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ABSTRACT 

A time-continuous model of finite linear threshold gates is 

postulated and compared to some models of mural function. Such a 

model realises a normalized threshold function under specified cond-

itions. 

Networks of such gates are shown, in a limiting case, to 

be analogous to nonlinear electrical netweiks. A topological analysis 

of two-gate networks is given. The stability of dynamical systems of 

threshold gates by characterization of stnglniar points allows conclusions 

regarding realization of finite linear thmehold nets, and the enumeration 

of all singular points of threshold systems Is possible under a weak 

restriction on weight magnitudes. 

The reduction of large nets to smnller subnets for purposes 

of analysis is possible by inspection of the weight matrix, and the 

rank of the matrix is shown to influence net dynamics. 

Stability in the large by the second method of Lyapunov is 

investigated, using quadratic potential functions and the generalized 

Popov criterion. This analysis enables some conditions for the. exist-

ence of limit-cycles to be given. 
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LIST' OF PRINCIPAL SYMBOLS 

The general rule used is that matrices are repreaented by 

capital. letters and scalars by lower-case letters. An attempt has been 

made to keep the meaning of symbols constant throughout the thesis. 

Whore this has not been possible the meaning is obvious from context, 

and this is also hoped to be true for symbols not in the list below. 

Symbol 	Definition 

ij 	an element of the weight matrix 

41(io 	a constant input to gate i 

ri 	the nonlinearity input constant 

Yi 	an element of r 

r- 	principal singular point 

a positive constant 

C7 	the vector differential operator 

E 	constant term of gate excitation 

a constant 

general polynoMial variable 

a constant 

principal point of yi  

1.1 	a parameter.  

element of (ailbil 

Ti 	a time-constant 

the transformed nonlinearity 

NP 	the general gate nonlinearity 
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a 	a region in state space 

co 	frequency variable 

ai 	&binary constant of realization 

A. 	the weight matrix 

A0 	vector of elements cYo 

bi 	a binary constant of realization 

B diagonal matrix of elements pi  

E "vector of elements Ei 

4i 	excitation of gate i 

F 	 a vector function 

a complex matrix 

G a linear impulse response 

G(s) 	a linear transfer function 

the matrix of the linearized system 

the unit vector 

the set of network elements 

the Laplace transform 

vector of elements /Ai 

n the number .of gates in a network 

piq 	 element of external input weight matrix 

p 	matrix of a quadratic form 

AO 0) 	a complex matrix 

the Laplace operator 

diagonal matrix of elements 17' 

an external input 
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the Heaviside step function 

kthUk 
	

input vector U 

U(t) 	general input function 

vi 	an element of V 

V 	a state vector 

VI 	a potential function 

xi 	output variable of gate i 

X 	state variable of outputs 

X° 	a singular point in X-space 

Yi 	nonlinear function input 

Y 	vector of elements yi 

zi 	an element of 'Z 

Z(t) 	a transformed state vector 
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1.1 INTRODUCTION 

The analysis to be presented in this thesis is an attempt to 

describe the behavior of certain mathematical models of physical systems. 

These systems are of two distinct types, although it will be shown that 

they exhibit many similarities. They are: 

1. A dynamical model by which there is reason to believe 

certain functional activity in the central nervous system of man and 

lower creatures may be represented. 

2. Networks of logical gates of the type usually found in' 

computing machines. 

These two systems may be regarded for certain purposes as 

control systems, and such a formulation will be used here. It is well 

known that the brain is a very complicated control system (if not much 

more) and it is clear that the switching networks to be considered may 

also be described in terms of control systems. However, the essential 

theme of this thesis is as follows: A new description of the class of 

switching circuits characterized by threshold functions has been developed 

precisely, by which the behavior of such circuits at all instants of time 

may be predicted. In other words, a time-continuous model which is 

characterized by differential equations is used. This model possesses 

the two necessary attributes of physical realizability: dissipation 

and nonlinearity. Little attempt will be made to quantify the faithful- 

ness of the modeling with respect to any particular circuits because 

the results apply to quite general hardware realizations with only 
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a few restrictions. 

The Cowan model which is closely related to the gate equation 

will also be considered in some detail. No attempt will be made to 

justify it in terms of neurophysiology, since this is the responsibility 

of its originator, and also since this equation sheds a great deal of 

light on the dynamics of switching circuits, justification enough in 

the present context. However part of Chapter 1 is devoted to an intro—

duction to the neurological implications of the equation. 

It would appear that nonlinear differential equations have 

not been used to any degree as descriptions of logical circuits. There . 

are, of course, equations for the output of, say, transistors, but the 

author has been unable to find a unified approach to the transient be—

havior of networks of switching circuits in the general literature. The 

obvious explanation is that the nonlinearities present formidable obstacles 

to analysis. Modern developments, particularly in the field of automatic 

control, do allow certain conclusions about the stability of equations 

even though they cannot be solved in terms of elementary functions. 

A certain amount of work has been done on control systems containing 

relays, that is, instantaneous switches, but this has not been applied 

to logical gates. Rather than extend this work, equations will be 

developed for the finite transients existing in most switching circuits, 

and the instantaneous results will then be limiting conditions. 

At the time of writing a great deal of research is being done 

on various topics related to the anlysis presented here. The first 

and second methods of Lyapunov are of course well known, but the amount 
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of research being done on the:generation of Lyapunov functions even for 

linear systems is considerable. Recently extensions of the Popov stability 

criterion have appeared in the literature and it is expected that future 

developments will extend the, analysis of systems similar to those cons-

idered here. 

1.1.1 HISTORICAL NOTE 

The work which is presented here, was done at Imperial College 

from late 1964 to 1967. ItLwas at first the author's intention to analyse 

some of the logical or statistical properties o£. threshold devices, but 

when the author analysed certain aspects of the behavior of the Cowan 

equation (to be discussed later) it quickly became clear that with simple 

modifications this equation would model switching circuits, and further-

more, that it is simple enough to yield to at least some analytical 

techniques. 

Except where reference is made to published material, the results 

reported in this thesis were obtained independently by the author, and 

at the time of writing are believed to be original. Certain results 

regarding the existence of constants of motion were arrived at indep-

endently at about the same time by J. D. Cowan in his analysis of the 

statistical mechanics of nervous activity. The principle of the use of 

Lyapunov functions for analysis of stability is; not new. However, it 

does; not appear to have received much attention in the literature of 

switching circuits. A list of the original contributions to be presented -

is given below: 
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1. Detail.analysis:of the.Cowan equation for the determin., 

istic dynamic behavior of neural models..  

2. Proof that under certain conditions the gate equation is 

equivalent to a physical realization of a threshold function. This 

leads to the important result that this type of equation,  gives a reason-

able representation of the transient behavior of this class of threshold 

gates. 

3. A topological (trajectory) analysis of low-order networks 

of threshold gates. 

4. An investigation of the conditions for the dynamical ,  

stability and instability of this class of switching netaork. This allows 

an investigation of networks which exhibit stable oscillations. 

5. A. method for reducing the stability analysis of systems 

of high complexity to the analysis of systems with lower complexity. 

6. An electrical network analogue of small switching networks 

and an analogue of an energy measure for a restricted class of switching 

Systems. 

7. Evaluation of the first and second methods of Lyapunovs  

as well as the Popov criterions  with respect to generalized networks 

of threshold gates. 

8. Analogue and digital computer simulation of low order 

networks of threshold gates. 
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1.2 ORGANIZATION OF THE THESIS 

Chapter. 1 is a brief outline of a few of the significant 

results in neural modelling, and is intended to show that the stability 

of threshold networks is relevant to previous work in this field. The 

dynamical model which will be used throughout the rest of this work is 

also presented. 

Chapter 2 contains an exposition of some of the major results 

in the static design of threshold functions, in an attempt to make the 

point that the results to be given later on may be generalized without 

great difficulty to different models of linear threshold gates. A theorem 

is also presented to show that the dynamical model of chapter 1 is a 

"reasonable" model of a real threshold gate. Finally the model is related 

to time-discrete representations. This chapter is also an introduction 

to the discussion of chapter 6, which relates the results of the theory 

to some practical problems. 

Chapter 3 contains the preliminary analysis of the dynamical 

model. An analogy to an electrical network is given, and an example of 

a limiting case of the model. A large part of the chapter is devoted to 

a topological analysis of two-gate networks. Such an analysis is an 

introduction to, and contains examples of most of the results of larger 

networks. 

Chapter 4 deals with stability of arbitrary networks near 

their singular points. The simplicity of the model allows this type of 

analysis to yield several conclusions about the stability of arbitrary 
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systems. An important conclusion is also dracm about the concept of the 

rank of a system. 

In chapter 5 the second method of Lyapunov is used to show 

results. of "stability in the large." This type of analysis is particularly 

useful in finding "next stable states" of a system and in calculating the 

immunity of a network to "noise." 

Chapter 6 contains a discussion of the relevance'of the prev—

ious work to questions which may be reasonably asked of a mathematical 

model such as the one we use. This chapter perhaps could be read before 

chapter 3, as an introduction to the mathematical detail of chapters 

3, 4, and 5. 

Chapter 7 is a discussion of soma of the conclusions which 

Gan be drawn from the previous 6 chapters, and a list of some suggestions 

for future work. 

To make the reading of the thesis easier, each chapter contains 

an introduction and, at the end, a brief summary discussion. Also to this 

end certain of the statements in the mathematical treatment have been 

given the name "assertion." An assertion is, in this context, a state—

ment of a result which can be proven easily or is evident from the dis—

cussion. A theorem is a fundamental or important assertion. One or two 

lemmas and corollaries are also included, and have their usual relations 

to the theorems. 
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1.2.1 ORGANIZATION OF CHAPTER 1. 

A. short description of the purposes and techniques of neural 

modeling will be given, then an outline of two historically-important 

models, and finally the model with which this analysis is closely connected 

will be explained. 

In section 1.6 a new and precise description of a class of 

dynamic logical threshold gates is presented, -with emphasis on the form 

of nonlinearity. The development of a new description of dynamic net-

works of threshold gates in terms similar to those used for automatic 

control systems is in section 1.7. Similarities to linear systems are 

also mentioned. 

1.3 PURPOSE AND TECHNIQUES OF NEURAL MODELING 

The interest in mathematical neural modeling4  in recent years 

has grown out of one fundamental idea: the behavior of complex machinesl  

is to a degree brain-like, and the behavior of brains is to a degree 

machine-like. The understanding of functional aspects of nervous activ-

ity has benefited from knowledge of control systems and automata theory, 

and the desire for machines which change their behavior, that is, learn 

with experience, and which function despite failure of unreliable comp-

onents3, has grown with the knowledge that these two attributes exist in 

many forms of living matter. The purpose of neural modeling has been to 

increase understanding in these two areas. 

The formulation of the descriptions or models at all levels 
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of activity takes place by two different processes. In the first, a 

very large number of observables are reproduced with high accuracy. 

This has inevitably resulted in extreme complication of the resulting 

model, but the hope has been that in comparing it with experimental 

results, it will be reasonable to simplify to a significant degree, 

making the model more amenable to analysis. In the second a smaller 

set of parameters is chosen initially, and it is assumed that the.use 

of the resulting description will point out areas where more complication 

is necessary. This approach has resulted in systems which are relatively 

easy to analyse, but whose behavior is very unlike the experimental 

observations of real systems. 

Studies of the nervous system and its information—processing 

capabilities can be divided roughly into the following five categories. 

The precision of available techniques tends to decrease from beginning 

to end of the list. 

1. Chemical and electrochemical processes at the subcellular 

level. It would appear that membrane mechanics is most relevant to the 

functional behavior of cells. 

2. Cellular input—output functions. Deterministic stimulus—

response functions tend to be either inaccurate or over-complicated, 

and therefore statistical descriptions are at present better for purposes 

of analysis. 

3. Interactions between cells in groups. Such groups are 

often studied using probabilistic models of interconnexion. 

4. Gross electrical and chemical activity of living nervous 
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tissue. 

5. Attempts to understand entire organisms in relation to 

their surroundings. 

Modelling techniques have generally depended on the complex-

ity of the chosen neural system. Formal mathematical description with 

the power of its methods is generally satisfactory only for Systems 

with a small number of parameters. Larger numbers of parameters arid 

systems with complicated nonlinearities can often be handled by analogue 

computers which also have the advantage of giving the best insight into 

element interactions. A third technique, digital computer simulation, 

is the modt flexible, although present digital computers are inherently 

inefficient in solving many-variable dynamical systems. Speed, storage 

capacity and ease of obtaining state pictures of the system at instants 

of time make this the most common technique. The fourth technique, 

electrochemical modelling, is of mainly historical importance. The most 

famous such experiment is the iron-wire model of Lillie5. 



1.4 ANATOMICAL CONSIDERATIONS 

The brain is essentially tiered in structure; it can be cate-

gorized roughly into three regions: the cortex, mid-brain, and brain 

stem with branching formations to all parts ,of the body. Brain tissue 

is seen to consist of discrete units which will be classed here into two 

main types: neurons and other types of cells, mostly of the kind known' 

as glial cells. Extreme diversity exists in the microstructure of 

nervous tissue but on a macroscopic level varying degrees of explicitness 

can be observed. That is, in parts of the central nervous system--the 

brain itself—the physical structure appears nearly random but in other 

regions it is more systematic. Mathematical theories of information 

processing have not in general concerned specifically restricted regions 

since certain features are common to all types of neurons and collections 

of neurons, and sufficient data is not available to describe actual systems 

adequately. 

1.4.1 MORPHOLOGICAL FEATURES OF THE NEURON 

It has been established that the following conditions may be 

taken to be' true for the purposes of mathematical study of the neuron6: 

1. A nerve cell has the general form of Fig. 1.1. The nuc-

leus is in the cell body or soma from which branch a large 

number of dendrites, and a projection called the axon, which 

may also branch. Axons end at junctions, or synapses, near 

the dendrites or soma of a cell body (see Fig. 1.2).1 
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In the following work it will also be assumed that an axon 

is not restricted to interract only with other cells, but may also 

affect the cell from which it emanates. Generally axons may end at 

other neurons or at effector cells such as muscles or glands. 

2. Axons transmit impulses only in the centrifugal direction, 

except for the case of "primary afferent axons" which appear 

to carry impulses from remote receptive structures to the 

cell body. 

3. Very great functional significance is attached to the 

surface membrane of the neuron, although the interior proc—

esses are not fully understood. 

4. In general terms the electrochemical processes produce 

intermittent action: a neuron can be observed to propagate 

"spikes" or electrochemical impulses along the axon to the 

synapses. The mechanism by which such impulses cross synaptic 

junctions is not fully understood. 

5. Impulses travel along axons without significant attenu—

ation. One an impulse crosses a synapse, however, its shape 

changes. Generally the farther the synapse from the cell body, 

the more the afferent pulses are attenuated; 

6. There is a significant time delay between transmission of 

a pulse from one cell body to reception at another. 



1.5 FEATURES OF MATHEMATICAL NEURON MODELS 

1.5.1 RELEVANT MODEL '1'X YES 

The mathematical model which will be the basis for further 

chapters is a description of the functional behavior of a nneuronn. 

It is a mathematical abstraction intended to explain the functional 

behavior of nerve cells in vivo without doing gross injustice to the 

known physical structure of electrical characteristics. As will be 

clarified, the McCulloch-Pitts type of cell has_explicit functional 

properties but its dynamical properties are not defined. The differen-

tial equations of the Hodgkin-Huxley type are good descriptions of single-

neuron behavior but formidable to use as descriptions of nerve nets. 

The Cowan model is midway between these two extremes. 

1.5.2 OBSERVATION OF ELECTRICAL BEHAVIOR . 

Three basic types of electrical observations of nervous 

systems are commonly made: 

1. Electroencephalography is a well-developed clinical method 

of measuring the electrical activity of large portions of the 

brain. Various characteristic waveforms can be observetand 

have been correlated with factors such as illness, personality 

type, intensity of thought, and stages of sleep. The filter-

ing properties of the tissue through which the signals prop- 

27 

Figs. 1.3 and 1.4. 



alert 

awake 

Iry 

drowsy 

asleep 

Fig. 1.3 Normal EEG Patterns 

petit mal epilepsy 

grand mal epilepsy 

Fig. 1.4 Abnormal EEG Patterns 

28 



29 

agate may significantly affect the observed waveform. 

2. The behavior of regions of tissue of the order of one 

cubic millimetre can be observed by the insertion of elec-

trodes which compare local voltages with over-all levels. 

This type of record is given the name "electrocorticogram." 

3. Techniques involving the use of microelectrodes enable 

the observation of the input and output voltage waveforms 

of single neurons in living tissue. Thus the response of 

individual cells to specific sensory inputs or artificial 

stimulation can be observed. 

1.5.3 THE RESPONSE OF SINGLE NEURONS 

It is generally assumed that the response of a single cell 

can be categorised by considering its dendritic tree to be the signal 

input and the axon to be its output; that is, the flow of "information" 

through a cell is unidirectional. Since the shape of the waveform of 

the electrical potential of the cell body is clearly a train of spikes, 

the problem is one of analysing the imptlte response of the cell includ-

ing its dendrites and axon. The following general observations can be 

made: 

1. A cell has a minimum time between firing (assuming contin-

uous strong excitation) and thus a maximum firing frequency. 

This mimimum time is called the refractory period. 

2. The effect of spikes at the synapses can be to cause the 
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cell to increase or decrease its rate of firing; the effect 

is either excitatory or inhibitory. 

3. The response of a single cell may vary in time. The 

number of afferent pulses at synapses required to cause the 

cell to fire depends on the recent activity of the cell. 

1.5.4 THE MnOULLOCH-PITTS MODEL 

Until this model was suggested there was no basis for the 

assumption that the logical or computational behavior of nerve nets 

could be specified matheratically. The McCulloch-Pitts modell8  (Fig. 1.5 

vided such a basis by building on the following assumption: every 

neuron can be classified into one of two states during the course of 

time. At any instant it is either firing or not firing, and thus the 

algebra of Boole can be used to analyse the logical behavior of nets 

of such elements. Furthermore, the first-order approximation of the 

transfer function of a cell may be taken to be as follows: 

Assume that in a network of n cells, those which are in the 

firing state are given the value 1 and those in the non-firing state 

are given the value 0. Then, the effect of the n cells acting 

through the synapses and dendrites of the ith neuron is as follows: 

Consider the sum (Fig. 1.0 

= Si 	 1.1 
j=1 

where the 40(1.  are constant weighting coefficients. Then the relation 
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Fig. 1.6 Functional Diagram of a Formal Neuron 
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I 1, Si 3 T i  

10, Si< Tt  

holds, where _Ti  is a threshold value. The dendritic structure may 

then be said to sum the outputs of the n neurons, the magnitude of 

the coefficient ij depending on the nature of the dendritic structure 

through which the output of the jth neuron passes to the soma of the ith, 

and the sign depending on the effect of the jth input. If the effect 

of cell j is excitatory, 	> 0, and if inhibitory, 0(14  4 O. 

Clearly if some cell, say k, has no effect on cell i, •then 

0C k = 0. That is, there is no synapse between the axonal structure of 

cell k and the dendritic or somatic structure of cell i. Three 

important points emerge: 

1. The state of such a system can be completely described 

by Boolean algebra. 

2. Since the outputs of a neuron are not mapped one-to-one 

on the set of inputs (there are two outputs and 271  possible 

input combinations) and since knowledge of the output does 

not imply knowledge of the input combination, the cell is 

performing the process of comnutations -rather than mere 

signal transmission. 

The class of functions which may be computed by such a cell 

is given the name "linearly separable" and a great deal of work has 

been done in the analysis of such functions. 

X1 1.2 
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3. All possible Boolean functions can be computed by a net-

work containing elements which compute linearly-separable 

functions. This will be demonstrated in Chapter 2. 

This statement means that provided the basic assumption of 

two-level activity of cells holds, the logical behavior of nerve nets 

can be described mathematically, and conversely any logical function 

which can be unambiguously defined can be computed by nets of EcCulloch-

Pitts neurons. 

The main difficulty with a two-level description of any real 

network of neurons is that it is obviously an approximation. Clearly 

a finite time must elapse while any cell switches from the 0 state 

to the 1 state during which it is in neither. The assumption usually.  

made is that such a system is "clocked" or that a stroboscopic analysis 

is sufficient to specify its behavior. The two states of behavior of 

a cell might be taken to be that in which rapid spike emission occurs 

versus that corresponding to slow spike emission. The difficulty 

in this case is that cells often exhibit a continuum of firing rates 

between the minimum and maximum and two-level analysis is not entirely 

valid. 

Two additional objections to the use of a binary analysis arise, 

even for the construction of a model of information processing rather 

than a model of the physiological processes involved. The first is 

that an arbitrary network of real gates may have stable states which 

cannot be defined by a two-level algebra. Consider Fig. 1.7. This 
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represents! a. one-element network of NOR .-gates. It will be shownsee Fig. 1.8) 

inchapter 2 that such a gate. can be constructed from a linearly-separable 

function and therefore is of a type that we are considering. 'Clearly 

the Bbolean function 

x. =, 3E 	 1.3 
is not valid. The physical system, however, is easily realizable, 

and if the one-input NOR-gate is taken to be a very high-gain saturating 

amplifier with heavy negative feedback, the expected equilibrium value 

for the continuous variable x may be somewhere between the zero level 

,.and the one level. 

The second need for a more valid model than a two-level one 

is that a network of real cells can be described by a set of differential 

equations, and therefore is a dynamical system. It may exhibit a trans- 

ient behavior, and indeed, a never-dying oscillation may exist. If 

such behavior is of interest, then clearly a set of differential equations 

must be used. 

1.5.5 THE HODGKIN-HUXLEY MODEL 

This modeP is a set of differential equations which approx-

imate rather well the behavior of certain neurons. It will. be described 

briefly here since it is the classic example of detailed mathematical 

modeling of cell mechanisms. 

It is assumed that a typical section of cell membrane can be 

represented as in Fig. 1.9. The current across the membrane is produced 
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Fig. 1.10 Typical Waveform of Fig. 1.9 



37 

by the movement of ions through it. The variable conductances are 

functions of time and the polarising voltage E. All other parameters 

are constant. Then the equations for the propagation of an electrical 

disturbance along a cylindrical fibre of radius a, 	filled with a 

fluid of specific resistance R2  are 

a ddV 
28202  ;37i2  = 0Mdt+  gle14(7 Vid -+  gilam3h(V  — Vila)  

+ g2(V — V2 ) 	 1.4 

dn _ 
dt 	

(1— n)11 	 1.5 

• = o(,„(1 m) — Amm dt 
1.6 

• = (Nh(1  h) 	°I:1h  

where 0 is the velocity of propagation and typical cc and 

meters have the following forms: 

• = 0.01(V  + 10)  
n axle-Vol_ 1  

An  = 0.125 	 0]  

1.7 

par .- 

1.8 

1.9 

  

1.10 
ragil  expi 25  j- 1   

= 4 expt.2.1 
L181 

= 0.007 exp[fal 	 1.12 

1 
r1/17001 expvirj + 1 

1.13 
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Clearly such a set of equations is not amenable to analytic 

solution although analogue and digital computer solution is possible. 

Fig. 1.10 is a typical pulse train which can be shown to be one of the 

solutions of the equations and which is representative of observed 

action potentials. 

1.5.6 THE COWAN MODEL 

The Cowan model is essentially a simplification and interpret-

ation of two generalized phenomena: the cell exhitation mechanism and 

'its firing mechanism. It has recently been published in a thesis 

(reference 3) and the following has been extracted from it (with permis-

sion): 

"Our starting point is J. C. Eccles' well-known9210  
lumped equivalent circuit for the generation of post-synaptic potentials 

and the .... distributed equivalent circuit or "cable" equations 
for neuronal membrane of W. Rail . ....Since we are interested in model- 
ling the responses of large networks, we are concerned only with the 
crudest possible nontrivial way of writing down an equation for the 
responses of a single neuron.... 

