AN INUESTIGATION OF TRANSITION PROBABIIITIES
IN THE SPECTRUM OF THE HYDROXYL RADICAL

by
Jeyarajan Anketell, B.Sc., A.R.C.S.

A Thesis sulmitted for the Degree of Doctor of Philsophy
in
the University of London

Department of Physics,
Imperial College of Science \& Technologys London.
CONTENTSPago No.
ACRTOTMEDGEANTS 4
ABSTRACT 5
CHAPTER I INTRODUCTION
1.1. General Introduction 7
1.2. Survey of Past Tork 9
1.3. Choice of Method 19
1.4. Outline of the Hook Method 20
CHAPTER II THEORETICAL (A) - TRANSITION PROBABIIITIES IN OH
2.1. The Einstein Transition Probabilitios and Wave liechanics 23
2.2. The Born-Oppenheimer Approximation 26
2.3. The Ultra-Violet Band Spectrum of OH 32
2.4. The MorsemPekeris Rotating Oscillator 39
2.5. The Electronic Transition loment in OH 41
2.6. The Band Oscillator Strength 45
CHAPTER III THEORETICAL (B) - THE HOOK METHOD
3.1. Dispersion Theory 47
3.2. The Puccianti Mothod 51
3.3. The Roschdestwensky Modification 53
3.4. Application to a Number of Close Lines 57
CHAPTER IV EXPERIMENTAL (A) - THE MACH-ZEHNDER INTERFEROETER
4.1. Introduction 60
4.2. Theory of the Interferometer 63
4.3. Modifications to the Interferoneter 67
4.4. Adjustment of the Interfermeter 69
4.5. Experimental Precautions 74
Pago No.
CHAPTER V EXPFRTMENTAL (B) - THE REMAINDER OF THE SYSTEM
5.1. The Background Sownee 78
5.2. The Optical System 79
5.3. The Spectrograph 82
5.4. The Gas System 87
5.5. The Furnace 92
5.6. Temperature Control 97
5.7. Temporaturo Calibration 100
CHAPTER VI OSCIIIATOR STRENGTH RESUTS
6.1. Introduotion 104
6.2. Population Density of the Absorbing Levels 109
6.3. Vibration-Rotation Interaction in the (0,0) Band 114
6.4. Absolute Oscillator Strength of the $(0,0)$ Band 117
6.5. Absolute Oscillator Strength of the (1,0) Band 119
CHAPTER VII DISCUSSION OF RESULTS
7.1. Comparison of f_{00} with Provious Measuraments 120
7.2. Comparison of f_{10} with Previous Results 124
7.3. The Electronic Transition Foment for Vibrational Interaction 125
7.4. The Electronic Transition Iloment and Rotational Coupling 131
7.5. Themometric Moleculos 139
REFERENUES 140

ACKIONLEDGENENTS

The author would like to thank Dr. A. Pery-Thorne for her supervision and encouragement throughout the work comprising this thesis.

The author would also like to thank Dr. R.C.M. Learner, for many helpful discussions throughout this work.

Thanks are also due to the Science Research Council (then D.S.I.R.) for providing, through the Aerodynamics Division of the National Physical Laboratory, funds which enabled this work to be carried out: to Mr. C.A.R. Anketell for financial support during part of the project: and to Professor W.R.S. Garton and the Department of Physics, Imperial College of Science \& Technology, for providing a Tanporary Research Assistantship.

The author would also like to thank Mir. T.V. Shand and the Physics Departmental Workshop for constructing the spectrograph and mofifying tho intorferonetor: Mr. E. Monage and Mr. C.V. Cooper for working the optical components; Dr. P.S. Rogers and the Nuffield Research Group, in the Department of Metallurgy, for advice and assistance in constructing the furnace: Dr. K. E. Seal, latoly of the Department of Chemical Engineering, for use of a computer programo: the Imperial Colloge Computer Unit for thoir advice and for the use of their facilitios: Mr. M.J. Niallace for taking the photographs: Mr. O.R. Milbank for making the glassware used in the workg Mrs. C.A.R. Anketell for her assistance during the preparation of this thesis: and the many other people with Whom the author has had very helpful discussions.

ABSIRACT

The hook method has boon used to obtain osoillator strongths for twenty lines in three branches of the (0,0) band of the $A^{2} \Sigma^{+}-X^{2} T$ systan of OH . It is found that vibration-rotation interaction docreases the effective f-value for this band by about 7% ovor the first ten linos of each branch. The absolute f-value obtainod for the rotaticnless molecule is $f_{00}=(14.8 \pm 1.3) \times 10^{-4}$. Although this falls within the range of provious measuroments, it is nearly twice as largo as the valuo hitherto considered most probablo. For the (1,0) band, in which vibration-rotation intoraction could not be measured, the absoluto oscillator strength is found to be $(8.9 \pm 1.7) \times 10^{-4}$, giving for the rolative oscillator strongths tho ratio $f_{10} / f_{00}=0.60 \pm 0.10$.

The valuo for the ratio f_{10} / f_{00} obtainod horo loads to a rem oxamination of tho distribution of land strongths in tho $A^{2} \Sigma^{+}-X^{2} \pi$ band systan of OH_{9} resulting in an oloctronic-vibrational transition momont $R_{o v}(r)=0^{-(5.97 \pm 0.12) r}$, whoro r is tho intormelcar distance in Angstrom units. It is shown that this valuo for the electronic transition momont will not oxplain tho variation of offoctivo band strength with rotational quantum numbor. The interaction of rotational and oloctronic motion leads to a second, olectronic-rotational, transition moment. This torm is relatod to tho centrifugal distortion of the molecule and, for the $(0,0)$ band, is given by $R_{o J}(r)=$ $0^{+(3.60 \pm 1.0)} \times 10^{-4} \mathrm{~J}(\mathrm{~J}+1)$. Within the $(0,0)$ band the combination of these two moments is oquivalont to a singlo function $R_{o v J}(r)=\cdots:$

6.

$0^{-(2.67 t 0.9) r}$. In consequenco, $(0,0)$ band vibration-rotation intoraction and temporature corrections romain as given by Learnor, $1962 .{ }^{18}$ Tho rolative J-depondont vibrational transition probabilitios for the rest of the system are correctod. The offoct of the total olectronic transfifion momont on the measuroment of rotational tomperature is discussed for both of and other diatoms.

INTRODUCTION.

1.1. General Introduction

Both absolute and relative values of transition probabilitios of radiative transitions, and tho corrosponding oscillator strongths or f-valuos, are of groat intorost. Thoy are important as atomic and molncular constants, not only in thoir application to laboratory and colostial probloms, but also for the light thoy throw on quostions of atomic and molecular structuro.

Transition probabilitios aro chiofly roquired for the dotermination of atomic and molocular abundaneos in flames, dischargos, stollar atmosphores, etc. A quostion of astrophysical intorost is whother the abundanco of moloculos in stollar atmosphores can bo accounted for on tho assumption of thormal oquilibrium, given the abundance of thoir constituent atoms - Herzberg, 1965. ${ }^{1}$ For the latter problem, it is additionally necessary to know the dissociation energy of the molecule.

Important among the applications of transition probabilitios isits use in temperature determinations. If the relative intensities of absorption or emission lines in the spectrum of an absorbing or emitting modium aro measurod, and if the transition probabilities are already known, then the relative populations of the onergy lovels involved may be oasily obtained, and the appropriate tamperaturo doterminod. In tho case of moleculos, comparison of tho tomporaturos
obtained-by consideration of thernative ponlations of different types of energy levels (olectronic, vibrational, and rotational) may thoow light on the physical processes involvec - Shulers $1950 .{ }^{2}$

Any troatmont of tho emissivity and general radiative transfor properties of hot gases roquires a knowledgo of the transition probabilitios.

In casos whore there is compotition between spontaneous radiation and ono or moro nonradiativo processos such as collisional quenching, predissociation, or chemical reaction, the rate of the nonradiative process can be found if the probability of the radiative process is known - Carrington, 1959.3

The OH radical is widely used in many of these applications, particularly as a thermometric molecule in the measurement of rotational temperatures. It is a constituent or an easily introduced impurity in many spectroscopic sources, oog. flames, low temperature shock waves, and gas discharges - Pearse and Gaydon, 1963,4 p. 246 . The OH ultra-violet spectrum has boen obsorvod in tho onission spectrum of tho hoads of comets, and in tho absorption spoctrum of the solar atmosphoro. A lino in the radio-frequoncy spectrum has been obsorvod in tho absorption spoctrum of tho intorstollar modium - Woinrob ot $a l_{9}$ 1963. 5

The f-value of tho $(0,0)$ bend of the $A^{2} \Sigma^{+}-X^{2} f T$ transition of OH has boon measured by more workors (reforences 6 to 10), using a varioty of tochniques, than that of any other oloctronic transition in a diatomic moleculo. However the rosults covor a fairly wido range
of values, and some of them require significant corrections to account for instrument effects - Kostkowsky and Bass, 1956 ${ }^{17}$ - and vibrationrotation interaction - Learner, 1962. ${ }^{18}$ Moreover all these values are based either on measurements on a few lines in the band, or on the band as a whole, individual lines being unresolved, so that the vibration-rotation interaction offect cannot be ovaluatod experimentally. The offect of vibration-rotation intoraction is to altor the rolative f-values of the rotational lines in a vibrational band, and honce tho relative intensities of the linos in absorption or emission. A knowlodge of the magnitudo of the interaction is nocessary for accurate rotational temporature dotorminations, sinco it is from tho rolativo intonsities of the linos that the relative populations of the rotational onorgy levels arn calculated and the temperature obtained.

The aim of this invostigation was to invostigato the vibrationrotation intoraction offoct oxperimontally, and to measure tho absoluto f-values of both the $(0,0)$ and $(1,0)$ bands.

1.2. Survey of Past Work

The experimental determinations of the absolute f-values of the $(0,0)$ band (f_{00}), theoretical calculations of f_{00}, experimental determinations of the relative band strengths ($p_{V} v^{* *} / p_{00}$), theoretical calculations of $\mathrm{p}_{\mathrm{V}^{0} \mathrm{v}^{i 0}} / \mathrm{p}_{\mathrm{OO}}$, and vibration-rotation interaction inves. tigations, will be presented separately for the sake of clarity. The relationships between the f-value ($f_{J \vee J o r}$) of a given spectrum line in the $\left(v^{0} y^{v i}\right)$ band, the $f-v a l u e\left(f_{v^{0}} v^{n i}\right)$ of the band, and the band strength $\left(p_{V^{g}} V^{00}\right)$ is given by

$$
\begin{align*}
f_{J^{0} J V} & =f_{V^{8} V^{0}} S_{J} J_{J M} /\left(2 J^{N Q}+1\right) \\
& =V p_{V^{0} V^{0 G}} S_{J^{0} J i n} /\left(2 J^{n}+1\right) \tag{1.1}
\end{align*}
$$

where 2 is the frequency of the line, and $S_{J, j e}$ is the rotational line strength, depending only on the total angular momenta. JV, J" and the coupling between their various components. $f_{V^{0} \mathrm{~T}^{i p}}$ may be taken as a constant for a given band if one neglects both, the variation of frequency, and vibration-rotation intoraction over the band. Experimental Determinations of f_{00}

Oldenberg and Rieke, 1938, ${ }^{6}$ used the method of integrated absorption coefficionts. The background was the continuum from a hydrogen discharge tube, and the OH was produced by dissociation of $\mathrm{H}_{2} \mathrm{O}$ in a mixture of gases $\left(\frac{2}{3} \mathrm{H}_{2} \mathrm{O}+\frac{1}{3} \mathrm{O}_{2}\right)$ at $1473^{\circ} \mathrm{K}$. They obtained f-values for linos in the $(0,0)$ band corresponding to $f_{00}=(2.9 \pm 0.4) \times 10^{-4}$. This value was subsequently correctod by Dwyor and Oldenberg, 1944, 7 with regard to a later and more accurato detormination of the OH dissociation onorgy $D_{O H}$ to $f_{00}=(12.3 \pm 1.8) \times 10^{-4}$; and onco moro to $f_{00}=(9.5 \pm 1.4) \times 10^{-4}$ by Goldon, Del Groco and Kaufman, 1963, ${ }^{8}$ for thormochomistry, again chiofly on account of the availability of a more accurato value for D_{OH}.

Oldonborg and Rioko, 19389,10 rofor to an investigation by Avramonko and Kondratjow using a lim absorption tochniquo, the background sourco mitting the $O H$ spoctrum, the mission linos boing narrowor than the absorption lines. The dominant lino broadening process was pressuro broadoning, and tho pressures of the gas in the cmitting and absorbing
media were 1.5 mm and 760 mm respectively. The f-values obtained by Avramenko and Kondratjew were about 10^{3} times larger than those of Oldenberg and Rieke, 1938. ${ }^{6}$ However Oldenberg and Rieke, 1938,9,10 re-interpreted the results of Avramenko and Kondratjew, and corrected them with regard to the pressure broadening of the $O H$ lines, so that both sets of results were ultimately in agreenent to about 25%. Dyne, 1958^{11} essentially repeated Oldenberg and Rieke's 1938^{6} experiment, obtaining f-values of lines both by resolved absorption and by the curve of growth method. His values for f_{00} were about half as large as thoirs.

Carrington, 1959, ${ }^{12}$ studied the line shape and f-value of linos in the $(0,0)$ band by the curve of growth method using a varioty of flames as sources of the OH spectrum. He obtained an f-value of $(11.7 \pm 4) \times 10^{-4}$ for the $Q_{1}(6)$ line, corresponding to $f_{00}=(13.0 \pm 5.2)$ $\times 10^{-4}$. This was later corrected to give $f_{00}=(11.1 \pm 5.0) \times 10^{-4}$, by Learner, 1962 ; ${ }^{18}$ with regard to vibration-rotation interaction and thermochemistry.

Lapp, $1960,{ }^{13}$ made photoelectric measurements of the emissivity of the unresolved $(0,0)$ band of OH produced at $3300-3900^{\circ} \mathrm{K}$ in a shock tube, and relatod this to f_{00} by an absolute intensity calibration. He obtained $f_{00}=(9.0 \pm 5.0) \times 10^{-4}$.

Golden, Del Greco and Kaufman, 1963, ${ }^{8}$ used the line absorption technique of Avramonko and. Kondratjow. The OH in the absorbing medium was produced by means of the fast atom-moleculo reaction $\mathrm{H}+\mathrm{NO}_{2} \rightarrow$ $O H+$ NO. They obtained $f_{O O}=(7.1 \pm 1.1) \times 10^{-4}$. Thoy also corrected
the results of previous workers with regard to thermochemistry and vibration-rotation interaction, and presented a table of the corrected values.

Watson's,1964, work superseded that of Lapp, 19609^{13} essentially repeating it and eliminating light scattering in the absolute intensity calibration, to give the revised value $f_{00}=(39 \pm 9) \times 10-4$.

Bennet and Dalby, 1964,15 measured the radiative lifetime of the $2_{\Sigma^{+}}-2 \pi$ transition, and presented the value $f_{00}=(8.0 \pm 0.8) \times 10-4$, indopondent of themochemical data. The OH population was producod by olectron bombardment of mothanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$, and also wator vapour.

Bird and Schott, $1965,{ }^{16}$ computed expressions for the population density of OH in shocked gasos in terms of the absorption from a pulsod discharge sourco of $O H$ line radiation, and the optical donsity, teraporaturo, f-value, and a pressure broadening parametor. These wore reconciled with calibration experiments with roflected shock wavos in $\mathrm{H}_{2}-\mathrm{O}_{2}-\mathrm{Ar}$ mixturos, giving $f_{00}=(12.8 \pm 0.3) \times 10^{-4}$.

All the oxporimontal determinations of f_{00} are presonted in Table (1.1). They cover the wide range from 4.9×10^{-4} to 39×10^{-4}, and dopend on a corroction for vibrationmotation intoraction. The scattor will be discussed in chaptor VII. $\underline{\text { Theorotical Calculations of } f_{00}}$

Mulliken, 1940.19 made theoretical calculations of the absolute dipole strength (proportional to the fovaluo) of the transition $A^{2} \Sigma^{\prime}-X^{2 \pi}$, using both Linear Combinations of Atomic Orbitals (LCAO) and Molocular Orbital (MO) approximations, and rolated theso to the

Tablo 1.1. Summary of Exporimontal f-valuos for the $(0,0)$ band.

$$
f_{00} \times 10^{4}
$$

Investigator
Uncorroctod Corrocted for .

01denberg and Rieko 6,7

$$
\begin{array}{rll}
12.3 \pm 1.8 & 9.2 \pm 1.4 & 9.5 \pm 1.4^{\mathrm{b}} \\
6.4 \pm 1.3 & 5.2 \pm 1.0 & 5.4 \pm 1.0^{\mathrm{b}} \\
5.8 \pm 1.2 & 4.8 \pm 1.0 & 4.9 \pm 1.0^{\mathrm{b}}
\end{array}
$$

Dyno ${ }^{11}$

Carrington ${ }^{12}$
13.0 ± 5.2
11.1 ± 5.0^{c}
Goldon, Del Greco and
Kaufman ${ }^{8}$
Watson ${ }^{14}$
7.1 ± 1.1

Bennott and Dalby 15 39 ± 9
8.0 ± 0.8
Bird and Schott ${ }^{16}$
12.8 ± 0.3
a Tho vibration-rotation intoraction correction follows Loarner's ${ }^{18}$ treatment.
${ }^{\mathrm{b}}$ Tabulatod by Goldon, Dol Groco and Kaufman. ${ }^{8}$
c Estimated by Loarner. 18
f-values of Oldenberg and Rieke, 1938.6 His results give $f_{00}=6 \times 10^{-4}$ and 42×10^{-4}, for the LCAO and MO approximations respectively. Hurley, 1959, ${ }^{20}$ obtained semi-theoretical f-values for the transition, using Self-Consistent Field Moleculer Orbital theory (SCHIO), LCAO_{9} and also intra-atomic corrolation correction methods (i.c.c.), applying both dipole length and equivalent dipole velocity formulae. The values obtained using the dipole length formula were $f_{00}=18 \times 10^{-4}, 35 \times 10^{-4}$ s and 43×10^{-4} respoctivelys while for the dipole velocity formula he obtained $f_{00}=950 \times 10^{-4}, 1500 \times 10^{-4}$, and 1500×10^{-4} respectively.

The theoretical values of f_{00} are presentod in Table 1.2. They cover an oven wider range than the experimontal values, from 6×10^{-4} to 1500×10^{-4}. The chiof cause of tho scatter is the groat difficulty of obtaining the molecular olectronic wavo functions, and honce precise valuos for the electronic transition moment.

Experimental Determinations of $\mathrm{p}_{\mathrm{v}^{\ominus} \mathrm{v}^{\mathrm{I}} / \mathrm{p}_{\mathrm{CO}} \text {. }}$
Dioke and Crosswhite, $1948,{ }^{21}$ made a detailed survoy of the OH ultra-violot band systom. Thoy prosentod relative values of tho band strongths $\left(p_{V^{\ell}} v^{n /} / p_{o o}\right)$, obtainod by photographic photometry, for nine bands in the systom. Dieke and Crosswhite, 1949, (22, unpublished) obtained more accurate values of $p_{v^{p}} v^{n /} / p_{00}$ for these bards from photooloctric measuromonts of the intonsitios.

Bass and Broida, 1953, ${ }^{23}$ publishod a Spoctrophotomotric Atlas giving tho wavolongth and rolativo intonsitios (obtainod photooloctrically) of individual linos: in the whole $A^{2} \Sigma^{+}-X^{2} \Pi$ band system, from $2600 \AA$ to

Table 1.2. Summary of Theoretical f-values for the (0,0) Band.

Investigator	Method	$f_{00} \times 10^{4}$
Mulliken ${ }^{19}$	Dipole length (LCAO)	6
	Dipole length (fo)	42
$\text { Hurley }{ }^{20}$	Dipole length (SCMO)	18
	Dipole length (LCAO)	35
	Dipcls length (i.c.c.)	43
	Dipole velocity (SCAMO)	950
	Dipole velocity (LCAO)	1500
	Dipole velocity (i.c.c.)	1500

$3500 \AA$, obtained from the hot gases above a hydrogen-oxygen flame. The values of $p_{v^{0}} v^{01} / p_{00}$ obtained from these measurements require a corroction for tho spoctral response of tho grating spoctroradiometor used.

Theoretical Calculations of $\mathrm{p}_{\mathrm{V}^{0} \mathrm{~V}^{11}} / \mathrm{p}_{\mathrm{OO}}{ }^{\circ}$

Shuler, 1950, ${ }^{2}$ calculated the relative band strengths (or vibrational transition probabilitios) of bands arising from tho first four vibrational lovels of the $A^{2} \Sigma-X^{2} \pi$ system, using anharmonic wave functions derivod from tho Morso potontial, 1929, 24 and assuming an olectronic transition momont of the form $R_{0}(r)=$ const. $(1+a r)$, where r is tho intornuclnar distance in \AA. He fitted his thoorotical values to the improved photonlectric values of Dieko and Crosswhito, 1949, ${ }^{22}$ obtaining a numerical value for the constant a, giving $R_{o}(r)=$ const. $(1-0.75 r)$, and presented a table of relative band strengths obtained for this value of a.

Nicholls, 1956, ${ }^{25}$ examined the distribution of band strengths given by Dieke and Crosswhite"s, 1949, ${ }^{22}$ values and studied the dependence of the olectronic transition moment $R_{0}(r)$ on the intormaclear separation r (in \AA) by means of the "r-controid" approash. (Nicholls and Jarmain, 1956.26) Hicholls obtained $R_{o}(r)=$ const. $(1-0.756 r)$, and used this to produce a "smoothox array of rolative band stiongths within the systam.

Learner, 1962, ${ }^{18}$ used an exponential foim for tho oloctronic transition moment, $R_{o}(r)=0^{-a r}$, and obtained a value for a by fitting his theorotical band strongths to the smoothod values of Nicholls, 1956.25

Ho obtained $R_{0}(r)=0^{-2.5 r}$ and prosonted tho corresponding array of rolativo band strongths.

In all these calculations of $p_{v^{0}} \mathrm{v}^{39} / \mathrm{p}_{\mathrm{oo}}$, the results aro signiiicantly lower than tho oxperimontal values from which they aro dorivod. Vibration-Rotation Interaction.

Bass and Broida, 1953, 27 found that tho rotational tanporaturos, obtainod from the rolative intensitios of rotational linos within a givon vibrational band, variod significantly from band to band (in tho mission spoctrum of a hydrogon-oxygon flame), oven for those bands with tho samo initial vibrational stato. They suggosted that tho most probable explanation of the discrepancy was tho noglect of vibrationrotation interaction in the thoory of transition probabilitios.

