their Fraunhofer diffraction spec­
trum; (b), (c) extraction of the two signals, together with 

corresponding demodulation masks . . 

I o(x ,y) 

I 
[)~ 

~~E-FL--I-M(-)(-'y-) --' 
CRT '. 

Fig. 11. Modulation process. CRT scanning of object Io(x,y). 
$econd CRT with grid source. Rotation (theta) of grid images 
as parts of 1M by means of yoke. Yoke current proportional to 
photoelectric signal from first CRT. Synchronous and pulsed 
deflecti~n of both CRT's and synchronously blanked grid source. 



has a bandwidth of 5000 cps, but each signal message 
extends only over 500 cps, then ten signals can be trans-
mitted simultaneously side by side in the frequency 
domain. The properly combined ten signals are 
matched to the capacity of the channel. This is one 
example of optimal adaption of the signals to the chan-
nel, but it is not the only way. - For example, one 
could have recorded the signals on tape and then 
played it back at ten times higher speed. Now, each 
signal alone fills the whole frequency channel, but for 
only one tenth of the time. - Hence, the total tine re-
quired is the same, whether one transmits the ten 
signals sequentially in compressed form, or simulta-
neously in multiplex-modulated form. In principle, 
multiplexing does not produce a gain in terms of bits 
per seconds:, -.Nevertheless, multiplexing is often pref-
erable for practical reasons, as in the case where two- 
way conversation is wanted. 	• 

With the realization that modulation in general can 
provide only practical, rather than fundamental, ad-
vantages, we can apply the above example to an evalua-
tion of theta modulation multiplex storage. Suppose 
we have one piece of film and four signals, each signal 
represented by an area equal to that of the given piece 
of film. Is it more advantageous to reduce these four 
signals in size such that they will fit side by side on. the 
given piece of film? Or, can we do better by applying 
theta modulation multiplex storage without reduction 
in size? In principle, the two approaches are equally 
good, except for possible practical advantages if only 
one-to-one reproduction is required. Here, the avoid-
ance of reduction and subsequent reenlargement can 
be a practical advantage in terms of the required 
resolution. It could also be an advantage in terms of 
the energy per unit area in the object plane which is re-
quired to produce an enlarged image of adequate il-
luminance. In general, the photooptical components re-
quired to produce the demodulated image need not be 
capable of resolving the spatial carrier frequency, but 
need only have an entrance pupil large enough to ac-
commodate the diffraction orders which contribute to 
the final image. 

Theta modulation is a new concept in optical data 
processing which might help to •match a given set of  

signals in, a convenient way to the capacity of a given 
lens or to a given piece of film. 

Appendix: The Procedure of Modulation 
In terms of the optiCs, as well as from the viewpoint 

of processing information, the most significant aspects 
of theta modulation take place in connection with the 
demodulation process. We, therefore, simulated the 
Modulation process by photographically recording 
pieces of finely ruled paper, properly oriented. How-
ever, we want to point out at least one modulation tech-
nique which leads to a practical implementation. 

Consider two synchronously deflected cathode ray 
tubes (CRT), one for scanning the original object 
Io(x,y), the other for printing the theta-modulated 
signal / m(x,y). The latter CRT has a multiaperture 
grid source rather than a point source. Hence, grids 
of circular extension will be printed on the film /m. 
The angular orientation, theta, of this grid pattern is 
controlled by the current in a yoke around CRT 2 by 
conventional electron-optical techniques. This current 
is controlled by the output of the photomultiplier in 
front of CRT 1 and, hence, is proportional to the 
transmission of the original object Io(x,y) at the location 
of the scanning spot. At the right side of Fig. 11 is 
shown a portion of an object Io  encoded into its theta-
modulated signal /m. The deflection in both CRTs 
proceeds stepwise rather than continuously, and the 
grid source is pulsed synchronously and blanked during 
deflection. 