"...Let us now approximate the effects of the electro- 
tonic decrement represented in the cable equations, merely by an atten- 
uation and a delayl 

"...We now have to consider the way in which a fisponse 
to such an excitation is elicited in the cell. ....R. Fitzhugh has 
shown bow such tHodgkin -Huxley) equations give rise to threshold phenomeua 
consistent with "all-or-none" responses. ... 

"...However such is the complexity of the requisite 
computations (and it is by no means clear that the equations cover all 
the relevant phenomena) that we have chosen to approximate the response 
by empirical curves obtained from experiments on the responses of nerve 
membrane to stimulating currents 	It often seems to be the case that 
....the slope of the....rate -intensity curve changes in such a way that 
it can be reasonably fitted by a sigmoidal function 	 

"...There is no fundamental reason for choosing the 
curve....which is of course the well-known Logistic curve of demography . 
It happens to be a convenient and tabulated sigmoidal function. What 
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we are interested in studying is the qualitative nature of the results 
issuing from this choice of a sigmoidal function, not the exact qmatitat- 
ive aspects." 	 A 

We interject at this point that in this thesis more emphasis 

will be placed on quantitative aspects, since we are interested in 

modelling deterministic physical devices rather thah statistical functions, 

and since the detailed behavior is important for some purposes. 

"Let us introduce the variable 

X(t) = 1 -dtv(t) 

[where it is the refractory period and v is the firing rate.] 
Then we [have] a difference equation relating the neuronal output to 
its inputs: 

ln 	Xr(t) 	
r pir 
1.-LXsr  X s  (t sr)) - Xr(t)   

[where r is the neuron index, Er  is a•constant input, er  a slope 
parameter for the sigmoidal function, the 4Visr  are coupling coefficients, 
and 15sr  is the delay from the sth to the rth neuron.] - 

"The variable X can be interpreted as the fraction of 
time when a neuron that is continually emitting spikes is not refractory, 
i.e., the fraction of time when it is "sensitive" to stimuli.... 

"...We now wish to convert the fundamental difference 
equation into a differential equation 	We make the assumption that 
all the delays are the same, so that we have ?'sr  = 

Xr(t + 
	  = Cr  + 1. XocrXs(t). 1 - Xr(t.+ 21) 	er  

"...For sufficiently small Zr  we have the equation: 
Xr(t) 	

In 
Xr(t) 

1 - Xr(t)1 + . 	1 - Xr(t) 
61. 	x  (.0.11 [1.17) 

sr s. r s 

Various linearizations are then considered, and then the 

equation similar to the one above, but without the damping term, and 

with a change of time-scale: 

[1.15] 
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Fig. 1.11 Gate Step Response 



Xr 	1/ .„ 	, 

	

dT-1 — Xr 	r ii; zifisrAs • 

This equation forms the core of Cowants work on statistical mechanics 

of neural nets. 	4 

1.6 	A DYNAMIC MODEL OF THRESHOLD GATES 

The design of threshold gates and their logical properties 

Will be discussed precisely in the next chapter. Here we will be 

concerned with their transient behavior. 

Consider Fig. 1.11. In the design of logic systems by Boolean . 

algebra the response of the ideal gate fW to a step input at one 

of its input terminals is assumed to be a step also. The actual resp— 

onse may be more like that of the "real" gate in the figure. The ideal 

gate is assumed to be free:from "noise," that is, it has two completely 

stable outputs, 0 and 1. Any real gate, however, will always be subject 

to small fluctuations at its output. 

The central assumption made in this thesis is that the response 

of a threshold gate is similar to that shown in Fig. 1.11. Other resp— 

onses are possible, and may be accounted for by various changes in the 

analysis, but this will not be done here. 

In the design of practical circuits, one of two assumptions 

is usually made. The first is that the output of a gate is a perfect 

or nearly perfect step which occurs after a finite delay from the time 

of the input change. The second is that the transition shape is of the 

41 

1.18 
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form shown in Fig. 1.11. The fact that actual realizations do not have 

the ideal response leads to complications in the design of networks 

of several interconnected gates, and these problems will be discussed 

later. We note heave only that two simplified analyses are used to 

describe sequential (dynamic) behavior. General gates are treated this 

way, not only threshold gates: 

1. A three-level algebra is commonly used, in which the 

binary 0 and 1 states are represented by 0 and 1 respectively, 

and in addition a third "don't know" state is represented by j. Refer-

ewes 12 to 15 deal with this method. 

2. A pure delay is associated with each element, which is 

assumed to be in the 0 or 1 state at the end of the delay time. 

Numerous papers make this assumption, but the classic one is reference 

16. 

Both of these approaches are useful, but are necessarily 

accurate only when the simplifying assumptions allow correct prediction 

of network behavior. The continuous approach used here yields more 

information about the detailed behavior of switching networks but 

requires more computation. 

1.6.1 SPECIFICATION OF THE THRESHOLD GATE MODEL. 

lie define a model of the ith gate in a network of n gates, 

referring to Fig. 1.12a. The object is to define the simplest model 

which conforms to the above discussion, and to certain behavior to be 
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Fig. 1.12a The Threshold Gate Model 
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Fig. 1.12b A Suitable Nonlinearity 
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discussed later: 

1. The inputs are the real variables xi, i = 1, 	n 

which are weighted by the real constants eqj, j = 1, 2,..., n and 

summed, along with a real quantity C. The inputs to the network are 

constant in a finite time interval and are included in the terms El: 

That is, if element i has an "external" input, it may be written 

ei = ocio +Z piciuca 	 1.19 

where aio and pi4 are constants, Uci is the cith input, and q 
ranges over the set of input variables. Thus the total summed input 

is 

Ei 2:0(i3xj • 	 1.20 

2. The output of a gate is the variable xi, and the outputs 

of the network are any set of the xi, 1 i * n. 

3. The system is autonomous except for changes in the input 

variables. Daring the finite time intervals in which the inputs are 

constant the system is completely autonomous. This precludes the usual 

situation in which "adaptation" or "accommodation" affect the short—time 

interval characteristics of an element. A change in inputs corresponds • 

to a new set of initial conditions for the next time interval. 

4. Each gate is a first—order dynamical system, such that 

xi may be taken as the state variable. "Ringing" and overshoot resp—

onses to step inputs are thus eliminated. 

5. The state equation of the ith element is of the form 

+ 1)(31. ~(xi) = 	fl-fijxj 
	 1.21 
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where 7i  and pi  are positive real constants. This equation exhibits 
behavior consistent with assumptions 3 and 4. 

6. The function Oxi) in 1.21 is 
- single-valued with a single-valued inverse 

- strictly positive monotonic inxi  • , 

- analytic for 0 < xi < 1, 

- .asymptotic to the values xi  = 0 and xi  = 1,  

- symmetric about xi  = . 

The last two of these assumptions are simplifying normaliza-

tions, and are not necessary, but may be used with no loss of generality. 

We assume further that y(xi) has exactly one point of 

inflexion at xi  = 2. Fig. 12b is a diagram of a suitable function. 

1.6.2 THE OPERATIONAL APPROACH 

Consider Fig. 1.13. This is a lossy integrator feeding a 

function generator, and having as inputs the quantity 

	

= E. -y. 2:12%j.x, . 	1.22 j=1  ij 

We assume that the variables x. and yi  are normalized voltages. 

Then, if the operational amplifier is perfect, 

+/-IL - - C 	= 0 , 
Rio 	R4 4 Rf 	dt 

or 

(ary-ct..,+.1)(z)=,-1--+ 
3 

Rii 

),  

1.23 

1.24 
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Clearly, if the following equations hold 

E = 
i Rio 

a' 1  _.Rid 
 

Pi = Rf  

CRf  

and in addition, the output of the function generator is xi = (1)-10iyi), 

'then 1.24 is exactly equation 1.21. Therefore it is possible to simulate 
1.21 using the computing elements of Fig. 1.13. 

From Fig. 1.13 it can be seen that no matter what finite value 

the variable yi may reach, the function generated is in the open 
• region (0,1), that is, for all time 

x1€(0,1) . 	 1.26 

This result is due of course to the choice of the function q/(xi). 

It is poSsible to rewrite 1.21 as follows. Since 

dV(9) 	dxi  
tr(xi)-at P dt 

we may write 

- 	f 
pits (xi)Lci - Pig/ (xi) Lc/x/1 	1.28 

which is valid for all xi  in (0,1). Assume for the moment that 
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1.25 

1.27 
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all. variables except xi  are constant. Then we have 

fa 	ill* (x1):21  = k pi  4(xi) 
	

1.29 

where k includes all constant terms. The right-hand side of this 

equation (the "excitation" of the element) may have the general forms 

illustrated in Fig. 1.14a and 1.14b which differ only in the parameter 

P aii. The function tri(xi) is always positive and non-zero, and at 

the limits 0 and 1 goes to plus infinity. It can be seen therefore 

that if the vertical axes in Fig. 1.14 are labelled piri iiiqx,yci  
then xi  tends to one point in Fig. 1.14b and to two in,1.14a depending 

on the initial point. The exact behavior in Fig. 1.14a cannot be 

specified since the function 

L(s) = Lim 
x-gas 

1.30 

has not been specified for s = 0 or 1. The limit of the behavior as 

aii--•-0 is an infinite-gain amplifier, and since the term aiixi  is 

a feedback term it has a large effect on the element stability. 
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Fig. 1.15 NOR-Gate 3-K Flip-Flop 
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0 0 -3.- -3/2- -1 0 

0 - 0 0 0 3/2  u23. 	

[ 

-1 0 0 3/2  0 0 
g+ 1.33. 

0 0 0 /2 -1 	1 

-1 0 -1 0 	0 

0 0_ 512 - -1 	0_ 

and X 	are n-dimensional variable vectors, 

equation: 

'0 0 

0 0 

-1 -1 
(TD I)BY = 

0 0 

0 

0 0 

where I is the unit matrix, Y 

0 

-1 

0 

0 

0 

0 

1.7 THE SYSTEMS APPROACH 

In section 1.6.1 the characteristics of one gate in 8 net-

-work of n gates were defined. The object here is to give a description 

of such a network in a manner similar to that of a nonlinear automatic 

control system. Consider Fig. 1.15. This is a functional diagram of 

a network of NOR gates, realizing a function known as a J-K bistable. 

(The equivalence of threshold gates to NOR gates will be discussed 

in Chapter 2.) Such a network may be represented by the following 

50 

and 

diag[Pil , pi  0 	 1.32  

T = diag.  Fri) . 7i> 0 	 1.33 

D is the diagonal differential operator of order n. In general, a 

system of threshold gates may be represented by the equation 

(TD + I)BY = AX + Ao  + PUk 	1.34 

* No comments will be made as to the uses of this particular circuit. 
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where Ao  is a column matrix, P is an n by q matrix, and Uk 

is the q—dimensional input vector. Recall from section 1.6.1 that we 

are assuming that Uk  is constant in a finite time interval. We 

use the subscript k to denote the kth such interval. 

Equation 1.34 may be rewritten as follows. Let the vector 

T" be the solution of the equation 

Ar+ Ao + 141 — BV= 0 	1.35 

in which U is a constant vector, and 71 = 	is related to 

t" = [)il by the equations 

m =47(r) , 1.36 
r =T-1.(m) 

because of the relation 

Yi =. Oci) 	 1.37 

Now combining 1.34 and 1.35, we have 

(TD +-I)B(Y 71) = A(X 	pok  - 	1.38 

Taking Laplace transforms, 1.38 becomes. 

(Ts + I)V(s) = TV(0) + PU(s) + AZ(s) 	1.39 

where 

IT(t) = B(Y(t) — 	 1.40 

z(t) = x(t) — r, 	 1.41 

U(t) = Uk  — U . 	 1.42 



52 

From 1.39, 

V(s) = (Ts + I)-1TV(Q) (Ts + Irlim(s) + Cris + 	1.43 

The inverse transform of the first-order transfer function is . 	. 

Gs (t) =Ll(Ts + I)-1/ =Elidiagr 341  11 = T  -1 -tT-1 
e 	1.44 

8 VtiJ) 

and thus the inverse transform of 1.43 is 

1 
V(t) = e`4,0v4.-  V(0) ÷f

:6 
	MII( nd + itGs(t Z)Z( Zler 

0 
1.45 

where 

Gs  (t) =4:1{ (Ts + 	= T-1 --tra  A 	1.46 

is the 	response of the linear transfer function. 

Equation 1.45 is similar in form to an equation usually cons- 

idered in stability analyses of certain control systems. We now recall 

that we have assumed that Uk  is constant. Therefore if 	Uk, the 

input function in 1.45 is zero, and this equation.is then the zero-

input state equation. 

1.7.1 SIMILARITIES TO LINEAR SYSTEMS • 

We make one further comment about the form of 1.38. The stand-

ard state-space representation19  of linear systems is given in the follow-

ing two equations: 

= AX + BU 

Y = CX + DU 
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in which X is the state vector, U the input vector, and Y is the 

output vector. The matrices. B, C, and D need not be square. If, 

along with 1.38, we define an output vector 14(t) and a matrix C, 

we have 

(TD + I) .V = AZ + P11 , 	 1.38 

Tel = CZ s 	 1.47 

where of course the second term of the second equation is zero. These 

,two equations bear a strong resemblance to those for the linear system. 

The difference is that V(t) is a highly nonlinear function of Z(t) 

and therefore linear theory is of only limited relevance. 

1.8 SUMMARY 

Three mathematical models of neural function are given to 

illustrate: the range of such models. The McCulloch—Pitts model is a 

fundamental hypothesis about-static neural function, the Hodgkin—Huxley 

equations are the classical example of detailed membrane description, 

and the Cowan equations ara intended to exhibit the function of the first 

with some of the dynamics of the second. 

A:precise model of real linear threshold gates resembles the 

Cowan model closely. 
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CHAPTER 2 

REALIZATION OF LINEAR THRESHOLD FUNCTIONS 
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2.1 INTRODUCTION 

In recent years much effort has been expended on the analysis 

of logical elements based on the principle of the linear threshold 

function, and considerable use of such elements has been made in studies 

of learning machines and in actual computing machines7. In this 

chapter some of the important features of this'analysis will be dis—

cussed, with emphasis on the definition of a threshold function, its 

construction, and its circuit realization. 

Section 2.2 contains definitions of functional elements and 

functional gates. In this section and throughout the thesis the word 

"Boolean" means logical, whereas "binary" means two—valued or "nearly"-

two—valued. (This distinction is not always made in the literature.) 

Normalizations of threshold functions are discussed, since the analysis 

to be presented later is of a set of equations normalized to the interval 

(0,1). The logical equivalence of normalized threshold functions to 

other threshold functions is demonstrated. 

Section 2.4 presents the fundamental motivation of this thesis. 

We give a theorem which relates the dynamic model of Chapter 1 to the 

logical functions defined in the first part of this chapter. The result 

is extended in a corollary to the special case of "lossless" gates 

similar to equation 1.18. Convergence times and end—points are discussed.. 

Since the model we have used is a dynamical model it is possible 

to relate the continuous—time dynamics to discrete—time systems. A 

definition is introduced in section 2.5 which may be used to characterize 



58 

systems which obey discrete-time equations at only a finite number of 

points. Properties of such systems are discussed. 

2.1.1DEFINITIONS 

In the following work, use will be made of certain definitions: 

Definition 2.1: A logical thresbnld element is an ideal 

logical element with a finite number of Boolean inputs and one 

Boolean output, whose operation can be described by reference 

to an arithmetic valuation of the inputs called a threshold 

function(see Fig. 2.1).' 

Definition 2.2: A threshold gate or threshold logic unitl  

is a physical realization of a logical threshold element. 

It has n (a positive integer) binary inputs and one binary 

output which is determined by an evaluation of the appropriate 

threshold function, or a suitable approximation of the approp-

riate function. It is often convenient to describe the 

logical behavior of such agate by its Boolean function 

provided the output is .a reasonable approximation to a two-

valued variable (sea Fig. 2.2). 

Definition 2.3: A threshold function Op is a logical function 

of n Boolean variables u1, 	un. If each variable 

is mapped onto a set of two numbers, ui-pxi, 1 i n, 

such that if ui is true, xi = b, and , 
if 
ui is false, 

xi = a, b a, 1 i n, and if the single-valUed function 

E(xl, x2,..., 1116) E .,(X,E) is formed, then the Boolean 
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output is 

true if €(X, E) >, 	2.1. 

false if e(X,E) 4 0 

where E is a finite constant. That is, 

b, E(X,E) 0 
4,--  

t t(X, er) < 0 • 

	 2.2 

We use the arithmetic function 

f(s)  = [b, s 0 

a, s < 0 . 

The function ib(E(X, f) ) 	f (X, 6) 

2.3 
• 

given above is a valid 

description of the state of the binary gate as a Boolean function 

provided the output is a "reasonable" approximation to a two-level 

function for all time of interest. 

Definition 2.4: A linear threshold function (L.T.F.) of 

n inputs xi is a threshold function of the following form: 

f(X,E) 116 + i=1 	 2.4 

where the constants ccl  are not all zero. Defining 

X0 = b 
	

2.5 

the equation becomes (Fig. 2.3) 

f(X) = f(E(X)) = f(Z.Aixi) 	2.6 
i=0 



Boolean output Boolean inputs 

FJ 

T1 
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f(X) 
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Fig. 2.1 A Boolean Element 
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Fig. 2.2 A threshold Gate 
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2.2 NORMALIZED FUNCTIONS 

In the literature of learning machines-,and pattern recognition 

devices, the input vector X = 	x2,..., xn) is called the measure— 

ment vector. If n is a finite number and the values of xis  1 * i n 

are a finite set, the set of possible vectors X can be represented 

as a finite number of points in an n—dimensional measurement space3. 

The equation 

600 = 0 	 2.7 

,defines a surface in X—space which separates the points on either 

side of it into the regions corresponding to true and false values. 

This corresponds to division of the measurement space into two pattern 

classes A and B. If A and B are finite sets there must exist a 

0 such that for some. 6, not necessarily linear, 

f..(a) < —0 < 0 < 0 < EA0 . 	2.8 

That is, if we consider the surface 

exx) = 0, X = (X01 	xn) 
	

2.9 

we can always find 6 such that there is a finite distance between any 

element b of B on one side, and any element a of A on the other. 

If A and B are convex sets, then a linear function e, is sufficient 

to perform this classification. 

If'4,(X.) is a linear function; clearly it is possible to 

find a linear transformation 

• 
	X = (x1,X 	= xn)-.-U = (u1, u2"'", un) 

	
2.10 

such that for some finite p the linear function TXU E) is equal 

to e, and therefore logically equivalent. The transformation is as 
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	0  (b 
f(X) = a 

   

   

   

Fig. 2.3 11._ linear Threshold Gate 

Fig. 2.l It linear Trans ormation 



— a ui — 
b—a 	d—c s d c .  2.11 

follows: 
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Consider the linear transformation of Fig. 2.4: 

Then, 
n cx,e)  = e  naixi  = 

L d 	0 
- a(ui  c) a] . 2.12 

i=1 	1=1  

b a 
d 

oc) = + ±..cti(a — 20) + Loc 	 4t'117u. 1=1 	 i_i  

Let 

Then 

2.13 

2.14 

Define: 

wi =Pictis  
n 

g = E 	cl (a — 7c) . 
1=1 i  

2.15 

2.16 

Then 

E.(X,E) = + L4, 4114  = F(Upt) 
	

2.17 
i=1 a.  

is a linear function. 

The linear threshold function can thus be normalized by a 

linear transformation. One such normalization is to give the variables 

xi  the algebraic values 0 and 1, 1 1 < ny and to transform the 

values Ey 9 such that 
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f(X) = 

x ) T 

T 1 

2.18 

[ls  
i=1 

Lai 0, LcCx 
i=1 	1  

where T is a threshold and the term —1 is introduced to allow for 

. a region of ambiguity in physical devices. A second normalization is 

$ n . 	2.19 

2.3 LETERMINATION OF LINEAR THRESHOLD FUNCTIONS FROM LOGICAL FUNCTIONS 

If a threshold gate is to be used in a logical machine it is 

essential to have an algorithm for calculating the constants ofil  

0 $ i $ n from the given Boolean function. Clearly for n binary 

inputs, 2n  possible input vectors X = (xo, x1,..., xn), xo  = 1 

are possible. Clearly also, if, each vector X is to be classified 

22 
 

into one of two sets, A and B0  there are exactl
n  

y 	possible 

rules for performing the classification. The function f(X) specifies 

this classification rule. 

Consider a normalized three—input threshold gate as in Fig. 2.3. 

In this case 

xi  E 10j1i , 	 2.20 

and 
a = a' = 2 3 • 2.21 

Thus, if LY1  = 1, f(X) corresponds to the Boolean .function 
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f(X) = X2 + X3 
	 2.22 

and if 0(1  = 0, f(X) corresponds.  to 

f(X) = x2x3. 	 2.23 

• If a1 = 1 and a2  =Ce3  = -2, f(X) corresponds to the NOR function 

f(X) = x2  .1- x3  . 	 2.24 

Thus linear threshold functions can be used to make AND, OR and NOT 

,(one-input NOR) gates. Therefore we can state. 

Theorem 2.1:  Any Boolean function can be realized using one 

or more linear threshold functions. 

The above. famous result8 is the basis for a large amount of 

work concerning the realization of given Boolean functions using linear 

threshold gates. Usually it is desired to use the minimum number of 

gates by allowing more inputs to each gate. Unfortunately, all the 

possible functions of n > 1 variables cannot be realized with one 

n-variable linear threshold function. A complete set of necessary and 

sufficient conditions under which an arbitrary Boolean function can be 

realized with one linear threshold function is not known in general. 

The test for separability (linear or nonlinear) therefore is usually 

to go through all or part of a design procedure4,6  or "training" pro-

cedure5  which is guaranteed to produce a zero-error solution if one 

exists. 
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2.3.1 DESIGN PROCEDURES 

If x. E t-101], 0 E i $ n, and a Boolean function is 

specified by a truth table in which the "don't caress are given the 

value 0, one design prodecure4  for the function 

6 	f'- 1 
bkrk 	 2.25 

is to compute the values bk  by considering the desired (correct) 

outputs f(AE (-1,11, 0 j $ 2n  - 1, for all 2n  input combinations 

as follows: 

, 2n-1 

bk = 1

2n 

aD(i)114CDP 
i=0  

where the r, are 

r-0  = X0  = 1 

ri = Xi 
• 

• 

r = n ia 

= xix2  
• 
• 

x . 1'0_1 = xl 2' •xn .  

0 $ k 4 2n  - 1 	 2.26 

2.27 

Of course the product terms xix2  and the like make the 

function &X) nonlinear in general. This procedure always results 

in values of bk  which give the correct logical function of the variables 
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rk provided all terms to k = 2n  - 1 are used. If, on the other 

hand, only the first n 1 terms are allowed, a linear function results, 

but it does not necessarily give the correct desired function. Two 

procedures6  are possible: 

1. The weights exi, 1 $i in of the correct function 

are approximated by an equation of the form 'Ai  qai3  = bi  where 

p and q are constants. Other forms are also possible. The weight 

ao  and some of the others may have to be adjusted by further approx-

imations or trial-and-error techniques. 

2. The absolute values of the coefficients bk are arranged 

in descending order. The result is the n+1 element characteristic6 

vector which has been tabulated for low orders of n. The correct 

values of the aits are then obtained from the tables by permuting 

or negating them to make them correspond in sign and magnitude to the 

sequence of lots. 

