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2. 

ABSTRACT. 

The theory of optimal control is becoming a branch of mathematics, the 

interests of engineers being left very much in the background. The geometric 

basis of muchof the theory is only faintly reflected in many mathematical 

presentations, but here it is kept strictly in the forefront, providing a 

framework which is easy to grasp and which allows the intuitive motivation 

to keep pace with the mathematics - an important consideration in engineer-

ing mathematics. The techniques used are essentially transformations in line. 

ear spaces, and differentiability theorems for differential equations, int-

roduced in a suitable form before application to the control problem. A 

basic assumption, given good justification, is that optimal trajectories 

successively occupy regions of different dimension in state apace, in each 

of which the feedback control is differentiable ( in a modified sense ) with 

respect to the state. An analysis of fields of optimal trajectories, based 

upon the concept of an 'isotim' - a surface of constant cost - leads to a 

constructive theory for optimal control, requiring no modification for the 

treatment of inequality constraints. The insight this gives into the behavi- 
that gained via 

our of systems is different from/other techniques, and, together with a second 

geometric approach, based upon Huygen's construction, suggests useful tech-

niques for dealing with the two-point boundary value problem. 
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Chapter 1 	INTRODUCTION 

1.1 	Ebgineering Mathematics, 

This thesis must be regarded as a didactic piece •f work, rather than as 

breaking new ground in engineering techniques. Over the last few years 

optimal control has become the province of the mathematicians, and although 

the essential techniques can be reduced to a set of rules, the principles 

are enshrouded in a wrap dt mathematics so obscure that many engineers are 

neither sufficiently equippednor interested enough to penetrate it. This is 

a regrettable but not unavoidable state of affairs, and it arises partly 

because the engineer is trained to know his place and not to dabble in 

mysteries beyond his scope and partly because that which interests the 

mathematician does not necessarily interest the engineer, and vice versa, 

so that the mathematical discussion is often presented in a form which 

does not appear immediately relevant to the practical problem. 

There is a legitimate divergence of interests between engineers and 

mathematicians, but it has created a gap which must be bridged, and which is 

being bridged and even filled by a comparatively new genre---engineering 

mathematics. This has always been a' shabby relation of 'real' mathematics: 

it makes no pretence to rigour, or firm foundations, or elegance, or to any 

of the classic virtues associated with mathematics 	but it must 'work'. 

thus it is possible for an engineer to study a course in, say, differential 

equations, without ever hearing tell of existence or uniqueness theorems: 

All this is changing. Modern engineering mathematics is as sophisi—

icated and precise as pure mathematics, but is characterized by its direct 

relevance to practical problems and its natural evolution from them. The 

pure mathematician is content to derive theorems from axioms, leaving the 
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axioms themselves in doubt (Russell 13 p.373). He is not compelled to 

justify his axioms in any way, and if hp wishes to draw new quantities 'out 

of the hat', or make esoteric definitions or manipulations apparently without 

purpose, he is entitled, by the rules of the game, to do so. The engineer, 

on the other hand, is very much concerned with the axioms; he will refuse to 

'consider the equations."' unless he can be shown good reason for doing so, 

and if an assumption is made which does net arise naturally or from immediate 

necessity, he will rightly demur. 

This difference in attitudes and in the logical foundations of the 

two disciplines (for 'mathematics and logic are identical' Russell 13 

intro. ---while engineering is not ittall the same as logic) leads to quite 

different treatment of the same material. Certain mathematical techniques 

emerge as a response to the requirements of natural or engineering science, 

and arouse no interest among mathematicians until they can be shown to have 

a rigorous logical foundation. Probability theory, for example, met with 

little pure mathematical development until it was found to be similar to the 

respectable theory of measure. Fdr pure mathematics it is important to free 

the soul of an idea'from its earthy origins, and give it an independent and 

more general existence; hence the modern trend towards axiomatic mathematics 

in which even frankly mechanical sciences suchi46ntgics are given the form 

of pure mathematics by seeking a set of axioms from which the whole discipline 

can be deduced without further physical considerations. (Synge 68 p.5, 

McKinsey, Sugar, Suppes 69, Hamel 70, ±ruesdell and TOUPin 71 p.228, 

Landsberg 72, Kilminster 73). 

While this lack of specificity of mathematics is valuable also to 

the engineer, for it enables him to apply techniques to situations far from 



those implied in the origins of the subject, he will in fact be dealing 

with specific situations, and he must take the mathematical ideas, 

"Turn them into shapes, and give to airy nothing 

A local habitation and a name: 

In doing this, the mathematical techniques must not be treated as something 

external to the problem, borrowed as tools for a special purpose, but should 

be derived from the given background of the problem, as a natural 

consequence of it. 

This is desirable both aesthetically and scientifically; aesthetic-

ally, because there will be an uncomfortable tension involved in putting 

together quite different disciplines without smoothing the seams, and 

scientifically, because a mathematical model is like any analogy, it holds 

only up to a point, and unloas the mathematics. is made to relate 	to the 

fundamentals of the situation,AlAsimpastlible to know just how far it is 

applicable. 

Let us consider how far these differences affect the application of 

a mathematical theorem to a physical situation. A mathematician will present 

axioms and assumptions, prove a series of lemmas, and finally the theorem, 

in as great a generality as possible —all this without any apparent 

motivation or connection with the physical system. Then he shows that a 

mathematical model of the system accords with the assumptions, therefore the 

theorem holds; again, there need be no physical interpretation of the 

theorem, it is simply a valia rule, 

The engineer, on the other hand, will discuss a basic mathematical 

model of the system, and how far certain simplifying assumptions can be 

made, attempting to restrict, not generalize the mathematics, since he is 

9 



interested only in the one system. when he develops the theory in such a 

way that every mathematical step relates to some physical or geometric or 

other easily conceived property. The result will be the same, equally valid, 

equally rigorous, but one scheme will have the advantage of generality, and 

the other the advantage that it really discloses properties of the system, 

and is easy to grasp in the given context. 

It is a valid subject for research to develop an engineering approach 

to mathematical techniques, and conversely, to find an axiomatic basis for 

engineering methods. The difference proves to be more than merely formal, 

and not simply a question of finding a posteriori interpretations for 

particular variables or equations. The entire development may have to be 

changed, and results may be trivial in one technique which are difficult in 

another. In this thesis the first approach will be taken, and an effort 

made to study the properties of optimal control systems from a point of 

view which never loses sight of a straightforward geometric model of a 

dynamic system. 

It is interesting to contrast this viewpoint with a recent remark by 

Halkin (7 p.7).1Any mathematical venture is made up of two parts: geometrical 

intuition and analytical machinery 	the geometrical intuition always 

precedes the analytical manipulation in the formation of a theory, and the 

first is of great help to understand the second. Unfortunately, this duality 

has a marked tendency to disappear, and the role of geometrical intuition 

is barely noticeable in the final form of a theory 	The geometric 

motivation is virtually absent." 

His evaluation of the role of geometry may be a little too sweeping 

(Hadamard 74), but for those with a practical bent it is probably the major 

IO 



element in their mathematical thinking. This thesis represents an attempt 

to use geometrical ideas in order to present the theory of optimal control 

of first order differential systems from a simple conceptual basis, giving 

a direct motivation both for the theory and for techniques of application. 

The scope of this work is clear from the list of contents: a brief 

discussion of the formulation of the problem deals with the implications of 

certain aspects of the mathematical model, followed by a consideration of 

evident properties of engineering systems which allow further simplifying 

assumptions, laying the ground for the geometric construction from which 

the necessary ccnditions for optimality are derived. Chapter 6 introduces 

a new construction, alternative to the first, and amenable to more general 

treatment, but not permitting such a natural derivation of the theory. 

Finally, well-known applications of optimal control are considered in the 

light of this approach, making them easier to comprehend and implement. 

Since this work is designed to demonstrate an approach and an inter-

pretation rather than new mechanical techniques, experimental results are 

less in evidence than is usual in engineering reports. In the present state 

of the art, the computation of even small problems presents extensive 

technical difficulties, usually peculiar to that problem, and et little 

general interest except in the context of work on computing methods as such, 

while larger problems with a significance of their own would constitute 

research projects in their own right. 0n balance, it was considered that 

time would be more usefully spent on ideas than on extensive computation, 

in view of the purpose of this thesis. An appendix treats several problems, 

mostly elementary in themselves, but for that very reason more useful in 

demonstrating essential features of the geometric approach. 

I1 
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The remainder of this-introductozy-chapter discusses the role of mathematics 

in control theory, and the current mathematical attitudes to it. 

1.2. Mathematics in Control Theory.  

Mathematics enters wholeheartedly into engineering when a general mathemati-

cal framework can be found which accords with the physical situation. Some-

times the engineering needs come first, developing powerful tools, but 

without the rigorous foundations that a pure mathematical approach would 

provide; to some extent this is the present situation in linear feedback 

theory based upon transform methods and root-locus concepts. The natural 

process of development in such cases is to find a rigorous basis for the 

method, and give it a broader and firmer foundation, opening doors to wider 

fields of application. In other cases, the mathematical theory is. well - 

established, and it is afterwards found that the physical system can be 

described in a similar way so that it is amenable to the .samm techniques of 

solution; this has occurred in modern optimal control theory. 

The mathematimaI treatment of such systems involves two stages - 

construction of a model, and solution of the problem.The first is always 

the more difficult, requiring real originality; the second usually reduces 

to the extension of well-known techniques or devising computational schemes. 

The modern state-space model of control systems stems from the classic 

block-diagrammatic representation whereby a complex system can be broken 

into distinct parts interacting in a specific way. Each block (Fig 1) has 

inputs and outputs, the output being some function oroperation on the in-

puts. The common systems contain piecewise smooth functions and integral 

operators. 

By labelling the outputs of the n integrators xi  (i=1,...,n), we obtain a 
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Fig. 1 

vector x= ( xl....xn  ) called the 'state vector'. The out put of the system 

is usually a cealtaini4ollection of components of the state vector which are 

chosen to be observed. We shall assume throughout that the state—output 

relation is sufficiently trivial to be ignored in a theoretical study. 

The system of Fig. 1 can be described completely by 

11  = f
2
( f

3
( x2  ), fl( u1, f

4
( 

.2 	1 x = x 

i3 = f3(x2) 

or generally 

= f(x,u), 

a very neat model concerning which a vast literature exists. The classical 

differential equation is somewhat modified by the inclusion of the indefinite 

function u(t) representing the manipulable inputs of the physical system. 

This does not absolutely necessitate a new treatment of the theory, but it 

does contribute to pure mathematics concepts such as 'reachable zones', 

which had not yet achieved a place in the natural heritage of differential 

equation theory, and is still not to be found in standard treatises on the 

subject. 

There are two major defects of this representation of a system. 

First, its extreme complexity for large systems; it is really a microscopic 
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description, in which the contribution of each part is scrupulously account..., 

ed for. A system need not be very complex by usual engineering standards 

before it runs to hundreds of variables, while its overall response appears 

comparatively simple. What is required is a model to represent the whole 

rather than the sum of its parts; this is not yet available, and the 

result is that useful results can be obtained only for systems of low 

dimension. 

A second fault is the lack of a firm logical foundation, and the 

rather arbitrary use of differential equation forms, which are obtained, 

as indicated in Fig.1, by electing to treat the outputs of inte grators 

with special favour. This is done only because other points can be connect-

ed by explicit algebraic relations, and seems an arbitrary choice of state 

variables, for they do not necessarily have any real physical significance. 

It raises difficulties not only for the purist, but also for the technician, 

for implementation often depends upon the possibility of measuring all the 

state variables. The differential form for physical processes is always 

suspect, for a derivative, or a velocity, is a purely mathematical concept 

with no empirical basis at all (Russell 13 p.473, Truesdell 71 p.233), 

though this is easily avoided by using the integral form. There is, how-

ever, no absolute necessity to suppose that even that is generally satis-

factory, and it c•uld scarcely be used as a basis for an axiomatic theory. 

A more satisfactory approach would be via the fundamental systems 

theory touched on by Zade. and Desoer (76), and the related theory of 

automata, which has close connections with •ontrol theory (Arbib 77). In 

general terms, a system may be expressed as a sextet (I,O,S,f,g,t) 

representing respectively the class of i) inputs, ii) outputs, iii) states, 
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iv) the input state relation, v) (input -state) -output relation, vi) time. 

In addition, there may be some measure of performance, and other factors 

external to the system itself. In our case, a ccmparatively simple struct-

ure is imposed by requiring I,O,S to be vectors or vector functions 

(e.g., u(t)) in finite-dimensional vector spaces,f a first order different:-.: 

ial function, g an algebraic function,and the performance criterion scalar 

valued. 

The performance criterion is not part of the system, but it plays 

a central role in specifying the problem, Informally, this consists of 

choosing the input function in such a way that the system behaves satis-

factorily. 'Satisfactoriness' or 'acceptability' are difficult concepts 

to define, especially since we may be dealing with systems involving human 
4 

interests, or systems in which human operators play a role, and such 
nC  

crucial matters as conveniefte, security, or psychological considerations 

do not lend themselves readily to exact evaluation. At present we must 

restrict serious consideration to purely technical aspects, such as can be 

ascribed a precise measure, but even here there are difficulties. 'Accept-

ability' is too general a criterion to provide precise results. ---a more 

restrictive requirement is 'optimality', i.e., that the system shall behave 

in the best possible way, within a region of admissibility described by 

inequalities, beyond which the solution is definitely unacceptable. Presum-

ably this implies a unique behaviour in many cases, but in practice there 

are many conflicting considerations -- --demands of efficiency, economy, 

security, do not generally pull in the same direction----and the optimal 

solution must be a compromise, the precise degree of which must be pre-

determined by the designer. 



In principle one would like to see something along these 1inss: 

a factor of optimality for each relevant property of the system, all con-

tributing to an overall measure of optimality according to the desired 

compromise, leading to a sensitivity analysis to indicate how variations 

of the control function would affect the various factors. This would provide 

a satisfactorily flexible programme for practical applications, and would 

give a good insight into the behaviour of the system. Unfortunately, this 

is not yet possible, though similar ideas have been mooted (Zaddh .44 

Pearson 80); the usual practice is to combine all the relevant factors in a 

single scalar functional - -- -the performance criterion. 