It is our pleasure to acknowledge many stimulating 
discussions with R. H. Kay and B. Morgenstern. 
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Mock Interfetometry 

L. MERTZ, N. 0. YOUNG AND J. ARMITAGE 
Block Associates, Inc., U.S.A. 

Sulwnaiy—A simulated interferometer for Fourier transform spectrometry is 
described with applications to diverse spectral regions (including ultra-violet) and to 
emission or absorption line profile studies. In addition to the usual advantages of 
interference spectrometry, i.e. Fellgett's multiplex advantage"' of measuring all 
the colours simultaneously (applicable only in the jnfra-red) and large acceptance 
angle at large aperture, i.e. large throughput, the "mock interferometer" has the 
following three advantages: 

1. The dimensional tolerances required are low, making it applicable to the ultra-
violet as well as making it extremely durable under adverse operating conditions. 

2. It has no beam splitter problem and is applicable to any spectral region for 
which dispersers are available. 

3. The fringe frequency is not necessarily proportional to the radiation frequency. 
Therefore, by shifting the zero fringe frequency to the neighbourhood of a 
small spectral region, only a low order (few harmonics) Fourier transforma-
tion need be used. 

Use of the "mock" interferometer does not, of course, eliminate the need for a 
Fourier transform computation to obtain the spectrum. This Fourier transformation 
may be performed with either digital or analogue techniques. 

Restund—Un interferometre simule pour spectroscopic par la transformation de 
Fourier est decrit avec applications a diverses regions spectrales (Pultraviolet inclus) 
et aux etudes de lignes d'emission ou d'absorption spectrales. Aux avantages 
conventionels de spectroscopie interferentiel; c'est a dire, les avantages multiplex de 
Fellgett, grace a la mesure simultande de tortes les coulcurs (possible settlement dans 
l'infrarougc) et la possibilite d'avoir une grande ouverture, Pinterferometre simule 
presente de plus les 3 avantages suivants: 

1. Les tolerances necessaires sont faibles. De sorte que l'interferometre est 
utilisable dans l'ultraviolet et est tres stable memo dans les conditions d'oper-
ation les plus rucks. 

2. 11 n'y a pas de problem dc separatricc et le principc s'applique a toutes les regions 
spectrales pour lesquels it y a des disperseurs. 

3. Les frequences des franges ne sont pas necessairement proportionelles aux 
frequences de la luiniere. Ainsi l'on peutplacer la frequence zero des franges au 
voisinage d'une petite region spectralc et ainsi peut utiliser une transformation 
de Fourier de bas ordre (contenant peu d'harmoniques). 

L'utilization de l'interferometre simule n'elimine cependant pas la necessite de 
calculation de la transformation de Fourier. On peut accomplir cette transformation 
par les methodes bien connus analogues ou chiffrees. 

Zusammenfassung—Es wird ein artaehnliches Interferometer fuer Fourier-transform 
Spektrometrie mit Anwendungen auf verschiedenen Spektralgebieten (auch im U.V.) 
beschrieben. Das Interferometer kann zum Studium von Profilers der Emissions oder 
Absorptionslinien benutzt werden. 

Ausser den normalen Vorteilen der Interferenz Spektrometrie (d.h. Felgetts Multi-
plex Vorteil), dass man alle Farben zur gleichen Zeit misst, (dieser Vorteil bilt nur im 
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Ultra Rot), und grosse Eintrittswinkel (Durchgang) erreicht, hat das Mock Inter-
ferometer die folgenden 3 Vorteile: 

I. Die benoetigten Tolcranzen sind niedrig, darum kann man das Instrunient im 
U.V. anwenden und umsomehr 1st es auch unter widrigen Umstaendensehr 
dauerhaft. 

2. Das Problem der Strahlentrennung besteht nicht, und man kann das Instrument 
in jedcm Spektralgebiet, wo dispergierende Elemente erhalten sind, benutzen. 

3. Die Frequenz der Interferenzlinien 1st nicht unbedingt proportional zu der 
Strahlungsfrequenz. Deshalb braucht man nur eine Fouriertransformation 
niedrigcr Ordnung, wenn man die Nullfrequenz zerlegt in die Unigebung eines 
kleinen Spektralgebicts. 

Die Notwendigkcit einer Fouricrtransformberechnung zur Erhaltung eines 
Spektrums wird aber nicht von deny Mock eliniiniert. Diese Fourier transformation 
kann entwcder mit digital oder mit analog Methoden durchgefuchrt werden. • 

We call Mock Interferometry the simulation of the channel spectrum 
• transmission, or Edser-Butler bands, of an interferometer. The idea is that 
• if we reproduce such a transmission, regardless of how, we shall indeed have 

an instrument performing like an interferometer. 

