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1.

ABSTRACT

This thesis deals with size dependence of the melting point of small
spherical tin crystallites. Transmission electron diffraction and electron
microscopy methods were used to obtain a relationship between the melting
point of a crystallite and its radius.

Specimens consisting of spherical tin crystallites were prepared in
an electron diffraction camera by evaporating tin onto thin amorphous films.
The melting point of a specimen was determined by observing the temperature
at which the diffraction pattern rings consistent with the solid poly~-
crystalline phase ceased to be visible. The mass distribution of the
crystallites was found by examining micrographs of the specimen, obtained
by means of an electron microscope. From these measurements, and from
further experiments it was possible to determine the ratio of liquid to
so0lid masses at which the sharp ring electron diffraction pattern became
obscured. It was then possible to calculate the radius which was to be
assoclated with the melting temperature of the specimen.

Lattice parameters were measured to investigate any possible change
with eize, in the structure and density of the crystallites., By using two
different amorphous substrates (silicon monoxide and carbon) it was
concluded that the type of amorphous base did not affect the results.

A theoretical treatment of the phase equilibrium between solid and

liquid using thermodynamic methods is also given. Two models of melting are
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discussed to obtain theoretical relationships between the melting point
of the crystallites and their size. The theoretical results obtained

are correlated with the experimental observations,
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CHAPTER I
INTRODUCTION

T1e Surface Effects on Solid Phases.

When a phase of indefinite extent is in thermodynamie equilibrium,
its properties are uniform throughout. However if the phase is not
indefinitely extended so that there is a surface associated with the
phase, there ig a discontinuity in the uniform distribution of matter.
This discontinuity results in the individual atoms in or near the
surface having a different energy and being subject to different atomic
forces from the atoms in the interior. The different physical and
thermodynamic properties of the surface, therefore, must be considered in
the general treatment of thermodynamic equilibrium betwecen phases as
Gibbs pointed out in his work on "The Eqiilibrium of Heterogeneous
Substances". The surface effocts are negligible when normal bulk
properties of a substance are considered, and only become. appreciable
when the size of the substance is decreased sufficiently for %the energy
associsted with the surface to become an appreciable fraction of the
total energy of the system or when the different forces at the surface
affect the stresses in the interior of the phagse. These effects
increase as the size decreascs.

Sincc: for a long time,the observation of surface effects was
limited to optical methods, éizes at which surface effects on solids
became appreciahble could not be observed. However with the advent of

X~rays, electron diffraction and electron microscopy, surface effects
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on the physical properties of the whole solid particle could be
measured., Nicolson (1950), using finely powdered magnesium oxide

in X~ray analysis, observed a contraction in the lattice spacing of
particles of mean size 600 K which closely agreed with those expected
from surface stress effects. Bublik and Pines (1952) found, by
transmission electron diffraction on thin unsupported metal films of
chromium, nickel, vanadium and cobalt, that the structure of the film
depended on their mean t}ickness. They explained thie change in terms of

surface free energy effects.

2 Investigaticns of the Effect of Surfaces on the Melting~Point.

The effect of surface on solid-liquid phase change wgs investigated
as early as the beginning of this century.Pavlov (1909) observed a
lowering of the melting point of a solid in the form of a’ finely divided
powder. Meissner (1920) made the same observation when the solid was in
the form of thin layers of the order of one micron thick, The results
kowsver, due to experimental difficulties were insufficiently accurate
for quantitative investigation of the effect of size on the melting
point.

When electron diffraction became available as a means of observing
the change from the solid o liquid state, the phase change of solid
particles whose size was well below one micron could be invesiigated.

Although the transition from solid to liquid tin had been

observed by means of electron diffraction by Jenkins (1935), Sayama (1941)
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and Richter (1943), the first exporimonts which established that

the melting point is lowercd as the size of the crystallites is

decreased were carried out by Tekagi (1954). The melting point of

thin evaporated f£ilms was detected by means of reflectlion electron
diffraction. It was found that the melting point temperature decreased
as the mean thickness of the film decreased. However, because of the

low accuracy in the temperature measurements, and because the crystallite
size was considered to be equél to the mean thickness of the film, no
reliable correlation between the size of a crystallite and its melting
point could be obtained (See Curzon (1960)).

By meaﬁs of transmission electron diffraction, Blackman and
Curzon (1959) investigated the melting point of tin crystallites which
had been evaporated in vacuo onto carbon films to form thin layers.

They observed, using an electron microscope, the sizes of the crystallites
which constituted the layers. These experiments were the first attempt

to correlate directly, the melting point of a given crystallite with its
size.

In the experiments described in this thesis, the Blackman-Curzon
technique was extended in an effort to obtain a detailed study of the
dependence of the melting point of tin on crystallite size. Direct
observation of the melting peoint of a specimen is not possible with an
electron microscope,; because the heating of the specimen by the

intense electron beam prevents accurate measurement of the temperature.
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So that the theoretical treatment of a spherical surface would
be valid, the crystallites were prepared in such a way that they were
spherical even when their radii were of the order of 1000 X. Since the
crystallites in an evaporated layer do not have an uniform size,
different slzes of corystalllites will melt at differenf temperatures
because of their different surface effects. However the melting point
of a given specimen can be determined, with reasonable accuracy,
by observing the disappearance of the sharp rings in its transmission
electron diffraction pattern. The diffraction pattern of a specimen
composed of solid crystallites is shown in Figure 1, that of a specimen
with some so0lid and some molten crystallites in Figure 2, and one of
a specimen in which all the crystallites are molten in Figure 3.
Experiments were carried out to give the crystallite radius which was to
be correlated with the observed melting point of the specimen. In this
way 1t was possible to assign a definite melting point to a single
crystallite of a given radius.

In addition the possible effect of neutral substrates on the
formation and melting temperature of tin crystallites was investigated

by using the two different substrates,ciliccn -monoxide and carbon.
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CHAPTER ITI

APPARATUS.

1. General Arrangement of Diffraction Camersz.

The experiments described in this thesis were carried out in a
vertical diffraction camera designed by Kehoe and Newman (1956) which is
shown diagrammatically in Figure 4. The camera could be evacuated
down to a pressure of ‘IO--5 mms.Hg. A conventional type of hot filament
gun was used to produce an electron beam in which the electirons were
accelerated to 45 K.V., which corresponds to a de Broglie wavelength of
0.0565 R. The beam was.focussed by a magnetic lens, B, onto a fluorescent
socreen, G. The specimen electron microscope grid A, 3 mms. in diameter,
could be inserted into the camera by means of a specimen holder, D, which
fitted into a large port in the side of the specimen chamber, C. An
evaporator, E, was attached to a smaller port whose axis was level with,
but perpendicular to, that of the specimen holder. This enabled in situ
evaporation of tin.onto the specimen grids so that experiments could be
carried out on freshly prepared tin crystallites without exposure to the
atmosphere. An evaporator shield, S, allowed the extent of evaporation
to be controlled. A Faraday cage, ¥, at the same level as the specimen
was inserted into the vacuum through another port. With this cage the

electron beam intensity could be measured accurately and hence maintained
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constant throughout different experiments. There were two windows

for observing the inside of the specimen chamber which was illuminated
internally. The diffraction pattern from the specimen could be observed
on the fluorescent screen, Gﬂ Photographs of the diffraction patterns
ocould be taken,either on photographic film or on plates at H,by raising

‘the screen.

24 Specimen Chambex.

The general arrangement of the specimen chamber is shown in Figure 4.
The evaporator, previously described by Kehoe, Newman and Pashley (1954),
is shown diagrammaticaliy in Figure 5. On the axis of the evaporator
was a tightly wound molybdenum filament, ¥, so arranged that it cculd be
rotated to have its apex horizontal or vertical. When the specimen was
correctly positioned, the axis of the evaporator was perpendicular to the
specimen, the distance between the filament and specimen being 15 cms.
The filament was very tightly wound so that on heating, the molecular
beam of tin travelled in the forward direction only, with a constant
polar distribution (Hollend (1956) p.146),and a collimator, C, was fitted
onto the end of the evaporator to ensure that the molecular beam did not
spread throughout the specimen chamber. When the shutter, S, was raised,
a fixed fraction of the molecular beam of tin evaporated from the filament,

condensed on the specimen grid. The filament was heated by a current
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of up to 25 amps. A.C., the heavy current leads being led into the vécuum
via robust porcelain-metal seals, L. The rate of evaporation was
controlled by varying this current using a "Variac" transformer.

The specimen electron micfoscope grid was mounted inside the specimen
heater previously described by Curzon (1960) which was incorporated in a
specimen holder of the type described by Kehoe, Newman and Pashley (1954).
The heater is shown diagrammatically in Figure 6. The specimen grid, S,
fitted into the hollow copper cylinder, A, of internal diameter equal to
the diameter of the grids., This cylinder A was open at one end and had a
centrally placed aperture at the other. The grid wag kept in a fixed
position next to the aperture by the part B, the two parts being held
together by means of a press fit., The specimen grid in this position was
perfectly flat in a plane perpendicular to the axis of the cylindrical
container, and in good thermal contacf with both parts of the container.
It can be seen from the diagram that when the molecular beam was incident
along the axis of the cylindrical container, via B, it impinged without
hindrance on the specimen grid. Also;if the electron beam was incident
through the aperture, along the axig of A, a diffraction pattern of - the
specimen could be obtained.

The cylindrical container was brazed to the heater, H, on one side;
and to a calibrated copper/constantan ‘thermocouple junction, C, on the

other, The heater elements consisted of nichrome wire wound on a mica
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former and insulated from the metal parts of the heater by mica sheets.
The rate of heating of the specimen could be controlled accurately by
varying the current through the windings using a rheostat in series with
a 24 volt D.C. suppl¥. The temperature of the specimen was registered on
a calibrated microammeter in the thermocouple circuit. When the maximum
current of 3 amps was passed through the heater windings no deflection
of the electron beam, was observed due to the mopnctic field produced;:
The cylindrical parts of the container were made of "spec~pure" copper and
the brazing material contained no volatile substances such as zine; so
that on heating up to 300°C no contamination of the specimen occurred.

The heater was mounted on the specimen holder as shown in Figure T.
The thermocouple and heater leads were led out of the camera via the
insulated seals, D and B, When the specimen grid was inserted into the
vacuum, part Q of the specimen holder was secured in a fixed position with
bolts on the outside of the specimen chamber. In this position the axis
77 of the specimen holder was perpendicular to the evaporator axis, X-X,
and to the electron beam, Y-Y., By means of controls F and G, indicated
in the figure, two independent modes of motion of the heater; relative to
the specimen,were at¥tainable. The posivion of the specimen was so
adjusted that it coincided with the intersection of tho tlwroe wes. A greased
O-ring between the parts P and Q enabled the specimen holder as a whole,
to be rotated about the Z2-Z axis. With the specimen in the specified

position, the holder could be rotated sc that the axis of the cylindrical
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Figure T. The Specimen Holder.
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container coincided with the axis of the evaporator or with the elsctron
beam, enabling the evaporation to be carried out with subsequent
observation of the diffraction patbern. It was advantageous (and in
some cases essential) for different specimens to be in exactly the same
position with respect tc the evaporator filament and the electron beam.
For this purpose locking devices were incorporated in the controls of the
specimen holder. The controls F and G were permanently locked and P
clicked into the two specificd positions by means of a rachet. This
ensured that on extraction and subsequent replacement of the specimen
holder into the vacuum, after changing the specimen grid, the same
condition of evaporafion was obtained and the electron beam incident on the

specimen gave a diffraction pattern in ezactly the same location.

3. The Electron Beam.

The electron beam was produced by a hot haiépin tungsten filament
with a grid biased negatively with respect to the filament. The filament\
current was supplied by two accumulators, the bias by a dry cell, and
the accelerating voltage by a stabilized supply, The emitted electrons
were formed into a beam, accelerated by 45 K.V.;and admitted into the rest
of the camera through a small aperture in the anodes The intensity of the
beam was controlled sensitively by varying the current through the filament

and negative bias on the grid so that the same beam intensity was obtained

repeatedly. By means of a magnetic lens (B in Figure 4), which was clamped
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in a fixed position above the specimen chamber, the electron beam:
could be focussced on the fluorescent screen by having a definite current
pagsing through the lens. The focussed beam could be moved in a
horizontal plane by tilting the lens on the three levelling -screws
in the clamp. The levelling-screws were adjusted so that the electron beam
passed through the specimen when it was in the position for observation
of the diffraction pattern. Two of these were locked permanently and
the third was adjustable in such a way that it could be returned to
exactly the same position, thus bringing the focussed beam back to exactly
the same locetion on the screen. This enabled the beam to be deflected
to a Faradsy cage at the side of the specimen chamber for beam intensity
measurements in different experiments.

The elcctron bcam intensity was measured by means of this Faraday
cage (Curzon 1960) connected to a sensitive moving coil galvanometer.
The Faraday cage was in the horizontal plane of the specimen so that the
beam diameter was the same in both positions. The beam entered the cage
through a small aperture and the beam current was rcegistered on a moﬁing
coil galvanometer of sensitivity of 8,000 mms. per pid. so that the electron
beam intengity could be adjusted to any required measured value. As it
was important not to have any effective heating of +the specimen by the
beamsa beam current intensity of 0.03uflswes used in the experiments which

corrosponded to 1°0 10-5 A/Emzo current density when the beam diameter

in the plane of the specimen was 600 us.
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The diffraction patterns in the cxperiments determining the melting
temperature of the crystallites were taken on photographic film., A
continuous series of exposures at different temperaturecs could be taken.
For the suﬁerimposition of patterns from different speciments and for
those used in measurement of lattice spacings, photographic plates were

uged as these were more mechanically stable.
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CHAPTER ITI

EXPERIMENTAL PROCEDURE

Te Proparation of Substrate Films.

The tin crystallites were evaporated onto substrate films of silicon
monoxide and of carbone To cbtain a silicon monoxide film, glass slides
woere cleaned in chromic acid and washed in alcohol, cocated with an
evaporated layer of rocksalt;and then silicon monoxide was evaporated on
top of the rocksalt. Both these evaporations were carried out withoud
breaking the vacuum so that contamination during the evaporation cof the
different layers was minimised. There was a copper shield between the
filaments so placed that the two filaments were shielded from one anocther,
without obstrueting the path to the slides of the molecular beam from
either evaporation. Powdered 810 was mixed into a paste with distilled
water and the molybdenum filament was filled with this paste. A small
erystal of rocksalt was placed in the tungsten filament and the evaporating
plant evacuated to a pressure of 1O~5 mms. Hge The rocksalt was
evaperated quite rapidly sc that a film was fofmed cn the glass slides.
The vacuum was allowed to recover and a current was passed through the
molybdenum filament, This formed a silicon monoxide film on top of
a rocksalt layer,

To strip the silicon monoxide film from the glass, the slide was

immersed slowly and obliquely into distilled water in a petry dish,and as
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the rocksalt dissolvced,the silicon mconoxide film floated off. The

film wes made into supports by transferring it onto copper elcctron
microscope grids. Great care was taken to ensure thal the film was
spread uniformly over the centre of the fine mesh of the grid. To do
this, the flattened end of a ghort piece of copper wire wasg bent over a
small part of the edge of the grid., The end was pressed in sufficiently
hard to keoep the grid steadily fixed but could easily be bent back, and
the grid could be released without any damage to the film on it., The
other end of the wire was held in a pair of tweezers and the grid was
submerged in the water and moved so that it was below the floating film
and parallel to ite. It was then raised slowly so that part of the film
spread uniformly over the centré of the grid as it passod tlhrough the
£ilmeThe film on the grid was then allowed to dry.

Silicon monoxide films of any required thickness could be produced,
the thickness depending on the magnitude and duration of the current
through the molybdenum filament. The film was made of a sufficient
thickness to be able to withstand heating fo BOOOCaqand'bombardment
by the intense electron beam in the microscope without fracture, but at
the same time thin enough %o give a good tin electron diffraction pattern
from very thin tin layers evaporated onto it. Once the optimum value for
the thickness had been obtained, identical films could be made by
reproducing the same conditions of evaporation, under which a current

of 15 amps.passed through the molybdenum filament with the slides 12 cms,

from it.
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Samples of the silicon meonoxide substrate films were examined under
an optical microscope to ensure that there were continuous layérs over
the centres of the grids. Bach specimen was examincd by transmisgion
electron diffraction, just prior to evaporation of tin, to check that
there were no impurities on the substrate to giwe sharp rings which could
be migtaken for those due to solid tin. A typical electron diffraction
pattern of the silicon monoxide film is shown in Figure 8 and a photograph
takeﬁ through an optical microscope of part of the coherent film on the
electron microscope grid in Figure 9. It can be seen that the electron
diffraction pattern consists of diffuse broad haloes showing that the
silicon monoxide is in an amorphous state. If any sharp rings were
observed the film was discarded as impure. A sharp ring pattern produced
by crystallites of tin was clearly visible on these diffuse haloes, even
when weak., This was of great adventage in determining the melting point
of tin.

The carbon films were prepared as described by Bradley (1954) and
Curzon (1960). This preparation was similar to that of the silicon
monoxide films except that a carbon arc was used in place of the filament
with silicon monoxide. The thickness was dependent on the size and
duration of the current causing the carbon arc flash, Once the optimum
thickness conditions had been determined, exactly the same carbon
substrate films could be reproduced, giving halo diffraction patterns

similar to those of silicon monoxide.
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2 Preparation of Tin Crystallites.

The tin films prepared on the two substrates were sufficiently thin
not to form continuous layers but were composed of separate crystallites
(Holland (1956) pp. 205-209) « As Spherical orystallites with a
definite size distribution across the surface of the substrate were ro=-
quired,the special evéporation techniques described below were devised.

A further discussion of the formation of these crystallites is carried
out in Section 3.1 of Chapter V.

It was found during preliminary evaporations of $in in vacuo that
different masses of tin gave different size distributions of crystallites
on the substrate films (see also Curzon (1960)). However the increase
of the mean size with the amount evaporated was not linear. With a high
rate of evaporation, crystallites formed oh the subsitirate at room
temperature gave circular electron microscope images when masses up to
4 mgs;were evaporated from the filament. For larger masses the crystallites
tended to lose their circular images and to coalesce, To overcome this,
the temperature of the silicon monoxide or carbon base during these
evaporations was raised %through a series of temperatures up to 160°C.

The rates of evaporation, pressure and position in the diffraction camera
were kept as conétant as possible for the different evaporations. 3By
using masses of tin ranging from 1 to 20 mgs., a whole series of tin
specimens were produced under these conditions of evaporation,

Tin was cut from a tin rod whose chemical and spectroscopic analysés
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indicated that if was 99.9§6¢ pure tin with the main impurities being
0.002% lead and 0.001% antimony. A chipping was weighed on a micro-
balanoe and cut down to the required weight, The weights were not
distributed evenly over the range used,because the relation betwecen the
mean size of crystallites formed and the evaporated mass of tin was not .
linear. Many evaporations were carried out with weights of tin between
1 and 3 mgseas, in this range, there was a rapid veriation of mean

size of the crystallites with mass evaporated.