The first of the above procedures yields approximate values 

of the 4's, and may not produce the required function for large numbers 

of arguments. Tables of characteristic vectors and the corresponding 

weights for threshold functions of more than seven variables are not 

available since the number of characteristic vectors increases very 

rapidly with the number of inputs n. 

2.3.2 ERROR-CORRECTION PROCEDURES 

Nearly all error-correction or "training" procedures for 
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realizing threshold functions are based on the Rosenblatt5  training 

procedure for linear devices. An n-degree polynomial function can be 

converted to a 2n  - 1 variable linear function as in 2.27 to allow 

the use of the procedure for linear functions. 

Let the threshold function output be 

1 if ;E:Or.x. 
i=0 zz  

f(X) = 2.28 

0 if .F.10%x- < -e i=o 1 1  

*for some finite 6 ) 0. Let ?' = {Xl, X2,...} be any sequence of 

vectors chosen from the set of all possible input vectors, and let 

tr
(1),  f(2),..4 be the corresponding sequence of the values of the 

required binary function. We consider the input vector X
j  = (x 

xni), the weight vector Ai  = (aoy alp...,ani) and their 
scalar product (which is the linear function 2.25) 

(Aj , Xi ) = 	. 	 2.29 

In the literature of adaptive networks 2" is referred to as the training 

sequence of input vectors. Then the sequence of weight vectors A. 
3' 

= 1, 2,000 is chosen as follows: 

1. Ao  is an arbitrary finite vector. 

2.  

Aj  = 

{

Ai-a.  + Xi  

A j-1 

A 	- X- 2-1 j 

Ai-1  

if 	(Aj-10  X.) ( 6 and 

if (A.
J-12 3  

X.) 7 0 and 

if (Ai_10Xi) 3 -9 and 

if (Ai_i,Xi) < -8 and 

f(i) = 1 
f(i) = 

f(J) = 0 

f(i)  = 0 

2.30 

e 
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Then, provided there is a linear function which will compute the desired 

logical function f without error, 

Theorem 2.2: The sequence Ao, Al, A2,... converges. There 

is an integer N (depending on f, A0, and 0) such that 

AN  = ANia  = .... If 7 has the property that every possible 

input vector occurs an infinite number of times, then AN  

is a solution for computing the function f. 

This theorem due to Rosenblatt is often modified5  by the 

absolute correction procedure (and others), which requires that for each 

input vector Xj, the weight vector Aj  is changed by the factor 

A = A. ± j j-1 j 2.31 

where )6) 0 is large enough to correct the functional error for 

that input vector. 

2.4 FUNCTIONAL BEHAVIOR OF THE DYNAMIC MODEL 

In this section the dynamic model introduced in section 

1.6 will be related to the static functional systems of the first part 

of Chapter 2. From the operational model of Fig. 1.12a it is evident 

that provided yi  changes rapidly enough from a value sufficiently 

"high" to a value sufficiently "low," then the output xi  will 

be "near" the ideal response of Fig. 1.11. The essential difficulty 

is to define the permitted deviation from a perfect step, and to relate 

this to the parameters of the model. 
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Definition 2.5:  A linear threshold function realizes a given 

logical function if the output of the threshold function is 

Identical to the logical function for every possible input. 

This is the usual definition of logical realization. We 

shall use in addition 

Definition 2.6:  A. physical device with n —element input 

vector X(t) and output xi  realizes a logical function f 

in the interval (to,ti) if there exist two values, a and 

b, such that for to  4  t 4 tl, the input vector is mapped 

onto one of these two values: t= f(X(t)) E {a,b} by the 

threshold function, and if, in addition, the inequality 

	

Ixi(t) tl 4L4 
	 2.32 

holds for iu arbitrarily small. 

We recall that the state of the dynamical model specified 

in section 1.6.1 is given by equation 1.21, repeated here: 

	

(tiCtit. 1)Pi  ‘P (xi) 
= 	i'. 141fijXj 

	1.21 

where ?". and p i  are finite positive constants. We now state 
1 

Theorem 2.: For any to  and arbitrarily small /4 > 0, 

the numbers Sceu) > 0 and T exist, such that equation 

1.21 realizes a linear threshold function in the interval 

(to  + Ts  co) provided the inequality 

Ei  + 	x I > 	 2.33 pa ij j 



71 

holds for all t > to. Furthermore, the linear threshold 

function is specified by the constants crib , 

and the value Ei. 

Proof: From 1.21 and 2.33, 

dYi 
tiPidt Pgi = Ei 	= glt)S

2 

41 = 1, 4000, n 

2.34 

where yi(t) = tp(xi(t)) and lqt)I > 1. We omit the subscripts 

for simplicity and rewrite this equation as follows: 

• ?' pr 
= 1,(t) 

dt  

The well-known9  solution of 2.35 is 
t-to  -t-to  s-to  

y(t) = y(to); r + 	e - 	e r ds 
to  

Assume for the moment that g(t) > 1. Then 
t
1 e  )s-to 	

t 
s-to 	t-to 

ds > fe77F-  ds = 	1 

to 	to 
in which case 

s 
tp(x(t)) = Y(t) > [y(to) 	e r 	• 

v(s) and tir1(s) are positive monotonic functions', and furthermore 

the relation 

= 1 	tr1(...s 	 2.39 

holds, since 1J-1  is a symmetric function. We may rewrite 2.38 as 

follows: 

2.35 

. 3 6 

2.37 

2.38 
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2.40 

and thus 

1 - x(t),( y-110 - y(to)J  

We now choose S to satisfy the inequality 

t-to  

e r 410.  2.41 

2.42 

in which case there must exist a T > 0 such that 
T-to s ) 

1 - x(T) < tr.1[{4) - y(tdi " 	- WA. 	2.43 

In a similar way, if we had assumed that g(t) <-1 we would 
have, instead of 2.43, 

, T-to  
x(T) < 	y(tog §.} ‹ - P %/AY 

2.44 

for S satisfying 2.42. If we choose T to be the minimum value which 

satisfies both 2.43 and 2.44, then inequality 2.33 implies 2.32, with 

Ei  + 	) o 
2.45 

Equation 2.45 is of the forth specified in equations 2.3 and 2.6 of 

section 2.2 and thus the values of Ei and ocii.  specify a linear 

threshold function. This completes the proof of the theorem. 

r =  
a = 0 for Ei  toc;  ,x4  < -S < o 3. .nlj  j= lb = 1 for 
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We make the following remarks about the above theorem: 

1. The number S specifies what is usually called a gap, 

or region of uncertainty, and a threshold gate may only be satisfactory 

in the time intervals in which the magnitude of the sum of the inputs 

exceeds this value, as in inequality 2.33. In addition the dynamic 

model we use requires that inequality 2./2 also be satisfied, and in 

any other physically-realizable model a criterion of the nature of 2.42 

must be satisfied, because of the imperfections of real threshold 

elements such as relays, etc. The parameter pi  is related to the 

slope of the sigmoid function and thus is a measure of goodness of 

a given function. It is clear that for any value of S we can satisfy 

2.42 by changing pi, that is by improving the device, and we can 

satisfy 2.33 by varying the values of au  and Ei. It is obvious 

that since 2.33 is an inequality, the parameters of any realization 

are not unique to a given threshold function. The usual convention of 

specifying these parameters is to use the smallest integers which 

satisfy 2.18, in which case, S 

2. If the feedback resistor /if  in Fig. 1.13 is removed, 

the time-constant t becomes infinite, and (again assuming a perfect 

amplifier) the transfer-function becomes a pure integration. Of course 

this situation is never achieved completely in practice, but, corresponds, 

in the mathematical model, to the limit as pi  approaches zero with 

the product Fiji  remaining finite. The limiting equation is 

Ei 
	 2.46 
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which is identical in form to the Cowan equation 1.18, provided we 
ti 

specify y: 

(xi) 	
xi 

1 - x.1 

This special case is the basis of the following 

Corollary 2.1: If equation 2.46 replaces 1.21, then Theorem 

2.3 is valid for arbitrarily small S > 0, provided inequ- 

ality 2.33 holds. 

Probli,  With pi  = 0 and S 0, inequality 2.42 becomes 

go, —.it_ 0:),} = 0 < 	 2.47 

which is always true for /4.4 > 0. Thus 2.43 and 2.44 are always true 

for some T and the theorem holds. 

3. If a maximum input is spedified as well as the minimum, 

then the two values a and b need not be taken as 0 and 1. In 

such a case we can specify 0 < a < b < 1 as follows: 

Corollary-2.2: For any to  and arbitrarily small At> 0, 

the numbers Slc/4 > S(p) > 0 and T exist, such that if 

condition 2.33 is replaced by 

S1 > 	+ E-(Xijxj1)S 
j=1 
11 

	
2.48' 

then Theorem 2.3 holds for numbers a and b, with 0 C. a 

< b < 1, such that 2.45 is replaced by 

* see Fig. 2.5 
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b for Si Ei  1,Ecqpci 	'> 
g_ 
	 2.49 

a for —Si < 	<—a<0   . 

Pros : The argument is similar to the proof of the theorem, 

except as follows: For positive inputs, we have, instead of 2.41, 

trty(to ) - 
t—to  	t—t6 

 

     

    

, 2.50 

     

and for negative inputs, 

cc]. ap—i[y(to) 7.1 
t—to  sii 

f[y(to ) 
t—to  

1  81 
— of . 2.51 

We therefore choose a number b to satisfy the inequalities 

T-10 

Y-1144 — b </cc 
2.52 

and a to satisfy 

a — trit — 

Ira{ 

2.53 

We then choose T to be the smallest value which, foi any permitted 

initial condition, satisfies both inequalities 

ki(T) bi 

2.54 
lxj(T) — al VA 
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and the proof is complete, except for the observation that inequalities 

2.52 and 2.53 require that 0 <a < b < 1. 

It is clear from the above proof that by allowing the values 

of a and b to be within the interval (0,1) the minimum input 
• 

may be smaller than that for the theorem, for given convergence time T. 

Specifying a maximum input is not usually a severe restriction. 

4. We remark that other definitions of realization are 

possible. For example, we could specify that the functional output 

be outside the region [a,b) for some time interval, instead of cony— 

erging to k.  (4a,131. It is expected, however, that definition 2.8 has 

the greatest practical significance. 

5. The initial condition xi(to) must always be in the 

interval (0,1) and thus yi(to) = tInxi(to)) must always be finite. 

For equation 2.46, however, as t becomes large, y(t) becomes large, 

and a change of input will require a large time T to take effect. This 

is an unrealizable situation as mentioned previously, but is very 

interesting because it corresponds to a gate with an infinite memory. 

In practice, the value of pi  is finite and the memory of any gate is 
finite. Equation 1.21 has a maximum convergence time as well as a 

minimum, provided the range of initial conditions is limited. It is 

reasonable to limit the initial conditions to those values obtainable 

from the allowed inputs. 
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Corollary 2.3: If the conditions of Theorem 2.3 and Corollary 

M,(53 ,  -„ /") 2.2 are satisfied, then there exists a number T 

such that T 4 T 1  proVided the inequality 

T-1 {.. S,  < x  (to ) < If  -11 `13z  

holds. 

Rather than prove this corollary, we shall point out that it 

is obvious that the longest convergenCe time occurs either when the 

minimum positive input follows a maximum negative input, or vice versa. 

In such a case, . 

Si 
7 0 	13 2.56 

and TM  is the minimum value for which the following inequalities 

are simultaneously satisfied: 

2.55 

 

T1-to g 
Er 2-

F 
to 

2- _ -.a 

 

  

b 	 - 

tF fr'isd 

 

 

2.57 

6. The final remark is that.the symmetry of the function 

q)-1( . ) allows the gap to be symmetrical and 2.4 to apply, but 

that it is conceivable that in certain situations an asymmetrical gap 

might be required. In such a situation the above theorem and corollaries 

would require changes in detail but not in form. 
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Fig. 2.6 A. 2—Element 3—Discrete System 
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2.5 TIRE-DISCRETE THRESHOLD NETWORKS 

The development to thiS point has dealt exclusively with a 

differential equation model of a threshold gate. Simulation and implem- 
• 
entation of such gates often requires a time-discrete representation of 

their dynamical behavior. We consider here the transition from continu-

ous to discrete systems and the validity of a discrete-ti-,19 functional 

representation of the dynamic model. 

Assume that the inputs Ei  and xj, j = 1, 	n to 

gate i are continuous and therefore that xi(t) is continuously 

differentiable. We write 

dy(xi(t)) 	dx. 	tp(xi(t+V)) - W(xi(t)) 

dt 	— V (x1)  dt - Lim 	 2.58 

which depends on the above assumption and on the assumed properties of 

. Then for some small I) we may write the approximation 

dt 

	qx.i(t+0) - Lp(xl(t)) 	• 	

2.59 

and. combining.this with equation 1.21 and rearranging, we have 

.; xi(t 	2' traf(i 	kp(xittn 	 0 iixi(t)) . 2. 71) 	ri 

This trivial approximation will always have arbitrarily small error 

provided V may be made arbitrarily small. Keeping 1.) finite and 

allowing pi  to approach zero, 2.60 becomes 

xi  (t v) = U{Ei  +au  xj  t 	 - 2.61 
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where 14 .3 is the step function. This is nontrivial and may not 

hold fore 14 but there are cases where xi  switches quickly from 

near 0 to near 1, and 2.61 is valid even though the inputs may 

not be continuous. 

Definition 2.7: If, in a system of n gates, we can find 

numbers toi, 1 i n, and a number V > 0, such that for 

all i, the relation (see Fig. 2.6) 

(xi  (toi  + 	— U SEi  + 	(toi)) I </A 	2.62 

holds, for ikt> 0 arbitrarily small, then the system is 

fir:et—order time—discrete, and may be termed 1—discrete. 

If there is an integer m ) 0 and the relation 
• 

l
xi(toi  + pr+i)Eir  + ZeS.ix (toi  + 141 9A• 2.63 

with Vo  = 0 and 1)14.3.  > VI, holds for all i = 1, 2,..., n 

and all r = 1, 2,..., m, then the system may be termed 

mdiscrete. 

Of course the order of discreteness depends on the initial 

conditions xi(toi), i = 1, 	n. 

Provided 2.63 holds we can generalize 2.61 for an m—discrete 

system: 

X 	= UtE r  + fir] , r = 0, r+1  

and adding the output equation 
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Wr  = CXr 	 2.65 

we have two equations which resemble those for a linear machinel°, 

except, of course, that the step function in 2.64 is highly nonlinear. 

This difficulty may be overcome for some purposes for finite values of 

m by using polynomial interpolation methods. 

It may happen that 2.63 holds where U is not a step between 

0 and 1 but between two numbers a and b, with 

fb, t 0 
IT(t) = 

	

	 2.66 
a, t c 0 

and 0 < a < b < 1. With a suitable transfO±Mation of coordinates 

definition 2.7 remains valid. Indeed a and b need not be between 0 

and 1 but we shall only deal with this case in what follows. 

2.6 SUMMARY 

In order to compute a. logical function with a real device, the 

distinction between "logical," and "binary" functions is made. It can 

be shown that binary functions on the set' t0,11 areequivalent to arb-

itrary binary functions, hence continuous functions in this context need 

only be considered in the interval (0,1). Methods of designing threshold 

functions result in non-unique sets of functional parameters. Questions 

of realization of binary functions with the dynamic model can be answered • 

precisely, both in a continuous time-scale and at discrete points in time. 
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CHAPTER 3 

PRELIMINARY ANALYSIS OF SOME GATE NETWORKS 
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3.1 INTRODUCTION 

The purpose of this chapter is to serve as an introduction to 

the stability analyses to follow. The uniqueness of the solutions of 

the gate equations will be shown. Two cases will then be treated: an 

electrical network analogy, and a system of lossless integrators with 

perfect switches. The equilibrium or singular solutions of the general 

network and of the special Cowan equation will be discussed, and a 

topological (trajectory) analysis of two—unit systems will follow. A 

special case similar to Volterra's equations2  of'population dynamics 

is discussed in Appendix C. 

3.2 EXISTENCE, UNIQUENESS,,AND CONTINUITY 

We write the ith  equation in a system of n simultaneous 

ordinary differential equations in the general form: 

dxi 
= 

f 	
) = x 	A  f .L ic 12  x22...1  xni()i = 1,2,..., n , 	. a 3.1 

1 $ j n be bounded and continuous in D. 

If the n functions f1, 	fn satisfy Lipschitz condi—

tions in D, the Cauchy—Lipschitz theorem states that each equation 

3.1 has a unique solution xi  = xi(t), 1 1 i n, defined in the 

neighborhood of t = to  such that xi(to) = ti, 1 ; i n. The theorem 

Sufficient conditions for the function fl  to satisfy a Lipschitz 
of 

condition' in a domain D are that the partial derivatives a 
x3 



85 

thus guarantees the existence of solutions with prescribed initial 

conditions and asserts that the initial conditions determine the solution 

uniquely. 

If the n functions fi(X) satisfy Lipschitz conditions, 

then the solutions Xi(t, to 	gn) are analytic in all of their 

arguments in a neighborhood of to, ti, 1 4 i 4 n. 

The integral curves of 3.1 for specified functions fi define 

a family of trajectories in the n-dimensional X-space, and the theorem 

applied to this autonomous system has that through every point in the 

X -space there passes one and only one integral curve. 

In chapter 1 we have written the gate equation in the form 

of 3.1: 

dx4  
f (X) - 	1  

dt 	i 	? :(
x 	

--Piy(xi) Eccijxj] . 1.28 
Pi i 1̀' i 

The derivative 

	

fi 	 4rii 	tot I (x4  ) 
	 f• 

	

axi 	yit (xi) 	(01  (xi) 1  
3.2 

is continuous and bounded since 94 is analytic and strictly monotonic. 

The other derivatives 

aii    _ 	i#j 
bxj 	Pi21 7t  ‘xil 

also satisfy these conditions. 

Thus the model we have chosen is well-behaved in the usual 

sense. 

b. 

3.3 



86 

3.3 A NETWORK ANALOGUE OF A SPECIAL CASE 

A. model will now be derived which, under certain conditions, is 

described by differential equations identical to the special equation 1.18. 

Consider the nonlinear passive conservative inductor of Fig. 

3.1a. The current-flux linkage characteristic is 

I 	Io  + IL  
X -X°  = log   . 	3.4 Xs 	Is  - I 

= log 
IS - Io - IL • 

By definition3, the magnetic energy function of this element is 
X 

Wm 
 7)

/rIL(u)du 	 3.5 
A*  

where 

IL(X)X = 0 . 	 3.6 

The inverse of 3.4 is 

IS  
IL  - 	- I 

-(A Ad]  ° 	
3.7 

1 + exp[ 

and therefore the initial point of integration ? must satisfy the 

equation 

{IA1 + exprt 
	
- * 3.8 

XS 
 

1-1 

The two solutions of 3.8 are both ). = 0 as might be expected. Thus 

the energy function is 

I du 



-s•e" v 

_Fig. 3.1a Nonlinear Inductor 

Vs 

Vo 

- Fig. 3.1b Nonlinear Capacitor 

     

     

r—i. 

   

   

= v— v0 

   

   

    

    

     

Fig. 3.2 Equivalent Circuit 



3.10 
• Xsis v = L 	i(is  . I) 

3.13 

3.14 

a resistance R, as in Fig. 3.2. From Kirchoff's laws, 

QqVq17 
I — Io + G(V — V ) + 	 = 0 , ° 	V(Vs  — V) 

(I — Io)R + I(Is  I) 	— V — Vo  . 

3.15 

Thus, from 3.13 

v = vs  Fsk 
I G o 	V  o  GV  S V ; 

Irsil Qs 	- -Qs VS Qs  IS  

• 
3.16 RIs VS V+ As VS • As Is 

I _ VO 
Is 	Is 	Is ll as 

IS  — Io 	Io(Is  . I) 
=XsIslog 	+:XsI lo (I

s  — I0)I • 

Finally, the voltage across the terminals of this inductor is 

By a similar process, the energy function of the nonlinear 

capacitor of Fig. 3.1b is 

VS — Vo 	Vo(Vs  —17) 
WE = QsVslog V

S v 
+- QsVolog (VSirrow 

and the current flowing into the capacitor is 

• QsVsV 
I = q — 	 C 	V(Vs  v) 

These two elements are arranged in a circuit with a conductance G and 

tbd #(11 3.14 

These equations, by substituting xl  for 	and x2 for 
I. 
IS 

88 

3.9 

3.11 

3.12 
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and equating the corresponding constants, are made identicalfto the 

following two-dimensional system: 

X1 = X1(1  - X1)(C1 C(1.1x1 °(12X2) 
	

3.17 
X2 = x2(1 - X2) (62 C(21X1 C)(22X2)  

which is a particular set of equations obtained from 1.18. 

Since there is an analogy between 3.17 and an electrical net-

work, we expect that the behavior of 3.17 will be similar to such a net-

work. In particular we can define a quantity for 3.17 analogous to the 

stored energy in the network of Fig. 3.2, but first a brief digression 

will be made to show a property of trajectories in the X-space of 

equation 1.18, and thus in the x1x2  plane of equations 3.17, which 

will be written as follows: 

Y = E + AX . 	 3.18 

Let r  be the solution of the equation 

E + AX = 0 . 	 3.19 

Then, 

T" = CIE 	 3.20 

and thus from 3.18 

X(t) = A711 - A72E = A71  g  +f" dt 	e 
	3.21 



QS _-

S  

(X12  

• Oe11IS G = 
0( V 12 S 

V = ,r  V o 	1 S 

V= 

90 

to 

We wish to find the mean value of X(t), which comes directly from 3.21: 

1 

For a finite solution to exist, Y(a) must be finite for all values of 

a and the second term in 3.22 is zero. Thus if the solution of 3.17 is 

finite the mean value of the solution vector is r. Of course if the 

solution vector x(t) ever coincides with r-  its time-derivative is 

aero and thuv an oscillatory solution never takes on the value r- in 

finite time. 

We write 3.20 explicitly for the two-dimensional case: 

1 	
6i(X22 - 62412 

[111 = 	1E = 	 3.23 
. 	'211422 - 41A1 6.021 - 62411 

and, comparing 3.17 with 3.15 and 3.16 and .sing 3.23, we can write 

= 	Lim it 
a-o.co 

a 

0  (Al 
 g + Tidt = r-  + A-1  Lim itY(a) 

a-oco 
- Y(01 . 3.22 

3.24a 	- I = x2Is 	3.25a 

V 
3.24b 	X =X21 	3.25b 

• 

a22VS  R = 6•1• ..................... 	 3.25c 
a21IS 

3.24d 	I = 7213  
	

3.25d 

From these equations and the above discussion we conclude that 

an oscillation of the electric circuit examOle must be about the point 

(v0, Id° 
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Consider the sum of the magnetic and electric energy functions: 

W = Wm 4,- WE • 
	 3.26 

The derivation of Wm  and WE  ensures that W is a positive definite 

function of TL and VC, and therefore its zero corresponds to the 

points Io  and Vo  in the I - V plane. We have shown that any osc- 

illation must be about the point (I0, V0), and thus a decaying oscilla- 

tion corresponds to an energy function decaying to zero at the steady-state 

solution (I01  V0). 

In terms of the general parameters, the energy function W 

becomes 

V2))1 - 1--  2 

I6V's 	
x2 

-a12"21 	42 

!' 	 r1- t 
a'211°44

il 	
- x kl l) 

where I and V are arbitrary positive constants. 

3.3.1 CONSTANTS OF NOTION 

The development in the preceding section is a particular case 

of a general problem of characterization of dynamic systems: that of 

finding constants of motion. Clearly if an expression for a constant of 

motion can be obtained in the form 

14(x) = C 	 3.28 

where X is the state vector and C is a constant, then this is an 

3.27 
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additional constraint on the system, which is said to be conservative, 

and the solution X(t) is restricted to some region of the phase space. 