RONCHI GRATING 
	 LITTROW PRISM 

LENS 

 

 

  

FIG. 1. lock interferometer. 

This transmission is achieved by the straightforward approach of placing 
a mask over the spectrum formed by a conventional spectroscope. The 
appropriate mask is clearly a uniformly spaced grill; a Ronchi grating. Now 
inasmuch as we are taking the overall light transmission through the grill.  
and inasmuch as the grill has uniform spacing, it becomes possible to replace 
the entrance slit of the spectroscope with a conjugate grill. In this manner we 
can let a lot .more light through while retaining the spectral transmission 
characteristics. 

For example, folding the system we find the Littrow arrangement illustrated 
in Fig. 1. The entrance and exit grill are combined. One simply uses different 
regions of this grill for the entrance and exit bundles. 

So far, only a single channel spacing has been mentioned. Complete 
simulation of an interferometer with variable path difference requires variable 
spacing. Otherwise we would be unable to scan fringes. This is the purpose 
of the rotating mount in the figure. When the grill is oriented with its lines 
'parallel to the dispersion then the transmission depends on whether the grill 
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is exactly imaged back on itself or with a slight shear. The white or black 
suggests the zero order transmission of a Michelson interferometer. 

This resemblance was experimentally confirmed within ten minutes after 
its conception. We found that the fringes produced were indistinguishable 
by eye from those of a Michelson interferometer; and that we could readily.  
scan through white light fringes by rotating the grill. Those of you who have 
ever sought white light fringes with a Michelson interferometer will appreciate 
the effortless achievement of white light fringes with even a primitive "mock" 
interferometer. 

Flo. 2. Abbreviated diagram of entrance-exit parameters. 
• 

In order to develop a quantitative knowledge of the transmission, we first 
notice that the lines of the image of the grill for any colour are necessarily 
parallel to the lines of the grill itself. In other words, we have one large 
Moire fringe. Only the lateral position of the image with respect to the grill 
determines the transmission or the phase of the Moire fringe. 

In Fig.-2,.the pertinent features of the grill systeM are illustrated. This is a 
view through the grill, looking down the optic axis. C is the centre of rotation 
of the grill, and C' is a monochromatic image of C. These points are. 
stationary. There is a line shown through.0 representing the line of the grill 
which intersects C. There is a corresponding parallel image line through C'. 
With x as the distance CC', and 0 as the angle between CC' and the grill line 
through. C, we find the shear of the image with respect to the grill to be 
x sin 0. 

The overall Moire transmission determined by this shear may be expressed 

T= 
.

cost (27,  x sin 0 
s 

where s is the grill spacing and 56 is a constant. 	is determined solely by the 
position of C on the entrance grill. If the centre of rotation, C, lies precisely 
on the center of a grill line, Y = 0: If.0 lies on the edge of a grill line, then 
os. l/2m It should also be pointed out here that the points Cand C' need 
not lie within the field of view. 
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We now make x a function of colour, .as a result of the dispersion. In 
simplest linear form, x = b(v — vs), where b is constant and vs  is the colour 
for which C' lies on C. Next we choose a parameter T -= sin 0, and the 
transmission becomes 

T= 	cost  [21-r b(v 	v"))7  + 
2 

When 9!) = Cr  and vs  = 0, this is the transmission of a Michelson inter-
ferometer at retardation In/s. 

NEON SOURCE 
, PbS DETECTOR 

Ik[ 

IA1  I • • .1.6.11••••i•1•.1-1-1MI- 
45.000 	 7.000 	 8.000 	 9.000 

no. 3. Neon spectrum obtained with mock interferometer. 

. •Nothing serious happens with non-linear dispersion. The wavenumber 
need not actually represent radiation frequency, but a colour scale linearized 
to the dispersion. Measurements in terms of this colour scale may later be 
calibrated into terms of the original radiation frequency. The same type of 
wavelength calibration is required of all prism spectrometers. 

If the dispersing element of the Littrow spectrometer is a diffraction grat-
ing, then we find that the fringe frequency v is linear with wavelength (for 
small dispersion angles) as will be illustrated shortly. 

