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ABSTRACT

4 time~continuous model of finite linear threshold gates is
‘ postulated and compared to some models of msural function. Such a
rodel realizes a normalized threshold function under.spacified cond—vv
itions.

Networks of such gates are shown, in a limiting case, to
be analogous to nonlinear electrical netwoxis. A topological anaiysis
of two-gate networks is given. The sﬁabili&y §f dynamical systems ofq
threshold gates By characterization of singmlar points alloys conclusions
regarding realization of finite linear thres&old neté, and the enumeration
of all singular points of threshold systems is possible under a weak
restriction on weight magﬁitudes.

Thexreduction of large nets to smaller subnets for purposes
of analysis 1s possible by inspectioﬁ of tﬁa‘weight matrix, and the
rank of the matrix is shown to influence net dynamics; a

Stability in the large by the second method of Lyapunov is
investigated, using quadratic potential functions and the generalized
Popov criterion. This analysis enables some conditions for the.exist-

‘ence of limit-cycles to be given.
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LIST OF PRINCIPAL SYMBOLS

The general rule used is thab matrices are iegresented by
capital letters and sc’ala.ré by lower-case letters. An- attempt has been
made to keep the meaning of symbols constant throu_ghou’c.ﬁthe thesis.
Where this has not been possible the meaning is obvious from context,

and this is also hoped to be true for symbols not in the Iist below.

Symbol Definition '
«ij - en element of the wéight_matrix
oy0 a constant input to gate i |
Bs the nonlinearity inpu:b constant
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LI principal singular point
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¥

the general gate nonlinearity
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CHAPTER 1

DYNAMICAL, MODELS OF LINEAR THRESHOLD FUNCTION
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1.1 INTRODUGTION

The.énalysis to be presented in this thesis.is an attempt to
deécribe-the behavior of certain mathematical models of physical systems.
These systems are of two distinct types, although it will be‘sh0wn that
they exhibit many similarities. They are: .

1. A dynamical model by which thers is reason to believe
certain functional activity in the central'nervous systen of man end
lower creatures ﬁéy be represented.

2. Networks of logical gatss of the type usually found in’
computing machines.

These two systems may be regarded for certain purposes as
control systems, and such a formulation will be used here. It is well
known fhat the brain is & very complicated control system (if not much
more) and it is clear that the switching networks to be considered may
also be desceribed in terms of control systems, However, the essential
theme of this thesis is as follows: A new description of the class of
switching circuits characterized by threshold functions has bsen developed
precisely, by which the behavior of such circuits at all instants: of time
may bs predicted. In other words, a time-continuous model which is
characterized by differential equationg: is used. This model possesses
the two necessary attributes of physical reaiizability: dissipatidn
and nonlinearity. Little attempt will be made to quantify the faithful-
ness of the modeling with respect to any particularhcircuitsfﬁecause

the results apply to quite general hardware realizations wiﬁh only
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a few restrictions. .

The Cowan model which is closely related to the gate equation
will also be considered in some detail. No attempt will be made to
Justify it in terms of neurophysiology, since this is thé responsibility
of its originator, and also since this équation sheds a great deal of
light on the dynamics of switching circuits, Justification enbggh in
the present context. However part of Chapter 1 is devoted to an intro-
duction to the neurological implications of the equation. |

It would eppear that nonlinesar différential equations have
not been usged to'any degree as descriptions of logical circuits. ' There
are, of course, equations for the output of, say, transistors, but the
suthor has been unable to find a unified approach to the transient be-
havior of networks of switcﬁing circuits in the general liteiature. The
obvious explanation is that the nonlinearities preseﬁt formidable obstacles
to analysis. Modern developments, particularly in the fieid of sutomatic
control, do allow certain conclusions about the stability of equations
even though they cennot be solved in terms of elementary functions.
A certain amount of work has been dqne 6n control systems containing
relays, that is, instantaneous switches, but this has not been applied
to logical gates. Rather than extendAthis work, equatidns will be
developed for the finite transients existing in most switching circuits,
end the instantaneous results will then be limiting conditions.

At the time of writing a great deal of research is being done
on various topics related to the anlysis presented here. The first

end second methods of Lyapunov are of course well known, but the amount
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of research being done on the.generation of Lyapunov functions even for
linear systems is considerable. Recently extensions of the Popov sﬁabiliit.y
criterion have appeared in the literature and it is expected that future
developments will extend the.analysis of systems s:Lmilar to those cons-

idered hers.

1,1.1 HISTORICAL NOTE o o

The'wqu which is presented here: was done at Imperial College
from late 198 toA 1967. It:was at first the author's in'bention to analyse
some of the logical or statistical properties of. thieshold devices, but
when the author analysed certain aspscts of the behavior of the Cowan
equation (to be discussed later) it quickly became clear that with simple
modifications this equation would model switching eircuits, and further-
more, fhaﬁ it is simple enough to yisld to at least some analytical
techniques.

Except where reference is made to published materiael, the results
reported in this thesis were obtained 'independehtly by the author, and
at the time of writing are believed to be original. Certain results
rogarding the existence of constants of motion were arrived at‘ indep-
endently at a‘bout the same time by J. D. Cowan in his analysis of the
statistical mechanies of nervous activity. The principle of the uge of
Lyapunov functions for analysis of stability is: not new. However, :.t
does; not appear to have received much attention in the literature of
switching circuits. A list of the original contributions to be: presented :

is given below:
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1. Detail analysis:of the Cowan equation for the determin- '
istic dynamic behavior of neural models.. | N

2, Proof that under certain conditions the gate equation is
equivalent to a physical realization of a threshold function. This
leads to the important result that this type of equation: gi;res a Treason-
able representation of the transient behavior of this cZLas_s of threshold
gates. | |

3. A topological (trajectory) analysis of low-order networks
of threshold gates. |

4+ An investigation of the conditions for the dynamical -
stability and instebility of this class of switching network. This allows
an investigation of networks which exhibit stable oscillations,

5. A method for reducing the stability analysis of systems
of high complexity to the analysis of systems vith lower complexity.

6. An electrical network analogue of small .switehing networks
aﬁd a.n -enalogue of an energy measure for' a restricted cless of switching
gystens,

7. Evaluation of the first and second methods of Iyapunov,
as well as the Popov criteridn, with respect to genei-a}[ized networks
of threshold gaﬁés.

8; Anslogue and digital computer simulation of low oxder
networks of threshold gates.
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1.2 ORGANIZATION OF THE THESIS

Chapter, 1 is a brief outline of a few of the significant
results in neural modelling, and is intended to show that the stability
of threshold nefworks iz relevant to previous work in this field, The
“dynamical model which will be used throughout the rest of this work is

v

also presented.

Chapter 2 coniains an exposition of some of the major results
in the static design of threshold fUnctions, in an attempt to make the
point that the results to be given later on maybbe generalized without
great difficulty to differeﬁt models of linear threshold gates. A ibeorem
1s also presented to show that the dynanmical modél of chapter 1 1is a
"regsonable" ﬁodel of & real threshold gate. Finally the ﬁodel is related
to time-discrete representations. This chapter is also an introduction
to the discussion of chapter 6,.,which relates the resulis of the theory
to some pfactical problens. 7

Chapter 3 conﬁains the preliminany analysis of the dynamical
model, An analogy to an electrical network is giveh, and an example of
& limiting case of the model. A large part of the chapter is devoted to
e topological enalysis of two-gate netwérks. Such an analysls is an

introduction to, and containg examples of most of the results of larger
networks.

Chapter 4 deéls with stabiiity of arbitrary networks near
'their singular points. The simplicity of the model allows this type of

analysis to yieid geveral conclusions about the stability of arbitrary
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systems, An important‘conclusioﬁ is also drawm about the concept of the
rank of a gystem.

In chapter 5 +the second method of Lyapunov is used to show
results of "stability in the large." This type of analysis is particularly
ugeful in fin&ing "next stable states" of a system and in calculating the
.immunity of a network to "moise." -

Chapter 6 containg a discussion of the relevance’of the prev-
ious work to questions which may be reasonably asked of a mathematical
model such as the one we use. This ch;ptef perhaps could be read before

chapter 3, as an introduction to the mathematical detail of chapters

3y 4, and 5.

Chepter 7 is a discussion of some of the conclusions. which
can be drawvn from the prévious 6 chaptefs, and a list of some suggestions
. for future work. -

To make the reading of the thesis easier, each chapter contains
an introduction‘and, at the end, a brief summary discussion. Also to this
end, certain of the statements in the»mathématical treatment have been
given the name "assertion." An assertion is, in tgis context, a state~
ment of a result vhich can be proven easily or‘is evident from the dis-
cussion. A theorem is a fundamental or important assertion. One or two

lemmas and corollaries are also included, end have their usual relations

to the theorems.
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1.2.1 ORGANIZATION OF CHAPTER 1.

A,short deécription of the purposes and techniques of neural
modeling will be given, then an outline of two historically~importént
models, and finally the model with which this analysis is closely connected
will be explained.

In section 1.6 a ﬁew and precise description of a class of
dynamie logical threshold gates is presented, with émphasis on the form
of nonlinearity. The development of a new description of dynamic net-
works of threshold gates in terms similar to those used for antomatic
control systems is in sgection 1,7, Similarities éo linear systemé are

also mentioned,

1.3 PURPOSE AND TECHNIQUES OF NEURAL MODELING

The interest in mathematical neural modeling4 in recent years
has grown out of one fundamental idga: the behavior of complex machinesl
is to a degree brain-like, and the behaviér of brains is to a degree
machine-like. The understanding of functional aspects of nervous activ-.
ity has benefited from knowledge of control é&étems and automata theory,
and the desire for machines which change their behavior, that‘is, learn
with exparience, énd which function despite failure of unreliable comp-
onentsB, has grown with the knowledge that these two attributes' exist in
many forms of living matter, The purpose of neural modeling has been to
increase understanding in these two areas.

The formulation of the descriptions or models at all levels
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of activity takesvplace by two different processes.' In the first, a
very large number of obgservables are reproduced with high accuracy.

This has inevitably resulted in extreme complication of the resulting
model, but the hope has bsen that in comparing it with experimental
results, it will be reasonable to simplify to a significant degree,
meking the model more amenable to analysis. In the second & smaller

set of parameters is chosen‘initially, end it is assumed that thé,use

of the resulting description Qill point out areas whére;mo;e complication
is necessary, This approéch has resulte& in systemé which are relatively
easy to analyse, but whose behavior is very unlike the experimental
observations of real systems.

Studies of the nervous system and its information~-processing
capabilities can be divided roughly into the following five categories.
The precision of availaﬁle techniques tends to decrease from beginning
to end of the list.

1. Chemical and.elecfrocbgmical processes at the subcellular
level. It would appear that membrane mechanics is most relevant to the
functional behavior of cells. _ »

| 2. Cellular input-output functions. Deterministic stimilus-
response  functions tend to be either inaccurate orboverbcomplicated,
end therefore statistical descriptions are at present better for purposes
. of analysis.
3. Interactions between cells in groups. Such groups sre
often studied using probabilistic models of interconnexion.

4. Gross electrical and chemical activity of living nervous
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tissue.

5. Attempts to undersgtand entire organisms in relation to
their surroundings. -

Modelling techniques have generally depended on the complex-
ity of the chosen neural system. Formal mathematical description with
the power of its methods is generélly satisfactory only for systems
with & small number of parameters. Laféerinumbers of parameteré aqd<
systems with complicated nonlinearities can often-be handled by analogue
computers which algo have the advantage of giving the best insight into
elenent interactioné. A third technique, digital computer simulation,
is the modt flexible, although present digital computers are inherently
inefficient in solving many-varlable dynamical systems. Speed, storage
capacity and ease of obtaining state pictures of éhe system at instents
of time make this the most common techniqué. The fourth tgchniQue,
electrochemical modelling, is of mainly historical importance; The most

famous such experiment is the iron-wire model of Lillie5.



1.4 ANATOMICAL CONSIDERATIONS

The brain is essentially tieved in structuresy it can be cate=-
gorized roughly into three regions: the cortex, mid-brain, and brain
stem with branching formations to all parts of the body. Brain tissue
is seen to consist of discrote units which will be classed here into two
main types: neurons and other types.of'cells, mostly of the kind known’
as glial cells.A Extreme diversity exists im the ﬁicrostructure of
nervous tissue but on a macroscopic leﬁel werying degrees of explicitness
can be observed. That is, in parts of the esntral nervous system—the
brain itself=wthe physical structure appears nearly fénaom but in other
regions it is more systematic, Mathematical theories of information
processing have not in general concerned specifically restricted regions
since certain features are common to all typss of neurons and collections
of neurons, and sufficient data ié“not available to describa #ctual systems

adequately,

1.4.1 MORPHOLOGICAL FEATURES OF THE NEUROHN |
It has besh established that fhe following conditions may be

taken to be true for the purposes of methematical study of the'neuronéz
1. A nerve cell has the general form of Fig. 1l.1. The nuc-
‘leus is in the cell body or soma from which branch a large
number of dendrites, and a prqjection‘calied the axon; which

may also branch. Axons end at junctions, or synapses, near

the dendrites or soma of a cell body (see Fig. 1.2).
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dendrites
sonma

axon

Fig. 1.1 A Neuron
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‘Fig, 1.2 A Neural Network
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In the following work it will also be assumed that an exon

is not restricted to interract only with other cells, but may also

affect the cell from which it emanates. Generally axons may end at

other neurons or at effector cells such as muscles or glands.

2. Axons transmit impuises only in the centrifugal direction,
except for the case of "priméiy'afferent axons" which appear
to carry impulses from remote reeeptive‘structures to the

cell body.

3. Very great functional significance is attached tb the
surfece membrane of the neuron, altbough the interior proc=-
esses are not‘fully'understood.

4e In general terms the electrochemical processes produce
intermittent action: a neuron can be observed to propagate
Mgpikes®™ or electrochemical impulses along.the exon to the
synapses. The mechanism by which such impulses cross synaptic
Junctions iz not fully understood.

5% Impulses travel along axons without significant attenu-
ation, Onte an impulse.crossés & synapse, however,‘its shape
changes. Generally the farther the synapse from the cell body,
the more the afferent pulses are attenuated,

6. There is a significant time delay between transmission of

& pulge from one cell body to reception at another.
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l.5 FEATURES OF MATHEMATICAL NEURON MODELS

l.5.)1 RELEVANT MODEL TYPES

' The mathematical model which will be the basis for further
chapters is a description of the fuhctional behavior of a "neuroh%.
It 18 a mathematical abstraction intended to explain the functional
behavior of nerve cells in vivo without doing gross injustice to the
knovn physical struéfure of electrical characteristics. As will be
clarified, the McCulloch-Pitts type of cell hag explicit functionsal.
properties but its dynamical properties are not defined. The differen-
tial equations of the Hodgkin-Huxley type are good descriptions of single—
" neuron behavior but formidable to use as deScriptiqns‘of nerve nets. '

The Cowan model is midway between these two extremes.

1,5.,2 OBSERVATION OF ELECTRICAL BEHAVIOR
Three basic types of electrical observations of nervous
systems are commonly made:
1., Electroencephalography is a well-developed clinical method
of measuring the electricai activity of large portions of the
brain., Various characteristic waveforms can bevobserved*and
have been correlated with factors such as illness, personality
type, intensity of thought, and stages of sleep. The filter-
ing properties of the tissue through which the signals prop-

| ¥ Figs. 1.3 and 1.4.
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asleep

Fig. 1.3 Normal EEG Patterns

petit mal epilepsy

grand mal epilepsy

Fig. 1.} Abnormal EEG Patterns
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agate may significantly affect the observed waveform.

2, The behavior of regions of tissue of the order of one.
cubic millimetre can be observed.by the insertion of éleqr
trodes which compare local voltages with over-all levals.
This type of record is given the name "eleétrocorticogram."
3+ Techniques involving the use of microelectrodes enable
the observation of the input and output voltage weveforms
of single neurons in living tissue. Thus the response of
individual cells to specific sensory inputs or artificial

stimilation can be observed.

l.5.3 THE HESPONSE OF SINGLE NEURONS

~It is generally assumed that the response of a single cell
can be categorised by congidering its dendritiec tree to be the signal
input and the axon to be its output; that is, the flow of "information™
through & cell is unidirectional. Since the shape of the waveform of
the electrical potential of the cell body is clearly a train of spikes,
the problem is one of analysing the imbulée reéponée of the cell includ-
ing its dendrites and axon. The followink general observationg caﬁ be
made: |

1. A cell has & minimum time botween firing (assuming contine

wous strong excitation) and thus a maximum firing frequency.

This mimimum time is called ths refractory period.

2, The effect of spikes at the synapses caﬁ be to caﬁse the
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cell to increase or decrease its rate of firing; the effect

is either excitatory or inhibifory.

3. The response of a single cell may vary in time, The

number of afferent pulses at synapses required to cause the

cell to fire depends on the recent activity of the cell.
1.5.4 THE McCULLOCH~PITTS MODEL

Until this model was suggested there was no basis for the
assurﬁption that the logical or computational behavior of nerve nets
could be specified matheratically. The MéGulloch—Pi‘b‘bs rode1:® (Fige 1.5) pro-/
vided such & basis by building on the following assumption: every ' '
neuron can be classified into one of two statos during the course of
time. At any instant it is either firing or. not firing, and thus the
algebra of Boole can be used to analyse the logical behavior of nets
of such elements; F\u*bhemofe, the first-order approximé:bion of the
transfer function of a cell may be taken to.be as follows:

Assﬁme that in a network of =n cells, those which are in the
firing state are given the value 1 and those in the non-firing state
are given the value 0., Then, the effect of the n c}ells acting
through the synapses and dendrites of the gth neuron is as follows:

Consider the sum (Fig, 1.6)|
. n . .
Z — 1,1

where the o i are constant weighting coefficients. Then the relation
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Fige. 1.5 A McCulloch~-Pitts Formal Neuron
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output

Fig, 1.6 Functional Diagram of a Formal Neuron
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\

{ 1, 8,3 Ty
Xy =
0, 5; < Ty
holds, where -Ti‘is & threshold value. The dendritic structuie nay

then be said to sum the outéuts of the n neurons, the magnitude of

the coefficient % depending on the nature of the dendritic structure
through which the output of»the'jth neuron passes to the‘éoma of the ith,
and the sign depending on the effect of the jth input. If the effect

of cell J is excitatory, o4y >0, and if inhibitory, o

+

i <4Q.
Clearly if some cell, say k, has no effect on cell i, .then
O&k = 0. That is,‘fhere is no synapse between the axonal structure of
cell k and the dendritic or somatic étructuie of cell 1. Three
important points emerge: _
.1. The state of sﬁch»aasystemacan be completely described
by Boolean algebra.
2, Since the outputs of a neﬁron ;fe not mepped one-to~-one
on the sot of inputs (there are two outputs ana 2n possible
input combinations) and since knowledge of the‘oﬁtput dﬁes
not imply knowledge of the input combination, the cell is
performing the process of comnutation,‘rather.than mere
signal.transmission.. |
The ciass of functions which may be computed by such a cell
is given the neme "linearly separableﬂland a great deal of work has

been done in the analysis of such functions.
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5. A1l possible Boolean functions can be computed by a net-
work containing elemonts which compute lineariybsegarable
functions. This will be demonstrated in Chapter 2.

This statement means that provided the basic assumption of
two-level activity of cells holds, the logical behavior of nerve nets
can be deseribed mathematically, and conversely any logical functiqn
. which can be unambiguously defined can be computed"by’hats of McCulloch~
Pitts neurons,

, | The main difficulty with a twé-level description of any real
network of neurons is that it is obviously an approiimation. Clearly
8 finite time must elapse while any cell switches from the 0 state
to the 1 state during which it is in neither, The assumption usually
made is that such a system is "clocked" or that a stroboscopic analysis
18 sufficient to specify its beshavior. The two states of behavior of
8 ceil might be taken to be that in which rapid spike emission ocecurs
versus that corresponding to slow spike emission. The difficulty
in this case is that cells often exhibit a continuum of firing rates
‘between the minimum and meximum end two-level analysis is not entirely

valid.

Two additional objections to the use of a binary aﬁalysis arise,

even for the construction of a model of information processing rather
than a model of the physiological processes involved. The.first is
that an arbitrary network of real gates may have stable states which
cannot be defined by a twow-level algebra. Consider Fig. 1l.7. This
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represents a. one-slement network of NOR-gates. It will be shown{sae Fig. 1.8)
inLchapter 2 that such a gate can be constructed from & linearly-geparzble

function end therefore is of a type that we are considering, ‘ Clearly
the Bvolean function ‘

x =X _ 13
is not valid. The Egggig§; system, however, is easily realizable,
and if the one-input NOR-gate is taken to be a very high-gain saturating
anplifier with heavy negative feedback, the expected equilibrium value
for the continuous variable x may be somewhere between the zero level |

~2gnd the one level.

The second need for & more valid model than a two~lsvel one
is that a network of real cells can be described by a get of differential
equations, and therefore is & dynamical system. It may exhibit & trans-
ient behavior, and indeed, & never-dying oscillation may exist. If
‘such behavior is of interest, then clearly a set of differential equations

.must be used.

1.5.5 THE HODGKIN-HUXLEY MODEL |
This modeiv is a get of differential equations which approxa
imate rather well the behavior of certain neurons. It will be described
‘briefly here since it is the classic example of detailed mathematical
modeling of cell mechanisms.
It is agsumed that a typical section of cell membrane can be

repregented as in Fig. 1.9, The current across the membrane is produced
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by the movement of ions through it, The variable conductances are

functions of time and the polarising voltage E. All other parameters
are constant, Then the equations for thé propagation of en electrical
disturbance along a cylindrical fibre of redius &, . filled with a

- fluid of specific resistance R, are

2
Ay gy
23292 T3 = Oyt B (V - W) gNam3h(V Viia)
+go(V=1) ‘ 1.4
| dn = %% - n) - ppn g 1.5
J 'g% = m(l - m) ~ A | 1.6
L= (1~ b) - pyh | 1.7

where O is the velocity of propagation and typical & and g pare~

meters have the following forms:

= 0,01(V + 10 : '
o*y = exp[‘%l—oT—J): , 1.8
ﬁn = 0-125 exp[-s-a] ) ' 109
0,1(V.+.25) | | |
&m _____E_é___, E]_ iy 1.10
&), = 0,007 exp[ X | | 1.12

1.13

R |
; exo[ 5] + 1
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Clearly such a set of equations is not amenable to analytie
solution although analogue and digital computer solution is possible.
Fig. 1,10 is a typical pulse train which can be shown to bs one of the

solutions of the equations and which is representative of observed
. L}

action potentials.

1.5.6 THE COWAN MODEL

The Cowgn model is essentially a simplification and interpret-
ation of two generalized phenomena: +the ¢2ll exhitation mechanism and
'its firing ﬁechanism. It has recently been published in a thesis
(reference 3) and the following has been extracted from it (with permis-
sion):

"Our starting point is J. C. Ececles'! well-knoun »10
lumped equivalent circuit for the generation of post-synaptic potentials
eesey and the ,... distributed eguivalent circuit or "cable" equations
for neuronal membrane of W. Rall”, ....Since we are interested in model-
ling the responses of large nectworks, we are concerned only with the
crudest possible nontrivial way of writing down an equation for the
responses of a single neuroN.... - _ '

".,..Let us now approximate the effects of the slsctro-
tonic decrement represented in the cable equations, merely by an atten-
uation and a delay! .... . -

. %,..We now have to consider the way in which a yesponse
to such an excitation is elicited in the cell, ....R. Fitzhugh™  has
shown how such [Hodgkin-Huxley] equations give rise to threshold phenomsna
consistent with Mall-or-none" responses. ...

