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ABSTRACT |

Tt is postulated that two points on a thermal light
sourcé, if thej are sufficiently close to one another, may.
exhibit some degree of coherence between their radiations.
The treatment of partial coherence due to Hopkins, in which
a thermal source is considered to be perfectly incoherent,
is extended to include the possibility of small regions of
spatial coherénce in the source. Without assuming any
speéific source emiséipn mechanism other than that the
cohefehce time of the radiation is much shorter than the
integrating time of the detector_used,yﬁhe following rules,
which 'are based on physical argumeénts rather than mathematical
ideaiiéations,‘are shown to apply:

i) Fourier spectral components of the same frequency

»coming from the same element of the source may be
considered to be perfectly coherent.

ii) . Fourier spectral components of the same frequency
coming from different elements of the ééurce ﬁay be
considered to be'partially coherent, the degree of
partial coherence being determined by the properties
of the'SOurce. _

-iii) Fourier sﬁectra1<pomponéﬁts of different
frequencies may be conéidered to be completely

incohefent,



It is shown that the dssumption-ordinarily made for a thermal
‘source, that ih ruie ii) the different source elements are
assumed to be perfectly incohérent,‘isrjustified for the
usual situation in which they are spatially unresolved by
an observing syétem. » |

Formulae are developed which describe the power at a
point, and thé coherence between points, resulting at an
area illuminated by such a source. For a model source
Gaussian in both radiaqce and micro-coherence, a computation
shows that in order to obtain reasonable experimental }

—.measurements of source micro~-coherence characteristics, -«

the source must be extremely small.
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If anything physical comes out of mathematics,

it must have been put in in another form.

Bridgman (1927, p. 169)



INTRODUCTION

Until repéntly,_it has géneraily been assumed that
light disﬁurbances (even if exactly the same frequency)
émitted by two different atoms of a thermal light source,
or that light disturbances of very slightly differing
frequencies (even if emitted by the same atom), are com-
pletely incoherent - that is, they can not interfere to
cancel or augment each other. This concept is most strictly
stafed,by Dirac (1958, p. 9) as "Each photon then interferes
~only with itself. Interference between two different
photons never occurs. "

The development of classical coherence theory (Hopkins
1967;_ Born.and Wolf 1959) has led to the concept of a
degree of partial coherence between two'points in a wave
'field, formulated in terms of the degree of correlation of
the phases of the disturbances over a specified time. - In
the classical treatment, the partial degree Qf coherence is
considered to arise'ffom thevtwo field poiﬁés feceiving
'coherent light from anj givén point in the light source,
but with this light being completely incoherént with light
feceived from all other points in the source. Thus the
'concept,of fhe mutual incoherehce'of different atoms in the*
source has been retained, partial coherence only existing
in a radiation field determined by a source but‘not at the

source itself.



Both experimenté demoﬁstrating interference between
light from two separate lasers (Mandel; 1963), and the
_ exisfenée of phase correlation over regions within the
laser itself, suggest that the assumption of completé in-
'coherence betweéh different elements in a thermal light
source may not be ,justified.x Further, the coherence
between different atoms stimulated to emit by the standiﬁg
wave fileld of the laser, and the small but non-zero coherent
component of radiation generated by stimulated emission in
a black-body cavity (Heavens 1964, p. 3), both suggest that
for source atoms sufficiently close together, the radiation
emitted spontaneously from one atom oould stimulate nearby
atoms to gmit radiation cohefent with the stimulating
radiation. This could lead to very small regions of
coherence in an ordinary light source, or "micro-coherence."

Although this is a difficult problem in radiation
physics, and standard theory doeg not . so far provide a‘
prédiction of the degree of miéro-ooherence to be expected,

"it is nevertheless worthwhile to examine the problem from

¥ Tt should be noted that Mandel (1964) points out that

from the point of view of quantum theory, Dirac's
statement (quoted earlier) should not be interpreted
to mean that the light in two independent laser beams
can not interfere, because in laser radiation the
"average photon occupation number per unit cell of
phase space is appreciably greater than one, " so "the

- two beams cannot meaningfully be described as being
incoherent or statistically independent, and a photon
can be regarded as being partly in both beams and thus
"interferes only with itself.'



the viewpoint of instfﬁmental optics to see whether a degree
of micro—coherence can be defined phehomenolOgieally and
measured experimeptally. Fof the design of such an experi-
ment, formulae"are required which provide a basis for
measurement in perms of a suitably specified micro-coherence
~of the source and the characteristics of the apparatus used.
Hopkins’;treatment_of partial coherence (Hopkins 1967,
p. 210).formulated in terms of monpchromatic complex ampli-
tudes associaped with the radiation disturbances, while not
directly applicable, suggests a useful extension to treat
" the problem of the micro-éoherent source. Hopkins' treat-
ment uses the assumed perfect incoherence of a thermal
source in an afgument showing that the 1ight intensity
produeed at any point by an extehded source may be found
by summing the intensities produced at any point by pure
monochromatic WaQee of different frequencies assumed %o
emerge independently from each element of the source, and
that the total ihtensity is then found by integrating these
monochromatic intensitjqéver the appropriate spectral
rTange. This principle has been used to develop a theory
of parfialﬂeoherence for points in the wave fieldvproduced N
by a source, wherein the coherence factor is ehown to |
determine the visibility ebtaining in any interference

pattern.



Hopkins develops-ﬁhe following three rules»for a
classically inéoherent sourcé:
i) Light beams of ﬁhe same frequency coming from the
same element of the SOufce are pérfeoﬁly coherent.
ii) Light beamé of the same Trequency coming from different
elements of thé source may be considered to be com-
pletély incoherent.
iii) Light beéms of different frequency are completely

incoherent. ‘
© In deriving these rules, it has been assumed that light
disturbances are emitted entirely independently from two
different atoms, in accordance with the classical assumptions
regarding thermal light sources. In the next section it
willrbe shown that these rules are indéed correct even
should the source be micro-coherent rather than completely
incoherent, provided that the regions of micro-coherence
are well below being resolvablé by the apparatus viewing
;the source. The tﬁeory based on a complefély incoherent
source will be extended to include the general case of a
rmicro—ooherent source viewed without any 1imitafiéns as to
resolution;wand it will be shown that rule ii) giVen above
-is only a special case of the generai rule:

44') Light beams of the same frequency coming from

different elements of the source may be considered

to be partially coherent, the degree of partial
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coherence ‘being detevﬁined by the propertieé

of the source. | | ' S

'It'mustvbe emphasized that bdth in Hopkins' derivation
of the three rules given above, and in the present extension
of the theoryﬁtd include the micro-coherent source, it has
been assumed that the integration time of the photodetecting
process is much greater than the coherence time of the light
in .question, This condition is well satisfied for all but
laser.radiation, whiqh is therefore excluded from the present
. freatment. = For the situation wherein the detecting integ-
ration time is comparab{e to the radiation coherence time,
the detailed statistical characteristies of the radiation
must be known and very different methods must Be used to
treat the problem.

Included in the following treatment of source coherence
will also bé a careful consideration of thé physical
validity of the application ofrFourier transform methods
to this type of problem. It Wiil be shown‘ﬁhat straight-
forward application of PFourier methods is physically not -
.Justifiable, because the infinitely extended Fourier sin/cos
components usually used lead to the following contradictions:

1) The postulated incoherence 6frinfinitely.extehded :
pure monofrequency disturbances of didentical frequency,
which byvtheir very}definition must be perfectly

coherent.
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2) The existence of:a Foufier component, and théreforé
thé existence of its ability to create an effect ©on
'a'détector, at a time for which the disturbance pro-
ducing the Fourier component does not itself exist.
This implies the respoﬁse of a detector in advance
of the arrival of the signal, and of its continued
response after the ringing transients (during the
detector integrétion time) has ceased.

