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2. 

ABSTRACT  

The magnetic susceptibility of some dilute alloys was measured between 

2 and 300°K by a force method. The main part of the work was on 0.1 at % 

solutions of Cr, Mn, Fe or Co in the 1, c and y -phases of the copper-zinc 

system. The results show a striking variation of the atomic moment per 

solute atom with composition of the matrix. Mn carries a moment in all 

those phases. This moment varies strongly with Cu-Zn ratio in the  

but less strongly in the'r-phase where the value is surprisingly small 

(about 112B  per atom). Fe is not magnetized in either Zn or the Zn-rich end 

of the 6-phase; but at the Cu-rich end of this phase the moment is about 1.5µB. 

The solutions of Co in the Y-phase have a temperature-independent susceptibi-

lity, but for Cr dissolved in this matrix a small moment is observed. Co and 

Cr in the Y-phase give moments of about 1.2µB. A survey is made of recent 

theoretical models for alloys and the results of this investigation 

compared with these. 

Measurements were also made on solutions of Fe in Mol  Rh and Ir, the 

results of which can not be easily interpreted in terms of any existing 

theory. 
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INTRODUCTION 

It was shown by Jones1  in 1953 that the valency of a transition 

metal in solid solution can be expected to vary with the electron 

concentration in the conduction band of the solvent. Coles2 then pointed 

out that experimental data which can be interpreted rather directly in 

terms of these ideas aro the magnetic properties of dilute solutions of 

a transition metal. In the last ten years a large amount of work has 

been done on the electrical and magnetic properties of these solutions, 

mainly with a noble metal as solvent. In all the alloys investigated, 

anomalies in those properties were observed. The results also show that 

the state of the solute is strongly dependent on the electronic structure 

of the solvent. Theoretical models have been developed which describe 

some of the observed anomalies qualitatively but no complete interpretation 

of the experimental data has been given. 

It seems likely that some information about the factors which 

determine the state of a solute atom can be obtained from measurements on 

solutions of a given transition metal in a binary alloy system in which 

the ratio of the two components is varied in small steps. A system with 

a large range of solid solutions in which small amounts of some transition 

metals are expected to dissolve is the Cu-Zn system. 

In this work measurements have been made of the magnetic susceptibility 

of termary solutions of 0.1 at % of a transition metal of the first long 

period inn, E andY-phase Cu-Zu alloys to investigate the correlation 
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between the magnetic behaviour of the solute and the properties of the 

matrix. Also measured was the susceptibility of some dilute alloys of 

two transition metals for which anomalies in the electrical resistivity 

have been reported. 



CHAPTER I 
	 10. 

THE THEORY OF DILUTE SOLID SOLUTIONS  

Section A. Impurity States 

§.1 	Introduction 

A dilute metallic solid solution of a solute B in a solvent A is 

a homogeneous mixture of the two metals which has the crystal structure 

of the solvent metal and in which the concentration of B atoms is low enough 

for mutual interactions between those atoms to be weak. 

If an atom B is brought into the lattice, the one-electreA wave 

functions of its outer electrons will overlap and interact with those of the 

band states of the host lattice. The energy levels and wave functions of 

these outer electrons will now be different from those of the corresponding 

states in the pure B lattice. It can be expected that the electronic 

structure of these states will be different for different solvents. On 

the other hand the impurity atom will perturb the periodic potential of 

the lattice and modify the structure of the Bloch states. In transition 

metals of the first long period the outer electrons are those in 3d and 4s 

states, the lower lying states will remain tightly bound to the nucleus and 

resemble those on free atoms. Because the 3d electrons are repponsible for 

the magnetic properties of these pure metals, it can be expected that in 

alloys the magnetic moment per atom of solute and any coupling between 

these moments depends on the electronic structure of the host lattice, as 

is found from experiments. Qualitatively, three different ways of 

describing the effect of solute atoms on the band structure of the matrix can 
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be distinguished. 

Consider an alloy of two elements of the first transition group 

and assume that a solute atom, on entering the lattice contributes all 

its 3d and 4s electrons to the band. The effect of the alloying process 

will be, apart from a change in the total number of electrons, an increase 

in the positive charge at some of the lattice points. The question is 

then how the extra charge will be screened. If this perturbation is small, 

the band structure will be deformed in such a way that around the impurity 

site the charge density is modified and screens the perturbing potential. 

In this case the alloy retains a common band structure. A second 

possibility is that the perturbing potential is strong enough to hold a 

bound state which is then subtracted from the band. Finally, there is, for 

intermediate values of the perturbing potential, the possibility of 

virtual bound state, which is mainly localised in a certain volume around 

the impurity site without being a proper bound state. 

These three models will be discussed in the following paragraphs. 

§.2 	The Band Model  

If the perturbation is small the lattice potential can be written 

as the sum of the unperturbed periodic potential and a perturbing term 

V 	which is localised at the impurity site3. The charge in onorgy pf a 

Bloch stateVit  due to Vp  is to first order LE =.1Pic*(r) Vp clik(r) d3r 



If k is not too near a Brillouin zone boundary 0 ko e 

AE= / 00(E) go  (E) d3r , i.e. independent of k. This means that the 

energy of every state will be shifted by the same amount 6E, so that 
the shape of the density of state vs energy curve will remain unchanged. 

The relation N(E) = No(E + til will hold depending on the sign of the 

perturbation. Here N(E) is the density of states for the alloy, No(E) 

that for tho pure solvent. The results of this description remain 

qualitatively the same if N(E) = N::,  (E + AE) whore %(E) is a function 

slightly different from No(E) , the difference being the result of the 

alloying process. 

The introduction of the impurity potential will also cause a 

redistribution of charge in space. It is convenient to define the density 

i)(E,r) as the number of electrons with energy below energy E per unit volume 

at position r. If the rigid band model holdsp(Elr) =p0  (E- V
P 
 ,r) where 

P o 
	is the density for the pure solvent. The potential V at the impurity 

site is related to the resultant screening charge density by Poissons 

From this result it is clear that a high density of Bloch states at the 

equation4: AV = -4TetV)= 4702[P(EFt) 4)0(Ep)], where Ep  is the Fermi - 
energy. This leads to the equation V = - e 	/ s 	where r 2- p r 	s 47To2N(EF) 

rir  

Fermi level is essential for effective screening. A typical value of 

N(Ep) for a transition metal is 1 state per eV per atom which gives a 
1 o 

screening radius rs  -3. A, in this case the perturbing potential will be 

screened within the impurity atom. 

ik.r and 

12. 
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The dependence of the saturationmagnetization on alloy composition 

of the binary alloys systems Ni -Fe, Ni -Co and Fe-Co (see Fig I) can be 

explained on the common band model3 

I 7.  
ti all 2.5  
7  
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Assume a 3d band as in Fig.2a, decoupled into two parts for different 

spin states. If an impurity is dissolved, 

the perturbing potential, i.e. the excess 

nuclear charge Z will be screened by 

the part of the band with the highest value 

FIG. 2a. 

NIE) 

  

of N(EF), in this case that for spin down states. If the screening 

radius is small, the moment at an impurity site will be the moment on a 

matrix atom /4, minus ZgB  , while gm  remains unchanged. 

geutron diffraction measurements5 show that in Ni-Fe, Fe-Mn, Ni-Co 

and Fe-Co an atomic magnetic moment is localized at a lattice site.; This 

does not necessarily mean that the charge density is also localized nor 

that a band model is the only explanation possible but the results are 
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consistent with the common band picture. The transition metals of the 4th 

and 5th period do not show ferromagnetism and an analysis as for the alloys 

of elements of the first transition group can not be given. It seems 

however likely that in general a picture as given above will be justified for 

alloys of elements with a difference in atomic number of one or possibly two 

units. 

The common band picture has been applied mainly to alloys of non -

transition transition elements. Many binary alloy systems of Cu and Ag with different 

elements of the IIB, IIIB and IVB sub group have similar phase diagrams. 

The values of the average number of conduction electrons per atom a  - at which 

a given phase boundary occurs in different systems lie close together. That 

e isan the ratio - 
a 
	essential parameter in the description of these alloys 

indicates that the band model is applicable here. 

§.3 Bound Impurity States.  

A different situation arises if the potential Vp,  defined in the 

previous paragraph is increased so that a bound state can exist. Slater and 

Koster
6 made a calculation for a simple cubic lattice, containing an 

impurity potential at one site, and showed, that the potential, if larger 

than a certain critical value, will remove a bound state, having a wave 

ar  e function of the form 	, from the top or the bottom of the band, 

depending on the sign of the perturbation. For values of V smaller than 

the critical value the energy levels of the band were found to remain almost 

unperturbed. 
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If the screening of the impurity is done by electrons in bound states, 

it can be expected that the screening radius will be small. 

The variation of the saturation magnetization of Co -Mn, Co-Cr, Ni-Mn, 

Ni -Cr and Ni+V (see Fig.1) with alloy composition was described by Friedel3  

in the following way. 

Assume a 3d-band split into two parts corresponding to different spin 

states. The solute perturbs the lattice potential strongly, and a bound 

state is removed from the top of the full sub-band to an energy above the 

Fermi-surface of the alloy (Fig.2.b). This state is five-fold degenerate 

N(EI 	 and five electrons will make a transition 

from a spin-up state, mainly to the other 3d 

sub-band. Neutron diffraction experiments8 

for Co-Cr, Ni-Cr and Ni-V show that the 

presence of the Cr or V atoms affects the 

Ni sites, consequently the bound state must 

E F 	
FIG 2'6 

moment at neighbouring Co or 

extend over a rather large volume. 

§.4 The Virtual Bound State.  

a. General remarks.  

Between the two extremes of a weak perturbing potential which causes 

a shift of the density of states curve and a strong one which pushes a 

bound state out of the collective band an intermediate situation is possible, 

the virtual bound state9  which, although not being a proper bound state, 

is localized in energy and space. The concept can be introduced from the 



a. 

14 —> 

C. 

FIG3 

16. 

consideration of the scattering of an electron by a spherically symmetric 

potential. The wave equation for a particle with angular momentum 1 in 

such a potential is 

. 2 a2x1(1+1)h2  

2 
+ [V(T) + 	 

2m 	dr 2mr2 

 

x Exy 

 

the wave function for the particle is 0(r,01p) = R(r) y(0,9) and R(r) 

V(r) is assumed to be a localized potential, V(r) = 0 for r>a. The 

angular momentum term *2  1(1+1) 	can be seen as an additional potential 

2mI2  „ energy. If the potential V(r) is not strong enough to contain a bound 

\ state, the effective potential V(r) +
2 1(1+1)  can have the form as in 
2mr2 

Fig.3a, with a potential barrier at r=a. 

X (r) 

r 

In general, the wave function of an 

electron of positive energy<Vb in 

this kind of potential will be of the 

form as given in Fig.3b, but for some 

values of energy 4r  with 01E11% 

solutions as in Fig.3c are possible. 

This situation can be imagined as an 

incident electron, being "trapped" for 

a certain time between the barriers, 

before being scattered again. In this 

case a resonance maximum will occur in the scattering cross—section as 

function of energy at the energy E. 



17. 

A state as in Fig.3c is called a virtual bound state. An electron 

will have a certain lifetime Tin this semi-bound state, to this time 

corresponds an uncertainty in energy AE 

This means that if 1 1  0 , it is possible to have in a localized 

potential field a state with positive energy, which is localized in energy 

and space without being either a bound or a free electron state. 

The phase shift 6 as function of energy for a particle, scattered 

by a square well which is not deep enough to hold a bound state, is 

shown in Fig.4a. If the well is deep 

IT 

a, 

27 

19 

0 	 -10 	E 	2 0 fiV 

FIG.4 The phase-shift of the 1 = 2 
partial wave for a free particle of 
ener&-/ E, scattered by a square 
po'Gontial well of radius 1./0. The • 
aeon. of the well in eV .is indicated 
on the cul:es. After ref, 10 

concept of a virtual bound state is to consider a bound 3d-state having 

a sharp energy level which lies in the range of the energies of a band. 

Interactions between this state and the states of the band will cause 

a broadening of the energy level. Qualitatively this can be seen as 

follows. Consider two non-interacting states A and B, having Energy Ea 

enough for a bound state to exist, 

6' will vary as shown in Fig.4b. 

A maximum in the scattering cross-

section cr.  AZ 1 (21+1) siia'1 k2 
will be observed at the energy for 

which S 	
IT. 	, this energy can be 

taken as the centre of the virtual 

state. 

A different approach to the 
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and Eb  respectively. If an interaction H is introduced the perturbed 

energy-levels are found fr.= 

Ea - E 	Hab 
Ea  + Eb  

= 0 giving E 	 
2 ti(Ea7E02+ 4H2ab 

Hab 	Eb  - E 

 

The effect of the perturbation is largest when Ea  = Eb 	If B is a 

state from a band and the interaction of A with all states B . is 

considered, the perturbed energy E;1.  will be broadened in energy and shifted 

with respect to Ea. The perturbed wave function of A will contain terms 

that depend on the B-states, i.e. the wave function of A will become 

mixed with those of the band-states. A proper treatment along these lines 

(1.4d) shows that the broadened A-state is identical with the resonant state 

discussed above. 

The work by Friedel, who was the first to apply the concept of a 

virtual bound state is solid solutions, will be discussed in section 6 below. 

In section c and d a summary of the more precise formulation as given 

by Wolff, Clogston and Anderson will be given. 

b. 	The work of Friedel.  

Friedel showed 11 that the total number of states, bound and unbound, 

introduced in a Fermi-gas below an energy E by a localized potential V 

is equal to n(E) = 	T (21+1) 61(E) where 61(E) is the phase shift of 
the l'th partial wave for the scattering by V of an electron of energy E. 
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The density of states for the virtual state as a function of energy can 
dn(E) 2 '15'1  now be written in terms of the phase shifts as N(E) = 	= IFF 1 %21+1) 
dE 	- 	dE 

and an l.ternative definition of the centre of the level is that energy 

where 
1  is greatest. 

dE 
Blandin and Friedel, when investigating the behaviour of solutions of 

transition metals in noble metals (in particular Cu-Mn) calculated phase 

shifts for 1=2 waves as function of energy of the incoming wave for a square 

well of different depths.
10 The radius of the well was taken as 2.7 atomic 

units = 1.4gi.e. the atomic radius of copper. The numerical results 

showed: 

a) that the energy of the virtual state can be taken to be limited 

to a certain energy range. The centre of the state was defined as the 

energy E0  for which N(E) reaches a maximum and the width as follows. Let 

n(E) be the total number of states up to energy E. The width is then 

defined as the difference E"-E' with these two energies defined by the 

relations n(E')= n(E0) and n(E") = n(E0). 

b) That Eo 
moves to higher energy if the depth of the potential well 

is reduced. 

c) that the width of the state is proportional to the energy E0, 

measured from the top of the well. Earlier calculations showed that for 

a given depth of the well the width of the state decreases with increasing 

angular momentum. 

Friedel first introduced the concept of the virtual bound state to 

describe the observed variation of the residual resistivity of a number 
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of dilute alloys of Cu and elements of the first transition group
12 In 

Fig. 5 the difference between the residual-resistivity of binary alloys 

containing 1% of solute and that of Cu, 6p is plotted as a function of 

atomic number of the solute, Z. 

FIG.5 The difference in the residual 
resistivity of binary .6olutiOns of-1 
of a transition metal in Cu and pure 
Cu. Z is the difference in atomic 
number between the solute and Cu. 
After ref. 3. 

The experimental results could be explained on the assumption that the 

3d states of the transition metal lie close to the Fermi level of the alloy. 

Further it had to be assumed that this state is split into two parts with 

different energy, this can be due to : 

a) crystal field splitting,removing the degeneracy of the 3d states. 

In a lattice of cubic symmetry a 

charge distribution as shown in 	Y 
(2 	- Fig. 6a, belonging to a state of 	CI S---.5t --C4-2-  

g
-X 

xy 

2 symmetry 	will have a different 	6 a. 
r  

energy from that shown under B, 	FIG. 6 (AFTER R E F. 13) 
2 2 

belonging to states like —3---c=—Y-- , 
r2 
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b) Coulomb interactions between d•-states, 

c) exchange interactions between d states, this was taken as the 

cause of the greatest splitting, as a result the two sub-levels will contain 

states with different spin functions a and P. 

The resistivity and magnetic susceptibility results were explained 

in terms of the following picture. (See Fig.7). 

Both halves of the 3d level, containing 5 states each, lie near or coincide 

with the Fermi-level Er  and are broadened because of interactions with 

conduction electrons. The extra residual resistivity observed is due to 

resonance scattering of conduction electrons of energy EF  via the 3d state 

and related to the density of virtual states at EF. A maximum in the 

vs Z curve is now ascribed to the fact that for the corresponding 

solute the energy of one of the 3d states, either a or pl  coincides with EF. 

The magnetic moment is proportional to the difference in occupation between 

a and the p state. The splitting between these states has to be greater 

than or at least comparable to the width of the state to have any meaning 

as such. If the splitting is swamped by the broadening no atomic moment 

will be observed, and only one peak in the Apvs Z curve. Both conditions 

are fulfilled in solutions of the metals of the firsttransition group in 

Al. 
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c. The Model by Wolff and Clogston14,15 

The possibility of the existence of a virtual state and the conditions 

under which it can carry a magnetic moment were investigated in more detail 

by Wolff and Clogston. The general approach is that of Friedel, a single 

band of conduction electrons is perturbed by the potential of a single 

impurity atom. It is shown that a resonance in the scattering can occur 

at a certain energy and that the wave function of the state, having this 

energy is concentrated around this potential. 

The Schrodinger equation for the scattering of a conduction electron 

by the impurity potential V(r) is written as [Ho  + V(r)]0= EO M, where 

H0 
is the unperturbed one-electron energy operator, E the energy and 0 the 

wave function of the electron. A solution 0 now satisfies the relation 

(r) 
	

Tsk  (s.) - I g(42) V(s1 ) ''(r') dr' 
	

(2) 

where k
(r) is the unperturbed Bloch wave function having a wave vector k 

and energy Ek  and g(r r') a function which satisfies the relation 

(H0  -E)g(r 	S(E-r1 ). 

Equation (2) can be written as 

(z) -p (r) +(-1- 	if 
27T 

	
3 k (-11)C6':' 	) 

s 
	E 	k'2 + iS 

	V(E')0(s9d3r1  

1 
or symbolically 	k  + 

  

V(3)   
Ek  — Ho  is 

d3k' 
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The wave functions are now written as a linear combination of Wannier 

functions a(../.: - R.) which have the property of being localized around the 

	

3 	-ik.R. 
lattice site R.

J 
 and are defined as a(r-R.j). -!-- i e ----i)k , where N is 

- 	
- _  

5 - 	- 
the number of lattice sites in the crystal. The wave function is then 

(r) = R 1-1(11j) a (E - IIi) 	(4). After substitution of (4) in (3) and 
-J 

with the help of the fact that V(r) is localized at one lattice site R 

i.e. thatia*(r - Ri) V(r) a( Ri) d3r = Vo  6(Ri  Ro)S(Rj  Ro  )1  it - 

	

is found that U (R 	 elk')   -o 	(5) 
vo  F(E) ] 17-vo do(E) 

  

where F(E) = P 
 

 	de at lim 
o E e 	 0 

P ( 6) 
cD+ f —de 

Ed-eS E- Ej 

   

and p(E) is the density of states in energy of the band. If 1 -Vo  F(E)=. 0 (6), 

U (Re) reaches a maximum and consequently the part of gr) localized at R o 

also. The energy at which this occurs is the required resonance energy. 

If the resonance-energy E0  lies outside the bandy then P(E0) = o and U(20)-100 

as E o 	This means that there exists a bound state with energy Eo. 

The question is now to find 

the energy E which satisfies 

equation 6. 

Iff)(E) has a parabolic form 

as is shown in Fig.8. F(E) is 

as indicated. For an attractive 

potential, Eo and E1  are 
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solutions of which E1 represent an unstable state. If Eo lies to the left 

of Eb, this solution will be a bound state. 

Clogston used the same model and came to the same result in a slightly 
ik.Ri  

ti(EI differentfonnulationasfollows.IfV(r)Eothen.) .e 	. If 

now again V(r) is localized at the site —o  R , the perturbed U(20) is found 
ik.R 

V
o 

e ---0 
gE (Ei7E0) 

1 + Vogo  (o) 

1 	e ik(R. 	R ) 
where gE(14-R ) 	k z  

Ek 
	E 

So far the treatment is identical to that by Wolff. If this expression is 

expanded in spherical harmonics the l=o part is, taking ito  = o 

Vo  30(o) 
jo(k.Ri) 	gE(IL 711o)  + vogE(o) 

The other terms (l/o) are not affected by V since ji(o) = o for 1 'o. 

(This does not imply that the wave function (eqn. 4) has 8-character). 
1( 

For large values of R., (7) can be written as 	sin[ kR.+ y(E)] with kR. 
/7f1 (E) 	 1 

y(E) = arc tan 	The condition for resonance is 1r= 
IT 

F(e) - 1 
V 

1 which leads again to F(E) - V 	If K(E) as found from the above 
o 

mentioned function f(E) is plotted vs E, (Fig.9) a relation similar 

to that found by Friedel emerges. 

to be u(iti) = e 	- 

(7). 
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From the sum rule tha density of states of the extra state is found as 

d2 	 11r 	 the is large. — 	this means that the level will be narrow if dE 2 e   
If the potential Vo  is increased, Eo  will move to the left, become 

sharper and to the left of Eb  will be an energy level in the strict sense 

(in the case U(Ro) -,nothere is a finite value of U without an incoming 

wave, i.e. a bound state exists). This calculation also shows that the 

state is narrow if p(E) is small for the function p(E) as shown. 

To investigate the conditions under which the virtual state can be 

magnetized Wolff then adds a spin dependent potential to V and considers 

the stability of this polarization in a liartreeFock model. The modified 

t 	n 
V for spin up and spin down electrons, litoV and V+40V • respectively, 

leads to different values of Ut(Ro) and U(Ro). 

For energies near E0  it Can be assumed thatV(r)1U(Pda(r—R0) 
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If this is substituted in the expression for the energy for the Hartree -Pock 

model the exchange energy is found to be cancelled by the Coulomb integral 

for states with parallel spin. The energy for the spin-up is found to be 

proportional to 

 

2 

(l'ID) 	I 

 

 

J Xfilied 
states 

(8) 

   

where J 41a(ri-R0) 

 

2 

 

a (r2  - Ito) 
2 dr1  dr 2 

 

r -r -1 -2 

   

„ 
The result is now that a ohangeSV 	

t 
will cause a change in U (R o) (Eqn.5) 

which according to (8) causes a change in energy of the spin-down state, 

4 
which is put equal tooPV . The same argument holds if 6V and Slit  are 

interchanged, so that two relationseVt = f(614 ) and6V4  = f ( fit) are 

obtained which hold if6V<KV. These equations can be solved numerically. 

n 	 / 
It is found that these equations have either two solutions with oVt  06V4. 

t 
and an unstable one with 8V 	 ev or one stable solution with(Nt =S V4 

Only in the first case is a magnetic 

the stability of this state is 

EFo 

state 
a (nit ) 

possible. 	The 

>1 	which leads 

2 -4'

J 	
, 

condition for 

to 
a (Svi• 

E 

) 

2 
< 1 

vpoF 

where A, the width of the state, is defined as F'(E) 	 0 E  P(E  0 )  

It can be seen that a moment is possible if the virtual state lies close 

to the Fermi-energy and is relatively sharp. 

17"Po 
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The integral J is a Coulomb integral and no exchange energy appears 

in this theory. This is however due to the fact that the exchange integral 

is cancelled against part of the Coulomb integral. The magnetic splitting 

must be considered to be due to the total of Coulomb and exchange 

interactions. 

d. The Theory by Anderson 16  

The nature of the virtual state was investigated by Anderson from 

the opposite approach. A localized d state with energy in the range 

of that of a band of Bloch states interacts with these states and is 

broadened in energy. The conditions were also investigated under which a 

stable magnetic state exists. 

The theory is given for a single, nondegenerate level. One important 

parameter in the theory is the Coulomb integral between d-electrons 

2 

L 

2 
U 	

9d(E-1 I 	d.(1'2 )   2  d3r1 d3r2 	9 where d(r) is a 
I 

e

-Z:  
localised d wave function. As in the treatment by Wolff the exchange 

integral is cancelled against the Coulomb integral for states with parallel 

spin and in the Hamiltonian for the problem only a term Be = U net na4, 

appears, representing a repulsion of opposite spins; n
d is the number 

of d states with spin up. 

Another important quantity is the interaction of the d state 

with the Bloch states H
sd Vdk C* c +0

* 
c ) k1 	kcr dcr 	kir 

the index k refers to Bloch states, 

cr refers to the spin. 
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The total Hamiltonian of the system is written as H = Hof+  Hod+ H+  Hsd' 

where Hof 
is the unperturbed free electron energy Hod  the unperturbed 

energy of the d-level = Ed(ndt  + nu). Using Hartree-Fork theory it is 

shown that there is a state of the perturbed system having spin crwith 

energy Ed  +AEd + U d' 	where<n 	:> is the average number of 
d9-o- 

electrons in the d -state with spin -c r, A dk > pk
(E)7 pk(E) the 

density of Bloch states in energy and AEd  a shift in energy which is 

disregarded further. The wave function of this one-electron state is now 
i Et 	lb; t tA 

(D-b) =cp (r) e 	9(1') 	. e 	The lifetime 

of an electron in this state is it- 	to_this corresponds a width in energy 

= A . This means that the perturbed system has a state with energy 

E= Ed  +U<nd 	
and a width in energyA, i.e. the required virtual 

state. 

For For the density of perturbed d -state with spin 0  is found 

1 	A  
pds(E)  = Tr (E E-)2+ A2  

pd 
o" 
 is plotted in Fig. 10. as function of 

f C71) A  

r  

   

FIG. 10 
The 	o v - 

and dcv:n 



The occupation of the levels with different spin is now 
cF 1 	Ed. - 6F + U <1.14>  n 	<n. > 	tr 0  p dor (s)d = 717 cot- 

di• 

and a similar expression for n a<n > 	 

these two equations can be solved 

numerically. A solution with 

n+ / n represents a magnetic 

state. If two parameters x and y 

aF - Ed  are defined as x::: 	and 

U y =z , the equation ( 9) becomes 

coUrn+  = y(n_ - x) 	0 

cotTrn_ = y(ni.  - x) 	0FIG.11 
The functions n-f(n.) and 

The transition from magnetic to non-magnetic behaviour is determined by the 

condition that the two curves n+ = f(n ) an = 
and n_ = f(n}) touch at n+=n-=nc. _ 

7T 	 n_ For the first curve
an  

, for the second a—n  = - y sin
2  

an
+ 0 

7r 
_ysin4Tn+ 	+ 

so that the equations sin`71-n c y . IL and cotTnc= y(nc -x) define an area in the 

x-y plane, within which a magnetic solution is possible. i.e. the shaded 

area in Fig. 12. It is now seen that 	1.0 

in this model the conditions for the 

existence of a moment are, an 

unperturbed d -level not too far from 

the Fermi-energy (I x111 ) and a value 

of the Coulomb integral large compared with the width of the state. 

29. 

(1) 
A 

0.5 

0.5 	1.14. 	I.O.  

1.0 Tyy 

FIG. 12 
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The theory was extended to a twofold degenerate level, in that case 

the condition for the existence of a moment is U 
sin2  n 26,  

where J is the exchange integral, which is favourable forcthe formation 

of a magnetic state. If U=o, the condition for splitting is 3> 2 VA, so that 

the exchange energy (1 to 2 eV) only can not magnetize any level wider than 

1 
eV. 