", ..However such is the complexity of the requisite
computations (and it is by no means clear that the equations cover all
the relevant phenomena) that we have chosen to approximate the response
by empirical curves obtained from experiments on the responses of nerve
membrane to stimulating currents.....It often seems to be the case that
eeeethe slope of the....rate-intensity curve changes in such a way that
it can be reasonably fitted by a sigmoidal function..... '

", .+There is no fundamental reason for choosing the
Curve....which is of course the well-known Logistic curve of demography .
It happens to be a convenient and tabulated sigmoidal function. What
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we are interested in studying is the qualitative nature of the results
issuing from this choice of a sigmoidal function, not the exact quutitat-
ive aspectsg." 'y

We interject at this point that in this thesis more emphasis
will be placed on quantitative aspects, since we are interested in
modelling deterministic physical devices rather thab statistical functions,
and since the detailed behavior is importent for some purpo‘gses.

"Let us introduce the variable
X(t) = 1 - 2v(t) )

Lwvhere A is the refractory period and v is the firing rate.]
Then we [have] a difference equation relating the neuronal output to
Jits inputs: .

X.(t) 1
ln.f-:gf;m =Gt F; so%rxs(t - T [1'15]

[where r is the neuron index, Er is a.constant input, Pr a slope
parameter for the sigmoidal function, the X, are coupling eoefficients,
and T, 1s the delay from the sth to the  rth neuron,]

"The variable X can be interpreted as the fraction of
time when a neuron that is continually emitting spikes is not refractory,
i.e., the fraction of time when i} is "sensitive" to stimuli.ee.

"...We now wish to convert the fundamental difference
equation into a differential equation.....We make the assumption that
all the delays are the same, so that we have Tgr = Lgt

Xp(t + ) - 1 4
lu1 -rxr(t‘,+r2-r) = €p+ "; [::”%;-Xs(’c). [1.16]

"e..For sufficiently small 2, we have the equation:

4 X,(t) ]+ - X, (t) . |

= + L | ] | «
(£ S X (%) 1-X08) €. 4 Pr. Sdsrxs(t). [1 1’7]

Various linearizations are then considered, and then the =
equation similar to the one above, but without the de.mping term, and

- with a change of time-scale:
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ir

d
Soan
aT™1 = X, ©

1

This equation forms the core of Cowan 8 work on statistiéal mechanics

of neural nets, X

1.6, A DYNAMIC MODEL OF THRESHOLD GATES |

The design of threshold gates and their logical properties
will be discussed preciseiy in the next chapter. Here we will be
concerned with their transient behavi&r.

» Gonéider Fig. 1.11, In the design of logic gystems by Boolean .
algébra the response of the ideal gate f£(X) to a step input at one

of its input terminals is assumed to be a-step also. The actual resp-
onse may be more like that of the "real® gate in therfigﬁre. The ideall
gate is assumed to be free from "noise," that is, it has two complstelj
stable outputs, 0 and 1., Any réal gate, however, will always be subject
to small fluctuations at 1t output. -

The central assumption made in this thesis is that the response
of & threshold gate is similar to that shewn in Fig. 1.11. Other resp-
onses .are poésible, and may be accounted for by various éhanges in the
analysis, but this will not be done hefe.

In the design of practical cifcuits, one of two agsumptions
1s usually made. The first is that the output of a gate is a perfect |
or nearly perfact step which occurs after a finite delay from the time
of the input chahge. The second is that the transition shape is of the



form shown in Fige 1l.11. The fact that actual realizations do not have
the ideal response leads to complications in the design of networks

of several interconnected gates, and these problems will be discussed
later. We note heye only that two simplified analyses are used to
describe sequential (dynemic) behavior. General gates are freated this
way, not only threshold gates: B

1. A three-level algebra is commonly used, in which the
binary O and 1 states are represented by O and 1 respectively,
and in addition a third "don't know" state is repreSented by-é. Refer-
“ences 12 to 15 deal with this method.

2. A pure delay is associated with each element, vwhich is
essumed to be in the 0 or 1 state at the end of the delqy~time.
Numerous papers make this essumption, btut the classic one is reference
16, |

Both of these approaches are useful, but are necessarily
accurate only ﬁhen the simplifying assumptions allow correct predictiﬁn
of network behavior. The continuous approach used here yields more
information about the detailed benavior of-switchiﬁg networks but

requires more computation.

1.6.1 SPECIFICATION OF THE ‘THRESHOLD éATE MODEL.

.We define a modei of the ith gafe in a network of n gates,
reforring to Fig. 1.12a, The object is to define the simplest model
which conforms to the above discussion, and to certain behavior to be
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discussed later:

1. The inputs are thé real varisbles X, 9 i=1, 2y0eeyp n
which are weighted by the real constants ‘xij 9 J=1, 24004y n and
gpummed, along with a real quantity ei‘ The inputs to the network are
constant in a fi;ite time interval and are included in the terms € 5
That is, if element 31 has an "external" input, it may be written

€1 =% +4:: Piglq » | 1.19

where «;  end i’i‘q are constants, Uy Is the q'bh inpu:t, and g
.ranges over the set of input variables. Thus the total summed input
is
€ + 2 Coxs . - 1.20
i j°&j j

2. The output of a gate is the variable x;, and the outputs
of the network are any set of the x3, 1 ¢ i ¢n.

3. The system is autonomous except for changes in the input
variables, During the finite time intervals in which the inputs are
constant the system is completely autonomous. This prep'gludes the usual
situation in which "adaptatioh" or Maccommodation® affect the short~time
interval characteristics of an element. A changs in inputs coﬁesponds :
to a new sot of initial conditions for the next time interval.

L. Each gate is a first-order dynamical system, such that
x; may be taken as the state variable, "Ringing" and overshoot resp-
onses to step inputs are thus eliminated. .

5. The state equation of the ith élemen'l'; is of the form

. " _
(?ia% + 1)Bs \V(Xi) = 61 + %;'iaijxj 1.21
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where 7& and\ pi are positive real constants. This equation eXﬂibits
behavior consistent with assumptions 3 and 4;
6. The function \W(x;) in 1.21 is
=~ single-valued with a single-valued inverse q)“l( e )y
-~ strictly positive monotonic in xj,
- enalytic for 0 < x4 < 1,
- ; agymptotic to the values x3 =0 and x4 =1,
~ symmetric sbout x; =% . |
The last two of these assunptions are simplifying normaliza-
;tions, and are not necessary, but may be used with no loss of generality.
We assume further that ;P(xi) hes exactly one point of

inflexion at x5 = 4. Tig. 12b is a diagram of a sultable function.

1.6.2 THE OPERATIONAL APPROACH
Consider Fig. 1.13. This is a lossy integrator feeding a

function generator, and having as inputs the quentity

n
éizéi'.yi-l‘za’

J_-:l inj . 1.22

We assume that the variables x; and y; are normalized voltages.

d
Then, if the operational amplifier is perfect,
1 _..L Yi dy‘i . '
Ry, Z at ! o 3
or
;. T3 1 x5 4
(c 1) (==) = ==+ . 1.24
it 3 Re"  Rio 23-313
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Clearly, if the following equations hold

€, =1
Rio
1
di _..R_i_; |
1.25
By = o=
Re

and in addition, the output of the function gensrator is x; = Y "1(-piyi),
sthen 1.24 is exactly equation 1.21. Therefore it is possible to simulate

1.21 using the computing elements of Fig. 1.13.

From Fig. 1.13 it can be seen that no metter what finite value
the variable y; may reach, the function generated is in the open

~ region (0,1), that is, for all time
x; € (0,1) . '~ 1.26
This result is due of course to the choice of the function t}/(xi).

It is possible to rewrite 1.21 as follows. Since

aVWiz)

; i | :

we may write

% = m[ei - By W lxg) + Z;a’ijxj] 1.28

which 1s valid for all x; in (0,1). Assume for the moment that
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ell variables except x; are constant. Then we have

where k includes all constant terms. The right~hand side of this
equation (the "excitation" of the element) may have tﬁe general forms
illustrated in Fig., 1.14a and 1.14b which differ only in the parameter
®;50 The function y! (x;) is alwa:;’s positive and nop-éero, end at
the limits O and 1 goes to plus infinity. It can be seen therefore
that if the vertical &xes in Fig, 1.12,"am labelled BT W' (x;)xs

,then x; tends to one point in Fig. 1,14b and to two in 1.14a depending
on the initial point, The exact behavior in Fig. l.1lia cannot be
specified since the function |

L(s) = Lim -WEL 1,30
XS \,(f'(:ﬁ) . C

has not been specified for 8 = 0 or 1, The limit of the behavior as
®;;—>0 is an infinite-gain amplifier, end since the term of;;x; is

a feedback term it has a large effect on the element staebility.
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1.7 THE SYSTEMS APPROACH

In section 1.6.1 the characteristics of one gate in g net-
Work of n gates were defined. The object here is to give a deseription
‘. of such a network in & manner similar to that of a noniinear automatic
control system. Consider Fig. 1.15. This is a functional diagram of
& network of NOR gates, r_ealizing a function known as a J-K bistable,
(The equivalence of threshold ga.tes to NOR gates will be discussed
in Chapter 2.) Such a network may be represenﬁed by the following

» L

equation:
r0 0 0 0 0-1] (%] -1 0] [w
0 0-1 00 0 A 0-1| | u,

| “1-1 0-1 0 0 % 0 o :
= (T+IBY=| X+ + 1,31

000000 Bl |-2-2
0~1 0-1 0-1 % 00
L0 0 0 0-1 0 %1 L2 ol

where I is thé unit mati-ix, Y and X eare n-dimensional variable vectors,

-and
B=diag[B;], 3 > 0 | 1.32

T=aieg[7,].7 20 - 1.33
D is thei diagonal differential operator of order n. In general, a

system of threshold gates may be repreéented by the equation

(TD + I)BY = AX + A  + FU, L34

# No comments will be made as to the uses of this particular circuit.
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where A, is a column matrix, P is an n by q matrix, and U

ig the q-dimensionai input vector, Recall from section 1.6.1 that we
are assuming that U, is constant in & finite time interval. We

use the subscript k to denote the kb such interval.

l‘ Equation 1,34 may be rewritten as follows. Let the vector

T be the solution of the equation
AT+ A +F0 -Bm=0, 1.35

in vhich U is & constant vector, and 77 = [/g_] is related to
= [Yi] by the equations |

”n =¢(r‘) ’ .
1 2.36
r-" =q1- (m) ’ '
because of the relation
Yi = ""(Xi) . . | A 3 - 1.37
Now combining 1.34 and 1.35, we have
(TD + I)B(Y =7) = A(X =) + P(Uy = T) . 1.38
Taking Laplace transforms, 1.38 becomes
(Ts_ + I)V(s) = Tv.(o) + PU(s) + Az(s) , .39
wherse-
V(t) = B(T(t) -7) , | 140
z(t) =x(¢) - T, _ A1

U(t) =0 -0, . ' 142
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From 1.39,
V(s) = (Ta + I)~L1v(0) + (Ts + 1) PU(s) + (Te + I)~1A2(s). L.43

The inverse transform of the first-order transfer function is

&y o w1 pfe [ 7a ] o1l
SR

end thus the inverse transform of 1.43 is

t ' 4
v(t) = e'tT'lv(o) + J o’ci‘s (t =)pu(Z)a? + IoGs(t ~T)z(T)N?,

1.45
‘where

| _am=1
Gg(t) = L-l{(’l‘s + I)"lA} =, L.46

is the” impulse regponse of the linear transfer function.

Equation 1.45 is similar in form to an equation usually cons-
idered in stability analysés of.certain control systems.s We now re§a11
?hat we have assuned that Uk is constant. _Therefore'if ﬁ': Uy, the
input function in 1.45 is'zero, and this equation-is then the zero-
;gégi state ééuation.

1.7.1 SIMILARITIES TO LINEAR SYSTEMS -
We make one further comment ebout the form of 1,38, The stand-

19

ard state-space representation™’ of linear systems is given in the follow=-

ing two equations:

X=AX +BU
Y=CX + DU



53

in which X is the state vector, U the input vector, and ¥ is the
output vector, The matrices B, C, and D need not be square. If,
along with 1.38, we define an output vector W(t) and a matrix G,

we have
(TD + I)V = AZ + FU , 1,38
W=20zZ, o . 1.47

where of course the second term of the second equation is zsro. These
jtwo equations bear a strong resemblance to those for the linear system.
The difference is that V(t) is a highly nonlinear function of Z(t)
and therefore linear theory is of only limited relevance, |

1.8 SUMMAEI

Three mathematical models of neural function are given to
ilTustrate: the range of such models._ The_McGulloch-Pitts model is a
?undamental hypothesis about -static neural function, the Hodgkin-Huxley
equations arazﬁhe clagsical exanple of detailed membrane description,
an& the Cowan equations are intended to eihibit the function of the first
with some of the dynamics of the second.

A precise model of real linear threshold gates resembles the

Cowan model closely.
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CHAPTER 2

REALIZATION OF LINEAR THRESHOLD FUNCTIONS



2,1 INTRODUGTION | B

| In recent years much effort has.been expended on the analysis
of logical elements based on the-prinq}ple of the linear threshold
function, and considerable use of such elements has been made in studies
of learning machines1 and in actualtcomputing maéhineé7. In this
chapter some of the important features of this’ analysis will be dis-
cussed, with emphasis on the definition of a threshold function, its
construction, and its circuilt realization. _

’ Section 2.2 contains definitions of functional elements and
functional gates; In this section and throughout the thesis the word
"Boolean" meansvlogical, whereas "binary" means two-valued or "nearly" -
two-velued. (This distiﬁction is not always made in the literature.)
Normalizations of threshold funptions are discussed, since the analysis
to be presented later is of a set of equations normalized to the interval
(0,1). The loéical equivalence of normalized threshold functions to
other threshold.funcfions4is demonstrated. o

Section 2.4 presents the fundamental mo£ivation of this thesis,

‘We give a theorem which relates the dynamic model of Chapter 1 to the
logical functions defined in the first part of this chapters The result
is extended in a corollary #o the special case of "lossless" gates
similar to éQuatioh 1.18., Convergence times and end-points are discussed,.

Since the model we have used is a dynamical model it is possible

to relate the continuous-time dynamics to discrete-time systems. A

definition is introduced in section 2.5 which may be used to characterize
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systems which obey discrete~time equations at only a finite number of

points.

Properties of such systems are discussed.

2,1, IEFINITIONS

In the following work, use will be made of certain definitions:

Definition 2.1: A logical threshold elemsnt is an ideal
logical element with a finite number of Boolean inputs and one
Boolean output, whose operation ezn be described by reference

-to an arithmetic valuation of the inputs called a threshold

© function (ses Fig. 2.1).]

Definition 2.2: A threshold sate or threshold logic unitr

is & physical realization of a lagical threshold element.

It has n (a positive integer) binary inputs and one binary

~output which is determined by an evaluation of the appropriate

~ threshold function, or a suiteble approximation of the approp~

riate function., It is often conwenient to describe the
logical behavior of such a gate By its Boolean function -
provided the outpﬁt is a recasonsble approximation to a two-
valued varisble (see Fig. 2;2).§

Definition 2.3: A fthreshold function ¢ is a 16gical function

of n Boolean variables Uj, Ugyessy W,. If each variable
is mapped onto a set of two numbers, u; --.xi,' l1¢<i¢n,
such that if u; 1s true, x; =b, and,u; 1s false,
X;=a bFa, 1 g i {n, end if the single~valued ﬁmctmn

&(xl, Xyseees X ,6) = £(X,€) 1is formed, then the Boolean
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output is _ . »
true if E(X,€) 20 ‘ 2.1
false if &(X,€) <0
where € 1is a finite constent. That is,
b, E&(X,€) 20 |
+|

a, §(X,e) <0.
We use the arithmetic function
b, 8 20 o ’
£(s) = 2.3
a, 8 <0, ‘

The function P(&(X,€)) 2 r(x,€) g:hfen above is & valid
description of the state of the binary gate as a Boolean function
provided the output is a "reasonable" approximation to a two~level
function for all time o.f' interest. | |

Definition 2.4: A linear threshold function (L.T.F.) of

n inputs x; is a threshold function of the following forms
. . . .
fmﬁ)=ﬂe*ggﬁq) o 2.4
where the constants &; are not all zero. Defining

%&b, ' 25

the equation becomes (Fig. 2-3)! ’

f&)=ﬁ&m)2ﬂg%@g. 2.6
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2.2 NORMALIZED FUNCTIONS
In the literature of learning machines: and pattern recognition
devices, the input vector X = (xl, Xyseees xn) is called the measure;
ment vector. If n is a finite number and the values of Xy l1¢ig¢n
are & finite set, the set of possible vectors X czn be represented
ag a finite number of points in an n-dimensional measurement spaceB.
The equation
&x)=o0 ' 2.7
Adefines a surface in X-space vwhich separates the points on either
side of it into the regions corresponding to frue and false values.
This corresponds to division of the measurement space into two pattern
classes A and B. If A end B are finite sets there must exist e
8 > 0 such that for some. & not necessarily linear,
€(a) < =6<0 < B <E) 2.8
That is, if we consider the-surface .
EX) =0, X = (x5, Zyseees Xp) ' : 2.9
we can always find & such that there is a finiteé distance between any
‘element b 6f B on one side, and any element & of A onfthe othér.
If A and B are convex sets, then a linear function & is sufficient
to perform this classification, _ ‘
If &(X) is a linear function, clearly it is possible to
find a liﬁear transformation
| X= (xl, Xpseees xn)-*—U = (ul, Wysaees un) 2.10
such that for some finite £ , the linear function ¥ (U,§) is eqﬁal

to & and therefore logically equivalent. The transformation is as



xo:(: () | |
b ~ &)

T

Fige 2.4 A linear Transformation
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follows:

Consider the linear transformation of Fig. 2.4:

xi-a_ui-c

b-a’d-c’dic' : 2,11
Then,
n noo .
E(x,e) =€+ j_Z—idixi =€+ iZ=_':_Lo(i[d = c(ui -c) + a] . 2.12
Let
besa_
2=R= ., | 2.13
Then
n n
&(x,€) = €+ f:’fi(a - 7e) + iélafﬂui . ‘ 2.1
Defines |
wy =n% , 1$1i¢n, ' : 2.15
n
£=2€+2 a@amne) . : 2,16
e A
Then
. n _ |
&(x,€) = §+ ) cou, = F(v,) 2,17

i=1
is a linear function,
The linear threshold func’cionu can thus be.normalized by a
linear transformation., One such normalization is to give the variables
x; ‘the algebraic values O and 1, 1¢ i §¢n, and to transform the

¥
values €, O such that
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o}
1 Z_d xs 2T
g =
£(X) = , 2,18
n
%;Ldixi €T -1

where T dis a threshold and the term ~1 is introduced to allow for

. & region of ambiguity in physical devices. A second normalization is

x €{-1, 1}, 0¢1¢n. 2.19

2.3 DETERMINATION OF LINEAR THRESHOLD FUNCTIONS FROM LOGIQAL FUNCTIONS
’ If & threshold gate is to be used in a logical machine it is
essential to have an algorithm for caleulating the constants «;,
0¢i<n from the given Boolean function. Clearly for n binary
inputs, 2% possible iﬁput vectors X = (xgy X1jeees X))y xo =1
_are possible. Clearly a,ls'o,,"if\ each vector X is to be classified
into one of two sets, A and B, there are exactly 22n possible
rules for performing the classification. The function f£(X) specifies
this clagsification rule. |
Congider a normalized three-inbut threshold gate es in Fig. 2. 3. »

In this case
X3y 3 80,13 s 2.20

and

a'2=a'3=1, 2.21

Thus, if C(l =1, £(X) corre‘spohds to the Boolean. function
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£(X) =x, + X3 | _ 2.22

and if a4 =0, £(X) corresponqs' to
£(X) = XpX3e . 2.23

If @3=1 and Xy =0y =2, £(X) corresponds to the NOR function
£(X) = m o E 2.24

Thus linear thresghold funétions can be uéed to make AND,IOR and NOT
.{one-input NOR) gates. Therefore we can state.

Theorem 2.1t Any Boolean function can be realized using one

or more linear threshold functions.

The above.famogs resul.t8 is the basis for a large amount of
work concerning the realization of given Bodleén functiéns using linear
threshold gates. Usually it is desired to use’the minimum number of
gates by allowing more inpufs t§ each gate, Unfortunately, all the
possible functions of n > 1 variables cannot be realized with one
n-variable 1ineér threshold fuaction. A complete 'set of ﬁecessary and
sufficient céﬁditions under which an arbitrary Boolean function can be
realized with one linear threshold function is not known in general.
The test for separability (linear or nonlinear) therefore is usually
to go through all or part of & design procedure4’6 or "training" pro-
cedure’ which is guaranteed to produce a zero-error solution if one

exists.
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2.3.1 DESIGN PROCEDURES '
Ir x;€{-,1}, 0<¢1¢n, anda Boolean function is
specified by a truth table in which the "don't cares™ are given the

- wvalue 0, one design prodecurel" for the function

Fa
f. == ébkrk N : » 2-25

is to compute the values b, by considering the desired (correct)
ontputs £)€ {~1,1}, 0 ¢j 201, forall 2 input combinations

'as follows:
281 -
J=0

whers the . are

r°=x°=l
r1=x1
T, = x, _ | 2.27

-

Th+] = X3X3

fle o »

rzn-l XIXZQ e oxn 3

Of course the product terms X)X &nd the ‘like make the
function &(X) nonlinear in general. This procedure always results

in values of by which give the correct logical function of the variables
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) provided all terms to k = 28 -1 are used. If, on the other
hand, only the first n + 1 terms are allowed, a linear function results,
but it does not necessarily give the correct desired function. Two

6

procedures” are possible:

1. The weights ®;, 1 ¢i ¢n of the.correct function
are approzimated by an equation of the form pY; - qai3 = b; whexe
p and q are constants. Other forms are also posaible. The weight
&, and some of the others may have to be adjusted by further approx—
imations or trial-and-error techniques. |
’ 2. The absolute values of the coefficients b are arranged
in descending order. The result is the n+l element characteristic6
vector which has been tabulated for low orders of n. The correct
values of the ¢'s are then obtained from the tables by permuting
or negating them to make them correspond in sign and magnitude to the
sequence: of Db's.

The first of the above ﬁrocedures yields approximate values
of the Q&, and may not produce the required function for large numbers
of arguments., Tables of characteristic vectors and the corresponding
weights for threshold functions of more than seven variables are not

available since the number of characteristic vectors increases very

. rapidly with the number of inputs n.

