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1. 

ABSTRACT 

This thesis deals with size dependence of the melting point of small 

spherical tin crystallites. Transmission electron diffraction and electron 

microscopy methods were used to obtain a relationship between the melting 

point of a crystallite and its radius. 

Specimens consisting of spherical tin crystallites were prepared in 

an electron diffraction camera by evaporating tin onto thin amorphous films. 

The melting point of a specimen was determined by observing the temperature 

at which the diffraction pattern rings consistent with the solid poly-

crystalline phase ceased to be visible. The mass distribution of the 

crystallites was found by examining micrographs of the specimen, obtained 

by means of an electron microscope. From these measurements, and from 

further experiments it was possible to determine the ratio of liquid to 

solid masses at which the sharp ring electron diffraction pattern became 

obscured. It was then possible to calculate the radius which was to be 

associated with the melting temperature of the specimen. 

Lattice parameters were measured to investigate any possible change 

with size, in the structure and density of the crystallites. By using two 

different amorphous substrates (silicon monoxide and carbon) it was 

concluded that the type of amorphous base did not affect the results. 

A theoretical treatment of the phase equilibrium between solid and 

liquid using thermodynamic methods is also given. Two models of melting are 
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discussed to obtain theoretical relationships between the melting point 

of the crystallites and their size. The theoretical results obtained 

are correlated with the experimental observations. 
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CHAPTER I  

INTRODUCTION 

1. 	Surface Effects on Solid Phases.  

When a phase of indefinite extent is in thermodynamic equilibrium?  

its properties are uniform throughout. However if the phase is not 

indefinitely extended so that there is a surface associated with the 

phase, there is a discontinuity in the uniform distribution of matter. 

This discontinuity results in the individual atoms in or near the 

surface having a different energy and being subject to different atomic 

forces from the atoms in the interior. The different physical and 

thermodynamic properties of the surface, therefore, must be considered in 

the general treatment of thermodynamic equilibrium between phases as 

Gibbs pointed out in his work on "The Equilibrium of Heterogeneous 

Substances". The surface effects are negligible when normal bulk 

properties of a substance are considered, and only become. appreciable 

when the size of the substance is decreased sufficiently for the energy 

associated with the surface to become an appreciable fraction of the 

total energy of the system or when the different forces at the surface 

affect the stresses in the interior of the phase. These effects 

increase as the size decreases. 

Since;Tor a long time,the observation of surface effects was 

limited to optical methods, sizes at which surface effects on solids 

became apprecialAe could not be observed. However with the advent of 

X-rays, electron diffraction and electron microscopy, surface effects 
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on the physical properties of the whole solid particle could be 

measured. Nicolson (1950), using finely powdered magnesium oxide 

in X-ray analysis, observed a contraction in the lattice spacing of 
0 

particles of mean size 600 A which closely agreed with those expected 

from surface stress effects. Bublik and Pines (1952) found, by 

transmission electron diffraction on thin unsupported metal films of 

chromium, nickel, vanadium and cobalt, that the structure of the film 

depended on their mean tlickness. They explained this change in terms of 

surface free energy effects. 

2. 	Investigations of the Effect of Surfaces on the Melting-Point.  

The effect of surface on solid-liquid phase change was investigated 

as early as the beginning of this century.Pavlov (1909) observed a 

lowering of the melting point of a solid in the form of a:finely divided 

powder. Meissner (1920) made the same observation when the solid was in 

the form of thin layers of the order of one micron thick. The results 

however, due to experimental difficulties were insufficiently accurate 

for quantitative investigation of the effect of size on the melting 

point. 

When electron diffraction became available as a means of observing 

the change from the solid to liquid state, the phase change of solid 

particles whose size was well below one micron could be investigated. 

Although the transition from solid to liquid tin had been 

observed by means of electron diffraction by Jenkins (1935), Sayama (1941) 
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and Richter (1943), the first oxporimonts which established that 

the melting point is, lowered as the size of the crystallites is 

decreased were carried out by Takagi (1954). The melting point of 

thin evaporated films was detected by means of reflection electron 

diffraction. It was found that the melting point temperature decreased 

as the mean thickness of the film decreased. However, because of the 

low accuracy in the temperature measurements, and because the crystallite 

size was considered to be equal to the mean thickness of the film, no 

reliable correlation between the size of a crystallite and its melting 

point could be obtained (See Curzon (1960)). 

By means of transmission electron diffraction, Blackman and 

Curzon (1959) investigated the melting point of tin crystallites which 

had been evaporated in vacuo onto carbon films to form thin layers. 

They observed, using an electron microscope, the sizes of the crystallites 

which constituted the layers. These experiments were the first attempt 

to correlate directly, the melting point of a given crystallite with its 

size. 

In the experiments described in this thesis, the Blackman-Curzon 

technique was extended in an effort to obtain a detailed study of the 

dependence of the melting point of tin on crystallite size. Direct 

observation of the melting point of a specimen is not possible with an 

electron microscope, because the heating of the specimen by the 

intense electron beam prevents accurate measurement of the temperature. 
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So that the theoretical treatment of a spherical surface would 

be valid, the crystallites were prepared in such a way that they were 
0 

spherical even when their radii were of the order of 1000 A. Since the 

crystallites in an evaporated layer do not have an uniform size, 

different sizes of crystallites will melt at different temperatures 

because of their different surface effects. However the melting point 

of a given specimen can be determined, with reasonable accuracy, 

by observing she disappearance of the sharp rings in its transmission 

electron diffraction pattern. The diffraction pattern of a specimen 

composed of solid crystallites is shown in Figure 1, that of a specimen 

with some solid and some molten crystallites in Figure 2, and one of 

a specimen in which all the crystallites are molten in Figure 3. 

Experiments were carried out to give the crystallite radius which was to 

be correlated with the observed melting point of the specimen. In this 

way it was possible to assign a definite melting point to a single 

crystallite of a given radius. 

In addition the possible effect of neutral substrates on the 

formation and melting temperature of tin crystallites was investigated 

by using the two different substrates,ciliccn•nonoxide and carbon. 
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FIGURE 1. Transmission 

Electron diffraction pattern produced 
by a tin specimen when all its crystallitL 
are solid. 

FIGURE 2. Transmission 

electron diffraction pattern produced by a 
tin specimen where some of its crystallite. 
are solid and some are molten. 

FIGURE 3. Transmission 

electron diffraction pattern produced 
by a tin specimen when all of its crystal' 
ites are molten. 
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CHAPTER II 

APPARATUS.  

1. General Arrangement of Diffraction Camera. 

The experiments described in this thesis were carried out in a 

vertical diffraction camera designed by Kehoe and Newman (1956) V.Ach is 

shown diagrammatically in Figure 4. The camera could be evacuated 

down to a pressure of 10-5  mms.Hg. A conventional type of hot filament 

gun was used to produce an electron beam in which the electrons were 

accelerated to 45 Ka'., which corresponds to a de Broglie wavelength of 

0.0565 	The beam was.focussed by a magnetic lens, B, onto a fluorescent 

screen, G. The specimen electron microscope grid A, 3 pms. in diameter, 

could be inserted into the camera by means of a specimen holder, D, which 

fitted into a large port in the side of the specimen chamber, C. An 

evaporator, El  was attached to a smaller port whose axis was level with, 

but perpendicular to, that of the specimen holder. This enabled in situ 

evaporation of tin onto the specimen grids so that experiments could be 

carried out on freshly prepared tin crystallites without exposure to the 

atmosphere. An evaporator shield, S, allowed the extent of evaporation 

to be controlled. A Faraday cage, F, at the same level as the specimen 

was inserted into the vacuum through another port. With this cage the 

electron beam intensity could be measured accurately and hence maintained 
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Figure 4. The Electron Iliffraction Camera. 
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constant throughout different experiments. There were two windows 

for observing the inside of the specimen chamber which was illuminated 

internally. The diffraction pattern from the specimen could be observed 

on the fluorescent screen, G. Photographs of the diffraction patterns ,  

oould be taken,either on photographic film or on plates at H,by raising 

the screen. 

2. Specimen Chamber. 

The general arrangement of the specimen chamber is shown in Figure 4. 

The evaporator, previously described by Kehoe, Newman and Pashley (1954), 

is shown diagrammatically in Figure 5. On the axis of the evaporator 

was a tightly wound molybdenum filament, F, so arranged that it could be 

rotated to have its apex horizontal or vertical. When the specimen was 

correctly positioned, the axis of the evaporator was perpendicular to the 

specimen, the distance between the filament and specimen being 15 ems. 

The filament was very tightly wound so that on heating, the molecular 

beam of tin travelled in the forward direction only, with a constant 

polar distribution (Holland (1956) p.146)9and a collimator, C, was fitted 

onto the end of the evaporator to ensure that the molecular beam did not 

spread throughout the specimen chamber. When the shutter, S, was raised, 

a fixed fraction of the molecular beam of tin evaporated from the filament, 

condensed on the specimen grid. The filament was heated by a current 
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of up to 25 amps. A.C., the heavy current leads being led into the vacuum 

via robust porcelain—metal seals, L. The rate of evaporation was 

controlled by varying this current using a "Variac" transformer. 

The specimen electron microscope grid was mounted inside the specimen 

heater previously described by Curzon (1960) which was incorporated in a 

specimen holder of the type described by Kehoe, Newman and Pashley (1954)• 

The heater is shown diagrammatically in Figure 6. The specimen grid, S, 

fitted into the hollow copper cylinder, A, of internal diameter equal to 

the diameter of the grids. This cylinder A was open at one end and had a 

centrally placed aperture at the other. The grid was kept in a fixed 

position next to the aperture by the part B, the two parts being held 

together by means of a press fit. The specimen grid in this position was 

perfectly flat in a plane perpendicular to the axis of the cylindrical 

container, and in good thermal contact with both parts of the container. 

It can be seen from the diagram that when the molecular beam was incident 

along the axis of the cylindrical container, via B, it impinged without 

hindrance on the specimen grid. Alsosif the electron beam was incident 

through the aperture, along the axis of Al  a diffraction pattern of the 

specimen could be obtained. 

The cylindrical container was brazed to the heater, H, on one side s  

and to a calibrated copper/constantan thermocouple junction, C, on the 

other. The heater elements consisted of nichrome wire wound on a mica 
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former and insulated from the metal parts of the heater by mica sheets. 

The rate of heating of the specimen could be controlled accurately by 

varying the current through the windings using a rheostat in series with 

a 24 volt D.C. supply. The temperature of the specimen was registered on 

a calibrated microammeter in the thermocouple circuit. When the maximum 

current of 3 amps was passed through the heater windings no deflection 

of the electron beam, was observed clue to the magnetic field produced. 

The cylindrical parts of the container were made of "spec-pure" copper and 

the brazing material contained no volatile substances such as zinc, so 

that on heating up to 300°C no contamination of the specimen occurred. 

The heater was mounted on the specimen holder as shown in Figure 7. 

The thermocouple and heater leads were led out of the camera via the 

insulated seals, D and E. When the specimen grid was inserted into the 

vacuum, part Q of the specimen holder was secured in a fixed position with 

bolts on the outside of the specimen chamber. In this position the axis 

Z-Z of the specimen holder was perpendicular to the evaporator axis, X-X, 

and to the electron beam, Y-Y. By means of controls F and G, indicated 

in the figure, two independent modes of motion of the heater,relative to 

the specimen were attainable. The position of the specimen was so 

adjusted that it coincided with the intersection ofthO throe inKe6. A greased 

0-ring between the parts P and Q enabled the specimen holder as a whole, 

to be rotated about the Z-Z axis. With the specimen in the specified 

position, the holder could be rotated so that the axis of the cylindrical 
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container coincided with the axis of the evaporator or with the electron 

beam, enabling the evaporation to be carried out with subsequent 

observation of the diffraction pattern. It was advantageous (and in 

some cases essential) for different specimens to be in exactly the same 

position with respect to the evaporator filament and the electron beam. 

For this purpose locking devices were incorporated in the controls of the 

specimen holder. The controls F and G were permanently looked and P 

clicked into the two specified positions by means of a rachet. This 

ensured that on extraction and subsequent replacement of the specimen 

holder into the vacuum, after changing the specimen grid, the same 

condition of evaporation was obtained and the electron beam incident on the 

specimen gave a diffraction pattern in exactly the same location. 

3. The Electron Beam,  

The electron beam was produced by a hot hairpin tungsten filament 

with a grid biased negatively with respect to the filament. The filament 

current was supplied by two accumulators, the bias by a dry cell, and 

the accelerating voltage by a stabilized supply. The emitted electrons 

were formed into a beam, accelerated by 45 K.V.,and admitted into the rest 

of the oamera through a small aperture in the anode. The intensity of the 

beam was controlled sensitively by varying the current through the filament 

and negative bias on the grid so that the same beam intensity was obtained 

repeatedly. By means of a magnetic lens (B in Figure 4), which was clamped 
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in a fixed position above the specimen chamber, the electron beam!• 

could be focussed on the fluorescent screen by having a definite current 

passing through the lens. The focussed beam could be moved in a 

horizontal plane by tilting the lens on the three levelling -screws 

in the clamp. The levelling-screws were adjusted so that the electron beam 

passed through the specimen when it was in the position for observation 

of the diffraction pattern. Two of these were locked permanently and 

the third was adjustable in such a way that it could be returned to 

exactly the same position, thus bringing the focussed beam back to exactly 

the same location on the screen. This enabled the beam to be deflected 

to a Faraday cage at the side of the specimen chamber for beam intensity 

measurements in different experiments. 

The electron beam intensity was measured by means of this Faraday 

cage (Curzon 1960) connected to a sensitive moving coil galvanometer. 

The Faraday cage was in the horizontal plane of the specimen so that the 

beam diameter was the same in both positions. The beam entered the cage 

through a small aperture and the beam current was registered on a moving 

coil galvanometer of sensitivity of 8,000 mms. per µA. so that the electron 

beam intensity could be adjusted to any required measured value. As it 

was important not to have any effective heating of the specimen by the 

beam'a beam current intensity of 0.03µL.was used in the experiments which 

corresponded to 160 10-5  A/cm2  current density when the beam diameter 

in the plane of the specimen was 600 µs. 
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The diffraction patterns in the experiments determining the melting 

temperature of the crystallites were taken on photographic film. A 

continuous series of exposures at different temperatures could be taken. 

For the superimposition of patterns from different speciments and for 

those used in measurement of lattice spacings, photographic plates were 

used as these were more mechanically stable. 
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CHAPTER III  

EXPERILTNTAL PROCEDURE 

1. Preparation of Substrate Films.  

The tin crystallites were evaporated Onto substrate films of silicon 

monoxide and of carbon. To obtain a silicon monoxide film, glass slides 

were cleaned in chromic acid and washed in alcohol, coated with an 

evaporated layer of rocksalt,and then silicon monoxide was evaporated on 

top of the rocksalt. Both these evaporations wore carried out withoui 

breaking the vacuum so that contamination during the evaporation of the 

different layers was minimised. There was a copper shield between the 

filaments so placed that the two filaments were shielded from one another, 

without obstructing the path to the slides of the molecular beam from 

either evaporation. Powdered SiO was mixed into a paste with distilled 

water and the molybdenum filament was filled with this paste. A small 

crystal of rocksalt was placed in the tungsten filament and the evaporating 

plant evacuated to a pressure of 10-5  mms. Hg. The rocksalt was 

evaporated quite rapidly so that a film was formed on the glass slides. 

The vacuum was allowed to recover and a current was passed through the 

molybdenum filament. This formed a silicon monoxide film on top of 

a rocksalt layer. 

To strip the silicon monoxide film from the glass, the slide was 

immersed slowly and obliquely into distilled water in a petry dish,and as 
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the rocksalt dissolved,the silicon monoxide film floated off. The 

film was made into supports by transferring it onto copper electron 

microscope grids. Great care was taken to ensure that the film was 

spread uniformly over the centre of the fine mesh of the grid. To do 

this, the flattened end of a short piece of copper wire was bent over a 

small part of the edge of the grid. The end was pressed in sufficiently 

hard to keep the grid steadily fixed but could easily be bent back, and 

the grid could be released without any damage to the film on it. The 

other end of the wire was held in a pair of tweezers and the grid was 

submerged in the water and moved so that it was below the floating film 

and parallel to it. It was then raised slowly so that part of the film 

spread uniformly over the centre of the grid as it passed through the 

film.The film on the grid was then allowed to dry. 

Silicon monoxide films of any required thickness could be produced, 

the thickness depending on the magnitude and duration of the current 

through the molybdenum filament. The film was made of a sufficient 

thickness to be able to withstand heating to 300°C.,and bombardment 

by the intense electron beam in the microscope without fracture, but at 

the same time thin enough to give a good tin electron diffraction pattern 

from very thin tin layers evaporated onto it. Once the optimum value for 

the thickness had been obtained, identical films could be made by 

reproducing the same conditions of evaporation, under which a current 

of 15 amps.passed through the molybdenum filament with the slides 12 ems. 

from it, 
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Samples of the silicon monoxide substrate films were examined under 

an optical microscope to ensure that there were continuous layers over 

the centres of the grids. Each specimen was examined by transmission 

electron diffraction, just prior to evaporation of tin, to check that 

there were no impurities on the substrate to giv3sharp rings which could 

be mistaken for those due to solid tin. A typical electron diffraction 

pattern of the silicon monoxide film is shown in Figure 8 and a photograph 

taken through an optical microscope of part of the coherent film on the 

electron microscope grid in Figure 9. It can be seen that the electron 

diffraction pattern consists of diffuse broad haloes showing that,the 

silicon monoxide is in an amorphous state. If any sharp rings were 

observed the film was discarded as impure. A sharp ring pattern produced 

by crystallites of tin was clearly visible on these diffuse haloes, even 

when weak. This was of great advantage in determining the melting point 

of tin. 

The carbon films were prepared as described by Bradley (1954) and 

Curzon (1960). This preparation was similar to that of the silicon 

monoxide films except that a carbon arc was used in place of the filament 

with silicon monoxide. The thickness was dependent on the size and 

duration of the current causing the carbon arc flash. Once the optimum 

thickness conditions had been determined, exactly the same carbon 

substrate films could be reproduced, giving halo diffraction patterns 

similar to those of silicon monoxide. 
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FIGURE 8. Transmission electron diffraction pattern produced 
by a silicon monoxide substrate film. 

FIGURE 9. Photograph of a part of a silicon monoxide substrate 
film on an electron microscope grid. 



24. 

2. Preparation of Tin Crystallites.  

The tin films prepared on the two substrates were sufficiently thin 

not to form continuous layers but wore composed of separate crystallites 

(Holland (1956) pp. 205-209) 	As Spherical crystallites with a 

definite size distribution across the surface of the substrate were re- 

quirodlthe special evaporation techniques described below were devised. 

A further discussion of the formation of these crystallites is carried 

out in Section 3.1 of Chapter V. 

It was found during preliminary evaporations of tin in vacuo 

different masses of tin gave different size distributions of crystallites 

on the substrate films (see also Curzon (1960)). However the increase 

of the mean size with the amount evaporated was not linear. With a high 

rate of evaporation, crystallites formed on the substrate at room 

temperature gave circular electron microscope images when masses up to 

4 mgs.were evaporated from the filament. For larger masses the crystallites 

tended to lose their circular images and to coalesce, To overcome this, 

the temperature of the silicon monoxide or carbon base during these 

evaporations was raised through a series of temperatures up to 160°C. 

The rates of evaporation, pressure and position in the diffraction camera 

were kept as constant as possible for the different evaporations. By 

using masses of tin ranging from i to 20 mgs., a whole series of tin 

specimens were produced under these conditions of evaporation. 

Tin was cut from a tin rod whose chemical and spectroscopic analyses 
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indicated that it was 99.996% purn tin with the main impurities being 

0.002% lead and 0.001% antimony. A chipping was weighed on a micro-

balance and out down to the required weight. The weights were not 

distributed evenly over the range usedlbecause the relation between the 

mean size of crystallites formed and the evaporated mass of tin was not 

linear. Many evaporations were carried out with weights of tin between 

1 and 3 mgsdas, in this range, there was a rapid variation of mean 

size of the crystallites with mass evaporated. 