In certain circumstances, then, knauledgee the function 1(0) is 

equivalent to a solution of the state equation. 

We remark that the function W(X) in 3.29 is called a Ham—

iltonian in classical mechanics, and has the units of energy. In other 

situations, however, such as in the example we have treated, energy can 

only be found by analogy. 

A further consideration arises: the constant of motion W(X) 

is not unique for any system. In linear mechanics this only involves 

arbitrary constants, but this is not the case for nonlinear systems. 

In the example of the previous section the function 3.27 is only constant 

for= a22 = 0,  that is, 	th for 	e resistors in the circuit model 
conjectured 

zero. However, it will be 	later that this is not a necessary 

condition for conservative oscillations to exist. 

It is well—known3  that a necessary and sufficient condition 

for conservative motion is that a constant of motion, sometimes called 

a first integral, exists, but it is not generally possible to write down 

such a constant in closed form. 
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Fig. 3.4 Wave—forms of Fig. 3.3 
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Perfect Switch System 
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3.4 THE PERFECT SWITCH 

Consider Fig. 3.3. This contains two integrators and two 

perfect switches connected to solve the equations 

1 = el(t) 	1 +°411x1 6(12x2 

Y2 = e (t)  = G2 ÷ C(21x1 6(221c2 
3.28 

xl = U(yi) 

x2  = U(y2) 

in which the constants may in general be of either sign. If the const- 

ants are chosen so that a continuing oscillation exists, then the period 

T of this oscillation contains four distinct divisions, as in Fig-. 3.4. 
The initial conditions are labelled V1  and V2  as in the diagram. 

The slopes of the v - t graphs are 81(t). and 62(t). 

Cyclic behavior of the system admits the following four linear 

homogeneous equations: 

el(a) Ta  + el(b) Tb  = 0 

62(a)  Ts. 4  82(d)  Td = 

61(c) To +. el(d) Td = 	 3.29 

c2(b) Tb  + 62(c) Tc  = 0 . 

Their equivalent in the continuous (finite switching-time) situation 

is the set of integral equations 



ft2 
j 61(t)dt = 0 
to  

t3 

it 1 
6.2(t)dt = 0  

to  

63.(t)dt = 0 
t2 
t1 
62(t)dt = 0 

t3 

95 

3.30 

Equatiors 3.29 are easily reduced to the constraint 

el(a) 	2(13)  e2(d) 
 = 
	3.33. 

61(b) ;.(a) a2(a) e2(e) 

Clearly, given any one time interval it is possible to solve for the 

other three. Equations 3.29 give the recursive formUlae 

61(a)  _ 

62(b)  To  = 

61(c)  Td = — T165 7 . 

62(d)  Ta  = 2(a) Td  y 

and knowledge of the initial conditions may-  be used to specify one such 

interval. In Fig. 3.4 the equation 
T  = Vi(t) 	V2(t) 
a 	t2(a) 	

3.33  

holds, but in interval b we would have 

[Vi(t) V2(t) 0  
Tb =— ;:i(1)) 42(b)j 	

3.34 

Tb = 

3.32 
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This difference in sign and the form of 3.32 make it necessary to observe 

the portion of the period in which, V1(t) and V2(t) are specified 

before labelling the intervals. Intervals c and d yield results 

identical in sign to a and b respectively and therefore only two 

dittinct initial configurations need ba distinguished. 

We carry this example further to the case for which  which`all = a22 = 0, 

in which 

63.(a) = 61(d) 
	

= 61(c) , 

62(a) = e2(b) , 	2(0) = 6'20) • 
	3.35 

It is possible to derive using the recursion formulae 3.32 and relations 

3.23, 3.28 and 3.35 the following general formula: 

v e2  (t) v
2 1 

 (t) 
'  T = 	„ 3.36 

-R12"217172(1 71)(1 ?:2)  

which is a positive-definite function. 

Equation 3.36 is valid for the limiting case described by 

3.28, and bears some resemblance to expression 3.27, the energy function 

of. the network analogy. Consider the following limiting expressions 

for the xl-portion of 3.27: 

ra.) 71) Lim a' — 21 	xl  I 1 xi 

xl(1 . Y1) 
= 4121(-71)1°6(1 -. x2)71 



= e2(t) V1 ."(211°g(1 r1)  * 

7/1 	1-Y1 
Lim of -log(!1") ( 	-̀ 4) 
xr4a 21 xl 1 xl 

= 	2 1 ( 1 - i)logx1(1 - 111) 1 v 
(1 	.x  )y + 'n214-°g'l l  i  

= 	.'11:2(t)V1 46 4r211°3  7i • 

3.37 

3.38 

Similar expressions obtain for the xrportion and hence expression 

3.36 for the period T is linearly related to the limiting case of the 

network energy function. This example will be discussed further in 

chapter 5: 

3.5 SINGULAR SOLUTIONS OF THE SYSTEM EQUATIONS 

We consider the general system of n simultaneous equations 3.1: 

at 
dxi 
 1 — = f.(X) . 3.1 

Definition 3.1: A singular point3  is a point X9  = (4, 

x) for which, from 3.1, f (X°) = 0 for all i = 1, 

n. 

Thus, from 1.28, the vectors X which satisfy the equation 

piri  yi (xi) 1 	 j  13 3 
	3.39 

simultaneously for all i = 1, 	n are the singular points of the 
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threshold system. When written in matrix form, 3.29 is 

diagEssir ,6,01(E 	tx) Ax) = 0 	3.40 

and one of the solutions of this equations  namely that for which the 

second term equals zero, has been used implicitly in the development 

of the system equations in section 1.7. 

3.5.1 SIMPLIFYING ASSUMPTIONS 

In order to reduce the number of separate cases to be cons-

idered, it is reasonable at this point to make some assumptions re-

garding realizations of the general gate equation. Theorem 2.3 and 

Corollaries 2.1 to 2.3 provide the necessary background. 

1. We assume that the nonlinear curve is specified by the 

logistic function as in equation 1.18. That is, 

xi- 
:=  ki)(xi) 

- xi  3.41 

This function satisfies the assumptions of section 1.61 and will be 

used throughout the remainder of this thesis when numerical results 

are required. By specifying the function 
i)( • ) we have also speci-

fied the limit of equation 1.30: 

L(s) = 	.„ 	Lim
3 
 x(1 x)log-25.-- 

xis  
Lim 

	

. 
tp kX) 	X.41,  
W(x) 	 3.42 

and from this equation it can easily be shown that L(0) = L(1) = 0.0. 

2. We assume that the conditions of Corollary 2.2 hold, in 
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other words, that the inputs to all gates are finite. This assumption 

is completely reasonable for real gates and provides an important 

simplification of the problem of enumerating the singular solutions 
of a network. Consider Fig. 3.5a to 3.5d. These are phase—plane 
diagrams of the normalized equation 

x. NiCi = X3.0_ ••• X / v-- 	• — log------) 	3.43 
Pi Pi 	

pi  774 1 

1 xi 

for various values of 
fi 
 and 	 il. There are as many as five 

Pi 	Pi 

singularitiesof3.43inthegeneralcaser. xi  = 0 and x. = 1 

which are precluded by the assumption, and exactly one or three 

solutions for which the other term in 3.43 is zero. The assumption 
we have made allows a simplified phase diagram to be used since the 

two extreme singularities may be ignored. We plot the function 

=
Yi  aii 

= ---x4 — log 	— 	 3.44 pi dt pi  - pi ri 4 	1-X i 

as Fig. 1.14 and therefore are concerned with one or three singularities 

per equation. 

3. We assume that when the conditions of Theorem 2.3 and 
Corollary 2.2 are fulfulled for nonvanishing S(It4), the quantity 

Tc. 	
is "large." This requires that the values a and b of the 

corollary are "near" 0 and 1 respectively. From Theorem 2.3, 

1.601 $i 	Iii 
	 3.45 

and if a and b are specified we may solve the equation 
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pi 
 - 	o 	3.46 

where t has the values a and b. For 3.46 to hold for separate 

state vectors X, the parameters otli  must satisfy certain constraints. 

Assume, for example, that xl  changes from a .1:0 to b = 1, and 

that this change causes the gate to switch. Then the condition 

l
ai b !Li al > 
Pi 	Pi 	Pi 

must hold, or, since pi  is positive, 

le(ij I (D—,  a) > 2S. 

3.47 

3.48  

We have assumed that — is "large" and therefore b — a = 1 and 
Pi 

3.48 becomes 

IoCij  I > 2 S . 	 3.49 

This is the well—known constraint that the input weights must exceed the 

gap magnitude for proper threshold operation. A further restriction 

for 3.45 to hold is of course that Ei  have a suitable value. 

4. We assume that in case pi  = 0, that is, in case 

2.46 describes the gate dynamic behavior, the output xi  may be 

arbitrarily close to the singularities 0 and 1, but may never be 

outside the interval (0,1). In this case the phase diagram is of 

the function 

xi  = xi(1 xi)(Ei 2141jxJ) 
	

3.50 
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which is a third degree equation and a system of order n therefore 

has, in general, 3n  possible solutions. 

5. We assume that, in certain cases, the parameters ocii  

have the same sign for a given set of values of i. Fig. 3.6 shows 
a simple threshold gate containing one transistor and a number of 

resistors. Obviously if all resistors are positive, the values of 

the oeij  in the describing equation will all be negative since a 

transistor has negative gain. Other circuits may be used to give 

positive gain, but transistorized versions, at least, will often 

also exhibit greater delays and "ringing" and would be better described 

by several equations rather than one. We comment that the dynamic 

equation 1.21 is reasonably descriptive of a single transistor but 

may be less useful with circuits containing, for example, ferrites 

with significant hysteresis. If we allow one equation per transistor, 

then, the values of gij  for all i and j are negative. The 

circuit in Fig. 3.6 corresponds to a positive value of Ei  due to 

the negative bias voltage but this condition will not be true in 

general. 

6. We assume that if the parameter pi  is nonzero it has the 

value +1. This normalization has the effect of changing time—scaling 

only, as may be seen from equations 3.43 or 3.44, and does not change 

the character of the resulting trajectory diagrams. 
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Fig. 3.6 A Transistorized Gate 

f 

3.7a 	 3.7b 

Fig. 3.7 Phase Plane of the Single Gate 
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3.6 TRAJECTORIES IN TWO DIMENSIONS.  

Graphical trajectory methods are of most use in two dimensions, 

because the state-space may be drawn on paper. We consider a two-dimension-

al general equation 3.1, and form the matrix of first-order derivatives: 

[afi(X°)]  
H = ki.j] = 

ax 

where X°  is a singular point of system 3.1. 

3.51 

Definition 3.2:  A singular point is simple3  if the determ-

inant of the matrix H defined above is nonzero. 

A consequence of a singularity being simple is that it is 

isolated in the obvious sense. 

To characterize a singularity X°, the characteristic equation 

of matrix H is written: 

All = 0 	 3.52 

and solved for the values Al and A2. Then the point X°  is said 

to be 

- a node if X1, A2  are real and of the same sign 

- a saddle point if Al, A2  are real and of opposite signs 

- a spiral point if Av A2  are copplex conjugates with 

nonzero real part 

- a vortex point if Ai, A2  are pure imaginary. 

Thus knowledge of the types of the singular points of a system enables 



3.8a 
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'3.8b 

Fig. 3.8 Phase Planes of the Special Case 
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one to draw approximate solution curves near each singular point. 

An additional method easily applied to two-dimensional systems 

is to calculate those curves for which f1 and f2 are respectively 

zero. Each curve partitions the state-plane into two regions, in which 

the function is positive or negative. Thus the direction of motion of 

the system solutions can be easily deduced near either of the curves. 

The above two techniques have been used in the following 

sections, in which 3.44 has been used for the gate equation 1.21 and 

3.50 has been used for special case 2.x.6.  

3.6.1 SINGLE GATES 

The dynamics of single gates is completely specified by the 

analyses of Chapter 2; here we only recall that the x - c plane or 

the. x - kP plane may be used to give two-dimensional diagrams. 

Figures 3.7a and 3.7b show the two possible phase diagrams 

for the general gate 1.21. Fig. 3.8 showathe equivalent diagrams for 

the special case 2.46. In each diagram the graph of the linear function 

e+cxx (subscripts have been removed for simplicity) is drawn. 

Of course the diagrams only show representative members of 

families of curves; we include here and henceforth only those members 

which represent a change in the number or type of singularities. 

Figs. 3.8a and 3.8b are comparable with 3.7a and 3.7b resp-

ectively. The general gate has exactly one or three singularities, and 

when three occur the outer two are stable. The special case may have 

two singularities if the line E + ax does not cross the axis in 
(0,1), in which case one of the singular points is stable. 
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oe,2, < 0 

A'11 > 4. 

  

> 0 
crn < 

  

efe 2 > 0 

>4  
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1 	0 	 0 	t 	0 

Fig. 3.9 Forms of Equation 3.54 
e1(X)  = 

412. > 0, erzz < 4  pYat > 0 C6; >11-- 

   

xz  =1 

f 	042. 4, a 	z t 4. 

c-O 

ceil  z. 0 , crlz )4- 

3.10 Forms of Equation 3.55 
e2(x)  = ° 
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3.6.2 TWO-GATE NETWORKS: THE GENERAL CASE 

State-plane diagrams of two-gate networks are constructed by 

combining the curves of the previous section in the x1  x2  plane. 

The equation 

xl 
400  = El 4.  CinXi 4.  C(12x2 log------ 1 	x 1 

is solved for x2: 

xl 
x2 = 1 °gi-----  - el - 411x;1 

12 	1 

3.53 

3.54 

The possible forms for the solutions of this equation are shown in Fig. 

3.9. No vertical origin or scale has been shown since these depend on 

the choice of the constants C1  and the value all respectively. 
a'12 

The curves have symmetry properties because of the symmetry of the function 

. ); if other functions had been used, the symmetry would not neces- 

sarily remain. 

Corresponding curves exist for xl  in the second equation 

e CO = 0, which is similar to 3.54: 

i211:L 	

, Ce 211.lo C.
r, 

- x2 
3.55 

and these are shown in Fig. 3.10, for which corresponding remarks may be 

made. 

The object is to combine the relevant curve.of Fig. 3.9 with 

one from Fig. 3.10. The points at which the curves intersect will then 

be the realizable singularities of the syste7. 



0  (x12 < 9 1)(11 < 4 X24 
=0 

=0 

3.11a 

X09 

3.11b 
Fig. 3.11 Forms of Network Trajectories 

> 0 

cr22 > 4 

= 0 



4412 < 0 

a21 t0 

= 0 

3.11c 

3.11d 

Fig. 3.11 (continued) 
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p x21 	ai2 4  °  
chrii.  4 

a21  <0 

6(22 > 4 

 	2 = o 
f 0 

3.111' 
Fig. 3.11 (continued) 
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3.11g 

3.11h 

Fig. 3.11 (continued) 
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3. Lli 

3.11J 

Fig. 3.11 (continued) 
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system is 9. By an 

number of singularities 

Figs. 3.11a to 3.11j are representative diagrams of all config-

urations of two-gate networks. Those diagrams which may be obtained by 

renumbering the elements are not included since the forms would not change. 

Dashed lines represent typical trajectories. Fig. 3.12 is a table which 

contains a summary of some results which may be obtained by inspection of 

Fig. 3.11. We make the following remarks about these results: 

1. Since the curves of Fig. 3.9 and 3.10 extend from plus 

infinity to minus infinity, the number of singularities must always be 

odd. Since the curves cross the axes three times at most, the largest 

possible number of singularities of the two-gate 

extension of this argument, the largest possible 

in a system of n gates is 3n. 

2. Fig. 3.12 shows that all configurations may be 

in pairs with equal numbers of singular points. The members 

pair have an equal number of saddle points, which are always 

grouped 

of each 

unstable. 

The nodes of one member correspond to the Spiral points of the other, 

and the number of stable points is equal for the two members, except for 

the case in which only one singularity exists. 

3. No diagram contains more than two types of singularities. 

4. One special case exists, that corresponding to Fig. 3.11a. 

In this figure and in Fig. 3.13a the singular point is shown as a stable 

spiral point, but Fig. 3.13b has similar  topology, that is, an equal 

number of singularities of the same types, but has instead an unstable 

spiral point, and in addition a stable trajectory. 



Fig.. 3.12 Singular Points of Fig. 3.11 

2:2,t 

3.13a 	 3.13b 

• 
Diagram 

Number of , 
Singular 
Points 

Spiral Points 	. 	' Nodes Saddle 
Points Number Stable Unstable Number Stable Unstable 

a 1 1 — 
o 1 1 

b 3 2 2 1 

d 3 2 2 1 

0 5 3 2 1 2 

f • 5 . 3 2 . 	1 2 

g ' .7 4 3'.1 3 

h 7 4 3 1 3 
i 9 5 4 1 4 
j .9 	. 5 4- 1 4 

Fig. 3.13 The Special Case 
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5. It is a general rule of realizable LipschitzianYsystems 

that all possible trajectories:begin and end either at ,singular points 

or are asymptotic to closed curves known as limit-cycles, such as in 

Fig. 3.13b. More will be said about limit-cycles in Chapter 5. The 

question then arises: If the other diagrams in Fig. 3.11 do not contain 

limit-cycles, from which unindicated singularities do trajectories orig-

inate? The anxwer is, of. course, that the points; xl, x2  J0111 which 

we have previously designated unrealizable are also terminations of 

trajectories. 

6. Only two classes of diagrams, represented by Fig..3.11c 

and d, are possible for two-gate networks with negative parameters air  

Fig. 3.11d contains exactly two stable nodes, and corresponds to the same 

circuit, but to a condition in which "loop-gain" is less than unity. 

7. It is.remarkable that a system of two threshold gates 

may have,  three or four stable points. Positive parameters ce.. are 3.3 
required for this situation, however. 
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3.6.3 TWO-GATE NETWORKS: THE SPECIAL CASE 

Consider a system of order n, that is, one which contains 

rv,gates. We shall show some results for general system, and the system 

of order 2 will be a special case. From section 3.5.1, assumption 4, 

the state equation is 

= diagixi(1 — 	(E + AX) . 	3.56 

This equation has at most 3n  distinct singular points, which may be 

characterized as follows: 

1. One point, which we call the principal singularity  r, 
is the solution of equation 3.19, provided the solution exists: 

E 4.-AX = 0 . 	 3.19 

2. Exactly 211  points exist for which all xi  are either 

0 or 1. 

3. Exactly 3n  — 2n  — 1 points are solutions of 3.19 with 

some of the xi  constrained to be either 0 or 1. That is, if q 

unknowns xi are specified as 0 or 1 a new equation, 

E +Tx= o 	 3.57 • 

must be solved, the order of which is n q. 

It is not always true that there are 3" distinct singular 

points. A multiple singularity exists when any two solutions of 3.57 

obtained for different specifications of the xi E (o,11, or when any 



e2  = 	= 0  
22 

a' 21 

1 = 0  

= 
As,,, 4. 0 

3.14a 
'22 

= ° 
3.14d 
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Fig. 3.14 The Special Trajectories 

Diagram 
Singular 
Points 

Nodes Saddle 
Points Stable Unstable 

d 	- 4 1 1 2 

c 4 1 1 2 
b 5 4 
a 5 2 2 1 

Fig. 3.15 Singularities of Fig. 3.14 
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unspecified solution of 3.57 is 0 or 1. 

A root of 3.57 which falls outside the unit hypercube (the unit 

square in the case n = 2) is an unrealizabda singular point. 

In the case n = 2, there are at most 9 singular points, 

4 of which are solutions of equations of the form of 3.57. In this case, 

if the lines 

62.(X)  E. 	iij = 	+ 	x a xj  =O: 1 j = 1 2 3.58 

are plotted, their intersection is r. The intersection of the first 

equation with the lines x2  = 0 and x2  = 311  and the second with the 

lines xi = 0 and xi  = 1 are also singular points. Finally, the 

four verteces of the unit square are singulmr points. 

The condition that a11 
=a

22 = 0 which was mentioned in 

Section 3.3.1 is a special case and is shown in Fig. 3.14. The point T' 

is shown as [2,  ] but this need not be trma in general. In this 

situation there are at most 5 finite singular points. Only representative 

diagrams are shown. All others may be obtained by reversing arrows or 

axis labels or both. Fig. 3.14b is analogous to the electrical network 

discussed in Section 3.3, and was shown to possess a constant of motion 

(equation 3.27) and therefore motion is alaqg closed trajectories about r: 
Fig. 3.14a is a bistable system similar to rig. 3.11d, and is in fact 

the limiting case of Fig. 3.14d if the parameters Fi  are allowed to 

approach zero with piri  constant and finite. Fig. 3.15 is a table 

listing the nodes and saddle points of Fig. 3.14. No spiral points exist. 
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h 
Fig. 3.16 Trajectories of 3.58 

3 
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Fig. 3.16 shows representative diagrams of system 3.58 in the 

case ail  0 01 0(22 0 O. As before, only representative diagrams are 

shown. A special case is Fig. 3.16a, which is shown. to contain an 

unstable node. In fact, depending on the slopes of the lines El= 0 

and 62 = 0 the principal singularity may be a stable node or, in the 

special case of a conservative system, a centre. The results for these 

systems are summarized in the table of Fig. 3.17. 

3.7 	ENUMERATION OF SINGULARITIES: THE SPECIAL CASE. 

The linear form of equations 3.19 and 3.57 make the enumera-

tion of singularities of n-dimensional special systems particularly 

easy, at least for low n. 

Let the binary number k take on the values of the 2n  - term 

sequence 

k = 0, 	0-1 . 

Suppose for some particular value, say k, there are q binary digits 

in k which are 1, the rest being O. Then if all values xj  are 

specified (as 0 or 1) for which the 3th  digit is 1, there are 

exactly 2q unique specifications of the x. for this value of k. 

These 2q specifications may be made according to a binary progression. 

Consider an example. Suppose n = 4, and k = 3, that is, k = 1100 

if the least significant digit is on the left. We then specify xl  

and x2  to be, in order, (0,0), (1,0), (0,1), (1,1). This process is 
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Diagram 
Spiral Points Nodes Saddle 

Points Stable Unstable Stabl© Unstable 

a — — 4 

d 1 2 2 

b 1 1 4 

f 1 2 3 

e 1 2 3 

o 1 2 4 

g 1 2 4 

h 1 3 4 

i 1 4 4 

Fig. 3.17 Singularities of Fig. 3.16 

A MATRIX 

	

1.000 	O. 	-2.000 

	

1.000 	-2.000 	O. 

GAMMA 
0.5000 	0.5000 

POINTS 
R 

UNSTABL7 

1 O. 	. NO SOLUTION 
2 1.0000 NO SOLUTION 
3 O. NO SOLUTION 
•4 1.0000 NO SOLUTION 

POINTS P 
R 
0 0. O. UNSTABLE 
1 1.0000 0. STABLE 
2 O. 1.0000 STABLE 

. 3 
 1.0000 1.000.0 UNSTABLE 

Fig. 3.18 Example Enumeration of Singularities 



E 
3.000 

- 	3.000 

-- Ai 	MATRIX 

	

-2.000 	-4. 000 	1.000 

	

- 2.000 	-4. 000 	-1.000 
3.000 - 4.000 	-2. 000 	0. 

