新,
" INVESTIGATION OF A SQUARE -BASED PYRAMIDALSHEET ROOF SYSTEM "

Thesis presented to the Faculty of Engineering in the University of London for the Degree of Doctor of Philosophy.

By
G. G. Wong Kong Ming, B.Sc.(Eng.), D.I.C.

Department of Civil Engineering, Imperial College of Science \& Technology. August, 1964.

ABSTRACT

This thesis describes an experimentel and theoretical investigation of the stresses and deformations in a squarebased pyramidal-sheet roof.

Four perspex pyrarids were tested, and one beam of five perspex pyranids and one of seven pyramids. A larger steel model of seven pyrariids was also tested to give a better idea of the behaviour of the thin metal structure.

Single pyramids were loaded at the apex, and strains and deflections measured when the base was fixed and simplysupported. Deflection measurements were taken with perspex trusses. The stress distributions in a pyranid of the steel truss and its base plate were obtained from strain measurements; the position of this pyramid in the span being varied. Deflections of the truss were also measured.

The theoretical work was divided into three parts,
(i) an approximate inethod was used to calculate the deformations of single pyrarids and trusses. In this method, an equivalent" skeletal systern was used to replace the actual structure.
(ii) the stress distributions in a single pyramid having its base simply-swported and fixed and subjected to a vertical load at its apex were calculated. In both cases, the walls
were considered as plane stress problems having certain assumed boundary conditions.
(iii) an approximate method for calculating the buckling load limits of a pyramid was suggested. The pyramid wall was treated as a trapezoidal plate uniformly compressed along its two parallel edges.

The calculated deflections for the five exploratory models and the steel truss compared well with measured values. The theoretical stress distributions in the simply-supported pyranid were close to the experimental distributions but were less accurate in the fixed pyramid. The buckling load calculated for a pinned trapezoidal plate compared well with that obtained from test on one of the exploratory models.

I wish to express my deepest gratitude to Prof. S. R. Sparkes for his kindness in allowing me to work in his department and for his valuable advice, guidance and encouragement throughout the course of my work.

I owe special thanks to Dr. Z. S. Makowski for introducing me to the subject and for his help in the early stages of this work.

I also wish to thank Messrs. J. Neale and N. Scott and their staff of the Structures Laboratory and Workshop for their help in the preparation for the experimental work and the construction of the steel model, and Miss J. Gurr for taking the photographs.

I gratefully acknowledge the financial assistance received from the Scholarships Comittee of the University of London in the form of a Postgraduate Studentship Award.

CONTENTS

Chapter Page

1. Introduction. 1
2. Exploratory Models. 9
3. Tests on A Single Pyramid. 23
4. Approximate Solutions For The Stress Distributions In The Walls of A Symetrically- Loaded Sheet Pyramid. 37
5. Tests on A Steel Pyramidal Truss Model. 72
6. Approximate Theory For The Buckling of A
Single Pyramid. 80
7. Conclusions. 94Bibliography.Tables and Figures.

CHAPTERII

Introduction

1.1

Various types of hipped-plate or folded-plate structures have been in use for many years and their methods of analysis have becone more and nore sophisticated. A review of the different types of such stuctures together with their present inethods of analysis is contained in a book by Born (1).

In recent years, however, a. whole series of roof systens which may largely be called hipped-plate stiructures have been developed. These are the so-called stressed-skin space grids (2), in which a large number of three-dimensional sheet units are connected to a skin at their tases and to a plane grid system at their tops.

The roof system descibed in this thesis is a particular type of stressed-skin space grid. It consists of identical squarebased pyramidal sheet units connected to a base plate and to a skeletal squaie grid at their apexes, Figol.l. Although two such roof's have actually been built, one for a hotel in Lagos, Nageria (3), and the other, a tenporaiy one, for the Architecturai Congress building erected in London in 1961 (4), no attempt has so far been made to study uts beheviour in any detail.

It should be mentioned that other variations of this roof system would basically be the same problem so long as the connecting' units are symmetrical in form because the behaviour of a triangular plate is considered and this is common to all systems whether on a
triangular, square or hemagonal base.
Advantapes of these Sheet Roofs
The main reasons for using these roof sustems may be enumerated as follows :-
i) Great rigidity. This neans that greater clear spans can be covered and materials of low Young's modulus moy be used. Sheets made fiom eluminima alloys have successfully been used (3,4) and there is little doubt that other materials, for exariple, structural plastics, plywood, etc. can also be used to advantage.
ii) Menbrane action. llost of the applied loads are resisted by the pyramid walls by membrane action, bending being small.
iji) Great flexibility in use. The roof may be constructed either wey up and may also be curved in elovation like a barrel vault, this being achieved by shortening or lengthening the merabers of the skeletal grid.
iv) No extra cover needed. This depends on the material used whether it is weather aesistant and if not, whether it can be made so. v) Easily manufactured, transported, stored and erected. This is because the: are only three different parts to form the roof, namely, the jyramids, the base plate (which may be made up from smaller identical plates) and the grid merabers. The node comectors are also all identical.
vi) Unusual in form. The geometric pattems formed in these roofs by using different pyranid connectors are ieadily accepted by progressive architects and engineers who are elways searching for
the "new look" in buildings.
These and other adventages have already been nentioned by Makowski (2).

1.3 Considerations in design

The various factors to be considered in the design of a roof of the type under discussion are as follows:-
i) size and thichness of base plate,
ii) shape, size and wall thickness of comecting pyramidal units, and iii) shape, size and length of top grid menbers. The node connector needs only be sufficiently strong and stiff to transfer the load from the bars to the pyramid or vice versa. The method of connecting the bases of the pyranids to the base sheet depends on the material used in their constiuction. Glueing, riveting, welding, etc. hay be used to give effective connections from the point of view of strength and rigidity.

Let us now look at the various parts of the roof in greater detail.
i) Base Plate.

The size of the base plate will obviously be fixed by the area of floor to be covered by the roof. In practice, this area will be too large for a single base plate to be used. But this can be ovarconed by having it made up fro: smaller regular sheats so long as they are connected to act as though it is just one sheet. This implies that they have to be connected by lap joints.

The thiclmess of the base plate depends on which way up the
roor is to be uscd. If the plate is in tension then its strength will be the criterion, but if it is in coraression then buckling will probably control its thickness. The buckling coiterion will depend on the size of the pyrainids used since each base plate panel is governed by the size of the pyraind base. Practical considerations impose limits on the plate thickness also.
ii) Connecting Pyrazids.

The shape of the pyranids may be scid to be defined by the value of the angle of inclination of their walls to the horizontal i.e. by angle α in Fig.l.2. This together with the size of the base i.e. the value of b_{2} deterrine the size of the pyremid.

The shape of a pyrazid is an importent factor since it controls the strength and buckling load of the pyrainid as well as the overall rigidity of the roof. It controls the pyramid strength beccuse the magnitudes of the comonents of any load applied at the apex of the pyramid in the plenes of the walls depend on the ongle \propto. Also, for a given value of b_{2}, the buckling load of the pyrenid will decrease with increasing value of angle α. Finally, the rigidity of the roof varies as its height thich in turn varies as the angle α for a given value of b_{2}.

The best shape for the pyranids, therefore, depends on whether strength, buckling or rigidity is the controlling factor in the design. These in turn depend on whether the prramid walls ase "thick" or "thin". If the walls ane "thick" then strength considerations prevail while if the walls are "thin" buckling may be the controlling factor. Rigidity is selcom the criterion.

In Pig. 1.2, the plot of k (the ratio of height of the prramid to its base dimension) versus β (the angle of inclination of the sloping cages of the wells to their bases) defines the shape of a pyranid. The angle β can only lie between 45 and 90 degrees. The straight jortion of this graph may be taken to give good shapes for the gyrumid since they appear to be well proportioned. In this research, a value of $\beta=63^{\circ} 26^{\prime}$ or $b_{2}=h$ (i.e. $\alpha=60^{\circ}$) has been chosen as the shape of the pyramids. This value of β is very nearly the mean value in the linear range.

Having decided on a "reasonable" shape for the pyraxid, it is then possible to select a "reasonable" number of pyranids, which will be equivalent to choosing a size for the pyramids, as follows:Let the size of the roof be L x B (Fig. 1.3). Since a whole number of pyramids must be used, $\lambda=L / B$ must be a whole number. For the shape chosen, the height of the pyrainid $\mathrm{H}=0.866 \mathrm{~b}_{2}$. If n is the number of pyramids, then $B=n b_{2}$ so that $H=0.866 \mathrm{~B} / \mathrm{n}$. The curve of H versus $1 / \mathrm{n}$ for a fixed valuo of B is show in Fig.1.3. Fron this curve, it is seen that if $B=10$ feet, and if $n=8$, then $H \bumpeq 1.08$ feet and $b_{2}=1.25$ feet. This seems a good H / B value considoring that the height of the roof from the ground may be of the order of 15 feet, say. However, if $B=100$ fect, then using the same nuaber of pyramids, $H=10.8$ feet and $b_{2}=12.5$ feet. Even allowing for the fact that the height of the roof from the ground for a roof of this size may be 30 feet or so, this deyth of roof is clearly excessive. Hence, it is clear that as B increases, the
H / B value should decrease. For more realistic values of H for practical casos, the curve of H versus B given in Fig. 1.3 is suggested. This gives $H=4.33$ feet for $B=100$ feet and $n=20$. This H / B value of 0.43 may be considered small and a higher value may be suggested as a better alternative, but it should be remombered that with a largen roof and for a certain method of supporting it, the loads on the pyramids aro greator and they are more likely to suffer from instability.

In considering the thiclmess of the pyramid walls, the material of the walls will decide whether they are to be "thick" or "thin". For example, if structural plastics or plywood were used then the walls will be "thick," while if aluminium sheets were used, they will be "thin." For "thick" walls, strengih will be the pirinary consideration whilo for "thin" walls, stability will be important. iii) Grid Members.

The length of these merabers depends on the size of the pyranids. Their shape is not important but in general, tubes may bo used if they are in compression and solid bars if in tension. Strength is the main consideration in the deterination of their cross-sections since bucking is unlikely even if they are in compression as they are usually short. However, if they are in compression, the lower compressive stress has to be used in their design.

1.4 Design Procedure

Given a rectangular area to be covered by the roof, the shape and sizo of tho pyramids to be used are chosen as outlined
in section 1.3(ii). The roof is then replaced by an equivalent skeletal system whereby the areas of the walls of the pyramids and base plate panels are assuned to be concentrated at their junctions to forn skeletal mombers (Chapter 2). This equivalont systera is considored to be pin-connectod. The nethod of supporting the roof may introduce redundancies but so long as the roof itsolf is statically determinate it is a simple ratter to calculate the forces in the sleletal neabors.

The grid rember sustaining the heaviest load is then designed. All the other grid nembers will be made identical to it. The thickness of the base plate can then be designed by considering the strength or stability of the most critically loaded panel assurning it to be biax ally uniformy loaded toge ther with uniform shears along the edges. For the pyrazid walls, since the loads at its apex are known, the most heavily loaded pyramid can also be designed for strength and stability. Finally, the raximiun deflection of the roof can then be checked by reverting to the equivalont system since the areas of all the nembers are now lenown.

1.5 Aims of Research Work

In viev of what was said in the last section, the research programe was designed to invostigate the following issues:i) Validity of the sireletal system enalogy.

A method of calculating the cross-sectional areas of the members of the equivalent systom was suggested. Cortain assumptions were made. Experifucntal results would verify whether the analogy
could be used to prodict forces in the grid nembers and the deflections of the roof. Wodels of single pyramids and "trusses" of an exploratory nature as well as an accurate lorge-scale steol model were tested for this purposc.
ii) Strength of pyramids.

In this connoction, the load distribution in the pyranid walls wero detorminod exporimentally as well as by on approximate theory. Tests on singlo prramids having simply-wsupported and fixed baso conditions subjocted to vertical as well as horizontai loading at thoir apexes were carriod out. In addition, the strosses in a pyraaid having the same base boundary conditions as those in the complote system were measured, the model used being the steel model raentioned in (i). These investigations would serve to indicate where the maximum stresses occurred in the pyramid walls.
iii) Euckling of pyramids.

It was hoped that some approximate method would be arrived at to calculate the initial buckling load of a pyrarid. An exploratory hodel was used to supply a coraparison with the thoory. Accurate buckling tests were not envisaged as such tests would be difficult to control.

CHAPTER 2

Exploratory Models

2.1

Sinall-scale models were rade and tested for the following reasons,
i) to get a feel for the problem. The roof being a three dimensional folded-plate structure was difficult to visualise. The various junctions between the walls, base plate and bars were complicated. ii) to study the general behaviour of single pyramid and truss units. This would give a good indication of the way in which these units woulc behave when they were part of a whole roof.
iii) to obtain an indication of a probable nethod of analysis. This sugeested the possibility of treating the roof as an equivalent skeletal space syster in the estimation of deflections (see section 2.5).

The experience obtained with these exploratory models helped towards the making and testing of future mociels in the way that they were most useful for the objectives under consideration.

These exoloratory nodels investigations were inportant because this type of roof systea has not been studied in any detail before. The only available experimental work consisted of the loading of an aluninium sheet pyramid to failure by a horizontal load. at its apex, its base being fixed (4).

2.2 Description of models

Five suall-scale models were made in perspex, three of single pyranids and two of a strip of the sheet roof (a truss),

Figs. 2.1 to 2.5. Perspex was used because it was well suited since its properties and behaviour under load was well known. Also, it was easily cut to size and then glued together with Tensol cerent No. 7 to form the models. Finally, it was easily available in various sizes and thicknesses and, more important, with sufficient flatness required in the models.

All the models had pyrarids of the same shape since as stated in Chapter I, this research was to be concerned with pyranids of one shape only; this shape being a good and convenient shape for the pyramids. The size of the pyramids, however, were not all the same so that the effect of size on their behaviour could be studied. Also, the base boundary conditions were not the same in all models.

These models were simple models, which were easily made with sufficient accuracy for the purposes they were required to serve. Their diaensions had been chosen arbitrarily but each differed from another in the way that they served different purposes as discussed later in this chapter.

The models nay briefly be described as follows:-
Model A - (Fig. 2.1) shows a pyrarid with a 3 inch square base and 0.04 inch thick walls, glued to a 0.04 inch thick base sheet.

Model B - (fig. 2.2) shows a pyramid of the same dimensions as Model A but is connected to a 0.25 inch thick base plate.

Model C - (Fig. 2.3) shows a pyranid with a 4 inch square base and 0.04 inch thick walls, joined to a 0.04 inch thick base plate.

Model D - (Fig. 2.4) shows a truss consisting of seven 3 inch pyrainids with 0.04 inch thick walls connected to a base plate 0.04 inch thick and to a $1 / 3^{\prime \prime} \times 1 / 16^{\prime \prime}$ flat at their apexes. The top flat was later replaced by six short strips of the same size to span between the apexes of the pyramids. This modified model will be referred to as Model ${ }^{\prime}$.

Model E-(Fig. 2.5) shows a truss of five 4 inch pyranids with 0.04 inch thick walls connected to a 0.04 inch thick base plate and a $3 / 4^{\prime \prime} \times 1 / 4^{\prime \prime}$ beam. There was a total of ten resistance strain gauges on the model.

2.3 Model tests

rodel A. Vertical loads were applied to the apex of the pyranic by means of dead weights as shown in Fig.2.6. Vertical deflections corresponding to these loads were measured by using a dial gauge capable of reading to an accuracy of ten thousandth of an inch. During the test, the model rested on a thick steel beam whose deflections were negligible compared with those of the pyramid itself. The load/deflection curves for the test are show in Fig.2.7.

Model B was loaded in the same way as Model A . The relation between load and deflection for the aper of the pyramid is shown in Fig.2.7. In addition, the nodel was later tested to destruction in the loading device shown in Fig. 3.5 of Chepter 3. The load/ deflection curve is show in Fig.2.8.

Model C was loaded in the same way as rociel A. Vartical deflections of the apex were measured and the load/deflection graph is show in Fig.2.7.

Model D was simply supported on a knife edge and a roller at its ends over a span of 22.75 inches; firstly with the pyramids pointing upwards (the normal position) and then with them pointing downwards. In each position, two loading cases were considered. The loading cases were,

Case 1 - Pyramids pointing upwards with central point load, Fig.2.9. Case 2 - Pyramids pointing downwards with central line load, Fig. 2. 10.

Case 3 - Pyramids pointing upwards with two equal point loads on third pyramids from each end. Fig. 2.11.

Case 4 - Pyramids pointing downwards with equal line loads on third pyramids from each end. Fig.2.12.

The general set-up of the tests and the method of loading and measurement of deflections by dial gauges were sirailar to that used in the tests on Model \mathbb{E} as shown in Figs. 2.14 and 2.15. The load/deflection graphs for the above four loading cases are given in Figs. 2.9 to 2.12.

Model D' was tested in exactly the same way as that of case 2 for Model D. However, downward deflections were measured at two points only as show in Fig. 2.13 which also shows their load/ deflection graphs.

Model E was tested on a simply supported span of 21.5 inches.

The loading cases were as follows,
Case 1 - Pyramids pointing upwards with two equal point loads on second pyramids from each end, Fig.2.16.

Case 2 - Pyramids pointing dowwards with two equal line loads on second pyramids from each end, Fig.2.17.

The set-up for the tests and loading cases 1 and 2 are shown in Figs.2.14 and 2.15. respectively. The load/deflection graphs for the positions whose downward displacenents were measured are shown in Figs.2.16 and 2.17. In addition, the surface strains at the five positions on the model were measured and their load/stress curves are given in Figs.2.18 and 2.19.

2.4 Corments on results

Fig. 2.7 - The deflection was much the same in each of the three models. For a load of $20 \mathrm{lbs} .$, the deflections were as follows, Model A B $B \quad C$
Deflection $1.8 \quad 1.5 \quad 1.9 \quad$ ($x 10^{-3}$ ins.) The deflections in Models A and C were therefore the same as predicted by approximate theory in section 2.5 .

Fig. 2.8 - The load/deflection graph was linear till buckling occurred at a load of 195 Ibs, at point A. The graph continued to be linear but with a reduced slope due to buckling. More of the load was being shedded from the centre portions of the walls to their edges due to shear lag until point B was reached when there was a stiffening effect due to tensile stresses being developed in the middle part of the walls. The top of the model crushed inwards
when a load of about 367 Ibs. was reached. In Chapter 6, an attempt was made to estimate the buckling load for this model.