The tin particle was placed in the evaporator filament, the axis
of which was vertical. The silicon monoxide or carbon film onto which
tin was to be evaporated was placcd inside the cylindrical container of
the heater, and the specimen holder was inserted in the position for
observing an electron diffraction pattern of the. film. The camera
was evacuated o a pressure of ‘lO'-4 mms.Hge and a current was passed
through the molybdenum filament for a few seconds, sufficient to make
it hot enough for the tin particle to melt and wet the filament. The
temperature reached in this way was insufficient to evaporate any of
the tin, so that on cooling down, the knownweight of tin was fixed to
the filament in the form of a spheres The diffraction pattern from the
silicon monoxide or carbon was examined to check that it had no
impurities which would give rings on the diffraction pattern.

After the tin had cooled to room temperature air was admitted to

the diffraction camera., The filament was rotated through 90 degrees so
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it faced the position of tihe specimen grid and the grid was turned to the
standaxrd pogition for all evaporations (see Figure 7). In this position
the uncontaminated substrate film was coaxial with the evaporator filament
along XX. The diffraction camera was then evacuated. In order to
minimise the oxidation of the tin crystallites formed and to extract the
water vapour from the long length of photographic film, the camera was
pumped out continuously,with liquid oxygen in the trap above the diffusion
pump,for several hours; so that a pressure of 10“5 mme. Hgs was attained.
The substrate was then heated to 300°C in order to evaporate the
impurities,from the atmosphere and pumping system,which had condensed onto
the gubstrate. This ensured that the formation of the tin crystallites
was as uniform as possible over the whole of the substrate film., The
evaporation of the tin was performed with the subgtrate films at a series
of different temperatures. The specimens with mean radii greater than
about 1008 had their substrates at temperatures between 180°C and 160°C,
thoge below 1003, at room temperature. The substrate was therefore allowed
to cool to the required temperature, the evaporator shutter raised and the
evaporation carried out. A current of 17.5 amps,was passed through the
filament: this ensured rapid evaporation of the tin. The molecular beam
which had condensed on the substrate film increased the mean thickness of
the layer of tin crystallites at the rate of 2002 0 300 R per minute,

depending on the amount evaporated. When all the tin had evaporated the
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heater was rotated so that the axis of the specimen was vertical and
the diffraction pattern fiom the specimen could be observed. Before
the melting~point experiments were carried out, the tin particles formed
at higher temperatures were cooled to room temperature bhecause they

had formed in the liquid state.

3. Observation of the Melting of Tin Crystallite Specimens.

The specimen holder was rotated into the position for observation
and photography of the diffraction pattern of the specimen. The electron
beam was directed by means of the focugsing coil onto the Faraday cage and
the intensity was adjusted to a value of 0.03pl. Preliminary investigation
had shown that the beam intensity did not change during an experiment, so
it was only necessary to measure the intensity at the beginning and end
of cach of these experiments. The electron beam was then redirected onto
the specimen go that the slectron diffraction pattern of solid tin could
be seen on the fluorescent screen. The pattern was photographed at room
temperature and the specimen was then heated.

The current through the heater windings was adjusted to heat the
specimen from room temperature to 100°C at a rate of 8-10°C per minute,
The temperature of the specimen was read from the thermocouple microammeter
and the temperature of the cold thermocouple Jjunction was checked at
regular intervals by means of a mercury—-in-glass thermometer in thermal

contact with the cold junction. When the specimen had reached 100°C the
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increage in the heater current was adjusted to give a 1pA.per minute
inerease in thermocouple current - equivalent to a rise in temperature of
3—400 per minute. When the tin crystallites had reached a temperature of
about 150°C, photographs were taken of 14A.increments of the thermocouple
current up to the melting point of bulk tine The electron beam™ intensity
was g0 weak during these experiments that exposures of 10 seconds were
required. However,the slow rate of heating ensured that the temperature
rige during any exposurs did not exceed O.SOC. When the smallest
crystallites were investigated ;  photographs were taken at temperatures
lower than 150°C. When the largest crystallites were investigated however,
photographs were not taken untilabout 210°C and the rate of increase of
temperature was halved so that exposures could be taken at increments of
O.5p4.

When the bulk melting point of tin had been reached, the specimen
heater was switched offe. When the specimen had reached room temperature, the
recrystallised tin pattern was photographed, the specimen was transferred
to the eleotron microscope and electron micrographs taken.

In certain cases a much longer film was placed in the camera so that
double and triple heatings to 23200 and coolings to room temperature could

be carried out on the same specimen.
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4« Observation of Tin Crystallites in Specimen.

Electron micrographs of several regions of each tin specimen were
obtained in an electron microscope. The microscope belonged to ths
Chemical Engincering Department, Imperial College, and the majority of
"the electron microscope work was carried out by Mr. H.I. Matthews.

The micrographs were taken as soon as possible, most of the specimens
being trensferred directly from the camera to the electron microscope.

The majority of the micrographs were taken at a2 magnification of 45,000
giving a resolution of 10—15%. Great care was taken to have the microscope
free from astigmatism and the magnification was continually checkede.

To confirm that the tin crystallites studied in these experiments
were spherical, certain specimens were shadowed by a heavy element (evg.

gold) and replicas of others were taken.

5. Super-pogition of Liguid and Solid Tin Electron
Diffraction Patternse.

The relative intensities of the solid (sharp ring) and liquid
(diffuse halo) electron diffraction patterns of %in were investigated in
order to determine the mass of liquid necessary to suppress the diffraction
pattern from a given mass of solid., The diffraction patterns from
different specimens in which all the cxrystallites were solid were
superimposed on patterns of specimens in which all the crystallites were
molten and vice versa. Great care was taken to have identical conditions

for every specimen when its diffraction pattern was photographed.
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Silicon monoxide substrate films, thicker than those described
in Section 1 of this Chapter, were prepared by increasing by 50% the
duration of the evaporation of the silicon monoxide; Tﬂese thicker
films ensured that all the contrdl apertures of the specimen grids were
completely covered by a coherent film. Each grid was checked under an
optical microscope for total continuity. The thicker amorphous substrate
caused no appreciable increase in the background of any tin diffraction
pattern — solid or liquid -~ but provided a continuous film over a large
area., When the electron beam; which was 600 pa;in diameter, passed
through a specimen, it defined a fixed arca of silicon monoxide film
covered by tin crystallites. If the substrate had not been perfectly
continuous, so that regions of the grid were not covered by film, the
effective area examined by the electron beam would not have been constant
for different specimens.

A wide range of tin crystallite specimens was evaporated onto these
substrates, the masses evaporated from the filament being divided into
two groups, one from 1 to 2.5 mgs., the other from 10 to 25 mgs. The
evaporations of tin were carried out as described in Section 2 of this
Ohapter, except that the silicon monoxide bases were at 16000. throughout
this series. The small masses were evaporated at this higher temperature
so‘that the crystallites formed from a particular evaporated mass, would
be as large as possible for a given mean thickness, The mean thickness

was proportional to the mass evaporated and the constant of proportionality
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was the same for all specimens since the substrate film was in the
same position during each evaporation.

The liquid tin electron diffraction pattern of each specimen of
large mean thickness was photographed at 232°C, to ensure that all the
tin ocrystallites causing it were molten. The specimens of small mean
thickness had their solid patterns photographed at room temperature,
when all the crystalliteé were golid. To ensure that the conditions of
exposure were identical, each specimen was in the standard position for
observing the diffraction pattern; the electron beam, by virtue of the
locking mechanisms on the focussing coil, could be returned to a fixed
position on the fluorescent screen after it had been directed into the
Faraday cage. The electron beam was carefully adjusted to 0.03pA.and
checked before each exposure.

For each specimen, sets of five diffraction patterrns were recorded
on photographic plates. The plates were mounted so that each in turn
could be rotated into exactly the same position for exposure, and
diffraction patterns were then coincident on each plate. By different
combinations of previously exposed plates, patterns from known specimens
(1iquid pattern on solid or solid pattern on liquid) were superimposed.
These exposures were all the same since they were subject to the same
beam intensity, voltage and time. When all the exposures required from
the specimens had been taken, micrographs of some of the specimens were

taken in the electron microscopes
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6o Observation and Comparison of Structure of Tin
Crystallites in Specimens.

Standard procedure was used for the determination of the structure
and lattice spacings of tin crystallites. Two transmission specimens
were mounted in the electron diffraction camera at the same distance from
the photographic plates one specimen was the polycrystalline layer of
tin under investigation, and the other was a polycrystalline layer of
thallium chloride formed by evaporation onto a silicon monoxide base.
Both specimens were at room temperature.

The camera was then evacuated, and the high tension voltage supply
and electron beam switched on and allowed several minutes to stabilize.
The beam was orientated onto the tin specimen and the electron diffraction
pattern produced was photographed on a photographic plate., The beam was
then deflected by means of the focussing coil onto the thallium chloride
and its diffraction pattern was photographed §n another plate. This
opergtion was carried out as quickly as possible in order to ensure that
the voltage of the electron beam, and hence the electron wave-length,
wag identical for both photographs. Also, instead of the thallium
chloride specimen, a tin specimen of a very different mean size of
crystallites was used to determine whether the lattice parameters changed

[
with size.
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CHAPTER IV

MEASUREMENTS.

Te Determinafion of the Melting Point of Specimens.

Photographs of the diffraction pattern of the specimen had been taken
as the temperature had been raised, The initial polycrystalline state gave
a sharp ring pattern which remained unchanged over a large initial temperature
rige except in the case of specimens with very emall mean crystallite size.
The sharp ring pattern of the solid tin began to change after a temperature
rise of about a 100°C. The sharp rings then grew fainter, the background
intensity increased, and haloes began to appear around the (200),(101) and
(226), (211) inner rings. (Indexed polycrystalline patterns of tin are
shown in Figure33 o As the temperature was increased further, the
background intensity became so strong that the rings outside (301)
disappeared; at the same time the intensity of the inner rings decreased
and that of the halges increased. On subsequent heating first the (301)
then the (220),(211) rings disappeared and the remaining two rings became
less and less distinet. At some temperature below the melting point of
bulk tin, the intensities of the healoes had. increased and those of the
two innermost rings decreased to such an extent that only the halo pattern
characteristic of liquid 4+in was visible, No further changes appeared
to occur in the diffraction pattern on heating up to 232°C. The temperature
at which this transition from sharp ring to diffuse halo pattern occurred

depended on the sige distribution of crystallites in the specimen. Those
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specimens with the largest mean crystallite sizes had these transitions
oceurring over a range of several degrees, the range increasing to
several tens of degrees as the mean size of the crystallites diminished.

All the crystallites were molten when the specimen was at 23200 ’
because this is the melting point of bulk tin, and at this temperature
there were no sharp rings present on the diffraction pattern. The
photographs of the diffraction patterns taken every 4°C or 200 were
compared visually with the photograph taken at 232°CAin order to determine
the melting point associated with the specimen. This is permissible since
the eye is a sensitive detector of intensity gradients, Sharp rings could
be observed in photographs of diffraction patterns, even when they were
weak and the background intensity comparatively high. The melting
temperature of the specimen, Tm , was taken as the mean temperature between
two successive photographs so chosen that the first was distinguishable
from the pattern of liquid tin but the second of which showed faint rings.
The diffraction patterns, photographed during transitions of two
specimens of quite different crystallite distributions, together with
those taken at 25°C and 232°C, are shown in Figure 10(A,B,C,D,E) and
Figure 11 (A;B,C;D,E)s The transition in the latter specimen of larger
mean size,is seen to be sharper.

The specimens which had very small meen crystallite size produced
transitions with which it was extremely difficult to associate a definite

nelting point. The photographs of the diffraction patterns were taken
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at room temperature, and then at intervals of 8 to 10°C becauvse the
transitions were so graduals. The transitions in the patterns were
indefinite because the pattern produced by the soiid drystallites was very
weak and the polycrystalline rings had broadened out. The subsequent
change in the diffraction pattern on melting was not so markea and in
consequence the transition from solid to liquid was uncertain.

2 Determination of the Size and Mass Distributions of
Crystallites in the Specimens.

In order to obtain the temperature at which a crystallite of given
radius melted, it was necessary first to obtain the size, and then the
mass distributions of crystaliites in each specimen. Typical photographs
of electron images of different specimens are shown in Figures 12 to 20.
The images of the tin crystallites prepared in this series of experiments
were circular, except for a few of the crystallites of geveral hundred
Angstoms radius, which gave elliptical images, The diameterg of crystallite
images were measured in order to obtailn the size distribubion of the
crystallites of a given specimen. In the case of the elliptical images
- the lengths of the two major axes were measured and thelr mean was taken
as the equivalent diameter.

The resolving power of the electron microscope was 10~15 3. The overall
magnification of the crystallites was chosen to be T.2 x 105 (iees 1 mm

equivalent to 13.9 g ) =0 no loss of accuracy was incurred” when a
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millimetre scale was used for size determinations. Histograms of
crystallite radii with a frequency interval of 6.95 2 were plotted.

It was found that the smoothed~out shape of these histograms became
‘constent when the number of particles measured from a specimen exceeded
500, provided +the specimen did not contain orystallites with radii much
greater than 100 3. For specimens with crystallite radii larger than
this, the spread of sizes was greater and hence a larger number of
measurements of particles was required to obtain a smooth histogram.
Consequently, for the specimens containing the largest erystallites an
overall magnification of 3.6 x 105 was usecd.

The distribution function n(r), of the crystallite sizes measured
on a given specimen was given by the smooth curve through the histogram.
Histograms of crystallite radii with the distribution functions
superimposed, which were obtained for the specimens whose electron
microscope photographs are shown in Figures 12,13,14 and 15, are shown in
Figures 12a,13a,14a and 15a respectively. To minimise errors in the
meagurement of the erystallite sizes, micrographs of completely
different parts of the same specimen were measured. Photographs of two
other parts of the specimen shown in Figure 14 are shown in Figures 14',14".
Their corresponding distribution functions are shown in Figures 14a',14a"
regpectively. It was found that the distributions of different parts of a
carefully prepareq specimen were identical within the experimental error.
For each specimen;crystallites at two or more different parts were

measured to give two distributions,and from these, the distribution
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function of a given specimen was obtained. In a few specimens different
perts gave distributions which differed by more thanzthe experimental
errors these were discarded.

Gaussian distribution functions of crystallite sizes were obtained
from specimens for which the mean crystallite radius was less than
approximately 60 R + The mode and the mean coincided within the
experimental error. When the specimens were such that the mean radius
of the orystallites exceeded 60 R, the distribution function obtained
from high ?esolution micrographs showed marked pesks of unequal height
with a well defined minimum between‘them; An example of this is shown in
Pigure 16a which is the size histogram for the specimen whose electron
microscope photograph is shown in Figure 16. It can be geen that the
crystallites whose radii were less than the radius of the minimum between
the two peaks were much smaller than the mean radius of the shaded part
of the histogram. Since the effects studied were proprotional to the
cubes of the radii, these orystallites were ignored, and the distribution
obtained from the histogram was still approximately Gaussian, as shown
in the figure. Therofore this distribution would still be obtained from
micrographs in which the smaller crystallites could not be resolved
because of lack of contrast. Typical distributions for the larger tin
orystallites are shown in Figures 17a, 18a, 19a, 20a; these were obtained
from the specimens whose electron microscope photographs are shown in

Figures 17,18,19 and 20. In these histograms the orystallites with radii
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Figure 13a. Crystallite size distribution
of Specimen shown in Figure 13,

¢

Figure 12a. Crystallite size distribution
of Specimen shown in Figure 12.
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Eigure 1441, Crystallite size digtribution

of Specimen shown in Figure 14'.
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Figure 15a. Crystallite size distribution

of Specimen shown in Figure 15.

uq+|o

20r

10

FPigure 14a, Crystallite size distribution
of Specimen shown in Figure 14,

nr)
150f s~
—L—'/ \
i f \
\
/ \
{ 4
N \
\
\
\
100} \
\
\
\
i \
)
\
\
N \
\
50 \
\
\
\
A
\
\ xS
Y =
\ N .
\ ~
—m I A I [l 1 —_7 s B
TINA 20 40 80 80 TIN A







46,

M)
200
P
/ A
et
/ [}
/
L \
1Q O X
/ .
- \
/ \
\
7 \‘
K4 \
L - -
< \
-/ \
/'/I N
7 | \
Ve ' N\
7 . L N\
/ ' N
! s { . ] \ I ) L= 1
20 40 60 80 I00 TINK

Figure 16a. Crystallite size distribution of Specimen shown in Figure 16.
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Pigure 17a. Crystallite size distribution of Specimen shown in Figure 17.
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Pigure 19a. Crystallite size distribution of Specimen shown in Figure 19,
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to the left of the ‘mininmm of the distribution havo boon ignored.
- From the histograms the corresponding mass distribution amongst the
difforent crystallite sizes could be obtained. Since the crystallites

were spherical the mass of a crystallite of radius r is m, where

H1

(8]

oW
#
i§

bes.
pe
H

. (1)

k = %2.5 p and p= densgity of tin, assumcd constant for all the crystallites

studieds The total mass of +in, M(r) s in crystallites measured with

radius r, is given by -

M (r) = nir) m, (2)

where n(r) = the number of crystallites measured with radius .

Therefore ,from (1) =
M(r) = n(r) ke’ = m(r) (3)

where m{r) = n(r) 3

The mass distribution histogram of eackh specimen was constructed by

3

multiplying the determined values of n(r) by =° and plotting this

as ordinate against r as abscissa. (As the values required were only
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relative, it was unnecessary to multiphy by k). The m(r) histograms
of the specimens whose electron microscope photographs appear in Figures j2
to 20, are shown, with smooth curves drawn through them in Figures 21 to 29-
These distributions show that in the case of the larger crystallite
specimens the contribution to the total mass of the gpecimen from the
smallest crystallites is less than 1% of the total., Therefore when the
crystallite sizes were measured no apprecisble error was introduced by
leaving outthe crystallitcs of radii smaller than the radius corresponding
to the minimum between the two peaks of the size distribution. An
exemple of the crystallites omitted is shown in the unshaded portion of
Figure 16.

The distributions obtained for both masses and sizes were representative

of the total specimen. The total mass of the specimen was proportional
to tb total mass in the histogram, the constant of proportionality, A,
being the ratio of the total area of the specimen to the area used to
construct the histogram. The total mass, M, in all the crystallites’

of the specimen is, therefore, given by &=
. :
M=4 4; M(r) dr =ka {fom(r) dr (4)

where the integration is carried out under the smooth distribution -
funetion. Busb
oo

%A {wm(r) dr = k.AJ'ZIm(r) dr + kA [, m(r) dr (5)
¥



Figure 22, Crystallite mass distribution
of Specimen shown in Figure 13,

Figure 21, Crystallite mass distribution
of Specimen sghown in Figure 12.
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Figure 24. Crystallite masgss distribution Figure 23, Crystallite mass distribution

of Specimen shown in Figure 15. of Specimen shown in Figure 14.
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Figure 25. Crystallite mass distribution Figure 26, Crystallite mass distribution

of Specimen shown in Figure 16, of Specimen shown in Figure 17.
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Pigure 27. Crystallite mass distribution
of Specimen shown in Figure 18,
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Figure 28, Crystallite mass distribution
of Specimen shown in Figure 19.
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Figure 29. Crystallite mass distribution of Specimen shown in Figure 20.
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Therefore from the mass distribution functions m(r) apd equation
(5), it was possible to calculate the relative percentages of the mass of
tin contained in crystallites with radii greater or less than any given r.
This was essential for the determination of the melting point of a single

crystallite,

.