GAMMA 
5000 0. 5C00 SEMIST ABLE- 

- POINTS Q 
R 
1 	2-  O. -1. 5000 -3. 0000 NOT 	IN 	(0 	) 
2 1.0000 - C. 5000 3. 0000 NUT 	IN 	(0 11) 

-3 - 0:7500 -0. -1.5000 NOT 	IN 	(0 	) 
4 0.2500 1. C000 1.5000 NOT 	IN 	(0 /1 ) 
5 0. O. NO SOLUT ION 
6 1.0000 0. NO SOLUT ION 
7 0. 1. 0000 NU SOLUT ION 
8 1.0000 1. 000C NO SOLUT ION 
9 O. ARBITRARY 

10 1. 0000 NO SOLUT ION 
11 -0. C. 75 CC f 0. UNST ABLE 
12 1.0000 C.2500 0. SEMIST ABLE 
13 - 0. 0.5000 1.0000 UNSTABLE 
14 1.0000 -C. 1. 0000 REDUNDANT 
15 1.5000 70.  0. NOT 	IN 	(0,1) 
16 -0.5000 1. COCC 0. NUT 	IN 	(0,1) 
17 V 2.0000 -0. 1..0000 NOT 	IN 	(0 ,1) 
18 - 0. 1. 0000 1. 0000 REDUNDANT 

POINTS P 
R 
0 O. C. O. UNSTABLE 
1 1.0000 0. 0. UNSTABLE 
2 0. 1. 0000 0. UNSTABLE 
3  - 	1.0000 - 	1. 0000 0. UNSTABLE 
4 	V O. O. 1.0000 UNSTABLE 
5 1.0000 C. 1. 0000 UNSTABLE 
6 0. 1. 000C 1. 0000 UNSTABLE 

_ 	f 1.0000 1. COOL 1.0000 UNSTABLE 

Fig. 3.19. Example Enumeration of Singularities 



an algorithm for finding all singular points in a particular arbitrary 

order. The case k = 0 is of course that for which no x-ts are to 

be specified, and the corresponding singularity is r. In the case 

k = 211-1 all values are specified, no equation 3.57 need be solved, and 

the singular points are all vertices of the n-dimensional hypercube. 

Let Kk  be the q-element set of values of j for which 

all x.
3 
 are to be specified for a particular value of k. Then to arrive 

at 3.57 from 3.19, write the equations in the form 

/!7;i:lixj ji 	=  0 ,irtk , 	3.59 

and since the first two terms in this equation are constant, we have 

defined 3.57. 

Some practical considerations arise: 

1. Solution of linear equation 3.57 depends on the inversion 

of the matrix A. If A is singular, then either no solution exists 

with that particular E, or solutions are linearly dependent, in which 

case there is a continuum of solution of at least one dimension, and the 

singular point is not simple. The test for linear dependency is to sub-

stitute the column E for each column of A in turn and to find the 

determinant of the resulting matrix. If all such determinants are zero 

the solutions are linearly dependent. 

If, for any given k and specification of the numbers xj, 

j CAI!  the determinant of A is zero then it is zero for any other 

specification since A is determined by k and not by any of the 2q 
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specifications corresponding to that k. 

2. Solutions of 3.57 which are identical to solution for some 

other specification are redundant. 

Figs. 3.18 and 3.19 are examples of enumerations according to 

the above algorithm, in which solutions of 3.57 for which k = 2n-1 are 

called P, those for 0 4 k 40-1 are called Q, and the remainder 

is r% A remark is included about the existence and stability of each 

singular point. Fig. 3.18 corresponds to Fig. 3.14a. 

3.8 SUMMARY 

The dynamical model is analytically "wellbehaved." L special 

case can be related by analogy to electrical networks, and another 

special case can be solved exactly. 

A complete topological analysis of two—gate networks is possible, 

and the singular points: of a limiting case can be solved in closed form. 

Enumeration of such singular points of networks of arbitrary requires 

the solution of sets of linear equations. 
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CHAPTER 4 

STABILITY IN THE NEIGHBORHOOD OF SINGULAR POINTS 
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4.1 INTRODUCTION 

This chapter concerns several aspects of the stability of the 

systems described previously. Each of the mathematics has already been 

done; here it is applied to networks of arbitrary size. 

Some precise definitions will be given, and then some well-

known theorems of the stability of nonlinear systems. The final portion 

of the chapter concerns application of linearization techniques and 

location of singularities of the general system. 

The methods of first-order approximation used here and the 

general uses Lyapunov functions are well-known and are found in many 

references. Reference 1 contains a chapter emphasizing first-order 

techniques, references 2 and 3 are classic treatments of nonlinear systems, 

and reference 4 is a usefUl summary of many of the theorems and methods 

relating to the uses and generation of Lyapunov functions. 

4.2 DEFINITIONS 

We assume throughout that only Lipschitzian systems are 

considered. Proof that the gate model satisfies this condition was 

given in Section 3.2. The discussion in Section 1.6 specifies the 

gate network to be a nonlinear stationary system in the usual sense. 

Provided the inputs are constant in a finite interval the system is also 

free or unforced, and a system satisfying this and the stationarity 

condition is called autonomous. 
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We have described the general nonlinear dynamic system by n 

equations 3.1 

dxdti  = fi(xl° x22***, 
 xn) ii(x) 	 3.1 

which becomes in vector notation 

= g= F(X) 	 4.1 
dt 

wherethenonlinearfunctionsf(X) are specified by equation 1.28. 

From 3.182.  

= E t AX G(Y) 	 4.2 

which also describes the system and is of the form of 4.1. In the 

following we consider a general system 4.1 although the theorems also 

apply to 4.2. 

Definition 4.1: The Euclidean norm of an n-dimensional 

vector X = [xi] is given by 

pill =(En  x?) 2 	 4.3 i=a 
and an often used non-Euclidoan norm is denoted by 

L i=11 IXI = 	Ix.) • 	 4.4 

Definition  &.2 : Let X°(t) be a solution of 4.1. Then 

X°(t) is stable if for every real number S > 0 and sol- 

ution X(t) of 4.1 there exists a real number ?(S) 
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such that 

lix(to) - x°(t0)11 < S 	4.5 

implies 

IIx(t) — X9(t)II < 	 4.6 

for all t > to. If X°(t) is stable and in addition 

llx(t) — x°(t)11--3. 0 	 4.7 

as 	X°(t) is asymptotically stable. 

Of course X°(t) may be a singular point X°  as discussed 

in Section 3.5. 

Definition 442: A solution X9(t) of 4.1 is asymntotically 

stable in the large if it is stable, and if every motion X(t),  

converges to X°(t) as t-pece. 

It is important to note that the above definitions do not 

apply to all possible situations where the intuitive concept of stability 

applies. Stability as defined above is usually known as "stability in 

the sense of Lyapunov." 

4.3 STABILITY OF AUTONOMOUS SYSTEMS 

Consider the system defined by 

= EC + F1 (X) 	 4.8 
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where H is a constant matrix and 17(X) is a nonlinear vector function 

of X. Equations 4.1 and 4.2 may be rewritten in this form by the use 

of a Taylor series about some singular poimt X°, 

co = F(Xo) 4_ F ~~(X-X°) + 
r- 	

x0,4 F(x°) 
2 =1 3 i'axj 

4.9 
which converges in some neighborhood of XP. Since by definition 

F(X°) = 0 this equation will be in the correct form if the transform,-

ation 

z(t) = jzi(t)) '11.',x(t) — x° 	 4.10 

is made, giving 

Z
OD 	f 	Ar 

= HZ 4.11 .241.0-1 F(x0) E HZ + P(z) 

	

r=2 16; j 	uazj 
4.11 

where H is the constant matrix of first derivatives. This matrix 

is identical to that discussed in section 3.6, except that in this case 

it is of order n. 

Consider the first-order approxinmtion to 4.11, that is, 

Z. = HZ . 	 4.12 

.Theorem4.12: Solutions of 4.12 are asymptotically stable at 

the point Z = Cl• if and only if all the eigenvalues of the 

matrix H have negative real parts. 

The above result is well-known. The eigenvalues are the 

solutions of the characteristic equation 

= 0 2 	 3.52 
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which may be rewritten 

NP -1-01*-1  ... Cn-aX % = 0 . 	4.13 

The criterion in the theorem may be established by solving 

equation 3.53 or by the well-known HUrwitzprocedure5  or the Routh6  

test 	which is preferable for hand computation. 

Theorem 421: Solutions of 4.11 are asymptotically stable 

at Z = 0 if every solution of 4.12 is asymptotically stable 

in the large, if F(Z) is continuous in some region about 

Z)I ( Z = 02. if IF 	-fs. 0 as lZI-4.0 , and if IZ(0)1 is 
Z 

sufficiently small. 

The Taylor series representation ensures that the theorem is 

satisfied since 1(0 is of second- and higher-order terms, provided 

of course the linearized system is asymptotically stable by theorem 5.1. 

A linear system which is asymptotically stable is always asymptotically 
stable in the large. 

Theorem 4.2 applies only in an arbitrarily small neighborhood 

of the...singularity X°, that is near Z = 0. To show behavior in a 

finite region, a result due to Lyapunov is used7: 

Theorem j: Let. Sx be a bounded closed region about 

Z = 0 in the State space of system 4.11. Let A have the 

property that every solution Z(t;Z(to),t0) that starts in 

S1 remains for all future time in SI. If there exists a 
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scalar function W(Z) which is continuous and has continuous 

first partial derivatives in -Cl and such that in XI, W(0) = 0, 

11(Z) > 0 for all Z # 0, W(Z) 0 for all Z (i.e. 144(Z) 

negative -semidefinite), and WiZ(t;Z(to),t0)) does not vanish 

identically in t ;to  for any to  and Z(to) = 0, then 

every solution starting in n. is asymptotically stable to Z = 0. 

The selection of W(Z) which is called a Lyapunov function 

may require much effort in general. Several methods for finding 

Lyapunov functions for certain classes of systems exist, and the next 

chapter is concerned with their application. 

Corollary 4.3.1: If there exists a scalar function W(Z) 

which satisfies the theorem, except that W(Z) ?.; 0 for all 

Z in 11 and W does not vanish identically along a traject-

ory, then Z = 0 is unstable. 

The time derivative 'CI along a trajectory is calculated 

as follows: 

n 
W = 	1.30.1f, 	= i)TF(x) . 	4.14 i=rxi 	2oxi  

Clearly if 11 = -d2  is sign-definite, then - dtd 	64, is also dt 	dt d(-t) 
sign-definite and of the opposite sign. Thus if system 4.1 is stable, 

then the system defined by 

- x = r(x) 	 4.15 
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is unstable, and vice-versa. Hence all stability theorems may be used 

to show instability by reversing time (at least for Lipschitzian systems 

which have unique trajectories as t-11.+oo or t-s". -oo ). 

We note that if it is possible to find a scalar function W 

whose derivative as calculated in 4.14 is identically zero along a 

trajectory then W is a constant of motion (section 3.3.1) and the 

system, under this condition said to be conservative, satisfies Liouvillels 

theorem8. 

Finally we quote a result for linear systems, for which it 

is always possible to find Lyapunov functions in. closed form. 

Theorem Ado The equilibrium state Z = 0 of the linear 

system 4.12 is asymptotically stable if and only if given any 

symmetric, positive-definite matrix Q there exists a sym-

metric, positive-definite matrix P which is the unique 

solution of the n(n+1)/2 linear equations 

PH + HTP = -Q . 	 4.16 

Moreover ZTPZ is a Lyapunov fUnction for the system. 

Equation 4.16 is known as the Lyapunov Matrix Equation. If 

Q isthe zero matrix then ZTPZ is a constant of motion and has the 

units of energy in usual physical situations. 

Lyapunov functions are not unique for given dynamic systems. 

Clearly if W is a Lyapunov function then ea where a  is a positive 
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constant is also a Lyapunov function. A given nonlinear system may also 

have Lyapunov functions of different forms. 

4.4 SERIES EXPANSION OF THE GATE EQUATIONS 

Equations 4.1 will be expanded about a singular point X°, 

using assumption 1 of section 3.5.1; hence W(xi) is specified, 

and 3.1 becomes 

dx1  = fi(X) = 	x.(1 — 	+ dt • — pilograTc;) 4.17 

which is zero by definition at all singularities X°. The matrix H 

is defined by 

afi(X°) 	I o.  — 2x1)(Gi ax 	ri7i 
xi ) 

Ifilecj — pi pi  xi  

+ x (1 - 	- Pi X=X. 

= -1-tx(1 - 
fiTi 1  xl)aii - Pi] 4.18 

and 

afi(K°) 
	 = 	x90. - x9)m. ax iz 1  

4.19 

which correspond to general forms 3.2 and 3.3. The higher derivatives 

may be found by further differentiation of 4.18 and 4.19. No further 

comments on the resulting series will be made except the following; If 

fi  -0.0 with fiti  finite, 4.17 is an equation of degree three, and 

therefore all derivatives of order four and higher will be zero. 
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The alternate form 4.2 may be written from 1.21: 

dyi 	1 	 'i  
g1  (Y) = --- =-----fE 

dt 	p ?.. i - PiYi + 21  al 7i ) 
i 1 	J 1 +- e ' 

and the matrix H is defined in this case by 
—71. 

agi _ 1 	cciie  

aYi 	kilt 1  (1 + e—Yi)2IY=Y°  

=--- 4---:4{—ei 4  aiixi(1 — xi) 	0  
X=X 

and 

4.20 

4.21 

Yi 
ag' = 14

e 	1 

ayj 
f j'ri  ( 	e-71)

2 
r=lr°  

which are identical to 4.18 and 4.19. 

(3. - xi) 	4.22  
X=r3  

4.5 ENUMERATION OF SINGULARITIES: THE GENERAL CASE 

In order to apply theorems 4.1, 4.2 or 4.3 in any specific 

case it is necessary to be able to locate all singular points X°. 

The case 11. = 0 for all i was treated in the last chapter and was 

seen to require the solution of at most n simultaneous linear equations 

for each singular point. An algorithm was given for enumerating all 

311  possible singular points, some of which may be unrealizable. In 

the general case n nonlinear equations must be solved, written 

E Blyx) + AX = 0 	 4.23 

from 3.40. 
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It has been demonstrated in section 3.6.2 that because of the form of 

the nonlinearity there are at most 3n  solutions to 4.23. From the 

finiteness assumption the solutions of this equation are the only realiz-

able singularities of the system. 

Equation 4.23 is transcendental and it is not possible to 

write its solution in closed form. Solution of such equations is a 

standard computational problem for which relaxation or other methods 

may be used. It is a general requirement, however, that an initial 

guess of the solution must be made sufficiently near the actual solution 

for the method to succeed. We take refuge in simplifying assumption 3, 

section 3.5.1 to ensure that such a guess may always be made, subject to 

a further constraint. 

Assertion 4: Let the matrix A in 4.23 be nonsingular. 

Let the principal singularity r = 1711 be defined as that 

point which by definition satisfies 4.23, and in addition 

11111(r)11 < myx0)11 4.24 . 

for all other singular points X°. For any /A> 0 there 

exists a number M(i) < oo such that for some real square 

matrix C .= [cij], if 

then 

max 
1 

Ic.il < 14 
isi  

4.25 
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llr -, 211 cim 	 4.26 

where X is the solution of the equation 

E + AX = 0 	 3.19 

Proof: From 4.23 and 3.19, 

k(r 	+ 	= 0 	 4.27 

and thus 

r 	= A-1Bv r) 	 4.28 

since A is nonsingular. From the phase plane analysis it is clear 

that at least one point I' exists for which vir) is finite. Thus 
if C = A-1  which is finite, we can find a finite number 11 which 

allows 4.25 for any U)  0 in 4.26. 

Assertion 4.2: Let r be the principal singularity of 
4.23. Consider the linear equation 

CE — BIrr) + Al') + 	— diag[Fir(n)])(X — 	= °- 

obtained from the Taylor series 4.9 with second—degree ::: 29  d 

higher terms omitted. Let X0 1 	be the sequence 
3n 

of singularities of 4.29 enumerated according to, say, the 

algorithm of section 3.7. Then for every singular point X°  

of 4.23 and 	0 there exists a number 11(cn such that 
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or 

if either 
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1(1 	I M 	4.31 

hold for any 
	

1) 2,..., n, and some r 4 3n  in the 

sequence, then 

4.32 

Proof: If 4.31 holds for gate iand M satisfies theorem 

2.3, gate i realizes a linear threshold function and lq —211 may 

be specified as arbitrarily small. If 4.30 holds for gate k, say, then 

for arbitrarily large /4 the kth equation 

(Ek -IgkLir/k)  EC(kj 71j ) 	cykj (xj 	Pk (;)(xk rol 
=, 0 	4.33 

must have a solution arbitrarily near 44 since the p and tit` 
terms are arbitrarily small compared to C. 

We remark that these assertions specify conditions which 

the network must satisfy for good approximate solutions of 4.23 to be 

found in a specified order. Obviously since the unit hypercube is a 

bounded set it is always possible to find an unordered sequence of 

approximate solutions simply by generating sequences of uniformly-

spaced points in the set. A closed-form solution for an ordered sequ- 
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ence of good approximations to the singular points of an arbitrary 

network is not known. 

The two-gate diagrams of Fig. 3.11 may be used to illustrate 

the restriction of assertion 4.2, which admits 3.11 a, b, c, d, i and 

j and their equivalents but no others. 

4.6 STABILITY OF THE LINEARIZED GENERAL SYSTEM 

Theorem 2.3 is a specification of the conditions for a gate 

described by equation 1.21 to realize a linear threshold function. 

Definition 2.7 and the discussion in section 2.5'related the system 

to a time-discrete representation. We shall_show that theorems 4.1 and 

4.2 are sufficient to establish certain conditions under which a collec-

tion of gates realizes a linear threshold net, the functional behavior 

of which is defined for time-discrete9  representations. Here we treat 

realization as a generalization of the single-gate realization criteria. 

The time-continuous behavior of our model of networks of threshold gates 

has been shown previously to be described by equation 1.38, repeated 

here ( II is assumed zero in the time interval of interest): 

(TD + I)B(Y 	A(x -r) + PU 	1.38 

Definition  A.A: A physical system described by 1.38 realizes 

a linear threshold net if, for any integer M there exists 

an integer m.11 such that the system is m-discrete, and 

in addition there exists a number T <co such that 
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toi < T 
	 4.34 

for all I, 1 .4:  i n . 

Obviously, at any singular point of 1.38 which is near enough 

to a vertex of the unit hypercube so that every gate realizes a linear 

threshold function, the system realizes a linear threshold netfor all 

time subsequent to the initial time, that is for any T to, provided 

the system remains at the singular point. 

Theorem Alf.: Let a system of n gates be described by 

1.38 and let X°  be a singular point. Then there exists 

a set of numbers pi  0, 1 i n such that if either 

4.35 

or 

11 — xis <pi 	4.36 

hold for 1 i.4;  n, all solutions with initial points X(to) 

in a region IL1  containing X° approach X° as t--to oo. 

Proofi The system will be shown to satisfy theorem 4.2. 

From 3.2 and 3.3 the linearized system obtained from the Taylor series 

4.9 at the point X° has the matrix 

H = diagf 	1 	1 	diag [-- 1 ] . 
(xcl. 

4.37 
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Some results in matrix theory will be quoted: 

Lemma 44113: Let H be a real square matrix. The quadratic 

form Q = ZTHZ is equal to the quadratic form of the symmetric 

part of H, i.e. 

Q =1ZT(H + HT)Z . 	 4.38 

Lemma 4:21, 4 	12: A real square matrix H(Z) for which 

hii 	/A >0 	4.39 j*i 
is said to be uniformly Hadamard. If H is uniformly 

Hadamard and symmetric, then it is positive-definite, i.e. 

ZTHZ > 0 	 4.40 

for all Z 0 0 . 

Consider the matrix G = -H 	If G is positive-definite 

then H is negative-definite. The symmetric part of G is 

Gs f!! 	diag[ 	it 	]0. AT) . 
2p 	Lp (xi) 4.41 

Since Gs is a constant matrix it is uniformly Hadamard provided 

lc 
	12g.. + 4.42 2pirop(xl) 11  j#1. 

uf 	+ Jil > 0, 1 $ i $ n . 

Let 4.42 hold. Then by lemma 4.2 Gs  is positive-definite, and by 

lemma 4.1 G is also positive-definite, and hence H is negative- 
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definite. Consider the positive-definite scalar function 

W = -NTZ 
	 4.43 

The total derivative is 

= (rw)rii = zTEz 	 4.44 

Which is negative-definite in an unbounded region Li containing the 

origin and thus the linear system 

= HZ E H(X - X°) 	 4.45 

is asymptotically stable in the large. 

The high-order terms of the Taylor series obey the equation 

Lim IF(Z)1  -70 o 	 4.46 1z14. o I Zl 

in a region Sli  containing Z = 0 which corresponds to X =X° 

and thus theorem 4.2 is true for this linear system provided 4.42 is 

true. Now from 4.42 

wt (xi) _2420,G i  + 2:1101144  + 1  2pi 	jti 4.47 

and since (from section 1.6.1) V(xi)-•.+00 as. 	or xj-). 1 

there exists a set of numbers pi  > 0 for which 4.47 is satisfied 

when one of 4.35 or 4.36 is satisfied. This completes the proof. 
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The following comments may be made about the theorem: 

1. It provides a proof that singular points sufficiently 

near to the vertices of the unit hypercube are stable. Examples are 

provided in Fig. 3.11; all singular points "near" corners of the unit 

square are stable. 

2. Initial conditions sufficiently close to appropriate 

stable singular points imply that after a time the system realizes a 

linear threshold net. This will be expressed as 

Corollary 4.5.1:  Let there exist numbers ai and bi with 

0 < ai.< bi  < 1 and singular point X° which satisfies, for 

arbitrary iu > 0 

4.4e 

where ti equals either mi  or bi. Let X° satisfy theorem 

4.5. Then there exists a number. T such that if the initial 

point X(to) is in Da  the systemzealizes-a linear threshold 

net in (T,co). 

Proof: From theorem 4.5 if x(to) 3., X(t) X°  as 
t-o.00. Hence there exists T such that 

Ixi(t) — t11 <p, 1 i 4 n 	4.49 

for all t > T and thus both definitions 2.6 and 4.4 are satisfied 

in (T,00), i.e. the system realizes a linear threshold net in (T,00). 



3. The theorem and corollary specify sufficient conditions 

for a system to realize a linear threshold net at or near a singular 

point. It is important to observe that there is no reason to suppose 

that constraint 4.47 under which the theorem is true is also a necessary 

condition. 

A theorem of instability will be quoted: 

Theorem  41.0: The singular point Z = 0 of 4.33 is unstable 
if 17(z) is continuous in a region about Z = 0, if IP(Z/I 	0 

IZI 
as 1ZI .0.0, and if the matrix H possesses at least one 

eigenvalue with positive real part. 

We now consider singularities of the systeM which do not 

satisfy theorem 4.5. Attention will first be given to those "near" the 

edges of the unit hypercube. 

,Theorem  La; Let 9 	id be the set of n threshold 

gates in system 1.38. Let 11  be a proper subset of 9 and 
let X° be a singular point. There exist dA47 0 and 11 

such that if i e 

14.(1 4)1 /44 	 4.50 

for all i E 9
1  and 

aii > M 	 4.53. 

for all i lip then X° is unstable. 
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Proof: It will be established that the system satisfies 

theorem 4.6. Consider the matrix of the linearized system given by 4.37. 
Let the number /4. approach 0. Then for 4.50 to hold, the 

quantity piTiV(4) must approach + co. Hence for any positive 

number, /41  say, there exists tt) 0 such that 4.50 holds and furthermore 

and thus 

a.. 

AS( 	t  (4) <1111 
s 

1 

4.52 

hii < 4.53 

The quantity piri  tr (4) is finite. Hence for any positive 

number, /42  say, a number 11 exists which satisfies 

11 Zf 	• tyr (xl) VII 1 1 

in which case 

4.54 

	 h.. 
it% 

Since pl  may be chosen arbitrarily small, there exists a 

number '2  which satisfies the inequality 

iltdi  1  

in which case 

> 0 . 
iel 

4.57 

4.58 

4.55 



146 

Now consider the characteristic equation 4.13 of H. From 

elementary algebra the sum of the n roots of 4.13 is equal to tr(H), 

i.e. if co  E 1, 

ci  = -tr(H) = -Ytki 	4.59 
i=1 

and thus if the trace is positive, at least one root must have positive 

real part. Equation 4.58 and 4.9 thus imply that the system satisfies 

theorem 4.6 and is unstable. 