Figs.2.9 and 2,10 .. The deflections at the points show due to a central load of 10 lbs . were as follows,

Point	1	2	3		
Defln.	23	20	13	$\left(\times 10^{-3}\right.$ ins.)	Case 1
"	34	25	17	n	Case 2

The deflections for the corresponding points in case 2 were larger because of both the force of the dial gauge spindies and the buckling of the panels since the deflections were measured at midpanel and the panels were in compression.

Figs. 2.11 and 2.12 .. For loads of 5 Ibs, each, the deflections measured at the various 'points were,

Point	1	2	3	4	5		
Defln.	19	17	5	18	-	$\left(x 10^{-3}\right.$ ins)	Case 3
"	27	20	24	12	24	n	Case 4

The deflection of point 2 in case 4 was very nearly the same as that for point 1 in case 3 because the effect due to the force of the dial gauge spindle was compensated by the upward buckling of the panel brought about by the action of the loads on adjacent panels. On the other hand, the much larger deflection at point I in case 4 over that at point 2 in case 3 was due to the dial gauge spindle force as well as buckling of the panel. In case 4 , the deflection at point 5 would have been greater than that at point 3 but for the compression of the walls of the middle pyramid.

Fig. 2.13 - For a central load of 10 lbs ., the deflections were,
Point $1 \quad 2$

Deflection 7466
The deflection at point 1 was more than twice that for the corresponding point in Model D, Fig.2.10. This was due to the connecting member being smaller in size and consisting of separate nembers. The bending strain energy therefore became much more significant in this case. In section 2.5, the deflection calculated for this point neglecting bending strain energy was only about half the experimental value.

Figs.2.16 and 2.17 - The non-Iinearity of the load/deflection graphs shows that in this model, the base panel of the central pyramid was initially curved. The force of the dial gauge spindle in this case had greater effect on the deflection since the panel was greater in size. In case 2, the deflection at the mid-point of the central panel was much greater than in case 1 because of buckling. The deflections at the other points for loads of 5 lbs. each were,

Point	1	2	3	4	5		
Defln.	7	6	3	6	-	$\left(x 10^{-3}{ }_{\text {ins }}\right)$	Case 1
11	-	8	4	8	2	n	Case 2

In both cases, deflection at point 4 would have been greater than that at point 2 but for the shortening of the pyramids. The deflections were smaller than in corresponding cases for Model D because
of the shorter span of the model and the bigger connecting meaber. Figs.2.18 and 2.19 - Due to the symmetrical loading, there was no stress at point 5 in both cases. In case 1 , there was a greater difference in surface stresses at low loads at point 4 which again showed that the central panel was initially curved. In case 2, the large differences in the surface stresses at this point showed that this panel was buckied. The mid-plane stresses at the various points for loads of 5 Ibs. each were as follows,

Point	1	2	3	4	5	
Stress (p.s.i)	-78	72	-55	24	0	Case 1
"	79	-70	55	-24	0	Case 2

At point 4 in case 2, although the panel was buckled the mid-plane stress was equal in magnitude to that in case 1. In each case, the magnitudes of the stresses at points 1 and 2 were very nearly equal as they were expected to be. In section 2.5, some simple calculations were made to estirate the mid-plane stresses at these points for comparison.

2.5 Approxiraate Calculations For Models

(a) Vertical deflection of a single pyramid due to a vertical point load at its apex.

A single square-based sheet pyranid is shown in Fig.2.20(a). The walls and base of the pyramid are assumed to be initially flat. Since the wall and base thicknesses are small compared with the overall dimensions of the pyramid, the greater part of the applied vertical load at the apex will be taken by the junctions between
the walls and transferred to the junctions between the walls and base plate. This suggests the use of an "equivalent skeletal system" of the type shown in Fig. $2.20(\mathrm{~b})$ for an approxinate estination of deflections. The stresses in the pyramid are mainly membrane stresses and bending is negligible. Therefore, in the equivalent system, only direct strain energy will be considered in calculating deflections. This means that the equivalent system can be considered as pinconnected.

The forces in the members of the equivalent system can then be determined. In order to estimate the cross-sectional areas of these nembers, the stress distribution in the walls and base plate of the pyramid must be known so that an effective breadth concept may be applied. That is to say that it will then be possible to calculate the distance from the junction which will be sufficient to sustain the component of the computed force in the direction of the vertical stiresses in the wall. The stress distributions in the walls of the single 12 inch perspex model tested in Chapter 3 show that for this shape of pyramid, the arount of shedding of the load to the junctions of the walls were insufficient to call for the exclusion of any part of the walls as ineffective. There is no available stress distribution in the base plate but it will also be assumed that the whole plate will be effective. Having assumed that all the area of the walls and base plate are to be considered in working out the size of the members of the equivalent system, it seems rost convenient to distribute this area as show in Fig. 2.20.
that in, $2 / 3$ of the material of each wall will be considered to make up a diagonal member while $1 / 3$ and $1 / 4$ of the material of the wall and base plate respectively will form a base member.

Calculations
Referring to Fig.2.20;
Lat eroso-bectional area of inclined members be A_{i}.
Let corospmectional area of base member be A_{6}.
then,

$$
A_{i}=\frac{(2 \times \operatorname{area} A D B) K_{\omega}}{\operatorname{leng} H B}
$$

and

$$
A_{b}=\frac{\left(\operatorname{arca} B D \times h_{\omega}\right)+\left(\text { ceca } B 0 c \times k_{b}\right)}{\operatorname{leng} B C}
$$

Since areas ADB and BDC are each assumed to be equal to $1 / 3$ the area of a wall and area $B O C$ as $1 / 4$ the ares of the base plate, then

$$
\begin{equation*}
-A_{i}=\frac{2}{3 \sqrt{5}}<h_{\omega} \tag{1}
\end{equation*}
$$

and $A_{b}=\frac{1}{12} \angle k_{\omega}\left(2+3 \frac{k_{6}}{k_{\omega}}\right)$ \qquad

Force in inclined members,

$$
F_{i}=-\frac{\sqrt{5}}{4 \sqrt{3}} p \quad \text { (i.e. compression) }
$$

and, force in base members,

$$
F_{6}=\frac{1}{4 \sqrt{3}} P \quad \text { (i.e. tension) }
$$

If $\nabla=$ the total direct strain energy in the structure, then the vertical deflection of the apex of the pyramid due to the applied load P is given by

$$
\delta_{r}=\frac{\partial V}{\partial P}=\Sigma \frac{F l}{A E} \cdot \frac{d F}{d P}
$$

where F is the force in a member of length 1 , crossmectional area A and Young's modulus E.

Substituting for the forces and cross-sectional areas obtained
above,

$$
\begin{equation*}
\delta_{v}=\frac{P}{E h_{\omega}}\left\{1.56+\frac{1}{(2+3 \lambda)}\right\} \tag{3}
\end{equation*}
$$

where $\kappa=h_{6} / h_{\omega}$
The deflection is therefore independent of the size of the pyramid. It should be restated that this will only be true for the shape of pyramid considered and if there is no buckling of the wails of the pyramid. As far as the shape of the pyramid is concerned, it is very probable that it has little effect on the calculated deflection except when it differs from the above shape very significantly. Comparison with measured deflections for Models A, B and Cs

For all three models;
Young' B modulus, $\mathrm{E}=4.5 \times 10^{5}$ p.s.i.

$$
h_{\omega}=0.04 \mathrm{im} .
$$

For Models 4 and $C, \quad h_{6}=0.04$ ice. $\quad \therefore k=1$.
For Model $B_{2} h_{6}=0.25 \mathrm{in}, \therefore R=6.25$ i.e. the ascond torm in expression (3) can be neglected.

For a load of 20 1bses 1.e. $P=20$ Ibse, the deflections calculated by using ecprestion (3) for the modele are; Calculated $\delta_{v}\left(i n_{0}\right)$ Massured δ_{v} (in.)

Model A

$$
\begin{array}{ll}
0.0020 & 0.0018
\end{array}
$$

0.0017 0.0015

- 0
0.0020
0.0019
(b) Deflection of a pyramidal truss unit.

The equivalent skeletal system method will also be used in calculating the deflections of a pyramidal truss unit. The space frames shown in Figs.2.21 and 2.22 are the equivalent systems for Models D and D' and Model E respectively. The crossmectional areas of the various menbers of the frames are calculated in the same way as before. Only direct strain energy will be considered so that the frames are assumed to be pin-connected.

The expressions for calculating the vertical deflection of the apex of the central pyramid in each model for various loading conditions are as follows,

Model D
Case 1. $\delta=\frac{P}{E h_{\omega}}(9.33 a+22.94)$
Case 2. $\delta=\frac{P}{E h_{\omega}}(9.33 a+20.68) \quad$ - also for Model D^{\prime}.
Case 3. $\delta=\frac{P}{E R_{\omega}}(16.67 a+36.83)$
Case 4. $\delta=\frac{P}{E R_{w}}(16.67 a+35.83)$
Nodel E
Case 1. $\delta=\frac{P}{E K_{\omega}}(5.33 a+16.58)$
case 2. $\delta=\frac{P}{E R_{\omega}}(5.33 a+15.98)$
where,
$a=L h_{\omega} / A_{1}, L=$ width of truss, $h_{\omega}=$ pyramid wall thickness,
$A_{1}=$ crosesectional area of bar.
Note that the cross-sectional areas of diagonal members, longitudinal and end transverse base members, and internal transvarse base members are $\frac{2}{3 \sqrt{5}} L h_{\omega}, \frac{5}{12} L h_{\omega}$ and $\frac{7}{12} L h_{\omega} \quad$ respectively from expressions
(2.1) and (2.2) when $k_{\omega}=k_{b}$.

For a total losd of 10 lbs, on the models, the calculated

Model D	Case 1	Case 2	Case 3	case 4
Gala. Dafln.	$0.021{ }^{11}$	$0.019{ }^{\prime \prime}$	0.017"	$0.017^{\prime \prime}$
Exptl. Defln.	0.023"	-	0.019"	0.024"

Model DI - Case 2-Calculated deflection $=0.04 \mathbf{D N}_{0}$
Model E Case I Case 2
Cald. Defln. 0.006" . 0.006"
Expt1. Defln. 0.007" 0.008"
The large percentage differences between the experimental and calculated deflactions in case 4 for Model D and case 2 for Model E are due mainly to the buckling of the pyramid base panels thereby causing a reduction in the effective area of the members which was not taken into account. For Model D^{\prime}, the deflection at point 2 (Fig.2.13) should be nearly equal to the calculated value given above but it was more than 50% larger. This could not have been due to buckling alone and it is most likely to have been due to the large amount of bending strain energy in the separate bars joining the pyramid apexes having been neglected.
(c) Forces in a pyramid truss.

These forces can easily be estimated by considering the truss as a plane skeletal frame, pin-connected at its nodes. With these asaumptions, the forces in various parts of Model E correaponding to the positions of the various strain gauges for a total lowd of

10 Ibs. are compared with the measured stresses as follows,

Case 1	Pt. 1	Pt. 2	Pt. 3	Pt. 4	Pt. 5
Cald. Force (Ib)	-5.8	5.8	-9.4	9.4	0
Mean Stress (p.s.1)	-97	97	-50	50	0
Exptl.	-78	72	-55	24	0

For point 4, the experimental stress was only half the calculated value. This was to be expected since more load was taken by the junctions between the base plate and the pyramid walls. All the other stresses agreed quite well with the celculated mean values since the gauges were placed towards the apexes of the pyramids. ConcIusions.

Good approximations to the deflections of a sheet roof can be obtained by treating it as an equivalent skeletal system provided that there is no buckling in the base panels or in the pyramid walla and the bars have the same order of cross-sectional area as the base plate.

The forces in the sheet roof can be approximated to, although to a less accurate extent, by treating each pyramid truss as a plane truss, instead of as a space truss used in calculating deflections.

CHAPTER 3

Tests on A Single Pyramid

3.1

In a roof system, the boundary conditions at the base in any pyramid will depend on the thickness of the base plate, the size of the base and the position the pyramid occupies in the roof. The boundary will lie somewhere between the "siaply-supported" and "fixed" conditions and tests on a single pyranid were carried out in which these two liniting conditions were realised. The pinned condition was obtained by resting the pyramid on a srooth base so that the base of the walls were allowed to spread freely under a vertical point load at its apex. The fixed base condition was achieved by fixing the base of each wall to a flange and the flanges in turn fixed to a thick base slab.

3.2 Description of model

The model was made from $3 / 16$ inch thick clear perspex sheets and had the diraensions show in Fig.3.1(a). The different parts were glued together with Tensol cement No. 7 which had an ultimate bond strength of $6,600 \mathrm{p} . \mathrm{si}$. This strength, although lower than that of the perspex in tension, flexure or shear, was nevortholess more than adequate for the order of stresses that were likely to be inposed on the joints during testing.

The nodel was made from four identical trapezoidal sheets forming the walls and a small piece of the same material forming the cap at the apex. The four edges of each of the walls were bevelled so that they could be glued to the top cap, Fig.3.1(b),
and to each other along the sloping edges as shom in Fig.3.1(c). The top cap was provided so that the applied loading was transferred evenly to the tops of the four walls.

With the model in this condition, the simply-supported pyramid was tested with a vertical point load at the apez. The nodel was then nodified so that it could be tested as a fixed pyramid, subjected to both a vertical as well as a horizontal load at the apex. Figs. 3.2 (a) and (b) show these adiditions to the model and consisted of four "iflanges" glued to the bases of the pyramid walls and a block for loading purposes glued to the top cap. The new adiditions were also made of perspex. The top block had two horizontal through holes, at right angles to each other theroby allowing horizontal loads in two perpendicular directions to be applied to the pyrariid, Fig.3.14. The four flanges each had four holding-dow screws to a thick plate which in turn could be bolted down at the corners.

3.3 "Sinply-Supported" Pyranid Experiment

(a) Strain Measurenents.

The strains at various points over half of a wall of the pyramid were measured by means of inductive displacement transducers (type Fl6), which were produced by the Bolton Paul Aircraft Electronics Departnent, in conjunction with one of their Peneford Multimeters (Type C21). At places where these transducers could not be used, for example, near the sloping edge and towards the top and botton of the wall, Tepic resistance strain gauges ($1 / 2$ inch
paper type) were enployed.
Fig. 3.3 shows the method of fixing the transducers to the pyrarid wall. \& transducer was held at two fixing points, the colinder end at one point and the soft iron rod threaded through a $3 / 5$ inch nylon ball at the other. At each fixing point there were two $3 / 3$ inch Terry spring clips fixed to the pyianid wall by means of a 10BA bolt and nut. The extension or compression of the wall over the gauge length of the two fixing points for the transducers could thus be measured on both sides of the wall. The transcucer fixing points were on a $1 \frac{1}{2}$ jnch grid over half a wall of the pyramid as show in Fig. 3.4. As the Terry clips could be rotated to any direction, strains in two directions at right angles could be measured. In the experiment, strains were neasured in a direction parallel to the centre line of the wall (called the vertical direction) and in a direction at right angles to it (called the horizontal direction). With the positions of the fixing points shown in Fig. 3.4 , it was possible to measure the vertical strains at 12 points and the horizontal strains at 9 points.

Most of the resistance stiain gauges were placed as near as possible to the eiges of the wall and on both suriaces of it, Fig. 3.4, and some gauges vere placed along the centre line of one of the two acjacent walls for control purposes.
(b) Loading Arrangement,

A general view of the loading arrangement for this test is
show in Fig.3.5, while a close-up of the model itself under load is seen in Fig.3.6.

The loading frame was a square rigid closed frame nade from steel angle sections. The rodel rested on a $3 / 4$ inch perspex plate which in turn rested on a larger $1 / 2$ inch steel plate suported at four points by adjustable steel blocks. The nodel was brought up to the right height for loading by means of two concrete blocks and a made.up steel section. Before loading commenced, the steel plate was levelled and molybdenum disulphide grease (moly slip) was applied to the contact surface between the rodel and the supporting perspex plate in order to reduce friction.

The vertical point load was applied to the apex of the pyranid by means of a loading screw measured by a 2000 1b. proving ring. Changes of temperature were measured but they were swall enough not to affect readings significantly.

Figs. 3.5 and 3.6 show a number of Metzger gauge points along a sloping edge of the model but the strains were too sinall to be measured by this method.
(c) Procedure For Testing.

The rodel was olaced as centrally as oossible under the loaning screy by eye. A load equal to about half the maxinum load was anplied and a transducer was used on the outside to izeasure the strain at a point where there were gauges at a sirailar point on the control gauges wall. By this means it was possible to check that in fact the model was centrally loaded.

Four increments of load each of 100 divisions of the proving ring dial gauge, that is 141.3 lbs., were applied fon each test. The maximum load applied was 565.2 lbs.

When taking readings with transducers, strains at one point only could be measured at a tine. Two readings were taken for each 10ad. After each test, the two transducers had to be moved to a new position which involved reroving the proving ring and model because of the inside transducer. This orocess was tedious and time consuming and was discarded in the next experinent on the fixed pyranid.

A maximum of 24 strain gauges could be read at a time by using a 24 -way strain gauge switch box and a Peekel register. Two readings were taken at each load to obtain an average value. All tests were repeated twice at different times so that the final results were average values of three readings.

On the most sensitive range, the Moltineter read to the nearest 1×10^{-6} inch and the peekel read to the nearest microstrain.
(d) Reduction of Readings.

For transducer readings, the extensions or compressions neasured were divided by the gauge length of $1 \frac{1}{8}$ inches to obtain strains.

For each point of the wall, the surface strains were plotted against load and graphs were drawn through the experimental points to get mean values. The values of the mean strains, both in the
vertical and horizontal directions, for a load of 500 lbs . were read off from these graphs, and having thus obtained the strains at the measured points, those for points on a 1 inch grid were deduced by interpolation.

Finally, using the elastic stress-strain relations, the vertm ical and horizontal stresses at points on the 1 inch grid were calculated. Young's modulus and Poisson's ratio were determined from tests on tensile specimens taken from the same perspex sheet that was used for the model. The modulus of elasticity, E, was $4.42 \times 10^{5} \mathrm{p} . \mathrm{s} . \mathrm{i}$. Poisson's ratio, r, was 0.35 . The vertical stress was thus $\quad \sigma_{r}=\frac{E}{\left(1-r^{2}\right)}\left(\varepsilon_{r}+r \varepsilon_{h}\right)$ and the horizontal stress $\sigma_{a}=\frac{E}{\left(1-r^{2}\right)}\left(\varepsilon_{a}+r \varepsilon_{r}\right)$

That is $\quad \sigma_{v}=5.037 \times 10^{5}\left(\tau_{v}+0.35 \varepsilon_{a}\right)$
and $\quad \sigma_{h}=5.037 \times 10^{5}\left(\varepsilon_{a}+0.35 \varepsilon_{V}\right)$
where ε_{V} and ε_{h} are vertical and horizontal strains.
The vertical and horizontal stresses on the outer and inner aurfaces, and at the mid-plane of the wall are tabulated in Table 3.1 and plotted in Fig.3.8.