These questions will be ekamined in detail, and it will.be.
shown that both a modification of. the usual Fourier transform
and consideration of the general statistical nature of the
emissiqn process is»required. However, no specific
statistical properties will be aésumed for the radiation

other than that of a coherence time.
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MICRO-COHERENCE

Specification of the Micro-Coherence Factor

Let the scalar S(t,x) be the real temporal physical
field‘disturbanée ét a point in the source having vector
coordinate x . | (Fig. 1). The vector x may be either
two or three-dimensional corresponding to either a surface
or volume source. S'(t,x') will be used to denote the

' of a detector

disturbance at time t at the point x
which receives the light, S'(t,x") may be written in

terms of its Fourier spectrum, that is

. . ’ ’ _' eo ’ . V.é
_ -5 (¢, ) = J[ A (Y, x) L dv , (1)
: Ty
where
' ’ - ! V "FC Vé
A(v,é)s'/S(&,g)Ae ol dt ; - (2)

- 0o

t
and similarly fdr‘the disturbance at the source. . There
are two problems with this standard mathematical represent-
:ation. First, suppose the disturbance at the detector.ié
examined’aéutime_ t = t' . Using the above relations
implies that, at a given moment f = t' , the quriér
spectrum can be determined by applying to S'(t,x) an

~integral operator with limits t = t ® . This is not
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physically correct, because that part of S(t,g) in the

source distupbénce function ﬁhich has not yet arrived at

the detector at time ¢t = t' does not yet exist insofar

as the detector is concerned; The disturbance producing
the response of the detector at t = t' is thus S'(%,x)
for t < &', Dbut is zero for t > &' . We therefore

define modified Fourier components for the disfturbance as

“seen" by thé detector, denoting this truncated disturbance
by
, = S, ) o For ted
S, (6, %) ,
= O for ¢ > ¢ , (3)

with a running Fourier spectrum

{:I

7 ' t —czrvt
4@“&5’) =f5(t,z') @cmv dt /&(f xe Wc{{: (4)

7
¢

and with

oo
farvi

S(t—z) f (v, x) €  dv .

OO

SeCOnd, the standard Fourier representation implies
the existence of sin/cos spectral components which exist
 for all time, for t =+ o ; even the modified (running)

Fourier representation introduced above still implies the
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existence of these components for-all times between x-cn

and t' . However, this is physically incorrect, and if
these semi—infinite spectral éomponents‘are uséd in an
anaiysis of the fluctuations of sg(v,z) £ ‘as a function

of t' , wrong éonclusions may ensue™. As it will shortly
be necessary to consider such fluctuations, it is important
to examine moré carefully the relatiohship of the components
of sg(v,x) to the signal S(t,x) . TLet S(t,x) be the
superposition of very many pulses, each pulse deriving from
a single radiating atom, and each of roughly the length
determined by the coherence time ’IQ . By additivity, the
spectral components of this superposition of pulées may
themselves be considered a superposition of sin/cos terms,
each_term deriving_from a particular pulse. These sin/cos
terms are not physically infinitely extended in time, however,
because for times when a particular pulse is zero, it is
physically necessary that each spectral component deriving

from that pulse (not only the sum of all components) also

£ (The typewritten symbol v is equivalent to the
handwritten symbol V .)

® 1o paraphrase Stone's (1963, p. 46), warning agalnst
- the misuse of complex representation: "The use of
Fourier theory in ways that do not give physically
correct results is a pit which contalns many
victims, " :
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be zero for such times. Were this not 50, a mono-frequency
detector could respond to a nbn-zefo monochromatic spectral
component even though, for that specific time, the signal
itself were zero.- This means that as ¢! changes by
roughly the coherence time T; s an entirely different
set of signal pulses, and hence an entirely different set
of sin/coé terms, must be considered. Although, with many
pulses present, the resultant expected amplitude of Sg(v,z)
wili be independent of t' , +the phase of sp(v,x) will
be random between O and 2n for each different set of
pulses, and hence the phase of sf(v,g) will suffer large
fluctuations at intervals on the order of the coherence
time. (Davenport and Root, p. 161).

Let the total complex transmission for a given frequency
v, from the sourcé point x to the detector point x' ,

be denoted by u(v;x,x') . This means that a (fictional)

¥ Tt should be noted that this problem, the physical
unreality of infinitely extended spectral components,
does not usually cause difficulty in common problems
of spectral analysis wherein a signal is known a
posteriori and only its spectrum 1s desired; how-
ever, in any problem involving the behaviour of a
function in its reciprocal Fourier domain, as for

_ example s(v) in the %t domain, the assumptions
underlying the defining Fourier equations must be
examined in the light of physical restvlctlons as
well as mathematical convention.
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monochfomatic wavesource at’ x , producing a wave of unit
amplitude and zero phase, would'prbduce at x' a distur-
bance of real amplitude equal to |u| and phase equal to
arg(u) . This complex tranémission will in general be
frequency-dependént in both modulus and phase.

Analogous to Sy (t,x') , the disturbance at the
detector,‘denote the disturbance at a source point x ,

at b=ty , by S (t,x) , where

= S('l’;.’.(.) ch tS'&g

S\’:o (7‘:)_).(.) : .
= O Cfov t >t

The time t ° is earlier than t' by A , the transit
~ time from x to x' , -which is simply equal %o 5%; arg(u)

The disturbance S, (t,x) may be analysed into a spectrum

- f _szvf
A (V%) _ff(eX) sy '/-Sf ({_— X) & c[f (5) .

with
(amyit
Sf (£, x) _/,dzfo (v, 2) C dv . ' (6)
Sy
‘A Fourier component stb(v,g) in the source will produce
at the detector a Fourier component with cbmplex amplitude

gilven by /
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Ay W) = A, (V) W (Vi ) (7)

If the media between the source and detector are non—'
dispersive, the transit time & will be iﬁdependent of v,
and the disturbénce St (v,x) synthesized in equation (6)
may be regafded as a real disturbance which has been pro-
duced at the source at time t = t, and propagated to
arrive at thé detector at time t = t' . Howe&er, if as
is frequently the case, there are glass or other dispersive
components in the optical system between the source and the
detector, & will depend on v , and the different Fourier
' componeﬁts arriving at the detector at time ¢ = £' will
then ha?e left the source at different times t = t. .
In these cases, the disturbance syntheéized in equaﬁion (6)
will not actually have existed physically at the source in
that precise rlform.

The total instantaneous disturbance at .the detector
at t = t' will be.given by R

Carvt

S,y = ff«%, (v, 2) wtvyx, 29 €  dvdx(®

X
‘and the total instantaneous power falling on the point 5'
of the detector at time t = t' will be given by the square

of (8), that is by
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“,* ‘ : ) ’ iyt
Ple,x) = J J-A.QW,&)A&OW, By wiovg, e yuv; £,5)€ 9)

the integrations over x , being over the spatial extent

> ’N)

of the source. The symbol is used only to distinguish
between the variables of the double integration.

For any détector, the signal produced by a beam of
monochromaﬁic light will depend on wavelength. Let /\(V)
be this spectral sensitivity as a function of frequency.
Each term iﬁ (9} is a cross-product of a signal of frequency
v with one of frequency v s and the question arises as
to what spectral sensitivity.factor should be used when two
signals of different frequencies are combined. A similar
problem exists when two highly coherent beams of slightly
different frequencies are heterodyned, giving a beat
frequency. Tn such a case, the photons in the beam will -
still be those of energies corresponding to the separate
frequencies of thé two coherent beams, and not of frequency
corresponding to fthe Eeat frequency. Since each of these

.beams acting alone has an effective amplitude'VAlv) Av) |,

it is reasonable to multiply the cross-product terms in (9)

vy YAV A9) to obtain the signal produced. This
signal, for example a photocurrent, produced in the detector

at any instant t = t' is thus:
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t . “ '
Lt ) = ff ffw\m/\m A:O(V,ll))d,éo(&,_g) Wi £, &)
X S : '

">

v |
Lo (v-vyt!

"M'(V;i,b e dvd$ dx df . (10)

This formula may be interpreted as an integration over the
beat frequenciés W o= ij in the photocurrent. The detector
circuit will have a frequency response which is significaﬁtly

different from zero only in a finite bandwidth ., , so

that for a given v , the effective range of ¥ will be
from u=v+_—5-2—\£ to u=v-%—\£, withﬁbv‘sﬁhv\max:uo .
This maximum beat frequency -H. corr'esponds to a maximum

_ wavelength different 6, , where OA, = %? o . For
Ko'=‘5 x 1072 cm , Bro = Bu, x L Thus, even for
Lo as great as lO6 , DXo has only the value 8 x lO_6 A.