The final res4t of this section concerns the point r, 

which generally does not satisfy theorem 4.5, in which case it must 

be unstable for the system to realize a linear threshold net. We 

show a necessary restriction on the B-matrix. 

Theorem  4.8: There exist numbers pi  0 such that if 

Fi 	 4.60 

for all i = 1, 2,..., n, all solutiOns with initial conditions 

in a neighborhood 111  of T' approach r' as t-o• +co . 

Proof: The argument is similar to the proof of theorem 4.5. 

The matrix H of the linearized system at I' is to be shown to be 
negative-definite. 

By definition the quantity Tor(Y1) is finite. Therefore 
A a set of numbers pi  exists for which 

	(24 AE ri 2iizik10(71) 	yi  ]+ ajil ) 0, 1 4i <n 4.61 
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and therefore from lemma 4.1 and 4.2, if 4.60 and 4.61 hold, the scalar 

function 4.43 has total derivative 4.44 which is negative-definite. 

Hence theorem 4.2 is satisfied and r" is stable. 

Some comments will be made: 

1. Theorems 4.5, 4.7 and 4.8 establish sufficient conditions 

for their respective stability or instability results. The proofs are 

existence proofs and do not give tight bounds for the theorems to be 

true. It is quite possible, for example, that a characteristic poly-

nomial whose second coefficient ( cl  ) is positive will have roots in 

the right half-plane. The most useful test in any specific case is to 

find the characteristic polynomial and test it for roots with positive 

real part. 

2. The theorems allow a conclusion about the realization of 

linear threshold nets: 

Assertion  11„2: If a threshold system has the properties 

(a) all singular points satisfy theorem 4.5, or 4.7, 

(b) all eigenvalues of the matrix H .of the linearized 

system are real at r and at points satisfying theorem 4.5, 

(c) r is unstable, 

then the system realizes a linear threshold net. 

Proof: Property (b) ensures that no stable closed trajec-

tories (stable limit-cycles) exist, since if one did exist then it would 

be possible to find a linear approximation which has complex.eigenvalues. 

Properties (a) and (c) ensure that all stable points realize a linear 

r- 
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threshold net. Therefore a system which satisfies these. properties 

must approach a singular point at which it realizes a linear threshold 

net.. 

Fig. 3.11 b and d both satisfy the assertion, and systems of 

higher order may also satisfy it. It is straightforward to show for 

example that a system whose coupling coefficients °tip  j 0 i all have 

the same sign has real eigenvalues and satisfies the assertion provided 

it has properties (a) and (c). 

4.7 STABILITY OF THE LINEARIZED SPECIAL SYSTEM 

We consider the n—gate special system described by the 

equation 

BT-
dt
— 

-
C3 1TAX) = E + AX 
	 4.62 

which is obtained from 2.46. Solutions will be examined in the neighbor—

hood of singular points X° enumerated as in section 3.7. The equation 

of first variation at X0  may be obtained from 4.18 and 4.19, in which 

y(xi) has been specified: 

afi(X°) hii ax 	 —{(1 - 2x(i)(Ei  + Toliix3) + xi(1 - xpliq 4.63 i  f 	 j 4  

afi(e) 

hii 
= 	q(1 xporij  . 	4.64 

Pill 

The eigenvalues of the matrix H depend on the relative values of the 

quantities P1?1I4Jt(4) and the elements of A, whereas in the general 

• 
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case the absolute value of the parameters pi  also influence system 
stability. 

The principal singularity r of the special system has been 

defined as the solution of the equation 

E + AX = 0 . 	 3.19 

It will be assumed here that such a solution exists and is unique; 

systems which do not have unique solutions will be discussed later. 

Provided r is in the unit hypercube its stability has physical meaning. 
The matrix is 

H = diagr 	1 	lA 	 4.65 lfiTikpl(71)J 

Little is known about the behavior of eigenvalues with respect to, r- 

for arbitrary matrices A. 

Singularities at which xi  € [OA for all i realize linear 

threshold nets by definition, provided they are stable. In this case the 

matrix is 

H = diagF1--(1 — 24)(ei  + DI  A)} 	4.66 
Pi7i 

and the eigenvalues are the nonzero elements of H. The system is 

stable provided all eigenvalues are negative. Obviously if xl is 1 

and Ei  + '&14/ is positive then the solution xi(t) will tend to 

4 provided the initial point is near enough to xi. A similar situ—
ation exists for x° = 0, in which case the excitation quantity must be 

negative for stability. The terms (1 — 24) in 4.66 confirm that 
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in both cases the eigenvalues are negative. The choice of the logistic 

curve gives this simple expression. 

Assertion  AA: If the special system is unstable at a vertex 

X°  of the unit hypercube and no solution Y. of 3.19 equals 

xi, then the general system shich satisfies assertions 4.1 

and 4.2 has no realizable singularity arbitrarily close to 

xo.  

Proof: Assertions 4.1 and 4.2 ensure that no more than one 

singularity of the general system is near X° provided no 1 equals 

xi. If such a singularity exists it is stable by theorem 4.5. If it is 

stable then the singularity X°  of the special case must also be stable. 

'We show this as follows: Assume xi is 1. Let the singular point of 

the general system be denoted by Xl. If xl—p-1 the quantity —05.4)(xl) 

is negative and the quantity E + Egijx1 must be positive. Hence 

the quantity c. + 	x9 is also positive and xi is stable. A j 	j 

similar argument applies near xi = 0 . 

Points X°' for which some x7.  are 0 or 1 and others 

are in (0,1) have the character of the point T.' and of the vertex 

points and must therefore be treated individually. 
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4„8 REDUCTION OF THE ORDER OF A NETWORK 

We consider some of the situations which may be encountered 

in the analysis of general linear threshold nets. Let A be the weight 

matrix of an arbitrary net / of order n. 

Assertion 	Let ocij  =.0 for all j. Let A be the matrix 

obtained from A by removing the i h  row and ith column. 

Then the asymptotic stability of the system 9 characterized 

by A is identical to the system y characterized by A. 

Proof: If A has a zero row it has an element whose inputs 

are the "external'! . input set Uk. Thus its output xi  is 

(a) asymptotically stable since we assume that Uk is constant 

over the time interval of interest)  and 

(b) an input to system 4. 
Hence if 9 is asymptotically stable)  j. is also asymptotically stable)  

and if ; is unstable)  4 is unstable. 

.Assertion A.6: Let aii  = 0 for all i. Let I be the matrix 

A with the jth column and the jth row removed. Then the 

asymptotic stability of system 9 characterized by 1 is 

identical to that of 4  characterized by A. 

Proof: If A has a zero column it has an element j whose 

output does not affect the other gates in the system. Its inputs are the 

external input set and the variables xi)  1 4 i fin, i.e. gate j is 



152 

A 

dynamically dependent on the rest of the system, which is 4. Hence 

the stability of the reduced system 9 determines the stability of 1. 

Assertion 41D Let 4 be a proper subset of 4. If aij  = 0 

for all i e 9 and j 46 or for all i O./ and j 44 then 

the system stability is determined by the distinct networks 

1 and 9 - 
^ 

Proof:Let-=0 for all i G 	and j Off. 4:4 This constraint 

specifies that system 9 may affect the rest of the system if some 
A 	 A 

d'ji X 0 for i E y and jgtsr
,
, but 9 is independent of I - 9. 

Hence if 9 is stable, J is stable if 4- 9 is stable, and if 

is unstable then 1 is unstable. A similar argument holds for the 

alternate constraint. 

Assertions 4.5 and 4.6 are special cases in which the rank of 

A is less than n, the order of the system. It has been argued14  

that time-discrete threshold networks are characterized by the rank of 

the weight matrix, rather than the order. Hera this result will be gen-

eralized and proved for our continuous model. We shall use 

Definition LI: Two networks are logically similar if there 

exists a nonsingular transformation such that every stable 

singular point of one network is mapped one-to-one onto a 

stable singular point of the other, and in addition every 

point on a stable trajectory of one is mapped one-to-one onto 

a stable trajectory of the other. 
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Theorem  L.59.: Let A be the n x n weight matrix of an n—

gate linear threshold net. Let the rank of A be r n. 

Then the threshold net is logically similar to. a network of 

✓ gates (not necessarily threshold gates). 

Proof: An elementary result15  in matrix theory will be quoted: 

Lemma 443: Let A be a square matrix of order. n and rank 

✓ n. There exists a nonsingular matrix Q such that 

AQ = c 	 4.67 

which is of the form 

 

-en  
. . 0I 
. 	. 
. 	. 	I 
crl . . . c I 0 . Irri  

. 	. 	1 
21n1 . . . cnrI 

"OP 

 

C = 

  

4.68 

    

Consider the zero—input system 1.38 with transformations 1.40 

and 1.41. The state equation is 

(TD 	I)Ir = AZ . 	 4.69 

From lemma 4.3 there exists a nonsingular matrix Q such that, by the 
linear transformation 

z =Qe , 	 4.70 
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the equation becomes 

(TD + I)V = Aqe 
	

4.71 

where AQ is of the form of 4.68. The solution of 4.71 is 

-1  V(t) = e tT  V(0) joGs  (t — 	r)d 4.72 

where 

L:1 
Gs = 	t(Ts 4.73 

which is also of the form of 4.68. Equation 4.71 defines the dynamical 

behavior of a certain network with output vector e. Since X is the 

output of a network of threshold gates, the state-space of which is a 

cube of n dimensions, the state-space of system 4.71 is a linear 

transformation of the X-space, and is a parallelpiped of n dimensions. 

But from 4.72 and 4.73 it is clear that after an initial transient 

(after the first term on the right-hand side of 4.72 has become negligible) 

the first r elements of V are independent of the rest, and the last 

n 	r elements are dependent on, i.e. have as inputs, only the first 

r elements. Thus as t.410.op, trajectories in V-space are constrained 

to a manifold of r dimensions, and thus there are exactly r degrees 

of freedom in the e-space. In such a case there are at most 3" stable 
singularities of this system and since transformation 4.70 is nonsingular, 

there are at most 3r  stable singular points of 4.69. Hence network 
4.69 is logically equivalent to a network of order r. 
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Only if assertion 4.5, 4.6 or 4.7 holds is it 

clear that the threshold network is similar to one or more smaller 

threshold nets. Nevertheless theorem 4.9 specifies a fundamental limit—

ation on the logical behavior of threshold nets with singular weight 

matrices. 

4.9 SEJNMLRY 

The behavior of autonomous systems in the neighborhood of 

singnJnr points is determined by finding the eigenvalues.ofthe matrix. 

of the linearized system at each point. Such techniques may be applied 

to the gate network model, provided the singular points can be found. 

Each singular point is near a point of a system similar to that 

discussed in the previous chapter, prOvided the magnitudes 	are 

larger than a certain finite number. 

The analysis of the stability of linearized systems enables,  

conclusions to.be reached about the.realization of linear threshold 

nets by groups of threshold gates. Further, it leads to methods of 

reducing large networks to groups of subnetworks for purposes of analysis. 
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CHAPTER 5 

THE SECOND METHOD OF LYAPUNOV APPLIED TO THE NETWORK MODEL 
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5.1 INTRODUCTION 

The stability analyses of chapter 4 are limited exclusively 

to linearizations of the threshold system at singular points. Such 

linearizations approximate the nonlinear system with accuracy within 

small neighborhoods of the singularities, but it is also desirable 

to predict the global behavior. Usually the initial point of a system 

will not be within such a neighborhood, and it is necessary to predict 

the stable singular point at which the system will come to rest if, in 

fact, there is such a point. There may be a stable limit—cycle, in which 

case the network exhibits a continuous stable oscillation of constant 

period (in the absence of perturbations of the system) and therefore may 

realize a linear threshold net in a manner which cannot be predicted 

using the theorems of the previous chapter. Finally the Lyapunov functions 

which are required in determining global stability are often of the form 

of potenial functions and may be analogous to energy in physical dynamics, 

and may therefore provide insight into the behavior of the network model. 

The method for the analysis of a general network is to proceed 

according to the discussion in chapter 4. The system may be reduced to 

one or more minimal nonsingular systems, and these may then be considered 

separately for stability analyses. The nature of the singular points 

should be investigated to determine the local stability near them. 

Finally if more information is required the techniques to be discussed 

in this chapter may be used. 
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We shall attempt to present some general results using various 

techniques for the generation of Lyapunov functions. Relevance to previous 

discussion will also be mentioned where appropriate. 

5.2 LYAPUNOV FUNCTIONS OF THE GENERAL SYSTEM 

We shall work with equation 4.69, which is a concise descrip- 

tion of the threshold system: 

(TD + I)v = AZ . 	 4.69 

An alternative representation is the equation 

= diag[ 	i(AZ - V) (3.  r 
1 
 (x) 

ii 
wr i  5.3_ 

which obtains directly from 1.38 or 4.69. 

By definition these equations have singular points at V = Z = 0, 

and the vectors V and Z are mutually dependent. 

Some properties of Lyapunov-type functions in a neighborhood 

11 of singular points will be recalled: 

- Positive-definiteness or semidefiniteness: W(X0) = 0, 

and W(X) 0, X 0 X0, X O. 

- Uniqueness: If W is unique, it satisfies 

z2ur x  = b2m), ioi  
5.2 

axibxi  24xj)xi  

for all X in Cl. This is equivalent to a generalized 

curd. equation, i.e. 

rpm = o . 	5.3 
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- If 

w(x) c — 	5.4 

where V is an arbitrary positive constant, then 

W(x(t)) W(X(0))e 
Vt 	 5.5 

which approaches 0 as t-roco. Since W is continuous and 

positive-definite this equation implies that X.4.0 as t-o•co. 

Let W(X) = 	0 be the smallest value of W for which 

W = 0. Then all solution trajectories with initial conditions 

within the region SI bounded by 14(X) = c remain within 17. for 

all t > 0, and the system satisfies theorem 4.3 and is 

therefore asymptotically stable in the large. If V is an 

arbitrary negative constant then the above discussion applies 

to a system which is unstable, and whose solution trajectories 

leave -c2. as t-o-co. If 

WE 0 	 5.6 

for all X in a 'region containing 0 the system is said to 

be conservative. 

Finally we quote a theorem which guarantees the existence of 

LyapUnov functions for systems such as ours, described in general by 4.11. 

Theorem  5.11: Let 4.11 describe an autonomous Lipschitzian 

system, and let Z = 0 be asymptotically stable in the large., 

Then there exists a Lyapunov function W(Z) which is infinitely 

differentiable with respect to Z. 
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A consequence of the theorem is that every unstable system 

has a suitable function W whose time-derivative is negative-definite, 

and every conservative system such a function with derivative identically 

zero. 

Unfortunately no general rules exist for writing down expressions 

for Lyapunov functions. Methods do exist2  but suitable functions are not 

guaranteed. We shall apply several such methods, beginning with the 

assumption that stability in a neighborhood of each singular point 

has been established by the methods of the previous chapter, and that 

the system is in minimal form. 

It is a general requirement that the region Cl. be as large 

as possible in order that the strongest possible conditions for system 

behavior may be established. 

5.2.1 VARIABLE GRADIENT METHODS 

We assume that the gradient of W is of the form 

VW(Z) = pZ 	 5.7 

or 

VW(v) = PV . 	 5.8 

The function W is required. tosatisfy 5.2 and be sign-definite, 

i.e. it is required to satisfy 5.3 and 5.4 or.5.6.P need not be a constant 

matrix. We are thus required to find a matrix P and, if possible the 

matrix which gives the largest region -a. 

Consider a constant matrix P and a quadratic form 

w(v) = *VTPV 	
5.9 
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for which the curl equation is 

)N7 W(V) = pji  inFiW(9 	
EPikVk = Pii = 217r 

	a vi  b Pi  
2 5.10 

i.e. P is symmetric. If WV). is to be a Lyapunov function P must 

also be positive-definite. We quote some useful results from matrix 

theory% recalling lemma 4.1, which states that the symmetric part of 

a matrix determines its quadratic form. 

Definition 5.1: For a symmetric matrix A = [aii] the 

leading principal minors are: 

Po = 12  P1 = allo P2 =   
all 

a21 a22 
P.",  Pn  = IA1 • 

	5.11 

Theorem 1,2: A real symmetric matrix A of order n is 

positi 3-definite if and only if its rank is n and all 

leading principal minors are positive. 

Consider system 4.69, which may be rewritten 

V = -T-1V + T-1AZ . 	 5.12 

We require the derivative 

Tr= -VTPT-1V + VTPT-1AZ 
	 5.13 

to be sign-definite in a region 11. which depends on PI  and further- 

more we require that solutions enter or remain in 	for positive t. 
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Assertion 5.1: Let V = Z = 0 be an asymptotically stable 

point of 5.12. Then there exists a constant, symmetric, 

positive-definite matrix P for which 5.13 is at least neg-

ative semidefinite in a region J which may be vanishingly 

small. If V = Z = 0 is unstable there exists a positive-

definite matrix P for which 5.13 is at least positive-semi-

definite in Si, which may be vanishingly small. 

Proof: If V = Z = 0 is asymptotically stable then its linear 

approximation 

V = HV 
	 5.14 

is a valid description of the system in a region X/ containing 0 which 

may be vanishingly small. Thus by theorem 4.4 there exists a constant 
matrix P which satisfies the theorem in SI. The proof of the unstable 

case follows directly from the stable case. 

The following considerations arise: 

1. It is desired to make the region of stability n. finite, 

and as large as possible, that is, we wish to find -a such that if the 

initial point is outside xl, system behavior is different in character 

from behavior for initial conditions in sl. 

2. A constant matrix P may not give rise to a satisfactory 

region a.. 

3. P need not be a constant matrix. However it is extreme- 
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ly difficult in the general case to find a non-constant matrix which 

satisfies the curl equation)  the positive-definiteness criterion, and 

which has a sign-definite derivative. 

4. In general the easiest method for ensuring that trajec-

tories remain in J1 is to specify that the boundary of sx. is a level 

contour W = c. 

5. There are exactly n(n+l)/2 independent elements of the 

matrix P which may be adjusted so that _ri is suitable. 

An elementary example will be used to illustrate the above 

discussion. Consider the completely symmetrical bistable circuit contain-

ing two gates described by the matrices 

T =I 2  B1, 

E 	[10] 	A = [ 0 -20] 

10 	-20 0 • 

5:15 

The phase diagram for this system is Fig. 3.11d, which is repeated in 

Fig. 5.1a. Obviously since the system is byiametric all trajectories 

below the diagonal approach the singular point near (1,0) and all 

trajectories above the diagonal approach the singular point near (0,1). 

The point r = (i)i) is a saddle point. The system is to be transformed 

to the form of 4.69, taking, for example, the singular point near (1,0) 

as the origin. We have 

10 -. 4)(x1)  - 201 = 	 5.16 
10 - y(x) 20x1= 0 
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Fig. 5.1a A Symmetric Bistable 

2 

Fig. 5.1b Trandformed Phase Diagram 
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5.17 

where 
	

is a small positive number (of the order of 4.5 x 10-5). 

Hence 

41(x0 = 10 - 201 	
5.18 

y(x2) = -10 + 20r1 

from which 

vl  = k1(x1) — 10 + 201 

v2 = 4)(..K2) + 10 — 20 I 

zi  = 	- 1 4- 

z2  = x2  -1  

and these transformations give the required form. 

The unit square is mapped one-to-one onto the V-plane which 

is shown in Fig. 5.1b. The point nearest the origin at which equation 

5.13 is zero is the point V = (-10+201, 10-20.7) which is the image 

of 1". We choose 	to be an ellipse with centre at the origin, minor 

axis 0 - 1,7 and arbitrarily large major axis a, say. That is, in a 

set of orthogonal coordinates r1, r2' the equation of the ellipse is 

1 	R 	RTA R  = 

0 

11(42 	
5.20 

To write this equation in terms of vl, v2  we find an orthogonal trans- 

5.19 

2 2 1 

r2  RT a2  
a2 

0 
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formation 	R = SV, 	for 

1 	-1.1 
S= 1 

41..1  

from which we have 

vTsTy\sv PVT 

example 

1 1 	1 _ 

V := 	. 

5.21 

5.22  

	

a2 	Ilvll2  

	

1 	1 _ 

	

a2 	wn2 

	

1 	1 
a2 

An ellipse, SII  say, defined by this quadratic form transforms into the 

region indicated in Fig. 5.1a. In the limit we may take the major axis 

a to be infinitely large, in which case the stable region approaches 

the total area below the.diagonal. 

The procedure used above may be generalized to arbitrary 

networks and dimensions in a straightforward manner. A symmetric positive— 

definite matrix P always results from the choice of an ellipsoid 

as the region J1. One or more dimensions of the ellipsoid may be arb— 

itrarily large, in which case P is poditive semidefinite. 

5.2.2 FREQUENCY—PLANE STABILITY CRITERIA 

Generalizations of the Popov4  frequency—plane criterion to 

systems with many nonlinearities of a certain form are available56 "7 . 

We quote a result which gives necessary and sufficient conditions for the 

existence of Lyapunov functions of the form 

V 
W =• ZTdV + VTPV 
	

5.23 
0 
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for the threshold system, where P is symmetric. Define the function 

yvi) to be 

7 
zi = 41(7i) 	V-11-11  tiP(4).) - xi = 4)-1(7i) 	5.24  

where x9 is the singular point to be investigated. From the shape of 

the function cip(v1), it is clear that the integral in 5.23 is always 

positive. Thus W is positive definite if, but not only if P is 

positive semidefinite. 

Consider 5.2a, which is a block diagram of a type of nonlinear 

multivariate control system in which R, V,.Z and S are n-vectors. 

f is a set of n time-invariant, inertialess nonlinear gain elements 

whose outputs are 40 (vi) where 

0 $ v4.(vi < ) 	i 
2 • 	 5.25 

This inequality is referred to by stating that 4i is confined to the 

sector [0,kj. G is a linear, time-invariant subsystem and the closed- 

loop system is described by the equation 

t  -v(t) = -Vo(t) + iGs(t -7)Z(r)dr 	5.26 
0 

where Volt) is a linear function of the zero-input response of G and 

the input R(t) which is assumed zero or a small disturbance which 

eventually dies away. It is assumed that the following conditions 

apply for 1 * ilj 

1. For all inputs and initial states 
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(a) vi is bounded, 

(b) v
oi
(t)-4).0 as t-4pco, 

(c) voi, voiEL2(0,co) where the notation s(t)ELt(a,b) 

T 	l  is(tArdtilr  < oa. 	5.27 
a 

2. gijeLl(0,o)). 

Systems of the above description are said to be in the Lurie 

form9s  and for purposes of analysis are often transformed into equivalent 

canonical systems by expanding the linear functions gij(s) in partial 

fractions. Note that the first-order form assumed for gij  implies that 

the threshold system model is in a canonic form, but the following theorem 

applies for higher-order rational transfer functions with all poles in 

the left half-plane. 

Let 

Q = 
	 5.28 

K = diag[ki] 
	

5.29 

be real n x n matrices and let 

ift(ico)- = 	Cil0(j(4) + 	 5.30 

	

F ( jw) = ft(jc*) + 4:1.81 (p.o) 
	

5.31 

where (FL is the complex conjugate transpose of A. The elements ki  

of K are to satisfy 5.25. 

means 



         

cp 

     

     

     

       

       

       

          

          

          

          

Fig. 5.2a A Multivariate Control System 

(i) 

Fig. 5.2b A Threshold Network 
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Theorem 5.38: Let the system of Fig. 5.2a satisfy the above 

conditions. If there exists a real diagonal matrix Q such 

that for all c.o>0, F(jw) is positive-definite, then the 

elements of V(t) are bounded elements of L2(000) and tend 

to zero as t->oo. 