The bending moment in the vertical and horizontal directions for the grid points were calculated as follows, assuring plane sections remaining plane; see Fig.3.9.

$\sigma_{0}=$ outside surface stress in p.s.i.
$\sigma_{i}=$ inside surface stress in p.s.i.
Force $F=\frac{1}{8} h_{\omega}\left(\sigma_{0}-\sigma_{i}\right)$ p.s.i.
Bending moment $\mathrm{M}=\frac{1}{12} h_{\omega}^{2}\left(\sigma_{0}-\sigma_{i}\right) 16 .-i r . / i x$.
For $h_{\omega}=3 / 16^{\prime \prime}, \quad M=0.00293\left(\sigma_{0}-\sigma_{i}\right) 16 . i \operatorname{in} / \mathrm{iu}$.

The vertical and horizontal bending moments are given in .. Table 3.1 and plotted in Fig.3.10.
(e) Principal Stress Directions.

It was mentioned earlier that as the Terry clips used to support the transducers could be rotated to any direction as . required, the strains in other directions could be measured as shown in Fig.3.11(a). Therefore, there were ten points at which strains in a third direction were measured. The gauge length in this case was 3.35 inches.

Knowing the strains in three directions at these ten points,
it was therefore possible to calculate the principal stresses and their directions by means of Nor's strain circles.

By symmetry, the centre line and sloping edges of the pyramid wall were principal stress directions and in between these lines, the principal stress directions fanned out from the apex towards the base. There were not sufficient points whose principal stress directions were known to allow for an accurate plot of the principal stress direction loci over the whole area of the wall but a good indication of them could be obtained as show in Fig.3.11(b). The base and top of the wall also formed principal stress directions since there were no shears on these edges.

Table 3.2 shows the values of the principal stresses and directions at the points considered.
(f) Shear Stresses.

At the ten points where strains in three directions were measured, the shear stresses could be calculated ky considering the equilibrium of the wedge element shown in Flg.3.12.

Fig. 3.12

The shear streas required is TVh and it ia given by the expression

$$
\begin{aligned}
\tilde{T}_{r L}= & \frac{E}{2\left(1-r^{2}\right)}\left\{\varepsilon_{r}(\tan \theta+r \cot \theta-r \sec \theta \operatorname{cosec} \theta)\right. \\
& \left.+\varepsilon_{h}(r \tan \theta+\cot \theta-r \sec \theta \operatorname{cosec} \theta)-(1-r) \varepsilon_{n} \sec \theta \operatorname{cosec} \theta\right\}
\end{aligned}
$$

where $\mathrm{E}=$ modulus of elasticity,

$$
r=\text { Poisson's ratio, }
$$

$\varepsilon_{r}, \varepsilon_{k} \& \varepsilon_{n}$ were the measured strains, and
θ specified the direction in which ε_{n} was measured.
For $\mathrm{E}=4.42 \times 10^{5} \mathrm{p} . \mathrm{s} .1$. and $r=0.35$,
$\tau_{v a}=94.52 \times 10^{3}\left(3 \varepsilon_{v}+\varepsilon_{\mu}-4 \varepsilon_{n}\right) \quad$ for $\quad \theta=60^{\circ}$
and $\tau_{v a}=9 k .52 \times 10^{3}\left(\varepsilon_{r}+3 \varepsilon_{a}-4 \varepsilon_{n}\right) \quad$ for $\quad \theta=30^{\circ}$

The shear stresses calculated from these expressions are given in Table 3.2 and are compared with theoretical values in Fig.4.15.
3.4 Flxed Pyramid Experiment
(a) Strain Measurements.

It was mentioned earlier that the use of displacement transducers to measure strains in the experiment on the msimplySupported Pyramid was both tedious and time consuming. This was due to the fact that strains could only be measured at one point at any one time and the transducers had to be moved to a new point and the whole loading procedure had to be repeated. Also, once the transducers were moved, they had to be reset before they could
be reused. It took 30 minutes to measure the strains at any point of the wall.

Twenty new Tepic strain gauges similar to the old ones were employed in place of the transducers in order to measure the strains at sufficient points to allow accurate interpolation. The positions of these new gauges are shown in Fig. 3.13 which also shows those of the old gauges.

Since only half of a wall was fitted with strain gauges, it was necessary, in the case of a horizontal load applied at the apex of the pyromid, to rotate the pyramid so that this wall occupied three different positions in relation to the applied load. This had the effect of being able to measure the strains in three walls of the pyranid due to a horizontally applied load. In the normal way, four times as many strain gauges would have been required to give the same results.
(b) Loading Arrangements.
(i) Vertical load.

A vertical load was applied to the apex of the pyramid in exactily the same manner as was used in the case of the simplysupported pyramid test. FIg. 3.5 therefore shows the loading arrangement for this test also except that transducers were not used. (ii) Horizontal load.

A horizontal load was applied to the apex of the pyranid in the way shown in Fig.3.14. Use was made of part of an existing loading frame as a base for the model. The perspex base
of the model was bolted to a steel plate which was in turn dogged to the uncerside of the top flanges of the two channels forming part of the loading frame. This was sufficient to stop the model froin inoving in the direction of the applied horizontal load under its maximura value of 250 lbs . The steel plate was provided as an even base for the base of the model.
(c) Procedure for testing and results obtained.
(i) Vertical load.

As in the simply-supported pyramid test, four equal load increments of 100 divisions of the proving ring dial gauge (i.e. 141.32 lbs .) were applied so that the maximun load was 565.28 lbs . Again each load was applied twice with the corresponding zero values.

In this case, the loading procedure had to be repeated three tines only since the maximum number of strain gauges that could be read was 24 and there were altogether 52 gauges.

The results of stresses and bending moments are shown in Ta.ble 3.3 and plotted in Figs.3.15 and 3.16.
(ii) Horizontal Load.

For each position of the nodel, Fig. 3.14 shows the model in the position in which the wall with the strain gauges was nearest the load pulley, the loading procedure had to be performed three times for all the strain gauges to be read. In each loading sequence, there were five increments of 50 lbs . each giving a maximum horizontal load of 250 lbs . Each load was applied and
removed twice and a mean result was obtained.
The other three positions of the model were obtained by rotating it through 90,180 and 270 degrees fron the position show in Fig. 3.14.

The results of stresses and bending moments are shown in Tables 3.4 to 3.6 and plotted in Figs.3.17 to 3.24.
3.5 Coments on Results.
(a) Simply- supponted pyramid case. (Figs. 3.8 \& 3.10)

The general patterns of the stress distribution over the walls were of the type which were expected. That is to say, the vertical stresses were higher towards the top of the wall where the cross-sectional area was smaller, and towards the bottom nore of the load was taken by the junctions of the walls resulting in higher stresses there. The force as given by the area of the stress diagram at each horizontal section of the wall was different at each section. This was because the interaction between the walls along the junctions gave rise to "extra" external forces on each wall, these forces having some unlenown distribution and acting at right angles to the sloping edges of the wall. This is discussed more fully in Chapter 4. It is of interest to note that the middle portions of the wall nearest the base were in tension in the vertical direction. For the horizontal stresses, the large tensile stresses towards the base were anticipated. The vertical section along the centre line of the wall should have had a zero stress resultant since there were no shears on the base of the wall.

This was not so probably because the strains were small and the accuracy therefore was not very great especially over the middle portion of the wall.

The bending moments over most of the wall were small and were only of some significance at the top and lower portions. In Fig.3.9, these monents have been plotted to a large scale so that their magnitudes appear exaggerated.
(b) Fixed pyramid case.
(i) Vertical load. (Figs.3.15 \&c 3.16)

Vertical stresses were more uniform than in the simplysupported pyramid. There was no tension in any part of the wall. At the fixed base, the stress was again largest towards the corner. The force at each horizontal section was again different due to interaction at junctions of the walls. The horizontal stresses were much smaller than those for the simply-supported pyramid especially towards the base. The bending moments were also insignificant except at the top of the wall.
(ii) Horizontal load. (Figs. 3.17 to 3.24)

The vertical stresses in Thll 'A' were compressive and those in Wall ' C ' were tensile. The general shapes of the curves at each horizontal section were much the same in these walls except that the signs were different. The compressive force at each section in Wall 'A' was greater than the tensile force for the same section in "all ' C ' but this was compensated by the greater tensile force over the compressive force in Wall 'B'.

The horizontal stresses in all three walls were small as in the case of the vertical load.

The bending moments in Wall 'in' were small in most parts but tended to be significant towards the base, whereas in Wall 'G' the vertical monents were significent over most of the wall but the horizontal moments remained small. The vertical moments in $W a l l$ ' B ' were significant only at the lower part of the side nearest to the junction with Wall ' C'. The horizontal monents were once more negligibly small.

CHAPTER 4

Approximate Solutions For The Stress Distributions
In The Walls of A Symmetrically-Loaded Sheet Pyramid

A general solution for the stresses in the walls of any sheet pyranid with arbitrary base boundary conditions acted on by any system of loading is obviously a very difficult problem. It would have to take into account the exact deformation of the pyramid which in itself is difficult to determine in general terms.

The solutions atterpted are therefore only paricicular solutions; the shape of the pyramid being that used in the experimental models, the base boundary conditions being either "simply-supported" or "fixed" as in the nodel in Chapter 3 and the load being a single vertical point load applied at its apex. Further, they are only approximate solutions since various simplifying assuraptions are made. The object of these calculations is to provide a comparison with the stresses obtained experimentally in Chapter 3.

The general approach in these approxirate solutions is to consider each individual wall of the pyramid as a plane stress problem. The actual boundary conditions at the edges of the wall are not known but various assumptions are made based upon the experinental results. There is in fact some bending in the walls but it is not significant and one is justified in ignoring it.

4.2

Sirpply-Supported Pyramid
A simply-supported pyranid with general dinensions is shom in Fig.4.I(a). Due to symuetry of the load, all the walls are similarly stressed so that one wall only requires to be analysed. The wall is analysed as a plane stress problem whose boundary conditions are assumed as follows:-
(a) Top Edge.

This edge is always short so that the component of the applied load may be considered to act uniforilly on it. The normal stress on this edge is therefore uniform and compressive and is due to the coiponent of the applied load in the plane of the wall, Fig.4.1(b). The shear stress is zero at the midile of the edge and is small over most of it so that it is reasonable to assume zero shear along this edge.
(b) Bottora E dge.

Short of a rigorous treatment of the whole pyranid in which the displacement of this edge may be calculated, the best assumption for the normal stress distribution here nust be the actual distribution taken from the experinental results. It is however not possible to express this experimental curve in the form of a simple equation so that an appoximate curve must be used. The limacon of Pascal (5) seens to be the only curve which satisfies the condition of zero stress and zero slope at the middle of the ed.ge and still represents the experimental curve closely. A fourth order curve is easier to handle but it will not
satisfy the zero stress condition mentioned before. It is felt that this discrepancy will not affect the stresses in the wall to any appreciable extent so that this curve will be used in the analysis to compare with the results obtained with the liaacon of Pascal. Since this edge was allowed to slide freely over the supporting slab in the experiment, there can be no shear along it. (c) Sloping Eages.

This is the most difficult assumption to make. The presence of inplane forces of some distribution is due to the bending of the two adjacent walls under the action of the components of the quarter loads in the directions nomal to their planes, Fig. 4.I (b). However, in choosing an arbitrary load distribution, there are two points to consider, namely, (i) this distribution must have a zero resultant because, as can be seen from Fig.4.1(c), the stress distribution at the section along the centre lines of the two walls must be self-balancing since there are no horizontal reactions on the base of the pyramid, and (ii) the top part of the wall must be unaer compression and the lower part under tension. The linear normal stress distribution shown in Fig.4.2 satisfies these two conditions. However, the distribution is more likely to be non-linear and the effect of the loads producing it more localised. Therefore, the third order curve shown dotted in Fig.4.2 will also be considered as a possible distribution. Because of symmetry, the shear stress along these edges is: zero.

Calculation of Boundary Loading.
(a) Top Edge. Fig.4.1(b).

Component of applied load in plane of wall $=\frac{P}{4} \sin \alpha$
\therefore Mean stress, $\sigma_{x h}=\frac{1}{4} \cdot \frac{P \sin \alpha}{6, t}$

Shear stress, $\quad F_{x y}=0$
(b) Bottom Edge.

The linacon of Pascal and the fourth order curve assumptions consists of two constants which can be calculated from vertical equilibrium of the pyramid and by assuming the expertmental stress value at the ends of the edge. The latter condition can be expressed in the form of a concentration factor.
(i) Limacon of Pascal assumption. Fig.4.3.

The equation of this curve is given in polar coordinates as $\rho=b+a \cos \theta($ where $a<b)$ and a and b are the constants to be determined. The part of the curve to be used is from

$$
\theta=90^{\circ} \text { to } 270^{\circ}
$$

To satisfy the vertical equilibrium condition, we mast have

$$
\begin{equation*}
\left(A_{3}-A_{2}\right)=\frac{1}{8} \sin \alpha \cdot \eta \cdot \lambda_{L} \cdot \lambda_{5} \tag{3}
\end{equation*}
$$

where $\eta=P / t$,
$\lambda_{L}=$ linear scale factor
and

$$
\lambda_{s}=\text { púzess " }
$$

Bat

$$
\begin{aligned}
\left(A_{3}-A_{2}\right) & =\left(A_{3}+A_{1}\right)-\left(A_{1}+A_{2}\right) \\
& =b(b-a)-\int_{\pi / 2}^{\pi} \frac{1}{2} \rho^{2} d \theta \\
& =b^{2}\left(1-\frac{\pi}{4}\right)-\frac{\pi}{8} a^{2}
\end{aligned}
$$

Also,

$$
\sigma=\frac{1}{2} b_{2} \lambda_{2},
$$

Therefore, substitution in equation (3) gives

$$
a^{2}=\frac{2}{\pi} \sigma_{2}^{2} \lambda_{4}^{2}\left(1-\frac{\pi}{4}\right)-\frac{1}{\pi} \sin \alpha \cdot \eta \lambda_{L} \lambda_{s} \quad-(4)
$$

Further, if the stress concentration factor is n, where

$$
\eta=\frac{\text { stress at ends of edge }}{\text { mean stress on edge }}
$$

then

$$
(b-a)=\frac{1}{4} \cdot \frac{n \cdot \eta_{b_{2}} \cdot \sin \alpha}{} \cdot \lambda_{s}
$$

Substituting for 6 , this gives

$$
\begin{equation*}
a^{2}=\left(\frac{1}{2} \sigma_{2} \lambda_{2}-\frac{n \eta \sin \alpha}{\left(4 \sigma_{2}\right.} \lambda_{s}\right)^{2} \tag{5}
\end{equation*}
$$

From (4) and (5), we obtain the relationship between λ_{L} and λ_{5} in the equation

$$
\left(\frac{3}{4}-\frac{2}{\sqrt{1}}\right) b_{2}^{2} \lambda_{4}^{2}+\left(\frac{1}{\pi}-\frac{n}{4}\right) \eta \sin \alpha \cdot \lambda_{5} \lambda_{1}+\left(\frac{n n \sin \alpha}{4 b_{2}}\right)^{2} \lambda_{5}^{2}=0-(6)
$$

This means that only one scale can be chosen arbitrarily; so that a and b can be calculated as soon as λ_{L} or λ_{s} is chosen.
(ii) Fourth order curve assumption.

The equation of the curve is taken as

$$
\sigma_{x_{0}}=a y^{4}+b
$$

where the coordinate axes are as shown in Figo4.2.
From the vertical equilibrium condition, we have,

$$
\begin{align*}
& \int_{0}^{\frac{1}{2} b_{2}} \sigma_{x_{0}} d y=\frac{1}{B} \eta \sin \alpha \\
& \text { giving } \quad \frac{b_{2}^{4}}{80} a+b=\frac{\eta \sin \alpha}{4 b_{2}} \tag{7}
\end{align*}
$$

For a stress concentration factor of n,

$$
\begin{equation*}
\left(\frac{b_{2}}{2}\right)^{4} a+b=\frac{n \eta \sin \alpha}{4 b_{2}} \tag{8}
\end{equation*}
$$

Equations (7) and (8) give
and

$$
\begin{align*}
& a=\frac{5 \eta \sin \alpha}{b_{2}^{5}}(n-1) \\
& b=\frac{\eta \sin \alpha}{16 b_{2}}(5-n)
\end{align*}
$$

Whatever the normal stress assumption along this edge is, the shear stress $\tau_{x y_{0}}=0$.
(c) Sloping Edges.

The unknown ordinate at the ends of the assumed linear or cubic curve normal stress distributions can be found by considering the rotational equilibrium of the adjoining walls. This is because the loading along the edges of these walls normal to their planes
is the inplane normal loading on the wall under consideration.
(i) Linear Distribution Assumption.

The equation of the distribution is taken as

$$
\sigma_{t}=c,\left(s-\frac{s}{2}\right)
$$

where the axes s and t are shown in Fig.4.2.
Rotational equilibrium of an adjoining wall, Fig.4.4, gives

$$
\begin{align*}
c_{1} & =\frac{3 \eta h \cos \alpha}{25^{3} \sin \beta} \\
\text { or } \quad c_{1} & =\frac{3 \eta \cos \alpha \cdot \sin ^{2} \beta}{2 a^{2}} . \tag{11}
\end{align*}
$$

The assumed distribution becomes

$$
\begin{equation*}
\sigma_{t}=\frac{c_{1}}{\sin \beta}\left(x-\frac{h}{2}\right) \tag{12}
\end{equation*}
$$

when referred to the $x-y$
(ii) Cubic Curve Distribution Assumption.

The assumed curve is given by (Fig.4.2)

$$
\sigma_{t}=c,\left(s-\frac{s_{1}}{2}\right)^{3}
$$

Rotational equilibrium of an adjoining wall, Fig.4o4, now gives

$$
\begin{equation*}
c_{1}=\frac{10 \eta \cos \alpha \cdot \sin ^{\mu} \beta}{h^{\mu}} \tag{13}
\end{equation*}
$$

The cubic equation, if referred to the $\mathrm{x}-\mathrm{y}$ axes, becomes

$$
\begin{equation*}
\sigma_{t}=\frac{c_{1}}{\sin ^{3} \beta}\left(x-\frac{k}{2}\right)^{3} \tag{14}
\end{equation*}
$$

Shear stress $\tau_{s t}=0$.

- (15)

Solution of the Plane Stress Problem.