It is clear now that the familiar control problem is only a very 

special example of a much wider class of as yet unformulated problems in 

systems analysis, and it is quite evident that the motivation for this 

particular formulation was its similarity to the well-known problem of 

Bolza in the calculus of variations. It will not be long before this 

problem loses its current popularity, and becomes recognized as the correct 

form only for the low-dimensional •rdinary differential system and single 

objective function such as arises in trajectory problems, but will no longer 

be regarded as "the optimal control problem". It is, however, the problem 

with which this thesis is concerned. 

The development of this problem is only a chapter in the history of 

the calculus of variations. The tendency to regard the calculus of variations 

as outdated (from a control point of view), or incapable of dealing with 

modern problems, is quite unjustified, and even mean, for there is no modern 

treatment of control theory which is more than a step away from similar 

methods used in the older discipline. The fashionable disparagement of that 

I 17 



calculus (cf. Pontryagin, 1 p.1, Halkin, 7 p.6) is open to uncharitable 

interpretation, and is very difficult to understand, in view of, for example, 

Berkovitz's work (25), merely translating the control problem into a Bolza 

problem, for which the necessary conditions hold over a wider class of situ-

ations than some more popular techniques can handle. 

Indeed, despite the fact that the modern problem was only fully 

stated in 1949 (Hestenes 79) ----and that without state constraints - - -- it 

was effectively solved earlier. Bliss, in his textbook in 1946 (5) presents 

a problem involving differential equality constraints, which, apart from 

inequality constraints is effectively the modern problem. Finite (state) 

inequalities had been thoroughly studied (e.g.,Bliss and Underhill 35) and 

differential (control) inequalities had received some attention (Valentine 

81). All that was lacking was the need to bring all these elements together 

in an engineering context. It was not until 1964 that this was done in a 

form including state constraints (Guinn 82)but the fault was not that of the 

calculus of variations. 

The classical approach is not, however, a perfect fit to the physical 

situation; rather the feeling is that the problem has been forced to suit 

the manner of solution, for a method which treats the minimisation as central 

and the dynamic system as a mere side constraint is clearly not a natural 

one to adopt. Developments of the problem for control purposes have been an 

improvement, treating the system as the basic material of the problem, though 

this is never given as the primary motivation of the new method. True, the 

effect of the Lagrange multiplier technique is very similar, ensuring that 

the constraints are automatically satisfied, but it smacks of the nature of 

a'device' rather than a basically convincing approach, and the multipliers 

17 



themselves are difficult to place in the physical scheme. They do have a 

straightforward interpretation as the 'effort' required to ensure that the 

constraint is not violated, (Lanczos 28 p84), but this serves only to 

emphasize the secondary role of the constraint. 

The techniques of functional analysis now being applied both to the 

classical problem (Liusternik & Sobolev 83 ) and the control form of it 

( Balakrishnan 84 ) tend to provide powerful tools, but little modification 

of the fundamental attitude to the problem, though work such as the little 

known paper of Dubovitskii & Eilyutin (59) take steps in the right direction, 

for while the approach of linear functionals and the fundamental lemma is the 

same, only variations admissible with respect to the system and the restricted 

regions are permitted. The tendency is to allow the system to define 

permiss.ble operations, rather than regarding it as a constraint - the 

difference is subtle, but profound. 

The purely geometric approabh to the classical problem via the geometry 

of Finsler spaces ( Rund 17 ) goes much further in this direction. The 

functional to be minimised is supposed to define a metric on the space and 

the minimising trajectories are geodesics. This leads easily to the canon7'cal 

equations and Weierstrass's condition, and the refinements of constraints 

fall naturally into place, though they have received very little attention 

from the classical practitioners in this context. An approach in a similar 

spirit is made in Chapter 6, but the powerful tensor calculus, which would 

seem to be the natural tool to use proves difficult, for the treatment of the 

classical problem rests heavily on the assumption that the integrand of the 

cost function is homogeneous of degree one in i, and this is not true of 

the control problem. 
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The shift in emphasis from extremum aspects of the problem to the 

differential system itself and properties such as controllability, 

accessibility, stability, etc, has meant that control theory now occupies 

an established place both in the calculus of variations and in the theory 

of differential equations. Proper application of geometric and topological 

techniques, using metrics imposed by the cost functions of control systems, 

and restricted spaces defined by the reachable zones of a differential 

system, will probably lead to innovations in differential geometry. It is 

impossible to foresee what future developements will bring, but it seems 

likely that in the interplay between mathematics and systems theory the flow 

of new ideas is likely to run in both directions. 
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Chapter 2 	PRELIMINARIES 

2 . 1 	The System  

We shall be dealing exclusively with systems whose behaviour can be described 
a 

by/first order ordinary vector differential equation 

= f(x,u(t) ) 
	

2 .1 

t, the independent variable, is monotonically increasing on the interval 

I = I 	ta 	of the real line. 

x, the state vector, is at any instant a point in real, n-dim. 

Euclidean space, En  

u, the control vector, is at any instant a point in real, m - dim. 

Euclidean space Em  . 

As t traverses I, a mapping 

u : 	I 1. Em 	 2 .2 

traces a graph u(t) , called the control function, which is assumed to be 

contained entirely within some specified region U of Em. u(t) will be 

ohosen to be piecewise continuous, which is sufficient to describe physically 

realizable controls. At points t
1 of discontinuity of u(t) we will accept 

/ 	\ 
the convention that u(t1  ) = ukt

1  +0). 

Corresponding to a particular control function u(t), the solution 

(if it exists; see section 2.4 ) of 2. 1 which passes through the point xr  

at t = t1 will be described by the function 

y ( xl,  tl,  u(t); t ) 	 2 . 3 

Such a solution traces a 'trajectory' , denoted x(t), in En, which will be 

required to remain within a specifiSd region X of E
n
. For an autonomous 

system , the independent variable can be shifted by an arbitrary constant c 

so that the trajectory x(t) = y(xitti,u(t); t) is the same as 

x (t1) = y(xl,ti+c, u(t1) ; t1  ) 	where 	t1  = t + c. 



This useful property of 2. 1 will often be used to allow different 

solutions to start with a common value of t by adjusting the t - origin 

suitably for each. 

If the solution of 2. 1 is continuous for continuous u (t), 

and we assume that it is, then an absolutely continuous solution can be 

constructed for piecewise continuous u (t) by taking the endpoint of a 

continuous sub-arc for the initial point of the next continous sub-arc. 

(Pontryagin 1 p12 ). Physical systems can certainly be constructed whose 

state variables are not absolutely continuous, but no fundamental principles 

are overlooked by excluding them. 

The regions U, X will be defined by inequalities 

C(x) t; 0 2. 4a 

B.(u) ••••• 0 2. 4b 

whose left sides are continuous and differentiable. There may be any number 

of these constraints, which, when equality holds, define the boundaries 

of X and U, which are piecewise smooth manifolds of at most, (n-1)t. 

(m-1)-dim. respectively; they might entirely enclose a region, or leave 

it open on sone.4des. Where a region is not explicitly bounded in this 

way it is assumed to extend to infinity. 

.4estion of some delicacy arises regarding the nature of these 

constraints. Do they designate a region of interest within the domain of 

definition of the system, or do they themselves specify the domain of 

definition so that the system cannot be properly described without them. 

The difference is between supposing f(x,u) to be defined everywhere on 

,n  Emx 	but x, u permitted to take values only in X x U , and f to be 

defined only on X x U. The distinction is a real one, for differentiability 

properties at the boundary will be affected, and certain techniques which 
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permit small excursions beyond the boundaries (e.g Chang 2 ) will only 

be possible under the first construction; it is not wily a mathematical 

distinction, for physical systems exhibit both imposed constraints (of 

the first kind ) which must not be violated for reasons of safety, stability, 

economy, etc, and natural constraints ( of the second kind ) which cannot 

possibly be violated. Examples of the latter are mass variables, which 

cannot be negative, height above ground for an aircraft system, temperatures, 

which have a natural lower bound, etc, etc. A completely satisfactory 

theory would reflect both types in the formulation of the mathematical model, 

but to insist upon this would be pedantic. We may follow the easier practice 

of adjusting the domain of definition of f to an open neighbourhood of 

n . 	4
m X x U 	E x h , and let f be continuous with its partial 

derivatives in all its arguments. 

Such a model is really quite restrictive, excluding as it does 

systems with distributed parameters, delays, and random variables. However, 

a large class of engineering system do fall into this category, including all 

ordinary differential systems of any finite order, and non-autonomous 

systems. The latter occur whenever t appears as an argument of f or of 

the constraints 2 .4 , and in this case we simply introduce an additional 

state variable defined by X°  = 1, and replace t wherever it occurs by 

x
o ( except where t is merely the indelf.endent variable ). 	This 

manoeuvre inposes a greater decree of symmetry on the variables and allows 

us to use the autonomous formulation throughout. 

In addition to:_%4 , there may be 'mixed constzaints ' of the form 

R ( x,u ) 	0, 	 2 . 5 

restricting (x,u ) to a'region R of X x U . In the absence of such 



2.3 

inequalities, R=XxU. ik control function u(t) for which (x(t),u(t)) 

remains in H for all t I is an 'admissible control'. The corresponding 

trajectory is an admissible trajectory. 

In a given situation it will be required that the solution of 2.1 

shall pass through certain points or subsets of X at various stages along 

the trajectory. The most important of these are the initial set S and 

the terminal set T , and in this work T receives special prominence. 

It will be a smooth ( n-s ) - dim. manifold in X, defined by a set of 

s equalities 

Ti  (x) = 0 
	 • s n 	2.6 

Ti  being continuous and differentiable. 

The terminal time t
f of a process starting from any point 

x
o ct X and any to  is defined as the first instant at which the trajectory 

reaches T ; i.e. 

tf  = 	inf ( tl  : y ( xo to u (t); t ) 	T ) 	2 .7 

There are some cases of practical interest which are not covered by this 

description, such as the problem involving the miss - distance from a 

given set, 	( Bri4land 3 ) but this will serve for the present. 

2. 2 	The Cost Function  

The usual performance criterion takes the form of a scalar functional, 

measured either at tf, the termination of the process, or as an integral 

over the entire interval I. 	If the former, it will be a function of the 

terminal values of the state variables; the control :i11 not be relevant, 

for at t
f 

it has no effect on performance, seeing that the process ends 

at that point. If it is an integral some measure of the control may well 

be involved. Thus we have the alternative scalars 
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0 
The term ef)erformance criterion' is something of a misnomer, for 

evaluation of the function without knowledge of upper or lower bounds 

gives no indication of the quality of the performance. A more apt term, 

if only for minimization problems, is ' cost function '. 

The cost function is entirely at our disposal, since it is not 

part of the system, but reflects the intentions of the engineer concerning 

it. For convenience let us choose g and L to be continuous and 

differentiable in all their arguments. If ue choose a function of type 2.8a 

we have, using the terminology of the analogous situation in the 

calculus of variations, a Mayer problem; if type2.8b , a Lagrange problem. 

Mathematically, the two forms are completely equivalent and can 

be transformed from one to the other with no mathematical embarrassment. 

Thus, defining a new variable xn+1 by 

n+1 
= L (x,u) 	xn+1 (t ) = 0 

de(x) 
8b bedomes simply x

n+1 
 (tf), or, writing dt 	= gx.f , 

we have t 

e(X(tf)) f g

X 

 .1 

t 
0 

dt 	g(x(t0)). 

Since •g(t
o) is not involved in the minimization, the terminal point 

expression or the integral may be used indifferently. ( Bliss 5 p189 ) 

Mathematical equivalence is one thing: practical equivalence quite 

another. In practice a cost function will almost invariably suggest itself 

in one of the forms2.8a or b, and to transform it into the other requires 

either the introduction of a new variable, or a rather strained interpretation 

of the function. For example , suppose we wish to minimiie the magnitude 

24 

2. 8
a 

J t
t f 
L'kx (t), u(t) ) dt 
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of one variable, say x
1 
 , at a given time. The natural cost function 

would be xl(tf), and putting it into the Lagrange form jrtf  fi(x;ii)dt 
0 

completely obscures the meaning of the function. Again, the familiar 

regulator cost function f (2 +u2) dt which measures the integrated 

error ( from zero ) and the control effort, could be expressed as a 

n+1(tfi), e+1 Mayer function 
x 	

x
2 
+ u

2
, which not only obscures 

the character of the problem, but also unnecessarily extends the state 

space. 

It is common in presenting the theory of optimal systems to 

reduce all problems to Mayer form ( Pontryagin 1, Halkin 6 ) which, 

from a purely mathematical viewpoint, is quite legitimate, but the 

engineer will feel uneasy at this, for if the problem formulates itself 

it obviously knows what it is doing and should not be forced into a 

preconceived pattern. Like a difficult child, a problem can be very 

cooperative if given an opportunity for self-reliance, but obstructive 

when re%rained by artificial regulations. In any case it would be 

impolitic to submit to the whims of mathematics at this early stage - 

she will make stronger demands soon enough. Let us be satisfied then, 

to leave Lagrange as Lagrange, and Mayer as Mayer. We shall find 

that this independence is rewarded, for the different formulations 

lead to quite dissimilar insights into the nature of the system of 

optimal trajectories. 

Pontryagin's formulation we may reject for a further reason. 

His cost function is not permitted to be one of the original state 

variables of the system, which in many cases means introducing a new 

variable which is algebraically dependent upon the others, or even 

(surely a reductio ad absurdum ) identical with one of them, (see 
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comments by Halkin 7, Roxin 8). This artificial situation is in stark 

contrast to the 'natural' approach we have agreed to adopt. 

Whichever form the cost function takes, we shall use the following 

notation: 

P (x1, t1, u(t)) 	 2 . 9 

is the value of the cost function evaluated for the trajectory which starts 

from (xt1) and terminates on T, corresponding to the control u(t) 

defined for all t in D1'1. 

