Turbulent Boundary Layer on a Rough Surface with Pressure Gradient and Surface Heating.

ъу

Abd-El-Hamid Hamed AWAD, B.Sc. (Eng).

August 1966

A thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Engineering of the University of London.

Summary

The boundary layer on a surface with square cavities as roughness elements was examined in the presence of mild favourable and adverse pressure gradients and surface heating. The range of Reynolds numbers covered extended to about 2×10^6 , the reference airspeed being about 100 ft/sec and the plate length 3 ft.

Velocity and temperature profiles were found similar for cavity or protrusion type roughness, with their origin below the crest of roughness elements (or top of cavities).

The "law of the wall" was generally valid for a small region of the measured profiles. The presentation of the profiles was found best defined by the velocitydefect form, with 'G' as parameter. Limited success was achieved using the method of computing the skin-friction coefficients from velocity measurements.

The skin-friction coefficients were strongly influenced by the pressure gradients, and responded differently when applying surface heating, depending on the sign of pressure gradient present.

The relation G(\mathcal{M}) differed from that of the smooth surface, due to the higher values of H in the present work.

The temperature profiles were affected by roughness and pressure gradient, and were far from "similar" to the velocity profiles. A new presentation is suggested.

The heat-transfer coefficients were slightly influenced by the applied preesure gradients, and strongly affected by the wall temperature gradient. The present theories for smooth surfaces compared poorly with the obtained values of heat-transfer coefficients after a stepwise wall-temperature discontinuity was applied.

The measured longitudinal velocity fluctuations were higher than those for a smooth surface, and had a clear "peak" near the origin of the velocity profiles. The applied pressure gradients had small effect on u^{02} particularly near the surface.

The measured $u^{\circ}v^{\circ}$ (y) show sharp increase near the surface, but $\mathcal{T}/\mathcal{T}_{w}$ agrees closely with that of a smooth surface elsewhere.

The effect of abrupt change in surface roughness was examined.

Available data for different roughness geometries were correlated.

Finally, heat and friction characteristics of a rough wall were linked.

Acknowledgements

The author gratefully acknowledges the unfailing guidance and encouragement given by his supervisor, Dr. A.J. Taylor-Russell throughout the course of this study.

The author wishes to thank Mr.W.H.Davies and the Aeronautics Department Workshop staff for their patient care in the construction of the model.

The author wishes to express his appreciation of the help given by Miss Rogers, Cranley Typing Office, who typed the thesis, and Mr. J.P.O'Leary who carried out the photographic work.

The author gratefully acknowledges the financial support of Cairo University, whose grant made possible the present study.

4.

LIST OF CONTENTS

	rage
Summary	5
Acknowledgements	4
Nomenclature	7
I. INTRODUCTION	11
I.1 ~ Purpose and scope of investigations	11
I.2 - Review of relevant literature	13
II. INSTRUMENTATION AND EXPERIMENTAL TECHNIQUE	19
II.1 - Wind tunnel	19
II.2 - Model construction	21
II.3 - Measurement of velocity and temperature profiles	34
II.4 - Measurement of turbulent quantities	39
II.5 - Measurement of heat-transfer coefficients	41
II.6 - Displacement of probes	42
II.7 - Accuracy of measurements	44
III. RESULTS AND DISCUSSION	48
III.1 - Field of experiments	48
III.2 - The dynamic boundary layer	58
III.2.1 - Velocity profiles behind roughness elements	58
III.2.2 - Boundary layer thickness	62
III.2.3 - Calculation of the skin-friction coefficients	73
III.2.4 - The effect of surface heating on skin-friction coefficients	.76
III.2.5 - Discussion on reference temperature	84
III.2.6 - Presentation of the velocity . profiles	86
III.2.7 - The relation between the velocity profile parameter G and the pressure gradient parameter π	105
III.2.8 - Comparison with some theoretical investigations	117

	Page
III.3 - The thermal boundary layer	126
III.3.1 - Temperature profiles behind roughness elements	126
III.3.2 - Thermal boundary layer thickness	es 129
III.3.3 - Heat-transfer coefficients	129
III.3.4 - Presentation of the temperature profiles	148
III.4 - Turbulent quantities	165
III.4.1 - Longitudinal fluctuations	165
III.4.2 - Shear-stress measurements	169
III.4.3 - Effect of abrupt change in surface roughness	180
III.5 - Comparison between roughness geometries	B 188
IV. CONCLUSIONS	197
IV.1 - Concluding remarks	197
IV.2 - Suggestions for future work	200
V. REFERENCES	201
List of Figures	205
Appendix I - Tables of boundary layer thicknesses	210
Appendix II - Tables of velocity and temperature profiles	217

.

. :

Nomenclature

- A Constant appearing in the velocity defect profile relationship,
- B Constant; heat-transfer coefficient of the roughnessdominated region;
- C Constant,
- C_{f} Local skin-friction coefficient ($C_{W/2}$ eUe²),

c_p Specific heat at constant pressure,

 C_p Pressure coefficient (= (P-Po)/ $\frac{1}{2}$ eU² ref),

- D Pitch of roughness elements,
- G Velocity-defect shape parameter $(=\int_{0}^{69} \left(\frac{U-U}{M}\right)^{2} d\frac{yu_{2}}{y_{1}})$

H Boundary-layer shape parameter $(= \delta_1/\delta_2)$, Hu " " " $(= \delta_1 n/\delta_2 u)$,

k Height of roughness elements,

k. Equivalent height of sand roughness,

l Length

Nu Nusselt number (Qw X/ & (Iw - Te)),

Nuo Nusselt number for a smooth surface,

P Static pressure,

 P_0 Reference pressure (wall pressure at x = 34 ins),

 P_{r} Prandtl number (= $\mu c_{p} / \lambda$),

Q. Surface heat-input per unit area,

R Reynolds number (Ul/ν),

	8
s_{t}	Heat transfer coefficient ($Q_w / Q_e U_e c_p (Tw-Ta)_y$
T	Absolute temperature (°K),
Ta	Absolute adiabatic-wall temperature,
Te	Absolute temperature of air flow outside the
	boundary layer,
.Tr	Absolute reference temperature,
Tw	Absolute wall temperature,
U	Mean velocity in the direction of x_{2} ,
Ud	Velocity defect (= (Ue - U)/u _c)
Ue	Mean velocity in the direction of x in the free stream,
Uref	11 11 11 11 11 11 11 11 11 11 11
-	at x = 34 ins.,
ur	Friction velocity $(\sqrt{2} w/8)$,
u	Fluctuating velocity component in the direction of x_{3}
V	Mean velocity in the direction of y_{9}
V ¹	Fluctuating velocity component in the direction of y,
W ⁰	Fluctuating velocity component in the direction of z,
X	Distance along the plate in the direction of the main
	flow, measured from the beginning of roughness.
у	Distance along the perpendicular to the plate,
Z	Distance along the plate perpendicular to the
	direction of the main flow,
8	Thickness of the dynamic boundary layer ($\delta_{0.99}$),
δ 1.	Boundary layer displacement thickness $\left(= \int_{1}^{\infty} \left(- \frac{9}{2} \right) d_{y} \right)$
δ _{lu}	$ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$

$$\begin{cases} \int_{2}^{\infty} \int_{2}^{\infty} \int_{2}^{\infty} \int_{2}^{\infty} \int_{2}^{\infty} \int_{2}^{1} \int_$$

.

ta sa.

.

. ٦

Note:- In Appendix II only, the following symbols were used;

Ŷ	instead of	10 ³ .y, (where y is in inches),
U	Ħ	10^3 , U/U_e , and,
T	11	10 ³ . 8 .

I. INTRODUCTION

I.1 - Purpose and Scope of Investigation:

Surface roughness has a very important influence on the frinctional resistance and heat transfer characteristics of surfaces. Because most of the materials in engineering use can hardly be considered as hydraulically smooth; especially at high Reynolds numbers; the investigation of such characteristics has many practical uses in aeronautics and many other fields.

Although the study of the effect of roughness has occupied many investigators, most studies were based on results from flow in pipes, or over flat plates with either heat transfer or pressure gradient, but rarely in the presence of both.

The present study is therefore aimed at better knowledge on the effect of heat transfer and pressure gradient, on the characteristics of turbulent boundary layers on rough surfaces.

The present work was carried out using a flat plate with square cavities, of constant pattern and dimensions, as roughness elements. Two arbitrary pressure distributions were chosen, one approximately constant, changing to favourable towards the trailing edge of the 3 ft. long

plate, and one adverse changing to constant.

Three cases were studied for each pressure distribution, the unheated plate, the isothermally heated, and the case where the plate temperature undergoes a stepwise discontinuity.

Shear-stress profiles were measured for both pressure distributions. The plate was then unheated.

Some of the shear-stress profiles were of the boundary layer experiencing an abrupt change in surface roughness.

I.2 - Review of Relevant Literature:

It is not an easy task to mention all the work done in connection with rough surfaces. However, a brief account on some of the work will be given.

J. Nikuradse (1) experimented systematically on pipes with sand roughness. Variation of pipe diameter and sandgrain sizes, enabled him to achieve a range of r/k_s from 15 to 500. Nikuradse identified three roughness regimes. The hydraulically-smooth ($o \leq k_s u_z/v \leq 5$) has a resistance coefficient as unique function of Reynolds number. The resistance of the transition regime is function of both Reynolds number and k_s/r . The resistance of the completely rough regime ($k_s u_z/v > 70$) is a unique function of k_s/r . Nikuradse also found that the velocity-defect profile for a smooth wall is still applicable for a rough surface, irrespective of the height of roughness elements.

N..Scholz(1) found that the semi-logarithmic linear relationship, known as "the law of the wall", is applicable for rough surfaces, except that the line is shifted downwards by $\Delta U/u_z$ which depends upon the value of $k_s u_z/v$.

H. Schlichting worked on plates having artificual roughness, for which he determined the equivalent sandroughness height. His experiments covered spheres, cones, spherical segments, and short angles fixed on a smooth surface. The heights and spacing for each type were varied. Schlichting found that C_f is constant for the same values of χ/k_s in the completely rough regime, irrespective of the Reynolds number R_{χ} ($\equiv U_e \pi/\gamma$).

Schlichting also plotted the iso-velocity curves behind a row of spheres, which clearly show that the velocity behind a roughness element, was much larger than that at the same height from the plate, measured in the gap between the spheres (see Fig.21.15(1)). Schlichting called this phenomena "the negative wake effect". He stated that a body placed in a boundary layer, produces an effect different from that caused by a body placed in the free stream. This effect was explained by the existence of a secondary flow as calculated by F. Schultz-Grunow.

Wieghardt (1) experiemnted, as Schlichting, on artificial roughness elements over flat plates. He used circular cavities and rectangular ribs as roughness elements. It was found that, for circular cavities, the increment of the drag coefficient passes by a maximum at a ratio of height to diameter of the cavities. This maximum occurred et 0.5 ratio approximately (see Fig.21.14(1)).

Hama (2) used four different wire screens at a

constant pressure over a flat plate. The wire-mesh length varied from 1 to 1/28 of an inch, and the ratios of wire-diameter to mesh length were 0.207, 0.216, 0.207 and 0.210 respectively. Hama plotted the shift of the semilogarithmic relation $\Delta U/u_{\tau}$ against log $k u_{\tau}/y$ for the results he obtained, and those of Sarpkaya for channel flow. The relationship was found linear for $k u_{\tau}/y > 30$. For lower values, Hama achieved some points which lied below the extrapolation of the line.

Brunello (3) used three plates with spheres at the maximum possible density. The sphere diameters were 0.2, 0.4 and 0.6mm respectively, and the plates were lightly heated to 12°C approximately above that of the main stream. No pressure gradient was applied. Brunello's results show that the velocity profiles exhibited a tendency to increase their thickness with increase of the sphere diameters used. Brunello started his experiments with a smooth surface, for which good agreement between velocity and temperature profiles was found. This was not so for rough surfaces, which exhibited marked dissimilarity, which increased with the increase of the sphere diameters. Skin friction and heat transfer were both greater for the rough surfaces, than those for a smooth surface, and increased as the height of roughness elements increased.

Reynolds analogy applied reasonably for the smooth

surface, but the ratio $2S_t/C_F$ decreased as the height of roughness increased.

Brunello found, as Schlichting did, that C_f remained unaltered for constant x/k, and similarly for S_t with slight discrepancy. The skin-friction coefficients for the three rough plates agreed with those of the plates with sand grains of equal sizes as the spheres.

Brunello chose a fictitious origin for the x-axis, which he used for the calculation of $R_{X'}$. Skin-friction and heat-transfer coefficients could be expressed in the form $C(R_{X'})^{-1/5}$.

J. Doenecke (4) succeeded Brunello, using similar surface heating, and no pressure gradient was applied. He examined four different rough plates, two were provided with cavities, and two with protrusions. The plates with cavities were essentially short cylindrical elements, standing with their crests level with the surface of the smooth leading edge. The other plates had two-dimensional square ribs of different sizes, but with the same pitch.

Doenecke gave a sketch of a stationary eddy behind the square ribs, with its centre situated at about 0.6 the height of roughness for k = 3mm and D = 12.5mm. He also stated that the temperture variation is very small within the eddy, but behaves like that of a smooth surface beyond it. His velocity profiles were similar when plotted in the form $\frac{U}{U_e}(y/\delta_2)$ and so was the case for the temperature profiles $\bar{\Theta}(y/\Delta_2)$.

Doenecke concluded that the temperature profiles were more curved than those of the velocity $(\delta_1 > \Delta_1, \delta_2 > \Delta_2)$, and that the curves $\frac{\sqrt[4]{U_e^2}}{U_e^2}(\mathcal{Y})$ had the same behaviour as those of $\frac{\widetilde{\mathcal{O}'\mathcal{O}'}}{U_e^2}(\mathcal{Y})$. He found that $2 S_e/C_F$ decreases as the roughness height increases, as previously found by Brunello.

Also working on two-dimensional square ribs, were Perry and Joubert (5), who experimented in the presence of two different arbitrary adverse-pressure gradients on a flat plate. In their paper, the authors proposed a graphical method for computing the skin-friction coefficients, based on the assumption that a logarithmic law of the wall exists for rough surfaces, although shifted, and that the wake hypothesis introduced by D. Coles is applicable. The authors compared between the results obtained by using the proposed method, and those obtained by using the two-dimensional momentum integral equation for some profiles. The two methods only disagreed at the downstream end of the plate, where the pressure gradient was milder than upstream. The validity of that method for the present experiments is discussed in ρ III.

D. Bettermann, E. Brun and P. Gougat (6) used the

results obtained in (4), and two more plates with square ribs, to define a form of velocity and temperature profiles. The authors found that the law of the wall show large scatter, and thought the profiles are best represented by $U/U_{e} = \alpha (y/S_{z})^{m}$ and $\overline{\Theta} = b (y/\Delta_{z})^{n}$ respectively. The constants a, b, m and n varied from one plate to another.

II. INS<u>TRUMENTATION AND EXPERIMENTAL TECHNIQUE</u> II.1 - <u>Wind_Tunnel:</u>

The experiments were carried out using the Imperial College $3^{\circ} \ge 2^{\circ}$ wind tunnel. The working section measures 40 inches high by 24 inches wide, and is 12 ft. long. Excluding the corner fillets, the wind tunnel contraction ratio is 9.

The tunnel is provided with five screens of 30 meshes/ inch, of wire diameter 0.01⁴⁰, producing a blockage coefficient of 0.49. The air-speed is controlled by a variable speed motor coupled to the fan-shaft. It attains a maximum of 140 ft/sec. approximately in the working section, at maximum motor speed of 1600 r.p.m. With empty tunnel, the air speed is about 2% higher at the bottom of the working section than at the top. Due to the vibrations at high motor speeds, the air speed was chosen about 100 ft/sec throughout the experiments.

The turbulence level was 0.25% on the centre line of the working section, when the tunnel was empty and at the air speed of 100 ft/sec.

A sketch of the tunnel is given on Fig. II 1.1.

Fig. II.1.1_ Wind Tunnel layout.

II.2 - Model Construction:

The model consists of a flat plate 37^{5}_{16} in. long by 16 251 in. wide, and 1 in. thick. The plate was provided with 3 in. square cavities, 1 in. deep. The pitch of roughness pattern measured $\frac{9}{16}$ in, as shown on Fig. II.2.1

The plate was realised by tightly riveting a perforated $\frac{1}{2}$ in. thick commercial aluminium plate, on a smooth one of the same thickness and material.

The plate was placed vertically in the working section of the tunnel, between 6 ft. long horizontal end plates, as shown in Fig. II. 2.2.

As it was to be heated, the plate was mounted freely with a clearance of $\frac{1}{6}$ in. in both ways, to allow for thermal expansion without deformation of the plate (Fig.II.2.3).

The plate was also recessed by 2½ ins. from the side walls of the tunnel, to avoid any interference from the boundary layer of the tunnel-walls. A leading-edge bleed was provided. Its surface was left smooth, and measured 10¼ ins. upstream of the rough plate. This is shown on Fig. II.2.4.