3. Determination of the Melting Point of Crystallites’of a
Definite Radius.

In order to determine the effect of crystallite gize on the melting
point of tin it was,in principle, necessary to determine the melting
temperature of a single crystallite of given radius. As the slectron beam
‘wasA6OO U oin diameter at the level of the specimen, it passed througﬁ
thousands of crystallites. Conseguently, the electron diffraction patterns
photographed at temperatures up to 232°C represented the resultant effect
of all ?hese crystallites. The specimens were prepared so that they had a
definite wniform distribution of cxystallites throughout. This made it
possible to determine,by the method described below, the melting temperatures
of crystallites of any given radius. ‘The crystallites in a given specimen
had different radii and hence different masses and surface to volume ratios.
Because of the increase in the surface to volume ratio with decrease of
radius, the smaller crystallites could be expected to melt at lower
temperatures than the larger ones. As the temperature was raised, crystallites
with progressively larger radii would melt, until at some temperature all

the tin crystallites would have melted. This temperature would be below
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23200 if there were appreciahle surface effects in all the crystalliteses

The change in the diffraction pattern described in Section I of
Chapter IV is due to the crystallites melting in this way. However the
sharp ring pattern would bhe expected to disappear before all the crystallites
had melted because of the relative intensities of the liquid and solid
patterns. The liquid haloes appeared in the same pogition as the (200),
(101) and (220), (211) rings of the polycrystalline solid tin, so that when
the liquid tin pattern reached a certain intensity relative %o that of the
solid, the sﬁarp rings were no longer visible, The superposition experiments
described in Section 5 of Chapter III, showed that there was a minimum mass
of liquid necessary to obscure a ring pattern from a given amount of solid,
Therefore, once the mass distribution of a specimen had been determined,
the temperature at which its sharp ring diffraction pattern disappeared
could be correlated with the sizes of the crystallites in it. Each crystallite
produced its own diffraction pattern which depended on its size and temperature.
The intensity of the pattern depends on the number of the scattering atoms
causing it (Pinsker (1953) p.143) so that crystallites of different mass
contribute different intensities to the total diffraction pattern. The
variation with temperature of the intensity of a diffraction pattern, due
to the thermal vibrations of the individual atoms, is small (Thomson &
Cochrane (1939) p.105) so that the pattern of a solid crystallite can be
considered as congtant up to its melting point. At this temperature however

the crystallite melts and there is a change in its diffraction patterna
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A large number of crystallites of the same size would produce a constant
sharp ring pattern up to their melting point, when they would simultansously
melt and produce a diffuse halo pattern. The intensities of these patterns
would depend on the number of crystallites and their masses that is
ﬁ(r)mfaﬁcf), where m(r) is the mass distribution function. Crystallites
with different radii would melt at different temperatures and their
contributions to the solid pattern would cease, and there would be a
corresponding increase in the intensity of the liquid pattern proportional
to m(r). The factor which therefore determines the type and intensity of
the diffraction pattern of a specimen at a given temperature is the ratio
of the solid to 1liquid crystallite masses, and not the relative numbers of
golid and molten crystallites. The rate of transformation of the
diffraction pattern would depend on the rate of heating and the size and
mass distributions of the crystallites in a given specimen.

Suppose the effect of the size of crystallite on the meiting point is
such that a crystallite of radims r melts at a temperature T.
Therefore at the temperature T all the crystallites with radii less than
or equal to r are molten. For a given specimen, the liquid mass at
temperature T is, M; = kA J'z m(r)dr (from equation'(5)) and similarly
the solid mass at temperature T is M_ = kA.ﬁ: m(r) dr, with Mo+ M=,
the total mass of the specimen. As the temperature increases, M1 increases
and Ms decreases, so that the value of = in the limits of the

integrals changes.
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The intensities of the liquid and solid patterns were resgpectively
proportional to M1 and MS so the resultant diffraction pattern
became one characteristic of a liquid with the superimposed rings due to'the
solid becoming successively weaker. At a certain value of the temperature
the rings were no longer visible. This temperature was identified as Tm
(see Section 1 of this Ghapter), so let the radius of the crystallites
which melt at this temperature Tm be denoted by L The specimen at

this temperature has so0lid mass

M, = kA J‘r n(r) dr (6)
m .
and liquid mass
frm
o= kA n(r) dr (1

where Mi is sufficient to give‘a liguid pattern strong enough to obscure
the solid pattern due fo ME. If the ratio of Ml to Mé for this to occur
is found, the value of r, may be obtained from the mass distribution of
the specimen and hence the melting point of crystallites of given radius
can be determined.

To determine which ratio of Ml o Ms would produce a diffraction
pattern in which the solid rings had just ceased to be visible, the
super-position experiments described in Section 5 of Chapter III were
carried out. The areas of the specimens which produced the two seperate
diffraction patterns were constant. Thus, as the mass distributions wére

uniform throughout each specimen, the intensities were proportional to the
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total masses of tin on the specimens. Since the conditions during the
evaporations were maintained constant, the condensed masses on any
specimen were the same fraction of the evaporated masses. The super-position
of the diffraction patterns produced by different masses of liguid and
solid tin are shown in Figures 30,31 and 32. Since the masses producing
the diffraction patterns of each specimen were a constant fraction of the
masses evaporated, the ratios of these masses were the same for different
specimens. Therefore the required ratio of the liquid mass to the solid
mass could be determined from the appropriate masses evapoiaied. To
check this, the size and mass distributions of equal areas were measured
on different specimens and the r@tio of the masses on these areas was
found to aéree, within the experimental error, with the ratio of the
evaporated masses.

It was found from these experiments that when in a given mass of
tin 15% was solid and 85% 1liquid, the solid sharp rings could no longer
be seen on the liquid halo pattern of tin. This percentage was obtained
for a whole series of total massess The values of M’l,l\ﬂ.S defining T

in a given specimen were therefore subject to the equations

Tn M
fo w(r) dr = 085 —— (8)
KA
u
~ nlr) dr = 0415 — (9)
T Ka

m
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M

where — was the total mags of tin measured on the specimen. Therefore
A _
from the mass histogram of each specimen, the value v, was determined by

using equations (8) and (9), and this velue was then correlated with T

10 give the melting temperature of a crystallite of a given radius.
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4) Determination of Structure and Lattice Parameters of
Tin Crystallites.

Two different structures occur in bulk ocrystalline tin, namely
grey or a—tin and white or B-tin. Grey tin has 2 diamond type unit cell
of side & = 6.46 fi (Bijl and Xolkmeijer 19183 1919 a,b). White tin,
which is stable at room temperature, has a tetragonal unit cell with
dimensions

o )
a=b=5824 c=23.17 & at 25°C
(Wyekoff, Chapter II, Text page 13, Illust. p.T7s5 Jette and Foote, 1935,
Koslapov and Trapeznikov, 19363 Jevins, Stramanis and Karlsons, 1938)

The unit cell contains four atoms in the positions 0,0,050,%,435,0,2;
%@%3%} The transformation temperature of grey tin into white tin is
13.2°% (Hedges and Higgs, 1952) therefore since in the experiments
carried out the lowest temperaturec to which the crystallites were subject
was approximately 2500, if the crystallites had the structure of bulk
crystalline tin, the white tin polycrystalline patterns should be
observed., The bases ‘locneath . the crystallites wore amorphcus therefore
they would not affect the structure of the crystallites. However as some
of the crystallites had redii smaller than éb g, surface effects could
affect the structure and produce a different unit cell from that of bulk

tin, Bublik and Pines (1952) showed by electron diffraction methods that

venadium, which in bulk has a body-centred cubic structure, could be made
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to form an unsupported f£ilm 60 K thick with a face-centred cubiec
structure. Nicholson {1950) showed, using X~rays, that strain due to surface
stresses in sodium chloride and magnesium oxide crystallites of mean
size 600 X induced changes in the lattice parameters of a fraction of
a percent. Hence the experiments in Section 6 of Chapter III were
carried out to see whether the surfaces of these small crystallites
induced any change in the structure and lattice parameters of the
crystallites in the specimens,

Two diffraction patterns were photographed in each experiment.
One photograph was teken of the diffraction pattern from a gpecimen
whose unit cell dimensions were known and the other from the specimen
whose properties were investigated. A thallium chloride film had been
prepared over 1000 2 thick so that surface effects on its unit cell were
negligible, This has a cubié structure with sidos of the unit cell
a = 3.842 } (Smakula and Kalnajas ,1955)s A tin specimen was prepared,
by the usual methods of producing spherical crystallites, of mean radius
about 200 3. The structure of this was analysed and its lattice
parameters werc determined. This specimen was then used to determine
the structural propertics of tin crystallites with small mean radii.
Photographs of the diffraction patterns of orystallites of mean radii of
about 200 Z and 25 X are shown in Figure 33. with their rings
indexed.

It may be shown to a first approximation (Pinsker (1953) p.86) that

for an electron diffraction pattern produced by a polycrystalline
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material

4 =L\ . (10)

where r = »radius a particular ring in the diffraction pattern.
d = the spacing of crystal plane which gives rise to the ring.
A = electron wavelength,

L = distance of the specimen from the photographic plate,

In cach experiment L\ was exactly the same Tor the diffraction
pattern photographs of both the standard and the specimen studied.,
The rings of the standard specimen were moasured.with a travelling microscope,
and from the calculated plazne spacings producing the rings, LA could be
obtained .

For thallium chloride, the spacing in its cubic structure of a plane

with Miller indeces h,k,1,. 4 is given by

h,k,1

3.842

hyk,1 © Ve i (11)
h24cP4 12

d

where 3.842 X is the dimension of a side of the unit cell.
This enabled accurate determination of LA using equation (10),

All the tin crystallite specimens were found to give the body
centred tetragonal structure diffraction pattern of white tin, For

tetragonal structure it can be shown (Thomson and Cochrane (1939) p.28)
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that the spacing of planes with Miller indeces h,k,l1 1is given by

]
- (12)

2 2 2

he ¥ 1

/2*2* >
a a

where a,c are the sides of the unit cell; Usging the values of a,c

for bulk tetragonal tin,

d

hk,1 = (13)

/hf + K 12
+

33.79 1.005

From the determined value of LA, the lattice spacings of a specimen
with mean radius ~ 200 X were determined by measuring the radii of its
diffraction rings. The calculated spacings of planes giving rise to the
main rings, togethor with the calculated values for bulk crystalline white
tin are tabulated in Table I. The values agree to within the experimental
error of 1_0.5%. This tin specimen was then used as a standard when
smaller crystallite speccimens were investigated. As the mean size of
crystallites decreasoed, fewer rings could be observed on the diffraction
pattern. However it can be seen from Figure 33 that the (211) ring is

intense and its measurement was used in the comparison of lattice constants

of the different specimens.
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The radius ofthe (211) ring from the standard specimen was compared
with that of the specimen under investigetion and © . in no case was
a change in the lattice parameter observed,to within the experimental

accuracy of 0,5‘,’5.






T0.

TABLE I

MAIN RINGS OF THE DIFFRACTION PATTERN PRODUCED BY TIN
o}
CRYSTALLITES OF MIAN RADIUS ~ 200 A.

o}
Lhn = 2.257 &.

(o] (o]

(h,k,1) T in cus d in A d 5, in 4
200 0.775 2,913 2.906
101 0.815 2.773 2.TTT
301 1,096 2,059 2,055
211 1.122 2,011 2.007
301 14367 14655 1.652
420 1.736 14300 14300

b 4

r = the radius of the ring in the diffraction pattern of tin

d = the measured plane spncing, calculated from r using
equation (10).

dcalc= the calculated plane spacing for the (h,k,l) plane in

tetragonal tin using equation (13).
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Results and Discussion of the Exverimentsg.

From previously explained measurements carried out on each specimen
the two quantities Tm and r, were determined - these being respectively
the melting point of the specimen, and the radius defined from the mass
distribution by the crystallites which contain 85% of the total mass of tin
in the specimen. These two values can be identified with the melting point
of a single tin crystallite of given radius R = T melting at temperature

T-"'-T.
r m

1« Tin Crystallites on Silicon lMonoxide Substrates.

The results obbtained from the specimens in which the tin cxrystallites
under examination were on silicon monoxide are shown in Table II. The
crystallite radius, R, was studied over a range of 40 to 400 R, with g
corresponding range for the melting point’,TR ,of 150 to 230°C. The
majority of values of R and TR were determined for R< 120 2 y &S
the variation of TR with R was found to be much more gradual for
crystallites with radii larger than about 100 ﬁ +« The resultant graph

of ATR against R for tin crystallites on silicon monoxide bases is

plotted in Figure 34 and fhat of TR against 1/h in Figure 35.

2, Tin Crystallites on Carbon Substrates.

The results obtained from the specimens in which the tin crystallites
studied were on carbon substrates are gshown in Table III., The range of

crystallite radii was extended to try to obtain melting points for tin
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orystallites with radii less than 40 X, but because of the lack
of contrast in the electron microscope photographs, the accuracy of
determination of the radii decreased for the smaller particles. In
eddition, the errors in the radius, R, and temperature, TR’ were larger
for these small crystallites, since the rings from the solid crystallites
had broadened out, the diffraction patterns had become weaker, and the
transition of the diffraction patterns of the specimen on melting had
beoome more gradual. For tin crystallites on a carbon base a graph of

/T against R is plotbed in Pigure 36 amd that of T egainst /R

R
in Figure 37.
The results obtained for carbon and silicon monoxide bases were the

same within the experimental error.

3. Discussion of Experiments.

The information obtained from the experiments carried out on each
specimen was analysed in terms of two parameters R and TR for each
individual tin crystallite. It would perhaps be ad¥isable to consider
the justification for this procedure and the errors involwved in these
parameters. The crystallites, whose formation and nature will be
discussed, were from many different specimens, and were prepared and
investigated under conditions as identical as possible. The experimental
procedure followed was the same in all cases and the errors that arose in
the different parts of this procedure must all be incorporated into

the total error.
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TABLE II
) o 0 0 0 °
Tp C ATC R.A Tp C AT™C RA
{14845 84+5 4144 206+2 26+2 784
155_{3 TT+3 48+4 2C9+2 23+2 86+4
15943 T3+3 44+4, 210+2 2242 93+4
163+3 69+3 48+4 21142 2112 91+4
; 169+3 63+3 51+4 2122 2042 | 10244
? 170+3 62+3 51+4 215+2 17+2 115+4
i 172+3 60+3 50+4 216+2 1642 10T+4
1 723_'3 60+3 52+4 217+2 15+2 125+4.
17542 5T+2 5544 217+2 15¢2 | 120+4
188+2 44+2 65+4 21842 14+2 114+4
190+2 } 42x2 64-4 22441 8+1 175+8
196+2 36+2 T0+4 225+1 T+1 19148
F 200+2 3242 T3+4 226+1 6+1 198+8
{ 20042 b oaese TT+4 227+1 51 23348
204+2 28+2 T6+4 229+1 31 | 27548
204+2 28+2 80+4 23qi1 2+1 3738
]
TR = Melting temperature of tin crystallite.
R = Radius of tin crystallite
AT, =Ty - Tp

where Tp = 232°C - the melting point of bulk tine.
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80 Pigure 34. The Melting Curve for crystallites on a silicon
monoxide substrate, showing the relation between the depression
of the melting point and the radius of a crystallite.
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Pigure 35. Graph showing the relationship between the
232 , melting temperature and the reciprocal of the radius
of 2 crystallite on a silicon monoxide substrate.
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TABLE III
[ ——— —— ey
,°C ATRC RA T,°C AT°C RA
. SRR
60+20 162+20 30+5 187+2 45+2 63+4
| 100410 132410 36+5 19142 4142 68+4
| 11548 11748 42+4 19642 36+2 66+4
127+8 105+8 3B+4 202+2 3q12 T+4
13545 9745 40+4 202+2 30:2 44
140+4 | 92+4 40+4 2042 28+2 T84
158+3 T4+3 48+4 205+2 27#2 8114
165+3 67+3 | 52+4 21242 20+2 104:+4
166+3 66+3 53+4 215+2 17+2 103+4
177+2 55+2 59+4 225+1 T+2 181+8

=3
4

R = Radiug of tin crystallite.

AQh= TB - TR

R Yelting temperature of tin crystallite.

where Tp = 232°C ~ tho melting point of bulk tin.
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Figure 36. The Melting Curve for crystallites on a carbon substrate,
showing the relation between the depression of the melting point and
the radius of a crystallite,
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341 Tin Crystallites.

In principle, the determination of the effect of the surface of
a crystallite on its properties would involve the observation of a single
crystallite whose dimensions could be measured and whose properties
studied directly. However the crystallite sizes studied were so small that
it was experimentally impossible to deal with a single crystallite, and so
a group of crystallites‘was studied simultaneously. In order to be able
to determine their size eagily,and in order to get as uniform a melting
of each orystallite as possible, spherical crystallites with no sharp
edges were required. Also, the theoretical considerations are simpler
in the case of spherical crystallites. In order to determine the behaviour
of a single crystallite from the results of observations on a specimen
consisting of a whole range of orystallite sizes, it was necessary to have
a uniform size distribution over the entire surface.of the specimen +
Tith this conﬂition;an’electron nierograrh of o particula créa
of a specimen was representative of the whole specimen. Since each crystalli:.
produces a circular electron microscope image, it is possible to find
its mass and radius,

The nature of a thin metal layer, formed by condensation from a
molecular beam, depends on the ¥ype and temperature of the substrate, the
rate of evaporation, and the atmosphere in which the evaporation is

carried out. Silicon monoxide and carbon substrate films were used because
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their structure consists of randomly arranged atoms. These substrates
are considered to be neutral, having little effect on the formation, structure
and orientation of the crystallites depogited on them. (Pinsker (1953)p.196),
so that layers of tin crystallites of uniform distribution could be obtained.
With crystalline bases, preferential nucleation in surface imperfections
could occur so that a non-uniform distribution might be obtained. The
gtructure of thin films deposited onto a solid substrate may be stable either
in the form of uniform dispersed monolayers or as agglomorates of atoms.
In these experiments separate crystallites were required. The deposited
metal £ilm will be produced in the form of agglomorstesif the deposited
atoms have a lower latent heat of evaporation fram the surface of the
substrates than from the metal itself (Appleyard 1937). Since the substrates
were neutral the metal atoms had a comparatively small heat of evaporation
from them and separate crystallites were formed.