In this treatment, the conditions for the stability of a magnetic 

virtual state are similar to those found in the scattering model. Both 

theories contain however parameters that are difficult to estimate (the 

function F(E) and the value of V
o in Wolff's and the matrix element Vsd 

in Anderson's treatment of the problem) and detailed comparison of either 

theory with experiment impossible. An estimate of the width of the state 

can however be made. In a free Mn atom the 3d-4s interaction is found 

from spectroscopic data to be of the order of 0.5a. If a typical value 

for a transition metal, p(E) = 2 state per atom per eV is taken, the 

width isA =-11eV. For a transition metal dissolved in Cu where p(E) 1 state 

per atom per eV the width is then of the order of 0.1 eV. 

The variation of the atomic moment with temperature. 

The theory of Anderson was extended to temperatures above zero by 

White and Clogston.17 

+co 
For T ( ol  equation (9) becomes n (T). p ,-(E) f(E,T)dE 

-00 w  
where f(E,T) is the Fermi-Dirac distribution function. This expression was 
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calculated numerically for several values of kT 
	

The results show 

that for a value of the Coulomb—integral of 10eV as for a free transition 

metal ion, a change in the atomic moment is either extremely small, or 

occurs at temperatures far above room temperature, so that this work does 

not predict any effects that can readily be checked by experiment. 
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SECTION B. INTERACTIONS BETWEEN MOMENTS ON SOLUTE ATOMS 

§.1 Introduction 

Experimental results for many dilute alloys suggest that interactions 

between magnetic moments on solute atoms must be assumed (e.g. in the 

systems Cu-Mn, Cu-Fe). In these alloys the distance between two nearest 

solute atoms will, for the most part be larger than the nearest neighbour 

distance of the lattice, e.g. face-centred cubic lattice containing 0.1 at % 

of impurity, 98% of the solute atoms have no nearest neighbours of the same 

kind. Under these circumstances the wave functions of the d-states of these 

atoms will not overlap, direct exchange and Coulomb interactions can not 

be held responsible for the apparent coupling, and a different mechanism 

of longer range must be operative. 

Much attention has been given to the concept of a spin-polarization of 

the extended states of the crystal in a certain volume around a solute atom. 

If such spin-distributions, centered at different atoms, overlap, the solute 

spins will interact via this mechanism. This type of coupling was first 

suggest by Zener18 for the interactions between atomic moments in pure 

2 transition metals. Kasuya9  and Yosida0  adapted the model given by Ruderman 

and Kittel for the polarization of conduction electrons by a nuclear spin to 

apply to the polarization of 4s-electrons in a dilute Cu-Mn alloy by the 

spin of a Mn atom. In this model the 3d-electrons which give rise to the 

moment of a solute atom were assumed to be in bound states. 

For the same alloys Blandin and Friedel considered the case of a 

212  weaker impurity potential102 	i.e. the case that the 3d-state on a Mn atom 
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becomes a virtual bound state. The 3d-wave functions will then become 

mixed with the 4s-wave functions of the Bloch-states and extend to a large 

distance from the solute atom. 

A completely different mechanism, a spin polarization of the electron 

gas extending over the whole volume of the metal and stabilized by the 

solute moments was proposed by Overhauser22. 

§.2 Polarization of conduction electrons (Yosida).  

The model of Yosida20 was developed for a dilute solution of Mn in Cu. 

The following assumptions were made : 

1. The 3d electrons on the Mn atoms are in bound states and there 

is no overlap of wave functions of electrons on different atoms. 

2. The orbital 3d moment vanishes. 

3. The conduction electrons do not interact with each other and 

4. have wave functions of the Bloch type. 

The effect of exchange interactions between 4s conduction electrons and 

3d electrons on the Mn atoms is considered. These interactions are represented 

by an interaction of the form J. 	, where s.
a  is the spin of a 4s-electron - 

SthatofaMnatomandH
in  the 3d-4s exchange integral. This Hamiltonian, 

in the form given by Kastwa, is treated as a perturbation of the system. 

From the first order perturbation of the conduction electron wave functions 

the following expression for the volume density of 4s electrons is obtained: 

p +(r) = ; 4(3n)2  
J(N) 	n 	-n 

2k,Ir - R IF (2ktntE -R I) sz  (10) E
f 



0.: 

• • 

FIG. 	13 
The value x = 21cFr with k the 

• Fermi-velocity and r the nearest 
• 
•• .1 neichbour distance in Cu is 

indicated by the arrow. 
1 I 
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where 2n is the number of conduction electrons, N the number of lattice 

sites in the crystal, V the volume of the crystal, Er  the Fermi energy 

and 	the corresponding wave vector. J 	k') is the exchange integral 

between a conduction electron and the d-core spin of a Mn ion and Rn  the 

coordinate of a Mn atom with z-component of spin Sz  . The subscript + 

refers to the spin function of an electron, the function F(x) is defined 

as F(x) = 	(x cos x - sin x). The energy of this system i6 calculated 

to second order and is found to contain a term representing the energy 

of the Mn spins as a result of this indirect interaction : 

( 3n2)2 

N 

2Tr 	
) 

a(0,2 	z 	
1 n,m Ef 	solute atoms 

241  R - R 1] 
I 

S 	. 
-T1 

S 
111 

3 	!O 

The functions F(x) and xF(x) are plotted in Fig. 13. It becomes clear that 

in a Cu-Mn alloy the spin polarization is concentrated near the Mn atoms. 

The absence of a shift in the nuclear resonance of the Cu and the electron 
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spin resonance of the Mn atoms which were expected by Owen et al. as the 

result of a homogeneous polarization seems to be explained by this result. 

It has been put forward by Abrikosov and Gorkov
23  that the last stages 

in YosidaIs calculation are not correct and that the correct expression for 

V 
(  

the charge densities is p± V 	
J
E
o) 

+ c 	s
z 
 ) instead of eqm.(10). 

— 	F  

Here c is the impurity concentration and Sz  the average z-component of 

the impurity spin. If the following values are substituted: J(0)= 0.3eV, 
.011•011.1 

EF = 7eV , the Fermi energy of Cu, c = 0.1 at % and Sz  is found with the 

help of the Curie-Weiss law for the susceptibility of a system of moments 

of 4.8 µB 9 i.e. approximately the value for Mn in Cu and the system is in a 

field of 1040e , a spin polarization of the same order of magnitude as that 

due to the Pauli-paramagnetism in Cu in this field is found. 

The critical temperature,obelow which the homogeneous polarization is 
N.S(S+1) a';.1 PT) 

12µB2 .k 

impurity atom, X 0  the paramagnetic susceptibility of the electron gas in 

the absence of impurities and a =f J(r) d3r with J(r) the function 

representing the interaction between an impurity and the conduction electrons. 
N a SX 

At T=o, the spin polarization per unit volume is s =
2 	In a 

411B  
small external magnetic field H, the contributions to the magnetic moment 

possible, in Tc  = where S is the spin of an 

considered here are 

The first term can be written in the form 
3kT  

+ 211138 

HI with HI= 

M 
	N9gBas S(S+1) 	N32µB2S(S+1)H 

3kT 	3kT 

Nµ2 as 
and 

B 
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=
B
VS(S+1. H' represents the effective field acting on the impurity 

spins duo to the spin polarization. The second term is the Curie-Weiss 

paramagnetic contribution of the solute moments and the third the conduction 

electron moment. For a solution of 0.1% impurity in Cu, for which the 

following magnitudes of the various quantities are taken : 

S=2, x 0  = 10-6 cgs units, J = 0.3 eV and for the range 

of this interaction function the atomic radius, the above-mentioned formulae 

1 o give : Tc  = g k , the effective field H' = 3500 0192and the magnetic 

moment due to the spin polarization at T=o is about 0.03 gauss per cm
3. 

2L'a The normal Pauli paramagnetism in Cu in a field of 104 03  is 0.01 gauss 

per cm3. 

§.3 Polarization of a virtual bound state.  

If the impurity potential is not strong enough to hold a bound state, 

a spin polarization similar to that by Yosida will still be possible as was 

shown by Blandin and Friedel1021 and by Kohn and Vosko21a. 

In this case the system can be represented by a gas of free electrons, 

subjected to a localized potential. The wave function of an electron is 

written as 

'P k (r) 	
1 	e  -414 + f (0) oikr 

--k V-17 

at large distance from the origin. 

The choice of this form for the wave function excludes the consideration 

of a bound state. 

( ) 
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The change in charge density at a point r in space as a result of 

the introduction of the perturbing potential is 

V 

40 (E) =f —47T7f 0*(1) c6(Z) - 	dIS 	(2) 9 

the integral is over the occupied volume in k -space. Substitution of eqn.(1) 

into (2) and use of standard scattering theory leads to 

Ap (r) = - 	aF 
 

 

cos (21s . 	r) ( 3 ) 
r3  

with a sin yD=21(-1)1(21+1)sin2S1  

and 	a cos SP= (-1)1(21+1)sin26  1 

h.F  is the wave vector of an electron having the Fermi -energy,!, the phase 

shift of the l'th partial wave. This means that a virtual bound state 

gives rise to a charge distribution extending to large distances from the 

impurity potential, although rapidly decreasing in amplitude. If this 

charge distribution is different for electrons having different spin 

functions, a spin polarization similar to that found by Yosida will exist. 

If only the partial wave with 1=2 is considered equi (3) gives 
—5 

°P d  = 	3 	cos (2kFr + 62) . 202 r   

If the potential is spin-dependent Ap can be separated into two parts, 

460- 
and Ap for electrons in different spin states. In the case of 

strong  spin decoupling it is possible that 4)- = o and40+  - 

sin o 2+  cos (21c-.r +6"
2

1.)* Here c5"4.  is the phase shift of the 1=2 partial 

422 r
3 

5 
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wave if only electrons with + spin are considered. 

The interaction can now be investigated of a solute atom at position 

R2 	 1 having a spin S with the spin distribution Aft (r) which is centered 

around the impurity atom at position R1. If VA is the volume of an 

impurity atom and .6F the interaction energy of the spin S with that of a 

conduction electron, the interaction energy of S with the spin distribution 

AP 4:1  (r) is given by AE =p (r) VA  F. 

This will now be applied to a Cu-Mn solution. For AF is taken half 

of the 4s-3d interaction energy in a free Mn atom, 0.3 eV, for VA  the 

atomic volume of Cu, VA  X1.2 x 10-23  cm3  and for (q the resonance value -, 
7r 

,, 

-25  eVcm3  4.6 x 10  The result is then AE Al 	x cos (2kF 	y .r) with 1 = Iii  -22  . 
o r3, 	—— 

For r=4A this gives AEP4-0.7 x 10--  eV. `the expression given by Yosida 

for two spins cnly (eqn.10) is 

( 3n  

)2 2:Tr 

Ef 

.1(02  
cos 2 kp. r 

S .S 
-1 —2 1(.5,3  r3  

For the case of Cu-Mn the following values are taken N=2n1  J(o)y 0.3eV, 

Ef  = 7eV, S=2, kp  = 1.4 x 108 	1 cm the interaction energy of two spins in 

0.5 x 10

3  

-25  eV cm  the Yosida model is 	cos2 kp.r 	= 4A gives for this 

§.4 Sin density waves.  

A completely different approach was followed by Ovorhauser who 

argued that since Yosidats mechanism is in fact a short range interaction 

this will only load to long range order of the system for high concentrations 

energy about 0.08 x 10-2eV. 



39. 

of solute (;>10 at %) and consequently a different explanation of the 

observed coupling has to be given. 

If was postulated by Overhausor22 that in the gas of conduction electrons 

a spin polarization of the form s(r) = bN cos g.r is possible. Here s() 

is the spin density at position r, N the number of atoms per unit volume, 

t a unit vector defining the direction of the polarization, a  the wave 

vector of the polarization. This spin density wave can be seen as the 

sum of two charge density waves with spin parallel and antiparallel to et  

equal in amplitude and opposite in phase so that the charge density remains 

uniform in space. Because this is a property of the electron gas and not 

of the alloy as a whole, the wave vector g will not be related directly to 

the lattice parameter of the crystal. 

Within the Hartree-Pock theory a spin-density wave will be a stable 

state of the electron gas, however, if electron correlations are taken into 

account, it will have a higher energy than the unpolarized state. 

If solute atoms carrying a magnetic moment are introduced in the 

lattice the interaction energy of these moments with the spin density wave 

can compensate the correlation energy and stabilize the polarization. 

The effective field acting on an impurity atom at position R. can then 

be written as H. = Gb 6  cosil.R. where G is an interaction parameter. 

Since the wavelength of the spin density wave is not an integral multiple 

of the lattice parameter, the solute atoms can be assumed to be subjected 

to a random field with probability distribution P( H ) = 2 	1  
ir  042 
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With the help of this expression, the low-temperature specific heat 

of a dilute alloy was calculated, giving a good fit to the experimental 

data for Cu-Mn alloys. An expression for the paramagnetic susceptibility 

was not derived. 



CHAPTER II 	 41. 

THE MAGNETIC SUSCEPTIBILITY OF METALS & ALLOYS 

In this chapter a summary will be given of the mechanisms which 

contribute to the observed susceptibility of a metal or alloy. 

§.1 Introduction  

A solid, placed in a magnetic field will in general acquire a 

magnetic moment. If the magnetization (M) is proportional to the applied 

field (H) the magnetic susceptibility 0() is defined as the magnetization 

per unit volume per unit field, otherwise as lim 	
AM

if this limit 
ATI--+o 

exists. In a metal the observed susceptibility is the sum of several 

contributions due to the following mechanisms: 

1. alignment of permanent magnetic moments localized on atoms 

or ions. 

2. moments induced in atoms or ions. 

3. alignment of moments carried by electrons in Bloch states. 

4. diamagnetism of conduction electrons. 

5. diamagnetism of electrons in closed orbits or core electrons. 

0.2 The alignment of atomic moments and the Van Vleck paramagnetism.  

Van Vleck24 derived an expression for the effects 1 and 2, mentioned 

in @.1,for the following model. The atom has a permanent moment and the 

states in which it carries this moment can be divided into two groups: 

a) states which are likely to be occupied (normal states,) tho energy 
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intervals between these states are small compared to kT, b) excited states 

which have a low probability of being occupied. The difference in energy 

between a normal and an excited state is large compared to kT. 

If only that part of the magnetization is considered which is 

proportional to the applied field H, then the susceptibility is found 

Np  to bex= 	+ Na(1) whore N is the number of atoms which carry a Nom, 
 

moment, i  the time average of the moment of a normal state, this 

again averaged over all normal status. 

2 N nl#n 	
V(n'i  

3 
Na - 	n) I2 

where m°  is the magnetic moment operator -  b1,(n0;11) 
and the index n' refers to an excited, n to a normal state. This term 

will in general be small, because (n1 ;n) is large. If the atom has 

Russell-Saunders coupling the first term can be written out simply in two 

cases. If the multiplet intervals are all small compared to kT, i.e. 

if all states are normal states, it is found using E.  = -pB(L+4) that 
Np.112  

T X 	[0(541)+L(L+1) ] (2) 3k 

where pB  is the Bohrmagneton. 

If the multiplet intervals are all large compared with kT, only the lowest 
N32 1182,T(-41) 

state is a normal state and X-
3T 
	 + Na 	(3) 

which can be written as 
Neff 

X 31er - 	 + Na 	(4) 

where the effective moment peff is defined as gpB  \P(J+1) . If also 

multiplet intervals of the order of kT exist, transitions from the ground 

state with increase of temperature have to be taken into account and the 

temperature dependence of the susceptibility will be more complicated. 
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If not only the part of the magnetization proportional to the applied 

field is retained one finds instead of (3) 

(  3010  
M = N Ja1i3  Bur  

kT 

and a similar expression instead of (2). here B is the Brillouin function 

with argument J, Mthemagnotization. 

It follows from this last equation that the saturation moment per 

atom is Jgp.B. This should not be confused with the effective moment 

go. VJ(J+1) found from the temperature dependence of the susceptibility. 

It has been found that the effective moments of atoms of transition elements 

of tho first long period of the periodic system in salts are closer to 

2VS(41) than to 0/J(J-1-1) as in salts of the rare earths. The absence 

of a contribution from the orbital moment to the susceptibility (quenching 

of the orbital moment) has been explained as follows : the 3d-state in the 

free atom is five-fold degenerate, these states having different charge 

distributions in space. In the lattice the atom will be subjected to a 

strong electrostatic field, especially the 3d-electrons which are in an 

outer shell of the atom. In such a field the charge clouds of different 

3d-states will have different energy and the orbital degeneracy will be 

removed. Because it is necessary for a state to be at least two-fold 

degenerate to carry a moment, the only contribution of the orbital angular 

momentum to the susceptibility will be the term Na in eqn. (1) which-is 

small if this crystal field splitting is much larger than kT. This 

mechanism was first proposed to explain the observed values of the 

(5) 
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moment of transitionmetal ions in salts but should also apply to those 

in metal lattices. The spin degeneracy will not be removed by an electro-

static field. 

In addition to the interaction of an atomic moment with an external 

field, interactions with other moments are possible, leading to increase 

paramagnetism, ferromagnetism or antiferromagnetism. These interactions 

can often be described formally by replacing H in eqn.5 by an effective 

field H + 744 where T is a constant.25 

For ferromagnetic solids, the low-field susceptibility above the 

Curie-temperature Tc varies then with temperature as X= 	 (7) 
with 0.>0. Experimentally X is found to deviate from (7) near To. 

For lower temperatures X is not a useful quantity and M varies with H 

at constant temperature as shown in Fig.I. 

If the interactions are antiferromagnetic 

the ordering temperature TN. 

equ (7), holds with 6<:0 above 
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The calculated variation of X with T for lower temperatures 

depends strongly on the details of the model, but generally a sharp 
26 

maximum at TN 
is predicted. A very simple model developed by Dekker for Cu.- 

Eh alloys assuming antiferromagnetic coupling between nearest neighbour Mn 

atoms and ferromagnetic coupling between those at larger distance leads 

to a broad maximum as was observed in these alloys. 

[4.3 Alignment of moments carried by electrons in Bloch states  

Pauli-paramagnetism 

The paramagnetic susceptibility of argas of electrons, obeying 
-m 

Fermi-Dirac statistics is X = 2µB2  N(1111) I+ 
2 
 (kT)

0  
" A2 - 
„
""

-Yrl] 
 + higher 

..5E2 	E=Ep 

order terms.27  N(EF) is the density of states at the Fermi-energy. Usually 

only the first term is considered which is a good approximation for 

EF 
temperatures well below the degeneracy temperature --k- which for most 

transition metals of the first long period os of the order of 1500°k. 

Collective electron ferromagnetism  

Also in this collective model exchangeinteractions between the 

electrons can cause ferromagnetism or increased paramagnetism. The theory 

was developed by Stoner28, who introduced a local field acting on the 

moment of an electron. As in the Weiss-model for ferromagnetism, this 

molecular field is introduced formally, its origin is not specified. 

Assuming that the local effective field is proportional to the macroscopic 

magnetisation of the crystal (i.e. the magnetic energy to the square of the 
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magnetization) it was found that in an external field H the energy of 

an electron can be written as 12BH 4. 101  C where µ is the moment of an 

electron, C the relative magnetization — with N the number of 11µ23  

electrons, and 0' a constant characteristic of the molecular field, 

If a parabolic band-structure is assumed, the main results of this treatment 

are : 

I. if no magnetic ordering takes place the interactions increase 

the paramagnetic susceptibility X, such that 1  - = 	1 	
k0.1 

 

II. ferromagnetism is possible if 
s o 
 > 2 

III. the relative magnetization at T=o, Co  can be calculated as a 
-1/ 

k0' function of 	and was found to be complete (Co = 1) if k6' > 2 
3  

C Co  
e  

IV. The magnetization at low temperatures varies with T as M=1-ce a/T  

whore c and a are constants. 

V. A peak in the specific heat at the Curie temperature is 

predicted. 

VI. The reciprocal susceptibility above Tc although a fairly 

complicated function of T is, when plotted, found to be very noarly linear 

with temperature, as for the Curie-Weiss model for localized moments. The 

slope of this curve is determined by 6 0 . For a rectangular band29 

similar results are found. Here, the condition for ferromagnetism is 

> 1 and if this condition is satisfied the magnetization at zero co 
temperature is complete. 

X 	X(0'=o) 	- 
m 
 PT2  

k0' 
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The theory was also developed
30 

for a system of two overlapping 

bands which does not change the general features but leads to a number of 

corrections. Wohlfarth31'32  and Gerstenberg79  interpreted experimental 

results for a number of binary alloys in terms of this model. 

The collective electron theory of antiferromagnetism  

Lidiard 33 extended the collective electron theory to describe anti—

ferromagnetism. This model assumes an antiferromagnetic order of localized 

moments at the lattice points of a metal, in particular a lattice divided 

into two interlocking. sublattices A and B0  containing atoms with + and — 

spins respectively. The Bloch like states will now be modified, the new 

wave functions can be divided into two groups, Ok, functions more 

concentrated near A, and cok, more concentrated near B sites. 

The energy of an electron with wave function belonging to cli k  

is E(k) 	(101 	+ k8
12 ):5) depending on the spin of this electron. 

Here e(k) is the kinetic energy, 

3  A B the relative magnetization of the A(B) lattice , 

0
1 
and 0

12 
interaction constants 

A similar expression holds for the 9 set. 

The treatment is similar to that given by Stoner for ferromagnetism 

and is given for a parabolic band of electrons. The main conclusions are: 

k(81+812)  
2 1. antiferromagnotic order is possible if 

So 	3 
otherwise the system is paramagnetic. 
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k(811-°12)  	-1/ 

2. if 2  4( 	< 2 3  , antiferromagnetic order is 3 	CID 

possible, the moment localized on an atom at T=o is smaller than the maximum 

k01+612) 	-1/3  
3. if  	

2 	
there will be complete order at T=o 

0 
i.e. the maximum moment at a lattice site. 

4. In the absence of an external field, the relative magnetization 
C12 
) of a sublattice c, = CB  = C this vrries at low temperatures as - 7 

)2 	 o ( T 
1 - 	where TN is the magnetic ordering temperature. 

TN 
5. the thermal properties can be taken over from Stoners treatment 

of ferromagnetism if 01  is replaced by 01 + 912.  

6. For the magnetic susceptibility 	above the ordering temperature 

	

1 	1  k(01-012)  
TN the equation - . 
	-

2 	
holds, 

	

X 	X  (81=12--1°) 	
NAB 

 

whore N is the number of electrons 

and AB  the Bohrmagneten 

Below TN the susceptibility depends on the orientation of the applied 

field H with respect to the axis along which the moments are aligned. 

The susceptibility for H parallel to this axis, 11/1  will decrease with 

decreasing temperature from T = TN  and that for H parallel to this axis, 

XI, will be temperature independent below TN. 

For a powdered specimen with randomly distributed antiforromagnetic axes, 

X 1x the measured susceptibility will be x= 3 n • 

possible. 
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1 	k(01+012) 	2 The - vs T curves, for  

	

	calculated numerically, e
o 

show a discontinuity in the slope at T = Tc. If a susceptibility with this 

temperature-dependence would be measured, the points obtained would probably 

suggest a gradual change cf slope. 

These ideas were applied to Cr where neutron diffraction experiments34 

showed antiferromagnetic order but at the transition temperature no specific 

heat anomaly and only a very small effect in the magnetic susceptibility 

was observed. Lidiard showed that for this ,se the collective electron 

theory predicts only a very small anomaly in the thermal properties, so that 

this model is consistent with the observed properties of Cr. Overhauser 

proposed for this metal the spin-density wave model, the main arguments being 

firstly that the parameter of the magnetic ordering is incommensurate 

with the lattice parameter which is not consistent with the above mentioned 

model and secondly that above the ordering temperature no paramagnetic 

scattering was observed, which rules out the possibility of atomic moments. 

In Pd a maximum in the susceptibility was observed but no specific heat 

anomaly at any temperature near that of this maximum. Also for this case 

Lidiard showed that the absence of a measurable anomaly in the thermal 

properties is consistent with the model of collective electron antiferro-

magnetism, but no conclusive evidence of antiferromagnetism in Pd exists. 

§.4. Diamagnetism of conduction electrons. 

The theory of diamagnetism was developed by Landau and Peierls36. 

More recently an exact theory, which is extremely complicated has been given 
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by Sondheimer et. al.37 For free electrons, obeying Fermi-Dirac statistics, 

the diamagnetic susceptibility is ono third of the Pauli paramagnetic 

susceptibility. 

In a periodic lattice field such that the energy of an electron is 

-IIr2 2 	2) . E = 	a1 kx
2 +ak +ak 	it can be found that for a fiold in 

2 y 	3 2 a'a  )2 	1/ 
2m x[ 	2' ] '3 the z-direction, x, 	 . Consequently, if the 

4 = Free 	
a
3 

Fermi surface overlaps a Brillouin zone boundary this can strongly affect 

the diamagnetic susceptibility. 

5. 	Diamagnetism cf core electrons.  

The diamagnetic susceptibility is given by 

X 
	o 	r2 

6mc2 

whore r is the radius of the orbit of the electron 

and the sum is over the different electrons. 

Calculations of this effect for actual sclids are complicated, a review of 

theoretical work is given in Ref. 24. EXperimentally ionic susceptibilities 

has been determined from the susceptibility of salts and solutions, under the 

assumption that different contributions to the total observed susceptibility 

are additive. For the alloys discussed in Chapter V and 4I, this effect will 

be small. For the Mn7+  ion, the diamagnetic susceptibility is of the order 

of 0.1 x 10-6  emu per gram, so that in a solution cf 0.1 at % Mn this part 

can be neglected. 
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GRAPIER III  

PREVIOUS WORK ON DILUTE ALLOYS  

In this chapter a short review will be given of the observed anomalies 

in the electrical and magnetic properties of dilute solutions of elements 

of the first transition group in other metals and a summary of the theories 

developed to explain these effects. 

In section A the results for alloys of these elements with the 

noble metals will be summarized, in section B those for solutions in divalent 

and trivalent metals and in section C those where the solvent is a binary 

alloy. In section D a survey will be given of magnetic measurements on 

solutions of Fe in a transition metal of the second long period. In 

seotion E the models developed for dilute noble metal — transition metal 

alloys and the application to the experimental data will be reviewed and in 

section F the possible explanations of the behaviour of alloys of two 

transition metals. 
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PART I. SUMMARY OF THE EXPERIMENTAL WORK 

SECTION A. DILUTE BINARY SOLUTIONS OF TRANSITION METALS 
OF THE FIRST LONG PERIOD IN A NOBLE METAL. 

The alloys of this group can be divided into three groups, according 

to the observed behaviour of the magnetic susceptibility and the electrical 

resistivity. 

The first group contains allcys for which the susceptibility of the 

solute system follows a Curie-Weiss law at high temperatures (above 100°k) 

and the susceptibility vs temperature curve shows a maximum at low 

temperatures. The curve of the resistivity vs temperature shows a maximum 

and a minimum for those alloys and for all the systems the transition metal 

dissolves easily up to high concentrations in the matrix. To this group 

belong the alloy systems Cu-Mn,Ag-Mn,Au-MnlAu -Fe and Au-Cr. 

The second group contains systems for which the susceptibility is 

paramagnetic and temperature-dependent but does not show a maximum at any 

temperature, and for which the electrical resistivity  as function of 

temperature shows a minimum only. For the alloys of this group the 

solubility of the transition metal in the primary phase of the noble metal 

is low. To this group belong the systems Cu-Fe, Cu-Co and Au-Co. 