The plate had sixty pressure tubes. They were arranged in fours at fifteen stations along the x-axis. The tubes were connected to vertical alchol manometers,

Dim. in ins.

Fig. II.2.1_ Detail of the roughness.

Fig.II.2.2_ Plate mounting in the wind tunnel.

777

Tufnol

Dim. in ins.

Fig. II.2.3_ Detail of plate's edge support.

Fig. II.2.4_ Detail of bleed for tunnel-wall boundary layer.

partly by silicone tubing to withstand the heat. One of the tubes was placed, on the centre-line of the plate, level with the top of cavities, and another level with the bottom. The other two tubes were $6\frac{1}{4}$ ins. above and below the centre-line, level with the top of cavities.

The heating system consists of 48 Cressall metal cased mica wound heating elements. Each heater measured $7\frac{1}{2} \ge 2$ ins., with power rating 215 watts approximately. They were mounted in vertical rows of three, on the back of the plate. This is shown by Fig.II.2.5.

A thermocouple joint was inserted in a pop rivet between each two successive heaters. They were fixed in position by a mixture of aluminium saw-dust and Araldite. This arrangement gave electric resistances of 3 to 5 ohms between the plate and the joint. A sketch is shown on Fig.II.2.6. The thermocouple materials were high conductivity copper against Ferry⁵, which gave better linearity in calibration than some other arrangements. A typical calibration curve is shown on Fig.II.2.7.

* Ferry is the trade name of a 45-55 nickel-copper alloy resistance wire of Messrs. Henry Wiggin & Co. Ltd.

Fig.II.2.5 - Heating elements mounted on the plate.

Fig. II.2.6_ Sketch of hot-junction for a typical thermocouple .

8

E M F mV

Each of the heaters was controlled separately by a set of nine Cressall mica wound strip resistors, connected in series with the heater. These ranged from 0.75 to 192 ohms. Each resistance was controlled by a parallel on/off switch. The resistors and switches were mounted in a box, which was ventilated by two exial fans.

The adjustment -box is shown on Fig. II.2.8 and II.2.9., and a circuit diagram is given on Fig. II.2.10.

An air gap of $\frac{1}{2}$ in. was left behind the heaters. After that a $1\frac{1}{2}$ in. thick asbestos block was fixed.

A row of eight thermocouples was placed along the centre-line, immediately close to the hot side of the asbestos block. Three thermocouples were close to the cold side of the asbestos block.

The adverse pressure distribution was achieved by placing a profile surface on the opposite side of the tunnel wall, as shown by the broken line on Fig. II.2.2.

Fig. II.2.8_ Box for heating adjustment.

Fig. II.2.9_ Part of the inside elements of the adjustment box.

Fig. II.210_ Electric circuit diagram for a typical heater.

IL.3 - Measurement of Velocity and Temperature Profiles:

Velocity and temperature profiles were measured by a special hot-waire probe. It consists of two steel needles, bent forward to avoid interference of the probe, to form the wire support. A third straight needle was connected to a simple electric light-signal, to indicate the distance from the plate. The three needles had 0.027 in. shank diameter, and held by an Araldite casting. The Araldite was shaped to a streamline cross-section, which in turn was matched to a streamline steel tube 0.625 x 0.2 in. A probe is shown on Fig. II.3.1.

The hot-wgire material used was Platinum Wollaston wire of 0.0001 in. core-diameter.

The wires were given a slight curvature, when soldered, to allow for the vibrations. The etched part was 0.45 to 0.6 mm, and was kept straight.

A detailed account on hot wire preparation is given in (12) and (14).

The probes were connected to a model 55A ol DISA constant temperature anemometer (7).

To discuss the method of measurement of the velocity and temperature profiles, the calibration formula will be

Fig. II. 3.1_ Probe for velocity and temperature profiles.

given. It can be written as:

$$0.24 \frac{V^2}{R_W} = \left\{ \left[T_W - T_a \right] \left(\lambda + 2 \sqrt{\lambda R c_p} \, dU \right] \right\}.$$

where: V is the D.C. voltage across the wire, R_W the wire operating-resistance, 1 the wire length, T_W the wire operating-temperature, T_a the ambient temperature of air, and d the wire diameter.

This relation can be expressed in the form: $\sqrt{2} = (T_w - T_a)(A + B\sqrt{U})$.

where A and B are constants for a particular wire. $\sqrt[V^2(\sqrt{U})]$ was found to be linear* for platinum wires, in the range $(\mathcal{T}_w - \mathcal{T}_a) \gg 140^{\circ}C$.

We can then construct an array of wire calibration curve with wire-temperatures as parameter, similar to the sketch on Fig.II.3.2.

The operating resistances corresponding to the different temperatures could be found according to the relation:

$$R_{w} = R_{a} \left(1 + \alpha \left(T_{w} - T_{a} \right) \right)$$

where R_a is the wire resistance at ambient temperature, \ll platinum temperature coefficient of resistance.

*Except for very low air speeds of O(1)ft/sec.

The coefficient \propto was taken to be 0.00367/°C(8).

The output voltage, at two different wire-operating temperatures, is then recorded for each position in the boundary layer, along the y-axis.

A restriction on the possible combinations of velocity and temperature is achieved by starting from the outer edge of the boundary layer. There, it is certain that, the temperature is that of the free stream. Supposing we choose T_{w_1} and T_{w_2} as the two wire-operating temperatures it is then possible to locate $\sqrt{U_e}$ from and · V,e directly. Moving to the next point inward in the boundary layer, the air is bound to have a temperature equal to or greater than, $\theta_{\rm g}$. The velocity will be equal to or less than U_e . This argument fixes the two boundaries shown by the two complete lines in Fig. II. 3.2 This construction enables us to choose the points P $\mathbb{P}_{\mathcal{M}}$, satisfying the condition of having the same and velocity and the same temperature difference from that of the free stream.

The two wire operating temperatures were chosen to be 270° and 250°C above that of the ambient when surface heating was applied, and 260°C above the ambient when no heating was applied.

II.4 - Measurement of Turbulent Quantities:

The longitudinal component of fluctuations was measured by means of the probe described in \oint II.3, using the DISA constant temperature anemometer.

An X-wire probe was used for the measurement of the shear-stress profiles (see Fig.II.4.1). The wireswere at right angles to each other. The two operating temperatures were matched until a similar, or not very different, slopes were achieved throughout the range of measurements.

Using one DISA random signal indicator and correlator type 55 A OG, the correlation coefficients were calculated from the measured sums of and differences betweeen the two signals.

The measurement procedure and computation formulae for both $\overline{u'^{\prime}}$ and $\overline{u'v'}$, can be found in (7), (10) and (32).

Fig. II.4.1_ Shear-stress probe.

II.5 - Measurement of Heat-transfer Coefficients:

It is thought that by keeping similar temperatures of the three thermocouples on the same distance along x_0 the top and bottom heaters will take care of end effects, the heaters being arranged in rows of three; the one in the middle will be dissipating heat to the air flow only.

It is possible by measuring the resistances of the heaters and recording the voltage across them, to calculate the heat input to the air flow, after deducing the heat lost through the asbestos block^{*}. The formulae used are,

$$Q_{w} = \frac{C}{s} \frac{V^{2}}{R} = \frac{k}{t} (T_{j} - T_{o}), \text{ and}$$

 $S_t = Q_w / Q_e U_e c_p (T_w - T_e)$

where C is a conversion factor,

- s the area covered by a heater $(=t^2)$,
- V the voltage across the heater,
- R the resistance of the heater,
- k the coefficient of conductivity of the asbestos,
- t the thickness of asbestos block,

T, hot-side temperature of asbestos, and

T cold-side temperature of asbestos.

* Conductivity of the asbestos block was taken as that quoted by the manufacturers (11).

II.6 - Displacement of Probes:

The probes mentioned in \iint II.3 and II.4 were mounted on a 0.625 x 0.2 in. stream line steel tubing, connected on the opposite side of the tunnel wall to a micrometric head shown on Fig.II.6.1. The probe displacement could be directed along the y-axis to the nearest 0.0005 in. The micrometric head could be moved in the x-direction by turning a lead screw of 20 threads/inch, using a large dial connected to the turning hendle.

The head assembly was mounted on a heavy 2 x 4 ins. aluminium channel supported on a tunnel window, which was provided with a central slot covered with masking tape. The window was also provided with some vertical slots to allow for traverses which might be required below or above the centre line of the plate.

The distance from the plate was detected by the electric light signal, a method which was repeatable better than 0.001 in. in all cases.

Fig. II. 6.1_ Device for probe displacement.

II.7 - Accuracy of Measurements:

II.7.1 - Velocity and temperature profiles

The values of velocity and temperature determined from the hot-wire calibration curves, were within $\stackrel{\pm}{=}$ 0.02 (ft/sec) $\stackrel{\pm}{=}$ and $\stackrel{\pm}{=}$ 0.5°C respectively. T_e was neasured to the nearest 0.2°C.

As for Tw, a value of \pm 1.5°C covers all measurements, considering \pm 1% error due to thermocouples, and \pm 1% for the PYE galvanometer used to measure their EMF.

Great care was taken to start the measurements only after the temperatures settled in the air flow and on the plate.

We can then write,

$$\frac{\Delta(U/U_e)}{U/U_e} = \frac{2}{\sqrt{U}} \Delta(\sqrt{U}) + \frac{2}{\sqrt{U_e}} \Delta(\sqrt{U_e}) + \frac{2}{\sqrt{U_e}} \Delta(\sqrt{U_e})$$

The value of $\langle U$ changes from 4 to 10 approximately, which correspond to an error on (U / U_e) ranging from \pm 1.4% near the origin to \pm 0.8% at the outside edge of the boundary layer.

For the temperature profiles, we can use the expression,

$$\frac{\Delta \overline{\Theta}}{\overline{\Theta}} = \Delta T_{w} \left(\frac{1}{T_{w} - T} - \frac{1}{T_{w} - T_{e}} \right) + \Delta T_{e} \left(\frac{1}{T_{w} - T_{e}} \right) + \Delta T \left(\frac{1}{T_{w} - T_{e}} \right)$$

Taking an average value of 70° C for $(T_{W} - T_{e})$, and considering that $(T_{W} - T)$ varies from 30° C to 70° C approximately, $\Delta \overline{\Theta} / \overline{\Theta}$ varies accordingly from $\pm 4.5\%$ to $\pm 1\%$, between the origin of the boundary layer and its outer edge.

profile

If the temperature/is curved enough, the high inaccuracy is confined to a very thin layer not more than $0.5 \Delta_2$ or an average value of 0.07δ , where $\overline{\theta}$ is about 0.5 and the error reduces to $\stackrel{+}{=} 2\%$.

II.7.2 - Turbulent quantities

At no air flow, it was always found that the fluctuating component suffered a zero error amounting to about 1 mV_9 a value which could not be reduced and was mainly due to amplifier noise.

Such noise was thought to remain constant in magnitude for the whole range of measurements. It is very difficult to say exactly how much this noise affected the values of $\overline{u'v'}$, when the sum and difference amplifiers involved in the correlator were considered. It was thought that it would amount to the same order of magnitude as the error on $\overline{u'}^{r}$ which can be written as,

 $\frac{\Delta(\sqrt{u^2}/U_e)}{\sqrt{1}} = \frac{\Delta(\sqrt{u^2}/U)}{\sqrt{1}} + \frac{\Delta(U/U_e)}{U/U_e}.$

Near the origin of the boundary layer, the error was \pm 2.4%, and at 0.8 δ it was \hat{z} 5.8% approximately.

II.7.3 - Heat-transfer confficients

The heat-transfer coefficient can be obtained from the expression^o;

$$S_{e} = \left(C \cdot \frac{V^{2}}{R}\right) / \left(S_{e} U_{e} c_{p} \left(T_{w} - T_{e}\right)\right)$$

The resistance of each heater was measured to the nearest 0.01 of an ohm, and also their respective inductances. This resulted in a power factor of 0.99985 at 50 cycles per second.

*The inaccuracy on the heat dissipated through the asbestos blocks is ignored in the present discussion only, as they amounted to about 0.02 of Q_w . They were fully accounted for in computing the values of S_{t_x} The resistance of the beaters was guaranteed by the manufacturers not to change by more than +5% of their original values in the range of temperature 20° to 400° C.

Considering the range of operating temperatures used here, the inaccuracy on the resistance of the heaters will be estimated + 2% of their values at room temperature.

The voltages across the heaters were measured by an AVO-meter, the inaccuracy of which is \pm 2.25% in the range of measurements^{*}.

Also, as it was discussed before, the inaccuracy on U_e is of the order \pm 0.4%, and on $(T_w - T_e)$ is \pm 2.3%

We can then state the total inaccuracy on the calculated heat-transfer coefficients to be,

 $\Delta S_{t}/S_{t} = 2 \frac{\Delta V}{V} + \frac{\Delta R}{R} + \frac{\Delta Ue}{Ue} + \frac{\Delta (T_{w} - T_{e})}{(T_{w} - T_{e})}$ from which we get,

 $\Delta S_t / S_t = \pm 9.2 \%$

* The particular meter used had an accuracy of 99% in the range of the present measurements, but the larger value of inaccuracy quoted by the manufacturers was retained to see how serious the error can become, if that did not remain so during the actual measurements.

III. RESULTS AND DISCUSSION

III.1. - Field of Experiments:

A rough plate was used throughout the course of the present work, at six different conditions, referred to subsequently as cases.

The first three cases were those of the plate with approximately zero pressure gradient, which changed to a mild favourable one towards the last third of the plate. The rest of three cases concerned the plate with mild adverse pressure gradient changing to approximately constant pressure towards the last third of the plate.

Each set of the above mentioned three cases included the investigation of unheated plate, an isothermal plate heating to a temperature such that $Tw / Te \cong 1.2$, and the case of heating to $Tw / Te \cong 1.2$ to 1.3 with a gradual step near the middle of the plate.

Fig. III.1.1 to III.1.6 represent the pressure coefficients measured at the wall with the reference velocity at the downstream end of the plate, while Fig. III.1.7 to III.1.10 show the wall temperature distribution for the heated cases.

For the unheated cases, the mean velocity profiles and the longitudinal fluctuating component were measured;

ហ

and for the heated plate, the mean velocity and temperature profiles were measured. The longitudinal fluctuations were also recorded for the heated cases, but to serve only in a qualitative comparison.

The turbulent shear-stresses were measured for both pressure gradients, but when no surface heating was applied.

It was possible to obtain some measurements of the shear stress across boundary layers, experiencing an abrupt change in surface condition, from rough to smooth, or vice versa. This was done by sticking self-adhesive polythene sheet on the first or the second half of the plate*.

* The term "smoother" should have really been used instead. The polythene sheet could not be prevented completely from sagging in the cavities. However, the depth of sagging was not more than 0.005 in. anywhere on the covered part of the plate.

III.2. - The Dynamic Boundary Layer:

The present section deals with the velocity profiles and skin-friction coefficients for all the examined cases. The temperature profiles will be examined in the next section.

III.2.1. - Velocity profiles behind roughness elements:

Bodies placed in the free air stream will generate wakes, but placed in a boundary layer they cause displacement of the steamlines towards and behind them.

Schlichting described this phenomena as "the negative wake effect", which was explained by the existence of secondary flow. This effect can be clearly seen from the shape of constant velocity lines measured by Schlichting behind a row of spheres (Fig.21.15(1)) and the secondary flow calculated later by Schultz - Grunow.

The eddy behind a roughness element was visualised by White (30) and Wieghardt (33). Its existence was noted later by Doenecke (4), in that it satisfies the condition of continuity of the fluid in the volume behind the roughness element, with its centre coinciding with the origin of the velocity profile. Doenecke also sketched the pattern of the behaviour of velocity behind a roughness element, similar to that given on Fig.III.2.1.

Fig. III. 2.1_ Velocity profiles behind roughness elements .

The height of the centre of eddy for a plate with 3 mm two-dimensional square ribs, spaced by 12.5 mm. was given as equal to 1.7 to 1.9 mm from the trough of the roughness element (4).

In the present work, the velocity profiles were measured at the centre of a cavity, starting at about . 0.05 in. from the trough, using the single-wire probes earlier described.

A curve of $U(\not\downarrow)$ was then plotted for each profile, and the origin of the boundary layer was chosen as the first point on the straight part of the profile. An example of this choice is given on Fig.III.2.2. The readings before the chosen origin were ignored as they are thought meaningless.

The origin of the velocity profile thus obtained, was found to be about $0.050 \stackrel{\pm}{=} 0.005$ in. below the crest of the $\frac{1}{2}$ in. cavities.

The origin of the velocity profiles which could be measured from the surface unoccupied by the cavities, is clearly the surface itself; but the measurements carried out at the centre of a cavity along the centreline of the plate made the recording of the viscous sub-layer more feasible.

The eddies inside cavities or behind protrusions participate in momentum dissipation in the same manner, forming, with the secondary flow, the main difference between a rough and a smooth surface.