2 . 3 	The Problem  

We are now in a position to formulate precisely the problem of 

optimal control : 

Given 	a dynamic system 	* = f(x,u) ; 

permissible regions X, U, R defined by 2.4,2.5; 

sets S, T C X ; 

a cost function 2.8a or b ; 

determine the admissible control function for which the corresponding 

trajectory defined by 

x(t) = 	y (xo, to, u(t) ; t ) 

satisfies 	x (to) 	C.: S 	 a 

x (tf ) 
	

T 	
2.10 

(x(t),u(t)) 
	

R 
	

C 

P (x0,to, u(t)) 	P (xo, to, v (t)) 

where v(t) is any admissible control for which 2.10 a -c are satisfied. 

Such a function u(t) is an 'optimal control function '; the corresponding 

trajectory is an 'optimal trajectory'. 

.2 .4 	Existence and Uniqueness.  

The question of existence is always popular with mathematicians, but usually 
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neglected by engineers, for, if a solution can be found 'existence' is proven, 

and if not, the knowledge that one exists is not very helpful. Unfortunately 

this is not always a realistic attitude, for we are aealing not only with 

real systems, where it is usually obvious whether the objective is attainable 

or not, but also with their formulation into mathematical problems, where the 

very concept of a 'solution' is different. Thus there may exist an infinite 

sequence of control functions, and a corresponding sequence of costs with a 

lower bound but no minimum. For engineering purposes this is good enough, 

but, mathematically speaking,no solution exists, and the machinery will 

break down. The point of raising the question of existence in engineering 

mathematics is not simply to find out whether there is a solution, but to 

confirm that the mathematical model is adequate. The technique remains the 

same: the philosophy is significantly different. 

The subject is intimately connected with the existence of the less 

restricted class of admissible controls for which 10a c are satisfied, 

but not necessarily 10d. It will depend upon the constraints, the initial 

and terminal sets, and the dynamic system, as well as the cost function, and 

is obviously exceedingly difficult to treat in general, though results have 

been obtained in particular cases. (Kalman 9, Kalman, Ho, and Novendra 10, 

Markus & Lee 90, Roxin 91 ) The best approach to a specific problem is to 

attempt to construct a solution in the hope that it can be done. If the attempt 

is successful, well and good; if not, it is advisable to reframe the problem, 

either by relaxing certain restrictions or reconstructing the system or cost 

function. 

For theoretical purposes it is convenient to overcome this difficulty 

by the assumption that 



28 

from every point in X there exists 

an admissible trajectory terminating on 	2. 11 

T which is optimal in the sense of 10d. 

It may turn out that the assumption holds only in a closed subset X t: 

bounded by T. 	If ±, is n-dim. we may construct constraints of the type 

4a, circumscribing X , then we restrict our attention to R, and this is 

possible even if X is in fact the union of disjoint subsets. In that case 

2 .11 can be regarded as equivalent to a collection of state constraints. 

If X is p-dim, then the trajectories of2.1 occupy only a p-dim. subspace 

of X, and the n-dim. representation of the system must be redundant. This 

may be remedied by suitable coordinate transformations. (see Chap.3 ). If 

the assumption does not hold at all there is no more to be said. 

The related topic of uniqueness is rather different, and less of a 

hurdle. It should be considered on two levels: the possibility of a finite 

number of solutions, and of an infinite number. In the former case just 

one of the possibilities will be chosen, and this choice makes that solution 

effectively unique. The criterion guiding the choice has the same effect 

as a more stringent cost function. Thus,in a practical sense we always have 

a unique solution, but mathematical conditions are difficult to lay down. 

We shall assume that the assumption 2. 11 is restricted to a unique 

trajectory. The second possibility cannot be so easily dealt with, but 

we must avoid it by assuming that it does not occur . (of. Thau. 49 ) 

There is a further question. Does a given control function give 

rise to a unique trajectory. Thia'is a comparatively simple problem which 

depends only upon f(x,u). 	If f is continuous in x and t ( through u) 

and satisfies a Lipshitz condition in some open region of X then, for 
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a given u(t), there will be a unique trajectory within that region. If 

the pL.rtial derivatives fx  are continuous the Lipshitz condition certainly 

holds (Lefschetz 12 p.34 ), and since we have assuued this to be the case, 

and also u(t) to be piecewise continuous, a unique trajectory is assured. 
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Chapter 3. 	THE SOLUTION SPACE. 

3.1 	Some Physical Considerations  

In this chapter ee shall develop a picture of the optimal trajectories 

covering X . (me adjective 'optimal' will generally be omitted in this 

chapter, but must be understood to apply.) It nas already been made clear 

that in the order of L-ricrities guiding this exposition, simplicity of the 

geometric concepts takes first place. In order to establish the principles 

we need have no hesitation in sacrificing generality to simplicity, as long 

as the restrictions leave us a reasonably large class of situations of 

engineering interest. It is encouraging to observe that physically 

realizable functions are usually simple in structure - continuous, many 

times differentiable, etc., - so that a considerable degree of mathematically 

stringent restriction can be accepted without unduly affecting the practicab-

ility of the results We may, however, be foroed to take as assumptions, 

or hypotheses, properties that, via more rigorous but less straightforward 

routes, could actually be proven. 

At this stage we are seeking a physically reasonable picture, using 

heuristic arguments on any material that comes to hand. In succeeding 

sections a suitable mathematical framework for the resulting ideas will be 

described, and we shall have to cover some of the same ground again, but 

with a less cavalier disregard of details. 

An important concept arises from the assumption that from every 

point there is only one trajectory to the terminal set. It implies 

uniqueness from the left, but not necessarily from the right, and, although 

only one path can emerge from a point there may be many distict trajectories 

converging onto a common point or onto a common trajectory - much like a 
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confluence of tributaries into a main stream, except that in the latter 

case conservation of flow holds, but with our trajectories this analogy breaks 

down. We must examine this situation further. 

Since the trajectory is completely defined, given the initial 

point ( by virtue of the uniqueness assumption ) we may write, for x, 

at any time t1, 

x = y(x0;t1). 

If trajectories meet, so that from distinct points x oo  
,x' 	they reach xi, 

this equation cannot be solved uniquely for xo. According to the implicit 

function theorem ( Bliss 5 p.270 ) it could be so solved if 

det [ Yx
o
] 	0. 

In this :use, then, either Yx
o 
ceases to exist or the determinant becomes 

zero. The former implies a discontinuity in u(t), for standard theorems 

( Bliss 5 p.270) assure the existence of derivatives of solutions of 2.1 

if u(t) is continuous. The latter, while admitting the existence of the 

derivatives, implies that the rank of the transformation xo 
x(t) is less 

than maximum, and therefore does not preserve dimension: Points in an n-dim. 

neighbourhood of xo  are sent into a region of dimension equal to the rank 

of the Jacobian determinant, less than n. 	This is an acceptable result - 

if trajectories meet, thereafter remaining coincident, they must occupy 

' less space'. 

Just as a given initial point defines the unique trajectory from 

that point, so it must define the control action from that point, and we have 

a unique function u(x0;t), and in particular a unique vector u(x0), 

representing the action to be taken at xo
. This argument applies to 

every point, and we have a unique vector field u(x) defined over the 

state space X. 
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From our assumptions so far it is not clear what the properties 

of u(x) will be. Trajectories may be unique and continuous, and, as 

a family, cover every point in X, but still be pathologically twisted 

and knotted, and allow u(x) to be discontinuous except in certain 

directions. It is easy to see that since u(t) is piecewise continuous (by 

assumption) and x(t) is continuous, u(x) must be piecewise continuous for 

x taken along a trajectory, but net necessarily SJ f')r x in an arbitrary set. 

More precisely, if K is a trajectory passing through xi(t1), and u(t) is 

continuous in an interval I1containing t1 
, then for all 0,0 there exists 

some a such that 11 x(ti) 	cl implies 	u(x(ti)) 	u(x1)04: e; 

where x(ti) OE K , ti4tI1  . 

If u(x) is not continuous in an arbitrary small neighbourhood of 

x1 
, then the controls u

1 
, u

2 
 corresponding to x

1 
and x

2 
are not 

necessarily close, however small the distance 1 x2x11\ 
	

. In practice 

this means that if the measurement Jf x and the implementation 	u are 

not absolutely accurate, the applied control might be hopelessly wrong.There 

may well be places in the state space where this occurs for a physical 

system----sharp dividing lines are possible where a decision is either right 

or wrong, but if it is true everywhere we would be wasting our time even to 

attempt a scheme of physical control. We may, then, permit the restriction 

u(x) is piecewise continuous: there is a partition of X consisting 

ofsubspacesX.(i = 1, 2, • • 	• ) of various dimensions, such that every 

point in X is contained in one and only one of the Xi , 
and u(x) is 

continuous over each X. . 

What of differentiability? It cannot be considered to be as essential 

as continuity, but it is worthwhile investigating the consequences of such 
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a property for if they correspond to what would be expected of a real 

system without disallowing any reasonable possibilities, there is every 

reason to acceA it as a working hypothesis. 

SuppoaOthereisafamilyofsets7.forming a subpartition 

ofthet,and in each j y  u(x) is differentiable. (There is no need 

to be too p dantic at this stage - the conceptswill be made more precise 
next 

in the/section ) The ?ariation equation for 2.1 is 

Sk = f (x4t0 g x.+ f
u
(x,u)Su 	3 .1 

Confining our attention to an n dim. region this may be written 

ux 
	

(f faux ) 6x  
	 3. 2 

A(t)i x 

where the derivatives are evaluated along a particular trajectory. The 

solution is of the form 

Sx(t) = w(t,t0) S x(to) 	 3 .3 

If n vectors Ox(to) are linearly independent the same is true of Ex(t) 

if w is non -singular. We have 
t 

I w(t,t0) I 	= 	fio;(t
o  to ), trace A(s)ds) 3 .4 

o 
(Lefschetz 12 p.00 ) where trace A is the sum of the diagonal elements 

of A, so that as long as A is defined and w is somewhere non - singular 

the vectors 

that{{ 

span an n-dim. space and remain distirct. If, for 

finite t, certain elements of A become infinite, then as A 	+vo 

8 x(t) 	c* and the system is unstable; as A 4. - 	0 

and the S x are no longer independent but span a space of lower dimension, 

a result we have anticipated, and which occurs, for examcle, at the terminal 

set for although it is of dimension less than n, 	trajectories in n 

tth 
must converge to it ; the former result, thoughtdesirable, is a practical 

possibility. 
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In a region of dimension less than n the description 2.1 is 

redundant. This can be remedied by a suitable choice of state variables, 

then the same arguments hold as before but for a state of reduced dimension. 

We may conclude that the assumption of piecewise differentiability of u(x) 

does not violate the laws governing real systems, and we may proceed to 

base our discussion upon it. 

The picture we now have is of trajdctories smoothly covering separate 

regions of various dimensionality (Fig 2 ). They may go from an n-space 

into an adjacent n-space ( A(t) piecewise continuous ), or ill:to an r-space 

( A(t), nxn-3 rxr ), or, remaining in the same regionlconverge into its 

lower - dimensional boundary ( A(t) -3 	- do ). 

It mu:A be emphasized that the differentiability condition is not 

an assumption in the sense of a specification of the system, for the 

properties of the optimal control are entirely determined by the dynamics 

and the cost function. This property, if true, should be derivable, and 

indeed can be derived by techniques, which, though more rigorous, lack the 

intuitive basis that we have chosen to adopt. 

In the next section the ideas introduced here will be made more 
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3.2 Arithmetic Spaces  

3.2.1. 	Basic Concepts 

We are using the terminology of geometry - speaking of spaces, 

trajectories, etc., - in the context of an analysis of physical 

systems. Having established, or taken for granted, the field in which 

we are working, it is as wall to pause at this point and examine how 

far these two branches of science are compatible. This is not a philos-

ophical luxury, for we shall be utilising some very basic concepts, and 

it is important to know whether the tools arc right for the job, or 

whether we are simply using a baseless analogy. Regretfully, we must 

leave aside the really fundamental issues which have occupied natural 

philosophers from time immemorial, and merely touch lightly upon the 

principles that must be understood in order to use the machinery properly. 

It should be recognized at the outset that the spaces we are 

dealing with are arithmetic point spaces, not geometric spaces. In the 

latter it is a matter of doubt whether points can be said to exist at all 

(Russell 13 p.445 ), but in the former there is no question: ' an ordered 

set of n (real) numbers will be called an arithmetic point ' (Veblen and 

Whitehead 14 ). Two points in the same space are similarly ordered sets, 

but with different numbers, and it is the relations between points which 

define the nature of the space. One isolated point can provide no inform-

ation whatsoever, but just how many points and what type of relations are 

required to completely specify a seace is a question of axiomatics which 

need not detain us here. 

Clearly, the mF)chinery developed for abstract arithmetic spaces 

will serve to analyse any phenomenon whose properties can be described by 

a suitable array of numbers. Thus, in a table consisting of columns of 



numbers each row is an arithmetic point. The class of phenomena that 

can be described in such a way is vast, and includes engineering systems 

of the type we are concerned with, adhere each position in the array corr- 

esponds to the value of some measurable property - temperature, velocity, 

voltage, etc., - and the relations between points are the physical laws 

of the system. Our familiar hewtonian space can be described in similar 

fashion, when the points may be measurements of length from a fixed origin 

in some chosen directions. This type of model can only treat those properties 

of a system which can be put in this form, and throws no light on the under- 

lying nature of geometric space or of a physical system. 
it is 

If the language we use is geometric/because geometry hast  pre- 

empted the terminology, not because the nature of the technique is essentially 

geometric, and to use this approach for engineering systems is by no means 
which is even better suited to physical systems 

using an analogy with geometry, but applying a technioue/with their clearcut 

physical coordinates, than to geometric spaces. Nevertheless, results ob-

tained from geometric thinking in this context are applicable directly to 

our systems via the framework of arithmetic spaces, however strange they 

might appear. For example, in geometric spaces all directions are equivalent 

and one coordinate system is no more fundamental than another. It is there-

fora possible to transform points from one coordinate system to another with-

out affecting the properties of the space. In the state space of physical 

systems the coordinates have a definite meaning, and it would not be obvious 

that the same licence is valid; nevertheless the techniques are those of 

arithmetic spaces whatever their apparent interpretation, and we nay indeed 

transform the coordinate system of state space at our convenience, regard-

less of whether the now coordinate system is physically meaningful or not. 
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The concept of dimension is immortal* it is the ttnber of 

numbers required to define a point. If it is found, by comparing a 

sufficient number of „oints, that fewer numbers are required than are 

actually given, then the descriytion is redundant. Thas. if n 

coordinates are given, but by suitable manipulation and application of 

the laws of the space, n - r 	of them could be deduced from the 

remaining r, then the dimension of the space is r. This may be quite 

straightforward; for example, for an electrical network it is not necessary 

to be informed of all the voltages and currents, because some are derivable 

from the others by the physical laws - Kirchhoff's, etc. 	If some law 

or dependence between the variables applies in some region but not others, 

then the space is of variable dimension. For examide, there is some 

relation between intelligence and size of feet in human beings up to a 

certain age, but not beyond that time; the biological space is not of 

constant dimension. In a geometric space the points in, for example, a 

room, may have three degrees of freedom in the interior, but only two on 

the walls. This last example demonstrates the type of situation that led 

to the construction of constraints such as 2.4, but this picture of 'hard' 

constraints is too crude for our needs, and the other point of view, of 

regions of variable dimension, or variable dependence between the components 

of the points, is more suitable, though they might be expressed in the same 

algebraic form. This is the idea behind the partition of state space 

introduced in the previous section. 