The dilute alloys of the third group, Cu-Ni, Au-Ni and Au-V, do not 

show a siggificantly temperature-dependent susceptibility, the resistivity 

versus temperature curves do not show a maximum and only a shallow minimum, 

if any. For these systems the primary a-phas6 extends up to high solute 

concentrations. 
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Of the other possible combinations of one of the above-mentioned 

transition metals and a noble metal only in the systems Ag-Cr and Cu-Cr 

has some solid solubility been found, which is however small, and no 

magnetic measurements on these systems have been reported. In the remaining 

systems Ag-Ni, Ag-V, Ag-Fe, Cu-V and Ag-Co the solubility of the transition 

metal is too low to allow the preparation of a solid solution. 

g.1 Group I. The systems Cu-Mn,141-Mn, Au-Mn,Au-Fe and Au-Cr  

For all the alloy systems of this group a primary phase exists extending 

up to a transition metal concentration of at least 10 at %.38  

a) Magnetic susceptibility.  

Cu-Mn.Measurements have been made by Owen et. a139 on alloys containing 

0.03, 1.4, 5.6 and 11.1 at % Mn from 4 to 290°K. At high temperatures the 

susceptibility followed a Curie-Weiss law corresponding to an effective 

moment peff = 5.0µB  and a positive Curie-Weiss constant 9 (See Chapter II). 

Below 80°K the results showed a deviation from the Curie-Weiss law and 

for the alloys with 1.5 at % 96ore Mn a broad maximum in the susceptibility 

as function of temperature was observed. Even at the lowest temperature 

the susceptibility was found to be independent of the applied magnetic 

field. 

Van Itterbeek et al.40 measured specimens of Mn content c between 

0.25 and 4.8 at % from 1.2 to 290°K. At high temperatures a Curie-Weiss law 

was found to apply with µoff = 4.511B  and 9<:o for c(.1.6 at % and 9> o 

for o 2.6 at %. 
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For the alloys with c;?.1.4 at % a maximum in the curve of susceptibility 

versus temperature was observed. The susceptibility was found to be field-

dependent below and just above the temperature of the maximum TN. 

Measurements of the magnetization of a Cu-Mn alloy by Schmitt and 

Jacobs4146 at 4.2°K showed an extremely complex field dependence of the 

magnetization, this is in strong disagreement with the results found by 

Owen et. al. 

Ag-Mn 

Owen et. a139 also made measurements on a Ag-4% Mn alloy down to 

4.2°K. The susceptibility follows a Curie-Weiss law at high temperatures, 

geff = 5.5µB, 0,>o and between 10 and 20°K the curve of susceptibility 

as function of temperature shows a broad maximum. No field-dependence 

was found at nny temperature. 

Van Itterbeek et. a14° measured alloys with Mn concentration c from 

0.5 to 5.3 at % down to 1.2°K. A Curie-Weiss law is followed at high 

temperatures, corresponding to geff = 5.7gB  . For c< 1.7%, 0 is 

negative while for c 31.7%, 0 is positive and a broad susceptibility-

maximum is found. As for Cu-Mn the susceptibility was field-dependent 

below and just above TN. 

Au-Fe 

Measurements on alloys containing from 0.6 to 15 at % Fe from 14 to 

290°K were reported by Kaufmann et.al4 .2 Above 77°K the results for 

Aur1).6at % Fe show a Curie-Weiss behaviour with tteff= 3.4B  and 9=-25°K. 

geff increased with Fe content c to 5.7 gB  at 12%, 9 increased with c 
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and was positive for c > 3.5%. Below77°K the results did not follow 

a Curie-Weiss law while for c .)6.6 at % the alloys show a remanent 

magnetization at 14°K. 

Lutes and Schmit43 measured alloys with 0.5 at 1 at % Fe from 0.5 

to 30°K. At the higher temperatures a Curie-Weiss law was found to be 

applicable with peff = 3.6 pp  and 3.3 123  respectively and 0<0. 

In disagreement with the results found by Kaufmann et al., 0 increased 

in absolute value with increasing Fe concentration. At lower temperatures 

a remanent magnetization was found and the curve of the susceptibility 

in zero field showed a broad maximum at the temperature where the 

remanent magnetization disappeared. 

Au-Cr and Au-Mn  

Alloys containing from 0.5 to 2% of solute were investigated by 

Lutes and Schmit43 between 0.5 and 30°K. A behaviour similar to that 

found for Au-Fe was observed. For the Au-1% Mn and Au-2% Mn alloys values 

of peff = 5.8 and 6.6 pp  respectively and positive values of 0 were 

found. For the Au-0.5% CD and Au-1% Cr alloys peff was 4.0 and 3.7113  

respectively and 9 < o. For both systems, 0 increased in absolute value 

with increasing solute content. As for Au-Fe a remanent moment was 

observed at the lower temperatures and the zero-field susceptibility 

showed a broad maximum at the temperature where the remanence became zero. 
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b) Electrical Resistivity  

The curves of the resistivity versus temperature for the alloys of 

this group shows a maximum above 1.2°K if the solute concentration is 

between 0.03 and 0.5 at 04'45. This composition range is somewhat 

narrower for the Au-Fe system and wider for Cu-Mn. At a temperature 

above that of the maximum a broad minimum is found. For alloys with 

lower solute content only a minimum is observed above 1.2°K, while for 

those with higher solute concentration the resistivity at low temperatures 

increased strongly with temperature without showing a maximum or a 

minimum. The temperatures of these maxima and minima vary with solute 

content. 

c) Magnetoresistance.45  

For all the alloys of this group the change of the resistivity in 

a magnetif field v  Ap 	does not follow Kohlers rule 410edi2, the 

observed values of f p are smaller than for the pure metal and are in most 

cases negative. A detailed analysis of Cu-Mn alloys of Schmitt and 

Jacobs46 showed that these results can be described by the relation 

,613 = a(T)M2  where a (T) is a temperature-dependent parameter and M the 

magnetization of the alloy. For the other systems no such data are 

available. 

d) Specific heat.  

For those alloys of this group for which specific heat measurements 

have been reported the difference in the specific heat of the alloy and 

that of the pure solvent,4C, when plotted as a function of temperature, 
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shows a broad maximum at low temperatures. The shape of this curve is 

similar to that expected for a system of magnetic atoms in a field H, 

for which themagnetic contribution to the specific heat is given by 

CM  = NAB 	H 	
sech2  pB 

H 
(1) 	if the atoms have a spin S=147 2 

kT2 kT 
(see Fig.1). Here N is the number of atoms. 

From the susceptibility 	.5 
and magnetization data mentioned 

at the beginning of this section 

it is obvious that in these alloys 

a magnetic ordering takes place 	0  

and the observed extra specific 

heat Ac has been ascribed to 

2 	3 	4 

FIG.1 (A FT ER P.EF. 47) 

this process. If the interactions between the atomic moments are 

represented by a molecular field H', the term •6, 	can be written as C 

in equ 1, with H=11'. If the atoms have a higher spin value a more 

complicated expression than 1,is found, a plot of Cm  vs T will however 

have the same general shape as that in Fig. 1. In a dilute alloy the 

field H' will not have one well-defined value, but vary over the volume 

of the crystal, this will cause a broadening of the maximum in the curve 

of C vs T. From the integral of the function -A-C- over T, the 

value of the spin of a solute atom can be found. As the temperature is 

raised the specific heat of the alloy increases and AC will become • 

comparable to or smaller than the experimental error, so that no 

results can be obtained by subtracting the value found for the pure 
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solvent from that found for the alloy. The absence of valuos of 0 C 

at very low temperatures and the large error on the values for high 

temperatures arc the main sources of error on the experimental spin 

values. 

Cu-Mn 

The specific heat of Cu-Mn specimens containing from 0.1 to 10 at % 

Mn was measured from 1.6 to 15K by Zimmerman and Hoare48 and of a Cu-0.13 

at % Mn specimen by De Nobel and Du Chatenier 49  in the same temperature 

range. 

The first measurements showed that the difference in the results 

for alloys of different Mn content is very small below 4°K and can be 

mJ  
described roughly by the relation C + (aT+ o.1T3) 2 , with 

mole deg 
 

a =3.5 for a Mn concentration c of 0.5 at 10%, a= 4.0 for c=1% and 

a=4.5 for c=2% and c=4%. 

For the alloy Cu-0.5% En the value S=2 was derived as the most 

likely value for the spin of a Mn atom. The results by De Nobel and 

`Bu Chatenier agree well with those of Zimmerman and Hoare. 

The difference in the specific heat of the Cu- 0.13 % Mn alloy 

and that of pure Cu, as measured by Franck et. al50 shows a broad 

maximum between 3 and 4°K. 

Ag-Mn 

Three alloys, containing 0.09, 0.28 and 0.40 at % Lin wore measured 

from 1.3 to 20°K by De Nobel and Du Chatenier. Also hero the specific 
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heat at low temperatures is larger than that of pure Ag. Also for this 

system the results give a spin value between 2 and 	. The C vs T 

curves for the 0.28 and 0.40% Mn alloys coincide below 1.9°K. The 

curve of LX vs. T for the Ag - 0.09 % Mn alloy shows a maximum at 

1.8 	0.2°K. To fit the Points for the 0.28% Mn alloy to a Schottky-

curve en internal field of 25 to 30 K Oe had to be postulated, corres-

ponding for S = 2  to a critical temperature of about 9°K. 

Au-Ein, Au-Cr.  

For a preliminary report
51 on a series of measurements the 

presence of an anomaly in the specific heat of dilute Au-En and Au-Cr 

alloys was mentioned, but no more detailed results of these measurements 

have been published. 

e) 	Thermoelectric power.  

In all the alloys of this group large thermal powers have been 

observed at low temperatures. While at these temperatures the normal 

thermal power duo to diffusion is estimated at less than 0.1 µV/or 

in these alloys values of several µV per °K have been found ir, the 

20°K temperature range from 1 to 20-K . 	If the temperature is lowered 

the thermal power S decreases in absolute value and approaches zero 

as T o. Although the shape of the S vs T curves is very different 

for different alloy systems, there is no special property of these 

ourves which is common to only the alloys of group I. 
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f) Summary 

The results discussed in the previous paragraph show that in the 

alloys systems Cu-Mn, Ag-Mh, Au-Mn, Au-Cr and Au-Fe the transition metal 

atoms carry a magnetic moment and that a low temperature magnetic 

ordering takes place. The susceptibility, which because of the field 

dependence at low temperatures has to be seen as a quantity proportional 

to the magnetization in a constant field, reaches a maximum which 

indicates antiferromagnetic order. For the alloys with Mn as solute 

positive values of the Curie-Weiss constant have been found, indicating 

that also ferromagnetic interactions are operative. 

The maximum in the resistivity can not be correlated directly 

with the susceptibility-maximum which has been found only in alleys of 

high solute concentration which do not show a resistivity maximum. 

For those systems for which specific heat measurements have been 

made, the specific heat of the solute system is independent of solute 

content at low temperatures and shows a maximum at a temperature Tc  

close to that of the resistivity maximum Ti. This is seen when both 

Tm and Tc are plotted as a function of solute concentration (Fig. 2). 

This indicates that both anomalies are connected with the same ordering 

process. 

If the temperature of the susceptibility maximum as function of 

solute content is also plotted in Fig. 2, the points lie far below the 

extrapolation of the line drawn. 
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§.2 Group II. Dilute solutions of Fe in Cu, Co in Cu and Co in Au.  

The alloys of this group are paramagnetic and the magnetic 

susceptibility does not show a maximum at any temperature. The 

resistivity as function of temperature does not show a maximum but a 

minimum is found in all cases. 

The solid solubility
38  in the a-phases, which is several at , just 

below the metling point, falls off rapidly with decreasing temperature 

and is of the order of 0.2% at 400°C, is high enough to allow the 

preparation of a number of solutions, but is considerably lower than 

that for the alloys of Group I. 

a) The magnetic susceptibility.  

Cu-Fe 

Measurements on alloys containing between 0.01 and 0.8 at % Fe 

from 14 to 300°K and from 1000 to 1300°K were reported by Bitter et al.54 

The alloys did not show ferromagnetism at room temperature and as the 

other phases of the Cu-Fe system contain at least 92% Fe any precipitate 

will be ferromagnetic. This shows that the Fe was in solution in the 

primary a-phase. 

At 14°K the susceptibility of alloys with more than 0.1% Fe was 

fieldrdependent, but no remanent magnetization was observed. The 

susceptibility for zero field followed a Curie-Weiss law over the 

whole temperature range. The effective moment per Fe atom increased with 

Fe content of the sample from 2.0 µB  for 0.01 at % to 4.9 µB  for 0.8 at 

while 8 increased from -16 to 0°K. 
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From the high-temperature measurements a value of µoff = 4.7 AB  

was found for all the alloys. 

Cu-Co.  

The susceptibility of alloys containing from 0.1 to 0.5 at % Co  

was measured by Hildebrand53  from 90 to 300oK. The results were 

fitted to a Curie-Weiss law corresponding to values of 0 between -800 

and -1000°K. For the 0.5% Co alloy which showed a different behaviour, 

a value 0 = -220 °K was found. These values are too largo for dilute 

alloys to justify the assumption that the Curie-Weiss model is applicable. 

Measurements by Schmitt and Jacobs41 on alleys containing 0.5, 

1 and 2 at % Co down to 2°K showed that a Curie-Weiss law is not obeyed. 

Down to 50°K, the susceptibility varies little with temperature, 

but is higher than that of Cu and increases on further cooling. 

At 4.2°K the magnetization is not proportional to the applied field. 

No remanonco was observed. The results for the 0.5% Co alloy join up 

wall with those of Hildebrand. 

Au-Co 

Specimens containing between 0.3 and 2% Co were measured by 

Hildebrand53 from 90°K to room temperature. The reciprocal susceptibility 

of the system of solute atoms is linear with temperature. The character-

istic temperature 9 is between -250 and - 160°K, decreasing in absolute 

value with increasing Co concentration. As for the Cu-Co alloys these 

values are very large and the Curie-Weiss does not apply to this system. 
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Lutes and Schmit43 measured the susceptibility of a Au-1 at % Co 

alloy from 0.5 to 10°K and found a small variation with temperature down 

to 6°K and a more rapid increase on further cooling. The results do not 

fit a Curie-Weiss law. No remanent magnetization was observed. 

b) Electrical resistivity. 

Cu-Fe  

A resistivity minimum above 1.2°K was observed for solutions 

containing between 0.005 and 1 at p Fe44,45,55.  For none of these alloys 

a maximum was found. The resistivity of a specimen containing 0,056 at % 

Fe was measured56 down to 0.1
oK and found to be constant below 1

oK. 

Cu-Co, Au-Co  

For these systems no maximum has been found. A minimum was observed45  

but the value of the resistivity at the lowest temperature measured was not 

more than 2% above the minimum value. 

c) Magnetorosistance. 

The change in resistivity in a magnetic field,Ap, showed qualitatively 

the same behaviour of that found for the alloys of Group 1.44,45 

For Cu-Co alloys the relation Ap= aM2  holds54, where M is the 

magnetisation of the sample and a is a temperature independent constant. 

For Cu-Fe and Au-Co no analysis of results has been made to check this 

relation. 
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d) 	Specific heat.  

Cu-Fe 

Measurements on Cu-Fe alloys containing 0.05, 0.1 and 0.2 % Fe 

were made by Franck et a15°  from 0.4 to 30°K. All the alloys showed a 

specific heat anomaly. 

The most important points of the results are : 

1. At the low-temperature end of the range the slope of the CO vs T 

curves is appreciably different for the three alloys. However for the 

0.1% and 0.2% Fe alloys the curves do not extrapolate to zero at T=o. 

2. As the temperature is increased the slope of the AC vs T curves 

approaches zero as T is near 7°K, the results suggest a decrease in CC 

above this temperature, but because of the large error on AC in this 

region this is not shown conclusively. 

3. For the spin of an Fe atom the value S = 0.5 was obtained, because 

of the large errors discussed in 1d this value is however uncertain. 

Cu-Co and Au-Co  

Measurements on Cu-Co and Au-Co alloys with solute concentration 

between 0.25 and 3.5 at % were made from 1.5 to 4.2°K by Crane and 

Zimmerman57'58. The specific heat of the alloys was larger than that of 

the pure solvent. At the high-temperature end of the range, 4-Cr  was 

found to be independent of T, being proportional to the square of the Co 

concentration for the Cu-Co alloys and proportional to the 3 power for 

C the Au-Co alloys. At the low-temperature end of the range,  increased 
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with decreasing temperature, this increase was stronger for a Cu-Co 

alloy than for the Au-Co alloy with the same solute content. The 

temperature range over which these measurements have been made is too 

narrow to allow a comparison with the results for other systems. 

f) Summary.  

The alloys discussed in paragraph 2 have in common firstly that the 

resistivity as function of temperature reaches a minimum but no maximum. 

Secondly, that at low temperatures the specimens are paramagnetic and a 

magnetic ordering takes place, which is of different type of that observed 

in the alloys of Group I, as no susceptibility maximum has been observed, 

and thirdly that the solid solubility of the Fe and the Co is low. 

Further the specific heat shows an anomaly which for Cu-Fe is 

qualitatively different from that found for Cu-Mn and Ag-Mn. It is also 

clear that the specific heat results for Au-Co and Cu,-Co are similar, 

although the available data do not allow a detailed comparison. 

The Cu-Fe system shows however many differences from the Au-Co and 

Cu-Co systems; the susceptibility of Cu-Fe follows a Curie-Weiss law, 

while in the Co alloys a small temperature dependence.at higher temperatures 

is found which can not be interpreted in the same way. ( It must 

be noted that no susceptibility measurements on Cu-Fe alloys with 0.1% Fe 

or more have been done below 14°K). 

Further the resistivity minimum is considerably more pronounced in 

Cu-Fe than in Cu-Co or Au-Co. 
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0.3 Group III. The systems Cu-Ni, Au-Ni and Au-V.  

The above-mentioned alloys have in common that the susceptibility 

is temperature-independent at high temperatures, that tho resistivity 

as function of temperature shows a shallow minimum only, and that the 

solubility is high38. 

a) Magnetic susceptibility  

Cu-Ni 

Measurements by Pugh et a159 on Cu-Ni alloys containing 0.59, 1.16 and 

2.48 at % Ni between 2.5 and 300°K showed at high temperatures a 

susceptibility different from that of Cu by a temperature-independent term, 

and a sharp increase with decreasing temperature below 20°K. In later 

measurements
60 

on specimens of higher purity the increase at low temperatures 

was small for Ni concentrations lower than 5%. In none of the alloys a 

field dependence was observed. The difference between the susceptibility 

of the alloy and that of pure Cu was in the range (0.021+ 0.002) x 10-6emuik 

per at % Ni for all the alloys containing less than 5% Ni. 

Au-Ni 

No results on dilute Au-Ni alloys are available. Specimens of high 

Ni content (12.5 at % and more) were measured by Kaufmann et al42. For 

the Cu - 12.5 at % Ni alloy the susceptibility is constant above 10o°K 

and from there increases with decreasing temperature. For this high 

solute concentration this increase must be due to the Ni. The difference 

between the constant high-temperature value and that for pure Au is 

0.019 x 10-6emmig per at % Ni, close to the value for the Cu-Ni alloys. 
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Au-V 

The susceptibility of a Au- 1% V specimen was measured from 0.5 to 10°K 

by Lutes and Schmit43  and found to vary slightly with temperature below 1.3°K 

and to be almost constant at higher temperatures. No remanent moment was 

observed at any temperature. 

b) Resistivity  

Cu-Ni 

A shallow resistivity minimum between 10 and 25°K was observed for 

alloys containing from 0.025 to 2.2 at e  Ni61  . However this minimum was also 

found in a specimen nominally free from Ni. No maximum was observed. 

Au-Ni 

A shallow minimum was found for specimens with Ni content between 0.7 

4 
and 1.2 at %, and no effect for concentrations of 0.05 at 0.19%61. The 

observed minimum could, according to the authors, will be due to Fe 

impurities. 

c) Magnetoresistance.  

For Au-Ni and Cu-Ni no anomalies were observed up to 0.5 at % N1.61 

For Au-V no resistivity or magnotoresistance data are available. 

d) Specific heat. 

No measurements on dilute alloys of these systems have been done. 

Cu-Ni alloys containing 10 at % or more Ni were measured by Guthrie et a1.62 

The specific heat of the 10% Ni alloy showed, between 1.5 and 4.2°K no 
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anomaly of a Schottky type and obeyed the relation c = YT PT3. 

In the preliminary report by De Nobel and Du Chatenier51  a measurement 

on a Cu-Ni alloy is also mentioned in which no anomaly was found. 

For Au-Ni and Au-V no specific heat measurements have been done. 

Thermoelectric power.  

Data are available for Gu-Ni and Au-NI. 

In Cu-Ni, Gold et al52a found values of S between -1 and -2 µV/oK 

at 15
o
K for solutions of small amounts of Ni. MacDonald et al

52 
reported 

for Au-Ni alloys between 4 and 160K values of S which were of the same 

order of magnitude as thoso for Au-Mn and Au-Cr alloys of the same solute 

concentration. 

Summary.  

In the Au-V and Cu-Ni alloys the observed increase in susceptibility 

at low temperatures is very small and could well be due to Fe impurities. 

The temperature-independence of the susceptibility indicates then that Ni 

atoms dissolve in Cu and V atoms in Au without a magnetic moment. If the 

difference in susceptibility between Cu-Ni and Cu, LV., which is found to be 

proportional to the Ni-concentration is assumed to be a Pauli-paramagnetic 

term, the increase in the density of states at the Fermi level as a result 

of the introduction of the Ni in the lattice is then 4 states per eV per 
Ni atom for Ni concentrations below 5%. 

For Au-1% V, 	= 0.49 x 106emuig and for the increase in density of 

states a very large value would be found, which shows that the situation 

is different from that in Cu-Ni. 
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The absence of a resistivity or magnotoresistance anomaly comparable 

in magnitude to that for the alloys discussed in 1 and 2 also shows that 

for these alloys the phenomena observed in those of Group I and II do 

not occur. It must however be noted that in Cu-Ni and Au-Ni large values 

for the thermoelectric power have been found. 

SECTION B. SOLUTION OF TRANSITION METALS IN Mg,Zn and Al.  

Investigations have been reported on the systems Mg-Mn, Mg-Fe, Zn-Mn 

Al-Mn, Al-Cr, Al-V. In paragraph 1 of this section the results for the 

alloys of Fe and Mn in the divalent metals Mg and Zn will be discussed, 

in paragraph 2 those for the Al-based alloys. 

§.1 Solutions of Fe and Mn in Mg and Zn.  

Solubility.  

The solid solubility of Mn in Mg and Zn, which is of the order of 

1 at % near the melting point is high enough to allow the preparation of 

the alloys.38 Some solubility of Fe in Mg has been reported which was 

however so small that no numerical values could be given. 

a) Magnetic Susceptibility  

MR-Mn, 

For a Mg - 1.34 at % Mn alloy the susceptibility was measured down to 

1.3oK by Collings and Hedgcock63 and found to obey a Curie-Weiss law at 

high temperatures, corresponding to an effective moment of 4.11233  per Mn 

atom and a characteristic temperature 8 = 0°K. At low temperatures a 
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deviation from the Curie-Weiss law was found, similar to that reported 

for Cu-Mn, but no maximum was observed. In this report no mention is 

made of any field-dependence of the susceptibility. 

Owen et a139 made measurements on a sample containing 0.67 % Mn 

and found a similar behaviour, also here & = 0°K. For the effective 

moment for Mn atom however a value 2.9 µB  was found. The susceptibility was 

reported to be field-independent at all temperatures. 

Zn-Mn 

Collings et al64 measured a specimen containing 0.43 at % Mn down to 

1.2°K. The temperature variation is similar to that for Mg-Mn. The high 

temperature susceptibility followed a Curie-Weiss law ..:orresponding to 

peff = 4.8 pB  and 0 = + 12°K. No mention is made in this report of a field-

dependence of the susceptibility. 

b) Electrical resistivity  

For alloys with Mn content between 0.16 and 0.60 at % a maximum in the 

resistivity versus temperature curves and a minimum at a higher temperature 

was reported, for lower Mn concentrations only a minimum • 

Mg-Fe  

A resistivity minimum was observed by Spohr and Webber
65  in nominally 

pure Mg specimens which contained Fe and Mn contamination. The results 

showed that Fe enhanced the effect of Mn. Because of the low solubility 

of Fe no more systematic investigation has been done on this system. 
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Zn-Mn 

For solute concentrations from 0.01 to 0.43 at % a minimum above 

1.5°K was found66 while none of the specimens showed a maximum. 

c). Magnetoresistance.  

For a Zn- 0.12 at % Mn alloy a negative magnetoresistance in fields 

below 30 IOe was reported67 For a Mg - 0.04 % Mn alloy Kohlers rule 

was found to apply68. The possibility must however not be excluded that 

for Mg-Mn alloys with higher Mn content an effect will be observed. 

d) 	Specific heat.  

Mg-Mn, Mg-Fe.  

For two alloys, Mg - 0.043% Mn and Mg- 0.013% Fe which were 

measured by Logan et a1.69 the specific heat above 3°K did not show any 

deviation from that of pure Mg. 

Measurements from 0.4 to 1.5°K by Martin70 on specimens containing 

0.025 and 0.15 at % Mn showed a specific heat larger than that of pure Mg. 

The temperature range over which the measurements were made was too small 

to obtain information about the detailed shape of the curve or to determine 

the spin value for the solute atoms. 

Zn-Mn 

For Zn-Mn an anomaly in the specific heat has been observed.51 

No details of this work have been published. 
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e) 	Summary.  

The Mg-Mn alloys have many features in common with the Cu-Mn alloys. 

The resistivity vs temperature curves show a maximum and a minimum which 

disappear at high concentrations, the susceptibility deviates from a 

Curie-Weiss law at low temperatures suggesting antiferromagnetist, although 

no actual peak has been observed. If in any of the alloys of this system 

the susceptibility reaches a maximum at any temperature, the alloy of which 

the resistivity will show a maximum at the same temperature, will have a 

lower solute concentration. 

For Zn-Mn and Zn-Fe the data available are not sufficient to make a 

comparison with other systems. 

§.2 Dilute Alloys of Transition Metals in Al.  

Some measurements have been made on solutions of Mn, Cr and V in 

Al. 

The solid solubility of the transition metals is not high but enough 

to enable the preparation of a number of alloys.38 

a) Magnetic susceptibility.  

Taylor et. al. measured71 the susceptibility of a number of Al-Cr, 

Al-V and Al-Mn alloys containing between 0.1 and 0.7 at % of solute from 

100 to 290°K. In first approximation the difference between the 

susceptibility of the alloy and that of pure Al was temperature independent 

and proportional to the solute concentration, the values obtained were : 



for Al-Mn 

Al-Cr 

Al-V 

= 13 x 10-6 emu/gmol per at % of solute 

= 	4 x 10
-6 	ft 	11 	fl 	II 

= -5.2 x 10-6 
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Collings and Hedgcock63 measured the susceptibility of an Al-1% Mn 

alloy at low temperatures and found that no Curie-Weiss law is obeyed. 

No more details of this work have been published. 

b) Resistivity 

Measurements by Hedgcock et al.72 on Al-Mn and Al-Fe alloys of 

solute content from 0.01 to 0.1 at % showed no resistivity maximum or 

minimum. 

c) Specific heat.  

The specific heat of Al - 0.045 at % Mn was measured by Martin 

from 0.4 to 1.5 oK.73 
The effect of the addition of the Mn was to lover 

the superconducting transition temperature, which is 1.71°K for pure Al, 

to 0.84°K. Above these temperatures the specific heat was, within the 

experimental error, equal to that of Al. 

SECTION C. SOLUTIONS OF Mn and Fe IN BINARY ALLOYS.  