The tin particle was placed in the evaporator filament, the axis 

of which was vertical. The silicon monoxide or carbon film onto which 

tin was to be evaporated was placed inside the cylindrical container of 

the heater, and the specimen holder was inserted in the position for 

observing an electron diffraction pattern of the. film. The camera 

was evacuated to a pressure of 10-4  mms.Hg. and a current was passed 

through the molybdenum filament for a few seconds, sufficient to make 

it hot enough for the tin particle to melt and wet the filament. The 

temperature reached in this way was insufficient to evaporate any of 

the tin, so that on cooling down, the knownvreigh't of tin was fixed to 

the filament in the form of a sphere. The diffraction pattern from the 

silicon monoxide or carbon was examined to check that it had no 

impurities which would give rings on the diffraction pattern. 

After the tin had cooled to room temperature air was admitted to 

the diffraction camera. The filament was rotated through 90 degrees so 
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it faced the position of the specimen grid and the grid was turned to the 

standard position for all evaporations (see Figure 7). In this position 

the uncontaminated substrate film was coaxial with the evaporator filament 

along X4C. The diffraction camera was then evacuated. In order to 

minimise the oxidation of the tin crystallites formed and to extract the 

water vapour from the long length of photographic film, the camera was 

pumped out continuously,with liquid oxygen in the trap above the diffusion 

pump,for several hours, so that a pressure of 10-5 mm. Hg. was attained. 

The substrate was then heated to 300°C in order to evaporate the 

impurities,from the atmosphere and pumping system,which had condensed onto 

the substrate. This ensured that the formation of the tin crystallites 

was as uniform as possible over the whole of the substrate film. The 

evaporation of the tin was performed with the substrate films at a series 

of different temperatures. The specimens with mean radii greater than 

about 1002 had their substrates at temperatures between 180°C and 160°C, 

those below 1002, at room temperature. The substrate was therefore allowed 

to cool to the required temperature, the evaporator shutter raised and the 

evaporation carried out. A current of 17.5 amps.was passed through the 

filament: this ensured rapid evaporation of the tin. The molecular beam 

which had condensed on the substrate film increased the mean thickness of 

the layer of tin crystallites at the rate of 2001 to 300 2 per minute, 

depending on the amount evaporated. When all the tin had evaporated the 
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heater was rotated so that the axis of the specimen was vertical and 

the diffraction pattern from the specimen could be observed. Before 

the melting-point experiments were carried out, the tin particles formed 

at higher temperatures were cooled to room temperature because they 

had formed in the liquid state. 

3. 	Observation of the Melting of Tin Crystallite Specimens.  

The specimen holder was rotated into the position for observation 

and photography of the diffraction pattern of the specimen. The electron 

beam was directed by means of the focussing coil onto the Faraday cage and 

the intensity was adjusted to a value of 0.011A. Preliminary investigation 

had shown that the beam intensity did not change during an experiment, so 

it was only necessary to measure the intensity at the beginning and end 

of each of these experiments. The electron beam was then redirected onto 

the specimen so that the electron diffraction pattern of solid tin could 

be seen on the fluorescent screen. The pattern was photographed at room 

temperature and the specimen was then heated. 

The current through the heater windings was adjusted to heat the 

specimen from room temperature to 100°C at a rate of 8-10°C per minute. 

The temperature of the specimen was read from the thermocouple microammeter 

and the temperature of the cold thermocouple junction was checked at 

regular intervals by means of a mercury-in-glass thermometer in thermal 

contact with the cold junction. When the specimen had reached 100°C the 



28. 
increase in the heater current was adjusted to give a 1gAmper minute 

increase in thermocouple current - equivalent to a rise in temperature of 

3-4°C per minute. When the tin crystallites had reached a temperature of 

about 15000, photographs were taken of 1jA•increments of the thermocouple 

current up to the melting point of bulk tin. The electron beam' intensity 

was so weak during these experiments that exposures of 10 seconds were 

required. However„the slow rate of heating ensured that the temperature 

rise during any exposure did not exceed 0.5°C. When the smallest 

crystallites were investigated i photographs were taken at temperatures 

lower than 150°C. When the largest crystallites were investigated however, 

photographs were not taken untilabout 210°C and the rate of increase of 

temperature was halved so that exposures could be taken at increments of 

0.5gA. 

When the bulk melting point of tin had been reached, the specimen 

heater was switched off. When the specimen had reached room temperature, the 

recrystallised tin pattern was photographed, the specimen was transferred 

to the electron microscope and electron micrographs taken. 

In certain cases a much longer film was placed in the camera so that 

double and triple heatings to 232°C and coolings to room temperature could 

be carried out on the same specimen. 
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4. Observation of Tin  Crystallites in Specimen.  

Electron micrographs of several regions of each tin specimen were 

obtained in an electron microscope. The microscope belonged to the 

Chemical Engineering Department, Imperial College, and the majority of 

'the electron microscope work was carried out by Mr. H.I. Matthews. 

The micrographs were taken as soon as possible, most of the specimens 

being transferred directly from the camera to the electron microscope. 

The majority of the micrographs were taken at a magnification of 45,000 

giving a resolution of 10-15a. Great care was taken to have the microscope 

free from astigmatism and the magnification was continually checked. 

To confirm that the tin crystallites studied in these experiments 

were spherical, certain specimens were shadowed by a heavy element (e.g. 

gold) and replicas of others were taken. 

5. Super-position of Liquid and Solid Tin Electron 
Diffraction Patterns. 

The relative intensities of the solid (sharp ring) and liquid 

(diffuse halo) electron diffraction patterns of tin were investigated in 

order to determine the mass of liquid necessary to suppress the diffraction 

pattern from a given mass of solid. The diffraction patterns from 

different specimens in which all the crystallites were solid were 

superimposed on patterns of specimens in which all the crystallites were 

molten and vice versa. Great care was taken to have identical conditions 

for every specimen when its diffraction pattern was photographed. 
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Silicon monoxide substrate films, thicker than those described 

in Section 1 of this Chapter, were prepared by increasing by 50% the 

duration of the evaporation of the silicon monoxide. These thicker 

films ensured that all the central apertures of the specimen grids were 

completely covered by a coherent film. Each grid was checked under an 

optical microscope for total continuity. The thicker amorphous substrate 

caused no appreciable increase in the background of any tin diffraction 

pattern — solid or liquid — but provided a continuous film over a large 

area. When the electron beam, which was 600 pl.in diameter, passed 

through a specimen, it defined a fixed area of silicon monoxide film 

covered by tin crystallites. If the substrate had not been perfectly 

continuous, so that regions of the grid were not covered by film, the 

effective area examined by the electron beam would not have been constant 

for different specimens. 

A wide range of tin crystallite specimens was evaporated onto these 

substrates, the masses evaporated from the filament being divided into 

two groups, one from 1 to 2.5 mgs” the other from 10 to 25 mgs. The 

evaporations of tin were carried out as described in Section 2 of this 

Chapter, except that the silicon monoxide bases were at 160°C. throughout 

this series. The small masses were evaporated at this higher temperature 

so that the crystallites formed from a particular evaporated mass, would 

be as large as possible for a given mean thickness. The mean thickness 

was proportional to the mass evaporated and the constant of proportionality 
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was the same for all specimens since the substrate film was in the 

same position during each evaporation. 

The liquid tin electron diffraction pattern of each specimen of 

large mean thickness was photographed at 232°C, to ensure that all the 

tin crystallites causing it were molten. The specimens of small mean 

thickness had their solid patterns photographed at room temperature, 

when all the crystallites were solid. To ensure that the conditions of 

exposure were identicalpeach specimen was in the standard position for 

observing the diffraction pattern; the electron beam, by virtue of the 

locking mechanisms on the focussing coil, could be returned to a fixed 

position on the fluorescent screen after it had been directed into the 

Faraday cage. The electron beam was carefully adjusted to 0.030.and 

checked before each exposure. 

For each specimen, sets of five diffraction patterns were recorded 

on photographic plates. The plates were mounted so that each in turn 

could be rotated into exactly the same position for exposure, and 

diffraction patterns were then coincident on each plate. By different 

combinations of previously exposed plates, patterns from known specimens 

(liquid pattern on solid or solid pattern on liquid) were superimposed. 

These exposures were all the same since they were subject to the same 

beam intensity, voltage and time. When all the exposures required from 

the specimens had been taken, micrographs of some of the specimens were 

taken in the electron microscope. 
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6. 	Observation and Comparison of Structure of Tin 
Crystallites in Specimens.  

Standard procedure was used for the determination of the structure 

and lattice spacings of tin crystallites, Two transmission specimens 

were mounted in the electron diffraction camera at the same distance from 

the photographic plate: one specimen was the polycrystalline layer of 

tin under investigation, and the other was a polycrystalline layer of 

thallium chloride formed by evaporation onto a silicon monoxide base, 

Both specimens were at room temperature. 

The camera was then evacuated, and the high tension voltage supply 

and electron beam switched on and allowed several minutes to stabilize. 

The beam was orientated onto the tin specimen and the electron diffraction 

pattern produced was photographed on a photographic plate. The beam was 

then deflected by means of the focussing coil onto the thallium chloride 

and its diffraction pattern was photographed on another plate, This 

operation was carried out as quickly as possible in order to ensure that 

the voltage of the electron beam, and hence the electron wave-length, 

was identical for both photographs. Also, instead of the thallium 

chloride specimen, a tin specimen of a very different mean size of 

crystallites was used to determine whether the lattice parameters changed 

with size. 
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CHAPTER IV 

MEASUREMENTS.  

1. Determination of the Melting Point of Specimens.  

Photographs of the diffraction pattern of the specimen had been taken 

as the temperature had been raised. The initial polycrystalline state gave 

a sharp ring pattern which remained unchanged over a large initial temperature-

rise except in the case of specimens with very small mean crystallite size. 

The sharp ring pattern of the solid tin began to change after a temperature 

rise of about a 100°C. The sharp rings then grew fainter, the background 

intensity increased, and haloes began to appear around the (200),(101) and 

(220), (211) inner rings. (Indexed polycrystalline patterns of tin are 

shown in Figure33). As the temperature was increased further, the 

background intensity became so strong that the rings outside (301) 

disappeared; at the same time the intensity of the inner rings decreased 

and that of the haloes increased. On subsequent heating first the (301) 

then the (220),(211) rings disappeared and the remaining two rings became 

less and less distinct. At some temperature below the melting point of 

bulk tin, the intensities of the haloes had increased and those of the 

two innermost rings decreased to such an extent that only the halo pattern 

characteristie_of liquid tin was visible. No further changes appeared 

to occur in the diffraction pattern on heating up to 232°C. The temperature 

at which this transition from sharp ring to diffuse halo pattern occurred 

depended on the size distribution of crystallites in the specimen. Those 
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specimens with the largest mean crystallite sizes had these transitions 

occurring over a range of several degrees, the range increasing to 

several tens of degrees as the mean size of the crystallites diminished. 

All the crystallites were molten when the specimen was at 232°C , 

because this is the melting point of bulk tin, 	and at this temperature 

there were no sharp rings present on the diffraction pattern. The 

photographs of the diffraction patterns taken every 4°C or 2°C were 

compared visually with the photograph taken at 232°C in order to determine 

the melting point associated with the specimen. This is permissible since 

the eye is a sensitive detector of intensity gradients, Sharp rings could 

be observed in photographs of diffraction patterns, even when they were 

weak and the background intensity comparatively high. The melting 

temperature of the specimen, Tm  was taken as the mean temperature between 

two successive photographs so chosen that the first was distinguishable 

from the pattern of liquid tin but the second of which showed faint rings. 

The diffraction patterns, photographed during transitions of two 

specimens of quite different crystallite distributions, together with 

those taken at 25°C and 232°C, are shown in Figure 10(A,73,C,D,E) and 

Figure 11 (A,B,C,D,E). The transition in the latter specimen of larger 

mean size,is seen to be sharper. 

The specimens which had very small mean crystallite size produced 

transitions with which it was extremely difficult to associate a definite 

melting point. The photographs of the diffraction patterns were taken 
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FIGURE 10. 	Transmission electron 
diffraction patterns of 
tin crystaAlites of mean 
radius 35 A at the temperatures 

(A)  25°C. 

(B)  155°C. 

(C)  163°0. 

(D)  170°C. 

(E)  232°C. 
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(A) 
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(C) 
	

(B) 

FIGURE 11. Transmission electron 
diffraction patterns of tin 
cryRtallites of mean radius 
150A at the temperatures. 

(A) 25°C. 

(B) 223°C. 

(C) 225°C. 

(D) 227°C. 

(E) 232°C. 
(E) 
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at room temperature, and then at intervals of 8 to 10°C because the 

transitions were so gradual. The transitions in the patterns were 

indefinite because the pattern produced by the solid crystallites was very 

weak and the polycrystalline rings had broadened out. The subsequent 

change in the diffraction pattern on melting was not so marked and in 

consequence the transition from solid to liquid was uncertain. 

2. Determination of the Size and Mass Distributions of  
Crystallites in the Specimens.  

In order to obtain the temperature at which a crystallite of given 

radius melted, it was necessary first to obtain the size, and then the 

mass distributions of crystallites in each specimen. Typical photographs 

of electron images of different specimens are shown in Figures 12 to 20. 

The images of the tin crystallites prepared in this series of experiments 

were circular, except for a few of the crystallites of several hundred 

Angstoms radius, which gave elliptical images. The diameters of crystallite 

images were measured in order to obtain the size distribution of the 

crystallites of a given specimen. In the case of the elliptical images 

the lengths of the two major axes were measured and their mean was taken 

as the equivalent diameter. 

The resolving power of the electron microscope was 10-15 R. The overall 

magnification of the crystallites was chosen to be 7.2 x 105  (i.e. 1 mm 

equivalent to 13.9  2 ) so no loss of accuracy was incurred' when a 
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millimetre scale was used for size determinations. Histograms of 

crystallite radii with a frequency interval of 6.95 2 were plotted. 

It was found that the smoothed—out shape of these histograms became 

constant when the number of particles measured from a specimen exceeded 

500, provided the specimen did not contain orystallites with radii much 

greater than 100 R. For specimens with crystallite radii larger than 

this, the spread of sizes was greater and hence a larger number of 

measurements of particles was required to obtain a smooth histogram. 

Consequently, for the specimens containing the largest crystallites an 

overall magnification of 3.6 x 105 was used. 

The distribution function n(r)1  of the crystallite sizes measured 

on a given specimen was given by the smooth curve through the histogram. 

Histograms of crystallite radii with the distribution functions . 

superimposed, which were obtained for the specimens whose electron 

microscope photographs are shown in Figures 12,13,14 and 15, are shown in 

Figures 12a,13a,14a and 15a respectively.. To minimise errors in the 

measurement of the crystallite sizes, micrographs of completely 

different parts of the same specimen were measured. Photographs of two 

other parts of the specimen shown in Figure 14 are shown in Figures 14'04". 

Their corresponding distribution functions aro shown in Figures 14a1 ,14a" 

respectively. It was found that the distributions of different parts of a 

carefully prepared specimen were identical within the experimental error. 

For each specimen,crystallites at two or more different parts were 

measured to give two distributionsland from these, the distribution 
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function of a given specimen was obtained. In a few specimens different 

parts gave distributions which differed by more than the experimental 

error; these were discarded. 

Gaussian distribution functions of crystallite sizes were obtained 

from specimens for which the mean crystallite radius was less than 

approximately 60 R . The mode and the mean coincided within the 

experimental error. When the specimens were such that the mean radius 

of the crystallites exceeded 60 R, the distribution function obtained 

from high resolution micrographs showed marked peaks of unequal height 

with a well defined minimum between them. An example of this is shown in 

Figure 16a which is the size histogram for the specimen whose electron 

microscope photograph is shown in Figure 16. It can be seen that the 

crystallites whose radii were less than the radius of the minimum between 

the two peaks were much smaller than the mean radius of the shaded part 

of the histogram. Since the effects studied were proprotional to the 

cubes of the radii, these crystallites were ignored, and the distribution 

obtained from the histogram was still approximately Gaussian, as shown 

in the figure. Therefore this distribution would still be obtained from 

micrographs in which the smaller crystallites could not be resolved 

because of lack of contrast. Typical distributions for the larger tin 

crystallites are shown in Figures 17a, 18a, 19a, 20a; these were obtained 

from the specimens whose electron microscope photographs are shown in 

Figures 17,18,19 and 20. In these histograms the crystallites with radii 
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Figure 13a. Crystallite size distribution 	Figure 12a. Crystallite size distribution 
of Specimen shown in Figure 13. 	 of Specimen shown in Figure 12. 
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Figure 14 '.Crystallite size distribution 	Figure 14e.Crystallite size distribution 
of Specimen shown in Figure 14'. 	of Specimen shown in Figure 14". 
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FIGURE 16. Electron 
microscope photograph 
of tin crystallites 
having moan radius 64. 

(x360,000). 

FIGURE 17. Electron 
microscope photograph 
of tin crystallites having 
mean radius 72R. 

(x3609000). 
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FIGURE 18. Electron microscope photograph 
of tin crystallites having mean radius 140 . 

(x 360,000). 
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Figure 16a. Crystallite size distribution of Specimen shown in Figure 16. 
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FIGURE 19. Electron microscope photograph of tin 
crystallites having mean radius 200 R. (x 360,000). 

FIGURE 20. Electron microscope photograph of tin 
crystallites hnving mean radius 320 5. (x 360,000). 
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to the left of the minimum of the distribution havo boon ignored. 

From the histograms the corresponding mass distribution amongst the 

different crystallite sizes could be obtained. Since the crystallites 

were spherical the mass of a orystallit© of radius r is m whore 

/11 r---47Cr 13 	P 
	

(i) 
ea 

k = 	p and p= density of tin, assumed constant for all the crystallites 

studied. The total mass of tin, M(r) in crystallites measured with 

radius r, is given by :— 

M (r) = n(r) mr 	 (2) 

where n(r) = the number of crystallites measured with radius r. 

Therefore ,from (1) :— 

M(r) = 	1r3  = Imn(r) 	(3) 

where m(r) = n(r) r3  

The mass distribution histogram of each specimen was constructed by 

multiplying the determined values of n(r) by r3  and plotting this 

as ordinate against r as abscissa. (As the values required were only 
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relative, it was unnecessary to multiphy by Ic.). The m(r) histograms 

of the specimens whose cilectron microscope photographs appear in Figures 12 

to 20, are shown, with smooth curves drawn through themoin Figures 21 to 29, 

These distributions show that in the case of the larger crystallite 

specimens the contribution to the total mass of the specimen from the 

smallest crystallites is less than 1% of the total. Therefore when the 

crystallite sizes were measured no appreciable error was introduced by 

leaving outthe crystallites of radii smaller than the radius corresponding 

to the minimum between the two peaks of the size distribution. An 

example of the crystallites omitted is shown in the unshaded portion of 

Figure 16. 

The distributions obtained for both masses and sizes were representative: 

of the total specimen. The total mass of the specimen was proportional 

to tb total mass in the histogram, the constant of proportionality, A, 

being the ratio of the total area of the specimen to the area used to 

construct the histogram. The total mass, M, in all the crystallites 

of the specimen is, therefore, given by :— 

M . A f°11(r) dr = kA rm(r) dr 
0 (4) 

where the integration is carried out under the smooth distribution 

function. But 

r 
1Cti m(r) dr =k~',f0 m(r) dr + kA f, m(r) dr 

	
(5) 



Figure 22. Crystallite mass distribution 	Figure 21. Crystallite mass distribution 
of Specimen shown in Figure 13. 	 of Specimen shown in Figure 12. 

I 

io 	 ir IN A 

1 

,ince 1•36  

SO - 

25- 

1 
1 
I 

I 

I 

I 

I 

IOC • A I 4111631. 