Loarnor and Gaydon, 1959, ${ }^{28}$ and Loarnor, 1962, ${ }^{18}$ discussod tho offoct of vibration-rotation intoraction in oloctronic transitions, showing that it is not always negligible. Learner included the correction torm T_{J} 时 into oquation (1.1), giving
to account for vibration-rotation intoraction. Now $f_{V^{0}} V^{\text {a }}$ and $p_{V^{0}} V^{m}$ aro for tho rotationless moleculo, for which $T_{J J_{j}}=1$. $T_{J \text { pJo }}$ dopends both on tho angular momonta J° and $J^{\circ \prime}$, as woll as tho band ($v^{0}, v^{n t}$) concornod. Loarnor calculated tho offect of the intoraction in the $\mathrm{A}^{2} \Sigma^{+}-\mathrm{X}^{2} \mathfrak{F}$ system of oH using Morse-Pokoris (Pokeris; 193429) wavo functions and the value $R_{e}(r)=0^{-2.5 r}$, obtained by fitting his
theoretical band strengths to the "smoothed" values of Nicholls, 1956. 25 He presented a table of $T_{J}{ }^{\circ} J^{\prime \prime}$ values for all bands with $V^{0}, v^{00}<5$, and $J^{\text {to }}$ up to 25 . He also calculated the corrections ΔT required to be added to rotational temperatures I determined without taking vibration rotation interaction into account, and plotted ΔT as a function of T.

James, 1959, 30 also discussed the effect of vibration-rotation interaction on the relative intensitios of rotational lines within a given band, and hence on rotational tomporature determinations. He used Nicholls ${ }^{\circ}$, 1956, ${ }^{25}$ form for the eloctronic transition momont $R_{0}(r)=$ const. $(1-0.756 r)$, and a comparatively crude form for tho potential function for different rotational states of each oloctronic state. The potential functions wore parabolas, effectivoly shifted towardsincroasing valuos of internuclear distanco, to account for centrifugal distortion, with increasing rotational quantum numbor, J. The parabola for each J-value was chosen to fit the true potential curvo near the equilibrium position.

Zirman and Bogdan, 1964, ${ }^{31}$ used the $R_{2}(0,0)$ and $R_{2}(1,0)$ branches in the OH ultra-violet system to determine rotational temperatures in various hydrogen flames, from both emission and absorption spectra. The temperatures obtained using the Learner ${ }^{18}$ corroction wore self-consistent, while those obtainod using the James ${ }^{30}$ correction were not. The Loarnor corroction also gave temperatures in good agroement with the sodium-lino rovorsal temperaturn, but for a hydrogen-ozygen flamo at 1 almostphore, the omission temporaturo was significantly higher than tho absorption tomperature。

1.3. Choice of Method

In order to evaluate the magnitude of the vibration-rotation interaction effect in the $(0,0)$ band, it is necessary to determine the relative oscillator strengths of several lines in one or more branches of the band. According to Learner's calculations ${ }_{9}^{1.8}$ the interaction results in a drop of about 10% in the effective transition probabilitiy of the band over the first 15 lines in each branch. In order to establish the presence of an effect of this magnitude, it would be necessary for the final experimental error in the measurements on each line to be significantly smaller.

Apart from the anomalous dispersion or "hook" method, almost all investigations require absolute or relative intensity measurcments. Not only are such methods tedious on account of the various calibration experiments involved, but they aro also of limited accuracy, on account of trouble with resolving power or the noed to know the line profilo.

It is also dosirable to obtain moasuromonts of the absoluto f-values by means of a previously untriod method based on assumptions difforent from those made by previous invostigators.

Tho hook method has boon frequentily usod to measure f-values of atomic transitions to a high degroe of accuracy, but has not boon appliod before to molocular spectra, so far as the author is aware. Apart from yiolding indopondent values of the f-values of tho $(0,0)$ and (1,0) bands, it is a particularly suitable way of obtaining rolative transition probabilities for a numbor of lines having a common lowor stato. Its advantages ovor tho various mothods irvolving absorption coofficionts are that it is indopendent of the line shapo, and thero is no nood to
corroct for the finite instrumental width of the spectrograph. The hook method shares with most of the other techniques the disadvantage that a calculation of OH concentration is required before absolute f-values are obtained. This is the chiof source of error in the determinations of the absolute values, even whon the absorbing modium is in thormal oquilibrium, on aocount of tho uncortaintios in the OH population ($\sim 8 \%$) produced by oven a small ($\sim 3 \%$) uncertainty in the dissociation energy. However, this disadvantage does not apply to the doterminations of the relative f-values when thermal equilibrium is assurod.

Having rogard to tho abovo considorations, this invostigation was dosigned to measure absolute f-valuos by tho hook mothod.

1.4. Outline of the Hook Method

The technique adopted is based on the hook method initially used by Roschdestwensky for anomalous dispersion measurements on the sodium D linss, 1912, ${ }^{32}, 1921.33$

In an earlier version of this method devised by Puccianti, 1901, 34 1904 s 35 horizontal zero order fringes from a Jamin interforometer are focussed on the slit of a stigmatic spectrograph. A set of horizontal fringes traverses the continuous spectrum of the background source viewed through the spectrograph. One of the beams in the interferometor passes through a tube containing the gas or vapour to be investigated, and the other bean passes through an evacuated compensating tube of equal length. Near an absorption lino of the medium investigated, the
refractive index changes rapidly with wavelength, resulting in a displacement of the fringes near the line so that they trace out the hyperbolic variation of the refractive index on either side of it. The hyperbolic curves near each line are related to $N_{9} f$ and $:$, which are the number density of absorbing atoms (or molecules) in the lower state of the transition, its f-value, and the path length of the medium, respoctivoly.

Roschdestwensky showed that when a plane parallel gless plato is introduced into the boam traversing the componsating tubo, the intorforenco fringos obsorved through the spoctrograph woro inclined fringes of high order. The gradient of the fringes is such that thoir slope is in the opposite direction to that of the rapid change noar the absorption lines, so that the two offocts combine to produco symmetrically placed maxima and minima on oithor side of oach absorption line. The rolation betweon anomalous dispersion and f-value is simplifind to the oxtont that the product $N F^{〔}$ is now proportional to tho squaro of the soparation of the maxima and minima along the wavolength direction. By measuring these soparations for linos arising from the same lower state, thoir relative favaluos are oasily obtained. In ordor to obtain tho absolute f-values of tho liness it is usually nocessary to obtain tho population donsity of absorbing contres in tho lowor stato of the transitions. It is interosting to soe that recontly Ostrovskii and Penkin, 1961, 36, 37 have oliminatod this roquiromont, obtaining absoluto f-values in $\mathrm{Na}_{\mathrm{s}} \mathrm{Ca} \mathrm{Ca}_{\mathrm{g}} \mathrm{Br}$ and Sr spectra by combining anomalous disporsion moasurements with photoeloctric moasurmonts of tho equivalent widths of the absorption
lines. This technique must fulfil two conditions, if it is not to give erroneously high f-values. First, the medium investigated must be sufficiently optically thick for the equivalent width (A_{λ}) to be large compared with the Doppler width $\left(\Delta \lambda_{D}\right)-A_{\lambda} / \Delta \lambda_{D} \geqslant 10$. Secondly, the density and pressure of the medium must be sufficiently low for the time interval between collisions to be large compared to the radiative lifetime of the upper state of the transition investigated.

CHAPTER II

TIEORETICAL (A) - TRANSITION PROBABIIITIES IN OH

2.1. The Einstoin Transition Probabilitios and Wave Mechanics

Einstein laid the basis for the theoretical work on the interaction between radiation and matter in terms of transition probabilities. He definsd three probability coofficients, $A_{m n} B_{m n}$ and $B_{r m}$, rolating two atomic or molecular states m and n, such that absorption of radiation of frequency between v and $v+d v$ by the atom or molecule when in state n would raise it to the state m .
(1) $\mathrm{B}_{\mathrm{rm}} \mathrm{I}_{v}$ is the probability per socond that the molocule, say, in stato n would absorb a quantum $h \nu$ whon exposed to isotropic radiation of froquency betwenn ν and $d \nu$ and intonsity I_{ν} and so pass to statem.
(2) A_{mn} is the probability por socond that tho molocule in stato m will spontanoously cmit, in a random diroction, a quantum h, and pass to stato n.
(3) $\mathrm{B}_{\mathrm{mn}} I_{v}$ is the probability por socond that the molnculo in state m will undergo tho transition to state n whon it is exposed to isotropic radiation of froquoncy botween v and $v+d v$ and intensity I_{v} theroby emitting a quantum m in tho samo diroction as the stimulating radiation.

From a considoration of the thomodynamic oquilibrium betwoon radiation and mattor in a Hohlraum, Einstoin obtainod tho following rolations botweon theso quantitios:
and

$$
\left.\begin{array}{l}
\frac{A_{m n}}{B_{m n}}=\frac{2 h v^{3}}{c^{2}} \\
\frac{B_{n n}}{B_{n n}} \\
\frac{g_{n}}{g_{m}}
\end{array}\right\}
$$

$$
\ldots(2.1)
$$

where g_{m} and g_{n} are the degeneracies of the states m and n respectively, c is the velocity of light, and h is Planck's constant. The relation between the classical oscillator strength, or f-value, and the Einstein transition probability for spontaneous emission is well known and given by

$$
\begin{equation*}
f_{m}=\frac{m c^{3}}{8 \pi^{2} e^{2}} \frac{g_{n}}{g_{n}} \frac{A_{m \pi}}{v^{2}} \tag{2.2}
\end{equation*}
$$

where θ and m are the electronic chaxge and mass respectively - see, for examples ifitchel and Zemansky, 1934, p.97. 38 f may be defined as the number of classical oscillators which give the same absorption for a given transition as a real atom.

The interaction of an electromagnetic wave with an atomic or molecular systan is, in a first approximation, the interaction with the (variable) electric dipole moment of the system. There are also interactions with the magnetic dipole moment and the electric quadrupole monent, but their magnitudes are usually, respectively, about 10^{-5} and 10^{-8} times the magnitude of the electric dipole interaction. By introducing this electric dipole interaction into the wave equation, Dirac showed that the probability of a transition betwoen two states m and n on account of this interaction is proportional to the square of the magnitude of the vector R^{mn}, the tine.averaged matrix olement of the electric moment. The relation between the Einstoin transition
probability and the electric dipole moment matrix element is well known - see, for example, Herzberg, 1950, p. 21^{39} - and is given by

$$
\begin{equation*}
A_{m n}=\frac{64 \pi^{4}}{3 h c^{3}} \frac{v^{3}}{g_{m}}\left|R^{m n}\right|^{2} \tag{2.3}
\end{equation*}
$$

The components of R^{mn} along three co-ordinate axes, taking the z-axis as the internuclear axis in a diatomic molecule for convenience in later discussions, are given by

$$
\begin{equation*}
R_{x}^{m n}=\int \psi_{m}^{*} M_{x} \psi_{n}^{\prime} d_{T}, \text { etc. } \tag{2.4}
\end{equation*}
$$

where $\quad \mathrm{M}_{\mathrm{X}}=\sum_{\mathrm{k}} \mathrm{e}_{\mathrm{k}} \mathrm{X}_{\mathrm{k}^{9}}$ etc.
Here o_{k} are the charges of each of the particlos whose co-ordinatos aro $\mathrm{X}_{\mathrm{k}} \mathrm{y}_{\mathrm{k}^{9}} \mathrm{z}_{\mathrm{k}^{\prime}}$ and ψ_{m} and ψ_{n} aro tho oigonfunctions of tho two statos. H_{X} etc. are tho instantaneous dipolo moment components, and the integration is takon over tho whole of space.
$R^{m n}$, the dipolo longth matrix olement, is oquivalent to $V^{m n}$, the dipole velocity matrix elemont, whoro

$$
V_{x}^{m n}=\frac{1}{E_{m n}} \int \Psi_{m}^{*} \nabla_{x} \Psi_{n} d \tau, \text { etc., }
$$

and $\quad \nabla_{\mathrm{x}}=\sum_{k} \frac{\rho_{k}}{\mathrm{~m}_{\mathrm{k}}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{k}}}$, otco,
m_{k} is tho mass of tho $k^{\text {th }}$ particle, and $E_{m n}$ is tho energy difforence botwoen the two states.
R^{mn} is zoro if the transition under considoration is forbiddon as a dipolo transition. If F^{mn} is non-zoro, thon tho two states combino
with each othor with emission or absorption of radiation, with a dofinite probability. The selection rules for dipole radiation limit the number of compononts $R_{x}^{m n}, R_{y}^{m n}, R_{z}^{m n}$, to one component for oach typo of transition, "parallel" or "porpondicular". A parallol transition is one whero the two states m and n have the same quanta of olectronic angular momontum, and a porpondicular transition is ono whore those oloctronic angular momonta differ by ono quantum. For parallel transitions only $R_{z}^{m n}$ is non-zoro, whilo for porpondicular transitions, only $\mathrm{R}_{\mathrm{X}}^{\mathrm{mn}}$ or $\mathrm{P}_{\mathrm{y}}^{\mathrm{mn}}$ is non-zoro, as givon by Mulliken, 1939. 40 Evaluation of the integral (2.4) to give the dipolo matrix eloment, or transition momont as it is somotimes callod, roquiros a knowlodge of the wavo functions.

2.2. The Born-Opponheiner Approximation

In a diatomic molecule having n electrons, there are $3 n+6$ independent variables and the generation of accurate forms for the wave functions of the molecule is thus very difficult. The way round this exceedingly difficult problem is to use perturbation theory. Born and Oppenheimer showed how this could be handled by successive approzimations amounting to an expansion in powers of $\left(\frac{m}{M} / \frac{1}{4}\right.$, where m is the electronic mass and Mis of the order of the nuclear mass. Their work justifios the postulate that the co-ordinates of the nuclei romain approximately soparable from those of the electrons in the Schridinger equation - see Herzberg, 1950, p.148: 39 Condon, 1928.41 This can be oxplained semi-classically by saying that the nuclear motion is so much slower
than the electronic motion, on account of the much larger mass, that the electrons can adapt themselves continuously to the changing electronic levels. The quantum mechanical criterion for the validity of this adiabatic approximation is that the energy spacing of the states of nuclear motion should be very much smaller than the spacing of the electronic levels. The basis for the approximation is that there is negligible interaction between the nuclear and electronic motions of the moleculos.

The total eigenfunction of the molecule can therefore be written in this approximation as

$$
\psi=\psi_{\theta}\left(r_{e^{s}} r\right) \psi_{n}(r)
$$

$\ldots(2.5)$,
$\psi_{e}\left(r_{\theta}, r\right)$ is the solution of the Schrodinger equation for the electrons moving in tho fiold of the fixod nucloi and having a potontial enorgy V_{0} which is a function both of tho internuclear distance r, and the electronic co-ordinates symbolised by r_{0}. The oigenvalues obtained for the eloctronic motion are thus functions of r, and aro given by $F_{e}(r)$ 。 $Y_{n}(r)$ is the solution of the Schrodinger equation for the nucloi moving in the potential $E_{0}(r)+V_{n}(x)$, whero $V_{n}(r)$ is the potontial of the nucloi in the fiold of the ropulsive Coulomb force betwoen thom. It is ofton also assumed that tho nuclear eigenfunction $y_{i n}(r)$ can be split into two parts, giving

$$
\begin{equation*}
\psi_{n}(r)=Y_{v}(x) \frac{1}{r} \psi_{J \Lambda}(\theta, \varphi) \tag{2.6}
\end{equation*}
$$

$\psi_{V}(r)$ is the radial oigenfunction for tho motion of the maclei in the vibrational mode, described by the quantum number vo $\Psi_{J, t}(\theta, \varphi)$ is
the angular part of tho nuclear eigenfunction associated with tho rotation of the nuclei about an axis perpendicular to the internuclear axis, where J is the quantum number of the total angular momentum of the molecule and \wedge is the quantum number of the orbital angular momentum of the electrons in the direction of the internuclear axis. Further, the total dipole moment M of the moecule may be represented as the sum of contributions due to the electrons (ir) and nuclei (M_{n}) alone. Let us suppose, in the following disucssion, that we are dealing with a parallel-type transition, so that we now require only the z-component of the molecular dipole moment, $M_{z}=N \cos \theta$ in order to calculate the dipole matrix element R. Denoting the upper state by one prime, and tho lower state by two, and denoting tho nuclear and electronic co-ordinatos by τ_{n} and τ_{e} respectively, we have

$$
\ldots(2.7)
$$

Since $d T_{n}=r^{2} \sin \theta d r d \theta$ def, we now have

The second half of the integral (2.8) depends only on the statistical weight and tho coupling in tho states concornod, and may be roprosontod

$$
\begin{align*}
& R_{z}=\int \psi_{o}^{0}\left(r_{0^{g}} r\right) \psi_{v^{p}}^{p}(r)\left(M_{0}+M_{n}\right) \psi_{o}^{u n}\left(r_{\theta^{g}} r\right) \psi_{V^{n g}}^{n}(r) d_{T_{0}} d r \\
& x \int \psi_{J \Omega^{0}}^{0}(\theta, \varphi) \psi^{\eta \prime \prime A_{A}}(\theta, \varphi) \sin \theta \cos \theta d \theta d \varphi \tag{2,8}
\end{align*}
$$

$$
\begin{aligned}
& R_{z}=\int \psi_{0}^{0}\left(r_{0}, r\right) \psi_{V^{0}}^{0}(r) \frac{1}{r} \psi_{J^{0} \Lambda_{0}^{0}}^{(\theta, \varphi)\left(M_{0}+M_{n}\right) \cos \theta}
\end{aligned}
$$

and was first given by Honl and London, 1925,42 on the basis of the old quantum theory, and later justified on a wave mechanical basis by Dennison, 1926, ${ }^{43}$ Rademacher and Reiche, 1927, 44 and others.

We thus have, dividing (2.8) into its electronic and muclear components, that

$$
\begin{aligned}
& \left.+\int \psi^{0}{ }_{\theta}\left(r_{\theta^{r}} r\right) \psi^{0} V^{0}(r) M_{n} \psi_{\theta}^{\prime \prime \prime}\left(r_{\theta^{\prime}} r\right) \psi_{v^{\prime \prime}}(r) d \tau_{\theta} d r\right] \\
& \text {....(2.9). }
\end{aligned}
$$

In the second integral of (2.9), we have \mathbb{M}_{n}, which is independent of τ_{e}, so that

$$
\begin{aligned}
& =\int \psi_{v^{0}}(r) M_{n} V_{V_{V i \theta}^{i q}}(r) d r \int \psi_{\theta}^{q}\left(r_{e^{g}} r\right) \psi_{\theta}^{i \theta}\left(r_{e^{g}} r\right) d \tau_{\theta}
\end{aligned}
$$

Now the electronic eigenfunctions of a molecule form an orthogonal set, and so $\int \psi_{\theta}^{\prime}\left(r_{e^{\prime}} r\right) \psi_{\theta}^{\prime \prime \prime}\left(r_{e^{\prime}} r\right)=0$, reducing (2.9) to the one term. Integrating this separately over the muclear and electronic co-ordinates, we have

$$
\begin{equation*}
R_{z}=S_{J M N}^{J i n} \int \psi_{V^{0}}^{0}(r) \psi_{V N}^{m p}(r) d r \int \psi_{\theta}^{0}\left(r_{\theta^{\prime}} r\right) M_{\theta} \psi_{\theta}^{p m}\left(r_{\theta^{g}} r\right) d \tau_{\theta} \tag{2,11}
\end{equation*}
$$

The integral with regard to the electronic components,

$$
\begin{equation*}
R_{\theta}(r)=\int \psi_{\theta}\left(r_{\theta}, r\right) M_{\theta} \psi_{\theta}^{n \prime \prime}\left(r_{\theta}, r\right) d \tau_{\theta} \tag{2:12}
\end{equation*}
$$

is called the electronic transition moment, as in Herzberg, 1950, p. 200.39

The intensity in mission of the transition from one electronic-vibrational-rotational state to the corresponding lower state is thus givon by

$$
\begin{equation*}
I_{e m}=\frac{64 \pi^{4}}{3 c^{3}} N^{0} \nu^{4} S_{J O A^{\prime \prime}}^{J} \hat{A}^{0}\left|\int \psi_{V^{0}}^{0}(r) R_{e}(r) \psi_{V^{\prime \prime}}^{n \prime \prime}(r) d r\right|^{2} \tag{2.13}
\end{equation*}
$$

where N^{2} is the population density of the upper state.
Not much can be said about $R_{e}(r)$ in general, on account of the great difficulty in obtaining accurate expressions for the electronic wave functions. However, its most important property is its variation with internuclear distance. It is often assumed to be a constant, or a slowly varying function of $r_{\text {, }}$ so that its mean value $\overrightarrow{\bar{m}}_{\theta}$ may be removed from inside the integral (2.11), giving
and this is the basis of the wave mechanical formulation of the FranckCondon principle - Franck, 1925; ${ }^{45}$ Condon, $1926,{ }^{46}$ 1928, ${ }^{41}$ 1947. ${ }^{47}$ When (2.14) holds, (2.13) bocomes

$$
I_{e m}=\frac{64 \pi^{4}}{3 c^{3}} N^{\circ} \nu^{4} S_{J V V^{0}}^{J 0 A^{0}} \bar{R}_{0}^{2}\left|\int \psi_{v^{0}}(r) \psi_{V^{\prime \prime}}^{(r) d r}\right|^{2}
$$

$$
\ldots . .(2.15)
$$

The integrel $\int \psi_{V^{8}}(r) \psi_{V^{\prime \prime}}^{(r)}(r)$ is called the overlap intograly and its squaro is the Franck-Condon factor $q_{v}{ }^{0}$ w for the electronic. vibrational statos concomod. For a constant, or slovily varying oloctronic transition momenty wo seo that tho intonsity of a transition is proportional to the Franck-Condon factor. If tho oigenfunctions aro
properly normalised, then it follows from the properties of systams of orthogonal functions that

$$
\sum_{v^{8}} q_{v^{0} v^{\prime \theta}}=\sum_{v^{0 \theta}} q_{v^{0} v^{i g}}=10
$$

The vibrational eigenfunctions Ψ_{V} are oscillatory functions of r-ses Fig. (2.1), section 2.4 - with particularly large amplitudes near the extremes of the vibrational motion. Consequently the FranckCondon factor in (2.15) is large when the eigenfunctions are in phase, as it were, particularly when the terminal maxima cover the same range of r. Tho potential functions for a harmonic oscillator (which are fair approximations for small $v^{0}, v^{n i}$) are parabolic, and consequently the locus of the strong bands on a Deslandres ${ }^{\circ}$ array is also approximately parabolic. When the oquilibrium values $r_{e q}^{0} r_{e q}^{c t}$ of the two electronic states are approximately equal, this locus is a narrow parabola, and if $r_{e q}^{0}$ and $r_{e q}^{c o}$ differ widely, then the locus is a wide parabola.

Mulliken, 1939, 40 and Condon, 1947,47 state that the value of the electronic transition moment is a characteristic of the pair of electronic levels concerned, and is independent of the vibrational and rotational levols involved. Hence Mulliken, 1939, 40 states that

$$
\left.\begin{array}{rl}
& \sum_{v^{00}} p_{v^{0} v^{00}}=\text { constant } \tag{2.16}\\
\text { and } \quad \sum_{v^{0}} p_{v^{0} v^{0}}=\text { constant }
\end{array}\right\}
$$

Where

$$
p_{v^{0} v^{n}}=\|\left.\hat{v}_{v^{0}}(r) R_{\theta}(r) \psi_{v^{n i}}(r) d r\right|^{2} \quad \ldots \ldots(2.17)
$$

$P_{\nabla^{0} v^{10}}$ is callod the "Vibrational transition probability", or ${ }^{9 B}$ Band Strength ${ }^{10}$ 。

....(2.18).