Over this wavelength range, and for laboratory-scale path
- lengths, both Atv)  and L) will be constant, and one may
write |

/\L\'I\) :‘/\ (V+7u') = A

’

A A ' A ! (ll)
W iv; x, x) = Wiv; X X)

giving, with the substitution ¥-v = |L and a change in the

order of integration,
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i(é,i)'ﬁ

\xg._ﬁ

S/\(v) w v, &, %) W vy 2 g’)/‘L: (V, %)
-x. . ~ Q R

A iu, ) dx dg dv ) € d  (12)
for the photocurrent detected by the circuit.
The complex amplitude at time &' of the beat fre-
quency .will'be determined by the expression in the

square brackets in (12), that is by

fff/\muw- Z)LU v; £, ¢ /%N X) A (w/u, %) dxdz dv. (13)

A
Xx

Because the factors SZ;(V,E) and s, (v, X) wiil each
Jjump in phase at intervals of the order éf the cdherence
time,‘the complex amplitude of the beat frequency u will
also fiuctuate with time. Also; any correlation between
the arguﬁents of ,SZ (v,x) and stc(v+u,§) will tend %o
be smaller the more 2 differs from X , and thus the
integral over 2 w111 be restrlcted to a small area
centered on Xx . Finally, the phases of the contributions
to a given beat.frequency L , arising from different
frequency pairs, such as Vs, Vi+Hh and v, vy4p , will
also be less correlated the greater the difference between
v, and v, . The effect of these factors in the integ-
rations over x , g s and Vv will be to give small and

temporally fluctuating amplitudes to the non-zero. beat
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frequencies y . Thus the fiuctuations in (13) will tend
to average to a small noise on a steady signal. This

steady signal will be given by the time average

. T )
-é—fr(t’,g') dt (1)
T

where T is a time which is short compared with .l/uo s
the resolving time of the detector circuit, but long enough
to include a representative sampl¢ of the noise. This
meané that FTJJshould be much greater than the coherence
Time.

It follows from these arguments that, to increase the
detected noise fluctuations demands a spatially small source,
a narrow spectral width, and a high bandwidth for the
deteétér circuits. These are, of course, the conditions
chosen for photon-bunching experiments, wherein the fluc-
tuations rather than the d.c.‘signal are of interest.

The above considerations refer only t§ fluctﬁations in
the powér associated With beat-Irequency terms, assuming
“the mean power for each frequency to remain constant over
short intervals of time. They do not, therefore, include
Poisson fluctuations in the photon emission; in the present

Vtreatment, the level of radiation density is assumed suf-

ficiently high that the Poisson fluctuations are negligible,
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The steady signal defined by (14) is given, using (12),

by

T ¢xh ’*[Aun [f a’kw;glz‘) uw; R x)
s i3
r ' ;
2 dar
L[ % N M L
{/[TLA%“’H-‘)%N%;) e dfd/-u} dxdE Jdv.
1 ' B
(15)

*
The variations of s, (v,x) and sfo(v+u,§) occur on a.

time scale df the order of the coherence time Ce . For
the condition 1/us >> Ce , that is for a detector circuit
of resolying time much longer than ?he coherence time of the
radiétion, the'ezponential factor (frgut will change
only very slowly comparéd to sI;(v,g) s, (v+U,%X) , so that

this latter product may be replaced by its time averége, and

then the expression in the curly brackets in (15) will give.

t r'd
{2mut

4 : .% “ p .
I-TL AQO(V,L)A/&(V,L/.:’_&) e At d/u\, =

z
- A . N P (it
-}[(xuwz),a/wbu,zwz«[ge dt d/u, (16)

2.

For the effective range of p , which corresponds in a

=5 . A
typical case to ®x =~ 10" A , s, (v+u,X) , as determined
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by (5), may be replaced by sto(v,ﬁ) . In the time
averaging operation denoted by thé angular brackets < ) ,
the subscript t, 1is omitted, it being assumed that the
spectrum of the light from the source is stationary in a
statistical sense. Integrating with respect to e , (16)
becomes |

Mn;u'c’gl, ~. !

<AJ(\/,L)A,(\/Z)> ol = < NUE: )A/(v,i-)%- '.(17)~

)l

and substitution of this value.-of (17) into (15) now gives
Ix') = //\(v)[ <A,(V,_)S)/L(VX)>LC x)u(v x,,x)d dx dv(18)

for tﬁe‘steady detected signal.

Consider now that S(V,E) , the Fourier spectrum of
S(t,x) , 1is only proportional, and not equal, to the com- .
plex amplitude spectrum of S(t,x) , which will be denoted
Ca(v,x) . Equating the total mean power in Ehefsignal
S(t,x) and in its complex amplitude spectrum a(v,x) , we

.have

%:/lSH—’.‘),ZOUZ =f|oc(u,ga,)l"' Y, | (19)
¢ Vv

which gives, using Rayleigh's theorem on the left hand side,
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- %[,A(V,é)lzdv ?J‘Iouv,.&)(lotv\
v v ¥ : o

(20)
so that, for any given frequency
I | | |
= lewnl=lawnl. (21)

This expression relates the modulus of the Fourler transform
of . S(t,x) and the modulus of the physical complex ampli-
tude associated with S(t,x) . Equation (15) can now be

written

>

% ' £t %
IILI) - f/\l\’)/]z"(»(va’-()““ﬁg) [,L*(V,-)_(}& YA v X x) X c‘(r.t': AV, (22)

L7

The factor (aﬂYﬁL)d$%£));H©vides a phenomenological basis
for defining'the micro-coherence between any two points x ,
X of a thermal source. If E(v,x) denotes the mean power

from x at frequehcy v , then
E w2 = LFpysmxry = L) 1*) ,  (23)

and equation (22) may be written

"L(x'y = fA(v)f[ \/E(\’,BS) Ev £y
A J i

F(V')_t

Uty 2H W (v, ;_2)5') Adx di 4V (24)

e
where the micro-coherence of the source is specified by the

factor
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CoKiv,2) otiv, 21D

(V‘ )? = = 7
I* YA P> Byl | (25)
or,
| o (v,x) ot v, &
]—’(Vl'élg) = —F 22 ,..7)> ’ 6
\/E(V,é) E, %) (26)

and (24) may be written
T (x) =//\CV)IIV,L<') dv , (27)
o v

with.

I(v)x_’ ff\/E(Vx)Elvx) /7(\/ Y x,a(v' x)u(v 5 X

28
dx dX . (28)

IX)

Equation (28) gives the power of the light of frequency v .-
at the point: x' , and (27) shows the signal from the
detector to be given by the'weighted sum of the powers of

the different frequencies in the source. That is, the
,.different frequencies in the light behave incohérently,

'when the coherence time is much shorter than thenintegrating
" time of the detector. This wili be the case for any thermal
source and existing detection techniques, and also for laser

light unless extremely short detection times are used.
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The factor | (v;x,%) thus defined specifies the
spatial coherence for light of frequency v between dis—r
: turbancés originating at the points x , g of ﬁhe source.
Consider the case for a coherent source, putting Tq(v;g,g) = 1,
Equation (28) then becomes

2

I,fv,g)=,f\’5(\’,§) Wiv; 2, 1) dx ; (29-)
2(_

so that the power is found by assuming all points of the
source to emit coherent and cophasal waves.of real amplitude
equal to the square root of the mean power radiated by the
source., |

Consider now the form of (28) when the source is com-
pletely incoherent. Noting that by the definition (25),
rﬂ(v;z,z) = T“(v;g,g) = 1, so that the form to be expected
for ['(vix,}) is

= I Lor
= 0O for

%> 1%y
v

vz, )

>® X

(30)