The operation of the instrument proceeds as with systems of Fourier 
transform spectrometry involving Michelson interferometers, These tech-
niques have found increasing use ever since their advantages were first 
realized by FclIgett and most of the details were presented at the Paris 
conference on Interference Spectroscopy in 1957, and at the Teddington 
conference on Interferometry in 1959. 

The resolving power using the "mock" interferometer clearly cannot 
exceed the resolving power of the component Littrow spectrometer. For 
maximum resolving power, the grill should be as fine as the spectrometer will 
resolve. If the grill were made finer than this, no fringes would occur, since 
the original Ronchi grating is not resolved. 

A preliminary spectrum obtained with our "mock" interferometer is shown 
in Fig. 3. This shows a neon spectrum obtained from our interferogram with 
fringe frequencies up to two kilocycles. Notice that the wavelength scale is 
linear, that long wavelengths have high fringe frequencies, and that zero 
fringe frequency lies near 5000 A. This latter ability to locate zero fringe 
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frequency in the spectrum at will, allows us to achieve higher resolution than 
the size of our Fourier computation would normally permit. We expect this 
ability to be one of the fundamental merits of "mock" interferometry. 

The instrument with which the neon spectrum was obtained is illustrated 
in Fig. 4. Six seconds were used for recording signal on magnetic tape, and 
the source was a small neon lamp of about 1/4 watt. 

The principle engineering problem is the construction of the drive such that 
sin 0 is linear with time. So far, we have managed two approaches to the 

FIG. 4. Mock interferometer. 

problem. The first approach was a rapid repetitive scan (21 scans per second) 
in order to make,the output compatible with magnetic tape recording and 
audio frequenCy wave analysis.m This involves extremely non-uniform 
rotation and the accelerations and backlash prevented operation of a cam 
corrected drive. Instead, an approximate drive was made by using a crank 
and slot connection between offset shafts. It turns out to be important that 
the slot drive the crank, rather than vice versa, in order to approximate the 
desired motion. With this system we are able to use a duty cycle of about 1, 
blanking the amplifier during the remaining fl time, and we get about 1 
the maximum resolution. By that we mean we used the region 	< sin 0 <. 

fof - the measurement. 
Another drive which we have recently constructed for the visible.  and 

ultraviolet, where we don't have low frequency detector noise and-. so  can 
scan slowly, is an escapement with non-uniformly spaced teeth. The Fourier 
transformation in this case is readily adaptable to digital computation. 

In conclusion, we would like to mention some of our desired applications 
of "mock" interferometry. The first is high resolution photoelectric stellar 
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spectrophotometry. Although Fellgett's multiplex gain is on the average 
balanced by the increased photon noise, the throughput gain is still available. 
With conventional spectrophotometers it is impossible to decrease the slit 
width to gain resolution simply because the star image is too big. 

We would also like to apply "mock" interferometry to the vacuum ultra-
violet, not only for low resolution work but also for high resolution study of 
the Lyman q profile. 

It has recently come to our attention that in 1959, Lohmann(3)  mentioned 
the possibility of application of Moire fringes to spectral analysis. As has 
been seen, the "mock" interferometer also employs Moire fringe concepts 
although in a different way. 

Finally, we would like to express our appreciation to the Geophysics 
Research Directorate for their support of this research. ' 
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DISCUSSION 
PERRY: I would like to ask Dr. Mertz to what extent he intends to press the resolution 
aspects. I gathered that he needed a grating of a frequency as high as would be justified 
by the resolving power. I can foresee quite interesting design problems here; it would 
seem to me that he would need an anastigmatised, achromatised objective which would 
still leave outstanding the effects of curvature of spectral lines, which over an appreciable 
area might introduce some reduction of resolving power. If it is intended to be pressed so 
far, an achromatised Schmidt system might be desirable, but you cannot correct curvature 