The rotational line strongths are usually normalised so that the constant in equation (2.18) is oqual to 1, although Dioke and Crosswhite, 1948, ${ }^{21}$ normalise thoir $S_{J 0}^{J^{9} \lambda^{0}}{ }^{0}$ to mako the constant equal to 40

2.3. The Ultra-Violet Band Spectrum of OH

Dieke and Crosswhite, 1948, ${ }^{21}$ give an account of the discovery, analysis, and identification of the transition that gives rise to the ultra-violet band system $A^{2} \Sigma^{+}-X^{2}$ if in OH. They also present comprehensive tables of wavelength, identification, line strength, etc. rolating to the transition. About sixteen bands of the system havo been obsorved in the wavelength region 2400 to $3500 \AA_{\text {A }}$, each band consisting of six strong and six weak branches. The vibrational intensity distribution corresponds to a fairly narrow Franck-Condon parabola, as a consequenco of tho noarly oqual values, $r_{0}^{0}=1.0121$ and $r_{o}^{r e}=0.9706 \AA$, of the oquilibrium intornuclear distances of the two electronic states. The observed vibrational quantum numbers go up to v° and $v^{\prime \prime}=3$.

There are five different ways, Hund's cases (a) to (e), of
relating the interactions between the various types of angular mononta of the molocule, so as to account for the structure of the spectra of diatomic molecules. For $O H$, the coupling betwoon the momenta is intormodiato betwoon case (a) and case (b).

In case (a), the total orbital angular momentium L and the total spin S of tho elsetrons are strongly coupled both to each other, and to the internuclear axis of the molecule. Their resultants along this axis Λ and Σ are both quantised, Λ being integral, and Σ taking integral or half-integral values, depending on whether the number of electrons in the molecule is evon or odd respectively. The total electronic angular momentum along tho internuclear axis is given by $\Omega=\Omega+\Sigma 0 \Omega$ can tako values from $(L+S)$ down to $|(L-S)|$ in intogral steps. The total angular momontum, including rotation of the moleculo, is also quantisod and is givon by $J=\Omega, \Omega+1, \Omega+2$ (Ell valuos of angular momonta are in torms of units $\frac{h}{2 \pi}$). Tho rotational energy of the moleculo can be roprosentod, to a good approtimation, by $E_{J}=B\left[J(J+1)-\Omega^{2}\right]$, whero B is a constant, doponding on the molocule and its vibrational stato. Wo soo that in caso (a) tho coupling betweon the nuclear (rotational) and oloctronic motions is negligiblr, and honce the Born-Opponheimor approximation should be fairly accurate.

In caso (b), only the orbital angular momentum is strongly couplod to tho internucloar axis. Hore the rotational notion is described in temis of K, the angular momontum quantum number for the rosultant of olectron orbital and molocular rotational motion. K is an intoger
given by $K \geqslant \Lambda$. The rotational energy is now given by $E_{K}=$ $B\left[K(K+1)-A^{2}\right]$. Now the electron spin S is coupled to the resultant K of the orbital and rotational motions, to give the total angular momentum J of the molecule. Here we havo some interaction between the nuclear and oloctronic motions, and thero is obviously a broakdown of the Born-Opponhoimer approximation with regard to tho rotational and cloctronic motions.

For electronic statos with $\Lambda=0$, case (b) affords the best description, while tho states with $\Lambda \neq 0$ are usually intormodiato between case (a) and case (b), and the nomenclature of oither is appropriato. As tho moloculo rotatos faster and faster, and K increases, the state of the molecule moves closer to that of case (b).

In the OH radical, the electron spin has the value $\frac{1}{2}$, producing doublet electronic levels. The two components will be characterised by the subscripts 1 and 2, so that for $F_{1}(K), f_{1}(K), J=K+\frac{1}{2 ;}$ and for $F_{2}\left(\mathrm{~N}_{\mathrm{N}}, \mathrm{f}_{2}(\mathrm{~K}), \mathrm{J}=\mathrm{K}-\frac{1}{2}, \quad \mathrm{~F}_{1}(\mathrm{~K})\right.$ and $\mathrm{F}_{2}(\mathrm{~K})$ are used for the rotational levels of the $\Sigma^{2}+$ state $(\Lambda=0)$, while $f_{1}\left(H^{\prime}\right)$ and $f_{2}\left(L^{\prime}\right)$ correspond to tho se of the 2 state $(\Lambda=1)$.

The ${ }^{2}{ }^{+}$state
Here there is no orbital electronic motion, and the electron spin is loosely coupled to the nuclear rotation . case (b). Tho two doublet components $F_{1}(K), F_{2}(I C)$ noarly coincido for $K=0$, but thero is a ρ-type doubling for $K \neq 0$, due to the magnetic coupling between the electron spin and the rotation of tho nuclei - Van Vleck, 1929. 48 The
rotational onergies are given by
and

$$
\begin{aligned}
& F_{1}(K)=B K(K+1)-D K^{2}(K+1)^{2}+R\left(K+\frac{1}{2}\right) \\
& F_{2}(K)=B K(K+1)-D K^{2}(K+1)^{2}-R\left(K+\frac{1}{2}\right)
\end{aligned}
$$ where the term - $D K^{2}(K+1)^{2}$ allows for the offect of centrifugal distortion of the molecule by rotation. (All the constants are functions of the vibrational quantum number v^{c}.)

The 2T State

For $\mathrm{OH}_{\text {, }}$ the ${ }^{2}$ state is close to case (a) for slow rotation and close to case (b) for fast rotations, so that the intermediato caso must be considored. Hill and Van Vlock, 1928, 4.9 found that the rotational onergy of a ${ }^{2}$ fitato may bo given by

$$
f_{1,2}=B\left[\left(J+\frac{1}{2}\right)^{2}-1 \pm \frac{1}{2} \sqrt{\left\{(2 J+1)^{2}+a(a-4)\right\}}\right]-D J^{2}(J+1)^{2}
$$

$$
\ldots(2.20)
$$

whore a is tho so-called coupling constant. Exprossed in torms of \mathbb{K}, tho levels are

$$
\begin{aligned}
& f_{1}(K)=B\left[\left(K+\frac{1}{2}\right)^{2}-1-\frac{1}{2} \sqrt{\left\{4(K+1)^{2}+a(a-4)\right\}}\right]-D K^{2}(K+1)^{2} \\
& f_{2}(K)=B\left[K^{2}-1+\frac{1}{2} \sqrt{\left\{4 K^{2}+a(a-4)\right\}}\right]-D K^{2}(K+1)^{2}
\end{aligned}
$$

Tho coupling constant a has a value rolated to the dogroe of intormingling of the two coupling casos. When a is small, the state is noar case (b), and whon a is large, it is noar case (a).

Both f_{1} and f_{2} are double. This splitting is callod
" Λ-doubling", and may be explained by a slight interaction betweon the electron orbital angular momentum and the rotation of the nuclei - Van VIeck, 1929. ${ }^{48}$ In the first approximation, the difference between the split energy levels is proportional to $K(K+1)$. The two compononts are called f_{i} and f_{i}. . They have opposito symmetry (${r_{i}}^{+}$and f_{i}^{-}) with rospect to inversion at tho origin of co-ordinates. (\wedge-doubling may also be explained as a perturbation between lovels, in difforent electronic states, having equal J and the same symmetry.)

The $2_{2}^{+}-2 \pi$ Transitions

For dipole transitions in tho froe molecule the selection rule for $J, \Delta J=0, \pm 1(J=0 \nrightarrow J=0)$, must be strictly satisfied. For caso (b), tho soloction rulo for $K, \Delta K=0, \pm 1$ also applios. In intormediato coupling, transitions that satisfy both solection rulos, and for which $\Delta K=\Delta J$, are strong, whilo those that violato the K rulo or for which $\Delta K \neq \Delta J$ are weak, except fcr small values of K and J. In addition, the symmetry rulo oven $\xrightarrow{\longrightarrow}$ odd is also strict for the froo molecule. With those selection rules thore are twolve possible branchos; six strong "main" branches, and six "satollite" branches whose intensity falls off rapidly aftor the first few lines, as the coupling gets closor to caso (b).

The branchos are named below for case (b), which is more conveniont in this case.

$$
\begin{aligned}
& 0 \text { branch for } K-2 \rightarrow K \\
& \text { P branch for } K-1 \rightarrow K \\
& \text { Q branch for } K \rightarrow K \\
& \text { R branch for } K+1 \rightarrow K \\
& S \text { branch for } K+2 \rightarrow K
\end{aligned}
$$

$0_{12}(\mathrm{~K})$	$=F_{1}(K-2)$	- $f_{2}^{0}(K)$	$J-1 \rightarrow J$
P_{1} (K)	$=F_{1}(K-1)$	- $\mathrm{f}_{1}(\mathrm{~K})$	$J-1 \rightarrow J$
$\mathrm{P}_{2}(\mathrm{~K})$	$=\mathrm{F}_{2}(\mathrm{~K}-1)$	- $\mathrm{f}_{2}(\mathrm{~K})$	$J-1 \rightarrow J$
$\mathrm{P}_{12}(\mathrm{~K})$	$=P_{1}(K-1)$	- $\mathrm{f}_{2}(\mathrm{~K})$	$\mathrm{J} \rightarrow \mathrm{J}$
$Q_{1}(K)$	$=F_{1}(\mathrm{~K})$	- $f_{1}^{\prime}(K)$	$\mathrm{J} \rightarrow \mathrm{J}$
$\mathrm{Q}_{21}(\mathrm{~K})$	$=\mathrm{F}_{2}(\mathrm{~K})$	- $f_{1}^{p}(\mathrm{~K})$	$J-1 \rightarrow J$
$\mathrm{Q}_{2}(\mathrm{~K})$	$=F_{2}(K)$	- $f_{2}^{0}(K)$	$\mathrm{J} \rightarrow \mathrm{J}$
$\mathrm{Q}_{12}(\mathrm{~K})$	$=\mathrm{F}_{1}(\mathrm{~K})$	- $f_{2}^{\circ}(\mathrm{K})$	$\mathrm{J}+1 \rightarrow \mathrm{~J}$
R_{1} (K)	$=F_{1}(K+1)$	- $\mathrm{f}_{1}(\mathrm{~K})$	$J+1 \rightarrow J$
$\mathrm{R}_{21}(\mathrm{~K})$	$=F_{2}(K+1)$	- $\mathrm{f}_{1}(\mathrm{~K})$	$\mathrm{J} \rightarrow \mathrm{J}$
R_{2} (K)	$=F_{2}(\mathbb{K}+1)$	- $\mathrm{f}_{2}(\mathrm{~K})$	$J+1 \rightarrow J$
$\mathrm{S}_{21}(\mathrm{~K})$	$=\mathrm{F}_{2}(\mathrm{~K}+2)$	- $\mathrm{P}_{1}^{2}(\mathrm{~K})$	$J+1 \rightarrow J$

Dioko and Crosswhito, $1948,{ }^{21}$ tabulated the relativo rotational transe
 1935, 50 Hill and Van Vleck, 1928. 49 These exprossions replace the Hônl-London factors which are only valid for case (a), where the BornOppenheimer approximation holds fairly woll. Dioko and Crosswhite, $1948,{ }^{21} 1949,{ }^{22}$ also publishod experimontal valuos for the rolative transition probabilities $p_{v^{\prime}} v^{* \prime} / p_{c o}$ for nine of the vibrational bands
in the systeme These values are given in a Deslandres array in Table (2.1). The photoelectrically determined and thus more reliable values 22 are tabulated and the sums $\sum_{v^{00}} p_{v^{0} v^{08}} / p_{o o}$ are given on the right hand side of the array, in order to evaluate the validity of the Born-Oppenheimer approximation for $O H$ with regard to electronic-vibrational interaction. The velues given in brackets are estimated valuos for intensities of transitions from the uppor and loss populatod vibrational lovols, for which the intensities in emission were too low to bo determined. The ostimations were made with regard to the intonsity distribution in the
 lijewise given in brackots.

It can be seon from Table (2.1) that tho sum $\sum_{V^{01}} P_{V^{0}} v^{v i} / p_{o o}$ cannot bo rogarded as a constant. Evon considoring only tho oxporimental valuos, thero is a differonce of 27 betwoon tho oxtremo values of the sume When tho reasonably ostimated numbers aro included, this difforence incroases to about 50% botweon $v^{v}=0$ and $v^{\text {si }}=3$. It is thus obvious that roquiroment (2.16) for negligiblo intoraction botween tho vibrational and olectronic motions does not hold for OH .

Tablo 2.1. Rolativo Exporimental Transition Probabilitios $p_{v^{0}} v^{6} / p_{00}$.

| |
| :--- | :--- | :--- | :--- | :--- | :--- |

2.4. The Morse-Pekeris Rotating Oscillator

In determinations of the solution of the Schrodinger equation for the nuclear motions for intensity work, it has usually been assumed that the solution $\psi_{n}(r)$ is separable into mutually independent vibrational and rotational parts, as given by (2.6). The interastion between rotation and vibration has however boon recognised for many years in terms of theenergy levels in the variation of the rotational constant B with vibrational quantum number. Dunham, 1932, 51 showed that the energy levels of an anharmoic oscillator could be represented by tho double infinite sum

$$
E_{V J}=\sum_{V} \sum_{J} Y_{i j}\left(v+\frac{1}{2}\right)^{i} J^{j}(J+1)^{j} \quad \cdots \cdots(2.22)
$$

which includes torms which are combinations of powors of both variablos ($v+\frac{1}{2}$) and $J(J+1)$, as woll as torms in powors of each variablo indopondontly. Loarmor, $1961,521962,{ }^{18}$ has discussed tho offocts of tho soparability approximation (2.6) on tho intensitios of eloctronic transitions of diatomic moleculos in detail.

The potontial function most commonly used to obtain tho vibrational oigenfunctions and oigonvaluos has boon that for tho rotationloss moloculo. Howovor this is only the founder member of a set of potential functions, one for each value of the rotational quantum number. The set may be represented by

$$
U(r)_{J}=U(r)+\frac{h^{2}}{8 \pi^{2}} \frac{J(J+1)}{\mu r^{2}} \quad \ldots(2.23)
$$

where $U(r)$ is the potential function for the rotationless molecule. The added term represents the kinetic onergy of rotation, the moment of
inertia being μr, where μ is the reduced mass of the diatom. The importance of the added term to intensity calculations is that the resulting shift of the potential curves to increasing values of r is not always negligible, particularly for hydrides with low dissociation energy ($0 . \mathrm{g}$. $\mathrm{HgH}_{\text {, }}$ as shown by Herzberg, 1950, p.427 ${ }^{39}$). If the relative shift of the potential energy curves, and hence the wave-functions, of two combining electronic states, is large enough with increasing values of J, then the overlap integral and the vibrational transition probabilities for tho bands may be expectod to vary signflciantly with J.

Mothods of performing relative intonsity calculations for tho rotating oscillator are few in numbor. Herman and Rubin, 1955, 53 troated analytically the inframred spectrum of a MorsomPekoris oscillator, where the oigonfunctions are for different vibrational statos of tho samo oloctronic potential function. This analytical approach cannot bo oxtondod to include olectronic transitions in moleculos, sinco the oigenfunctions now bolong to different oloctronic potontial survos and havo difforont constants. Nicholls and Frasor, 1958, 54 have shown that thoir analytical approach for tho rotationloss caso can bo ortonded to includo rotation. Learnor and Gaydon, 1959, 28 and Learnor, 1961, 52 1962, ${ }^{18}$ performod numorical intogrations of MorsemPekoris wave functions. James, 1959, ${ }^{30}$ developed an approximate method in which tho rotational onergy term serves to displace a parabolic potontial function to highor valuos of internuclear distance with incroasing J.

The potontial function for the Morso-Pokoris rotating oscillator is givon by

$$
U(r)=D_{\pi}\left[1-\theta^{-\beta\left(r-r_{e}\right)}\right]^{2}+\frac{h^{2}}{8 \pi^{2}} \frac{J(J+1)}{\mu r^{2}} \quad \cdots(2.24)
$$

where $\beta=\left(\frac{x,}{B r_{\theta}^{2}}\right)^{\frac{1}{2}}$, and $D_{\theta}=\frac{\omega^{2}}{4 \times *)}$, the dissociation erergy.
The following functions are defined:

$$
A=\text { the rotational energy, }
$$

$W=$ the total nuelear energy, measured from the potential minimum.

The eigenfunctions are given by

$$
\psi_{\mathrm{vJA}_{A}}=N_{0} e^{-d y}(2 \mathrm{dy})^{b / 2}{ }_{1} F_{1}\left(-v_{9} b+1 ; 2 d y\right) \quad \ldots .(2.25)_{9}
$$

in which

$$
\begin{aligned}
& N_{0}=\beta^{\frac{1}{2}(v+b)^{\frac{1}{2}}\left[r^{r}(b)\right]^{-\frac{1}{2}}, \quad b^{2}=-\left[\frac{32 \pi^{2} u}{\beta^{2} h^{2}}\right]\left[W-A\left(3 \varepsilon^{2}-\varepsilon+1\right)\right], ~} \\
& d y=\left[\left\{\frac{8_{\pi}^{2} \mu^{2}}{\beta^{2} h^{2}}\right\}\left\{D_{\theta}+A\left(3 \varepsilon^{2}-\varepsilon\right)\right\}\right] e^{-\beta\left(r-r_{\theta}\right)}, \quad \varepsilon=\frac{1}{\beta r_{\theta}},
\end{aligned}
$$

and

$$
1_{1} F_{1}(a, b ; x)=\sum_{k} \frac{a(a+1) \ldots \ldots(a+k-1) x^{k}}{b(b+1) \ldots 0(b+k-1) k g} \quad \text { is the confluent }
$$

hypergeometric function.
Learner, 1961, ${ }^{52}$ has shown that the MorsemPokeris modol is a very good ropresentation of the rotating oscillator for low values of the vibrational quantum number - $v<5$, in the caso of OF.

The oscillatory vibrational wave functions givon by Learnor, 190́1, p. 25, 52 aro roproduced in Fig. (2.1).

2.5. The Electronjc Transition Noment in OH

Theoretictul doterminations of the oloctronic transition momont $R_{0}(r)$ in $O H$ basod on a more or loss ab initio mothod are not adequate

at present, Ffulliken's 1940^{19} calculations being only an order of magnitude assessment. Moreoever Hurley ${ }^{\text {'s }} 1959$ calculations gave a difference of nearly two orders of magnitude between the results for the dipole length and the equivalent dipole velocity approach.

Various oxpressions for the variation of $\mathrm{R}_{\theta}(r)$, with internuclear distance r heve been obtained empirically. Shuler, 1950 , ${ }^{2}$ assumed a linear function of r (ho only considered the first two torms in a polynomial expansion on account of the scanty data available). The parametor of the function was adjustod to give the bost fit betweon the rosulting calculated vibrational transition probabilities and Dieke and Crosswhite, 1949, 22 obsorved relative intonsitios of the vibrational bands in the system. Ho obtained $R_{e}(r)=$ consto $(1-0.75 r)$.

Nicholls, 1956, ${ }^{25}$ assumed a slowly varying function $R_{\theta}(r)$ and adopted the r-centroid approach which is valid for this condition. With this approximation ho determined the variation of $R_{\theta}(\bar{r})$ with \bar{r}_{9} again by comparison with the exporimental results of Dieke and Crosswhite, 1949. ${ }^{22}$

Both Shuler and Nicholls used their calculated values of $\mathrm{R}_{\mathrm{e}}(\mathrm{r})$, based on the experimental data for all the vibrational bands, to recalculate thoorotical values for the relativo intensitios of the bands. This process results in a "smoothing" of the oxporimontal data, assuming that the expressions used for the eloctronic transition moment aro fair approximations.

Learner, $1961,{ }^{52}, 1962,{ }^{18}$ chose an expontriais form $R_{e}(r)=$ const. $e^{-a r}$. The value of the parameter a was obtained by fitting the calculated values for the relative vibrational transition probabilities
at $J=10 \frac{1}{2}$ (for which the axperimental line intensities would have been strongest) with Nicholls ${ }^{\circ}$, 1956, ${ }^{25}$ smoothed values obtained from Dieke and Crosswhite ${ }^{\circ} s^{1949}{ }^{22}$ original results. He obtained $R_{a}(2)=$ const.e $-2.5 r$.

In each of the empirical calculations above, $R_{e}(x)$ was obtained from the variation of vibrational transition probability within the band system. This procedure implicitly includes a correction for the break. down of the Born-Oppenheimer approximation, with regard to electronic and vibrational motions, in the expression for the electronic transition moment. There is no reason to suppose that $R_{\theta}(r)$ should not also include factors allowing for tho breakdown in terms of the interection between electronic and rotational energy discussed in section 2.3, and even for the 3-cornered electronic-vibrational-rotational interaction. This interaction manifests itself in the variation of the coupling constant a (for olectronicmrotational interaction) with vibrational quantum number. Although the effect or this interaction on the energy levels is small, the effect on the f-values is not necessarily sinall too. It is woll known in the atomic case that different wave functions which give energy levels that are very close to the experimontal values still give f-values that diffor widely from eash other as well as the experimontal valuos. However the scarcity of exporimental data does not yet allow determinations of the effoct of these othor interactions.

Using his dorived value for the electronic transition moment, Loarnor predicted the variation of vibrational tiansition probability with the change of rotational quantun numbor for linos within oach band with $v^{0} v^{\text {t }} \leq 4$, for values of J up to 25 .

2.6. The Band Oscillator Strongth

The relation between oscillator strength $f_{J}{ }_{J V}$ and vibrational transition probability $p_{v^{0} v^{4}}$ is easily obtained by combining (2.2), (2.3), (2.11) and (2.17) to give the well. known relation

Putting $F_{v^{0} v^{0 i}}=\frac{8 \pi^{2} m}{3 h e^{2}} \vee p_{v^{0}} v^{00}$, and since $g^{\prime 0}=2 J^{08}+1$, we have

$$
f_{J 0, J^{0}}=F_{v^{0} V^{i 0}} S_{J!f^{0}}^{J 0} /\left(2 J^{0}+1\right) \quad \ldots \ldots(2.27)
$$

where $F_{V^{0} V^{00}}$ may be considered a constant over a given band, neglecting vibrationmrotation interaction and the variation of frequency over the band. The latter is reasonable since the frequency range is small compared to the mean frequency of the band. The band oscillator strength is thon defined by

From (2.18) we see that

$$
f_{v^{0} v^{00}}=F_{v^{0} v^{00}} \text { or } 4 F_{v^{0} v^{n}} \text { respectively } \quad \ldots \ldots(2.29),
$$

depending on whether one follows the usual normalisation rulo, or that of Dieke and Crosswhite, 1948。21

The offect of vibration-rotation interaction can be included by incorporating the correction factor $T_{J} J^{\prime \prime}$ in (2.27), so that we have, following Dieke and Crosswhite, that
where $f_{v^{0}}$ ve now refers to the rotationless molecule, for which $T_{J} J^{n}$ is defined as unity. This value $f_{v^{0}} v^{\text {ie }}$ is the most meaningful representation of the strength of the transition.

If tho quantity $\left(2 J^{n q}+1\right) f_{J^{9} J^{n}} \frac{1}{4} S_{J^{" Q}}^{J^{n}} A^{N}$ is plotted against J^{m}, ono obtains a curve whose doparture from a straight horizontal line gives $T_{J^{q} J^{*}}$. The band oscillator strength for the rotationless molecule is determined by extrapolating the curve back to zero rotation.

Learnor, $1961,{ }^{52}, 1962,{ }^{18}$ calculatod and tabulated values of T T_{J} 少 for lines in all the main branches of the $(0,0)$ band, up to $J=30$, using his cmpirical value for the olectronic transition moment.