,However, this form substituted into (28) merely gives
I(vs:x') = 0 ; the reason for this may be understood as
follows. In the analysis used here, S(t,x) is the dis-
turbance produced by a unit volume element of the source,
and S(t,z)bg' is the disturbance produced by a volume

element ©x . It follows that
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m = )/<)euv,zs)l’“v>' = %(!A(v,ml;-)’ (31)

is the time-averaged real amplitude per unit volume}of the
source. If E.(v,x) is now defined to be the mean power
per_unit volume; equating expressions. for the mean power

emitted by a volume element ©x of the source gives

[VE Mz)' 82&]2 = Eo (v, 5) §x

S0 Ehat
E wv,x) 8z = Eotvry. | (32)

Thus the squaré of the real amplitude per unit volume,
E(v,x) , is only proportional to the power per unit volume,
Eo(v,X) ; +these two quantities afe not equal, and their
factor of proportionality is seen to be the volume element
5x . Thié'factor of proportionality tends to zero as
" 8x » 0, and this accounts for the null result when (30)
is used in (28). Assume ndw an incoherent‘éource comprising
volume elements of size ©6x°, so that, in the integration
,Wwith respect to g in (28), T7(v;5,§) =0 exéept for the

A

single element ©6X = 6x . Equation (28) may then be written

* ’ '
Lyehs [Ewx Ir Wvyns) wvis,x) dx, (33)

or, by (32 ) 3
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Tiv, ') = on (v, %), \u(v;;x,,:s_') I dx (34)
K

where now the power per unit volume is employed.  Thus,
Ti(v;g,g) being the unit-function (30) corresponds to a
completely incoherent source, the resultant power at x!'
being givén by the sum of the separate powers produced
there by the different elements of the source.

An alternative procedure may be used for the case of

an incoherent source. The product

T VE ~'—77‘V—'” »E(v;a)f-‘(vi)'
Wii,.i) v E(V,é) = S % S‘X otz ) eV, &

tends, as ©0x > 0O and 6§ e O s to the form Tﬁ(vgﬁ,g) = bo

for % = X , and Tﬂ(v, i = 0 for % # X 3 this suggésts

that a delta function may be used. Thus, one may pub

T’(nglg))/E(v,)i) Ew,t) = X(X—&)}/Eo(\ﬁzs)ﬁv(i}i)(%)"'
and so, formally, ohe-may wfite

M%) = § (2-x)

i

to describe an ideally incoherent source. Equation (28)

" will then give

l"wf_) ffg(x “)}/E(\/Z)E(\’X} utv %, %) a(vzs x)
de d&
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that is,

T = | | woie e | ax |

(v,2') = | E(V, %) (V5 %,¢) X . | (36)
x

It has only to be remembered that for a perfectly incohérent
‘source, E(v,x) must be interpreted as the power per unit
volume at the source point x , as seen in (3%) and (35),
and not as the square of the real amplitude per unit volume.
The above difficulty has been noted previously, in a
different form, by Beran and Parrent (1964, p. 57). These
authors, in discussing an incoherent source in terms of an
enclosing -surface, conclude that for the spatial coherence
of the source to be represehted by a delté function, the
intensity over the source would have to be infinite.  They
therefore conclude on mathematical grounds that a perfectly
incoherent source [ ['(v;x,%) = 6(%-x)] is impossible.
The treatment given here shows that the difficulty resides _
in the reduction of the two-dimensional integral (28) to
 the one-dimensional integral (33), and in going from the
field disturbance per unit volume to the power per unit
,volume, rather than in whether the source coherence function
is taken to the actual limiting form of the delta function.
As shown above, a complétely incéherent source causes no
mathematical Inconsistencies, and indeed one might postulate
an extremely low pressure gas discharge as a realistic model

for such a physical source.
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To see in more deﬁail the general significénce of
(v 3x,x) , ~consider a soufce comprising only two elements
, at x ~and x, respectively. This is
exactly analbgous to the stahdard problem of computing the
power distributibn in a Young's fringe experiment, wherein
the screen with the two holes is the equivalent to the

present two-point source. The double integral (28) now

reduces to four terms

Ty = Tova, 50 Empxy Ty 2, ) 15 (85)° (57)

t T xa, %) E 20 iy 2y, ¢y (5

+ Tvix,, k) VEW, ) E v },;)E(S&)zu*(\{;}_,))_(_') ULV, 4, %)

— *
TV, 1) VE M B)E 2 ) (88 W0k, 8 Uty 5, x).

From the definition (26),
T

F(Vl'él, .X.l) = /_(VI'TX:.)_.X&) : l

' %
Topg, 22 = 7Y 65 8,)
Then, writing from (32)

Y

CE W%) (Xa) = E v, x0)8x = L)

EWL&)(&){: Eotv, ¢2)3¢ = Latv) 38)

for the total powers radiated by the source elements at x,

and X (37) becomes

2 3
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‘ 2
Loy = Lo luwy 60 |7+ T [Ww) x, xn)”

+2 VZ.mI.m Re[ T2 vy 8, ko) Wvpn, 2 ) U (v £s, 5')} . (39)
.If now the distances from the two source points X, s X,

to an observation point x' are denoted by R, , Rq .,

the complex transmission factors may be written

| o _ dar
IS 'S ~—E'—€

'ame ' 2
[4 Rl (’TGR

r __l_ . y N
W-/LCL b(l\/i éz) v /T R e/ 9

2

the.partial powers may be normalized as

: y I, (v) 2 |
L, w = -E—;V- cuel _7;,_'(V) = %—?L

and (Eé) becomes

Twxh=L'om+L' v+ 2 }/I—,’(VJ oo / T2 (v) /
Cos [ 575 (RmRe)=arg [ L 1] -

This is.the usual expression describing the Young's fringe
experiment, with'lrldv)l giving the modulaéibn of'the
fringes and OULj[T;ﬁUJ giving their positioning. it
.may be remarked that the need to use the relations (38) to
obtain this standard result correctly, re-emphasizes the
distinction between the square of the amplitude per unit
volume in the source and the power per unit volume.

A useful general conclusion regarding thermal light
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sources may be drawn from (27) and (28). In these formulae,
U,y is the complex amplitude produced at x' by a
(fictitious) monochromatic wave of frequency Vv with unit
amplitude and zero phase, at the point X in the source.
Thus the product Y Ev 2) (/({V,‘é,&') wiil be equal to the
complex amplitude which would be produced at 5' by a
monochromaticfwave of real amplitude V/E§§ZT and zero phase
emitted by the source element at Xx . If the real ampliQ
tude YELyvx) is absorbed in the factor UU(V; %, x') ,

s0 that

’ _
wWiv,x,x'y = YEIV; 2) U vy 2, %) (10)
(28) will then become

. AN A LIk | A ~
I v, x) =/f7’(v,- 2,8) Wvy e,y wiv ) k) dedE . un)

This formula, in conjunction with (27), demonstrates that

it is legitimate to say that the resultant intensity pro-

duced at any point by‘a thermal light source may be regarded
,-as arising ffom perfectly monochromatic wa&es of real ampli-

| tude équalwto the square root of the intensity in the source
for each frequency, and between ﬁhich there is a>complex

’ degree of spatial coherence for each frequency. This, in

addition to the incoherence between different frequencies,
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shown‘in‘the discussicn preceding equation (17), provides
the'following rules for the composition of light distur-

bances for any source wherein the coherence time is much

shorter than the integrating time of the detector:

i) Fourier spectral components of the same ffequency
coming from the same element of the source may be
considered to be perfectly coherent.

ii) Fourier spectral components of the same frequency
- coming from different elements of fthe source may be
considered to be partially coherent, the degree of
partial coherence being determined by the properties
of the source.
iii) Fourier spectral components of different frequencies
- may be considered to be completely incoherent.
In Hopkins' treatment of partial coherence for incoherent
sources, each poinﬁ of an incoherent source is simpiy
assumed to radiate independently of the other points, and-
rule (ii) is accordingly modified to state this.