For a large number of solutions of Mn in the a-phase alloys of the 

system Ag-Sn, Cu-Zn, Cu-Al and Cu-Go and in the C -phase of Ag-Sn and 

Cu-Sn, the magnetic susceptibility has been measured above 150°K. 
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In paragraph 1 of this section the results for the face-centered cubic 

a-phase alloys will be reviewed, in paragraph 2 those for the hexagonal 

C-phase alloys. 

ELI Solutions of Mn in face-centered cubic a-phase alloys.  

The a-phase of the binary systems Ag-Sn, Cu-Zn, Cu-Al and Cu-Ge 

has a face-centered cubic structure and extends in composition from pure 

Ag or Cu up to gat % Sn, 30 at % Zn, 19 at % Al and 9% Ge respectively, 

No phase diagrams of the ternary systems considered here are available, 

but it was reported that metallographic examination of the alloys used showed 

no precipitate of a second phase. 

Magnetic susceptibility.  

a) The Au•Sn-Mn system  

The susceptibility of a number of a-phase Ag-Sn-Mn alloys with Sn 

content varying from 0 to 10 at % and Mn content between 2 and 17 at % was 

measured from 300 to 700oK by Henderson and Raynor.74 

The measurements were made at one field at all temperatures, no 

ordering effects could bo detected. For the Cu-Mn alloys with high Mn 

content (10 at % and more) the magnetic properties are extremely complicated 

and also in those of the alloys discussed here which have a high Mn content 

the susceptibility might not be the adequate parameter to describe the magnetic 

behaviour even at high temperatures. All the alloys showed however Curie- 

Weiss behaviour in the temperature range investigated so that the effective 

moment per Mn atom, geff, and the constant * could be determined. 



76. 

For Ag-Mn, peff decreased with increasing Mn content from 5.7 µB 
for 2% Mn to 5.0 µB  for 17% Mn. For constant Mn concentration, µoff 

increased with increasing Sn content from 0 to 4% Sn and decreased on 

further addition of Sn. This variation is of the order of 0.1µB  and 

must be small compared to the experimental error. It must however be noted 

that for all Mn concentrations a similar curve of µeff vs Sn-content is 

found, which suggests that this maximum is a genuine effect. The parameter 

6 did not vary within experimental error with Sn concentration and 

increased with increasing Mn content from 1°K for 2 at % Mn to 32°K for 

16% Mn. 

b) Solutions of Mn in a-phase Cu-Zn, Cu-Al and Cu-Ge alloys.  

Myers and Westin measured the susceptibility of solutions of 1 or 2% 

Mn in a-phase Cu-Zn, Cu-Al and Cu-Ge alloys. The composition of the 

solvent was varied over the whole range of the binary a-phase. The 

measurements on the Cu-Zn based alloys were made from 150 to 500°K, those 

on the other systems from 150 to 700°K,thezesults showed that the 

susceptibility followed a Curie-Weiss law for all the alloys. 

In the Cu-.u-Mn alloys the effective moment per Mn atom, peff, 

decreased with increasing Zn content from 4.8µB  in pure Cu to 4.511B  for 

the alloy at the Zn-rich end of the phase. In the Cu-Al-Mn system µoff 

was 4.9 ± 0.1 µB  for all the alloys measured and for Cu-Ge geff 

decreased with increasing Ge content from 5.0 gB  for Cu-Mn to 4.7 4B  

for 89% Cu - 9% Ge - 2% Mn. 
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The values of 0 lie mainly in the range + 30 + 10°K. As an 

extrapolation over a large temperature interval is necessary to obtain 

these values from high-temperature measurements, the reported variation 

of is not significant. 

§.2 Solutions of Mn in Ag-Sn and Au-Sn C -phase alloys.  

The susceptibility of solutions of Mn and Fe in binary alloys of the 

Ag-Sn and Au-Sn C phase systems was measured by Henderson and Raynor.76 

The crystal structure of these binary alloys is close-packed hexagonal, 

the composition range is from 12 to 23 at % Sn for A ErSn and from 12 to 16 

at % Sn for Au-Sn. 

Solubility.  

A metallographic investigation of the solubility of Mn and Fe over 

the whole composition range of the C -phase77  indicated a maximum solid 

solubility of 20 at % Mn in the A ErSn C phase at 480°C and of 5 at % Mn in 

the Au - Sn C phase at 275°C. For solutions of Fe in the Au-Sn phase the 

same value as for Mn in this phase was found. 

Magnetic susceptibility.  

The susceptibility was measured from room temperature to 700°K of 

ternary alloys with varying Ag-Sn and Au-Sn ratio and a Mn concentration 

from 1% to the highest possible value as determined metallographically. 

The susceptibility followed a Curie-Weiss law for all the alloys, 

from which the effective moment peff and the parameter 0 were determined. 
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Ag-Sn-Mn  

For the alloys contailling 2 or 5 % Mn, peff decreased with increasing 

Sn content of the alloy from 5.8 MB  for 13% Sn to 5.4pB  for 20% Sn. 

For the alloys with higher Mn-concentration peff decreased with increasing 

Sn content by 0.2 to 0.3 MB  over the composition range of the C phase. 

It was also found that p eff decreased with increasing Mn content, the 

lowest value observed was 5.1 MB  for a 4-20% Sn - 18% Mn alloy. Within 

the experimental error 6 was independent of Sn concentration and increased 

with increasing Mn content from + 1°K for 2% Mn to + 35°K for 15% Mn. 

Au-Sn-Mn and Au-Sn-Fe.  

Also in these alloys peff decreased by roughly 0.2pB  with increase in 

Sn content from 12 to 15%. For Mn, peff decreased with increase in Mn 

concentration from 5.7 pB  for Au-12% Sn - 1% Mn to 5.6 MB  for Au-12.5% Sn 

-4% Mn, and for Fe from 4.2pB  for Au-1ROn-1%Fe to 3.81i3for Au-13% Sn -4% Fe. 

For none of the two systems a significant variation of 0 with Au-Sn ratio 

was found. For the alloys containing Mn, 6 increased from 0°K for 1% Mn 

to 10oK for 4% Mn, i.e at the same rate as in the Ag-Sn-Mn system. 

For the alloys containing Fo a strong variation of 6 with solute 

content was found, here 6 increased from 0°K for 1% Fe to 80°K for 4% Fe. 

SECTION D. SOLUTIONS OF Fo AND Co IN TRANSITION METALS OF THE 
SECOND LONG PERIOD.  

The susceptibility of solutions of 1% Fe in the elements between Nb 

and Pd in the periodic system and in binary alloys of these elements hex, 

been measured by Clogston et al. from 1.4 to 300°K in a field of 14.000 Oe. 
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For the alloys of Fe in Nb Mol  Mo -Re, Ru -Rh and in the Rh-Pd 

alloys containing less than 30 at % Pd the susceptibility follows a Curie- 

Weiss law from which the moment per Fe 

determined. A plot of µFe  as function 

solvent is given in Fig. 3. 

For the Rh-Pd-1% Fe alloys 

which contained more than 30% Pd 

the susceptibility did not follow 

a Curie-Weiss law. It was 

assumed that for these alloys the 

susceptibility can be written as 
i N 

X =X 0  + 	Fe 	MI  
3k(T-0) 

where )(:o is the susceptibility 

of the system of Rh-Pd atoms in 

the ternary alloy which is taken 

to be proportional to µFe  : 
X or 

IlFe(Tr)  

Xo Fe 
	(2) 

where X 	and p (T ) are the values 

o/(c)r)2 

X -X 

Experimental values of the expression  

at a temperature T
r
. Equation (1) 

(3) 
NpFe(Tr)]2  

on the left hand side of equ (3) 

or 	Fe r 
can then be written as 

3k(T-8) 

were plotted as function of T9 from which plot values of µFe  (100°K) 

were obtained for the various alloys. It was however not indicated in the 

report how the necessary values of No  and xer  were obtained. 
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The objections that can be made against this interpretation of the 

results are firstly that it is doubtful if a field-independent susceptibility 

is the adequate parameter to describe the magnetic behaviour of these alloys. 

The measurements wore made in one field only, so this can not be checked, 

but the fact that ferromagnetism appears in some of the alloys of this 

system (see below) indicates a more complex situation. Secondly no 

argument for the assumption X0  d:111,0  is given. It must be noted that in 

the binary Rh-Pd alloys with 30% or more Pd the susceptibility is temperature 

dependent and has been interpreted in terms of the collective electron 

theory. Fitting to this theory requires that in this system magnetic 

interactions in the 4d band take place which are not strong enough to cause 

magnetic order but cause enhanced paramagnetism. If in this system some of 

the Rh and Pd is replaced by Fe atoms which carry a moment, it can be 

expected that the susceptibility of the matrix will be affected. The 

relation (2) bust be seen as a first approximation and although there is no 

doubt that in these alloys the moment par Fe atom is large (see beloW), the 

values of the moment as plotted in Fig. 3 can only be approximate. 

§.2 Ferromagnetism in Pd-Fe, Rh-Pd-Co and Pd-Ag-Co  

Measurements of the saturation magnetization and the magnetic susceptibi-

lity of Pd-Fe and Pd-Co alloys by GerstonberP Cranglrand Bozortgl  eto, al 

showed that those alloys are ferromagnetic at low temperatures and that if 

it is assumed that only the solute atoms carry a moment, this moment per Fe 

atom is roughly 7µB  in Pd-1.25 at % Fo and that of a Co atom in Pd-0.1% Co 

roughly 10µB. A plot of 1 
vs T for Pd-0.1% Co (with the values 

X -X Pd 
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for Pd as found by Hoare forxpd) corresponds to a value of the effective 

moment per Co atom of 14AB. This value is only approximate but indicates 

that at high temperatures the moment retains a large value. 

Bosorth et a182 also investigated Rh-Pd-1% Co and Pd-Ag-1% Co alloys 

of different Rh/Pd and Pd/Ag ratio. In Pd-Ag-1% Co the saturation moment 

per Co atom n
A 

and the Curie-temperature T0 
decreased with increasing Ag 

concentration, the ferromagnetism disappeared for 40% Ag. Also in Rh-Pd-1% Co 

a decrease of nA and Tc 
with increasing Rh content was observed, which was 

however for low Rh content less rapid than for the corresponding Pd-Ag-Co 

alloys; here, To  reached the value zero for 50% Rh. 

§.3 Electrical resistivity 

The resistivity of solutions of Fe in lqb, Rio, Rh and Pd was measured 

down to 1.8°K by Coles84 who found in Nb-Fe, where Fe does not carry a 

moment, no anomaly in the variation of the resistivity with temperature, while 

the other systems in which the Fe atoms are magnetized do show anomalous 

behaviour. These anomalies are qualitatively different for the three different 

systems. 

Mb-Fe.  

In Mo-Fe the resistivity vs temperature curves are similar to those for 

Cu-Mn alloys. For a Mo-0.65 at % Fe alloy a maximum at 4°K and a minimum 

at 22°K were found which disappear when the Fe concentration is raised to 

1.58%, in this last alloy the resistivity increases strongly with increase 

in temperature below 15°K. 
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Rh-Fe.  

In Rh-Fe alloys with Rh content between 0.1 and 0.85 at % the difference 

in specific resistivity of an alloy and that of pure Rh is proportional 

to the concentration and increases strongly with temperature from 2 to 50°K. 

The magnetoresistance followed kehlers rule and the thermoelectric power, 

which below 10°K is K 	several microvolts per degree increased with decreasing 

temperature down to 1.8°K. 

Pd-Fe. 

In Pd-Fe alloys containing about 0.1 at % Fe the only anomaly observed 

is a decrease in resistivity with decreasing temperature below 2°K, no 

maximum or minimum have been observed for this system. 
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PART II. 	SUMMARY OF THE THEORETICAL WORK ON DILUTE ALLOYS  

From the experimental results discussed in the previous sections it 

is seen that in those dilute alloys in which the solute atoms carry a 

magnetic moment the magnetic susceptibility, electrical resistivity, 

magnotoresistance, specific heat and thermoelectric power show anomalous 

behaviour. For the alloys in which no moment is observed, i.e. the Al 

based alloys and those in which Ni or V is the solute none of these effects 

have been found, with the exception that Au-Ni and CuNi have a large 

thermoelectric power at low temperatures. 

Recent experiments by Cape and Hake
85 

on solutions of elements of the 

first transition group in Ti, Zr and Hf also indicated a one to one 

correspondence between the occurrence of an atomic moment and of a 

resistivity minimum. 

In the following section the theories developed for dilute alloys 

will be discussed and the application of this work to the experimental 

results. The alloysfor which the solvent is a non-transition metal will 

be discussed in Section E, the solutions of Fe and Co in other transition 

metals in section F. 

Section E. 	Theoretical models proposed for dilute alloys of 
a transition metal in a noble metal.  

The alloys of a transition metal and a noble metal in which an atomic 

moment is observed can be divided into two groups showing different 

behaviour, firstly those alloys for which a maximum in the resistivity vs 

temperature curve is found for solute concentrations below 0.5 at % and a 
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maximum in the susceptibility at a higher concentration and secondly those 

in which none of these two maxima have been found. It must be noted 

however that the Cu—Fe system has not been investigated extensively at low 

temperatures. 

The solid solubility of the solutions of the first group is considerably 

higher than that for those of the second group, a relation with the magnetic 

properties of these alloys is however not obvious. 

For all these alloys an anomaly in the specific heat and a negative 

magnetoresistance have been observed. 

No general theory has boon given describing various properties of the 

alloys, but several models have boon put forward, each of which deals with 

one aspect of the observed phenomena. This theoretical work can be 

classified according to the physical property treated and will be discussed 

with the application to the experimental results in the following 

paragraphs : 

1. magnitude of the atomic moment.  

2. interactions between atomic moments 

3. magnetoresistance 

4. electrical resistivity 

5. specific heat 

6. thermoelectric power. 
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Magnitude of the atomic moment.  

The existing theories an atomic moments and the qualitative explanation 

of some properties of Cu- and Al based alloys in terms of those theories 

have been discussed in Chapter I. It was shown that the 3d-states 

associated with a solute atom are broadened in energy by interactions with 

the Bloch states of the solvent. For the width of a state the expression 

=7'<Vdk2> p (E) (1) was derived16  I where Vdk  is a parameter describing 

the interaction of the 3d state with a Bloch state and P (E) the density 

of the Bloch states in energy at the energy of the virtual state. Equation (1) 

shows that a low density of states at the Fermi-energy EF, causing only a 

small broadening will be favourable for the existence of a moment. The 

electronic specific heat Y of the solvent which on a simple model is 

proportional to P(EF) will therefore be compared with the observed solute 

moments. For Cu, Ag, Au and Zn the values of? lie close together and are all 
25 

in the range 1.6 to 1.8 x 10-4 cal. 	2 	. This is consistent with the fact 
mole deg 

that the moment on a Mn atom is roughly the same in these solvents. For Fe 

the comparison can not be made as the moment per Fe atom in Cu in strongly 

dependent on the Fe concentration which indicates a more complex situation. 

In solutions of transition metals in Al 	= 3.5 x 10-4cal/ mole deg2) the 

solute does net carry a moment. This is consistent with the theory which 

then also predicts the absence of or a low value for the moment on a 2h 

atom, dissolved in Mg (y= 3.25 x 10-4cal/
mole deg2).  For this moment values 

of 2.9 and 4.1µB  have however been reported. This model then holds only if 

0.1 
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dk
2 >in equ (1) is larger for Mn in Al than for Mn in Mg. It is not 

unlikely that the interaction of the 3d-state on a Mn atom with a Bloch 

state with s-symmetry will be different from that with a Bloch state with 

p-symmetry. The average value of Vdk
2  will then vary with the ratio of 

the numbers of band states with s-character and with p-character. It 

might be possible that along these lines a difference in the values of <Vdk2> 

for Al and mg can be explained, this problem is however too complicated 

than that any more detailed comparison with the experiments can be made. 

For Cu-Zn a-phase alloys of different Cu-An ratio specific heat 

measurements have been reported.
86 This allows, for the a-Cu-Zn-1% Mn alloys 

a comparison of the electronic specific heat of the solvent with the 

moment of a Mn atom in solution.lfl, plotted as a function of Zn concentration 

shows a maximum at 20 at % Zn, with a value of about 4% above that of 

pure Cu, while the effective moment per Mn atom, peff decreases monotonically 

with increasing Zn content from 4.8gB  to 4.5gB on the a-phase. The simplest 

explanation here is that the variation of p (EF) is not large enough to 

modify the width of the 3d state on a Mn atom and that the change in geff 

is the result of a gradual filling of the spin up and the spin down part of 

the 3d-level. In these terms Henderson and Raynor74  interpreted the results 

on the Ag-Sn-Mh alloys of low Mn content, taking also into account the 

possibility of transitionsof electrons from the 3d state into the conduction 

band as a result of the change in lattice parameter over the phase. However 

the presence of a number of parameters which cano not be estimated and have 

to be treated as adjustable rules out any quantitative comparison of the 
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theory of the virtual bound state with the experimental values of atomic 

moments. 

0.2 Interactions between atomic moments.  

Experimental information about those interactions is the value of the 

Curie-Weiss constant 0 and the temperature of the susceptibility maximum. 

In Cu-Mn2  Ag-Mn and Au-Mn the value of 0 derived from the high-temperature 

points, is positive, which:indicates ferromagnetic interactions while at 

low temperatures a broad susceptibility maximum at temperature TN  is 

observed, indicating antiferromagnetic order. 3 and TN  increase with 

increasing solute concentration. 

No theoretical work has been applied to other alloys than these. 

The work by Yosida and Blandin (Ch.I) only shows that magnetic interactions 

in dilute alloys are possible but does not predict under which conditions 

these will be ferro- or antiferromagnetic. 

The spin-density wave model (Ch.I) will lead to antiferromagnetism 

and was proposed as the explanation of the properties of Cu-Mn alloys. The 

consequences of this model for the shape of the susceptibility vs temperature 

curves were however not investigated. 

The molecular field model for Cu-Mn. 

The experimental result that in Cu-Mn the Curie-Weiss constant 8 is 

positive while at low temperatures antiferromagnetic order is found was 

explained in terms of the following molecular field model by Owen et a139. 

Assume that the sites of the Mn atoms can be divided into two sublattices, 

A and B, assume further that the short range interactions between a Mn atom on 
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an A site and one on a B site is antiferromagnetic, those between two Mn atoms 

on the same sublattice ferromagnetic, and that both these interactions are 

independent of temperature. Then a straightforward molecular field argument 

shows that subject to conditions on the interaction parameters introduced, 

the above-mentioned experimental results are predicted Qualitatively. The 

predicted maximum in the susceptibility is however a sharp peak, while the 

experiments show a broad transition. If it is now assumed that the actual 

structure of the alloy deviates from the ordered structure assumed above, 

the molecular field at the Mn sites will no longer have one well defined 

value. There will be instead a range of possible values and different Mn 

atoms will in general be in a different effective field which will broaden 

the transition' region in temperature. 

The pair-interaction model for Cu-Mn.  

The same problem was discussed in different terms by Dekker
26, who 

considered the interactions between pairs of randomly distributed solute 

atoms. As in the previous model, those interactions are introduced formally. 

Be T1 the distance between nearest neighbours in the Cu-Mh lattice 

and%\2 
that between next nearest neighbours, the Mn atoms can then for low 

concentrations be classified as follows : 

1. single atoms which have no other Mn atoms at distance N1 orN2 

2. nearest neighbour pairs, two Mn atoms at distancd l' 
none of 

which has another Mn atom at distance ?, or 

3. next nearest neighbour pairs, two Mn atoms at distanceX
2 
none 

having another Mn atom at distance NI  or 
2. 
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The interaction in a nearest neighbour pair is assumed to be anti- 

ferromagnetic, in a next nearest neighbour pair ferromagnetic and both 

interactions are taken to be temperature-independent. The susceptibility 

is then the sum of the contributions from the single atoms and the pairs. 

The detailed calculation of the magnetic behaviour in this model is extremely 

complicated, although this is possible in principle. It can however be 

shown simply that at high temperatures the susceptibility follows a Curie- 

Weiss law and that positive values of 0 are possible, depending on the 

values of the interaction parameters. From this argument it can also be 

seen that 0 is strongly concentration-dependent. 

It was shown that for a very simplified model the desired broad 

maximum in the susceptibility is found. 

D.3 Magnetoresistance.  

It has generally been found that the resistivity of a pure metal. 

increases as the result of the application of a magnetic field. IfCipis 

the charge is resistivity, this is then positive and the relatior4pa H2  

holds where H is the magnetic field.27 

For the alloys discussed in Section A paragraph 1 and paragraph 2 , 6p 

is smaller than the values for the pure solvent and is, except for very 

dilute solutions, negative. The fact that this behaviour is only found in 

alloys where the solute atoms are magnetized suggests a spin-dependent 

scattering of the conduction electrons by these solute atoms. If it is 

assumed that the cross-section for the elastic scattering of a conduction 
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electron by an impurity atom with spin parallel to that of the electron, 

cr 
p, is different from that for the case of antiparallel spins (rap and only 

elastic scattering is considered, the resistivity in a magnetic field due 

to this scattering mechanism can be written as 

(N 
	N)2 (0_ 	) 

p ap  

(N++ ) (0 + C r 
aP 

where N- is the number of impurity atoms with spin I-4a. 

Equation (3) shows the.tAp is negative and proportional to (Ni.  - N-)2  

i.e. to the square of the magnetization of the alloyAD= at? (4). This 

relation has been found experimentally for the alloy systems for which this 

has been investigated, Cu-Mn and Cu-Co. A difference between these two 

systems is that a in (4) is temperature dependent for Cu-Mn and temperature-

independent for Cu-Coo 

§.4 Electrical resistivity.  

It has been found in general that non-magnetic impurities increase 

the resistivity of a metal by a temperature-independent amount. The fact 

that a maximum and a minimum in the resistivity vs temperature curves 

have only been found in solutions of atoms, which carry a moment suggests 

that the mechanism responsible for those anomalies, as that for the 

magnotorosistance discussed in paragraph 3, is the interaction of the 

conduction electrons with the solute atoms. All theories given to explain 

these anomalies are based on this principle. A summary of these models is 

given below. 

P (H) =P(0) - ( 3) 
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a) Korninga and Genitsen

88'89 showed that formally a resistivity vs 

temperature curve having a minimum at low temperatures can be described 

by standard resistivity theory if the relaxation timeeris zerc for electrons 

in a narrow energy range containing the Fermi-level (taken as E=o). The 

asaamption that =o for electrons in an energy range A around energies ± El  

leads to a maximum and a minimum. By a proper choice of E
1 
and0 it was 

possible to find theoretical resistivity curves which fit the experimental 

data extremely well, for the systems Cu-linlAg-MnlAu-Mn and Au-Cr. The 

values needed for a good fit were El  from 2 to 10°K and A from 0.2 to 1°K. 

Physically this can be interpreted as a situation where states, not 

belonging to the conduction band, exist which have energy +El  and cause a 

resonance in the scattering of conduction electrons of these energies. 

In a one-electron model this assumption has no physical justification for 

the following reasons : firstly there is no reason why such energy levels 

should lie just at the Fermi-energy and secondly, a one-electron theory 

as discussed in Chapter I predicts a broadening of these states in energy 

to at least 0.1 eV ( c81000°K). Therefore the authors proposed as a 

hypothesis that the introduction of the impurity causes some change in 

the system of conduction electrons as a whole and that, if the alloy is 

described by a one-electron model, this change can be represented by an 

increase of the density of states in one or two narrow energy ranges near 

the Fermi-energy. No theory, proving the possibility of the existence 

of these states has however been put forward. 
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b) Schmitt and Jacobs9°'46  suggested that magnetic ordering of the 

lattice is a condition for the appearance of the observed resistivity-

anomalies. The relevant mechanism they assumed to be the scattering of 

conduction electrons by solute atoms, which is temperature-dependent for 

the following reasons. Below the magnetic ordering temperature the spin 

degeneracy of the impurity atoms is removed and inelastic scattering 

processes will take place, involving the reversal of the spin of the 

conduction electron and the transition of the atom into a different state. 

At zero temperature this part of the scattering vanishes because no empty 

states are available as final states for the electron and the magnetic 

atom. The inelastic scattering thus decreases with decroLlsing 

If the cross-section for elastic scattering depends on the relative 

orientation of the two spins, a similar argument as given in paragraph 4 

applies. Below the transition temperature, a change in temperature will 

cause a change in the occupation of the different states for the solute 

atoms. This will change the fraction of scattering events with a certain 

initial orientation of the spins concerned. If the cross-section for 

elastic scattering for lower lying states of the impurity atom is larger, 

the elastic scattering will increase with decreasing temperature. 

A combination of these elastic and inelastic scattering mechanisms could 

explain the observed maximum and minimum. No more detailed theory was 

given by these authors but these ideas have been applied in subsequent 

work by others. 
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c) A more detailed treatment along the lines suggested by Schmitt and 

Jacobs was given by Yosida
91. Here magnetic order of the Mn atoms is 

assumed and the resistivity due to s-d scattering of conduction plectrons 

by these atoms worked out. The s-d interactions considered were those 

between the 4s-conduction electrons and the 3d-electrons on the Mn atoms 

and were taken to be of the form Ha n 	1, )-2 .Z n 	— 

	

-R n 
 ) 8..Sn 	(5) a 

i.e. a spin-dependent and a spin-independent part here ri  and si  are the 

position and the spin of a conduction electron, R and S those of 

a Mn atom, V represents the screened Coulomb potential of a Mn atom and J 

the 3d-4s exchange integral. The calculation is done in the following 

way : firstly it is shown that the resistance R is proportional to 

(REli+  +LEF-)-1  (6) where 	is the shift of the Fermi sphere for + 

spins as a result of the application of an electric field. These E,17 must 

af 	4( iit ) be found from the Boltzmann equation ( 	 o (7). a tfield 	coil 
The contributions to (7) of elastic and inelastic collisions are written 

in terms of the potantials V and. J and ofAV1  . These are then substituted 

into (7) after whichLEF± are found and substituted into (6). This leads 
W 

to 	complicated expression for R which can be written as R 	
o 	w

2 
E2 

2 	2Y! 

(8) where trio is a transition probability which is equal for + and - spins, 

w a constant and M the magnetization of the Mn system. For a simple anti-

ferromagnetic order of the Mn atoms M=o. The complete expression for (8) can 

then be simplified and is found to increase gradually with temperature from 

T=o to the Neel temperature and to remain constant from there, so that 

for this case the theory does not predict the anomalies. The condition m+o 

is however not likely to be fulfilled over the whole volume of an alloy and 
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for most alloys the second term in (8) will have to be considered. As 

Yosida pointed out the resistivity duo to s-d interactions as discussed 

here will be large for high solute concentrations, and if these interactions 

would be responsible for the resistivity maximum and minimum, it would 

not be clear why these anomalies are not observed for higher concentrations. 

For the change of resistivity-in a magnetic field where M / o this 

theory predicts the relationp a M2  as is observed experimentally. 

d) Brailsford and Overhauser
92 considered the scattering of conduction 

electrons by ferromagnetically coupled pairs of solute magnetic atoms. 

If the spin of a solute atom is S the total spin I of the pair can have 

values between 0 and 2S and the energy difference between states of 

different values of I depends on the interaction between the atomic spins. 

It is expected that the cross-section for the elastic scattering of a con-

duction electron by a pair is larger asthevalue of the total spin I of this 

pair is higher. If the coupling is ferromagnetic the occupation of states 

with high values of I will increase when the temperature is lowered and 

consequently the average elastic cross-section also. The temperature-

dependent inelastic scattering which is the result of the s-d interactions 

between the conduction electrons and the impurity atoms will decrease as 

the temperature is lowered because less empty states into which transitions 

can be made become available. The total change of the scattering when 

the temperature is lowered is thus the difference between the increase in 

elastic and the decrease in inelastic scattering. A consideration of the 

interference of waves scattered by the two atoms of a pair led to the 
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conclusion that the elastic scattering predominates and thus this treatment 

explains the resistivity minimum. 