III.2.2 - Boundary layer thicknesses:

The thicknesses of the boundary layer δ_1 , δ_2 and S_3 were computed from the measured velocity profiles by the trapezoidal method, using the Imperial College IEM 7090 computer, as the rest of routine calculations.

For the heated plate, the thicknesses δ_{14} , δ_{24} and δ_{34} were also calculated.

These various integral terms are plotted as function of x on Fig. III.2.3 to III.2.12, and are tabulated numerically in Appendix I.

Tables of measured velocity and temperature profiles are given in Appendix II.

III.2.3 - Calculation of the skin-friction coefficients:

The skin-friction coefficients were calculated from the values of boundary-layer thicknesses computed as described in \oint III.2.2, and the obtained wall-pressure coefficients. The von-Karman two-dimensional momentum integral equation was used. It can be written as,

$$C_{f} = 2 \frac{d \delta_{2}}{d x} + 2(H+2) \frac{\delta_{2}}{U_{e}} \frac{d U_{e}}{d x}$$

The above equation is unmistakably valid, only under certain assumptions, and consequently has its limitations. For example, the effect of normal fluctuations $\overline{U^{r/2}}$ is neglected, and the pressure across the boundary layer is considered constant. In fact, the static pressure is, $P_y = P_{wall} + \int_0^y \int \overline{U^{r'2}} dy$ (see (17) for example). The effect of velocity fluctuations and their correlations is not taken into account in calculating the momentum differences.

With adverse pressure gradients, two terms of the same order of magnitude are subtracted from each other, and the slight inaccuracy on one of the terms, or both, may be magnified quite easily.

Finally, the existence of three-dimensionality in the flow, alters the meaning of the above equation (see (18) for example).

The effect of the first factor, in our experiments and within the limited measurements of fluctuating components performed, was found to be at most an order of magnitude less than that of skin-friction coefficients.

Care was taken, as much as possible, in obtaining the graphical differentiations.

Three-dimensionality could have one, or both, of two main causes; that air is flowing unsymmetrically over the plate, or from natural convection from the heated plate which was mounted vertically in the working section of the wind-tunnel.

The boundary layer* was measured, by a provisional total-head probe flattened to O_0O2O in outside thickness approximately connected to a Betz micromanometer, at $3\frac{5}{6}$, $15\frac{7}{16}$ and $21\frac{1}{16}$ in or along the x-axis; $O_0 \stackrel{!}{=} 4$ and $\stackrel{!}{=} 8$ in o along the z-axis*? It was found that the velocity profiles at the same distance along x, agree closely with each other, within the limits of accuracy of measurements.

Although the region covered above has no significant

* IA

** The origin of z being the centre-line of the plate.

pressure gradient, and might not be fully representative of all the cases, especially those with positive pressure gradient, the wall pressures of the plate seem to suggest that there could not be serious, if any, cross flow.

On the other hand, the order of magnitude of the effect of buoyancy on the skin-friction could be seen from the demonstration of E. Pohlhausen (see (1) for example), on the natural convection from a vertical hot plate. The vertical air velocity was expressed as,

$$w = 4 \gamma \sqrt{3 + h} C^2 \zeta'(\gamma)$$

where : h is half the height of the plate,

$$C = \left[\frac{2}{4y^2} \frac{T_w - T_e}{T_e}\right]^{\frac{1}{4}}$$

$$J'(\eta) = \frac{W}{\frac{2\sqrt{2}(3+h)}{\sqrt{T_w} - T_e}} \int \frac{T_e}{T_w - T_e} \quad i \text{ and}$$

$$\eta = C y / (3+h)^{\frac{1}{4}} \quad .$$

The maximum value of $\int \langle \langle \gamma \rangle$ for Pr = 0.73, occurs at $\eta \simeq i$ and has the value of 0.27 (Fig.14.23 (1)). The maximum vertical air speed at the centre of the plate would then be,

 $(W_o)_{masr.} \cong 1.67 \text{ ft/sec},$ $T_w / T_e \cong 1.3$.

for

The above estimate shows that the deviation of stream lines at the centre of the plate due to surface heating could reach a maximum value of 1°, with $\frac{\partial W}{\partial y}$ very much less than $\frac{\partial U}{\partial y}$, the latter being at least of $O(10^3)$, while $\frac{\partial W}{\partial z}$ is of O(1).

The obtained values of skin-friction coefficients and of $2\frac{dS_2}{dx}$ for the examined cases are shown on Fig. III.2.13 to III.2.18.

Skin-friction co-efficients will also be discussed later in f III.4.

III.2.4 - The effect of surface-heating on the skinfriction coefficients:

Examining the obtained results of $C_f(x)$, it is noticed that the effect of surface heating on the computed values of C_P , is either a reduction or an increase.

For example, the effect of heating was of relatively small importance in the presence of no, or very small, pressure gradient, in the range of heating applied. Generally speaking, the heating has the effect of reducing C_{p} obtained for the unheated plate², in similar pressure

"Near adiabatic at such low speeds.

[.]

environments.

When positive pressure gradients were applied, the effect of heating was a noticeable reduction in C_{f} , while negative pressure gradients were associated with an increase in the skin-friction coefficients with surface heating.

If we consider the definitions of S_2 and S_{243} , and assume that the effect of temperature field on that of the velocity is small, we can then write that,

 $\delta_{2u} > S$.

 $\frac{d \delta_{2u}}{d x} > \frac{d \delta_{2}}{d x}$ Similarly, we can deduce that $\delta_{1} > \delta_{1u}$ from their respective definitions and the above assumption. This yields, $H(=\frac{\delta_{1}}{\delta_{2}}) > H_{u} (= \delta_{1u}/\delta_{2u}).$

A simple substitution in the von-Karman equation would then lead to.

$$C_{f} \leq C_{f_{\alpha}} \quad \text{if } dP/dx \leq 0, \\ \leq C_{f_{\alpha}} \qquad \qquad > 0, \text{ and}, \\ \geq C_{f_{\alpha}} \qquad \qquad < 0.$$

(subscript a refers to the adiabatic wall)

, and hence,

We also notice that the pressure gradient severity parameter $\langle \mathcal{T} \rangle$, is accentuated by surface heating if it was positive. It does not alter significantly if it was negative, as seen from the present experiments.

III.2.5 - Discussion on reference temperature:

A brief discussion will be given, on the possibility of obtaining a method for reference temperature, applicable to rough surfaces in incompressible flow, similar to that generally used for supersonic flow (see (19) for example).

The method, originally derived by Monaghan, consists of referring the viscosity and density of the flow to a 'reference temperature', to allow the use of the formulae of skin-friction coefficients for adiabatic walls. The formula of skin-friction for adiabatic walls, can be written as,

$$C_{fa} = \frac{\mathcal{T}_w}{\frac{1}{2}P_e U_e^2} = \frac{C_a}{R^m}$$

where, C and m are constants, and,

R a Reynolds number based upon x or some boundary layer thickness.

When the surface temperature differs from the adiabatic wall temperature, the formula becomes,

1.0.

litt og sj

$$C_{f} = \frac{T_{w}}{\frac{1}{2}} \int_{F} U_{e}^{2} = \frac{C_{e}}{R_{f}}$$

$$C_{f} = C_{f_{\alpha}} \cdot \left(\frac{T_{F}}{T_{e}}\right)^{m(\omega+1)-1}$$
where: $\frac{M_{F}}{M_{F}}/\mu_{e} = \left(\frac{T_{F}}{T_{e}}\right)^{\omega}$.
For a smooth surface in compressible flow, Tr is

determined by a semi-emperical formula of the form,

$$T_{F} \equiv F(T_{W}, T_{e}, M, P_{r})$$

The above functions are obviously not of much use, for two-dimensional incompressible boundary-layers on rough surfaces, with arbitrary pressure gradient. A form, suitable for such an application, is then thought to be,

$$T_{r} \equiv F\left(k_{s}, \frac{T_{w}}{T_{e}}, R_{s_{1}}, TT, \frac{TT}{|T|}, P_{r}\right),$$
with:

$$C_{f_{a}} = \frac{C_{o}}{\left(R_{s_{1}}\right)^{n}},$$

$$C_{o} \equiv F_{i}\left(T, k_{s}\right), \text{ and},$$

$$n \equiv F_{2}\left(T, k_{s}\right).$$

We suggest a form of the function F, based on the previous discussion in f III.2.4, as,

$$\frac{T_r}{T_a} = I + A_1 \frac{T_w - T_a}{T_a} + A_2 \frac{T^2}{|T|} \cdot \frac{T_w - T_a}{T_a}$$

where:
$$A_1 \equiv F_3 (k_s, P_r), \text{ and },$$
$$A_2 \equiv F_4 (k_s, R_{s_1}, P_r).$$

A reasonable realistic mathematical derivation of the functions C_0 , n, A_1 and A_2 remains complex at present. Semi-emperical expressions can only be possible when enough data for different values of k_s , \mathcal{T} and $\frac{\mathcal{T}_w}{\mathcal{T}_a}$ is collected.

III.2.6 - Presentation of the velocity profiles:

The measured profiles are numerically tabulated in Appendix II, as mentioned earlier.

The form of presenting the profiles, has differed according to authors, even for smooth surfaces, in a search for a single-parameter family.

The profiles were generally expressed as,

 $U/V_{o} \equiv f(Y/\ell)$

where: \bigvee and ℓ are some velocity and length scales.

The velocity scale was given the values U_{e^2} , u_{z} or a combination of both, as for the defect profiles for instance. That of length had $S, S_1, S_2, \frac{\gamma}{u_z}$ or $\frac{S_{1u}U_e}{U_z}$.

Each of these forms, was associated with a parameter, to specify profiles in arbitrary conditions of pressure gradient. This parameter also varied, and had the forms H, Γ (introduced by Buri (1)), η , G_i , or Π .

The verification of all these forms is by no means an easy task, but some of the relevant and most frequent will be dealt with.

The parameter chosen by Gruschwitz(1) to define velocity profiles in the presence of pressure gradients was 2, where, $\eta = 1 - \left(\frac{U_{(4=5_2)}}{U_{11}}\right)^2$.

Pretsch introduced a universal relation between Nand H to suit the experimental results. It can be written as, $N = I - \left[\frac{H-I}{H(H+I)}\right]^{(H-I)}$,

with the corresponding velocity profiles expressed as,

$$U/U_e = (Y/s)^{\frac{1}{n}}$$

where: n = 2 / (H-1)

When plotting the values of η as measured experimentally against $H_u (\equiv \delta_{1u} / \delta_{2u})$ on Fig.III.2.19, a fair agreement can be noticed between experiments and Pretsch's universal function. The scatter involved and the flexibility in the determination of δ , would suggest that this method is not completely adequate for the present results.

The profiles on rough surfaces were also specified, (4) and (6), as U/Ue = $(\frac{J}{S_{L}})^{m}$, where m was different from a rough surface to another, but was constant for a particular plate. The range of applicability of such form also seems limited. The authors only considered rough surfaces when no pressure gradient was present.

Nikuradse demonstrated earlier that a velocity

Fig. III. 2.19 _ Relationship between H_u and η .

profile on a rough surface can be represented by the law of the wall, which applies for smooth surfaces, with the difference that the profile for a rough wall is shifted by an amount $\Delta U/u_{\tau}$ below that of the smooth. This shift was found to be function of $\mathcal{R}_k \ (\equiv k u_{\tau}/\gamma)$. Prandtl and Schlichting verified that fact experimentally for sand roughness. It was also found applicable for wire screens (2), and two-dimensional square ribs (5) and (16).

The velocity profiles of the present study have been plotted in the form $\frac{U}{u_{\tau}}\left(\frac{y_{u_{\tau}}}{y}\right)$ on Fig.III.2.20 to III.2.25.

These figures show that the linear part is generally confined to a relatively small region, especially for some of the profiles of II_{A^2}

The shift of the linear part $\Delta U = (k u_z/y)$ is shown on Fig. III.2.26. This figure reveals that the equivalent height of sand roughness for the examined plate, is half the depth of cavities approximately.

The form of presentation used by many authors for smooth and rough surfaces, is the velocity-defect. It can be expressed in the form,

 $(U_e - U)/u_z = -\frac{1}{0.4} \ln \frac{y_{u_z}}{s_{u_u}} + A$

and a second second

Nikuradse found this semi-logarithmic linear relationship to apply for the regions close to the wall, and outside the viscous sub-layer, for all heights of sand roughness.

Rotta (20), suggested that the value of the constant A appearing in the velocity-defect relation, to be a function of the parameter G₀ while Mellor (22) retained that $A \equiv A$ ($TT_{,\alpha}$), where α is a parameter introduced by Mellor ($\alpha = \frac{TT \ Ue}{R_{\delta_1} u_{\tau}}$).

Some velocity profiles of the present work were plotted in the defect form, for various values of G and π as shown by Fig.III.2.27 to III.2.33.

The velocity-defect presentation is favoured for the present application. This is due to the fact that it covers the regions of boundary layer away from the wall. This presentation is also consistent for smooth and rough surfaces, with G as parameter. This statement will be supported later (see III.2.8).

III.2.7 - <u>The relation between the velocity profile defect</u> <u>parameter 'G', and the pressure gradient</u> parameter '*N*':

Fig. III.2.23 to III.2.39 show the measured values of G, \mathcal{M} , H and H_u plotted against x° , for the profiles examined.

Further, Fig. III.2.41 show $G(\pi)$ for the three cases of constant-favourable pressure gradient, and III.2.42 show this relation for the cases of adverse pressure gradient. On Fig. III.2.43, these relations are compared to that of the smooth surface, as given by Nash (27).

In I_A , the value of G continued to rise without noticeable change in \mathcal{T} , until \mathcal{T} was sharply reduced and G followed.

For both I_B and I_C, where the plate was heated, a slight tendency towards equilibrium was exhibited.

In II_A , the values of G were generally higher than those generally quoted for smooth surfaces. As \mathcal{T} is reduced, the value of G decreases, although it departs from the original 'path' towards the end of the plate.

The relation for II_B still follows that of II_A, and shows a 'return' very close to the relation with \mathcal{N} -increasing

* X being the distance measured from the beginning of roughness.

Fig. III. 2.34 _ Variation of G, T[and H along X _ Case I_A .

Fig. III. 2.41 - G(TT) - Case I_A , I_B and I_C .

____ ഗ As for II_C , complete agreement with II_A and II_B is observed, and then continues smoothly for further values of \mathcal{T} . It then reaches the highest values of \mathcal{T} . As \mathcal{T} is reduced, G also decreases as before.

In II_A , II_B , and II_C , the value of G did not continue to rise as the pressure gradient was decreasing in severity. This did not occur in the experiments of Ludwieg and Tillmann reported in (20) and (27).

It appears that the experiments of boundary layer on a smooth surface, passing from the condition $U_e \propto x^{-0.255}$ to $U_e \simeq$ Constant reported in (36), show a similar behaviour to the present results.

The higher values of G found in the present experiments, unlike those for a smooth surface under similar conditions, may be referred to the higher values of H_u for a rough surface. This was already shown in (27). The difference between the values of G for a smooth surface and those for a rough surface become more pronounced when C_f is reduced due to surface heating. This occurred in the present experiments for $T \gg 1$.

Further in II_A, adverse pressure gradients with no surface heating, the conditions for equilibrium boundary layers:

$$\frac{dS_1}{dx}$$
 (or $\frac{dS_{1k}}{dx}$) = Constant,

$$U_e \propto \chi^{-0.13}$$

(see Fig. III.2.40), were present for 14" < x < 26", but equilibrium conditions were not achieved.

The lack of equilibrium in both I_A and II_A may be referred to the short length over which the necessary conditions were satisfied. Also the height of roughness was maintained constant in the present experiments, and not the form $k \propto (x - x_0)$ as suggested by Rotta (20).

More useful information about the behaviour of boundary layers on rough surfaces could be achieved by setting equilibrium conditions, and comparing the results with those readily available for smooth surfaces.

III.2.8 - Comparison with some theoretical investigations:

Perry and Joubert (5) have extended the method of computing the skin-friction coefficients adopted by Clauser (18) so as to be applicable for rough surfaces.

The method* consists of assuming that Coles' wake hypothesis is applicable, so that the whole profile could be

* A similar treatment appeared in (16).

described by,

$$\frac{U}{u_{z}} = \frac{1}{\kappa} \ln \frac{y_{u_{z}}}{\nu} + B - \frac{\Delta U}{u_{z}} + \frac{\pi}{\kappa} \omega(\frac{y}{\delta}),$$

 ω being the universal wake function, and, $\underline{AU}_{U_{\mathcal{T}}}$ the shift of the log. law of the wall for a rough surface.