10- 

I 

I 

I 

I 
I 

I 

I 

1\  „ 
20 	40 	60 	ry• IN 



I 

quo 10 As 

1 

1 

v 
• • 

20 	40 	60 	. 80 r IN A 

10— 

I 

I  
I 
I 

20- 

10 — 

I 
60 	80 'MINA 40 
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Figure 29. Crystallite mass distribution of Specimen shown in Figure 20. 
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Therefore from the mass distribution functions m(r) and equation 

(5), it was possible to calculate the relative percentages of the mass of 

tin contained in crystallites with radii greater or less than any given r. 

This was essential for the determination of the melting point of a single • 

crystallite. 

N 

3. Determination of the Melting Point of Crystallites of a  
Definite Radius. 

In order to determine the effect of crystallite size on the melting 

point of tin it wasl in principle, necessary to determine the melting 

temperature of a single crystallite of given radius. As the electron beam 

was 600 p. .in diameter at the level of the specimen, it passed through 

thousands of crystallites. Consequently, the electron diffraction patterns 

photographed at temperatures up to 232°C represented the resultant effect 

of all these crystallites. The specimens were prepared so that they had a 

definite uniform distribution of crystallites throughout. This made it 

possible to determine,by the method described below, the melting temperatures 

of crystallites of any given radius. The crystallites in a given specimen 

had different radii and hence different masses and surface to volume ratios. 

Because of the increase in the surface to volume ratio with decrease of 

radius, the smaller crystallites could be expected to melt at lower 

temperatures than the larger ones. As the temperature was raised, crystallites 

with progressively larger radii would melt, until at some temperature all 

the tin crystallites would have melted. This temperature would be below 
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232°C if there were appreciable surface effects in all the crystallites. 

The change in the diffraction pattern described in Section I of 

Chapter IV is due to the crystallites melting in this way. However the 

sharp ring pattern would be expected to disappear before all the crystallites 

had melted because of the relative intensities of the liquid and solid 

patterns. The liquid haloes appeared in the same position as the (200), 

(101) and (220), (211) rings of the polycrystalline solid tin, so that when 

the liquid tin pattern reached a certain intensity relative *o that of the 

solid, the sharp rings were no longer visible. The superposition experiments 

described in Section 5 of Chapter III, showed that there was a minimum mass 

of liquid necessary to obscure a ring pattern from a given amount of solid. 

Therefore, once the mass distribution of a specimen had been determined, 

the temperature at which its sharp ring diffraction pattern disappeared 

could be correlated with the sizes of the crystallites in it. Each crystallite 

produced its own diffraction pattern which depended on its size and temperature. 

The intensity of the pattern depends on the number of the scattering atoms 

causing it (Pinsker (1953) p.143) so that crystallites of different mass 

contribute different intensities to the total diffraction pattern. The 

variation with temperature of the intensity of a diffraction pattern, due 

to the thermal vibrations of the individual atoms, is small (Thomson & 

Cochrane (1939) p.105) so that the pattern of a solid crystallite can be 

considered as constant up to its melting point. At this temperature however 

the crystallite melts and there is a change in its diffraction pattern. 
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A large number of crystallites of the same size would produce a constant 

sharp ring pattern up to their melting point,when they would simultaneously 

melt and produce a diffuse halo pattern. The intensities of these patterns 

would depend on the number of crystallites and their masses that is 

n(1.)m 	where m(r) is the mass distribution function. Crystallites 

with different radii would melt at different temperatures and their 

contributions to the solid pattern would cease, and there would be a 

corresponding increase in the intensity of the liquid pattern proportional 

to m(r). The factor which therefore determines the type and intensity of 

the diffraction pattern of a specimen at a given temperature is the ratio 

of the solid to liquid crystallite masses, and not the relative numbers of 

solid and molten crystallites. The rate of transformation of the 

diffraction pattern would depend on the rate of heating and the size and 

mass distributions of the crystallites in a given specimen. 

Suppose the effect of the size of crystallite on the melting point is 

such that a crystallite of radius r melts at a temperature T. 

Therefore at the temperature T all the crystallites with radii less than 

or equal to r are molten. For a given specimen, the liquid mass at 

temperature T is, Ni kA J.  m(r)dr 

the solid mass at temperature T is Ms 
= 

(from equation.(5)) and similarly 

kA ,17 m(r) dr, with Ml  + Ms  . MI  

the total mass of the specimen. As the temperature increases, Ml  increases 

and M 
	

decreases, so that the value of r in the limits of the 

integrals changes. 
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The intensities of the liquid and solid patterns were respectively 

proportional to — 	MI  and Ms  so the resultant diffraction pattern 

became one characteristic of a liquid with the superimposed rings due to'the 

solid becoming successively weaker. At a certain value of the temperature 

the rings were no longer visible. This temperature was identified as Tm  

(see Section 1 of this'Ohapter), so let the radius of the crystallites 

which melt at this temperature Tm  be denoted by rm. The specimen at 

this temperature has solid mass 

cc 
Ms 	kA J.r 	m(r) dr 

m 
 

and liquid mass 
rm 

Ml  = kA 	m(r) dr 

where Ml  is sufficient to give a liquid pattern strong enough to obscure 

the solid pattern due to Ms
. If the ratio of MI  to Ms for this to occur 

is found, the value of rm  may be obtained from the mass distribution of 

the specimen and hence the melting point of crystallites of given radius 

can be determined. 

To determine which ratio of Mi to Ms 
would produce a diffraction 

pattern in which the solid rings had just ceased to be visible, the 

super-position experiments described in gection 5 of Chapter III were 

carried out. The areas of the specimens which produced the two separate 

diffraction patterns were constant. Thus, as the mass distributions were 

uniform throughout each specimen, the intensities were proportional to the 

( 6 ) 

(7) 
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total masses of tin on the specimens. Since the conditions during the 

evaporations were maintained constant, the condensed masses on any 

specimen were the same fraction of the evaporated masses. The super—position 

of the diffraction patterns produced by different masses of liquid and 

solid tin are shown in Figures 30,31 and 32. Since the masses producing 

the diffraction patterns of each specimen were a constant fraction of the 

masses evaporated, the ratios of these masses were the same for different 

specimens. Therefore the required ratio of the liquid mass to the solid 

mass could be determined from the appropriate masses evaporated. To 

check this, the size and mass distributions of equal areas were measured 

on different specimens and the ratio of the masses on these areas was 

found to agree, within the experimental error, with the ratio of the 

evaporated masses. 

It was found from these experiments that when in a given mass of 

tin 15% was solid and 85% liquid, the solid sharp rings could no longer 

be seen on the liquid halo pattern of tin. This percentage was obtained 

for a whole series of total masses, The values of Mil Ms  defining rm  

in a given specimen were therefore subject to the equations 

rm 
o  m(r) dr = 0.85 — 

KA 

M 
m(r) dr 0.15 

r 
	— 

KA m 

(8)  

(9)  
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M 

where — was the total mass of tin measured on the specimen. Therefore 
A 

from the mass histogram of each specimen, the value rm was determined by 

using equations (8) and (9), and this value was then correlated with Tm 

to give the melting temperature of a crystallite of a given radius. 
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FIGURE 30. A composite transmission 
electron diffraction pattern produced 
by tin crystallites from specimens with 
a weight rntioof solid to liquid of 113 

FIGURE 31. A composite transmission 
electron diffraction pattern produced 
by tin crystallites from specimens with 
a weight ratio of solid to liquid of 
1:4. 

FIGURE 32. A composite transmission 
electron diffraction pattern produced 
by tin crystallites from specimens with 
a weight ratio of solid to liquid of 
1:5. 
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4) Determination of Structure and Lattice Parameters of  

Tin Crystallites.  

Two different structures occur in bulk crystalline tin, namely 

grey or a-tin and white or (3-tin. Grey tin has a diamond type unit cell 
0 

of side a = 6.46 A (Bijl and Kolkmeijer 1918; 1919 a,b). White tin, 

which is stable at room temperature, has a tetragonal unit cell with 

dimensions 

a = b = 5.82 A c = 3.17 A 	at 25 °C 

(Wyekoff, Chapter II, Text page 13, Illust. p.7; Jette and Foote, 1935, 

KoslaDov and Trapeznikov, 1936; Jevins, Stramanis and Karlsons, 1938) 

The unit cell contains four atoms in thepositions0,0,0;0,ilia,04; 

The transformation temperature of grey tin into white tin is 

13.2°C (Hedges and Higgs, 1952) therefore since in the experiments 

carried out the lowest temperature to which the crystallites were subject 

was approximately 25°C, if the crystallites had the structure of bulk 

crystalline tin, the white tin polycrystalline patterns should be 

observed. The bases Lencath . the crystallites were amorphous therefore 

they would not affect the structure of the crystallites. However as some 

0 
of the crystallites had radii smaller than 310 Ay surface effects could 

affect the structure and produce a different unit cell from that of bulk 

tin. Bublik and Pines (1952) showed by electron diffraction methods that 

vanadium, which in bulk has a body-centred cubic structure, could be made 



65. 
0 

to form an unsupported film 60 A thick with a face-centred cubic 

structure. Nicholson (1950) showed, using X-rays, that strain due to surface 

stresses in sodium chloride and magnesium oxide crystallites of mean 
0 

size 600 A induced changes in the lattice parameters of a fraction of 

a percent. Hence the experiments in Section 6 of Chapter III were 

carried out to see whether the surfaces of these small crystallites 

induced any change in the structure and lattice parameters of the 

crystallites in the specimens. 

Two diffraction patterns were photographed in each experiment. 

One photograph was taken of the diffraction pattern from a specimen 

whose unit cell dimensions were known and the other from the specimen 

whose properties were investigated. A thallium chloride film had been 

prepared over 1000 X thick so that surface effects on its unit cell were 

negligible. This has a cubiO structure with sides of the unit cell 

a 3.842 3 (Smakula and Kalnajas ,1955). A tin specimen was prepared, 

by the usual methods of producing spherical crystallites, of mean radius 

about 200 a. The structure of this was analysed and its lattice 

parameters were determined. This specimen was then used to determine 

the structural properties of tin crystallites with small mean radii. 

Photographs of the diffraction patterns of crystallites of mean radii of 

about 200 A and 25 A are shown in Figure 33, with their rings 

indexed. 

It may be shown to a first approximation (Pinsker (1953) p.86) that 

for an electron diffraction pattern produced by a polycrystalline 
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material 

where r = radius a particular ring in the diffraction pattern. 

d . the spacing of crystal plane which gives rise to the ring. 

W . electron wavelength. 

L = distance of the specimen from the photographic plate. 

In each experiment LW was exactly the same for the diffraction 

pattern photographs of both the standard and the specimen studied. 

The rings of the standard specimen were moasured.with a travelling microscope 

and from the calculated plane spacings producing the rings, L h could be 

obtained. 

For thallium chloride, the spacing in its cubic structure of a plane 

with Miller indeces b„k,11 , dh,k,, is given by 

3,842 
dh,k,l 

  

  

 

h2+k2+12 

0 
where 3.842 A is the dimension of a side of the unit cell. 

This enabled accurate determination of LW 	using equation (TO). 

All the tin crystallite specimens wore found to give the body 

centred tetragonal structure diffraction pattern of white tin. For 

tetragonal structure it can be shown (Thomson and Cochrane (1939) p.28) 



that the spacing of planes with Miller indeces h,k,l is given by 
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(12) 
hlk,l 

  

 

h2   k2 	12  
2 2 a a c2 

 

where a,o are the sides of the unit cell. Using the values of ape 

for bulk tetragonal tin, 

dh, k, 1 
2
1  h + k2 	12 

33.79 	1.005 

From the determined value of LW, the lattice spacings of a speoimen 
0 

with mean radius .4 200 A were determined by measuring the radii of its 

diffraction rings. The calculated spacings of planes giving rise to the 

main rings, together with the calculated values for bulk crystalline white 

tin are tabulated in Table I. The values agree to within the experimental 

error of + 0.5%. This tin specimen was then used as a standard when 

smaller crystallite specimens were investigated. As the mean size of 

crystallites decreased, fewer rings could be observed on the diffraction 

pattern. However it can be seen from Figure 33 that the (211) ring is 

intense and its measurement was used in the comparison of lattice constants 

of the different specimens. 

(13) 
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The radius of the (211) ring from the standard specimen was compared 

with that of the specimen under investigation and • in no case was 

a change in the lattice parameter 	observed,to within the experimental 

accuracy of 0.5%. 
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(A) 
	

(B) 

FIGURE 33 Transmission electron diffraction patterns 
produced by tin crystallites. 

0 

(A) Crystallite mean radius ̂ J 200 A. 
0 

(B) Crystallite mean radius 	25 A. 
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TABLE I 

MAIN RINGS OF THE DIFFRACTION PATTERN PRODUCED BY TIN 
0 

CRYSTALLITES OF MEAN RADIUS ^w200 A. 

0 
LX = 2.257 A. 

(h,k,l) r in cms 
. 

o 
d in A 

, 

o 
dca,c in 	A 

200 0.775 2.913 2.906 

101 0.815 2.773 2.777 

301 1.096 2.059 2.055 

211 1.122 2.011 2.007 

301 1.367 1.655 1.652 

420 1.736 1.300 1.300 

r = the radius of the ring in the diffraction pattern of tin 

d = the measured plane spacing, calculated from r using 
equation (10). 

dcalc= the calculated plane spacing for the (h,k,l) plane in tetragonal tin using equation (13). 
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CHAPTER V  

Results and Discussion of the Experiments. 

From previously explained measurements carried out on each specimen 

the two quantities Tm  and rm 
were determined — these being respectively 

the melting point of the specimen, and the radius defined from the mass 

distribution by the crystallites which contain 85% of the total mass of tin 

in the specimen. These two values can be identified with the melting point 

of a single tin crystallite of given radius R = rm 
melting at temperature 

T = T . r m 

1. Tin Crystallites on Silicon Monoxide Substrates.  

The results obtained from the specimens in which the tin crystallites 

under examination were on silicon monoxide are shown in Table II. The 

crystallite radius, R, was studied over arrange of 40 to 400 Ry with a 

corresponding range for the melting point '1TR  , of 150 to 230°C. The 

majority of values of R and TR were determined for R< 120 2  as 

the variation of TR 
with R was found to be much more gradual for 

crystallites with radii larger than about 100 2 . The resultant graph 

of AT
R 

against R for tin crystallites on silicon monoxide bases is 

plotted in Figure 34 and that of TR  against 1/R in Figure 35. 

2. Tin Crystallites on Carbon Substrates. 

The results obtained from the specimens in which the tin crystallites 

studied were on carbon substrates are shown in Table III. The range of 

crystallite radii was extended to try to obtain melting points for tin 
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crystallites with radii less than 40 2, but because of the lack 

of contrast in the electron microscope photographs, the accuracy of 

determination of the radii decreased for the smaller particles. In 

addition,the errors in the radius, R, and temperature, TR, were larger 

for these small crystallites, since the rings from the solid crystallites 

had broadened out, the diffraction patterns had become weaker, and the 

transition of the diffraction patterns of the specimen on melting had 

become more gradual. For tin crystallites on a carbon' base a graph of 

1/R  ATR 
against R is plotted in Figure 36 and that of TR against  

in Figure 37. 

The results obtained for carbon and silicon monoxide bases were the 

same within the experimental error. 

3. Discussion of Experiments.  

The information obtained from the experiments carried out on each 

specimen was analysed in terms of two parameters R and TR for each 

individual tin crystallite. It would perhaps be aftisable to consider 

the justification for this procedure and the errors invollved in these 

parameters. The crystallites, whose formation and nature will be 

discussed, were from many different specimens, and were prepared and 

investigated under conditions as identical as possible. The experimental 

procedure followed was the same in all cases and the errors that arose in 

the different parts of this procedure must all be incorporated into 

the total error. 
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TABLE II  

T
R
°C 

Y 

, o  
ZST°C
R  

R.A 
o TR C 	' AT°C 

,f. 

o 
RA 

' 

i 

148.±5  84±5 41+4 206+2 26+2 78+4 

155+3 77+3 48+4 2C9+2 23+2 86+4 • 

159+3 . 73+3 44+4 - 	210+2 22+2 , 93+4 

163+3 69+3 48+4 211+2 — 21±2 91+4 

169+3  63+3 51+4 212t2 20+2 : 102+4 : 

170+3 = 62+3 51+4 215+2 17+2 : 115+4 

172+3 60+3 50+4 216+2 16+2 ,107+4 
i 

172+3 60+3 ' 	52+4 217+2 15+2 ! 12544 

175+2 57+2 55±4 217+2  15+2 '.120+4 

188+2 44+2 65+4 218+2 14+2 ' 114+4 

190+2 , 	42+2 64-4 224+1 8+1 175+8 

196+2 36+2 70+4 225+1 7+1  191+8 i 

200+2 . 	32+2 73+4 226+1 6+1 198+8 

200+2 32+2 77+4 227+1 5+1 233+8 

204+2 28+2 76+4 229+1 3+1 275+8 

204+2 28+2 80+4 230+1 2+1 373+8 

T
R 	

Melting temperature of tin crystallite. 

R = Radius of tin crystallite 

AT .T- T 
R 
=TB -T 

where TB 232°C - the melting point of bulk tin. 



Figure 34. The Malting Curve for crystallites on a silicon 
monoxide substrate, showing the relation between the depression 
of the melting point and the radius of a crystallite. 
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Figure 35. Graph showing the relationship between the 
melting temperature and the reciprocal of the radius 
of a crystallite on a silicon monoxide substrate. 
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TABLE III 

TR°C AT°CR  RA TR
oC AT°C 

o 
RA 

60+20 162+20 30+5 187+2 45+2 63+4 

100+10 132+10 36+5 191+2 41+2 68+4 

115+8 117+8 42+4 •. 36+2 66+4 

127+8 105+8 38+4 • 30+2 71+4 

.135+5 97+5 40+4 202+2 30+2 74+4 

140+4 92+4. 40+4 • 28+2 78+4 

158+3 74+3 48+4 • 27+2 81+4 

165+3 67+3 52+4 212+2 20+2 104+4 
. 
166+3 66+3 53+4 215+2 17+2 103+4 

177+2 55+2 59+4 225+1 7+2 181+8 

TR . Melting temperature of tin crystallite. 

R = Radius of tin crystallite. 

ATR. TB  — TR  

where TB  = 232°C — the melting point of bulk tin. 
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Figure 36. The Melting Curve for crystallites on a carbon substrate, 
showing the relation between the depression of the melting point and 
the radius of a crystallite. 
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yigure 37. Graph showing the relationship between the 
melting temperature and the reciprocal of the radius of 
a crystallite on a carbon substrate. 
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3.1 Tin Crystallites.  

In principle, the determination of the effect of the surface of 

a crystallite on its properties would involve the observation of a single 

crystallite whose dimensions could be measured and whose properties 

studied directly. However the crystallite sizes studied were so small that 

it was experimentally impossible to deal with a single crystallite, and so 

a group of crystallites was studied simultaneously. In order to be able 

to determine their size easilyland in order to get as uniform a melting 

of each crystallite as possible, spherical crystallites with no sharp 

edges were required. Also, the theoretical considerations are simpler 

in the case of spherical crystallites. In order to determine the behaviour 

of a single crystallite from the results of observations on a specimen 

consisting of a whole range of crystallite sizes, it was necessary to have 

a uniform size distribution over the entire surface..of the specimen• 

Pith this condition,an.eloctron micracrril± of h particulwarda 

- of a specimen was representative of the whole specimen. Since each crystalli:, 

produces a circular electron microscope image, it is possible to find 

its mass and radius, 

The nature of a thin metal layer, formed by condensation from a 

molecular beam, depends on the type and temperature of the substrate, the 

rate of evaporation, and the atmosphere in which the evaporation is 

carried out, Silicon monoxide and carbon substrate films were used because 
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their structure consists of randomly arranged atoms. These substrates 

are considered to be neutral, having little effect on the formation, structure 

and orientation of the crystallites deposited on them. (Pinsker (1953)p.196), 

so that layers of tin crystallites of uniform distribution could be obtained. 