Because this mechanism is due to pairs of solute atoms it is expected 

that for dilute solutions the size of the minimum will be proportional to 

the square of the solute concentration. 

e) Dekker93 gave a treatment of the elastic scattering of conduction 

electrons using a model similar to that applied to the magnetic properties. 

(paragraph 2). 

The basic assumptions are : 1. The solute atoms can be divided into 

single atoms and nearest neighbour pairs, defined as in paragraph 2, this 

means that only very dilute alloys arc considered, 2. there is a magnetic 

coupling between nearest neighbour solute atoms, which can be either ferro-

or antiferromagmtic, 3. the scattering potential of a solute atom for a 

conduction electron can be written as the sum of a spin-independent and a 

spin-dependent term. 

Elzpressions for the cross-section for elastic scattering by single 

atos and by the above mentioned pairs were derived in terms of the scattering 

potential. The last part contained a term arising from the interference of 

the waves scattered by the two atoms of a pair. The total elastic scattering 

cross-section Qel was found to vary with temperature T if the magnetic 

interaction between the nearest neighbour solute atoms is non-zero and, 

depending on the above-mentioned interference term, ci dQT.e1 was either positive 

or negative. It was assumed that the model leading to a negative value for 
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dQ
el i

s applicable to the actual alloys and that the appearance of a dT 

resistivity maximum is the result of the decrease of the inelastic 

scattering at low temperatures as suggested by Schmitt and Jacobs. This 

last effect was however not considered in more detail. It must be noted 

that here, as in the theory of Erailsford and Overhauser the interference 

of the waves scattered by nearest neighbour impurity atoms, is of major 

importance. It was also shown that this treatment leads to a decrease 

of the resistivity in a magnetic field. 

@.5 Specific heat.  

The specific heat anomalies observed in dilute alloys have in most 

cases been interpreted as broadened Schottky anomalies, as discussed in 

Sec. A paragraph 1, arising from the ordering of atomic moments in a 

molecular field. For few more detailed features of the experimental curves 

has it been possible to account in.a theoretical model. 

Me fact that the specific heat of Cu-Mn alloys at low temperatures is 

indepLdent of concentration was explained by Overhauser22 on the spin 

density wave model (Ch.I) which also gave the correct order of magnitude 

of the specific heat at the temperatures considered. 

Marshall94  explained the same experimental result using a molecular 

field model. This has the advantage above the spin density wave theory 

that no new principle has to be introduced. In this work the concept of 

the molecular field in a dilute alloy is examined. Because this field will 
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vary over the volume of the alloy it is necessary to introduce the 

function p (H,T), the probability of finding at a lattice point a field 

H at a temperature T. For a lattice in which all the atoms carry a 

moment and in which there issperfect antiferromagnetic order,IBLI will have 

one well defined value h(T) at a given temperature so that p(H,T) = for 

H = h(T) and zero for all other values of H, while h(T) is zero above the 

ordering temperature. In a dilute alloy the solute atoms surrounding a 

given atom will not all have the samo spin orientation and not 	be at 

the same distance from that atom so that for IHI a range of values is 

possible. The distribution function p(H,T) as 

shape as shown in Fig.4. 

The interaction between 

the atomic moments was taken 

to be of the form derived by 

Yosida (Ch.I). The energy of 

the system is 

E(T) = 4 NoPp(H,T)µH tanh 	dH (9), 

where p is the moment per solute atom, N the 

number of lattice points and c the impurity 

concentration. Differentiation of(9) gives the  

function of H will have the 

0 
FIG.4 Probability—

distribution of the 
molecular field in a 
dilute alloy. 
After ref. 94 

specific heat CM. At low 

temperatures only small values of H are found to contribute to Cm, which 

means physically that only spins in small effective fields give rise to 

Schottky anomalies, while those in stronger fields remain rigidly aligned 

and do not contribute to the specific heat. Application of this result 
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then leads for low temperatures to a concentration-independent expression 

for CH, in accordance with the experiments. 

§.6 Thermoelectric power.  

For a metal in which the scattering of the conduction electrons is 

purely elastic, the collision term in the Boltzmann equation can be 

( ) 21 	
fk(E)  - fo(E)  1 r 	

27 
written as at c - 00) 	where fk(E) is the 

distribution function for wave vector k, E the energy, fo(E) the equilibrium. 

value of the function, and 7- the relaxation time. In this case the 

thermoelectric power arising from electron diffusion can be written as
52 

7T2k2T 	dln N(E) 	dln v2 dln T -1  
s 	 

3-e 	dE 	dE 	dE 
E=EF  

where N(E) is the density in energy of conduction electron states, v  the 

velocity of an electron and El., the Fermi-energy. At low temperatures this 

model predicts values of 8  of at most 0.1 µV/oK  . For several dilute 

alloys, mentioned in Sec.A paragraph 1, values of several µViol(  at 

temperature below 20°K have been reported. Because these anomalously high 

values are found in alloys in which also the resistivity shows anomalies, 

the explanation of this behaviour has been sought in some anomalous 

scattering mechanism for the conduction electrons. The last term in 

equation (11) already indicates that if T is strongly energdepettdent at 

E=Ep large values of S are possible, but if inelastic scattering is taken 

into account, equation (10) and thus also (11) do not hold. 
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simple model has been put forward by Guenault and MacDonald95 

in which the scattering of the electrons is partly elastic, partly inelastic. 

Within the limits of this model it was possible to derive a relation 

similar to (10), which contains a relaxation time Tt  describing the total 

scattering of the electrons. This theory assumes two groups of conduction 

electron states, electrons can be scattered elastically into a state in 

the same group, while the scattering into the other group is an inelastic 

process. The elastic relaxation times of the two groups, T1 andlr2 
are 

taken to be different. It is now assumed that it is justified to work with 

a distribution function for each group and to write for these functions 

equations similar to (10). Then it is shown that the total scattering can 

be represented by one relaxation time 71. In analogy with (11) the last 
d lnir,  

term in the expression for S is then written as Sic* 	 dE 	(12). jEi 

From this relation it is seen that, if 14  is strongly energy—dependent and 

asymmetrical function of E with respect to EF, large values of SI are 

possible. If T =ir2 the inelastic scattering does not affect 7-1, so that 

no anomaly is expected. 

either very large or very small compared to the elastic part. 

This idea can be applied to the: picture of alloys discussed in 

Sec. A paragraph 1 as a gas of conduction electrons scattering by magnetic 

impurities. The two groups of electrons mentioned above are those with + and 

those with — spin. The scattering of an electron in which the spin is not 

reversed, is elastic and the relaxation times for the elastic scattering 

must bo different for the two groups. The transition of an electron from 

an 

The same applies if the inelastic scattering is 
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one group to the other, i.e. the reversal of the spin, involves also 

transition of the solute atom into a different state, since the total spin 

must be conserved. This part of the scattering is inelastic. The relation 

(12) is thus applicable to this system and if the elastic and inelastic 

relaxation times obey the conditions mentioned above, a large thermoelectric 

power is possible. The work by Guenault and MacDonald only indicates the 

principle of the methody Do Vroomen and Potters96 have treated this problem 

in more detail. 
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SECTION F. SOLUTIONS OF Fe and Co IN OTHER TRANSITION METALS.  

For solutiopsof Fe in elements of the second transition group and 

alloys of those elements, the experiments show that the magnitude of the 

moment per Fe atom depends on the number of 4d-electrons per atom of the 

solvent. Further the saturation magnetization of solutions of Fe and Co 

in Pd and Pd-Rh indicates a large moment per solute atom and the resistivity 

of those alloys in which the solute carries a moment shows anomalies. 

The theoretical work summarized in Section E can be expected to be 

applicable also tb these alloys. Because of the large differences observed 

between the solutions, the following section will be divided according 

to alloy system, in the following paragraphs 

1. Nb-Mo-1% Fe alloys. 

2. Rh-Fe alloys. 

3. Fe and Co in Pd, Rh-Pd and Pd-1.g. 

§.1 Nb-Mo-1% Fe alloys.  

a. Magnitude of the atomic moment.  

In this alloy system the Fe atoms do not carry a moment if the Mo 

content of the alloy is lower than 40%. In a (Nb Mo )1% Fe alloy a 
0.4 0.6 

moment of 0.3µB  is observed, which increases rapidly with Mo content to 2.1µB  

in pure Mo. For the Nb-Mo alloys specific heat measurements are available 

so that the electronic specific heat y can be compared with the atomic 

moment as in Sec.A paragraph 1. For those binary alloys Ydecreases strongly 
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if the Mo-concentration is raised from zero to 40% and remains constant 

on further addition of Mo. 

According to the theory given by Andersonl6, a low density of states 

of the solvent is favourable for the existence of a moment and the 

appearance of a moment at 40% Mo is in accordance with this model. As 

Anderson however pointed out the strong increase of the moment with 

increasing Mo content of the matrix can not be explained in these terms. 

b. Electrical resistivity.  

The variation of the resistivity with temperature for Mo-Fe alloys 

is similar to that for the noble metal-transition metal alloys discussed 

in Sec.A paragraph 1. This is the only evidence known of a resistivity 

maximum and minimum in an alloy of two transition metals. The theoretical 

work done to explain this phenomenon has been discussed in section E, 

paragraph 4. 

§.2 Rh-Fe alloys.  

a. Electrical resistivity. 

In these alloys the increase in resistivity4oas a result of the 

addition of Fe is proportional to the Fe content c for Fe concentrations 

up to 0.85 at % at all temperatures observed. This suggests that Op is 

due to the scattering of conduction electrons by single Fe atoms. The 

strong increase in 4p with temperature suggests the transition of the Fe 

into a state in which the atoms have a higher cross-section for the 

scattering of conduction electrons. 
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b. Thermoelectric power. 

The thermoelectric power S is of the same order of magnitude as 

that for the alloys discussed in Sec.L paragraphs 1 and 2. The temperature 

dependence is however entirely different. For the noble metal based alloys 

S decreases below 4°K in absolute value with decreasing temperature while 

for the Rh-Fe solutions no such decrease has been observed down to 1.8°K. 

§.3 Pd-Fe,Pd-Co,Rh-Pd-ColPd-Ag-Co.  

In the Pd based alloys a very large moment (7 to 10033) per solute 

atom is found. It Was assumed by Gerstenberg, Crangle and Bozorth et al. 

that this is partly localized on the Pd atoms which are nearest neighbours 

to a solute atom. Recent neutron-diffraction experiments97 on a Pd-1% Fe 

alloy showed the presence cf a moment even on atoms which are next nearest 

neighbours to an Fe atom. This polarization of Pd atoms can be interpreted 

in terms of the model given by Clogston78  which gives for the spin on a site 

which is a nearest neighbour to a solute atom the expressionp(E0
oV (13)  

wherel)(E0 is the density of 4d-states at the Fermi-onorgy, So  the spin 

as the central Fe site and JT the exchange integral between the Fe and a 

nearest neighbour Pd atom,- which Clogston estimated at 0.1 eV. Taking for 

the Fe atom So=1 and for do(E0 the value of 2 states per eV per atom as 

derived from the electronic specific heat of Pd one finds a value 0.2 

for the spin on a Pd atom which is of the required order of magnitude 

to explain the experimental results. When in a Pd-Co alloy Pd atoms are 
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replaced by Ag or Rh the moment on a Co atom decreases. This decrease 

is more rapid in the case of Ag than for Rh as third component. This 

difference in the rate of fall-off with Rh or Ag-concentration might be 

explained in the following ways : 

1. Ag nor Rh carry a moment but Ag reduces the Pd-Pd 

interactions stronger than Rh does. 

2. Tho density of states in the Rh-Pd system is 

higher than that in the Pd-Ag system and Equ (13) 

predicts thus a higher moment on a Pd in Rh-Pd-1% Co 

than in Pd-Ag-1% Co. 

3. The Rh atoms are polarized as Pd, though to a 

lesser degree. 
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CHAPTER IV  

EXPERIMENTAL TECHNIQUES  

In the present investigation the magnetic susceptibility has 

been measured of ternary solutions of 0.1% of a transition metal of 

the first long period in 7, 8 and y phase Cu—Zn alloys. Also 

measured were some solutions of Fe in Mo, Rh and Irt  in which, as was 

mentioned in Chapter III, resistivity anomalies were found by others. 

The measurements were made in the temperature—range from 1.8 to 290°K. 

In Part A of this chapter the preparation and treatment of the 

alloys used is given. In Part B the susceptibility—balance and the 

low—temperature apparatus used are described. 
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PART A. ALLOYS 

Introduction  

(a) The solubility of transition metals in Cu-Zn alloys  

For ternary  solutions of Cr, Mn, Fe or Co in 'y and s phase Cu-Zn 

alloys no phase diagrams are available. That single-Phase alloys 

containing 0.1 at % of transition metal can be prepared is likely for 

the following reasons: 

Y — phase: The systems Mn-Zn, Fe-Zn and Co-Zn also form a Y phase 

with e/a between 1.54 and 1.70 assuming zero valency for the transition 
98 

metal 	Therefore it canbe expected that ternary Cu-Zn-X alloys con- 

taining small amounts of one of the above-mentioned transition metals 

will be stable. For Cr-Zn no data are available. 

8  "phase: Henderson and Willcox99 found that there is a complete 

range of solid solutions between the e phases of the Mn-Zn and the Ag-Zn 

system. The phase diagram of Ag-Zn is very similar to that of Cu-Zn so 

that it can be expected that also a dilute solution of Mn in a  phase 

Cu-Zn will be stable. The systems Co -Zn and Fe -Zn do not form a 

hexagonal g or Cphal, and for Cr-Zn no data is available. 

Although thus no phase diagrams for these ternary systems have been 

published it is likely that single phase solutions (Cu-Zn) - 0.1 % x 

will exist. A number of these alloys was prepared and metallographic 

examination did not show the presence of a second phase in the specimens. 
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(b) Solutions of Fe in Mo, Rh and Ir 

The solid solubility of Fe in Mo has been reported as 16.7 at % 

at 1480°  C and 4.5 at % at 1100°  C.38  In the Rh-Fe system solid 

solutions exist up to 14 at % Fe100. For the solid solubility of Fe 

in Ir no data are available. 

(c) The alloys of which the susceptibility was measured in this 

investigation were: 

Zn - 0.1 at % Fe 

Cu-Zn, Zn rich end of the e phase (15% Cu) with 0.1% Mn added, 

I$ 	►1 	11 	 It 	It 	IT II 	11 	 IT 	11 	11 
	

0.1% Fe 
	II 	

9 

11 	11 	11 	II 	II 	II 	II 11 	tI 	 11 	11 
	

0.1% Co 
	11 	

7 

Cu-Zn, Cu rich end of the e phase (19% Cu) with 0.1% Cr added, 

0 	n 	n 	II 	 IT 	0.1% Mn 	" 

II 	II 	I1 	11 	I1 	II 	I1 	II 	TI 	II 	11 	II 
	

0.1% Fe 
	11 	

9 

11 	11 	TI 	II 	IT 	it 	It 	II 	0.1% Co 
	

tI 

Cu-Zn 'Y phase(62% Cu) with 0.1% Cr added, 

11 	11 II 	It 	 IV 	11 
	

0.1% Co 

Cu-Zny phase of three different Cu/Zn ratio's (41, 37 and 34% Cu), each 

with 0.1% Mn added, and the same three Cu-Zn alloys, each with 0.1% Fe 

added, Further Mo - 0.65 at % Fe, Rh - 0,8 at %.Fe, and 

Ir - 0,8 at % Fe 

In the paragraphs 1 to 7 the casting and treatment of the Cu-Zn - 

based alloys will be given. The preparation of the solutionsof Fe in 

Mo, Rh and Ir requires different techniquesand will be discussed in 

paragraph 8. 
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Cu—Zn base& ,cand n phase alloys  

§.1.Ceneral remarks. 

Thee and.71 phase alloys have a hexagonal crystal 

structure and the possibility that the susceptibility will be aniso—

tropic can not be excluded. To get meaningful susceptibility 

results it is therefore necessary to work either with single crystals 

or with polycrystalline material of small grain size. It is difficult 

in this case to produce single crystals without concentration 

gradients over the volume of the specimen, while a homogeneous 

polycrystalline sample can easily be prepared by quenching the melt 

and annealing the specimen for a not too long time, so that the last 

procedure was followed. For the cubic 1r  phase this problem does not 

arise and a larger grain size can be tolerated. 

In all these alloys the danger exists that during the melting 

process Zn will evaporate from the melt and condense in colder parts 

of the tube which leads to a deviation from the intended Zn content of 

the alloy. For Zn—Fe alloys this only means a small increase in the 

relative Fe content, for thee andy phase alloys however this will 

cause a difference from the intended composition of the matrix, the 

consequences of which are discussed in Chapter V (introduction). On 

the other hand it is essential that all the transition metal goes into 

solution. To make sure that this will be the case without the 

necessity of having to keep the melt at a temperature much above that 

of the liquidus for a long time it was decided to cast first an alloy 

of a few percent of the transition metal in Cu and then to melt this 

with Cu and Zn to give the ternary alloy. If in the binary Cu—X 

master—alloys the components are thoroughly mixed the transition 
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metal will be well dissolved in the melt of the ternary alloy because 

Cu and Zn mix readily. The required shape of the specimens to be 

used in the susceptibility—balance was that of a cylinder of 2 mm 

diameter and a few mm length. 

§.2. Starting materials.  

The sources of the pure elements used for the preparation of 

the Cu—Zn based alloys are given below. The indications in brackets 

will be used in Appendix A as a reference to the material. 

Copper (a) a rod, supplied by Johnson, Matthey & Co. 

spectroscopically pure. (g). 

(b) two other rods supplied by the same firm from a different 

batch. The impurity content was specified as 3 p.p.m. 

Ag, 1 p.p.m. Fe, 1 p.p.m. Pb. (JM). 

Smaller pieces were cut from these rods and etched for 20 minutes in 

1:3 HCl 

Zinc 	(a) a bar supplied by L. Light & Co., the purity specified 

as 99.995 Zn - 0.004 Pb. (A) 

Pieces were cut off with a hacksaw and etched in dilute H01. 

(b) Zinc shot, supplied by the same firm, 6N pure. 

Used as supplied. 	(L). 

Chromium 	supplied by Johnson, Matthey & Co., Fe content 

specified as 0.3%, used as supplied. 

Manganese 	supplied by the same firm, purity 99.98%, used 

as supplied. 

Iron 	supplied by the same firm, in the form of a wire. 

Spectroscopically pure. Small pieces were cut off with 
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side-cutters and etched in dilute HC1 

Cobalt 	supplied by the Metallurgy Department of Imperial 

College. 	Spectroscopically pure. Used as supplied. 

§3. Preparation of the Cu - X master alloys. 

Four Cu-based alloys containing 2% Fe, 2% Co, 2% Cr and 13% Mn 

respectively were prepared. The elements were put in alumina crucibles 

and melted in an induction furnace at a temperature between 1100 and 1400°C 

for about 15 minutes in an Argon atmosphere. An advantage of this 

method is that the liquid Cu was stirred vigorously as a result of which 

the transition metal could dissolve quickly. The melt was then left 

to cool. After removal of the specimens from the crucibles some 

alumina was found to be stuck on the alloys, this was ground off on a 

grinding wheel and the alloys etched to remove possible contamination 

from the surface. The master alloys were then treated in the same 

way as the pure Cu mentioned above. 

§.4. Alloy preparation  

Weighed quantities of Cu, Zn and the relevant master alloy 

of a total weight between 5 and 10 gram were put into a quartz 

tube as shown in Figure lay which was 

then evacuated while being heated at 

about 200°C and sealed off. 

The tube was then, with the thin end 

upwards, kept in a furnace at 50°C above 

the liquidus temperature and shaken 

every 5 or 10 minutes to mix the 

constituents. At the end of the melting 
FM. 1 
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time, the furnace with the tube was turned upside down and the liquid 

cast in the thin end as shown in Figure lb. The melt was then left 

for another 10 minutes, being shaken several times and quenched 

quickly, the thin end of the tube being lowered in water. During 

the quenching the tube was broken. If this procedure is followed 

the alloy solidifies gradually from the lower end of the tube and 

due to the weight of the liquid above, any empty volume caused by 

contraction of the melt on solidfying will be filled up. It was 

however found that the liquid ejected gas when solidfying which caused 

small spherical holes in the sample. 

A Zn - 0.1% Fe specimen (referred to as Zn-Fe I), cast in the 

above-mentioned way was found to have a temperature-independent 

susceptibility equal to that of pure Zn. It was concluded that the 

specimen did not contain any Fe and a different alloy, hereafter 

referred to as Zn-Fe II prepared in the following way: Zn and Fe 

were kept molten at 300°C in a wide quartz tube for 5 hours, being 

shaken every 15 minutes and quenched rapidly in water,. This sample 

was then remelted and cast as the alloy Zn-Fe I. 

§ 5. Specimen treatment  

After removal of the quartz from the sample the thin end was 

cut from the wider part with a hacksaw after which it was etched in 

1:5 HOl to remove Fe contamination. The extremely brittle y brass 

specimens could be broken easily. The 2 mm wide cylinders were then 

annealed to homogenize the alloys. The e phase specimens were sealed 

in vacuo in separate pyrex tubes and annealed at a temperature just 

below that of the liquidus. The y brass alloys were annealed in 
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vacuo at 70000 at which temperature the danger exists that Zn will 

evaporate from the specimens. These specimens were therefore all 

put into one close—fitting quartz tube, separated by small pieces of 

quartz to avoid diffusion from one specimen to another and a few mg 

of pure Zn were added to create a certain vapour pressure of Zn to 

avoid evaporation from the samples. At the end of the annealing 

time the 8 and y plane specimens were quenched in water. 

The Zn-0.1% Fe alloys were supersaturated solutions and could 

therefore not be annealed. These specimens were kept in liquid 

nitrogen from the moment of casting till just before the low—temperature 

measurement. The total time the alloys were at room temperature was 

approximately 2 hours. 

For a susceptibility measurement specimens of between 100 and 

130mgwere cut from the cylinder with side cutters, the surface was then 

ground. -with emery paper to remove oxyde and, in case Zn had evaporated 

from the sample, the surface of low Zn content. These specimens 

were then etched in 1:5 HC1, rinsed in water, dried and put into the 

susceptibility balance. Details of the preparation and treatment of 

the alloys are given in Appendix A. 

§ 6. Metallography and chemical analysis  

To check on the pressure of precipitates of a different 

phase, the alloys were examined metallographically. Mounted 

specimens were ground with emery paper and polisNed, forst on a disc 

with diamond powder and next with alumina on a sylvet cloth. 

Also the brittle y brass alloys could be polished satisfactorily 

in this way. The samples were etched with ferric chloride and 
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examined under an optical microscope. In two alloys, 0.1% solutions 

of Fe and Mn in a Zn rich e phase Cu — Zn solvent with Cu — Zn ratio 

close to that of the phase boundary, (14% Cu), a precipitate in the 

grain boundaries was observed, which was assumed to be n phase. 

These alloys were therefore not used and replaced by the corresponding 

solutions in 15% Cu — 85% Zn. In none of the other specimens a 

precipitate was discovered. 

Chemical analysis  

Analyses were carried out by Daniel Griffith & Co. The 

results are shown in Appendix A. 

The mass of a specimen used for a susceptibility measurement 

was not sufficient to enable an accurate analysis and the total amount 

of alloy cast (about 5 gram) had to be used. For the intended 

binary Cu — Zn alloys the Fe and the Cu content were analysed. 

In the 8 phase specimens (no. 4 and 8) only a small amount of Fe was 

detected. In the y phase alloy (no. 13) however, 0.18 vrt% Fe was 

found. The Cu—Zn—Mn alloy (no. 18) which was cast immediately after 

No. 13 from the same batch of starting materials was therefore also 

analysed for Fe but contained only a trace. It must be noted that 

the susceptibility results in this y brass alloy No. 13 did not show 

values very much above those reported by others for a binary alloy 

of this composition. It is thus not certain that the Fe detected 

during the chemical analysis was present in the susceptibility specimen. 

Because the Cu/Zn ratio for the above—mentioned alloys as 

shown by the analysis,about 0.1% deviation in Cu — content,was close 

to the intended value this was not analysed for the other samples. 
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In the Zn—Fe and in all the ternary alloys only the transition metal 

content, needed for the determination of the effective moment of a 

solute atom from the susceptibility results, was analysed. 

§ 7. Solutions of Fe in Cu — Zny'phase alloys  

Difficulties were met in the preparation of y phase 

(Cu — Zn) — 0.1% Fe alloys. Because no significant susceptibility 

results could be obtained for these solutions and the problem is 

entirely metallurgical, the results will be discussed here. 

Firstly, three alloys of different Cg/Zn ratio were cast as 

described in paragraph 4 and annealed for 5 days at 700°C. The 

susceptibility of two of these alloys as measured with the 

susceptibility—balance described below, showed a Curie—Weiss behaviour 

and a field—dependence at low temperatures. The values of the 

effective moment per Fe atom were 6.5 AB and 7.7 µ$, while 101<: 

These values ofgeff  were unexpectedly large. The susceptibility of 

the third alloy was found to vary considerably with time. Two alloys 

of higher Fe concentration, 0.25 and 0.50mt% which were prepared in 

the same way showed a large temperature—independent remanent magnetisation. 

In none of these five specimens did a metallographic examination 

reveal any precipitate. From the observed susceptibility results it 

is however clear that large Fe particles must have been present. 

It was then tried to prepare the same alloys, using a Zn — 5% Fe 

master alloy. This master alloy was prepared in the following way: 

Fe filings and Zn were kept molten at 900°C for 9 hours, the melt 

being shaken every 15 minutes. After this the melt was left to cool 

to 750°C, kept for one hour at this temperature and quenched. With 
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this master—alloy solutions of 0.1% Fe in y phase Cu—Zn were 

prepared and annealed as described in paragraphs 4 and 5. Also 

in these samples no precipitate was detected metallographically. 

A measurement on one of these alloys showed an almost zero 

susceptibility at 300°K and a large remanence at 77°K. This alloy 

was therefore remelted, kept at 850°C for 19 hours, quenched and 

annealed one week at 700°C, after which a susceptibility measurement 

showed a large remanent magnetization at 77°  and 300°K. One of the 

alloys of this series (not remelted) was then powdered in an agate 

mortar and a small permanent magnet held close to the powder to 

remove strongly magnetic particles. This powder was put into the 

susceptibility balance and showed again a large remanence. 

It was considered possible that torques were acting on the 

specimen in a magnetic as a result of the presence of ferromagnetic 

clusters. Such torques will in the susceptibility balance used be 

interpreted as vertical forces and an analysis of the apparent 

susceptibility with the help of a licrida—Owen plot (see Chapter V) 

will be impossible. Therefore one of the specimens of the first 

series (prepared with the Cu—Fe master alloy) was annealed for 

another 7 days at 600°C and the susceptibility measured in a Sartorius 

balance. For these measurements the apparatus of the Solid State 

Division, A.E.R.E. was used. The results are shown in Figure 2. 

*) The author wishes to express his thanks to Dr. R. Anderson 
and Mr. 3. Perifold for their kind permission for the use of 
the balance and help with the measurements. 
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The fact that the remanence is temperature-dependent rules out a 

direct interpretation of these results. 

It is thus clear that they phase Cu-Zn-0.1% Fe alloys 

prepared in the manner described above contained ferromagnetic or 

superparamagnetic clusters of Fe, which are too small to be seen under 

an optical microscope. It must be noted that solution of the other 

transition metals in this matrix could be prepared easily and as 

discussed above it is expected that also small amounts of Fe should 

dissolve readily. It seems thus necessary, before continuing this 

work to make a more thorough investigation of the metallurgy of the 

ternary 'y phase Cu-Zn-Fe system which is outside the scope of this work. 