To deal with variable dimensions we might treat each region on 

its merits, as a p-, q-, r- or whatever - dim. space it happened to 

be, regardless of neighbouring.  regions. In physical state space this is 

not the best approach, for the coordinates are, after all, all there - we 
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have their values, redundant though they be. It is best to regard the 

reduced space as embedded in a higher dimensional space, and retain the 

redundant variables, so that when the process moves from one region to 

another there is no change in the specifiction of the points, as in fact 

there is no change in the nature of the real system. 

The essential techniques: transformation of coordinates, and 

embedding into higher - order spaces, will be discussed in the next section. 

3.2.2 	Liuear and tangent spaces.  

A point x = (x
1 
 ,....,xr) defined in a linear space X can be 

/ 	
,....,y transformed into a point y = ky I 	r) in another linear space Y, 

by multiplication with an r x r matrix A = {aid} . Thus 

y = 	A x. 	 3. 5 

If A is non-singular Y has the same dimension as X and the correspondence 

is one -to -one; also, given points x,y it is possible to find an A to 

satisfy 3. 5. 	This type of operation is sometimes regarded as expressing 

the same point in terms of a different coordinate system, as was hinted 

in the previous section. This is very dubious, for if a point is defined 

to be a certain array of numbers, it is difficult to interpret a quite 

different array to be the 	same point'. Alternatively 3. 5 may be 

said to transform x into another point in X : A is a transformation of 

X into itself. This is a little better, but still difficult to support 

in terms of a state space of a real system, for there is no physical 

process corresponding to an arbitrary transformation, and the only way 

in which a point can move in state space is according to the dynamic 

equation i = f(x,u). Such an interpretation is perfectly satisfactory 

if A is in fact the transition matrix for a linear dynamic system, other-

wise it is best to accept the original characterisation as a transformation 



to an abstract space Y, and there is no call to interpret Y in any 

physical sense. 

Suppose that X, though r-dim., is part of a larger space 

containing, regions of up to n-dim. In order to treat the whole 

problem in the sane way it is desirable to express x in the form 

of an n-vector. ( The terms 'vector', 'point', are equivalent. 

(Veblen and Whitehead 14 p.2) ). This can easily be done by introd- 

ucing an additional (ri-r) numbers such that they can be expressed as 

linear combinations of the original r independent components. Thus, 

given xi, i = 1,....ri  introduce numbers xj  j = r+1,....,n such 

that for each j, 

= 	c ..x 
j1 

where the c.. are arbitrary numbers, and the repeated index summation 
JI 

convention applies. The n- coordinate vector x is now 

i ( xl,...,xr,x 	c .xi c
r+1 i  

Let us show that an arbitrary non-singular nxn matrix A 

associates with this x a vector y in Y with n coordinateslof 

which only r are independent. 

Let A be the array 	k,m = 1, 	,n. The k'th coordinate 

of y is 	y = a x km 
i 

	

akix 	akjx  

xi  

i,j ranging over 1,00111,r; 

(``lei 	
+c .) 
"kj 	" 

i  

r+l,...,n as before. 

The coordinates are dependent if there exist n numbers dk such that 

dkYk  = 0, 
and y is r-dim. if there are n-r independent sets of such dk.  
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i  
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1 
i 

where 
ak  is an arbitrary nxr array of rank r. Choose any r of the 

dk  arbitrarily, say d , p=1, 	Then 

1 dkyk = d
P  a
1.x ▪ do-p`n_p,i xi 0 
Pi 

which is a non - homogenous set of n-r equations in the n-r variables 

dn-p, 
and has a unique solution. Since the d can be chosen in r 

p 

independent ways, y is r-dim. 

Furthermore, it is always possible to find some A which will 
r give y = ( 1 ‘y,...,y ,o,....,o), for, 

k 
= ‘aki"kjc

ji )xi  

and it is only necessary to choose the 	so that for each k=r+1,...,n 

and each i =1,...,r, there holds 

aki+  akjcji = 0 	
3.6 

This is a set of ( n-r)r equations for the n2 elements of A, so there 

is no difficulty in satisfying it. 	In that case any r-vector can be given 

n coordinates and remain r-dim. under any non-singular transformation, 

by the simple expelient of adding n-r zero components. 

Let us apply these ideas to an r-dim. region R in the state 

space of an n-dim. system. Unfortunately R miht not be linear, but 

we will suppose the n-r degrees of dependence to be expressed by some 

set of non-linear differentiable functions MP(x) 	p = r+l,...,n. Since 

they are differentiable 

MP(x+Ax) - MP(x) = mPiSxi  + mP(x,41,x) 116. h 
for all x, x+Ax, and each p. rap  is a function whfch tends to zero 

as h. x. 	0, and the m are finite functions of x, in fact the partial 

derivativesM..(Berge 15 p.195 ) If x, x +4x both satisfy MP(x) = 0, 
x 
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and if U4Nxil is small, 

ral? Q xl  = 0 

so that there is a linear dependence between all vectors in directions 

tangential to the 	smooth manifold represented by the intersection 

of the MP(x) = 0. 	In short, there is a linear r-dim. tangent space 

at x in which the appropriate vectors are differentials dx or 

derivatives x. 

Using the notation of tensor calculus, a transformation from 

a linear tangent space Xt  to a similar space Yt  is : 

yi  
dy1  - 14xj dxj 

for the contravariant vectors dx, k, and 

G 	G 
1 -byj" 	x 

for aa variant vectors 	Gx, 	G(i) being a differentiable scalar function. 

Any r-dim. vector k can be embedded in an n-space by the 

addition of n-r zero components, and arbitrary non-singular n x n trans- 

formationsk will preserve the dimension. 
Zx 

It will always be assumed in future that any dependence between the 

components of x is expressed by some set of differentiable scalar functions 
such 

Ii(x) = 0. When trajectories reach/a region the velocity vector Sc can be 

resolved into a set of components normal to the differentiable manifold, 

=
x 	

= 0 

or, if there are n-r such functions M(x), 

Se/  = 	= 0 	i = 1,...,n;j = r+1,...,n. 
x 

and a set in the tangent space. Since every tangent vector is normal to 

every one of the zero vectors which point out of the manifold, we have 

.k .j 
y .y = 0 

k = 1,...,r 	j = r+1,...,n 



i.e. 

i=1 1:.)xi  xi 

 (*i)2 	0, 

a set of r(n-r) equations. 

In addition, it is convenient to choose a Cartesian coordinate 

system for the r- vectors in the tangent space, so that they are all 

mutually orthogonal: 

yk 	( 
• )2 	0 

Xi OXi 

k , m 	1 	r 	If the Mx  are explicitly known, there remain nr 

elements of the transformation to be chosen subject to 

r (n-r) 	42.r( r- 1 ) equations. They can always be so chosen if 

nr ">. nr -2-r(r41) 

which is allTays true. 

If the M ( x ) are not given explicitly, we must use the r ( n - r ) 

equations 3.6 and we have a total of 2r ( n r ) 	1-r ( r 1 ) 

conditions to be satisfied by the n
2 

elements, which again can always be 

done, together with the further natural requirement that the vector shall 

not be changed in magnitude under the transformation. This is equivalent to 

requiring 757, = 1 

The equations Di ( x ) = 0 are given only when certain constraints 

are imposed in the specification of the problem, for example defining the 

boundary of state space, When the optimal control is itself of such a nature 

that it fol.ces the trajectories to lie in restricted regions , the form of 

the subspace is not known a priori, and indeed it may be difficult to deter-

mine it even with full knowledge of the optimal control function. The most 

familiar situation of this nature occurs in linear bang-bang control where 

trajectories may "M., on a switching surface. In such a case we can only 



assume that tangent spaces can be constructed , i.e., that the switching 

surfaces are differentiableland the transformation will be performed 

implicitly, 

3.2,3 	Solutions of differential equations.  

We have airily proposed that the differentiability properties of 

u ( x ) may vary in different regions of state space, and that sllutions of 

the set of n differential equations of the dynamic system may be confined 

in some regions to subspaces of dimension less than n . Such a situation 

renders inapplicable some standard theorems concerned with differential 

equations, and these must be modified to some extent before we can proceed 

to the analysis of optimal systems. 

Definition 3.1 : Let f ( x ) = f 	
x1 ,• . • , x1  ) be defined on 

some region G of n - dim. space Rn  , and let xo 
be some point in G 

f ( x ) is continuous at x
o 

in G if for all e > 0 there is some 

d(x0)> 0 such that 

Ilx, - xo ll < d(x0) implies I f(xl) 	f(x0)1 C e 	3.7 

whenever x1 
is in G . 	( 	

def 
x 11 	sup 	) 

1 
Note that this definition allows x

o 
to be a boundary point of G. 

Definition 3.2 : f(x) is uniformly continuous in G if for all 

e 	0 there is some d > 0 such that for all 
xo60  

fl xl 	xo li 	d implies' f(x
1
) - f(x 

0
)J 

whenever x
1 

is in G. 

Straightforward extensions of these definitions arc 

Definition 3.3 : Let H G Rr  , 	n , be a subset of G , and x
o 

be in H : f(x) is continuous at x
o 
in H if 3.7 holds for x

1 
in H ; 

Uniform continuity in H is defined by an analogous modification of 

"TO 
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definition 3.2. 

If f(x) is continuous in .0 it is continuous in H , for x
1 

is 

certainly in G if it is in E ; the converse, however, is not necessarily 

true. 

Other possibilities suggest themselves, for example, f(x) may be 

continuous at x
o 
in H if x

o is a point of closure of H not contained 

in H , but we shall use them only if the need arises. 

.:3finition 3.4 : 	f(x) is differentiable in H if for all 

x , x +Llx in H , 

f(x +4Nx) - f(x) = ai(x)bxl a(x 	, LS x) ll Ll x f l 	3.8 

where the product a .ax is finite for finite Ax (the repeated index 

summation convention is implied), and a(x ,Ax) tends to zero when LSX 

tends to zero. 

If H is an open n -dim. set (i.e. r = n) this definition is 

eqtri.valent to the usual one for differentiability (Berge 15 p.195) and 

under those conditions we merely say 'f(x) is differentiable' without quali-

fication. Definition 3.4 allows x to be a boundary point of H , obviating 

the need for concepts such as right-or -left derivatives. The real strength 

of the definition is that the L1 x are not arbitrary, but are restricted 

to a particular set; this has important consequences, as we shall see. 

Definition 3.5 : f(x) admits a partial derivative with respect to 

i 	. I 	
F 	xi") - f(x'}  711- x 	f 	t!kx ,.x + h 

tends to a limit when h 	0. 

It is an easy consequence of definition 3.4 that if f(x) is different-

iable (i.e. in an open region of Rn) then it admits continuous partial 

derivatives with respect to all xi  , but if f(x) is differentiable only 
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in H , then it may be that no partial derivatives exist, for 

( 1  , . . . l x 	h ,. . xn) might not be in H for any x, for 

however small. For example, f(x) might admit a directional deriva, 

along a curve, when H would correspond to the tangent, but a variat: 

of any one component t,f x would take x out of H. 

Now we can say that there is a partition Xi 	i = 1,2.... of 

X such 	is to say, 

the state space X is defined by 2.4 b and 2.11 et. seq., and is (" 4..v.  

ded into regions such that every point in X is contained in one and eni:v 

oneL.The dimension r of each region is constant throughout that 

region, but r may vary from region to region. The differentia7ility 

properties of u(x) are clearly the same for f(x, u(x)), so that in 

practice f might admit no partial derivatives. This is inconvenient. 

for in practice the operation of differentiation can only be carried 

coordinate by coordinate, which is disallowed here. However, we can 

that by a suitable transformation of the tangent space of Xi  certa ii 

partial derivatives can be guaranteed to exist. 

Let f(x) be differentiable at a point x
o 
in H H being 

r -dim. ('Differentiable at xo
' means that in definition 3.4 'for a. 

x 	x - a x' is rerlaced by 'for xo 
and all bx such that x

o 
-FL x 

and in 3.8 x is replaced by xo  ) 	 A suitable transformation Z,3,/2; 

takes Lix to 

6y = (A y1  , Ay2 	Ayr  , O. 	. 0) 	3,9 

If any component 4 xP is identically zero on H , it is convenient -  
choose a particular A yq  to correspond: 

= 	.Y1 xP 



a. 1 

1 

x= a. A i  1 

with 	yq/ *03LP = 1 	)yq/ exm  = 0 , m/p . 

At the same time ai(x) ( see 3.8 ) may be subjected to a 

covariant transformation 

4-6 

Now, 

If certain of the L x1 	3.8 are identically zero in • in 	 H , the 
not 

corresponding a1  ( the partial derivatives ) are/defined, although 

the product 3.10 is. Since it is an invariant of the transformation, 

the elements of the transformation may be chosen in any way compatible 
• 

with 3.9, and the product biAy.)  will remain defined. 