This could then lead to the relation,

$$\begin{split} \frac{U}{U_e} &= \frac{1}{\kappa} \sqrt{\frac{C_f}{2}} \quad Ln\left(\frac{(\frac{y_e+\epsilon}{y})U_e}{y} + \sqrt{\frac{C_f}{2}} \left[\frac{1}{\kappa} Ln \sqrt{\frac{C_f}{2}} + B - \frac{\Delta U}{U_e}\right] \\ &+ \sqrt{\frac{C_f}{2}} \quad \frac{\pi}{\kappa} \omega\left(\frac{y}{\delta}\right) \end{split}$$

where: \mathcal{Y}_{k} is the distance normal to the wall measured from the crest of roughness elements, and, $\boldsymbol{\varepsilon}$ the origin correction distance.

According to this equation a set of straight lines representing $\frac{U}{U_e}$ against $\ln (J_t + \epsilon)$ could be traced having the slopes $\frac{L}{K}\sqrt{\frac{C_t}{2}}$. The experimental results are then plotted in the form $\frac{U}{U_e}(\ln(y_t + \epsilon))$, and displaced vertically until they conveniently match a particular value of C_p , appropriate for the measured profile.

Unfortunately, this method has its limitations of requiring a fairly large region in conformity with the law of the wall. Hence, it had very limited use for the present work; the same was concluded by the authors(5). Otherwise, the method may retain its merits. Further, the methods of calculation of the skin-friction coefficients from the formulae used for smooth surfaces clearly prove to be inadequate for the present experiments. This is due to the order of magnitude of the various integral terms and the shape factor H_{0} or H_{u} , which is higher for a rough surface than for a smooth surface under the same conditions. This is a result of the effect of roughness imposed on the velocity profiles.

For instance, Rotta (20) introduced the formula,

$$\frac{U_{e}}{U_{e}}(R_{s_{1}}) = 5.75 \log R_{s_{1}} + 3.7 ,$$

while other formulae, including one by Nash, could be found in (23).

As for the shape of the velocity profiles, Rotta (20) introduced the form,

$$U = \frac{u_{z}}{\kappa} \left(Ln \frac{y_{uz}}{\nu} + 2A \frac{y}{\delta} \right) + C \left(\frac{k_{r} u_{z}}{\nu} \right),$$

for $0 < y < \delta$,

while Coles expressed it, in the same range, as,

$$\frac{J_{e-U}}{u_{z}} = -\frac{J_{k}}{k} \ln \frac{y}{\delta} + \frac{B}{k} \left(2 - \omega \left(\frac{y}{\delta}\right)\right)$$

Rotta then derived analytically the value of the constant of integration 'A' defined by,

$$\frac{U_e-U}{u_e} = -5.75 \log \frac{y_{u_e}}{S_{in}U_e} + A ,$$

according to both profiles, and expressed it as function of G.

The values of 'A', determined experimentally in the present work, were found to agree closely with Rotta's relations; or at least that according to Coles' profile. This is shown on Fig. III.2.44.

Mellor (22) on the other hand, introduced a generalized velocity profile, on the basis of an eddy viscosity. It took the form,

 $U = \lim_{k \to \infty} \left[\int_{E} \frac{\nu (\psi(x))}{k^{2} v^{2}} dy - \frac{u_{z}}{k} \ln \frac{\varepsilon u_{z}}{v} \right] + \frac{2}{k} \left[\left(u_{z}^{2} + P_{y} \right)^{2} - u_{z} \right]$ + $\frac{u_{r}}{\kappa}$ $L_{n}\left[\frac{4\left[u_{z}^{2}\left(u_{r}^{2}+R_{y}\right)^{2}-u_{r}\right]}{\chi P\left(u_{z}^{2}+P_{y}\right)^{V_{2}}+U_{r}}\right]$ $\Psi(x) = \frac{K^2 y^2}{Y} \frac{\partial U}{\partial y} - \left(\frac{z}{r}\right)^2 \frac{K y}{Y}$, and where, $P = (dP/dx)^2/g$

Two separate expressions were then derived, the applicability of either being dependent on the value of \propto (= TUe /Rs. ur)

Mellor then related the constant of integration "A" to \mathcal{M} , in the inexplicit form $\mathbb{A} + \mathbb{B}(\mathcal{A})$. Here B(~) is the constant appearing in the logarithmic law of the wall. It was calculated to be equal to 4.92, 4.9 and 4.94 corresponding to α equal to -0.01, 0 and 0.02 respectively.

Mellor also derived a generalized skin-friction relations in the form.

$$\frac{u_{z}}{U_{e}} \equiv \frac{u_{z}}{U_{e}} \left(\mathcal{T}, \mathcal{R}_{s_{i}} \right)$$

N

The values of 'A' obtained are compared with Mellor's on Fig.III.2.45. It is then evident that good agreement for the range $-0.3 \leq \pi < 0.8$ exists, while a marked departure from Mellor's predictions occurs for $\pi \gg 0.8$.

As the parameter \propto in the present experiments was $\leq 3.3 \times 10^{-3}$, it was thought suitable to assume that $B(\infty)$ may be taken as 4.9 for all the profiles tested. Further, the limited region of linearity parallel to the law of the wall, found for some of the examined profiles as discussed earlier,/be considered unusual for such values of \propto according to Mellor's analysis for smooth surfaces. For a rough surface this is not necessarily so, considering the differences in $\frac{u_x}{U_c}$ or R_{δ_1} , for the two surfaces.

However, to illustrate this difference, Fig.III.2.46, shows a comparison between the obtained results of $U_{\tilde{r}}/U_{\tilde{c}}$ and those of a smooth surface, as given by Mellor, for a value of $R_{\tilde{S}_{I}}$ an order of magnitude smaller, almost everywhere.

The value chosen for $B(\ll)$ does not seem to be the answer for the descriptncy presently found with "A" on Fig. III.2.45. Mellor noted that $B(\ll)$ is closely related to the behaviour of $\mathcal{T}/\mathcal{T}_{w}$ outside the viscous

Fig. III. 2.45_Constant appearing in the expression for the velocity-defect profile as function of π

Fig. III. 2.46_ Comparison between skin-frictions in the present experiments and those for smooth surfaces .

sublayer. This would differ from 4.9, for $\approx =0$, if $7/7_w$ does not approach unity in that region. However, in the limited range of the obtained measurements, a rough surface behaves very much like a smooth one, when $7/7_w$ is concerned, outside the sublayer. This will appear later on.

The conclusion can be made that if we accept the fact of relating A to G $(\equiv G(\mathcal{H}_u, \frac{U_e}{u_\tau}))$ as suggested by Rotta, and not to \mathcal{T} as proposed by Mellor, the applicability becomes more general. That is because the relation $G(\mathcal{T})$ varies according to the values of Hu and

 u_{τ}/u_{e} dealt with from one case to another. To relate A directly to G also appears more appropriate, considering the definition of G itself. This conclusion is confirmed by the fact that whenever G (\mathcal{T}) of the present experiments agreed with that of the smooth surface, or was not too far from it, both Rotta's and Mellor's predictions were close to the experimental results. Only those of Rotta were applicable when the two relations of G (\mathcal{T}) departed significently.

III.3 - Thermal Boundary Layers:

In this section, the thermal boundary layer and heat-transfer coefficients will be discussed, as the velocity profiles and skin-frictions have been previously dealt with.

III.3.1 - Temperature profiles behind roughness elements:

The heat-transfer behaviour near a rough wall has been modelled by Owen and Thomson (24), who analized the flow pattern on the basis of existence of a horseshoe (secondary flow) eddies surrounding the roughness elements. Doenecke (4) sketched a model of the temperature profile behind a roughness element similar to that shown on Fig. III. Unlike the velocity, the temperature profiles 3.1. start at the solid surface, whether it is the crest of the roughness element or its trough. The shape of the temperature profile measured from the crest of a roughness element might not differ too much from that measured on a smooth surface, did not that the temperature change much more rapidly in the close vicinity of a rough surface than in that of the smooth. The profile behind a roughness element is suggested to have the following regions;

Fig. III.3.1 _ Temperature profiles behind roughness elements.

- 1. a region close to the surface, in which the temperature varies rapidly in a fairly thin layer in a manner most likely to be linear, and depending wholly on surface temperature and fluid properties,
- 2. a region which forms part of the eddy behind the roughness element, supplied by heat from the former region and dissipates it to the outside flow,
- 3. a region which almost coincides in space with the viscous sub-layer of the velocity profile, where the temperature varies according to the local wall temperature, its gradient w.r.t. × and the present velocity field, and,
- 4. a region outside the influence of the wall and completely definied by the velocity field and the fluid properties.

The whole temperature profile behind the roughness elements is not altogether feasible with reliable accuracy, without disturbing the delicate structure of the flow; at least for the type and dimensions of the presently studied roughness. The part actually measured was that consisting of the last two regions only, which starts at, or very close to, the origin of the velocity profile. The origin of the measured profiles was then taken as that of the velocity profile. This was determined from the measurements of the velocity as described in \int III.2.1 earlier on.

The measured profiles are tabulated in Appendix II with their respective velocity profiles.

III.3.2. - Thermal boundary-layer thicknesses:

The boundary layer thermal displacement and enthalpy thicknesses Δ_1 and Δ_2 were calculated simultaneously with the dynamic thickness by the computer, using the method of trapezoids as well.

The obtained values are shown on Fig. III.3.2 to III.3.5, and tabulated numerically in Appendix I.

III.3.3. - Heat-transfer coefficients:

The heat-transfer coefficients of rough surfaces are generally found to be more than those for smooth surfaces, in the same flow and wall temperature conditions.

Although the "rougher" a surface is, the more the value of heat-transfer coefficient is likely to be, it has been already established that the increase in heat transfer due to the presence of roughness is less than the

Fig. III.3.3 _ Thermal boundary layer thicknesses _ Case I $_{\rm C}$

Fig. III.3.4_Thermal boundary layer thicknesses_Case II $_{\rm B}$.

L

X ins.

increase in skin friction.

In the present experiments, the heat-transfercoefficients were calculated from the values of the power input to the electric heaters, as described earlier in \int II.5.

The calculated coefficients for isothermal heating are plotted on Fig.III.3.6 and III.3.8, together with the graphical differentiations of \triangle_2 . Good agreement between both results is seen, except near the downstream end of the plate, where the calculated coefficients seem to be higher than the values of $\angle \triangle_2/\cancel{4x}$.

This is perhaps due to inevitable heat conduction to the $2\frac{1}{2} \ge 2\frac{1}{2}$ in. steel angle supporting the rear end of the plate.

Where the plate temperature undergoes a stepwise variation, Fig. III.3.7 and III.3.9 show the heat-transfer coefficients as calculated by the measured power-input of the heaters, together with the graphical differentiations of Δ_2 . This shows a large discrepancy between the two values, which can be reasoned as follows:

Fig. III. 3.6 _ Heat transfer coefficients _ Case I B

Fig. III.3.7 _ Heat transfer coefficients _ Case I_C

Fig. III.3.9 _ Heat transfer coefficients _ Case II_{C} .

ω 8

1. - the heat-transfer coefficients for the flat plate can be generally written as *,

$$S_{t} \cong \frac{1}{S_{e} \cup_{e} c_{p} (T_{w} - T_{e})} \begin{bmatrix} c_{p} \frac{d}{dx} S_{e} \cup_{e} \Delta_{1} (T_{w} - T_{e}) \\ -\frac{1}{2} \frac{d}{dx} S_{e} \cup_{e} \delta_{3} \end{bmatrix}$$

This equation then suggests that the mere term $d\Delta_2/dx$ will not always be representative of the heat-transfer coefficient, and in particular when the wall temperature gradient differs from zero. In the region where $dT\omega/dx$ differed from zero in Ic and IIc, the term $\Delta_2 \cdots (dT\omega/dx)$ was added to $d\Delta_2/dx$, as seen on the corresponding figures.

The other terms of the above equation were not taken into account, because they were thought of small effect, compared to the total value of heattransfer coefficients. Taking into consideration all terms for X = 18.25 in IIc, the coefficient was calculated according to the above equation, the result of which was as follows:

term	including	$d Tw/dx \cong 0.76 S_{E}$	
tt	55	$d\Delta_2/dx \cong 0.2865_{\rm E}$	
terns	5 TE	$d U_e/dx = -0.044 S_e$, and,
term	28	$= d S_3 / d x \cong -0.0013 S_t$	•

*Assuming that the effect of turbulent fluctuations, radiation and natural convection can be neglected compared to forced convection. 2. - In the rear part of the plate, where the surface temperature is approximately 0.1 T_c higher than that of the upstream, there is no guarantee that the heat does not flow by conductivity through the material of the plate. This would result in an apparent rise in the local coefficients at the rear part of the plate, where heat flow to the supporting angle is still present. Alleviation of the steep rise in coefficients at the middle of the plate may be observed.

A quick check on the values of the integration $\int S_t (T_w - T_e) dx$ as calculated from the two results may support this view (see Fig. III. 3.10).

It can be then suggested that, on the whole, the accuracy of the values which were obtained for the heattransfer coefficients was quite good.

The results obtained, and the above discussion, thus indicate that the effect of pressure applied in the present experiments was small, especially when compared to their effect on the skin-friction coefficients.

The more effective parameter was the wall-temperature gradient.

The chosen values are shown by the broken lines on Fig. III.3.6 to III.3.9

The Nusselt numbers were calculated and plotted against R_X*. Fig. III.3.11 represents the isothermal plate, while Fig. III.3.12 concerns the step-heating.

On these figures, the values obtained by Nunner (25) were extrapolated to the presently examined range of $R_{\chi^{\circ}}$

It is then clear that the values of $Nu(R_{\chi})$ for the isothermal plate were very near to the extrapolated relation shown by Nunner for a value of $k_5 = 3.14$ mm. This is approximately twice that value of the present experiments. In the region where dTw/dx differed from zero, the values of Nu sometimes topped those of k_5 , as high as 15 times the present value. The values of Nu afterwards approached those found for smooth pipes.

The free stream temperature for the flat plate is constant, while the core temperature of the pipe is constantly increasing.

*To calculate R_{χ} , ${}^{\circ}\chi^{\circ}$ was taken as the distance measured from the beginning of roughness, because this was the beginning of heating. A mean value of Pr = 0.73 was taken for all profiles.

Fig. III.3.11 $_{\rm Nu}(R_{\rm X})$ for the cases of isothermal heating.

143

Fig. III. 3.12 _ N_u (R_x) for the cases of step heating.
The effect of an increasing outside temperature being opposite to that of an increasing surface temperature.

Also, the roughness elements used by Nunner were two-dimensional, while that of the present experiments is three-dimensional. This may lead to increase the heat transfer due to the larger area of the surface "wetted" by the air flow. It may also be argued that the threedimensionality affected the skin-friction, but not the heat-transfer.

Perhaps this accounts for the observation that the isothermal cases approach Nunner's results for $k_5 = 3.14$ mm.

Koch (26) has extended Nunner's work for higher values of $k_{\rm g}$. His results show that a pipe having a resistance coefficient of 13.33 times that corresponding to Nunner's pipe of $k_{\rm g} = 22.8$ mm, has only increased the ratio of Nusselt number of the rough pipe to that of the smooth $\left(\pm \frac{Nu}{Nu0} \right)$ from 2.6 in Nunner's case to 3.6 approximately.

Further discussion on the relationship between effective roughness and heat-transfer increase will be given in § III.5 later on.

The heat-transfer coefficients of the region dominated by the roughness elements 'B' was calculated by the method of Owen and Thomason (24), where no temperature gradient and little or no pressure gradient was applied. The formula given for the flat plate can be written as:

$$\frac{1}{S_{t}} = \frac{U_{e}}{u_{z}} \left(\frac{U_{e}}{u_{z}} + \frac{1}{B} \right) .$$

The results show close resemblance to those of Nunner (see Fig.III.3,13) which are quoted in (24). They conform with the behaviour of the total hear-transfer coefficients (S_{μ}) .

It is interesting that the present theories for smooth surfaces predict higher heat-transfer coefficients after the surface temperature undergoes a stepwise discontinuity, than those of an isothermally heated surface. This is contrary to the results of the present experiments.

This discrepancy is thought to be due mainly to the basic assumptions of similarity between velocity and temperature profiles, the form of velocity profiles chosen, and the disregard for the effect of fluctuations.

Bradshaw et al. (38) recently introduced a method for the calculation of the dynamic boundary layers. They have pointed out the possibility of deducing a parallel method for the thermal boundary layers based upon the turbulent-temperature-fluctuations equation. Such a method might yield more realistic results for experiments like those presently discussed.

III.3.4 - Presentation of the temperature profiles:

The temperature profiles on a rough surface, as described earlier in $\int III_{\circ,3} \cdot 1$, begin at values of $\overline{\theta} \left(\frac{T_{\omega} - T}{T_{\omega} - T_{\varepsilon}} \right)$ much greater than the corresponding values of U/U_{ε} of the velocity profiles. This difference between the two profiles continues to decrease until it eventually vanishes near the outer edge of the boundary layer, where both $\overline{\theta}$ and U/U_{ε} tend to unity. This observation is already established by the experiments of Brunello (3), Doenecke(4) for the flat plate, and by Nunner's experiments (25) for the pipe flow.