Having thus assumed all the required force boundary conditions for the wall, the solution for the stresses can be obtained by the usual elasticity principles. The goveming equation in the solution of two -dimensional problems of this nature when body forces are absent or are constant is

$$
\begin{equation*}
\nabla^{4} \phi=\frac{\partial^{4} \phi}{\partial x^{4}}+2 \frac{\partial^{4} \phi}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \phi}{\partial y^{4}}=0 \tag{16}
\end{equation*}
$$

where ϕ is Airy's stress function and x, y are rectangular coordinates in the plane. In practice, in all but the very simple cases of boundary conditions and shapes of plates, it is not always possible, or if so it is usually difficult, to solve the resulting fourth order equations even assuming these can be obtained.

In the present problem, due to the complexity of the boundary conditions and the shape of the wall, it is felt that it will be easier to obtain the solution by finite difference techniques. With the help of a high speed digital computer, it will be possible to use a finite difference net of sufficient fineness to obtain a solution of good accuracy.

Pinite Difference Solution.

The finite difference equivalent of the biharmonic equation (16) for a square nèt is

$$
\begin{align*}
20 \phi_{0} & -B\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}\right)+2\left(\phi_{6}+\phi_{8}+\phi_{10}+\phi_{12}\right) \\
& +\left(\phi_{5}+\phi_{7}+\phi_{9}+\phi_{11}\right)=0 \tag{17}
\end{align*}
$$

where the grid points are numbered as shown in Fig. 405.

$$
\text { Fig. 4. } 5 \text {-SQuARE NET }
$$

Before equation (17) can be used, the values of ϕ and its derivaties $\partial \phi / \partial x$ and $\partial \phi / \partial y$ at the boundaries must be calculated from the boundary conditions so that the ϕ values which may be required outside the wall can be calculated.

With reference to Fig. 4.6 , it can be shown (6) that

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}=-\int \tau_{v y} d s \\
& \frac{\partial \phi}{\partial y}=\int \tau_{v x} d s \tag{18}
\end{align*}
$$

and $\quad \phi=\int\left\{\frac{\partial \phi}{\partial y} \cos (x, v)-\frac{\partial \phi}{\partial x} \sin (x, v)\right\} d s \quad-(19)$
at point A where the normal and shear stresses are know. These are therefore the boundary conditions which the stress function ϕ has to satisfy at this point.

The expression for ϕ and its first derivatives at the boundaries will now be obtained. Only one half of the wall is considered because of symmetry.

Top Edge.
By definition, .

$$
\frac{\partial^{2} \phi}{\partial y^{2}}=\sigma_{x h} \quad \text { and } \quad \frac{\partial^{2} \phi}{\partial x \partial y}=-\gamma_{x y_{a}}=0 \quad \text { (Fig.4.2) }
$$

Integrating these with respect to Y,

$$
\begin{aligned}
& \partial \phi / \partial y=\sigma_{x} \cdot y+a \\
& \phi=\frac{1}{2} \sigma_{x_{L}} \cdot y^{2}+a \cdot y+b \\
& \partial \phi / \partial x=c
\end{aligned}
$$

at $y=0, \partial \phi / \partial y=0 \quad$ by symmetry, $\quad \therefore \quad a=0$.
b and c are arbitrary constants. Therefore, let $b=c=0$.

Then,

$$
\begin{align*}
& \partial \phi / \partial y=\sigma_{x_{a}} \cdot y \\
& \phi=\frac{1}{2} \sigma_{x_{h}} \cdot y^{2} \tag{20}\\
& \partial \phi \sigma_{x}=0
\end{align*}
$$

Sloping Edge.
(i) Linear distribution for σ_{t}.

From (18) and (12),

$$
\begin{aligned}
& \partial \phi / \partial x=-\int c,\left(x-\frac{h}{2}\right) d s \\
& \partial \phi / \partial y=\int c, \cot \beta\left(x-\frac{h}{2}\right) d s
\end{aligned}
$$

Substituting for $d s=-d x / \sin \beta$, Fig.4.7,

$\left.\begin{array}{l}\frac{\partial \phi}{\partial x}=\frac{c,}{2 \sin \beta}\left(x-\frac{h}{2}\right)^{2}+\alpha \\ \frac{\partial \phi}{\partial y}=-\frac{c}{2 \sin \beta} \operatorname{coc} \beta\left(x-\frac{h}{2}\right)^{2}+e\end{array}\right\}-(21)$
Now using (19) and (21),

$$
\phi=\int\left[\left\{-\frac{c_{1} \cot \beta}{2 \sin \beta}\left(x-\frac{\alpha}{2}\right)^{2}+e\right\} \cos \beta-\int \cdot\left(\frac{c}{2 \sin \beta}\left(x-\frac{h}{2}\right)^{2}+d\right\} \sin \beta\right]\left(-\frac{d x}{\sin \beta}\right)
$$

so that, $\phi=\frac{c}{6 \sin ^{3} \beta}\left(x-\frac{h}{2}\right)^{3}+(\alpha-e \operatorname{coc} \beta) x+f \quad-(21)$
The constants d, θ and f can be found from the condition that $\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}$ and ϕ must have the same values at the point of intersection of this edge with the top edge i.e. at $x=h$, $y=\frac{1}{2} b_{1}$ 。
at this point,

$$
\begin{aligned}
& \partial \phi / \partial x=0=\frac{c_{1}}{2 \sin \beta}\left(\frac{h}{2}\right)^{2}+\alpha \\
& \partial \phi / \partial y=\frac{1}{2} b_{1} \sigma_{x L}=-\frac{c_{1} c \cos \beta}{2 \sin \beta}\left(\frac{h}{2}\right)^{2}+e \\
& \phi=\frac{1}{8} b_{1}^{2} \sigma_{x h}=\frac{c_{1}}{6 \sin ^{3} \beta}\left(\frac{h}{2}\right)^{3}+(\alpha-e \cos \beta) h+f
\end{aligned}
$$

so that,

$$
\begin{align*}
& d=-\frac{c,}{2 \sin \beta}\left(\frac{h}{2}\right)^{2} \\
& e=\frac{1}{2} b_{1} \sigma_{x h}+\frac{c, \cot \beta}{2 \sin \beta}\left(\frac{h}{2}\right)^{2} \tag{22}\\
& f=\frac{1}{2} b_{1} \sigma_{x h}\left(\frac{1}{4} b_{a}+h \cos \beta\right)+\frac{5 c_{1}}{6 \sin ^{3} \beta}\left(\frac{h}{2}\right)^{3}
\end{align*}
$$

(ii) Cubic curve distribution for σ_{t}.

Following the same procedure as that for the linear distribution for σ_{t} in (i), we obtain,

$$
\begin{align*}
& \partial \phi / \partial x=\frac{c_{1}}{A \sin ^{3} \beta}\left(x-\frac{h}{2}\right)^{4}+\alpha \\
& \partial \phi / \partial y=-\frac{c_{1} \cos ^{-} \beta}{4 \sin ^{3} \beta}\left(x-\frac{h}{2}\right)^{4}+e \tag{-33}\\
& \phi=\frac{c_{1}}{20 \sin ^{5} \beta}\left(x-\frac{h}{2}\right)^{5}+(\alpha-e \cot \beta) x+f
\end{align*}
$$

where

$$
\begin{align*}
& d=-\frac{c_{1}}{4 \sin ^{2} \beta}\left(\frac{h}{2}\right)^{4} \\
& e=\frac{c_{1} \cot \beta}{4 \sin ^{3} \beta}\left(\frac{h}{2}\right)^{4}+\frac{1}{2} b_{1} \sigma_{x h} \tag{24}\\
& f=\frac{9 c_{1}}{20 \sin ^{5} \beta}\left(\frac{h}{2}\right)^{5}+\frac{1}{2} b_{1} \sigma_{x_{L}}\left(\frac{1}{4} b_{L}+h \cot \beta\right)
\end{align*}
$$

Bottom Edge.
(i) Limacon of Pascal distribution for $\sigma_{x_{0}}$.

It is not possible to express $\sigma_{x_{0}}$ explicitly in rectangular coordinates so that it is not possible to obtain ϕ in the form of an expression. However, the individual values of ϕ at any node point on this boundary can be obtained by numerical integration. At the point of intersection of this edge with the sloping edge i.e. at $x=0, y=\frac{1}{2} b_{2}$, the ϕ value obtained by numerical integration must be made equal to that given by expression (21) or (23) by adding a constant. This constant will then have to be added to all the ϕ values along this bottom boundary.

The value of $\partial \phi / \partial x$ at co-ordinate $\left(0 ; \frac{1}{2} b_{2}\right)$ is zero from expression (21) or (23) and mat therefore be zero all along the boundary.
(ii) Fourth order curve distribution for $\sigma_{x_{0}}$.

The equation for the stress distribution is

$$
\sigma_{x_{0}}=a y^{4}+b
$$

where a and b are given by expression (9).
From (10),

$$
\begin{gathered}
\tau x y_{0}=0 \\
\therefore \quad \partial^{2} \phi / \partial y^{2}=a y^{4}+b
\end{gathered}
$$

and

$$
\partial^{2} \phi \phi_{\partial x \partial y}=0
$$

Integrating with respect to Y,

$$
\begin{aligned}
& \partial \phi \partial y=\frac{1}{5} a y^{5}+b y+g \\
& \phi=\frac{1}{30} a y^{6}+\frac{1}{2} b y^{2}+g y+4 \\
& \partial \phi / \partial x=i
\end{aligned}
$$

Equating these values at $x=O_{1} y=\frac{1}{2} b_{2}$ with those for the sloping edge gives

$$
\left.\begin{array}{c}
i=g=0 \\
h=\frac{2 c_{1}}{3 \sin ^{3} \beta}\left(\frac{h}{2}\right)^{3}+\frac{1}{2} b, \sigma_{x h}\left(\frac{1}{4} b_{1}+h \cot \beta\right)-\frac{1}{30} a\left(\frac{b_{2}}{2}\right)^{6}-\frac{1}{2} b\left(\frac{b_{2}}{2}\right)^{2}
\end{array}\right\}-(25)
$$

for If near distribution of σ_{t}, and

$$
\begin{gather*}
i=g=0 \\
h=\frac{2 c}{5 \sin ^{5} \beta}\left(\frac{h}{2}\right)^{5}+\frac{1}{2} b_{1} \sigma_{x h}\left(\frac{1}{4} b_{1}+h \cot \beta\right)+\frac{1}{30} a\left(\frac{b_{2}}{2}\right)^{6}-\frac{1}{2} b\left(\frac{b_{2}}{2}\right)^{2} \tag{26}
\end{gather*}
$$

for cubic curve distribution for σ_{t}.
There are therefore four cases to be considered corresponding to the different boundary assumptions. These are

Case 1 ;- Limacon of Pascal distribution for $\sigma_{x_{0}}$ and linear distribution for σ_{t}.
Case 2 :- Fourth order curve distribution for $\sigma_{x_{0}}$ and linear distribution for σ_{t}.

Case 3 :- Limacon of Pascal distribution for $\sigma_{x_{0}}$ and cubic curve distribution for σ_{t}.

Case 4 ;- Fourth order curve distribution for $\sigma_{x_{0}}$ and cubic curve distribution for σ_{t}.

The appropriate expressions (20) to (26) are used to obtain the values of $\phi, \partial \phi / \partial x$ and $\partial \phi / \partial y$ for each of the four cases. Numerical Calculations For The 12 inch Perspex Model

Tested In Chapter 3.

The dimensions of the model were
$\sigma_{1}=0.7835^{\prime \prime}, \sigma_{2}=11.7835^{\prime \prime}, \quad h=11^{\prime \prime}$ and $t=3 / 16^{\prime \prime}$
and the experimental results were obtained for a load of $P=500 \mathrm{lbs}$. Therefore, $\alpha=60^{\circ}, \quad \sin \beta=\frac{2}{\sqrt{5}}, \quad \cos \beta=\frac{1}{\sqrt{5}}, \quad \eta=\frac{8000}{3}$. Also, n was approximately equal to 8.

Top Edge :-

$$
\begin{aligned}
& \sigma_{x a}=736.89 \text { p.s. } i . \\
& \gamma_{x y_{0}}=0
\end{aligned}
$$

Bottom Edge :-
(i) Limacon of Pascal Assumption.

Choosing a stress scale of $1^{\prime \prime} \equiv 100$ p.s.1.
i.e. $\lambda_{s}=1 / 100$ and using $n=8$, equation (6) gives

$$
\lambda_{4}=1.9 \text { or } 0.48
$$

For convenience, let $\lambda_{L}=2$ ie. a linear scale of $I^{n} \equiv 2$ ins., then using equation (6) again but assuming n to be unknown gives $\quad n=8 \cdot 3$.

This is acceptable.

For $\lambda_{c}=2, \quad b=12^{\circ}$.
Also, equation (4) gives, $a=8{ }^{\circ}$.
Therefore, the equation for $\sigma_{x_{j}}$ is given by the polar equation $\rho=12+8 \cos \theta$. This equation is plotted in Fig. 4,8 to compare with the experimental curve.
(ii) Fourth order curve assuraption.

Equations (9) give, for $n=8$,

$$
a=0.3308 \text { and } b=-36.75 .
$$

The equation for the normal stress is therefore

$$
\sigma_{x_{0}}=0.3308 y^{\prime \prime}-36.75
$$

This is also plotted in Fig. 408 to compare with the experimantal curve.

The shear stress for this edge, $\tau_{x y}=0$.
Sloping Edge.
Expressions (11) and (13) give
$c_{1}=13.22$ for linear distribution of σ_{t}, and
$c,=0.5828$ for cubic curve distribution of σ_{t},
so that their respective equations are

$$
\sigma_{t}=14.78(x-5.5) \quad \text { from (12) }
$$

and

$$
\sigma_{t}=0.6759(x-5.5)^{3} \quad \text { from }(14)
$$

Shear stress $\quad 7$ st $=0$.

The expressions for $\phi, \frac{\partial \phi}{\partial x}$ and $\frac{\partial \phi}{\partial y}$ which are required for calculating the \varnothing values on and outside the boundaries can now be found for the four cases under consideration.

Case 1.

$$
\left.\begin{array}{rl}
\begin{array}{rl}
\phi & =368.45 y^{2} \\
\partial \phi \partial x & =0
\end{array} & \left\{\begin{array}{l}
\text { for top } \\
\text { edge }-(27)
\end{array}\right. \\
\phi & =3.08(x-5.5)^{3}-423.85 x+4206.43 \\
\partial \phi \phi x & =7.392(x-5.5)^{2}-223.61 \\
\partial \phi / \partial y & =-3.695(x-5.5)^{2}+400.48
\end{array}\right\} \begin{aligned}
& \text { for sloping } \\
& \text { edge }-(28)
\end{aligned}
$$

ϕ values are obtained by adding 3794 to the values found by numerical integration as shown in Fig.4.9

$$
\partial \phi / \partial x=0
$$

Case 2.
Expressions are the same as (27) and (28) for the top edge and sloping edge respectively.

$$
\begin{aligned}
& \phi=0.011 y^{6}-18.375 y^{2}+3870.48 \\
& \partial \phi / \partial x=0
\end{aligned}
$$

for bottom
edge. - (30)

Case 3.

$$
\begin{aligned}
& \phi=0.0509(x-5.5)^{5}-377.23 x+3949.81 \\
& \partial \phi \partial=0.2036(x-5.5)^{4}-186.31 \\
& \partial \phi \partial y=-0.1018(x-5.5)^{4}+381.83
\end{aligned}
$$

for sloping edge. -(37)
ϕ values are obtained by adding 3793.64
to the values found by numerical integration as shown in Fig.409.

$$
\partial \phi / \partial x=0
$$

Case 4.
Expressions are the same as (27) and (31) for the top edge and sloping edge respectively.

$$
\left.\begin{array}{rl}
\phi & =0.011 y^{6}-18.375 y^{2}+3870.12 \\
\frac{\partial \phi}{\partial x} & =0
\end{array}\right\} \begin{aligned}
& \text { for bottom } \\
& \text { edge. }-(33)
\end{aligned}
$$

A square net is used for one half of the wall as show in Fig. 4.10 and the required values of ϕ on and outside the boundaries are also shown. It should be mentioned that in calculating the ϕ values outside the sloping edge, the following approxmations, with reference to Fig.4.11, are used for point 4,

$$
\begin{aligned}
& \phi_{4 x}=\phi_{0}+\delta\left(\frac{\partial \phi}{\partial x}\right)_{0} \\
& \phi_{4 y}=\phi_{5}+\delta\left(\frac{\partial \phi}{\partial y}\right)_{5}
\end{aligned}
$$

and

$$
\phi_{4 x y}=\frac{1}{2}\left(\phi_{4_{x}}+\phi_{u y}\right)
$$

Fig. 4.II

In applying the finite difference equation (17) to point 1 , say, the value of \varnothing at point 4 is taken as $\varnothing_{4 x}$ while for point 3, $\phi_{3 x y}$ is used. $\varnothing_{3 y}$ will be used in considering the equation at point 2. The \varnothing values outside the bottom edge are assumed to be equal to the corresponding values on the edge itself while that for point 35 (Fig.4.10) is assumed to be zero since this will give a value of $\sigma_{\boldsymbol{x}}$ there which is close to the experimental value.

Applying the finite difference equation (17) to the 34 mesh points at which the \varnothing values are to be determined, we obtain a 34×34 matrix (Fig.4.12), which is the main matrix of the problem.

Computer Programme.

The programme is written in the Autocode Systern (7) for running on the Ferranti Mercury computer belonging to the Conputer Unit of the University of London. This computer has special functions to facilitate matrix operations which are made use of by the programe.

The programme is in two parts. The first part reads in the main matrix (Fig.4.12) and boundary \varnothing values from the data tape, forms the 34×4 load matrix and then solves for the \emptyset values at the 34 mesh points. The second part makes use of these \varnothing results to calculate the σ_{x}, σ_{y} and $7 \bar{x} y$ stresses for these points. These stresses are printed out from the output tape and are shown in Tables 4.1 to 4.3 . The stress
distributions in the wall are plotted in Figs. 4.13 to 4.15 and compared with the experimental results.

It should be mentioned that this computer programe is not a general programe but has been specially written to solve this particular numerical problom, However, so long as the same square net is used, it is possible to cater for any amount of loading cases with only slight changes in the data tape.

Comments On Kesults And Conclusions

Generally, the theoretical and experimental stresses compare well. There are various places especially near the boundaries where the differences are significant. This is only to be expected since firstly the assumed stress distributions for the boundaries are by no means the actual distributions, and secondly a numerical solution of this nature has inherent inaccuracies due to the size of the resh, and the approximations used in obtaining the \varnothing values outside the boundaries.