Substituting 3.10 into 3.8 we have 

f(x0+2i x) - f(x0) = biLSyj 	a(x0,21x) 	x 1, 	3.13 

Strictly speaking, 3.9 and 3.10 are valid only for limiting values 

of Ax , which are precisely in the tangent space to the different iabl-

su]Dspace X.. Non-infinitesimal vectors x for which x, x+ilx am 

in X. are not in the tangent siace at x, but have a projection &I  

onto it, where 

./A )7 	A x 	e ( X) 	X II 

where e.(tx) 'ends to zero with Lix. A transformation of vectors in 

the tan gent space gives 

	 A x 

IY21 r LI 	+ e i  IlAx11] 
xi  

b. 63ru = 	a. 
I- 

x  
aiei(Ax) I k 	xji 
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and it rould be more correct to write 3.11 as 

G1 f = b
o
Q + [1a(x0,Ax ) 	I\ 	x 

but the alteration would add nothing of significance since we are 

not con cerned with the exact form of the function raultiplyinellAx 

In future vectors of the form 21 x will be treated as tangent vectors 

without further comment. 

Consider the index sets p = r+1,....,n; q =1,....,r. The 

Lycl are independent (cf. 3.9) so the corresponding partial derivatives 

fyq  exist and are equal to b
q
(x

o
), but the bp, multiplied by zero 

components, are undefined. In general we can say that if f(x) is 

differentiable in an r-dim. set it is possible to find a transformation 

such that f(x) admits r partial derivatives f . 

We are now in a position to tackle the differential equation 

f(x). An important theorem for the system of full dimension is 

that the solutions are differentiable with respect to initial conditions. 

This property is of prime importance to this work, so an analogue of 

this result must be proved for the conditions of state space. We begin 

by showing that solutions are continuous with respect to initial condition-t. 

Theorem: Let X be a region in n-dim. space , and G an r-dim. 

region contained in X. H is an r-dim. subset of G whose closure 

is in G. For every point z in H let there be a unique solution 

y(z,o;t) (cf.2.3) of .1 = f(x) remaining in H for t 	t
z
. Suppose 

f(x) is bounded and continuous in H. Then 	for all el,- 0 there 

is a d> 0 such that 

z, - z2 	< d implies U y(z1;t)- y(z2;011< e 

for t<-inin (tz  , tz  ) and for 
z2 in H. 

1 	2 



hood D of x
o 

Proof: Choose a point xo  in H , and some n-dim. neighb

n

our- 

containing H. Let E = D rl G and cc =w4E_HH w-x
o 

 
inf 

Consider the r-dim. box B: 	M z-xo(ll; cC 	z E E. Every point z 

in B is in H, for the nearest point in the r-dim. subspace that is not 

in H is at a distance cc from xo. The equality is permitted only 

when the corresponding boundary point of H is actually in H. 

Choose an interval I = 	T) such that every trajectory starting in 

B remains in H in the interval, e.g. if y(z,0;t) reaches a point 

outside of H at t = tz, let 
	

T = zmiN (td . 

For t..<T, 

y(z,o;t) 	f(Y(z.0;s)) ds 
	3.12 

remains in H, and, since f is bounded, y(t) is uniformly bounded and 

uniformly continuous. That is, for all e 0 there is a d(z) 0 

independent of t such that 

(tl-t2 	
d(z) implies 	y(z;t1) - y(z;t2)1k< e 3.13 

This is true for any 04:t1,t2 A( T and each z, so that for e 

there must be some d 
	

min { d(z)1 for which 3.13 holds uniformly in z. 

Then the family y(z,o;t) issaid to be equicontinuous. 

Ascoli's theorem ( Coddington and levinson 16 p.5 ) states 

that every infinite femily 	g(t)} uniformly bounded and equicontinuous 

on a bounded interval contains a sequence f  gn(t) 

convergent on that interval. 

As z i xo we have such a fqmily, and there 

sequence of which every member, and therefore also the 

which is uniformly 

is a convergent 

limiting member, 

satisfies 3.12 and so is a solution. By assumption, this solution is 

unique, so that all such sequences converge uniformly to y(x0,0;t) however 
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z tends to xo. This proves continuity at xo  in B. 

The extension of this result to hold for all points in H is 

strightforward, for it applies, as it stands, to any point in B, and a 

similar box can be constructed centred on any point in B up to points 

for which uc = 0. Similarly, if xl  = y(z,0;tr) 	t
1 
4C T, the proof 

applies for points in a box centred on xl  , with another suitably chosen T. 

The process is repeated for T arbitrarily small, thereby covering all points 

in H. We conclude that the solution of a differential equation is cont-

inuous uniformly with respect to the coordinates of its initial point as 

long as it remains in the same region of continuity of 	f(x). 

If f(x) is differentiable in H, the solution will also be 

differentiable with respect to the initial conditions. 

For, consider the solutions from two points zo,zi.  

xo(t)  = Y(zo,°;t) 	z
o 
+ 	ct  f(y(z

o
;s)) ds 

x
1
(t) = y(z

1,
0;t) = z1  + 

	f(y(z1
;s)) ds 

c: 	

3.14 

and restrict t to an interval within which the solution reivains in H. 

Let x1(t)- xo(t)  = IN x(t)  ; zl -zo 	z.  

Applying 3.8 to each element of x we hove 

Ax(t) = A z + ft  A(x(s)),ax(s) 	a(x(s),4 x(s))114 x(e) 	ds 
o 	 3.15 

where the matrix A comprises the elements ai  of 3.8 for each compon- 

ent of f, 	and a(x,,esx ) is a vector each of whose comi:onents tends 

to zero with Ax(s). 

The solution of 3.15 is of the form 

Ax(t) = g(iiz 

a continuous function of Az, so that 3.15 can be written in the form 

eft x(t) = 4 z + (t gozix(s) + 	(s,4z )RAzH ds 	3.16 
Jo 
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a being a function that tends to zero with A z . Differentiating, 

Ai = A(t)tx + a(t ,,n z)ma 	3.17 

Consider the n-dim.. vector equation 

= P(t) u + p(t , uo) 

where u
o 

is the initial value u(o) , and p tends to zero with u
o 

is of similar form to 3.17 , and if n linearly independent solutions can 

be found, has the solution 

u(t) = W(t,0)[ uo  + St  W(00)13(spuo) ds] 	3.19 

where W is the solution to the homogeneous matrix equation 
• 
U -= P(t)U 

with initial condition U(o) = unit matrix. In this form it is not quite 

comparable to 3.17, which does not admit n linearly indepent solutions. 

However, suppose 3.18 to be in fact r-dim. so  that it includes n-r 

degrees of redundancy. It can be trrnsformed into 

= 	Q(t)v + q(t,v0) 	 3.20 

where ( 1 	n = 	,••••,v) and vr+1= ....=vn = 0, 

by choosing a matrix R(t) and a vector r(t) such that 

u= Rv + r 

• • • 	u= Ahr + 	+ 

• • 
t = 
= 

PR + Pr ± 6  Auk) 
R-'

IT 
 EPR-R] v1„ R 	[Pr-1-4-p(u0)] 

Qv 	+ 	q ( vo) 

3.21 

Using the indices 	m = r+1,...,n we see that if 

R,r are chosen to satisfy the differential equations 

Qtai 	= 
	1."7.1,411 ,10,11 

q
m = 0 
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with initial values 

	

{Vo 	= 	R-1  [uo  -r o  )m 	0 	3.22 

then the last n - r equations in 3.20 become zero identities and the 

remaining equations form a normal r - dim. set with a solution of the form 

3.19. There is no need to actually carry out such a transformation, but the 

knowledge that it is feasible enablesus to write the solution of 3.17 

supposedly transformed into normal r - dim. form, but without altering the 

notation; as 
r

o  
t 

6 x = W(ts  0)d z + 	a(s 	 3.23 
- 

The integral tends to zero with Q z , uniformly in t , so that 3.23 conforms 

with the condition that x should be differentiable in H with respect to z, 

the initial condition. 

We must now consider the situation when trajectories enter a neigh-

bouring subspace. The two trajectories defined in 3.14 have initial points. 

in a region H1  and reach H2  , a space of possibly different dimension, at 

to  , t respectively. Let 	4 > tl> to, and xl(t) 	x0(t) = L1 x(t) ; 

t  x(t) 	zNz + f fl 	° A(x(s))Ax(s) + a(x ,6x)li x(s) 	ds 

rt 
+ t

1 f(y(z
1 

+
41 

B(x(s))Ax(s) + b(x d:\  x) 	x(s)11 ds 
1 

A a B , b , correspond to the elements involved in the definition of 

differentiability (3.8), the first pair applying in H1  , the second in H2  . 

The integral from to  to t1  involves two functions whose arguments are 

taken from differnt regions of space, for in that interval the first trajtc-

tory has already crossed the border. f(x) may be discontinuous at such a 

point, and its values at to  in H1  , 11.2  respectively will be indicated by 

0)) 	f(y(zo  s)) ds + 
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rtti  
f (y(z 3 a) ) 

0 

- , + . Then 

S

t 

i  t f(Y(21 ; s)) 	f(y(zo  ; s))ds = 

-f(y(zo  , t:)) - f(y(zo 	t:))(s - to) + F(to  , s) Is - 
to!  + 

+f(y(zo  , -Co)) 	f(y(zo  , Co)) ds 

(where F --*0 as s 	to ), 

	

[f(y(zo 	t-0)) - f(y(zo  , 	(t1  - to) - if(y(zo 	t:))(t, 	to)2  + 

1:1 F -to  

	

( 	s) s - to i + f(y(zi  ; s)) 	f(y(zo 	to )) ds 	3.25 J 0  

The last two functions in the intergrand take their values in the same 

region H1  in which f(x) is differentiable. Since y is differentiable 

with respect to both z and t , the integrand involves only terms 	the 

order of magnitude of/lz and (s - to). If the time of reaching the boundary 

is a continuous function t(z) , then as 	z 	0 the only significant 

contribution to the discontinuity of Ax(t) is 

	

[f(z0  , t0) - f(zo  , to)] (t1  - to) 	3.26 

and if f proves to be continuous at to  then the partial derivative 

.. x(t)/ 6z is continuous: otherwise the derivatives are continuous only 

within single regions, and after transition points x(z) is not necessarily 

differentiable, since 3.24 does not have the form of a linear equation. If, 

however, t(z) is differentiable, (t1  -to) can be written as a linear function 

ofiNz together with terms of higher order, and 4x/z , though not continu-

ous in time, does exist, and is the solution of 

Zx(t) E +, .
x(s)  

d z 	 o A(s) 	ds + tf(c) - f(t+od 	+ 

B,s, 	 s)  ds etc.(E being the unit matrix). 
0 

3.27 
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If H1  , H2  are p-dim., q-dim., respectively, then the proper transformat- 

ions make A a p-dim. row vector of partial derivatives, i)x(s)/ Zz 	a 

px p matrix (in the first integral), DtVe)z a p-dim. vector, B a q-dim. 

vector, and C!x/Zz in the second integral a qxp matrix. 

3.3 Isotims. 

3.3.1. HyEersurfaces of constant cost.  

With these basic and crucial results established, we may return to the 

problem of optimal control. The equation Sc = f(x) forming the basis of 

the analysis above is in fact the equation satisfied by a dynamic plant 

under optimal control, where the control function can be expressed u(x). 

In establishing this 'feedback' form in section 3.1 we agreed that a point 

in X is sufficient data (given the specification of the problem) to deter-

mine a control function, a traje,:tory, and, since the cost function depends 

only on these items, also a unique value of cost, which we shall write 3(x): 

Referring to 2.9 and 2.10 r'" 

J(x) 
	

min P(x , 0 , v(t)) 	3.31 
v(t) 

= P(x , 0 , u(t)) 

Consider the points which satisfy the equation 

(x) 

They form a set of points each of which has the same value of cost, and 

this set may appropriately be called an'isotim' ( Greek Tim = cost). 

The equation of the isotim expresses oiio degree of interdependence between 

the arguments of J(x), the coordinates of the point x, so that the points in 

an r-dim. region which are on an isotim constitute an (r-1) -dim. subspace. 

As we shall see, J(x) is piecewise differentiable and the isotims are hyper- 

surfaces with a normal ( not nedessarily unique ) at each point. 
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It is evident that every point in the state space lies on some isotim, and 

that isotims cannot meet, for this would imply that the single point has 

two values of optimal cost, which is ruled out by the assumption of unique-

ness. 

Whether the cost function is of the form 2.8a or 2.8b , it is clear 

that it can be expressed as the solution of a differential equation. This 

point was emphasized in section 2.2 together with the possibility of adjoin-

ing this differential equation to the dynamic equations of the plant. That 

particular step was rejected, but the differential-equation character of the 

cost function is not to be overlooked, and was in fact a major (though un-

mentioned) motive in deriving the results of section 3.2. 

For both the Lagrange and Mayer cost function we may write an equat- 

ion of the form 	J(x) = w(x) 

w(x) having the same differentiability properties as u(x), for it is really 

w(x, u(x)). Then 

J(xo) 	
ftf(x0) 

	

w(x(t)) dt 	3.32 
Jo  

with x(t) taken along an optimal trajectory, i.e., x(t) = y(xo  , 0 ; t). 

xo 
is independent of t , and J(x

o
) will be differentiable if both the integ-

rand and tf
(xo) are differentiable for xo 

in some given region. w(x) 

certainly admits certain partials, for w(x , u) is designed by the speci-

fication of the cost function to be differentiable for x and u , and 

u(x) is differentiable to a degree. The solutions y(x0  ; t) have been shown 

to be differentiable so that under suitable transformations certain derivat-

ives of the form wx 
= (w

x 
+ w

u  ux  yx 
 will exist. 

It remains to investigate tf(x0). tf  is defined (see 2.7) as the 
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first instant at which the solution reaches the terminal set T which is 

itself defined by a set of differentiable functions 

T(x) = 0. 	 3.33 

Each such function represents an (n - 1)-dim. manifold, and if T is the 

intersection of s such manifolds it is (n - s)-dim. Immediately before 

reaching T the trajectories are in a region of dimension p 	n-s , 

of which T is a boundary. 