With crystalline bases, preferential nucleation in surface imperfections 

could occur so that a non—uniform distribution might be obtained. The 

structure of thin films deposited onto a solid substrate may be stable either 

in the form of uniform dispersed monolayers or as agglomoratos of atoms. 

In these experiments separate crystallites were required. The deposited 

metal film will be produced in the form of agglomorr.tosif the deposited 

atoms have a lower latent heat of evaporation from the surface of the 

substrates than from the metal itself (Appleyard 1937). Since the substrates 

were neutral the metal atoms had a comparatively small heat of evaporation 

from them and separate crystallites were formed. 

In order to ensure a rapid growth of separate crystallites with the 

minimum loss of condensed atoms, the method described in Section 2 of 

Chapter III was used. Langmuir (1917) confirmed earlier experiments by 

Kundsen (1909) and Wood (1915,1916) which indicated that there is a 

critical temperature of the substrate above which condensation of a metal 

vapour beam will not occur. He also showed that the value of this 

critical temperature increases with the intensity of the vapour stream 

striking the substrate surface and he concluded that the phenomenon 

occurring on the surface was not one of reflection, but one of condensation 
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and re-evaporation with the incident metal atoms remaining on the surface 

for a finite period of time. If the average lifetime of a condensed metal 

atom on the surface is made sufficiently long for it to collide with another 

atom from the beam, the probability of re-evaporation is considerably 

decreased. Therefore, increase in the beam intensity allows a higher 

critical temperature for condensation and also raises the number of metal 

atoms remaining on the substrate surface, with a corresponding increase in 

the probability of nuclei being formed. Sennett, MacLauchlan and Scott (1952" 

by continuous observations on the formation of metal deposits evaporated in 

the specimen chamber of an electron microscope, found that volatile metals, 
0 

such as Cd and Zn, simultunJously formed particles as large as 200 A once 

the vapour beam had reached a certain intensity. 

The formation and subsequent growth of nuclei can also be augmented, 

however, by migration of the condensed metal atoms over the surface of the 

substrate. The temperature and type of substrate are the principal factors 

influencing the mobility of adsorbed metal atoms on a solid surface. 

(Lennard -Jones (1937), Appleyard (1937)). The condensed atom is held by a 

field of force in the surface, which has pockets of low potential. At 

low temperatures any deposited atoms will vibrate about the minima of these 

pockets and will only combine with atoms colliding with them from the 

vapour beam. However,if the atoms are given sufficient kinetic energy to 

surmount the potential energy of the barrier, they may more over the 

surface provided they retain this energy. Since neutral substrates have 
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'little effect on the conddnsed atoms, the metal atoms can move freely 

when their kinetic energy is much less than that required for evaporation 

from the surface. Consequently, a large migration of metal atoms can 

occur on these amorphous bases at temperatures far below those needed to 

re-evaporate the atoms, so that there is a formation and a subsequent 

growth of nuclei due to collision of atoms already on the surface. 

If the rate of evaporation and the substrate temperature are 

sufficient. to form a large number of randomly distributed nuclei, the 

mechanisms described above ensure fast growth. The size to which tin 

nuclei can grow once they are formed depends on the amount of tin 

condensed on the substrate and hence on the mass evaporated. Thus the 

sizes of crystallites were found to increase as the larger masses were 

evaporated onto the substrates. However when the crystallites grown 

from the original nuclei reach a certain size, a new mechanism of growth 

can be expected to take place. The nuclei originally formed can come 

together to form large crystallites, with a consequent disappearance of 

the smaller ones. This effect was observed by Basett, Mentner and Pashley, 

(1959) in their studies of the nucleation and subsequent growth of gold 

films on rocksalt at 270°C. 

In the present series of experiments the electron micrographs of the 

crystallites showed not only elliptical images but sometimes two or more 

quite distinct circular images joined together. In Figure 19 the largest 
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crystallites can be seen to have regions-around them which are perfectly 

clear of small crystallites since they have been "swallowed up".. The 

distribution was Gaussian for the crystallites formed from random nuclei. 

However, as these nuclei grew and came together, the second stage of growth 
0 

i.e. the coalescence, would account for the crystallites greater thaneJ50A. 

This could explain the new peak observed in the distribution curves. 

(See Chapter TV, Section 2). 

The residual gases present during evaporation may have important 

effects on both the structure and purity of the condensed substance. 

Oxidation may occur whilst the metal is travelling from the evaporator 

to the substrate, or during condensation (Wagner (1943),Stahl (1949). The 

adsorbed gas and the impurities on the substrate surface will affect the 

purity and the structure of the metal films. The oxidation of the metal in 

the molecular beam will not occur if the mean free :path of atoms in the 

beam is much greater than the distance from the evaporator filament to 

the substrate film. However, during the film formation, gas molecules 

striking the substrate may combine with the condensed phase to form a 

chemical compound (usually an oxide in the case of tin). Therefore the 

more rapid the formation of the metal layer, the fewer the gas molecules 

able. to combine with the metal atoms and in consequence the purer the 

layer of metal formed. 

The equilibrium shape of solid crystalline particles is the one which, 

for a given amount of matter, minimises the quantity 2. O. A. (Gibbs (1928); 
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Curia (1885)) where a. = surface free energy per unit area of the 

ith face 

Ai 
= area of the ith face. 

i is the sum over all faces. 

This expression applies to crystals with surface planes where the 

free energy of the edges is negligible. The shape of the crystal can be 

conveniently specified by drawing vectors from a point P inside the 

crystal, normal to each face, where hi  is the normal to the ith face. 

The shape thus defined will be directly proportional to oi  (Wulff (1901)) 

or hi  =To. where T, is a constant depending solely on the size of the 

crystal, The thermodynamically stable crystals of a given substance 

should therefore be geometrically similar polyhedra. The equilibrium shape 

will occur if the mechanisms necessary for change of s1vpe during formation 

of the particle can take place sufficiently rapidly. In ap extensive 

treatment of equilibrium shapes of solid particles Herring (19,W1 ;1952 ) has 

shown the different equilibrium shapes possible for cystals andaracncst these, 

there are crystals in which finite plane regions are joined by smoothly 

curved regions. In this treatment,edge and corner effects, as well as 

variation of 0
i 

with curvature, have been ignored. As the size of the 

crystal is decreased however, these effects become more and more 

appreciable 	and must be considered. Since the edge and corner effects 

involve a higher free energy then a smooth surface does, there will be a 
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tendency to smooth out the surface of the crystal. This would tend 

to produce continuous smooth surfaces, and if the crystallites were small 

enough the interatomic forces could make the surface nearly isotropic so 

that spherical crystallites would be formed. 

The rapid evaporation and the raised temperature of the substrate 

enabled a fast crystallite growth to be obtained. 

The condensation from the beam, and the migration of the condensed atoms 

simultaneouslyaroduced a mechanism by which the shape of the crystallite 

could change sufficiently rapidly for equilibrium to occur. The stability 

of the equilibrium of the crystallites formed was investigated by heating 

some specimens to the melting point of bulk tin two or three times in 

succession. In each case the same melting point of the specimen was 

observed, the crystallites obtained. by the above method of preparation 

were found to be randomly oriented and their shapes gave circular images 

on the electron micrographs, even when specimens with a crystallite mean 

size of several thousand Angstroms were prepared. Several replicas of these 

large crystallite specimens were taken, and they showed that the crystallites 

appeared to be spherical with a small area of contact with the substrate. 

The largest crystallites had hemispherical shapes, but these were much 

larger than those studied in the melting point experiments. An electron 

micrograph and a photograph of a replica of these thousand Angstrom 

crystallites are shown in Figure 38 and Figure 39 respectively. It is 

therefore safe to assume that the crystallites which were smaller by 

more than an order of magnitude had spherical shapesq  The tendency 



FIGURE 35. Electron microscope photograph of tin 
crystallites having a mean radius of several thousands 
Angstroms. (x30,000). 

FIGURE 39. Electron microscope photograph of a 
replica taken of tin crystallites having a moan 
radius of several thousands Angstroms (x30,000). 

86 
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to smooth out the surface by interatomic forces would have erased the 

small facets that were visible in the micrographs of the largest crystallites 

Several specimens were photographed in the electron microscope before 

and after being heated in the diffraction camera to 232°C. No change in the 

size distribution of the specimens was observed after all the crystallites 

had melted and recrystallised, indicating that the crystallites were 

separate stable entities. Therefore the same distribution of crystallite 

size will be obtained irrespective of whether the measurement is made 

before or after melting. 

3.2 The Melting Point Temperature TR -. 

The errors in the measurement of TR arose from the errors in the 

determination of Tm for the tin specimen. These errors were minimised 

by the following means:.  great care was taken to have the specimen in good 

thermal contact with the thermocouple so that the temperature registered 

was the true temperature of the specimen -Che temperature was raised 

slowly so that any possible temperature gradient effect was minimised, 

the electron beam current was adjusted to a value less than or equal to 

0.03A., so that there should be no heating of the tin crystallites by 

the beam. The current density corresponding to the maximum beam current 

used was 1.0 10-5  A/cm2. and this was much less than the value of 1.5 10-5  

A/cm2 quoted by Winkelmann(1956) as the maximum density he could use without 

heating his gold—copper alloy thin films. Repeated melting point 
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measurements were made on the same specimen with electron beam currents 

ranging from 0.01 to 0.06 µA. No change in the melting point was observed 

so that no measurable heating of the specimen by the electron beam occurred. 

The specimens contained crystallites of different sizes which melted 

at different temperatures. This gave rise to a gradual transition in 

the diffraction pattern so that difficulty was found in assigning a unique 

value to T
m 
. Although the number of crystallites which had melted nay 

have increased rapidly with rise in temperature of the specimen, the mass 

of liquid, which determines the intensity of the halo pattern, increased 

comparatively slowly because the crystallites melting first were the 

smallest ones. The largest crystallites melted last and since the 

diffraction pattern from a crystallite is proportional to its mass, the 

solid diffraction patternwould still be visible at a temperature where all 

but a small percentage of the crystallites had melted. 

The transition in the diffraction pattern of the smaller crystallite 

specimens were much more uncertain than the transitions of the larger 

specimons,with consequently larger errors. This may be explained by the 

following considerations. The rate of transformation of the diffraction 

pattern depended on the rate of heating, which was kept fairly constant in 

all the experiments, on the size distribution and also on the dependence of 

the melting point on the crystallite size. 

If a crystal of radius r melts at a temperature T, when the 

temperature goes from T to T + dT, crystallites with radii r to r + dr 

melt. 
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This results in a transfer of mass from the solid to the liquid 

state which is proportional to m(r) dr (Chapter IV, Section 2). 

Therefore, the increase in intensity, di, of the liquid pattern and the 

corresponding decrease in the intensity of the solid pattern is proportional 

to m(r) dr. Now the rate of change of the intensity of the liquid 

dI diffraction pattern with temperature is dI — where — o: m(r) dT 	dT 	dT 
di i.e. 	does not only depend on m(r) but also on .22 . By examining dT 	 dT 

e  dr the graphs in Figures 34 and 36, — can be seen to increase with an dT 

increase in r, therefore di  also increases with r. This means that dT 

the melting transitions in films containing the larger crystallites will 

be sharper. The above argument has neglected the effect of ring breadth 

which would affect the transition of the smallest crystallites by making 

the patterns even more diffuse. 

Because of these effects the frequency with which the photographs 

were taken was sufficient to show all visible changes in the diffraction 

patterns. With the majority of specimens T
m could be registered to 

within + 2°C.ITithte largest specimens it was possible to determine the 

melting point to within 	1°C. In the smallest crystallite specimens 
0 

studiedlall the crystallites were smaller than 50 A. The half width of 

a ring produced by solid crystallites is inversely proportional to their 

dimensions (Thomson & Cochrane (1939) p.77; Pinsker (1953) p.89) so that 

the smaller crystallites produce broader rings than the larger ones. As 

the crystallites get smaller, the rings become more diffuse and therefore, 
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become more difficult to see against the background of a liquid pattern. 

TbTs effect led to a further inaccuracy in the determination of the 

melting point of the small crystallites, so that the total errors become 

+ 100C or more. 

3.3. The Radius of Crystallite Melting at Temperature TR.  

The determination of the radius R of the crystallite melting at.the 

temperature T ,may be considered in two parts. The first part consisted 

of determining the size and mass distribution of a specimen for which Tm  

had been obtained. The second part consisted of the determination of the 

value of rm 
to be associated with a specimen of given size distribution. 

The magnification of the electron microscope used in the investigations 

of crystallite sizes was regularly checked by means of a specimen of 

pleurasigma angulatum supplied by the National Physical Laboratory. A 

micrograph of this was taken at the magnification used in the experiments 

on tin and the absolute magnification of the electron microscope was 

determined accurately from the known spacings of the di—atom. 

Measurement of the magnified electron microscope image was subject to 

errors on the part of the observer in determining the actual diameters of 

the i 	 ages which were not always sharp. To minimise this subjective error 

and to make sure that the distributions obtained were typical of the whole 

specimen, measurements on at least two different parts of the same 

specimen were carried out by two different observers. The resultant of 
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these distributions was then considered to be the distribution of the 

whole specimen. The likely error in the size distributions was obtained 

from photographs of the crystallite images from completely different parts 

of the specimen taken with different exposures so that the contrast of the 

images against the background was quite different. With the over and under- 

exposed photographs the extremes of any crystallite image size were obtained,, 

Photographs of crystallite images from three different parts of the 

specimen under these conditions are showin in Figure 40 and their distri- 

butions in Figure 41. It can be seen that the error of the mean radius 
0 	 0 

is less than 4 A the half-width of the histogram frequency, so that 4 A 

can be taken as the error in the measurement of any radius in the 

distribution. The contrast of the imageslhowever, tended to decrease with 

decreasing crystal sizelcausing loss of definition. The errors were, 
0 

however, kept to 4. 5 A by measurement of a large number of crystallites 

at different parts of the specimen 

Since m(r) = n(r) p 	the mass distribution calculation from 

n(r) was not subject to further errors, for p was found to remain 

constant to within the order of 1% for all the crystallites studied. 

For the determination of r
m 
from the different diffraction patterns 

of a given specimen, an elsolute criterion was obtained from the super- 

imposed solid and liquid diffraction patterns obtained from different speci- 

mens of known mass ratio. Although precisely the same condition could not 

be obtained in the super-imposition experiments as in the melting point 

determination ones, the same range of masses was evaporated in both cases. 
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FIGURE 40. Electron microscope photographs of tin 
crystallites, taken at widely separated 
regions of a specimen and at different 
exposures. (x 360,000). 
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(C) 

Figure 41. Crystallite size distributions obtained from the electron microscope photographs 
shown in Figure 40. 
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There were two differences between the superimposed patterns of solid 

and liquid crystallites and the pattern given by a single specimen on 

melting. The temperatures of the solid and liquid patterns were 

different in the former whereas with the latter both contributions were 

at the same temperature below the melting point of bulk tin. However, 

the effect of thermal vibrations of the individual atoms on the intensity 

of the diffraction pattern would be expected to be small (Kesita (1934); 

Coster and Van Lanten (1939) , so that the method used offered a good 

visual criterion. 

In the single specimen diffraction pattern all the crystallites 

contributing to the solid ring pattern were larger than those 

contributing'to the liquid haloes. In the superimposition experiments, 

the liquid crystallites could not all be made smaller than the solid ones 

since larger evaporated masses were used to produce the liquid pattern. 

An effort was made to make the crystallites producing the solid pattern 

as large as possible, but part of the liquid pattern was always produced 

by crystallites. 

Since only 15% of the mass remained solid at Tm the errors involved 

in calculation of r
m weTe mainly duo to the errors in obtaining the 

0 

size distributions. The error in R is taken as 4-5 A when the overall 
0 

magnification of 7.2 105  was used and 8 A in the largest crystallites, 

where a magnification of 3.6 105  was used. These errors were never 

exoeeded when evaluation of r
m from mass histograms of different parts 

of the specimen were carried out. 
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3.4. Oxidation of the Tin Crystallites.  

Precautions were taken to minimise oxidation of specimens during 

their formation so that pure tin crystallites would be obtained. No tin 

oxides were detected in the specimens used in the melting point experiments, 

pure tin diffraction patterns being observed throughout. 

Stannous and stannic oxides both have tetragonal crystal structures 

(Wyekoff Chapter III Table p.27 Chapter IV Table p.15). Both these 

would produce sharp ring patterns, with more rings than the solid tin 

pattern,even at 232°C,because both melt at much higher temperatures than 

pure tin. Their presence would affect the determination of Tm  because 

of the continual presence of sharp ring pattern throughout the transition 

of the tin diffraction pattern. Oxidised tin layers studied by transmission. 

electron diffraction showed that the stannous oxide form was more likely 

to be formed, but it was never detected on the specimens used in the 

melting point experiments. A form of tin oxide which gives an amorphous 

diffuse halo diffraction pattern also exists (Richter (1943),Hart (1952)). 

This form of oxide would be difficult to dote-ct unless the tin crystallites 

were extensively oxidised, since its halo pattern would only contribute 

to the background in the same way as the substrate film s amorphous pattern. 

Reflection election diffraction is a very sensitive detector of 

chemical attack on thin films. Newman. (1955) evaporated very thin layers 

of tin onto silver in .sin electron diffraction camera and did not 

observe any oxide rings on his reflection diffraction patterns. Neither 

did Sayama (1941). Bublik and Pines (1954) and Takagi (1954) in their 
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reflection electron diffraction studies of molten thin tin films. 

This was in agreement with Stahl (1954) who concluded from his 

investigations of oxidation of films,thatibsubstrate temperature must 

exceed 300°C for tin specimens to oxidise. Curzon (1960) did not 

detect any oxide in his thin tin layers, even after the tin film had been 

at a temperature of 232°C for several hours. Since in these experiments the 

specimens used did not show tin oxide diffraction patterns, it may be 

concluded that if there wao any oxidation the rate was either extremely 

slow or that a protective layer of oxide formed on the outside of the 

crystallites stopped further oxidation. In either case, since no layer 

was observed, it must have been only a few Angstroms thick. 
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CHAPTER V 

THEORETICAL TREATMENT OF THE MELTING OF SPHERICAL TIN CRYSTALLITES.  

There are two possible approaches to the treatment of the melting 

equilibrium of small crystallites, namely statistical mechanics and thermo-

dynamics, in which consideration to the possible effects of crystallite 

size can be given. 

So far no satisfactory detailed model of fusion has been proposed, 

although attempts to prove that a solid becomes unstable at a definite 

temperature have been proposed (e.g. Lindemann (1910), Born (1939), 

Furth (1941) , Bofiglioli, Ferro and Montalenti (1952)). Alternative 

approaches using different models have been made by Lennard Jones and 

Devonshire (1939 (a,b)), Fowler and Guggenheim (1939) and others. Temperley 

(1956) gives an account of the difficulties associated with the statistical 

mechanical approach,to fusion. Furthermore the treatment of surfaces by 

statistical mechanics is complex, as may be seen from the works of Fowler 

and Guggenheim (1939 p.445-50) and Kirkwood and Buff (1949). It is felt 

therefore that the statistical mechanical approach to fusion and the 

possible effects of surface on this is likely to be extremely difficult 

and will not be considered here. 

General thermodynamic principles will, instead, be applied to investigate 

the possible effects of surface on the equilibrium of solid and liquid 

phases, and two models will be used to obtain from this, a relationship 

between the melting point of a spherical tin crystallite and its size. 



98. 

The theoretical relationships derived on the basis of these models will 

be compared critically with the experimental results given in the last 

chapter. Although macroscopic concepts are used to obtain the equilibrium 

conditions, atomistic ideas will also be considered, since these not only 

give a deeper insight into the nature of the thermodynamic variables, but 

also suggest new macroscopic concepts which might not otherwise be 

noticed. 