There is little difference between the stresses obtained in the four cases considered in the theory, because the assumed boundary stress distributions are not very different foon each other. In solving another problem of this type, one will therefore use only one case out of the four considered and obviously case 2 is the one to be considered since it is the simplest to handle even though the base boundary stress assuraption is not correct at the raiddle portion of the boundary. Cases 1 and 3 which have the linacon of Pascal curve assumption for the bottom
boundary stress are tedious to work out since they involved numerical integration. They were considered only because this was the most accurate assumption for the base stress distribution and also to show that the fourth order curve assumption was in fact accurate enough. Case 4 contained the third order curve assumption for the stress distribution along the sloping edge and was considered so that a comparison might be made with case 2.

Therefore, it seems that the actual boundary conditions need not be lmown so long as the general nature of then may be guessed. Then, a numerical solution of the type used here will give results which can be accepted as sufficiently accurate.

4.3 Fixed Pyranid

This problem is solved in the same way as the simplysupported case. That is to say that the wall is considered as a plane stress problen with certain assumptions made for the boundary conditions. However, there is the difference that while the wall in the simply-supported case had only one type of boundary conditions i.e. traction conditions, the wall in this case has both traction and displacenent boundary conditions. This is because the base of the wall in this case is fixed and the displacements along this boundary must therefore be zero. For the top and sloping edges, it is still easier to assume traction, rather than displacement, boundary conditions as before.

Galculation of Boundary Loadinge

Top Edge.
The nomal stress distribution here is assumed to be uniform and compressive as before. With the same dimensions for the pyramid as shown in Fig. 401 (a), this stress is

$$
\sigma_{x h}=\frac{1}{4} \cdot \frac{P \sin \alpha}{b, t} \quad \text { fiom (1) }
$$

The shear stress is again assumed to be zero all along this edge, i.e.

$$
\tau_{x y_{n}}=0
$$

Sloping Edge.
Experimental results for σ_{x} distribution suggest that the normal stress distribution along this edge is of the type shown in Fig.4.16(a). The stresses are compressive towards the top and base with tensile stresses in between. Also, the top compression is greater than that at the bottom. This type of stress distribution may be guessed at when one considers the way in which opposite walls of the pyramd have to deform, Fig.4016(b).

This type of stress distribution is therefore assumed, as shown in Fig.4o17(a) in the form of three linear distributiona. Just as in the simply-supported pyramid aase, having thus allowed for the banding of the adjoining walls in this way by the assumption of these side loadings, we consider now the equilibrium of a flat wall, Fig.4817.

The maximum atreasee a, b and c in the three stress distributions can be found by considering horizontal equilibrium and the asmumptions of zero moment e at three sections in the wall, say at A, B and C. These conditions give three equations as follow,

$$
\begin{align*}
& 6 a-12 b-8 c=-3 N \\
& 2 a-6 b-5 c=-3 N \tag{34}\\
& 4 a-8 b-4 c=-4 H / P \cos \alpha \cdot \sin \alpha
\end{align*}
$$

where

$$
N=\frac{\rho \cos \alpha \cdot \sin \beta}{t \cdot h}
$$

Further, the condition that there should be no bending in the wall means that the resultant of H and $\mathrm{P} / 4$ forces must act in its plane; so that,

$$
\begin{equation*}
H=\frac{P}{4} \cos \alpha \tag{35}
\end{equation*}
$$

Solution of equations (34) and (35) gives

$$
\begin{align*}
& a=\frac{3 N}{4 \sin ^{2} \alpha} \\
& b=\frac{N}{4}\left(\frac{7}{2 \sin ^{2} \alpha}-3\right) \tag{36}\\
& c=\frac{3 N}{4}\left(2-\frac{1}{\sin ^{2} \alpha}\right)
\end{align*}
$$

Due to symmetry, the shear stress along this edge is zero.

Solution of the Mixed Boundary Conditions Plane Stress Problem.

Plane stress problems with mixed boundary conditions like the problem here are best solved in terms of displacements rather than in terms of a stress function. To do this, the given boundary fractions are expressed in terms of displacements, with the use of the stress-strain relations, and then they are applied in order to solve the governing simultaneous equations (8).

The governing equations are

$$
\begin{align*}
& \frac{d}{\partial x}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{1-\mu}{1+\mu} \nabla^{2} u=0 \tag{37}\\
& \frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+\frac{1-\mu}{1+\mu} \nabla^{2} v=0
\end{align*}
$$

when body force is absent or is constant and where u and v are the displacements in the x and y directions respectively and μ is Poisson's ratio.

At any point on the boundary where the traction is specified as $T_{v x}$ and $T_{v y}$ (FIga.4.6), these can be expressed in terms of displacements by the equations

$$
\begin{align*}
& 2 \frac{\left(1-\mu^{2}\right)}{E} \pi_{v x}=2\left(\frac{\partial u}{\partial x}+\mu \frac{\partial v}{\partial y}\right) \cos (x, v)+(1-\mu)\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \sin (x, v) \tag{38}\\
& 2 \frac{\left(1-\mu^{2}\right)}{E} \tau_{v y}=2\left(\frac{\partial v}{\partial y}+\mu \frac{\partial u}{\partial x}\right) \sin (x, v)+(1-\mu)\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) \cos (x, v)
\end{align*}
$$

where E is Young's modulus.

The governing equations (37) together with the boundary equations (38) define the problem completely. Due to the complicated
nature of these equations, these types of problems are best solved by numerical methods and this particular problem is solved by the finite difference method.

Finite Difference Solution.

For any given mesh, there are twice as many equations in this type of solution as there are in the solution. This is because there are two unknown in u and v at each node instead of one unknown \varnothing. Therefore, to obtain a solution of the some accuracy as before, a mesh of greater fineness has to be used. To use a square net as the one used before (Fig.4.10) means that 60 equations have to be solved. However, before doing this, it is wise to use a coarser net to test the accuracy of the boundary conditions assumptions. For this a coarser rectangular net is used.

For a general rectangular net of mesh size $\delta_{1} \times \delta_{2}$, Fig.4.18, the finite difference equivalents of the equations (37) are

$$
\begin{align*}
-\frac{16 R^{2}+8(1-\mu)}{1(1+\mu)} u_{0} & +\frac{4(1-\mu)}{2(1+\mu)}\left(u_{1}+u_{3}\right)+\frac{\theta \Omega}{(1+\mu)}\left(u_{2}+u_{4}\right) \\
\cdots & +\left(v_{5}-v_{6}+v_{7}-v_{8}\right)=0 \tag{39}\\
-\frac{16+8 R^{2}(1-\mu)}{R(1+\mu)} v_{0} & +\frac{8}{2(1+\mu)}\left(v_{1}+v_{3}\right)+\frac{41(1-\mu)}{(1+\mu)}\left(v_{2}+v_{4}\right) \\
& +\left(u_{5}-u_{6}+u_{7}-u_{B}\right)=0
\end{align*}
$$

where $\Lambda=\delta_{1} / \delta_{2}$.

Therefore, for a rectangular net where $r=1 / 2$, equations (39) become

$$
\left.\begin{array}{l}
-\left(2 k_{1}+8 k_{2}\right) u_{0}+k_{1}\left(u_{2}+u_{4}\right)+4 k_{2}\left(u_{1}+u_{3}\right)+\left(v_{5}-v_{6}+v_{7}-v_{8}\right)=0 \\
-\left(8 k_{1}+2 k_{2}\right) v_{0}+4 k_{1}\left(v_{1}+v_{3}\right)+k_{2}\left(v_{2}+v_{4}\right)+\left(u_{5}-u_{6}+u_{9}-u_{8}\right)=0
\end{array}\right\}
$$

and for a square net ie. $r=1$, they become

$$
\left.\begin{array}{l}
-4\left(k_{1}+k_{2}\right) u_{0}+2 k_{1}\left(u_{2}+u_{4}\right)+2 k_{2}\left(u_{1}+u_{3}\right)+\left(v_{5}-v_{6}+v_{7}-v_{8}\right)=0 \\
-4\left(k_{1}+k_{2}\right) v_{0}+2 k_{1}\left(v_{1}+v_{3}\right)+2 k_{2}\left(v_{2}+v_{4}\right)+\left(u_{5}-u_{6}+u_{7}-u_{8}\right)=0
\end{array}\right\}
$$

$$
\text { where } \quad k_{1}=\frac{4}{1+\mu} \quad \text { and } \quad k_{2}=\frac{2(1-\mu)}{1+\mu}
$$

Numerical Calculations For The 12 inch Perspex Model Tested In Chapter 3.

The dimensions of this model have already been given on page 51. Also for perspex, $\quad \mu=0.35$.

Therefore, for $\beta^{\prime}=\frac{p}{1000 t}$, the boundary fractions are

$$
\begin{aligned}
& \sigma_{x a}=-276.3401 p^{\prime} \\
& \tau_{x y_{k}}=0 .
\end{aligned}
$$

and,

$$
\left.\begin{array}{l}
a=40.6552 \beta^{\prime} \\
b=-16.9397 \beta^{\prime} \\
c=-20.3276 \beta^{\prime}
\end{array}\right\} \text { from (36) }
$$

for the top edge.
for the sloping edge.
σ_{t} can be found from the three stress distributions with the values of a, b and c given above.
(a) Rectangular Not Solution. (Fig.4019)

$$
k_{1}=2.963, \quad k_{2}=0.963
$$

Equations (40) become
$\left.\begin{array}{l}-13.630 u_{0}+2.963\left(u_{2}+u_{4}\right)+3.852\left(u_{1}+u_{3}\right)+\left(v_{5}-v_{6}+v_{7}-v_{8}\right)=0 \\ -25.630 v_{0}+11.852\left(v_{1}+v_{3}\right)+0.963\left(v_{3}+v_{4}\right)+\left(u_{5}-u_{6}+u_{7}-u_{8}\right)=0\end{array}\right\}\left(u_{2}\right)$

Boundary Conditions.

Substitution of the required numerical values in equations
(38) gives

$$
\left.\begin{array}{l}
\frac{\partial u}{\partial x}+0.35 \frac{\partial v}{\partial y}=k \sigma_{x} \\
\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}=0
\end{array}\right\} \quad \text { for the top edge }-(43)
$$

$$
\left.\begin{array}{l}
\left(\frac{\partial u}{\partial x}+0.35 \frac{\partial v}{\partial y}\right)+0.65\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)=15 k \sigma_{t} \\
\left(\frac{\partial v}{\partial y}+0.35 \frac{\partial u}{\partial x}\right)+0.1625\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)=0 \\
\text { where } \quad k=1-\mu^{2}
\end{array}\right\} \begin{aligned}
& \text { for the sloping } \\
& \text { edge }-(44)
\end{aligned}
$$

where $k=\frac{1-\mu^{2}}{E}$
The values of σ_{t} at points, a to f on the boundaries are
-. Point $\begin{array}{lllllll}\sigma_{t}\left(x p^{\prime}\right) & -5.8519 & 5.2358 & 8.9318 & -9.5478 & -28.0274 & -276.3401\end{array}$

Boundary Displacements.
These are calculated in terms of displacements at internal points as follows,

Point C. The approximations are made that

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial x}\right)_{c}=\frac{1}{2}\left(u_{c}-u_{a}\right) & \left(\frac{\partial u}{\partial y}\right)_{c}=\left(u_{c}-u_{12}\right) \\
\left(\frac{\partial v}{\partial x}\right)_{c}=\frac{1}{2}\left(v_{c}-v_{q}\right) & \left(\frac{\partial v}{\partial y}\right)_{c}=\left(v_{c}-v_{12}\right)
\end{array}
$$

Substitution of these expressions into (44) gives

$$
\begin{aligned}
& u_{\dot{c}}=1.0646 \sqrt{5} k \sigma_{t_{c}}+0.4160 u_{q}+0.2920 v_{q}+0.5840 u_{12}-0.2920 v_{12} \\
& v_{c}=-0.3323 \sqrt{s} k \sigma_{t_{c}}+0.0320 u_{q}-0.0160 v_{q}-0.0320 u_{12}+1.0148 v_{12}
\end{aligned}
$$

In a similar manner, we obtain the expressions for u - and V at points a, b, d and $e_{\text {. }}$

Displacements of Points outside The Boundary.
These are found from the assumption that there is a
linear continuation of \mathfrak{a} and v outside the field, so that

$$
\begin{aligned}
& u_{c}^{\prime}=u_{6}+u_{c}-0.5 u_{5}-0.5 u_{12} \\
& v_{c},=v_{6}+v_{c}-0.5 v_{5}-0.5 v_{12}
\end{aligned}
$$

Similar expressions are obtained for u. and ∇ at points b', d' and e'.

The displacements of points f and f^{\prime} are calculated as follows :-

The approximations are made that

$$
\begin{aligned}
& u_{f}^{\prime}=u_{e}+u_{f}^{\prime \prime}-0.5 u_{14}-0.5 u_{f} \\
& v_{f} \prime=v_{e}+v_{f}^{\prime \prime}-0.5 v_{14}
\end{aligned}
$$

and

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial x}\right)_{f^{\prime \prime}}=\left(u_{f}-u_{1 s}\right) & \left(\frac{\partial u}{\partial y}\right)_{f^{\prime \prime}}=2\left(u_{f} \prime-u_{f}\right) \\
\left(\frac{\partial v}{\partial x}\right)_{f^{\prime \prime}}=\left(v_{f}^{\prime \prime}-0.5 v_{e}\right) & \left(\frac{\partial v}{\partial y}\right)_{f^{\prime \prime}}=2 v_{f^{\prime \prime}}
\end{array}
$$

Substitution into (38) gives

$$
\begin{aligned}
& u_{f}=k \sigma_{x_{l}}+0.2326 \sqrt{5} k \sigma_{t_{e}}-0.0224 u_{14}+0.3612 v_{14}+1.0 .324 u_{15} \\
& u_{f}^{\prime}=0.5 k \sigma_{x_{l}}+0.4 \sqrt{5} k \sigma_{\tau_{e}}-0.1032 u_{14}+0.7266 v_{14}+1.1032 u_{15} \\
& v_{f}=-0.6646 \sqrt{5} k \sigma_{t_{e}}+0.0640 u_{14}-1.0320 v_{14}-0.0640 u_{15}
\end{aligned}
$$

Having obtained the required displacements an and outside the boundaries in this way, equations (42) are now applied to points 1 to 14 to obtain 24 equations. For point 15, a modified set of finite difference equations are used since it is bounded by an irregular mesh. These modified equations are

$$
\begin{aligned}
& -14.667 u_{0}+2.963\left(u_{2}+2 u_{4}\right)+2.889\left(u_{1}+u_{3}\right)+\left(v_{5}-v_{6}+v_{7}-v_{8}\right)=0 \\
& -20.667 v_{0}+8.889\left(v_{1}+v_{3}\right)+0.963\left(v_{2}+2 v_{4}\right)+\left(u_{5}-u_{6}+u_{7}-u_{8}\right)=0
\end{aligned}
$$

The resulting 25 equations are solved directly by means of a computer.

Computer Programme.

This is similar to the one used in the simply-supported case in that the first part solves for the displacements \mathfrak{n} and v at the 15 mesh points while the second part makes use of these values to solve for σ_{x}, σ_{y} and $T_{x y}$. In working out the stresses from the displacements, the elastic relations used are

$$
\begin{aligned}
& k \sigma_{x}=\frac{\partial u}{\partial x}+\mu \frac{\partial v}{\partial y} \\
& k \sigma_{y}=\frac{\partial v}{\partial y}+\mu \frac{\partial u}{\partial x} \\
& k \pi_{x y}=\frac{1-\mu}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)
\end{aligned}
$$

The results of σ_{x}, σ_{y} and $T_{x} y$ are given in Table 4.4 and plotted in Fige.4.20 to 4022.
(b) Square Net Solution. (Fig.4.23)

As before, $k_{1}=2.963$ and $k_{2}=0.963$.
Equations (42) become
$\left.\begin{array}{l}-15.704 u_{0}+5.926\left(u_{2}+u_{4}\right)+1.926\left(u_{1}+u_{3}\right)+\left(v_{5}-v_{6}+v_{7}-v_{8}\right)=0 \\ -15.704 v_{0}+5.926\left(v_{1}+v_{3}\right)+1.926\left(v_{2}+v_{4}\right)+\left(u_{5}-u_{6}+u_{7}-u_{8}\right)=0\end{array}\right\}$
The boundary conditions for the top and sloping edges are given by (43) and (44) respectively.

The values of σ_{t} for points a to 1 on the boundaries are

Point	a	b	c	d	e	f
$\sigma_{t}\left(x \beta^{\prime}\right)$	-11.3958	-5.8519	-0.3080	5.2358	10.7798	8.9318

$$
\begin{array}{llllll}
\sigma_{t}\left(x \beta^{\prime}\right) & -0.3080 & -9.5478 & -18.7877 & -28.0274 & -276.3401
\end{array}
$$

Boundary Displacements.
Point d. The approximations are made that (8)

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial x}\right)_{d}=1.5 u_{d}-2 u_{16}+0.5 u_{11} & \left(\frac{\partial u}{\partial y}\right)_{\alpha}=1.5 u_{\alpha}-2 u_{20}+0.5 u_{19} \\
\left(\frac{\partial v}{\partial x}\right)_{d}=1.5 v_{d}-2 v_{16}+0.5 v_{11} & \left(\frac{\partial v}{\partial y}\right)_{d}=1.5 v_{\alpha}-2 v_{20}+0.5 v_{19}
\end{array}
$$

Substitution of these expressions into (44) gives

$$
\begin{aligned}
u_{\alpha}= & 0.5514 \sqrt{5} k \sigma_{t_{\alpha}}-0.1927 u_{11}-0.1407 v_{11}+0.7707 u_{16}+0.56 .26 v_{16} \\
& -0.1407 u_{19}+0.1407 v_{19}+0.5626 u_{20}-0.5626 v_{20} .
\end{aligned}
$$

$$
\begin{aligned}
v_{d}= & -0.2431 \sqrt{5} k \sigma_{t d}-0.0154 u_{11}+0.0154 v_{11}+0.0617 u_{16}-0.0617 v_{16} \\
& +0.0154 u_{19}-0.3488 v_{19}-0.0617 u_{20}+1.3949 v_{20} .
\end{aligned}
$$

Similar expressions are obtained for u and v at points b, f and h .