Consider trajectories starting at t = 0 from xa p xb  , and let  

xb - Xa 
 = Q, x

a 
, and let the region Xo.containing both xa  and xb  be 

r-dim. They reach T at to  , t
b 

at points x
1 
= y(x

a 
0 ; t

a
) 

x2  = y(xb  , 0 ; tb) respectively. Define x2  -x1  = d xl  . For each com- 

ponert T(x) of 3.33 there holds 

T(x1) = T(x2) -= 0 	 3.34 

and since T(x) is differentiable, 

T(x2) 	T(xl) = Tz 	z + 	, ZS ) 11,L1 101 	 3.35 

where.a transformation A z = Z LSxl  expresses Ax1  as an r-dim. vector 

so that A zr+1 = • . =Azn  = - 0 , and the T 1  ,. • • p T r 
are partial 

z 
 

derivatives. 

Q 	
t 

x1 	rt  ob f(y(xb  ; t)) dt 	ia fk / yk / x
a 

; t)) dt 
3  

= I:a  f(y(xb  ; 	- f(y(x
a ; 

t)) dt 	
h

f(y(x ; t)) at 

3.34, 3.35t  3.36 give 

3.36 

T 
z 	

rt 
. Z 	a  / 

furb) - f(ya 	
th  

) dt + ctu  f(yb) dt
a  

the notation being abbreviated in a self-explanatory fashion. 

+ •t-11A.x 	= 0 	3.37 
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y
b 	

= 	y(xb  , 0 ; t) 	is 

theorem applies in this 

OP 
some 	to 

	
,gc 	t' 	tb  -- 

rt 

	

tb  fj(y(x 	; t)) dt 
a 

4 6. 	3.37 gives 

- 	 Z Tz. 

a continuous function of t , and the 

case stating that for each component 

such that 

= 	fj(y(xb ; tit)) itb 	
- 	t

o] 

[Sta  f(yb  ) 	f(ys)d"t] 	+ 	i o 	 ttAxiti 

mean value 

/J  there is 

3.38 

3.39 
tb - 	to 

Tz  . Z f(y(xb 	; t')) 

The integrand can be expressed in terms 3f A y(t) , hence in terms of 1 z 

and t , and it is easy to manipulate 3.39 into a form corresponding to 

3.8 , showing that tf(x0) is differentiable, admitting r partial derivat-

ives. Assuming the proper transformations to have been made, we will have 

= t

f  

 (x o) Jx w dt + w(tf)(tf)x 	3.40 
0  

Since J(x) is differentiable its partial derivatives will beC4o0n-

tinuous as long as x remains in one region of differentiability, but as 

the trajectories move from one region to another, the partials at boundary 

points might suffer discontinuities. We shall investigate this possibility. 

A similar problem arose in studying the properties of solutions of the 

equations at such boundaries, although the situation is not quite the same, 

f,)r there the initial point was fixed and the solution moved, while here it 

is the initial point itself which moves. 

(r 
in Xb  , converging to xo  ,x1  

J 

respectively in X, . X
o  , X_ are r-dim., p-dim. respectively. 3.40 holds 

for each point x
i 
 , x. ,x

o 
 ,x

l  , but r partial derivatives exist for 

the points in Xo  , and p for those in Xi  . For the two points xs  , xt 



from f xi} {xif , 

j(xs) 	j(xt)  = h(xs).  [xs 	xt] 	(xs , xs 
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xt) xs  

 

   

Jz(xs)./a z + 	xs  — x 

under a suitable transformation. Also, 

- J(x1) = J.L1 w + j1(xo xo 	xl) 	xo  J(xo) 

w being a vector in a p-dim. tangent space at xo . 

The difference 

[J(xs)M J(xt)] 	D(xo) - j(x1)-] 

can be made as small as desired, as (x.11 {x.1 converge to xo 	
x
1 
, j 

therefore the difference between the right hand sides approaches 

J z  (x  o  ).Az 	Jw(  xo) .6w + 	j(x0  , xo  - xl) - 

	

- 	P(x0  xo- x1).] xo 	
x111 	

= 0. 

Since there are terms ofboth first and second order in A x , it must be 

that j = j', and 

Jz./N z - J .A w = 0 

Az and Aw are transformations of the same vector xo - x1 but the form-

er is the limit of a sequence of vectors in r-dim. tangent spaces, and the 

latter is p-dim. Suppose r>p (we choose this for definiteness, but it 

could equally be r L p), then vectors in the p-dim. space corresponding 

to Aw can be embedded into an r-dim.space at the same point in such a way 

that the components p + 1 	. . . , r are all zero. In particular Aw 

can be given r coordinates, and be wide identical with Az , when corres- 

pondingly jig 	JT , and 

(Jz 	J;).4 z = 0 
demonstrating that when the components of ea z are not zero the expressions 

.1 	.7' z 	z 
are equal and are the partial derivatives. 

ONO 



58 

In many practical situations a 'switching surface' is the boundary 

between one n-dim.region and another, in which case r = p = n , and 

all derivatives Jx are continuous across the surface, indicating that the 

isotims suffer no discontinuities of slope, and a diagram of the isotims 

alone would not reveal the existence of control discontinuities of this 

kind. However, it may be that the trajectories remain on this surface, when 

we have r > p , and only p derivatives are continuous, and the isotims 

degenerate to (p - 1)-dim. hypersurfaces. Another way of expressing the 

continuity of certain partial derivatives is to say that that component of 

the isotim gradient which is tangential to the 'switching surface' ( or 

whatever surface it happens to be) is continuous. The boundary of state 

space presents a similar situation, though Rot likely without any discontin- 

uity of the control, and again the component of 	grad 3 tangential to 

the boundary is continuous, and other componeats are undefined on the 

boundary. This topic will be taken up again later on, but in the next 

section we shall find that the components of grad 3 play a central role in 

the determination of the necessary conditions for optimality. 

At this stage we must distinguish between the Lagrange problem and the 

Mayer problem, for the coot function is differently defined, and the term 

'points of same cost' leads to quite dissimilar constructions of isotims. 

3.3.2 	The Lagruge isotim. 

2.8.6 defines the cost function in this case, and for an optimal control 

policy, 	J(x) = ftf  L(x(s), u(x(s))) ds 

where t corresponds to the point for which J(x) is evaluated. The value 

of the cost changes from point to point along a trajectory and we have 

	

-gm , u(x)). 	 3.41. 
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Thus trajectories cross the isotims at a rate depending upon the 

control at the point, and if L is non-negative the isotims will be met 

in a monotonically decreasing sequence, reaching a value of zero at T, 

where t = tf. 	The isotim J(x) = 0 contains the entire terminal set, 

though the reverse is not necessarily true, for there may be points not in 

T from which T can be reached with zero cost. 

It usually turns out that L. is non-negative throughout the 

interval [to,t;) , though exceptions are conceivable, especially when the 

admissible state space is peculiarly shaped. In such cases it might be possible 

to construct an equivalent cost function which is always positive, but which 

has the same optimisation properties as the originil one. This might be 

achieved by adding to L a total differential, 

L1 = L + S
x.f(x,u) 

• • • cLi dt = flidt + S(x(tf)) - S(x(t0)). 

If such a function can be found which has a constant value over T and a 

constant value over the initial set of points so that the choice of optimal 

initial and final points is not affected, and if Sx.f is sufficiently 

positive, L will be positive but equivalent to L. 

In the analogous situation of the classical calculus of variations 

for a cost integratd L(x,*) a function S(x) can be found to satisfy 

Li(x,* ) 	= L(x4) + Sx(x).* > 0 

if there exists some line element (x 
o 
 ,* 
o
) at a point x

o 
where 

L(x
o
,* ) 	L. (x0,*0). ± > 0 	3.42 

for ail x / o 	A condition of this nature forthe control 

problem is lacking, though the form of 3.42 suggests analogies. At the 

* (Rund 17 p.5 gives no proof, but refers to Caratheodory 18 p.243.) 
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moment it is helpful to note that it is a condition which will usually be 

satisfied. 

In an n-dim. region the isotims always have unique normals at each 

point but in a region of lower dimension this is no longer so. When a normal 

is not uniquely defined on a continuous manifold there is a 'ridge' at that 

point, and this is in fact the situation here. In an r-din. region traject-

ories are always on a ridge of the isotim, though if a narrow view is taken, 

restricted only to the interior of that subspace the isotins are quite smooth-

just as the corner of a box is a ridge in 3-dimensions, but merely a straight 

line if viewed from the background of, say, one wall. Fig 3 shows 3.dim. 

regions A,B separated by a 2-dim. surface C. An isotim has an edge in 

C, but an observer whose panorama is restricted only to C will see no 

'edge• but a perfectly smooth curve. The components of Jx(A), Jx(B) in 

the tangent plane to C are equal to Jx(o) 	(J.x is used here as a symbol 

for the normal vector.) 

A 

isotim J(x) = constant 

C 

Fig.3 
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3.3.3 	The Mayer isotim  

The cost function, defined by 2.8a, is evaluated only at the terminal point, 

and is therefore constant with respect to all points on elle trajectory. Along 

a trajectory, then, we have 3 = 0, showing that the trajectory remains on 

the same isotim throughout its entire range. An isotim is in fact not merely 

a collection of points but a set of trajectories, forming a'sheat' or perhaps 

a 'tube' in state space, which meets the terminal set. Fig 4 shows the 

reduction of a surface isotim to a single trajectory at a 2-dim. subspace. 

The tangential components of Jx  are again continuous. 

I, 

1171 x(A) 
Fig 4 

,,,,isotim 
Each isotim dividEethe state space into two regions in which the cost 

is greater than and less than the value of the isotim. This apparently 

trivial observation points out a property which will rrove to be quite 

profound and far-reaching. 



Chapter 4. NECESSARY CONDITIONS FOR OPTIMALITY. 

4.1.  The Problem of Lagrange.  

4.1.1.  The minimum principle.  

The cost function 
t4, 

P(xi,ti,v(t)) = 	L(x(t), v(t))dt 	4.1 

is evaluated for one point x1 along the trajectory proceeding from x1,
t
1 

with control v(t) to the terminal set. * It is therefore a path integral. 

Along an optimal path the integrand L(x,u) is a measure of the 'rate of 

descent' of the state x down the 'hill of cost', the isotims being the 

contours. 	A non optimal trajectory also crosses isotims, but not at the 

same rate at which its optimal cost J(x) decreases. We must find some 

expression for the rate at which arbitrary trajectories cross isotims. 

Consider two points xi,x2  on the same trajectory. 

x2 -x1 
= 

1:2  f(x(t),v(t))dt. 
1 

According to the mean value theorem there is some t' such that 

x2  xi  = f (x(t '),v(t i)) 	t2-ti) 

t, c  t- t t2  . 

Strictly speaking t-  is riot necessarily the same for each component of f, 

but that is no matter here. 

J(x2) - J(x1) 
	p(xl...(x2-x1) 	j(x1,x2-x1) tI x2.111 

since J(x) is differentiable. 

J(x2)-J(x1) 

t2 -t1 

= 	p(xi ). f(x(t s ),v(t I )) + j(xi,x2-x1) 11 x2 -x11) 

t
2 
-t1 

*( In this section trajectories are not optimal unless specifically 

designated such. ) 
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= p(x).f(t') + j . sup 1 fi(tt ) I 

therefore, letting t2  -t1  4- 0, 

J = p(x). f(x,v) 	 4.2 

It must be cmphaoized that f is a contravariant vector in the tangent 

space at x, and therefore transforms precisely according to the usual 

rules. p(x) under these conditions transforms to give the partial deriv-

atives in restricted regions, and in n-dim. regions p(x) is identically J. 

Any trajectory from x
1 
on J(x

1
)=c

I 
reaches, after an arbitrary 

interval [t
11

t21 
	

some point x2. J(x2) = c
2 . 

The cost over this interval is 
ft2 L (x,v) dt, t1 

and since it is not optimal, 
irt

2 L(x,v)di + c
2 

That is to say, 
.1 

the optimal cost from x1 
cannot be greater than the cost 

of a trajectory which is non-optimal for an arbitrary interval and thereafter 

optimal. Now 

c2 c
1 = J(x2) - J(xl) 

evaluated along th 

but the interval 

L(x,v) 

it2 
L t

1 
[tl' t21 

+ p(x). 

said trajectory. 

(x,v) 

is 

2 	do- 

4.3, 
dt 0 

4.4 

4.5 f(x,v) 

dt 
dt t1 
Using 	4.2, 

+ 	p(x). 	f(x,v) 

arbitrary, so that 

":7?! 	0. 

Along an optimal trajectory the equality will hold, and v = u. If we define 

H(x,v) = L(x,v) + p(x).f(x,v) 	4.6 
then the optimal control satisfies 

H(x,u) = mvn H(x,v) = 0 
	 4.7 

4.3 



In words, the minimisation operation 4.7 meanstfor fixed x find 

that value of v for which the function H takes a value less than that for 

any other admissible value of v'. 'Admissible' means a value which does not 

violate the constraints specified in formulating the problem, for example 

2.4b, 2.5. 

It is also possible to describe 4.7 as a minimization with respect 

to x : ' for fixed u find that point x for which the function H takes a 

value less than that for any other admissible point'. We confirm easily that 

	

this is so, for at a point 	x 	x the corresponding optimal control is 

u(x+/Sx). If we evaluate H at x+ x, but retaining the value u(x), H will 

not take its minimum value, for u(x) is not optimal at x+Lx, so that 

	

H(x+Ax, u(x)) 	H(x+Ax, u(x+ax)) 
	

4.8 
= 0 

We can now extend 4.7 to the elegant expression 

	

min H = 0 	 4.9 v,x 

which contains the most essential necessary conditions and the tools with 

which to construct optimal control functions. 4.9 may be called the 

'minimum principle 

The most significant steps in the analysis are 1) the removal of 

the integration sign at 4.5, and 2) the recognition that H(x,u) is a 

mininum for x, with u fixed. The former has the effect of reducing the 

problem from that of the minimization of a functional with an associated 

differential system to the minimization of a function — a much simpler 

problem which can be solved either by ordinary calculus or, often, by inspectioi 

In terms of the behaviour of trajectories, we find at each point the control 
the 

which takes the trajectory in/optimal direction with respect to the isotim. 
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p.f is after all only a measure of the angle between the isotim normal 

and the velocity vector if the actual magnitudes lip 	, Ilf fi   are• 
are 

disregarded; if the magnitudes/considered significant 4.5 implies 

optimization of the descent rate of the trajectory, ensuring that 

J = -LI  for Jx  = p indicates not merely a normal direction but also 

an 'isotim density' or gradient. 