CHAPTER III

THEORETICAL (B) - THE HOOK METHOD

3.1. Dispersion Theory

The early investigators of the phenomenon of dispersion found that the refractive index F increases slowly as the wavelength λ of the incident light decreases. The refractive index and its rate of change varied not only with λ, but also with dispersing modium. Cauchy derived a relation betweon F and λ on the olastic solid theory of the ether. He obtained

$$
F=a+b / \lambda^{2}+d / \lambda^{4}+f / \lambda^{6}+\ldots \ldots
$$

which givos F in torns of λ, and four or moro constants $a, b, d, f \ldots$, for F slowly incroasing as λ docroasos, and having no discontinuitios, as in Fig。 (3.1), which is typical of "nomal disporsion".

Le Roux, Christiansen, and others, found that in tho noighbourhood of absorption linos tho disporsion phonomenon was as shown in Fig. (3.2), difforent from that shown by a glass prism. The first striking domonstration of this "anomalous dispersion" was given by Wood, 1904, 55 who used a "prism" of sodium vapour to form an anomalous spoctrum along the slit of a prism spectrograph. The spectrum formed in the spectrograph traced out tho familiar anomalous disporsion curvo for the sodium D linos.

The Cauchy formula (3.1) is obviouslyinadequato to describe the anomalous dispersion phenomenon, but is found to give satisfactory values for the case of normal dispersion, i.e. in the spectral region well away from any absorption lines.

Fig.(3.1): Normal Dispersion

To account for the sudden change in F near an absorption line of wavelength λ_{0}, Sellmeier derived the equation

$$
\begin{equation*}
F^{2}-1=a \lambda^{2} /\left(\lambda^{2}-\lambda_{0}^{2}\right) \tag{3.2}
\end{equation*}
$$

Sineo most spoctra consist of many absorption lines, this becomes

$$
\begin{equation*}
F^{2}-1=\sum_{j} a \lambda^{2} /\left(\lambda^{2}-\lambda_{j}^{2}\right) \tag{3.3}
\end{equation*}
$$

summing over all the ebsorption lines. At $\lambda=\lambda_{j}$, this gives infinite values for F and in ordor to obtain a finite valuo of F for all λ_{9} a frictional torm was introduced, giving

$$
\begin{equation*}
F^{2}-1=\sum_{j} a \lambda^{2} /\left(\lambda^{2}-\lambda_{j}^{2}+b^{2} \lambda^{2}\right) \tag{3.4}
\end{equation*}
$$

Tho dorivation of this form is not rigorous in the light of tho more developed olectron theory of mattor. Drude and Voigt lod tho way to a now deduction, and wore followod by Lorentzs who derived an oxprossion for F from laxwoll's oquations, finally giving

$$
\begin{equation*}
F^{2}-1=\frac{4 \pi 0^{2}}{m} \sum_{j} \frac{\forall_{j}}{w_{j}^{2}-w^{2}+i \gamma_{j} \omega} \tag{3.5}
\end{equation*}
$$

for low donsity modia whose magnotic permiability is unity (tho latter is true for nearly all transparont modia), whoro

$$
\begin{aligned}
& \mathcal{X}_{j}=\text { numbor of oscillators por unit volumo with } \\
& \text { froquency } \omega_{j} 9 \\
& 0=\text { oloctronic chargo, } m=\text { oloctronic mass, } \\
& \omega=\text { froquoncy for which } F \text { is calculatod, } \\
& \gamma_{j}=g_{j} / m_{g} \text { whoro } g_{j}=\text { damping forco. }
\end{aligned}
$$

This is oquivalont to having a modium with N particlos por unit volumo, oach with f_{j}^{\prime} oscillators of froquoncy $\hat{\omega}_{j}$ so that 合 $_{j}=N f_{j}{ }^{\text {d }}$

Since the absorption is small at the edge of an absorption line ${ }_{2}$ $\gamma_{j} \omega \ll \omega_{j}^{2}-\omega^{2}$, and (3.5) can be waitten as

$$
\begin{equation*}
F^{2}=1=\frac{4 \pi N e^{2}}{m} \sum \frac{f_{j}}{j} \frac{\omega_{j}^{2}-\omega^{2}}{\omega^{2}} \tag{3.6}
\end{equation*}
$$

Substituting $\omega=\frac{2 \pi c}{\lambda}(c=$ valocity of light, $\lambda=$ wavelength corres ponding to frequency ω), and since for a gas $F \cong 1$, we have

$$
\begin{equation*}
F-1=\frac{M \Theta^{2}}{2 \operatorname{tmc}} \sum_{j} \frac{f_{i} \lambda_{j}^{2} \lambda^{2}}{\lambda^{2}-\lambda_{j}^{2}} \tag{3.7}
\end{equation*}
$$

All the absorption wavelengths of a given medium can be included by considoring all transitions from level j to levels $k(k>j)$, for oach j, giving, in rogions of small absorption

$$
\begin{equation*}
F-1=\frac{0^{2}}{2 \pi m c^{2}} \sum_{j k>j} \sum_{x_{j}}^{N_{j} f_{k j} \lambda_{k j}^{2} \lambda^{2}} \lambda^{2}-\lambda_{k j}^{2} \tag{3.8}
\end{equation*}
$$

whoro $N_{j}=$ number of particles per unit volume in state j.
In the region of an isolatod absorption lino, only the ono transition under tho summation has a significant offoct, and $\lambda \geq \lambda_{k j}$ so that $\lambda^{2}-\lambda_{k j}^{2}-2 \lambda_{k j}\left(\lambda-\lambda_{k j}\right)$, and

$$
\begin{equation*}
F-1=\frac{e^{2}}{4 \pi m c^{2}} \frac{N_{j} f_{k j} \lambda^{3} k_{c j}}{\lambda-\lambda_{k j}} \tag{3.9}
\end{equation*}
$$

which may be written as
where

$$
\left.\begin{array}{l}
F=1=C N_{j} f_{k j} \frac{\lambda_{k j}^{3}}{\lambda-\lambda_{k j}} \\
C=\frac{e^{2}}{4 \pi \mathrm{mc}^{2}}
\end{array}\right\}
$$

Classically, the oscillator strongth $f_{k j}$ is a whole numbor by
definition, but quantum mechanically and also in practice, this is not the case, and usually $f<1$.

In the quantum mechanical treatment it is seen that expression (3.8) is only true in the case of weak excitation of the gas. Ladenburg, 1921, ${ }^{56}$ and Kramers, 1924, 57 showed that when the upper levels are approciably populated, a "negative dispersion" term has to be included, giving

$$
F-1=\frac{o^{2}}{2 \pi m c^{2}} \sum_{j} \sum_{k \gamma j} \frac{N_{j}^{f} j_{k j} \lambda^{2} k_{j, j} \lambda^{2}}{\lambda^{2}-\lambda_{k j}^{2}}\left(1-\frac{g_{j}}{G_{k}} \frac{N_{k}}{N_{j}}\right) \ldots .(3.11),
$$

whore g_{j} and g_{k} are tho statistical weights of the levels j and k respectively, and N_{k} is the population of tho upper level k.

Whereas before wo had $\mathcal{F}_{j}=N f_{j}$, and moro gonorally

$$
\begin{equation*}
\mathcal{N}_{k j}=N_{j} f_{k j} \tag{3.12}
\end{equation*}
$$

wo now have

$$
\begin{equation*}
\mathcal{N}_{k j}=\mathbb{N}_{j} f_{k j}\left(1-\frac{g_{j}}{E_{k}} \frac{N_{k}}{N_{j}}\right)=N_{j} f_{k j} Q_{k j} \tag{3.13}
\end{equation*}
$$

whore $Q_{k j}=\left(1=\frac{g_{j}}{g_{k}} \frac{N_{k}}{N_{j}}\right)$ is the negative disporsion tom resulting from induced mission. For weak excitation, as in this oxporiment, $N_{k} \ll N_{j}$ and tho offoct of tho negative dispersion form is negligible.
3.2. Tho Puccianti Mothod

Puccianti, $1901,341904,{ }^{35}$ made use of relation (3.9) in his method of focussing zero order horizontal fringes from a Jamin-type intorforomotor onto tho slit of a stigmatic spoctrograph. For any given wavolongth, tho distance between fringes is equal along tho noight
of the slit, and the path difference Δ between the interfering beans is given by

$$
A=\text { by } \quad(b \simeq \text { constant })
$$

$$
\cdots(3.14)
$$

where y is measured along the slit. from a point such that $y=0$, when $\Delta=0$. (In iact b varies very slowly with λ_{9} decreasing with decreasing λ_{a}) Considering only points of maximum intensity, we have

$$
\begin{equation*}
\Delta=n \lambda \quad(n=\text { an integer }) \tag{3.15}
\end{equation*}
$$

From (3.14) and (3.15), we have

$$
\begin{equation*}
b y=n \lambda \tag{3.16}
\end{equation*}
$$

for a bright fringe.
If one of the intorfering boams is passed through a thickness D of gas with refractive indox F, a path differonce ($F-1$) is created, so from (3.16) we have

For the zero order fringe, $n=0$, and by $=Q(\lambda) \ell_{2}$ giving

$$
\begin{equation*}
y=\frac{l}{b} G(\lambda) \simeq \text { const. } G(\lambda) \tag{3.18}
\end{equation*}
$$

for this fringe.
Since $b \simeq$ const.s we see that all the fringes trace out anomalous disporsion curvos in tho spectrograph, if $G(\lambda)$ is given by (3.9). Away from an absorption lino the fringos aro noarly horizontal, but noar ono thoy trace out hyporbolic curvos.

3.3. The Roschdestwensky Modification

Obtaining the I-value from the hyperbolic curve by a complete parameterisation or even usirg a small number of selected points is a long and involved process liable to errors and difficult to check. Roschdestwensky, 1912,32 1921, ${ }^{33}$ simplified the rolation betweon f-values and experimontal observation by introducing a plano parallel glass plato into the path of the socond beam in the interforometer.

Let the thickness of the glass plate be ℓ^{*}, and its refractive index $F^{*}\left(F^{*}>1\right.$, and is a function of $\left.\lambda ; F^{*}-1=r(\lambda)\right)$. Replacing $\Delta(=$ by $)$ by the more general function $\varphi(y, \lambda)$ for white light, equation (3.17) becomes

$$
\varphi(y, \lambda)-G(\lambda) Q=n \lambda_{g}
$$

giving for the case with the glass plate,

$$
\begin{equation*}
\varphi(y, \lambda)-G(\lambda) l+r(\lambda) l^{*}=n \lambda \tag{3.19}
\end{equation*}
$$

Near the absorption line, sharp maxima and minima are obsorved, as in Fig. (3.3), the hitherto nearly horizontal fringes now being high order inclined fringes, giving rise to symmetrically placed hooks close to the absorption line.

The position of the maxima and minima are given by $\frac{d y}{d \lambda}=0$, so that $\frac{d \varphi}{d \lambda}=\frac{\partial \varphi}{\partial y} \frac{d y}{d \lambda}+\frac{\partial \varphi}{\partial \lambda}=\frac{\partial \varphi}{\partial \lambda}$ at these points. Difforentiating with respoct to λ, we have

$$
\begin{equation*}
\varphi_{\mathrm{y}} \mathrm{o}^{0} \mathrm{Y}^{0}+\frac{\partial \varphi}{\partial \lambda}-G^{0} \ell+x^{0} \ell^{*}=n \lambda \tag{3.20}
\end{equation*}
$$

whore $\varphi_{y}=\frac{\partial \varphi}{\partial y}$, and tho dash donotos difforontiation with rospoct to λ. Thus for $\lambda=\Lambda$, whoro Λ donotos the position of a hook and $y^{0}=0$,

Fig.(3.3): "Hooks" near $\lambda_{k j}$
wo have
whore

$$
\left.\begin{array}{l}
G^{0}=-\frac{K}{\ell} \tag{3.21}\\
K=n-\ell^{*} r^{\prime}-\varphi^{0}
\end{array}\right\}
$$

Comparing (3.21) with (3.9) differentiated with respect to λ, i.e. $F^{0}=-\frac{C N_{j} f_{k j \lambda} \lambda^{3} j}{\left(\Lambda-\lambda_{k j}\right)^{2}}$
we see that

$$
\begin{equation*}
\Lambda=\lambda_{k j} \pm \sqrt{\frac{c \mathcal{N}_{j} f_{k j} \lambda_{k j}^{3}}{\pi}} \tag{3.23}
\end{equation*}
$$

Thus, for an isolated line, the hooks lie symmetrically about $\lambda_{k j}$. Putting $a_{k j}=2\left(\Lambda-\lambda_{k j}\right)$, wo have

$$
\begin{equation*}
N_{j} f_{k j} \ell=\frac{1}{4 C} \frac{\mathrm{E}_{a}^{2}}{\lambda_{k j}^{2}} \tag{3.24}
\end{equation*}
$$

Tho hook separation is easily obtained by measurements on photographs of the fringe pattern, and it will bo shown that \mathbb{K} may bo colormined by measuring the slope of fringes at λ_{0}, near $\lambda_{k j}$ but well outside the region of anomalous dispersion.

Suppose that in moving from λ_{0} to $\lambda_{0}+\Delta \lambda_{\text {, }}$ ono passes Δn fringes (observed at constant height y), near the region of anomalous dispersion duo to $\lambda_{k j}$. From (3.19) wo have two equations corresponding to λ_{0} and $\lambda_{0}+\Delta \lambda_{9}$ namely

$$
\begin{equation*}
\varphi\left(\lambda_{0}\right)-\ell G\left(\lambda_{0}\right)+\ell^{*} r\left(\lambda_{0}\right)=n \lambda_{0} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{align*}
\varphi\left(\lambda_{0}+\Delta \lambda\right)-\ell G\left(\lambda_{0}+\Delta \lambda\right) & +e^{*} r\left(\lambda_{0}+\Delta \lambda\right) \\
& =(n+\Delta n) \cdot\left(\lambda_{0}+\Delta \lambda\right) \tag{3.26}
\end{align*}
$$

Using the Taylor expansion, and neglecting forms higher than tho first
order, we have, subtracting (3.25) from (3.26),

$$
\varphi^{8} \Delta \lambda-\ell G^{0} \Delta \lambda+\ell^{*} r^{i} \Delta \lambda=n \Delta \lambda+\lambda_{0} \Delta n+\Delta n \Delta \lambda \quad \ldots(3.27)
$$

Now G is in a region where it is vary nearly constant, so on the left hand side of (3.27), the second term is negligible compared to the sum of the other two. On the right hand side of (3.27), $\Delta n \Delta \lambda$ may be neglected as the product of two small quantities. Thus we have $\Delta \lambda\left(n-\ell^{*} r^{0}-\varphi^{0}\right)=-\lambda_{0} \Delta n_{9}$ giving, since $\lambda_{0} \simeq \lambda_{k j}$ and $K=n-\ell^{*} r^{0}-\varphi^{\ell}$ g that

$$
\begin{equation*}
\mathrm{ij}=\frac{\Delta \mathrm{n}}{\Delta \lambda} \lambda_{\mathrm{kj}} \tag{3.28}
\end{equation*}
$$

showing that K is obtained by measuring the slope of the undistorted fringes near each $\lambda_{k j}$ in turn.

We have from (3.24), and expressing C in terms of its constituents, that

$$
\begin{equation*}
N_{j} f_{k j} q=\frac{\pi c^{2} m}{a^{2}} \frac{\Pi_{a} a_{k j}}{\lambda_{k j}^{3}} \tag{3.29}
\end{equation*}
$$

Putting $\beta_{k j}=N_{j} f_{k j} \ell\left(\frac{e^{2} \lambda_{k j}^{2}}{4 \pi c^{2} m \mathbb{R}}\right)$, we have

$$
\begin{align*}
& \beta_{k j}=\left(\frac{a_{k j}}{2}\right)^{2}=\left(\Lambda-\lambda_{k j}\right)^{2} \text { and } \\
& \frac{\beta_{k j}}{\left(\Lambda-\lambda_{k j}\right)^{2}}=1 \tag{3.30}
\end{align*}
$$

From (3.29) we see that the product $\left(N_{j} f_{k j} \ell\right)$, which is the number of classical oscillators of frequency $\omega_{k j}$ per unit crosssection, is given in terms of the constants $\pi_{9} c_{9} m_{9} e_{9}$ the wavelength
$\lambda_{k j^{2}}$ and the quantities K and $a_{k j}$ which are easily obtained from measurements on the spectrogrem.

3.40 Application to a Number of Close Linos

In the application of the hook method to atomic spectra, it has rarely been nacessary to consider more than two or three close lines. In the general case, as required for molecular spsctra, the effect of an absorption line on the hook separations of other lines close to it may not be negligible, and has been treated briefly by Roschdestwensky and Ponkin, 194: 58 For an arbitrary number r of close lines, (3.30) may bo oxtended to show that a hook occurrs at each of the $2 r$ roots of the equation

$$
\begin{equation*}
\sum_{j=1}^{r} \frac{\beta j}{\left(\lambda-\lambda_{j}\right)^{2}}=1 \tag{3.31}
\end{equation*}
$$

whore, as before

$$
\beta_{j}=(N f \ell)_{j}\left(\frac{\theta^{2} \lambda_{j}^{3}}{4 \pi m c^{2}}\right) .
$$

If $\delta_{1 j}$ and $\delta_{2 j}$ reprosent the distances from the contre of the $j^{0 t h}$ line to tho two hooks belonging to it (so that $\delta_{1 j}+\delta_{2 j}=\Delta_{j}$), substitution of each measured δ combinod wi.th the known line separations ε into oquation (3.31) gives $2 r$ oquations for the dotorminations of the $\beta_{j}{ }^{\circ}$ if all the hooks are moasuroable. For this particular oxperiment, the formulao can bo simplified to deal with two oxtrome casos, as follows.

If the linos are more than about $\frac{1}{2} \mathrm{~A}$ apart, far onough for hooks
to appear between them in this experiment (where Nf $2 \sim 10^{13}, \lambda \sim 3000 \AA$), $\delta_{1 j}=\delta_{2 j}$ within the errors of measurement (about 10\%). Equation (3.31) can then be approximated by

$$
\begin{equation*}
\frac{\varepsilon_{j}}{\delta_{j}^{2}}=1-\sum_{k \neq j} \frac{\beta_{k}}{\varepsilon_{j k}^{2}} \tag{3.32}
\end{equation*}
$$

where $E_{j k}=\left|\lambda_{j}-\lambda_{k}\right| \cdot$ Using as a first approximation for β_{k} the "isolated line" value ${ }^{1} \beta_{k}=\delta_{k}^{2}=\left(\frac{\Delta_{k}}{2}\right)^{2}$, and substituting in equation (3.32), a second approxination ${ }^{2} \beta_{j}$ may be obtained for each β_{j} in turn. This procedure is repeated until the necessary accuracy ($\mid n_{\beta}-{ }^{n-1}{ }_{\beta} \| /_{\beta}$ $<1 \%$) is obtained. The calculation is tedious, since in this experiment the hook separation of each line is influenced by more than 1% by all othor lines within about $2 \AA$ of $i t$, and was therefore programed for tho IBii 7090 computer at Imperial College.

The other extrame caseis that of a pair of lines too close to have hooks between then. This pair is first treated soparatoly from all other lines. If the lines are designated a and b, and are distant δ_{a} and δ_{b} rospectively from the nearest hook, equation (3.31) loads to the simultaneous equations

Irom which β_{a} and β_{b} are obtainod to the nocessary accuracy, again using the computer, programmed now for this particular case. In nearly all the pairs of lines falling into this category, one of the lines
was a satellite, whose f-valuo was $\sim \frac{1}{5}$ that of the main lins investigatod, and the correction to the β-value of the main line was only $\sim \sin ^{\circ}$ Thus in practice, the final n_{a} value of only one of these lines, say a^{\prime} was noarly always required, and the "isolated line"s value ($=n_{\beta} \frac{1}{2}$) is then fed into the computer programme for the provious case, so that β_{a} can be correctod for the influence of all other (relatively distant) linos.

CHAPTER IV

EXPERTIENTAL (A) - THE MACH-2EHNDER INTEPFEROMETER

4.1. Introduction

Fig. (4.1) gives an outline of the experimental systen, and a general view of the apparatus is shown in Plate 1.

The OH to be investigated was produced in adequate concentrations by dissociating water vapour in an alumina reaction tube, heatad up to nearly $2000^{\circ} \mathrm{K}$ in a molybdenum wound, tubular alumina furnace. The water vapour was introduced in the form of saturated oxygen, by bubbling oxygen slowly through about 8 an of water, beforo passing it through the reaction tubo.

The anomalous disporsion adjacont to a number of absorption lines in the $(0,0)$ and $(1,0)$ bands in the $A^{2} \Sigma^{+}-X^{2} \Pi$ band system of $O H$ was obsorvod by means of intorforence fringes produced by a ilach-Zohnder interforomotor. A parallol boam of lieht from a source of contimous radiation was passod through the interforomoter, and the horizontal intorieronce fringes produced wore focussod on the slit of a stignatic spactrograph , where they wore photographed, having undergone dispersion. The reaction tube and a similar compensating tube wore placed one in oach arm of the intorforometor.

Each itcm of the experimental system wiil be doscribed in detail - the Mach-Zehndor intorfercmoter in this chapter, and the rost of tho systom in the noxt.

Fig. (4.1): The Experimontal Systom

4.2. Theory of the Intorforometor

The original determinations of f-values using the hook method were made with a Jamin interferometer. Later workers, for example Ostrovskii and Penkin, 1961, 36,37 and Pery-Thorne and Chamberlain, 1563^{59} have made use of a Mach-Zehnder interferometer - Mach, 1892; ${ }^{60}$ zohndeir, 1891.9 ${ }^{61}$ - which is related to the Jamin and Michelson instruments. Whereas with the Jamin, the separation of the two beams is limited by the thickness of the interferometer plates, with the Mach-Zehnder, the interfering beans can be widely separetidg also much thinner (and consequently cheaper) plates may be used. A disadvantage of the machZehnder is that there are many more degrees of freedom in the movement of the plates, making adjustment more difficult. In this experiment a Mach-Zehnder interferometer was used in a Jamin-type arrangement, with horizontal fringes located at infinity.

The instrument consists of two beam splitters P_{1}, P_{4} and two plano mirrors $P_{2} P_{3} \quad P_{1}$ and P_{4} are ideally two identical plates made of a homogeneous transmitting matorial, polished optically flat both for transmission as well as reflection at the surfaces, and partially aluminised on one surface to give equal transmission and reflection at 45° incidence. P_{2} and P_{3} arno two plates polishod optically flat and completely aluminised on one side. The plates are placed at tho corners of a rectangle, as shown in Figo (4.2), and at 45° to the sides. P_{4} may bo moved along the direction of tho line joining P_{2} and P_{4}. Rays of light from a small source S are amplitude divided at P_{1} into two beams of approximatoly equal intensity, B_{12} and $B_{13} \quad B_{12}$ is totally
64.

Fig. (4.2): The Mach-Zehnder Interferometer
reflected at P_{2} along B_{24}, and recombines at P_{4} with B_{34}, totally reflected from P_{3}, in two "double: bems energing from P_{4}. The two beams B_{24}, B_{34} which recombine at P_{4} are coherent, and hence inteference fringes may be formed. The interferencs is usually observed in the recombined beam travelling towards T_{9} while the light in the other bean is lost. Since the mirrors are arranged at the corners of a roctangle, the geometrical path lengths of the two interforing beams botween the piates are equal.