Kestin and Richardson (28) also noted that the effect of roughness may be described as similar to the effect of increase in Prandtl number, except that the increase in Prandtl number affects the temperature profile, while roughness affects the velocity profile.

The limits for the temperature profile are not the same as those for the velocity near the wall. It is then obvious that the Reynolds analogy $(2St/C_f = 1)$ does not necessarily apply for a rough surface. Reynolds analogy factor was found to vary between 0.4 to 4.2 approximately in the present experiments. The value for no pressure or surface-temperature gradient was about 0.79. The effect of roughness, $\mathcal{T}_{w}/\mathcal{T}_{c}$, $d\mathcal{T}_{w}/d\times$ and \mathcal{T}_{c} , is best seen from the set of Fig. III.3.14 to III.3.21. below. On each of these figures, we have plotted $\bar{\Theta}(\mathcal{Y})$ and $\mathcal{V}/\mathcal{U}_{c}(\mathcal{Y})$ as measured by the hot-wire probe. $\bar{\Theta}(\mathcal{Y})$ as measured by a 0.5 mm bare-bead thermistor was also included. The thermistor measuring current was such that its temperature was not raised more than 1°C, to avoid the sensitivity to the air speed.

From these profiles it is clear that the effect of T_w/T_c and dT_w/dx was confined to a thin layer close to the 'origin'. The outer part of the profiles was more affected by the velocity field. These figures were also the basis upon which the divisions described in § III.3.1 were chosen.

A unique profile $\tilde{\Theta}\left(\frac{y}{\Delta_2}\right)$ was found for each plate of (4) and (6). This is not valid in the present work, since both temperature and pressure gradients were applied. However, a comparison is made on Fig. III.3.22 between the present results, at no pressure or wall-temperature gradients, and the results of Doenecke(4) for his plate with two-dimensional square ribs.

Nunner has previously attempted to relate the temperature profiles with surface roughness. He plotted $\frac{U}{U_e}(\bar{\Theta})$ and compared the curves obtained with those given by H. Reichardt for different values of P_r . He thus

Fig. III. 3.14_Velocity and temperature profiles.

Fig. III. 3.15_Velocity and temperature profiles.

Fig. III. 3.17_Velocity and temperature profiles.

Fig. III. 3.18 _ Velocity and temperature profiles.

Fig.III.3.19_Velocity and temperature profiles.

Fig. III. 3. 20_Velocity and temperature profiles.

• ~

Fig. III. 3.21_Velocity and temperature profiles.

obtained "enlarged or equivalent" values of Pr.

For I_B , the value of $(P_r)_{eq}$ was 3 approximately. This approaches Nummer's value for his pipe with $k_s = 3.4$ mm. The value of $(P_r)_{eq}$ differed from that when boundary layers with pressure and/or wall-temperature gradients were considered.

Deissler (29) introduced the temperature profiles of the form $\theta^{\dagger} \left(= \overline{\theta} \frac{C_{\ell}}{2S_{\ell}} \cdot \frac{U_{\ell}}{U_{\ell}}\right) = f\left[\frac{y}{-\frac{y}{\gamma}}\right]_{P_{r}}$, which were derived assuming the law of the wall as velocity profile. This might be applicable for a smooth surface, where the velocity profile is universal. It is not necessarily valid for a rough surface, where the location of the semi-logarithmic line depends on $\mathcal{R}_{k} \left(= \frac{k_{s} u_{\ell}}{\sqrt{\gamma}}\right)$.

Instead, we propose a temperature-defect presentation. This would be of the form;

 $-\theta_{J}^{+} = \theta^{+} - \theta_{e}^{+} \equiv F\left[\frac{y u_{z}}{\Delta_{1} U_{e}}\right]$ where $\theta_{e}^{+} = \frac{C_{L}}{2S_{L}} \frac{U_{e}}{u_{z}}$

This was applied to some of the obtained profiles, covering a range of different pressure gradients, wall temperatures and wall temperature gradients, as shown on Fig.III.3.23. On Fig. III.3.24 two profiles from (4) for rough walls, and one from (3) for a smooth wall, with no pressure or wall-temperature gradients were shown.

Fig. III. 3.23_Temperature-defect profiles.

Fig. III. 3. 24 _ Temperature-defect profiles .

These figures show that there exists a layer close to the wall, and outside the viscous sublayer*, in which the relation takes the form,

 $-\theta_d^+ = 5.4 \log \frac{y_{u_z}}{\Delta_1 U_e} + A_h \cdot$

Unlike the velocity-defect, the profiles seem to join the $\mathcal{J}\mu_{z}/\Delta_{\mu}U_{e}$ -axis asymptotically in almost the same region, for all the examined profiles. This was not so with the velocity-defect presentation.

It is also interesting to note that, the slope $d\theta_d^+/dg(\frac{y_{u_z}}{\Delta_1 U_e})$ was not always greater in the wall layer than in the 'defect-layer' as it was the case with their velocity profiles.

* This need not be exactly the same as the velocity sublayer. The empirically determined constant of 5.4 could be a function of \Pr_{v} this would be suggested to take the form; $\frac{1}{\kappa_{h}} = \left(\Pr\right)^{n} / \kappa$ with $\kappa_{h} \simeq 0.425$ (for the present experiments) $n \simeq 1/7$.

The constant of integration A_h was found to be a consistent function of $2S_k/C_{\beta}$ °, as shown in Fig. III.3.25.

The suggested method, undoubtedly needs further verification and discussion, before confirming its validity and limitations.

* Note that the area enclosed by the temperaturedefect profile and the two axes would become $C_f/2S_t$, if we can assume that $S/S_e \simeq 1$.

III.4 - Turbulent Quantities:

The present section which deals with fluctuation measurements is divided into two parts, that dealing with the longitudinal velocity fluctuations, and that concerning Reynolds stress measurements. The latter also includes the study of the effect of surface change.

III.4.1 - Longitudinal Fluctuations:

An example of measurements obtained for longitudinal velocity fluctuations is shown on Fig. III.4.1. They are selected to include boundary layers under the effect of negative, zero or positive pressure gradients in the absence of surface heating. The curve of longitudinal fluctuations for a smooth surface as measured by Klebanoff (1) is also shown. One of the measurements in the presence of surface heating is included on the same figure.

The figure reveals, as expected, that the turbulent fluctuations for the surface examined are higher than those of the smooth surface*.

*Surface roughness was referred to sometimes in literature as "turbulence generator".

Nore important is the observation of expansion of the 'peak' of longitudinal fluctuations usually occurring at, or very near, the origin of the velocity profiles of smooth surfaces. This may then suggest, with the fact that the origin of the velocity profile behind a roughness element is below the crest (inside the cavities in the present study), that the fluctuations over the crest of the roughness element, which are at least as high as those over a smooth surface, are spread from the downstream edge of the roughness element to the flow behind it.

It is worthwhile noting here that a core diameter of 0.0002 in. was used for few experiments towards the end of this work, because of the 'sometimes incurable' instability of the DISA bridges with 0.0001 in core Wollaston wires. Although they worked quite satisfactorily for mean values, the fluctuations obtained with such wire diameter (a length of 1 mm approximately) did not show this peak feature near the origin. of the velocity profiles. They almost agreed with the other measurements in the outer part of the boundary layer. This may be due to the frequency of fluctuations near the origin at its highest. The greater the diameter of the wire, the less the cut-off frequency may be.

Another observation may be made from the above mentioned figure, that velocity fluctuations tend to vanish near, and at, the chosen origin of the velocity profiles. This is a further support to the choice itself.

In the range of the presently applied pressure gradients, their effect on $\overline{u'}^{2}$ is found to be small.

Finally, the measurements obtained when surface heating was applied show higher values of $\overline{u'^2}$ in the neighbourhood of the origin. This is due to the existence of temperature fluctuations, and the inevitable sensitivity of the wires to them. Generally speaking, the values tend to approach those of the unheated surface away from the wall, where the temperature becomes near its value in the free stream. Probably the temperature fluctuations then diminish.

Unfortunately, the present experiments have not discovered the magnitude of the temperature fluctuations, or their effect on and correlation with those of the velocity. This is mainly due to the necessary electronic apparatus, which is simple in principle, yet relatively elaborate to construct.

III.4.2 - Shear-stress measurements:

Some shear-stress measurements were obtained where no surface heating was applied, by the use of the X-wire probes described earlier in \oint II.4. The results thus obtained for I_A and II_A are shown on Fig. III.42. and III.4.3 respectively. The accuracy of these measurements was not always completely satisfactory, as is usual. They reveal interesting features of the boundary layers on a rough surface.

The values of shear stresses on the presently examined surface were higher than those of the smooth surface measured earlier by Klebanoff (1), as already anticipated.

The measurements could not be carried out very deeply in the cavity, because of the size of probe relative to the depth of cavity. The shear stress is expected to fall rapidly towards the origin of the velocity profile, as was the case with the longitudinal fluctuations.

Further, the peak shown by the shear-stress measurements conforms and coincides in location with that shown on the longitudinal fluctuations, but is sharper than the peak of $\overline{\mu'^2}$.

This sharp peak is thought to represent the roughness dominated region of the boundary layer, the rest of measurements being similar but slightly higher than those of the smooth surface.

It may be considered also that the shear stresses on the crests of the roughness elements do not differ greatly from those of a smooth surface, with an abrupt increase behind the roughness elements due to their form drag. The momentum differences computed to determine C_f may then represent the mean value of both cases averaged on the basis of the ratio of areas concerned.

If we take a mean value of $\frac{U_{\tau}}{U_{e}}$ as about 0.06 for I_{A} and the peak value of $\left(\frac{U_{e}}{u'v'}/U_{e}^{2}\right)$ behind the roughness element to be 0.6 x 10⁻², and the area occupied by the cavities to be $\frac{4}{9}$ and that of the crests $\frac{5}{9}$ of the total area, we then propose that,

 $\frac{4}{9} \times 0.6 \times 10^{-2} + \frac{5}{9} C_c = 0.36 \times 10^{-2}$

where: C_c is the shear-stress at the crest. This yields, $C_c \simeq 0.167 \times 10^{-2}$.

as compared to 0.15×10^{-2} of the smooth surface.

From the measurements obtained we have chosen the

calculation of $\mathcal{T}/\mathcal{T}_{w}$ profiles, for $\mathcal{T}=0$ and $\mathcal{T}=0.557$ to be compared with the profiles of equilibrium boundary layers on smooth surfaces as given by Mellor and Gibson (21). This is shown on Fig. III.4.4 and III.4.5*.

The values of $\sqrt{{u'}^2}/U_e$ as measured by the single-wire probes are compared with those calculated from the measurements of the X-wire probes on Fig.III.4.6 and III.4.7. This suggests the possible accuracy.

It can then be confirmed that boundary layers on rough surfaces behave generally like those on smooth surfaces, except in the roughness dominated region, as was suggested earlier by Nikuradse.

In a recent publication, Bradshaw, Ferriss and Atwell (38) derived a characteristic method for the calculation layer of boundary/development. It was based on the turbulent energy equation, the momentum and the continuity equation. These equations were found to be hyperbolic, with the physical significance that the effect of a small disturbance at a point P is confined to the downstream side of the characteristics through P. "The variables U and $\overline{u'v'}$ could be considered separately from V, and the physical

*The molecular stresses were not included, as $\left(\left(\mu \frac{\partial u}{\partial y} \right) / \tau_w \right)_{max}$ measured 0.05 and 0.04 respectively.

Fig. 111.4.5_ Shear stress profile .

situation represented by the finite angle between the characteristics is the finite angle of spread of contaminant diffusing from a point source". It was also noted that for homogeneous turbulence, the standard deviation of such a contaminant wake is $\left[\sqrt{y'^2}/U\right] \cdot (x-x_o)$ for small values of $(\chi - \chi_o)$.

If we consider the spread of fluctuations above the crests, discussed earlier in \oint III.4.1, the presently found width of peak behind the roughness elements agrees qualitatively with the local values of $(\sqrt{v^2}/U)(x-x_0)$. The suggested method was applied to smooth surfaces, and agreed satisfactorily with experimental results.

The application of the characteristics method could be extended to rough surfaces, if the functions introduced in the analysis, a,, L and G defined by:

$a_1 = \tau / s q'^2$,	
$L = L'\left(\frac{y}{\delta}\right) = \left(\frac{\gamma}{\delta}\right)^{3/2} / \nu (\frac{1}{\delta})^{3/2} / \nu$	$\left(\frac{i}{2}\right)^{2}$
$G = G\left(\frac{y}{s}\right) = \left[\frac{\overline{p'v'}}{s} + \frac{1}{2}\overline{q'}\right]$	12 v1]/(12 mar) 2 7
$\frac{\tau}{q'^{2}} = -\frac{q}{w'^{2}} + \frac{1}{w'^{2}} + \frac{1}{w'^{2}} + \frac{1}{w'^{2}}$	

with,

are modified to suit the particular case of a rough surface.

The modification of 'G' may prove to be unnecessary, but a, which was taken constant equal to 0.15 may be slightly reduced. It is most important that the function $L\left(\frac{y}{5}\right)$ describing the dissipation length parameter should be superimposed by a "peak function", spread over the roughness-dominated region ($0 < \frac{y}{5} \leq 0.08$). The maximum value of L is thought to be unconditioned by the local value of $\partial U/\partial \gamma$ only.

It is understood that such an extension of the method to rough surfaces is intended. It is recommended that more measurements of the turbulent quantities should be carried out in the roughness dominated-region and above the crests.

°depending on w'^2 which was not measured in the present study.

III.4.3 - Effect of abrupt change in surface roughness:

The effect of abrupt change in surface conditions was studied earlier by Jacobs (1) in channel flow, and by Townsend (31) for large scale (meteorological) boundary layers.

In the present experiments, the surface roughness was eliminated temporarily by covering part of the plate with self-adhesive polythene sheet.

Some measurements were taken in I_A and II_A for boundary layers undergoing the change from smooth to rough surface or vice versa.

The measurements obtained are shown on Fig.III.4.8 to III.4.11.

The effect of surface change is seen on these figures to penetrate in the boundary layer from the surface outwards, until eventually, after a considerable distance from the origin of surface change, the variation of the shear-stress across the boundary layer becomes fully representative of the local surface conditions.

This agrees with the behaviour of results obtained by both Jacobs and Townsend. The effect of surface change would not, in general, depend considerably upon the outside flow conditions, as it can be seen from Fig.III.4.12. The presently applied pressure gradients had little effect on the

Fig. 111.4.8_ Effect of abrupt change in surface roughness .

œ

penetration of the effect of surface change in the boundary layer, in the range of this study. In his paper, Townsend (31) explained that a parcel of fluid entering a region of changed rate of strain cannot experience noticeable change in turbulent energy in less time than its turbulent energy $\left(\simeq 3 u_{\chi}^{2}\right)$ devided by the rate of energy dissipation $\left(=\frac{u_{\chi}^{2}}{\kappa_{\chi}}\right)$. In that time, the parcel would have moved a distance along χ equal to the time multiplied by $U(\chi)$.

He also explained that the same argument applies to fluid parcels at distances which are large, compared with $\frac{3k y}{u_{\tau}} \cdot U(y)$ which acquire Reynolds stresses according to local rates of shear.

Townsend assumed a velocity profile of the form,

 $U = \frac{u_T}{k} \log \frac{y}{k_0}$

where k_o is the local roughness height. This predicted smaller values of χ than the presently found.

Considering the range covered in the present study, it was thought suitable to assume, for a rough surface, that the velocity profile takes the form,

 $\frac{U}{u_{z}} = 5.75 \log \frac{y}{k_{s}} + 8.5 ,$

where k_S is the equivalent sand-roughness height which was found half the depth of cavities approximately. This would then result,

$$\begin{bmatrix} x_{\circ} \\ k \end{bmatrix}_{\text{Rough}}^{\text{Smooth}} = 1.2 \frac{y_{\circ}}{k} \begin{bmatrix} 5.75 \log \frac{2y_{\circ}}{k} + 8.5 \end{bmatrix}.$$

Similarly, for a smooth surface, the law of the wall seems an obvious choice, and,

$$\begin{bmatrix} \frac{\chi_o}{k} \end{bmatrix}_{\text{smooth}}^{\text{Rough}} = 1.2 \frac{y_o}{k} \begin{bmatrix} 5.6 \log \frac{y_o u_T}{\gamma} + 5.1 \end{bmatrix}$$

The two relations are shown on Fig. III.4.12, and suggest reasonable agreement with the results obtained.

It might be noted that the analytical curve $\frac{y_o}{k} \left(\frac{x_o}{k}\right)$ for the case "Smooth to Rough" show a deviation at $\frac{y_o}{k} \leq 3$. This is only caused by the deviation of the velocity profiles themselves from the linear semi-logarithmic relation suggested above. The relation "Rough to Smooth" was calculated for a single value of $\frac{U_c}{V}$ chosen to be $2 \ge 10^4$, which corresponds to a value of $C_f \approx 2 \ge 10^{-3}$.