Rule (ii) might'seem problematical, because infinitely
-extended pure frequency components are postulated which are
only partie1ly coherent, yet by the ordinary meaning of
coherence as the measure of the bhase correlatioh between

two signals, such components would have to be ipso facto.

perfectly_coherent. However, it must be remembered that
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this ié a rule, for use in soiution of appropriate problems,
and not a desdription of physical reality. Although
infinitely extended Fourier components do not physically
exist, the treatment given above shows that it is permissible
to postulate that they do, and then to postulate additionally
an effective degree of partial correlation of phase between
these imagined pure frequency components. These three

rules thus not only apply usefully to practical instrumenfal
prob;ems, but are physically correct in spite of seeming
inconsistency in a strict mathematical sense. It is
.important to bear-in mind, however, that these rules apply

only Where the coherence time of the radiation is much

shorter than the integrating time of the detector.

Coherence at a Plane Illuminated,by a Micro-Coherent‘Source
In additibn'té determining the power distribution at a
plane illuminated by a micro-coherent source, using (28),
itris also desirable to be able to calculate the spatial
'coherence at such a piane. With reference to Fig. 2, let
£, (v,x") , -fz(v,g') be the complex transmission factors
between points 1, 2 respectively, and x' . FromAequation
(40), W(v; &, x')  is just the total complex amplitude of
frequéncy v from Xx at z' s Which is simply the sum of

the complex amplitudes arriving from points 1 and 2, If
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SOU.V’C.CL Pon n'!C

Receiver Pocnt '

/Injcev‘mecuofct Flane
Cwith fwoe Pinholes

Figure 2

,Source Illuminating an Intermediate Plane with Two Pinholés,

and Subsequeﬁf Optical Paths f: , Fz to a2 Receiver Point.
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the complex-amplitudés at points. 1 and 2 deriving from

x only are W (¥, %) and (A2(Y, %) , we have

) ’
U'l(v)' 23125-4) = W (V,}_(,_) 'Fl (V)Z‘.') + uz(\)l %) 'F:. (VI x) - ) (42)
. , . n
Consider the factor u,*(V;é,g)ul»y&jzbin equation (41):
o, |
Wi,y wvs 8,6 =

= [ u.*(v, 5)1('*{\}, _x_') + uf‘(v, 2) 4»*(v,x')][u|(v,i)£. , %)+ Us (v, %) %(v;;g')] =
=W o o) e [0l )

+ U0 sty 2) £X ) 60+ 00 0 fvd) B -
When these four terms are substituted into equation (41),
four integrals result. The first two integrals include
the.signal at'péints 1, 2 from the entire source,

denoted by

T, = f oz, g) (/(u( mu. v, 2) dxdf
2

3

(hh) .

L = [T b us Ve Ue ) dedi .

f")'\-—‘

X
,-The third and fourth integrals are complex conJjugates, in

addition to an unimportant reversal in order between Xx ,

[

. Using the relation 34- 5*= 29&; s We have
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I»tt') = wa) {I' wi £, "+ I.w ””VIE')]L N

"

x> Sy,

T &) 2 Ra [ufk("/i)u: W,g)fﬁl{w b, !')] (45)
dedgf dv.

which may be written as

I(_g‘)'z fmw {I. (V) [L(v,z'))z + T, ) fnfz.(v,x.')fz' +

+Yowow 2 Re | oo fi¥w, ¥ fzw,x')]} dv

(46)

with
| . | | “ )
b W) = _ , //ch,-;s,i} X, U v,2) de dR
' ﬁl (v) IT=1(v) (47)

x %
—

giving 2 (YY) as desired. INCOH
- [ vix, 2y = § x4

For an incoherent source, X, %) = X%) ,

and using this in (47) gives

Th ) = § (x-%) u. U E) dgds -

yI;(V)Ile jf
£X

— IwcoH

(V) = W (v (48)
- VIMWIUV J~ Vit) Ul /z)CLX

which is the usual formula for the degree of spatial

coherence between two points illuminated by an incoherent

source.
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: : CoH : ChixE)
For a coherent source _[1 vix, £):€ , and again
using this in (47) gives °

col o / (P (x-x) X
.[;-’I (v) = ymffe U, (V, x) UZ(V, ;_(\) d—édg(49)

¥

"y

whose squared modulus is

2
- ' * A
MI - ch) ) [[f Wy 5) Ua (v, £) U, 2) Uy 29

x® &8
(Ple-2) (&L_ , (50)
G/ . dzd_)?dgs iz’
From (44)
cg&(x x) A '
I:lv)‘ffe vx) U v, 8) dx AR (51)
Iav)= ff@ «“ az(vz) aL(V,X) dx ol 2 , (52)
and thus if the variables of integration x' and X' are
flnterchanged '
- Pt |
T vy I (V) = f[ff : ulﬂ (V, %) uZ*(ng’)

ZXEx_

‘ ' A gt A
W (v, %) M;W,x) dydi L5 de (53)



ho

which is identieal to the integral factor in (50), thus
: cod 42 CoH
giving ITL(W = 1 = I | . °
- Thus, (47) reduces to the correct expressions for each

of the extreme cases of complete coherence and incoherence.

Coherence over One Resolution Element at a Source

If the micro-coherent source is viewed with an opticel
system having a resolution element of radius p , (Fig. j),
(27) may be simplified by separating the double integration
over the source coordinates x , g into two stages of
integration, the inner integral over an area the size of a
resolution element, and the outer integral over all of the
resolution elements comprising the source, Since the path
differences between all points within a reeolution element
and all points in the viewing entrance pupil are equal to
within < A/4, as x , 'g vary over a given resolution
element, aﬂg[usz)g)] does not vary more than n/2 in
phiase. Additionally, ]Ufhﬁé,§5} is essentially constant
for a geometrically uniform light source. Therefore to a
¢close approximation we may say that Lf(WEqi) is'independent
of x within the small area of a resolution elemehﬁ, and
therefore may be removed from the inner integral over that
resolution element. If we let x, be the vector coordinate

of the centre of a resolution element, we have from (28)
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. ; 7 " ¥ P
T ex) =J/\w) Uu Wi, E) wivs £, 8)

UF“’;&,)?) df ok dE. . (54) .

The inﬁer integral, over a single resolution element p ,

is simply the a?erage value of 71“0!,2) over an area the
size of a resolution element, and does not depend explicitly
on the form of 77({)¥,£U over that area. This is only an
analytic description of what we should reasonably expect,.
namely;that.becauSe the viewing‘system cannot distinguish
points inside an area the size of its resolution element,

it can only average the radiation coming from such an area.

" Vector Considerations of Fields Arising from a Collection

of Dipoles

It has been assumed above tThat tﬁe disturbance S(t,z)
can properly be reﬁresented by a scalar, and does  not require
a vector representation. This is usually_jgstifiable if
tﬁe disturbance is in the far-field of the (assumed)
radiating dipoles in ﬁhe source, and is viewed over a
»small solid angle.

'Imagiﬁé using é simple Young's two-pinhole screen to
measure the coherence [2:(v) atfa plane illuminéted by a
source, in order to deduce information about the source

micro-coherence function 77078,£) . If the light source
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is not spatially very-small, then T2ty wili be
appreciable only over very shall distances, as can be

seen from the standard Zernike-vanCittert theorem. 1In
this case tHe two pinholes must be kept close together in
order to obtain‘reasonable contrast in the fringes and
hence precision in the final measurement of Tﬂv?!.f) s

and scalaf theory is quite adequate. However, the Young's
pinhole systém would then have very low angular resolution,
and could not determine signifiecant information about the
coherence function 77(V5¥,£) over small distances on the
source. It is therefore clear that we would have to use

a small source and Young's pinholes widely spaced. However,
in this case, any given dipole radiator in the source will
then be under examination over a wide angle, and it is not
obvious that scalar theory is still‘justifiable. For
instance, if the source were to consist of a single dipole *
radiator, the measurement of Ji tvi  will be strongly
affected by the angie subtended by the two“pinholes and

the orientation of the pinholes relative to the dipole, as

‘can be seen with reference to Fig. 4. It is clear that

Tatv) = as expected from a "point source, " but that
[23(V)=0 , since in (47) both Lz and WUz(v)=0,

Thus; for wide separations of the pinholes, dipoles in at

least some orientations would degrade the measurement of



Figure 4 o
Three Observation Points P., P, P> ,
about a Dipole Radiator |

Y

Figure 5

Dependence of Field Components, about the Three Unit Dipole

Radiators, with Observation Position.

i



b5

T’w X, x) by contrlbutlng only constant background power
to. the Young s fringe pattern.