In the Jamin-type arrangements the light from S is rondered parallel by the optical system L, and may be viewed through the telescope T_{9} focussed at infinity. If all the plates are exactly parallel to each other, then the corresponding rays in each beam are parallel and makn oqual anglos with the (identical) boam splitters, and hence have oqual path longths inside then, as well as in the space betwoon them. Thon the optical path longths of tho two recombining compononts of all the rays from S are oqual and the components interfore constructively at $P_{4^{9}}$ giving cmergent rays of equal intensity, so that the fiold of viow of the toloscope is ono of uniform brightness.

If P_{4} is now rotatod through a snall angls about a horizontal axis parallel to its surfacos, and P_{3} is similarly rotatod to knop it parallol to F_{4}, thon the rocombining beams omorging from P_{4} are still parallol to each other. Now tho optical path Inngths of each pair of corrosponding rays are no longor equal. This is so beaause oach component passos through only one of tho beam splitters, and now does so at a difforent anglo from tho othor, making tho path longths insido P_{1} and P_{4}
difforont, although the path lengths in the space between then are still equal. P_{4} may be traversed slightly in the horizontal direction towards or away from P_{2}, to equalise the optical path lengths covvered by each pair of corresponding rays that lie in a horizontal plane in the space between $P_{1} P_{2}$ and $P_{3} P_{4}$ (and thus make particuiar angles with P_{1} and P_{4}). The rays of light from a given point in S are made parallel by L, and make particular angles with the beam splitters. Parallel rays in a given direction are focussod at a particular point in the primary image plane of T_{9} so that each point in this plane corresponds to a point in the plane of the source S. Rays travelling in different directions in a horizontal plane between $P_{1} P_{2}$ and $P_{3} P_{4}$ come from points along a particular horizontal line in S , and aro focussed at points along a particular horizontal line in the image plane of T. From the discussion in the provious paragraph, we see that nach point along this line corresponds to a zero path differoneo betweon the two intorforing beams, and the line is therofore a zoro ordor bright fringe. Rays that aro focussod at points along another horizontal lino in the imago plane of T make different angles with the beam splitters, and so tho intorforing composenta have unequal optical path longths, the difference incroasing For linos farthor and farthor away from tho zoro ordor fringe. Thus a pattorn of dark and bright horizontal fringes is set up in the imago of S in T.

4.3. Modifications to the Interforometor

The interferometer used in this experiment was basically that designed and described in detail by Chambeialin, 1962^{62} subject to two primary and one secondary modification. The primary modifications were:
(1) that the glass beam splitters be replaced by spectrosil ones,
and (2) that the separation of the two beams be increased from about 8 cm to about 27 cm so as to accommodate the furnace described in 5.50

The spectrosil beam splitters were, like the glass ones, $2^{\prime \prime}$ in diameter, $5 / 8$ thick, and flat to within a tenth of a wavoiength (now at $3000 \AA$). They were aluminised un ons surface so as to give equal intensities for the transmitted and reflected components at $3000 \AA$ and at 45° incidonco.

The increased height, and thus weight, nocessitated by the second of theso primary modifications carries with it an increasod suscoptibility to vibrations. To counteract this, a socondary modification was made in the design. The $\frac{1}{2}$ ef brass stalks by means of which the interforometor carriages weo proviously mountod on the optical bonch saddlos woro disponsed with, and the carriages wero boltod diroctly on to the saddles. Plato 2 shows a detail of ono of the nodifiod carriages.

As bofore, two long horizontal longths of "Handy Angle" connoctod the two interforometor carriages to onsure completo rigidity of tho interforomoter as a whole. In this casc, thoy wore clampod half way up

Plate 2: Detail of One Interferometer Carriage
the interferometer carriages，sinee the bulk of the furnace was an obstruction in the upper half of the interferometer．

4．4．Adjustment of the Interiewometer

In this interferometer the adjustment is mads as easy as possible， in that all degrees oi freedom are independent，ioe．the two axes of rotation of each plate are perpendicular to each other，and aiso lie in the reflecting surfaces of the platos．

The height of the table sarrying the interferometer was altered so that，with the interferometer carriages mounted on the optical bench， the lower plates P_{1} and P_{3} were at the same height as the spectrograph slit S－see Fig。（403a）。

The pointolite P was first placed at the plateholder end of the spectrograph，and its height adjusted until it could be seen centrally in the grating whon viowed through S ，shortened to about 2 min in hoight and oponed as wide as it would go（ $1 \frac{1}{2} \mathrm{~mm}$ ）。 The table was now moved sideways，and the height of P_{1} altered slightily，in order that the patch of light anerging from the slit be seen contrally through P_{1} ．
P was now placod diroctly in front of S ，and aligned so as to be soen centrally in the grating when viowed through the spectrographo P was now on the spectrograph axis．A small circular aperturo A was plaeod botwoon P and P_{1} ，so that the patch of light passing through A foll cortrally on P_{1} ．Now A was also on the sportrograph axis．The aligmort of the tablo and the hoight of P_{3} wore now altored slightlys so that the patch of light from A foll centrally on P_{3} as well as on P_{1} ．The

Fig. (4.3a)

Fig. (4.3b)

Fig.(4.3): Adjustment of the Interferometer
position of the table was then marked out on the floor, as had been that of the spectrograph.

The positions of P_{2} and P_{4} were adjusted so that they wore vertically above, and at the same distance fram, P_{1} and P_{3} respectively. A lens L was introduced between P_{1} and A_{9} at its focal distance from A_{2} so that the resulting parallel beam of light fell centrally on P_{1} and $P_{3} \cdot P_{1}$ was rotated about its two axes until the pateh of light reflected from it fell centrally on P_{2}. A long $1 / 4^{\prime \prime}$ thick plane mirror strip if was clamped vertically behind P_{1} and P_{2}, and tilted so that the light reaching it from P_{1} was reflected back and imaged exactly on A. Now P_{2} was rotated so that the reflected image due to the light reflected in it fulfilled the same condition. P_{1} and P_{2} were now parallel and was removed.

Only a very small adjustment was now required in the height of P_{4} for the patch of light from P_{2} to pass centrally through it. P_{3} was then rotated so that the patch of light from P_{1} s reflected on to P_{4} fell centrally on it, the patches of light fron both beams now overlapping exactly in the reflecting surface of $P_{4^{\circ}}$. The light from P_{4} was then viewed through a telescope T focussed at infinity, and the two images of A formed in it were mado to coincide by rotating P_{4}. The interferometer is now in approximate adjustment with P_{1} and P_{2} accurately parallel, and P_{3} and P_{4} accurataly parallel and approximataly parallel to P_{1} and P_{2}.

If P is replaced by an approximately monochromatic source, such as a low pressure mercury arc, interference fringes may be seen across the image of A seen in the tolescope.

The interforometer is now. lined up on the axis of the speotiograph, and the rest of the optical systam was then aligned as described in 5.2 .

The fine adjustments to the interierometer were carried out by replacing P with a high pressure mercury are NW / D, once the whole optical system had been aligned, and viewing the fringes formed by the interferometer through T now placed behind P_{1}, as in Fig. (4.3b). The fringes were sharpened and made horizontal by rotations of P_{1} and P_{2} about their horizontal and inclined axes. The fringe spacing was altered by rotations about the horizontal axes to give initially about 5 fringes in the field of view, which is the magnified image of the aperture A.

At first fringes of high contrast were visible, but these became less clear as the are heated up, owing to the pressure broadening of the mercury lines and the incruase in the brightness of the continuum. Visibility was restored mainly by adjusting the horizontal traverse of P_{1} so as to equato the path lengths of the interfering beams and thus obtain zero order fringes, making the nocessary subsequent adjustments to the tilt of P_{2}. If the visibility of the fringes was lost before the interferometer was adjusted for zero order fringes, the arc was cooled by directing at it a stream of cold air from an electric air blower until the visibility was restored, and the process continued as before. It was ultimaty possible to maintain the visibility of the"fringes when the lamp was very hot and at its full operating pressure of 12 atmospheres, when the zero order adjustment and white lifht fringes had been obtainedo Owing to the large number of wavelengths prosent in the source, the fringes become multi-coloured, and fade away rapidly from the strong
sharp central zero order fringe, making the path length equalization very critical.

The furnace and compensating tube wera installed and accurately aligned with the upper and lower beans respectively. The windows on the tubes were arranged perpendicular to the beans and as closely parallel to each other as possible. Like the interferometer platos, their surfaces had been polished flat to within a tenth of a wavelength, and arranged so that their slight wedge angles (\sim a fringe across their diameter) cancelled each other in each tube. Onily a very slight adjustment to the traverse of P_{1} and the tilt of P_{2} was required in order to recover the zero order adjustment of the system.

For the purpose of adjusting the interferoneter, the focal lengths of the lenses L_{2} and L_{3} - soe FIg. (4.1) - were taken as thoir values in visible light ($5500 \AA$). For the actual experinents involving hook photographs, their valuos at $3100 \AA$ and $2850 \AA$.. for the (0,0) and (1.0) bands respectively - were taken, and their positions altered accordingly, by the necessary 2 cm or so along the optical axis. (The foeal lengths of each. lens at $3100 \AA$ and $2850 \AA$ were determined as follows. Light from an iron arc was condensed on to a horizontal slit apertures, 2 mm wide, and the lons was used to form an enlarged image of the illuminated aperture on the vertical slit of a modium quartz spectrograph, at a fixed objectimage distance (. Spectrograms wero taken for varying object-image distances d. The height of the spectrum (for each value of d) varies with wavelongth, having a minimum with sharp upper and lower extrenes at the wavelength region in focus. The focal length at the required
wavolength was obtained from l and the value of d corresponding to the spectrogram for which this wavelengin was in focus.) Also, the fringe spacing was altered to give about 2 horizontal fringes in the visible fiold of view, so that 4 or 5 fringes crossed each vortical line in the spectrogram at 3000 A. A spectrosil plate $C_{\text {s }}$ polished to the same specifications as the windows, was inserted in the lower beam, with its plane perpendicular to the beam, in order to produce the required high order fringes with maximum contrast, and the aperture A was now focused on S, by means of $I_{3^{\circ}}$ Two piate thicknesses 3 mm and 5 mm were used.

4.5. Exporimental Precautions

Once the interforametor had been adjusted to form visible interforence fringes, it was found that those suffered from two different types of instability. The first was a slow crexit aeross the field of view due to thernal disturbances (air currents otc.), and the second was a comparatively high frequency oscillation due to vibrational disturbances.

The vibrational disturbances were safeguarded against by onsuring that the intorferometer was completely isolated from any other pari of the apparatus or its supporting framework. The opticai bench was also screwed to the table through tough foam rubber, but this was not very successful, and since vibrational disturbances were carried by tho floor of the laboratory, all rotary pumps on the same floor wore switched off before exposures were taken.

The themal drift of the fringes was rore difficult to eliminate. First the interferometer mounts were completely closed up with cardboard,
leaving holes only for the beams of light to enter and leave by. Next the horizontal paths between the interferometer plates and the reaction and compensating tubes were enclosed by hollow cardboard cylinder: The junction with the interferometer was made by means of loose folds of soft tissue paper to eliminate transmission of vibrational disturbances from the rest of the system to the interferometer. The arrangenent up to this stage is show in Plate 3. It was furthermore necessary to screen the furnace from the rest of the system with sections of metal ($1 / 16^{\circ 6}$ aluminium) sheoting. The compensating tube was also wound round with strips of $1 / 64^{\circ "}$ copper foil. Finally, the "closed-up" interferometer mounts and the enclosed path between them and the two fubes up to the water coolers were covered over with rectangular cardboard houses, as may bo seon in Plate 1_{9} which gives an overall view of the apparatus.

The fringe pattorn was now found to be stable for periods of up to half an hour in the isolated laboratory, but was still sensitive to even the very small atmosphoric disturbances produced by people moving about in other parts of the laboratory (even ten or more yards away). This was due to the presence of the hot furnace producing quite large thomal differentials in the atmosphore round the intorferometer. It was thus necessary to obtain spectrograms of the fringe pattern overnight. The control of the furnace tomperature to $\pm \frac{1}{2}{ }^{\circ} \mathrm{K}$ was found to be satisfactory from the point of view of fringe stability.

It was found necessary to stop down the cross section of the interferometer beans to about 1 cm in dianetor in order to maintain a sufficiently high fringe contrast when the furnase was running, on

ascount of the non-uniformity of the temperatura - see section 5 . 7 - and hence the optical density of the gaseous mixturg, over the cross-section of the reaction tube near its ends. This resulted in exposure times of about 3 minutes.

The stability of the basic adjustment of the interferometer was good in view of the fairly simple construction. The interferoneter remained in adjustment over long periods, forming white light fringes of high contrast after only a minimum of adjustment to the plates in the mount nearest the spectrograph. The final fine adjustments were made only after the water heating systam had reached equilibrium - see 5.4.

When the final adjustnents to the interierometer had been made, the high pressure mercury lamp was replaced by the xenon arc.

It was now necessary for the experimenter to have access to the plateholder end of the spectrograph, both to open and close the slit, and also to rack the platoholder down so that about 6 exposures could be made on the same plate. In ordor to minimiso atmospheric disturbances, the experimenter sat at the plateholder end of the spectrograph continuously during exposures, and a cardboard scroen was placed botweon this end and the interferometer. Even after allowing a half hour irterval to pass before taking any exposures, only one or two of the 6 exposures on each plato wero measurable.

CHAPTER V

EXPERTIENTAL (B) - THE RAMATNDER OF TEE SYSTENI

5.1. The Background Source

The requirement is a source of continuum both as strong and as free from emission lines as possible, in the regions $3050-3175 \AA$ and $2800-2900$ A. A previous worker on anomalous dispersion in this laboratory, Chamberlain, 1962, ${ }^{62}$ investigated a number of very high pressure gas arcs made available by A.E.I。 Ltde

The gas arcs investigated by Chamberlain were:
(a) GAE 6 (high pressure xenon are oporating at 18 atmospheres), AC 15 amps:
(b) XBU (linear xenon arc), AC 25 amps
(c) MEX/D (xonen/mercury arc), AC 15 amps.

He found that the GAE 6 was clearly the brightest source of the three, over the whole of the spoctral range investigatod, 3000-7000 $\AA_{\text {. }}$.

The author found that the more recently available higher powered lamp, the $X E / D$ (high pressure xenon arc), 25 amps , was more intense than the GAE 6 by about a factor of two at $3100 \AA$. Comparisons wore mado betwoon the new XE / D, the Osram NE / D (high pressure mercury are) 4 amps, and the anodo crator of a horizontal carbon arc carrying 10 amps. The XE/D was found to be significantly stronger than both those othor sourcos. Pioroover, since the $X E / D$ operates at a very high prossure, the three or four mission lines in the rolevant regions appeared only as very wide ripples superimposed on the continuum, while in the case of the carbon arc about twenty strong lines are evident. Furthormore,
the carbon arc was found to be inconvenient to use, requiring alcost continuous attention during oparation.

Chamberlain had also discussed the difficulties involved in using a flash tube in conjunction with the interferometer, on account of the considerable acoustic disturbances produced by the discharge of tho condenser bank driving the flash tube. Moreoves other workers, experimenting with both flash tubes and the XE/D in this laboratory, have indicated that thore is no significant increase in intensity of tho $f l a s h$ tube over the $X E / D$ in the range rolevant to this experinont. Consequently the $X E / D$ lamp was used as the source of continuum in this experiment.

5.2. The Optical System

This is show in Fig. (5.1). The high pressure xenon are source at X was inaged on a ciroular aperture in by a short focal longich quartz lons $L_{1}\left(f=12 \mathrm{cms}_{\mathrm{s}}\right.$ diameter $\left.=5 \mathrm{cms}\right)$. A was situated in the focal plane of a high quaiity spectrosil lens $L_{2}\left(f=20 \mathrm{cms}_{2}\right.$ diameter $=$ 2.5 cms), and the parallel beam of light from L_{2} was passed through the interforoneter I_{9} used in a Jamin-type arrangement. fifter passing through the interferometer I_{9} the beam was focussed on the spectrograph slit S by means of a further high quality spoctrosil lons L_{3} ($f=40$ cns, diamoter $=2.5 \mathrm{cms}$), the overall magnification of A boing approximately 2 .

All threo lensos wore plano-convox, and arrangod, as showns to minimise aberrations. Moreover, the suriaces of I_{2} and I_{3} were polished accurato to $1 / 4$ of a wavelength in green light. It may have been possible

Fig.(5.1): The Optical System
to reduce chromatic aberration by replacing I_{2} by a concave mirror, and remaligning the xenon arc, L_{1} and A accordingly, and even more by also replacing L_{3} by an achromatic doublet. Whilo having zero chromatic aberration however, a concave mirror has low astignatism only for small angles of incidence, for which the xenon arc would necessarily be very close to the interferoneter. Preliminary investigations showed that the draught round the hot are produced instabjlities in the interference fringes, so a lens had to be used as coliimator. Moreover, it would not have been possiblo to obtain a sufficiontly high quality achronat in the time available. The variation of focal length with wavelength for both lenses was found to be sufficiently slow for one setting for gach lons to suffice for all the required lines in each of the two bands invostigatod, $(0,0)$ and $(1,0)$, on account of the small wavelength range ($\sim 140 \AA$) over the length of the plato.

The diameter of the stop A was fairly critical. The fringes aro most clearly defined for a very small sourco, so a small aperture is desirable. Howevor, in this case, tho hoight of the fiold in tho spoctrograph is small, and can contain only a fow fringos in tho vortical diroction, and consequently only a fow hooks for oach lino. A diametor of 3.5 mm was chosen as optimum.

Tho lining up of an optical systam with so many compononts is todious, but it is of tho utmost importance. A vory small misalignnont could nocessitato an incroaso in oxposuro timos by a factor of 2, and in this exporinont, on account of long torm fringe instability, tino is at a promium. In chaptor $I V_{9}$, tho lining up of tho intorformotor
on the spectrograph axis is described. The procedure for the aligment of the rest of the optical systern is as follows. A pointolite at X was lined up on the axis of the epectrograph. Next the aperture A was adjusted, so that the patch of light passing beyond it fell centrally on the spectrograph grating. Now I_{1} was adjusted so that an enlarged inage of the source wes projected symmetrically onto A. Next I_{2} and I_{3} were aligned in turn.

5.3. The Spectrograph

A stignatic instrument of high dispersion and moderate resolving power is required, in order that the anomalous dispersion be clearly visible, and the hook separations accurately measured. Preliminary trials on a stignatised concave grating spectrograph proved unsatisfactory. However, a new plane grating Littrow spectroaph designod and built for this purpose was very satisfactory.

The instrment first tried was a 21 ft concave grating in an Eagle mounting. The grating was a Bausch and Lomb replica, with 1200 lines/ming and a reciprocal dispersion of $\frac{1}{2} \AA / \mathrm{mm}$ in the second ordor. The instrument, was operated at $f / 30$ in tho second order at $3100 \AA$. It was stigmatised by means of a weak spectrosil cylcindrical lens ($3 / 4$ dioptre) placod inside the spectrograph, about 1 motre from the slit. Whilst this device had proved satisfactory in the first order of the rod and near inframred,
it led to too much loss of definition at $3100 \AA$, and had to be abandoned. This was due to the difficulty of polishing the surfaces of the cylindrical lens to the required accuracy of $1 / 4$ wavelength in the green.

A plane grating, 3 metre, $\mathrm{f} / 25$, spectosil lensed Littrow spectrom graph, was therefore designed for use in this experiment. It fas designed to make use of a 2160 lines/mm Bausch and Lomb replica plane grating, with a 128 mm ruled width and a 102 mm groove length. Tho spectrograph was built in the workshop of the Physice Department at Imperial College, and the basic features are shown in Plates 4,5 and 6.

The blaze wavelength of the grating was $5000 \AA$ in the first order, so that the visible wavelength range is best observed in the 1st order, and the quartz ultra-violet in the 2nd order. The theoretical reciprocal dispersion of the instrument is $\sim 1 \AA / \mathrm{mm}$ in the first order, and $\sim \frac{1}{2} \AA$ in the second, so that the wavelength range covered (in the 250 mm long plateholder) is $\sim 250 \AA$ and $\sim 125 \AA$ respectively. Both ranges covered, in the visible as well as the ultra-violet, where the refractive index of quartz varies comparatively quickly with wavelength, are small onough for a simple (as opposed to an achromatic) lens to suffice, together with one value for the radius of currature of the plateholder ($\sim 2 / 3 x$ the focal length of the Iens). The shapo of the lens was chosen to be plano-convex, sinco it is this shape that occurs at tho minimum of the plot of coma against lens bonding. The lons was also arranged with its curved face nearost the grating, so that the angles made by each ray with both surfaces were as noarly equal as possible, to minimise the aberration for the lons. The lens was made

of spectrosil, from a blank $5^{\circ \prime}$ in diameter and $\frac{1}{2}{ }^{\circ \prime \prime}$ thick, and was ground to give a focal length of 3 metres in the green. Both surfaces were polishad accurate to $1 / 4$ wavelength in the green.

The measured reciprocal dispersion of the instrument was $0.53 \AA / \mathrm{nm}$ in the second order a.t $3100 \AA_{\text {, }}$, the dispersion being adequate for accurato hook measurements. The resolving power was found to be rather better than 100000 , compared with the theoretical valuo of 275000 . The resolving power was not investigated more precisely, as a value of 100000 was judged adequate for this experiment. (A later worker found that the resolving power of the instrument was rather better than 175000 .)

A 90° totally reflecting prism was used, and this was made of spectrosil, and was 2.5 cm long, the width of both perpendicular faces boing 1.25 cm . The slit was a Hilger and Watts single stage slit (F 1497).

5. T. The Gas Systam

This is shown schematically in Fig. (5.2). Comercial oxygon is bubbled slowly, at a rate of about 2 bubbles $/ \mathrm{sec}_{\text {, }}$ through about 8 cm of distilled water in the bubbler A and the saturatod oxygen is then led into the heated reaction tube B at one end, and out free to the atmosphere at the other end, having passed very slowly through the whole length of B. Both ends of the reaction tube aro cooled by passing water through the brass water jackets C and C^{8} stuck on with silicone rubber, in order that the ends of the reaction tube mas bo conveniently closed by spoctrestil windows prossed on to silicone rubber (Edwards High Vacuum,

Fig. (5.2): The Gas System

Type VIT 1146) "on rings by brass rings D and D^{r} 。 In order to obtain the maximun concentration of OH radicals in the reaction tube, in order that the hook separations be most clearly visible and accurately measured, the ratio of hydrogen to oxygen nuclei present must be $1: 1$ (Bonhoeffer: and Reichardt, 1928^{63}). This requires a ratio of $2: 1$ of water vapour to oxygen molecules in the gaseous mixture before it enters the reaction tube, corresponding to a saturated vapour pressure of water at about $88^{\circ} \mathrm{C}$ 。

In order to fulfil this requirement, it is necessary not only to heat the water in the bubbler, but also to make sure that the gaseous mixture does not come into contact with any surface cooler than the hot wator in the bubbler, before it passes out of B. This was fulfilled as follows. Hot water from the mains supply at about $50^{\circ} \mathrm{C}$ was heated to betweon 80 and $100^{\circ} \mathrm{C}$ in the vessel E_{9} before being passed through C^{8} and C. This sane hot wator was used to heat both the bubbler, and the lead I from the bubblor to the reaction tube, as shown in Fig. (5.3). The hot wator was pareod through lead piping, wound tightly round I many times in close contact so as to form a shoath round it, and also wound loosely round the bubblor, before it was led away to the drairs. The bubblor was stood in a wator bath W_{9} and the lead piping was evonly spacod from the bottom to the top of the bubblor, so as to maintain a unifom temporature in the bath. Tho whole systom comprising tho wator bath, the top of the bubblor, and the heated lead to the reaction tube, was laggod with asbostos wool. A suitably cut cardboard dise was fitted around the nock of the bubblor to take the weight of the asbestos wool

Fig. (5.3): The Bubbler and Associated Apparatus
abovo the water in tho bath, the cardboard itself boing supportod by the rim of tho wator bath. A small slot in tho cardboard disc onabled a morcury in glass themometor to be insorted into tho wator to moasure its tomporaturo.