The present modification is limited by the validity of the suggested forms of velocity profiles, and can only be applied near the origin of surface change, as it is the case here.

III.5 - Comparison between Roughness Geometries:

The selection of a particular type of roughness to suit or to avoid a certain function, depends on its friction and heat characteristics. It is then thought that a scale of comparison needs to be set up for both qualities of momentum and heat transfer of a rough surface.

The obvious momentum scale is thought to be the equivalent height of sand roughness, while the Nusselt number of a smooth surface is chosen for the heat transfer.

The essential difference between a rough and a smooth surface is the existance of eddies behind the roughness elements as described before. It is then suitable to assume that the dynamic and thermal characteristics of rough surfaces depend on these "horseshoe eddies" (24). They are supplied in energy by the outside flow and transfer heat from the surface.

The size of an eddy depends largely on the space behind the roughness elements. This in turn depends on the spacing and distribution of the roughness elements, which can be represented non-dimensionally as the ratio of pitch to height of the roughness elements D/k.

There should exist an arrangement corresponding to the formation of eddies, which could dissipate a maximum energy, as with isotropic turbulence (32). This arrangement is then expected to possessthe highest ratio of k/k_s . It is also expected to transfer heat best from the surface, thus having the highest value of Nu/Nu_o.

The above discussion is supported by Wieghardt's experiments, (33) and (1), who found that the drag of a rough plate has a peak value at a certain roughness arrangement. His roughness elements were circular cavities. However, this is contrary to what was concluded by Ambrose (15), when he experimented on circular cavities and short cylinders in pipes. Ambrose claimed that the resistance increase depends upon the ratio of area occupied by the cavities to the total area, and not related to their size or distribution.

The relation $\frac{D}{k}\left(\frac{k}{k_{s}}\right)$ is represented for some types of roughness geometries in Fig.III.5.1*, the data for which was taken from (1), (2), (16) and (25).

It can be seen that, at least for the geometries with enough available data, each roughness geometry has a

*A similar representation was shown in a departmental seminar at the Imperial College, given by the author in March 1965.

minimum value of k/kg corresponding to the "roughest" arrangement.

The results of Schlichting for spheres, cones and spherical segments were, very similar, grouped on one curve. Bettermann's results for transverse ribs seem to approach those of Schlichting for short angles.

The present experiments show "smoother" conditions than those of two-dimensional square ribs. This indicates a noticeable effect of three-dimensionality of the roughness geometry, already seen by Fig. III.2.26.

Bettermann (16) has arranged a similar group of information on a set of curves with $\frac{\Delta U}{u_{\tau}}$ and $\frac{S_{\tau}}{S}$, at a particular value of $\mathcal{R}_{k}\left(\equiv\frac{k}{\nu}\frac{u_{\tau}}{\nu}\right)$ following a presentation suggested by Stevenson for wire screens (4).

The same conclusions could obviously be reached by either method. The present one was retained for its clarity.

We could trace a locus of the furthest conditions from the origin of Fig. III.5.1 which satisfy the fully rough regime, whenever enough data is collected. The

• Sr being the ratio of area occupied by the roughness elements.

hydraulically smooth surface is represented by $k/k_s \rightarrow \infty$ or $D/k \rightarrow \infty$.

Richards (34) found in a recent study of roughness induced transition of boundary layers on smooth surfaces in hypersonic flow, that the type of wake generated by the roughness elements was more effective a parameter, than only the height of the elements.

transition This was clear after he compared/induced on one hand by a tripping wire, and, on the other, those induced by placing some small thin rectangular triangles normal to the surface at incidence to the outside flow; or a line of small spheres.

This may be an indication that the discussion for subsonic flow, may also be valid for hypersonic speeds, since the basic form exists.

The application to low supersonic speeds may prove to be more complicated. The boundary layer then lacks the simplification of the presence of a considerably smaller mass flow layer as it is the case in hypersonic flow.

The use of rough surfaces, however, for heat exchangers and similar applications may require the increased heat transfer qualities of the surface, with a reasonable increment of the skin-friction associated with it. It then seemed relevant to study the effect of roughness geometry, especially spacing, on the heat transfer characteristics. The values of Nu/Nuo obtained by Nunner for rough pipes (rings of semi-circular cross-section 4 mm higher than the surface of the pipe) were plotted against D/k, as shown in Fig.III.5.2.

It is then evident that the heat transfer is maximum at the same value of D/k for which k/k_s is minimum (see Fig.III.5.1).

Koch (26) has also represented the values Nu/Nuo against \overline{m} for measurements of rough-pipe flow with D/k as parameter (\overline{m} is the square of the ratio of the inside diameter of the pipe measured from the crest of roughness elements to that measured from the troughs). Koch found that a maximum value of Nu/Nuo exists for each value of D/k at $\overline{m} \simeq 0.3$.

The values of D/k covered on the presentation of Koch ranged from 10 to 200, with Nu/Nuo, for a certain value of \overline{m} , decreasing as D/k increases. As he had represented earlier the resistance coefficients as a function of D/k, for different values of \overline{m} as parameter, it was seen that the resistance coefficients pass by a maximum at D/k \simeq 10, similar to Nunner's experiments. It is then reasonable to

Fig. III.5.2_Effect of roughness-spacing on heat transfer .

assume that, for the values of D/k less than 10, the curves of Nu/Nuo are lower than that for D/k \simeq 10.

This means that there exists a certain roughness arrangement for which Nu/Nuo is maximum-maximum. This would be, in Kock's case, the roughness satisfying both $D/k \simeq 10$ and $\overline{m} \simeq 0.3^{\circ}$. The friction coefficient is also expected to be at utmost height.

Nunner's experiments were plotted in the form $(Nu/Nu_0) [k/k_5]$ on Fig. III.5.3. It is then clear that the increase in friction is more important than the increase in heat transfer.

* For flat plates the two conditions would be a value of D/k at a certain height k.

Fig. III.5.3 _ Comparison between the variation of effective roughness and the increase in heat transfer .

96 |

IV - CONCLUSIONS

IV.1 - Concluding Remarks:

The following conclusions are deduced from the present work, which was carried out to examine the behaviour of boundary layers on a surface with square cavities as roughness elements, in the presence of pressure gradient and surfacing heating.

- The velocity profiles behind roughness elements, whether cavities of protrusions, take similar forms, and the origin of the profiles is situated below the crest of the protrusion or the top of cavity,
- 2. The effect of surface heating on the skin-friction
 coefficients depends on the pressure gradient present,
 whether negative, zero or positive,
- 3. The form of the velocity profile which had the greatest application in the experiments of the present work, was the velocity-defect profile, with G as parameter,
- 4. The relation G (*T*) for a rough surface need not be similar to that of a smooth surface. This is due to the velocity profile shape factor Hu being higher than that of a smooth surface. Generally, higher values of G are found,

- 5. The effect of pressure gradients applied in the present experiment on the heat-transfer coefficients were very small, especially when compared with their effect on the skin-friction coefficients. The effect of surface temperature gradient was more important.
- 6. The form of the temperature profile which had the greatest application in the experiments of the present work, was the temperature-defects profile, with $2 S_t / C_c$ as parameter.
- 7. The peak of longitudinal fluctuations found in the viscous sublayer over smooth surfaces is smaller in width than that found with the rough surface tested,
- 8. In the range of the present experiments, the effect of pressure gradients on the longitudinal fluctuations was very small, especially near the wall.
- 9. $7/7_{\rm W}$ as measured across the boundary layer over the present surface was similar to that of a smooth surface, except in the vicinity of the origin. Here the values were considerably higher than those of the smooth surface,
- 10. The penetration of the effect of abrupt change in surface conditions spreads from the surface, with small effect from the presently applied pressure gradients,

- 11. It seems by comparison of the present results with those obtained for two-dimensional roughness geometries, that the three-dimensionality of the roughness elements reduces the friction and, perhaps, increases the heat coefficients,
- 12. There exists a certain roughness arrangement for each goentry which renders the maximum skin-friction and heat-transfer coefficients.

IV. 2 - Suggestions for Future Work:

A few suggestions will now be given for the extension of the work. They include the following fields;

- Spectrum analysis of the fluctuating velocity components for various roughness geometries under different conditions of pressure gradients,
- 2. The behaviour of G (π) relationship, with values of π higher than the presently achieved,
- 3. The development and verification of the proposed temperature-defect presentation,
- 4. The temperature fluctuation measurement and their correlation with those of the velocity,
- 5. The development of a characteristics method for the prediction of heat transfer,
- 6. The development of an accurate measuring technique with the characteristics of drift-free and robustness.

V - REFERENCES

1. H. SCHLICHTING:	"Boundary layer theory", Trans. by J. Kestin, McGraw-Hill (1960).
2. F.R. HAMA:	"Boundary layer characteristics for smooth and rough surfaces". Soc. of Naval Arch. and Marine Eng.Trans Vol. 62 p.333 (1954).
3. G. BRUNELLO:	"Contribution à l'étude de la convection forcée de la chaleur sur des parois rugueuses", Pub. Sc. et Tech. du Min. de l'Air (France) No.332 (1957).
4. J. DOENECKE:	"Contribution à l'étude de la convection forcée turbulente le long de plaques rugueuses", Dr. Ing. Thesis, Paris Univ. (1963).
5. A.E. PERRY and P.N. JOUBERT	"Rough-wall boundary layers in adverse pressure gradients", J.F.M Vol.17 part 2 (Oct 1963).
6. D.Bettermann: F. BRUN, and P. GOUGAT	"Distribution des vitesses et des températures dans la couche limite des plaques rugueuses", Compte Rendue Acad. des Sc. Paris - Vol. 258-4 p 1151 (Jan. 1964).
7. DISA	"Constant temperature anemometer type 55 A Ol description and operating instructions manual".
8。 R.D. COOPER and M.D. TULIN	"Turbulence measurements with hot-wire anemometer", AGARDograph 12.
9. SUNG-CHING LIN:	"Measurement of flow characteristics by the hot film technique", Ph.D.Thesis, Iowa Univ. (1955).
10. DISA	"Random signal indicator and correlator type 55 A O6 description and operating instructions manual".
11. CAPE IND. and ASBESTOS PRODUCTS LTD.	"Caposite", Catalogue No. CAC/2/3/62.

- 12. C.A.G. WEBSTER : "An Experimental study of turbulence in a density stratified shear flow", Chapter III, Ph.D. Thesis, Manchester Univ. (1962). 13. M.I.I.RASHED: "Two dimensional boundary layers with heat and mass transfer", Copyright 1963 by the author. 14. P.BRADSHAW: "Turbulence measurements with hot wire anemometers", Notes on App. Sci. and No.33 (1963).
- The effect of character of surface 15. H.H. AMBROSE: roughness on velocity distribution and boundary resistance", Tennessee Univ. Rep. - Contract Nonr 811/03, Office of Nav. Res. USA (1953).
- "Contribution à l'étude de la couche 16. D.BETTERMANN: limite turbulente le long de plaques rugueuses", Rep. No. 65-6 C.N.R.S. Meudon (June 1965).
 - "The growth and separation of a turbulent boundary layer", Ph.D. Thesis, Cambridge **Univ**。(1949)。

"Turbulent boundary layers in adverse pressure gradients", Jour. of Aero Sci. - Vol. 21 no 2 (1954).

"Resultats sur la couche limite turbulente aux grandes vitesses", Pub. O.N.E.R.A. No. 102 (1961).

"Incompressible turbulent boundary layers", Coll.Inter. du C.N.R.S. No. 108, Mech. de la turbulence, Marseille (1961).

"Equilibrium turbulent boundary layers", J.F.M. - Vol. 24 part 2 (Feb 1966).

"The effect of pressure gradients on turbulent flow near a smooth wall", J.F.M. - Vol. 24 part 2 (Feb 1966).

- R.F.JOHNSON

- 17. C.T.HEWSON:
- 18. F.H. CLAUSER:
- 19. R.MICHEL:
- 20. J.C. ROTTA:
- 21. G.L. MELLOR and D.M.GIBSON
- 22. G.L.MELLOR

23. J.F.	NASH:	"A note on skin-friction laws for incompressible turbulent boundary layers", N.P.L. Aero Rep. 1135 (1964).
24. P.R. an W.R.	owen d Thomson	"Heat transfer across rough surfaces", J.F.M Vol.15 part 3 (March 1963).
25. W. N	UNNER :	"Wärmeübergang und Druckabfall in Rauhen Rohren", VDI Forschungsheft 455, Ausgabe B, Band 22 (1965).
26. R.KO	CH :	"Druckverlust und Wärmeübergeng beiverwirbelter Strömung", VDI Forschung- sheft 469, Ausgabe B, Band 24 (1958).
27. J.F.	NASH :	"Turbulent boundary layer behaviour and the auxiliary equation", N.P.L. Aero Rep. 1137 (1965).
28. J. K an P.D.	ESTIN : d RICHARDSON	"Heat transfer across turbulent incompressible boundary layers" , Int. J.H.M. Transfer - Vol. 6 p.147 (1963).
29. R.G.	DEISSLER :	"Analysis of turbulent heat transfer, masstransfer, and friction in smooth tubes at high Prandtl and Schmidt numbers, NACA TN 3145 (1954).
30. A.I.	El-GAWHARY:	"Turbulent flow past rough walls and the movement of grains on stream beds", Ph.D. Thesis, London Univ. (1963).
31. A.A .	Townsend:	"Self-preserving flow inside a turbulent boundary layer", J.F.M Vol 22 part 4 (1965).
32. J.O.	HINZE :	"Turbulence - An introduction to its mechanism and theory", McGraw-Hill (1959).
33. K. W	IEGHARDT :	"Erhöhung des Turbulenten Reibungswiderstandes durch Ober- flächenströrungen", Forschungshafte für Schiffstechnik 1, p 65-81 (1953).
34. B.E.	RICHARDS :	Private communication (1965).

t,

35°	E.A. BRUN :	"Introduction à l'étude de la couche limite". Gauthier-Villars (1955).
36.	P.BRADSHAW : and D.H. FERRISS	"The response of a retarded equilibrium turbulent boundary layer to the sudden removal of pressure gradient", N.P.L. Aero Rep. 1145 (1965).
37.	F. BRADSHAW :	"Inactive motion and pressure fluctuations in turbulent boundary layers", N.P.L. Aero Re . 1172 (1965).
38 。	P.BRADSHAW : D.H.FERRIS, and N.P.ATWELL	"Calculation of boundary layer develop= ment using the turbulent energy equation", N.P.L. Aero Rep. 1182 (1966).
3 9.	P. BRADSHAW :	"The turbulence structure of equilibrium boundary layers", N.P.L. Aero Rep.1184 (1966).
40 .	D.COLES :	"The law of the wake in turbulent boundary layer", J.F.M Vol. 1 part 2 (1956).
41.0	M.W.RUBESIN :	"The effect of an arbitrary surface - temperature variation along a flat plate on the convective heat transfer in an incompressible turbulent boundary layer", NACA TN 2345 (1951).
40	D B CONTITUC .	NU.set transfor to a transitiont stream from

42. D.B.SPALDING : "Heat transfer to a turbulent stream from a surface with a stepwise discontinuity in wall temperature", Int.Dev. in Heat Transfer Part II p 439, ASME (1961).

43. D.S.JOHNSON: "Velocity and temperature fluctuation measurement in a turbulent boundary layer downstream of a stepwise discontinuity in wall temperature", J.App. Mech. - Vol. 26 pp 325-336 (1959).

44. E.R.G.ECKERT, "Simplified equations for calculating J.P.HARTNETT, local and total heat flux to nonisotherand mal surfaces", J. Aero. Sci. - Vol. 24 R.BIRKEBAK pp 549-551 (1957).