The effect of surface on the equilibrium conditions between two phases 

has aroused interest for some time. The foundations of this subject 

were laid by Gibbs (1875-7) and a brief historical review of the work done 

on this topic by thermodynamic methods is given by Curzon (1960). In 

addition to the authors mentioned by Curzon, important work on this 

subject has also been done by Tolman (1948,1949 (8.00)) and by Herring 

(1950 1  1952). 
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i) Thermodynamic Treatment of Surfaces.  

In the treatment of bulk phases whore the effects of surfaces 

are ignored, the phases are considered as  extending homogeneously 

up to a mathematical surface which determines their volumes. When two 

phases are in equilibrium there is a physically inhomogeneous region 

where transition takes place from the uniform distribution of matter 

in one phase to that in the other. In obtaining a thermodynamic treatment 

of surfaces, Gibbs (1928) called this region "the region of discontinuity" 

but pointed out that this term did not imply that the discontinuity was 

absolute. However, because of the short range of the atomic forces, this 

region would have a very small dimension in one direction, and he 

proposed to replace this physical non—homogeneous, three dimensionsal 

region by a "dividing surface" which is a surface in the strict geometrical 

sense. This dividing surface coincides with the physical surface of 

discontinuity to within the accuracy with which the latter is localised, 

but has a precisely defined position. It passes "through all points 

which are similarly situated with respect to the condition of the adjacent 

matter". Different choices of the nature of these points will lead to 

different dividing surfaces all parallel to one another, but displaced 

from one another in a direction normal to the surface, so that some 

convention is necessary to complete the definition. The two conventions 

used by Gibbs will be given later, but the following discussion is 

valid for any choice ofadiviaing surface. 
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Once a dividing surface has been chosen to represent the 

discontinuity, then energy, entropy and other extensive quantities can be 

associated with it. To obtain these extensive quantities let us consider 

a portion of a transition layer between two single component phases (1) 

and (2), the extent of the transition layer being defined by the two 

parallel surfaces which mark the limits of homogeneity of the two 

phases (ABCD, EFGH in Figure 42). Phase (1), below ABCD and phase (2), 

above EFGH extend with homogeneous properties. The volume ABCDEFGH, 

equal to v, has physical and thermodynamic properties which are intermediate 

to those of the two phases. However this volume V has a definite amount 

of internal energy = s entropy = 71, and mass = m, depending on the 

phases (1) and (2) and the volume V 4, Let a surface EIZE, of area s, 

parallel to and between the surfaces ABCD and EFGH divide the element of 

the transition layer into volumes V'= ABCDKLMN and VII . KLMNEFGH. 

The extensive quantities associated with a dividing surface element MIN- 

namely internal energy, c S entropy, 1")
s

y and mass, ms, 	are defined 

by the difference between the extensive properties in the volume 1, and 

the value of these quantities when the uniform homogeneous phases extend 

up to the dividing surface. Let the internal energy entropy and mass 

per unit volume of the bulk homogeneous phase (1) and (2) be e ll 2  

7129 m
1 
 and m

2 
respectively. Since we have already assigned the values 

of the extensive quantities in this element, the values of es, ls, me  are 
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6 = 	+E 2  v" 4-6 s 	 (14) 

= 'fllVt  +72 V 
	

(15) 

m = m vi + m2  v" + 	. 	 (16) 

These extensive 

by the state of 

by the various 

been defined " 

surface KLMN in 

quantitips of the dividing surface are determined "partly 

the physical system which we are considering, and partly 

imaginary surfaces by means of which the quantities have 

(Gibbs (1928) p.224). It can be seen that by placing the 

different positions the value of vt and 1," change 

and in consequence sss ms change also. 

Once the dividing surface is chosen and its extensive quantities 

defined as above, the system can be treated as comprising two homogeneous 

phases extending up to the dividing surface, so that there is only a 

dividing surface and no transition layer. This treatment was develoed with. 

a minimum of hypothesis as to the detailed structure of the transition 

layer, but it was assumed that all the properties of the layer could be 

determined from the area and configuration of a particular dividing 

surface postulated. This treatment has the advantage of prorAding a 

general theory which is valid for a wide range of possible kinds of 

transition layersl including solid—livid interfaces, This treatment 

is quite different from the loss abstract treatment of the inhomogeneous 
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layer as a definite physical entity (e.g. Guggenheim (1957) p.46-56.) 

The treatment of the fluid-fluid interface is by far the simplest 

because the fluid atoms are free to move,and consequently the strains 

are isotropic and uniform distribution of matter occurs. The location 

of the dividing surface which seemed most advantageous to Gibbs for 

this type of interface was at the "surface of tension". The diViding 

surface, in this position is so placed that the dependance of the energy 

of the dividing surface on curvature, for an infinitesimal virtual 

change, is zero. For a general infinitesimal change, the change in a 

spherical dividing surface energy is given by 

61 	= to'n s  + yos + µs 6 m
s 

+ 2C S c 
	

(17) 

where t t- temperature, As  = Gibbs potential in the surfaceor= a 

constant, C = a constant, c=radius of curz'ature. The surface of 

tension corresponds to the dividing surface being so placed that C = 0, 

• 
. 0 oes  = tin s + As6 ms Yes 	(18) 

It can then be easily shown that for a fluid-fluid surface, As  is the 

same as in the two bulk phaseso, and that y is the ' surface 

tension'. If we consider a change from one equilibrium state to 



103. 

another and replace 6 in equation (18) by d, to signify a real 

differential then 

	

des  = tdrr + µ dms  + yds 
	

(19) 

If we integrate equation (19) supposing the area s to increase from 

zero to a finite value s we have 

	

s
s 	trr 	ys 	 (20) 

This applies to any part of the surface of discontinuity in equilibrium 

which is of the same nature throughout or in which t, p, y are constant, 

and were constant during the integration. 

If we denote superficial densities of energy, entropy and mass by 

s 	s 
=11

s
/s and r = ms/s  respectively

i  equation (20) becomes 

	

e s 	try + 	+ y 
	 (21) 

	

Hence y = es 	t 11 	g r= fs  gr 	(22) 

where f
s 

Helmholtz free energy density of the surface. 

If fs  = total free energy of the surface = sfs  

fs 
	

ys + pms 
	

(23) 
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It can be seen that f
s 

and y are different thermodynamic quantities. 

However, for two fluids of the same single component where adsorption is 

not present the value of I' will be so small that it may be considered 

zero, and the two quantities will be numerically equal. This equality has 

often been mistaken for equivalence in thermodynamic treatment of 

equilibrium involving surfaces and this is not correct. 

The above treatment is applicable to a liquid surface because there 

is a relation between the straimin a fluid and the number of atoms in 

the surface. Also a liquid cannot support a shear strain, so that on 

stretching the surface, atoms can move up to give the same configuration 

as before. This dividing surface has the great advantage of relating 

the pressure difference between two phases, with a curved interface, to T 

and to the principal radii of curvature. For a spherical surface of radius 

R, concave with respect to phase (1) the relationship :- 

2,y 
P
1 —P2 =  

is exactly true for the surface of tension. 

For an interface where one of the phases is solid, however, there is 

no advantage in locating the dividing surface in this way, since the 

stresses induced inside a crystal by the surface are,in general,of a 

complicated nature. Furthermore9  there is no relationship between the 

strains inside the volume and the surface free energy of a solid. The 

(24) 



105. 

free energy of a surface is mainly a measure of the change of free 

energy with a change in the number of atoms in the surface layer. Since 

in a liquid the compression of the interior implies, on the average, 

a decrease in the number of atoms in the surface, the strain in the 

liquid is related to the number of atoms in the surface. Consequently 

by replacing the surface layer by a dividing surface we can obtain 

a relation between the two. Differentiating equation (20) completely 

and substituting equation (19),wo obtain 

dy = 	isdt 	1'dµ 	(25) 

i.e. y is r(t,p) 

Differentiating equation (22) in a general manner, and substituting for dy 

dy = dfs  —par 	=Alsdt—rdp 

. 
0 • dfs  = Tisdt pdr 

and dfs  = 	Tisdt 	ttdras 
	

(26) 

i.e. f
s is fs 9  r), 

the free energy is a function of mass. 

The increase in free energy of the surface, at constant temperature, 

is represented by the increase in the number of atoms in the surface, which 

is directly proportional to the strain in the interior of the liquid. All 
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isothermal changes of the liquid are then expressed by the changes in 

the volume of the interior and the area of the dividing surface. However, 

in a solid, straining the interior will not change the number of atoms 

in the surface, because their positions are fixed and consequently 

the change of the surface free energy and the strain energy, which measures 

the volume free energy, of a solid, are not related as simply as with 

liquids. 

Gibbs recognised these facts and accordingly proposed that the 

dividing surface be placed in sudh a way as to make the superficial density 

of the solid vanish. i.e. the surface is placed in such a way that ms  in 

equation (16) is zero. This gives a precise location of the surface, which 

is much easier to localise relative to other physical characteristics of 

the interface, than the surface of tension. (Tolman (1949), Kirkwood and 

Buff (1949)). Then, obtaining the extensive properties of this surface as 

before, he defined 

0= 6 	trls 
	 (27) 

This is the free energy density of the surface, fs, and measures the free 

energy difference between the actual system and one in which the two bulk 

phases extend homogeneously up to the dividing surface. 

The properties of this dividing surface are quite different to those 

of the surface of tension, for now since ms=0 all terms involving ps,sms  vanish 

and consequently its functional form changes. 
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Figure 42. An element of a transition layer between two phases. 

130 

Figure 43. A solid core surrounded by a liquid shell. This is 
used in the first theoretical model of melting. 
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2. Surface Free Energy and Surface Stress.  

By replacing the fluid-fluid interface by a dividing surface at the 

surface of tension, Gibbs considered the changes that occurred in the 

whole system to be represented by the change in the volumes and in the 

dividing surface. Although this might appear to be a simplification, it is 

in fact a most rigorous treatment, as Tolman (1949) showed in his more 

detailed treatment of interfaces between fluid masses. At the time that 

this theory of capillarity was proposed there was little experimental 

material pertaining to effects of solid surfaces, so less attention was 

given to solid-liquid interfaces. The surface free energy was however 

utilised in the problems where the equilibrium between a solid and liquid 

with respect to solution was investigated. In the system where we 

replace the surface of discontinuity by a dividing surface, we must be 

able to represent all the properties of the system. The case of a liquid 

surface falls very neatly into this pattern, the variables at constant 

temperature being the volume and surface area, mass of liquid and mass of 

dividing surface, and pressure and surface tension, all of which are 

related. However, in the case of a solid, because the position of the 

atoms are fixed, no such simple relation is to be expected. 

Gibbs was careful to point out the difference, in the case of solids, 

between surface stress and surface free energy. Surface free energy is 

a measure of the work necessary to create a surface, whereas the surface 

stress is a measure of the work necessary to deform a surface. In the 
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case of a solid there is no such equivalence. 

We may define the specific free energy of any crystal surface, in the 

most general case as 0(n), This is the increase in the free energy 

of the crystal, when a face normal to a unit vector n is increased by 

unit amount, when the.internal properties of the specimen and the areas 

of the other types of face are kept constant. The quantity 0(n) 

will have different values for different crystal faces, because of the 

different distributions of atoms in the different crystal planes. The 

free energy of the specimen will then be the volume free energy plus the 

terms f Q  (n) ds . In the case of a liquid or an isotropic solid, 0(n) s — 

will be constant for any part of the surface, and correspondingly the 

surface free energy will be Os. This definition of 0(n) corresponds 

tc the definition of 0 at the r= 0 dividing surface. 

The concept of surface tension is a very old one in the theory of 

liquid capilarity-  (a historical account is given by Baaker (1928) and 

Shuttleworth (1950)). 	The concept was extended to surface stress for 

solids (Gibbs (1928) and recently a detailed treatment of the stresses 

for the general case of crystal surfaces has been carried out by Herring 

(1950  ( a)) and by Shuttleworth (1550). 

Given an interface and any plane P normal to it, we may define the 

surface force acting across P as the. Burface contribution to the total 

force exerted by the material on one side of P on the material on the 

other side. The total force is then considered to be composed of 
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contributions from the dividing surface and bulk phases, according 

to the method given in the previous section. The force per unit length 

of the intersection of P with the dividing surface, may be called the 

surface stress acting across P. In the case of a crystal, as the 

orientation of P is changed, the surface stress acting across the 

surface has been shown by Herring (1950).0 .. to have the general 

form:- 

the gth component of the stress is E g 11N' p 

where v = x,y A = xly,z, (x,y being the plane of the surface). 

2 is the unit vector normal to P 

is the surface stress tensor. 
Av 

This general surface stress tensor contains shear components which 

could not be present in a liquid. However if the surface has greater 

than threefold rotational symmetry, then gliv  reduces to a multiple of the 

unit matrix i.e. gtiv  = ge in, where So  = 0 if µi v, and 	= 1 if A = V. 

For this typo of surface the shear components vanish and the stress 

becomes isotropic. 

Strictly, the surface stress just defined is no exception to the 

general rule that the division of any quantity into surface and bulk 



contributions, depends on the location of the dividing surface. 

However the product of X.71, Where xis the volume stress and X is of the 

order of the thickness of the transition layer, will be negligible 

compared with the components of g
4V

, so that to this degree of 

approximation the surface stress can be considered as independent of the 

position of the dividing surface. 

The numerical components of g
Av 

for a crystal surface can be 

calculated directly by summing the forces which the various atoms of the 

crystal exert on one another, and by finding the unbalance of those 

forces due to the presence of the free surface. Those atomistic 

calculations have been carried out ((Lennard—Jones and Dent (1928), 

0rawan (1932), Shuttleworth (1950)) and for certain crystals, such as 

some of the alkali halides and the rare gases,' tensile 	and not 

compressive stresses were obtained. 

In all cases however, it was found that 0, the surface free energy, 

was much different from the surface stress. Atomistic calculations have 

also been made for liquid surface stresses and free energies, and the 

calculations show that they are equal, liacLellan (1952), Kirkwood and 

Buff (1949)). 

In the treatment of the melting of tin crystallites, we shall treat 

the surface free energy as having a uniform value C over the entire 

surface where 0 = 	(11) ds/i cls . Since the crystallites were 
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spherical, their shape would only agree with a uniform value of 0  — 

equivalent to a single crystal plane. This would occur if the 

crystallites were small enough for the atomic forces to be sufficient 

to smooth out all edges and facets to give a uniform atomic 

distribution. T.he surface stress will be treated as being due to a 

high symmetry face, namely a tensile stress, g, which is isotropic. 

The crystallite will be considered to have isotropic elastic properties, 

so that the complex form of its general stresses can be represented as 

a uniform pressure. 

In the following consideration we shall consider the surface free 

energy and the surface stress to be independent of the curvature. 

This is permissible when the thickness of the transition layer is very 

much less than the radii of curvature.of the surface. (Herring (1952)). 

Let us consider the changes of the free energy in the cases of a) a 

liquid, b) a solid, when they both have a free surface, and c) a solid 

liquid interface. 

(a) Suppose we have a liquid with a free surface and consider 

the change in free energy when we carry out a virtual arbitrary change. 

The two dividing surfaces proposed by Gibbs yield the same change in 

free energy for a single component system in which the adsorption 

at the surface is zero. 

The free energy F of the liquid is 	Fs, where Fiv  is the 

free energy of the interior and Fs  is the free energy of the surface. 
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For an infinitesimal change with t constant, 

(01 ) t = (Ot 	( OFs)t 
	(28) 

The general form of OF for a bulk phase is 

OF = -p ay -TA + µ8m 	 (29) 

(Gibbs p.186) 

where p = pressure, V = volume, 

7) = entropy, t = temperature, 

4 = Gibbs potential, m = mass of the phase. 

Therefore for the interior of the liquid which has mass m , potential 12, 

pressure p, and volume v 

(aFv)t  = -pay + µ 8 m v 	(30) 

When the dividing surface is considered at the surface of tension 

OF
s 

= yto,s 	µsouls  from equation (23) 

Me -POv+ 116 m y  Arts 	PsO ms 
	

(31) 

In this change 

-pay represents the external work done by the change in 

volume, r5s represents the work done on the surface by 

stretching it. 



µ6m.v  represents the change in free energy due to a change of mass 

in the interior, om 	µs6 ms  represents the change in free energy 

duo to a change of mass in tho surface, omS, where 6m and amy  are 

unrelated. 

At equilibrium gs=µ, therefore no work is done in transferring 

matter from the interior to the surface, so that on stretching a surface, 

the external work done is Yom, when v is kept constant. Therefore 
CI Fs  \ 

as /t,v,m 
	y 9  where m is the mass of the liquid. Also for a 

liquid the strains inside the liquid can be correlated with the surface 

tension and free energy, so 

i.e. = g = gs 
t,v 

The same relation exists between the free energy of the interior 

and its mass, as between the surface and its mass. 

If we now place the liquid dividing surface where the mass density 

of the single component liquid is zero, the term in equation (23) 

s containing m vanishes, and consequently the change in the free 

energy of the surface becomes a function of the mass in the interior-

which is now the total mass - and m = m. 

The general variation for the liquid is still represented by 

equation (28). However, since F
s 
is now 6 sy 6Fs 6( s) = o as + 

66 0 , and from equation (30) (oFv)t  = 	V + Om, where m is 



a 
S 

60 
a 

6 	(32) 

= - 

But since 

(29)  

0, therefore (6%)t  --0,5s (35). 

the total mass of the liquid, for a general variation 

115. 

(  80 
0 + s 

8s 1  m am is 
. . (a)t = p6v + 11,6 m + es + s ra 

DIP 4, 

(33)  

If there is no adsorption, the configuration in the surface remains the 

same after the stretching, so that the free energy per unit area remains 

ao 
constant, so that( = 0. 

as 
Since 0 is 0 (m,$) the derivatives of a with respect to s and m 

have the relation 

The relation for the variation expressed by equation (33) has the 
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form 

( 6 F )t = —p ov + µ8m + 06 s 	 (36) 

The more general form which allows for a change in the surface mass due 

to adsorbable components, also reduces to this simpler form if the 

configuration in the surface is the same after stretching. If we 

consider the variation OFs 
 , in the general form of the surface of 

tension, 

F
s 

= f
s
s, where fs 

is the free energy per unit area. For 

constant t 

(15Fs)t  = 6(fss)t  = fs  Os + a Ofs 	(37) 

But Of
s 

from equation (26), for t constant is psor 

(OFs)t  = fs 
Os + sos  Or 
	

( 38) 

If Or= 0 i.e. the configuration of the surface is the same 

although the area has changed, (5 Fs)t  = fs  Os, as in equation (35) 

where fs 
= 6 
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b) The general change of free energy, for an infinitesimal 

arbitrary variation, is more complicated in the case of a solid than in 

the case of a liquid, since the solid has both rigidity and long range 

order. Shear energy, which cannot exist for a liquid, may be present 

.in the case of the solid and because of the long range order of the solid 

no rearrangement of atoms can take place in a solid surface. Consequently, 

after stretching a solid, the configuration of the atoms in the surface 

will be different and therefore the surface free energy will change. In 

the case of a liquid when no account of the surface is taken the Gibbs 

(

aF 
thermodynamic potential is unambigiously defined by g = 

i„ am )t,V 
where F,m, v and t, are, respectively, the free energy, mass, volume, and 

temperature of the liqUid. This applies to a liquid because the only 

way of changing its free energy at constant volume and temperature, is 

by changing its mass. In the case of solid, however, there is the 

additional possibility of the presence of shear strain energy. Therefore, 

the Gibbs thermodynamic potential for a solid is defined by 2— 

( aF' 
A = 	i 	 (39) 

..,, am ,/ t, v , 	shear 

where Ftm,V,t are now, respectively, the free energy, mass, volume and 

temperature of the solid. This means that to specify the potential of a 

solid, the change in the free energy must occur at constant shear as well 

as at constant t and v (see also Herring (1952). If the solid is subject 

to a uniform pressure P amd has no shearing stresses acting on it, then 

if there are no shear strains subsequently induced in an arbitrary 
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variation, the change in free energy is represented in the same way 

as in the case of a liquid i.e. by equation .(29). 