The vossel E was mado of pyrox in ordor to withstand tanporature gradients and was hoated by threo strip heators, such as aro used for heating the morcury in diffusion pumps, running parallol off a variablo voltage. This vessel was also lagged with asbostos wool, and the voltago was slowly raised to its desired valuo over a poriod of ono to two hourse The wator hoating system reachod equilibrium about 2 to 3 hours aftor the wator hoator was first turnod on. The temperature of tho wator in the bath W was tho same bofore and aftor stirring indicating that the temperature of the wator was uniform ovor the volume of the bath. The system was so hoatod and lagged, that in oquilibriun the temperature of the wator in tho bubblor must of a cortainty havo boon idontical with that of the wator in tho bath. Tho spociasil windows of the roaction tube woro hoatod by tho radiation from the vory hot ($\sim 2000^{\circ} \mathrm{K}$) zono at tho centro of the roaction tube, and wero too hot to allow condonsation of the water vapour on ther. The ands of the zoaction tube woro also hottor than the wator coolers, ovon when those wore passing hot wator.

It was thus possiblo to hoat the wator in tho bubblor up to about $90^{\circ} \mathrm{C}$, without producing any loss of wator vapour through condonsation beforo the gaseous mixturo escaped into the atmosphore.

5.5. The Furnace

Preliminary calculations showed that, in order to obtain a sufficiently high density of OH radicals from dissociation of water vapour, it was necessary to heat the water vapour up to temperatures of about $1800^{\circ} \mathrm{K}$. A variety of methods of obtaining these temperatures were considered before it was decided to use an alumina tube furnace, wound with molybdenum strip. Commercially available recrystallised alumina tubes can wi thstand temperatures up to about $2000^{\circ} \mathrm{K}$, when the alumina begins to soften, although care must be taken when heating above about $1100^{\circ} \mathrm{K}$, when alunina undergoes a change of crystal structure. The melting pont of molybdonum is $2890^{\circ} \mathrm{K}$, but it begins to oxidise above about $500^{\circ} \mathrm{IK}$, and needs to operate in a reducing atrosphere above this temperature if it is not to oxidise and burn out, the oxides of molyb donum being volatile.

The furnace design used in this experiment is show in Fig. (504).
A is a "purox impervious recrystallised alumina" tube 75 cm long, internal diameter 501 cm , and wall thickness 0.4 cm .

IV is the molybdenum strip 3 mm wide, and $\frac{1}{2} \mathrm{~mm}$ thick, wound tightly round the tube A. Molybdenum is a very tough, springy metal, and it was obtained in strips rather than as wire so as to make the bending easier. Great care was necessary when winding the molybdenum strip round the tube. The windings were retained at each end by means of two bands S and S^{0} of molybdenum, 3 to 4 cm wide and $\frac{1}{2} \mathrm{~mm}$ thick, clamped round them and crewed tight, the loose ends of the narrow molybdenum strip being led out betwoon the screws as show in the figure.

The winding spacing is maintained by sproading a layer of alumina canent about $\frac{1}{2}$ cm thick over tho windings, having previously wotted the tube. The cement was made up by adding water to alumina powder (Morgan"s "Pure Alumina 961") and mxing woll until the mixture aequirod a creamy texture. Tho ceanont was loft to dry ovornight.

The winding spacing over both outor thirds of the wound longth wero uniform and oqual, with a gap of about 1 mm betwoon the turns. The apacing over the central third was also uniform, bot greator than for tho outer thirds, with about 5 min botwoen turns, so that the numbor of turns/cm over the central region was about half that over both outer regions. This was done in order to increase the longth of the "hot zono" of the furnace, whore the tomporature is loss than $50^{\circ} \mathrm{K}$ lowor than tho maximun tomporature. Proliminary invostigations with uniform winding spacing over the wholo length, showed that the tenperaturo profile for this condition had a sharpor peak. Altering the spacing, as described above, gavo a moro flat-topped, boll shapod curvo, with a "hot zonet" about $1 \frac{1}{2}$ times as long, as show in Fig. (5.5).

Nearly the wholo length of tho furnace tube is encasod in a cylindrical motal caso, 60 cm long, and 40 cm in diametor, the cylindrical steel shoeting C enclosing the volumo betwoen the stool and platos, D and D^{0}. Tho spacing of the ond platos is maintained by moans of six rods, $R, 3 / 8^{m}$ in diamotors with nuts \mathbb{N} screwod on to oxort prossurn on the outsidos of the platos.
X and Y aro two cylindrical sindanyo plugs insulating the brass sorow tominals of the hoating soction from the motal casing. Two

Fig. (5.5): Temperature Distribution along the Length of the Furnace
extra longths of molybdenum strip are wound round once undor the molybdonum bands at ach ond of the heating elcment, so that the leads from hore to tho tominals consist of throo strands of molybdonum strip in order to maintain them at a comparativoly low tomporature. Tho loads aro insulatod by running a continuous chain of porcolain beads ovor them ${ }_{2}$ before securing them botweon two nuts scrowed on to tho innor ond of oach torminal, T_{1} and T_{2}
I_{1} and L_{2} are two hollow loops of fino wiro gauzo wrapped round porforatod motal tubing connoctod to motal tubos, G_{1} and G_{2} loading out through the ond platos D and D^{0}. Thoy are oach supported by threo othor motal rods scrowed into the end platos D and D^{p}. Forming gass a mixture of hydrogon and nitrogon, is lod in through G_{1}, diffuses out through L_{1}, and passos through the space surrounding the molybdenum strip, maintaining a roducing atmosphero round it, boforo diffusing into L_{2} and passing out through G_{2} into tho atmosphoro.

The small gap botwoom the alumina tubo A and oach of the ond piates is sealed as follows. Two steel discs H, about 1 cm thick, 12 cril in diamotor, each with a contro hole to tako tho tube A_{9} and with a saucer-like curvature on ono side, are slid over A_{9} with thoir curvod onds facing sach othor. One of tham partly fits into a shallow hole in the ond plato, about $1 / 4 \mathrm{~cm}$ doep. The othor, outer disc fits into a similar hole in a small ond plate E (or E^{9}) about 16 cm in diamotor and 1 cn thick. The cavity betwoen the inner, currod faces of the discs $H_{\text {, }}$ is "overfillod" with "hallito trist" (graphito imprognated asbestos string), well coatod with silicono grease. The discs are then pressed
together by pressing the outer end plate E on to them by means of nuts being uniformly tightened on to six threaded rods running through E and screwed into D. The greased hallite twist is then forced round A at the ends, forming a seal. Both onds are treatod in this way. The cavity bounded by the end plates, the cylindrical casing, and the alumina tubeg, is filled with calcined alumina (furnace grade, - $120+300$ mesh) as thermal insulation. This is introduced through two holes in one of the ond platos symmetrically placed about the alumina tube and about 4 cm in diametor. The powder is packed tight by banging the side C of the furnace with a rubber bung stuck on the end of a metal rod. When the furnace is packed tight with alumina powder, holding about $1^{1 / 4}$ cwt of it, the two filling holes are closed by moans of two dises screwed down uver thom.

Now all possible leaks in the furnace casing at the junctions of C and D and D^{0}, points of contact botweon A and D, D_{9}, X, Y, N otc., aro sealed by painting silicone rubber over them.

The furnace was mounted on a stand constructed from lengths of "Handy Angle". Tho height of the furnace was adjusted so that the uppor beam of the interferometer passed centrally through the reaction tube.

5.6. Temporature Control

The recrystallisod alumina reaction tube R (84 cm long, 3.9 an inside dianeter, 4.7 cn outside diameter) was placed inside the furnace tube (75 cm long, 5.1 an inside dianoter) symnetrically with regard to
length. The tubes were a fairly close fit with about If min clear along their uppermost lengths.

The power to heat the furnace was supplied and controlled as shown in Fig. (5.6). R is the reaction tube, inside the furnace tube A, wound with molybdenum strip M. Power from the 240 v AC mains is taken through a (10 amp) "Troidac" variable transfoxmer C, and a $2: 1$ (3 kw) step down transformer B_{9} and is fed into $M . G$ is an ameter to maasure the current through the furnace. D is a 5 ohm resistor bypassing the mercury switch S, operated by the temperature controller T (Smith ${ }^{\circ}$ s Series 5 Mechanical Proportional Controller)。 Both T and S are powered from the mains, as show, and I obtains its information from the controlling thermocouple J.

Tho controlling themnocouple ($9_{1}^{\circ} \mathrm{Pt}$ and $\mathrm{Rh} / 20^{\circ} \mathrm{Pt}$ and Rh) is oncased in rocrystallised alumina shoaths and positioned along the uppermost gap between the alumina tubes, with its junction about 1/3 of the way along the total longth of the reaction tubea Each arn of tho thomocouplo was joined to a coppor wire leading to T_{9} at a "chocolate box ${ }^{\text {" }}$ connector stuck on the top of ono of the wator coolers with silicono rubbor.

The trmperature of the thermcouplo junction can be road directly off T_{9} and this temperature can be maintained below or equal to a cortain constant value by sotting tho position of a controlling pointer, P_{s} along the trmporature scaln. If tho powor fod in is such that tho temporature at the junction excoeds the temperature set by the marker, the mercury switch is turnod off. Tho bypass resistor is used to maintain

Fig. (5.6): Temperature Control
a curront approximately half that with the switch on so that the furnace trmperaturo dons not fall off too rapidly. Its value of 5 chm is choson since the rosistance of the furnace windings at average oporating conditions is about 50 hm . In practice P oscillates slowly about its mean value, with a period of about 10 sec , and with an amplitude that can be varied up to about 70° at $1500^{\circ} \mathrm{K}$. With this controlling systexn, the temperature of the thermocouple junction could ba maintained constant to $\pm \frac{1}{2}$ o of the temperature marked out by P at its lowest extreme.

5.7. Temperature Calibration

The temperature measurements inside the reaction tube wore made by means of two referonce thomcouplos (both 5 Rh and $\mathrm{Pt} / 20 \% \mathrm{Rh}$ and Pt) which remained permanently insido the tube in fixed positions. The hot junction of one was at the middle point of tho tube's longth, and that of tho othor was about $1 / 3$ of the way along. Both themocouplos were encased in recrystajlised alumina sheaths, and lay on the bottom of the tubn. The temperaturo at any point inside the furnace, corresponding to any pair of fixed temporatures given by the roforence themocouples, was measured by means of a thermocouplo that could bo slid along the wholo length of the tube. This thernocouple, also clothod with recrystallisod alumina shoaths, was fixod inside a narrow recrystallised alunina tube, closed at one end and just wide enough to tako it, with the hot junction in contact with the closed ond of the narrow tubo. During the calibration experiment, one of the spectrosil windows was
replaced by a brass disc fittod with an Edwards High Vacuum seal adapted to allow this alumine tube to slide in and out of the reaction tube. The tubo was long onough to reach about 6 or 7 em past tho middle point of the reaction tubo.

The two arms of the calibrating thermocouple are connected to two copper leads at a "chocolate box" connection just outside the open end of the sliding alumina tube. These go to one of three pairs of terminals in a slide wire bridge. In reading off the temperature from the tables upplied by the manufacturers, due allowance was made for the oomof. at the effective cold junction temperature at the "chocolate box" connoction, which was about $10^{\circ} \mathrm{C}$ above room temperature.

The reference thermocouples led out to opposite ends of the reaction tube. The two arms of each of these thermocuples were soldered on to two stout copper wire torminals, sticking up about $\frac{1}{2}$ an above the floor of each water cooler, leading out of each of theso through a copper tube, and insulated from each other and from the walls of this tube by silicone rubbor which also holds them in place. Copper wire leads wero soldered on to the outor onds of these tomminals, and lod to the remaining two pairs of terminals on the slido wire bridge. The temperature at the offoctive cold junctions of the referonce thomocouples, the innor onds of tho torminals through the wator coolors, was measurod in a subsidiary orpriment, positioning the hot junction of a thormocouple about $\frac{1}{2}$ an above the floor of ono of the water coolers, and leading the two arms diroctly to tho slido wire bridge. The tamporatare was moasurod at varying temperaturos of the wator circulating
through the coolers, and was found to be about $23^{\circ} \mathrm{C}$ hotter than this water. Due allowance was made for this in reading off the tanperatures of the reference thermocouples.

The temperature was measured at 2 cm intervais along tha axis of the reaction tube. Preliminary measurements with a uniformly wound furnace tube gave the fairly sharp peaked tanperature profile given by the dotted line in Fig. (5.5). In the case of the experimental nonuniformly wound furnace tube desribed earlier, the bell-shaped profile given by the full line in Fig. (5.5) was obtained.

The temperature profile was measured at varying =aiss of passing oxygen through the bubbler, from zero to about twico as fast as the experimental conditions of about 2 bubbles/sec. The only noticeable effoct was a slight displacement of the profile in the direction of the gas flow. No alteration of the longth of the hot zone was observed. At the middle point of the reaction tube, whore the profile roashod a mazimum, tho tamperaturo was found to bo constant to $\pm 1^{\circ} \mathrm{C}$ over a 1 ongth of about 5 cin. The shift of the temperature profile was less than 2 cm oven for the highost bubbling rato. The only factor determining the offoctive temperature profile was soen to bo the tomperature given by the themocouplo at the middlo part of the roaction tubo.

The tanporature at off-axis points, both vortical and horizontal, was also investigated. Over the contral third of the roaction tubes the temporaturo at those points was tho same as that at the axis. Over tho outor thirds of tho reaction tube, the temporatare on oithor sido of, and above the axis, was found to be highor than that at the axis,
while the temperature below the axis was lower.
The slight effect of the calibrating system on the temperature distribution inside the reaction tube was estimated, and allowed fors by observing the effect on the reference thermocouples as the sliding alumina tube was moved along the axis of the reaction tube The effoct was to raise the temperature of the reference themocouples by about 5 to $10^{\circ} \mathrm{K}$ as the end of the sliding tube approached the thomocouple junction。

The tamperature profile along the axis of the reaction tube was calibratod for three different maximum temperatures given by T_{1}. These were $1770^{\circ} \mathrm{K}, 1820^{\circ} \mathrm{K}$ and $1920^{\circ} \mathrm{K}$. The five maximum temperatures at which photographs were takon and hook separations measured, wore $1820^{\circ} \mathrm{K}$, $1865^{\circ} \mathrm{K}, 1890^{\circ} \mathrm{K}, 1920^{\circ} \mathrm{K}$ and $1955^{\circ} \mathrm{K}$. The temperature profiles under these conditions for which the maximum temperaturos were $1865^{\circ} \mathrm{K}$ and $1890^{\circ} \mathrm{K}$ wore obtainod by intorpolation, and that for which the maximum temporaburo was $1955^{\circ} \mathrm{K}$ was obtainod by oxtrapolation. Tho orrors in interpolation and axtrapolation woro ostimatod to be less than $\pm 1^{\circ} \mathrm{K}$ ovor the significant tamporature range.

CHAPTER VI

OSCIIIATCR STRENG'IH RESULTS

6.1. Introduction

Interference fringes displaying anomalous dispersion near
lines in the $(0,0)$ and (1,0) bands were photographed in the second order spectrum on Zenith plates, using a spectrograph slit width of 20μ zenith plates cute off at 5200 A are thus sufficient in themsslves to eliminate the first order spectrum at $6000 \AA$. They are also fairly fast, but still sufficiently fincogreined to allow the hook separations to be measured with reasonable accuracy. A photograph of these fringes showing books near lines in the (0,0) band, may be seen in Plate 7. The 18 lines labelled (by their branch designation and $K^{\prime \prime}$ values) are those whose f-values were obtained and presented in Table 6.1 (the orror indicates the experimental scatter only).

Photographs of hooks for the $(0,0)$ band were taken at 5 different temperature settings of the furnace. At each of these furnace settings, photographs were taken with two different thicknesses of plate in the compensating beam for each of two bubhler temperatures. Thus 20 good exposures were obtained for the (0,0) band.

The hook separations and the gradients of the fringes were measured on a Zeiss comparator. The hook soparation for each line on a given plate was taken as the mean of measurements mede on the three or four hooks present in the vertical field of view. Lines whose hook separations wero less than 0.2 mm woro judgod to have orrors greator than the 10%

Plate 7: Part of the $(0,0)$ Band showing Hooks near Lines whose f-values are presentod in Table 6.1.

Table 6.1. Absolute f-values in the (0,0) Band.

		$f_{\text {J『Jop }} \times 10^{4}$	
K^{om}	P_{1}	$\underline{Q_{1}}$	$\underline{Q_{2}}$
2	8.3 ± 0.2	10.2 ± 0.5	-
3	-	11.0 ± 0.5	-
4	7.7 ± 0.3	12.1 ± 0.4	-
5	7.4 ± 0.2	12.4 ± 0.4	12.9 ± 0.5
6	7.6 ± 0.3	12.8 ± 0.4	12.9 ± 0.5
7	-	-	13.1 ± 0.3
8	7.4 ± 0.3	13.4 ± 0.4	12.1 ± 0.4
9	-	12.9 ± 0.3	13.3 ± 0.5
10	-	12.8 ± 0.5	-

limit acceptable for the $(0,0)$ band. The reason for the comparatively large errors in the measurements of these small hook separations is that the hooks are measured in a region of rapidly changing intensity when they are very close to the line. Since the fr.value is proportional to the square of the hook separation, and since 20 plates were measured, the random error in these f-value determinations is less than $20 / \sqrt{20} \%$ (about $4 \frac{1}{2} \%$).

About 50 sets of hooks could be measured on each photograph of the (0,0) band, but only 18 lines (for which $K^{\text {m }} \leq 10$) had hook separations $>0.2 \mathrm{~mm}$ on all 20 plates, and the remainder were used only in applying the correction procedure described in section 3.4. At $K=10$, the vibration-rotation interaction effect predicted by Learner, 1962, ${ }^{18}$ is about 6 to 7, and should therefore be detectable.

The hooks for the $(1,0)$ band were weaker and adequately measurable on only 8 plates, taken at the two highest temperature settings. About 25 sets of hooks were measured, of which 12 fulfilled the criterion of being $>0.2 \mathrm{~mm}$. The errors in the f-values of lines in the (1,0) band, given in Table 6.2, are thus considerably larger than those for the $(0,0)$ band.

The spread of results for the $(0,0)$ band was examined in some detail. The experimental scatter of the f-values of each of the 18 lines obtained from all 20 plates corresponds to a standard deviciion of about 17 to 18%. This compares reasonably with the estimated error of less than about 10% for the measurements of the hook separations a ($f \propto a^{2}$). However, through the random scatter of the f-values of

Table 6.2. Absolute fovalues in the (1,0) Band.

		$\mathrm{f}_{\mathrm{JO} \mathrm{Jax}} \times 104$	
$\underline{120}$	P_{1}	$\underline{\square}$	${ }_{2}$
4	4.3 ± 0.3	4.9 ± 0.6	\cdots
5	-	5.5 ± 0.8	-
6	3.9 ± 0.3	-	-
7	-	-	-
8	-	$=$	4.8 ± 0.4
9	-	-	5.7 ± 0.5
K^{\square}	P_{2}	Q_{2}	R_{2}
5	5.0 ± 0.7	7.4 ± 0.6	5.2 ± 0.4
6	4.4 ± 0.5	-	-
7	-	5.7 ± 0.8	-
8	-	-	5.0 ± 0.3

different lines on a given plate, it could be seen that from some p.ates the frolues came out consistently high, while from others they camo out consistently low, and from two or three plates the scatter was so large that there was no consistency in the magnitude of the favalues of different lines. The systematic deviation from plate to plate was investigated with regard to furnace setting and bubbler temperatures and there was no correlation with eitiner. It could possibly be dus to randon orrors in the moasurement of the maximum temperature of the furnace, from exposure to exposure, or to a systematic subjective error in the measurements of the plates. Measurenents on the sano lines on different days provide some evidenee that the hook separations can be systematically over- or under-estimated from day to day, and hence from plate to plate.

6.2. Population Density of the Absorking Levels

Measurements of the hook separations and fringe gradients give
 soen from equation (3.29), where (ne) Ju is the population density por unit cross section of the beam, for the lower level of the transition whose f-value is f_{J} 持o In crder to obtain the absolute f-values of the transition it is nocessary to evaluato the quantity ($n \ell$) $J^{0} J^{\circ 0}$ This was done by calculating $n_{j m}$ the population density per unit volume, . for points at 2 cm intorvals along the axis of tho roaction tubo, and integrating over the length of tho tube.
$n_{j r e}$ doponds on the particular rotational levol involved；the ratio of the donsities of hydrogon and oxygen nuclei which is dotominod by the Enitial water vapour pressuro；the total pressure of the mixture of gases in the reaction tube；the equilibrium constants for each particular local tomperatures and the temperature explicitly．The calculation was programmed for the IBM 7090 computer．

There are four revorsiblo molecule－atom dissociation reactions involvod，namely

	$\mathrm{H}_{2} \mathrm{O}$	\rightleftarrows	$\mathrm{H}+\mathrm{H}+\mathrm{O}^{\text {g }}$
	O_{2}	\rightleftarrows	$0 \div 0$
	OH	\rightleftarrows	$0+\mathrm{H}_{9}$
and	H_{2}	\rightleftarrows	$\mathrm{H}+\mathrm{H}$ 。

The equilibrium constants for theso reactions were computed from the data of the NASA Tables of MicBrido ot $a 1,1963.64$ The values given by those tables for each roaction at $1000^{\circ} \mathrm{K}, 1500^{\circ} \mathrm{K}, 1800^{\circ} \mathrm{K}$ and $2000^{\circ} \mathrm{K}$ wore taken and substituted in the expression

$$
\log K_{i}=A_{i} \log T-B_{i} T+C_{i} T^{2}+E_{i}-D_{i} /(4.5758 T)
$$

whoro $A_{i g} B_{i}, C_{i}$ and E_{i} are constants for oach roaction，D_{i} boing the dissociation energy of the moloculo concornod．Since D_{i} is known，the four oquations obtained（one for oach T ）for eash reaction aze sufficiont to evaluato the constants $A_{i} 9 B_{i g} C_{i}$ and E_{i} ．Now those constants aro substitutod in tho uxprossion for $\log K_{i}$ to givo the values of the equilibrium constant at all other temperatures $1000<T<2000^{\circ} \mathrm{K}$ 。

The only significant uncertainty in these equilibrium constants was that produced in K_{OH} by the uncertainty in the dissociation energy of OH . The value given for D_{OH} in the tables was $\mathrm{D}_{\mathrm{OH}}=101.36 \pm 0.3$ Kcal/mol, from Barrose ${ }^{65}$ The partial pressure of $\mathrm{OH}_{9} \mathrm{POH}_{\mathrm{OH}}$ was found by an iterative process for each local tumperature and converted to a local population density, for each initial water vapour pressure. Fig. (6.1) shows the variation of $\mathrm{POH}_{\mathrm{OH}}$ with bubbler temperature and hydrogen/oxygen ratio for a local temperatuse of $1900^{\circ} \mathrm{K}$. It will be seon that the $O H$ density does indeed peak for a hydrogen/oxygen nuclear ratio of about 1,0, as given by Bonhoeffer and Reichardt, 1928.63 Fig. (6.2) shows the variation of $p_{O H}$ with T_{9} for a bubbler temperature of $85^{\circ} \mathrm{C}$.