The other crucial step, minimization with respect to x, we shall 

now develop further. 4.8 implies 

H (x+Ax,u(x)) - H (x,u(x)) a  0 4.10 

We have, for all x, xtkix -in X, te  

L(x+6x,u) 	L(x,u) = Lx.ax + K(x,-X+6x)li 41:11 
4.11 

f(x+\x,u) - f(x,u) = f.4ax + F(x,x+6x)11 41x11 

for L, f are differentiable, by hypothesis, in anopen region containing X. 

Although 4.11 holds throughout X wewould prefer, as usual, to transform 

the velocity vector to separate its components in the tangent space from the 

zero components directed out of that space. Unfortunately that cannot be 

done at this stage, for the vector f(x+Atx, u(x)) is not optimal, and does 

not necessarily lie in the local manifold of optimal trajectories. 

4.10 and 4.11 give 

Lx(x,u).411x + p(x+6_x). [ fx(x,06x + FOL x111 + 

+ [P(x+Ptx) P(x)1 . f(x1u) + K 11,4S4 	0 4.12 

for any x, xi4x in the state space. 

 

If we consider the effect of an arbitrary variation of one Component 

we will have to deal with the expression 

p(x+Oxi) - p(x)  . f(x,u) 	4.13. 



G6 

which does tend to a definite limit. This does not imply thryt the vector 

CP (x+6.xi) p(x) 	 tc, x 	tends to a limit, and indeed it cannot do so 

in general, for that would mean that every component of p admits continuous 

partial derivatives, and a fortiori is itself continuous throuohout the 

interior of X. Since p is only continuous in local regions that conclusion 

must be false, and 4.13 in fact seems to offer little information. 

But let Ax be a special variation, in the direction of the 

optimal trajectory, 4Sr. = hf(x,u), and suppose x to be a point of cont-

inuity of u(x). Then 

(Lk  + pfx).f(x,u) +E [p(x+4x) - p(x).f(x,u) = 0 

ignoring small quantities and noting that the inequality in 4.12 is inad-

missible since the scalar h may be positive or negative. Then 

L
x 
+ pfx 

+ -42-1 'f(x,u) = 0 	 4.14 

The quantity in brackets is a vector parallel to f. It must therefore be 

zero, and 4p/h tends to a limit, which can be identified with p. Thus for 

each component, 

	

. 	0 	 4:15 
x 

At this point the expected transformation is ,essible. The equations 4.15 

are analogous to the Lagrangian equations of classical dynamics which are 

known to be invariant for local point transformations. The transformation is 

performed explicitly in Appendix B, with the result that 

	

L + qj(gi) 	+ 4i 	0 	 4.16 

i,j=1,....,r, the local subspace being r-dim. The only variables involved 

in 4.16 are those relevant to behaviour as observed from within the local 

manifold, the qi,qj  being uniquely defined partial derivatives. 	The 

remaining n-r variables qv. are undefined. 



At the boundary with an adjacent region the partial derivatives are 

continuous if they are equivalently defined in both regions, that is to say 

if the dimension of the regions is the same and the transformations corres-

pond component by comeonent. If the second region has a lower dimension 

certain components of J
z must be dropped, the others reLaining continuous: 

if a higher dimension new components must be added from that point. 

4.1.2 	Boundary conditions  

A differential ecuetion without boundary values is a feeble thing, as 

far as applications are concerned, unless a general analytic solution is 

available ( an event, in ccntrcl, most conspicuous by its almost invariable 

non-occurrence ), for numerical solution is required, and this is a process 

which cannot begin without initial values. Fortunately it is always possible 

to produce enough boundary values to solve the dynamic equations and the 

auxiliary equations 4.16. Suppose the initial set S is defined by n-r 

relations Si(x) = 0 	j = 	S is r-dim. and J(x) will have 

at least r-partial derivatives defined there; (at least r' because S is 

a boundary to a region of dimension probably greater than r, and we are 

concerned with behaviour as x approaches S rather than at S itself). 

The optimal initial point xo  has the property that for all xo+6x  in S, 

J(x0+x) - J(x0) 	0. 

• • • 	J
z
. 4,1 z N 	0 

and since all vectors 	z are admissible, 

J • = 0, i =1,...,r. 	4.17 
:1z 

At the terminal set a similar result holds, for T coincides with 

the zero isotim, and for all xf  +./Sx in T there holds 

J(xf+141x) - J(xf) = Ol and J k  = 0 K=1,...,S , where T is .5-dim. 
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There remains the question of the new components of jz  introduced when 

a trajectory moves from a region X
1 

of higher to X
2 

of lower dimension. These 

have to be given values when they first appear. Suppoce the transition point 

is 	in X
2
. 	In the limit as x approaches x

1 from X1 let the opting. 

al control be u1, and let it be u
2 
at x

1 
in X2. Suppose the dimensions of 

X
1 
X
2 

are r,s respectively, sir. 	Equating H(x,u) in Xand X
2 

we have 

i/ L(xlui) + J i.gi(xl,u1) = L(x
1
,u
2
) + J 

i 
.g kx

1 
,:u ) + 

z 	2 

+ J 	 g . 	''1(x ,u 1 2) 
zJ 

i =1,...,r 	j = r+1,...,S; g is the transformed velocity vector. 

4.18 

J 	j/  
zj g (xu

2
) = L(:u1) - L( u

2
) + J

i• 	 u) - g(xu
2 z  

for corresponding components of J
z 

are continuous. If s-r =1, this 

equation can be solved for J
s
, otherwise there is no means of providing 

z 
 

for the new components. This difficulty will be discussed further when we 

come to deal with computational methods. 

4.2 	The Problem of Mayer  

4.2.1 	Reachable sets.  

The cost .function g(x(tf)) is evaluated only at the terminal point; in 

words, a Mayer problem requires the trajectory to move to that point in T 

for which the function g(x) is least. The cost does n)t, apparently, 

depend upon the path taken to that point. Obviously this is quite a differ-

ent requirement from that of -Liu:, Lagrange problem, and indeed it is rather 

more subtle in its implications, and come interesting properties of optimal 
mere 

systems can be deduced from thq/statenent of the problem. 

The terminal set T is known a priori, and it is possible to evaluate 



g(x) over the whole of T without reference to the dynamic system. Suppose 

the point x
f 
e T gives 

g(x
f
) = min g(x) 

x4iT 
At first sight it seems possible to restate the problem 	'find a control 

for which the solution y(xo,o;u(t)) reaches the point xf  '. 	This in-

volves no optimization and is simply a boundary value problem, albeit 

difficult to solve. A umentioconsideration of any typical Mayer problem — 

time optimality to the origin, maximum orbital velocity, etc. --- shows that 

in general this naive interpretation overlooks a crucial fact, viz., that 

the apparently optimal point cannot be reached by the system. Such an inter-

pretation will usually propose a point at infinity if no constraints prevent 

it. This makes it clear that there are certain poiftts that cannot be reached, 

however u(t) is chosen,._/1(1 however great the time interval. There are 

some exceptional systems for which this is not so - completely controllable 

systems (Kalman 9 ) have the property that any point can be transferred to 
in 

any othri/finite time. For these systems the superficial interpretation is 

correct, but the system must be hedged about by contrA or state constraints 

to make it sensible. In general, however, we nay define, for any point x, 

a set of points R(x) which are reachable from it. The correct restatement 

of the Mayer -oblem would then re-d: ' find a control for which the solu-

tion of !c. =f(x,u) from xo reaches the point in R(x
)1 T at which g(x) 

takes its least value '. 	There is, if our assumption of existence and 

uniqueness holds god, a unique terminal point corresponding to everypoint 

in X and therefore a unique value of optimal cost for every point. 

We have, then, 

J(x) = g(xf); 	x
f 

= y(x , 0 , u(t) 	t ) 
f 
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u(t) being the optimal control function. We have seen that all trajectories 

cross isotims at a rate 

J = p(x). f(x, v) 

(4.2). Suppose that at some (x
1 , t1) 	J is negative. 

Let 	x
2 

= x1 + f(x, , v(ti) ) S t . Then 

J(x2) = J(xi) + '1St 

< J(xi) 

implying that from x
2 it is possible to reach a point of T for which the 

cost is less than for points reachable from xl  . But if x2 is reachable 

from xl  , so is that terminal point, in which case J(xl) was not optimal. 

	

We can only conclude that x2  is not reachable from xl 	and there is no 

admissible control vector which can make J negative. We know, however, 

that on an optimal trajectory J = 0 (section 3.3.3). Each isotim, then, 

is a boundary between the reachable and unreachable zones, and the optimal 

trajectory is always at the very limit of what is attainable. This inter-

pretation gives a sharper edge to the term 'optimal'. 

4.2.2. 	The minimum principle. 

It is more useful to compare the optimal trajectory with other 

possibilities than with impossibilities, and it is the properties of the 

optimum as a member of the attainable st of trajectories that enables an 

immediate 'minimum principle' to be derived for the Mayer problem. 

At tI 
let J be positive. Then 

J(ti 	t) 	J(ti) 

and since J can never be negative, the optimal terminal point previously 

reachable is now beyond our scope. The moral is that J must not be per-

mitted to take positive values. 



Defining 	H(x , v) = p(x).f(x , v) 	 4.19 

(cf. 4.6), the optimal control u must satisfy 
min 

H(x, u) = v H(x, v) 

= 0 

The discussion following the analogous result for the Lagrange 

problem applies without modification except the removal of L(x u). 

4.16 holds here in the form 
• 

= 1 . . 

J J. + 
z 

. , r. 

J g
m 	

0 	 4.20. 
zm i zY 

4.2.3. 	Boundary conditions. 

Boundary values for 4.20 are found in a very similar fashion as 

for the Lagrange problem. For the initial set the argument is identical; 

for the terminal set we have identically 

J(xf) = g(xf). 	 4.21 

Since this is an identityi it follows immediately that J
z = gz , when 

the derivatives existo 

4.3 • Construction of the Solution,  

4.3.1 	The interior of state space. 

The equations 4.16 , 4.20 are sufficient to describe the behaviour 

of the local gradients as the trajectory traverses the 'hill of cost', but 

are not in a satisfactory form to solve and determine the optimal control. 

Their development depended upon particular twnsformations which cannot be 

chosen in advance except in special cases where the local subspace is 

known, such as on the boundary of state space, and there too it cannot be 

assumed that other surfaces will not unexpectedly appear and have to be 

dealt with. To overcome this difficulty it is necessary to be able to write 
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the equations in such a form that the solution is unaffected whether the 

transformation is done or not, though where a suitable transformation is 

known, it is better to apply it. 

In fact, we already have the equations in a suitable form. 4.15 is 

a set of n differential equations from which the local auxiliary equations 

4.16 were derived. By inverting the transformation we regain 4.15. The pro-

cess is entirely analogous to that whereby an r-dim. contravariant vector 

was expressed, in chapter 3, in a form involving n coordinates. In Appendix 

B it is shown that the auxiliary equation transforms as a covariant vector, 

and, seeing that 4.14 is an invariant, we need only augment the r-dim. 

velocity vector to an n-form in the usual way, adding n-r zero components, 

and similarly augment the r-dim. 'gradient' vector 4.16 with n-r 

arbitrary components, and a point transformation will give the n equations 

4.15. 
It may be objected that we have merely returned to the starting 

point, wasting considerable ingenuity and effort, but in fact we have gained 

en enormous insight into the structure of the solution. Furthermore, when 

the local subspace is known there is no need to retain all n equations, 

and we may work more conveniently in a reduced spaces 

To confirm that we have sufficient information to construct the 

solution to the optimal control problem, let us follow a trajectory along 

its entire range, assuring ourselves that every predicament met with can be 

satisfactorily handled. It is convenient to use the more economic notation 

of the Mayer problem which in fact covers both types of problem, for one of 

the components of x can be regarded as equal to cost, with an associated 



p component equal to either zero, for the Mayer problem, or to unity, for 

the Lagrange problem. 

The initial point xo is chosen to satisfy the condition 4.17. 

Since this must be applied without a transformation we must repeat the 

argument of that section for the untransformed variables. xo  has the 

property that 

dJ(x0) = p(x0) . dx = 0 	 4.22 

for all x
o 	

dx in S . That is, we have S defined by the r equations 

S(x0) = 0 	 4.23 

and dx must satisfy 

S (x ) x o . dx = 0 4.24. 

This allows r components of dx to be expressed in terms of the remaining 

n—r , which are then arbitrary, and whose coefficients in 4.22 are zero. 

This, together with the r equations 4.23 give a total of n conditions for 

the required 2n initial values x. p
o 
. 

The remaining n conditions will be found later, but proceeding with the 

trajectory into the first subspace the set of auxiliary equations 4.15 

together with the dynamic equations it = f(x,u) are supplied with values of 

control obtained from the principle min H(x,v) i which is a separate 	• 

dperation for each component of control. 

At the boundary between two regions the question arises of the continuity 

of the variables p. We have seen in section 3.3.1 that if corresponding 

components of the partial derivatives of J(x) are defined in neighbouring 

regions, these components will be continuous. If the trajectory moves into 

a region of the same dimension then that part of p which, when suitably 

transformed, corresponds to the partial derivatives, is continuous. The 
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remaining part, since it is undefined in both regions, con be made continu-

ous. It is not possible in practice to distinguish between the defined and 

arbitrary components of p , so they must all remain continuous. 

If the second region is of lower dimension than the first ( say 

h .64g ) , then (g-h) derivatives of J(x) cease to exist, and again may 

arbitrari'y be set to be continuous. When, on the other hand, h:)Pg , (h-g) 

derivatives cease to be arbitrary, and take uniquely defined values. There 

is one relation applicable here, viz., 4.18, which in terms of the untrans-

formed variables simply expresses the continuity of H = p,f(x, u) 

In terms of the transformed variables 4.18 roads 

J i.(fl - 	- J 	= 0 

where1 ' 2 indicate values measured in the first and second regions 

respectively at the transition point, and a j  are the new variables intro- 

ducedin the second region but arbitrary in the first. 