In order to ensure a rapid growth of separate crystallites with the
minimum loss of condensed atoms, the method described in Section 2 of
Chapter ITI was used. Langmuir (1917) confirmed earlier experiments by
Kundsen (1909) and Wood (1915,1916) which indicated that there is a
critical temperature of the substrate above which condensation of a metal
vapour beam will not occur, He also showed that the value of this
critical temperature increases with the intensity of the vapour stream
-striking the substrate surface and he concluded that the phenomenon

occurring on the surface was not one of reflection, but one of condensation
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and re~evaporation with the incident metal atoms remaining on the surface
for a finite period of time. If the average lifetime of a condensed metal
atom on the surface is made sufficiently long for it to collide with anothexr
atom from the beam, the probability of re-evaporation is considerably
decreased. Therefore, increase in the beam intensity allows a higher
critical temperature for condensation and also raises the number of metal
atoms remaining on the substrate surface, with a corresponding increase in
the probability of nuclei being formed. Semnett, MacLauchlan and Scott (1952'
by continuous observations on the formation of metal deposits evaporated in
the specimen chamber of an electron microscope, found thét volatile metals,
guch as Cd and Zn, simultunoously formed particles as large as 200 K once
the vapour beam had recached a certain intensity.

The formation and subsequent growth of nuclei can also be augmented,
however, by migration of the condensed metal atoms over the sﬁrface of the
substrate. The temperature and type of substrate are the prinecipal factors
influencing the mobility of alsorbed metal atoms on a solid surface.
(Lennard-Jones (1937), Appleyard (1937)). The condensed atom is held by a
field of force in the surface, which has pockets of low potential. At
low temperatures any deposited atoms will vibrate about the minima of these
pockets and will only combine with atoms colliding with them from the
vapour beem. However,lf the atoms are given sufficient kinetic energy to
gurmount the potential energy of the barrier, they may mowe over the

surface provided they retain this energy. Since neutral substrates have
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‘1ittle effect on the condénsed atoms, the metal atoms can move freely
when their kinetic energy is much less than that required for evaporation
from the surface. Consequently, a large migration of metal atoms can
occur on these amorphous bases at temperstures far below those needed to
re-evaporate the atoms, so that there is a formation and a subsequent
growth of nuclei due to collision of atoms already on the surface.

If the rate of evaporation and the substrate temperature are
sufficient. to form a large number of randomly distributed nuclei, the
mechanisms described above ensure fast growthe. The size to which tin
nuclei can grow once they are formed depends on the amount of tin
condensed on the substrate and hence on the mass evaporated. Thus the
sizes of crystallites were found to increase ag the larger masses were
evaporated onto the substrates. However when the crystallites grown
from the original nuclei reach a certain size, a new mechanism of growth
can be expected to take place, The nuclel originally formed can come
together to form large crystallites, with a consequent disappearance of
the smaller ones. This effect was observed by Basett, Mentner and Pashley,
(1959) in their studies of the nucleation and subsequent growth of gold
films on rocksalt at 27000.

In the present series of experiments the electron micrographs of the
crystallites showed not only elliptical imagcs but sometimes two or more

quite digtinet circular images joined together. In Figure 19 the largest
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crystallites can be seen to have regions-eround them which are perfectly
clear of small crystallites since they have been "swallowed up".. The
distribution was Gaussian for the crystallites formed from random nuclei.
However, as these nuclei grew and came together, the second stage of growth
i.e. the coalescence, would account for the crystallites greater than,~JBOX.
This could explain the new peak observed in the distribution curves.

(See Chapter IV, Section 2).

The residual gases present during evaporation may have important
effects on both.the structure and purity of the condensed substance.
Oxidation may cccur whilst the metal is travelling from the evaporator
to the substrate, or during condensation (Wagner (1943);Stahl (1949). The
adsorbed gas and the impurities on the substrate surface will affect the
purity and the structure of the metal films. The oxidation of the metal in
the molecular beam will not occur if the mean free 'path of atoms in the
beam is much greater t¥han the distance from the evaporator filament to
the substrate film, However, during the film formation, gas molecules
striking the substrate may combine with the condensed phase to form a
chemical compound (usually an oxide in the case of tin). Therefore the
more rapid the formation of the metal layer, the fewer the gas molecules
able. to combine with the metal atoms and in consequence the purer the
layer of metal formed.

The equilibrium shape of so0lid crystalline particles is the one which,

for a given amount of matter, minimises the quantity'Zi.Oi A (Gibbs (1928);
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Cumia (1885)) where C& = surface free energy per unit area of the
ith face

Ai = area of the ith face.

E is the sum over all faces.

This expression applies to crystals with surface planes where the
free encrgy of the edges is negligible; The shape of the crystal can be
conveniently specified by drawing vectors from a point P ingide the
crystal, normal to each face, where hi is the normal to the ith face.

The shape thus defined will be directly proportional ¥o o, (war£f (1901))

or hk =7\c& where N is a constant depending solely on the gize of the

i
crystal, The thermodynamically stable crystals of a given substance

should therefore be geometrically similar polyhedra. The equilibrium shape
will ocour if the mechanisms necessary for change of shapé during formation
of the particle can take place sufficiently rapidlyf In an eoxtensive
treatment of equilibrium shapes of golid particles Herring (1?50 31952 ) has
shown the different equilibrium shapes possible for cystalg aﬁdamongstthese,
there are crystals in which finite plane regions are joineé by smoothly
curved regions. In this treatment,edge and corner effects, as well as

variation of o, with curvature, have been ignorea. As the size of the

i
crystal is decreased however, these effects hecome more and morse
appreciable and must be considered., Since the edge and corner effocts

involve a higher free energy then a smooth surface does, there will be a
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tendency to smooth out the surface of the crystal. This would tend
to produce continuous smooth surfaces, and if the crystallites were small
enough the interatomic forces could mzke the surface nearly isotropic so
that spherical crystallites would be formed.

The rapid evaporation and the raised temperature of the substrate
enabled a fast crystallite growbth to be obtained.

The condensation from the beam,and the migration of the condensed atoms
simultaneously, produced a mechanism by which the shape of the crystallite
could change sufficiently rapidly for equilibrium to occur. The stobility
of the equilibrium of the crystallites formed was investigated bﬁ heating
some specimens to the melting point of bulk tin two or three times in
succession. In each case the same melting point of the specimen was
obgerved, the crystallites obtained by the above method of preparation
were found to be randomly oriented and their shapcs gave circular images
on the electron micrographs, even when specimens with a crystallite mean
size of several thousand Angstrcoms were prepared. Several replicas of these
large crystallite specimens were taken, and they showed that the crystallites
appeared to be spherical with a small arca of contact with the substyate.
The largest crystallites had hemispherical chapes, but these were much
lerger than those studied in the melting point experiments. An electron
micrograph and a photograph of a repliéa of these thousand Angstrom
crystallites are shown in Figure 38 and Figure 39 respectively. It is
therefore gafe to assume that the crystallites which were smaller by

more than an order of mzgnitude had spherical cshapess The tendency
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to smooth out the surface by interatomic forces would have erased the
small facets that were vigible in the micrographs of the largest crystallites .
Several specimens werse photographed in.the electron microscope before
and after being heated in the diffraction camera to 23200. No change in the
size distribution of the specimens was observed after all the crystallites
had melted and recrystallised, indicating that the crystallites were
separate stable entities. Therefore the samo distribution of crystallite
size will be obtained irrespective of whether the measurement is made

before or after melting.

342 The Melting Point Temperaturec TR-.

The errors in the measurement of TR aroge from the errors in the
determination of Tm for the tin specimen; These errors were minimised
by the following means: great care was taken to have the speeimen in good
thermal contact with the thermocouple so that the temperature registered
was the true temperature of the specimen +the temperature was raised
slowly so that any possible temperature gradient effect was minimised,
the electron beam current was adjusted to a value less than or equal to
0.03pA., so that thereshould be no heating of the tin crystallites by
the beam. The current density corresponding to the maximum beam current
used was 1.0 ‘IO“5 A/bmz. and this was much less than the value of 1,5 10"-5
A/'cm2 quoted by Winkelmam(1956) as the maximum density he could use without

heating his gold—-copper alloy thin films. Repeated melting point
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meagurements were made on thé same specimen with electron beam currents
ranging from 0,01 to 0.06 pA. No change in the melting point was oﬁserved
so that no measurable heating of the specimen by.the electron beam occurred.

The gpecimens contained érystallites of different sizes which melted
at different temperatures. This gave rise to a gradual transition in
the diffraction pattern so that difficulty was found in assigning a unique
value to Tm « Although the humber of crystallites which had melted may
have increased rapidly with %ise in temperature of the specimen, the mass
of liquid, which determines %he intensity of the halo pattern, increased
comparatively slowly because the crystallites melting first were the
smallest ones. The largest crystallites melted last and since the
diffraction pattern from a crystallite is proportiomnal to its_mass, the
solid diffraction pantternwould still be visible at a temperature where all
but a small percentage of the crystallites had melted.

The transition in the diffraction pattern of the smaller crystallite
specimens were much more uncertain than the transitions of the larger
specimens, with consequently larger errors. This may be explained by the
following congsiderations. The rate of transfecrmestion of the diffraction
pattern depended on the rate of heating, which wos kept fairly constant in
all the experiments, on the size distribution and also on the dependence of
the melting point on the crystallite size.

If a ocrystal of radius 1r melts at a temperature T, when the
temperature goes from T +to T + 4T, orystallites with radii r» +tor + dr

nelt,
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This results in a transfer of mass from the solid to the liguid
state which is proportional to m(r) dr (Chapter IV, Section 2),
Therefore, the increase in intensity, dI, of the liquid pattern and the
corresponding decrease in the intensity of the solid pattern is proportional
to m{r) dr., Now the rate of change of the intensity of the liquid

diffraction pattern with temperature is —%% s where —%% « m(r)-{%%

i.e.-{%%— does not only depend on m(r) but alsocn1-_§% + By examining
the graphs in Figures 34 and 36, %%}- can be seen 1o increase with an

increase in r, therefors -%% also increazes with r. This means that
the melting transitions in films containing the larger crystallites will
be sharper. The above argument has naglected the effect of ring breadth
which would affcct the transition of the smallest crystallites by making
the patterns even more diffuse.

Because of these effects the frequency with which the photographs
were taken was sufficient to show all visible changes in the diffraction
patterns. With the majority of specimens Tm could be registered to
within + QOC.With%BZlargest specimens it was possiblc to determine the
melting point to within :_IOC. In the smallast crystallite specimens
studied;all the crystallites were smaller than 50 Z. The half width of
a ring produced by solid crystallites is inversely proportional to their
dimensions (Thomson & Cochrane (1939) p.773 Pinsker (1953) p.89) so that
the smaller crystallites produce broader rings than the larger ones. As

the crystallites get smaller, the rings become more diffuse and therefore,
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become more difficult to see against the background of a liquid pattern.
This effect led to a further inaccuracy in the determination of the
melting point of the small corystallites, so that the total errors ﬁecome

ht 1000 or more.

303« The Radius of Crystallite Melting at Temperature ?E:

The determination of the radius R of the crystallite ﬁelting at. the
temperature %{,may be considered in two parts. The first part consisted |
of determining the size and mass distribution of a specimen for which Tm
had been obtained. The second part consisted of the determination of the
value of r to be agsociated with o specimen of given sgige distribution.

The magnification of the electron microscope used in the investigations
of crystallite sizes was regularly checked by means of a specimen of
pleurasigma angulatum supplied by the National Physical Laboratory. A
micrograph of this was taken at the magnification used in the experiments
on tin and the absolute magnification of the electron microscope was
determined accurately from the known spacings of the di-atom.

Measurement of the magnified electron microscope image was subject to
errors on the part of the observer in dctermining the actual diameters of
the images which were not always sharp, To minimise this subjective error
and to make sure that the distribuitions obtained were typical of the whole
gpecimen, measurements on at least two different parts of the saume

gpecimen were carried out by two different observers, The rcsulitant of
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these distributions was then considered to be the distribution of the
whole specimen. The likely error in the size distributions was obtained
from photographs of the crystallite images from completely different parts
of the speecimen taken with different exposures so that the contrast of the
images against the background was quite different, With the over and under-
exposed photographs the extremes of any crystallite image size were obtained.
Photographs of crystallite images from three different parts of the
gpecimen under these conditions are showin in Figure 40 and their distri~
butions in Figure 41, It can be seen that the error of the mean radius
is lesg than 4 z y the half-width of the histogram frequency, so that 4 X
can be taken as the error in the measurement of any radius in the
distribution. The contrast of the images,however, tended to decrease with
decreasing crystal size;causing loss of definition., The errors were ,

o}
however, kept to + 5 A4 by measurement of a large number of crystallites

at different parts of the gpecimen

Since m(r) = n{r)p , the mass distribution calculation from
n(r) was not subject to further errors, for p was found to remain
constant ta within the order of 1% for all the crystallites gtudied.

For the determination of rm from the different diffracticon patterns
of a given specimen, an ahsolute criterion was obtained from the supcr-
imposed solid and liquid diffraction patterns obtained from different speci-
meng of known mass ratio. Although precisely the same condition could not
be obtained in the super-imposition experiments as in the melting point

determination cnes, the same range of masses was évaporated in both cases.
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There were two differences between the superimposed patterns of solid
and liquid crystallites and the pattern given by a single specimgn on
melting. The temperaturcs of the golid and liquid patterns were
different in the former whercas with the latter both contributions were
at the same tempersturse bholcow the nelting point of bulk tin. However,
the effect of thermal vibrations of the individual atoms on the intensity
of the diffraction pattern would be cxpected to be small (Kesita (1934);
Coster and Ven Lanten G1939) ; 50 that the method used offcred a good
visual criterion,

In the single specimen diffrection pattern all the crystallites
contributing to the solid ring pattern were larger than thqse -
contributing to the liquid healces. In the superimposition experiments,
the liquid crystallites could nct all be made smaller than the solid ones
since larger evaporgted masses were used to produce the liquid pattern.
in effort was made to make the crystallites producing the solid pattern
as large as possible, but part of the liquid pattern was always produced
by crystallites,

Since only 15% of the mass remained solid at Tm the errors involved
in‘calculation of r, vere mainly duc to the errors in obtaining the
gize distributions. The error in R is taken as 4~5 X Whén the overall
magnification of 7.2 105 was used and 8 E in the largest crystallites,
where a magnification of 3.6 105 was uscd. These errors werc never
excecded when evaluation of T, from moss histograms of different parts

of the spccimen were carricd out.
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3.4, Oxidation of the Tin Crystallites.

Precagutions were taken to minimise oxidation of specimens during
their formetion so that pure tin crystallites would be obtained., No tin
oxides were detected in the specimens used in the melting point experiments,
pure tin diffraction patterns being observed throughout.

Stannous and stannic oxides both have tetragonal crystal structures
(Viyckoff Chapter III Table p.,27 Chapter IV Table p.15). Both these
would produce sharp ring patterns, with more rings than the solid tin
pattern,even &t 232°C,because both melt at much higher temperatures than
pure tin, Their presence would affect thedetermination of Th becanse
of the continual presence of sharp ring pattern throughout the transition
of the tin diffraction pattern. Oxidised tin layers studied by transmission
electron diffraction showed that fhe stannous oxide form was more likely
to be formed, but it was never detected on the specimens used in the
melting point experiments. A form of tin oxide which gives an amorphous
diffuse halo diffraction pattern also exists (Richter (1943),Hart (1952))
This form of oxide would be difficult to detect unless the tin crystallites
were oxtensively oxidised, since its halo pattern would only contribute
to the background in the same way as the substrate film:s amorphous pattern.

Reflection election diffraction is a very sensitive detector of
chemical attack on thin films, Newman (1955) evaporated very thin layers
of tin onto silver in ' aun electron diffraction camera and did not

observe any oxide rings on his reflection diffraction patterns. Neither

did Soyama (1941). Bublik and Pines (1954) and Takagi (1954) in their
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reflection electron diffraction studies of molten thin tin films.
This wes in agreement with Stahl (1954) who concluded from his
investigations of oxidation of films,thatfesubstrate temperature must
exceed 300°C for tin specimens to oxidise. Curzon (1960) did not
detect any oxide in his thin tin layers, even after the tin film had been
at a tempersture of 232°C for several hours. Since in these experiments the
specimens used did not show tin oxide diffraction patterns, it may be
concluded that if therc wep any oxidation the rate was either extremely
slow or that a protective layer of oxide formed on the outside of the
crystallites stopped further oxidation. In either case, since no layer

was observed; it must have been only a few Angstroms thick.
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CHAPTER V

THEORETICAL TREATMENT OF THE MELTING OF SPHERICAL TIN CRYSTALLITES,

There are two possible approaches to the treatment of the melting
equilibrium of small crystallites, namely statistical mechanics and thermo=
dynamics, in which consideration to the possible effects of crystallite
gize can be given.

So far no gatisfactory detailed model of fusion has been proposed,
although attempts to prove that a solid becomes unstable a2t a definite
temperature have been proposed (e.g. Lindemann (1910), Born (1939),

Furth (1941) , Bofiglioli, Ferro and Montalenti (1952)). Alternative
approaches using different models have been made by Lennard Jones and
Devonshire (1939 (a,b)), Fowler and Guggenheim (1939) and others, Temperley
(1956) gives an account of the difficulties associated with the statistical
mechanical approach.to fusion. Furthermore the treatment of surfaces by
statistical mechanics is complex, as may be seen from the works of Fowler
and Guggenheim (1939 p.445~50) and Kirkwood and Buff (1949). It is felt
therefore that the statistical mechanical approach to fusion and the
possible effects of surface on this is likely to be extremely difficult

and will not be considered here,

General thermodynamic principles will, instead, be applied to investigate
the possible effects of surface on the equilibriu@ of s0lid and liquid
phaseé, and two models will be used to obtain from this, a relationship

between the melting point of & spherical tin crystellite and its size.
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The theoretical relationships derived on the basis of these meodels will
be compared critically with the experimental results given in the last
chapter. Although macroscopic concepts are ugsed to obtain the equilibrium
conditions, atcmistic ideas will also be considered, since these not only
give a deeper insight into the nature of the thermodynamic variables, but
also suggest new macroscopic concepts which might not otherwise be
noticed.

The effect of surface on the cquilibrium conditions between two pﬁaseé
has aroused interest for some time, The foundations of this subject
were laid by Gibbs (1875-7) and a brief historical review of the work done
on this topic by thermodynamic methods is given by Curzon (1960). In
addition to the authors mentioned by Curzon, important work on this
subject has also been done by Tolman (1948,1949 (a,b)) and by Herring
(1950 ., 1952)+



99.

1)  Thermodynamic Treatment of Surfaces.