The population density $n_{J w}$ of the relevant rotational level of the $V^{n}=0$ vibrational state of the $X^{2} \pi$ state was then computed from the vibraitchal and rotational parition functions, $Q_{\text {vib }}$ and $Q_{\text {rot }}$ respectively, and the Balteman factor, using the data of Dieke and Crosswhite, 1948: 21 Finally $n_{j w}$ was integrated over the central 50 an of the tube ${ }^{\circ}$ s length, for which $T>1000^{\circ} \mathrm{K}$. In practice, only the central 30 cm , for which $\mathrm{T}>1600^{\circ} \mathrm{K}$, contributes appresiably to the integral. Over the relevant temperature range 1600 to $1950^{\circ} \mathrm{K}, Q_{\text {vis }} \mathrm{b}$ varies from 1.04 to 1.07, and $Q_{r o t}$ is almost exastly 1% below the approximate value given by $4 \mathrm{kT} / \mathrm{B}_{\text {, }}$ where the factor 4 takes into account both spin and Λ.. doubling. Thus we have

113.

Fig.(6.2): Variation of p_{OH} with $\mathrm{T}\left(\mathrm{T}_{\mathrm{H}_{2} \mathrm{O}}=85^{\circ} \mathrm{C}\right)$
with

$$
(n \ell)_{J 06}=\int n_{J V} d \ell
$$

ith $\left.\quad n_{J O I}=p_{O H} \frac{273}{T} N_{L} \frac{\left(2 J^{q i}+1\right) e^{-E_{J w i} / k T}}{\Omega_{V i b} 3.96 k T / B} \quad\right\}$

$$
\ldots
$$

where N_{L} is Loschmidt's number.
It must be noted that the uncertainty in the dissociation energy of $O H$ only leads to an uncertainty in the absolute f-values of the lines. The relative f-values of lines in the $(1,0)$ and $(0,0)$ bands arising from the samo lowor level aro indepondent of this uncertainty and also of the temporature calibration. The relative f-values of lines within oach band and arising Irom different lower lovels dopend only on the temperature calibration, which detormines the Boltzmann factors.

6.3. Vibration-Rotation Interaction in the (0,0) Band

As shown in (2.30), the vibration rotation interaction offoct may be reprosontod by a corroction factor $T_{J P J o s}$ givon by

$$
f_{J O J}=f_{V^{0} V^{0 q}} \frac{\frac{1}{4} S_{J^{00}}^{J^{0}} \Lambda^{0}}{2 J^{n}+1} T_{J^{0}}
$$

 proportional to tho rotational onorgy. The interaction is then bost shown by plotting $\left(2 J^{\pi}+1\right) f_{J} J^{n n} /\left(\frac{1}{4} S_{J^{m} \Lambda^{n a}}^{J^{n}}\right)$ against $J^{n n}\left(J^{n}+1\right)$ or $K^{m}\left(K^{00}+1\right)$ (tho lattor is moro convonient in this case), to givo a straight line.

In order to show any variation of f with K more clearly, the f-values were "plate-normalisede as follows, and the normalised f-values
 all 18 lines accurately measured, and the mean value S_{m} for all 20 plates, was obtained. Now the f-values of the 18 lines on each plate were multiplied by S_{m} / S. This procedure eliminated the subjective systrmatic orrors referred to in the provious seotion and any errors In the absolute population density, and reduced tho longth of the error linos by about 30%, while leaving the mean aksolute value of f_{00} unohanged.

Fig. (6.3) shows a plot of $\left(2 J^{00}+1\right) f_{J V J V} /\left(\frac{1}{4} S_{J^{00} \Lambda^{n}}^{J 0}\right)$ against $K^{m}\left(K^{\kappa}+1\right)$, using the normalised f-valuos, and covering values of $K^{\text {co }}$ from 2 to 10. The difforences betweon the f-values of different branch types for a givon $K^{\prime \prime}$ woro smaller than the exporimental orror, so the throe branches P_{1}, Q_{1} and Q_{2}, for which accurato f-valnos were obtainod, were plottod together. Each point on the plot is thus the mean of 20, 40 or 60 measurononts, doponding on whether f-values from 1, 2 or 3 branchos wore obtained for the particular value of K^{00}. Tho streight lino fittod to the points by the least squares method has a slope of $-(403 \pm 1 \mathrm{a} 4)$ $\times 10^{-4}$. This corresponds to a decroase in offective vibrational transition probability (i.0. in $\mathrm{T}_{\mathrm{J}, \mathrm{Jw}}$) of (7.1 ± 2.3) \% betwoon $\mathrm{K}^{5}=1$ and $K^{m}=10$, which is in good agrocmont with Learner's prodictions, 1962. 18 It will bo soon in the next chaptor, however, that this agrocmont is largeiy coincidental.

Fig.(6.3): Variation of Effective Band Strength with Increasing Rotation

6.4. Absolute Osojㄱatoz Strength of tho (0,0) Bans

The absclute oscilizator strergth of the $(0,0)$ band for the rotationless molecule is determned by taking the intarcept of the straight line in Fig。 (6.3) at $K^{n \prime \prime}=1$, ioed $K^{\circ \prime \prime}\left(K^{\prime \prime}+1\right)=2$. The value so obtained is $f_{00}=(14.8 \pm 0.2) \times 10^{-4}$, where the orror of a little more than 1% is a measure or the experinental seatter only. The same intercept and error were obtained from the straight line given by the original (un-normalised) f-values, The subjoctive contribution observed in the scatter of the plate strengths S may reasonably be assumed to be a random phenomenons and is thewefore taken as included in tinis error margin.

In order to evaluate possible systematic elrors it is necessary to obtain an expression for p_{OH}, in terms of the equilibrium constants and the initial partial pressure P of water vapour introduced to the furnaces for use together with equation (6.1). The equilibrium constants are definned as follows:

$$
\mathrm{K}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{p}_{\mathrm{H}}^{2} \mathrm{p}_{\mathrm{O}} / \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}, \quad \mathrm{~K}_{\mathrm{OH}}=\mathrm{p}_{\mathrm{H}} \mathrm{p}_{\mathrm{C}} / \mathrm{p}_{\mathrm{OH}}
$$

and $\mathrm{K}_{\mathrm{O}_{2}}=\mathrm{p}_{0}^{2} / \mathrm{P}_{\mathrm{O}_{2}}$, whewe $\mathrm{p}_{\mathrm{H}}, \mathrm{p}_{0}, \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}$ and $\mathrm{p}_{\mathrm{O}_{2}}$ are the partial pressures of atomic hydrogen, atomic oxygen, water vapour and molecular oxygen respectively. Thus we have

$$
\begin{equation*}
p_{\mathrm{OH}}=\frac{\mathrm{p}_{\mathrm{H}} \mathrm{P}_{0}}{\mathrm{~K}_{\mathrm{OH}}} \tag{6.2}
\end{equation*}
$$

which may be written as

$$
\begin{equation*}
p_{\mathrm{OH}}=\frac{\left(\mathrm{p}_{\mathrm{H}} \mathrm{p}_{0}^{\frac{1}{2}}\right)}{\mathrm{p}_{\mathrm{H} \mathrm{H}_{2} \mathrm{O}}^{\frac{1}{2}}} \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{\frac{1}{2}} \frac{\left(\mathrm{p}_{0}^{\frac{1}{2}}\right)}{\mathrm{p}_{\mathrm{O}_{2}^{1 / 4}}^{1 / 4}} \mathrm{p}_{2}^{1 / 4} \frac{1}{\mathrm{~K}_{\mathrm{OH}}} \tag{6.3}
\end{equation*}
$$

At the relatively low temperatures of this experiment, there is very little dissociation of $\mathrm{H}_{2} \mathrm{O}$ and O_{2}, with $\mathrm{p}_{\mathrm{OH}}{ }^{9} \mathrm{P}_{\mathrm{O}}, \mathrm{P}_{\mathrm{H}}$ and $\mathrm{P}_{\mathrm{H}_{2}}<5 \times 10^{-3}$ atnospheres. Thus we write $\mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}=\mathrm{P}$, and since the total gas pressure is 1 atmosphere, we have $\mathrm{P}_{2}=(1-\mathrm{P})$. Equation (6.3) may thus be written in the approximate form

$$
\begin{equation*}
\mathrm{p}_{\mathrm{OH}}=\frac{\mathrm{K}_{\mathrm{H}_{2}}^{\frac{1}{2}} \mathrm{~K}_{\mathrm{O}_{2}}^{1 / 4}}{\mathrm{~K}_{\mathrm{OH}}} \mathrm{p}^{\frac{1}{2}}(1-\mathrm{P})^{1 / 4} \tag{6.4}
\end{equation*}
$$

This expression is found to be accurate to better than $\frac{1}{2} i f$ for the conditions of this experiment. Fig。 (6.1) shows the dependence of p_{OH} on P (at constant tamperature, $T=1900^{\circ} \mathrm{K}$), and Fig. (6.2) shows the dependence of p_{OH} on T (at constant P) through the oquilibrium constants.

The uncertainty of $0 . \mathcal{Y}^{\circ}$ in the dissociation energy of of leads to a corresponding uncertainty of 8% in K_{OH} 號 hence in p_{OH} as renarked in section 6.1. Another source of potential systomatic error is the uncertainty of ± 5 in the calibration of the thermocouples used to measure the furnace temperature. Consideration of equations (6.1) and (6.4) shows that this results in a \mathcal{F}_{p} uncertainty in $n_{J m o}$ almost ontiroly due to the depondence of $p_{O H}$ on T shown in Fig. $(6,2)$. Combining all tho orrors together, we have the final rosult

$$
f_{\infty}=(14.8 \pm 1.3) \times 10^{-4}
$$

6.5. Absolute Oscillator Strength of the (1,0) Band

The (1,0) band is significantly weakor than the $(0,0)$ bend, and only the strongest lines in each branch, for which $K^{n} \sim 5$ were measurable with reasonable accuracy. Morcover, since only 8 adequate exposures weire obtained for the $(1,0)$ band, the random orrors in the f-values are relatisely large, \cdots 20\%。 The vibration-rotation inver. action effect for this band is theoretivally rather smaller than for the $(0,0)$ band, the effect at $K \leadsto 5$ being only about 1%, which is negligible compared to the experimental scatter. Vibration-rotation interaction has therefore been neglected in the calculation of f_{10} which j.s obiained
 $=1$. The mean for all lines is $f_{10}=(8.9 \pm 1.5) \times 10^{-4}$ s the error being a measure of the experimentil scatter only. Combining this with the potential systamatic errors described in the provious section, we have the final result $f_{10}=(8.9 \pm 1.7) \times 10^{-4}$. This is the first absolute measurement of the f-value of the $(1,0)$ band, as t'ar as the author is aware.

The two values of f_{10} and f_{00} obtained in this experiment give $f_{10} / f_{00}=0.60 \pm 0.1$. This is indopendent of population density calculations as well as the tenperature calibration, as shown in section 6.1. This value of f_{10} / f_{00} is incompatible with Leamer ${ }^{1} s$ 1962^{18} calculations ($f_{10} / f_{00}=0.23 \pm 0.03$), and it is this disagrooment that leads to the recalculations of the vibration-rotation interaction sifoct in the moxt chapter.

CHAPTER VII

DISCUSSION OF RESUUTS

7.1. Comparison of f_{00} with Provious Meanurements

Table 1.1 sumarises the published values of f_{00} to dato. In 1963 Golden et $a l^{8}$ were able to conclude that only Dyno ${ }^{\circ}$ s, 1958 , 11 results were inconeistent with a value of $8 \times 10^{-4} \pm 15^{-4}$ but the spread of values obtainod since then, including the one presented hore, has become suoprisingly large, the incompatifility of the most rocont detominations $8,14,15,16$ boing particularly strange.

The work of Oldenberg and Rieke ${ }^{6,7}$ and Dyns ${ }^{11}$ suffers from the offects of incomplete resolution. Botin feport unexpectedly high values for the observed widths of the absurption lines, with the stronger lines yielding anomalously low results. Kostkowshi and Bass, 1956, ${ }^{17}$ have discussed the effocts of incomplete resolution puntitatively, and have shom that it yields orroneously low results for the f-valueso The error margin on Carrington ${ }^{0}$ s 1959^{12} result overlaps that obtained for the present work, loaving just the most recent four dotominations to be accounted for.

Lifetime methods of determining f-values are potentially the most roliable, sinee no calculations of population densities are required. Bennet and Dalby, $1964,{ }^{15}$ dotermined the lifotime of the $A^{2} \Sigma^{+}-X^{2} \pi$ transition of $\mathrm{OH}_{\text {, }}$ the transition boing isolatod by means of a filtor having maximum transmission at $3150 \AA$ and a half-width of $200 \AA$. thilo
thoy roport that the dominant feature in the spoctrun of the source was the $(0,0)$ band (band head $3064 \AA$), the $(1,1)$ and $(2,2)$ bands aro not rosolvod from the $(0,0)$ band, and the poak transmission of the filtor occurs at the rogion of maximum intonsity of tho (1,1) band (band head $3122 \AA$). This lack of resolution results in two possible sources of error. First, the transition probabilities of the (1,1) and $(2,2)$ bands are about 755^{\prime} and 50% that of the $(0,0)$ band, as given by Dieke and Crosswhite, 1949, ${ }^{22}$ and they thus have longer lifetimes than the $(0,0)$ band. The apparent lifetime measured in an experimental system which does not isolate the $(0,0)$ band fron these other bands is therefore orroneously long, leading to an incorrectly low value for the f-value of the $(0,0)$ band. Bennett and Dalby estimatod that, under the conditions of excitation and observation in their experiment, the error to be expected on this account was small compared to the errors from other sources. This is difficult to check. Secondly, it is possible that the $v^{0} \geqslant 1$ levels of the A^{2} 'state may be populated by the "pre-association" process

$$
O(3 \mathrm{p})+\mathrm{H}\left({ }^{2} \mathrm{~S}\right) \rightarrow O H\left(\Sigma_{\Sigma^{-}}\right) \rightarrow O H\left(\Sigma_{\Sigma^{+}}\right)
$$

described by Gaydon and Wolthard, 1951: This process is the more probable at the low pressures with which Bennet and Dalby conducted their experinents, since the rate of removal of the free atoms depends on the frequency of collisions and the offective collision lifo may bo comparable with the radiative life, thus longthoning the apparent lifotime of radiation from the $(1,1)$ and $(2,2)$ bands, further docroasing the apparent transition probability of tho (0,0) band. In addition,
the (0,0) band itself may be affected by a process described byr Douglas, 1966 , ${ }^{67}$ who has recently discussed in soms detail anomalously long radiative lifetimes arising from the mixing of the levels of two electronic states. In this case, the mixing would be between levels of the ${ }^{2} \Sigma^{+}$and ${ }^{2} \Sigma$ states.

The calculation of the population density in the line absorption experiment of Golden ot al, 1963, ${ }^{8}$ is independent of the discociation energy of OH_{9} but the fevalue determinations are according to the authors, subject to other passible systematic errors, any of which would lond to a result that was too low rather than too high. Only those aspects concerning the population donsity of $O H$ will bo examinod here. The $O H$ in their experiment was produced by the very fast atomnolecula reaction $\mathrm{F}+\mathrm{NO}_{2} \rightarrow \mathrm{OH}+\mathrm{NO}$. This is follown, however, by the two decay reactions $2 \mathrm{HH} \rightarrow \mathrm{H}_{2} \mathrm{O}+0$ and $\mathrm{O}+\mathrm{OH} \rightarrow \mathrm{O}_{2}+\mathrm{H}$. The offective rato of docay of $O H$ for a stoichiomotric mixture of H and ir_{2} is about 13 times smallor than the rato of production, and may bo roducod by introducing an excoss of H over HO_{2} in tho initial mixturo. With a 20 -fold excess of H over NO_{2}, the authors claimed that the croative process was about 250 times fastor than the decay process, and that thoir exporiment was mado undor conditions whoro tho croative process could bo considorod as having gore to complotion, whilo tho docay processes had not yot made appreciable inroads on the of concent. ration. However, a closo oxamination of their results shows a docroaso of about 11% in tho f.valuo as the $\mathrm{NO}_{2} / \mathrm{H}$ retio was increased by a factor of 2.5, from $1 / 28$ to $1 / 11$. This dotoctable variation in the
f-value indicates that the decay proeess has in fact made significant inroads in the $O H$ concentiration. That the OH decay was not detectable as a function of time was probably due to the decay process beginning before the creation process had reached completion, giving a growth and decay surve with a flat topped maxinum in a plot of OE population against time. It is also possible that the theoretical population donsity of ON was further fallen short of f_{9} on account of incomplete mixing of H and NO_{2}. The fact that the OE population was lower than the calculated value could possibly account for the whole of the discrepancy between their f-value and the one presented in this thesis. Watson's 1964^{14} extramordinarily high result has been discussed. by Watson and Ferguson, 1965,68 with special rogard for vibration rotation intoraction, but no reason for the discrepansy is suggestod. The valuo obtained by Bird and Schotts $1965,{ }^{16}$ is nearest to that obtainod hare. Although the experinontal scattor in thoir results was only about 2%, the authors did not have such high confidence in thoir results, being faced with the recent detominations of Golden ot a1; and Bennett and Dalby. In fact, the difference betwoon their rosult and that of the author is only about 15% just above the sum of tho probable errors of the two determinations.

Tho prosont, work has also beon carefully examined for systomatic orrors additional to thoso discussed in sociion 6.4. Tho most likely source is incomplote saturation of the oxygen after pessing through the water in the bubbler. This would result in an erroncously low f-value if it were significant. In tho rango of bubblor bath
temperature coverod in this experiment, $75^{\circ} \mathrm{C}$ to $91^{\circ} \mathrm{C}, \mathrm{p}_{\mathrm{OH}}$ is fairly insensitive to changes in P_{s} as may be seen from Fig. (6.1). Indeed, such a range involves increasing P by a factor of nearly 2 , while $p_{\text {OH }}$ increases by only 20%.

In any case, a systematic variation of much more than about 5% between the f-values obtained for bubbler temperatures $\sim 80^{\circ} \mathrm{C}$ and $\sim 90^{\circ} \mathrm{C}$ would have been detectable with the accuracy of the experimont, and no such systematic behaviour was noticeable.

7.2. Comparison of f_{10} with Previous Results

No absolute values of f_{10} oxist for comparison, but the author is aware of two experimental values that may be obtained for the ratio f_{10} / f_{00}. Dieke and Crosswhita, 1949s ${ }^{22}$ abtained the value 0.48 for p_{10} / p_{00}, where the $p^{\prime} s$ refer to the band strengths. It will be rocalled, from chapter II $_{2}$ that the relations between the oscillator strength for the band $f_{v^{\prime}} \mathrm{v}^{(t)}$ the vibrational transition probability

 ratio for p_{10} / p_{00} to one for f_{10} / f_{00} one must multiply each $p_{V^{n}} v^{n}$ by the average frequency $\nu_{v^{0} v^{\prime \prime}}$ of the transition, or divide it by the average wavelongth $\lambda_{V^{0} V^{\prime 0}}$ Taking $\lambda_{10}=2830 \AA$ and $\lambda_{00}=3100 \AA_{9}$ we obtain the ratio $f_{10} / f_{00}=0.53$ with a probable orror of \pm 体 which is in good agreement with the value of 0.60 ± 0.1 presented hore. Measurements on the intensities of weak (and optically thin)
lines given in the atlas compiled by Broida and Bass, 1953, 23 ucing the correctiontof Lalos, Corrucini and Bros:3, 1958, 69 and an estimated temperature of $3100^{\circ} \mathrm{K}$, lead to a value of $\mathrm{A}_{10} / \mathrm{A}_{00}=0.44 \pm 0.05$. On dividing by the ν^{2} factors, one has $f_{10} / f_{00}=0.37 \pm 0.05$. This value is liable to error on account of the uncertainty in the temperature determination.

Taken together, the three expurimental results give an average value of $f_{10} / f_{00}=0.50 \pm 0.07\left(\right.$ or $\left.p_{1 j} / p_{00}=0.45\right)$. The results of this experiment may therefore be taken as providing confímation of Dieke and Crosswhite's value of $p_{10} / p_{00}=0.48$, rather than tho "smoothed" values of 0.27 and 0.23 preontod by Skuler, 1950, ${ }^{2}$ and Nicholls, 1956, ${ }^{25}$ rospectivoly.
7.3. The Eloctronic Transition Moment for Vibrational Interaction

The confimation that this oxporiment gives to Dieke and Crosswhite ${ }^{\circ}$ s 1949^{22} experimental ratio of $\mathrm{p}_{10} / \mathrm{p}_{00}$ casts doubt on the validity of the exponont in Learner"s 1962^{18} dotomination of tho olectronic transition momont. The exponent had boon obtainod by fitting theoretical values of $p_{v^{0}} v^{6 /} / p_{00}$ to the exporimontal ratios that had boon smoothed by Nicholls, 1956.25 Nicholl's valvo for p_{10} / p_{00} is incompatiblo with the rosults of this oxperiment, consom quontly a now value for the cloctronic transition monont has now boon obtained by fitting thoorotical values to tho oxperimontal ratios $p_{v^{0} v^{s}} / p_{00}$ obtainod by Dicke and Crosswhito, 1949.22 Calculations of the offoctivo rolativo vibrational transition probabilitios
$p_{V^{8} V^{n}} / p_{00}$ for lines in the $2^{2}+\ldots{ }^{2}$ Ti band system were made using Learner"s ${ }^{18,} 52$ method of numerical integration of MorsemPekeris wave functions. Learner ${ }^{0}$ s programme designed for running on a Ferranti Mervary computer, then with the University of London Computer Uni.ts was modified by the writer to run on the IEN 7090 computer at the Imprrial College Computer Unit. The accuracy of the wave functions was checked with regard to orthonormality and the sum rule $\sum_{v^{s}} q_{v^{0}} v^{n}$ $=\sum_{v^{0 i}} q_{v^{0} v^{n}}=1$ for the Franck-Condon factors. The results of these checks are show in Tables 7.1 and 7.2. The seactroscopic constants used in the computations were taken from the data of Herman and 70 Hornbock, 1953. The exponential fom $R_{\theta}(r)=\theta^{-a r}$ justified by Learnei ${ }^{18,52}$ was again chosen for this purpose, and the value of the exponent was determined using a least squares critorion.