Fig. 5.2b shows the threshold system in block-diagram form 

similar to the control system of Fig. 5.2a. When X0  is constant the 

state Z = V = 0 is stable provided the control system is stable. This 

is true since 5.26 is identical in form to 1.45 which, with zero input, 

describes Fig. 5.2b. Hence theorem 5.3 may be applied to find the maxi-

mum sectors (01k1:1 in which a Lyapunov function 5.23 exists. Replacing 

the functions 0151.(vi) by kivi an ellipsoidal region .02  exists within 

the surface defined by 

117(P + K)V = c , 	 5.32 

and the region XL inside W(V) = c is greater than that defined by 

this equation, but smaller than sll  defined by 

vT(P 4:K1) = c 	 5.33 

where K1  = [kid is a diagonal matrix whose elements satisfy 

vi41(71)  !IcA 	 5.34 

It may not always be possible to specify such a matrix with nonzero 



elements. Thus we have 

St Cr). c s2 2 	1 

where al  and sit are quadratic forms. Hence if 4771  is chosen to be 

the largest ellipsoid in V-space for which W is negative-definite, 

W is also negative-definite in 	Indeed S13.  may be chosen larger 

than this, so long as W 4 0 .in fl, but s21  may be considerably easier 

to find. 

As to the matrices Q, R and F, these are obtained as 

follows: From Fig. 5.2b which is described by equation 1.45 or 4.69, 

-V(t) = -Vo(t) + 	- 7)z(T)d7 	5.36 
o 

and the linear transfer function matrix is 

G(s) = LIG8(t)] = (sT + irig .= 1 + s Ti] • 
	5.37 

Hence, 

d?(J4 = dia41 + jobij I-G(341 + K-1  = 	
1 

[-411
+  
(1 i  1 4. K-1 5.33 

F041) = rit(1 j(jcii)  - 	 j(441 2N-1  . 5.39 

The usual test for the positive-definiteness of F(j4)) is to find the 

leading principal minors and apply theorem 5.2. Now let 

(F(io) = Rt(oR) 	J9•.(R) • 	 5.40 

Then 
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5.35 
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= fla(g) + k(R)r + isn(a) j [g4q11  • 5.41 

It is easy to show that lemma 4.1 applies to complex as well as real 

matrices; F(30) is positive-definite if and only if its symmetric part 

is also positive-definite. Thus 

F8  (w)= Ra{F(jcz)] 

is to be investigated. From 5.37, 

Fs(w) 

 

r ail (11- (432cli'ri)  2 2 4.,40nr   

a1i(1 (2q1  1":1) 

1 + 2 2  

5.42 

When CA) -op° 

F s(0) = [-kij  - 	+ 21C-1  

and when 4) co 

qi 	+ 2r-1 
Fs(c°)  = 	74 	• 

For 5.43 to be positive-definite, 

ki 

for all i, and if 5.45 is positive-definite, 

5.44 

5.45 

5.46 

5.47 

for all i, if otii  is nonzero. 

only necessary conditions, unless 

case 5.44 is also sufficient. 

Equations 5.44 and 5.45 are of course 

Q is made equal to T, in which 
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Before proceeding further with mathematical detail, it may be 

useful to discuss the significance of the development of frequency-

plane methods so far. If theorem 5.3 is satisfied, i.e. if 5.43 is 

positive-definite, then the origin of the V-plane is asymptotically 

-1(171.)  
v 

stable, provided the quantities - do not exceed ki at any i 

time. Furthermore, 5.23 is the form of a suitable Lyapunov function W. 

The theorem is suually employed merely to specify the sectors tp,k) 

within which the nonlinear functions must lie. It is used less often to 
vi) 

specify regions of stability since the constraint on 4:1( - is often 

unnecessarily severe, and stable systems may be rejected. This may also 

be true of the threshold network. The use which may be made of the 

above development is to find extreme points of fl, which is to be 

described by forms similar to 5.23. 

Consider the following example, illustrated in Fig. 5.3, which 

is of the form of 3.11i: Such a system is described by matrices such 

as 
T =I t  B1 , 

-17] 	36 -2 
E_ 	, A= 	, 	5.48 

-19 	2 36 

and we shall investigate the point X0  near (1,1). In this case from 

the diagram it is clear that X0  is stable with region 11 at least as 

large as the rectangle indicated passing through the singular points 

X1  and X2. Using assertion 4.3, that is, by assuming that the curves 

ei  =L0 and 82  = 0 are piecewise linear within the unit square, it is 
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(1.0625,-19.125) 5.3b 

Popov Region 

-••••1111141 

5.3a 

X1  

(.53125,01) 

Popov Region 

(fis .46875) 

Stable Region 

1 

Fig. 5.3 Example of 
Frequency-Plane Method 
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possible to find the coordinates of the singularities as shown. We shall 

demonstrate that in this easily verifiable case the extended Popov 

criterion results in a region nearly equal to the rectangle through the 

singular points. 

Selecting qi  to equal 71, equation 5.43 results in 5.44 

for all frequencies, and using 5.48, we have 

+ 2- '0 

0 	-72 4- 
k2 

which is to be positive-definite. Using theorem 5.2, this matrix is 

positive-definite if 

ki  < 
' 36 

where i = 1, 2. Solving the equation 

5.50 

xi  4. k.v. = 
17 - tgxi) 

36 1 	 5.51 

we arrive at 

x = 0.532', 	 5.52 

= -16.872 , 	 5053 

v2 = -18.872 , 
	 5.54 

which, as shown in the diagram, results in a region slightly smaller than 

the region we have already obtained. 

Another example in which the Popov method results in a suit-

able region will be given later. 

5.49 
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Note that the restrictions imposed by 5.43 always result in 

a rectangular region which, provided no trajectories leave it, is a 
region of stability. It is necessary in general to check that trajectories 

remain in this region, and in such cases it may be easier to use the form 

5.23 so that the boundary of 12 is a level-surface of W. 

5.3 LYAPUNOV FUNCTIONS OF THE SPECIAL SYSTEM 

We apply variable-gradient methods to the system described by 

the equation 

AZ 
	 5.55 

which arises directly from 4.62 or 4.69 when all 01-0.o and hri 

is finite. We now take vi  to equal f5i7'if9gxj) - VIA. A function 

is required which satisfies the description of section 5.2.1. Suppose 

there is a matrix P(Z), such that 

tplr= P(z)z 	 5.56 

and suppose that the curl equation is satisfied, i.e. 

aViu = Pik  # 37 ,221i 	Pki 	zap . 5.57 
vk 	ftkyt ( k ) 	avk  ?I 	(xi) 	J)v.i  

One way to satisfy this equation is to specify that P be a constant 

diagonal matrix. Then we would have 

W = ZT  PAZ . 	 5.58 

Observe that if 5.58 is identically zero and W is positive-definite, 
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then W is a constant of motion, i.e. the system is conservative and the 

results of statistical mechanics may be applied. We rewrite this result 

as 

Assertion 5.2: If $5.  = 0, 1 4 i n and there exists a 

diagonal matrix P with positive nonzero elements such that 

the product PA is skew-symmetric then the threshold system 

described by 5.55 is conservative. 

Proof: It will be demonstrated that W is positive-definite: 

From 5.55, 

aw 
----= B 	p..z 
vi 11 5.59 

Hence 

Ivi  
W = 	pii zidvi  = ZiPdV 

0 	0  
which is always positive for V 0 0 and 

5.60 

fan > 0 because from 5.24 the 

function zi  =.4i(vi) is strictly positive-monotonic and passes through 

the origin. Now since P in 5.58 is a positive diagonal matrix and 

PA is skew-symmetric the assertion follows directly. 

The above result is a minor generalization of the criterion for 

the existence of constants of motion mentioned by Cowan10. 

The function which results from the integral 5.60, when the 

explicit form of 4/ is used, is 
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1-x? w  = Epla 	11 xi) 1  
i 	xi  11  - xi 	

5.61 

which is identical in form to 3.27, the function derived for the R-L-C 

electrical network analogue. 

Of course this assertion specifies only a sufficient condition 

for a constant of motion. Results of simulation of the system as discussed 

in appendices A and B suggest that the system is conservative (within 

experimental error) for any A-matrix with pure imaginary eigenvalues. 

That is, if there exists a symmetric positive-definite matrix P for 

which PA is skew-symmetric, then the system would appear to be conserv-

ative. An explicit form for a constant of motion is not available, 

however. 

We now consider special systems for which the matrix of the 

linearized system at a singular point has eigenvalues with negative real 

parts.. Only the point r will be considered since the other singular 

points are never reached in finite time. Consider a system of the form 

(TD I)B(Y 	=AZ 	 5.62 

which comes directly from 1.38 and is equivalent to 5.55. 

Assertion  1,1: Let 5.62 describe the special system as 

pro with pi  Ti finite, and let r- be stable. Then r 

is asymptotically stable in the large. 

Proof: The extended Popov method of section 5.2.2 will be 

applied. The theorem is satisfied if r is stable because the linear 

transfer function has poles in the left half-plane. Straightforward. 
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application of the method results in the matrix 

ti) 	i  (1 c3qi  zl)  

L pia 4,,,3272) 	(1 	,c3)  

Consider the quantity 

. 5.6.3 

In the limit pi-v0 and 75.-o•co such that firi  remains finite. 

The limiting value of this quantity IS 	j . Thus if all qi  are 

specified to be 0, Fs(44) is positive-definite for all positive values 

of 'k. and the system is asymptotically stable in the large. 1,  

A. consequence of the above result is that if ri is unstable, 

the vector Y-.1 becomes infinitely large as t-iroo. 

5.4 LIMIT-CYCLES IN THRESHOLD NETWORKS 

In chapter 4 several conclusions were reached about realization 

of threshold nets, using only analyses of singular points and a knowledge 

of the topology of the state-space of threshold networks. The results 

are summarized in assertion 4.3, which specifies that the eigenvalues of 

the linearized system must be real at r- for the results to apply, in 

which case this point is a node or saddle point. If r is a centre 

geometrical methods may be used, but with less specific results. Using 

the global techniques of this chapter the existence of limit-cycles may 

also be shown, and furthermore, bounds of the regions in which they must 

exist may be established. 
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Consider a general threshold system of n gates with connexion 

matrix A of rank n. Assume that there Es exactly one realizable 

singularity, denoted T". We shall use 

Definition fla: A limit-cycle  is 	isolated closed trajectory. 

Consider a closed trajectory in the state-plane, or its pro-

jection onto an arbitrary plane if n is greater than, 2. 

Theorem 54.411: A closed trajectory surrounds at least one 

singular point. 

When n > 2 the theorem is interpreted to mean that a closed 

trajectory surrounds the image of at least one singular point. 

By half-trajectory is meant a solution trajectory from to  

to op or -oo. The Poincar6-Bendixon theoremll states: 

Theorem 1,2: If a half-trajectory-remains in a finite region 

XL without approaching any singularities, then either the 

trajectory is closed or it approaches a closed trajectory.. 

We now state an application to the general threshold network: 

.Assertion 5411: Solution half-trajectories of the threshold 

net approach either a singular paint within the unit hypercube 

'or a closed curve within the unit hypercube. 

Proof: It is sufficient to demonstrate that solutions remain 
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bounded in the V-spaces  since the boundaries of the unit hypercube cor-

respond to infinity in the V-space. We show that there exists a finite 

region S12  and a positive-definite function W(V) with negative deriv-

ative everywhere outside J12, and on the boundary of Sy Consider the 

equation 

1)vi  -aiizi  = 	aijzj 
	 5.65 

which describes the ith gate. For all j V.A., let 

xi  = zi  + 
	 5.66 

such that the right-hand side of 5.65 is a maximum: 

= Mi 	 5.67 

and let zim  =:+i(vim) be the solution of the equation 

Vi CtiiZi Mi 
	 5.68 

If a trajectory ever reaches vim, since 0 < xi  < 1 for all is  

dvim  
dt 	17i  • I-CCi 4Z 1 < 0 • 	 5.69 

Vi 4 4  

Now select all xis  jai in 5.66 such that 

= mj  
jai 

is a minimum, and solve the following equation for z, v.: im 

N' "0-g. Z. =111 • vim im i 

5.70 

5.71 
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dvim 1 m  
"t* 	1 4lizi] > 0 
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5.72 

if a solution trajectory reaches vim* Such trajectories pass through 

these points only during an initial transient, after which, for all time, 

!II < vi OtijZi < Mi • 	 5.73 

Let Ur=41/TV. There exists a region 112  bounded by the planes 

vi — wiizi  = Mi  and vi — qiizi =1,11.  for all it  such that on the bound— 

ary, 

W = 	V 4, 0 
	 5.74 

i 

and the proof is complete. 

The above result has been used implicitly in the original 

choice of 1.21 as a model of phySical devices. The assertion gives a 

justification of the model in semi—formal terms. 

Assertion L5: Let T' be the sole finite singular point of 

a threshold network. If r" is unstable then there exist bounded 

regions 12.11  Jai2  and 0= n2  -111  such that trajectories within 
CL remain in IL as t-o.00. 

Proof: It was. established in the proof of assertion 5.4 that 

a bounded region 122  exists, such that trajectories enter the region 

at every point on its boundary. Furthermore r must be inside 112 



185 

since r is finite, in which case mi  is negative and N1  positive 
in 5.73. If r is unstable there is by definition a region 121  cont-

aining r, and from which solutions enter 11. Now since r is the only 
finite singular point the assertion has been proven. 

It may be remarked that it is usually possible to find a 

much larger region Ai  which satisfies the assertion, as follawsr 

Consider the network defined by the matrices 

T=I, 	B = $ 

FL1 
[28 -20] 

A = 
20 4 

5.75 

Fig. 5.4 shows the two state-planes of such a system. The matrix of the 
linearized system 

V = HV 	 5.76 

at r = (*ii) from 4.37 is found to be 
= [6 -5 

5 o 
	 5.77 

which has eigenvalues in the right half-plane and therefore r is un-

stable. A quadratic form W = VTPV = c may be found by specifying a 

symmetric positive-definite matrix P and a constant c for which the 

derivative 

W =171113(-T-31 T-2Az) 	 5.13 

is positive everywhere in sli  bounded by W = c. In this case P 
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Fig. 5.4a . Example V-Plane 

- 0 

= 0 

Fig. 5.4b Sketch of Example X-Plane 

0 
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cannot be diagonal because v2  < 0 everywhere on the v2 -axis except 0, 

and it would be impossible to find a nonzero constant c for which W 

is positive in a finite region. The matrix P may be assumed to be of 

the form 

[ b -al 
P = 	 5.78 

-0. 	5 .1 

where p22  has been chosen as. an arbitrary positive number. We. assume 

that 	cuts the vi7  and v2-axis far enough from the origin so that 

V may be approximated by a linear equation, i.e. if v1  = 0, W 

-a(-4+-14 - 20) + 5(-12 - v2 + 10 + 	;0 

v2  4. 2(a. + 1) $ 	 5.79 

and if v = 0 W > 0,2   

b(4 	vi 4. 28 - 10) - a(-12 + 20 + 2) it 0, 

vl 	14 - -- . 	 5.80 

The values a and b must be such that P is positive-definite, and 

in addition the boundary of .411  must cut the axes inside the values 

specified by 5.79 and 5.80. If, for example, P is 

[ 5 -al  
P = 	 5.81 

-1 51 

and if c is chosen to be 79 then the axes are cut at (0,3.97) 

and at (3.97,0) which are inside the constraints v2  4 from 5.79 

and v14.5. 12 from 5.80. It is easy to verify that W is indeed positive 
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everywhere inside this region. 

In general a quadratic form is available and defines a finite 

region 422, provided some other suitable function defines a finite regions  

as stated in the following 

Theorem  51612: Let a system be represented by the form 

Z = HZ -I. F(Z) 	4.11 

in which H is an n x n matrixs  and F is a vector function 

of Z whose components are:: power series of 	zns  

..convergent for all liZIK (5 for some S , 0. Then, if there 
exists a positive-definite function W(Z) such that W(Z) 

is negative-definite, there also exists a N(Z), a quadratic 

form in the variables z1,..., zn  with the same properties. 

Moreover, this quadratic W(Z) satisfies the conditions 

W(Z) a227. z.  p 

W(Z) ..b2Z z2.  

i 1  

5.82 

for some as  b > O. 

Obviously the theorem applies to functions with negative der- 

ivatives. 

The final result of this chapter is 

Theorem  5,11 Let r- be the only finite singular point of a 
threshold network of n gates, and let r be unstable such 
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that for no gate i does the vaiaue `xi  - 7111 tend to zero 

as t-I•oa. Then there exists a. 'number T e‘03 and numbers 

toil  1 .“ fr n such that at t 4T every gate i realizes 

a linear threshold function, an :furthermore the system is 

m,discrete where m is an arbitmarily large integer. 

Proof: Since I"' is unstable anti the sole finite singular 

point, by assertion 5.4 there must be a clamed curve C which all 
trajectories approach as tAmpoo. Therefore for any number irk> 0 there 

exist points ai  and bi  on C and numbers toi  < 03 such that for 

all 1, the quantity lxi(toi) - 	is aess than /A. where ?i Ei{ai,bil. 

Furthermore the existence of a closed tralerctory implies that there exist 

numbers 111  < 1)2  4... such that the above,  (condition holds at each time 

toi  + Vr. Now it is always possible to ohms° ai and bi .so that at 

every time toi + Vr, if Ei  2:aijxj  >00 then ;1 > 0, and if 
j 

Ei  + Leijxj < 0 then xi < 0 and by definition 2.7 the system is 

m-discrete and by definition 4.4 it realizes a linear threshold net. 

This theorem established that the existence of a limit-cycle 

in the dynamic system corresponds to a coniLtion in switching circuits 

usually called simply a cycle23. 

5.5 SUMMARY 

The behavior of the gate,  network:: lmay be predicted by applying 

the second method of Lyapunov, which requires the existence of an explicit 

form for a positive-definite function W With sign-definite derivative 
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in a region ofthe::system state-space. The method of variable gradients 

may be applied; for arbitrary matrices A it does not result in a 

unique function W unless the gradient of W is assumed to be a linear 

function, in which case W is quadratic. Other forms are possible, 

but except for a case to be mentioned below, have not been obtained. 

It is, possible to find a constant of motion W, analogous 

to the Hamiltonian of classical mechanics, for the Cowan system with a 

restriction on the matrix . A. It is conjectured, however, that this 

restriction need not apply. 

As to finding the best quadratic Lyapunov function, this 

problem requires an exact knowledge of the state topology, but approp-

riate approximate methods for systems with large weights are available. 

The generalized Popov method also applies to the dynamic 

and provides a straightforward method of finding regions 

in certain cases. The form- of the resulting function is 

plus-the integral of nonlinear terms. 

The ability to generate Lyapunov functions for 

allOws a conclusion to be reached about the existence of 

gate system, 

of convergence 

of a quadratic 

the system 

limit-cycles, 

and hence about the existence of cycles in switching circuits. 
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CHAPTER 6 

APPLICATIONS OF THE DYNAMICAL MODEL 
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6.1 INTRODUCTION 

This chapter concerns applications of the model proposed 

in section 1.6 and analysed in chapters 3 to 5. Some of the questions 

which it can reasonably be used to answer or partly answer are given 

here. 

6.2 SIMULATION OF NETWORKS 

The obvious application of a differential equation model 

is to solve it. If closed-form solution is not possible then analogue 

or digital computers must be used. Four examples are presented here. 

Fig. 6.1 is a plot produced by analogue computer of the transient 

step response of a single gate for various step heights, and a constant 

initial point. Such plots could, for example, be used in specifying 

gap tolerance limits (see Fig. 3.5) or switching times. 

At a slightly greater order of complexity, Fig. 6.2 shows 

typical oscillation waveforms of a two-element system with weight matrix 

0 
A = 	0 	 6.1 a  

21 

and various initial conditions. In this case the constants 0 are 

assumed negligible (pi  was zero in the simulation). 

Fig. 6.3 is a state-plane diagram generated by digital computer. 

The circuit, described by 

2 0 
13=,1t= I 

10 2], 
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Fig. 6.1 Gate Transient Response 
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exhibits a limit-cycle. The lines el  = 0 and 42  = 0 are also shown. 

Fig. 6.5 shows a digital computer solution of the master-slave 

flip-flop of Fig. 6.4. In this case ten gates were simulated, the first 

two as a clock wave-form generator, and the remainder in the flip-flop 

itself. Of course much more accurate digital computer plots could be 

produced easily using a computer-controlled plotter, but the outputs 

shown give a reasonable view of waveforms, and at a lower cost in time 

and complexity. The solution shown required 1.2 minutes on an IBM 

7090 computer. 

6.3 NOISE IN LOGIC SYSTEMS 

A problem which occurs in the design of logic circuits is the 

amount of "noise" a circuit will toleratel  before either giving an 

incorrect output or coming to rest at an incorrect stable state. The 

techniques of chapter 5 are directly applicable to this problem, and the 

following result can be stated: If a singular point is stable, then any 

disturbance which does not take the system out of the maximum region 11, 

defined by either 5.9 or 5.25 and for which there exists a LyapunoV 

function, does not make the system move to a new stable state. In the 

simpler case of a temporary change of the output of a single gate, 

theorem 2.3 may be applied, with the addition of a noise signal, N(t). 

* In the diagrams RHO refers to the elements fi, and in Fig. 6.5 

GAMMA is the solution of E 4.AX = O. 
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IN(t) j  > S 6.3 

and as long as this remains true the element realizes a threshold.  function. 

6.4 THE RANK OF A NETWORK 

In section 4.8 is a fundamental result which applies to design 

as well as analysis of logic circuits. Theorem 4.8 states that the rank 

of the connexion matrix A determines the logical character of a network. 

For example, if the maximum number of stable states2  of a circuit of n 

gates is k, then adding an additional gate will not increase the number 

of stable states unless the rank of the new matrix is n + 1. The 

applicability of the results in section 4.8 to the reduction of large 

networks of non-maximal rank is mentioned in that section. 

6.5 DESIGN OF SEQUENTIAL CIRCUITS.  

A result which relates to the discussion of section 6.2 will be 

stated. Let a logic circuit be partitioned into circuits of maximal 

rank. Let the state-space of a maximal circuit be partitioned into 

stable regions 	In general:these regions depend upon the values 2; 1 
telicharefunctionsofe.and therefore of the circuit inputs. Then 

any inpdt which changes the state topology so that the state vector is 

in a stable region S2i  causes the next stable point to be in Ili. The 
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input may be external, or may be an action from one or more of the 

other maximal circuits in the network. 

The above is not intended as a new method for the design of 

sequential logic, because the computation required in such an analysis 

of stable regions is large. However, when applied to small circuits, 

this type of analysis could be used, for example, in specifying minimum 

input levels and their required duration. 

6.6 BOOLEAN MEMORIES 

It is a safe assumption that most.logical memories not 

using a particular physical effect (ferromagnetism for example) are 

designed using bistable circuits as basic units. Recently memory circuits 

containing more general feedback connections have been mentioned in the 

literature3'4'5. A time-continuous model has not appeared, however. The 

enumeration of singular points of threshold circuits as discussed in 

chapter 3 is of direct relevance to this.problem because a method has 

been presented for finding every singular point and testing its stabil-

ity. The only restriction in this case is that the weights arij  all have 

a magnitude large inough to guarantee that the singular points (except 11 

are sufficiently near edges of the unit hypercube. It must be emphasized 

that this is not a restriction on the logical function of a threshold 

gate, but only on its transient behavior. This is easily seen by noting 

that the multiplication of 	and kij, j 	n by a positive 

constant does not change the gate function. This is a linear transform-

ation as discussed in chapter 2. 
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6.7 HAZARDS IN SEQUENTIAL CIRCUITS 

The term "hazard" is used with a. certain lack of precision 

in the literature of sequential circuits. The definitions of Unger6  

will be used here: 

A. transient hazard is a momentary false output of a circuit. 

A steady—state or essential hazard is the condition in which a 

circuit may enter a "wrong" stable state after certain input changes. 