In the treatment of bulk phases where the effects of surfaces
are ignored, the phases are congsidered ag extending homogeneously
up to a mathematical surface which determines their volumes, When two
phases are in equilibrium there is a physically inhomogeneous region
where transition takes place from the uniform distribution of matter
in one phase to that in the other. In ottaining a thermodynamic treatment
of éurfaces, Gibbs (1928) called this region "the region of discontinuity"
but pointed out that thié term did not imply that the discontinuity was
absolute. However, becéuso of the short range of the atomic forces, this
region would have a very small dimension in one direction, and he
proposed to replace this physical non-homogeneous, three dimensionsal
region by a "dividing surface" which is a surface in the strict geometrical
sense. This dividing surface coincidés with the physical surface of
discontinuity to within the accuracy with which the latter is localised,
but has a precisely defined position. It passes "through all points
which are similarly situated with respect to the condition of the adjacent
matter', Different choices of the nature of these points will lead to
different dividing surfaces all mnorallel to one another, but displaced
from one another in a direction normal to the surface, so that some
convention is necessary to complete the definition. The two conventions
used by Gibbs will be given later, but the following discussion i=s

valid for any choice of a dividing surface.
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Once a dividing surface has been chosen to represent the
discontinuity, then energy, entropy and other extensive quantities can be
aggocinted with it. To obtain these exteonsive quantities let us congider
" a portion of a transition layer between two single component phases (1)
and (2), the extent of the ftransition layer being defined by the two
parallel surfaces which mark the limits of homogeneity of the two
phases (ABCD, EFGH in Figure 42). Phase (1), below ABCD and phase (2),
above EFGH extend with homogeneous properties. The volume ABCDEFGH,
equal to Vv, has physical and thermodynamic properties which are intermediate
to those of the two phases. However this volume ¥ has a definite amount
of internal energy = & entropy = 7, and mass = m, depending on the
phases (1) and (2) and the volume ¥ « Let a surface KIMN, of area s,
parallel to and between the surfaces ABCD and EFGH , divide the element of
the transition layer into volumes V'= ABCDKIMN and v' = KLMNEFGH,

The extensive quantities associated with a dividing surface element KLMN-
namely internal energy, e S, entropy, ns, and mass, ms, - are defined

by the diffcerence between the extensive properties in the volume y and
the value of these quantities when the uniform homogensous phases extend
up to the dividing surface. Let the internal energy entropy and mass

per unit volume of the bulk homogeneous phase (1) and (2) be ¢ 12 S M 49
”25 m, and m, respectively., Since we have already assigned the values

of the extensive quantities in this element, the values of as, ns, n® are
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& = 8qV' 4€p V" 485 (14)
n=mvt o+, v+ B (15)
m= m v' o+ m, v +m (16) -

These extensive quantitips of the dividing surface are determined "partly
by the state of the physical system which we are considering, and partly
by the various imaginary surfaces by means of which the quantities have
been défined " (Gibbs (1928) pe224). It can be seen that by placing the
surface KIMN in different positions the value of y!' and y'" change

. 8 _s s
and in consequence g , 1 , M chanze also.

Once the dividing surface is chosen and its extensive quantities
defined as above, the system can be treated as comprising two homogeneous
phases extending up to the dividing surface, so that there is only a
dividing surface and no transition layer, This treatment was developed with
a minimum of hypothesis as to the detailed structure of the transition
layer, but it was assumed that all the properties of the layer could be
determined from the arez and configuration of a ﬁarticular dividing
surface postulated, This treatment has %he advantage of providing a
general theory which is valid for a wide range of posgible kinds of

transition layers, including solid~liquid interfaces. This treatment

is quite different from the less abstract treatment of the inhomogeneous
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layer as a definite physical entity (e;g; Guggenheim (1957) Dped6~56.)

The treatment of the fluid-fluid interface is by far the simplest
because the fluid atoms are free to move,and consequently the strains
' are isotropic and uniform distribution of matter occurs., The loeation
of the dividing surface which seémed most advantageous to Gibbs for
this type of interface was at the "surface of tension", The dividing
surface, in this position is so placed that the dependance of the energy
of the dividing surface on curvature, for an infinitesimal virtual
change, is zero. For a gencral infinitesimal change, the change in a

spherical dividing surface energy is given by

e = tom° + 40s + %51 + 206¢c (17)

where t = temperature, ps = Gibbs potential in the surface,y= a
constant, C = a constant, c=radius of cuw'ature. The surface of

tension corresponds to the dividing surface being so placed that C = 0,
o o 688 = 'bans + psé ms + Yés (18)

It can then be easily shown that for a fluid-fluid surface, us ig the

séme as in the two bulk phaseg,p, and that Y is the ":i»éﬁifé5gﬁh

tension’s If we consider a change from one equilibrium state to
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another and replace & in equation (18) by 4, to signify a real

differential) them

S

i = tar + p do® + yds (19)

If we integrate equation (19) supposing the area s to increase from

zero to a finite value s we have

€ = t1 + pm + ye (20)

This applies to any part of the surface of discontinuity in equilibrium
whicl is of the same nature throughout or in which %, p, Y are constant,
and were constant during the ir;tegration.

If we denote superficial densities of energy, entropy and mass by

. o =&:S/S T =T)S/S and T = mS/S respectively, equation (20) becomes

e, = tn, + uT + ¥y (21)
| - o - - 1-‘,.—_- — 1-‘
Hence Y e, b7 M £, -n (22)
where fs = Helmholtz free energy density of the surface.

If £° = total free energy of the surface = ST

2 = ys o+ um® (23)
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It can be seen that fs and 4 are different thermodynamic quantities.,
However, for two fluids of the same single component where alsorption is
not present the value of T' will be =0 small that it may be considered
zero, and the twe quantities will be numerically equal. This equality has
often been mistaken for equivalence in thermodynamic treatment of
equilibrium involving surfaces and this is not correct.

The above treatment is applicable to a liquid surface because there
is a relation between the strainnin a fluid and the number of atoms in
the surface., Also a liquid cannot support a shear strain, so that on
stretching the surface, atoms can move up to give the same configuration
as before. This dividing surface has the great advantage of relating
the pressure difference between two phases, with a curved interface, to ¥
ard to the principal radii of curvature. For a spherical surface of radius

R, concave with respect to phase (1) the relationship s=—

ey
P, - P, = — (24)
is exactly true for the surface of tension.
For an interface where one of ths phases de so0lid, however, there is
no advantage in locating the dividing surface in this way, since the
stresses induced ingide a crystal by the surface are,in general,of a

complicated nature. Furthermore, there is no relationship between the

strains inside the volume and the surface free energy of a solid. The
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free energy of a surface is mainly a measure of the change of free
energy with a change in the rmimber of atoms in the surface layer. Since
in a liquid the compression of the interior implies, on the average,

a decrease in the number of atoms in the surface; the strain in the
liquid is related to the number of atoms in the suiface. Consequently
by replacing the surface layer by a dividing surface we can obtain

a relation hetween the two. Differentiating equation (20) completely

and substituting equation (19), we obtain

dy = ~-mdt ~ Tadp (25)
ice' ',Y' iS 'Y"('t,p)

Differentiating equation (22) in a general mammer, and substituting for &y

dy =af  ~pdl -Tap =7 dt~Tdy

o' 4f = -ndt + pd I’

mddf (%)

nsdt + pdmS

ioeu fs is fs('b, P),
the free energy is a function of mass,.
The increase in free energy of the surface, at constant temperature,
is represented by the increase in the number of atoms in the surface, which

is directly proportional to the strain in the interior of the liquid. All
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isothermal changes of the liguid are then expressed by the changes in

the volume of the interior and the area of the dividing surface. However,
in a solid, straining the interior will not change the number of atoms

in the surface, because their positions are fixed and consequently

the change of the surface free energy and the strain energy, which measures
the volume free energy, of a solid, are not related as simply as with
liquids.

Gibbs recognised these facts and accordingly proposed that the
dividing surface be placed in such a way as to make the superficial density
of the molid vanish, i.e. the surface is placed in such a way that m° in
equation (16) is zero. This gives a precise location of the surface, which
is much easier to localise relative to other physical characteristics of
the interface, than the surface of tension. (Tolman (1949), Kirkwood and
Buff (1949)). Then, obtaining the extensive properties of this surface as

before, he defined
G= o] o 't'r] (27)

This is the free energy density of the surface, fs’ and measures the frees
energy difference hetween the actual system and one in which the two bulk
phases extend homogeneously up to the dividing surface.

The properties of this dividing surface are quite different to those
of the surface of tension, for now since m°=0 all terms involving usgms vanigh

and consequently its functional form changes.
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Figure 42. An element of a transition layer between two phases,

o9V

O
®

Figure 43+ A solid core surrounded by a liquid shell., This is
used in the first theoretical model of melting.
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24 Surface Free Energy and Surface Stress.

By replacing the fluid~fluid interface by a dividing surface at the
surface of tension, Gibbs considered the changes that occurred in the
whole system to be represented by the change in the volumes and in the
dividing surface. Although this might appear to be a simplificotion, it is
in fact a most rigorous treatment, as Tolman (1949) showed in his more
detailed treatment of interfaces between fluid masses. At the time that
this theory of capillarity was proposed there was little experimental
material pertaining to effects of solid surfaces, so less attention was
given to solid-liquid interfaces. The surface free energy was however
utilised in the problems where the equilibrium between a solid and ligquid
with respect to solution Was-investigated. In the system where we
replace +the surface of discontinuity by a dividing surface, we must be
able t0 represent all the properties of the system, The case of a liquid
surface falls very neatly into this pattern, the variables at constant
" temperature being the volume and surface area, mass of liguid and mass of
dividing surface, and pressure and surface tension, all of which are
related.s However, in the case of a solid, because the position of the
atoms are fixed, no such simple relation is to be expected,

Gibbs was careful to point out the difference, in the case of solids,
between surface stress and surface free energy. ©Surface free energy is
~ & measure of the work necessary to create a surface, whereas the surface

stress is a measure of the work necessary to deform a surface. In the
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case of a solid there is no such equivalence.

Wie may define the specific free energy of any crystal surface, in the
most general case as O(n). This is the increase in the free energy
of the crystal, when a face normal to a unit vector"g is increased by
unit amount, when the .internal properties of the specimen and the areas
of the other types of face are kept constant, The quantity O(n)
will have different values for different crystal faces, because of the
different distributions of atoms in the different crystal planes. The
free energy of the specimen will then be the volume free energy plus the
terms J;(j(ﬂ) ds +» In the case of a liquid or an isotropic solid, O (n)
will be constant for any part of the surface, and correspondingly the
surface free energy will be Os. This definition of o(n) corresponds
tc the definition of ¢ at the I'= O dividing surface.

The concept of surface tension is a very old one in the theory of
liquid capilarity (a historical account is given by Baaker (1928) and
Shuttleworth (1950)) The concept was extended to surface stress for
solids (Gibbs (1928) and recently a detailed treatment of the stresses
for the general case of crystal surfaces has been carried out by Herring
(1950 ( g )) and by Shuttleworth §1950).

Given an interface and any plane P normal to ity, we may define the
surface force acting across P as the purface contribution to the total
force exerted by the material on cne side of P on the material on the

other side. The total force is then considered to be composed of
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contributions from the dividing surface and bulk phases, according

to the method given in the previous section. The force per unit length
of the intersection of P with the dividing surface, may be called the
surface stress acting across P. In the case of a crystal, as the
orientation of P is changed, the surface stress acting across the

surface has been shown by Herring (1950 ), .. ~ #o bave tho general

form:-. |

the pth component of the stress is E gpv P,

where ¥ =X,y § = X,¥y2, (X,¥y being the plane of the surface).

P is the unit vector normal to P

gpv is the surface stress tensor.

This; general surface stress tensor contains shear components which

could not be present in a liquid., However if the surface has greater
than threefold rotational symmetry, then gl‘w reduces to a multiple of the
unit matrix i.ee g . = g0

1RV
For this type of surface the shear components vanish and the stress

uy wherebpv= 0 if p# vy, and %v’ 14if p = v,
becomes isotropic.
Strictly, the surface stress just defined is no exception to the

general rule that the division of any quantity into surface and bulk
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contributions, depends on the location of the dividing surface.

However the product of %A, where X is the volume stress and )\ is of the
order of the thickness of the transition layer, will be negligible
compared with the components of guv s so that to this degree of
approximation the surface stress can be considered as independent of the
position of the dividing surface.

The numerical components of gp‘} for a crystal surface can be
calculated directly by summing +he forces which the various atoms of the
crystal exert on one anothef, and by finding the unbalance of thcse
forces due to the presence of the free surface. These atomistic
calculations have been carried out ((Lemnard~Jones and Dent (1928),
'Qrowan (1932), Shuttleworth {1950)) and for certain crystals, such as

some of the alkali halides and the rare gases, tensile " and not

compressive Stresses were obtained.
In all cases however, it was found that O, the surface free energy,
was much different from the surface stress. Atomistic calculations have
also been made for liquid surface stresses and free encrgics, and the
calculations show thab they are equals MacLcllan (1952), Kirkwood and
Buff (1949))
In the treatment of the melting of tin cnysfallites, we shall treat
the surface free energy as having a uniform value O over the entire

surface where C = J;CI(Q) dS/J'ds « Since the crystallites were
s
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spherical, their shape would only agree with a uniform valué of g -
cquivalent to a single crystal plane., This would occur if the
crystallites were small enough for the atomic forces to be sufficient
to smooth out all edges and facets to give a uniform atomic
c'igstribution. The surface stress will be treated as being due to a
high symmetry face, namely a tensile stress, g, which is isotropic,
The crystallite will be considered to have isotropic elastic properties,
go that the complex form of its general stresses can be represented as
a uniform pressure.

In the following ccnsideration we shall consider the surface free
energy and the surface stress to be independent of the cufvature.
This is permissible when the thickness of the transition layer is very
much less than the radii of curvature of the surface. (Herring (1952)).
Let us consider the changes of the free energy in the cases of a) a
liquid, b) a solid, when they both have a free surface, and ¢) a solid
liquid intexrface.

(a) Suppose we have a liquid with a free surface and consider
the change in free energy when we carry out a virtual arbitrary change.
The two dividing surfaces proposed by Gibbs yield the same change in
free energy for a single component system in which the afsorption
at the surface is ZOTO.

The free energy F of the liquid is F=Fv¢ F;, where Ev is the

free energy of the interior and FS is the free energy of the surface.
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For an infinitesimal change with t constant,
(6F ), = (6F), + (oF), (28)

The general form of OF for a bulk phase is

OF = ~pov ~n& + pdm (29)
(Gibhs p.186)

where p = ©pressure, ¥ = volume,
N = entropys, t = temperature,
p = Gibbs potential, m = mass of the phase.

Therefore for the interior of the liquid which has mass m , potential y,

pressure p, and volume V

(5Fv)_t = =pOV + udmy (30)

When the dividing surface is considered at the surface of tension

oF, = y6s + p%60° from equation (23)

o (BF),= -pby+ pbm, +y6s + p°6m’ (31)

In this change

~p 6v represents the external work done by the change in
volume, +yO0s represents the work done on the surface by

gtretching it.
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p 6mv repregsents the chanze in free energy due to a change of mass
in the interior, 6mv usé m® represents the change in free energy
due to a change of mass in the surface, 6ms, where &m° and Smy, are
unrelated.

At equilibrium ps=p, thercfore no work is done in transferring
matter from the interior to the surface, so that on giretching a sui-face,
the externmal work done is @, when v is kept cons‘caﬁt. Therefore

S

= ¥, where m 1is the mass of the liquid. Also for a
ds /tyvym
liquid the strains inside the liquid can be correlated with the surface

tension and free energy, so

oF ar
. S
p=p®  i,e. v =p=p°= s
e

-

The same relation exists between the free energy of the interior
and its mass; as between the surface and its mass.

If we now place the liquid dividing surface where the mass density
of the single component liquid is zero, the term in equation (23)
containing n® vanishes, and consequently the change in the free
energy of the surface becomes a function of the mass in the interior—
which is now the total mass - and my,= M

The general variation for the liquid is still represented by
equation (28). However, since FS is now Os, GFS =0(0os) =08 +

s80 , and from equation (30) (GF")t = =~pbV + pdm, where m is
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the total mass of the liquid, for a general variation

ao a0
\t) & + Sm (32)
¢s /m cm /s

¢o 1e]
o (6F>t = -~ pdVv+ pbn +|0C + s 8s + 8 Om
ds ' m om /s

(¢

do =

(33)

If there is no adsorption, the configuration in the surface remains the

same after the stretching, so that the free energy per unit area remains

ao
constant, so that{ —— = O,
k] m

Since ¢ is ¢ (mys) the derivatives of O with respect to s and m

have the relation

‘ w P
EYs) ¢S ds ole
am an /o ) dn s/ m
. 8 ) o
s (34)
00 /m
) .

0, [==\ =0, therefore (6E), =08 (35).
0s m dm /s

]

But since

The relation for the variation expressed by equation (33) has the
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form

(6F % = -pdy + pdbm + 0ds (36)

The more general form which allows for a change in the surface mass due
to adsorbeble components, also reduces to this simpler form if the
configuration in the surface is the same after stretching. If we

_ consider the variation éiFs s in the general form of the surface of

tension,

FS = fss, where fs is the free energy per unit area. For

constant t
(65'3)_'; = G(fss)_t= £ 6s + sf)fs (37)

But 6f from equation (26), for t constant is p°6T

(an)t = £ bs + sp® 8T (38)

If 8T= O i.e. the configuration of the surface is the same
although the arca has changed, (& Fs)t = £ 8s, as in equation (35)

where fs = 0
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b) The gencral change of free energy, for an infinitesimal
arbitrary variation, is more complicated in the case of a solid than in
the case of a liquid, since the solid has both rigidity and long range
order, Shear energy, which cannot exist for a liquid, mey be present
in the case of the solid and because of the long range order of the solid
no rearrangement of atoms can take place in a solid surface, Consequently,
after stretching a solid, the configuration of the atoms in the surface
will be different and therefore the surface free energy will change. In
the case of a liquid when no account of the surface is takeh the Gibbs
thermodynamic potential is unambigiously defined by p = (~f§i-)

, om tsV
where Fym, v and t, are, respectively, the free energy, mass, volume, and
temperature of the lighid, This applies to a liquid because the only
way of changing its free energy at constant volume and temperature, is
by changing its masse In the case of solid, however, there is the

additional possibility of the presence of shear strain energy. Therefore,

the Gibbs thermodynamic potential for a solid is defined by :~

s

/ ) :
p= i (39)
\ ' Om t, ¥V, shear

where F,m,V,t are now, respectively, the free energy, mass, volume and
temperature of the sclid. This means that +to specify the potential of a
solid, the change in the free energy must occur at constant shear as well
as at constant t+ and Vv (sce also Herring (1952). If the solid is subject
to a uniform pressure P amd has no shearing stresses acting on it, then

if there are no shear strains subsequently induced in an arbitrary



118.

variation, the change in free encrgy is represented in the same way

as in the case of a liquid i.e. by equation {29).