45. W.J.McCROSKMY: "Effect of a stepwise distribution of heat transfer on the supersonic flow over a flat plate", TCEA NT 13 (1963). LIST OF FIGURES

Fig.			Page	
II.1.1	6110	Wind Tunnel layout.	20	
II.2 . 1	-	Detail of the roughness.	22	
II.2.2	639	Plate mounting in the wind tunn	el. 23	
II.2.3	(32)	Detail of the plate's edge supp	ort. 24	
II.2.4	600	Detail of bleed for tunnel -wal layer.	l boundary 25	
II.2.5	æ	Heating elements mounted on the	plate. 27	
II.2.6		Sketch of hot-junction for a typ thermocouple.	p ical 28	
II.2.7		Thermocouple calibration curve.	29	
II.2.8		Box for heating adjustment.	31	
II.2.9	80	Part of the inside elements of adjustment box.	the 32	
II.2 . 10	8	Electric circuit diagram for a heater.	typical 33	
II.3.1	8	Probe for velocity and temperate profiles.	ure 35	
II.3.2	-	Measurement of velocity and temp	perature. 37	
II.4.1	-	Shear-stress probe.	40	
II.6.1	80	Device for probe displacement.	43	
III.1.1	a 0	Pressure distribution - Case I_A	49	
III.1.2	8	" " - Case I _B	50	
III.1.3	6 20	" " - Case I _C	51	
I II .1.4	-	" " - Case II	52	
III.1.5	a e	" " - Case II	в 53	
III.1.6	æ	" " - Case II	54	
III.1.7	80	Wall-temperature distribution -	Case I _B 55	
III.1.8	-	tt 11 11 as	Case I _C 55	
III.1.9	-	17 fl 11 a	Case II _B 56	
LLL.1.10	¢	11 H II 🕳	Case II _C 56	

						206
Fig.			. x			Page
III.2.1	-	Velocity	profil	Les behind	roughness	
		elemente				59
117°5°5	63	Choice c	of orig:	in for velo	city profiles.	61
111.2.3	-	Boundary	layer	thicknesse	es - Case I _A .	63
III.2.4	-	Ħ	10	· 11	- Case I _{B°}	64
III.2.5	-	11	88	* 11	- Case I _B	65
III.2.6	-	tı	11	11	- Case I _C	66
III.2.7	-	11	- 11	11	- Case I _C	67
III.2.8	680	18	11	11	- Case II _A	68
III.2 . 9		EI	te	11	- Case II _B	69
III.2.10	-	11	11	11	- Case II _B	70
III°5°11	-	11	Ħ	88	- Case II _C	71
III.2.12		tt	Ħ	. 11	- Case II _C	72
III.2.13	-	Skin fri	ction	coefficier	nts- Case I	77
III.2.14	dan b	11	11	11	- Case I _B	78
III.2.15	600	11	n .	tt	- Case I	79
III.2 . 16	-	et	t1	**	- Case IIA	80
III.2.17	~	81	11 <u>11</u>	ji	- Case II _B	81
III.2.18		tt	tt	11	- Case II	82
III.2.19	æ	Relation	ship be	tween Hu s	und N.	88
III.2.20	a ac	Veolcity	profil	.es - Case	IA	90
III.2.21		11	11	- Case	I	91
III.2.22	ágan (Ħ	**	- Case	Ia	92
III.2.23		88	ŧŧ	- Case	II,	93
III.2.24	-	11	11	- Case	II _R	94
III.2.25		11	**	- Case	IIa	95
III.2.26		Effect o	f rough	ness on th	e law of the wall	96
III.2.27	-	Velocity	- defe	ct profile	8.	98
III.2.28	-	· 11	tt	- 11		99
III.2.29	85	tt	11	11		100
III.2.30	æ	tt	11	16		101
III.2.31	a	tt	11	11		102

<u>Fig.</u> Page III.2.32 103 Velocity - defect profiles · # III.2.33 104 œ Variation of G, T and H along X - Case I_A 106 III.2.34 Variation of G, TT, H and Hu along X ~ III.2.35 Case I_{R°} 107 Variation of G, \mathbb{T} , H and Hu along X -III.2.36 Case I_C. 108 Variation of G, π and H along X - Case II_A 109 III.2.37 Variation of G, \mathcal{T} , H and Hu along X -III.2.38 Case II_{B°} 110 Variation of G, T, H and Hu along X -III。2。39 Case II_C 111 Variation of free stream velocity along **III**.2.40 X - Case II_A. 112 G (π) - Case I_A , I_B and I_{C^o} 113 III.2.41 114 **III**.2.42 G (π) - Case II_A, II_B and II_C. Comparison between obtained results and **III**.2.43 G (T) for smooth surfaces. 115 **III**.2.44 Constant appearing in the expression for œ the velocity defect profile as function 121 of G. **III**。2。45 Constant appearing in the expression for the velocity - defect profile as function of \mathcal{T} . 123 III.2.46 Comparison between skin-frictions in the present experiments and those for smooth 124 surfaces. III.3.1 Temperature profiles behind roughness œ 127 elements. III.3.2 Thermal boundary layer thicknesses - Case IR 130 -Ħ Ħ 11 21 \Rightarrow Case I_c 131 III。3。3 -Ħ n Ħ 11 -Case II_B 132 **III.3.4** Ħ 22 22 -Case II_C 133 **III.3.5** -Heat transfer coefficients - Case IR 135 **III.**3.6 -- Case I_C # 11 11 136 III.3.7 ~ - Case II_R 137 Ħ 11 11 **III.3.8** Ħ - Case II 138 11 11 III.3.9

			208
Fig.			Page
III.3.10	Cip	Wall Heat - input for Cases I _C and II _C .	141
III.3.11		Nu(R_) for the cases of isothermal heating.	143
III.3.12	80	Nu(R) for the cases of step heating.	144
III.3.13	-	Heat transfer of roughness dominated region.	147
III.3.14	E D	Velocity and temperature profiles.	150
III.3.15	-	7£ 77 77 57	151
III.3.16	. 🖚	T2 T7 T3 T7	152
III.3.17	680	P1 11 17 17	153
III.3.18	G 20	19 3E 19 SE	154
III.3.19	. es	12 77 11 FF	155
III.3.20	6200	19 18 FI FI	156
III.3.21			157
III.3.22	-	Temperature profiles, $\overline{\partial}(\mathcal{Y}/\Delta_2)$.	158
III.3.23	-	Temperature - defect profiles.	160
III.3.24	œ	19 H H	161
III.3. 2 5	(23)	Constant appearing in the relation for the temperature-defect profiles as function of $2S_t/C_f$	164
III.4.1	. 610	Longitudinal component of fluctuations.	166
III.4.2	8	Shear stress profiles - Case I _A	170
III。4。3	-	" " " - Case II _A	171
III。4。4	æ	Shear stress profile.	174
III。4。5	-	f1 11 T1	175
III.4 . 6	Asib	Comparison between single and X-wire results.	176
III.4.7	GEO	Comparison between single and X-wire results.	177
III。4 . 8		Effect of abrupt change in surface roughness.	181
III.4.9	-	Effect of abrupt change in surface roughness.	182
III.4.10		Effect of abrupt change in surface roughness.	183

			207
Fig.			Page
III. 4. 11	*	Effect of abrupt change in surface roughness.	184
III.4 . 12		Penetration of the effect of abrupt change in surface roughness.	185
III.5.1	- 444	Comparison between different roughness geometries.	190
III.5 . 2	-	Effect of roughness spacing on heat transfer	: 194
III.5.3	-	Comparison between the variation of effective roughness and the increase in heat transfer.	196.

.

APPENDIX I

I.1 - CASE IA - Favourable Pressure Gradient, with No Surface Heating

X	5,	δz	ნ ₃
2.5 4.75 7.0 9.25 11.5 13.75 16.0 18.25 20.5 22.75 25.0 27.25 29.5 31.75 34.0	0.0735 0.0915 0.104 0.1237 0.1341 0.1517 0.1587 0.165 0.185 0.185 0.1851 0.2003 0.1931 0.1931 0.1945 0.2056 0.2025	0.044 0.0543 0.0512 0.0713 0.079 0.09 0.093 0.0974 0.1098 0.1141 0.1205 0.1209 0.124 0.1312 0.1312 0.132	0.075 0.0908 0.102 0.1183 0.1316 0.1494 0.1546 0.1621 0.183 0.1915 0.2014 0.2048 0.2106 0.2236 0.2269

· All values in Appendix I are in inches.

ett

1.5	-	CASE	ľ,	ø	Favourable	Pressure	Gradione,	with	isothermal	Heating
			D		•					
- manual and	u nin		an air an the	-		an an a		-	and the state of the	and the second

.

	X	51	δ ₂	83	Sm	S _{2u}	δ _{3n}	Δ1	Δ2
•	4.75 9.25 18.25 20.5 22.75 25. 29.5 31.75	0.1009 0.1286 0.1807 0.1897 0.1944 0.204 0.2172 0.2311	0.0481 0.0674 0.0985 0.1045 0.1045 0.1045 0.1123 0.1296	0.0799 0.1132 0.1663 0.1773 0.1765 0.1909 0.2072 0.2211	0,0955 0,1201 0,1673 0,176 0,1878 0,1878 0,1966 0,2138	0.0499 0.0702 0.1026 0.1088 0.1091 0.1173 0.1268 0.135	0.0826 0.1175 0.1729 0.1842 0.1838 0.1989 0.2167 0.2296	0.0519 0.0748 0.1111 0.1181 0.1317 0.1287 0.1287 0.161 0.1417	0.028 0.0441 0.0697 0.073 0.0778 0.0813 0.1063 0.0888
	h			9 19-1-1-1 -1	L	<u> </u>			Į

I.3 - CASE I_C - Favourable Pressure Gradient, with Step Heating

X	δ1	. δ ₂	δ3	δ_{1u}	S _{2u}	S _{3u}	Δ_1	Δ ₂
4.75 9.25 11.5 13.75 16. 18.25 20.5 22.75 25. 27.25 29.5 31.75	0.1019 0.1331 0.1376 0.1483 0.1655 0.1559 0.1752 0.2047 0.2143 0.2232 0.2402 0.2314	0.0534 0.0701 0.075 0.0817 0.0886 0.0886 0.0959 0.1059 0.1059 0.1135 0.1272 0.1272 0.1259	0.0898 o.1168 0.1264 0.1383 0.1501 0.1497 0.1653 0.1793 0.1929 0.2058 0.2168 0.2162	0.0961 0.1268 0.1294 0.1377 0.1535 0.1404 0.157 0.1844 0.1939 0.2028 0.2157 0.2085	0.0554 0.0724 0.0779 0.0852 0.0924 0.0913 0.1012 0.1012 0.1121 0.1197 0.1274 0.1345 0.1327	0.0929 0.1203 0.1309 0.1439 0.1561 0.1569 0.1738 0.1891 0.2029 0.216 0.2285 0.2272	0.0537 0.0588 0.0704 0.0849 0.0895 0.0895 0.0895 0.0895 0.0895 0.1024 0.1053 0.1107 0.1209 0.1132	0,030; 0,0319 0,0409 0,0516 0,0586 0,058 0,058 0,0637 0,0656 0,0688 0,0764 0,0764 0,0720

I.4 - CASE II - Adverse Pressure Gradient, with No Surface Reating

	8,	52	53
2,5 4,75 7, 9,25 11,5 13,75 16, 18,25 22,75 25, 27,25 29,5 31,75	0.0574 0.0959 0.11 0.1161 0.1448 0.1693 0.1899 0.214 0.2518 0.2718 0.2718 0.3035 0.2993 0.2949	0.0416 0.0553 0.0618 0.0717 0.0812 0.0977 0.1071 0.121 0.1448 0.1564 0.1766 0.1733 0.1778	0.0713 0.0925 0.1031 0.1207 0.1341 0.1613 0.163 0.1983 0.2379 0.2379 0.2578 0.2999 0.2849 0.2952

X	δ1	٤ ⁵	53	S nu	δ _{zu}	δ _{3u}	Δ ₁	Δ2
4.75 7. 9.25 11.5 13.75 18.25 22.75 25. 31.75	0.101 0.1249 0.128 0.1644 0.1758 0.2304 0.2304 0.248 0.2617 0.3081	0.0519 0.0544 0.0695 0.0821 0.0934 0.1182 0.1394 0.1521 0.1711	0.0873 0.108 0.1166 0.1347 0.1544 0.1951 0.235 0.2573 0.287	0.0949 0.1184 0.1206 0.1574 0.1671 0.2165 0.2345 0.2474 0.2906	0.0539 0.0668 0.072 0.0848 0.0965 0.1233 0.1439 0.1567 0.1771	0.0904 0.1116 0.1206 0.1388 0.1594 0.2029 0.2421 0.2646 0.2963	0,0623 0,0622 0,0709 0,0789 0,0385 0,135 0,135 0,111 0,1314 0,1472	0.0355 0.0356 0.0415 0.04 0.0494 0.0755 0.0566 0.0812 0.0876

I.5 - CASE IIB - Adverse Pressure Gradient with Isothermal Heating

2	81	δ2	\$3	δ _{1u}	Sza	Szu	۵,	Δ2
4.75 9.25 13.75 18.25 22.75 27.25 31.75	0.1012 0.1572 0.2003 0.2521 0.3013 0.3147 0.3276	0.0536 0.0792 0.0993 0.1243 0.1495 0.1601 0.1744	0.0899 0.1295 0.1609 0.201 0.2434 0.2611 0.2899	0.0962 0.151 0.1934 0.2405 0.2847 0.2977 0.2977 0.3073	0.0555 0.0817 0.1023 0.1292 0.1559 0.1666 0.1815	0.0927 0.1333 0.1653 0.2083 0.2531 0.2531 0.271 0.301	0₀0522 0₀0637 0₀0735 0₀0978 0₀1036 0₀1069 0₀114	0.0285 0.0323 0.0354 0.0492 0.0555 0.0582 0.0582 0.0587

1.6 - CASE II - Adverse Pressure Gradient, with Step Heating
APPENDIX II

.

.

x = 2	2.5 ins	40	75	7	' 0 0	9.	25
X	σ	¥	U	¥	U	Ţ	U
0 10 20 30 55 70 50 50 750 50 750 50 225	79 185 595 525 608 675 761 852 852 8852 889	0 10 20 5 7 9 5 9 5 9 5 9 5 0 5 0 9 5 0 5 0 5 0 5 0	119 2259 353 535 535 535 535 535 535 535 535 5	0 10 30 50 114 50 50 50 50 50 50 50 50 50 50 50 50 50	1052 3644 4824 558559 68359 7789 8841	0 10 20 30 570 920 50 1450 1950 220	964 2989 34476 55678 658 5608 561 761
250 275 300 325 350 375	936 952 968 990 994 1000	245 295 320 345 370 395 420	888 911 938 954 970 986 996 1000	265 290 315 340 365 390 440 465	872 903 925 949 955 979 992 992 1000	245 270 295 320 520 520 520 520 520 520 520 520 520 5	79888888888888888888888888888888888888

z = 11	.5 ins	13	•75	16	۰0	18	3.25
¥	U	¥	.	¥	ប	Ŷ	ឋ
0	96	Ö	153	0	100	0	95
10	193	10	234	10	873	10	\$77
20	316 🔅	20	321	20	264	20	286
30	400	30	375	30	358	30	362
\$0	452	40	425	40	415	40	411
65	500	50	448	50	446	50	447
9 0	541	70	484	70	495	75	491
115	59%	95	525	95	526	100	537
940	625	120	566	120	563	125	564
765	667	145	604	145	601	150	607
190	698	170	644	170	627	175	635
215	735	195	677	195	667	200	655
240	707	220	709	220	694	225	696
207	799	245	735	245	726	250	720
CYU Rae	010	270	750	270	755	275	742
フリフ	04 <i>3</i> 980	277	701	295		300	761
710	079 805	220	011	520	001	325	705
202	092	ンやン	029	243	027	350	809
290 64E	910	270 205	070	570	059	575	024
サリフ	920	ンソン	200	ンソン	070	400	047
440 162	970 064	420 hhe	076	420 67c	077	425	070
109	707	447	917	447	902 000	450	007
770	2/0	470	977 040	470	722	*75	907
フリン	900	1977 Ego	949 060	***	920	500	727
sto Ele	4000	220 ·	207 007	520	グマブ	フイン	947
202	1000	ンマン	917 enc	フマフ	777 777	250	249
		270	512	270	777	575	959
		272	704 Adi	マソク	779	600	977
		020 61-r	777	020	990	025	992
		097 670	- 774 4000	045	1000	· 650	792
		070				675	992
						700	1000

CASE IA (Cont.)

x = 2().5 ins	22	.75	25	0.	- 27	25
Y	σ	¥	σ	¥	υ	T	ប
0	122	0	120	Ö	102	0	105
10	191	10	212	10	161	10	173
20	277	20	315	20	252	20	270
30	354	30	391	30	340	30	335
40	419	40	444	40	401	40	428
50	451	50	459	50	444	60	488
60	468	60	479	60	466	85	523
70	487	85	512	35	497	110	558
90	515	110	551	110	536	135	591
115	550	135	575	135	561	160	617
940	579	160	599	160	587	185	642
165	602	185	631	185	610	210	667
190	629	210	670	210	640	235	681
215	650	235	681	235	670	260	709
240	680	260	703	260	691	285	723
265	709	285	720	285	703	310	742
290	724	310	740	310	720	335	755
315	743	335	756	335	739	360	777
340	763	360	779	360	756	385	793
365	777	385 -	<u>7</u> 97	385	772	410	୍ଷ୍ମ୦
390	799	410	811	410	786	435	825
415	826	435	827	\$35	805	460	839
440	843	460	851	460	829	485	852
465	867	485	870	485	851	510	859
490	886	510	887	510	861	535	881
515	89%	535	893	535	872	560	691
540	903	550	904	560	877	585	899
565	919	585	921	585	891	610	907
590	938	610	937	610	912	635	. 975
615	952	635	947	635	929	660	930
640	964	660	954	660	947	685	937
665	972	685	964	685	954	710	947
690	982	710	970	710	966	735	955
715	988	735	980	735	972	760	967
740	1000	760	990	760	286	785	973
		785	990	785	990	810	979
		810	1000	810	1000	835	905
						860	.990