2.3.2 ERROR-CORRECTION PROCEIURES

Nearly all error-correction or Mbraining® procedures for



realizing threshold functions are based on the Rosenblatt’ training
procedure for linear devices. An n-degree polynomial function can be
converted to & 2" = 1 variable linear function as in 2.27 to allow
the use of the procedure for linear functions. |
Let the threshold function output. be
n
1 if ébaixi 39 |
£2(x) = o | 2.28
0 if ébaixi ]

for some finite 6 3> 0. lLet 2 = {Xl’ 'Xz,...} be any sequence of
vectors chosen from the set of 21l possible input vectors s and let
{f(l), f(z) ,...} be the corresponding sequence of the values of the
required binary function. We f:onsider thé input vector Xi = ‘(x 03?
Xyjreees Js,lj), the weight vector Ay = (aoj’ “1;':"-: Xy ) and their
scalar product (which is the linear function 2.25)

n
(Aj,Xj) = igoaijxij . . | . 2.29

In the literature of adaptive networks ¢ is referred %o as the training

sequence of Input vectors. Then the sequence of weight vectors A,

J
=1, 25.e. 1is chosen as follows: -
1. A, is an arbitrary finite vector,
a £0) =
2. Ayg * %y if (Aj_l,Xj) ¢80 and £/ =1
84 if (a5,%) >0 ema £ =1
Ay = 2,30

i (%) <-sama £ =0
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Then, provided there is a linear function which will compute the desired
logical function f without error, .
Theorem 2.2: The sequence A,, A1, Ay,... converges. There
is an integer N (depending on f, A, end 6) such that
Ay = Ay = oo If 7 has the property that every possible
input vector occurs an Infinite number of times, then Ay
is a solution for computing the function f£f. -
This theorem due to Rosenblatt is often modified® by the
absolute correction procedure (and others) s which requires that for each

‘input vector Xj s ‘the weight vector Aj is changed by the factor

A; = A 2.31

hd .
3 j=1 j

where A > O is large enough to correct the functional error for

that input vector.

2,/ FUNCTIONAL BEHAVIOR OF THE DYNAMIC MODEL

. Ih this section the dynamic model introduced in section

1.6 will be related to the static functional systems of the first part
of Chapter 2. From the operational model of Fig. l.12a it is evident
that provided Ty chg.nges rapidly enough from a value sufficiéntly
Thigh" to a value sufficiently “"10w," .thén the output x; will

be "near" the ideal response of Fig. 1.11. The ossential difficulty
is to define the permitted deviation from a perfect step, and to relate

this to the parameters of the model.
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De}inition 2.5: A linear threshold function realizes a given

logical function if the output of the threshold funetion is

ddentical to the logical function for every possible input.

This is the usual definition of logical realizé.tion. We
shall use in addition |

Definition 2.6: A physical device with n-element input

vector X(t) and output x; realizes a ’16gica1 function f
in the interval (t,,ty) if there exist two values, a and
b, such that for t, < t < t;, the input vector is nmapped
onto one of these two values: &= f£(X(t)) € {a,b} by the

threshold function, and if, in addifion, the inéqualify
[=;(6) = £] < m o 2.32

holds for A arbitrarily small.
We recall that the state of the dynamical model specified

in section 1.6.1 is given by equation 1.21, repeated here:
: Loy
(&= + 1)B Plx3) = €5 + 2 Xix | 1.21
igg VP YY) =€ A ‘

where ?‘i and £ 4 &re finite positive constants. We now state
Theorem 2.3:  For any t, and arbitrarily small A4>0,
the numbers 5§,u) >0 and T exist, such that equation
1,21 realizes a linear threshold mnctio;z in the interval

(t, + T, o) provided the ineguality

n
e+ %“ﬁjl >$ | 2,33
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. .
holds for all t > t,. Furthermore, the linear threshold
function is specified by the constents ¥35, j =1, 250005 1
end the value €;.

Proof: From 1,21 and 2.33,
dy

where yi(t) = \P(xi(t)) and )gi('b)l > 1. We omit the subscripts

for gsimplicity and rewrite this equation as follows:

%%+%y=-,%g(t). o 2.35

The well-knonm9 solution of 2.35 is

t-to t—to

8=ty
y(t) = y(to)é' T+

/g(?—le  ds. 2,36

Assume for the moment that g(t) > 1. Then

s s~tg tl s-tg -ty -
_ g—%-le""‘;"‘ds > | FF ds =e ¢ ~1 : 2.37
Yo
in which case
o _ 5 -tﬂ'to s
Yx(t)) = 3(8) > [rlto) ~5]6™ +3. 2.38

¢ (s) and q)"l(s) are positive monotonic functions, and furthermore
the .relation

Pls) =1~ yl=s) - 2.39

. holds, since &'J“l is a symmetric function., We may rewrite 2.38 as

follows:



? | e | 5
x(t) > 1~ -1{[3- y(t, )] - F} ’ 2.0
and thus
Eeog
1-x(t) < \P‘l{[g - y('bo)] e ¥ =~ Fj .« 2.41
We now choose ) to satisfy the inequality
Radiva | 42
in which case there must exist a T > O such that
1 - x(1) 1)"1{[% - yte) €77 - % }s Mo 243

In a similar way, if we had assumed thet g(t) <‘1' » Wwe would
have, instead of 2.43, |

-1 | T't° $({.
x(T) <y [P+y(t)] - S, 244

for S satisfying Re42. If we chooge T o be the minimum value which
satisfies both 2.43 and 2.44, then inequality 2,33 implies 2.32, with

b=1 i‘or€i+z: jxj)5>0 |
¢ = a=0 for €i+2_;0(ijxj<-5<0 . 245
. =1
Equation 2.45 is of the form specified in ‘equations 2.3 and 2.6 of
gection 2;2 and thus. the valueg of €1 and “ijl specify a ‘linear
threshold function. This complotes the proof of the theorem.
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We make the following remarks about the above theoreh:
v 1. The number o specifies what is usuelly called a gap,
or region of uncértainty3 and a threshold gate may only be satisfactory
in the time intervals in which the magnitude of the sumvbf the inputs
" exceeds this value, as in inequality 2.33. In additiou the dynamiec
moael we use requires that inequality 2.42 also be satisfied, and in
any other physically-realizable model a criterion of the nature of 2,42
must be satisfied? because of the imperfections of real threshold
elements such as relays, etc. The parameter Pi is related to the
%1ope of the sigmoid function and thus is a measure of goodness of
a given function. It is clear that for any value of $ we can satisfy
2.42 by changing @;, that is by improving the device, and we can
satisfy 2.33 by varying the values of aij aﬁd éi. It is obvious
that since 2,33 is an inequality, the pafameteis of any realization
are not unique to a given threshold function. The usual convention of
specifying these parameters is to use the smallest integers which
satisfy 2,18, in which case, 5'=-%. |

2. If the feedback resistor Rf‘ in Fig. 1.13 is removed,
the time~constant ¢ becomes infinite, and (again assuming a perfect.

anplifier) the transfer~function becomes & pure integration; Of course

this situation is never achieved completely in practice, but.corresponds,

in the mathematical model, to the limit as Pi approaches zero with

the product B;7 remaining finite. The limiting equation is

4 - :
Fitiapyey) =€ ;0‘1;"‘5 | 2446
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which is identical in form to the Cowen equation 1.18, provided we
L
specify :

= X
Ll’(xi) - log'i':';;; .

This special case is the basis of the following
Corollary 2.1: If equation 2.46 replaces 1.21, then Theorenm

2.3 18 valid for arbitrarily small S 0, provided inequ=-
ality 2.33 holds.

. Probf: With B; =0 and & 0, inequality 2.42 becomes

—————————

¢-- 09} =0 < p 247

which is always true for a4 > 0. Thus 2.43 and 2.44 are always true
for some T and the theorem holds.

3. If a maximum input is specified as well as the minimum,
then the two values & and b need not be taken ag 0 and 1l. In

such a case we can specify 0 <a <b <1l as follows’g

Corollary 2.2: For any to and arbitrarily small M > 0,

the numbers S1(m) >$(m) >0 and T exist, such that if
condition 2,33 is replaced by

0 ,
51 > €+ j_Zlofijle > | ) 2.48

then Theorem 2.3 holds for numbers a A'and‘ b, with 04 a
< b <1, suchthat 2.45 is replaced by '

% gee Fig. 2.5
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b for 51>€i+Zaijxj >8>0
z= 4 2,49
a for -51<€i +Z«ijxj< =$<o.
J

Proof: The argument is similar to the proof of the theorem,

- except as follows: For positive inputs, we have, instead of 2. 41,
- -1
{[Y(’c ) - -—] o + T} >x(t) > ¢ {[y(t ) - -] e + 3} s 250

and for negative inputs, .
) t-to 5, | (1 et
"1{[y(to) * Tsl] 7 - p}< x(t) < \p‘l{[y(to) + ";] & - é} . 2,51

We therefore choose a number b to satisfy the inequalities

b~ w"l{-g}&,u

(p-—l{%}} -b<)u : 2.52
and a to satisfy '
e~ yl --8}»
rl-#l o

q)"{--é-} --a</u..

We then choose T +to be the smallest value which, for any permitted

initial condition, satisfies both inequalities

Jxy(@) = bl ¢ oo
}24(T) - 2] § A

254
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and the proof is complete, except for the observation ihat inequalities
5.52 and 2.53 require that 0 ¢a <b <1, |

It is clear from the above proof that by allowing the values
of a2 and b to be within the interval (0,1) the minimum input
) may be smaller than that for the theoren, for given convergence time T,
Specifying a maximum input is not usually a severe restriction.

4e We remark that other définitions of realization are
possible. For example, we could specify that the functional output
be outside the region [a,ta for somé time inferval, instead of conv;
.erging to & E{a,b}. It is expected, however, that definition 2.8 has
the greaﬁest practical significance, '

5. The initial condition xj(t,) must always be in the
interval (0,1) and thus y;(t,) = P(x;(t,)) must almays be finite.
For equation 2;46, however, as + becomes large, y(t) becomes large,
and a change éf input willlrequire a large time T t§ teke effect, This
is an unrealizable situation as mentioned previously, but is very
interestiné because it corfesponds to a gate with an infinite memory.

In practice, the value of ﬁj’ is finite and the memory of any gate is
finite. ZEquation 1.2i has a maximum convergence time as well as a |
minimum, provided the range of initial conditions is limited. It is
reasonable to limit the initial conditions to those values obtainable

from the allowed inputs.
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Corollary 2.3: If the conditions of Theorem 2.3 and Corollary

2.2 are satisfied, then there exists a number Tmﬁgl’/fo

such that T < TM provided the inequality

\P.'Vl {- %} x(t,) < gF-l{a 1 2,55
holds,

Rather than prove this corollary, we shall point out that it
is obvious that the longest convergence time ocecurs either when the
ainimum positive input follows a maximum negative input, or vice versa.

In such a case,
2.56

and Ty is the minimum value for which the following inequaliﬁies

are simultaneously satisfied:

51§ ._TM‘to $

by “II[""“FMG i

‘Pnl{[%wp.] o 2-_.5.} -a </u

6. The final remark is that the symmetry of the function

2.57

41“1( . ) allows the gap to be symmetrical and 2.48 to apply, but
that 1t is conceivable that in certain situations an asymmetrical gap
might be reqﬁired.A In such a situation the above theorem and corollaries

would require changes in detail but not in form,
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2.5 TIMI~DISCRETE THRESHOLD NETWORKS

The development to this point has dealt éxclusively with a
differential equation model of a threshold gate. Simulation and inplen-
" entation of such gates often requires a time-discrete representation of
their dynamical behavior. We consider here the transition from continue
ous to discréte systems and the validity of a discreste-tims functional
representation of the dynamic model.

Assume that the inputs €; and %353 = 1y 25000y z to
gate 1 are continuous and therefore that x;(t) is continuously

differentiable. We write

ayP(x, (t)) dx, Pz (849) = @i, (2))
e T ) - E— 2458

which depends on the above assumption and on the assumed properties of

q)Cxi). Then for some small 1 we may write the approximation

gu . W (50) = glx (8)
‘d‘b o . 'V -

'2.59

and combining. this with equation 1.21 and rearranging, we have

Xi(t + 1)) o \V-l{(l - '21,};) ‘.P(Xi(t)) + 'F—il)?-;;(ei +2:’:xij}{j('b))} . 2.60

-This trivial epproximation will alveys have arbitrarily small error
provided 1 may be made arbitrerily small, Keeping 1V finite and

allowing PB; to approach zero, 2,60 becomes

xi(t' .+ V) ¥ U{Ei + Zj:aijxj(t)} . 2.61
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where U{ .} is the step function. This is nontrivial and may not
hold for sny V), but there are cases where x; switches quickly from
near O to near 1, and 2.6l is valid, even though the inputs may

not be continuous.

Definition 2,7: If, in a system of n gates, we can find

numbers toi’ 1€1<¢n, and a number M >0, ‘such that for

all i, the relation (see Fig. 2.6)

l i(toi +Y) - U{ Z“;LJAJ (’%1)}‘ < p 2.62

holds, for 4> 0 arbitrarily small, then the system is
firat-order time-discrete, and may be termed l-discrete.

If there is en integer m ) 0 and the relation

x, (by + Yyq) = U( Z“ %3 ¢og r)}‘</* 2.63

with 1/°=0 and ))r+l> Vr

polds‘ for all i =1, 2y..ey N
&and all r =1, 2,..., my, then the system may be termed
‘m-discrete. »

_ Of course the order_of discreteness depends on the initial

conditions xi(t(-')i), 1=1, 200, 1.

Provided 2,63 holds we can generalize 2.61 for an m-discrete

‘ .system:

Xrﬂ:U{ErfAXr} s T=0, 1ye.., m,

and adding the output equation
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W, = CX, ‘ 2.65

r

we have two equations which resemble those for a linear machinelo,

except, of course, that the step function in 2.6/ is highly nonlirear.
This difficulty may be overcoms for some purposes for finite values of
m by using polynomial interpolation methods.

It may happen that 2.63 holds vhera U is not a step between
0 and 1 but between two numbers a and b, with

b, t 30
U(t) = { 2,66
a, t <0
and 0¢ a ¢ b< 1. With a suitable transPormation of coordinates
definition 2.7 remains valide Indeed a and b need not be between O

and 1 but we shall only deal with this case in what follows.

2,6 SUMMARY | ' ’

In order to compute a logical function with a real devica, the
distinction between "logical,™ and "binary" funétions is made. It can
be shown that binary functions on the set {0,1} are equivalent to arb-
itfary binaxy functions, hence coatinuous functions in this éontext need

only be considered in the interval (0,1). Mothods of designing threshold

functions result in non-unique sets of functional parameters. Questions

of realization of binary functions with the dynamic model can be answered

precisely, both in a continuous time-scale and at discrete points in time.
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CHAPIER ' 3

PRELIMINARY ANALYSIS OF SOME GATE NETWORKS
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3.1 INTRODUCTION

The purpose of this chapter is to gerve as an introduction to
the stability analyses to follow. The uniqueness of thersolutibns of
the gate equations will be shown. Two cases willvthen be treated: an
electrical network analogy, and a system of lossless integrators with
perfect switches. The equilibrium or singmlar solutioné of the general
network and of th9 special Cowan equation will be discussed, and a
topological (trajectory) analysis of two-unit systems will follow. A
- special case similar to Vblferra‘s equation52 of population dynamics

is discussed in Appendix C.

3.2 EXISTENCE, UNIQUENESS, AND CONTINUITY
We write the ith equation in a system of n simultaneous

ordinary differential equations in the general form:
dxy - . .
-aT = fi(xl, xzyooo, xn) = fi(X) g 1= 1, 2’...’ n . 3.1

Sufficient conditions for the function f; to satisfy a Lipschitz

afs -
1n a domain D are that the partial derivatives S’-J-:-i
‘ :

condition
1£€j<¢n be bounded and continuous in D.

If the n functions £, fhseees £, satisfy Lipschitz condi-
tions In D, the Cauchy-Lipschitz theorem states that each equation
* 3.1 has a unique solution x; = x;(t), 1 €1 ¢n, defined in the |
neighborhood of + = t, such that x;(t,) = &4, lbs i €n. The theorem

-
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thus guarantees the existence of solutions with prescribed initial
conditions and asgerts that the initial conditions determine the solution
uniquely.

If the n functions f;(X) satisfy Lipschitz conditions,
then the solutions xj(t, tyy £15ese, §,) are analytic in all of their
arguments in a neighborhood of t,, §1, 1 ¢i¢n,

The integral curves of 3.1 for specified functions f£; defins
8 family of trajectories in the n-dimensional ZX-gpace, and the theorem
applied to this autonomous system has ihat through every point in the
X~space there passes one and only one integraltcurve.

In chapter 1 werhave written the gate équation in the form

of 3.1:

Exi:f (x) =  1 [e - (x) + Zac--xj 1.28
g = T e le Ry syl -
The derivative .

¥y %y 1 gty) .
dx;  Bi7 ¢ (xi) T Y T pix;) 3 32

is continuous and bounded since Y 1is analytic and strictly monotonic.

The other derivatives

ofy %y
Oxy 3% ¢'lx;)

i#] B o . 3.3

elso satisfy these-conditioﬁs.
Thus the model we have chosen is well-beshaved in the usual

8ense.



86

3.3 A NETWORK ANALOGUE OF A SPECIAL CASE
A model will now be derived which, under certéin conditions, is
described by differential equations identical to the special equation 1.18.
Consider the nonlinear passive conservative inductor of Fig.

©  3.la., The current-flux linkage characteristic is

- I, +1
) AO = log I - log 0 L . 3.4
XS IS-'I IS-IO-IL'
By definitionB, the magnetic energy function of this element is
P :
where
(X)X =0, : 3.6

The inverss of 3.4 is

Is
“O =gy " T
1 exp[ Ag ]

I =

3.7

and therefore the initial point of integration )? must satisfy the

equation

. _
¥* .
X -/\o)} -1, N =o. 38

Igf1 + exp|-
s xp[ *s
The two solutions of 3.8 are both X = 0 as might be expected. Thus

the energy function is
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Fig. 3.2 Equivalent Circuit
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Ig - I, I,(Ig ~ I)

= S0 B A A
..kslslog 7T + AgI,log (T - 1, 37 3.9

Finally, the voltage across the terminals of this inductor is

2T | 3.10

By a similar process, the energy function of the nonlinear

capacitor of Fig. 3.1b is L ) -

u 7 VS-V v 1 V(VS-V) 1
= QaValog ————— R S vent .
S T e e 74

and the current flowing into the capacitor is
. QSVSV
I.=q= . 3.12
¢c” 1Y -7

These two elements are arrénged in a circuit with & conductence G and

a resistance R, as in Fig. 3.2. From Kirchoff's laus,

QSVSV
I-I + G(V - V) _F(V—:—V')-—O, 3.13
(I~ IO)R+~m—V-VO. : 3.1

-

Thus, from 3,13

. I, +GV, GV 1

% ) %7;[1 B ‘_’qs-}[ ) s Q: ‘ys Q: IIS] -
3 from 3.1

. I Vo Vg y RI

L-ib-HE i h - s s

These equations, by substituting =x; for %L and x, for %;
S S
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and equating the corresponding constants, are made identical to the
following two-dimensional system: .

%) = 50 - 1) €+ ey + oey) s17

%y = %51 = x,) (€ * 0y + elyry) .
which is a particular set of equations obtained from 1.18.

Since there is an analogy between 3.17 and an electrical net-
work, wevexpect that the bshavior of 3.17 will be similar to such a net-
work. In particular we can define a quantity for 3.17 analogous to the
stored energy in the nethrk of Fig. 3.2, but first a brief digression
will be made to show a property of trajectories in the ¥-space of
equation 1.18, and thus in the xlftz plane of equations 3. 17, which

will be written as follows.

Y=E+ax, : 3.18

Let T be the solution of the equation

E+AX=0. » 3.19
Then,

T=-481 | o 3.20
and thus from 3,18

x(t) = &~ - A"]’E steer, 3.21



%

We wish to find the mean value of X(t), which comes directly from 3.21:

a
X= Limlx Pt +r)as = e i 2 in £[7(a) - (0)] . 3.22
0 -O'CD

For a finite solution to exist, Y(a) must be finite for all values of
a and the second term in 3.22 is zero. Thus if the solution of 3,17 is
finite the mean value of the solution vector is T". Of course if the
solution vector X(t) ever cpiﬁcides with ¥ its time-derivative is
gero and thur an oscillatg_ry solution never takes on the value ™ in
finite tine. '

We write 3.20 explicitly for theitwo;-dimensrional case:

[6%; - €%,

F=[v]=alk= 1 3.23
| [ ' A1%5 = X%y 2lga, - €4y,

and, comparing 3.17 with 3.15 and 3.16 and wsing 3.23, we can write

V= xle 3.2%a : = 3:213 : 3.25a

Ia ' v :
. 1g s
Qe = = 77— " 3.24b Ao = — 3.25b
o .T o,V
G= 115 . 3.24c R=w E%Q_é 3.25¢
%15V : 21%s
v, = Ylvs 3.24@1 I, =7 3.25d

From these equatlons and the above discussion we conclude that
an oscillation of the electric circuit example must be about the point
(Vo’ Io)'
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Consider the sum of the magnetic and electric energy functions:

The derivation of Wy and Wy ensures that W is a positive dafinite
function of IL and Vb, and therefore its zero corresponds to the

points I, and V, in the I -V plane. We have shown that any osc-
11lation must be about the point (I;, Vb), and thus a decaying oscilla=-
tion corresponds to an energy function decaying to zero at the steady-state
solution (Io, Vo). |

In terms of the general parameters, the energy function W

becomes _ o _ , _ -
. A
" 1 v\ 21 - 72
= —alzlog("“) ur—
IgVs =109 Xl \l=x .
- 4
Ve
+'a§1;°g(;a) i—:j;I ’ 3.2

where IS and VS are arbitrary positive constants.

3.3.1 CONSTANTS OF MOTION

The development in the preceding section is a particular case
of a general problem of characterization of dynamic systems: fhat of
finding constants of moﬁion. Clearly if an expression for a constant of

motion can be obtained in the form
WX) =¢C ' 3.28

where X 1s the state vector and C is a constant, then this is an
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additional constraint on the system, which is said to be conservative,
and the solution X(%) is restricted to some region of the phase space.
In certain circumstances, then, knowledgeggf the function W(X) is
equivalent to a solution of the state equation.

We remark that the function W(X) in 3.29 is called a Ham~
iltonian in classical mechanics, and has the units of energy. In other
situations, hovever, such as in the example we have treated, energy can
only be found by analogy. - ‘

A further consideration ariaes: the constént of motion W{X)
is not unique for any system. In linear mechaﬁics this only involves
arbitrary constants, but this is not the case for nonlinear systems.

In the example of the previous ssction the function 3;27 is only constant
for ®y) =, =0, thet is, for the resistors in the circuit model
zero. However, it will bec or-ljﬁc?ufa‘.ager that this is not a necessary
condition for conservative oscillations to exist.