Consider, single component solid having a free surface and let Fv ’
m, y be respectively the free energy, mass and volume, of the interior
when the dividing surface is placed in the position where it has zero
mass. The mass, m, is then the total mass of the solid and ¢ from
equation (27) represents the free energy per unit area., If the area of
the surface is g, then the free encrgy of the surface, Fs, is equal toOs.
For a solid crystal surface, which has greater than three-fold rotational
symmetry, the surface has no shear components, and therefore if there are
no external shear stresses applied, the change in the free energy of the
interior of the solid, for a variation at constant temperature, will be
given by equation ('30), and the change of the surface free energy will
be 6FS =5(os). Thus the total chainge of free energy can be represented,
in the same form as in the case of a liquid, by equation (33). However,
because of the long range order and the subsesquent change of configuration
of the surface due to the variation, equation (33 camot take the simple

form as the case of the liquid. From equations (32) and (34) we have
/

a0} ! aon
&(os) =0bs + s ( I 08 + s ( b om
=/ m

90 § as\
= 6dg + g ( 0sg =~ /——'—‘ Om (40)
Ves)o 777 s

o)

o0 )

and since for a solid, ( # O because of the fixed positions of
\Os m :
\

the atoms, the full equation (40) must be used to represent the change of
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free energy of the surface, and hence tho full form of equation (33)
for the total change. Tnis is because the work done in creating a solid
surface 1s distinguishable from the work done in deforming it.

c) If we consider a solid phase in contact with a liquid phase, the
change in free energy of the system in arbitrary variations will include
eny free energy change in the solid-liquid interface. If we considex
a single component solid completely surrounded by its liquid, it will be
subject to an isotropic pressure providing there are no shear stress
components in the solid-liquid interface. If tne solid frcee surface stress
has no shear components, the presence of a liquid cannot create any, and
consequently for a surface of sufficiently high symmetry, the changes in the
free energies of the solid and the liquid interior will be given by
equation (29), Let us replace the solid~liquid interface by the dividing
surface which has zerc mass,and letgbe the solid~liquid surface free energy

per unit area,s the area of the surface, m, the mass of the solid,m, the

1 2

mass of the liquid and + +the temperature. Then the general form of Ois
Q(t,s,m1,m2) because the surface free energy of an interface between two
bPhases depends on them. However, if the solid does not affect the liquid to
the extent of altering the ordering by introducing a long range order, the
dependence of the solid~liquid surface free energy on the liquid will have
the same form as a liquid surface. Alsc the dependence of the solid-liquid

surface free cnergy will be a function of the solid mass and the surface

area, so that for an’infinitcginal variation, .at constant + =

oo 00
5 ( s0) = obs +s( \‘ Ss + s \ os | (41)
\Bs am‘l/s



3). The Effect of Solid-liquid Interface and Liquid—-Air Surface
on Thermodynamic Equilibrium,

Lot us consider a spherical solid particle in equilibrium with, and
completely enclosed by, a liquid shell. Let us replace the solid—-liquid
transition layer by a dividing surface placed so that the superficial
density of solid is zero, and let us réplace the liquid eir transition
layer by a dividing surface in the surface of tension. Let the radii
of the two surfaces be r, and r, respectively (Pigure 43) and let
the external air pressure be Po' Since the system is considered in
equilibrium, thermal equilibrium condition must be satisfied; Therefore
the temperature, t, is congtant throughout the system. If we consider
the solid to be subject to an isotropic pressure; let the pressure, Gibbs
potential and mass in the so0lid be P1,p1,m1 and in the ligquid P2,p2,m2,
regpectively, Let 01 = the frec energy density of the solid-liquid

surface.

o= the surface tension of the liquid~air surface

3]

5 its potential and mass.

s
and oy m
= area of the solid~liquid surface

5,= area of the liquid-air surface.

For equilibrium, for a general virtual change (GF)t " =8W (42)
. . > ?
(Gibbs“ﬁ.89) where F = the free encrgy of the s0lid and liquid

oW

the work done on the syston -

it

total mass = m,+m +mS

m 47,



O0F = 6F1 + 61?'2 + '&‘51 + OF,, (43)
oW = -p_ ov (44)
where 6};?'1 = change in sclid free energy
§F2 = change in liquid free energy
OF 4 = change in solid~liquid surface. free energy
ﬁFsz = change in liquid-air surface free energy
8V = total change of solid and liquid volume.

e « for t constant, from eguations (40) and (29)

oF

1 -P1c‘3v1 oy c“>m1 (45)

6F2 = -BHY, + u, Om, (46)

and from eqguations (41) and (23)

00 4

903
Jds m(SS1 +S‘ ‘%—I‘I— s.(SHLI
1 1 1

- 8 s 8
6Fs2 =Y, 6s2 + gy dm, A (48)

o) =
by C1és1+s

s 1

- 12‘1 e
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Therefore from equation (43)

(&r) ~P, 8V, + p, 0m -P,0v, +n,0m,

1
m
1 8 1

t,m

00 4 5 fe]e]
+ 01 631 + s,] . 831 8y + 8, P
o

-

= - Poév (49)
i V=0V - = - .
Since © 4 +<'5V2 » P, 6V2 P, OV + P 6\)1 and since
8y is a function of V and S5 of V, we can rewrite equation (49)
as
/ 00, 8,
—Pév +P 6v+o oV, + s, — 1OV
ay 1 1 T a8y oV 1
N TN
632
-P SV + P Sy + «(2 Sy
00 1 s s
+uy Om, . + 8y 'é'-—— +p25m2 +p.25m2 =0
(s0) -
2 _4 3 2 _4 .3
But as 8y 47!1'1 »Vy = 37c T, and 8, 4 = and y= 37 5
38y 2 /as 2




Since 5\’1, OV are arbitrary changes and since Om, +0m, +&m; = O,
for equation (50) to be satisfied

.-’ 681 001 601
=P, +P +C + 5
i 172 1 3V4 N o S1 o av,l
" 1

[ /asz
{ =P, 4P +a | ] Ov= 0O
270 fo1 gy

- 3

N -

8 s
(H1+S1« m, + “2 6m2 + u2 6m2 = 0

2 o, 28y 30 4
Therefore 1“1 = P2 + + , (51)
r, T, 0 8
4

2'{2

P.=P+ (52)

2 o)

To
601 s
and By o+ s, — . =By =Ry (53)

But from equation (41) for constant temperature 01 iso1(s1,m1) and

therefore using equation (34)

/501
\am1>s1 ) -<

K representeg the change of surface area with mass, when q
Bm 5
1 1

(54)
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remains constant i.e. we imagine the mass increasing by dm1 and the

state of the interior remaining the same, so that dm1 = phdv1 and
consequently
ds 1 [os \
1
1 - - \ | (55)
om (8] p1 av‘]}/
1 1 '
a8, 2
But (i————l——\ = - so
ovy ) r
/ -
90 2 F-Te) '
1 = - ( ") (56)
om r.p o8
T s, 1 1/ m,

Consequently equation (53) can be rewritten.

2 8 oo
my - 1 ! =4, = u;. (57
T4 P4 9%y / m,

Equations (51) and (52) give the conditions of mechanical equilibrium.

Equation (57) is the GibbsXelvin relation for the pressure diffecrence
across a spherical surface between two fluids, in terms of the surface
tension and the radius of curvature. Bquation (51) gives the relation

for the pressure difference across the solid~liquid surface i.e.

2 90,

(o+ s )
1 2 r, 17 1 35, (58)
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If we consider an isotropic surface stress g in a curved solid
surface, then for mechanical equilibrium there must be a balance

of forces in all directions. Therefore, if we consider a small square
clement arca of a spherical surface of radius R, such that its sides are
length 1, the resultant normal force ! inwards on the element , due to
surface stress is 2glp-%— « For equilibrium this must be palancéd
by a normal pressure difference across the surface element. If the
pressure difference is AP, where the pressure is greater inside the
spherical surface, the force on the element due to this pressure is
AP12. These forces will balance if AP = -g%— » Similarly for a

solid=-liquid spherical surface, where there is an isotropic surface

stress s and radius Ty the pressure difference P,~P, is given by

172
2g1
—— , Therefore from equation (58)
r
1 .
601
g, =0, +s8, [=———— (59)
1 1 1
' 0 8, o
! 1
go that
301
s () - g o, (60)
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Therefore substituting equation (60) in equation (57)

H, gl"cl = [J.z
1 (61)

Equation (61) gives the condition of equilibrium in terms of the Gibbs
potential, surface stress,and the specific surface free énergy. Equation (59)
gives the relation of the surface stress in terms of the specific surface
free energy. For a crystal with a plane surface, when the: external

normal stress is zero, in an arbitrary deformation at constant mass which

is assumed to change the local state of the surface;andiim consequence the
gurface free energy,we have

~,

00
S T T T T, (62)

where g w - the general surface stress tensor

o} = gpecific surface free enepgy.

6 = Kronecker delta,

[Hxv = general strain tensor of deformation

" = X,¥,Z v = X,y and xy is the plane of the

surface.

This equation, for a crystal face of greater than 3~fold rotational
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symmetry, reduces to

Ve
90 /' a0

g= 0+ 3(strain) T O * S K_'é's'—— ' (63)

00

0 s
will be appreciable,(ofthe order of ), ‘but for a liquid it will vanish

which is the relation in equation (59)s For a solid, the term sk\

because a liquid cannot support a shear strain, and the deformation

will resultinatransfer of liquid from the interior to the surface or
vice-versa, without change of the state of the surface, For a liqqid,
thereforecgg)= 0 and O is numerically equal to the surface stress,
Conscquently ihen phase (1) is a fluid equation,(61) reduces to By=h,
because then O, = &1 =Yy which is the normal relation betwecen potentials
of fluid phases. (see e.g. Curzon (1960).

The apparent ineguality of the Gibbs thermodynamic potential of a
crystal and its liquid in equation (61) arises from the fact that a
crystallite contains an additiocnal degree of freedem to temperatﬁre and
strain, namely the concentration of lattice defects in the form of holes

and interstitial atoms. The atoms in the interstitial positions have

a diffcrent potential from the lattico atoms and the representative

potential of the crystal can be considered as: u

“a = pi (64)

the potential of

where “a = the potential of lattice atoms and “i

interstitial atoms or lattice vacencies in equilibrium with each other.

X
4
[
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If we consider a bulk crystal at zero stress, with none of these
imperfections, then on decreasing its size the surface stress will induce
atoms into the interstitial positions and form corresponding vacancics.
If we consider this erystal in equillbrium with ite liquid
When 51 = B,y then from equation (61).

2 ¢
T (8 =09) =y~ 8y (65)

191

Hence p_ = By where By is the potential at a pressure P1 if no changes

in the 'ideal' structure occurs, and u, = —— (g,-g) would be the
L T, 0 179

potential of the imperfections. This is then in agreement with Herring

(1950.2).
However, considering the equilibrium in terms of the normal
macroscpic variables, in the case of a so0lid core and liquid shell,

we have from equation (61)

2
u1(P1,T) Y (81~C§) = Hy (P29T) (66)
1P
2 %Yo 2g 2
1 Yo
. P, =P + =—— + . _ ;.
Since 1 0 T, r, and Pg = Po * r,
from equations (51) and (52)
2g1
P1 — P2 =
r (67)

1

Therefore equation (66) can be rewritten
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P,~P.) 2g
1 72 8
2y (@ T) - L (2,T) (€8)
1Y gﬁ 22
' 1P
P 6
But b= Fm - pyh = Fm - /P (69)
where Fm = free energy per unit mass
| 1 I
vy = /p = volume per unit mass.
\ P 20 P P P
. 1 1 2 2 2
oo 1, (P,,T) = —+ u(P,,T) - —= + -
[ ppomp 7202 Po Po Py
201 (/ 1 1 0 )
ck = — f — N 0
so that F1m(P1,T) + Fy = By », } (7
1P Py P2 /
Therefore for equilibyium
20,i
Fou = Fin* =By vy vyy) (71)
P4

When two bulk phases are in equilibrium and no account is taken of the

effect of the surface of digcontinuity, p1=p2= p and the condition

of equilibrium is, as expected,L

F2m = F1m - P (v2m =Yy ) h (72)

i.e, the diffcrence of free cecnergy per unit mass is equal to the
external work done in transferring unit mass from one phase to the

other, However; it can be seen from equatien (71) the free energy of
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20

the solid is augmented .by the term when a spherical surface

S
of discontinuity is taken into account.

The equilibrium of a crystallite inside a liquid is unstable.
'If we consider an actual change where some solid has melted into the

liquid and signify the increments occurring by A , for the equilibrium
+ A {20 \ ,(P1 2
\E e

must equal Ap? for constant temperature %, and total mass, m. g

condition to be satisficd from equation (68), Al

I we suppese the solid transferred to the liquid diminishes the radius

then the shell outer radius increases

oP
: 2 ‘Arz ‘
<6r2> (73)
becausoe ( > 1/p
6H1 0P,
A u >( ) ‘p1< > (74)

‘26 20 20, /
A/ pl\"'TJJF’Z‘Arf' /o pr; (75
\ 11/ 1 p1 1\ap

/1>1—1=2 1 fa e, P\ (2, P)Cp1>/a1=

A\\ oy /7y ar/ or
. - %h \

(76)

of the solid particle by A r1,

by Ar2 because X >p2

Lr
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1 vy 1 ,
But - -{)-;- -—aP— = 0 whoere k = bulk modulus and v = / o s
therefore dv = - dp so that
2
2p (11
0/
T
. /201 : P,-F,
© o ARy mAIET
\. 171/ \ P
[ 7
1 oP : 20 /P
= — L Ar —-——1-2 Ar, =~ 1 o
Pa\_ er, ToeTy L T k1\5r1
1 3 \A (,-P))/ 3, \ (78)
T e or (P1'P2)/ Ty Y ok, aw, | ATy
1 ! ™A 2y 2,
Since from equaticns (51) and (52) P1=PQ + S + = ’
P2= Po+ rz and P ] -—P2 = —-—I-:-1- ’ . therefore
a(P1-P2) ) -2{;1 oP, . 2y, - 0P, i 2g,
2 v T2 T2 '
9z * 0Ty *5 oz, T4
. ' Ve
. 2rp
« A“Q = - AI‘2 (79)
and ' .

2
2 .
P, ~P
1 - (80)

BBy *
© 2 -2g J
. 1
{ 2 &) P17y ™ c
Since 2 is posn.tlve and ﬁxr1 is negatlve ,the R.H.S. of equation (80)

is pos:Ltlve and the R.H,S. of equatlon (79) is neéatlve, S0 c¢unse quen'bly

these terms camnot be equal and the equlllbr:.um is not maintained, =
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Also since fﬂf = =N, where m o is the entropy per unit mass, and

gince the enéiipyzgf a liquid is greater than that of a solid, for
equilibrium to be maintained on a decrease of the solid, the
temperature must be lcwered. This means that the(golid is in unstable
eqiilibrium with respect to slze variation when it is completely
surrounded by the fluid. The condition of equilibrium obtained in

equation (61) will represent the limiting case of equilibrium when a

contimuous change of phase is considered,

4. Melting Point Bquilibrium of Crystallites.

When bulk solid melts, each step may be considered as a reversible
transfer of matter from the solid to the liquid phase, while the
intensive propertics remain the same, However, in the case of a small
golid particle the melting process cammot be considered so simply, since
its intensive properties depend on its size. Therefore, when a
transfer of matter from the solid occurs, its size decreases and it may
no longer be in a state of equilibrium with the phase into which it is
changing, as was shown in the previous section., In the experiments carried
out, the solid spherical crystallite changed into a liquid spherical drop,
and because the amcunt of both phases present was smell, the intensive
properties of the liquid would also have changed during the transformation;
In the experiments carried out, at some stage the liquid must have been

formed from the crystallites. Since the temperature was raised continuousl:
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for the equilibrium conditions to be satisfied, the considered liquid
and s0lid must be at the same temperaturs. Therefore the simple model
of solid and 1liquid spheres in equilibrium cannot be applied. (Pavloyr (1909)9
Reiss and Wilson (1948)). Also the initial and final state of a tin
particle could pass through a series of non-equilibrium states, so that for
the condition of thermodynamic equilibrium of melting of small crystallites,
we must consider a system where both phases are present at the same

temperature. Two models of melting will be considered.

4.1 Uniform Melting ~ Simultaneous Melting Over Entire Solid Surface,

In this model we consgider the crystallite to melt at the surface and
form a 1iquid shell which completely encloses the solid, so that consequently
there are only solid-liquid and liquid—air interfaces. As the temperature
is raised, the so0lid begins to change uniformly at its surface since the
surface layers of the crystallite are already in a state of higher free
energy and greater disorder than the interior; The new phase which is
formed cannot be considered to be a liquid with homogeneous bulk properties
becausc of tho initial thincss of tho sholl formed,The condition of local
order anq long renge disorder cannot be satisfied, and furthermore the
interatomic forces from the solid in contact with this shell will tend to make
this "pseudo liquid" more solid-likes If we assume that thermodynamic
properties can be assigned to this layer e may divide it into a volume,
and two dividing surfaces, the solid~ "liquid" dividing surface and the

outer surface of the "liquid" shell. However i the shell initially formed is
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allowed to increase in thickness,its properties tend to become more
like those of a bulk liguid, so that at some critical thickness, '\, its
properties will be those of a bulk liquid.

Since the properties of the dividing surface depend on the
properties of the two phases between which it lies,the free energy of
the solid ~ "liquid" interface and the "liquid" surface will also change
with thickness of the shell. Since the shell is more like a solid Whén
its thickness, d, is less than A , the solid = "liquid" interface free
energy O :(d) will be less than 0,, the free energy of the solid-bulk
liguid interface. Similarly, the free energy of the "ligquid" surface
‘rz (d) will be greater than that of a bulk liquia, since the free
encrgy of a solid is greater than that of a2 liquid. The free energies
of both the surfaces of the shell will acquire the bulk liquid valucs
when the shell has a thickness) . The value of<3?(d) and y;(d)‘could
be considered to vary with d, the thickness of the shell, as shown in
Figure 44. The interfacial solid - "iiquid "free energy increases from
a very small value, to the bulk-~liquid surface free energy when d = .
The"liquid"- air free energy, correspondingly decreases from a value
very near that of a solid-air free energy to the bulk liguid free energy,
which is thé liquid surface tension, whend = A .

The value of A at which the shell acquires the properties of a

)
bulk liquid is expected to be of the order of 15 to 20 A,
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If we therefore consider the "melting" to commence uniformly on the
surface, the transfer of solid to "liquid" will commence at a temperature
at which the équ._z:'.]lﬂﬂ;igmbefween the solid core and the "liguid" is
satisfied. The system may be considered as the one shown in Pigure 43,
except that rz—r1 is very small, of the order of a few Angstroms;
Because of the "pseudo liquid" state, the equilibrium between the solid
and the "liguid" will be stable with respect to further "melting". Both
cs?(d) and‘y;(d¥. increase with increase in d, so that when some solid

"melts" the shell increases in thickness. Hénce there are extra terms in

equation (79) and (80)., Increase in @ means a decrcase in .,

and an incrgase in r2 s0 new terms will occur in equations (79) and (80)
oryld) T : 80 4(4) : .

nemely ————— Ar, in equation (79) and 57 Ar, in equation

2
(80) where the former is positive and the latter negative. Consequently

the condition for stability will be satisfied in the range d=0 to d= A,
because the gradient of o':(d) and'r;(d) is large id this region, as may
be seen from Figure 43. However when the shell attains the bulk prdpertiés
6f the liquid, the above terms become zero, and the equilibrium becdmes
unstable. Therefore when the shell reaches the thickness A, - Loa
subsequent temperature risg causes a "catastrophic® change of solid to
liquid. THe¢ .melting point equilibrium must thergfore be considercd at the

temperature at which the "ligquid" has just attained the properties of a bulk

liquid, namely when the shell thickness is hg;_igya@equate energy is supplied;

S
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At the melting equilibrium the solid core of radius T, is in

equilibrium with a liquid shell of radius Tss where ry=T,+ A, (at a
temperature T). This was initially a crystallite of radius Ro, and
its melting point can be considered as T.