§ 8. The solutions of Fe in Mo, Rh and Ir. 

The Mo-Fe and Rh-Fe alloys were cut from arc-melted buttons 

prepared at the University of California, La Jolla. The Ir-Fe specimen 

was kindly loaned by the International Nickel Company, Precious Metals 

Division. 
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PART B. MAGNETIC SUSCEPTIBILITY MEASUREMENTS  

Section I Apparatus  

1. Introduction  

The magnetic susceptibility is found from the force acting 

on a sample in an an inhomogeneous magnetic field. If the field 

H and the field—gradient TE do not change too much over the volume 

H+2°-of 	(1) 
m 	in '; 

of the specimen, the force in the z—direction is 	
"az 

in c.g.s. units, if the magnetic moment per unit mass M of the 

specimen can be written as )(up 	crmando-m  does not depend on the 

field H. Here)(mis the susceptibility per unit mass, m the mass 

of the specimen and Tinthe remanent magnetisation per unit mass. If 

no assumptions are made about the relation between H and M and if 

H = H(z) and M = M(z), the force fz  = z m(M + Hd1,4). dH (2) 
dH dz 

(see appendix B.) 

The force on the specimen in a field was measured with a balance 

101 
which has been described in detail elsewhere. A few changes have been 

made which will be mentioned in the course of a short description of the 

apparatus. 

2. The balance  

In principle the balance is an elinvar spiral from which hanks 

a quartz rod, at the lower end of which is fixed a bucket holding the 

sample to be investigated. This sample is in an inhomogeneous part of 

the field of an electromagnet. If a magnetic field is applied the 

specimen, if paramagnetic, will be pulled towards the centre of the field, 

the spiral will be stretched and the small mirror attached to it will turn. 
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This turning of the mirror can be detected by measuring the output 

voltage of a Selenium photocell on which a light beam reflected by 

this mirror is focused. This effect of the force on the sample 

is then compensated by a current through the coil indicated in 

Figure 3., which hangs in the gap of a permanent magnet. The 

magnitude of this current is a measure of the force acting on the 

specimen. Calibration is done by lowering a 100 mg weight to a 

plate on top of the coil and measuring the restoring current necessary 

to compensate for this extra force. The current necessary to compensate 

a force of one dyne is about 30/211. 

The bucket holding the specimen is a new feature and is shown 

in Figure 4. It can be connected to the quartz rod by sliding it 

upwards around the rod, a 'pip" on this rod fits in the 3—shaped slit 

in the bucket, when the bucket is in the highest position it is turned 

and is then fixed to the rod. The advantages of this specimen holder 

are firstly that the outer diameter (3.5 mm) allows a reasonable 

clearance between the bucket and the surrounding oopper cap (inside 

diameter 4.8 mm.). The danger that the bucket will touch the cap 

after the dewars have been put on is smaller than with the bucket used 

previously. Secondly the force on the balance without specimen is 

small (1.2 dyne in a field of 8000 Oe). The quartz rod to which the 

bucket is connected is surrounded by a German silver tube ending in a 

joint to which the copper cap mentioned above can be sealed. For this 

seal Edwards silicone grease was used which gave a satisfactory seal 

at low temperatures. To the copper cap are connected the thermocouple 

and the carbon resistance thermometer discussed in Paragraph 4. For a 
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change of specimen only this cap has to be removed. Over the upper 

end of the balance is a glass jar, so that the space in which the 

balance is standing can be evacuated. 

3. Dewar location  

A pyrex helium dewar and a brass nitrogen dewar are suspended 

as shown in Figure 5 in such a way that the German silver tube and the 

copper cap surrounding the lower end of the quartz rod and the specimen 

holder, are in the narrow tail of the helium dewar. The tail of the 

nitrogen vessel fits in the 31 mm pole gap of the magnet. A brass cap 

slides round the tube at A and can be sealed to the pyrex dewar as 

shown in Figure 5. Due to the small clearance between the quartz 

assembly and the surrounding tube and between this tube and the inside 

of the dewar careful alignment of the dewar system is necessary. To 

avoid the need of a laborious adjustment of the system after every 

change of specimen, a wide tube in which the outer dewar can be 

suspended was permanently fixed to the frame on which the apparatus is 

standing (Figure 6.). This tube, in which the dewar fits closely was 

soldered to the plate. The plate is fixed to the frame of the 

apparatus with three adjustable screws which allow some movement in a 

horizontal plane and slight tilting of the tube. The dewars are brought 

into position by sliding them into the tube from underneath, then three 

screws are screwed in through the tube under a rim at the top of the 

outer dewar. The slit allows the pumping line of the helium vessel to 

pass through. The lower end of the wide tube is well above the joint 

of the copper cap so that this arrangement does not interfere with the 

removal of the cap. Once the dewar—support has been fixed in the 
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correct position, the dewars can be put on without further adjustment 

after a change of specimen. 

All further low—temperature equipment used has been described 

in detail in Reference 101. 

4. Temperature measurement  

With the balance measurements were done between 1.8 and 290°K 

Because it is not possible to fix a thermometer directly to the 

specimen, the temperature measured is that of the copper cap (see 

Paragraph 2) to which are soldered an Allan—Bradley carbon resistance 

thermometer (42 n' at room temperature) and a Au-2% Co versus normal 

silver thermocouple. The carbon resistor is soldered with one of the 

leads to the copper. In this way the carbon and the copper are in 

direct thermal contact. To each of the leads is soldered a copper 

wire (40 swg), these wires are twisted together, wound with four turns 

round the cap and stuck to this with G.E. low—temperature varnish to 

avoid temperature gradients in the carbon by heat leaking down the 

wires. The two wires of the thermocouple were melted together and the 

joint soldered to the copper tube to which the cap is sealed as shown 

in Figure 7. The wires were wound with three turns over about one 

inch length around the German silver tube for the same reason as 

mentioned above. 

5. Control of the magnet current  

For the measurements a Newport type A magnet was used with 

conical pole pieces. The highest current normally used was 6.5 amp. 

which gives for the gap of 31 mm a field of 8000 0 at the position of 

the specimen. The magent current was supplied by a Newport stabilized 
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15 amp. D.C. power supply. This unit could not be placed near the 

apparatus and a remote—control panel was built with which it is 

possible to vary the magnet current either in steps or continuously, 

to put a resistor of low value in parallel with the magent and to 

reverse the direction of the magnet current. An alarm system becomes 

operative if an attempt is made to open circuit or shunt the magnet 

when a current of more than 1.5 amp. is flowing, or to reverse the 

current direction when the magnet is not shunted. 

Details of the magnet circuit and the control unit are given in 

Appendix C. 

6. Recording of data  

The data to be recorded during a measurement are: 

(1) The restoring current through the coil. in Figure 3, compensating 

the paramagnetic force on the specimen. 

(2) The voltage from the thermocouple. 

(3) The magnet current. 

(4) The resistance of the carbon thermometer. 

1. It was found that, when no current flows through the coil 

and no magnetic field is applied, the position of the mirror (Figure 3) 

changes with time. The procedure adopted therefore is to put the 

photocell in such a position that, if no field is applied, a small 

restoring current is needed to obtain a zero voltage from the 

photocell. The corresponding position of the balance is taken as 

zero position. For a susceptibility measurement the restoring 

current necessary to bring the balance in the zero position is 

measured with field off, with field on and again with field off. 
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The average of the two zero-field values, if not too different, is 

taken as zero-field reading. The principle of the circuit is shown 

in Figure 8. 

FIG. B 

The restoring current can be varied with the circuit C (see Reference 101) 

and is measured as the voltage across the resistor R which, if a 

measurement at constant temperature is made, is measured with a Tinsley 

potentiometer. If the apparatus is warming up and a certain speed 

in taking the readings is required, this voltage is read by three 

channels of a six-channel Honeywell chart recorder having a maximum 

deflection of 10 mV. 	The resistor R can be varied stepwise between 

3 and 15051, this to allow for a given current as large a voltage as 

possible below 10 mV. 

2. The voltage from the thermocouple, which is used mainly 

during warming up of the apparatus is also printed om the recorder. 

As the readings at the end of the scale, below 0.5 and above 9.5 Or 

are somewhat doubtful, a constant voltage of 1.38 mV derived from a 

Mallory-cell was added to that from the thermocouple. From the same 

Mallory-cell were also derived constant voltages of 2.8 and 7.1 mV 

which were read by two channels as a check on the recorder. 

3. The magnet current could not be read by the recorder 

because of ground loops between the recorder and the magnet power 
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supply and was read on a Crompton—Parkinson moving coil meter. 

4. The resistance of the carbon resistance thermometer was 

measured with the circuit described in Reference 101. 

Section II Experimental procedure. 

1. 	The specimens were in the form of cylinders a few mm long 

and 2 mm in diameter. The 

position of the quartz bucket ' 

is shown in Figure 9. 	 / • 

This position was chosen 

because the specimen has to S> 
F1G.9 

be in the same part of the 

field in every run and in this case the alignment could be done 

easily with a microscope, the edges of the pole pieces being used as 

a reference. 

After the specimen had been put into the bucket the apparatus 

was assembled as described in the previous paragraphs, the case of the 

balance was evacuated and one mm of helium gas let in to obtain a 

thermal link between the specimen and the copper cap of which the 

temperature is measured. The susceptibility of the specimen was 

measured at room temperature in four fields to check on the presence 

of ferromagnetic impurity. The outer dewar was then filled with 

nitrogen to precool the apparatus to 77°K. A measurement of the 

susceptibility at 77°K was made after which liquid helium was 

transferred into the inner dewar. The susceptibility was measured 

in four fields at 4.2°K after which the temperature was lowered by 

reducing the pressure above the helium bath. The lowest temperature 
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that could be obtained was 1.7°K, when this was reached the vapour 

pressure was kept constant with a manostat of conventional design 

and again the susceptibility measured in four fields. After this 

the balance was left to warm up while the force was measured 

continuously in one field (8000 Oe) till the temperature reached 

77°K, when again measurements in different fields were taken. 

Points between 77°  and 290°  were obtained by putting a small amount 

of nitrogen into the inner dewar and from the moment the temperature 

started to rise, measuring the force in one field at intervals of 

about 5°K. Taking readings in this temperature range when the 

apparatus is being precooled to 77°K was found to be less satisfactory. 

In this case the temperature decreased rapidly at the beginning and 

the results suggested a difference in temperature between the specimen 

and the thermocouple of about 5°K in the range from 290°  to 150°K. 

During a few experiments it was found that above 30°K the 

paramagnetic force on the specimen increased rapidly with temperature, 

showed a maximum between 50°  and 60°K and decreased on further increase 

of temperature. When this had been observed the inner dewar was 

filled with nitrogen, the vapour pressure reduced and readings down to 

53°K taken which always gave lower values of the susceptibility, which 

followed the Curie—Weiss curve through the points below 30 and above 

770K. 	The only explanation that can be given of this effect is 

that the extra paramagnetic force is due to oxygen which evaporates 

from higher parts of the German silver tube when the apparatus is 

warming up, condenses on the bucket and evaporates on further increase 

of temperature. As oxygen is strongly paramagnetic an extra force 

will be measured if this is present on the bucket. However no 



127. 

significant increase in the pressure in the inner space was detected 

after this effect had been observed. The presence of oxygen has thus not 

been shown and the possibility exists that a different mechanism is 

responsible. 

§ 2a. Calibration data (force measurement) 

The quantity Hat the position of the specimen needed to 

determine the susceptibility from the measured force, was found from 

the force as a sample of Vanadium (at room temperatureXim  = 5.86x106emu
/g) 

for different values of the magent current. As a check this was also 

done with a piece of pure Pd (room temperature susceptibility 5.23x10 6). 

The difference between these results was well below the error in the 

force measurement discussed in Paragraph 3. 

The fields used and the force on the empty balance are given 

in the table below 
on ali amps 	H zuf  x 10-6 H a:: 	force on the 

balance in dyne 
magnet 	e.m.u. units Oe Oe Cm-1 (room temp.) 

1.70 1.22 2800 435 —0.02 

2.70 3.31 4300 770 —0.19 

4.00 6.84 6200 1105 —0.53 

6.30 11.75 8000 1470 —0.96 

A negative force means that the bucket is pushed out of the field, 

i.e. is diamagnetic. The force on the empty balance does not vary 

with temperature down to 15°K and then decreases in absolute value 

to about —0.80dyne at 1.7°K. This background force changed with use 

of the balance. From time to time it was measured at 290 and 77°K 
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and if a change was found from the previously measured values also at 

helium temperatures. Before such a run on the empty balance the bucket 

and the end of the quartz rod were cleaned with dilute HCa to dissolve 

any metallic contamination. As no powdered specimens were used, the 

bucket was not cleaned again before a new specimen was put in, since 

etching might change the force on the quartz assembly in a magnetic 

field. 

2b. The balance is sensitive to forces of about 4:c.10 3 dyne. 

In practice the accuracy is limited by other factors which are: 

1. drifts in the zero field position of the balance, which are 

especially large when the balance is warming up fast. For a normal 

warm—up this drift is between 0.01 and 0.05 dyne during the time needed 

for a measurement (i to 1 minute), and in the worst case 0.4 dyne. 

2. changes in the force on the quartz bucket and rod which have been 

found to be as large as 0.05 dyne at 8000 Oe. As said above, this was 

checked regularly. 

3. errors in the reading of the magnet current of 0.01 to 0.02 amp. 

which lead to an error in the susceptibility of 0.2% at high and 1% at 

low fields. 

4. different position of the bucket with respect to the magnet after 

a change of specimen. The magnitude of this error can be seen from 

the measurements on the V and Pd specimens mentioned above in 

Paragraph 2, and from the measurements on the solution of Mn in 

brass (Chapter IV, Sec. 1, 8). 	This last specimen was measured, 

taken out of the balance, put back in again and measured. These last 

two series of measurements gave at high temperatures values different by 
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0.02 to 0.03x10
6 
emu/

/g 	
This difference is larger than that between 

the Pd and V points in Paragraph 2, so that in this last case the 

agreement was probably fortuitous. If the effect 4 is not 

considered the error on the force measurement is about 0.01 to 

0.02x10
-6 

emu/
/g 

 in the highest field used. The absolute error 

mentioned under 4 will depend on the weight and the susceptibility of 

the specimen, but as the sample of the Mn solution mentioned had a 

mass and a susceptibility close to those of the other specimens this 

error can for the present work be estimated at 0.02 to 0.03x10
6 
emu/ 

/g. 

3a. Temperature measurement  

Up to 20°K the temperature is measured with the carbon 

resistance thermometer, above 20°K with the Au-2% Co versus normal 

silver thermocouple. As has already been mentioned the carbon-

resistor is soldered to the copper cap and the thermocouple joint to 

the tube above the joint of the cap (see Figure 7). The heat link 

between the cap and the specimen is helium gas at 1 mm so that at a 

constant temperature the temperature-difference will be negligible. 

When the apparatus is warming up however, this difference becomes 

noticeable and is the main error on the measurement. The carbon-

resistor was calibrated against vapour pressure of helium gas in 

equilibrium with the liquid at six temperatures. The resistance-

temperature relation was assumed to be of the form 

log R A = B+ C (3) where R is the resistance and A,B and C 
log R 

constants. The values of A, B and C giving the best fit to the 

experimental points were determined and the relation (3) with these 
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values was used as calibration. The thermocouple was used with 

liquid oxygen as a referenoe temperature bath. The thermoelectric 

voltage was measured with the variable junction at 4.2°K and at room 

temperature. The difference between these values and those reported 

by others 102  was 0.04 and 0.19 mV respectively. The change in the 

thermoelectric voltage with temperature for this thermocouple is about 

0.03 mV per degree K below 30oK and 0.04 mV//o  above 50
oK. Because K  

of the difference in temperature between the specimen and the 

thermocouple it is meaningless to measure the temperature more 

accurately than to 0.5°K above 20°K, so that it is justified to use 

as a calibration the values given in the tables mentioned above to 

which a correction is added, this correction being the linear 

interpolation with respect to temperature of the difference between 

the tabulated values and those measured here. 

§ 3b. Accuracy of the temperature measurement. 

As a check on the accuracy the force on a few mg of Manganous 

Ammonium Sulphate (Mn (11114)2  (SO4)2.  61-1204=11.0 x 10 3  CmfAig) was 

measured from 4.2 to 7.7°K. The results between 4.2 and 14°K were 

not reliable as the susceptibility varies strongly with temperature in 

this interval and the force on the specimen changed noticeably within 

the time needed for a measurement. The results from 14 to 77°K are 

given in Appendix D. The fact that the apparatus warms up fairly 

rapidly from 14 to 20°K explains the larger error in this region than 

at the higher temperature where it is of the order of 1°K. At 

temperatures below 4.20  the error is small (0.02°K), if the balance 

warms up slowly from 2°K with the copper cap well immersed in liquid 
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helium. If however only a small amount of helium is left, the 

temperature will rise more rapidly and larger errors are likely. 

The results in Chapter V show that the errors in the interval from 

4 to 14°K can be as large as 3°K. All in all the error in the 

temperature measurement is normally less than 0.05°E:below 4.2°K*  

large (1 to 3°K) between 4 and 14°X:and of the order of one degree K 

at higher temperatures. 
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CHAPTER V  

DILUTE SOLUTIONS OF A TRANSITION METAL IN BINARY Cu—Zn ALLOYS. 

Section I. Results  

Introduction  

The magnetic susceptibility of the Cu—Zn based ternary alloys 

mentioned in Chapter IV was measured at 1.8°, 4.2°, 77°  and 290°K in 

fields of 2800, 4500, 6500 and 8000 Oe at constant temperature and at 

intermediate temperatures while the apparatus was warming up, in a 

field of 8000 Oe. 

The accuracy of the measurements was discussed in Chapter IV, 

Sec.II, 2b. The relative error in the susceptibility measurements 

for one specimen is 0.01to 0.02 x 10-6  emu/g and the error in the 

actual values up to 0.04 x 10 6 emu/
/g 	

The error in temperature 

(Chapter IV, Sec.II, 3b) is about 1°K above 20°K and varies with 

temperature at lower temperatures. 

In addition to errors in the measurements, errors in the 

interpretation will arise if the metallurgical state of the alloy is 

not as was intended. Possible differences between actual and ideal 

state of a sample which can have an effect on the susceptibility are: 

1. 	A well dissolved impurity, the atoms of which carry a magnetic 

moment (Fe most likely). This will give rise to an additional term 

in the susceptibility, which follows a Curie—Weiss law and can not 

be separated from the obtained results if the impurity content is not 

known. 
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2. The presence of ferromagnetic particles, consisting of atoms 

of the intended or a different impurity. These particles, if 

saturated domains can cause an additional temperature—independent 

magnetization 0- of the sample. 	If the total magnetization of the 

sample can be written as M=x11.4.o- 	where X  is the susceptibility of 

the alloy, the apparent susceptibility measured with the balance used 

here will hex 	=X 	°- (1). If this is the case it can be 
aPP 	2H 

verified with the help of a Honda—Owen plot, i.e. a plot of Xapp at a 

given temperature versus 1. If it is found that the relation (1) 
H 

holds at several temperatures, including 3000K, that X is temperature— 

independent and that the first term in (1) is large compared to the 

second, it will in general be justified to assume the presence of 

undissolved ferromagnetic particles and to find the true value X 

from a plot as mentioned. Further the possibility must not be 

excluded that as a result of the presence of these particles, a torque 

will act on the sample in a magnetic field, which will in the balance 

used here, cause a rotation of the spiral and thus be a source of error 

on the force measurement. No conclusive evidence of this effect has 

however been found. 

3. Superparamagnetic particles. These are large clusters of 

transition metal atoms which have a large moment and can behave in a 

manner analogous to the Curie—Weiss paramagnetism for atomic moments. 

If the magnetio properties of these particles are not isotropic, the 

susceptibility of this type of system will deviate from a Curie—Weiss 

law and be a complicated function of temperature. No typical behaviour 

for these systems can be given which makes it possible to recognise 
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easily a superparamagnetic contribution to the susceptibility. 

4. The Cu—Zn ratio of a ternary Cu—Zn — X alloy where X is a 

transition metal, can be different from the intended valae. If the 

ternary alloy is made by melting together pieces of the binary solvent 

and the impurity X, this error can be expected to be equal for the 

binary solvent and the ternary solution. The difference of the 

susceptibility of the two alloys should then give the correct change 

due to the introduction of the third component. If however, as is done 

in this work, the alloys are prepared from the elements and a Cu—X 

master alloy, the deviation in the Cu—Zn ratio from the intended value 

for the ternary alloy will be independent from that for the corresponding 

binary alloy, i.e. the alloy with the same nominal Cu—Zn ratio. 	If 

the susceptibility of the matrix varies strongly with composition, as 

is the case for Cu—Zn y phase alloys, the difference in susceptibility 

between the ternary and the corresponding binary alloy is then not 

necessarily entirely due to the presence of the transition metal. 

In this section the experimental results for the magnetic 

susceptibility of the Cu—Zn based ternary alloys mentioned above will 

be given. Graphs are presented of the susceptibility in a field of 

8000 Oe as a function of temperature. Where it was found that the 

apparent susceptibility was field-dependent at a given temperature 

the observed values in different fields are quoted and either a plot of 

X vs I or of X H vs H is given. The compositions of the alloys are 
H 

in atomic per cent, the number corresponds to that in Appendix A. 

X as given is the mass susceptibility in electromagnetic 

Units, emu
/
/ 
g
4, To convert this into MKS units the values quoted here 
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have to be multiplied by 4 IT x 103. 

g 1. Pure Zn and binary Cu-Zn 6  phase alloys.  

Measured were a pure Zn specimen and two binary Cu-Zn 8 phase 

alloys with composition near the Cu and Zn-rich ends of the phase. 

The results are shown below. Also included is the average 

susceptibility37 = 2X1+ x,, derived from the measurements of Marcus.103 

3 	3 
x is the susceptibility of a silagle crystal measured with the field 

perpendicular to the hexagonal axis, X that measured with the field 

parallel to this axis. 

	

T 	pure Zn 	Pure Zn 	e phase 	e phase 

	

°K 
	

No. (1) 	Marcus 	15.4% Cu 
	19.4% Cu 

this work 	(No.4) 
	

(No. 8) 

295 -0.11 -0.14 	-0.26 -0.27 

77 -0.14 -0.16 	-0.28 -0.32 

4.2 -0.08 -0.16 (14°K)-0.31 -0.28 

1.7 - - 	-0,30 - 

§ 2. Zn-Fe 

Two Zn-0.1% Fe specimens were measured because it was concluded 

from the results for the first alloy that no Fe had dissolved (See 

Chapter IV, Sen.I0). 

The results were: 	T 	x x 106  

oK 	emu /g  
g 

Zn-Fe I 

(No. 2) 

Zn-Fe II 

(No. 3) 

295 -0.17 -0.12 

77 -0.14 -0.15 

4.2 -0.14 -0.12 
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3. Solutions of Fe in 8  phase Cu—Zn  

Cphaso (Zn—rich) with 0.1% Fe. 

Composition84.5%Zn — 15.4% Cu-0.1% Fe (No.6). 

T 

°K 

X 	x 106  

emu/
g  / 

Oe 

295 —0.33 

77 -0.36 

4.2 -0.35 

1.7 —0.20 + 0.07 2800 

—0.27 4560 

— 

+ 0.03

0,29 ± 0.02 6560 

—0.33 + 0.01 8025 

Because of the small variation with temperature no points were taken 

at intermediate temperatures. 

c phase (Cu—rich) with 0.1% Fe  

Composition 80.5% Zn — 19.4% Cu — 0.1% Fe (No. 11) 

T 

oK  

X x 10
6  

emui 
/g 

295 _0.225  

80 —0.18 

4.2 +0.67 

1.8 +1.36 

The points taken between 1.8 and 77°K at 8000 Oe are shown 

in Figure 1. 
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Solutions of Mn inephase Cu—Zn. 

e phase (Zn rich) with 0.15% Mn  

Composition 84.5% Zn — 15.4% Cu — 0.15% Mn (No. 5. ) 

X x 10
6 

	

oK 	emu/
/g 	

Oe 

	

295 	—0.15 

	

77 	+0.26 

	

4.2 	+10.40 	2800 

+ 8.90 	455o 

+ 7.66 	6460 

+ 6.91 	8025 

1.70 	+ 20.67 	2800 

+ 18.13 	4550 

+ 15.77 	656o 

+ 14.24 	8070 

Points between 1.7°K and room temperature were taken in a field 

of 8000 Oe. The apparent susceptibility in this field as a function of 

temperature and the magnetization of the sample as a function of field 

at 1.7°  and 4.2°K are given in Figure 2a and 2b. 
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6  Ehase (Cu—rich) with 0.1% Mn  

Composition 80.6% Zn-19.3% Cu — 0.1% Mn (No. 10). 

T 	X x 106 

oK Oe emu/
/  

	

295 	—0.19 

	

77 	—0.05 

4.2 	+2.43 	2800 

+2.43 	4470 

+2.36 

+2.28 

1.79 	+5.49 	6440 

+5.17 	7960 

1.50 	+6.32 	2790 

The susceptibility in a field of 8000 Oe as function of 

temperature is given in Figure 3. 

140. 
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5. Solutions of Co in 8 phase Cu - Zn 

s phase (Zn-rich) with 0.1% Co. 

Composition80.5% Zn - 15.4% Cu - 0.1% Co (No. 7. ) 

	

T 	X x 106 

EMU / 	 Oe 

	

295 	-0.21 

	

77 	-0.20 

	

4.2 	-0.03 	2820 

-0.15 	4500 

-0.22 	6500 

-0,25 	8050 

	

1.7 	+0.21 	2800 

-0.03 	4480 

-0.10 	6560 

-0.16 	8060 

e phase (Cu-rich) with 0.1% Co.  

Composition8 0.7% Zn - 19.2% Cu - 0.1% Co. (No. 12) 

	

T 	X x 106 

	

oK 	emu/ 
g 

	

295 	-0.28 

	

77 	-0.30 

	

4.2 	-0.32 

	

1.6 	-0.24 at H == 8000 0e, no readings at other fields 

were taken because the apparatus started warming up after this point. 
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6. 	8  phase (Cu-rich) -0.04% Cr. 

Composition80.3% Zn - 19.6% Cu - 0.04 Cr (No. 9) 

	

T 	X x 10
6 	H 

	

295 	-0.32 	Oe 

-Cal 

-0.04 

	

4.2 	3350 

-0.10 4460 

-0.10  6440 

-0.12 	8000 

	

1.8 	+0.14 4450 

+0.10  6420 

+0.07 	8000  

The change with field at 4.2°K is within the normal error, that 

at 1.8°  is however significant. Points taken in a field of 8000 Oe at 

temperatures between 1.8°  and 77°K are shown in Figure 4. 

§ 7. Binary y phase Cu - Zn  

Composition intended 61.6% Zn - 38.4% Cu (No. 13) 

	

T 	x x 106  

	

oK 	emu/ 

295 -0.39 

77 -0.34 

4.2 -0.29 

1.8 -0,27 

The chemical analysis on this alloy showed the presence of a 

large amount of Fe (0.18 wt%). This is more than the intended Fe 

content of the specimens discussed in Chapter IV, A7. The variation 



144. 

of X with temperature is only slight here, in contrast with the other 

results. Because of this inconsistency the results on the ilibanded 

binary Cu — Zn alloy will not be used. 