- of the lines. 
MERTZ: I would like to say this. The curvature of the lines gives fringes which correspond ' 
to the circular fringes of a Michelson interferometer, and before we get to the circular 
fringes we still have an appreciable advantage over a conventional spectrometer. One can 
avoid the curvature of the spectrum lines by using a combination prism grating that 
Cannes has described—I believe he uses it in SISAM—that is free from curvature of the 
spectrum lines. We would like to do high resolution studies, we would like to do studies 
of Lyman x profile, and there arc a lot of stellar absorption line profiles that I am anxious 
to get at. 
PERRY: I was only thinking in terms of the system that you projected on the screen of 
Course. 
MERTZ: Well one can use any sort of disperser diffraction grating. 
PERRY: Shouldn't one understand that any reduction in curvature of spectral lines means 
a reduction in dispersion? 
MERTZ: No, one can compensate by using a prism and grating combination, so that as 
you look at the grating it appears rather flat. 
PERRY: What about the question of anastigmatism? 
MERTZ: Astigmatism is a serious problem we have not been able to get round. We would 
like to use the system with an -Ebert spectrometer but astigmatism so far has prevented 
that application. 
SCHAWLOW: Have you given any thought to applying mock interferometry to real inter-
ferometry, using something other than a prism as a dispersive element? 
.MERTz: Yes, in fact we have given thought to using some scatter screens which Jim Burch 
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was kind enough to show us, but that would be too lengthy to talk about right here--that 
makes it more of a monochrornator. 
RING: It may be of interest to comment that we have been using the slit system of your 
interferometer for an analogue Fourier transformer by taking two line-screens (200 
lines/inch), putting them at a slight angle and putting these over a mask of an interferogram 
from a Michelson interferometer, or from your system. 
MEaTz: Do you get any good results from this sort of application? 
RING: So far we have been working it both ways, by feeding into the light source a delta 
function, making a mask, and then transforming thiS and getting a delta function back. 
Both screens have to be tilted, and the Moire fringes scanned across the mask, and so we 
get a sequential Fourier transform. Although we have been working on this for some time 
(since we saw your abstract), it was a long time before we saw how to use it this way. 
For high resolution, at least three lines of the line-screen must fill a spacing of the fringe 
to get a well defined moire fringe. 
MEaTz: Let me be a little more clear, by high resolution, I do not mean resolution of the 
order of 500,000, I mean resolution of less than 50,000. In astronomy this is considered 
highly dull resolution. 
RING: How do you propose to make the line-screens? 
MERTZ: By a photo-engraVing technique—they do not have to be self-supporting. 
MARtiCHAL: A similar device was described by Girard: what is the difference? 
MeaTz::  The difference between this device and Girard's is that this uses the Fourier 
transform technique and in so doing gains Fellgett's advantage as well as the wide field 
advantage and one has to have Fellgett's advantage to balance photon noise in the visible 
and the.ultra-violet. If you just have a selective modulator you have lost in the visible or 
the ultra-violet. 
MARE'CHAL: Yes, but Girard was against conventional equipment. 
MERTZ: Yes, but you also get much more photon noise. You have to gain the advantages 
of both Fellgett and of acceptance angle. • 
DITCHBURN: :In the vacuum ultra-violet you gain only by increase of light; presumably 
if one has enough light then one gets as good a spectrum out of an ordinary conventional 
spectrograph? 
METurz: Yes. This and a conventional spectrograph are exactly the same on the average 
for the same amount of light passing through the instrument. However, instead of an 
entrance slit we can use big entrance apertures, which means that we can pass much, much, 
much more light through the instrument. 
DITCHBURN: Yes but your grid must be very, very fine and it must be made of wires. 
MERTZ: But you can also get a very high dispersion in the ultra-violet too, so that the grid 
does not really have to be all that fine. 	 • 
DITCHISURN: To get a very high dispersion you must have a very long instrument and that 
implies a very low f/value and therefore you would have lost your light again! 	. 
MERTZ: On the whole we still do better than a lot of conventional instruments, I believe. 
INGELs-ram: How does linear dispersion come in? You can use different dispersive elements 
but you have a scale which is linear in wave number. 
MERTZ: The scale does not really have to be of wave number; it can be just some sort of 
colour scale. 
INGELSTANI: That is true, but on the other hand you have a certain intensity in a certain 
scale, it is given by the dispersion of the prism or the grating, but when you make this 
transform don't you have to know the final intensity in order to have the Fourier transform 
linear? . 
MERTZ: No, you don't have to modify intensity. There is vignetting in the colour, so 
that you do get cut off at the ends of the spectrum, but that is only due to vignetting and 
has nothing to do with the dispersion. 
INGELsrAm: Even for very long regions of the spectrum? 
MERTZ: Yes, if you can get the light to the detector. 

6 . 
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