Lot us consider a crystallite of radius RO +ARO, and let its

melting point temperature be T + A T, At this temperature a solid core

of radius T, + Ar,] is in cquilibrium with a shell of thickness M

. e AI‘1 = Arz (81)

From equation (68) for a solid sphere 1o be in equilibrium with a liquid

shell at a temperaturc T, we must have

201(1‘) i (P1-P2)

p‘-‘(P-"T) + =" “2(1)2,]1‘)

T4Pq Py (82)

Therefore for gquilibrium to be satisfied when », increases to r, + AJ:'1

1

and 5 increases.to T, *+ A T, the system must be at T + AT, where P‘I
has changed to P,| +A P1 and P2 to ]?2 + A P2.
2 © P, =P
o 1 1 72
« o AP. + A - Al —— =Ap
1 \i,l A > & 04 2 (83)
op T anm
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iy Ok,
2 T N /P
6 AT
T4P4
(86)

G

G4 0P 1\ ap
- — ( ) 8P - ——-—5——- (’ L\
TP 4 oFy /i T1P4 ot /e
AﬁfPe AR, AR, (P B/ 8
7 S T T TR T \FE
- (87)
(2-R)( a0,
AT,
02 aT /o
1 A

u) _ — ~ the.volume per unit mass ) (88)

oP o

L .

—_— = - ~ the entropy per unit mass . (89)
op _ QAK ~ where k= bulk modulus (90)
9P J T

3P |
.Taf = Top where a=cubical expansion coefficient (91)
P
o)
_a_l -7 =~ entropy per unit area of the solid—liquid surface
(92)
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So substituting equation (84) to (87) in equation (83) and

rearranging
Bp. a',\au ) o i ao N L 20 ap
( 1) A'I'-(.T_.g_ AT + (1 ap - —] (I 1)1\@
(P,-F,) LR
+ 5 i AT
PXE ey
7 owm \ / 3n 20
2 2 ) AR, - { L ) A 2" A,
CEPEE 9P g &
20 ;9P AF AP
. 1 . 1 \ s, 1 2 2
w2 \ory / P 1
(P -P ) r .
Substituting equations (88) to (92) in equation (93)
r 2 a, 20, 7
“MNam Moy~ R Ts ™ o, . (Py=5) AT
101 [ B
L
AP AP 20 20,
= =5 2. . p1 + 5 1 A T, + L AP.'
2 1 x5 o, r, Pk,
AP AP (?,~P,)
. 1 _ 2 1752 A
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1
e AL' —AP — . —
2 1 2 1p p )
ry p1 1 2
7/
/l\P1 i 201 \

2Yp 8, 25 28, A
P1=Po+ - + N e & AP1 = 1.2 Ar2 - r‘? r1 §
2 1 2 1
Yy . 2, 28,
P2 = Po t =3 o e AP2 = Az, and P‘l = P2 +
2 T T
2 1
Since T, = r1:i: Aand A T, =4 T, from equation (81)
2 20,1 A
- - + —
Mo =My BT — AT - (g - g)ar
1P4 1 P
20, 2¥, /1 1 \
= Ar, + £ - — AT
TP T (n? P %/ 1
- (95)

17 2 2 1
1‘1 p1k1 ( 1+7\) 1‘1 /;
kN 4
Therefore if we denote r1 by T g
29 I 2 A 2%
2 2 Y CALY
AT r“p, (x+ N P P2 rp,k, T\
A 2 2(1,1

N om ~n1m—?p7 Mg = T Py (g1~01)
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where Ny =N oy (P2,T) - the entropy per unit mass of liquid. 1

Ny =My, (P1,T) - the entropy per unit mass of solid.

The melting point equilibrium expression obtained above is for a
solid core of radius r and shell thickness A . This expression would
represent the gradient of the graphs, shown in Figures 34 and 36, at a

point R, T This is because the radius

R R’

indicated in these graphs is the radius of the original crystal, and

vhen R=2+3% and P =T

therefore the radius of the outer surface of the liquid shell. Therefore,

the gradient on the melting curve at a point R,T, should be given by

20, 2Y, /Py 2(gmq) 2, 2
e T e oY) T I T T oy
AT (R-2)% R°P, \Po2 (R =) “\R (B-1)
} 1 1 1
AR | :
7]2 hn‘l - 2T]S . 20'1 (g - Q')
1
(B-Mop, (B-Me,

(97)

The density of the solid crystallites was found to be equal to that cf the
bulk tin, when the largest crystallites of the order SCKLX, were investigated
(Chapter IV Section 4). Subsequent determinations of lattice parameters

of smaller crystallites showed no change; to within the experimental accuracy

of 0.5%. Since the compressibilities of solid and liquid tin are of the

)

seme magnitude, the bulk moduli being 5.25 10 dynes/bm?, (Bridgman (1925);

11 '
and 3.1 10 dynes/bmz, (Kleppa (1950)), respectively, the densities
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appearing in equation (97) may be taken as those of bulk tin, at

normal pressures i.c. Py = 7.184 andp2 = 6,98 grams per centimetre cube .
¥, for liquid tin in vacuo is 580 dynes/cm (Matuyama (1927))and its
variation with temperature is of the order of 5 dynes per 3000. Therefore

the term in the numerator

2 a: \ 2
ﬁz L 1 ) = 15.6 ergs/gm/bm3.
R‘p,l p R

2 /

The last term of the numerator is much smaller than the first two because
of the large value of k1, the bulk modulus of solid tin.

The estimation of the solid-liquid surface stress from the surface
free energy (Turnbull (1950)) make the solid-liquid surface stress much
less than the liquid surface tension. This would be expected from the
similar packing of atoms in solid and liquid tin. Consequently i

2
2g, R
be much larger than -—— _, so that if we take g, - ¢ Alq, the last
R _7‘)2 1 1

will

term may be rewritten, approximately, as -

20 3y
—1 2
’ 2
p1k1(R N R
Therefore the ratio of the 1st term, 5 ;o this is
2% 2.1077

k1R R
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i o .
Since the smallest value of R studied was v 334 , the last term

would be less than 1% of the first term in the numerator. Thus without
any loss of accuracy the last term can be ignored.

No discontinuity in the properties of liquid tin st temperatures
below its bulk melting point are expected. (Greenwood (1952)) In the

{denomiﬁatorlT]Zm(PZ,T) N (P1,T) appears. The pressure P, is greater

1
27,
than P2, but they are both of the order of —2 o« For a crystal of
R

o}
100 A, PZ.AJ1O9 dynes/cmz. The melting temperature for some crystallites
may be as much as 100°C below the bulk melting point of tin. Therefore
both these factors, temperature and pressure,should be taken into account
when the equilibrium entropy is being considered. However, the entropy
difference, T 2m(P2’T) -n1m(P1,T), does not differ from the value at bulk
melting point, TB’ and both phases at one atmosphere, PO, by more than 1-2%
(as discussed below).
C
Entropy is a function of temperature and pressure as dnm = —E gp
a T
—5— dP, where Cp is the specific heat at constant pressure, and a is
the coefficient of thermal expansion. If we therefore consider ?]Zm(Pz,m),

T]1m(P1,T) in terms of their values al the melting point,Tp,whon the

pressure is PO

T Cp P g
. 2 2

on(Pr®) = My (BeyTp) + - J aF
Ty iy ©OP P2

(98)

1
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C P a

T P1 1

7’11m (P19T) = 'ﬂ1m(PO,TB) + S . ar - *é‘
o}

P4
Tg T (99)

dap

But T]2m(Po’TB) M (p

L
o%TB) = T;— , where L = the latent heat of

fusion of tin. Therefore subtracting equation (99) from equation (98)

L T
'ﬂ 2m (P19T) ""ﬂ1m(P1,T) = =+ (Cp2~Cp1)1oge —
T T
B B
a, a
-—""2—"(P—P)+'—1(P—P) (100)
P o 270 ¥ 170
where .bpz’.bp1 are mean valucs of the specific heats over the range
of integration. When PO is one atmosphere, TB = 505°K and L=14.5 calories/
gram = 6.07 108 ergs/gram.
Therefore TL = 1412 106 ergs/éram/aegree.

B
The specific heat of liquid tin, sz, is 0.0615 calories per gram (Kleppa

(1550)), but the specific heat of solid varies from 0.062 calories per
gram, at 505OK, approximately linearly with temperature (Kelky (1949)).
4

T
L . .
] < 1% of - Similarly since

= 10—4, when P1,P2 r..,-‘109 dynes/bm s the last two terms

The term (65246p1) will not exceed 10 ergs/ém/ﬁegree in the range of the
experiments so that (Cp2-0p1) log,

a, = 7.1O~5 and

Q,
2
in equation (100) will be less than 1% of ——%— . Therefore the entropy
B

difference (

Moy = My,) is equal to %‘-— to within 1~2%.

B
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The entropy of the grolid-liquid surface could not be found in
the literature, however this term would be expected to be small. If we
congider the variation of the liquid surface tension (Matuyama (1927))

as an order of magnitude although Y2 is much greater than Oy » for

o 2
100 A radius crystallite p—f%:?\) "‘«’104 again less than 1% of -—g—g .

The last term in thedenominatoris negligible being of the order of 102

0
for a crystallite of radius 100A. Therefore to within a few percent,

equation (97) may be rewritten

2 2
= 2, ~= 35— - 15.6
S R 2P
AR L
g
} 2 Ty [ a, ) 15.6
=1 2 2 o
Lp, (R~ ) R : (101)

For t large crystallites, waen R >>)\ , this reduces to

AT 2 / | S
= (6] bd 15.6 o« == ’
. AR Ip, \ 1 72 (102)

With this approximation, if we integrate from a temperature T +to TB

and from R 10 « , where TB is the bulk melting point, assuming oy
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is temperature indepsndent,

B
2 T co .
J B ) AR
AT = g ~ 15.6) S 5=
D L p, 1 R 2 (103)
QTB 1
o' TB - T = (01 -~ 15.6) - .
Lp,l
QTB 1
T =Ty - (c;,l - 15.6) —— (104)
Lp1 R

Therefore the graph of T against 1/R , when R is large, is a straight

line. From the graphs in Figures 35 and 37, the gradient obtained for

o]
R-v 10004 was (911)106.

Therefore the value of o, is given by

2T,
g.10° = 2 (0, = 15.6) + 10%
Lp1
O o, = 55 (1 + 0.1) ergs/bmz (105)

1

This value for the free energy of the solid liquid tin surface is
in good agreement with the value obtained by Turnbull (1950)y of 5445 ergs/
cmz, which was calculated from the results of experiments on supen@oqled .

liquid tin droplets carried out by Vomnegut (1948).
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The linear form of T against 1/R does not hold for the range
of crystellite radii studied. The gradient. %%% s, on the graphs of T
against R were found to increase much more rapidly than indicated
by equation (191)wﬂp§g%7¥ wag taken of the order of 20 X .

curvature!

Although tﬁékﬁépéndence of the specific free energy was not taken into
acount the discrepancy between equation (101) and thc results obtained
is too large to te explained by this alone. When the effects of surfaces
are .considered in the general tlccryof capillarity, the interior phases
are sgsumed to retain their bulk properties. The change of free energy
of a phase 1s then expressed by the specific free energy of the surface
and the strain - energy induced in the interior due to the surface stresses.
As shown aboveythe coffoct of tho sStrains imuced by the surface, in the case
of the solid, is much less important than the surface free energy. By
decreasing the size of a phase sufficiently, however, as was pointed out
in the case of the thin liquid shell around a solid core, the properties
of the interior could change from those of the bulk phase.

The surface, in the case of a crystal, tefminates the indefinifeky
extending lattice associated with a bulk crystal. The unbalance of the
atomic forces distorts.the lattice near the surface, changing the free
energy anﬁ entropy of the surface layers. This is expressed in the
specific free energy of the surface. However, if we meke the ratio of
surface to volume sufficiently large, the unsaturated atomic bonds at the

surface will begin to chenge the properties of the interior. When
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erystallite radii of 20~30 lattice spacings are reached, the number of
atoms in the surface layers becomes an appreciable fraction of the total
number. For a crystallite of radius of 1503, the fraction of the total
number of atoms which is in the top surface layer alone; is 5%, and when
the radius is 30 E, the fraction is‘25%. This would cause a greater
change in the interior free energy and entropy then would be predicted by
Jjust the surface stress pressure alone. This increase would be expected
t0 depend on the radigs.-

Since at equilibirum we are considering a thin shell of liquid, its
properties, already discussed, will also depend on+the radius of the solid
core., Its free energy and entropy will depend on both the thickrgss of
the shell and the rédius of the core, However, we are assuming a constant
thickness, A ; for the shell at the equilibrium,so that the difference
between the two phases will depend on the radius of the solid coxe.

Since the properties of both of the phases change with the radius

of their interface, tbe condition of equilibrium given by equation (66 )i.e.

” 2(e,~q,)
1™
1R
can be modified to
P1(P1,T) - —— 40 (1‘1,T) = pQ(PZ’T) (106)
T10 4

where §Xr1,T) is a potential arising from the change in the difference of

the free energies and entropies of the solid and liquid phases, at thier
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melting point, on account of their size. This is a function of the
temperature and the radius., ITf 810 94 ,Y2 are assumed to retain the
same values as at large curvatures, all the changes from the normal

bulk phase behaviour are incorporated in the term b'r1,T). Since P1,P2

are functions of Ty equation (106) can be expressed in terms of the

two variables T and r1.

If we now consider the melting curves, and consider two neighbouring

p01nts,(T R,)Qnd(T+AT R+AR,)then noting that r, is R~ N\,where 9\ is

) 2‘7'2 281 2‘Y‘2
the thickness of the shell, and that P.=P+ —5= + T3y » PPt ——
then

2Y, 28, 2(g- o) .
p1(Po+ + y ) = ———— + (R -2,T)
2y
2
my (B + sy T) (107)
R
and
24; 2g 2 (g, - &)
n, ('Po+ 2 4 L , T+ AT) Rl T
R+ /R (R AR -\) p, (R+4R-1})
+& (R+AR-A, T + AT )
2y,
= (P + 2 , T+AT) (108)
© R+ AR

where g1,c51, Y, and P, are consldered to be temperature and radius

r" /aP .
\aR ( ‘\\aR )T’,we can

independent. Noting that
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expand equation (108) to the first order

g )63 @)

au, 2(z, -o,) 2 ( g -o,)
. 1 jar - —2 12 L1 ar+o (B0D)
o7 (R -\ p, (R -2 ° P,

: \
/ A Onp
; Y. ou
+( ﬁ%— AR = By VP b —2 +\ 2 \ ;
. R oF 5] /
g . N T2 i

Bl
+< o2 AT (109)
),

where M.C. stands for the melting curve. Although ¢ is & (R,T), R is a
function of T, because of the expansion along the melting curve., For a
given value of R- there is a unique value of T, so that { TR " AR
/u
expresses the change in @ between the points R,T and R+ AR, T+ AT. on the

melting curve. N

Noting that ; \ { aT ) =="1_
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and subtracting equation (107) from equation (109)

\

1 -2, 2g, 2g,
- AR =m AT +
Py R® (R—?\)Z) o (R~7\)2p1
20y )"" AD 1 2y,
- 5 AR AR = - > MR~ n2m AT
(R =n)°P, AR P2 R
/M-C- N
(110)
Rearranging equation (110)
A
20 24
, 1 Yo O
n,-n )AT = ———— AR =~ - 1\ AR
om m RE 2
(B-N"p, Ee, o -
AR A ‘
1 \ AR (111)
R | :
3 ’,/' MoC:o
\
Therefore ) ' / ‘\
< iﬁ— _ 2Y2 {p-l —> _<[\@ )
, 2 . 2 p A
A T =_ (R-K) p1 R p1 \\ 2 ) R M‘.oc ]
LR e, Tgm -,
(112)
L
Since 012 - ) was shown to be equal to —— , and ¢ was found to be
m 1m TR

55 ergs/bmz,

1'/' /
/AT _omg 55 156\ T AG
K R J Mo, Le, (r2)°2  R? L AR JuGC.

l113\
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AT

This equation gives the relation for ( ) , the gradient of the

melting curve at any point (T, R). The gradients of various values of T

and Ry were measured on the melting curves in Figurcs 34 and 36, and by

0o (R =\.,T)

trying different forms of | )]ﬂ c , the form which gave the
& L& L]

A AT .
most ¢onsistent.results, was
AD A
— - - 3 (114)
AR M.C. (R=N

where A dis a constant.

If we substitute equation (114) in eguation (113) we obtain

A

{ AT 2Tb fl 55 . 15.6 ) TB A
[ mmrmereeee = o 2 + . 3
\ar Jmo. 1o, \(BD) %/ L (B
(115)
, ony | 55 15.6'} x
l.o T = - L. C
M.Cc : Lp1 (R_—]\)Z R2 o L RI\ED ]
+ TB . A . AR
L (2-2)3 M.C. (116).

If we consider a point (T,R) on the melting cu_rve,.thenA'l‘M.C,ARM.C°
are increments in T and R which have to be added in order to go to a
neighbouring point on tbe melting curve. Therefore, if we make ATM.C.,
ARm,C, infinitely small, we may integrate equation (116) along the melting
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curve from the point (T,R) to (TB,ov), where Ty is the bulk melting

point, in order to obtain the depression in the melting point of a given

radius.

Intcgrating equation (116)

\

T ) /
7 B - -‘on QTB { 55 _ 15.6 .
MG, T ! 2 2 RMﬂ.
T g Le, (R-n) R®
- TB A
+ J —— m— AR
R L (R"'?\.)3 MOC' (117)

Since Ly, TB’ and A are constant, and if we treat pq as constant,

2Ty 55 15.6 Ty A
Tp-T = —— - + 5 (118)
Lp, {R~-2) R 2L (R-))

T, ~ T is the depression of the melting point for a crystallite of radius

B
R. From the curves in Figures 34 and 35, the depressicn TB—T = ATR, for

any given radius R can be obtained.