It is well-known3 that a neéessaty.and'sufficient condition»
for conservative motion is that a constant of motion,'sometimes called

a first integral, exists, but it is not generally possible to write down

such & constant in closed form.
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3.4 THE PERFECT SWITCH

Consider Fig. 3.3. This contains two integrators'and two

pexrfect switches connected to solve the equations
yp = 6(8) =€ gz + &,

= &y(t) = 52 Xpyxy + Ay
' 3.28
x1 = Ulyy)

. - é ‘ ‘
in which the constants may in general be of either sign. If the consi~ ‘
ants are chosen so that a continuing oscillation exists, then the period
T of this oscillation contains four distinct divisions, as in Fig, 3.4.
The initial conditions are labelled V; and V, as in the diagram.
The slopes of the v = t graphs are 81(1:). and 82(1;);

Cyclic behavior of the system admits the following four linear

homogeneous equations:

&) T, + E;(B) Ty =0
Ei(e) T, + E(A) Tg =0
Spla) Ty + Ey(a) Tq = 0 o
E,(0) Ty + Enle) T, =0, B

3.29

Their equivalent in the continuous (finite‘switching-time) situation

is the set of integral equationsv‘
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t
[ & t)at = o, Eit)at =0,
o t2
: .30
3 ] 3
j Er(tlat =0, X Eo(t)at =0 .
t b3
' Equatiors 3.29 are easily reduced to the comstraint
&,(v) €,(a | ’ |
al(a) 61(0) 2.‘. ) 2( ) . | 3,31

E.0) €,(@) &,(=) E,(0)

Clearly, given any one time interval it is possible to solve for the

other three. Equations 3.29 give the recursive formulae

&q(e) . B 3.32

and knowledge of the initial conditions may be used to specify one such
interval. In Fig., 3.4 the equation

_V(8)  va(t) 50
8 &£.(8)  &,(a)

holds, but in interval b we would have

[ v2<t>] |
" = ‘[elm 2,00 | .

T - 3.33
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This difference in sign and the form of 3.32 make it necessary to observe
the portion of the period in which V,(t) and V,(t) are specifiéd
before labelling the intervals. Intervals ¢ and 4 jield results
Identical in sign to & and b respectively and therefofe only two
distinet initial configurations need ba distinguishéd. :

We carry this example further to the case for which Uy =%55 = 0,
in which

ﬁl(a) = él(d) f 81(17) = 81(0) ’
R 3.35

62(8-) = éz(b) ’ 62(0) = 62(6.) . ,

It is possible to derive using the recursibn formulae 3.32 and relations

3.23, 3.28 and 3.35 the following general formula:

V&, (t) - v, &, (¢)

T H ¥ B = 7)1 = 7) 3.36

- : &
which 1s a positive-definite function,

Equation 3.35 is valid for the limiting case deseribed by
3.28, and bears some resemblance to expression 3.27, the energy function
of the network analogy. Consider the.following limiting expressions

for the xj-portion of 3.27: _
-7

Yo
: Y\'1l71 . 7 x(1 = 7))

1 1 1 1

x) .0 2L (xl 1~ x 21V “ =7

+0(,y10g(1 = ;)



= &,(t) vy + «2110g(1 -7, | 3.37
L.V'
VS 4
Li 10
x1(1 = 73)
= Q1 - )108'(""“")‘"1‘ + &yylog¥
= é (t)v +a,,10g% . ~ 3.38

Similar expressions obtain for the Xo-portion and hence expression
3.36 for the period T is linearly related to thé limiting case of the
network energy function, This example will be discussed further in
chapter 5, -

3.5 SINGULAR SOLUTIONS OF THE SYSTEM EQUATIONS . g

Ve consider the gensral system of n simultaneous equations 3.1:

dxy _

Definition 3.1: A singular point> is a point X° = ‘(xz, xg,

coes x;) for which, from 3.1, fi(X°) =0 forall i=1,

2’@ ey .

Thus, from 1,28, the vectors X which satisfy the equation
1 € - Ye) * D ax] =0 3.39

'P"i'?-"l:""‘w:‘(x'l‘,')'[ i h Yilx; 3 1373 : |

simultaneously for all i =1, 2,..., n are the singular points of the
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threshold system. When written in matrix form, 3.29 is
. 1 ' |
dis, [————————-—l E~BUYX) +4X) =0 3.40
el ® - 2P + ) 4

and one of the solutions of this equation, namely that for which the
second term equals zero, has been used implicitly in the development

of the system eguations in section 1.7.

3.5.1 SIMPLIFYING ASSUMPTIONS

In ordér to reduce the number of separate cases to be cons-
idered, it is reasonable at this point to make-some assumptions re-
garding realizations of the general gate equation. Theorem 2.3 and ‘
Corollaries 2.1 to 2.3 provide the necessary background.

1. We assume that the nonlinear curve 1s specified by the

logistic function as in eduatiop 1.18., That is,

-

YY) = 1og--i-£ . . E 3.41

Thig function satisfies the assuﬁptions of secfiop'l.él and will be
used throughout the remainder of this thesis when numerical results

are required. By specifying the function 1*)( . ) we have also speci-
fied the limit of equation 1.30:

L(s) = Lim —;)E;((—:%)- = Lim x(l - x)log———- 3.42

end from this equation it can easily be showm that L(0) = 1L(1) = 0.0.

2. We assume that the conditions of Corollary 2.2 hold, in
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other words, that the inputs to all gates are finite.‘ This assunption
is completely reasonsble for real gates and provides an important
simplification of the problem of enumerating the singular solutions
of a network. Consider Fig. 3.52 to 3.5d. These are phage-plane

diagrams of the normalized equation

X _ Ty A3 Xy
— Tl mem 2 l -~ — 1 o
B By Xi( Xi)( i + —xﬁi 0T s xi) 3443

Si and -——. There are as many as five

Bi Fi

singularities of 3.43 in the general case:’ x; =0 and x. =1

for various values of

1

which are precluded by the assumption, and exactly one or three
solutions for which the other term in 3.43 is zero. The assumption
we have made allows a simplified phase diagram to be used since the

two extreme singularities may be ignored. We plot the funcﬁion

a¥x) & x5 |
= e X g 1 g ™
Fi dt TPy B B iTBIox 344

‘a8 Fig, 1.14 and therefore are concerned with one or three singularities
per equatioﬁ.
3. We assume that when the coﬁditiéﬁs of Theorem 2.3 and
Corollary 2.2 are fulfulled for nonvanishing 5(/u), the quantity
%% is M"large," This requires that the values & and b of the

corollary are ‘'mear" 0O and 1 respectively. From Theorem 2.3,

pi Z“ia Jl > 5 | . 3445

and if a and b are specified we may solve the equation
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é—- maxllog-l—-f?l =0, R 3.46

vhere § has the values & and b. For 3.46 to hold for separate
state vectors X, the parameters qij must satisfy certain constraints.
Assume, for example, that xj changes from a 0 to b 2;1, and *

that this change causes the gate to switch. Then the condition

o _
I—i-i b - 3.47
i
mugt bold,'or, since fg; 1s positive;
| 4] ®=-2)>28. | 3.48
We have assumed that k3 is "large" and therefore b~a &1 and
i ;
3.48 becomes

This is the well-known constraint that the input weights must exceed the
gap magnitﬁde for proper threshold operation. A fu;ther restriction
for 3.45 to hold is of course that €; have a sultable value.

4e We aséume that in case f; =0, that is, in case
2.46 describes the gate dynamic'behaviof, the output x; may be
erbitrarily close to the singulari%igs 0 and 1, but QAY neverxﬁe
outgide the interval (0,1). In this case the phase diagram is of
the function

:.:i = x3(1 = x;)(€; + %:“ijxj) 3.50
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which is a third degree equation and a system'of order n therefore
has; in general, 3% possible solutions. |

5. We assume'that, in certain cases, the parameters aij
have the same sign for & given set of values of i. Fig. 3.6 shﬁws ‘
& simple threshold gate containing one transistor and é'number of
resistors. Obviously if all resistors are positive, the valués of
the “ij in the describing equation will all be negative since a
transistor has negative gain. Other circuits may be used to give
positive gain, but transistorized versions, at least, will often
also exhibit greater delays and "ringing" and would be better described
by several equations rather than one. We comment that the dynamic
equation 1,21 is reasongbly descriptive of a single transistor but
may be less useful with éircgits containing, for example, ferrites
with significant hysteresis. If we allow one equation per transistor,
then, the valugs of ai.l'for 2ll i1 and j are negative. The

J
circuit in Fig. 3.6 corresponds to a positive value of €, due to

i
the negative blas voltage but this condition will not be true in
genersal,
6. We assume that if the parameter 8; 1s nonzero it has the
value +1. This normalization has the'effect of changing time=-scaling

only, as may be seen from eguations 3.43 or 3.44, and does not phange

the character of the resulting trajectoryidiagrams.
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3.7& . ‘ 3o7b

Fig. 3.7 Phase Plane of the Single Gate
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3.6 TRAJECTORIES IN TWO DIMENSIONS
Graphical trajectory methods are of most use in two dimensions,
because the state-gpace may be drawn on paper. Ue consi&er 8 two-dimension-
al general equation 3.1, and form the matrix of first-ordér derivatives:_
[afi(x°) g
. J
where X° is a singular point of system 3.1.

' Definition 3.2: A singular point is simpled if the determ-
inant of the matrix H defined above is nonzero.
A consequence of & singularity being simple is that it is

isolated in the obvious sense.

To characterize a singularity X°, the cheracteristic equation

of matrix H is written:

JE-2a1] =0 ' o 3.52

and solved for the values Ay and A,. Then the point X° is said
to be |
- a node if Ay, A, are real and of the same sign
- & saddle point if Aj, A, are real and of opposite signs
= & spiral point if Ay; A, are couplex conjugates with
nonzero real part _
- a vortex point if Aps A2 are pure imaginary.
Thus knowledge of the t&pes of the singular points of & system ‘enébles

.
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one to draw approximate solution curves near each singular point.

An additional method easily applied to two-dimensional systems
is to calculate those curves for which f; and fé ‘are,respeétively
zero. Each curve partitions the state-plane into two regions, in which
the function is positive or negative. Thus the direction of motion of
the system solutions can be easily deduced near either of the curves.

The above two techniques have been used in the following
sectlons, in which 3.44 has been used for the gate equation 1.21 and |

3.50 has been uged for special case 2.46.

3.6,1 SINGLE GATES

The dynamics of single gates is completely specified by the
. analyses of Chapter 2;hﬁere we only recall that the x - X plane or
the. x-\P plane may be'uséd to give two-dimensional diagrams.

Figures 3.7a and 3.7b show the twro possible phase diagrams
for the-generai gate 1.21, Fig. 3.8 shous the equivalent diegrams for
the special case 2.46. In each diagram-the gréph of the linear function
€ +xx (subscripts have been removed for simplicity) is drawm.

Of course the diasgrams onlyAshow representative members of
families of curves; we include here and henceforth only those members
which represent a change in.fhe numberjor,type of singularities.

‘Figs. 3.8a and 3.8b are comparable with 3.72 and 3.7b resp~
ectively. The general gate has exactly one or three singularities, and
when threé occur the outer two are stable. Thé s?ecial case may havo
two singularities if the line € + ax does not cross the axis in

(0,1), in which case one of the singular points is stable.
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a2 <O
o > 4

doz 20

. Fig. 3.9 Forms of Equation 3.54

51(X) =0 .
@ >0, X2z < 4 T Pl 30, A >4
z;:, . ' .
" Zazo
N ”&’/ ozt < 0 ) G\’zz <4 ’ ) &K1\ 40, 2 £¥} 4
Z;r—o
ez .z

¥ig. 3.10 Forms of Equation 3.55
E,(x) =0
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3.6.2 TWO-GATE NETWORKS: THE GENERAL CASE
State-plane diagrams of two-gate networks are constructed by
combining the curves of the previous section in the Xy - 5 plane.

The equation

X
81(1{) = 61 + “11.‘&1 + dl2X2 - lqgi——];— . 3.53
. -X

is solved for Xot

L 1 _e _a |
Xp =a12 logl - €7 = q1x3) » o 3.54

The possible forms for the solutions of this equation are shown in Fig.
3.9, No vertical origin or scale has been shown since these depend on

the chqice of the constants €3 and the value ;l-l respectively.

The curves have symmetry properties because of 'bhizsymme'bry of the function
\P( . ); if other functions had been used, the symmetry would not neces-
sarily remain.

Corresponding curves exist for x7 in the second equation

€,(x) = 0, which is similar to 3.54:

=1 %2 '
Xy = c(z]_[lo’él’-- = -€ - 0(22] s 3.55

- and these: are shown in Fig. 3.10, for which correspénding remarks may be
made.

The object is to combine the relevant curve .of Fig. 3.9 w__i‘bh
one from Fig. 3.10. The points at which the curves intersect will then

- be the realizable singularities of the systen.
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X5 & 0, &5 &4

3.11b
Figo 3.11 Forms of Network Trajectories
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3.11d

Fig. 3.11 (continued)
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3- 1lg

dél <0
Yoy >4

o .
3.11h

Fig, 3.11 (continued)
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3.113

Fig. 3.11 (continued)
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Figs. 3.11a to 3.11j are representative diagrans of all config-
urations of two-gate networks. Those diagrams which may be obtained by
renumbering the elements are not ineluded since the forms ﬁould not change.
Deshed lines represent typical trajectories. Fig. 3.12 is a teble vhich
containg a summary of some results which may be obtained by inspection of -
Fig. 3.11, We meke the following remarks about these results:

1. Since the curves of Fig. 3.9 and 3.10 extend from plus
infinityvto minus infinity, the number of singularities must always be
odd. Since the curves cross the axes three times at most, the largest
possible number of singularities of the tﬁo~ga£e system is 9. By an
extension of this argument, the largest possible number of singularities
in a system of n gates is 30,

2. Fig. 3.12 shows that all configurations may be grouped
in pairs with equal numbers 6f gingular points. The membars of each
pair have an equal number of saddle points, which are always unsteble.
The nodes of oﬁe member correspond to the épiral points of the other,
and the number of stable points is equal for the two members, except for
the case in which only one singulérity exists, ’

3. No diagram contains more than two types of singularities.

4Le One specilal case exists, that corresponding'to Fig. 3.112a.,
In this figure and in Fig. 3.13a the singular point is shown as a stable
spiral point, but Fige 3.13b has similar;topology, that is, an equal
number of singularities-ofrthe same types, but has instead an unstable

spiral point, and in addition a stable trajectory.

-



Number of _ Spiral Points . " "} Nodes : Saddle
Diagram | Singular | Number Stable Unsteble | Number Stable Unstable | Points
Points '
& 1 1 - -
e 1 _ 1
b 3 2 2 1l
d 3 2 2 1
o 5 3 2 X 2
£ 5 3. 2 1 2
g 7 4 3 1 3
h 7 | 4 3 1 3
i 9 5 4 1l 4
] 9 | 5 4 1 4
T Fig. 3.12 Singular Points of Fig, 3.11
AN
/ =5

ol

3.132

7 =,

Fig. 3.13 The Special Case

¢Tt
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5. It is a general rule of realizable Lipschitzian’systems
that all possible trajectories:begin and end either et singular points
or are asymptotic to closed curves known as limit-cycles, such as in
Fig. 3.13b. More will be said about limitcycles in Chapter 5. The
. question then arises: If the other disgrams in Fig. 3,11 do not contain
limit-cycles, from which unindicatedASingularities do trajectories orig-
inate? The anxwer 1s, of course, that the points: Xy3 X, é.io,l} which
we=ha€e'?reviously designated unrealizable are also terminations of
trajectories. ] ‘

6. Only two classes of diagrams,'faﬁresenfed by Fig. 3.11c
and d, are'possiﬁle for two-gate networks with negativé parameﬁers “1j‘
Fig. 3.11d contains exactly two stable nodes, and correspords to the sams
circuit, but to a condition in which "loop-gain® is less than unity.

7. It is.remarkable that & system of two‘threshold gates
may have:three_or four stable points. Poszitive parameters dij &ars

required for this situation, however.
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3;6.3 TWO-GATE NETWORKS: THZ SPECIAL CASE

Consider & system of order n, that is, one which contains
n.gates. We shall show some results for general system, and the system
of prder 2 will be a special case. From section 3.5.1, aééumption 4y

.the state equation is
X = aiaglx; (1 - x;)] (& + &%) . | 3.56

This equation has et most 3n digtinet singular points, which may be
characterized as follows:

1. One point, which we call the principal Singularity‘ T

is the solution of equation 3.19, provided the solution exists:

E+X=0, ‘ 3.19
2. Exactly 2" points exist for which &1l x; ere either
0 or 1.
3. Exactly 3 -2"-1 poinfs are solutions of 3.19 with
some of the x; constrained to be either 0 or 1. 'That is, if q

unknowns x; are specified as O or 1 a new equation,
E+X =0 | 3.57

must be solved, the order of which is n - q.

It is not always true that there are 3% distinet singular
points. A miltiple singularity exists when any two solutions of 3.57
obtained for different‘SPecificatiohs of the x4 € {0,1}, or when any
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X2 E,=0 % =0y =

\ rf |&=o0 //zz?) \£1=_°
IR S

2]

/ ) ~S—
1

X 0 1 1
3.14a | 3.1Ub |
| , o A .. =0
=0 22 £ =0

- X7 6 | .;:xl
f.-]_=0 .‘ 8]_:0 l
3.14d 3.4
'Fig. 3.14 The Special Trajectéries
Singular Nodes Saddle
Diagram Points Stable | Unstable Points
d - 4 1 1 2
c 4 1 1 2
b 5 4
a 5 2 2 1

Fig. 3.15 Singularities of Fig. 3.14
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unspecified solution of 3.57 is 0 or 1. _
& root of 3.57 which falls outside the unit hypercube (the unit
square in the case n = 2) is an unrealizahle singulé.r point.
| In the case n =2, there are af most 9 singular points,
4 of which are solutions of equations of the form of 3.57. | In this case,

if the lines

E ) =€ v x, topx, =0, 1,j=1,2 3.58

ere plotted, their intersection is T. The in_terséctioﬁ of the first
- equation with the lines x5, =0 and xp =1, 'and the second with the
lines x; =0 and %; =1 are also singular points. Finally, the
four verteces of the unit square are singulzr points.

The condition that ®.. =&, = @ which was mentioned in

11 22
Section 3.3.1 is & speciai cése_a:nd is showm in Fig. 3.14. The point T
is shown as |4,5| but this need not be trwe in general. In this
situation theré are at most 5 finite 'singuia:r points. Only representative
diagrams are shown. All others mey be obtained by re\}e'rsing arrovs or
axis labels or both. Fig. 3.14b is analogoms to the electrical network
discussed in Section 3.3, -and was.-shom; to possess a constent of motion
(equation 3.27) and therefors motion is alomg closed trajectories about I,
Fig. 3.14a s a bistable system similar to Fig. 3.11d, and is in fact
the limiting case of Fig. 3.11,& if the paramsters g, ave allowed to
approach zero with g;7; constant and finite. Fig. 3.15 is a table

listing the nodes and saddle points of Fig. 3.l4. No spii-al points exist.



120

O" \ 7,

Fig. 3.16 Trajectories of 3.58
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Fig. 3.16 shows representative diagrams of system 3.58 in the
case &4 #0, _déz # 0. As before, only representative diagrams are
shown. A special case is Fig. 3.16a, which is shown. to contain an
unstable node. In fact, depending on the slopes of the ;ines §j_= 0]
and 52 = 0 the principal singularity may be a sfable node or, in the
special case of a conservative system, a centre. The reéults for these

systems are summarized in the table of Fig. 3.17.

3.7 ENUMERATION OF SINGULARITIES: THE SPEGIAL CASE.

‘The linear form of equafions 3419 and 3.57 make the enumera-
tion of singularities of n~dimenéiona1 special.systems particularly
easy, at least for low n. |

Let the binary numbe:' k take on the values of the 20 - term

sequence
k=0, l’o'o, 211"1 L

Suppose for some particular vélue, say k, there are q binary digits
in k which are 1, +the rest being 0. Then if all values x; are
specified (as O or 1) for which the jUB qigit is 1, there are
exactly 29 unique specifications of the x5 for this value of k.
These 29 gpecifications mey be made according to & binary progression.
C§nsider an example. Suppose n =4, and k=3, that is, k = 1100
if the least significant digit is on the left. We then specify X3

and x, to be, in order, (0,0), (1,0), (0,1), (1,1). This process is
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Stable

Spiral Points
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, 1 2 2
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1 2 3
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1 2 4
1 2 4

3 4

1 4 4
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Fig. 3.17 Singularities of Fig. 3,16
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Fig. 3.18 Example Enumeration of Singularities
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an ﬁlgori‘bhm for finding all singular points in a particular arbitrary
order. The case k = 0 is of course that for which no- xj'sv_.‘-a.re to‘
be specified, and the corresponding singulax;ity is V. In the case
k = 281 all values are specified, no 'equation 3.57 need be solved, and
the singular points are all vertices of the n-dimeﬁsional hypercube.

- Let K Ee the q-element set of values of j for which
all xj are to be specified for a particular value of k. Theﬁ to arrive
at 3.57 from 3.19, write the equations in the fc;rm

€ + j%:{ijxj . j%%{aijxj =0,1¢K , 3.59
and since the first two terms in this equation are constant, we have
defined 3.57.

Some practical considerations arise: (

1. Solution of linear equation 3.57 depends on the inversion
of the matrix B, If A is singular, then either no solution exists
with that particular E, or solutions are linearly depepdent, in which
case there is & continuum of solution of at least one dimension, and the
gingular point is not simple. The test for liﬁear dependency is to sub-~
stitute the colum § for each colum of A in turn and to find the
determinant of the resulting matrix., If all such determinants are zero
the solutions are linearly dependent.

If, for any given k and specification of the numbers x 3
J€ Kk’ the determinant of X is zero, then it is zero for any other

specification since L is determined by k and not by any of the 24



specifications cofrequnding to that k.
2. Solutions of 3.57 vhich are identical to solution for some
other specification are redundant. |
Figs. 3.18 and 3.19 are examples of enumeratioﬁs according to
the above algorithm, in which solutions of 3.57 for which k = 28,1 are
celled P, those for 0 & k <21 are called Q, and the remainder
is . A remark is included about the existence and stability of each

Asingular point, Fig. 3.18 corresponds to Fig. 3.1l42.

3.8 SUMMARY

The dyﬁamical model is analytica¥ly ®well-bechaved." A special
case can be related by gna]ngy to electricel networks, and anpther
special case can be solved exactly.

A complete topoiogica',l. analysis of two-gate networks is possible,
and the ,singular points of & limiting case can be solved in closed form.
Enumeration of such singular points of networks of a.rbitrary‘:requires

the solution of sets of linear equations.
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- CHAPTER 4

STABILITY IN THE NEIGHBORHOOD OF SINGULAR POINTS
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4.1 INTRODUCTION

This chapter concerns several aspects of ﬁhe stability of the
systems described previously. Much of the mathematics has already been
done; here it is applied to networks of arbitrary size.

Some precise definitions will be given, and then some‘weil-
known theorems of the stability of nonlinear systems. The final portion
of the chapter concerns application oﬁ linearization techniques and
Jocation of singularities of the general system. ..

The methods of first-order approximaﬁion used here and the
generai uses Lyapunov functions are well-knovn and are found in many
references. Reference 1 contains a chapter emphasizing first-order
techniques, references é~gnd 3 are classic treatments of nonlinear systems,
and reference 4 is a useful éummary of many of the theorems and methods

relating to the uses and generation of Lyapunov functions.