Consider, single component solid having a free surface and let F v  

m, v be respectively the free energy, mass and volume, of the interior 

when the dividing surface is placed in the position where it has zero 

mass. The mass, m, is then the total mass of the solid and 6  from 

equation (27) represents the free energy per unit area. If the area of 

the surface is s, then the free energy of the surface, Fs, is equal toas. 

For a solid crystal surface, which has greater than three-fold rotational 

symmetry, the surface has no shear components, and therefore if there are 

no external shear stresses applied, the change in the free energy of the 

interior of the solid, for a variation at constant temperature, will be 

given by equation (30), and the change of the surface free energy will 

be oFs =6(0 s). Thus the total change of free energy can be represented, 

in the same form as in the case of a liquid, by equation (33). However, 

because of the long range order and the subsequent change of configuration 

of the surface due to the variation, equation (33) cannot take the simple 

form as the case of the liquid. From equations (32) and (34) we have 

ao\ 	 ( a G 
(7---1 6(0s) =oa s + 	s + s 	6 m s 	 6  

a8 f m 	a M S 

= G6s + s 
ac,  

Ss 
s m 

(40) 

aa 
and since for a solid, (---- 	51 0 because of the fixed positions of 

\as m 
the atoms, the full equation (40) must be used to represent the change of 
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free energy of the surface, and hence the full form of equation (33) 

for the total change. This is because the work done in creating a solid 

surface is distinguishable from the work done in deforming it. 

c) If we consider a solid phase in contact with a liquid phase, the 

change in free energy of the system in arbitrary variations will include 

any free energy change in the solid-liquid interface. If we consider 

a single component solid completely surrounded by its liquid, it will be 

subject to an isotropic pressure providing there are no shean stress 

components in the solid-liquid interface. If the solid free surface stress 

has no shear components, the presence of a liquid cannot create any, and 

consequently for a surface of sufficiently high symmetry, the changes in the 

free energies of the solid and the liquid interior will be given by 

equation (29). Let us replace the solid-liquid interface by the dividing 

surface which has zero mass,and letobe the solid-liquid surface free energy 

per unit areas the area of the surface, m
1 the mass of the solid,m2 

the 

mass of the liquid and t the temperature. Then the general form of Ois 

0(t,s,milm2) because the surface free energy of an interface between two 

phases depends on them. However, if the solid does not affect the liquid to 

the extent of altering the ordering by introducing a long range order, the 

dependence of the solid-liquid surface free energy on the liquid will have 

the same form as a liquid surface. Also the dependence of the solid-liquid 

surface free energy will be a function of the solid mass and the surface 

area, so that for an- infinitosimal variation, rat' constant t 
(ao  

6 ( so) = cs6s + s 	as +s 

 

6 s 	(41) 
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3). The Effect of Solid-Liquid Interface and Liquid-Air Surface 
on Thermodynamic Equilibrium.  

Let us consider a spherical solid particle in equilibrium with, and 

completely enclosed by, a liquid shell. Let us replace the solid-liquid 

transition layer by a dividing surface placed so that the superficial 

density of solid is zero, and let us replace the liquid air transition 

layer by a dividing surface in the surface of tension. Let the radii 

of the two surfaces be r
1 

and r
2 

respectively (Figure 43) and let 

the external air pressure be Po. Since the system is considered in 

equilibrium, thermal equilibrium condition must be satisfied, Therefore 

the temperature, t, is constant throughout the system. If we consider 

the solid to be subject to an isotropic pressure; let the pressure, Gibbs 

potential and mass in the solid be 131,p1lm1  and in the liquid P202,m2, 

respectively. Let 01  = the free energy density of the solid-liquid 

surface. 

t1`2= the surface tension of the liquid-air surface 

and µ
2
, M2 its potential and mass. 

si.= area of the solid-liquid surface 

s
2= area of the liquid-air surface. 

For equilibrium, for a general virtual change (61"), /ra = 	(42) 
1,   

(Gibbs l.89) where F = the free energy of the solid and liquid 

OW = the work done 	systom 

m = total mass = m
12 

 -11/12s 



OF = 6F1  + 6F2 +
sl 

+ 6Fs2 
	(43) 

OW = -P0  6v 	 (44) 

where 6F
1  
• change in solid free energy 

6F
2 
• change in liquid free energy 

OF 	change in solid-liquid surface, free energy 
ol 

6F
s2 
 = change in liquid-air surface free energy 

6v 	= total change of solid and liquid volume. 

for t constant, from equations (40) and (29) 

OF
1 	

-P10v1  + g1  6m1 
	 (45) 

6p2 	-p26v 2 + 122 61112 
	 (46) 

and from equations (41) and (23) 

	

( cT) 31°1 	 a 
- 1 +s  I 	am1 s 

6 m1 	(47) OF
s1 

= 0
1  os1  + s1  

6 s 

	

as1 	m1 	1 

(48) 



as 

-p
1 
 6v

1 
 + p

2 
 6 v

1 
 + a
lav 	

+ s 	a s 
1 1 

a  sl 	a 1 	8;1 6v 
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Therefore from equation (43) 

(6E9t,m = -P1  6v1 +µ1 6m/  -P26v2 	428 m2 

+ 6sl  + 5 
as1  + s1  

40  
a 1114 'S 

1 

ms • y2 6 s2 + 2  6  2 

- P 6v 
O 

(49) 

Since 6v. 6v
1 
 +6v

2 ' 
-p
2 
6v
2 
	-P2 av 	p

2 
 av and since 

s1 is a function of V1 and s2 of vl  we can rewrite equation (49) 

—P2  6v 	Po ov + 

+ 1 
 Om

1 
 +s 

ao 
a m1 	s1 

amt 	P2 (5'32 4" A
s
o ms2  = 0 

(50) 

But as i = 4 7C 2 	1 	3 	2 	3 = 4 IC r13  and s2 4 'Kr2 	4 and v = 	r2 12 

as ( as 
av 

2 //-A -s 2 and 
av 

2 



Since 6v
1, 6V are arbitrary changes and since om1 

+Ern2 
+Ems  = 0, 

for equation (50) to be satisfied 

s1 
2.1- 01 

ao 	
°° I  s1 a s  av 	Ov 1 = 0 

\ 1 A 

2Y2 

r2 
P
2 

= Po + 

m 
1 	

(54) 

1 
represents the change of surface area with mass, when 61 
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-P2+Po 

(a 
as2  

s 	s +
2 
6m
2 

+ 12
2  amt  

2 GI 	2s1  
Therefore P

1 
P
2 

+ 
r
1 	

r
1 

and == 
'2 	2 

ov-_, 0 

(52)  

(53)  

But from equation (41) for constant temperature a 1  is (s, 1m1  ) and 

therefore using equation (34) 

(51) 

mi 1 



acti  

amt as1 r1P1 

2 (  act  

m1 

(56) 
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remains constant i.e. we imagine the mass increasing by dm1  and the 

state of the interior remaining the same, so that dm1  = p1d v1  and 

consequently 

as 
am 

las \ 
P1 	av 1i 

(55) 

But ( 
a sl 
a v 1  

2 
SO 

 

Consequently equation (53) can be rewritten. 

 

8 µ
2 = 42 . (57) 

r1 p1 

Equations (51) and (52) give the conditions of mechanical equilibrium. 

Equation (51) is the Gibbs-Kelvin relation for the pressure difference 

across a spherical surface between two fluids, in terms of the surface 

tension and the radius of curvature. Equation (51) gives the relation 

for the pressure difference across the solid-liquid surface i.e. 

2 
P
1 	

P
2 
+ 	

(c71+ s 
r1 a s1  

a al  
(58) 
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If we consider an isotropic surface stress g in a curved solid 

surface, then for mechanical equilibrium there must be a balance 

of forces in all directions. Therefore, if we consider a small square 

element area of a spherical surface of radius R, such that its sides are 

length 1, the resultant normal force : inwards on the element due to 

surface stress is 2g1. 1 	For equilibrium this must be balanced 

by a normal pressure difference across the surface element. If the 

pressure difference is PP, where the pressure is greater inside the 

spherical surface, the force on the element due to this pressure is 

LiP12. These forces will balance if LP = 	. Similarly for a 

solid-liquid spherical surface, where there is an isotropic surface 

stress g
1 and radius r1'  the pressure difference P1-P2 is given by 

Therefore from equation (58) 
2g1  

r1  

g
1  = 01  + Si 

m1 
(59) 

so that 

g1 - 6
1 

( 60 ) 



Therefore substituting equation (60) in equation (57) 
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2 
112 

 

r1p1 (61) 

Equation (61) gives the condition of equilibrium in terms of the Gibbs 

potential, surface stressl and the specific surface free energy. Equation (59) 

gives the relation of the surface stress in terms of the specific surface 

free energy. For a crystal with a plane surface, when the external 

normal stress is zero, in an arbitrary deformation at constant mass which 

is assumed to change the local state of the surface2andfint consequence the 

aurface free energy, we have 

(62) 

where 	g 111/ = the general surface stress tensor 

	

0 	= specific surface free energy. 

	

6 	= Kronecker delta. 

	

Uµ 	= general strain tensor of deformation 

= x,y,z 	v = x,y and r-y is the plane of the 

surface. 

This equation, for a crystal face of greater than 3-fold rotational 



127. 
I 	• • 

symmetry, reduces to 

80 
g = cs + 

75Tstrain) 
. 0  + s 

/7  80 
as (63) 

which is the relation in equation (59). For a solid, the term 
as 

will be appreciable,(ofthe.order of c;),'Iut for a liquid it will vanish 

because a liquid cannot support a shear strain, and the deformation 

will resultinatransfer of liquid from the interior to the surfatce or 

vice-versa,_ without change of the state of the surface. For a liquid, 

therefore a°  = 0 and 0 is numerically equal to the surface stress. 
s 

Consequently when phase (1) is a fluid equation,(61) reduces to p
1
...p 2  

because then 01  = gi  = lei, which is the normal relation between potentials 

of fluid phases. (see e.g. Curzon (1960). 

The apparent inequality of the Gibbs thermodynamic potential of a 

crystal and its liquid in equation (61) arises from the fact that a 

crystallite contains an additional degree of freedom to temperature and 

strain, namely the concentration of lattice defects in the form of holes 

and interstitial atoms. The atoms in the interstitial positions have 

a different potential from the lattice atoms and the representative 

potential of the crystal can be considered as; p . µa  — 
	(64) 

where pa  = the potential of lattice atoms and pi  = the potential of 

interstitial atoms or lattice vacencios in equilibrium with each other. 

a6 



Hence 
4a 
 =µ1 

in the 'ideal' 

r1 p1  

where yi  is the potential at a pressure 
2 

structure occurs, and R4  = r 	(g1-(/) 	would be the 
n 

1v1 
potential of the imperfections. This is then in agreement with Herring 

(1950;a). 

However, considering the equilibrium in terms of the normal 

macroscpic variables, in the case of a solid core and liquid shell, 

rt. 

1 =1.11 
2 

(g1 -(31)  = 4a - 4i 

P
1 
if no changes 

(65) 

2 

r1 p1 

2 y2 	2g1  
P + — + 
o 	r2 	r1 

(g1-0-1) = µ2  (P29T )  

and 	P2 - Po Since Pi 

µ
1
(PT) (66) 

2y2  

2 
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If we consider a bulk crystal at zero stress, with none of these 

imperfections, then on decreasing its size the surface stress will induce 

atoms into the interstitial positions and form corresponding vacancies. 

If we consider this crystal in equilibrium with its liquid 

When Ri  = µ2, then from equation (61). 

we have from equation (61) 

from equations (51) and (52) 

P
1 

P
2 

2g1  

 

r
1 (67) 

Therefore equation (66) can be rewritten 



(P1-P2) 	2a1  

	

tpi 	r1 pi 
	µ2(P2'T)  

But 
	µ = Fm  pym  = Fm  P/p  

where 	m = free energy per unit mass 

Vm  = 
1/ = volume per unit mass. 

P1 	2 	 P2 	P
•

2 • 9  
• 1.11(PV T) 

p1 
+ 	

p1 
- p

2
(P
V
T) - 	+ 

P2 	P2 	pi 

	

2 61 	/ 1 	1 
so that. 	F - P 	

(70) 
( 	 Flm(P1,T) + 2m 2 

r1p1 ' p 1 	p2 / 

Therefore for equilibrium 

P2 (1)2m -vim)  

r1P1 
When two bulk phases.  are in equilibrium and no account is taken of the 

effect of the surface of discontinuity, p1=p2 p and the condition 

of equilibrium is, as expected)  ' 

F2m = F1m -- (V 2m - Vlm 
	 (72) 

i.e. the difference of free energy per unit mass is equal to the 

external work done in transferring unit mass from one phase to the 

other. However, it can be seen fromcquaTion(71) the free energy of 
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(68)  

(69)  

F2m = F1 
	2(31 



612 AT - 2 p2  

1 18P2 

8r
2 

because 

Aµ1  A./.1  

201  ( apl  

P2r1 
ap 1 

• Ar1  
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p1 r1 

201 	
when a spherical surface 

of discontinuity is taken into account. 

The equilibrium of a crystallite inside a liquid is unstable.. 

we consider an actual change where some solid has melted into the 

the solid is augmented.by the term 

liquid and signify the increments occurring by A , 

condition to be satisfied from equation (68); Ap1  
PI 	\ 

and total mass, m. 

for the equilibrium 
( 201 	r

1 

-P2  
+ 

must equal 42  
for constant temperature t, 

If we suppose the solid transferred to the liquid diminishes the radius 

of the solid particle by Pry  then the shell outer radius increases 

by Ar2  because p1  >p2  

(73)  

(74)  

(75)  

( p
1
-p

2
\ 	1 

LA 
P1 j/ 

(131-P2)(8P1  \//' aPI 

	

2 	 Ar  1 

	

P i 	\\ art  

(76) 



1 

P2 
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1 	aVm 	1 1 But •- - 
 8P 

k . bulk modulus and v 	/ 
vm  ( aP)T 	k 	 p 

therefore dvm  - 	dp so that 

a P 
	

P 
	 (77) 

Since from equations (51) and (52) 	+ 

.... 	 (p 

 1 
...p 

 2, 
)),6r 

 1 	
+ 	1 	2 I 	1 	A  

1 	i 	a 	 (p -p ) iap 

1 	 / 

152.-. Po+ r 	and 	P1-P2 
= 	. therefore 

	

a 	, ri 	 Piki 
P =P 

lk, arl / 2"y:1 	2g1  
2y2 	2g1  

2 

	

P 11'1 
	Ar1 - 

201 	t 	aP 1 
p1r1 k1 	a ri ,,/ 

r
1  

1 Q 	r2 	r1  ' 
.4"'  -------"" 

	

a(P1-P2) 	2g1 	ap2 	2 y2  . api 	2g1  
a x•

1 
	r1 
	art 
2';   r2 1 	r1 

A  

and 

Qu 

Since Lir2 

(79) 

(80) 
[201  2 	2g1  
---- P1r12 + (g1.-al.) P1r1k1 

0 
r1 

2 
... 	.  

is positive and i.,r/  is negaTive jthe R.H.S. of equation (80) 

2Y2 
r2 

2 

A( 

is pogitive and the 11..H:S, of equation (79) is negative, so c,,nsequently 

these terms cannot be equal and the equilibrium is not maintained. 
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c 
Also since a p. _ = -1 , where r 	is the entropy per unit mass, and 

aT p 	M  

since the entropy of a liquid is greater than that of a solid, for 

equilibrium to be maintained on a decrease of the solid, the 

temperature must be lowered. This moans that the (solid is in unstable 

eogiilibrium with respect to size variation when it is completely 

surrounded by the fluid. The condition of equilibrium obtained in 

equation (61) will represent the limitingcase of equilibrium when a 

continuous change of phase is considered. 

4. Melting Point Equilibrium of Crystallites.  

When bulk solid melts, each step may be considered as a reversible 

transfer of matter from the solid to the liquid phase, while the 

intensive properties remain the same. However, in the case of a small 

solid particle the melting process cannot be considered so simply, since 

its intensive properties depend on its size. Therefore, when a 

transfer of matter from the solid occurs, its size decreases and it may 

no longer be in a state of equilibrium with the phase into which it is 

changing,as was shown in the previous section. In the experiments carried 

out, the solid spherical crystallite changed into a liquid spherical drop, 

and because the amount of both phases present was small, the intensive 

properties of the liquid would also have changed during the transformation. 

In the experiments carried out, at some stage the liquid must have been 

formed from the crystallites. Since the temperature was raised continuousl:', 
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for the equilibrium conditions to be satisfied, the considered liquid 

and solid must be at the same temperature. Therefore the simple model 

of solid and liquid spheres in equilibrium cannot be applied. (Pavlov (1909), 

Reiss and Wilson (1948)). Also the initial and final state of a tin 

particle could pass through a series of non-equilibrium states, so that for 

the condition of thermodynamic equilibrium of melting of small crystallites, 

we must consider a system where both phases are present at the same 

temperature. Two models of melting will be considered. 

4.1. Uniform Melting - Simultaneous Melting Over Entire Solid Surface.  

In this model we consider the crystallite to melt at the surface and 

form a liquid shell which completely encloses the solid, so that consequently 

there are only solid-liquid and liquid-air interfaces. As the temperature 

is raised, the solid begins to change uniformly at its surface since the 

surface layers of the crystallite are already in a state of -higher free 

energy and greater disorder than the interior. The new phase which is 

formed cannot be considered to be a liquid with homogeneous bulk properties 

because of the initial thinoss of tho shell formijThe condition of local 

order and long range disorder cannot be satisfied, and furthermore the 

interatomic forces from the solid in contact with thisshaIwill tend to make 

this "pseudo liquid" more solid-like. If we assume that thermodynamic 

properties can be assigned to this layer,we may divide it into a volume, 

and two dividing surfaces, the solid- "liquid" dividing surface and the 

outer surface of the "liquid" shell. However le the shell initially formed is 
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allowed to increase in thickness,its properties tend to become more 

like those of a bulk liquid, so that at some critical thickness,.'X, its 

properties will be those of a bulk liquid. 

Since the properties of the dividing surface depend on the 

properties of the two phases between which it lies,the free energy of 

the solid - "liquid" interface and the "liquid" surface till also change 

with thickness of the shell. Since the shell is more like a solid when 

its thickness, d, is less thanX , the solid - "liquid" interface free 

energy a 
1 
*
(d) will be less than

1'  the free energy of the solid bulk 

liquid interface. Similarly, the free energy of the "liquid" surface 

y
2 (d) will be greater than that of a bulk liquid, since the free 

energy of a solid is greater than that of a liquid. The free energies 

of both the surfaces of the shell will acquire the bulk liquid values 

when the shell has a thickness X 	The value of 61(d) and y2(d),could 

be considered to vary with d, the thickness of the shell, as shown in 

Figure 44. The interfacial solid -"liquid "free energy increases from 

a very small value, to the bulk-liquid surface free energy when d = X. 

The"liquid"- air free enemy, correspondingly decreases from a value 

very near that of a solid-air free energy to the bulk liquid free energy, 

which is the liquid surface tension, when d = 	. 

The value of X at which the shell acquires the properties of a 
0 

bulk liquid is expected to be of the order of 15 to 20 A. 
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If we therefore consider the "melting" to commence uniformly on the 

surface, the transfer of solid to "liquid" will commence at a temperature 

at' which the 6crelli4iiumbetween the solid core and the "liquid" is 

satisfied. The system may be considered as the one shown in Figure 43, 

except that r2-r1  is very small, of the order of a few Angstroms. 