Point j. Approximations used are

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial x}\right)_{j}=1.5 u_{j}-2 u_{34}+0.5 u_{32} & \left(\frac{\partial u}{\partial y}\right)_{j}=u_{j}-u_{35} \\
\left(\frac{\partial v}{\partial x}\right)_{j}=1.5 v_{j}-2 v_{34}+0.5 v_{32}, & \left(\frac{\partial v}{\partial y}\right)_{j}=v_{j}
\end{array}
$$

so that from (44) we obtain

$$
\begin{aligned}
& u_{j}=0.7054 \sqrt{5 k} \sigma_{j}-0.2212 u_{32}-0.1682 v_{32}+0.8848 u_{34}+0.6728 v_{34}+0.3364 u_{35} \\
& v_{j}=-0.3914 \sqrt{5} k \sigma_{t_{j}}-0.0184 u_{32}+0.0276 v_{32}+0.0737 u_{34}-0.1106 v_{34}-0.0553 u_{35}
\end{aligned}
$$

Displacements of Points Outside Boundary.
There are two types of such points, namely, points a^{\prime}, $c^{\prime}, e^{\prime}, g^{\prime}$ and i^{\prime} and points $b^{\prime}, d^{\prime}, f^{\prime}, h^{\prime}$ and j^{\prime}. For the first type, the boundary conditions at the corresponding points on the boundary are used to obtain their displacements, while for the second type, a parabolic continuation of u and v outside the field is assumed. (8)

Point i'. It is assumed that at point i,

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial x}\right)_{i} \bumpeq\left(\frac{\partial u}{\partial x}\right)_{34}=0.5 u_{j}-0.5 u_{32} & \left(\frac{\partial u}{\partial y}\right)_{i}=u_{i}-u_{3 u} \\
\left(\frac{\partial v}{\partial x} j_{i} \bumpeq\left(\frac{\partial v}{\partial x}\right)_{34}=0.5 v_{j}-0.5 v_{32}\right. & \left(\frac{\partial v}{\partial y}\right)_{i}=v_{i}-v_{34}
\end{array}
$$

so that substitution into (44) gives

$$
\begin{aligned}
& u_{i^{\prime}}=-0.3257 \sqrt{5} k \sigma_{t_{j}}+1.6862 \sqrt{5} k \sigma_{t_{i}}+0.9126 u_{32}+0.6107 v_{32}+0.3087 u_{34}-0.4423 v_{34}-0.2214 u_{35} \\
& v_{i^{\prime}}=-0.0387 \sqrt{5} k \sigma_{i_{j}}-0.2740 \sqrt{5} k \sigma_{t_{i}}+0.0669 u_{32}+0.0092 v_{32}-0.0485 u_{34}+0.9631 v_{34}-0.0184 u_{35}
\end{aligned}
$$

In the same way, at point c^{\prime} we obtain,

$$
\begin{aligned}
u_{c_{1}}= & 1.6862 \sqrt{5} k \sigma_{t_{c}}-0.2864 \sqrt{5} k \sigma_{t_{\alpha}}+0.8896 u_{11}+0.5964 v_{11}+0.3988 u_{16} \\
& -0.3855 v_{16}+0.0964 u_{19}+0.0703 v_{19}-0.3855 u_{20}-0.2811 v_{20} \\
v_{c}= & -0.2740 \sqrt{5 k} \sigma_{t_{c}}-0.0302 \sqrt{5} k \sigma_{t_{\alpha}}+0.0654 u_{11}+0.0077 v_{11}-0.0422 u_{16} \\
& +0.9692 v_{16}+0.0077 u_{19}-0.0077 v_{19}-0.0308 u_{20}+0.0308 v_{20}
\end{aligned}
$$

Similar expressions for u and v are obtained for points a', et and g'.

Parabolic continuation of u and v outside the wall means that at point $\mathrm{f}^{\prime \prime}$, say, we have,

$$
\begin{aligned}
& u_{f}=3 u_{24}-3 u_{19}+u_{13} \\
& v_{f^{\prime}}=3 v_{24}-3 v_{19}+v_{13}
\end{aligned}
$$

The displacements at points $b^{\prime}, d^{\prime}, h^{\prime}$ and j^{\prime} are found in a similar way.

The displacements at points k and 1 are found with the help of the following approximations

At point 1, let

$$
\left(\frac{\partial u}{\partial x}\right)_{l}=1.5 u_{l}-2 u_{35}+0.5 u_{33} \quad\left(\frac{\partial v}{\partial y}\right)_{l}=2 v_{t}
$$

while at point k, let

$$
\begin{array}{ll}
\left(\frac{\partial u}{\partial x}\right)_{k}=u_{k}-0.5 u_{j}-0.5 u_{35} & \left(\frac{\partial u}{\partial y}\right)_{k}=u_{k}-u_{e} \\
\left(\frac{\partial v}{\partial x}\right)_{k}=v_{k}-0.5 v_{j} & \left(\frac{\partial v}{\partial y}\right)_{k}=v_{k^{\prime}}
\end{array}
$$

These expressions together with $\left(\frac{\partial u}{\partial y}\right)_{l}=\left(\frac{\partial v}{\partial x}\right)_{l}=0$ when substituted into (43) for points k and l give

$$
\begin{aligned}
u_{l}= & 0.3210 k \sigma_{x l_{l}}+0.3457 k \sigma_{x h_{k}}+0.4807 \sqrt{5 k} \sigma_{t_{j}}-0.1093 u_{32}-0.0953 v_{32} \\
& -0.1605 u_{33}+0.2643 u_{34}+0.4418 v_{34}+1.0054 u_{35} \\
u_{k^{\prime}}= & -0.4198 k \sigma_{x h_{l}}+1.0863 k \sigma_{x \mu_{k}}+1.3153 \sqrt{5} k \sigma_{t_{j}}-0.3526 u_{32}-0.2858 v_{32} \\
& +0.2099 u_{33}+0.8674 u_{34}+1.3334 v_{34}+0.2754 u_{35} \\
v_{k^{\prime}}= & 0.7408 k \sigma_{x L_{l}}-0.7407 k \sigma_{x h_{k}}-1.4215 \sqrt{5 k \sigma_{t}}+0.2158 u_{32}+0.2319 v_{32} \\
& -0.3704 u_{33}-0.4927 u_{34}-1.5575 v_{34}+0.6470 u_{35}
\end{aligned}
$$

Having obtained these boundary displacements in this way, the governing finite-difference equations (45) are now applied to points I to 35 to obtain 60 equations in u and v. These equations are solved directly by a computer programe similar to the one used for the rectangular net case.' The resulting values of σ_{x}, σ_{y} and $T_{x y}$ at the 35 mesh points are given in Table 4.5 and platted in Figs. 4.20 to 4.22.

Comments on Results And Conclusions.
In general, the theoretical results of σ_{x} and σ_{y} do not compare at all well with the experimental resulta. The distributions of the calculated σ_{x} stresses towards the bottom edge of the vall seems to suggest that the assumption of zeno displacements there is wrong. It appears that there is in fact some displacement of this edge which is caused by the bending of the wall near the edge. If, in the theoretical solution, this bottom edge is assumed to have some in displacement, the distributions at the various sections, especially those nearest the bottom edge, will have smaller values towards the centre line, and therefore due to equilibrium, the σ_{x} values tovards the sloping edge will be greater.

There is also the possibility that the normal stress distributions along the sloping edge have been wrongly assumed.

However, although the values of these stresses may have been smaller than the actual values, the type of distribution seems unlikely to be very far wrong since it was suggested by experimental evidence.

The solution due to the coarser net is better than that due to the finer net so far as comparison with the experimental results is concerned. This supports the suggestion that some boundary condition must have been badly assumed. It should be mentioned, however, that the solution of mixed boundary conditions problems of this type have inherent inaccuracies in themselves so that some errors in this solution must have been due to this fact.

It is just possible that a better solution to the problem may be obtained if the bottom edge is assumed to have a form of u displacement with a naximum value at $y=0$ and zero values at $\mathrm{y}= \pm \frac{1}{2} \mathrm{~b}_{2}$. The solution of σ_{\varkappa} stresses can then be found in terms of this one unknown u value. To find this u value, one could consider equilibrium of forces in the x direction along this bottom edge.

CHAPTER 5

Tests On A Steel Pyramidal Truss Model.

5.1 Description of Model.

The boundary condition at the base of a pyramid in an actual roof was realised in a large scale steel model. The model consisted of seven pyramids and a base made from 1/12 inch bright mild steel plates connected by a mild steel bar, Fig.5.1. The various parts of the nodel were welded together, Fig.5.2. It was important that the walls of the pyramids and their base plates were to be flat after construction so that they would not buckle as soon as the model was loaded. The $1 / 12$ inch bright mild steel plates were sufficiently flat when obtained and thick enough so that the nodel could be welded with little distortion. Even so, great care had to be exercised in the welding process and a special jig, Fig.5.3, was constructed for this. Fig. 5.4 shows the set-up for the welding of a pyramid to its base.

5.2 Measurement of Strains And Deflections.

The strains in two directions and on both surfaces of two half- and one wholewall of a pyranid and half of its base were measured by means of $1 / 2$ inch Huggenberger (paper-backed type) resistance strain gauges, (Fig.5.5). Four strain gauges were placed on the bar, two on either side of the apex of the above pyranid. The total number of strain gauges used was 192.

The strain gauges on the inside of the walls and base nearest the welds had to be placed $1 \frac{1}{4}$ inches away so that they wore not affected by the welding. This minimuru distance had been determined from separate tests. The wires from the internal gauges were taken out through two $1 / 2$ inch dianeter holes in the base.

Vertical deflections were measured at various points of the models using dial gauges capable of reading to the nearest ten thousandth of an inch. The places at which deflections were measured are shown in Fig. 5.6.

5.3 Loading Cases.

The model was tested as a simply-supported beam with a central point load. The span was changed so that the pyramid. with the strain gauges occuppied three different positions in the span corresponding to the three loading cases shown in Fig.5.6.

In loading case 1 , this pyramid was in the centre of the five-pyramid span so that it was symanetrically loaded by a vertical point load. The horizontal force, as measured by the strain gauges in the bar, was not zero but was negligible when compared with the vertical force.

In loading case 2, the pyramid was at one end of the fivepyramid span so that it was subjected to a large shearing force. At its apex, it was subjected to a large horizontal force.

In loading case 3, the pyramid was in a different position in the seven-pyramid span but it was again subjected to a large
horizontal force at its apex. It was not however subjected to a heavy shear so that this case was somewhat between the two extrerae cases above.

5.4 Description of Tests.

The general arrangements for the test are shown in Figs. 5.7 and 5.8. The model was simply-supported on two rollers. Two stools were used to raise the model from the reaction bean so that dial gauges could be placed below the nodel to measure deflections. The point load was supplied by a 10 ton hydraulic jack, the load being measured by a 5000 p.s.i. pressure dial gauge. Strain measurements were made using a high speed automatic strain recorder manufactured by 'Solartron'. This apparatus was capable of reading 300 strain gauges at a tine with a speed of 50 per second. The printer used to print out the results however had a speed of only 10 per second. In the tests, since only 50 dumay gauges were available, only 50 active gauges could be read at a time at a speed of 10 per second. Even so, this was very fast and terperature correction was unnecessary.

The load was applied in increments of 250 p.s.i. of the pressure gauge (corresponding to 0.53 ton) up to a maximum of 2000 p.s.i. (corresponding to 4.24 tons). Each load increment was put on twice and strain and deflection readings were taken at these loads and the corresponding zero loads.

In changing from one loading case to another, the model with the rollers and stools were moved while the loading frame
was left in position.

5.5 Resuites.

The strains in two directions and on both surfaces of the walls and base of the pyramid on a 2 in. $x 1$ in. grid for the walls and a $2 \mathrm{in} . \times 3$ in. grid for the base were obtained from the mean measured values by interpolation. The stresses at theas points were then calculated using the elastic relations. The values of Young's modulus and Poisson's ratio were obtained from tensile tests and were 29.48×10^{6} p.s.i. and 0.304 respectively. These surface stresses together with the mid-plane stresses are given in Tables 5.1 to 5.12 and plotted in Flgs. 5.10 to 5.24 .

Load/deflection graphs are shown in Figs. 5.25 to 5.27 for the measured points.

5.6 Approximate Calculation of Deflections.

Using the equiralent skeletal system technique (soe Chapter 2), the deflection of the model can be estimated vith a good degree of accuracy. 保伤 this method, therefore, the vertical daflections at the loading point in Cases 1, and 2 and in Case 3 are given by the expreasions

$$
\delta_{p}=\frac{4 P L}{E}\left\{\frac{5}{6 A_{1}}+\frac{23}{R 8 A_{2}}+\frac{25 \sqrt{5}}{96 A_{3}}\right\}
$$

and $\quad \delta_{\beta}=\frac{4 P L}{E}\left\{\frac{14}{6 A_{1}}+\frac{60}{48 A_{2}}+\frac{35 \sqrt{5}}{96 A_{3}}\right\}$ respectively,
where $P=$ point load, $L=$ truse width,$E=$ Young's modulus,
and A_{1}, A_{2} and A_{3} are the crossmsectional areas of the bar, base and diagonal members respectively.

Distributing the material of the pyramid walls and bases to the diagonal and base members as before,

$$
A_{3}=\frac{5}{13} L h \quad \text { and } \quad A_{3}=\frac{2}{3 \sqrt{5}} \angle h
$$

where $h=$ thickness of walls and bases.
For this model, $I=12^{m}, \quad h=1 / 12^{m}, \quad A,=1 \mathrm{sq}$. in. and $E=29.48 \times 10^{6}$ p.s.i.

Therefore, for $P=4$ tons,

$$
\begin{array}{ll}
\delta_{p}=0.058^{\prime \prime} & \text { for Cases } 1 \text { and } 2 \\
\delta_{p}=0.1 / 8^{\prime \prime} & \text { for Case } 3
\end{array}
$$

and

5.7 Comments on Results.

(a) The deflections of the model at the points shorm in Fig. 5.6 due to a central load of 4 tons were found from Figs. 5.24 to 5.26 to be as follows,

The deflection at the load point can be detained by
assuaning a parabolic deflection curve. This gives δ_{p} for Cases 1,2 and 3 as $0.066,0.062$ and 0.120 inches respectively; compared with the calculated values of $0.058,0.058$ and 0.118 inches. The deflections at point 5 in each case were less than δ_{p} due to shortening of the loaded pyramid. The measured deflections in Cases 1 and 2 compare well as they should. However, in Case 1, the non-linearity of the load/deflection graph for point 2 shows that the base of the pyramid with the strain gauges was initially curved. This was also the case with the base of the central pyranid.
(b) The bending moments in the pyramid walls for all three cases of loading were negligibly small except at their junctions with the base plate. These can be seen from the plotted surface stresses in Figs. 5.9 to 5.23. Because of this, bending monent diagrans were felt to be unnecessary. In the base plate, however, there were great differences between the outside and inside surface stresses at a number of points but this was raainly because this base plate was not initially flat.

The horizontal stresses in Walls A and C were mainly small since there were no transverse load on the nodel in all cases. Those in Wall B were quite appreciable since the wall could stretch in the longitudinal direction causing tension towards the base.

In Case I, the stress distributions in Walls A and C were much the same because of symmetry of the loading. In Wall
B, the vertical stress distribution is seen to be symmetrical about the centre line. The horizontal stress distribution was also symmetrical over most of the wall except towards the base. It was suspected that one of the measured horizontal strains in the right side of the wall towards the base was too large. There is no direct comparison between the stress distributions here with those described in Chapter 3 due to the different boundary conditions at the base of the walls. However, Walls A and C had boundary conditions approaching those of a "fixed" pyramid while Wall B had those similar to a "simply-supported" pyranid.

In Cases 2 and 3, since the horizontal loads were very nearly the same, the stress distributions in the walls were very similar. Towards the top of the walls, at any horizontal cross-section, the compression in Wall A was equal to the tension in Wall C so that the stress distribution in Wall B was symmetrical about the centre line. Towards the base of the walls, however, the compression in Wall A became larger than the tension in Wall C so that the stress distribution in Wall B was no longer symaetrical but there was more tension than compression. This was also evident in Chapter 3 in the case of the "fixed" pyranid subjected to a horizontal load.

In the base plate, because of the initial curvature, it is difficult to deduce axything from the stress distributions. In Case 1, where the stress distributions should have been
symuetrical about the centre lines, they were not so especially in the longitudinal direction. However, the stress distributions for Cases 1 and 3 were very similar since the bending moment at the pyramid in each case was the same thereby causing the same tension in the base plate. In Case 2, the longitudinal stresses were small because the pyramid was taking a large shear but a small bending moment.

CHAPTER 6

Approximate Theory For The Buckling of A Single Pyramid

6.1

One criterion in the behaviour of the pyramid structure is the buckling characteristics of the walls. From purely stress considerations, the pyramid walls can be very thin, but the usual problems governing the behaviour of thin plates then arise. If the plates are absolutely flat, it is reasonable to expect a theory of buckling to apply. In all practical cases however, perfectly flat plates cannot be obtained, and the sudden increase in deflection of the plate at buckling load does not occur. The characteristic behaviour of a thin plate with initial deviations from flatness is that deflections occur from first application of load, and there is an acceleration of deflection with increasing load until menbrane action is important. A design limitation is therefore likely to be one of deflection rather than the buckling stress of a perfectly flat plate.

A study of the general behaviour of plates with different initial deformations is not likely to be fruitful in any practical application, but as purely comparative criteria, the buckling load of perfectly flat plates forming the sides of a pyrainid under different edge restraints has been assessed, and the results corapared with a single test on a $3^{\prime \prime}$ perspex pyramid. culated the initial tockiting loed of a sixply-atppoctied traperoidial plate sobjected to unifore minaxial ocmpersaion an the two parallat edges and unifom shear on the sloping edges, Fig.6.1. He need the method of collocaticn with the pointa for collocation taken at
$\left(\frac{y-h_{1}}{h}\right)=\frac{1}{3}, \frac{1}{2}$ and $\frac{2}{3} \quad$ on the $y-a x i a s$

The function he chose to represent the deflected ahape at buckling was

$$
\omega=F(y) \cos \left(\frac{\pi k x}{2 y} \cot \theta\right), \quad k=1,3,5, \ldots
$$

where

$$
\begin{aligned}
F(y)= & a_{1} \sin (n-1) \pi\left(\frac{y-h}{h}\right)+a_{2} \sin n \pi\left(\frac{y-h}{h}\right) \\
& +a_{3} \sin (n+1) \pi\left(\frac{y-h}{h}\right) \ldots \ldots \quad n=2,3,4, \ldots .
\end{aligned}
$$

This chosen deflection function satisfied the defleation boundary conditions exactiy along the edges but not the moment conditions, wich were satisfied at some points along the sloping edges, and at $x=0$ on the parallel edges. Even so, Klein's solution when applied to the case of a square plate shovs that his result is the same as that given by other methods. The nature of the shapes of the-eurves obtained by him shows that they were accurate anough for practical purposes.
6.3 Initial Buckling of n clamped Trapezoidal Plates.