From equation (118)
2L 55 1546 } A

TB (TB“'T) - p1 ( (R—K)- R j = (R—?&)z

(119)



Figure 44. Graphs showing the assumed variation with the shell
thickness, d, of: (A) the solid-liquid surface free energy,
(B) the liquid=air surface free energy, as used in the firs?
theoretical model of melting.
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Figure 45. A liquid spherical cap formed from a sperical crystallite
as assumed in the second theoretical model of melting,
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‘ 2L 4/ 55 1546 1
Therefore plotting Y==——*—'(T£-T) - —1 =
Ty P13 (R-0) R
1 (o]

against for a series of values of EB—T and R, whenX = 204,

(r-0)°
the graph in Figure 46 is obtained. It is a straight line, with a

gradient

A = 6.85 (120.1) 1070 orgs e len® (120)

Therefore the deviation from the properties of the bulk phases increases
as the size of the crystallite decreases. The decrease in the free energy
difference between the solid and liquid, when the core radius is 10029Nou1d
be equivalent to an increasse in the sclid-liquid surface free cnorgy

of about 50%.

4.2, Non-uniform Melting- Preferential Melting over part of
the Solid Surface.

In the second model, melting will be considered to begin at the
point of contact of the crystallite with its substrate. At some stage
of the heating, thg erystallite begins to melt, and instead of forming a
uniform shell on the outside of the solid, forms a spherical cap at the
point of contact. This creates liquid-air and solid-liquid surfaces
which change on subsequent rise in temperature, as éore golid transforms °
into liquide. If we congider that the liquid and solid are in equilibrium,

this equilibrium will be maintained only if the system is stable with
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respect to a size variation of either phase. If the equilibrium
becomes unstable, at some stage of the melting; this state can be taken

as the melting point.

In the last section it was scen that in the crystallites studied ‘
the term involving the strain encrgy in the solid, due to surface stress,
was of the order of 1% of that due to the surface free energy. Therefore ‘
the equilibrium conditions can safely be assumed to depend on the free
energies of the liquid and solid surfaces, To simplify the geometry, since
the density difference between solid and liquid tin is only 2.7%, we will
consider that the solid and the liquid formed will still retain a total ‘
spherical shape with the radius remaining constant. The solid-air
surface stress is greater than the liquid-air surface tension, therefore
for mechanical cquilibrium to occur, the solid-liquid interface must be
curved. But since liquid and solid tin have similar atomic packing, the ‘
difference is expected to be small so that the radius of curvature of the
golid~liquid interface will be much lsrger than the radius of the
crystallite.

Let us consider the system in equilibrium at a temperature t,
as 1in Figure 45, where the liquid formed can be considered to have
already attained bulk properties. The crystallite was originally a
sphere of radius Re The liquid formed is in the volume ADBC, enclosed by

two spherical surface elements, ACB. radius R and ADB of radius R'. The
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curvature of the surface ADB is determined by the condition of mechanical
equilibrium

2, 28 28
2_ 4 = 1 (121)

R R! R

where Y, = surface tension of the liquid-air surface

It

g = surface stress of the solid-liquid surface

surface stress of the solid-air surface.

il

€4

This condition of mechanical equilibrium is obtained on the
assumption that the surface stresses are isotropic and that the strains
are isotropic throughout. Also if we consider the melting to occur
through a series of equilibrium states, since R 1s assumed constant,
R' must be constant to maintain mechanical equilibrium. Consequently
when some solid melts,the surface ADB is displaced normally to OC,
maintaining congtant curvature.

The stability of the system with respect to a continuous change
of phase will depend on the change in free energy, when an actual change
occurs. If external work must be done to procure the change, the
equilibrium will be stable. Since the change in strain energy is ignored
in this approximation, the change in free encrgy is given by the product

of the changes in the surface areas and their free energy densities.
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Let 01,c%, Gy S48, and s be the surface free energy densities and
surface areas of the solid-air, liquid=~air and solid-liquid surfaces
respectively.
If we thercfore imagine some solid melting, the area of the solid-
air surface decreases by ”As1 and the liquid-air surface incpeases by
,ﬂ&sz. Since we are assuming that the total surface area, AFBC, is

constant, then As, = -Asz, and the free energy loss in the outside

1
surface is (“61 -,QQ)fAs1. If the change in the solid-liquid surface is
‘A, then the gain in free energy at that interface is OA s. Since we
have assumed that the liquid does not spread over the solid,(151—cﬁ)must
be less than 0, so that in order for the change to occur, external
work must be done providing As  is positive. The equilibrium will
therefore be stable as long as there ig an increase in the solid-liquid
surface on transference of solid to the liquid phase.

In Figure 4%, if we consider a plane surface perpendicular to OC,
cutting the sphere AFBC, at A and B, in the form of a circle, then AEBC,
‘AEBD are spherical segments of height h,h' respectively, if EC=h and

ED=h', and the radii of these spheres are R,R' respectively. The area

of the solid-liquid surface, is

s = 2 LRh! (122)

because s is the area of the curved surface, ADB, of the spherical

segment of height h!' and radius of sphere R',
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If EC is equal to a,

a2 = B2 — (R'-h')2 (123)
because a is the radius of the base of this segment.

Similarly for the spherical segment ACB of height h, and the

gsphere radius R
a? = R% - (B-h)? (124)
Combining equations (123) and (124)

' = R - (R12 - B = (R-n)2 )E (125)

Substituting equation (125) in ecquation (122)

= 2®R' (R' - (R'® - R® - (2-n)2)F  (126)

o =
98 4 xR* (R=h)

e T = 2 2 o (127)
dh (R*“-R"~ (R-h)“)%Z

The right side of equation (127) is positive when h<R, and
negative when h> R . Therefore s will incroase with increase in h,
which occurs when some solid melts, until h=R. Then there is a
decrease in s  on further melting, and consequently the limiting

condition of equilibrium occurs at this point. It may be noted that Os

os

at this point is zero, to the first order, because = 0 when h= R,
ch

from equation (127).
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We may obtain the condition of equilibrium at this point, if

we are ignoring the change in strain energy of the solid due to surface
changes, in an analogous way to that used by Gibbs to obtain solid liquid
equilibrium with respect to solution. ILet us consider the crystal can
be treated as an isotropic solid, and suppose that in an infinitesimal
virtual change, the solid is unchanged except that an infinitseimal
portion is dissolved at the surface, where the solid meets the ligquid.
If we consider the systoem enclosed in a rigid adiabatic sheath, the

( ) ‘n b Vv ’m ( )

where € = total energy of the system

M = total entropy of the system
m = total mass of the system
vV = total volume of the system-

Let the energy, entropy, and mass per unit volume of the solid and

liquid be €y SZ'V » Nqyr oy 2 Py and Py respectively, Let the
energy and entropy densities of the solid-air, ligquid-air and solid-
ligquid surfaces be Eq1? Ego? Eg 1 Mgq 7 N g9 and'ns respectively,
where the dividing surfaces are placed so that their mass densities are

ZEeTr0.
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The increments of encrgy, entropy and mass in the vieinity of

the solid~liquid surface are represented by

( é1v~{82v ) s&h  + £ Os (129)
(My =Mpy) s6h  + 7,068 (130)
(P, =0, ) s&h (131)

Where ~g Oh is the volume of solid dissolved and .Os is the change

in the solid~liquid surface area., It was seen that at the point at
which the equilibrium is considered &s = 0, sc that the terms
containing Os vanish. The entropy and mass represented by equations
(130) and (131) we may suppose to be derived from the rest of the system,
because the total mass and entropy are constant.

The change in energy in the rest of the system will be given by

€ 8s +

a1 ’ + o€ (132)

T2 ©5 2
where 562 is the change in the encrgy of the liquid already present.,

Since its volume is assumed constant,

. = 40 o
de t6n2-+p2 m

2 2 (Gibbs p.63) (133)

where 6né '6m2 are the changes in the entropy and mass which occur

in this volume, and p is the Gibbs potential of the liquid.
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However, since the total entropy and mass are constant

(M, =My, ) s@som, +ngy 88y +n,08s, =0 (134)

1v
and  ( p -py) sBh + Bm, = O (135)

The total change of energy in this change is

8¢ = (e, - . - ‘
& (e 1v" Sy ) s&h e, +e Bs, +& _, 08, (1236)
But from the fundamental equation €= t7M~- Pv + um, for unit
volume

©py = Mpym Py F P, (137)

Thercfore from equations (137), (132) and (133)

8 =(a1v-—1m +P, p2p2) s§h+té‘m * u, Om,

2y
+.8 4 631 te 682 (138)

Substituting in equation (138) from equations (134) and (135), and

rearranging

(ge)

T)s DY

(4, =t Mgy = Py *+ By) s

+

(g, = tnyy) 85, + (5, = 1 ,) s, (139)
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But g, - tqs=(3 from equation (27), and since the total outer

surface area is constant, 632 = - 6s1, for equilibrium

as,
€4yt Py + Pp) e01 - (0,-G) 6h =0
5h
(140)
e -~ = = ‘
But gV} 1 1V f1v f‘Imp‘l ’ (141)

where f1m is the Helmholtz free energy of the solid per unit mass,

and since p, = £, + Pg/b1,’ where f , is the Helmholtz free energy
of the ligquid,per unit mass, equation (140) will be satisfied if
- 1 (o~a,) 1 /o8
/ 1% 2 )
£, =t +Pr——--—————)- —_— . = 0
moTem 2 Ap, Py Py s \ on/
(142)

Therefore equation (142) represents the melting point condition of
equilibrium, At this point, since R'>>R we may, to a first approxi-

mation, congider the golid-liquid interface as plane, so that its area
ds

s is equal to'xR?. Therefore since 8y = 27Rh, 2 ==27X R
oh
1 ds, 2
( Pl e — (143)
s © 9h R

Substituting equation (143) in (142) the equilibrium condition

becomes
2(o,~0,) P ;
f2m - f1m = e + 2 K - 1) (144)
Rp, S .
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The form of equation (144) is identical to that of equation (71),

except that in place of the solid=liquid surface free encrgy, there is
now present the difference between the solid~air and the liquid-air

surface free energies, 01 -02 =G .

We mey obtain in exactly the same way as in Section 4.1 of this
Chapter, the relation between the equilibrium conditions of two
crystallites of radius R, R+ AR at their melting temperature T,T + AT.

This yields the oxpression

2.0 2o f P )
2 T2 \ B
AT R® P R P \ P
7E ¢ ! 2 (145)
L.
s
2Té

ag the pressure P2 = P, + s Where P, igs the external pressure.

Equation (145) has exactly thi same form as equation (101), for the
uniform melting model, except that in the surface free energy term, &
is present in place of the solid~ligquid surface free energy, and R
in place 1f R~A . Since we magy consider all terms in eguation (145)

as constant, except T and R, then integrating from T to TB’ and

T to =« ,

- - e AR .
Soar = 2 Ga-ts5) S — (146)
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2Ty 1

c.c T, - T = —— (6"" 15.6) — (147)
Lo, R

Bquation (147) prodichs a straight line for the graph of T against @ /R.
However the graphs in Figures 35 and 37 have already been seen to be

o)
non linear except for large values of R. When R is taken>" 1000 A,

the value obtained for G is

G = 55 (1%0.1) ergs/cm2 (148)

This is the same value as obtained for the solid-liquid surface fres
energy in equation (105).

In order to correlate the experinental results with the melting
point equilibrium conditions of this model we have to introduce an
intrinsic potential, as in the previous section. By considering
adjacent points on the melting curve,we obtain a term of the form
AD > . .

——f—— s where is dependent on the difference in the
AR MIC.
properties of these small phases from their bulk properties. However,d

is now & (R,yt) and not® (R-\,T) as in the previous section, so that

the relation for the melting curve becomes

- )]
(0= 15.6) =~ —A-—-—-\
,}'! M‘CQ

A R201 \aRr
AR / u.C. L

Ty (149)
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Substituting G = 55 ergs/cm2 in equation (149) a relation is
AT

obtained for the gradient, —-—-—) , in Figures 34 and 36 at
AR/ M.C.

different values of R. It was found that replacing the expr/ession

LD AD -
for , obtained in the previous section i.e. k =
M,C..

AR AR/ MSC.
A Al
=TT Y by 3 did not yield the correct results.
(R-1) R

The gradients predicted Dy this form were too small, so a term
in the form of a series expansion was tried. The type of expression

whick was consistent for the range of R studied was

AP A B!
= - - — (150)
m / ue. g3 54
If we substitute equation (150) in equation (149)
AT ZTB 39.4 TB A TB B!
= ‘ 5 + ¥ 3 + » 4
AR M.C. Lp ’ R L R L R
(151)

Integrating equation (151) in exactly the same way as equation (115)
the wxpression for the depression of the melting point of a crystallite

is given by
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where T is the melting temperature of a given crystallite and

R its radius. From equation (152)

2L 4 - 2 B!

e (TR - — 3904 R=A'+ —  —
Ty & 3 R
(153)
Obtaining TB-T from Figures 34 and 36, and plotting frémr cquation (153),
S » 4 ]
gl — (TB—T) R® - — 39.4 R against /R, the graph shown in

1
Figure ET is obtained, This is a straight line where the intercept

At = 1,45 0.05 1072 ergs gm.'-1 om? (154)

and the gradient

2
— BY = 5,3 (1i 0e1) 10_12 ergs gd-1 cm3 -(155)

3
B' = 7.95 (1 + 0.1) 1072 ergs aw | oms. (156)

Therefore the deviation from the properties of the bulk phases
increases as the size of the crystalite decreases, The decrease in the
free energy difference between the solid and liquid, when the solid
crystallite has a radius 100 g, would be equivalent to an increase of
~12% in the solid=air surface free energys if the liquid surface free

energy 1is assumed constant.



Figure 46, Graph of ¥ against 1/ ( R~ R )2, obtained: from the first theoretical
6 ' model of melting, where R is the outside radius of the liquid shell and M = 20 Angstroms.
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Figure 4T.- Graph of o' against 1 /R, obtained from the second theoreticé.i model
of melting, where R is the radius of the crystallite,
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5+ Discussion of the Theoretical Treatment of the
Experimental Results,.

The above considerations have shovmthat the results of the
experiments may be inferpreted in terms of two different theoretical
models. In the development of these theories it has been assumed that
the substrates have no effect on the results. This appears reasonable
since the experimental results for tin crystallites on silicon monoxide
and on carbon substrates are the same, within the experimental error,
This would not have been likely if ;ho substrate had had a significant
influence on the behaviour of the crystallites,

Since each crystallite was spherical, its area of contact with the
base was small in comparison with its total area and it is reasonable
to suppose that the substrate did not, in féct, have any effect on the
melting of the tine In this case a theory based on spherical symmetry
may be used., This is the basis of the first theoretical model. However,
the point of contact with the base represents a small break in the
symmetry of the crystallite, and its possible that the melting commences
at the point of contact with the base, This is the underlying
assumption of the second model, In both models the transfer of matter
from one phase to the other reaches a limiting equilibrium condition,
after which there is a catastrophic collapse of solid to 1iquid.' This
limiting condition of equilibrium is taeken to be the melting point.

In the first model, the temperature T,, obtained from the experiments,

R

corregponds to the melting point of the éolid core of radius R~N , where A

is the thickness of the shell at the melting point equilibrium, The
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contribution of +this shell to the diffraction patterns from which TR

is calculated  were neglected because of the thinness of the shell,

and in additicn . the temperature range over which this shell exists is
expected to be small. Therefore the presence of the shell does not
affect the measurement of TR‘ The value of thé parameter A occuring
in this model was found, by the method indicated in section 4,2. of this
Achapter, 0 be 20 X. Ag this ig of the order of seven atomic layers,
the agsumption +that the liquid had acquired bulk properties at this
‘thickness would seem to De justifiable. The theoretical results #From
this model expressed in terms of the solid-liquid surface free energy
can be obtained from the gradient of the melting curve at large values of R.
The value obtaincd was 55 5 ergs/omz, which is in good agreement with
the'value obtained by Turnbull,

In the second model the temperature TR obtained from the experiments,
corresponds simply to the melting point of a crystallite of radius R.
In the calculation based on this model the strain energy was omitted ard
the geometry simplified by neglecting the density chénge on mclting;
The strain energy may be omitted since it has been shown to be small
comparcd with the surface free energy, Although there is no Jjustification
for ignoring the changc in density, the form of the equilibrium condition
would be very similar to that already obtained, since this dengity
difference is very small, This model has the advantage of representing
the meltingpoint curve in terms of a single parameter. Tho term that

appears in the condition for melting equilibrium contains, in this case,
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the difference between the solid~air and liquid=air free energies.

If the solid»liquid surface free energy, O , is very nearly equal

to the difference between the solid—-air and liquid-air surface free
energies 4 G , the melting point, or limiting, equilibrium will be
reached very soon after the liguid nucleus has formed. Because of the
rapidity of this transformation from solid to liquid, it will be
difficult to obtain diffraction patterns which show features consistent
with a partly solid and partly liquid state. The value of the
difference between the bulk solid~air and liquid~air surface free
energies, can be calculated from the melting curve. The value obtained
was again 55 + 5 ergs/bmz. This indicates that the sssumption of the
near equality of o and O is justificd, but the error is to0o large

to estimate the value of the difference betweeno and G .
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The experiments described in this thesis enable the melting point
of a spherical tin crystallite to be>re1ated to its size. The dependence
of the melting point of a crystallite on its size can be explained by ’
the effect of its surface properties on the interior. Tpe depression of
the melting point calculated by the normal macroscopic free energy methods
is not in agreement with the experimental results, and to explain this
‘ﬁ%t has been necessary to postulate a change from the bulk properties of
tih fqrvparticles whose radii are less than 200 8. This change can be
represedtgd by an‘extra term in_the equilibrium condition in the form of
an intrinéic potential. This term represents all changes from the bulk
thermodynamic{properties which occur in the solid and liquid phases
consequent to the reduction of the particle size; for example free
energy per unit mass, lateht heat per unit mass and surface free energy
per unit mass.

The effect of this additional potential on the melting point has
been considered in the two models used. In both the models this poten—
tial gives rise to a further term, in addition to the bulk surface free
energy, in the expression for the depression o? the melting point as a
function of radius, and this term is found %o be a function of the radius
measured along the melting curve. In the first model this term was of

T
the form ——t— 2 °c, where A = 6.85 (130.1) 10-6erg° gm'.'1 om?

(R-2)° L
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and A= 20 8. In the second model the additional terms, were of the

A" 2¢t | TB -3 -1 2
form { =s + === ) — , where A' = 1.45 (1+0.4) 10 ° erg. gm. cm.
"2 3R3 ) oL ? ( ) 8o 8 9

and C' = 5.3 (1+0.1) 10_12 erg. gm'c.'Jl oms

Good agreement with the experimental results was obtained in both
cases, but there is not enough experimental evidence to indicate which
of these two models represents the true melting mechanism. There is
strong experimental evidence, however; to suggest that there is a
fundamental change in the free energies of particles whose radil are
below ~-150 ﬁ, which cannot be explained by stress effects, as the
corresponding density change would have been observed experimentally,
nor by the effect of the normal bulk surface free energy. Since the
results obtained using silicon monozide and carbon substrates are the
same, it is also concluded that an amorphous base does not influence

the melting point of spherical tin crystallites.
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