Because of the "pseudo liquid" state, the equilibrium between the solid 

and the "liquid' will be stable with respect to further "melting". Both 

* 
C5

1
(d) and'y(d:. increase with increase in d, so that when some solid 

"melts"'the shell increases in thickness. Hence there are extra terms in 

equation (79) and (80). Increase in d means a decrease in • r1 

and an increase in r2  so new terms will occur in equations (79) and (80) 

aYi (d )  namely 	A r
2 in equation (79) and 	 A r1 in equation a r2 	 ar2 

(80) where the former is positive and the latter negative. Consequently 

the condition for stability will be satisfied in the range d=0 to d= X 

*„ 	* , 
because the gradient of 

1(d) andy2(d) is large in this region, as may 

be seen from Figure 43. However when the shell attains the bulk properties 

of the liquid, the above terms become zero, and the equilibrium becdmes 

unstable. Therefore when the shell reaches the thickness X, 	a 

subsequent temperature rise causes a "catastrophic" change of solid to 

liquid.The .melting point equilibrium must therefore be considered at the 

temperature at which the "liquid" has just attained the properties of a bulk 

liquid, namely when the shell thickness is Xi, if adequate energy is supplied. 
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At the melting equilibrium the solid core of radius r1 
is in 

equilibrium with a liquid shell of radius ro, where r2=r1+ X , (at a 

temperature T)0  This was initially a crystallite of radius Roy  and 

its melting point can be considered as T. 

Lot us consider a crystallite of radius Ro  +ao, and let its 

melting point temperature be T + A T. At this temperature a solid core 

of radius r
1 
 +LI'

1 
 is in equilibrium with a shell of thickness T. 

A r1 	
r 2 	 (81) 

From equation (68) for a solid sphere to be in equilibrium with a liquid 

shell at a temperature T, we must have 

g
1
(1)T) +  	=•µ2(1)2,T) 

201(T) 	(1)
1
-1)2) 

r1p1 	p1 (82) 

Therefore for equilibrium to be satisfied when r1  increases to r1  + Ari  

and r
2 

increases ,to r
2 
+ A r

2 
the system must be at T + A T, where P1 

has changed to P
1 
+A P

1 
and P2  to P2  +A P2. 

2 (5, 
.
•
. 	Aµ  i + 	

' 
9 °112 	 (83) 

But 

ap T  
A P1  AT 

(84) 
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r1 + 

20 
	 (aPi A rp  

r1P
2 	— -3- 
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(85) 

(86)  

(87)  

(88)  

(89)  

P
1  

(Pi-Pd( api  
2 	aT )i° T.  

'P  1 
- the.volume per unit mass 	) 

- the entropy per unit mass 

- where k= bulk modulus 	(90) 

where a=cubical expansion coefficient 	(91) 

entropy per unit area of the solid-liquid surface 

(92) 
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2 201  
AT 

a1 
— (P1-P2) + 

s P 1 r.1  "1  2m 
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So substituting equation (84) to (87) in equation (83) and 

rearranging 

	

(  '43g1 	AT 
• 

	

aT 	) P1 

(42 
aT 

A T + 

	

2  act 	201 
/apt 

	

aT 	r1 p
2 

(PI-132) r 
i 

aP  T 
P1

2 T 

( a µ
2 AP2 	

// ail1 	) 	261  LP1  + 	 A rI  
a P2 	a P1 	T 	r2I  p1  

2 0 	r ap t  
p 2 	 1 r  

1 	81'  

(P1—P2) 	aP 1) 
2 

1 	a Pi 
LP 	(93) 

Substituting equations (88) to (92) in equation (93) 

	

Q P1 
	

A P2 

	

P1 
	P1  

	

AP2 	A P1 	201 	 201  A r 	+ 

	

2 	p1 r1 p1 	
1 r1 p1k1 	

AP 
2 	 I 

 

AP1 	GP2 

 

( P1-P2)  P1  1 	PI 

 

P1 k1 



(12m - Ti 1 m)  s AT + 
rl P1 	rl p1 

c51 	g1) GT 
2 2a'1 

Cr 	 2  
11  2m -Ili m rp1 	s 

2a1  
r p1 	(96) 

Immo 

261 	
Li 	

4 \ 
\ 

-LP 

	

L1 	2 p 	P2) r2 	p l l 

LP1  26

1

1 

 

	

p1k1 	r 	(P1 - 
P2)) 

(94 ) 
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But from equations (51),(52) and (67) 

	

2y0 	2g1 	 -2Y2 	2g1 
. P

1
=Po+ 	+ 	. p  • r2 Pi 	2 	 2 

	

r2 	"1 	 r2 	 r1  
r 
1 

	

212 	 -212 	 2g1  
P2 = Po + 	• • Gp2 = 

2 	r2 and P1 = P2 + 

	

r2 	 r2 	 1 

Since r2 = r 	and G r1  =A r2 from equation (81) 

2a, 
2 	Ar1 r1p 1 

2y
2  

(r1+W)2  
r1  

(95) 	• 

2 / 2r2 (01-e)) 
(r)2 

1 

2g1  
A r1  r1 p1k1 

2 r1 

Therefore if we denote r1 by r 
2 61 	212 	( 

AT r2 p 	(r+W Pi 	P2 

2 

 

f(2Y2 	 
(g 1 1 r+702 

    

   

r2/ 
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where T)2  =11 2m  (P2,T) - the entropy per unit mass of liquid. 

1-1 =lim  (PlIT) - the entropy per unit mass of solid. 

The melting point equilibrium expression obtained above is for a 

solid core of radius r and shell thickness W . This expression would 

represent the gradient of the graphs, shown in Figures 34 and 36, at a 

point R, TR  when R = r + '7k. and T = TR. This is because the radius 

indicated in these graphs is the radius of the original crystal, and 

therefore the radius of the outer surface of the liquid shell. Therefore, 

the gradient on the melting curve at a point R,T, should be given by 

A T 	

2 1 	2y2 	Al 	// 
I) 2-(g1-G1)   / 2T2 2g1 

(R-702A1 	R2 p 
1 	(R -70 	2) R2 	(R-7‘) 

AR 
112 -111 2n  

(R-70p1  

2a1  
(g1-  ) (R-X)p 1 

(97) 

The density of the solid crystallites was found to be equal to that of the 
0 

bulk tin, when the largest crystallites of the order 500,A, were investigated 

(Chapter IV Section 4). Subsequent determinations of lattice parameters 

of smaller crystallites showed no change, to within the experimental accuracy 

of 0.5%. Since the compressibilities of solid and liquid tin are of the 

same magnitude, the bulk moduli being 5.25 1011 dynes/cm2 (Bridgman (1925) 

and 3.1 1011dynes/cm2, (Kleppa (1950)), respectively, the densities 
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appearing in equation (97) may be taken as those of bulk tin, at 

normal pressures i.e. p1  = 7.184 and p2  = 6.98 grams per centimetre cube . 

y2  for liquid tin in vacuo is 580 dyhes/cm (Matqyama (1927))and its 

variation with temperature is of the order of 5 dynes per 30°C. Therefore 

the term in the numerator 

2 

1  
/ 

2 
15.6 ergs/gm/cm3. 

R2p 
Pi  p 2 R2  

The last term of the numerator is much smaller than the first two because 

of the large value of k
1'  the bulk modulus of solid tin. 

The estimation of the solid—liquid surface stress from the surface 

free energy (Turnbull (1950)) make the solid—liquid surface stress much 

less than the liquid surface tension. This would be expected from the 
2y2  

similar packing of atoms in solid and liquid tin. Consequently 	will 
2g1 	 R2  

be much larger than 	n, so that if we take gi  —(31"i9, the last 
(R 

term may be rewritten, approximately, as 

20 
1 	2 

P1k1
(R—T) 	R2  

20 1 
Therefore the ratio of the 1st term, 

  

,to this is 
)21  

2y2  

 

2.10-9  

   



712m(P22T)  = 12m (Po/Ti)  

fT 

T
B 

• 
Cp2 	P a2  
	dT - 
T • P P2 0 

dP 

(98) 
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'o 
Since the smallest value of R studied was (Idyl , the last term 

would be less than 1% of the first term in the numerator. Thus without 

any loss of accuracy the last term can be ignored. 

No discontinuity in the properties of liquid tin at temperatures 

below its bulk melting point are expected. (Greenwood (1952))In the 

'denominator112m (P
2' 	i 
T) -11

m  (P T) appears. The pressure P1 
is greater 

2'10-2  
than P

2' but they are both of the order of — 	For a crystal of 

100 A, P2  P/109  dynes/cm2. The melting temperature for some crystallites 

may be as much as 100°C below the bulk melting point of tin. Therefore 

both these factors, temperature and pressure,should be taken into account 

when the equilibrium entropy is being considered. However, the entropy 

difference, 71 2m(P2,T) -1 1m(P1,T), does not differ from the value at bulk 

melting point, TB, and both phases at one atmosphere, Po, by more than 1-2% 

(as discussed below). 
C 

Entropy is a function of temperature and pressure as dlim  = --2-- dT - 
T 

dP, where C p  is the specific heat at constant pressure, and a is 

coefficient of thermal expansion. If we therefore consider il 2m(P2,f!'), 

Thim(PilT) in terms of their values at the melting pointITB,when the 

pressure is Po 

a 

the 



T Ti  lm (P1,T) = r11m(P0,TB) + 

TB 
T 

P1 dT 
Po 	p1 
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dP 

 

 

 

(99) 

But r1 2m(PolTB) 	(P0,TB) 	T 	, where L = the latent heat of 

fusion of tin. Therefore subtracting equation (99) from equation (98) 

2m (P1,T) -111m(P1,T) 
L 

= — + (C 	)log p2 pi e TB 	
TB 

 

 

a2 	to, 

p 2 	(P2-Po) + 	(P -P ) p1  1 o 
(loo) 

where 1102/ lbpI 
are mean values of the specific heats over the range 

of integration. When Po  is one atmosphere, TB  = 505°K and L.14.5 calories/ 

gram = 6.07 108 ergs/gram. 

Therefore 	L - 1.12 106  ergs/gram/degree. TB 

The specific heat of liquid tin, Cp2 is 0.0615 calories per gram (Kleppa 

(-0950)), but the specific heat of solid varies from 0.062 calories per 

gram, at 505°K, approximately linearly with temperature (Kelly (1949)). 

The term (Cp2-5p1)  will not exceed 104  ergs/gm/degree 

experiments so that 0p2 1 1  Cpl) loge 	< 1% of 	,; 

104y when P1'P2'
J109  dynes/cA 1 - 7.10

-5 and a2 

in the range of the 

Similarly since 

the last two terms 

in equation (100) will be less than 1% of 	. Therefore the entropy 
B 

difference (n 2m - '1 in' is equal to 14,2— to within 1-2%. 
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The entrow of the stolid-liquid surface could not be found in 

the literature, however this term would be expected to be small. If we 

consider the variation of the liquid surface tension (Matuyama (1927)) 

as an order of magnitude although y2  is much greater than 0
1 for 

2718  
100 A radius crystallite p77-1:70  --'104 again less than 1% of T •  

B 
negligible being of the order of 102  

Therefore to within a few percent, 

equation (97) may be rewritten 

2C) 	2 
2 LT 	- 

(R -7) 	R2p1 
,AR 

TB 

2 TB 	01 	15.6 

The last term in thadenominatoris 

0 
for a crystallite of radius 100A. 

15.6 

(R-7‘. )2 	R2  ( 101 ) 

For large crystallites, when R>>7‘. this reduces to 

T 	2TB 1 

 

  

R 	Loi  R2 	(102) 

With this approximation, if we integrate from a temperature T to TB  

and from R to 00 , where TB  is the bulk melting point, assuming al 



9.106 	

L p1 

	(01  - 15.6) 4. 10% 
2TB  

01  = 55 (1 ± 0.1) ergs/cm2  (105) 

is temperature independent, 

TB 
.f AT = 
T 

 

(103) 
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. 
0 • TB -T = 

2TB  

L  p1 

1 
(01  - 15,6) — 

R 

• 
• • T =TB 

2TB  
- 15.6) 

L p 1 R 
(104) 

Therefore the graph of T against 	, when R is large, is a straight 

line. From the graphs in Figures 35 and 37, the gradient obtained for 

R-J 1000A was (9+1)106  . 

Therefore the value of 01 
 is given by 

This value for the free energy of the solid liquid tin surface is 

in good agreement with the value obtained by Turnbull (1950), of 54.5 ergo/ 

om2 which was calculated from the results of experiments on supercooled 

liquid tin droplets carried out by Vonnegut (1948). 
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The linear form of T against 1/R does not hold for the range 

AT 
-R- of crystallite radii studied. The gradient; T   , on the graphs of 

against R were found to increase much more rapidly than indicated 
0 

by equation (101)  when w was taken of the order of 20 A 
curvaturel 

Although the-66pendence of the specific free energy was not taken into 

acount the discrepancy between equation (101) and the results obtained, 

is too large to be explained by this alone. When the effects of surfaces 

are.considered in the general thecryof capillarity, the interior phases 

are assumed to retain their bulk properties. The change of free energy 

of a phase is then expressed by the specific free energy of the surface 

and the strain• energy induced in the interior due to the surface stresses. 

As shown aboveltbo effect of tho.dtrainsiztumdby the surface, in the case 

of the solid, is much less important than the surface free energy. By 

decreasing the size of a phase sufficiently, however, as was pointed out 

in the case of the thin liquid shell around a solid core, the properties 

of the interior could change from those of the bulk phase. 

The surface, in the case of a crystal, terminates the indefinitely 

extending lattice associated with a bulk crystal. The unbalance of the 

atomic forces distorts the lattice near the surface, changing the free 

energy and entropy of the surface layers. This is expressed in the 

specific free energy of the surface. However, if we make the ratio of 

surface to volume sufficiently large, the unsaturated atomic bonds at the 

surface will begin to change the properties of the interior. When 



can be modified to 

µ1(P1'T) 
	2(g1-01) 

r1  p 1 
+0 (r1,T) = µ2(P2,T) 	(106) 
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crystallite radii of 20-30 lattice spacings are reached, the number of 

atoms in the surface layers becomes an appreciable fraction of the total 
0 

number. For a crystallite of radius of 150A, the fraction of the total 

number of atoms which is in the top surface layer alone, is 5%, and when 

the radius is 30 A, the fraction is 25%. This would cause a greater 

change in the interior free energy and entropy then would be predicted by 

just the surface stress pressure alone. This increase would be expected 

to depend on the radius. 

Since at equilibirum we are considering a thin shell of liquid, its 

properties, already discussed, will also depend on the radius of the solid 

core. Its free energy and entropy will depend on both the thickness of 

the shell and the radius of the core. However, we are assuming a constant 

thickness, X for the shell at the equilibriumoso that the difference 

between the two phases will depend on the radius of the solid core. 

Since the properties of both of the phases change with the radius 

of their interface, the condition of equilibrium given by equation(66)i.e. 

1
(PT) 

2(g1  -01) 
µ2(P2'T)  

Ti 

where (r1,T) is a potential arising from the change in the difference of 

the free energies and entropies of the solid and liquid phases, at thier 
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1(Po Rc  

2g1  
T) 

(R X) p1 	
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+ (_5.(R - X 5 T) 
2(gi- 

5  T) 
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2y 2  
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and 

148. 
melting point, on account of their size. This is a function of the 

temperature and the radius. 
If671 (51'Y2 

are assumed to retain the 

same values as at large curvatures, all the changes from the normal 

bulk phase behaviour are incorporated in the term t(rT). Since P1,P2 

are functions of r
1 

equation (106) can be expressed in terms of the 

two variables T and ri. 

If we now consider the melting curves, and 

points,(T;ROand(T+AP, R+LROthen noting that r 

the thickness of the shell, and that P1
.13

o
+ 2R2 

 

then 

consider two neighbouring 

is R- 'N,where X is 
2g1 	2y 2  
71-73 ' P2= P0-1*  R 

(107)  

Po 
21,.2 	2g1 	 2 

LT) 
1 	o 	1 	 

(R+ L R 	

2 (g1 	
) 

R+Lfi 
p1 (R + AR  7\-) 

+ 	(R +A R 	T + QT ) 

2y2  
112 ( Po 	

T +LT) 
R + AR 

(108)  

where g1, 1  y2  and p1  are considered to be temperature and radius 

independent. Noting that f 	- aap 	'722—) 7  we can \aR T 	T  R 



A P ( 

	

\\. 	
' 

1 	o )
.4. 	

R 

2 y2 	4. 

(R -%) 

2g1  T  8 41  
(
/ a  Pi  

a p1 /)a a R 
R 

melting curve. 

Noting that (  aµ.  
aT 

• 

expand equation (108) to the first order 
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1  A T 
a TIR  

M  . C . 

2 ( g1  -01 ) 
R + 	(R-X7 T) 

(R -70 2  p1  

4-( 	
A ,Z 
A R AR 

2y2  2 
aP2 

(aP2 \ 

T 	a R  .2T 

AR 

 

aµ2  
• 8-2 	R A 

T (109) 

where M.C. stands for the melting curve. Although 0 is (R,T), R is a 

function of T, because of the expansion along the. melting curve. For a 

given value of R- there is a unique value of T, so that (-77=4 	AR 

0  expresses the change in 0 between the points R,T and R+ AR, ";+ii4.On the 

1 



AR 

M. C . 

Therefore 
21r  2 1 	 2 	1  

(R-702p-1 	R2 p1 	P
2 

1m -11m 

Rearranging equation (110) 

(12m r11) '61  A R 

	

AT 2TB 	55 	15.6 

.0 AR M  

	

1 	(R.:10 2  - R2  

TB 
AR,L 	M.C.  

'113‘ 
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and subtracting equation (107) from equation (109) 

	

-2Y2 	2g1 	 2g1  

	

R2 	(R..702) A R 7] AT + lm 	(R -702p1 AR 

2 0(.1  
(R -702 P1  A R  

\\ 	1 
AR =  

R P2 
/M.C. 

 

1 

p1 

(112) 
L 

Since (12m-71m) was shown to be equal to — 1  and 0 was found to be 
TB 

55 ergs/cm29  



)AR 	M.C. 
(114) 

A 

(R--7)3  
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AT 

This equation gives the relation for , , the gradient of the 
AR M.0  ( 

melting curve at any point (T, R). The gradients of various values of T 

and R, were measured on the melting curves in Figures 34 and 36, and by 
/A0 (R —W-9T) ) 

trying different forms of i M.C. , the form which gave the 
AT 

most oonsistont,results, was 

where A is a constant. 

If we substitute equation (114) in equation (113) we obtain 

/ 	AT 2TB 55 / 15.6\ TB  A 

t, 	AR M.Q. / p 1 (R—A)2  R2// L .(R403  

(115) 

2TB 55 	15.6 
• 
. 	0 ATM.C. Lpi  (R—%)2 	R2 . 

TB 	A 
AR (R 	3 	M.C. (116). 

If we consider a point (T,R) on the melting curve, thenATm.c, AR. m.C. 

are increments in T and R which have to be added in order to go to a 

neighbouring point on the melting curve. Therefore, if we make ATM  0 

Lk LC.  infinitely small, we may integrate equation (116) along the melting 
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curve from the point (T,1/) to (TB,00), where TB  is the bulk melting 

point, in order to obtain the depression in the melting point of a given 

radius. 

Integrating equation (116) 

T
B 55 	15.6) 2T

B  
T 	A Tm.C. 

to 
L (R-h)2 - R  2 

R 	p  

L 	(R-7)3 	
R  M.X. 	(117) 

Since L, TB, and h are constant, and if we treat p 1  as constant, 

2TB 	55 	15.6 	T
B 	

A 
T
B
-T 

Lpi 	(R-1)R 	 2L 	(R-1)2  
(118)  

T
B 	

T is the depression of the melting point for a crystallite of radius 

R. From the curves in Figures 34 and 35, the depression TB-T = 1TR, for 

any given radius R can be obtained. 

From equation (118) 

	

2L 	4 	55 	15.6 	A 
	 (T

B
-JT) 	! _ 

T
2  

	

B 	P 
1 	(R-h) 	R / 

(119)  

+ 

R 

T
B 	

A 
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X 

A 

a 

B 

Figure 44. Graphs showing the assumed variation with the shell 
thickness, d, of: (A) the solid—liquid surface free energy, 
(B) the liquid—air surface free energy, as used in the first 
theoretical model of melting. 