In considering the buckling of the walls of a pyramid, the boundary conditions of the edges are not known. Therefore, it will be useful to derive the tuck ling load for the case of the fixed plate 30 that with Rein's solution for the pined plate, the two limiting cases are knotin. Then it will be possible, with the help of the experimental result available, to se whether the boundary conditions of the walls are nearer the pinned ox clamped case.

Blain's method of solution trill be followed closely in this clamped plate solution. The deflection function rust however be different and the following function is adopted;

$$
\omega=F(y) \cos \left(\frac{\pi k x}{2 y} \operatorname{coc} \theta\right), \quad k=1,3,5 \ldots-(6.1)
$$

where

$$
F(y)=\alpha_{1} F_{1}+\alpha_{2} F_{2}+\alpha_{3} F_{3}
$$

with

$$
\begin{aligned}
& \dot{F}_{1}=\sin ^{2}(x-1) \pi\left(\frac{y-h}{h}\right) \\
& F_{2}=\sin (x-1) \pi\left(\frac{y-h}{h}\right) \sin x \pi\left(\frac{y-h}{h}\right) \\
& F_{3}=\sin (x-1) \pi\left(\frac{y-h}{h}\right) \sin (x+1) \pi\left(\frac{y-h}{h}\right), \\
& x=2,3, H \ldots .
\end{aligned}
$$

The three points chosen for collocation are
$\left(\frac{y-h_{1}}{h}\right)=\frac{1}{3}, \frac{1}{2}$ and $\frac{2}{3} \quad$ along the $y-a x i s$.
POET

$$
\left.\begin{array}{l}
n=2 ; \\
\text { at }\left(\frac{y-h}{h}\right)=\frac{1}{3}, \\
F=\frac{3}{4}\left(\alpha_{1}+\alpha_{2}\right) \\
\frac{d F}{d y}=\frac{\sqrt{3}}{2}\left(\frac{\pi}{h}\right)\left(\alpha_{1}-\frac{1}{2} \alpha_{2}-3 \alpha_{3}\right) \\
\frac{d^{2} F}{d y^{2}}=-\left(\frac{\pi}{h}\right)^{2}\left(\alpha_{1}+\frac{19}{4} \alpha_{2}+3 \alpha_{3}\right) \\
\frac{d^{4} F}{d y^{4}}=\left(\frac{\pi}{h}\right)^{4}\left(4 \alpha_{1}+\frac{16^{3}}{4} \alpha_{2}+60 \alpha_{3}\right) \\
\text { at }\left(\frac{y-h}{h}\right)=\frac{1}{2}, \\
F=\left(\alpha_{1}-\alpha_{3}\right) \\
\frac{d F}{d y}=-2\left(\frac{\pi}{h}\right) \alpha_{2} \\
\frac{d^{2} F}{d y^{2}}=-2\left(\frac{\pi}{h}\right)^{2}\left(\alpha_{1}-5 \alpha_{3}\right) \\
\frac{d^{4} F}{d y^{4}}=8\left(\frac{\pi}{h}\right)^{4}\left(\alpha_{1}-17 \alpha_{3}\right)
\end{array}\right\} \text { (6.2) }
$$

$$
\begin{aligned}
& \text { at }\left(\frac{y-h}{h}\right)=\frac{2}{3} \\
& F=\frac{3}{4}\left(\alpha_{1}-\alpha_{2}\right) \\
& \frac{d F}{d y}=-\frac{\sqrt{3}}{2}\left(\frac{\pi}{h}\right)\left(\alpha_{1}+\frac{1}{2} \alpha_{2}-3 \alpha_{3}\right) \\
& \frac{d^{2} F}{d y^{2}}=-\left(\frac{\pi}{h}\right)^{2}\left(\alpha_{1}-\frac{19}{4} \alpha_{2}+3 \alpha_{3}\right) \\
& \frac{d^{4} F}{d y^{4}}=\left(\frac{\pi}{h}\right)^{4}\left(4 \alpha_{1}-\frac{163}{4} \alpha_{2}+60 \alpha_{3}\right)
\end{aligned}
$$

Similar expressions may be written for other values of n. The derivatives of ω at $x=0$ are

$$
\left.\begin{array}{l}
\frac{\partial^{2} \omega}{\partial x^{2}}=-F(y)\left(\frac{p}{y}\right)^{2} \\
\frac{\partial^{2} \omega}{\partial y^{2}}=\frac{\partial^{2} F}{\partial y^{2}} \\
\frac{\partial^{4} \omega}{\partial x^{4}}=F(y)\left(\cdot \frac{F}{y}\right)^{4} \\
\frac{\partial^{4} \omega}{\partial y^{4}}=\frac{\partial^{4} F}{\partial y^{4}} \\
\frac{\partial^{4} \omega}{\partial x^{2} \partial y^{2}}=\left\{\frac{-6 F}{y^{2}}+\frac{4}{y}\left(\frac{\partial F}{\partial y}\right)-\left(\frac{\partial^{2} F}{\partial y^{2}}\right)\right\}\left(\frac{\rho}{y}\right)^{2}
\end{array}\right\}(6.5)
$$

where

$$
\rho=\frac{\pi k \operatorname{col} \theta}{2}
$$

Substitution of expressions (6.5), into the bucking equation

$$
\frac{\partial^{4} \omega}{\partial x^{4}}+2 \frac{\partial^{*} \omega}{\partial x^{2} \partial y^{2}}+\frac{\partial^{4} \omega}{\partial y^{4}}+\frac{N_{x}}{D} \cdot \frac{\partial^{2} \omega}{\partial x^{2}}+\frac{N_{y}}{\partial} \cdot \frac{\partial^{2} \omega}{\partial y^{2}}=0
$$

when e $\mathrm{D}=$ flecmal Ingidity of plate, and N_{x}, N_{y} are positive shan compressive, we obtain,

$$
\begin{align*}
& \left(\frac{y}{\rho}\right)^{4} \frac{d^{4} F}{d y^{4}}-\frac{2}{\rho^{2}}\left(y^{2} \frac{d^{2} F}{d y^{2}}-4 y \frac{d F}{d y}+6 F\right) \\
& +\frac{N_{y}}{D}\left(\frac{y}{p}\right)^{4} \frac{d^{2} F}{d y^{2}}-\frac{N_{x}}{D}\left(y_{p}^{y}\right)^{2} F+F=0 \tag{6.6}
\end{align*}
$$

The values of N_{x} and N_{y} at the points of collocation are as follows,

$$
\begin{align*}
& N_{x}=\frac{1}{4}\left(\Lambda_{1} N_{1} \beta_{4}-\Lambda_{2}^{2} N_{2}\right) \quad a r\left(\frac{y-h}{h}\right)=\frac{1}{3} \\
& =\left(1, N_{1}-\mu_{2} N_{2}\right) \frac{\tan \theta}{2} \quad " \quad=\frac{1}{2} \\
& =\frac{1}{4}\left(-\Lambda_{1}^{2} N_{1}-\Lambda_{2} N_{2} p_{5}\right) \quad " \quad=\frac{2}{3} \\
& N_{y}=\left(2 \Lambda_{1} N_{1}+\Lambda_{2} N_{2}\right) \frac{1}{3 \beta_{1}} \quad \text { at }\left(\frac{y-h_{1}}{h}\right)=\frac{1}{3} \tag{6.7}\\
& =\left(\Lambda_{1} N_{1}+n_{2} N_{2}\right) \frac{1}{2 \beta_{3}} \quad " \quad=\frac{1}{2} \\
& \left.=\left(1, N_{1}+2 \Lambda_{2} N_{2}\right) \frac{1}{3 p_{2}} \quad " \quad "=\frac{2}{3}\right]
\end{align*}
$$

where

$$
\Lambda_{1}=b_{1} / h ; \quad \Lambda_{2}=b_{2} / h ;
$$

$$
\begin{array}{ll}
p_{1}=r_{1}+\frac{2}{3} \tan \theta ; & p_{2}=r_{1}+\frac{4}{3} \tan \theta ; \\
p_{3}=r_{1}+\tan \theta ; & p_{4}=r_{2}+2 \tan \theta ; \\
p_{5}=r_{1}-2 \tan \theta . &
\end{array}
$$

Substitution of equations (6.2) to (6.4) and (6.7) into equation (6.6) gives the following set of three sinaltaneons equations;

$$
\begin{aligned}
& \text { at } \quad\left(\frac{y-h,}{h}\right)=\frac{1}{3} \text {, } \\
& A_{11}=\left\{4\left(\frac{p_{1}}{k}\right)^{4}+2\left(\frac{p_{1}}{k}\right)^{2}+\frac{3}{4}\right\}+\frac{8 \tan \theta}{\pi k^{2}}\left\{\sqrt{3 p_{1}}-\frac{9 \tan \theta}{2 \pi}\right\} \\
& B_{11}=\left\{-\mu_{1} \frac{N_{1}}{N_{2}}\left(\frac{2}{3 k^{2}}+\frac{3}{16} \cdot \frac{p_{1}}{p_{1}}\right)-\mu_{2}\left(\frac{1}{3 k^{2}}-\frac{3}{16} \cdot \frac{\mu_{2}}{\beta_{1}}\right)\right\} \frac{p_{1}^{3}}{k^{2}} \\
& A_{12}=\left\{\frac{163}{4}\left(\frac{p_{k}}{k}\right)^{4}+\frac{19}{2}\left(\frac{p_{k}}{k}\right)^{2}+\frac{3}{4}\right\}-\frac{8 \tan \theta}{\pi k^{2}}\left\{\frac{\sqrt{3}}{2} p_{1}+\frac{9 \tan \theta}{2 \pi}\right\} \\
& B_{12}=\left\{-n_{1} \frac{N_{1}}{N_{2}}\left(\frac{19}{6 k^{2}}+\frac{3}{16} \cdot \frac{p_{k}}{\beta_{1}}\right)-n_{2}\left(\frac{19}{12 k^{2}}-\frac{3}{16} \cdot \frac{n_{2}}{p_{1}}\right) \cdot\right\} \frac{p_{1}^{3}}{k^{2}} \\
& A_{13}=\left\{60\left(\frac{p_{1}}{k}\right)^{4}+6\left(\frac{p_{1}}{k}\right)^{2}\right\}-\frac{8 \tan \theta}{\pi k^{2}} \cdot 3 \sqrt{3} p_{1} \\
& B_{13}=\left\{-\Lambda_{1} \frac{N_{1}}{N_{2}} \cdot \frac{2}{k^{2}}-n_{2} \cdot \frac{1}{k^{2}}\right\} \frac{\beta_{1}^{2}}{k^{2}}
\end{aligned}
$$

The equation being

$$
\begin{align*}
& \left(A_{11}+B_{11} \beta\right) \alpha_{1}+\left(A_{12}+B_{12} \beta\right) \alpha_{2}+\left(A_{13}+B_{13} \beta\right) \alpha_{3}=0 \tag{6.8}\\
& \text { at. }\left(y \frac{-k}{2}\right)=\frac{1}{2} \text {, } \\
& A_{21}=\left\{8\left(\frac{\phi_{3}}{k}\right)^{4}+4\left(\frac{p_{3}}{k}\right)^{2}+1\right\}-\frac{48 \tan ^{2} \theta}{k^{2} \bar{\pi}^{2}} \\
& B_{21}=\left\{-R_{1} \frac{N_{1}}{N_{2}}\left(\frac{1}{k^{2}}+\frac{\tan \theta}{2 \beta_{3}}\right)-\Lambda_{2}\left(\frac{1}{k^{2}}-\frac{\tan \theta}{2 \beta_{3}}\right)\right\} \frac{\beta_{3}^{3}}{k^{2}} \\
& A_{22}=-\frac{32 \beta_{3} \tan \theta}{k^{2} \bar{\pi}} \\
& B_{22}=0 \\
& A_{23}=\left\{-136\left(\frac{p_{3}}{k}\right)^{4}-20\left(\frac{p_{3}}{k}\right)^{2}-1\right\}+\frac{48 \tan ^{2} \theta}{k^{2} \pi^{2}} \\
& B_{23}=\left\{\Lambda_{1} \frac{N_{1}}{N_{2}}\left(\frac{5}{k^{2}}+\frac{\tan \theta}{2 \beta_{3}}\right)+\Lambda_{2}\left(\frac{5}{k^{2}}-\frac{\tan \theta}{2 \beta_{3}}\right)\right\} \frac{\beta_{3}^{3}}{k^{2}}
\end{align*}
$$

The equation being

$$
\begin{equation*}
\left(A_{21}+B_{21} \beta\right) \alpha_{1}+\left(A_{22}+B_{22} \beta\right) \alpha_{2}+\left(A_{23}+B_{23} \beta\right) \alpha_{3}=0 \tag{6.9}
\end{equation*}
$$

$$
\begin{aligned}
& \text { at } \quad\left(\frac{y-h_{1}}{h}\right)=\frac{2}{3} \text {, } \\
& A_{31}=\left\{4\left(\frac{p_{2}}{k}\right)^{4}+2\left(\frac{p_{2}}{k}\right)^{2}+\frac{3}{4}\right\}-\frac{8 \tan \theta}{\pi k^{2}}\left(\sqrt{3} \beta_{2}+\frac{9}{2} \cdot \frac{\tan \theta}{\pi}\right) \\
& B_{31}=\left\{-\mu_{1} \frac{N_{1}}{N_{2}}\left(\frac{1}{3 k^{2}}-\frac{3}{16} \cdot \frac{\Lambda_{1}}{p_{2}}\right)-\mu_{2}\left(\frac{2}{3 k^{2}}+\frac{3}{16} \cdot \frac{p_{5}}{p_{2}}\right)\right\} \frac{p_{2}{ }^{3}}{k^{2}} \\
& A_{32}=\left\{-\frac{163}{4}\left(\frac{p_{k}}{k}\right)^{4}-\frac{19}{2}\left(\frac{p_{2}}{k}\right)^{2}-\frac{3}{4}\right\}-\frac{8 \tan \theta}{\pi / c^{2}}\left(\frac{\sqrt{3}}{2} p_{2}-\frac{9}{2} \frac{\tan \theta}{7}\right) \\
& B_{32}=\left\{A_{1} \frac{N_{1}}{N_{2}}\left(\frac{19}{12 k^{2}}-\frac{3}{16} \cdot \frac{A_{1}}{p_{2}}\right)+A_{2}\left(\frac{19}{6 k^{2}}+\frac{3}{16} \frac{p_{5}}{p_{2}}\right)\right\} \frac{\beta_{2}^{3}}{k^{2}} \\
& A_{33}=\left\{60\left(\frac{p_{2}}{k}\right)^{4}+6\left(\frac{p_{2}}{k}\right)^{2}\right\}+\frac{24 \sqrt{3} \beta_{2} \tan \theta}{\pi k^{2}} \\
& B_{33}=\left\{-\mu_{1} \frac{N_{1}}{N_{2}}\left(\frac{1}{k^{2}}\right)-\mu_{2}\left(\frac{2}{k^{2}}\right)\right\} \frac{p_{2}^{3}}{k^{2}}
\end{aligned}
$$

The equation being

$$
\left(A_{31}+B_{31} \beta\right) \alpha_{1}+\left(A_{32}+B_{32} \beta\right) \alpha_{2}+\left(A_{33}+B_{33} \beta\right) \alpha_{3}=0-(6.10)
$$

In equations (6.8) to (6.10), $\beta=\frac{N / 2 h^{2}}{\pi^{2} D}$. These equations may be written in matrix form as

$$
(A+B \beta) \alpha=0
$$

which corresponds to a standard eigenvalue problem in which may be found by determining the characteristic equation and subsequently its lowest positive root. To be perfectly
rigorous, both n and k should be varied in determining the lowest value of β.

It should be mentioned that the chosen deflection function (6.1), although satisfying the deflection boundary conditions exactly along all edges and the rotation boundary conditions at the parallel edges, did not satisfy the latter conditions along the sloping edges, and this will give rise to some inaccuracy. It ray be pointed out that the buckling load of a clamped square plate calculated by this method is about 30% smaller than the actual value; whereas in the other limit of a rightmangled isosceles triangular plate, the buckling load is only 10\% smaller than that given by a data sheet published by the Royal Aeronautical Society (10).

6.4 Buckling Load For Model 'B' of Chapter 2.

The model was loaded by a vertical load at its apex. In order to calculate a buckling load, the following assumptions have been made :-
(i) the compressive load in the plane of the wall due to the extermal load is uniformly spread along the top edge; this is justified since this edge is usually short, (ii) there is no nommal load on the sloping edges. This is not true as can be seen from Chapter 4 where a normal stress $\boldsymbol{O}_{\mathbf{2}}$ was assumed in working out the stress distributions in the walls of the pyramid. However, the stress is small compared with that acting on the top edge. Also, there is some tension
in the middle portion of the edges which will tend to compensate for the compression as regards the buckling load; and (iii) the load is uniform along the bottom edge. This again is not true but it is not expected to make munch difference to the buckling Iowa.

Calculations

The dimensions of the walls are as follows (ref. Fig.6.1);
$b_{1}=3 / 8^{\prime \prime}, b_{2}=3^{\prime \prime}, h=25 / 8^{\prime \prime}, \quad t=1 / 25^{\prime \prime}$.
Young's modulus, $E=4.5 \times 10^{5}$ p.s.i.
Poisson's ratio, $\mu=0.35$.
$r_{1}=1 / 7, \quad r_{2}=8 / 7, \quad \tan \theta=1 / 2$,
so that

$$
p_{1}=0.4762, p_{2}=0.8095, p_{3}=0.6429, p_{4}=2.14 .28 \& p_{5}=-0.8571 .
$$

A780,

$$
N_{1} / N_{2}=8
$$

and

$$
D=\frac{E t^{3}}{12\left(1-\mu^{2}\right)}=2.735 \quad 16 .-i \mu .
$$

(i) If the edges of the wall are assumed to be simply-supported, then the characteristic equation may be written as

$$
\left|\begin{array}{ccc}
(0.493-0.094 \beta) & (0.514-0.279 \beta) & (-2.1) \\
(0.785-0.304 \beta) & (-3.27) & (-21.135+2.736 \beta) \\
(0.169-0.209 \beta) & (-7.157+1.28 \beta) & (3.574)
\end{array}\right|=0
$$

from which $\beta=5.15$. This gives $\mathbb{N}_{2}=20.1 \mathrm{lb}$. so that the buckling load for the pyramid is

$$
P_{\text {cit }}=208.616 .
$$

(ii) However, if the edges of the wall are assumed to be fixed, then the characteristic equation becomes

$$
\left|\begin{array}{ccc}
(1.548-0.201 \beta) & (3.563-0.664 \beta) & (1.295-0.370 \beta)^{-} \\
(2.805-0.607 \beta) & (-3.274) & (-31.280+3.037 \beta) \\
(1.082-0.707 \beta) & (-25.919+2.980 \beta) & (35.051-1.819 \beta)
\end{array}\right|=0
$$

from which $\beta=11.84$. This gives $N_{2}=46.2 \mathrm{ib}$. so that the bucking load is

$$
P_{\text {ariel }}=48016 .
$$

The experimental buckling load for the model was 2951 l . (see Fig. 2.8, Chapter 2), which corresponds well with the value for pinned edges.