In Fig. (7.1) the standard doviation botweon experimental and theoretical rolativo band strongths $p_{v^{i} v^{*}} / p_{o o}$ is plotted against the value of the exponont, a. The theoreicical band strengths wore calculated for G Iinos at $J=10 \frac{1}{2}$, for which the transitions are most intense at the reported temperature of observation ($3000^{\circ} \mathrm{K}$), and wore weightod according to the intensities at $3000^{\circ} \mathrm{K}$. Tho unsmoothod axperimontal data are seen to be fitted extranely well by an electronic transition moment of $e^{-5.97 r}$. The orror in a may be assessed as ± 0.15. The standard doviation for this valuo corresponds to loss than 3β of the intonsity of tho $(0,0)$ band, and is of the order of what may reasonably bo expocted in photoelectric intensity measuraments of this kind. Both the deviation at the minimum of the curve and the sharpness of

Table 7.1. Orthonormality of Wave Functions.
$\mathrm{OH} \quad \mathrm{X}^{2} \pi$ States $\quad J=3 / 2$

$v^{0} v^{0}$	$\int v^{0}+v^{n} d \boldsymbol{c}$
0,0	0.999992
1,1	0.999941
2,2	0.999709
3,3	0.998796
4.4	0.992945

For all $v^{0} \neq v^{i n}, \int Y_{v^{0}} Y_{v^{n}} d t<1 \times 10^{-6}$

Tabie 7.2. OH Franok-Condon Factorss $A^{2} \Sigma^{+}-X^{2} \Pi \quad\left(J=10 \frac{1}{2}\right)$

$V V^{w} \rightarrow$	0	1	2	3	4
v^{0}	0.8979	0.0978	0.0043	0.0001	0.0000
1	0.0936	0.6884	0.2015	0.0160	0.0004
2	0.0078	0.1823	0.4706	0.2982	0.0380
3	0.0006	0.0274	0.2491	0.2664	0.3622
4	0.0001	0.0036	0.0597	0.2815	0.0951

Fig. (7.1): Variation of RMS Deviation between Calculated and Experimental Transition Probabilities with a in $R_{e}(r)=e^{-a r}$
the minimun itzelf are much improved compared to the fit to the snoothed data (given by the dotted line), and provide further confimmation that the smoothing must be rejected.

Fig. (7.2) shows the dependence of each $p_{v^{\circ}}$ w/ $/ \rho_{00}$ on the value of the exponent a. A value for a one paramater transition moment may be derived from the ratios of the $p_{V^{0} \mathrm{~F}^{\circ}}{ }^{\circ} \mathrm{s}$ of any two bands. The ratio $f_{10} / f_{00}=0.6 \pm 0.1$ from this experinert gives a value p_{10} / p_{00} $=0.55 \pm 0.1$ leading to a value of $a=6.9 \pm 1.1$. In emission the ratio of the intensities of the $(2,0)$ and (2,1) bands is independent of temperature. From measurements of lines in these bands given by Bass and Broida, 1953, 23 and using the corrections of Lalos, Currucini and Broida, 1958 , ${ }^{69}$ the value $a=5.1 \pm 0.8$ is obteinod. If the theorotical band strengths are woighted equally rather than weighted according to intensity, then the value a $=5.83 \pm 0.3$ is obtained. A woighted mean of all four values of a derived abovo gives $R_{e}(r)=e^{-(5.97 \pm 0.12) r}$.

Fig. (7.2) also shows that, given an exponential transition moment, the band strengths of most of tho bands in the systern relative to that of the $(0,0)$ band pass through a minimum, as the exponent is varied from 0 to 8 . It is therefore possible to fit these bands, the $(0,1)$ and $(0,0)$ sequences with $\Delta v=-1$ and 0 respectively, with either of two values of the exponent, and it is the $(1,0)$ sequence, whose band strongths relative to the (0,0) band increase continuously with the oxponent, that fixos which of the two is correct. The smoothing process carried out by Wicholls, 1956,25 and mentioned in section 2.5

(1) $\Delta v=-1$
() $\Delta v=0$
$\Delta \Delta v=+1$

Fig. (7.2): Variation of Relative Band Strengths with a in $R_{e}(r)=e^{-a r}$
was based on the recentroid approximation. This approach assumes that the electronic transition moment is a slowly varying function of r, and hence picks out the lower, and incorrect, of the two possible values of the exponent that satisfy the ratio $p_{v^{0}} / p_{00}$ for most of the bands in the system.

The form of the elestronic transition monent derived here is again (see section 2.5) obtained from the variation of band strengths within the system, and consequently takes into account the breakdown of the Born-Oppenheimer approximation with regard to electronic and vibrational motion. It is thorefore suitable to refer to it as the vibrationel elment in the electronic transition moment, and denote it by $R_{o v}(r)=o^{-5.97 r}$.
7.4. The Electronic Transition Moment and Rotationsl Coupling

In section 2.5 it was mentioned that Leamer ${ }^{18,5 \%}$ used inis value of $R_{0}(r)=e^{-2.5 r}$ for the electronic transition moment to calculate the variation of transition probability with rotational quantuin number. Convorsely, the variation of f-value with J or K may be used to derive a value for the exponent a in $F_{\theta}(r)=e^{-a r}$. A decrease of $7.1 \pm z_{\%}$ in the f-value of the (0,0) band between $K^{*}=1$ and $K^{N}=10$ was obtained experimentally and presented in section 6.3. This decrease is close to that calculated by Learner ${ }^{18,52}$ and corresponds to a value of $a=2.67 \pm 0.9$. The value of $5.97 \pm$ 0.12 for the exponent corresponds to a decrease of $14 \pm 0.3 \%$ over the same range of K^{m}, and is clearly incompatible with the experinental
result.
The electronic transition moment may be askmined from the pofnt of view of its effect on rotational temperature determinations. The fact that the effective f-value of the $(0,0)$ band decreases with increasing J means that the rotational tamperature measurements, whether by a log plot or by theiso-intonsity method, would lead to an orroneously low value. Learner ${ }^{18,52}$ has calculated and plotted the corrections ΔT to be addod to the rotational tamperatures so determined, up to $T=$ $3000^{\circ} K_{,}$for $R_{\theta}(r)=e^{-2.5 r}$. Consider the temporatures derived for the outer cone of a stoichiometric axywindemo flame treated by Broida and Shuler, 1957. ${ }^{71}$ The rotational temperature obtained was T rot $=2980^{\circ} \mathrm{K}$, while the calculatod adiabatic tanperature was Tadiabatic $=3320^{\circ} \mathrm{K}_{\text {, }}$ and the reversal temperature measured by iron spectrom line revorsal was $T_{F e}=3200^{\circ} \mathrm{K}$. The corrected rotational temperatures obtained using $R_{\theta}(x)=e^{-2.67 r}$ and $e^{-5.97 r}$ are $3260^{\circ} \mathrm{K}$ and $3560^{\circ} \mathrm{K}$ rospoctively. The value of $e^{-2.67 r}$ loads to a temperaturo very closo to Tadiabatic and $T_{F e}$ whilo the value $\theta^{-5097 r}$ leads to a temperature that differs by $\approx 300^{\circ} \mathrm{K}$. The tomperature measuroments of Zirman and Bogden, 1964, 31 aro also consistont with an electronic transition moment of $e^{-2.7 x}$ bus not $e^{-5 \cdot 97 x}$.

The disagrement botween the two transition moments obtained from tho vibration-rotation intoraction rosults and the distribution of the band strengths of the vibrational bands in the system may be accounted for if one postulatos that the transition moment may be splitinto two elemonts. The valuo $R_{e v}(r)=e^{-5.97 r}$ obtained in the
previous section accounts for the breakdown of the Borm-Oppeinheiner approximation with regard to the electronic and vibrational motions. It has also been shown, in section 2.3, that there is an interaction between the electronic and rotational motions of the Of radical. This interaction may besplit into two parts, one concorned with the angular part of the eigenfunction, the other with the radial part. The interaction in the angular part manifests itself in the familiar spin decoupling phenomenon, where the cupling between olectron spin and orbital motion decreases with increasing J. The offect on tho energy levels is the chango of multiplet splitting with increasing rotation, as the coupling scheme changes fran boing near case (a) to noar case (b), end the effect on intensity celculations requires one to roplace the HÖnl.London formulae, 1925,42 by those of Hill and Van Vlock, 1928. 49 The radial part of the interaction corresponds to the centrifugal distortion of the rotating molocule, and it is the further offoct on the intensities of this distortion that needs to bo considorod. It seans roasonable, as a first stepin the undorstanding of this intoraction, to assumo that tho interaction between tho eloctronic and rotational notions may be accountod for in the expression for the total oloctronic transition momont $\mathrm{R}_{\mathrm{oVJ}}(\mathrm{r})$, by a rotational olmont that is dependent on rotational onergy, writing $R_{\text {evJ }}(r)=R_{e v}(r) \times R_{o J}\{J(j+1)\}$. For the $\mathrm{OH}(0,0)$ band, the oxperimontal data are consistent with values $R_{e v}(r)=e^{-5.975}$ and $R_{o v J}(r)=e^{-2.67 r}$, giving $R_{\theta J}\{J(J+1)\}=o^{+3.30 r}$. It is postulated that tho rotational elmont $R_{o J}(J(J+1)\}$ is an oxponontial function of rotational onorgy as well as intornucloar distance for
the simple reasons that the data do not justify the fitting of a function with more than one parameter and that the exponential form is the most convenient single parameter function. Thus we have $\mathrm{R}_{\mathrm{ej}}\{\mathrm{J}(\mathrm{J}+1)\}$ $=e^{\mathrm{bJ}(J+1)}$ and $R_{e v J}(r)=e^{-5.97 r} e^{\mathrm{bJ}(J+1)}$, where $\mathrm{bJ}(J+1)$ is equivalent to $(3.30 \pm 1.0) r$.

The relation between the radial and rotational forms of the exponent in the rotational element of the electronic transition moment may $b e$ obtained by considering the centrifugal distortion of the rotating molecule. Fig. (\%.3) shows the radial part of the $\mathrm{v}=0$ eigenfunctions for various rotational states of the OF ground state $x^{2} \pi$. It shows that the dominant effect of increasing rotation is an outward shift of an otherwise mainly unaltered function. The position of the contre of gravity of the radial part of tha eigenfunction is related to the effective B value $B_{\text {eff }}$. The rotational energy of the molecule may be represented to a good approximation by
where

$$
\begin{align*}
& E_{J}=B_{v} J(J+1) \ldots D_{v} J^{2}(J+1)^{2} \\
& B_{v}=\frac{h^{2}}{8 \pi^{2} \mu r_{0}^{2}}
\end{align*}
$$

as given by Herzberg, 30 This may be rewritten as

$$
I_{J}=B_{o f f} J(J+1), \text { whore } B_{o f f}=\frac{h^{2}}{8 \pi^{2} u_{0 f f}^{2}} \quad \cdots(7.2) \text {, }
$$

whore $r_{\text {off }}$ is the offoctivo internucloar separation for the rotating molecule. Thus we have $B_{\text {eff }}=\mathrm{dE}_{\mathrm{J}} / \mathrm{d}\{J(J+1)\}$, so that by combining (7.1) and (7.2), we have
135.

Fig. (7.3): Wave Functions of the $x^{2} \pi$ State, for $v=0$

$$
B_{e f f}=B_{v}-2 D_{v} J(J+1)
$$

Thus we obtain

$$
r_{\text {eff }}=\left(\frac{h^{2}}{8 \pi^{2} \mu^{\prime}}\right)^{\frac{1}{2}}\left\{B_{v}-2 D_{v} J(J+1)\right\}^{-\frac{1}{2}}
$$

Then, provided that $2 D_{V} J(J+1) / B_{V} \ll 1$, which is valid for J less than about 15, we have

$$
\begin{aligned}
\mathbf{r}_{\theta f f} & =\left(\frac{h^{2}}{8_{\pi^{2}} \mathcal{B}_{v}}\right)^{\frac{1}{2}}\left\{1-\frac{2 D_{v} J(J+1)}{B_{v}}\right\}^{-\frac{1}{2}} \\
& =r_{\theta}\left\{1+D_{v} J(J+1) / B_{v}\right\}
\end{aligned}
$$

Thus

$$
r_{e f f} \sim r_{\theta}=r_{\theta} D_{v} J(J+1) / B_{v}
$$

$\theta^{\left(r_{\text {eff }}-r_{\theta}\right)}=$ cont. $\theta^{r_{\theta f f}}$, and bejizz here concerned with relative transition probabilities it can be seen that $e^{3 \cdot 30 \mathrm{r}}$ is equivalent to $e^{\operatorname{bJJ}(J+1)}$ in

$$
b=3.30 r_{\theta} D_{v} / B_{v}
$$

As a first approximation if we use the mean values of $r_{9} B$ and D for the constants at $v=0$ for the two electronic states, we obtain

$$
r_{0} D_{0} / B_{0}=1.095 \times 10^{-4} \text { and } b=3.62 \times 10^{-4}
$$

In practice the best fit to the experimental data, using an electronic transition moment of the form $0^{-5.97 r} e^{b J}(J+1)$, has $b=(3.60 \pm 1.0)$ $\times 10^{-4}$.

Learner ${ }^{0} s^{18,52}$ calculation of J dependent vibrational transition probabilities $p_{V^{0} V^{\prime \prime}}$ were made for $R_{e}(r)=e^{-(2.5 \pm 0.5) r}$ and these,
together with the temperature coreertions presented, are nearly correct for the (0,0) band, for which the effective value of $R_{e}(r)$ obtained in this experiment was $R_{\theta}(r)=e^{-(2.67 t 0.9) r}$,

Table (7.3) gives relative J dependent vibrational transition probabilities
$p_{V^{q} V^{n}}(J)=\left|\int \sum_{V^{q} J^{q} A^{i}}(r) \theta^{-5.97 r+3.60 \times 10^{-4} J(J+1)} Y_{V^{00} J^{n} n^{n}}(r) d r\right|^{2}$
for all bands with v^{0} and $v^{18}<5$, using Morse-Pekeris wave functions, normalised so that the value for $P_{1}\left(1 \frac{1}{2}\right)$ for the $(0,0)$ band is set equall to 1.000.

It is not possible, with the present shortage of adequate data, to detemine if the electronic transition moment should include a third tom to account for elactronic-vibrational-rotational interaction, in addition to the two tems $R_{e V}(r)$ and $R_{e J}\{J(J+1)\}$ accounting for olectronic-vibrational and electronicmrotational interaction respec. tively. That this results in a small change in oigenvalue does not nocessarily mean that there will be a correspondingly small change in the transition probability, as discussed in section 2.5. There is thus a noed for furthor accurate moasurements of the variation of relative effective vibrational transition probabilities with rotational and vibrational quantum numbers, over the wholo band syston.

It should be noted that the calculations are not able to distinguish betwoen the two spin states of the molecule for each J value. Accounting for the difforent spin states in tho exprossions for the wavo functions may indoed lead to different values for the

Table 7.3 Relative J-Dependent Transition Probabilities in OH ($\mathrm{p}_{\mathrm{V}^{\prime \prime}} / \mathrm{p}_{00}$)

transition probabilities, but in this experiment the values obtained for the Q_{1}, Q_{2} and P_{1} branches were ali equal to within the experinental error.

7.5. Thermometric Molecules

The effect of the J dependence of the effective vibrational transition probability is to increase the uncertainty of rotational temperature doteminations. A molecule suitable for accurate measuro ments of the rotational temperature requires two very similar electronic states, so that the change of overlap integral with J is a minimuma a high dissociation onergy and hence high binding force and low centrifugal distortion; and a slowly varying total electronic transition monent. It is reasonable to suppose that $R_{\theta}(r)$ should change more slowily for transitions that are not forbiden in the separatod atoms. It has also beon suggested that $R_{e}(r)$ varies more slowly for parallel ($\Delta \Lambda=0$) than for perpendicular ($\Delta A \neq 0$) transitions.

Very few of the comnon thermometric molecules satisfy all the conditions listod above. The C_{2} Swan system satisfios many of the conditions, but requires higher resolution than the hydride on account of the higher mass, and hence lower B value, loading to a narrowor separation of the spectrum lines. The OH radical does not fulfil any of the conditions, and the temperature corrections referred to hero and prosented by Learner ${ }^{18,52}$ may well represont an upper limit to the uncertainty to be expected in thermometry with the group of molem cules $\mathrm{CH}_{3} \mathrm{C}_{2}, \mathrm{CH}_{3} \mathrm{OF}_{2} \mathrm{MgH}_{3}$ and NH . The other molecules quoted partly satisfy the requiraments while of does not, but the whole field does call for a thorough investigation.

REFERENCES

1. Horaborga G., 1965. J.Opt.Soc.Am. 55, 229.
2. Shuler, K.E., 1950. J.Chem. Phys. 18, 1221.
3. Carrington, To, 1959. J.Chem.Phys. 11, 1243.
4. Pearse, R.W.B. and Gaydon, A.Go, 1963. The Identification of Molecular Spectra, 3rd. Edno, Chapman \& Hall, London.
5. Weinreb, S., Barrett, A.H.g Meeks, M.L. and Henry, J.C., 1963. Nature 200, 829.
6. Oldenberg, O. and Rieke, F. F., 1938. J.Chem.Phys. 69 439.
7. Dwyer, R.J. and Oldenberg, O., 1944。 J.Cham.Phys. 12, 351.
8. Golden, D.Mo, Del Greco, F.P. and Kaufman, Fog 1963. J.Chem. Phys. 39, 3034.
9. Oldonberg, O. and Rieke, FoFo, 1938. स. Chem. Phys. 69 169.
10. Oldenberg, O. and Rieke, F.F., 1938. J.Chem. Phys. 6, 779.
11. Dyne, P.J.s 1958. J.Chem.Phys. 28, 999.
12. Carrington, T., 1959. J.Chem。Phys. 31, 1243.
13. Lapp, M., 1960. J.Q.S.R.T. 1, 30.
14. Watson, R., 1964. J.QoS.R.T. 4. 1.
15. Bennot, RoG. and Dalby, F.W., 1964. J.Chem. Phys. Li0, 14140
16. Bird, P.F. and Schott, GoL., 1965. J.O.S.R.T. 5, 783.
17. Kostkowski, HoJ. and Bass, A.Mi, 1956. J.Opt.Soc.Am. 46, 1060.
18. Learner, R.C.M., 1962. Proc.Roy.Soc. A.269, 311.
19. Mulliken, F.S. 1940. J.Chem. Phys. 8, 382.
20. Hurley, A.C., 1959. Proc.Roy.Soc. A.249, 402.
21. Dieke, G. H. and Crosswhite, H.M., 1948. Bumblebee Series Report No. 87, reprinted in 1962, J.Q.E.R.T. 2, 97.
22. Dieke, G. H. and Crosswhite, H.H., 1949. Quarterly Report, Oct.-Dec. 1949, Contract il Ord 8036 JHB-3 Problem A9 Johns Hopkins University (unpublished).
23. Bass, A.M. and Broida, H. Pog 1953. N.B. S. Circular 541.
24. Morse, P.M. 1929. Phys.Rev. 34, 57.
25. Nicholls, R.W., 1956. Proc. Phys.Soc. A.69, 741.
26. Nicholls, Ro Wo and Jarmain, WoRo, 1956. Proc. PhysoSoc. A.69, 253.
27. Bass, A.M. and Broida, H. Pos 1953. J.Chem.Phys. 21, 173.
28. Learner, R.C.M. and Gaydon, A.Go, 1959. Nature 183, 242.
29. Pekeris, C.I.g 1934. Phys. Rev. 45, 98.
30. James, T. C. , 1959. J.Chem. Phys. $32,1770$.
31. Zimman, W. G. and Bogdan, SoI., 1964. J.Chem.Phys. 40, 588.
32. Roschdestwensky, D.S.g 1912. Ann. Phys. 39, 307.
33. Roschdestwensky, D.S.s 1921. Trans.Opt.Inst. Leningrad 2, No. 13.
34. Puccianti, Ios 1901. Nuovo Cimento $2,257$.
35. Puccianti, Le, 1904. Memm.Spottrosc. 33, 133.
36. Ostrovskii, Y.I. and Penkin, N. Pos 1961. Optics and Spectroenopy 11. 1.
37. Ostrovskii, Y.I. and Penkin, NoP., 1961. Optics and Spectroscopy 11, 307.
38. Mitchell, A.C.G. and Zemansky, M. W., 1934. Resonance Radiation and Excitod Atoms, Cambridge Univ. Press.
39. Herzberg, G., 1950. Molecular Spectra and Molecular Structure, I; Spectra of Diatomic Molecules, 2nd Edne, Van Nostrand, Now York.
40. Mulliken, R.S., 1939. J.Chem. Phys. I, 14.
41. Condon, E.U., 1928. Phys.Rev. 32, 858.
42. Hönl, H. and London, Fo, 1925. Z. Physik 33, 803.
43. Dennison, D.M., 1926. Phys.Rev. 28, 318.
44. Rademacher, H. and Reiche, Fo, 1927. Z.Physik 41, 453.
45. Franck, J. ${ }^{2}$ 1925. Trans. Faraday Soc. 21 536.
46. Condon, E.U., 1926. Phys.Rev. 28, 1182.
47. Condon, E. U., 1947. AmoJ.Phys. 15, 3650
48. Van Vleck, J. H., 1929. Phys.Rev. 33, 467.
49. Hill, E. and Van Vleck, J.Ho, 1926. Phys.Rev. 32, 250.
50. Earls, L.T., 1935. Phys.Rev. 48, 423.
51. Dunham, J.L., 1932. Phys.Rev. 41, 721.
52. Learner, R.C.M., 1961. Ph.D. Thesis, London.
53. Heman, R.C. and Rubin, RoJ., 1955. Astrophys.J. 121, 533.
54. Nicholls, R.W. and Fraser, P.A.g 1958. Scientific Report No. 6, Contract AF 19(604) - 1718, Univ. of Wo Ontario, London, Ontario.
55. Wood, ReIt, 1904. Phil.Mag. 8, 293.
56. Ladenturg, Ro, 1921. Z. Physik 4, 451.
57. Kramors, H. A., 1924. Nature 113, 673.
58. Rosohdestwensky, Do So and Penkin, No. Po, 1941. J.Phys. U. S.S.Ros V, NO. 5-6, 319.
59. Pery-Thorne, Ao and Chamberlain, J.E., 1963. Proc.Phys.Soc. A. 82.133.
60. Mach., E., 1892. Z.foInstrunentenk 12, 89.
61. Zehnder, L., 1891. Z.f.Instrumentenk 11, 2750
62. Chemberlain, J.E., 1962. Ph.D. Thesis, London.
63. Bonhooffer, K.E. and Reichardt, H., 1928. Z.Physik.Chemie, A.132, 75
64. McBride, B.J., Hoimel, S., Ehlers, J.G. and Gordon, S., 1963. INoA.S.A., SP-3001.
65. Barrow, R. Fo, 1956. Ark.Fys. 11, 281.
66. Gaydon, A.Go and Wolfhard, Ho Go, 1951. Proc.Roy.Soc. Ao 208, 63. 67. Douglas, A.E.s 1966. J.ChemoPhys. 45, 1007.
67. Watson, R. and Ferguson, WoReg 1965. J.Q.S.R.T. 5, 5950
68. Lalos, G.T., Corruccini, R.J. and Broida, H. P., 1958. RevoSci.Instrum. 29, 505.
69. Herman, R.C. and Hornbeck, G.A., 1953. Astrophys.J. 118, 214. 71. Broida, H. P. and Shuler, K.E., 195\%. J.Chem.Phys. 27, 933.