§ 8. y phase with Mn 

Composition 60.4% Zn-29.6% Cu — 0.04% 4n (No. 15). 

oK 

xx 106 

emu/
/g  

Oe 

295 —0.39 

77 —0.38 

4.2 —0.19 

1.76 +0.15 2800 

+0.13 

+0.07 6560

4560 

+0.05 8080 

The susceptibility in a field of 8000 Oe at temperature between 

1.8 and 4.2°K is shown in Figure 5. 

During this run no points between 4.2°  and 53°K could be taken. 

From the results obtained it seemed desirable to check this alloy also 

at these remperatures. The sample was again put into the balance, the 

second time the results were 

x x 106 

oK emu/g 

295 —0.36 

77 —0.36 

4.2 —0.14 
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The eero drift (Cheater IV, Ssc.II, 2b) during the warming up from 

4.2 to 77°K was extremely large and the points are not accurate. The 

general shape of the curve X vs T is however similar to that for the 

other solutions of Mn in l'brass. These points will not be used in 

the analysis of the results. 

These results also show the error in the measurements due to 

the variation of the specimen position from run to run. 

y phase (middle of the phase) with 0.1% Mn  

Composition 62.0% Zn — 37.9% Cu - 0.09% Mn (No. 16) 

	

T 	x x 106 H 

	

o
K 	emu, 	Oe 

ig 

	

295 	—0.32 

	

77 	-0.31 

	

4.2 	+0.33 4400 

+0.31 	63500  

+0.29 	8000  

	

1.8 	+0.92 	2800 

+1.02 

+0.94 	:::: 

+0.89 	8025 

Points were taken for H = 8000 Oe between 1.8°  and 77°K. The 

curve X ve T is given in Figure 6. During this run the carbon—

resistance thermometer circuit went out of order. All temperatures 

above 15°K have therefore been measured with the thermocouple, which 

is not accurate below 20°1(3 



Y.  phase (Zn—rich) with 0.1% Mn  

Composition 64.7% Zn - 35.2% Cu - 0.09% Mn (No. 17) 

	

T 	X x 106 

	

oK 	emu/
/g 	

Oe 

295 —0.42 

77 —0.42 

4.2 —0.24 

1.8°K +0.10 2800 

+0.04 4550  

• 0.00 6560 

—0.03 8080 

The susceptibility in a field of 8000 Oe at temperatures 

between 1.8 and 77°K is shown in Figure 7. 
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§ 9.  y phase with 0.1% Co. 

Composition 61.4% Zn — 38.5% Cu — 0.10% Co (No. 18.) 

	

T 	x x 106 

	

oK 	emu/
/g 	

Oe 

295 —0.22 

77 —0.18 

4.2 +0.35 

1.78 +1.14 2800 

+1.09 4550 

+1.01 6460 

+0.96 8020 

The curve X vs T for H . 8000 Oe is given in Figure 8. 
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10. y phase with 0.1% Cr. 

Composition 60.8% Zn — 39.1% Cu — 0.09% 	Cr (No.14) 

	

T 	X 	x 106 

	

°K 	emu/ 	Oe 

295 —0,31 

77 —0.27 

4.2 —0.35 

1.68 +1.24 2900 

+1.26 4550 

+1.16 6500 

+1.09 8050 

The curveX vs T for H = 8000 Oe is given in Figure 9. 

149. 
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Section U. Discussion  

Introduction. 

For the interpretation of experimental susceptibility data 

for dilute solutions of a transition metal two lines of approach are 

possible. 	One possibility is to assume that the d—electrons, 

responsible for a paramagnetic term in the susceptibility, are in bound 

or virtual bound states localised near a lattice site, the alternative is 

to assume a collective band model for the alloy. As discussed in 

Chapter I, for an alloy of two transition metals the band model can be 

applicable, while for solutions in a noble metal and thus also for the 

allOys discussed here the first model is a better approximation. The 

susceptibility can then be written as 

(2) 

X r-- x°4-  17,717) 

The second term in (2) is the paramagnetic susceptibility of the system 

of moments on the solute atoms as discussed in Chapter II. The first 

termXo is a temperature—independent term representing the diamagnetism 

and Pauli—paramagnetism of the conduction electrons and the Van Vleck 

term due to the transition metal (see Chapter II). For this xo  is 

usually taken the susceptibility of the solvent,Xm. 	This is correct 

if the Van Vleck paramagnetism is negligible and the introduction of 

the solute in the host lattice does not perturb the conduction electrons 

system to such an extent that the diamagnetism and Pauli—paramagnetism 

are modified. If a plot of 	1 	vs T is found to be linearo/eff  
X —Xi, 

and 19'can be determined easily. There is however no reason to assume 

a priori that the presence of the impurity will not affect the 
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susceptibility of the electron gas or that the temperature—independent 

Van Vleck paramagnetism will always be negligible. 

It is thus possible that the susceptibility of an alloy follows 

equ. (2) withxo # xlnancl. it can in cases be more justified to take 

for xo  a value such that a plot of 	1 	vs T is linear, i.e. to 
X — X0 

fit the experimental points to (2) by varying X0.  The difference 

betweenX0 	and )cli  will then have to be explained. The effect 

of varyingX0  on a plot as mentioned is shown in Figure 10. In the 

molecular field theory 0  (equ.2) is related to the interactions between 

atomic moments. 	In the alloys considered in this work, which contain 

0.1 at % of solute, these interactions are not likely to be strong so 

that 0 is expected to be small. 

In the following paragraphs the results for the hexagonal n 

and E phase alloys will be discussed. In paragraph 1 an explanation 

of the variation of the susceptibility of the solvents with temperature 

will be given and in paragraph 2 a discussion of the Zn—Fe alloys, which 

will be compared with results obtained by others for Zn — based 

solutions. 	In paragraph 3 the derivation of the effective atomic 

moment and the Curie—Weiss constant for the ternary —phase alloys will 

be discussed. 	In paragraph 4 a tentative explanation of these results 

will be given. In paragraph 5 the effective atomic moment will be 

derived for the solutions of a transition metal in (—chase Cu—Zn and 

in paragraph 6 these results will be discussed. 
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§ 1. Pure Zn and binary Cu — Zn 8 phase alloys. 

The observed variation of the susceptibility of these alloys 

is not consistent with the model of a temperature—independent 

diamagnetism and superimposed on this a paramagnetic impurity 

contribution. An explanation can be found from a consideration of 

measurements by Ibraus 103 on a Zn single crystal which are shown in 

Figure 11. 

;t 

100 
	

200 	 300 
	

400 

/4.perattlreK . 

FIG.11 The susceptibility of a Zn 
single crystal. After ref. 103, 

The difference between the maximum and minimum value of the 

susceptibility, measured with the field parallel to the hexagonal axis 

of the crystal, X11 , is 0.07 x 10
6 
emu/g. The decrease of the 

susceptibility with field parallel to this axis, )C, between 77 and 

300°K is 0.03 x 10-6 emu/g. For a polycrystalline specimen the 

average susceptibility 37 = 2 X 	1 X
" 

will be measured. If 

impurities or strains in the crystal cause a shift of the extrema in 

X4 the value of X at a given temperature will change as well. 

On this basis a difference of 0.03 x 106 emu/g  between the values for 

one specimen at different temperatures or between the values for 

different specimens at a given temperature is not surprising if 

polycrystalline specimens are used. 
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For the c phase alloys which also have a hexagonal close 

packed structure no data on single crystals are available but the 

results might well be explained in the same way. The only point of 

which the deviation seems too large for this explanation is the value 

found for the pure Zn at 4.2°K, —0.08 x 10
-6  emu/g. Because 

contamination by transition metals other than Fe is unlikely and Fe 

does not carry a moment in Zn (see paragraph 2) the observed deviation 

must be due to a different Zn—Fe phase or to undissolved Fe. 

§ 2. Zn — Fe  

If the explanation of the susceptibility results for pure Zn 

given in paragraph 1 is correct, this argument also applies to the 

results for the Zn—Fe alloys. It follows then firstly that the Fe is 

well dissolved in the matrix because the presence of Fe in some form 

is shown by chemical analysis and large clusters of Fe atoms or regions 

of a different Fe—rich phase would have caused an appreciable 

magnetization in a magnetic field. Secondly it follows that an Fe 

atom in solution in Zn does not carry a magnetic moment. This is 

consistent with the results of specific heat measurements by De Nobel 

and Du Chatenier 51  who found for a Zn—Fe alloy no deviation from the 

values for pure Zn. Further available experimental information about 

this system is that the presence of Fe in Zn causes a depression of the 

superconducting transition temperature Tc. 	
This change is —10.5°K 

per at % Fe. 

If the theoretical model given by Anderson 
16 is valid the 

absence of a moment can be due to a high density of states of the 

conduction band at the Fermi level, which causes a strong broadening in 
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energy of the 3-d levels associated with an Fe atom. 	It is therefore 

of interest to consider the electronic specific heat y of pure Zn. 

Measurements by Daunt and Silvidi 104 give a viue for y = 1.5x10 4  cal  
mole deg ' 

leading for a free-electron model to a density of states of 0.13 states per 

atom per eV, which is not very high. Also if the absence of a moment 

in Zn-Fe is ascribed to a high density of Bloch states in the solvent 

a small moment is expected in a dilute solution of Mn in Zn as well. 

Collings and Hedgcock found however that Mn dissolves in Zn with a large 

moment (4443). Further a specific heat anomaly for dilute Zn - Mn 

alloys has been reported by De Nobel and Du Chatenier.51 	The 

depression of T
c 
which has generally been found to be associated with 

the presence of atomic moments, is an order of magnitude larger in this 

system than in Zn - Fe and has a value of -170°K per at % Mn. 

Further an anomaly has been found in the specific heat of a Zn - Cr 

solution. This evidence rules out the possibility that the absence of 

a moment in Zn - 0.1% Fe is due to a property of the matrix only. 

A different cause of a large width of the 3d-state on a 

transition-metal atom can be that the interactions of this state with 

the 4s conduction electron states are strong. Why the strength of 

these interactions should be an order of magnitude larger for an Fe 

atom than for a Mn atom in solution is not obvious. 

The last parameters available are the exchange and Coulomb 

interaction within a solute atom. The hypothesis that these are not 

sufficient to cause a splitting of the 3d-state on an Fe atom dissolved 

in Zn can be rejected as Fe carries a moment in many other solvents. 
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3. Ternary e phase alloys. 	Interpretation of the results. 

In this paragraph the experimental susceptibility curves given 

in Section 1 are fitted to equ (2) with N equal to the number of 

transition metal atoms per gram alloy as found from the results of the 

chemical analysis. A value of/Leff  is the effective moment on a solute 

transition metal atom in Bohr magnetons (0.927 x 10-2°erg/gauss).  

e phase (Zn—rich) with 0.1% Fe. 

The difference between the values found at 4°, 77°  and 295°K 

which is at most 0.03 x 106 emu/
/g 

 can be ascribed to the mechanism 

discussed in paragraph 2. 	It then follows that above 4.2°K, Fe atoms 

dissolved in this matrix do not carry a moment. Further it must be 

noted that this alloy is more strongly diamagnetic than the solvent. 

This could be due to a systematic error (see Chapter IV) although the 

difference, 0.04 x 10-6 emu/
/g 

 seems somewhat large for this explanation. 

Also the variation of with applied field at 1.7 K is small but just 

too large to be entirely due to experimental errors. 

e phase (Cu—rich) with 0.1% Fe. 

In this alloy the susceptibility varies with temperature, the 

effect of the solute is a paramagnetic contribution. If the reciprocal 

of the difference of the measured susceptibilityX and that of the pure 

solvent X is plotted versus temperature, this relation is not linear 

over the whole temperature range (Figure 12a). 	In this plot a straight 

line can be drawn through the points between 15°  and 77°K which 

corresponds toeff . 2.1)13 	
0 = 13oK. That this value xrnfor the 

temperature—independent term might be wrong is shown by the fact that 

at 295°K the value of X is 0.05 x 10
-6 emu/

/g 
 higher than xrn  . The 



T T 
0 

S K 4 

, - tom6  tEmu/G)-1  

B 

2‘+0.24x to  

— 1.5 

owl 

• 

B 

—s i.0 I. 
(Emu/ G)-I 

 

7 
40% 	 2 	 3 

FIG.12. 19. 4%Cu-80. 5;Zn-0. 10Fe . The error barb  correspond to 
a spread in susceptibility of 0 .02x10 emu/ emu/g. 

0 

2L-1-0.24X10-6  

A 

1 	1 
-10 X10

6  tEMU/G)-1  

5 

PAGE 156 

0 	 50 etc 

1.1••••••1 



159. 

value of the paramagnetic term at 4.2°K is about 0.95 x 10
-6. 	If 

this term follows a Curie law (0 = o) its value at 300°K will be 

0.95  0.1 x 10-6. Observed wasX 	0.225 x 10-6 at 295°K, so that 
75 

the most likely value of the termX0  in equ (2) is —0.24 x 10-6. 

The quantity 1 	was plotted as a function of T for values of 

X — Xo 
of — 0.22, — 0.24 and — 0.25 x 10

-6  emu/g. On all these graphs the 

points taken above 14°K join up reasonably well with those below 4.2°K, 

while those at temperatures in between deviate from this Curie—Weiss 

relation. This deviation is so large that it is impossible to obtain 

a curve through these points and those below 4.2°K by varying x0  within 

reasonable limits. 	It was also found that during this run the 

temperature of the carbon—resistance thermometer and that of the 

thermocouple were about 3°K different below 20°K which is more than 

normal. This suggests that from 4.2°K the apparatus warmed up fast 

and that the deviation of the points between 4.2 and 14°K is due to a 

difference in temperature between the carbon—resistor and the specimen. 

If the points between 5°  and 14°K are not considered the best 

fit to a Curie—Weiss law is obtained from a plot of 1 	vs T with 
X —X0  

X . — 0.24 x 10 6 emu/
/g 

 (Figure 1213). Allowance might have to be 

made for a variation of Xowith temperature. It is however not 

possible to decide independently from this data how this variation will 

be. 

The plot in Figure 12b givesgeff  1.5/113,0= — 1.2°K. 

e  phase (Zn—rich) with 0.15% Mn  

Also here a plot of 	1 	vs T does not follow a Curie—Weiss 

X — >an 
law over the whole temperature—range measured (Figure 13a) and it is 
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not justified to derive values of '1eff  and Ofrom this curve. The 

solution of Fe in the same solvent has a temperature—independent 

susceptibility which is in absolute value larger thanXin  so that it is 

justified to investigage the possibility of values X 	xin  . For 

X0  = — 0.34 x 10 6  a good fit to equ (2) could be obtained for the 

points between 14 and 250°k (Figure 13b). The slope of the curve 

1 	vs T withx
o 

as above is 2.03 x 104  emu units. Above 250°K 

X —  
XQ

the points in Figure 13b show a deviation from the Curie—Weiss law, a 

value of X0  smaller in absolute value would give a better fit here. 

This is consistent with the results for the pure solvent and the 

solution of Fe in this solvent. Because the value ofX0  used is close 

to the value of X for this last alloy, these values were also substituted 

for X leading to a good fit on the whole temperature range from 14 to 

295°K. The slope of the curve 	1 	vs T is in this case 1.96 x 104 emu 
X — X0  

units. If this analysis is correct, the term representing the 

diamagnetism and Pauli—paramagnetism in this alloy and the solution of 

Fe in the same matrix are equal and 0.04 x 10
-6 emu/

g 
 larger in 

/ 

absolute value than the susceptibility of the solvent. This difference 

could be the result of errors although the value is somewhat large. 

TheCurie.Weiss curve as drawn in Figure 13b corresponds to 

g eff = 4.1 and 0  — 6°K, which indicates antiferromagnetic 

interactions. The points at temperatures below 14°K deviate from the 

Curie—Weiss law. This is consistent with the fact that the susceptibility 

is field—dependent at 1.8 and 4.2°K. That the points below 14°K lie 

below the Curie—Weiss curve drawn suggests a ferromagnetic interaction. 
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8  phase (Cu—rich) with 0.1% Tin 

For this alloy the difference X —Xrl does not obey a Curie—Weiss 

relation. The plot of 	1 	is shown in Figure 14a. The line 

drawn through the points corresponds togeff  = 3.5 µB  and 0  = — 35
o
K. 

The absolute value of 0  is very large for a dilute alloy and raises 

doubts as to the validity of this interpretation. Proceeding as for 

the previously mentioned alloys one finds that a value of 

X0  = — 0.21 x 10-6 emu/ leads to the best fit of the relation (2) to 
g  

the experimental points. This Curie—Weiss relation gives 

/1eff = 2.3  ps  and 0 .—D.6°K. (FIG, Alb) 

The value of X0  = — 0.24 x 10
-6  emu/g  which gave the best fit 

for the solution of Fe in the same solvent, leads to a lesser fit in 

this case and givesgeff = 2.4 µs  and 0 = — 1.0°K. 

8  phase (Zn—rich) with 0.1% Co. 

The susceptibility of this alloy in a field of 8000 Oe varies 

only slightly with temperature. This suggests that Co dissolves without 

carrying a moment. At 1.7°  and 4.2°K however the susceptibility is 

field—dependent and increases with decreasingfield strength,the effect 

being too large to be due to the experimental error. This can not be 

ascribed to a contamination because Fe, the most likely impurity, does 

not carry a moment in this matrix and Mn is not likely to be present in 

this sample. If a small moment appeared on Co at low temperatures the 

susceptibility in the high fields would be larger at 4.2°K than at 77°K, 

which is not the case. The same objection can be made against the 

assumption that this effect is due to clusters of Fe, so that no 

complete interpretation of thodpdata can be given. 
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phase (Cu-rich) with 0.1% Co. 

For this alloy the susceptibility at 4.2°K and at higher 

temperatures is close to that of the pure solvent. 	In this case 

no field-dependence was observed at 4.2°K, while at 1.7°K this could 

not be checked. 	It is seen however that the change of the 

susceptibility in the highest field on cooling from 4.2 to 1.7°K is of 

the same order of magnitude as that found for the previous alloy. In 

this solvent Fe carries a moment and could be the cause of this increase. 

The points at 4.2°K and above indicate that the introduction of 

Co has no effect on the susceptibility of the alloy so that the moment 

per Co atom is zero. 

e phase (Cu-rich) with 0.03% Cr. 

The field-dependence of the susceptibility at 1.7°K suggests 

an interaction between the solute atoms. The values at 77°  and 295°K 

are close to those for the solvent. A plot of 	1 	vs T with X0  
X - X0  

equal to the value at 295°K, is given in Figure 15. Because the effect 

of the solute is small, the error on the points in this graph are large. 

The line drawn in Figure 15 corresponds tog eff  = 0.7iv  0 = +2°K. 

If forX0  the values of the solvent are taken the result is 

/2  off 	0.51-lm , 0 = + 3°K. 

These values of Bare consistent with the fact that the 

susceptibility is field-dependent at 1.8°K. The fact that the points 

at this temperature lie above the line drawn in Figure 15 suggests 

anti-ferromagnetic interactions, while the fact that 0 is positive 

indicates ferromagnetic interactions at the higher temperatures. 
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S 4. Ternary ephase alloys. Discussion. 

The binary Cu—Zn E phase has a close—packed hexagonal structure 

with an axial ratio a — of approximately 1.56 which is smaller than the 

ideal value, 1.63. The number of conduction electrons per atom 

varies from 1.79 at the Cu—rich end of the phase (20 at % Cu) to 1.87 

at the Zn—rich end (14 at % Cu). The smallest region in k—space 

bounded by planes of energy discontinuity is 

Figure 16.27 	This zone 

contains the first and part 

of the second Brillouin zone 

and can hold somewhat less than 

2 electrons per atom and is 

thus for these 6 phase alloys 

nearly full. 	If i.H.:1.631  the point 

the Jones zone, shown in 

	tit  
F !G. 16 

A in Figure 16 is closer to the 

origin than either B or C. No experimental data havo  been reported on 

the electric and magnetic properties of these alloys. Results of 

lattice spacing measurements for alloys of different Cu/Zn ratio are 

available. 

Present results  

As discussed in paragmph 3,some of the transition metal 

solutes contribute a paramagnetic term to the susceptibility of the 

alloy. 	If this term is taken to be the difference of the susceptibility 

of the ternary alloy and that of the solvent, in some cases no 

Curie—Weiss law is followed and the results can not be interpreted in 

terms of an existing model. If it is accepted that the presence of 

the impurity can change the susceptibility of the matrix, the total 
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susceptibility can be written as the sum of a temperature-independent 

term and a paramagnetic contribution which follows a Curie-Weiss law. 

This procedure has therefore been followed. The results, as derived 

in paragraph 3 are shown in Table 1. An argument in favour of this 

interpretation is that the values of 6 obtained from the plot  1  vs T 
X - Xm  

are in some oases too large to represent the interactions between solute 

moments in dilute solutions as considered here. 

Table 1 

Zn-rich 

enu/g 1 

-0.31 

x  
—0.34 

-0.35 

-0.21 

ikox106  

6—brass 

° 	eff 

o K r-3  

x 	x 

-6 	4.1 

zero 

- 	zero 

oK 

x 

4.2 

1.7 

4.2 

Hdepox10
6 

Cu-rich 

emu/ 
g 

-0.28 

-0.31 

-0.21 

-0.24 

-0.32 

0 

oK 

+2 

-0.6 

-1.2 

a-brass 

bLeff 

IMO 

0.7 

2.3 

1.5 

zero 

Hdep 
K 

1.8 

1.7 

fl••• 

IMO 

solvent 

solute 

pure 

Cr 

Mn 

Fe 

Co 

In the column H dep is given the temperature at which a field-dependence 

of 	was observed. 	x = not measured. 

The difference between)(o and)<In. 

This difference can be partly due to an experimental error as 

discussed in Chapter IV, but the)(0  - values for the Zn-rich Zn-Cu-Co 

and the Cu-rich Zn-Cu-Mn and Zn-Cu-Fe solutions deviate too much and 

a different mechanism must be operative. The temperature-independent 

terms in the susceptibility are the diamagnetism, the Pauli-paramagnetism 
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and the Van Vleck paramagnetism. For an alloy having an electronic 

structure with a nearly full Brillouin zone which is overlapped by the 

Fermi surface the diamagnetic susceptibility of the conduction electrons 

is very sensitive to the shape of the Fermi-surface as was shown by Jones 

in a treatment of the Y brass alloys.
27 	

It is thus possible that the 

perturbation of the lattice and the Brillouin zone structure by the 

impurity will affect the diamagnetism. 

A change in the Pauli- paramagnetism will be the result of a 

change in the density of Bloch-states at the Fermi-energy. A small 

effect could be the result of the mixing of the 3d wave functions on the 

solute atoms and those of the conduction band. 

For the Van Vleck term in alloys no theoretical model has been 

developed nor are experimental data available, so that no estimate can be 

given. 

Although it is thus possible to indicate a mechanism that can 

account for the difference between )<0  and X m  no values can be 

predicted nor reasons given why the magnitude of the effect should be 

different for different systems. 

Interaction between solute moments. 

For the solution of Mn in the Zn-rich c brass the negative 

value of 0  (- 6°K) indicates an antiferromagnetic interaction at high 

temperatures. The absolute value of 0 leads to the expectation that 

below 6°K ordering will take place. In agreement with this is that the 

susceptibility is field-dependent at 4.2°  and 1.8°K. The deviation 

from the Curie-Weiss law at low temperatures indicates a 

ferromagnetic interaction. This behaviour is the opposite of that 
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found for Cu—Mn and Zn—Mn solutions where the 9... values are positive 

but at low temperatures antiferromagnetic interactions dominate. 

For the solution of Cr the Zn—Mn type of behaviour is found, here 

0 = 2°K and at 1.7°K the susceptibility is field—dependent and smaller 

than the value extrapolated from the Curie—Weiss law at higher 

temperatures. 

For the solutions of Mn and Fe in the Cu—rich solvent the 0 

values are small which is consistent with the fact that the field—

dependence of the susceptibility, where observed, is only slight. 

The variation of the atomic moment. 

The variation of the solute moment with matrix composition is 

qualitatively different for Mn, Fe and Co as solute. With increasing 

Cu content the moment for Fe increases from zero to 1.5 kin over the 

phase, that for Mn decreases from 4.2 to 2.3 /21.3  while that for Co 

remains zero. The only theoretical model applicable to this case is 

that given by Anderson.16 

If the interactions within the solute atom are not strongly 

affected by the matrix, a change in the effective moment must be due 

to a change of the width L in energy of the virtual 3d—state, given 

by 	IT <Ark  ,1  2)y(arhere rE) is the density of Bloch states and 

Vkd the parameter of the interaction between the 3d—state and the Bloch 

states of the matrix. No data on the electronic specific heat of 

binary 6  brass alloys are available for comparison with the observed 

moment. The observed variation of 'jeff can however not be due to a 

change of P (E) at the Fermi—level because this would imply that the 

moment would vary in a similar way for Fe, Mn and Co as solute. The 
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2 

only parameter available is then <Vkd 
	

If it is assumed that 

the magnitude of 	depends on the symmetry of the wave functions of 

the Bloch electrons (s or 1), the interpretation given of lattice spacing 

data suggests an explanation of the observed change ofgeff. Massalski 

and King 105  measured the lattice parameters of binary e phase Cu—Zn 

alloys of different composition and found that the axial ratio a2  

decreases with increasing number of conduction electrons per atom (°) 

from the Cu—rich end of the phase up to 	= 1.86. This result was 

interpreted as due to the fact that in these alloys the Fermi—surface 

overlaps the Brillouin zone at the point A and the equivalent points 

in Figure 16 and only there. On this basis the following tentative 

explanation of the variation ofgeff  over the 8 phase can be given. 

It is assumed: 1. that the theory by Anderson is applicable to this 

case and that the observed variation of/1 eff  is the result of a 

variation of the width of the virtual 3d state; 2. that the symmetry 

of a conduction electron wave function having El k vector near the top 

of the first Brillouin zone (type 1 symmetry) is different from the 

symmetry of a state which lies at the bottom of the second zone near A 

(type II symmetry); 3. that the interaction of the virtual 3d—state 

associated with an Fe atom with Bloch states of type I is less strong 

than that with Bloch states of type II. Then a gradual increase of 7-ea  

i.e, an increase of the overlap into the second zone and thus of the 

relative amount of type II Bloch wave function, will lead to an 

increase of the average interactionCV
kd2

> and a broadening of the 

3d state, thus reducing the moment. 
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A proper theoretical treatment along these lines will have to 

explain why this effect is reversed for Mn as solute where the moment 

increases with increasing a — and why in Co no moment is observed at 

either end of the phase. As long as no other independent estimate of 

V 	can be given this explanation can only be tentative. 
kd 

g 5. Ternary"( phase alloys. Interpretation of the results. 

For all the Y phase alloys measured the variation of the 

susceptibility with temperature is similar. The alloys are weakly 

paramagnetic at 1.8°K, the susceptibility decreases with increasing 

temperature and is almost constant above 60°K, this constant value 

being in most cases above that for the pure solvent. 

The effective moment per transition metal atom /1  eff  and the 

Curie—Weiss constant 0  have been determined as for thee phase alloys. 

Where the difference between the susceptibility of the alloy X and that 

of the solventX m  does not follow a Curie—Weiss law, a different value 

>C o has been used instead ofX im, such that a plot of 1 vs T is 
X — X0 

linear. In all casesX0?Xm.  The effect of the solute in these 

alloys is small, and the relative errors inX —  Xofor points above 15°K 

are considerable. As discussed in paragraph 3 of this section, the 

temperature of the specimen in the region between 4.2 and 15°K is 

somewhat doubtful so that, where the susceptibility of the solute 

system is small, the most useful points to determineg effand  0 are 

those below 4.2°K. The most obvious choice of X0is the constant 

high—temperature value. For alloys with composition near the limits 

of the phase the susceptibility at 77°K is different from that at 300°K. 