However, if the pyramid is loaded horisontally, Fig.6.2, the buokling load is

$$
H_{\text {cric }}=90.516 .
$$

for the pinned edges, and

$$
H_{\text {aic. }}=20816 .
$$

for the clamped edges, due to the buckiling of Wall s.

There is no experimental result to show wich case is the better approxination but it is likely, aince Walls g are not likely to buckle before Wall A, that the actual bucking load will be nearer the clamped edges case.
6.5 Conclusions.

Although no rigorous method for calculating the buckling load of a pyramid seems possible, the very approximate method outlined seems to give reasonable estimates. Klein's solution may be used to obtain the buckling load of a gymmetrically loaded pyramid although it should be mentioned that the good comparison with the experimental result should be accepted with reserve since buckling experiments of this sort are difficult to control. Again, the suggestion that for a horizontally loaded pyramid, the clamped edges case probably gives a better approximation is not backed by experimental evidence and is therefore not conclusive. However, the work done in this chapter is useful
in that some idea of the buckling loads of sheet pyramids is possible even though they may be very approximate.

CHAPTER 7

Conclusions

7.1

The research has show that within the linits normally expected with this type of structure, the square-based pyramidal roof behaves in a similar manner to a pinned skeletal system in which the area of each diagonal member is equivalent to two thirds of the area of the triangular plate on one side. On this basis the calculated and measured deformations agreed within about 10%. The stresses in the plate in the most stressed pyranid are not critical and any small tendency to buckling does not seriously reduce the performance of the system within the elastic range nor its ultimate load bearing capacity.

In the simply-supported single pyramid, the measured stresses in the plate agreed well with those obtained by plane stress theory assuming the edges to be simply-supported.

In the single pyramid with a fixed base the agrement between measured and theoretical stressos was not good because the assumption of zero displacerient along the bottom edge of the wall was not valid. However this case is only of academic interest because the fixed base condition cannot realistically be achieved in practice.

The buckling load of a pyramid with fixed base subjected to a vertical load at its apex was calculated by considering the walls as pinned trapzoidal plates under uniform compress ion along their parallel edges. Calculated and measured values were in close agreement.

BIBLTOGRAPHY

1. Borm, J. "Faltwerke." 1960. Verlag Konrad Wittwer, Stuttgart.
2. Makowski, Z. S. "Stressed Skin Space Grids." July, 1961. Architectural Design.
3. Makowski, Z. S. "Developments In AIuminium Sheet Space Structures." April, 1961. Light Metals.
4. Makowski, Z. S. "Aluminiun Sheet Structure." JuIy, 196I. Light INetals.
5. Larsen, H. D. "Rinehart Mathematical Tables, Formulas And Curves." Rinehart and Company, Inc., New York.
6. Allen, D. N. de G. " Relaxation Methods In Engineering And Science." McGraw-Hill Book Company, Inc., New York.
7. Brooker, R. A.s etc. "Mercury Autocode Manual." Second Edition. Manchester University Computing Machine Laboratory.
8. Fox, L. "Mixed Boundary Conditions In The Relaxational Treatment of Biharmonic Problems (Plane Strain Or Stress ;: proceedings of the Royal Society, A, 189, (1947).
9. Klein, B. : Buckling Of Simply Supported Plates Tapered In Planform." Journal of Applied Mechanics, June, 1956.
10. Aero. Data Sheet Mo. 02.04.06. "Initial Buckling of Flat Isosceles Triangular Plates Under Combined Compression And Shear." Published by the Royal Aeronautical Society. May, 1957.
11. Timoshenko, S. P. and Goodier: J. N. "Theory of Elasticity." Second edition. McGraw Hill Book Company, Inc., New York.
12. Timoshenko, S. P_{n} and Gere, J. M. "Theory of Elastic Stability." Second edition. McGraw-Hill Book Company, Inc., New York.
13. Tirooshenko; S. P, and Woinowsky-Krieger, S. "Theory 0.: Plates And Shelis." Second edition. MeGraw-Hill Book Company, Inc., New York.

Fig.1.1-Diagrammatic Represention Of A Square-Based Pyeamidal-Sheet Roof

Fig.1.2-HEight-base ReLationstid of Pyeaimid

$$
H=\frac{k}{2} b \sqrt{\tan ^{2} \beta-1}=k b_{2}
$$

Fig. 1.3 - Suggested Curves For Determination Of Required Number of Pyramids In a roof Of Given dimensions

Fig. 2.4 MODELS $D \notin D^{\prime}$

LONGITUDINAL SECTION

MODEL D

Fig. 2.5-MODEL E

LONGITUONAL SECTION

Fig. 2.6 Loading Areanceutut For Tests On Models A, B \& C

\because FIG.2.7-LOAD-DEFLECTION GRAPHS FOR SINGLE PYRAMIDS

FIG.2.9 - TEST On MODEL D. (CASE 1)

$\angle O A D P$
(LB.)

Load~Deflection Graphs

Fig.2.10. - Test on Model D. (Case 2)

$\angle O A D P$
3"pyRAMAD tRUSS

Fig. 2.Il-Test on Model D. (Case 3)

Fig.2.12-Test On Model D. (Case 4)

Fig. 2.14-ModeI E; Loading Case 1.

Fig. 2.15 - Model E ; Loading Case 2.

Fig. 2.16-Test On Model E. (Case 1)
LOAD ~ DEFLECTION GRAPHS
$\angle O A D D$
(LB.)
+

FIG.2:17-TEST ON MODEL E. (CASE 2)
$\angle O A D \sim D E F L E C T I O N$ GRAPHS

Fig. 2.18-Test On Model E (Case 1) Load ute ass Graphs

Fig.R.19-Test ON Model E (Case 2) LOAD~STRESS GRAPHS

THICKNESS OF PYRAMID WALLS $=h_{\omega}$

(a) A Square - Based Sheet Pyramid

(b) Equivalent Skeletal System

Fig.2.21-Equivalent Skeletal System of Models d \&D'

(3/2)
LOADING CASES $1 \nLeftarrow$ (3)
(8)

LOADING CASE 1

Table 3.2-Principal And Shear Stresses

COMPRESSIVE STRESS POSITIVE

Table 3.3 - Experimental Stresses And Moments In Walls
of Vertically y loader "Fixed" Pyramid

Table 3.4 - Experimental Stresses And Moments In Wall "A" of Horizontally Loaded "Fixed" Pyramid

Table 3.5 - Expermental Steesses $\&$ Moments In Wall 'b' of Hoeizontally Loaded "Fixed" Preamid

Table 3.6 - Experimental Stresses And Moments In Wall "C"
Of Horizontally loaded "Fixed" Pyramid

- (a) OVERALL DIMENSIONS

(6) TOP JOINT

(c) SIDE TOINTS

$$
\begin{aligned}
& \frac{\text { FIG.3.2(a)- } 12 \text { INCH PERSPEX MODEL }}{\text { (STAGE II) }}
\end{aligned}
$$

Fig. 3.2(b) - Fixed pyramid with strain gauges.

3/B NNCA NYLON

NYLON BALLEND

Transoucer Cylinder End

$$
\text { Fig. } 3.3 \text { - Fixings For Dispencement Teansouctes }
$$

Fig. 3.4 - Transducer And Strain Gauge Positions

Fig. 3.5 - Loading arrangement for test on single pyramid.

Fig. 3.6 - Simply-supported pyramid showing
displacement transducers.

Fig.3.7-Reference Diagrams For Tables 3.1 To 3.6

SIGN CONVENTIONS
COMPRESSIVE STRESS \& Ye
-..

STRESSES IN 16/sq. in. MOMENTS IN 16.in./in.

Fig. 3.8 - Mid-Plane Stress Distribution In Walls Of Simply Supported Pyramid Under Vertical Load

Fig. 3. 10 - Bending Moments In Walls Of Simply Supported Preamid Under Vertical Load

Fig. 3./I - Principal Stress Directions

FIG. 3.14-HORIZONTAL LOAD ON "FIXED" PYRAMID
I2×G' JOIST CANTILEVERING
OUT OF T.C.E. VALLEY BLOCK

为

COADINGBLOCK

Fig.3.15-Mid-Plane Stress Distetbution In Walls Of Fixfo Preamid Unoer Vertical Load

Fig. 3.16 -Bending Moments In Walls Of Fixed Pyeamid Under Vertical Load

Fig.3.17 - Mio-Plane Steess Distribution In Wall "A" Of Fixed Pyramio Unoer Horizontal Load

Fig.3.18-Benoing Moments In Wall "A" Of Fixed Preamio Under Horizontal Load

Fig. 3.19 - Mid-Plane Stress Distribution In Wall "B" Of Fixed Preamid Unocir Horizontal Loao.

Fig. 3.20-Mio-Plane Stress Distribution In Wall "B "Of Fixed Prramid Unose Horizontal Load

Linear Scale: $1 / 2$ full size Stress Scale: $\prime^{\prime \prime} \equiv 500$ p.s.i.

- - outside surface stress
x-inside surface stress

\qquad
\therefore

Fig. 3.21-Benoing Moments $I_{n} W_{\text {all " }}$ " Of Fixed Preamio Under Horizontal Load

VERTICAL BENDING MOMENTS

Fig. 3.2R-Bending Moments In Wall "B" Of Fixed Preamio Unofe Horizontal Load

Fig. 3.2Fi-Mid-Plane Stress Distribution In Wall "C "Of Fixed Pyramid Under. Horizontal Load

Fig.3.24-Benoing Monents In Wall "C" Of Fixeo Preamid Unoer Horizontal Loas

Table 4.1-Stresses In Simply-Supported Preamid. σ_{x} Stresses.

N.B. STRESSES IN p.S.i. Compressive STRESS t Ve.

TAbLE 4.2-Stefsses $I_{N} S_{\text {Imply }}$-Suppoette Preamid. $\sigma_{y} S_{\text {TRESSES. }}$

N.B. STRESSES IN P.S. \angle. COMDRLSSIVE STRLSS T De

Table 4.3-Steesses In Simply - Supported Pyeamid. Txy Stresses.

N.B. STRESSES IN B.S.i.

Table 4.4 - Stresses In Fixed Pyramid
Rectangular Net Solution

N.B. Conpegssive. Stets -de.

Table 4.5 -Stefsses I_{n} fixeo Pyeamid: Square Net Solution.

N.B. Compressive Steess -ue.

Fig. $4.1(a)$

Fig. 4.1(b)

Fla. 4.1 (c)

$\frac{\text { Fig. 4.3- Limason OF Pascal Assumotion Foe Noenal }}{\text { Steess Disterbution AT Botrom Eoge OF Wall }}$

Fig. 4.4 - Rotational Equilibrium Of An Adjoining Wall

Fia.4.8-Boovoser Teactron Assumotrons foe Borton Foos O\& Wath

Fig. 4. 12 - Main Matelx in uteess runction volution

Fia.4.13 - Theoretical And Experimental σ_{x} Stress Distributions In Walls of Simply - Supported Pyramid

Linear Scale: $3 / 4$ full size
Stress $S_{\text {calk: }} /{ }^{\prime \prime} \equiv 200$ p.s.i.

- theoretical (mean) curves - - experimental curves
- theoretical case 2 values

Fig. 4.14 -Theoretical And Experimental σ_{y} Stress Distributions IN Walls Of Simply-Supportes PyRamid

Fig. 4.15 - Theoretical And Experimental Try Stress Distributions In Walls Of Simply -Supported Preamid

Linear Scale: $3 / 4$ full size
StRess ScAlE $=1 " \equiv 200$ p.s.i.

FIG. $4.16(a)$
Type OF SiDe LOADing Suggested By Experimental Results.

DEFORMED SHAPE (EXAGGERATED)

Fig.4.17-Equilibrium Of An Adjoining Wall

(a) Side Elevation

Fig. 4:20-Theoretical Ane Experimental σ_{x} Streess Disteibutions In Walls of fixeo Preamio

Fig. 4.21 - Theoretical And Experimental σ_{y} Stress Distributions In Walls Of Fixed Preacid

Fig. 4.22 - Theoretical $\widetilde{T}_{x y}$ Stress Distribution In Walls Of Fixes Pyramid

Linear Scale: 3/a full size
Stress Scale: $/ " \equiv 200$ p.s.i.
-a square net solution --o. rectangular net solution

Fig. 4.23-Sauare Net For

TAse 5.1-Exoeemental Steesses $I_{N} W_{\text {all }}$ "A". Case 1

Table 5.2-Experimental Steesses In Wall "B". Case 1.

TasLE 5.3-Expermentic Stesses IN WaLL "C" Case 1.

Table 5.4 - Experimental $S_{\text {tresses }} I_{n}$ Base Plate. Case 1.

TabLe 5.6 - EXPERIMENTAL StRESSES In WalL "B". Case 2 .

Table 5.7-Expermenval STeesses $^{2} I_{N} W_{\text {all }}$ "C". Case 2.

Table 5.8 - Experimental $S_{\text {tresses }} I_{N}$ Base Plate. Case 2.

Tase 5.9-Expermental Steesses Tu Wacl A : Case 3 .

Table 5.10-Experimental Stresses In Wall "B". Case 3.

Table 5.11-Experemental Steesses In Wall "C". Case 3 .

Table 5.12 -Experimental $S_{\text {tresses }} I_{n}$ Base $P_{\text {Late }}$. Case 3.

Fig. 5.1 -STEEL MODeL TRUSS

2) FOR OETAILS OF WELDING,

SEE FIG. 5. Z.

Fig. 5.3 - Jig for welding of pyramid walls.

Fig. 5.4 - Set-up for welding of base plates to pyramids.

Fir. 5.5-Location $O_{f} S_{\text {tran }}$ Gauges

Pyramid With Strain Gauges

- STRAIN GAUGE POSITION
(INSIDE \& OUTSIDE FACES)

$W_{A L L}$ ' B '

BASE

Fig. 5.6 - Loading Cases For Steel Truss Model

Fig. 5.7 - Test on steel model; Loading case 3.
'Solartron' shown at left of picture.

Fig. 5.8 - Test on steel model.
Close-up of pyramid with strain gauges.

Fig. 5.9-Reference Diageans For Tables 5.1 To 5.12.

For Loading cases. SEL FIG. 5.6.

Sign Convention: Tensile Stresses Positive

PYRAMID WALLS

BASE PLATE

Fig. 5.10-Mid-Plane $S_{\text {tres }}$ Distribution $I_{n} W_{\text {all }}$ 'A'. Case 1. vertical direction \mid

Linear Scale: $1 / 2$ full size
Stress Scale: I" $\mathrm{I}^{\prime \prime} 20,000$ p.s.i.

Vertical, Stresses

Fig. 5.II-Vertical Mid-Plane Stress Distribution In Wall 'B'. Case 1.

Linear Scale: //2 full size
Stress Scale: $/{ }^{\prime \prime} \equiv 20,000$ p.s.i.

- - outside surface stress
x - inside surface stress

Fig. 5.12-Horizontal Mid-Plane Stress Distribution In Wall 'B'. Case 1

Linear Scale: $1 / 2$ full size
Stress Scale: $/ " \equiv 20,000$ psi.

- outside surface stress
x - inside surface stress

Fig. 5.13-Mio-Plane Stress Distribution I_{n} Wall 'C'. Case 1.

Linear Scale: $1 / 2$ full size
Stress Scale: $I^{\prime \prime} \equiv 20,000$ p.s.i.
vertical direction

Vertical Stresses

COMPRESSION

Fig. 5.14-Mio-Plane Stresses In Base Plate. Case 1.

$\frac{\text { Fig. 5.15-Mio-Plane Stress Distribution In Wall 'A'. Case } 2 .}{\text { 2. }}$ vertical direction 4

Linear Scale: $1 / 2$ full size
Stress Scale: $I^{\prime \prime} \equiv 20,000$ p.s.i.

Vertical Stresses

COMPRESSION

Fig. $5.16-V_{\text {ertical }}$ Mio-PLAne Steps Distribution. In WaLl 'B'. Case 2.

Linear Scale: $1 / 2$ full size
STRESS SCALE: $\prime^{\prime \prime} \equiv 20,000$ p.s.i.

- - outside surface stress
$\times \ldots$ inside surface stress

Fig. 5.17-Horizontal Mid -Plane Stress Distribution In Wall 'B!' Case 2.

Linear Scale: y full size
Stress Scale: $/ " \equiv 20,000$ p.s.i.

Fig. 5./8-Mid-PLane Steess Disteibution In Wall 'C'. Case Z.

Fig. 5.19 - Mio-Plane Stresses I_{n} Base Plate. Case. 2.

Transverse Stresses

Linear Scale: $1 / 2$ full Size
Stress Scale: $I^{\prime \prime} \equiv 40,000$ p.sic.

Fig. 5.20-Mid-PLANe Stress Distribution $I_{N} W_{\text {all }}$ 'A'. Case 3.

Fig. 5.21 -Vertical Mio-Plane Stress Distribution In Wall 'B'. Case 3.

Linear Scale: $1 / 2$ full size
Stress Scale: $1 " \equiv 20,000$ psi.

- - outside surface stress
x - inside surface stets

Fig. 5.22 - Horizontal Mid-Plane Stress Distribution In Wall 'B'. Case 3.

Linear Scale: $1 / 2$ full size
Stress Scale : $1 " \equiv 20,000$ p. si.
vertical direction

- - outside surface stress
x - inside surface stress

Fig. 5.23 - Mid.-Plane Stress Distribution $I_{N} W_{\text {all }}$ 'C'. Case 3.

Fig. 5.24 - Mid -Plane Stresses In Base Plate. Case 3.

Fig. 5.25 - Load-DeELECTION Geaphs. CASE 1.

Fig. 5.26-LOAD-D EFLECTION GrAPHS. CASE 2.

Fig. 5.27 -LOAO-DEFLEction Geaphs. CASE 3.

$\frac{\text { Fig. 6. } 1 \text { - Trapezoidal Plate And Loading }}{\text { (From paper by B. Klein) }}$

$t=$ plate thickness.