Figure 45. A liquid spherical cap formed from a sperital crystallite 
as assumed in the second theoretical model of melting. 
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2L 

T. 
4 	/ 	55 

- 	- 
15.6

\
\  

Therefore plotting 	----- (TB-T) 
TB 

---( 
P1 ,,,(R-W) 

1 
Ri 

1 	 o 
against 	for a series of values of TB-T and R, when%= 20A, (R-7)2  
the graph in Figure 46 is obtained. It is a straight line, with a 

gradient 

A = 6.85 (1+0.1) 10-6  ergs gM-1cm2 	(120) 

Therefore the deviation from the properties of the bulk phases increases 

as the size of the crystallite decreases. The decrease in the free energy 
0 

difference between the solid and liquid, when the core radius is 100A,would 

be equivalent to an increase in the solid-liquid surface free energy • 

of about 50%. 

4.2. Non-uniform Melting-.Preferential Melting over part of 
the Solid Surface.  

In the second model, melting will be considered to begin at the 

point of contact of the crystallite with its substrate. At some stage 

of the heating, the crystallite begins to melt, and instead of forming a 

uniform shell on the outside of the solid, forms a spherical cap at the 

point of contact. This creates liquid-air and solid-liquid surfaces 

which change on subsequent rise in temperature, as more solid transforms 

into liquid. If we consider that the liquid and solid are in equilibrium, 

this equilibrium will be maintained only if the system is stable with 
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respect to a size variation of either phase. If the equilibrium 

becomes unstable, at some stage of the melting, this state can be taken 

as the melting point. 

In the last section it was seen that in the crystallites studied 

the term involving the strain energy in the solid, due to surface stress, 

was of the order of 1% of that due to the surface free energy. Therefore 

the equilibrium conditions can safely be assumed to depend on the free 

energies of the liquid and solid surfaces. To simplify the geometry, sinc 

the density difference between solid and liquid tin is only 2.7%, we will 

consider that the solid and the liquid formed will still retain a total 

spherical shape with the radius remaining constant. The solid-air 

surface stress is greater than the liquid-air surface tension, therefore 

for mechanical equilibrium to occur, the solid-liquid interface must be 

curved. But since liquid and solid tin have similar atomic packing, the 

difference is expected to be small so that the radius of curvature of the 

solid-liquid interface will be much larger than the radius of the 

crystallite. 

Let us consider the system in equilibrium at a temperature t, 

as in Figure 45, where the liquid formed can be considered to have 

already attained bulk properties. The crystallite was originally a 

sphere of radius R. The liquid formed is in the volume ADBC, enclosed by 

two spherical surface elements, ACB. radius R and ADB of radius R'. The 
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curvature of the surface ADB is determined by the condition of mechanical 

equilibrium 

2Y
2 	

2g 

 

2g1  
(121) 

     

R 	RT 
	R 

where y2  = surface tension of the liquid-air surface 

g = surface stress of the solid-liquid surface 

g1 
= surface stress of the solid-air surface. 

This condition of mechanical equilibrium is obtained on the 

assumption that the surface stresses are isotropic and that the strains 

are isotropic throughout. Also if we consider the melting to occur 

through a series of equilibrium states, since R is assumed constant, 

Rt must be constant to maintain mechanical equilibrium. Consequently 

when some solid melts,the surface ADB is displaced normally to OC, 

maintaining constant curvature. 

The stability of the system with respect to a continuous change 

of phase will depend on the change in free energy, when an actual change 

occurs. If external work must be done to procure the change, the 

equilibrium will be stable. Since the change in strain energy is ignored 

in this approximation, the change in free energy is given by the product 

of the changes in the surface areas and their free energy densities. 
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Let 01,02, 0 y s1,s2  and s be the surface free energy densities and 

surface areas of the solid-air, liquid-air and solid-liquid surfaces 

respectively. 

If we therefore imagine some solid melting, the area of the solid-

air surface decreases by /:,s1  and the liquid-air surface increases by 

Since we are assuming that the total surface area, AFBC, is 

constant, then Asi  = -As2, and the free energy loss in the outside 

surface is (.01  -0.2 si. If the change in the solid-liquid surface is 

'As, then the gain in free energy at that interface is (Ms. Since we 

have assumed that the liquid does not spread over the solid,(0 1-02)must 

be less than 0, so that in order for the change to occur, external 

work must be done providing 'Is is positive. The equilibrium will 

therefore be stable as long as there is an increase in the solid-liquid 

surface on transference of solid to the liquid phase. 

In Figure 4379  if we consider a plane surface perpendicular to OC, 

cutting the sphere AFBC, at A and B, in the form of a circle, then AEBC, 

AEBD are spherical segments of height h,h1  respectively, if EC=h and 

R1)11', and the radii of these spheres are 11,10 respectively. The area 

of the solid-liquid surface, is 

s = 2 7tIttht 	 (122) 

because s is the area of the curved surface, ADB, of the spherical 

segment of height h' and radius of sphere RT. 



a s 	4 7cR' (R—h) 

a h 
	(R,2 _R2 _ (R-h)2)2  

(127) 
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If EC is equal to a, 

a2 	R,2 - (R,_h,)2 	(123) 

because a is the radius of the base of this segment. 

Similarly for the spherical segment ACB of height h, and the 

sphere radius R 

a2 . R2 - (R-h)2 	(124) 

Combining equations (123) and (124) 

h, 	RI - (R'2  - R2  - (R-h)2 )2- 	(125) 

Substituting equation (125) in equation (122) 

s = 21ICR' cRI - (R'2  - R2  - (R-h)2)2 	(126) 

The right side of equation (127) is positive when h<13., and 

negative when h> R . Therefore s will increase with increase in h, 

which occurs when some solid melts, until h=R. Then there is a 

decrease in s on farther melting, and consequently the limiting 

condition of equilibrium occurs at this point. It may be noted that Os 
as 

at this point is zero, to the first order, because 	= 0 when h= R, 
ah 

from equation (127). 
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We may obtain the condition of equilibrium at this point, if 

we are ignoring the change in strain energy of the solid due to surface 

changes, in an analogous way to that used by Gibbs to obtain solid liquid 

equilibrium with respect to solution. Let us consider the crystal can 

be treated as an isotropic solid, and suppose that in an infinitesimal 

virtual change, the solid is unchanged except that an infinitseimal 

portion is dissolved at the surface, where the solid meets the liquid. 

If we consider the system enclosed in a rigid adiabatic sheath, the 

condition of equilibrium is given by 

s.e) 	= 
0 

TI2V 2m 
(128) 

where e = total energy of the system 

= total entropy of the system 

m 	= total mass of the system 

= total volume of the system - 

Let the energy, entropy, and mass por unit volume of the solid and 

liquid be E v  1 	2 v "11v2 T12V 9  p1 and p2  respectively. Let the 

energy and entropy densities of the solid-air, liquid-air and solid- 

liquid surfaces be and. ris  respectively, 
8s1' 8s2" 8s 9 11  si ' 	s2' 

where the dividing surfaces are placed so that their mass densities are 

zero. 
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The increments of energy, entropy and mass in the vicinity of 

the solid-liquid surface are represented by 

( e1v7 6 9 ) 	
s oh 	gs  3s 
	(129) 

( 	- 1-1,2 v  ) s 8h 	s 
	(130) 

( :131  —A2  ) s Oh 
	

(131) 

Where -ssah is the volume of solid dissolved and .6s is the change 

in the solid-liquid surface area. It was seen that at the point at 

which the equilibrium is considered Os = 0, se that the terms 

containing 6s vanish. The entropy and mass represented by equations 

(130) and (131) we may suppose to be derived from the rest of the system, 

because the total mass and entropy are constant. 

The change in energy in the rest of the system will be given by 

sl 	OsI 	+6 s2 	6s2  + 6s 	2 
	 (132) 

where aos
2 
 is the change in the energy of the liquid already present. 

Since its volume is assumed constant, 

(5e  2 = t6112 + 42 61112 	(Gibbs p.63) 
	

(133) 

where &r "6m2 
 are the changes in the entropy and mass which occur 

in this volume, and 11 is the Gibbs potential of the liquid. 
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However, since the total entropy and mass are constant 

( 	v 	v') s6I1 +6712 + 	6s1 + 71s2 s2 
	(134) 

and 	( p1  - p2) s'612 + 6m2  = 0 	(135) 

The total change of energy in this change is 

86 
= 	1v - 62v ) 	+6 6  2 + s1 6s1 	s2 682 	

(136) 

But from the fundamental equation 8= 	Pv + pm, 	for unit 

volume 

E:2 v 
= 	.412  ,.., 

P2 +µ2p2 v 	2 	
(137) 

Therefore from equations (137), (132) and (133) 

65  = (61v- ill2v +P2 -P2P2) soh + -0112  + p2  8m2 
 

+ 6 sl oS1  + s2 
	(138) 

Substituting in equation (138) from equations (134) and (135), and 

rearranging 

( 0)T9nlyV 
	

elv -t 711v - 112P1 + P2) sob  

(139) 
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But es  - 	0' from equfAion (27), and since the total outer 

surface area is constant, 6s2  = -651, for equilibrium 

ash  
 V 
-p2p1  + P2) sbh 	(61-62) 	8 h = 0 

ah 

(140) 

But e  1 y - tll 1v = f ly = f lm p1 7 

	 (141) 

where f1m is the Helmholtz free energy of the solid per unit mass, 

and since p2 = fm2 P2/pt  where m2 
 is the Helmholtz free energy 

of the liquid,per unit mass, equation (140) will be satisfied if 

I/  1 
f 	f + P t--- im 2m 2 p p 

	

2 	1 / 
(01-02)  

p1 
_ 0 

(142) 

Therefore equation (142) represents the melting point condition of 

equilibrium. At this point, since R'>> R we may, to a first approxi-

mation, consider the solid-liquid interface as plane, so that its area 
as2  s 	is equal tolTR2. Therefore since s2 

= 27Rh, 

1 	( asl 	
(143) 

} =  _ 2 

s 	• ah , 	R 

Substituting equation (143) in (142) the equilibrium condition 

becomes 
2(01-o2) 	P 	/ 0 2 	'2 f

2m 	flm -  	- 1) 	(144) 
Pi Rp1 	pi  

ah 
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The form of equation (144) is identical to that of equation (71), 

except that in place of the solid-liquid surface free energy, there is 

now present the difference between the solid-air and the liquid-air 

surface free energies, 01 	2 = 6 

Vie may obtain in exactly the same way as in Section 4.1 of this 

Chapter, the relation between the equilibrium conditions of two 

crystallites of radius R, R+ 	at their melting temperature T,T + AT. 

This yields the expression 

2 'a 

R2 p1 	R2 p 1 	P2 

L 
TB 

2y2  
as the pressure P

2 
= p

o 
+ 	where po is the external pressure. 

R 
Equation (145) has exactly the same form as equation (101), for the 

uniform melting model, except that in the surface free energy term, a 
is present in place of the solid-liquid surface free energy, and R 

in place if 	. Since we may consider all terms in equation (145) 

as constant, except T and R, then integrating from T to TB, and 

T to .0 . 

TB AR 
T 	

2TB 	(; - 15.5) 
T 	Lp1 	R 	R2 

( 146 ) 

2y2 	p1 
/`. 
A R (145) 
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TB -T 
2TB  

L p
1  

1 
(3- 15,6) 	(147) 

R 

Equation (147) predicts a straight line for the graph of T against 1/R. 

However the graphs in Figures 35 and 37 have already been seen to be 
0 

non linear except for large values of R. When R is taken "`1000 A, 

the value obtained for a is 

55 (1 	0.1) ergs/cm2 
	

(148) 

This is the same value as obtained for the solid-liquid surface free 

energy in equation (105). 

In order to correlate the experinental results with the melting 

point equilibrium conditions of this model we have to introduce an 

intrinsic potential, as in the previous section. By considering 

adjacent points on the melting curve,we obtain a term of the form 

AR 	) 	
where (D is dependent on the difference in the 

properties of these small phases from their bulk properties. Hdwever,0 

is now 0 (R,t) and not (R-,,T) as in the previous section, so that 

the relation for the melting curve becomes 

  

2 
- 15.6) 

T 

pR 	M.C .  

 

R2 1 

  

L 

  

T
B (149) 
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/ Substituting 3 	55 ergs/cm2  in equation (149) a relation is 

AT 
Obtained for the gradient, - 	, in Figures 34 and 36 at 

M.C. 
different values of R. It was found that replacing the expression 

(4,5 
for 	obtained in the previous section i.e. 

AR 	 R.) M.C. 

A 	A! 

(R-703 
	by 	

B. 
	did not yield the correct results. 

The gradients predicted by this form were too small, so a term 

in the form of a series expansion was tried. The type of expression 

which was consistent for the range of R studied was 

Al 	B'  

 

(150) 

   

R3 	R4 4R 	M.C. 

 

 

If we substitute equation (150) in equation (149) 

( A T .% 	2TB 	39.4 	TB 	At 	TB 	B' 
	 + 	r + 

AR/ M.C. 	LP 1 	
R2 L R3  L 0 

(151) 

Integrating equation (151) in exactly the same way as equation (115) 

the expression for the depression of the melting point of a crystallite 

is given by 

2TB 39.4 	TB 
A' 	TB  2 	B' 

TB-T - - + 2L R2 2L 3 R
3 

(152) 
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where T is the melting temperature of a given crystallite and 

R its radius. From equation (152) 

2L 4 . 	2 B' 
(TB-T)R-,  - 	39.4 R = A' 

TB 	P1 	3 R 

(153) 

Obtaining TB  -T from Figures 34 and 36, and plotting f(reb'pcivation (153), 

	

2L 	4 
( TB-T) R2 	39.4 R against 1/R, the graph shown in 

	

T 	Pi 
Figure 47 is obtained. This is a straight line where the intercept 

A' = 1.45 4' 0.05 10-5  ergs gm71  cm2 	(154) 

and the gradient 

2 	
B' = 5.3 (1+ 0.1) 1012  ergs gM-1  cm3 

	
• (155) 

3 

- 1 • • 	B' = 	7.95 (1 + 0.1) 10 12 	ergs gm 	cm3  • 	(156) 

Therefore the deviation from the properties of the bulk phases 

increases as the size of the crystalite decreases. The decrease in the 

free energy difference between the solid and liquid, when the solid 
0 

crystallite has a radius 100 A, would be equivalent to an increase of 

,12% in the solid-air surface free energy, if the liquid surface free 

energy is assumed constant. 



60 

40 

6 
10 ERG. G11. 

Figure 44. Graph of W against 1 / ( R X )2, obtained: from the first theoretical 
model of melting, where R is the outside radius of the liquid shell andX = 20 Angstroms. 
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Figure 47.: Graph of 71  against 1/R, obtained from the second theoretical model 
of melting, where, R is the radius of the crystallite. 
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5. Discussion of the Theoretical Treatment of the  

Experimental Results. 

The above considerations have sham that the results of the 

experiments may be interpreted in terms of two different theoretical 

models. In the development of these theories it has been assumed that 

the substrates have no effect on the results. This appears reasonable 

since the experimental results for tin crystallites on silicon monoxide 

and on carbon substrates are the same, within the experimental error. 

This would not have been likely if the substrate had had a significant 

influence on the behavioUr of the crystallites. 

Since each crystallite was spherical, its area of contact with the 

base was small in comparison with its total area and it is reasonable 

to suppose that the substrate did not, in fact, have any effect on the 

melting of the tin. In this case a theory based on spherical symmetry 

may be used. This is the basis of the first theoretical model. However, 

the point of contact with the base represents a small break in the 

symmetry of the crystallite, and its possible that the melting commences 

at the point of contact with the base. This is the underlying 

assumption of the second model. In both models the transfer of matter 

from one phase to the other reaches a limiting equilibrium condition, 

after which there is a catastrophic collapse of solid to liquid. This 

limiting condition of equilibrium is taken to' be the melting point. 

In the first model, the temperature TR, obtained from the experiments;  

corresponds to the melting point of the solid core of radius R— 1t. where T. 

is the thickness of the shell at the melting point equilibrium. The 
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contribution of this shell to the diffraction patterns from which TR  

is calculated' were neglected 	because of the thinness of the shell, 

and in addition. the temperature range over which this shell exists is 

expected to be small. Therefore the presence of the shell does not 

affect the measurement of TR. The value of the parameter X occuring 

in this model was found, by the method indicated in section 4.2. of this 
0 

chapter, to be 20 A. As this is of the order of seven atomic layers, 

the assumption that the liquid had acquired 	bulk properties at this 

thickness would seem to be justifiable. The theoretical results from 

this model expressed in terms of the solid-liquid surface free energy 

can be obtained from the gradient of the melting curve at large values of R. 

The value obtained was 55* 5 ergs/cm2 which is in good agreement with 

the value obtained by Turnbull. 

In the second model the temperature TR  obtained from the experiments, 

corresponds simply to the melting point of a crystallite of radius R. 

In the calculation based on this model the strain energy was omitted and 

the geometry simplified by neglecting the density change on melting. 

The strain energy may be omitted since it has been shown to be small 

compared with.the surface free energy. Although there is no justification 

for ignoring the change in density, the form of the equilibrium condition 

would be very similar to that already obtained, since this density 

difference is very small. This model has the advantage of representing 

the meltingpoint curve in terms of a single parameter. Tho term that 

appears in the condition for melting equilibrium contains, in this case, 
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the difference between the solid-air and liquid-air free energies. 

If the solid-liquid surface free energy, a is very nearly equal 

to the difference between the solid-air and liquid-air surface free 

energies y 6 , the melting point, or limiting, equilibrium will be 

reached very soon after the liquid nucleus has formed. Because of the 

rapidity of this transformation from solid to liquid, it will be 

difficult to obtain diffraction patterns which show features consistent 

with a partly solid and partly liquid stage. The value of the 

difference between the bulk solid-air and liquid-air surface free 

energies, can be calculated from the melting curve. The value obtained 

was again 55 + 5 ergs/cm2. This indicates that the assumption of the 

near equality of a and a is justified, but the error is too large 
INN 

to estimate the value of the difference between 	and G 
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The experiments described in this thesis enable the melting point 

of a spherical tin crystallite to be related to its size. The dependence 

of the melting point of a crystallite on its size can be explained by 

the effect of its surface properties on the interior. The depression of 

the melting point calculated by the normal macroscopic free energy methods 

is not in agreement,with the experimental results, and to explain this 

it has been necessary to postulate a change from the bulk properties of 

tin for particles whose radii are less than 200 	This change can be 

represented by an extra term in the equilibrium condition in the form of 

an intrinsic potential. This term represents all changes from the bulk 

thermodynamic properties which occur in the solid and liquid phases 

consequent to the reduction of the particle size; for example free 

energy per unit mass, latent heat per unit mass and surface free energy 

per unit mass. 

The effect of this additional potential on the melting point has 

been considered in the two models used. In both the models this poten-

tial gives rise to a further term, in addition to the bulk surface free 

energy, in the expression for the depression of the melting point as a 

function of radius, and this term is found to be a function of the radius 

measured along the melting curve. In the first model this term was of 

A 	T B 0 1 2 the form 	09 where A = 6.85 (11"0.1) 10-berg. gm.-  cm. 
(R - )2  L 
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and X= 20 R. In the second model the additional terms, were of the 

( A' 	204 TB 	2 
form 	--2  + --4- ) -- , where A' = 1.45 (1t0.4) 10-3  ergo gm. cm., 

R 	3R3  2I, 
— 3 and C' = 5.3 (1±0.1) 10 12 erg. gm.1  cm. 

Good agreement with the experimental results was obtained in both 

cases, but there is not enough experimental evidence to indicate which 

of these two models represents the true melting mechanism. There is 

strong experimental evidence, however, to suggest that there is a 

fundamental change in the free energies of particles whose radii are 

below —150 1, which cannot be explained by stress effects, as the 

corresponding density change would have been observed experimentally, 

nor by the effect of the normal bulk surface free energy. Since the 

results obtained using silicon monoxide and carbon substrates are the 

same, it is also concluded that an amorphous base does not influence 

the melting point of spherical tin crystallites. 
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