Other definitions than the above wordings are available.7  

Transient hazards will be taken to mean the following in the context of 

the continuous model. Suppose that all inputs u (t) are constant in 

the interval (tolt5), and that gate i satisfies 

— 	 6.4 

in (to,t1), 

!xi  - bit 4./A 	 6.5 

in (t2,t3) and the first inequality again in (t4,t5) with to  < 

t1  4 t2  < t3  < t4  t5. Now from theorem 2.3 it is evident that the point 

lies between ai  and bi. Therefore, if a transient hazard exists 

the output xi  must pass through 71 at least twice. The following 

conclusion arises directly from the topological analysis: If all eigen—

values of the linearized system are real at r then the singularity is 

e, saddle—point, and no variable xi  passes through yl more than once. 



203 

Therefore no transient hazard exists. 

A conclusion about essential hazards may also be reached, 

although it is not a very useful one. The following argument is used: 

If an essential hazard exists the system is not completely controllable8. 

The condition that a system be completely controllable is that the external 

input weight matrix P (see equation 1.34) have as many nonzero rows as 

A has rows, that is, as there are gates in the circuit. If the elem.-, 

ents of P have large enough magnitude then every stable state may be 

reached from any other with exactly one input change. The concept of 

controllability belongs to the theory of automatic control systems. This 

result has not been proven explicitly in the analysis but is evident from 

theorem 2.3. 

The above discussion is only relevant when every stable state 

of the threshold system is a realization of a threshold net (by definition 

4.4). The discussion of essential hazards is applicable as a definition 

in control—system terminology but is not very useful in the design of 

circuits because it requires an external input to every gate. 

6.8 CYCLES AND LIMIT—CYCLES 

Assertion. 4.4 and theorem 5.7 demonstrate that the dynamic 

model can exhibit oscillatory behavior under certain conditions. The 

theorem states that under such conditions the system realizes a linear 

threshold net in a set of intervals, and therefore "limit—cycles" in the 

dynamic system correspond to "cycles" in logic networks. The following 
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argument applies: Let assertion 4.7 and theorem 4.9 be applied to 

divide the system into independent subnetworks. Cyclic behavior in an 

mm.discrete subnetwork implies that the trajectory (or, as stated prev—

iously, its projection on some plane) must enclose the principal singular—

ity r: In such a case, (a) r 'must be unstable, (b) no output xi 

of the subnetwork approaches q as t-aboo, mad (c) at least two of the 

eigenvalues of the linearized system at 	must be complex. Therefore, 

if all eigenvalues of the linearized system are real at 1", the network 

contains no cycles.. This conclusion applies independently to each maximal 

network within a system, but account must be taken of the interaction 

between subnetworks, i.e. the existence or shape of a cyclic waveform 

depend on the stability of interacting subnetworks within the system. 

The action of an independent network on gate i has the effect of making 

Ei  non—constant if the independent network is cyclic. 

6.9 REALIZATION OF AIRESHOLD NETS 

The question as to whether a given circuit computes a logical 

function is non—trivial if it must be, answered a priori, that is, before 

all possible inputs are presented to it. Definitions 2.6 and 4.4 relate 

logical function to the dynamic model, and assertion 4.3 and theorem 5.7 

summarize the analysis. The conclusion is that a network conforming to 

the model does compute a logical function provided (a) r-  is unstable, 

and (b) the magnitudes (ail are large enough. Necessary conditions, 

however, have not been discussed. If theorem 5.7 applies then'the 
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threshold net realized contains a cycle. 

6.10 APPLICATION OF THE SPECIAL SYSTEM 

As stated in chapter 1, only applications to switching systems 

are considered here. Two uses of the special system may be made. 

Solutions for the singular points of such a system are available in closed 

form; only solution of sets of linear equations is required. As stated 

in chapter 4, the singular points of the general system approach those of 

the special system as the magnitudes of 	increase. Furthermore, 

from assertion 4.4, if the special system is unstable at a vertex of the 

unit hypercube, then the general system does not have a singularity near 

this vertex. These two results are not very profound from the theoret-

ical point of view but greatly simplify the computations required in ana-

AFiingthe general system. 

6.11 SUMMARI 

The dynamical model is of a form which easily may be solved 

by computer. It is.asserted that such simulations predict the behavior 

of:switching circuits more accurately than binary models. They are 

particularly useful. when circuits are operated near their limits of 

speed. 

The problem of the noise: immunity of logical circuits has a 

fundamental relation to the second method of Lyapunov. The analysis.  

of. chapter 5 therefore applies to this problem. 

Another fundamental result is:that the rank of the weight 
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matrix is indicative of the system dynamic behavior. This, together 

with the topological conclusion, is useful in sequential design. 

The discussion of the enumeration of singular points relates 

to recent developments regarding "Boolean memories." 

The results on realization allow conclusions about hazards in 

sequential circuits, and also provide a framework for determining the 

functional behavior of an arbitrary circuit. 

Finally, the special system .is useful from a . computational 

point of view. 
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CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH 
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7.1 INTRODUCTION 

A mathematical model of a physical device Can only be judged 

subjectively, according to the results which it is used to predict. 

This thesis is intended as,  a preliminary exploration of a model and some 

of the questions which reasonably may be asked of it. This, the final 

chapter, contains a discussion of the validity of the Mdel, some conclus—

ions which may bsreached from and about it, and suggestions for future 

work. 

7.2 THE PLACE OF THE MODEL IN A:FUNCTIONAL HIERARCHY 

A-model is used to predict the behavior of the object being 

modelled. The assumption in this work is that weAlave a model permitting 

a reasonable amount of detailed- prediction of a certain kind at a reason—. 

able cost of complication and computation. 

Consideran "Object"' with a finite number q of "input term—

inals" and one "output terminal." kmathematicalmodel of such an 

object is a function which states a relation between two sets: a set of 

inputs or domain, and a'set of outputs or range. Let Q be the set of • 

input terminals at which inputs U, which are elements of the domain 

set, appear, and which cause an output x, an element of the range set. 

Fig. 7.1 is an attempt to present the dynamical model in a hierarchy of 

models of logical function. 

Two questions are to be answered: (a) how can a device be 
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designed so that it "computes" a logical function, and (b) given a device, 

what logical function does it compute, if any? The levels of the hierarchy 

in the figure are various levels of abstraction. Logical functions are 

the essence of computation. Binary fUnctions are used mainly for con-

venience in representing logical functions, and are equivalent to logical 

functions. Further, it can easily be demonstrated that every binary 

function can be computed by a threshold function, and vice-versa. Sim-

ilarly, every linear threshold function is a threshold function, but not 

every threshold function is a linear threshold function. Much work has 

been done in devising ways of using one or more linear threshold. function 

to compute arbitrary logical functions. A linear threshold function also 

"resembles" physical devices in that it is comparatively easy to "realize" 

a linear threshold function using real objects. Obvious examples are 

gates encorporating transistors, diodes, ferromagnetic materials, and of 

course, neurons. 

One common characteristic of the functions discussed so far is 

the following: without exception they are defined only for a discrete 

time scale, and only for finite output sets. Clearly no physical event 

above the level of quantum mechanics is discrete in time or any other 

measurement. 

The behavior of asynchronous logic circuits in time is accounted 

for by various techniques, mostly to do with "state-assignments" which 

axe intended to ensure that, a system is completely stable at the proper 

states. An important restriction in most cases is that only one input to 
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a network is allowed to change at a. time for proper operation to be 

guaranteed. 

The principal use,  of ternary functions in logical design and 

analysis is the detection of hard conditions. Although the functions 

themselves are not explicit functions of time their proper use enables 

hazard-free design of large circuits with two or more simultaneous input 

'changes. However, questions about wave-shape detail cannot be answered. 

• As; to the time-scale of continuous models, this need not be the 

set of real numbers, but only the set of integers, say, because the limit-

ing behavior of a time-discrete function as the interval between points 

decreases is by definition the time-continuos behavior. This subject 

was dealt with in section 2.5. 

In the light of the above discussion the conclusion maybe 

reached that predictions which concern infinite output sets.  must be made 

using continuous functional models. 

7.3 FUTURE RESEARCH PROBLEMS 

More unsolved problems than solutions result from an investig-

ation such as the one presented here. In this section-some of the more 

important and obvious problems will, be mentioned, divided into three,  

categories: problems arising from or generated by the analysis given 

in previous chapters, algebraic problems relevant to the theory of auto-

mata, and engineering problems relevant to the analysis and design of 

sequential circuits. 
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7.3.1 PROBLEMS ARISING FROM THE ANALYSIS 
_ 	. 

1. A:general problem is the tightening of bounds given in the 

proofs of several of the theorems and assertions, which, for the most 

part, are existence proofs. Particular cases where such improvements 

would be useful are assertions 4.1 and 4.2, and theorem 4.7. 

2. A. useful computational result would be an efficient algorithm 

for locating all the singular points of an arbitrary threilhold system. 

The restrictions on weight magnitudes mentioned previously are not severe, 

but do restrict the class of systems satisfactorily treated. 

3. The discussion of regions of stability in chapter.5 points 

to the need for an algorithm for generating the maximum stability region 

enclosing a singular point. Such a region might be defined by a quadratic 

form or the form of 5.23. 
4. The result quoted in theorem 5.3 is valid for linear trans-

fer functions of arbitrary order. An extension of the first-order model 

to one containing a transfer function, the nonlinearity, and another 

transfer function at the output of the nonlinearity would result in a 

model which is in the Lurfe form, provided the restrictions on the trans-

fer functions hold. Such a model could account for more detailed behavior 

of threshold gates, and would be necessary where, for example, "ringing" 

'transients are encountered. 

5. An extension of the electric network analogy would be use-

ful, both in the theory of electric networks and in the theory of threshold 

nets.. Such an extension would result in electric networks with nonrecip-

rocal elements, mutual inductance and capacitance, and coupling between 
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inductors and capacitors. Some useful results in the stability of such 

networks might arise. This extension with item 4  above would be useful 

in the large-signal characterization of arbitrary networks containing 

active elements which may be represented in the Lurle.form. 

6. An extension of assertion 6.2 to positive-definite symmetric 

matrices would be useful, both for applications in neurodynamics, and as 

a potential function for electric networks such as discussed in item 5. 

7.3.2 ALGEBRAIC PROBLEMS 

Theorem 4.9 demonstrates that threshold network dynamics are 

characterized by the square matrix A. It is to be expected that the rich 

body of knowledge about matrices should contribute further results. 

1. A useful result would be necessary and sufficient conditions 

under which two matrices characterize logically similar systems according 

to definition 4.5. A possible extension of this definition is as follows: 

Two networks might be defined to be logically equivalent if they are 

logically similar and if, in addition, they are both threshold networks. 

Then necessary and sufficient conditions for two matrices to describe 

logically equivalent networks would be desirable because it would allow. 

generation of canonical networks. 

2. The conditions under which threshold functions may be said 

to be equivalent are well.known4293,40  In particulars  tabulations are 

available of canonical weight-sets of all threshold functions of up to 

seven variables. It is thus possible to generate alllogically equivalent 

threshold nets in a systematic way. However, the number of equivalent ' 



nets so generated is astronomical unless an algorithm iwavailable for 

generating only distinct (non-equivalent) nets, or the distinct nets 

plus a few more which may be easily tested for equivalence to previously 

generated nets. 

Enumerations are easier at lower levels of sophistication. 

It is easier, for example, to identify nets with complex eigenvalues 

at. r. 
A useful point is that given n sets of weights for an n x n 

matrix representing an n-gate network, the various interconnexions 

may be generated by permuting elements within rows, and interchanging 

rows. Such a system of rows is known in the jargon of the theory of 

finite groups5  as an imprimitive transitive permutation group, and obeys 

the laws of such groups.. Indeed an algebraic approach to the problem 

of establishing equivalences in threshold nets may be of great value. 

3. An algebraic defintion of finite linear threshold nets 

has been Tablished6, and a result given regarding transition or next, 

state functions. It would be useful to have a clear connexion between 

the restrictions on such functions, and the conditions for realization of 

threshold nets by the continuous model. 

4. The dynamic behavior of linear systems7,8,9  is character.. 

ized by matrices or polynomial factors.. Bearing in mind the discussion 

of item 2.and'sections 1.7.1. and 2.5, it would be extremely useful 

to know exactly which results of linear theory apply to threshold net- 

works and which do not. A. reason for optimism is that, as has been 
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stated, the threshold network is dependent on its weight matrix. 

7.3.3 PROBLEMS IN SEQUENTIAL—CIRCUIT ENGINEERING 

From the engineering point of view it would be useful to 

relate the dynamic model more closely to Specific electric circuits and 

to problems encountered when designing them. A better understanding of 

such relations would undoubtedly result in research problems. A few 

such problems will be mentioned here. 

1. The most general use of a system model is to construct 

real systems which are optimal in some sense. The construction of 

systems with the minimum number of gates; is a classical problem, and 

requires the solution of some of the problems mentioned previously in 

this chapter. However, the model is evidently useful in finding networks 

less sensitive to noise, say, or which have shorter signal propagation 

times. 

2. A useful result would be the listing of the static and trans— 

ient behavior of common logic gates. Consideration would also need to 

be given to their interactions, for example in an integrated circuit. 

Cases in which the model is inadequate would show how it needs to be 

extended. 

3. Although it is certainly true that there is no perfect 

delay in nature, cases may arise where a model incorporating pure delay 

gives reasonable predictions easier than'one which does not. Two examples 

are contact networks and those in which signal propagation time between 

circuits is comparable to switching times. Results for such situations 
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exist in the control-systems literaturel°, and could be incorporated 

profitably into the results presented here. 

4. An effect mentioned in section 6.5 needs some clarification. 

A. basic assumption in this work has been that external system inputs are 

constant during the intervals of interest. It would be extremely help-

ful to sequential design if the results given here were extended to 

non-constant inputs, or at least if discrete input changes could be re-

lated to system topology. 

7.4 CONCLUSIONS 

Many of the conclusions to be reached from this work have been 

mentioned previously. Here only the main points will be snm •rued. 

Many good reasons exist for the consideration of continuous 

models of switching circuits. From the discussion of chapters 1 and 2 

it may be concluded that the dynamic model which has been developed does 

to a degree represent the class of switching circuits known as linear 

threshold nets, and that it is also relevant to models, one in particular, 

of neurons. A method exists for relating this time-continuous model to 

others defined only in discrete time. 

It may be concluded that the topological analysis of chapter 

3 is suitable to indicate the behavior of two-gate networks, and that 
several of the, results.for such networks amdirectly extendable to 

networks of higher order. A. special case is directly analogous to an 

electrical network. 
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The stability analysis of chapter 4 is based upon linearization 

of the nonlinear model in neighborhoods of its:Singular points. It is 

concluded that this type of analysis is useful for specifying the condi-

tions under which a collection of threshold gates realizes a threshold 

fanction;, nrthermore, methods for dividing arbitrary networks into 

smaller subnetworks for analysis have been given. 

Questions of global stability discussed in chapter 5 are 

useful in determining network behavior. Two forms of positive-definite 

functions may be used in defining regions of convergence of the system. 

These results apply to the determination of conditions under which 

the system exhibits cyclic behavior. 

The model which has been developed is useful in the understand-

ing and analysing of several problems connected with logic circuit 

design, as demonstrated in chapter 6. 

7.5 SUNDRY 

It is concluded that the system model, based upon a function 

which has a continuous output set, explicates behavior predicted by 

simpler functions, predicts behavior which they cannot, and is necessary 

for answering several questions about logical circuits. A quotation 

from the literaturell  is relevant: 

"It is well known that electronic asynchronous circuits are 
rather sickly specimens when exposed to the fullgambit of diseases which 
arise from variations in the response tunes of active elements. and var-
iations in the propagation times:of signals between active elements." 

Thia:thesis is an attempt to explain and alleviate some of the, 

difficulties which arise in the analysis and design of such systems. 
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APPENDIX A 

SIMULATION OF THE MODEL BY ANALOGUE COMPUTER 

A TR.48 analogue computer was used to solve equations 4.17: 

dri 
d 	xi (I. xi) 	Letii - x 4.17 

In an orthodox solution of such a system the number of equations to be 

solved simultaneously is_Iimited by the number of computing units avail. 

able, usually the number of multipliers. A maximum of four equations 

of the speCial system could be solved," and Fig. A.1 is an operational 

diagram of such a solution. 

This method produces reasonable accuracy, but is limited by 

the,resolution of the. multipliers. used. When any input approaches 0 

they are inaccurate. 

To overcome these problems and to enable a larger number of 

equations to be solved using the same number of operational amplifiers, 

transistorized function generators were constructed. The procedure is 

to perform the functional operations of Fig: 1.12a. 

The: computation requires the folloWing function to be cal—

culated: 

e
Yi 

= 
1 ♦ e. Yi • 	

A.1 

This can be accomplished using the principle of the long—

tailed pair amplifier. Consider the circuit in Fig. A..2. To a good 

approximation, the collector current in a transistor is an exponential 

ftnction of emitter-base voltage. Thus 
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FIG A•2 :LONCv 7;4 LEAD PAIR  

    

    

F uN croon 
No. 
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Then 
er.40% +.4011°g(I0,)  b 

a  - E, - (b,  444)) I2 = 

222 

13. 7 expfaiyhEi 	, 	 1.2 

12 =- exp{a2VBE2  b2} • 	 1.3 

The parameter ai  is of the order of Or  and bi  is largely determined 

by Imo. Also to a good approximation, assuming the current gains are 

high, 

+ 12  = I0  . 

From the diagram, 

E - 	+ 	 A.5 VBE, 1/02  

Eol = " 	 A.6 

E02 = 1r- 12R  • 

Combining equations 1.2-41.5, 

expi[1°g(i°  -  12) bl  12  = 	n2 	al 
- A.8 

Define: 

	

al = a  I 
	a2  = a + 46a , 	

A.9 • 

	

= b p 
	b2  = b + 

=expllog(I0  - 12) +-b aE b + 	log(10- Id #b daez ..6b} 
1.10 
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If the transistors are: chosen to have nearly identical values of a, 

so that In .0.02  the equation becomes a 

12  = (I0  I2)expt-aE 46b1 	A.11 

or 

12 	t=exp(-aCE + 1)1 . A.3.? Io  - 12  

lsimilar equation obtains for 112  except for a sign reversal: 

—1—I = expta(E a 	 A.13 
o 1 

From A.12 and A.3.3 we can write 

Ieexp ta (E + 

l'+- expia(E + A.14 

12  1 4 expt-a.(E +132)i 
loexpt.a(E 4., 4)/ 

Combining equations A.6 and A.7 with equations A.14: 

IoRexpWE + 

Eo2 = 	
1 + exp(-;a(E qv • 

xsol v 	epla(E 	ipi 

Ieltexpt-aCE + 
	A.15 

It can be:seen that the second terms in these equations have the re-

quired forms, except that the input value E is multiplied by a cons-

tants  and is offset by the voltage 14 This circuit can therefore be 

used to perform the necessary function generation provided the trans-

istors are chosen so that- the following conditions hold: 
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1. The function IG(TEE) must be.logarithmic-in both trans-

istors. 

2. The transistors must have nearly identical exponential 

factors a. 

3. The base current of both transistors must be negligible 

compared to the emitter current. 

Transistors 2N2926 have been found to satisfy the above 

requirements. Typical values of a and b are listed in Fig. A.39  

and Fig. A.4 is a typical experimental plot of IG  against T. These 

transistors have been used in the circuit of Fig; A.5. 

The stabilized power supplies of the TR-48 are:used. P1  is 

adjusted so that Xi  = 0 for open-circuit input and the switch in the 

(+) 	position. The switch is then changed to ( -) and P2  used to 

adjust Xi  to +5.00 volts. This makes I0R:= 5.00 in A015. 

Fig. A.6 is a graph of the transfer function of a typical 

circuits  and Fig. A.7 is a graph of log-- for the function of 1-xi 
Fig. A.6. It shows a nearly linear characteristic. 
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APPENDIX B 

SIMULATION OF THE YODEL BY DIGITAL COMPUTER 

Details of the digital simulation will not be discussed, because 

the solution of the equation i = F(X) is a standard computing problem. 

It will only be mentioned that care must be taken whenever a value xi  

approaches 0 or 1. Standard integration techniques are of course 

time-discrete, and it is possible to set xi outside the interval 

(0,1). Such a condition may have several reeults„,a common one being a. 

negative argument in the function log-a, in which case execution 
1— xi  

Is stopped or becomes meaningless. This type of fault is avoided by 

ensuring always that initial conditions are within (0,1), that xi 

Is never set outside this interval, and that error tests are more stringent 

near 0 or 1. Another expedient is to solve the_. equations in terms 

of the variables V, in which case this difficulty is avoided. However, 

care must be taken to have small step4engths near xi =Yip as: trajec-

tories tend to have sharp changes of direction in this neighborhood. 
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C.1 

APPENDIX C 

GRAPHICAL SOLUTION OF A-SPECIAL. CASE 

Consider the equations 

= x1(1 — xi) (Ei  ct12x2) 

x2 =  X2(1 X2) (C2 a21X1) 

which are a special case of 3.17. In the same notation, Volterra's 

equations (chapter 3, reference 2) are 

zl = x1(61.  + 4112x2)  , 

C.2: 
= 	+423.x1) • 

It is possible to obtain the equation of the' phase trajectories, that is, 

the.: solution of the equation 

cbc2 = 2r2(1  — 3c2) (62 +'21x1)  , 	 C.3 dxl 	x1(3. — 	(El  +'112x2) 

This can be achieved following the method of Volterra as follows: Since 

xl and x2  satisfy equations C.1, we can write 

dx2(61 #4412x2)  _ dx1(62 +4121x1)  . 	 C.4 x2(1— x2) 	x1(1 — xi) 

Separating into partial fractions: 

Eldx2(412 E1)dx2  62(bc1 -+ P21 62)dx1 . + 	 C.5 x2 	1—x2 x3. 	1 . 

Integrating this equation, we obtain 
Ei 	kx x2 	 1 

	

aelet+EI 	
X1) (1 	

4fr21+E2 
X2 ) 	71.   

C.6 
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where k is an arbitrary constant. Solving for k in terms of x1(0) 

and x2(0): 

 

x2  (0)E1(1- x2  (0) 	+ 62 

 

C.7 

xl 

 

x1(0)E2  (I — X1(0);12  * 

Equation C.6 is a functional relationship between and x2. 

kgraphical method devised by Volterra can be used to determine trajec—

tory points. most easily. Let 

2  
_ ,r2rieei 

- 	

xl)  

xi  
C.9 

(1421 62 • 

TypicaLgraphs-of 2 or g for 0-4x < I are shown in Fig. C.1. 

ri? is plotted with respect to x1  and g with respeotto 

x2  as in Fig. C.2. The line in the 7...g quadrant has slope k. Then 

for any point on 2a corresponding point or pair of points can be found 

on g and on the phase trajectory if such points exist. 

Pig. C.2 illustrates, the particularly interesting case for 

which El  = Al C2  = —B, 4'32 ="41  421 =D where Al  B, C and D 
are positive constants, and BT:> A, D > C. In this case: the trajectory 

is a closed curve and the values x1(t) and x2(t) are bounded nonlinear 

oscillations. 

x2 0.8 
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