However, if only the polarlzatlon component perpendicular
to ‘che plane containing the dlpole and the two pinholes is
used, this degradation does not occur. This can be seen
W1’ch reference to Fig. 5, in which are shown three unit _
dlpoles F Pv Pz - aligned along the coordinate axes, anq‘l
‘two. pinholes in the X-% plane making arbitrary arig;les
@, B tothe # axis and at equal distances from the
origin.  The magnitudes of the sums of the X and 7/
field components at the two pinholes, Ex,+Ez, and

Ex, v E, ., will depend on a and B, and will in
general not be equal. However, the y components, Ev,
and E.y,_ s are equal for both pinholes. Any randomly
oriented dipole may, in the far field, by analysed into a
linear vector super-position of three axial dipoles, and if-
only the y polarlzatlon component is selected each
dipole will contrlbute fully to the contrast in fthe Young ]
fringe pattern, and scalar theory may be applied to this

,-y component.



Isotropy of Source Micro-Coherence
To consider the questién of the expected isotropy of
1 source miéroecoherence, examine the coherence relationships
between three points in a micro-coherent source. Let these
‘three points be at Véctor coordinates x, , X, ., X, ,
further lying at corners of an equilateral triangle, as
shown in Fig. 6. The three points may be grouped in three
pairs, each having an éppropriate coherence felatidnship,:
denoted Tka 3 TE » and T:a . = These coherence functions
may be written in terms of thgir'moduli and arguments as
T'lz :vﬂ e‘,@u P T—‘lg, = \/13 ecfeja s and 23 = Va3 e"ﬂ” s
where V may be regarded aé giving the degree of phase
correlation between a pair of points and B as giving the
phase delay. '

In a thermally radiating source, each small volume of
the source should radiate isotropically into the sphere
surrounding it, and the coherence between two points of the
source volume should depend onIy‘on the disténce between
them and not on the direction of their separation. This
 means that Tz = I's , because | o=-x,1= [ X%l .
It also means that [42 = Ths = T23 , for similar reasons.
From this follows that @, 2 Bis ;ﬁu , which can be
satisfied only for B =/gd.;/@53 = O . 3 thus, the

micro-coherence function | must be real.
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Figure 6

Three Points at Vector Coordinates X, y X2, X3,

Forming an Equilateral Triangle



PARAMETRIC STUDY OF EQUATION (7).

Introduction

One method, and probably the most convenient, to attempt
to measure the degree of micro-coherence of a laboratory
light source would be to utilize eqn. (47) to compute the
fpll - to be expected at a plane illuminated by the presumed
micro;coherenﬁ source, and then make éombarative experimental
measurements of 114 using conventional coherence measuring
technique. Before attempting such an experiment it is
desirable to pgedict the‘degree to which practical measure-
ment might permit distinguishing a micro-coherent source
from a classically "completely incoherent" one. To |
accompiish such a prediction, the behaviour of T&u as
given by eqn. (47) will be studied as a function of the
variables describing the source and measurement conditions.
Models Will beéESuﬁed for the source; these models will be.
chosen for their mathematical convenilence, apd will be

physically reasonable even if not hecessarily describing

the conditions obtaining in a physical source.
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Derivation of an Expression for T;J at‘a Plane Illuminated

by a Gaussian Source

Assume é épheriéal source whose radiance is Gaussian
in the radial distance from its centre, and of 1/e semi-
width 4 .  (The factor = 1s introduced for later

mathematical convenience.) Thus the source radiance may

be written as B (x)exp { LKA x7 } and its
x2 . .
complex amplitude as u(1x]) = ‘VB(}E\) ex;>{— T ;5—} . [55]
"~ Assume thét the source micro-coherence function is also

Gaussian, of l/e semi-width o , thus the source
' R —TT % 5\‘}

coherence-function is | (X,%) = <XP { [56]
If there were complete correlation in phases for all
radiaﬁing points (i.e., o = o ), then eqn. [56] would
imply that the source were completely coherent. However,
for the Gaussian radiance distribution specified, there
would necessarily.be some degree of incoherence attributable

to the lack of uniformity in intensity alone. This may be

easily determined as follows:

The visibility V = Limax = T , and, writing

Tmet & Tmin g4
Tzq = Vi, e

the coherence function T  as , the

intensity is given by I = I; + I, + 2Va. YI. I, cos Bx .

For cos By = T 1 at the maximum and minimum, the visi-

bility is

L LI, + AVE TS L -To+ VTt _ 23NIN T,

- -

Te+T2 + 2 VI, I, +I;+I?-"' QV:L"I:. . . I--l +I$
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2YK

Let == - K , then \/= 2YE I .

As an extreme case, let o = s , and compare the secondary
reduétion in ‘coherence from the inequality in intensities
to the primary coherence reduction from the lack of perfect
phase correlation. For (x - X) = 5%;, K=¢e, and
V = §£%1= 0.89 . The primary coherence function, ]j(g—g) s
for this separation, equals 1/e = 0.37 . Thus, even for
this extreme case, the falloff in coherence due to the
intehsity dist;ibution alone may be neglected.
Let the source be centered at the origin of the co-~

ordinates X, Y, Z , and let the two points 1, 2 1lie at
" some distance symmetrically about the 2 axis and on the

g axis of subsidiary coordinates in §51, % - Let

S‘; -51 » and also let the point $ =0 Dbe at the
‘origin of X, Y, Z . Re. is the distance from the origin ..
to P, or P, . Fig. 7 shows this arrangement. Applying
eqn; (47) to this situation, for one spectral frequency vV |

(which will be temporarily dropped from the notation), the

,coherence Ta, s

aa
r '
N
oo
~
g
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| Figure 7

Two Points Tlluminated by a

Gaussian Micro-Coherent Source
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The infinite limits afe permissible because the indefinite
integral over the Gaussian is finite. The distances R, ,

R2 ., are as shown in Fig. 7. The variation in the factors

1 1 . . 1 1
s R, are inconsequential, and % R

, may be replaced
%@ . In the eXponents, Ri , R, may be developed as

follows:
Rf‘lﬂﬁ‘§02*'(7f +(1"D)z] from Pythagorean geometry.

Expanding and rearranging terms gives
2
?

R - #+7‘+21~2x§-210-+f r 5,

2

2
and with Ro = S} + D? y

R.? may be written

2 2 ' 'xi+472+-£’ 2 XE +2ZD
RI:RO{(+ R? - §R1 }.

For R, > (j-D)' and R, > Z , a Taylor series expansion
may be used; and from the principle of stationary phase,
~the terms in this expansion of degree higher thén two may

be discarded. - Thus we have
o X _ xS Bl (.25 _ Eb ),
Ro= Ro # (2&0 Re ) * ( 2Re ) "lzk T R )7 (58)

Similarly,
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N X % ¥’ ip )
R’-'R°+(2Qo' R°)+(2R0)*(mo R | °

"Eqn. (55) and (56) may be written in terms of the coordinate

o

variables X, Y, Z, rather than the vector coordinate Xx ,

as

_ X 4+Y* +z
WX 7,2) = YB(x,7z) 6 R
(59)
a.l’ld A A
. o LRt (70 (280
z
T2, 5-92-8) = @ 7 . .
: - ' ‘ (60)

When these expressions are used in the expression for T;\
in (57), the resulting equation may be written as the product
of six paired integrals, in X, ﬁ; Y, §; and Z, 2 .

Now consider the normalization factors I, , I,
appearing in (57). Substitution of (55, 56) into (44)
gives an expression very similar to the integral of (57);
only whereas (57) is in the variables R, , R, ;- the
intégrais giving I, and T, . ‘will be in the variables

Ry Ry , and R, Ry . Thus the normalizing factor I

,Wwill be

) (&X)z ' 2 . 2T '
4W - X L=
B ix) L CTRT
ff[ C||EE T e ]

g2

T *W“‘ET.*“?‘“R'}M
S x

%>

(61)
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and similarly for Iz'; Noting that insofar as the
Y, ﬁ, 72, 7, ~and R, dependéﬁce ére concerned, (61) is
identical to the ‘integral of (57), and so these factors
will cancel when substituted into (57), leaving only the
integrals in X,.ﬁ remaining. This is, of course, simply
a consequence of P, , P, having been choseh to lie on
the g aiis.