885 998 910 1000

220

CASE IA (Cozoluded)

¥ = 2	9.5 ins	31	•75	ङ	6.0
X	Ũ	Y	. U	¥	U
0	141	0	122	0	105
10	220	10	190	10	176
20	311	20	274	20	274
30	391	30	366	30	376
40	438	55	479	40	648
65	502	<u> Q8</u>	522	50	488
90	533	105	555	75	529
115	567	130	582	100	568
140	607	155	614	125	599
165	628	180	646	150	621
190	648	205	656	175	647
215	669	230	679	200	675
240	691	255	696	225	697
265	712	280	715	250	712
290	730	305	735	275	724
315	746	330	749	300	758
340	758	355	765	325	755
365	775	380	778	350	775
390	790	405	794	375	782
415	803	430	807	400	797
440	818	455	820	425	811
465	835	480	838	450	824
490	848	505	849	475	839
515	861	530	853	500	846
540	869	555	859	525	854
565	887	580	866	550	853
590	894	605	882	575	869
615	904	630	895	600	878
640	912	655	905	625	883
665	924	680	914	675	909
690	938	705	922	725	930
715	949	730	930	775	938
740	959	755	935	825	948
765	969	780	94,4	875	964
<u>790</u>	977	805	954	925	972
815	981	830	960	975	988
840	981	855	970	1025	1000
865	981	880	976	- -	
890	988	905	984		
915	992	930	994		
940	996	955	994		
965	1000	980	994		
		1005	1000		

II-2 - CASE I

Y U T Y U 0 86 483 0 107 4	T Y U T 483 0 118 48 509 10 190 91 534 20 274 55	57
0 86 483 0 107 4	483 0 118 48 509 10 190 51 534 20 274 55	らっ
10 123 517 10 167 20 183 569 20 255 30 287 621 30 362 40 395 655 40 454 50 484 690 50 503 60 543 724 60 540 60 543 724 60 540 70 566 759 70 555 85 606 793 80 566 110 655 819 100 594 135 715 845 125 642 160 768 871 150 683 185 823 888 175 710 210 861 905 200 752 260 929 940 250 810 285 949 957 275 834 310 959 974 300 360 979 1000 350 916 410 1000 375 932 932 425 970 525 990 100	569 30 366 57 603 40 438 60 638 50 465 63 664 60 494 65 690 70 501 67 707 95 545 69 733 120 584 70 759 145 616 72 784 170 648 74 810 195 673 75 828 220 699 77 853 245 725 79 871 270 742 811 897 295 760 82 914 320 778 84 931 345 802 85 948 370 815 87 966 395 833 88 983 445 871 90 991 495 900 92 000 545 935 94	-28585207410236853185286
	645 969 98 695 980 99 745 990 100	ころれの

CASE I_B (Cont.)

X	≈ 20 _° 5	ins		22.75	5		25.0	
Y	υ	T	r	ΰ	T	Y	U	т
0 100 90 000 500 500 500 500 500 500 500 50	10 12 34 44 55 55 56 66 7 7 7 7 7 8 8 8 9 9 9 9 9 9 9 9	445555666666677778888888899999999999999999	0 10 200 560 7950 1250 500 560 7950 520 500 560 560 560 560 560 560 560 560 56	1452255244214556666677748845991445570 10000000000000000000000000000000000	3444470987543209876533200 10098754320987653320 100987543209876533200	012345679245050555555555555555555555555555555555	8636491931774832775284210399959900 1000000000000000000000000000000	457582730505277778888889999999999999999999999999999
008	1000							

CASE I (Concluded)

x	: = 29.5 i	ns		31.75	
Y	U	T	X	υ	T
0	109	397	0	82	402
10	179	431	10	148	427
20	299	466	20	238	470
30	395	500	30	363	521
40	456	534	40	435	547
50	491	560	50	470	590
60	506	578	60	484	607
70	521	586	70	491	624
95	559	612	95	528	650
120	590	638	120	567	675
145	614	664	145	597	692
170	638	690	170	623	709
195	663	707	195	639	726
220	685	724	220	664	752
245	697	741	245	682	778
270	715	759	270	699	795
295	723	767	295	707	812
345	759	793	320	725	821
395	795	810	370	759	838
445	823	828	420	798	855
495	851	845	470	816	872
545	870	862	520	845	889
595	899	888	570	864	915
645	909	914	620	883	932
695	935	940	670	903	ciin
745	949	957	720	923	949
795	959	974	770	933	966
845	969	988	820	963	974
895	975	1000	870	973	688
945	990		920	977	1000
995	1000		970	983	
			1020	1000	

224

•

II.3 - CASE IC

x = 4.75 ins	9.25	11.5
Y U T	Y V T	Y U T
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

CASE I_C (Cont.)

Y U T Y U T Y U 0 134 484 0 112 433 0 137 10 204 516 10 162 463 10 224 20 301 548 20 222 507 20 319 30 409 581 30 306 552 30 415 40 459 613 40 399 582 40 476 50 504 637 50 465 619 50 533 75 567 661 60 519 642 60 556 100 593 694 70 536 672 70 575 125 633 726 80 552 694 95 619 150 668 758 90 565 716 120 655 175	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T
275 797 879 200 697 821 245 781 300 816 895 225 721 836 270 791 350 855 919 275 779 866 295 801 400 887 944 325 819 888 320 822 450 926 968 375 860 910 345 836 500 957 984 425 891 933 395 864 550 972 992 475 913 955 445 896 600 987 1000 525 936 970 495 928 650 1000 575 956 985 545 946 625 978 993 595 962 675 989 1000 645 973 725 1000 695 991 725 1000 695 991	555564688105543324709276555740 6687777788888888999555740 900910054333247092765557740 1009100000000000000000000000000000000

CASE I_C (Cont.)

X =	= 20 .5	ins		22.7	5		25.0	
¥	U	T	¥	υ	T	X	ប	T
012345678915059555555555555555555555555555555555	12031351276328854222228334688299999999900 100313512765556667777788388889999999999999999999999999	525566687777777788888888889999999999900 135579177345177909951778451773999900 10000000000000000000000000000000	0 1 2 3 4 5 6 7 8 9 0 2 5 0 5 0 5 0 5 5 5 5 5 5 5 5 5 5 5 5	1038 311 23395 1934 445555666658056188694335517780 99999900 1000 1000 1000 1000 1000 100	52556688117889906678899951245177739500 100012377777888888899999999999999999999999999	01023456789114119222233544555555555555555555555555555555	8146311734931083966327432229534400 12342790931083966327432229534400 1083999999999999999999999999999999999999	5079914667990022377968890662999528884950 677777888888899999999999999999999999999

CASE I_C (Concluded)

X =	27.25	ins		2905			31.7	5
Y	υ	Ţ	X	U	Ţ	Y	U	T
0 10 2 3 4 5 6 7 8 9 0 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 6 7 8 8 9 9 0 1 1 5 0 5 0 5 0 5 5 5 5 5 5 5 5 5 5 5	1097040608555566666777788888999999999999999999999	5235766666667777777788888888999999999999999	0 10 20 30 50 70 90 11 50 50 50 50 50 50 50 50 50 50 50 50 760 760 960 960 10 60 960 10 60 960 10 10 50 50 50 50 50 50 50 50 50 50 50 50 50	901 2334 4 4 5 5 5 5 5 6 6 6 6 6 6 7 7 7 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9	55780 66667895517777778888889999999999999999999999	0123456789146915050505555555555555555555555555555555	6885591664184447666666277788888899999999999999999999999	5556666667777788845512289906622349999999999999999999999999999999999

II.4 - CASE IIA

X = 2	2.5 ins	4.	75 [.]	7	°0	9,	25
¥	υ	Y	U	Y	្រា	Y	σ
0 10 20 30 50 70 90 10 50 70 90	150 250 369 493 589 638 673 703 721 744 761	0 10 20 30 50 70 90 100	181 240 301 350 478 521 560 590 643 643	0 10 20 30 50 50 70 80 90 100	138 1836 3831 4937 5992 5992	0 10 30 50 70 90 115	1750 3534 461 557908 55908
150 1750 2250 250 50 50 50 50 50 50 50 50 50 50 50 50 5	805 840 877 902 912 927 948 957 1000	110 120 145 195 220 245 295 320 370 420 470	684 790 828 864 910 930 945 972 988 1000	120 120 155 180 230 255 280 50 3380 480 480 530	643 652 679 724 766 803 829 856 884 912 925 987 987 987 991	165 190 240 290 290 390 490 590 590	670 711 748 781 807 834 851 902 943 968 981 990 1000

CASE II_A (Cont.)

x = 11.5 ins	13.75	16.0	18.25	
Y U	Y U	Y U	Y U	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

CASE II_A (Cont.)

X = 22	75 ins	25	5.0	2	7.25	29	9 ,5
X	υ	Ţ	ប	Y	ΰ	Y	υ
x 0 20 30 40 50 60 70 80 90 100 120	139 182 231 277 356 377 408 426 444 465 471 483	10 20 30 40 50 60 70 80 90 100 110 120	139 171 2435 323 387 429 387 4299 435 4456 483	10 20 30 40 50 60 70 80 90 100 110 120	0 106 2272 3797 3917 4254 456 4456 7	1 0 20 30 40 50 60 70 80 90 100 110 135	982 942 22735 33792 4342 4451 4451 482
145 170 195 245 270 295 370 470 570 570 620	512 539 559 579 602 634 691 638 691 766 804 736 805 765 805 765 805 765 805 765 805 765 805 765 805 765 805 765 805 765 805 775 805 805 775 775 775 775 775 775 775 775 775 7	130 140 165 240 290 290 340 390 490 490	492 592 552 563 563 5627 671 695 695 695 695 695 758 781	130 155 180 230 255 280 305 380 430 530 580	479 5019 554 5568 570 5568 570 6576 6576 746 776	160 185 210 235 260 285 310 360 410 560 560 610 660	49413558024205 546024206584005 669384005
670 720 770 820 870 920	897 912 941 963 981 1000	590 640 690 740 790 840 890 940 990 1040	821 844 900 930 945 960 975 985 1000	630 680 730 780 830 830 930 980 1030 1030 1080 1130	801 822 853 878 901 918 942 959 966 981 1000	710 760 810 860 910 960 1010 1060 1110	841 898 925 944 955 974 991 1000

x = 31	.75 ins
X	υ
0 10 20 30 50 70 90 1250 50 2250 270 350 500 650 750 850 9500 1050 1050 1050 1050 1050 1050 10	178679313689632445556666677778888899999999999999999999999

II.5 - CASE II_B

X	= 4.75	ins		7.0			9.25	
Y	ិប	T	Y	บ่	T	¥	υ	T
0 10	123 186	460 480	· 0 10	101 151	474	0	151 223	481 519
20	243	500	20	216	544	20	302	558
30	329	540	30	302	579	- 30	369	587
40	430	580	40	391	614	40	437	615
50	512	620	50	472	649	50	490	635
50	500	650	60	572	675	60	518	673
80	597	710	80	542 554	702	70 80	フンソ	072 710
90 ·	642	730	- 9 0 -	575	746	90	580	721
100	657	750	100	595	763	115	616	750
110	680	770	110	612	781	140	667	769
120	696	780	135	665	807	165	708	808
130	707	800	160	704	825	190	741	837
145	744	820	185	769	851	215	775	865
170	794	850	210	782	877	240	801	894
220	020 86 z	010	295	014 870	904	205	050	923
245	800	910	285	863	950	250	800	922 052
270	917	950	310	-890	965	390	927	974
295	935	960	335	908	974	440	965	981
320	953	970	360	935	982	490	986	990
345	963	980	410	953	991	540	994	1000
370	972	990	460	976	1000	590	1000	
395	976	996	510	1000	•	· .		
420	905	1000					•	
770	1000		•					

CAS	SE II	Gont	;.)						
x = 11.5 ins			13.7 5			18.25			
	X	υ	T	X	υ	T	Y	υ	Ŧ
	0 102 34 56 78 900 102 50 50 50 200 000 000 50 50 50 50 50 50 50 50 50 50	9537665448469244787301949035840 1923344469244787301949035840 10019949035840	4450556625766655554443352221111099987766655554433522211111009998776665555444335222111110000	0 10 20 34 5 60 7 80 900 10 11 13 16 85 10 35 00 10 10 10 10 10 10 10 10 10 10 10 10	14423392599261960760032966253540 1000329625355665920032966253540	4700987543221109876554432211009899999900	0 10 2 3 4 0 6 0 7 8 9 0 5 5 7 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0	11628859974351066645446629903951498520	44420997643211077583149752089799999999999999999999999999999999999
							700		

X :	\$ 22.7	j ins		25.0)	-	37.	75
¥	υ	T	Y	U	T.	r	υ	T
0	126	513	0	162	442	. 0	102	500
10	164	546	10	203	481	10	157	526
20	235	580	20	260	519	20	218	552
30	299	613	30	335	558	30	297	578
40	360	647	40	394	587	40	341	603
- 50	416	681	50	447	625	50	389	629
60	449	706	60	474	654	60	426	655
70	469	723	70	496	683	70	433	664
08	490	739	08	505	702	80	446	672
90	498	748	90	519	712	105	477	690
100	508	756	115	546	731	130	514	707
125	540	765	140	570	740	155	538	724
150	563	782	165	592	760	180	557	741
175	590	790	190	607	769	205	584	759
200	613	798	215	631	788	230	596	776
225	632	807	240	638	808	255	610	793
250	648	815	265	654	827	280	620	508
275	664	832	290	667	837	330	656	819
300	689	840 040	- 340	699	856	300	689	036
325	706	849	390	723	869	430	713	. 853
350	725	057	440	748	805	480	733	871
575	740	074	490	770	894	550	755	000
400	750	002	540	005	904	500	705	905
420	202	099	590	021	912	. 650	807	917
200	014 977	910	640	047 202	927		979	920
500	021 Re7	929 044	090	075 205	974	750	020	921
600	077 8mh	050	740	092	742	9700	220	01.8
200	007	058	810	717	992	880	009	970
750	022	950	800	052	70C 071	070	026	927
800	071	900	ohu -	7,72 051	081	020	OL1	900 07b
850	951	983	940	071	901	1070	057	082
900	966	992	1040	080	1000	1080	975	909
950	990	1000	1090	1000	1000	1130	088	007
1000	1000	1000	,070	1000		1180	1000	1000

II.6 - CASE II_C

X	4 °75	ine		9.25			13.7	5
¥	υ	T	¥	U	T	X	Ŭ	T
Ó	131	423	0	121	522	Ö	109	500
10	197	481	10	161	558	10	159	535
20	296	538	20	216	593	20	218	579
30	386	596	30	280	628	- 30	258	623
40	481	654	40	347	664	40	306	658
50	519	683	50	402	690	50	341	684
60	539	712	60	433	708	60	365	711
70	566	731	70	454	726	70	393	728
80	580	750	80	473	735	80	405	737
90	608	769	90	485	743	90	417	746
100	629	788	100	500	752	100	437	754
125	688	827	110	517	770	110	447	763
150	745	865	120	536	788	120	459	772
175	789	894	130	544	796	145	510	798
200	830	913	140	563	805	170	544	816
225	872	933	165	617	832	195	578	833
250	894	952	190	660	858	220	628	851
275	915	971	215	697	880	245	650	868
300	932	981	240	735	903	270	695	886
350	959	990	265	766	920	295	718	912
400	985	1000	290	797	938	320	741	930
450	1000		315	829	947	370	797	947
			340	854	956	420	848	965
			390	904	973	470	881	974
			440	947	982	520	933	982
			490	974	991	570	955	991
			540	986	1000	620	980	1000
			600	4000		ረወስ	4000	

CASE II_C (Cont.)

X =	18.25	ins		22.7	5		27.2	25
¥	ប	T	r	U	T	I	τ υ	T
0 1234567890000050505050500000000000000000000000	122333334444444455566667788899999990 1223333344444445555666677888999999999 100000000000000000000000000	558768274188605296880235504938821186390 99999999999999999999999999999999999	0 10 2 3 4 5 6 7 8 9 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 3 3 3 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4 9 4	105325777058222856839960935056623623985112 12677788889999999999999999999999999999999	5666777777777777788888888888999999999999	1 2 3 4 5 6 7 8 9 0 1 1 3 6 8 1 2 3 6 9 0 1 1 3 6 8 1 2 3 6 8 1 0 2 2 8 9 0 1 1 3 1 6 8 1 2 3 6 8 1 0 2 2 8 9 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000000000000000000000000000000	556529868955355188689915551622569868991355162260 5668777778888888888991355162260 100000000000000000000000000000000
			1050					

	X =	21012	1115
	Y	υ	T
لیہ کہ لیے ہے۔	012345678900150505050000000000000000000000000000	9588277500631368007674678405519774515440 999002333334444445555666667777888889999999999999999999999	52839742390178467834067889011234016627499299999999999999999999999999999999