4«2 DEFINITIONS

We assume throughout that only Lipschitgian systéms are
considered. Proof that the gate model_saiisfies this condition was
given in Section 3.2. The discussion in Section 1.6 specifies the
gate network to be a nonlinear stationéry»system in the usual sense,
Provided the inputs are constant in a finite interval the system is also
free or unforced, and a System'satisfying‘thiS‘and'the statioharity

condition is called autonomous.
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We have described the general nonlinear dynamic system by n

equations 3.1

dxs
""i"'t]‘" = fi(Xl’ xz,..., §§n) é fi(X) 301

which becomes in vector notation .

s _ dX
x = —_—= FX ’ : 101
r (x) . | &

where the nonlinear functions fi(X) are specified by equation 1.28.

From 3.18,"
hd a
Y=E + AX = G(Y) : Le2

which also describes the system and is of the form of 4.1l. In the
following we congider a general system 4.l although the theorems also

apply to 4.2.

Definition 4.l: The Euclidean norm of an n-dimension_al

vector X = [x;] is given by
n Y o
b =2 =), R 43

and &an often used non-Suclidean norm is denoted by

n .
IEPMEAR hod

" Definition £.2: ILet X°(t) be a solution of 4.1. Then
x°(t) 1is stable if for every real number & >0 eand sol-

ution X(t) of 4.1 there exists a real number 7(5) >0,
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such that

lixe,) - ol < § 4
implies |

lfx(s) - xe(e)ll <‘ 1 - 46

forall ¢ >t.. If X°(%) is stable and in addition
PBx@) -zl - 0 4

as t-»om, X°(t) is asymototically stable.

Of course X°(t) may be a singular point X° as discussed

in Section 3. 50

Definition 4.3: A solution X°(t) of 4.1 is asymototically

steble in the large if it is steble, and if every motion X(t)

converges to X°(t) 85 b= .

It is important to note that the abové definitions do not
apply to all possible situations where the intuitive concept of stability
applies. Stability as defined above is usually known as "stability in

the sense of Lyapunov."

4.3 STABILITY OF AUTONOMOUS SYSTEMS

Consider the system defined by

X =H +F(x) ‘ 4.8
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wvhere H is a constant matrix and f(X) is a nonlinear vector function
of X. Equations 4.l and 4.2 may be rewritten in this form by the use
of a Taylor series about some siﬁgular poimt XO,
' (o]
F(X) = F(x°) + [H‘;i (X-X°) + !i (x - xj I P(x°)

1)09
which converges in some neighborhood of X%. Since by definition

F(X°) = 0 this equation will be in the corwect form if the transform-
ation

z(t) = [z;(t) £x(t) - x° o | 410
is made, giving -
Z=m +Z_ {2 v } F(x°) E®m + F(@) 401

where H is the constant matrix of first derivatives. This matrix
1s identical to that discussed in section 3.6, except that in this case
it is of order n.

Consider the first-order approximation to 4.11, that is,
Z=H . 4412

-Theorem /.1: Solutions of 4.12 exre asymptotically stable at
the point Z = 0 if end only if a1l the eigenvalues of the

matrix H have négative‘real pérts.

The above result is well-known., The eigenvalues are the

solutions of the characteristic equation

jn-a1l =0, , ‘ 3.52



131

which may be rewritten
xn + 01)51.1 + see + cn.l.)\'.' cn = 0 3 4013

The criterion in the theorem may be established by solving
equation 3.53 or by the well-known Hurwitz procedure? or the Routh®
test o wnich is preferable for hand computation.

Theoren ,_(L._g_]-: Solutions of 4.1l are asymptotica.lly stable
et Z =0 if every solution of 4.12 is asymptotically stablel
in the large, if F(2) is continuous in some region about
Z=0,. if Eﬁ%)-'--s-o es 12l—-0, and it |Z(0)] is

iz
sufficiently small.

The Taylor series representation ensures that the theorem is
gatisfied since F(Z) is of' second- and higher-order terms, provided
of course the linearized system is asymptotically stable by theorem 5.1.
A linear system which is asymptoticaily stable is always asymptotically
stable in the large. | o

Theorem 4.2 applies only in an arbitrarily small neighborhood
of the.singularity X°, that is near 2 = 0. To show behavior in a

finite region, a result due to Lyapunov is used’s

Theorenm £.3: Let 2 be a bounded closed region about
Z =0 in the state space of system 4.11. ILet £ have the
property that every solution 2(t;Z(t,),t,) that starts in

' remains for a1l futurs time in £, If there exists a
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scalar function W(Z) which is continuous and has continuous
first partial derivatives in n and'such,tha'l'; in n, w(0) = o0,
W(zZ) >0 forall Z#0, W(Z) ¢ O forall Z (ie. W(z)
negative-semidefinite), and I:I{Z (t;Z(to),to)} does not vanish
identically in t % t, for any %, and ‘Z(‘bo) = 0, then

every solution starting in 0 1is asymptotically stable to Z = O.

The selection of W(Z) which is called a Lyapunov function
may require much effort in general.  Several methods for finding
Lyapunov functions for certain classes.of gystems exist, and the next

‘chapter is concerned with their application.

Corollary 4.3.1: If there exists = scalar function W(Z)
which satisfies the theorem, except that W(Z) > 0 for all
2 in 2 and W does not vanish identically along a traject

ory, then 2 = 0 is unstable,

The time derivative W along a trajectory is caleulated

as follows:

n -
c= Y oA _ Yoau = @inTEx)
e ) s - 2 2ei () = )T 00) 4y
=1 377
tp 1. O . . dW daw
Clearly if W'=-= is sign-definite, then = &= - 45 ¢
pr ’ Frialierary is &lso

 sign~definite and of the opposite sign. Thus if system 4.1 is stable,
then the system defined by |

- X = F(x) | 4415
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is unstable, end vice-versa. Hence all stability theorems may be used
to show instability by reversing time (at least for Lipschitzian systems
which have unique trajectories as t-m+ or t~==-00).

We note that if it is possible to find a scalar function W
whose derivative as caleulated in 4.1 is identically zero along a
trajectory then W is a constant of motion (section 3.5.1) and tha
system, under this condition said to be conservative, satisfies Liouvilie's
theoremg.

Finally we quote & result for linear systems, for which it

is always possible to find Lyapunov functions in.closed form.

Theorem 4./t The equilibrium state Z = 0 of the linear
gsystem 4.12 is asymptotically stable if and only if given any
symmetric, positive-definite matrix Q there exists a sym-
metric, pogitive-~-definite ﬁza.ti‘ix P vhich is the unique

solution of the n(n+l)/2 linear equations
PH + HP = - . 4.6
Moreover Z1PZ is a Lyapunov function for the system.

Equation Lel6 is kﬁmm as the Lyapunov Matrix Equation. If
Q isthe zero matrix then Z?PZ is a constant of motion and has the
units of energy in usual physical situations.

Lyapunov functions are: not unique for given dynamic systems.

Clearly if W is a Lyapunov function then off where & is a positive
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constent is also a Lyapunov function. A given nonlinear system may also

have Lyapunov functions of different forms.

Le4 SERIES EXPANSION OF THE GATE EQUATIONS
Equations 4.2 will be expanded about a singular point X°,
using assumption 1 of section 3.5.1; hence Y(x;) is épecified,

and 3.1 becomes

| : X
d;ctl = fi(X) = -——Xi(l Xi) (éi + Zj_dijxj - pilogl -lxj-) 417

which is zero by definition at all singularities X°, The matrix H
-1s defined by

£ (x°) 4
33ﬁ Fi?i

. ‘ %
{(l - ZXi) (Ei + ;ﬁijx:j - pilOgl -iXi)

*xy (1= ey p}
1 e A i o]
_ X=X

=Fl_.{ 21 - xQ)a; Pl} 4.18
and
o7, x°) 1 S
ST PiT xO(l LW 419

which correspond to general forms 3.2 and 3;3. The higher derivatives
may be found by further differentiation of 4.18 and 4.19. No‘furtﬁer
comments on the resulting series will be made except the following; If
B1 =0 with B;7; finite, 4.17 is an equation of degree three, and

therefore all derivatives of order four and higher will be zero.



135

The alternate form 4.2 may be written from 1l.21:

(e}
gi(Y) = "Zj: = "":!."'{ei 3.371 Z"""—i""} ‘ 4.20

t Z.
d pi 1 j 1+e j
and the matrix H is defined in this case by
, 73
s _ __;,[ . ___“_i_f;____}
- TFL “73\2{--
o7y B (1 +e Y:_) ¥=y°
B:i%i T x=x®

and

F {alax (1 - x, )} he22

= X:X?

-YQ
% _ 1 [ %o }
% pj%l(l»ee-yi)zz

which are identical to 4.18 and 4.19.

'4.5 ENUFERATION OF SINGULARITIES: THE GENERAL CASE -

In order to epply theorems 4.1, 4.2 or 4.3 in any specific
case it is recessery to be able to locate all singular points X°.
The case: Fi =0 for all i was treated in the 1a.s£ chapter and was
-seen to require the solution of at most n simultancous linear equations
for each singular point. An algorithm was given for enumerating all
3° ‘possible singular points, some of which may be unrealizable. In

the general case n nonlinear equations must be solved, written
E-BYPK) +ax=0 ~ 423

from 3.40.
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It has been demonstrated in section 3.6.2 that because of the form of
the nonlinearity there are at most 3% solutions to'4.23. From the
finiteness assumption the solutions of this equation are the only realiz-
able singularities of the system.

Equation 4.23 is transcendental and it is not possible to
write its solutioﬁ in closed form, Solution.of such equations is a
stendard computational problem for wﬁich relaxafion or other methods
may be used. It is a general requiremenf, however, thaf an initial
guess of the solution must be made sufficiently near the actual solution
for the method to succeed. We take refuge in simplifying assumption 3,
section 3.5.1 to ensure that such a guess may always be made,~subject to

&8 further constraint.

Assertion 4,1: Iet the matrix A -in 4.23 be nonsingular.
Let-the principal singulerity T = [7] be defined as that

point vhich by definition satisfies 4.23, and in addition

el anget e

for all other singulsr points X°, For any p+¢> 0 there
exists & number M(/u) < 00 such that for some real square

“matrix C= fe;5], if
e Joss] < | 45

then
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lr - Xl < 4e26
where f is the solution of the equation
E+AX =0, | 319
Proof: TFrom 4.23 and 3.19,
AP -X) +BJ(M) =0 - - 4427
é.nd thug
.r‘ - %= ay(r) | - 4e28

since A is nonsingular., From the phase plane analysis it is clear
that at least one point T exists for which \J(T) is finite. Thus
if € =A"l wyhich is finite, we can find a finite number M which

allows 4.25 for any M> 0 in 4.26.

Assertion 4.2: Let T~ be the principal singularity of

4¢23., Consider the linear equation

(B - BY(r) + AT) + (A - atsg[g; (P& -T)=0.
429
obtained from the Taylor series 4.9 with second-degree and

‘higher terms omitted., Let io’ }?1,..., i3n be the sequence
of singularities of 4.29 enumerated according to, say, the
elgorithm of section 3.7. Then for every singular point X°

of 4,23 and A> 0 there exists a number M <o such that
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if either 2

legs > M“’iqy_(yi)_[ . 430
or

le; + %_'aij:‘éﬂ > M 431

hold for any i =1, 2j.esy n, and some T £ 3% in the

'sequence, then
120 - x5} < e - 432

Proof: If .31 holds for gate i and M satisfies theorem

. N
2.3, gate i realizes a linear threshold function and ‘X?. - xﬂ may
be specified as arbitrarily small., If 4.30 holds for gate k; say, then

for arbitrarily large M “the kth equation

(€ ~ PP + Zj'“l;j";;) -*{Z“kj(xj = 730 = B P (M) G - 7k)}
! ’ =0 4.33 |
mus§ have a solﬁtion arbi{,rarily near ;ci’{' siﬁce thev\y and q}'
terms are ar‘Bi’cra.rily small compared to o‘ii'
We remark that these assertions specify conditions which
the network must satisfy for good appro:iimate solutions of 4.23 to be
found in & specified order. Obviously since the unit hypercube is a
bounded sét it is always possible to find an unordered sequence of

approximate solutions simply by generating sequences of uniformly-

spaced points in the set. A closed-form solution for an ordered seque
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ence of good approximations to the singular points of an arbitrary
network is not known. |

The two-gate diagrams of Fig. 3.11 may be used to illustrate.
the restriction of dssertion 4.2, which admits 3.117a,‘b;'c, d, i and

j and their equivalents but no others.

4.6 STABILITY OF THE LINEARIZED GENERAL SYSTEM

Theorem 2.3 is a specification of the conditions for a gate
described by equation 1,21 to realize a linear threshold function.
Definition 2.7 and the discussion iﬁ section 2.5 related the system
to a time;discrete representation. We shall show that theorems 4.1 and
L.2 are sufficient to establish certain conditions.under which a collec~
tion of gates realizes a linear threshold net, the functional behavior
of which is defined for time;discretéarepresentations. Here we treat
realization as a generalization of the single-gate realization criteria.
The time-continuous behavior of our model of networks of threshold gates
has been shown previously to be described by equation 1.38, repeated

here ( U is assumed zero in the time interval of interest):
(TD + I)B(Y - 7)) = A(X =T) + FU 1.38

Definition L.At A physical systenm described by 1.38 realizes

a linear threshold net if, for any integer M <there exists
an integer m 2> M such that the system is m-discrete, and

in addition there exists & number T <& oo such that
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tOi T | | Le34,

‘forall i, 1¢ié$n.

Obviously, at any singular point of 1.38 which is near enough
to a vertex of the unit hypercube so that every géte realizes a linear
thresholﬁ function, the system realizes a linear threshold net for all
time subsequent to the initial time, that is for any T ¥ t,, providbed

the system remains at the singular point.

Theorem 4.5: Lot & system of n gates be described by
1.38 and let X° be & singular point. Then there exists

a set of numbers A4 > 0, 1 €1 ¢n such that if either
152} < M | 435
or
- {1 -] < M ' - 436

hold for 1 ¢ i & n, all solutions with initial points X(%,)

in & region ) containing X° approach X° as tew 00,

Proof: The system will be shown to satisfy theorem 4.2.
‘From 3.2 and 3.3 the linearized system obtained from the Taylor series
4.9 at the point X° has the matrix )

H = diag[m]A - diag [?1—] . : 437
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Some results in matrix theory will be quoted:

Lemma 4_._110: Let H be & real square matrix. The quadratic
form Q = ZIHZ is equal to the quadratic form of the symmetric
part of H, i.e.

Q=22T(+ 8z . - 438
Lemma 4.211512: A real square matrix H(Z) for which
his - %'hijl P00 4239

is said to be uniformly Hademard. If H is uniformly

Hademard and gymmetric, then it is positive~definite, i.e.
ZTHZ > 0 440
for all Z#0.

Consider the matrix G =-H .- If G is positive-definite

then H 1is nepative-definite. The symmetric part of G is

a 1 . 1 T
G_ = diag —-] - d:.ag[ - ](A +AY) L4l
8 [2'1 XA ! (9 ) \
Since Gg 1s a constant matrix it is uniformly Hadamard'provided

R 1 {za..+ a +a ]>o 1¢1¢€n. 4.2
A A ;%t:il i Jil ’

Let 4.42 hold. Then by lemma 4.2 Gg 1is positive-definits, and by

lemma 4.1 G is also positive-definite, and hence H 1is negative-



definite. Consider the positive-definite secalar function
w=42T7 . 443
The total deriw}a'bive is
W= @iz = zTﬁz bebd,

which is negative~definite in an unbounded region Q. containing the

origin and thus the linear system
& =1 = HX - X°) bk

is agymptotically stable in the large.

The high-order terms of the Taylor series obey the equation

Lim M -5 0 bed6
1Zlwo 121 N :

in a region .CLl containing Z = 0 which corresponds to X = X°
and thus theorem 4.2 is true for this linear system provided 4.42 is
true. Now from 4.42

Wt (x9) > .2_;-;{2““, ¥ %1«15 + aji\} LT
and since (from section 1.6.1) \Y'(xi) +~+00 as x0 or x;-»1
there exists a set of numbers M >0 for which 447 is satisfied

when one of 4.35 or 4.36 is satisfied. This completes the proof.
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The following comments may be made about the theorem:

1. It provides & proof that singular points sufficiently
near to the vertices of the unit hypercube are stable. Examples are
provided in Fig. 3.11; all singular points. "near" corners of the unit
square are stable. |

2. Initial conditions sufficiently close to appropriate
stable singular points imply that after a time the sysfem realizes a

linear threshold net. This will be expressed as

Corollary L.5.1: Let there exist numbers a3 and bi with

0<a; <b; <1 and singular point X° which satisfies, for

arbitrary u >0,
1< ~ ) < M, 1 ¢ign | 448

 where & equals either =, or b,. ILet X° satisfy theorem
i ‘ i i v

4.5, Then there exists a number T such that if the initial
point X(t,) is in Q, the system realizes a linear threshold

net in (T, 00).

Proof: From theorem 4.5 if X(ty)€R,, X(t)»>X° as

t+ 00, Hence there exists T such that
|xi(t) - &l <M, 1¢ignm ‘ : : 4e49

for all t > T and thus both definitions 2.6 and 4.4 are satisfied

in (T,0), i.e. the system realizes a linear threshold net in (T,c0).



3. The theorem and corollary specify sufficient conditions
for a system to realize a linear threshold net at or near a singular
point. It is important to observe that there is no reason to suppose |,
that constraint 4;1,7 under which the' theorem is true is also a necessary
condition, |

A theorem of instability will be quoted:

Theorem 4.6%: The singular point % = 0 of 4.11 is unstable

ir F(2) is continuous in & region sbout Z = 0, if |}?ZZI l - 0
as |Z| -0, and if the matrix H possesses at least one

eigenvalue with positive real part.

We now consider singularities of the system which do not
satisfy ‘theorem 4.5. Attention will first be given to those "near" the

edges of the unit hypercube.

‘Theorem 4.7: let J = {il"”,’ in} be the set of n threshold
gates in system 1.38. Let J 1 be a proper subset of g and
let X° bs a singular point. Thers exist M>0 and M

such that if 1€d,

1251 - )] <  4.50
for all 1 € 91 and
%34 O M _ 4451

for all i€ 91, then X° is unstable.
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Proof: It will be established 'bha'b.'bhe system satisfies
theorem 4.6. Consider the matrix of the linearized system given by 4.37.

let the number 4¢ approach 0. Then for 4.50 to hold, the
quantity £;7; P'(x§) must approach + . Hénce foﬂr any positive
nunber, M1 587, 'thara exists 4> 0 such that 450 holds and furbhermore h

4

—_—di_ ¢ 4.5é
9, iy W' (x3) 1 -

and thus

Zhii‘l‘l'zl .

%—i’ 4 L 5 3
16511 1611 :

The quantity g;7; Y'(x}) is finite. Hence for any positive

number, Mo say, @ number M exists which satisfies

2lzpep-t)-pmer
1l .

in wvhich case

Since M, may be chosen arbitrarily small, there exists a

number S which satisfies the inequality

Zon Ok | 457

Z_hii >0 . - 458
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Now consider the characteristic equation 4.13 of H. From >
elementary algebra the sum of the n roots of 4.13 is equal to tr(H),
f.00 if ¢4 =1,

ey = ~tr(t) = '5.=1Ai‘ | S 4.59
end thus if the trace is positix}e, at least one root must have positive
real part. Equation 4.58 and 4.9 thﬁs imply that the system satisfies
theorem 4.6 and is unsteble. '

Thbe final result of this secﬁ:ion concerns the point I,
which generally does not satisfy theorem 4.5, in which case it nmust
be unstable for the system to realize a linear threshold net. We

show a necessary restriction on the B-matrix.
Theorem A.8: There exist numbers ﬁi. > 0 such that if
OB 4e60
forall i=1, 2,..., n, all solutions with initial conditions

in a neighborhood. .Q.l of T" aporoach r oas tes+m.

-

Proof: The argument is similar to the proof of theorem 4.5,
 The matrix H of the linearized system at T° is to be shown to be
negative-definite.

By definition the quantity 'l‘iq)f'(fi) is-finita. Therefore

a set of numbers ‘?i exists for which

1 1 ‘ .
= - — 24q. .+ Q3 + K- 0, 1 §i&n L.61 -
4 2Fiti\l"(”1)[ - %l H .“‘} > N o
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and therefore from lemma 4.l and 4.2, if 4.60 and 4.61 hold, the scalar
function 4.43 has total derivative_4.44 which is negative-definite.
Hence theorem 4.2 is satisfied and T 1is stable.
Some comments will be mades
1. Theorems 4.5, 4.7 and 4.8 establish sufficient conditions
" for their respective stability or instability results. The proofs are
existence proofs and do nqt give tight bounds for the theoréms to be
true. It is quite possible, for example, that a characteristic poly-
nomial whose second coefficient ( ¢y ) is positive will have roots in
the right half-plane, The most useful test in.ény specific~case is to
find the Characteristjc polynomial and test it for roots with poéitive
real part.
2. The theoréms allow a conclusion about the realiéation of
linear threshold nets:
dssertion 4.3: If a threshold system has the properties
| (a) =all singular points satisfy theorem 4.5 or 4.7,
(b) all eigenvalues of the matrix H .of the linearized
‘ system are real at T and at poinits satisfying theorem 4.5,
(¢) T is unstable,

then the system realizes a linear threshold net.

Proqf: Property (b) ensures that mo stable closed trajec=
tories (stable limit-cycles) exist, since if one did exist then it would
be possible to find a linear approximation which has complex eigenvalues.

Properties (a) and (c) ensure that all stable points realize a linear
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threshold net. Therefore a system which satisfies these properties
must approach & singular point at which it realizes a linear threshold

net.,

Fig. 3.11 b and d both satisfy the assertion, and systems of
higher order may also satisfy it. It is straightforward to show for
example that a system whose coupling coefficients _“ij’ j#1 all have
the same sign has real eigenvalues and satisfies the assertion provided

it has propertiéé’(a) end (c).

447 STABILITY OF THE LINEARIZED SPECIAL SYSTEM
We consider the n-gate speéial system described by the

equation
d - .
BTa—E\P(X) =E + AX . 4.62

which is obtained from 2.46. Solutions willvbe examined in the neighbor-
hood of singular points X° enumerated ;s in section 3.7. The equation
of first variation at X° may be obtained from 4.18 and 4.19, in which
\P(xi) has been specified:

b o 200
ii = =
R S

_a(x) 4 o

The eigenvalues of the matrix H depend on the relative values of the

quantities B;%; @' (x]) and the elements of 4, whereas in the general
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case the absolute value of the parameters s also influence system
stability. _
The principal singularity I of the special system has been

defined as the solution of the equation
E+AX=0, ' 3.19

It will be assumed here that such a solution exists and is unique;
systems which do not have unique solutions will be discussed later.
Provided T is in the unit hypercube its stability has physical meaning.

The matrix is

H= diag[ 4.65

1.
fi73 ' (73)
Little is known about the bzshavior of eigenvalues with lrespect to T
for arbitrary matrices A. |

Sinéularities at vhich x; € {O,l} for all. i realize linear
threshold nets by definition, provided they are stable, In this case the
matrix is | '

H = diag] ;121(1 - 29) (€, + %—_‘ai jxg)] 4.66

and the eigenvaluss are the nonzero elements of H. The system is
stable provided all eigenvalues ere negative. Obviously if x§ is 1
and €; + Z_otijxg is positive then the solution xi.(t) will tend to
x‘j’_ provided the initial point is near ehough to xg. A similar situ-
af;ion exists for xQ = 0, in which case the excitation quantity must be

i
negative for stability. The terms (1 = Zx?_) in 4.66 confirm that
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in both cases the eigenvalues are negative. The choice of the logistic

curve gives this simple expression.