If (57) is written

-T; '= \ Gpu\

LT

(62)

) o

then we can write the specification of Q3; 1in functional
form as

Q. =ff1‘3<x->“<) g ¢x) h(R) dx dr

- 0a

where the three functions f, g , and h are those
enclosed in the large square brackets in (57). A modified

form of the triple product integral (Appendix I),

r'j_(‘F(x—:?)j (yh(2)dx g = me) € -e) Hewy du (63)
x? o u - -

wherein f, P; g, G; and h, H are Fourier Transform
pairs, may be used to simplify (57).
The Fourier transform of the first factor is easily

found by using the standard relationship
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—T\;t:, ~T atu?
FT[E “} = e

- from which the desired transform is given as

| (x-£)*
T 4 - Y
'FT[G o-] - T Qe ~ (64)
The Fourier transforms of the second and third factors,
products of Gaussian and Fresnel type functions, may be “
found by contour integration in the complex plane (Appendix

ITI); the general relationship so obtained is that

ET [e:—voucz &_4‘77(,‘6{’~+2Yf)} N ""*(i%'),;

-—

" Vg €

'Fov Y0 .

(65)
In the present case; the second two factors in
egn. (63) are given as:
: e/ X & :
~T%5 -5 (2R.7 )
j(x)-—- e 5 e A R") (66)
. AZ ‘\.
_:n'i.z --(.2'3“11 :%D'i'-———xgi)

!

N s* . o
.hm;G' c - ()
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using the notation that vy = - vy, and B = B, .
 Using these values in conjuncltion with (65), the Fourier

transform of .g(x) and h(fc) are

(~¥+wy? 2

=~ = ¥-u)

‘GQw = e T s
Rl a6 @

T XYW H w? W

H s W e A o(it‘ﬁ e "

and the term Q,; desired in (62) is

A ot | 7 (¥~ - (Y-H&\’
s L A+ | = -3
Qu=jo g o C 7 C Todu
A . I

W

Expanding and _rearranging terms gives

e (v=ovu +uB)(&-LA) +(Y*+2rw +ul) (d4iR)
Jro‘tL - ‘ SRy du

(69)
and taking the

sz‘;?

and collecting the terms in u® and u s

u - independent terms outside the integral, gives

ld»Y «T‘ a2 4 ket )LLQ'—ZL‘ ié_.Y_U‘.)]
d

Qz °¢’~*/3 : X+t @ ot B>
otz _ .
e : | (70)
Using the integral relation found in Appendix III-a,
fe—n At? e—zm‘ (28¢) ., g |
dt = = 6
e VA" 7
- o . . (71)
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with, in the present case,

= 2 2.0l ' Qﬂ{ °
A’O—."'o(lf/g’- Cl/V\.d- B:W
eqn. (70) gives
. Lot yt 4 B R¥<ks
' _ Y , Y "t 3
Qu = = QTF“”PI o3 ¢ <°<l+/s*>‘) G‘f*‘wm“)
w3 G o6 ¢ 1

(72):

Combining the terms both in front_of‘ and within the exp,

this may be written as :
as [t (a+p?) +2t] + 4 B2 Yz
Q g Q—ﬂ. (£246*) [o7(x48%) 4+ 2t ]
1

v = 4
Yo sy 2 ?
and rearrangement of the terms in the exp gives
&uoz(d,"f‘ﬁz’) 4 4_(“1._(_&1) Y
..rr 2 2 : X
- a e (¢2+ p*) [c>(x? +p*) 421 ¥
Qz‘ T Yo E v e - ]
from which cancelling the term (a2 + B2) in the exp
gives the desired form for Q. ,
. — 2(ar+2) 2
,Q - G-' e-” 0-1('*7..'_{33-).\_2_& Y .
Y Yeraa ) vaa : - (@3)
Recollecting that from (62), 1u = wo== Qu , I,

VI‘I,_

and I, must now be evaluated. It is clear that I, = I, ,

v
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‘and, as with Q,, , consideration of only the X dependent
parts of ’ii gives an equation functionally identical to
(63) and a similar method of evaluation is followed. The

' analogues of eqn. (66),_ (67) will be

| (a2 - XS -
geo - ¢ G RR (74)
. Al T 'il ;gl .
-n-g% -5 (R, + )
h ) = (3 | CE ’
(75)
givin oy = - g = -1 . . L
& VRS '/3' "Ra S/ g ARs ¥
and O‘Lz‘.z .._.__—‘ - -/ R = 5 = *‘{
s Persm s Feheth
using, as before, the notation y‘= - Y eand B =P8 .
Using these values'for o, B, v , %Tthe transforms are
(-+wy* X
el (Y-u)
G(\L\ Q XEp - \ i oL+
VOL‘{-LP m (76)
and
. . o Ly-wy?
Hiw) = === -t '
Vg € ’ - ()
and using these values gives for the intensity I4
:[: N fo_ e_.TrQ-Z , I 2/;;) —T(Y"u-)
. 8
f._mf - — = C - (78)
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Expansion and rearrangement of terms in the exp gives

o

r L2 ) (-08) + (VE-2vu +u1) (o« CR)

o~ ~ra ;'ULI 7 Y
.];=—~ZQE;J}3 62, x>+ g
s

ol

?

and collecting the terms in ¥ and u , and taking out-

side the integral the parts independent of u, gives

I|~ a f:L/;,:. fe:T< L xi*“ga.)u' i:(;’;::)]

Yatigr f[;i

du .

(79)
Using the integral relation derived in Appendix III-b, that

f -TAt” -177 (253¢) \ gy
dt = VA Q
(80)
with, in the present case, A = ¢* + = oud s LY
olt4/3 og‘t,,,/g,l 7
egqn. (79) gives
2% rt [ £o*vE 27 ot a2
T, oS o wier g +7TL<«‘+A’J’][M«wnm]
'»L"'-i-/&" e O"(o(‘-{-ﬁl)“:-?,d. e .
~Combining terms in the exp gives
o axr’[c (a*+p) ] + 4ot y- oty
I - g ~7T T“Lt’ga)[ ot et #ﬂl—) +20§J
! ')/GT:(O(.I‘#@‘)+?—OL e _ ?

and as before, cancellation of the term (o®+p®) in the

exp gives
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. PRV, .
- a wll G« s 1ot X
" Y et p s . ' . (81)
. | v
With ——— o 1
JI\$1 I,
, : -
the desired value of |2t from (57) is given by
-\.1 . B _ oo+ pr) & 20l .
2 S = e . h) (82) .

T

or, substituting for «, 8, and vy , the coherence

factor is

0 4 1(s \"(S-)*
\“[.2,"'(%:)1 N (_id;)i(_j__)l“(in) ()1 )

—:Il-\-: @ > Ro . (83)
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Behaviour of Ean. (83) for Coherent and Incoherent Extremes

For a completely coherent source, o = © , and-e

_eqn. (83) then becomes
.Tln = Ci =| ' for all vy , as expected.

For a completely incoherent source, o¢ = O , and then

eqn. (8%) becomes

. 2 s*¢? |

~Tr %XL T ST RE

This can be compared to the result obtained using classical
coherence theory (Hopkins 1967, p. 210) by a simple extension
to three dimensions, using the same approach as in deriving
eqn. (83%) but starting from the classical equation rather
" than egn. (47). Thus, from classical theory,

[:

|
- Vﬁ:—fuy()ﬁ) u‘.’j‘(é) dz(- - : (85)

The complex amplitude at point i from the source point X
will be _
hamd . ~L"_'_£1

] VB{x 5T

U (L) = Q @

and similarly for Uz ., The situation is shown in Fig. 8 .
Using these values, the product of the complex amplitudes is

BCX -L‘% lk:-"}?z)

*
- bl i l
U, () Uz (X)) = o c | ) letting oo - éz

-}

as was done before.
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The path difference Ri - R, may be written, as before:

R'.-L = (X=-3)* -é *: o+ (%—D)?

or, expanding the squares,

RO = %™+ +2* + g +d' - 2x{i-22D,

Similarly;
Raf= X'+ 7'+ 2" 4 §.° + D* — 2x5 ~2ED .
With
2
§"?._“— D'}__ - RD'L - §2L+ D ,

. N .
the difference /R “Rz  is

RI- R = - 2x - 22D + LXfx +22D

or, combining terms,
2 >
Ri'- R.™ = 2x (5-382) .