For those alloys the value at 77°K has been taken. 
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The susceptibility of a number of binary Cu-Zn Y phase alloys 

was measured by Marcus. 103 These results show only a small 

temperature dependence below 150°K which suggests that the impurity 

content of the samples used was low. The binary Y brass Cu-Zn alloy 

prepared for the work reported here was cast from the same batch of 

starting materials as used for the ternary alloys. It was originally 

intended to compare the susceptibility of this alloy with the above-

mentioned results in order to determine any systematic difference and to 

use the reported values for the binary alloys. As discussed in Chapter 

IV, paragraph 6, no conclusions can be drawn from the susceptibility 

values for the binary alloy measured here. Because no more Cu from 

the original batch was available, results on a newly cast alloy would 

not have given the required information. In the derivation of/Leff  

and 0 for the ternary solution the matrix susceptibility has however 

not been used. The values reported by Marcus have therefore been used 

where necessary, i.e. to determine the change of the temperature-

independent term 

The derivation of the effective moment per transition metal 

atom,/2  off  and the Curie-Weiss constant 0  will be discussed below 

Y brass (Cu-rich)with 0.03% Mn. 

The plot of 

given in Figure 17. 

and 0  = 0 + 0.2°K. 

- 0.35 x 10-6 emu/g  the value at 77°K found in the second run on this 

alloy,-0.36x10-  emu/g, agrees well with this value. 

1 vs T with >) = 0.38 x 10
-6 emu./ is 

X - 	 /IS 

The line drawn corresponds togeff  = 1.00/13 

The value for the solvent given by Marcus is 
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y brass (middle of the phase) with 0.1% Mn. 

With the value X0  - 0.32 x 10 emu/g, i.e. the room-temperature 

value of the measured susceptibility, the plot of 1 	vs T as shown 
X Xrn  

in Figure 18 is found. The moment corresponding to the Curie-Weiss 

relation drawn is 1.09AB, 6 = 0°K. The value of the susceptibility 

of the solvent is -0.46 x 10
6 emu/

/g
. The difference between this 

value and X0  is too large for a systematic error on the points. An 

error in the composition has also to be considered. 	In the binary 

Cu-Zn system the alloy with a susceptibility - 0.32 x 10
6 emu/

/g 
 has a 

Zn content of 60.4 wt %, as is found from reference 103. If it is 

assumed that Xo  is equal to the value for the pure solvent it follows 

that the deviation of the Zn content of this alloy from the intended 

value is several per cent. The results of the chemical analysis show 

that in the alloys for which the Cu/Zn was determined the Zn content did 

not deviate more than 0.2% from the intended value. The increase of 

0.14 x 10-6 in the temperature-independent term must thus be a genuine 

property of the alloy. 

y phase (Zn-rich) with 0.1% Mn. 

The obvious value for Xo is 0.42 x 10
6 emu/

/g
, i.e. the value 

at 77°  and 295°K. The plot of 	1 	vs T is given in Figure 19, 
- X0  

this gives/20ff  0.6AB  , 	0 K. The susceptibility of the pure 

solvent from reference 103 is - 0.71 x 10-6  emu/g. Also in this alloy 

the large difference between X3  and Xm  can not be ascribed to an error 

in the Cu/Zn ratio. If this was the case the Zn content of the alloy 

would be 62 wt% which is highly unlikely as discussed above. 
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Y phase with 0.1% Cr. 

The plot of 	1 	vs T with XD. — 0.30 x 10
6 
emu/ is 

X — X0  
given in Figure 20. The line drawn gives a moment of 1.34B  per 

Cr atom, while() .-1°K. The susceptibility of the pure solvent is 

— 0.37 x 10-6 emu/e. 

Y phase with 0.1% Co. 

The plot of 	1 	vs T with X0  = — 0.22 x 10-6  (the value 
— )(0  

at 295°K) leads toi2eff  1.2A/3  and° . 0°K. 	The susceptibility of 

— the pure solvent is — 0.43 x 10 6.  

g 6. Ternary Y phase alloys. Discussion  

The binary Cu—Zn Y phase has a complicated cubic structure 

with 52 atoms per unit cell.106 This structure can be derived from 

the body—centred cubic lattice, by considering a cell consisting of 

27 b.c.c. unit cells arranged in a cube (Figure 22a) in which the 

atoms at the eight corners and in the centre of the large cube are 

removed and several of the other atoms displaced slightly (Figure 22b). 

The composition of the binary phase is from 58 at % Zn 	= 1.58) to 

66 at % Zn
a  = 1.66). The large Brillouin zone 107  for this 

structure (Figure 22c) contains 90 states per unit cell, i.e. 1.73 

states per atom and is thus for these alloys.almost full. 	The 

inscribed sphere in this zone contains 1.54 states per atom. 	Jones 107  

predicted a density of states vs energy curve P (E) as given in 

Figure 23 on the following arguments. As long as the Fermi—surface 

does not touch the zone faces, the density of states is that for a 

free electron gas. As the number of electrons is increased, the 



FIG. 22a 	b.c.c. structure FIG. 22b . 	— brass structure 

The rbrass structure can be obtained 

from the b.c.c. structure by removing 

the atoms marked 0 and shifting the 

other atoms as indicated in 22b. 

 

FIG. 22c. Joirm zone for 7-brass 
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FIG.23. The density of states for an 
alloyhaving thebrass structure, 

{after ref. 107. cperimental points 
from ref. 108. 
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Fermi—surface will touch the 

zone faces when a —= 1.54. 

If more electrons are added the 

Fermi—surface will become a 

truncated sphere within the 

zone. 	If no overlap into 

the next zone takes place the 

density of states at the 

Fermi—energy will decrease 

with increasing -::and start 

increasing again when overlap takes place. 	This model has been 

confirmed by specific heat measurements by Veal and Rayne,
108 the 

density of states as derived from these data is also shown in Figure 23. 

The diamagnetic susceptibility of these alloys is large and shows a 

strong variation with alloy composition as shown in Figure 24. The 

large values were ascribed by Jones to an overlapping of the zone by 

the Fermi—surface.
27 

—.20X106  
EMU/G 

—.80 
6e 61. 64 66 

A T0/0  IN 
FIG.24 . The magnetic suscep— 
tibility oft phase Cu—Zn alloys. 
alloys. After ref.103. 

as 
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Present results. 

As discussed in the previous paragrnph the susceptibility of 

the ternary alloys has been written as X =X„,+ pli_t  eff2  where Xo  is 
3k(T-0) 

in general not equal to the value for the solvent, Xin  The results 

obtained are shown in Table II. 	In addition to those data it must be 

noted that the susceptibility has a small field—dependence at 1.8°K 

TABLE II 

39 38 40 38 35 

at % Cu 

in-solvent 

solute Cr Co Mn Mn Mn 

—X 	10 6  
m(emu/ 

g
) 

0.37 0.43 0.35 0.46 0.71 

—X x 10 6  0.30 0.22 0.37 0.32 0.42 
°(emu/ 

g
) 

A/AB  1.3 1.2 1.0 1.1 0.6 

0 (°K) —1 0 0 0 0 

The difference X0 	Xrn. 

The first question is to account for the temperature—independent 

term X0—xin  which is zero for the alloy at the Cu—rich end of the 

phase and increases with increasing Zn content. 	The large values 

of the diamagnetic susceptibility of the binary Y brass alloys were 

ascribed by Jones 
27

to small pockets of occupied states outside the 

zone in Figure 22. 	If the solute perturbs the periodicity of the 

lattice and thus the Brillouin zone structure, appreciably, a modification 

of the diamagnetism will also be expected. 
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It must be noted that at the Zn-rich end of the phase where the 

largest overlapping is expected and the diamagnetism is strongest, 

also the term X0- Xm  is large • 

Interactions between atomic moments. 

From the values of the interaction-parameter 0 and the small 

field-dependence of the susceptibility at 1.8°K it is seen that no 

significant interactions between the moments take place. 

The effective atomic moment. 

The most important result is the small magnitude of Aeff  for 

Mn as solute. The values found for Mn in solution in other alloys are: 

in the Cu-Zn a phase 4.8 + 0.14B, in the Cu-Zn 8 phase from 2.3 to 

4.1 I2B  and in Zn 4.8 P.B. A possibility that has to be considered 

is that only a small fraction of the Mn atoms carries a moment. If 

this moment is equal to that in pure Cu or Zn this means that only 4% 

of the solute carries a moment. This in turn would imply that only 

on a small fraction of the lattice sites the conditions for the 

magnetization of a Mn atom are favourable. A difference between the 

conditions on different sites can arise if an ordered structure exists 

in this phase, as it does in the Cu-Zn /3 phase. No evidence of order 

in the Y phase exists however. 

The other possibility is to interpret the data in terms of the 

theory by Anderson as was done in paragraph 4. Also here there is no 

reason to assume a strong modification of the Coulomb-and exchange-

interactions within the solute atoms, so that the observed values of 

/hell' must be ascribed to a large width of the virtual 3d-state 

6- /KVkd2> p(E) with Vka  andp (E) as defined in paragraph 4. 
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If a free—electron model holde the values of the density of states 

at the Fermi—energy are between 0.1 and 0.3 states per atom per eV, 

which is of the same order of magnitude as for Cu or Zn. Also the 

strong decrease of p (EF) with increasing 
a  
-e- ratio would require an 

increase of/i eff  in this direction, while the experiments show a 

decrease. The explanation will then have to be sought in the 

magnitude of<:V kd2  >and its variation with 	The explanation 

suggested for the variation ofA eff  over the s phase in paragraph 4 

also applies to the solutions of the transition metals in Y brass, 

because both phases have a nearly full Brillouin zone. 
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CHAPIEE VI  

SOLUTIONS OF FE IN OTHER TRANSITION METALS.  

The curves of the electrical resistivity as function of 

temperature for dilute Mo-Fel  Rh-Fe and Ir-Fe alloys show anomalies 

at low temperatures. These anomalies are however qualitatively 

different for the different systems. Because the mechanism which 

causes a resistance anomaly often also has an effect on the magnetic 

susceptibility, this last property was measured for one alloy of each 

of the above-mentioned systems. 

The alloys will be treated in separate paragraphs, because of 

the large difference between the properties of different systems. The 

remarks made in the introduction to Chapter V also apply to the 

measurements reported here. 

§ 1. Mo-Fe 

In a Mo - 0.65 at % Fe alloy a maximum at 4°K and a minimum at 

22°K were observed in the resistivity vs temperature curve. These 

anomalies are similar to those found for Cu-Mn alloys. To investigate 

if any magnetic order sets in at a temperature near that of the maximum, 

the susceptibility was measured from 1.7°K upwards. 

Results  

The susceptibility in a field of 8000 Oe as a function of 

temperature is shown in Figure 1. Some field-dependence was observed 

at 4.2°K, the values in different fields are 	X 	x 10 
6 

Oe 	
emul 

/g 
4200 16.06 

6350 15.93 

8100 13.95 
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Discussion  

The most important result is that at 4°K no ferromagnetic or 

clear cut antiferromagnetic order sets in. Because no results for 

1 
pure Me have been reported and a plot of X vs y, is not linear for 

high temperatures no value for the atomic moment can be derived. 

Clegsten et.al 78  reported for this system an effective moment of 

2.94 B  per Fe atom. Also in the alloys discussed in Chapter III, 

Sec. A, no indication of long-range magnetic order were found at the 

temperature of the resistivity maximum. For these systems a 

susceptibility maximum vas however observed in alloys of higher solute 

concentration. 

§ 2. Rh-Fe. 

As discussed in Chapter III, a resistivity anomaly of a type 

not yet observed in any other system has been found in dilute solutions 

of Fe in Rh. For a Rh - 0.85 at % Fe alloy the magnetic susceptibility 

was measured from 1.7°  to 295°K. 

Results.  

The susceptibility of this alloy did not show a field-dependence 

at any temperature, plots of 	vs H are given in Figure 2. The 

susceptibility in a field of 8000 Oe as a function of temperature is 

shown in Figure 3. 

The reciprocal of the difference of the susceptibility of this 

alloy and pure Rh 83  as a function of temperature is given in Figure 4a, 

which shows that a Curie-Weiss law is not obeyed over the whole 

temperature-range. The line drawn in Figure 4a corresponds to a 

moment per Fe atom Peff  3.4 AB  while 0  =-41°K. The change of the 
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slope at low temperatures can be reduced considerably by replacing 

X im, which varies from 0.92 x 10-6 emu/s  at 20°K to 0.99 x 10-6 emu/ 
/g 

at 300°K„ by a constant term;‹
o = 1.08 x 10— 	/

6  emu/
g 
 as is shown in 

Figure 4b. The curvature can however not be made to disappear with 

this procedure. The line drawn in Figure 4b givesi/eff  2.8/-', 0. —15°K. 

Below 4.2°K no Curie—Weiss law is obeyed as is shown in Figure 4b. 

The best straight line through the points corresponds to 

/l eft  = 2.31-113, 0 	 78 — 7.5°K. 	Clogston et.al. 	reported for this 

solution a simple Curie—Weiss behaviour withgeff 	0=-14°K 

Although it is clear that Fe carries a moment in this solution the 

susceptibility as measured here can not be described by a simple Curie—Weiss 

law. 

Discussion. 

The following conclusions can be drawn from the experimental 

results reported here and those for the electrical resistivity in 

reference 84. 

1. The absence of a field—dependence of the susceptibility shows that 

the moments on the Fe atoms do not interact. 

2. The fact that the difference of the resistivity of Rh—Fe 

solutions and that of pure Rh, 	, is proportional to the 

Fe concentration c suggests that this extra resistivity is due to the 

scattering of conduction electrons by single Fe atoms. 

3. Then the strong increase of 6P 	with temperature indicates 

that as the temperature is raised the solute atoms make a transition 

into a state where the atoms have a larger cross—section for conduction—

electron scattering. 
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4. 	At high temperatures apparent Curie—Weiss behaviour for the 

susceptibility is found. The value of e(_ — 41°K) can however not 

be ascribed to interactions between Fe atoms because at 1.8°  and 4.2°K 

the magnetization of the alloy is proportional to the applied field. 

The change of the slope of the curve in Figure 4a is similar 

to that found for the hydrated sulphate of Nd 7  where the curvature 

can be ascribed to the fact that excited states in which the atom 

carries a different moment from that of the ground state, become 

occupied as the temperature is raised. This explanation applied to 

Rh—Fe is consistent with the interpretation of the resistivity results 

given above. In this case the existence is required of energy levels 

which are narrow compared to kT for T<300°K, but in a metallic 

structure such sharp states can not exist. As discussed in Chapter 

the width of the 3d—level of a solute atom can be estimated at at 

least 0.1 eV (1000°K). As was shown however by Korringa and Gerritsen 

(Chapter III, Sec.E, 4a) the resistivity of a number of Cu and Au based 

solid solutions can be described formally in terms of a one—electron 

theory if the existence of sharp resonant states near the Fermi—energy 

is postulated. The possibility that theX vs T curve for this Rh—Fe 

alloy can be described in terms of a thermal excitation of the Fe atoms 

has therefore been investigated. 

Let ill be the moment of an Fe atom in the ground state, A2  

that in the excited state and Ni  the number of Fe atoms having a 

momentg (i = 1,2). 



18 9 . 

The susceptibility can then be written as X. N112  + N241 2  

	

3kT 	3kT 

	

12 
	2 	

(1), 

if the solute atoms do not interact. 	If, as in the theory given for 

paramagnetic salts the ratio N1 is determined by a Boltzmann 
N2  

distribution and if u is the energy difference between the ground—state 

and the excited state, then N1 e u/kT  (2) which leads with equ (1) to 
N2  

N 	2 
(1 + Vip 2) 	(3) 

X = 
3IzT (1 + VT) 

where p µl 
P2 

N N +N2  1  

W = e 11/1.T 

1 
A curve of 	vs T for u = 20°K and p = 2 is given in Figure 5. 

1 
Above T 	

X 
the curve — vs T lies close to a straight line, which 

intersects the temperature—axis at T .01= 1 1 — p2  . u 	(4) 

B 
Because the slope of the experimental 

1  vs T curve (Figure 4) is 
X 

larger at high than at low temperatures a value of p 2> 1 is needed to 

fit equ (3) to the observed points. 	From (4) it follows then that 

The experimental values of 1  at E 	 X 
low temperatures make it necessary to have a sharp rise from 

T = 0°K to T = 2°K and a flattening out as the temperature is increased, 

so that a value of a few degrees K for is needed. But this implies 

that I Oilis at most a few degrees K while the graphs 4a and 4b show 

that the experimental value is at least 15°K. The observed X vs T 

curve can thus not be fitted to equ (3). 

2 
1+p2 k 

61 < 01  while 101 < 1 u . 
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It might be possible that if a molecular field is introduced this 

procedure will be successful. As said above, however, down to 1.7°K 

no interaction between the atomic moments seem to take place. Further 

if the solute moment changes the molecular field acting on a particular 

Fe atom will change, so that the interaction parameters will be 

temperature—dependent and the model will then contain too many variable 

parameters to be useful. That this very simple model does not apply 

does not rule out the possibility of an excitation of the Fe atoms. 

As an extension of the theory given by Anderson, the change of 

the atomic moment with temperature was discussed by White and Clogston 

(Chapter I). For a virtual state with a width of 0.1 eV or more and 

a change in temperature of 100°K, the predicted change of the moment 

is however too small to account for the Rh—Fe results. 

A different possibility is to ascribe the change in slope of 

the 1 vs T curve to a change in the moment associated with an Fe 
X 

atom by a polarization of the Rh atoms which are nearest neighbours 

to that Fe atom. This effect has been shown to occur in Pd—Fe 

(Chapter III, Sec. F, 3) and can be described satisfactorily by the 

theory developed by Clogston et.a1.
78 To explain the observed 

susceptibility curve for Rh—Fel  this effect will have to be strongly 

temperature—dependent. Because the density of states at the Fermi—

energy of Rh is a steep and non—linear function of energy, a change 

of temperature is expected to have a similar effect on the magnetic 

properties as the addition of electrons to the system and, as was 

shown by Clogston et.al., the addition of Pd to Rh—Fe increases the 

moment considerably. An estimate of this effect is made below. 
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According to the model developed in reference 78 the difference 

between the numbers of spin—up and spin—down states, having energy E, 

on a solvent atom nearest neighbour to a solute atom is approximately 

(p(E) MI), where p (E) is the density of states in energy for dE 

the solvent, so  the spin on a solute atom, and J the exchange—integral 

between a solute atom and a nearest neighbour solvent atom. The 

magnetic moment on such a solvent atom in Bohr—magnetons is then at 
+oo 

temperature T : m = 4. d (2p(E) S
oJ1) f (E,T) dE 	(5) 

dE 
where f (E,T) is the Fermi—Dirac distribution function. As was shown 

by Kriessman and Callen,
87 a good approximation to f (E,T) is the 

function f (E,T) which is defined as 

f*(E,T) = 1 for E<(EF, — 

	

f*(E,T) = 1 E  EF + 	for EF 	< < EF, + S 16) 
2 d' 

f*(EIT) = 0 for E > EF  + S 

here EF is the Fermi—energy and 6' = 2.77kT. 
	If f(E,T) is replaced 

by f*(E,T) equ (5) gives 

EF—S 	EF + 

dE 
d [2p(E) s J I ] dE + f ad [ 2p (E) SoJ IT 1 E — EF  + 	dE 

(7) 
where Eb  is the bottom of the band. 	If p(E) is written as 

p(E) = p(%) + a(E — E0)2  (8) equ (7) gives 

m . 2 S0J p(EF) 	1 8.6' 2  ] (9). 
3 

The density of states as found from the electronic specific heat of 

Ru, Rh and Pd can be fitted roughly to equ (8) with p (E0) the density 

M=1 

Eb 



of states at the Fermi—energy of Ru 

a = 0.4 states per atom per (eV) 

T = 100°K the value 2 x 10 4  (eV)-1  
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(Ps'i0.7 states per atom per eV) and 

The term 1 a(5'
2 
in equ (9) has for 

3 
while for Rh1 (EF) P.1 1 (eV) 1 p 	1  so 

that this effect does not explain the observed result. 

A last possibility is that the Fe atoms follow a normal Curie— 

Weiss law and that the Pauli—paramagnetic susceptibility of the 4d band, 

X 	is different from that in Rh and strongly temperature—dependent. 

As was shown in reference 87 the temperature—dependence of X for a 

pure transition metal can be related directly to the shape of the 

density of states vs energy curve of the unfilled d—band, P (E), near 

the Fermi—energy EF. A sharp peak onp (E) near EF  will give rise to 

a strong variation of X with temperature. The susceptibility of pure 

Rh is only slightly temperature—dependent below 300°K. This  

interpretation thus implies that in Rh—Fe the presence of the solute 

disturbs the 4d—band of the matrix such that a sharp peak in the density 

of states curve appears near the Fermi—energy. As long as no other 

evidence of such a peak has been found this explanation is too 

far—fetched to be accepted. 

gs 3. 	Ir — Fe  

Because Ir is below Rh in the periodic table of elements a 

measurement was made of the susceptibility of a solution of 0.8 at % Fe 

in Ir to investigate if in this system magnetic anomalies appear. 

Results.  

The susceptibility is field—independent at all temperatures 

down to 1.8°K. A plot of X vs T is given in Figure 9. 
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Derivation of the effective atomic moment. 

A plot of 	1 	vs T withX m  the value for pure Ir, is not 
X — ›ca  

linear. 	From Figure 6 it is seen that from 10°  to 30°K, X is constant 

In Figure 7 a plot of 1 	vs T with X 
X — Xo  

equal to this value is given. 	The effect of the solute is small so 

that the errors on the points are large. 	The line drawn corresponds 

to a moment per Fe atomAeff  0.2g3, while 0 =-0.4°K. 

This results shows that the state of an Fe atom in solution 

in Ir is essentially different from that of such an atom in Rh—Fe. 

The fact that the atomic moment is extremely small can not be 

interpreted readily in terms of any existing theoretical model. 

at + 0.38 x 10-6  emu/ g. 
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SUMMARY 

The magnetic susceptibility has been measured for ternary 

solutions of Cr, Mn, Fe and Co in Cu—Zn alloys of different 

composition, and found to obey a Curie—Weiss law. 

Par a given solute the atomic moment per solute atom varies 

strongly with composition of the solvent. Also the results for 

different solutes are qualitatively different. The only existing 

theoretical model which is expected to be applicable to these alloys 

is that given by Anderson. An essential parameter in this model is 

the interaction between the 3d electrons on a solute atom and the 

conduction electrons of the matrix. At the present state of the 

theory it is not possible to give an estimate of this parameter. 	It 

can thus not be shown that this theory describes the observed results. 

If it is assumed that the theory is applicable some qualitative 

conclusions on the variation of the interactions mentioned with the 

electronic structure of the matrix can be drawn. 

Also measured were some solutions of Fe in other transition 

metals. The results for a Mo—Fe alloy show that the resistivity 

maximum does not correspond to the onset of long—range ferromagnetic 

ordering. For a Rh—Fe solution it was confirmed that the mechanism 

responsible for the resistivity—anomaly also gives rise to an anomaly 

in the magnetic behaviour, and that this anomaly is not due to 

interactions between solute atoms. In Ir—Fe no anomaly was observed, 

the solute atomic moment in this solution is extremely small. 
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Suggestions for further work. 

Due to metallurgical difficulties no solutions of Fe inIephase 

Cu—Zn alloys were measured here. When the metallurgy of this ternary 

system will have been investigated and a procedure developed for casting 

these alloys, susceptibility measurements on solutions in matrices of 

different composition might contribute to the clarification of the 

striking results for solutions of Mn in this solvent. 

In the binary Cu—Zn /3—phase an ordered structure exists. 

If solid solutions of metals of the first transition group in this 

matrix exist, the effect of order in the solvent lattice on the solute 

moment can be investigated. 

In analogy with the results for the solutions of transition 

metals in noble metals, also in the alloys considered in this work 

resistivity anomalies are expected at low temperatures. 	The 

preparation of specimens ofy brass alloys for resistivity measurements 

will be difficult, because the brittleness of this material makes it 

impossible to draw wires. 

The magnetic properties of primary Cu—Fe solutions have not 

been investigated below 14°K. The available results suggest that at 

low temperatures magnetic ordering will take place. Because of the 

low solubility of Fe in Cu the danger exists of a ferromagnetic or 

superparamagnetic precipitate in the samples, which will therefore 

have to be cast and annealed with great care. 

To investigate further the observed analogy between the Mo—Fe 

and Cu—Mn systems the susceptibility of Mo—Fe alloys containing about 

5% Fe could be measured. If the behaviour of the systems is analogous 

a susceptibility—maximum is expected in this alloy. 
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APPENDIX A.  

Details of the preparation of the Cu-An based alloys, as described in 

Chapter IV, part A. The indications in the columhs "source" refer to the 

starting material used. 

nr wt 
Zn 

source wt% source trans. 
metal 

melted 	annealed analysis 
wt% 
trans. 
metal. 

Zn Cu Cu temp.. 
oC 

time 

hrs 	I 

temp. 
oC 

time 	I 

days j 
1  

1 100 A - - none 450 1/3 - - 	- 

2 99.9 A - - Fe 450 1 - - 	- 

3 99.9 A - - Fe 800 5 - - 0.090 

4 85.0 L 15.0 JM none 700 2 420 8 - 
5 84.9 L 15.0 JM Mn 700 2 420 8 0.131 
6 84.9 L 15.0 JM Fe 700 2 420 8 0.090 
7 84.9 L 15.0 JM Co 700 2 420 8 0.090 
8 81.0 L 19.0 S none 750 1 400 14 - 	- 

9 80.8 L 19.2 S Cr 750 12 500 4 0.030 

10 81.0 L 18.9 s Mn 800 2 500 4 0.100 

11 80.9 L 19.0 S Fe 800 3 500 4 0.090 

12 81,1 L 18.8 S Co 770 1L---  500 4 0.090 
13 62.3 L 37.7 S - 900 li 700 5 - 
14 61.5 L 38.4 S Cr 86o 3 700 5 0.075 
15 61.0 L 38.9 JM Mn 86o 3 700 5 0.032 
16 62.7 L 37.2 S Mn 900 32 700 5 0.080 
17 65.3 L 34.6 JM Mn 860 3 700 5 0.080 
18 62.1 L 37.8 S Co 860 3 700 5 0.085 
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APPENDIX B  

The energy of the electromagnetic field is 

8117  Jr  B. H dv =Pi: dv + 1  M. H dv 2  

M is the magnetization per unit volume v the volume. The change in .... 

energy as a result of the introduction of a paramagnetic sample in the 

field is 6,E = 21M.H dv and the force on the sample in the z-direction 

	

a (A E) 1 	a 
fz . - 
	- - 2 	az  irm. H dv. 

az 

If M and H do not vary over the vo]ume of the specimen 

H = H (z) and M = M(z) o f
z 
= 4 v u-- (H.M) - (M + H 

* 
If M is the magnetization per unit mass, 

and if 

dM dH 
dz dz 

dM f
z 	

-0 m (M*  + H— ) dH — where m is the mass of the sample. dz dz 
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APPENDIX D.  

As a check on the thermometry the susceptibility of manganous 

ammonium sulphate was measured. In Table I is given the temperature of 

the salt as found from the susceptibility, in the Tables II and III the 

corresponding readings of the carbon resistance thermometer and the 

thermocouj le. 

I 

temp. salt 

°K 

II 

temp. carbon resistor 

°K 

III 

temp. thermocouple 

°K 

13.9 13.6 

15.7 14.6 

16.8 16.4 

18.9 18.3 

22+1 20.2 20.5 

24.7 25.2 25 

26.6 26.4 26 

37.8 36.5 37 

58.9 56.5 

56.1 57 

59.4 60 

76.2 77 
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