Assertion 4.4: If the special system is unstable at a vertex

X° of the.unit hypercube and no solution 7, of 3.19 equals
xJ, then the general system shich satisfies assertions 4.1
end 4+2 has no realizable singularity arbitrarily close to
x°. |

Proof's Assertidns 4.l and 42 -ensure .‘t.ha.'b‘no more than one
singularity of the general system is n;aar x° providgd no 7’1 equals
xQ. If such a singularity exists it is stable by theorem 4.5. If it is
‘stable then the singularity X° of the special case must also be stable.
‘We show this as follows: Assume x'i’_ is i. Let the singular point of
the general system be denoted by X%, If xg:-P 1 the quartiiy -Figp(x})
is-nega'bivev ,aﬁd the quantity €; + Z_dijx% must be iaositive. Hence
the quanti'l?y € * Zo(ijxg is also positive and x;?_ is stable. A

similar argument applies near x;’ =0,

Points X° for which some x§ are O or 1 and others
are in (0,1) have the character of the point T and of the vertex

points and must thersfore be treated individually.
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4.8 REDUCTION OF THE ORDER OF A NETWORK
Wo consider some of the situations which may be encountered
in the enalysis of general linear threshold nets. Let A be the woight

 matrix of an arbitrary net J of order n.

=0 forall j., Let 4 be the matrix

J _
obtained from A by removing the ih roy ang 1™ colum,

Assertion L.5: Iet o«

~

Then the asymptotic stability of the system 4 characterized
by A is identical to the system J characterized by A.

Proof: If A has a zero row it has an element whose inputs
are the "external" input set Up. Thus its output x; 1s

(2) asymptotically stable since.we_'assmne that U is conétaht
over the time interval of interest, and

(b) an input to system d. | |
Hence if i is asymptotically stable, ¢4 is also asymptotically stable,

o
and if ¢ is unstable, ¢ is unstable.

Assertion f.6: Iet &;; =0 foreall i. Let A be the matrix
A with the jPh column and the j%h row removed. Then the

: .
asymptotic stability of system ¢ characterized by A is

identical to that of ¢ characterized by A.

Proof: If A has a zero column it has an element J whose
output does not affect the other gates in the system. Its inputs are the

external input set and the variables X9 1 € i &n, i.e. gate j 1is
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~n

dynamically dependent on the rest of the system, which is 4. Hence
A
_the stability of the reduced system ¢ determines the stability of 4.

A ) .
Assertion 4.7: Let J be a proper subset of d. If o, g = 0
oA A ~
forall ied and j&€d orforall 1 ¢4 and j&d then
the system stability is determined by the distinct networks

- A

d and ¢ - 4.

Proof: let a;; =0 forall i €d ana j &9, This constraint
specifies that system 5. may affect the rest of the system if some
54 £#0 for i é; and Jéf, but é‘ is independent ofrd-s;:
Hence if § is stable, J is stable if ¢ - § is stable, and if §
is unstable then ¢ is unstable, A similar arguﬁent holds for the

alternate constraint.

. Assertions 4.5 and 4.6 are special cases in which the rank of
A is less than n, the order of the system. It has been argued]‘4
that time-discrete threshold networks are chafacteziz_ed by the rank of
the welght matrix, rather than the order. Here this- fesult will be gen-

eralized and proved for our continuous model. We shall use

Definition L.5: Two networks are logically similar if there

exists a nonsingular transformation such that every stable
singular point of one ne’c.w§rk is mapped one~to-one onto a
stable singular point of Athe other, and in addition every
point on a stable trajectory of one is mapped one~to-one onto

a stable trajectory of the other.
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Theorem 4.9s Iet A bs the n Xn weight matrix of an n-
gate linear threshold net. Tet the rank of A be r & n.
Then the threshold net is logically similar to a network of

r gates (not necessarily threshold gates).
Proof: An elementary result'’® in matrix theory will be quoted:

Lemma 4.3: Let A be a square matrix of order n and rank

r £ n.  There exists a nonsingular matrix Q such that

which is of the form

"Cll l -
. » 0 .
I .
C bt c e e o C ! O . 4068
rl X7
. . ;
’cnl e o @ cnr J

Consider the zero-input system 1.38 with transformations 1.40

aﬁd 1.41. The state equation is
(TD + I)V =4z . ‘ ' L.69

From lemma 4.3 there exists a nonsingular matrix Q such that, by the

linear transformation

2=Q0, 470
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the equation becomes
(TD + I)V = 4Q0 - CAJ71
where AQ is of the form of 4.68. The solution of 4.71 is
- tr7t 2 |
V(t) = e V(o) + ) G5t - 7)B(7)aT 4a72
0 .

where

65 = L'l{(ws - I)-lAQJ . 473

which is also of the form of 4.68. Eqﬁation 4471 defines the dynemical
behavior of a certain network with output vector . Since X is the
output of a network of threshold gates, the state-space of which is a |
cube of n dimensions, the state-space of system 4.71 is a linear
transformation of the ZX-space, and is a parallelpived of n dimensions.
But from 4.72‘and 4.73 it is clear that after an initial transient

(after the first term on the right-hand side of 4.72 has become negligible)
the first f elements of V are independent of the rest, and the last

n - r elements are qépendeﬁt on, i.e. have as inputs, only the first

r elements. Thus as ta»od, trajectories in V-space'are'constrained.
té a menifold of r dimensions, and thus there are exactly r degrees
of freesdom in the fD-space. In such a case there are at most 3T stable
singularities of this system and since transformatlon 4.70 is non31ngular,
there are at most 3T stable 31nvu1ar p01nts of‘4.69. Hence network

4.69 is logically equivalent to a network of order r.
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- Only if assertion 4.5, 4.6 or 4.7 holds is it
clear that the threshold network is similar to one or more smaller
threshold nets. Nevertheless theorem.4.9 specifies a fun&amental limit-
ation on the logical behavior of threshold nets with singular weight

matrices.

4.9 SUMMARY
The behavior of autonomous systems in the neighborhood of
singuler points is determined by finding the elgenvalues of the matrix
of the linearized system at each point. Such teéhniques nay 59 éppliad
to the gate network model, provided the singnlér points can be found.
Eech singular point is near a point of a syétem similar to that
discussed in the previous chapter, provided the magnitudes )u1j| are
lafger than & certain finite number.
| The analysis of the stability of linearized systems enables
cdnclusions %o be reached about the realization of linear threshold
nets by groups of threshold gates. Further, it leads to methods of

reducing large networks to groups of subnetworks for purposes of analysis.
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CHAPTER 5

THE SECOND METHOD OF LYAPUNOV APPLIED TO THE NETWORK MODEL
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5.1 INTRODUCTION

The stability analyses of chapter 4 are limited exelusively
to linearizations of the threshold system at singular points; Such
linearizations approximate the nonlinear system with accuracyfwithin
small neighborhoods of the singularities, but it is also desirable »
to predict the global behavior, Usually the initial point of a system
will not be within such a neighborhood, and it'is necessary to predict
the stable singular point at which thé'system‘will come to rest if, in
fabt, there is such a point., There maj be a stable limit-cycle, in which
case the network exhibits a continuous stable oscillation of constant
period (in the absence of perturbations of the system) and therefore may
realize a linear threshold net in a mannef which cannot be predicted
using the theorems of the previous chapter., Finally the Lyapunov functions
which are reqﬁired‘in determining global stability are often of the form
of potenial functions and may be analogous to energy in physical dynamics,
and may thefefore‘provide insight into the behsvior of the network model.

The method for the analysis of a general network is to proceed
according to the discussion in chapter 4. The system may be reduced to
one or more minimal nonsingular systems, and these may then be'considered
separately for stability analyses. The nature of the singular points
should be investigated to determine the local stabilify near them.
Finally if more information is required the techniques to be discussed

in this chapter may be used.
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We shall ettempt to present some general results using various
techniques for the generation of Lyapunov functions. Relevance to previous

discussion will also be mentioned where appropriate.

5.2 LYAPUNOV FUNCTIONS OF THE GENERAL. SYSTEM
We shall work with equation 4«69, which is a concise descrip=

tion of the threshold system:
(Tp + 1)V =147 . . 469
An alternative representation is the equation

é = dlaa[—e——;;-qj'—(-—-i-](AZ -V) | | 5.1
A .

which obtains directly from 1.33 or Z.69. )
| By definition these equations have singular po:.n'bs at V=2=0,
and the vectors V and 2 are mutually dependent.
Some properties of Lyapunov-type functions in a. neighborhood
L) of singﬁlar points will be recalled:
- Posi‘tive-definifeness or semidefiniteness: W(X°) =
and W(X) 0, X#X°, XENO,

- Uniqueness: If W is unique, it satisfies

) _ U
axibxi dx jbxi 4

i#] _ 5.2

for 211 X in Q. This is equivalent to a generalized

curl equation, i.e.

VXV =0 . : | S 5.3
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- If
W(X) ¢ - wi(x) | | 5.4,
where Vv 1s an arbitrary positive constant, then
-Vt '
W(x(t)) ¢ W(x(0))e | 5.5

which approaches O as t;w o, Since W is continuous and
positive-definite this equation implies that }f-rO as t‘-r 0.
Let W(X) =c #0 be the smallest value of W for which

Y:I = 0. Then 21l solution t‘ré.jectories with initial conditions
within the region £ bounded by W(X) = ¢ remain within n for
all t > 0, and the system satisfies theorem 4.3 and is
therefore asymptotically stable‘ in the large. If Y is an
arbitrary negative constant then the above discussion applies

to & system which is unstable, and whose solution trajectories

leave .2 as tac0. If

]

WEo : ' 5.6

-

for all X in & region containing O the system is said to
be conservative.
Finally we quote a theorem which guarantees the existencé of

Lyapunov functions for systems such as ours, described in general by 4.11.

Theorem 5_.1.1: Let 4.11 describe an autonomous Lipschitzian

system, and let Z2 = 0 be asymptotically stabie in ﬁhe large..

Then there exists a Lyapunov function W(Z) which is infinitely
differentiable with respect to Z. |
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A consequence of the theorem is that every unstable system

has a suitable function W whose time-derivative is négaﬁbive—definite,
and every conservative system such a function with derivative identically
zero.,

Unfortunately no general rules exist for writing down expressions
for Lyapunov functions. Methods do exist?® but suita;ble functions are not
guaranteed. We shall apply several such methods, beginning with the
assumption that stability in a neigh‘borhood of each singular point
hes beeﬁ egtablished by the methods of the previous chapter, and that
the syétem is in minimal form.

It is a general requirement that the‘region £ be as large
&s possible in order that the strongest possible conditions for system

behavior may be established.

5 2.1 VARIABLE GRADIENT METHODS

We assume that the gradlent of W is of the form

vu(z) = 72 . 4 5.7
or | |
N =Y. 5.8
The function W is required to satisfy 5.2 and be sign-definite,
i.e. it is required to satisfy 5,3 end 5.4 or"5.6. P need not be a constant
matrix. We are thus required to find a matrix P and, if poss:.ble the
matrix whlch gives the largest region .

Consider a constant matrix P and a quadratic form

W(v) = v , 5.9



163

for which the curl equation is

B:{;w =a:j 2 PaxVi = Pyg = B"Vé LT’) N Pa‘_i r 5.10
i.e, P is symmetric. If W(V) is to be a Lyapunov fuhétion P must
8lso be positive-definite. We quote some ugeful results from matrix
theoryB, recalling lemma 4.1, which states that the symmetric part of

& matrix determines its quadratic form.

Definition 5.1: For a symmetric matrix A = [aij] s the

leading principal minors are:

a11 812

Pp =1, P; T 8375 Py 7 seeey Py = 'Al . 5.1

821 822
Theorem 5,2: A& real symmetric matrix A of order n 1is

positi 3-definite if and only if its rank is n and all

leading principal minors are positiva.

Consider system 4.69, wilich nay be rewritteg

v=orly + laz 5,12
We require the derivative

W= vlprly + vopr-laz 5,13

to be sign-definite in a region & which depends on Py and further-

more we require that solutions enter or remain in £ for positive t.
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Assertion 5.,1: Let V=2 =0 be en asymptotically stable -
point .of 5.12. Then thére exists a constant, symmetric,
positive—definité matrix P for which 5.13 is at least neg-
ative semidefinite in a region N which may be vanishingly
small, If V=2 =0 is unstable there exists a positive~
definite matrix P for which 5.13 is at 1eaé‘b positive-semi-

definite in 2, which may be vanishingly small.

Proof: If V=2 =0 is asymptotically stable then its linear

approximation
V=Hv 5.1

is a valid 'descrip‘bion of‘bhe system in a region £ containing O which
may be vanishingly small, Thus. by theorem 4./ there exists a constant
matrix P which satisfies the theorem in Q. The proof of the unstable

case follows directly from the stable case.

| Th9 following considerations arise:

1. It is desired to make the region of stability « finite,
and as large as possible, that is, we. ;,rish td find . such that if the
initial point is outside «a, system béhavior is different in c;haracter
from behavior for initial conditions in <,

2. A constant matrix P may not give rise to a satisfactory
région Q. |

3. P need not be a constant matrix. However it is extreme-
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ly difficult in the general case to find a non-constant matrix which
satisfies the curl equation, the positive-definifeness criterion, and
which has a sign-definite derivative.

4. In general the easiest method for ensuring that trajec-
tories remain in £ is to specify that the boundary of A is a level
contour W = c.

5. There are exactly n(ntl)/2 independent elements of the
matrix P which may be adjusted so that . is suitable.

An elementary example will be used to illustrate the above
digcussion. Consider the completely symmetrical bisfable circuit contain-
ing two gates described by the matrices

T=1I, B=1I,

10 0 -20
2= o)
10 -20 0

The phase diagram for this system is Fig. 3.11d, which is repeated in

5¢15

Fig. 5.1a. Obviously since the system ié symmetric all trajectories
below the diagonal approach the singular point near (1,0) and all
trajectories above the diagonal appréach the singular point near (0,1).
The point T = (},3) is a saddle point. The system is to be traﬁsformed
to the form of 4.69, taking, for example, the singular point near (1,0)

as the origin. We have

0= yag) -2mg=0 o 5.6
10 - \y(xg) - 20x§ =0 )
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0 1M Xy

Fig., 5.1a A Symmetric Bistable

v
)2
"20

N

-

~20 —io 7

" Fig. 5.1b Transformed Phase Diagram -
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the solution of which is

X0 =] -
1 1 5,17

=1

where ¢4 1s a small positive number (of the order of 4.5 x 10"5).

'Hence
(x%) =10 =20 .
Wi 1 5.18
q)(xg) = ~10 + 20
from which
vy = \p(xl) -~ 10 + 201
v, = Yix,) +10 =20
2 2 1 5.19

Z4 =xq = 1+ 7

Ty =% =1
.and these transf‘ormatiokns give the required form.

The unit square is mepped one-tc~one onto the Veplane which
is shown in Fig. 5.1b. The point nearest the origin at which equation
5.13 1s zero is the point 7= (~10+204, 10—207) which is the image
of . Ve choose 2 to bé an ellipse with centre at the origin, minor
exis O - ¥ ana arbitrarily large majOr axis &a, say. That is, in a |

set of orthogonal coordinates Tys Toy the equation of the ellipse is

1l
2 2 = 0
r4-: T . 2 ‘
121 + —***,.22 srT |a” _L_{r=RrTAR=1, . 5420
a* vl o KR

To write this equation in terms of Vys YV, We find an orthqgonal trans-



168

formation R = SV, for example

s= il + 5.21
2 |

from which we have

0 S Y N
o2 KR o2 IR
vIsTAsy = 0T T=1.  5.22
0 S S S
e* IR o° W

An ellipse, Jli> say, defined by this quadratic form transforms into the
region indicated in Fig. 5.la. In the 1iﬁit-we may take the major axis
a to be infinitely large, in which case the stable region approaches
the total area below the .diagonal.

The procedure used esbove may be generalized to arbitrary |
networks and dimensions in a straightforward manner. A symmetric positive~
definite matrix P .always results from the choice of an ellipsoid
aé the region .. One or more dimensions of the ellipsoid may be arb-

itrarily large, in which case P is pogitive semidefinite.

5+2.2 FREQUENCY-PLANE STABILITY CRITARIA

Generaligations of the Popov4 frequency-plane criterion to
systems with many nonlinearities of a certain‘form are availables’6’7.
We quote a result which gives necessary and sufficient conditions for the

existence of Lyapunov functions of the form

v
V= S zlav + vTpy ' 5,23
S _
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for the threshold system, where P 1s symmetric. Define the function
$;(v;) to be

=) € e o) = e - s

where xg is the singular point to be investigated. From the shape of
the function qbl(vl) it is clear that the integral in 5.23 is always
positive. Thus W is positive defiﬂite if, but not only if P is
positive semidefinite.

Consider 5.2a, which is a block diégram ofl' a type of nonlineax
multivariate control system in which R, V, 2 ‘and 'S are n-vectors.

$ is a gset of n time-invariant, inertialess nonlinear gain elements

whose outputs are 4’1 (vi) where
0 € vidb: (v;) & kiv2 5,25
D 6 B RO B B B , ‘ .

This inequality is referraed to by stating that ¢, 1is confined %o the
sector [0,ki] « G is a linear, time-invariant subsystem and the closed-

lobp gsystem is described by the equation
i b
<V(t) = -V (t) + st(t -7)2(7)aT 5.26
0] . .

where Vo(t) is a linear function of the zero~input response of G and
the input R(t) which is assumed zero or & small disturbance which
eventually dies av}ay. It is assumed that the Ifollowing conditions
apply for 1§ i,:] $n:

1. For all inputs and :1ni’c.1al states
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() v, 1is bounded,
(v) voi('b)-9-0 as toom,
(¢) Vois %016_12(0,00) where the notation s(-b)él.x.(a,b)

means

{SII)s(t)thJyQ ®. | 5.27

2, gijé_Ll(O,co ).

Systems of the above description are said to be in the Iur'e
formg, and forupurpéses of analysis are often transformed into équivalent '
cenonical systems by expanding the linear functions B1j (s) in pa;'tial
fractions. Note that the first-order form assuméd for 83j implies that
the threshold system model is in a cenonic form, but the following theorem
applies for higher-order rational transfer functions with all poles in
the ‘left half-plane.

Let

Q = diag[aq;] . 5.28
K = aiag(x; | 5429
be real n xn matrices and let

R(3e) = [1 + joglee) + x7t | 5.30
F(j) = R(j) + & (ju) | | 5.31

where ® is the complex conjugate transpose of ® . The elements :ki

of K are to satisfy 5.25.
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Fige 5.2a A Multivariate Control System

Fig. 5¢2b A Threshold Network
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Theorem _5_;_3_8: Let the system of Fig. 5.2a satisfy the above
conditions. If there exists a real diagonal matrix Q such
that for all 30, F(4) is positive-definite, then the
elements of V(i) are bounded element"s‘of L2(0,oo) and tend

to zero as t > 0.

F:lg.‘ 5.2b shows the threshold system in Block-diagram form
similar to the édﬁtrol system of Fig, 5.2a. VWhen X° 1s constant the
state 2 =V =0 is stable provided the control‘system is stable. This
is true since 5.26 is identical in form to 1.45 which, with zero input,
describes Fig. 5.2b. Hence theorem 5.3 may be applied to find the maxi-
mum sectors [O,ki] in which a Lyapunov function 5.23 exists. Replacing
the functions gbi(vi) by kjv; an ellipsoidal regiqn Q exists within

the surface defined by
T - ) .
V(P+K)Vv=c, 5632

and the region 0. inside W(V) = ¢ is greater than that defined by

tﬁis equation, but smaller than Q4 defined by
V(P +Ky) = ¢ | 5.33
where K, = [kli] is a diagonal matrix whose elements satisfy
v (vy) 3 klﬁ . - 5.34

It may not always be possible to specify such a matrix with nonzero
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elenents., Thus we have

vhere £, eand -02 are quadratic forms, Hence if .ﬂl is chosen to be
the largest ellipsoid in V-space for which W is nega‘bive-defini‘be,
W is also negative-definite in €2, Indeed .(Ll mey be chosen larger

than this, so long as W £ 0 -in Q, but 0, may be considerably easier

1
to find. ‘

As to the matrices Q, & and F, these are obtained as

follows: From Fig., 5.2b which is described by.equation 1.45 or 4.69,
' t
V(1) = V() + X “Gg(t = 7)2(T)aT ‘ 5.36
0

and the linear transfer function matrix is

o) = [ st = 67+ D™ =[I-§5§17-;] . s

Hence,

- | ' [ea (1 + §9g, »
R e L R N e e

-ﬂii(l + j“’qi) _ “ji(l - j“"lj)

F(jcﬂ) =[ 1+ jooTi 1.- oo 'Z‘j

The usual test for the positive-definiteness of F(j®) 1is to find the

]+« a1, 5.3

leading principal minors and apply theorem 5.2, Now let
R(jw) = R(R) + j9n(R) . . : 5.40

Then
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F(§) = A(R) + [R(R)]T + jom(R) - 3 [8(®)]T . 541

It is easy to show that lemma 4.1 applies to complex as well as real
matrices; F(j«) is positive-definite if and only if its symmetric part

is a2lso positive~definite. Thus
F () = &{F(9)] . 5.42

is to be investigated. From 5.37,

o = [- 48 Py el ly T, a 5.43
s\W TImFTT T2 2.2 . 2ok
T +w" Ty 1+w077Ty '

When e -»0,

FS(O) = [—dij - ji_] + 2{{-1 . 5044
and when @ —> o,

- 3 A 1 .