Factoring Ri*- R* gives R.,-Ra as

‘PR, s XX (§-F5)  2XT
Rl R.'l- - R\‘*‘Rl = RO

-highér degree terms again having been discarded.

tution of this value into (85) gives

Substi-
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(86)

-
E 2

and using egn. (71) (derived in Appendix III-a) for the

The standard integrals over Y and Z each equal

integral over X , the coherence function is

21
- 3 S-S
]"‘, - { S @ A Ro L
o T, RIavz - (87)
. ) ) 3 N
The normalizing factor I, is equal to S s the

: Roz’ lf—l_-
same factor which is before the exponent of (87), just

cancelling it, as shown next:

I:Rfe acxfé’,"_ﬁdf f65d27

these three integrals each contributing —ﬁéf- as before,
thué
| § \3 s?
I (&) - 2,
R. £ Ro ATZ
' leaving the coherence function
2 22 )
= ol Qxfﬁf* |
1y = ' 5 (88)

which agrees with egn. (84). Thus both the classical



ftreatment, assuming initially a completely incoherent
source, and the special case of the general expression

' (83), yield the same result.

- 65
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Numeric Evaluation of»Eqn. (8%)

Egn. (83) provides a means %o easily predict the

effect of different degrees of micro-coherence on ekperi—
LY
mental measurements seeking to determine the extent of

- source micro-coherent regions; at the same time the con-

-

ditions most favourable to such a measurement can be

stipulated. ;Let such a source 1lluminate a distant
plane, wherein lie two points P , P, , and assume
that the coherence between these two points, as a function

B

of their separation, is to be measured by conventional

-experimental methods. Thus, Tll(s) would be measured,

and the measured values compared to the values predicted
by (83) for different values of o .
To facilitate numerical evaluation, egn. (83) may be

written as

;ﬂ-(?g—;)z ' (8 )
F’u (g) = e ’ 9

7

‘W.ith 03, = ]/2‘_}_(_-05_-_)7-_*_(%);(_;:)2()\}30)

-Tt would be reasonable to examine the value of . TL (3) at

T T
the inflexion point of the curve lllfg) vs { , as
this will give the greatest change in 711(§) for a

small change-in 6, 3 the value of 3 for the inflexion

point, ‘§= G , lies at - times the value of the

Y’ vz
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1l/e point (Appendix IV), aﬁd thus the value of (T;[(S) at
the inflexion point, equal to 0;606 , 1is sufficiently
_great to avoid measurement of very low visibility.

If a realistic value of R, 1s chosen as Rg = 100 mm ,
and A 1is chosen A = 0.5 p , it remains to choose s and
£ o Examination of ean. (83%) shows that the greatest
effect on Tmcg) will be noted when s 1is only a very
few times larger than ¢ , and since o¢ may be presumed:
to be smaller than, say, A , it is reasonable to take. s
as s = .2A ‘as an initial choice. (It shall be shown that
this choice is not in itself eritical.) If the factors in
(8%) are compared, it will be seen that the factor
Q%&f(—%:ll= 10™°  and is negligible compared to the
factor 2 . .Neglecting this term, and setting o = O ,
gives the experimentally reasonable value for _g ‘of
§ — 14.04 mm in order to put |1 ({) at the inflexion
point. It is now a simple matter to evaluate the function
Tl{(j) , for § = 14,04 mm ,"for various values of o s

using the following data

-1
o = 10 i
-6
A = 0.5 x 10 m
§ = 2A = 10—6 m
£ - RA -~ = 0.0Li0k m (for the inflexion point).
2 VT , )
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The coherence function HJCX), as a function of (ao/s) ,

is then ‘ : | |
i ) 4_ ! o 1/
T = €xp W[W (u?) ] P [Va (T:)L}
)
or, with ¢ = s

2+ (%)

-'ﬂ"f;""

—\—11(. = e o

This is easily evaluated from stdndardAtables of the
Gaussian in ¢t ,- and is tabulated in Table 1. A rough
plot of TL at the inflexion point, for the values which
depart by a significant amount from the ¢ = O case, is
shown in Fig. 9 along with the full Gaussian for o = 0 .
Ir s/ were doubled or guadrupled, halving or quartering 5
would be required to stay at the inflexion point; in this
case it is noted that only the ratio of % is important in
determining thevrelétive change in Jai . "Thus, if a
certain change in T2 is decided upon as the minimum

" ,measurable in an experiment, the smallest value'for o]
which can be detected (or measured) is determined in terms
of the size of the source used. | For example, if a E??ﬁ
departure of T1| - from ﬁhe classical value is desired,

then o must be at least 1/4 of the source size to be



Computed Values for n‘ at the

Inflexion Point for Various O" .

SE2] € |t | T .

c:0 | © 2.0000 6.1590 0.399 | 0.606 1.000
, % ‘/,6. 2.0039 | 0.1588 | 0.398+ | 0.606+ | 1.001

% Vo | 2-0156 | 0.1580 | 0.398 | 0.607 1.002

%_ A 2.0625 | 0.1543 0.39% | 0.614 1.017

)\ '/, a 2.2500 | 0.1414 | 0.376 | 0.641 1.058
| 2\ |' 3.0000 | 0.1061 9.326 0.716 1.182 |

' . Table 1
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Figure 9

Plot of T2\ at the Inflexion Point

for Various O .
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measured properly. This clearly places stringent require-
ments on any experimental attempt to measure the micro-

coherence characteristics of a source.



72

Consideration of the Dépth of the-Source

In the preceding parts of this section, a model of a
‘micro-coherent source was postulated to be Gaussian in
intensity,. the independent parameter of the Gaussian func-
'tion being the distance of a given point from the centre
of the source. This might be described as a ''spherical
Gaussian" source. It is of some interest to examine the
‘effect of changing the depth of the source, i.e., its |
thickness in the ‘72 _direction, while keeping unchanged.
the dimensions in the transverse, or X, Y, directions.
This may be conveniently done while still maintaining the
Gaussian characteristics of the source, to obtain a "squashed

Gaussian" or "thickened Gaussian,"

as the case may be.

This is possible because the Gaussian function may be

_ written in the three coordinate wariables as the product

of an exponential 'in 2 and one in X, Y, thus the complex

amplitude distribution function (55) may be written
eTE L gmE g

where sz 1is the parametér determining the source depth,

and s iéjfetained to determine the source width in X, Y.

'Tt was seen in the discussion préceding eqn. (62) that, for

the measurement points P, , P, 1lying on the g axis

normal to the 2Z axis, the 72 - dependent parts of the
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integrais determining.the coherence function T;J cancel
to .unity, and that the coherénce function Tld therefore
depends only on the X-dependent source characteristics.

It is clear that this situation still holds regardless of
whether or not Ehe source 1s spherical, that is, whether or
not 'sz= s . (This will be true for any other source
distribution function provided that it may be written as .
' separable products in 7 and in X, Y.)

This independence of the coherence function Tl, 6n

'Sz has application 1f sources are considered which are
unlikely to have spherical characteristics, as for example
an incandescent solid tungsten filament or an excifted gas
discharge. The tungsten filament may be considered to
radiate from only an extremely thin layer at the surface,
in which case 8; would be nearly zero. The gas discharge

may be considered to effectively radiate from only a thin -
layer at the surface of the discharge, as in’cases with
.véry strong self—abéorption, leading again.to a very small
sz 3 or the discharge may be quite transpafent to its own
~radiation, as with a very low pressufe dischargé, in which
case S; 'éight be considerably larger tha