Foloo) = |-%y57; = @31 jrj] A 5+43
For 5.43 to be positive~definite,

1

EI > «ii 5.46

for a1l i, and if 5.45 is.positive-definite,
Iqi\é T3 . 5.47

for al1 i, irf o4 is nonzero. Equations 5.4 and 5.45 are of course
only necessary conditions, unless Q is made equal to T, in which

case 5.4 1s also sufficient.
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Before proceeding further with mathematical detail, it may be
useful to discuss the significance of the development of frequencyh
ﬁlane methods so far., If theorem 5.3 is satisfied, i.e. if 5.43 is
positive-definite, then the origin of the V-plane 1s aéymptotically

- VA
stable, provided the quantities é 1)

do not exceed ki at any
i

time. Furthermore, 5.23 is the form of a suitable Lyapunov function W.
The theorem is suually employed merely to specify the sectors [p,kil

. within vhich the nonlinear functions must lie. It is used less often to
- Pi (Vi)
I
unnecessarily severe, and stable systems may be rejected. This may also

is often

specify regions of stability since the constraint on

be true of the threshold network. The use which may be made of the
above development is to find extreme points of £, which is to be
~described by forms similar to 5.23.
| Consider the following example, illustrated in Fig. 5.3, which
is of the form of 3.11i: Such a system is described by matrices such
es

T=1, B=1,

~17 36 -2 -
E = , A= R 5.48
-19 2 36 o

and we shall investigate the point X° near (1,1). In this case from
the diagram it is clear that X° is stable with region O at least as
large as the rectangle indicated passing through the singular points

Xt and X2, Using assertion 4.3, that is, by assuming that the curves

Cl =0 and 62 =0 are piecewise linear within the unit square, it is
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l
(. 53125, °'l) |
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: hy \k\\\“*—; Popov Region
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| | \“\ X (v1,.46875)

Iy4
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0 |1 |

—
]

5.3a

(~16.875,-.9375)

Popov Region

5.3b \ (1.0625,-19,125)
\

Fig. 5.3 Example of \
Frequency-Plane Method
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possible to find the coordinates of the singularities as shovm. We shall
demonstrate that in this easily verifiable case the extended Popov
criterion results in a region nearly equal to the rectangle through the
singular points. |

i

Selecting q; to equel 7, equation 5.43 results in 5.44

for all frequencies, and using 5.48, we have

2 :
~72 + ky 0
20 5.49
0 ~72 + 2

vhich is to be positive-definite. Usiﬁg theorem 5.2, this matrix is

positive~definite if
k, ¢ = . | 5450

where 1 =1, 2, Solving the equation

. 17 = yAx;)

xi + kivi = Xi '—""""‘3-'6“‘"“"'- =1 5.51
we arrive at

x; = 0532, ' - 5.52

v, = -16.872 , 5.53

which, as shown in the diagram, results in a region slightly smaller than
the region we have already obtained.
Another example in which the Popov method results in a suit-

able region will be given later.
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Note that the restrictions imposed by 5.43 alvays result in
a rectangular region which, provided no trajectories leave it, is a
region of stability. It is necessary iﬁ general to 6heck that trajectories
renain in this_region, and in such cases it may be easier to use the form

5.23 so that the boundary of Q 1is a level-surface of W,

5.3 LYAPUNOV FUNCTIONS OF THE SPECIAL SYSTEM
We apply variable-gradient methods to the system described by

the equation
V=AZ 5.55

which arises directly from 4.62 or 4.69 when all g.-»0 and B;7T;
is finite. We now take v, to equal PiIE.{*KXi) --+Kxg)}. A function
is required which satisfies the description of section 5.2:1. Suppose

there is a matrix P(Z), wuch that
Vi = P(2)Z ' ' : 5.56

and suppose that the curl équation is satisfied, i.e.

aViW _ pik bpii _ pki )p_lsi :
W Ry G R gy

i
One way to satisfy this equation is to specify that P be a constant

disgonal matrix. Then we would have

W=2Tpaz . | 5.58

OBserve that if 5.58 is identically zero and W 1is positive-definite,
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then ¥V 1is a constant of motion, i.e. the system is conservative and the

results of statistical mechanics may be applied. We rewrite this result

es
Assertion 5.2: If 8, =0, 1 ¢1i ¢n end there exists a
disgonal matrix P with positive nonzero elements such that
the product PA 1is skew-symmetric then the threshold system
described by 5.55 is conservative.
- Proof: It will be demonstrated that W is positive-definite.
From 5.55, »
oW _ : ' ,
A = piizi . 5¢59
i
Hence
oM (T
i O . 0

which is always positive for V# 0 ‘and i’ii > 0 because from 5.2/ the
function z; = <l>i(vi) is strietly positive-monotonic and passes through
the origin. Now since P 1in 5.58 is a positive diagonal matrix and

PA 1s skew-symmetric the assertion follows directly.

The above result is a minor generalization of the criterion for
the existence of constants of motion mentioned by Cowanlo.'
‘The function which results from the integral 5,60, when the

‘explieit fqrm of Y is used, is
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x2 1-x¢

| x\ i/l - x° i '
W= Z_pﬁlog(—-l-) ( 1) : 5.61 .
. i Xi l - Xi .

which is identicel in form to 3.27, the function derived for the R=L~C
electrical netirork analogue.

Of course this assertion specifies only a sufficient condition
for a constant of motion. Results of simulation of the system as discussed
in appendices A and B suggest that the system is conservat_,ive _(within
experimental error) for any A-matrix with pure imeginary eigenvalues.
That is, if there exists a symmetric positive-definite matrix P for
. which PA is skew-symmetric, then the .system would appear to be conserv-
ative. An explicit form for a constant of motion is not available,
however.

We now consider special systems .for which the matrix of the
linearized system at a singular point has eigenvalues with negative real
parts. Only the point T will be considered since the other singular

points are never reached in finite time.,  Consider & system of the form

(TD + I)B(Y =) = AZ - 5,62

-

which comes directly from 1.38 and is equivalent to 5.55.
Assertion 5.3: Let 5.62 describe the special system as

B0 with §;7; finite, and let " be stable. Then [
is asymptotically stable in the large.

Proof: The extended Popov method of section 5.2.2 will be

epplied. The theorem is satisfied if T is stable because the linear
transfer function has poles in the left half-plane. Straghtforward
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application of the method results in the matrix

F (o) = ['aii(l + ey Ty) A jqirﬂ')] v 2L, 5,63
s 2.2 2y - tot
Consider the quantity
1,2
1 +a%; 74 Y Ty

= . A\ . ) ‘ 5.64
.22 1 ,
In the limit F]._-»O and Ti-»oo such that By T 1 remeins finite,

Q3

P13
specified to be O, Fs(w) is positive~definite for all positive values

The limiting value of this quantity is

o Thus if all q; are

of k;, and the system is asymptotlically stable in the large.
A consequence of the above result is that if I is unstable,

the vector Y - 7 becomes infinitely large a&s t-»o0,

5.4 LIMIT-CYCLES IN THRESHOLD NETWORKS
In chapter 4 sevéra.l cizonclusions“ were reached about realization
of threshold nets, using only enalyses of singular points and a knowledge
of the topology. of the sté.teespace of threshoid netwo’rks‘. The results
are- summarizéd in assertion 4.3, which specifies that the eigeﬁvalues of
the linearized system must be real at T for the results to apply, in
which case 'Ehis point is a node or saddie point. If T is a centre.
geometrical methods may be used, but with less specific results. Using
the. globa.i techniques of thié chapter the existence of limit-cycles may
8also be shown, and furthermore, bounds of the regions in which they must

exist may be established.
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Consider & general threshold system of n gates with connexion
matrix A of rank n, Assume that there #s exactly one realizable

singularity, denoted T°. We shall use

Definition 5.2: A limit-cycle is an isolated cloéved trajectory.

Consider a clogsed trajectory in the stete~plane, or its pro-

Jection onto an arbitrary plane if n is greater than 2.

Theorem _5__.Allz A closed trajectary surrounds at least one

singular point.,

When n > 2 the theorenm is interpreted to mean that a closed
trajectory surrounds ‘the image of at least ene singular point.
By half-trajectory ismeant & solukion trajectory from t,

to ©® or ~o. The Poincaré-Bendixon thearemll statess:

Theorem 5.5: If a half-trajectory remains in a finite region
& without approaching eny singulsrities, then either the

trajectory is closed or it approaches a closed trajectory.
We now state an application to the general threshold network:

Asgertion 5.4t Solution half~trajectories of the threshold

net approach either & singular point within the unit hypercube

‘or & closed curve within the unit hypercube.

Proof: It is sufficient to demonshtrate that solutions renmain
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‘bounded in the V-space, since the boundaries of the unit_hypercube cor-
respond to infinity in the Vespace. We show that ’oheré exists a finite
region .0.2 'and & posi’oive-definife function W(V) with nege.'bive deriv-
ative everywhere outside -\12, and on the boundary of _Qz. 'Gonsider the

equation

(7yd + v, - “asty = Zalj 24 | 5,65
which describes the ith ga.'be. For all j #i, 1let

xj = Zj + xg € {0,1} - 5.66
such that the right-hend side of 5.65 is & maximum:

jé:j-“lij = L 5.67
and let zg, = 4>i(vﬂ,i) be the solution of the equation

vi - aiizi = Mi ’ A . ) , 5.68
If a trajectory ever reaches wyy, since O <% {1 for 811 i,

dv -
_iM
dt - 'ﬁ{-M + %«iij} <0. 5. 69

Now select all xj s J#iL 1in 5.66 such that

J%;aijz =my . ~ - 5.70

is & minimum, and solve the following equation for 2, ., vy ¢

vign - &g, S Mo ‘ 5.71
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Now,

dvim "
Ti{ my "”%ﬁjzj} >0 5.72

if & solution trajectory reaches vj,. Such trajectories pass through

these points only during an initial transient, after which, for all time,

Let W= ~;.3~VTV. There exists a region Q, bounded by the planes
Vy - ®34%; =m; and vy - %5374 S My for all i, such that on the bound-

ary,
Zviv ( 0 ) 5074
i

‘and the proof is cdmplet;e.;

The above result has been used implicitly in the original
choice of 1.21 as a model of physical devices. The assertion gives &

" Justification of the model in semi-formal terms.

Agsertion 5.5: Iet T be the sole finite singular point of
é, threshold network. If T is unste.bie then there exist bounded
regions 2;, 2, and Q= ﬂ2 :-Ql such that trajectories within
& remain in (L a8 t-sw. 3
‘Proof: it was. established in the proof of assertion 5./ that

a bounded region .(22 exists, such that trajectories enter the region

at every point on its boundary. Furthermore I must be inside £,



since T is finite, in which case m; is negative and M, positive
in 5.73. If T is unstable there is by definition a region Q, cont-
aining ", and from which solutions enter Q. Now since T is the only

finite singular point the assertion has been proven.

It may be remarked thaf it is usually possible to find a
much larger region !ll which satisfies the assertion, as follows:

Consider the network defined by the matrices

T=1, B=1,

-, 28 =201 ‘ 5.75
=[] = )

-12 20 4

Fig. 5.4 shous the two state-planes of such a system. The matrix of the

iinearized system

at I = s%) from 4.37 is found to be
. 6 - _
H= - ) 5077
5 0 :
which has eigenvalue% in the right half-plane and therefore T is un- .
~stable. A quadratic form W = VIPV = ¢ may be found by specifying a
symmetric positive-definite matrix P and a constant ¢ for which the

deriw_rative
W=vIp(-rly + laz) I 5,13

is positive everywhere in 2y bounded by W = ¢, In this case P
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Fig. 5.4b Sketch of Example X-Plane
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cannot be diagonal because 1.r2 < 0 everywhere on thg vz-axis except O,
and it would be impossible to find & nonzero constant ¢ for which X:I
is positive in a finite region. The matrix P may be assumed to be of
the form

b =a .
- 5

where Psy has been chosen ag an arbitrary positive number. We agsume
that Q; cuts the v~ and v,~axis far enough from the origin so that

V may be approximated by & linear equation, i.e. if vw=0, W 30,

~a(-4+14 = 20) + 5(-12 - v, + 10 + 4) 30,
vy § 2(a+ 1), 5.79

end 1f v, =0, W30,

b(‘4“’1 + 28 = 10) = a(-12 + 20 + 2)?-0":

V1$M-!'%a; . . 5080

The values & and b must be such that P is positive-definite, and
in addition the boundary of 2, nust cut the axzes inside the values
specified by 5.79 and 5.80. If, for example, P is

P= [ > - ] : . ' 5,81

-1 5 '

end if ¢ 1is chosen to be 79 +then the axes are cu'l'; at (0,3.97)
and at (3.97,0) which are inside the constreints v, g 4 from 5.79
and vy & 12 from 5.80. It is easj to verify that l:I is indeed positive
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everywhere inside this region.
In general & quadratic form is available and defines a finite
region £, provided some other suitsble function defines a finite Tregion,

as stated in the following
Theorem 5_._(312: Iet & system be represented by the form
Z=H +F3) | 4.11

in which H isen nxn n;atrix, and F is a vector function
of Z whose components are power series of Ziseces Zps

.2 .convergent for all 1zl & for some " & po.. Then, if there
exists a positive-definite function W(Z) such that W(Z)
is negative-definite, there also exists a W(Z), a quadratic

form in the variables 2Zq,e.., %, Wwith the same properties.

Moreover, this quadra;t.ic W(Z) satisfies the conditions

w(z) >, azzi:z?_ ,
W@ ¢ 522 52
e

for some a, b > 0.

Obviously the theoren epplies to functions with negative der-
ivatives. '

The final result of this chapter is

Theorem 5.7: Let ™ be the only finite singular point of a

threshold network of n gates, and let U be unstable such
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that for no gate i does the vallue |x; - Yil‘ tend to zero
&s t-»00. Then there exists a mumber T { @ and numbers
toi’ 1431 &n such that at ﬁ&:b'. LT every gate 1 realizes
& linear threshold function, andl ;furthermore the system is

m-discrete where m is an arbitwarily large integer.

Proof: Since T 1s unstable and] the sole finite singular
point, by assertion 5.4 t.here must be a cIlmsed curve C vwhich all
trajectories approach as t->w. Thereforss for any number /l-> 0 there
| exist points a; and b; on G and numbxers ~'toi < o such that for
all i, the quentity |x;(ty;) - 4| 1is Dess than s whore &; € {ag,bs}.
Furthermore the existence of a closed trajmctory implies that there exist
numbers Vj <V, <... ‘such that the abov& condition holds at each time
t,

every time to3 + W if éi Z“:ijj *»©O then x > 0, eand if
G + Zotijxj < 0 then xi <0 and by deffinition 2.7 the system is

P Vr. Now it is always possible to clmose &3 and by -so that at

m—discrete and by definition 4.4 it realizms a linear threshold nst.

This theorem establishes that the existence of a limit-cycle
in the dynamic system corresponds to & condlition in switching circuits

' usually called simply a t:;,rczlls.a:LB .

5.5 SUMMARY |

The behavior of the gate networlkkmay be predicted bybapplying
the second method of Lyapunov, which requlteas the existénce of an explicit
form for a positive~definite function W wilth sign-definite derivative
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in a region of the:system state-space. The msthod of variable gradients
may be applied; for arbitrary matrices A it does not result in a
unique function W unless the gradient of W is assumed %o be & Ilinear
function, in which case W is quaidratic. _Other foxms are possible,
~ but except for a case to be mentiohed below, have not been obtained.

It 1s possible to find a constant of motion W, analogous
to the Hamiltonian of classical mechanics, for the Cowan systém with a
restriction on the matrix A, It is conjectured, however, that this
restriction need not apply ‘

- As to flndlng the best quadratic Lyapunov ﬁmction, this
problem reguires an exact knowledge of the state topology, but approp-
riate approximate methods for systems wifh large weights are available.
The genemiized Popov me{;hod_ also applies to the dynamic gate system,
end provides a straightfoﬁrard method of finding regions of convergence
in certain cases. The form of the resulting function Is of a guadratic
plus the Integral of nonlinear terms. -

The ebility to generate Lyapunov functions for the system
allows a conclusion to be reached about the existence of limit-cycles;

and hence about the existence of cycles in switching circuits.
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CHAPTER 6

APPLICATIONS OF THE DYNAMICAI, MODEL
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6.1 INTRODUCTION

v Thié.chapter concerns applications of the model proposed
in section 1.6 and aﬁa]ysed in chapters 3 to 5. Some of the questions
_ which it can reasonably be used to ahswer or partly'answervaré given

here.

6.2 SIMULATION OF NETWORKS

The obvious application of éidifferential equation model
is to solve it. If closed~form solution is not possibie then analogue
or digital computers must be used, Four examples are presented here,

Fig. 6.1 is a plot produced by analogue computer of the transient
step response of a single gate for various step heights, and a constant
initial point. Such plots could, for example, be used in specifying
gap tolerance limits (see Fig. 3.5) or switching tlmes.

A%t a slightly greater order of complexity, Fig. 6.2 shows
typical oscillation waveforms of a two-element system with weight matrix

A= [0 du] : | 6.1

(%2 O | | |
end various initial conditions. In this case the constants Fi
essumed negligible (8, was zero in the simulation).

Fig. 6.3 is a state-plane diagram éenerated.by digital computer.
" The circuit, described.by ' |

ERI
B = T=1I
o 2f’ g



194

o~

~ Normalized Output

1.0
Step Heights
W _in Percent
005 h
0,0 ; ; z '

0 1 2
Normalized Time _

u&n
>~
L\
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Fig. 6,2 Typical Oscillations



10.4 28 =36 | -
E= [ ] s A= [ ] o v 6.2

exhibits & limit-cycle. The 1ines. é‘l = 0 and _ 82 = 0 are also ghowm.
Fig, 6.5 shows 2 digital computer solution of the master-slave
flip-flop of Fig. 6.4? In this case ten gates were simuléted, the first
two &s & clock wave-form‘generator, and the remainder in the flip-flop
itself. Of course much more accurate digital computer.plots could be
produced easily using a cémputerhcontrolied plotter, but the outputs
shown give a reasonable view of wavefbfms, and at a iower cost in time
and‘complexity. The solution shown required 1.2 minutes on en IBM

7090 computer.

6.3 NOISE IN LOGIC SYSTEMS

A problem which -oceurs in the design of logic circuits is the
amount of "noise" a circuit wili toleratel before either giving an
incorrect outpit or coming to rest at an incorrect stable state. The
techniques of chapter 5 are directly applicable to this problem, and the
following result can be sﬁated: If a singular point is stable, then any
disturbance wﬁich does not take the systém out of the maximum region N,
defined by either 5.9 or 5.25 and for wﬁich there exists a Lyapunov.
fﬁnction, does not méke the system move:fo a new steble state. In the
gimpler case of a‘temporary.chang§ of the 6utput of a single gate,

theorem 2.3 may be applied, with the addition of & noise signal, N(t).

% In the diagrams RHO refers to the elements p,, and in Fig, 6.5
GAMMA is the solution of E + AX = 0.
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Fig. 6.4

The Master-Slave
Flip-Flop
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Inequality 2.33 is replaced by

|N(t) +€; + g_; FARR < 6.3

and as long as this remains true the element realizes a threshold function.

6.4 THE RANK OF A NETWORK

In section 4.8 is a fundamental result which applies to design
~as well as analysis of logic circuits. Theorem 4.8 states that the rank
of the connexioﬁ matrix A determines the logical character of a network.
‘For example, if the maximum number of stable states? of & circuit of n
gates is k, then adding an additional gate will not increase tﬁe number
of stable states unless the renk of the_new matrix is n + 1. The
applicability of the results in section 4.8 to the reduction of large

networks of non-maximal rank is mentioned in that section.

6.5 DESIGN OF SEQUENTIAL CIRCUITS

| A result which relates to the Aiscussion of section 6.2 will be
stated. Let a logic circuit be partitioned into circults of maximal
_yank., Let the gtate~space of a maximal circuit be partitioned into
stable regions J?i’ In general-these regions depend upon the values é;
which are functions of 55 and therefpre of the eircuit inputs. Then
any input which changes the state topology so that the state vector is
in & stable reglon £2; causes the next stable point to bev in 0. The
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input may bs external, or may be an aétion from one or’more of the
other maximal eircuits in the network,

The ebove is not intended as a new method for the design of
sequential logic, because the computetion required in sﬁch an analysis
of stable regions is large. Howé§er, when applied to small circuits,

this type of enalysis could be used, for example, in specifying minimum

input levels and their required duration.

6,6 BOOLEAN MEMORTES

It is a safe assumption that most.logical memories not
using a particular physical effect (ferromagnetism for example) are
designed using bistable circuits as basic units., Recently memory circuits
conteining more general feedback connections have been mentioned in the
1iterafure3’4’5. A time-continuous model has not appearéd, however, The
enuneration of singular points of threshold circuits as discussed in
chapter 3 is of direct relevance to this problem because a method has
been presented for finding every singular point and testing its stabil-
ity. The only restriction in this case is thgt the weights ‘tij all have
& magnitude large inough to guarantee that the singular points (except T7)
are sufficiently near edges of the unit hypercube, It must be emphasized
that this is not a restriction on the logical function of a threshold
gate, but only on its transient bshavior. This is easily seen by noting
that the multiplication of €i and dij’ j=lyeeeyn bya pgsitive
constant does not change the gate function. This ié a linear transform-

ation as discussed in chapter 2.
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6_.7 HAZARDS IN SEQUENTIAL CIRCUITS

The term "haZérdﬁ is uééd.with'a.certain lack of precision
in the literature of sequential circuits. The definitions of Unger6
will be used here: | ‘ “

A Yransient hazard is a'momentary false output of a circuit.

A steady-state or essential hazard is the condition in which a
 eircuit may enter a "wrong" stable state after certain input changes.

Other definitions then the above wordings are available?
Transient hazards will be taken to mean the following in the context of

the continuous model., Suppose that all inputs uq(t) are constant in

the interval (t,,ts5), end that gate 1 satisfies

'xi -—ai‘ < . 6.4
in (t,,t9),

in (tp,t3) end the first inequality agein in (tA,ts) with <
tl <vt2 & t3 < t4.<_%5. Now from theorem 2.3 it is evident that the point

1& lies Between a3 end bi. Therefore, if a transient hazard exists

the 6utput X

; must pass through 7& at least twice. The following

conclusion arises directly from the topological analysis: If all eigen-
values of the linearized system are real at T then the singularity is

& saddle-point, and no variable x; passes through y& more than onee.
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Therefore no transient hazard exists.:
| A conclusion about essential hazards may also be reached,
although it is not a very useful one., The folloving argument is used:
If an éssential hazard exists the systeﬁ is not completely controllabled.
The condition that a system be completely controllable is that the external
input weight matrix P (see equation 1.34) have as many nonzero rows as
A has rows, that is, as there are gates in the circuit, If the elems
ents of P have large enough magnitude then every stable state ney be
reached from sny other with exactly one input change. The concept of
controllability belongs to the theory of automatic coﬁtrol syétems. Thig
result has not been proven explicitly in the analysis but is evident from
theorem 2.3.

The above discussion is only relevant when every stable state
of the threshold system is a realization of a threshold net (by definition
Le). The discussion of essential hazaids is applicable as a definitigqn
in control~system terminology but is not very useful in the design of

circuits because it requires en external input to every gate. .

6.8 CYCLES AND LIMI%-CYCLES

Assertionv4;4 and theorem 5.7 demonstrate that the dynamic
model can exhibif oscillatory behavior under certain coﬁditions. The
theorem states that under such conditions the system realizes a linear
threshold nst in a set of intervals, and therefore "1imit-cycles" in the

dynamic system correspond to "cycles" in logic networks. The following



204

érgument applies: Let assertion 4.7 and theorem 4.9 be aéplied to

divide the system into independent suﬁnetworks. Cyclic behavior in an
m-discrete subnetwork implies that‘the trajectory (o?, as stated prev-
iously, its projection on some plane) must enclose the principal singular-
ity . In such a éése, (a) ™ ‘must be unstéble, (b) no output x5

of the subnetwork approaches; V; as t-aoo,l;gnd.(c) at least two of the
eigenvalues of the linedrized sysﬁem-af-rflmust,be‘complex. Therefore,
if all eigenvaluss of the linearized system:are real at T, the network
contains no cycles. This conclusion applies independently to esch maximal
network within a system, but account must be taken of the interaction
between subnetworks, i.e.'the existence or shape of a cyclic waveform
depend on the stability of interacting subnetworks within the system.

The action of an independent network on géte i has the effect of making

€; non-constant if the independent network is eyelic.

6.9 REALIZATION OF THRESHOLD NETS

The question as to whether a given eircuit computes & logical
function is non~trivial if it must be answered & priori, that is, before
all possible inputs #re presented to it. Definitions 2.6 and 4.4 relate
logical function to the dynamic model, and assertion 4.3 and theorem 5.7
summarize ﬁhe analysis., The conelusion is that a network conformihé to
the model does compute aAlogical function provided (a) T is unstable,
and (b) the magnitudes |aijl are large enough. Necessary conditions,

however, have not been discussed. If theorem 5.7 applies then the
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threshold net realized contains & cycle. | | 2

6,10 APPLICATION OF THE SPECIAL SYSTEM

As stated in chapter 1, only applications to switching syéﬁems
are considered here.. Two uses of the speciel system fmay be made.
Solutions for the singular points of such a system are available in closed
form; only solution of sets of linear equations is required. As sta.’oe& |
in chapter 4, the singular points of the general system appmach those of
the . special system as the magnitudes bf o5 iﬁcreage. Furthermore,
from assertion 4.4, if the special sys’dem is unstable at a. vertex of the
Vunit hypercube, then the general sys*bém does not have & singularity near
this fer’cex. These two results are not very profound fromrthe theorst-
ical point of view but greatly simplify tﬁe computations required in anas.

Jysing the general system.

6,11 SUMMARY ,

The dynamical model is of a form which easily may be solved
by computer. It is asserted that such simulations predict the behavior
of switching circuit.;. more accurately than binary models. They axé A
particularly useful when circuits are operated near their limits of
speed. | .'

The problem of the noise immunity of logical circuits has a
fundamental relation to the second method of Lyapunov. The analysis.
of chapter 5 therefore applies to this problem. |

Another fundamental result is. that the rank of the weight
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matrix is indicative of the system dynamic behavior. This, together
with the topological conclusion, is useful in sequential designm.

The discussion of the. enumeration of singular points relates
to recent developments regarding "Boolean memories."

- The results on realization allow conclusions about bazards in
 soquential oircuits, end also provide a framework for determining the
functional behavior of an arbitrary circuit. |

- Finally, the special system.is usei;ul. from a computational

point of view.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH
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7.1 INTRODUCTION

A mathematical model of a -physical device can only be judged
subjectively, according to the Tesults which 1t is used to predict.
This thesis is intended as: a preliminary expiomtion of a model and some
' of the questions which ressonsbly may be asked of it. This, the final
chapter, containg a discugsion of 'bhe'. validity of the model, some conclus-
lons which may be reached from and about it, and suggestions for future

er.

7.2 THE PLACE OF THE MODEL IN A FUNGTIONAL HIERARCHY

A-model is used to predict the behavior of the object being
modelled. The agsumption in this work is that we: have a model permitting
a reasonable amount of detailed prediction of a certain kind at a reason-
eble cost of complication and computa.tioﬁ.

Congider-an "object™ with a finlte number q of "input term-
inals™ end one "output terminal." A mathematical model of such an
object is a function which states a relation bevtireenvtwo sets: a get of
4nputs or domain, and a set of outputs or range. ILet Q be the set of -
input terminals at which inputs: U, which are eiements of the domain
set, appear, and which cause an output x, an element of the range“ set.
Fige 7.1 is an attemp} to present the dynamical model in a; hiqrarchy of
models of logical function. ' | |

Two questions are to be answered: (a) how can a device be



DOMATIN INPUT FUNCTION TYPE RANGE
U € w(Q) o Logical (Boolean)
(1) | The set of U = {1}u; = True} - x € L = {True,False)
subsets of Q -( ) x = fL(U)
es (1) or :
) U esd U= fug ug) Binary (Two-level) x € B = {a,b}
2) | -A q~dimensional L A = 2,b distinct
‘ vector space [ u €B x = fB(U) ’
l Threshold
x=&)’ &) 20
(3) as (1) or (2) s otherwise as (2)
£ unique with ordered '
range
as (1) or[ Linear Thres})mld 2)
U =ju seey — b é(U a 0 ) as (2 .
(4)| U €81 u €1Ea b} uq] x = {a: othervise with a,b réa.l
usually real 1 ’ & linear -
U € f{triple U = {Uy,U)) | .Ternary (Three-level) x €D = {a,b,a]
(5)|  1tions on Q} Uy = {{ilui = d}} x = £5(U) a,b,d distinct
U2 = 1' uy = o) o
v ERY U=lureeees u Continuous x € C = (a,b) an
(6) | "g-dimensional u [6.11,1 ? q] x = £g(U) open interval on
real space 1 the real line
() Physilcal quantities Device Physical measurements

Fige 741 A-Hierarchy of Functional Models

602
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designed so that it "computes" a logical function, and (b) given a device,
what logical function does it compute, if any? The levels of the hierarchy
in the figure are various levels of a.bstractic;n.. Logical functions are
the essence of computation. Binazy functions are used mainly for con-
venience in representing logical functions, and are eqﬁi_valent’to Iogical
functions. Further, it can easily be demonstrated that every binary
function can be computed by & threshold function, and vice-versa. Sim-
ilarly, every linear threshqld function is a threshold function, but not
everj threshold ﬁnction is a Iinear threshold function, Much work has
been done in devising ways of using one or more Ilinear threshold function
to compute arbitrary logical functions. A i:‘mear threshold function also
fresembles™ physical devices in that it is comparatively easy to trealize!
& Iinear threshold function using real objects. Obvious examples are
gates encorporating transistors, diodes, ferromagnetic materials, and of
course, neurons. |

One common charac{:eristic of the functions discussed so far is
the following: w:i.thout exception they are defined only for a discrete
time scale, and only for finite output sets. Clearly no physical event
ebove the level of quantum mechanics is discrete in time or any other
- measurement, |

The bebhavior of asynchronous logic circgits in time is aécounted
for by various fechniques, mostly to do with "state-assignments™ which
are Intended to ensure that a system is completely stable at the proper
states, An important restriction in most cases is fha‘b only one input to
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2 network is allowed to chanée at a time for pfoper éperation-to be
guaranteed. '

~ The principal use of ternary functions in logical design end
enalysis is the detection of hazard conditions. Although the functions
themselves are not explicit functions of time their proper use enables
: bazaid—free design of large circuits with two or more simmlteneous input
" changes, However, questions about wave-shzpe detail cannot be ahswéred..

- &= to the time-écalé of continuous models, this need not be the
set of real numbers, but oﬁly the set of integers; sy, bacausé the linit-
ing behévior of a time-discrete function as the interval between points
decreases is by definition the time-continmg behavior., This subject
was: dealt with in section 2.5.
In the light of the sbove discussion the conclusion may be

reached that predictions which concern infinite output sets must be made

using continuous functional models.

7.3 - FUTURE RESEARCH PROBLEMS

More ﬁnsolved'pioblems than solutions result from an investig-.
ation such-aé the one presented here. In this section some of the more
important and obvious problems will be mentioned, divided into thres
categories: problems arising from or génerated by the analysis given
in previous chapters, algebraic problems relévant to the ﬁheory of auto-
mata, and engineering problems relevant to the anaiysis and design of

sequential circuits.
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7.3.1 PROBLEMS ARISING FROM THE ANALYSIS ‘

1. A general problem is the tightening of bounds given in the
proofs of several of the theorems and essertions, which, for the most
part, are exlstence proofs, Particular cases where Sudh improvements
would be useful are assertions 4.1 and 4.2, and theorem 4.7.

| 2. A useful computational result would be an efficient algorithm
for locating all the singular points of an arbitrary threshold éystem. '
The restrictions on weight magnitudes mentioned previoﬁsly are not severe,
but do restrict‘fbe class of systems satisfactorily treated.

3. The discussion of regions of stability in chapter_S'points
to the need for an algorithm for generating the maximum stability reglon
enclosing a singular point., Such & rogion might be defined by a quadratic
form or the form of 5.23,

4+ The result quoted in theorem 5.3 is valid for linear trans-
fer functions of arbitrary order. An extension of the first-order model
to one containing & transfer function, the nonlinearity, and another
transfer function at the output of the nonlinearity would result in a
model which is in the Lur'e form, provided the restrictions on the trans-
fbf functions hold, Such & model could account for moxe deteiled behavior
of threshold gates, and would be necessary where, for example, "ringing"
‘translients are encountered. -

5., £An extension of the electric network analogy would be uge-
ful, both in the theory of electric networks and in the theory of threshold
nets, Such an extension would result in electric nétworks‘witﬁ nonrecip-

rocal elements, mutusl inductance and capacitance, and coupling between
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inductors and capacitors, Some’useful.results in the stability of such
networkq might arise. This extension with item 4 above would be useful
in the large-signal characterization of arbitrary networks containing
active elements which may be represented in the Lur'e form. -h

o 6. An extension of assertion 6.2 %o posifive-definite symmetric
i matrices would be useful, both fof applications in‘nenrodynamics, and as
& potential function for electric networks suchvas discussed in item 5.

7.3.2 AILGEBRAIC PROBLEMS

_ Theorem 4.9 demonstrates that threshold network dynamics are
characterized by the square matrix A. It is no be expected that the rich
body of knowledge about matrices should comtribute further results.

1. A useful result would be nec¢essary and sufficient conditions
under which two matrices characterize logically éimilar systems according
to definitlon 4.5. A possible extension of this definition is as follovs:
Two networks might be defined to be logically equivalent if they are
logically similar and if, in addition, tney are both threshold networks.
Then necessary and sufficient conditiong for two matiices to describe
logically equivalent‘networks would be desirable because it would allow .
generation of canonical networks. v

2, The conditions under which threshold functions may be said
to be equivalent are well-knom %2374, In particular, tabulations are
available of canonical weight-sets of all threshold functions of up to
seven varigbles, It 1s thus possible to generate all logically equivalent

threshold nets in a systematic way. However, the number of equivalent
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nvets so generated- is agtronomicel unless an algorithm is{avaﬁilable foz\*
generating only distinct (non-squivalent) nets, or the distinct nets
plus a few more which may"be easiiy tested for equivalence to previously
generated nets. | |

Enumerations are easier at lower levels of sophistication.
It 1is easier, for example, to identify nets with complex eigenvalues
at T, .

& useful point is that given n sets of weights foran nxn
matrix representing an n-gate networlo, the various _interoonnexions
may be genorated by permuting elements within rows s and interchanging
rows. Such a system of rows is known in the jargon of ;bhe theory of
finite groups5 as an .imprimitive transitive permutation group, and obeys
the laws of such groups. Indeed an algebraic epproach to the‘problem |
of establishing equivalences in threshold nets may be of great value.

3. in algebraic defintion of finite linear threshold nets
_has been publiShedé, and a result given regarding transition or next-
state functions, It would be useful to have a clear connexion 'oetween
the restrictions on such functions, and the condi'.bions for realization of
threshold nets by the continuous model.

4e The dyna.mic behavior of linear systems7’8’9 is character-
ized by matrices or polynomial factors.. Bearing in mind the discussion
of item 1 and sections 1.7.1 and 2.5, it would be extremely useful
to know exactly which reoults of Iinear theory apply to threshold net-
works and which do not. A reason for optimism is that, a5 has been
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stated, the threshold network is dependent on its weight matrix.

7.3,3 PROBLEMS IN SEQUENTIAI~CIRCUIT ENGINEERING

From the engineering point of view i'b would be useful to
relate the dynamic model more closely to specific electric circuits and
| to problems encountered when designing them. A better mderstapdhg of
such relations would u.ﬁdou‘btedly result in research problems. VA few
such problems will be mentioned here. |

1. The most general use of ‘a system model is to construct
real systems which are optimal in some 'sense. The censtruction of
ey_etems with the minimum number of gates is a classical problem, and
requires the solution of some of the problems mentioned previously in
" this chapter. However, the model is evidently useful in finding networks
less sensitive to nolse, say, or which have shorf:er signal propagation
times. _ '

2. A useful result would be the listing of the static and trans-
ient behavior of common logic gates. Consideration would also need to
be glven to their ‘inﬁeractibns, for example in an integrated circuit.
Cases in which the.m;del is Inadequate would show how it needs to lbe

extended.,

| 3. Although it is certainly true that there is no perfeet |
delay in nature, cases may arise where a model incorpbrgting pure delay
glves reasonsble predictions easier than one which doos nmot. Two examples
aro contact networks and those in which signal propagation time between
circults is comparable to switching times. Results for such situations



216

exist in the control-systems 1iteraturel?

, and could be incorporated
profitably into the results presented here.

B 4. An effect mentioned in section 6.5 needs some clarification,
4 basic essumption in this work has bteen that external system inputs are
constent during the intervals of interest. It would be extremely help-
ful to sequential design if the results given here were extended to
non~-constant inputs, or at least if discrete input.changes,cbuld be re-

lated to systenm topology. '

7.4, CONCLUSIONS

Many of the conélusions to be reached fréﬁ this work‘bava been
mentioned previously; Here oniy the main points will be summarized.

Many good reaSéns exist for the cénsideration of coﬁﬁinuous
models of switching eircuits. From the discussion of chapters 1 and 2
it may be concluded that the dyﬁamic model which has been developed does
to a degree: represent the ciass of switching circuits knowﬁ es linear
threshold nets, and that it is also relevant to models, one in particular,
of neurons. A method exiéts for relating this time-continuous model to
others definea only in discrete time,.

It may be concluded that tba_topologiéal anaelysis of chapter
. 3 1s suitable to indicate the behavior §f'tuo-gate networks, and that
several of the: results. for such networks are.directly extendsble to
networks of higher order, A special case is directly analogous to an
electrical network,
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‘ The stability analysis of chap'be: 4 1s based upon linearization
of the nonlinear model in neighborhoods of its singular points. It is
concluded thet this type of analysis is useful for specifying the condi-
tions under which a collection of threshold gates realizes a threshold
function,. Furthermoie , methods for dividing arbitrary networks into .:
spaller subnetworks fér enalysis have been given.A |

Questions of global stability discussed in chapter 5 are
useful in determining network behavior. Two forms of positive~definite V
functions may be used in defining regions of convergence of the gystem.
These results apply to the determination of conditions under which '
the system exhibits cyclic behavior. '

The model which has been developed is useful in the understand-
ing end enalysing of several problems connected with logic circuit
design, as demonstrated in chapter 6. |

7.5 SUMMARY
It is concluded thet the system model, based upon & function
which has a continuous output set, explicates behavior predicted by
simpler functions, predicts behavior which they cannot, and is necessary
for answering several questions about logical circuits. A quotation
from the literaturell is relevant: |
: "It is well kmown that electronic asynchronous circuits are
rather sickly specimens when exposed to the full gambit of dlseases which
erise from variations in the response times of active elements and var-
iations in the propagation times: of signals between active elements.”
This thesis is an attempt to explain and alleviate some of the.

difficulties which erise in the analysis and design of such systems.



218

7.6 REFERENCES

1.

2.

3.

4e

e

6.
7.

8.

9
10.

Chow, C. K., "Boolean Functions Reslizable with Single Threshold
Devices," Proc. IRE (29), 1961, 370-371. |

Muroga, S., Toda, I., &'Kondo, M., "Theory of Majox‘i‘by Decision
Elements," J, Franklin Inst. (271) 5, May, 1961, 376-418."

Winder, R;o,, "Enimeration of Sever—Argunent Thresho;d Functions,"
IEEE Trens, Elect. Comp. (EC-14) 3, 315-325 "

Dertouzos, M. L., "Threshold Logic: A Synthesis Approach,™ Research
Monograph No. 32, M.I.T. Press, Cambridge, Mass., 1965.

Ledermann, W., "Introduction to the Theory of Finite Groups," Oliver
and Boyd, London, 1964. N

Krohn, K., & Rhodes, J., Ch. 4, Ref. 9.

Elspas, B., "The Theory of Autonomous Linear Sequential Networks,"

" IRE Trans, Circuit Theory (CT-6), March, 1959, 45-60.
Kalman, R. E., "A Mathematical Description of Linear Dynamical

Systems,"™ J. SIAM Control, Ser. 4., (1) 2, 1963, 152-192.
Cohn, M., Ch. 2, Ref. 10. ,

.Krasovskii, No N., "Stability of Motion,™ Stanford Univ. Press,
Stanford, Calif., 1963.

Runyon, J. P., IRE Trang. Circuit Theory, 1959, 505.



219

APPENDIX A
STMULATION OF THE MODEL BY ANATOGUE GOMPUTER .

A TR~48 analogue computer was uged to solve equations 4.17:

o .
e ml-x)E s %'.«ijxj - gilogl—_-"-;i-) . 47

" In en orthodox solution of such a system the number of equations to be
solved sirmlianeously is. Iimited by the number ofcompﬁting units evail-
eble, usually the number of miltipliers, A meximum of four equations
of the special system could be.solved;‘ and Fig. &.1 is an operational
diagrain of such a solution. |

This method preduces reasonable accuraoy, but is limited by
the resolution of the. miltipliers used. When any input approaches O

‘they are inaccurate, .

To overcome these problems and to enable a larger number of
equations to be solved using the same Anumber of opemfional amplifiers,
{transistorized function éenerators were constructed. The procedure is
to perform ‘the functional operations of Figs l.12a.

The':computg.tion requires the following function to be cal-

culated:
y
el ,
1+ e}’i Al
This can be accomplished using the principle of the long-

xi‘—"

tailed pair emplifier. Consider the circuit in Fig. Aaz. To a good
approximation, the collector current in a transistor is an exponential
function of emitter-base voltage. Thus
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I = exp{al'VBEl-bl] ’ S 4,2
I = exp{agVps, ~ b2} » . A3

The parameter a; 1s of the order of qu" end bi “1s largely determined

by IGBb’ Algo to a good approximation, assumiﬁg the current gains are
high,

h*th=5. I A4

From the diagram,

E-VBE1+VBE2=O N A A.5

Combining equations A,2-~A,5,

[ pesty =) v by o
:|'_2 = exp{az[ (2] 5 - E] - b2} 4,8
Déf:lne: |
872,  a;=ates, oo
‘bl =% ’ . 'bz =D +Ab .
Then

1,= exp[(a +4a) [1og(I 12) *e - E] - (b:+Ab)} _

:‘.:exp[log(lo - 12) +b-aE=-b +4-‘3‘- 1og(I° I,) +b -AaE -Ab}
_ . ‘4,10
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If the transistors are.chosen to have nearly identical values of a,

so that %?‘- =0, the equation becomes

I = (1, - Iz)exp{-aE -A } , | £.11
or ' | _
I _ ab .
-I--—:—I-z- = exp{-a.(E + "'E')} . - ‘ . : Aol.z
(>

& gimilar equation obtains for 1, except for & sign reversal:

Iy

=e}cp{a(E+%}-' K13

Fron A.12 and 4.13 we can write

I expla(s + D))

= Ko
17 T axpfale + 20)] 14
el o )
27 1 « ' by
1+ exp{-a.(E + 4v)
Combining equations A.6 and A.7 with equations A.14:
S IoRexp[a(E + %‘-’-}
ol | 1+exp{a(E+AQ)}’ B
Z . 4,15
. I -a(E +
B, =7V- oRexp}- =)

1 + explra(B + 4b)f

It can be:seon that the sscond terms in these equations heve the re-
quired forms, except that the input vaiue' E is multiplied by & cons-
 tant, and is offset by the voltage 4P, This circuit can therefore be
naed to perform the necessary function generation provided the trans-
istors are chosen so that the following conditions holds
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1. The function I4(Vpp) must be,logarifpmic~in both trans-

istors. - ST

2., The transistors must have nearly identical equnenfial
factors a. | "

" 3, The base current of both transistors mist be negligihle

compared to the emitter current. | |

Trangistors. 22926 have been found to satisfy the above
requirements. ’Typicﬁl velues of & and b are liérbed in Fig. 4.3,

and Fig. A.4 is & typical experimental plot of Ij 'against VBE' These:

transistors have been used in the circuit of Fig, A.5.

The stabilized powei' supplies of the TR-48 are: uséd. Pl is
edjusted so that = 0 for open-circuit input aild the switeh in the
(+) position. The switch is then changed to (-) and P, used to
edjust Xy to +5.00 volts. This makes I R=5.00 in &.15.

- Fige 4.6 is a graph of the transfer function of a typical
circuit, end Fig, A.7 is & graph of log:L fixi ~for the function of
. Figo A.6. It shows & nearly linear characteristic.
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APPENDIX B
SIMULATION OF THE MODEL BY DIGITAL COMPUTER

Details of the digital similation will not be dlscussed, because
tbe solution of the equation %= F(X) isa standard computing problem,
It will only be mentioned tha.t care must be taken whensver & va.lua xy
epproaches 0 or 1, Standard integration techniques are of course
time-discrete, and it is possible to set x; outside the intervel
(0,1). Such a condition may have several results, a common one being &
negative argument in the function log‘ e s in which case execution

1-x |
1s stopped or beccmes meaningless. This type of fault is avoided by

ensuring alweys that initial conditions ere within (0,1), that x4

1s never set outside this interval, and that error tests are more stringent
near O or 1. Another expedient 1s to e.mlve the.equations in terms

of the varisbles V, in which case this difficulty is avoided. However,
care must be ~l.::e.l\:er/x to have small step-lengths near Azi = j» s trajec=
tories tend to have sharp changes of direction 1a this neighborhood.
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APPENDIX €

GRAPHICAL SOLUTION OF A SPECIAL CASE

Consider the equaf.ions

2= 301 - x) (€ + dyzxy) ,

[ ]

C.1
x =5l - x) (¢ +ayxy) , '

which are a special case of 3.17. In the same notation, Volterra's

equations (chapfé‘r 3, reference 2) are

x] =x1(€ + 4pp%)

. - C.2

xp = X6y *dpymy) |

It is possible to obtain the equation of the phase trajectories, that is,
the.:solution of the equation

dxp . 22U - )& *doim) | | 63

This can be achieved following the method of Volterrs as follows: Since

xq and x5 satisfy equations C.1, we can write

dxy (€ + dyoxy)  dxy (€5 +Aoyxy) |

(l-x) = x(1- x]-_)— Co4
Separating into partial fractions:
Sy Mo *6)axy _ Gpdxy. B + EMixmy
X2 l-x x] l-x
Integrating this equation, we obtain | |
1261 . bcleZ o

T Ko tC " &1 tE
12 "1 : 21 =2
Q-x)"* 7 (@-x)



251



'xﬂ“""s‘» .

. Fle.rc 2 .PHASE PrLane

Dineoranm

cee



whore k is en erbitrary constent. Solving for k in terms of xl(o)

end x2(0):
+ €
xz(o) ‘1 - '-’fg(o)) R .
xl(O) (l-x]_(o)) ]2 1 _ o . R
 Equation C.6 is a functional relationship between zl and x2

A graphical method devised by Volterra can be used to determine trajec-
tory points most easily. Let

e S
5=‘ xi o | €.9
(Lmx) 22 : "

‘I‘ypical graphs.of 7 or § for 0 <x <1 are shown in Fig. C.1.
7 is plotted with respect 'bo_ xy end £ with respact-to
x, as in Fige Co2. The Iine in the # - § quadrant hes slope k. Then
for any point on 7 a correspoﬁdiﬁg point or pair of points can be found
on § and on the phase trajectory if such points existe
Fig. C.2 illustrates the particularly interesting case for
which € =4, €, =B, dyp=~C, &y; =D wvhere 4, B, C and D
arérpositive constants, and B:>A, D >C. In this case: tEéAﬁrajectory
is a closed curve and the values xl(t) and sz(t) are bounded nonlinear
oacillations,. |
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