(i=1,• • •,g; j =g+1,. 6 .,h). 

If u = u(x , Jx) , determined from the operation 
rain H , is 

substituted into 4.25 , there results a relation between J 	0414 4  
x e • 

It is impossible to say in general what information this gives, for it 

depends upon the function u(x , Jx) , but if h g = 1 	4425 could be 

solved for the single variable Jxg+1 •  It is doubtful, however, whether 

even this result is available in practice, for there will be no indication 

whether such transition points occur at all, since we are dealing with sub-

spaces which emerge from the structure of the solution and are not known 

in advance. 

Regretfully we must conclude that the local partial derivatives 

4.25. 
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cannot be determined in such a case. This does not prevent the auxiliary 

equations from being solved, for p is susceptible of another interpretat-

ion which is more amenable to treatment----that of a directional derivative. 

A directional derivative is defined in exactly the same way as 

derivatives in a restricted set (definition 3.4), except that the set of 

points x , x -1-x must lie on a curve --- a one-dim. manifold. In this 

case it is the set 

X = X0 	t f(x , u) dt. 	t 	Co tf) 
Since partial derivatives are continuous from region to region as 

long as they are defined, the single derivative in the direction of the 

optimal trajectory is certainly defined everywhere, always being tangential 

to the local manifold, and is therefore absolutely continuous. 

p has been regarded as comprising two components, one tangential 

and one normal to the local manifold. If we now consider the more restricted 

interpretation of a component in the direction of the trajectory and one 

normal to it, the former is always continuous, and in the n-coordinate 

form the solutions of 4.15 will remain continuous even in the unusual case 

of a transition from lower to higher dimensional regions. The equations can 

now be solved, but we have lost the uniqueness of the h partial derivative 

in an h-dim. region. In practice it can always be confirmed whether or not 

this situation has arisen, by examining the trajectories after solving the 

equations. 

Whenever the trajectory is in an unrestricted region in the interior 

of state space, p will be continuous, and all that is needed in practice 

are the 2n differential equations, the 2n boundary values, and some speci-

fication: of the interval CO ,tf). n of the boundary values have 
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already been found, the others arise by using a similar argument at the 

terminal set, where, if T is described by q equations 

T(x) = 0 

there holds also the q equations 

dT = T
x
.dx = 0 
	

4.26 

enabling q components of dx to be eliminated. tvr the Lagrange problem 

the coefficients of the remaining n-q components of dx are zero, in the 

equation 	dJ = p.dx = 0 , 

giving a total of n relations as required. For the Mayer problem the 

coefficients of those components are zero in 

(p - gx) 	dx = 0 , 	 4.27 

using 4.21. 

There remains to be determined the terminal time tf  . Fortunately 

there is also a relationship not yet used, viz., H(x u) = 0. 

This need be applied only at one point, for H(x , u) is constant if u 

is optimal. In order to prove this, we must show that a) H is absolutely 
4 

continuous, b) H = 0 almost everywhere. 

Using the definition 4.6 or 4.19 , H may be regarded as a 

function of the three variables x,piud This does not negate the 

dependence of p on x I though not expressing it explicitly, and is an 

enormous simplification. 

At a point of continuity of u(t) , H is evidently continuous, 

for p(t) , x(t) are. At a point t' of discontinuity, suppose the right 

and left limits of u are u+ ,u . x , p are continuous, therefore 

x 	= x
+ 
, p = p

+ 
. u is chosen to minimize H therefore 
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H(x , p , u) Z  H(x , p , u+) 

Similarly u
+ is chosen to minimize H , giving the reverse inequality, 

hence H—  = 11+  , and H is absolutely continuous. 

Let the minimum value of H(x , p , u) be H(x , p) . Let u(t) , 

the optimal control, be continuous at t' . At t / t' 

H(t) = H(x(t) 	p(t) , u(t)) 	H(x(t) , p(t) 	u(t')) 

H(t)—H(ti) 	H(x(t), p(t), u(t')) 	P(tI), u(t')) . 

Letting 	t 	approach 	t' from the right, so 

to the limit, 

that 	t — 	and passing 

H kix 	f 	+ 	Hp  . p 0 t = t' 
Repeating for 	t — t' -14t 0 , the sense of the inequality is reversed, and 

we conclude that H = 	0 	at points of continuity of 	u , i.e., almost 

everywhere. H is therefore constant, and equal to zero throughout. 

When this condition is used, the total of unknowns is equal to the 

number of conditions to be eatisfied, and the problem can be solved 

without redundancy. 

4.3.2. 	Boundaries of state space. 

If the trajectory is at any time on a state space boundary, the 

situation is no more complicated in principle, though it is in practice. 

Suppose the boundary is described by the single equation 

C(x) = 0 	 4.28 

If the trajectory remains on it for finite time, there holds 

C(x) = Cx  . f(x u) = 0 . 	4.29 

4.29 is a constraint on the control variables and must be satisfied when 

H(x , u) is minimised. If it occurs that 4.29 does not involve u then we 
• 

have 	C(x) = 0 

• 
• • 



k d and similarly for higher derivatives. Writing 	C(x) = C(k)(x) 
dt
k  

a q'th order boundary gives 

/ \ C( X) = C(1)  kX) = . . . •= C (q)/ kx , u) = 0 

the q'th derivative being the first involving u . 

The q conditions 

C(x) = . . . . = C(c1-1)(x) = 0 

describe an (n-q)-dim. manifcld, for which an explicit transformation gives 

k 	(k) . fi 

x 
k = 	q-1 ; i =1, 	 n , the remaining velocity variables being 

chosen, as usual, mutually orthogonal, orthogonal to the z1c  and such 

that the determinant of the total transformation should be unity. On the 

boundary only the (n q)-dim. system need be considered, for which 

Zj 

 .1 j = 1,41, 
 . . , n - q is continuous at the transition point. 

The time at which the boundary is reached must also be found, and 

as before there is a single relation to fill the gap, not, this time,-H = 0, 

but 4.25, expressing the continuity of H . In 4.25, suffixes1 2 
 repre-

sent values at the terminal point measured on the boundary and in

, 

 the inter-

ior of X , respectively, for this direction of motion is from a region of 

higher to one of lower dimension. Along the boundary the original system 

equations must still be retainedifor the transformed system does not give 

the actual value of the state variables. Recalling that f , not x , has 

been transformed, we see that only operations or consitaints involving f and 

J
x 
, e.g., min H , can be dealt with in the transformed system. This 

implies that the differential equations for z need not actually be integr-

ated. 

Vek 

4.30 

4.31 



At some point the trajectory returns to the interior of X , say an 

n-dim. region, (this will be the most common occurrence). The q components 

of J
x 
excluded from consideration on the boundary, have to be reintroduced, 

and it is best to apply the inverse transformation at the transition point 

to restore the system to its natural form. In this case the difficulty of 

finding the correct value of p cannot be avoided by giving it a spurious 

continuity, for these components had been discarded completely along the 

boundary. There are q extra unknowns, introduced because of the boundary, 

but there are also q extra conditions 4.31 to be satisfied. The reme47, 

in fact, appeared before the ailment, and this time there is no difficulty. 

Again, 4.25 supplies the extra piece of information needed to determine 

the instant of exit from the boundary. 

It is not suggested, in using expressions involving H(x u) , that 

they really have direct reference to the time tf  or the time of reaching a 

boundary ---they do not. The important fact is that the total number of 

unknowns must equal the total number of constraining conditions, and it is 

simpler to correlate them in this way, as a matter of convenience, without 

implying a real connection. Similarly the boundary conditions 4.31 do not 

involve an explicit reference to the unknown components of p with which 

they were associated above. The real meaning of the 'corner conditions  4.25 

is that it acts as a link between the two parts pf the trajectory before and 

after that point. Ideally it would be nice to separate entirely the different 

sections of the trajectory, and deal with each in isolation, were it not 

that the behaviour of one affects other arcs. This corner condition express-

es in simple form the complex interaction between the two parts of the 
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trajectory. 	To digress for a moment on this point; it would be legitimate 

minim 1+-  L(x,u)dt 
i ±. 	i 	t. 

where successive arcs are taken over rto,t1) tIti,t2)..., and the Lagrange 

notation is used. The effect of the corner condition is that 4.32 is al-

ways valid if the right hand side is subjected to the restriction that H=p.f 

is continuous at each junction ti. 

This process is entirely analogous to regarding the cost function integral as 

an infinite sum, and minimising each summand separately : 

/ min jt
tf  Loc , u)dt =1t

fmin L(x , u)dt 
o 

 

which again is valid as long as the right hand side is restricted by 

4.33 

x = f(x , u) , which relates successive values of x In Appendix C a 

crude but suggestive derivation of the auxiliary equations is carried out 

on this basis. 

State constrained problems raise no particular difficulties; in 

fact, as should be expected, they simplify the situation by reducing the 

state space. (cf.Bellman and Dreyfus 19 p.20). 

4.3.3. 	Singular Trajectories. 

A possibility not yet treated is that of surfaces of explicitly-

given form arising in the interior of state space. Evidently they can be 

treated in the same way as boundary surfaces, by performing explicit trans-

formations and discarding redundant variables. It nay be that they are 

specified in the formulation of the problem, as constraints, and then their 

effect is not significantly different from that of the usual constraints, 

but this situation is rare; a more familiar phenomenon is that associated 

with singular surfaces. 

to divide the trajectory into a number of isolated subarcs only if 

min 	P4-1  L(x,u) dt 	4.32 
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This is one of a number of cases in which the minimum principle and 

similar techniques break down, either because there is no unique solution 

(or no solution at all) for the problem in that form, or through some 

shortcoming in the technique. Singularity is an example of the latter, and 

occurs when the minimisation of H does not provide a unique valke of u . 

Typically, this occurs when H is linear in 

H = h(x , p) + g(x , p)u = 0 	4.34 

If at some point g(x,p) = 0 , H is insensitive to 	and the minimisa- 

tion is worthless. If this happens at an isolated point it causes no 

trouble, for u(t) may well be undefined on a set of zero measure, but when 

a finite interval is involved difficulties arise. 

This problem has only recently received serious attention. 

Kreindler (94) remarked on its relation to the flatness of the reachable 

set boundary; Johnson & Gibson (20) noted that if g(x) = 0 then, from 
I • 

4.34, also h = 0 and furthermore t = 	= 0, A = h = 	= 0 until 

u appears as an argument, just as in the case of state boundaries. Each of 

these relations defines a surface in the 2n-dim. phase space of (x,p), but 

only a relation involving x alone defines a surface in X. Techniques 

introduced by Faulkner (93) and Kelley (21) use special coordinate trans-

formations, in a spirit akin to that of transformation theory in analytical 

dynamics, seeking more easily integrated forms of the equations, rather than 

a reduction in state space, though this, too, was suggested by Kelley. 

These arguments provide a method for constructing singular controls, 

but give no indication as to their optimality. This property was investigated 

for a particularly simple problem by Wonham and Johnson (24) and a pertinent 

test, based on the Clebsch condition, is given by Kelley (58), and there are 



other techniques (Snow 23, Than 49) designed to obtain reasonable solutions 

in these and similar degenerate cases rather than to understand the fundam-

entals of the situation. The true nature of singularity is just beginning 

to emerge (Hermes 22) in work based (as we have come to expect) on ideas of 

Carathdbdory's, and appears to be connected with optimal accessibility and 

controllability.  

4.3.4. 	Summary. 

In brief, the solution of the optimal control problem involves the 

following principal stages. 

If the trajectories remain entirely in an unrestricted region of stage space 

the n system equations 

x = f(x,u) 
	 4.35 

together with n auxiliary equations 

p = 	-Lx 
- pf

x 	
4.36 

are solved to satisfy the 2n+1 conditions imposed by the initial and term-

inal sets, the boundary conditions derived therefrom, and H(x,u) = 0. The 

solutions of 4.36 are continuous throughout and in an n-dim. region 

represent the partial derivatives of cost Jx  . In regions of reduced dimen-

sion they may be transformed in such a way as to give the restricted partial 

derivatives of a local subspace, except at points after a transition from a 

region of lower to one of higher dimeteion when p represents a directional 

derivative of colt along the optimal trajectory. On a constraining manifold 

the control is chosen to maintain the trajectory on the manifold, either 

retaining 4.35 in that form, or transforming it to a reduced set, but in any 

case retaining all n equations 4.35. 
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4.35 	A Pictorial view of boundaries  

A further insight into the behaviour of the solution space at 

boundaries can be gleaned from a purely pictorial view of the effect of 

imposing an equality constraint ;auto a field of trajectories. 

Fig 5 represents part of a field of unrestricted optimal trajec-

tories for a Lagrange problem, and a boundary is to be imi:iosed at C so 

that the trajectories for the new problem must all lie below C. Consider 

the trajectory B; it and all points below will be quite unaffected by the 

imposition of a constraint at C. The same applies to all points to the right 

of A which are on or below C. In this region the isotims and trajectories 

are unchanged, but points to the left of ak and above B will lie on isotims 

of greater value than before, because trajectories from these points must be 

lie, for part of their range, on C, and therefore 'cost more '; the 

isotims will be distorted to the right. 

Fig 5 

Clearly the trajectories will leave the boundary at A, and follow B 

thereafter. They cannot leave before, for the optimal direction at such 



points is away from the interior, and if they remain on the trajectory after 

A there must be more than one optimal trajectory from A. On the boundary 

trajectories all coincide, expressing the reduction from 2- to 1- space, and 

must thereafter remain ooincident, occupying the 1- space B. Since B is 

not known in advance, the trajectory must be treated as a member of a 

2.-dim. field. 

The behaviour of the isotims at the boundary is interesting, and we 

will need, to investigate it, the concept of a'penalty function'. This is a 

function which, added to the cost function, has the effect of relaxing a 

'hard constraint ' to an ' elastic constraint'. For a constraint .C(x) =0 

a suitable penalty function is k/C(x), which tends to a hard constraint as 

Ic•mit 0 	Fig 6' 

k/C(x) 

k 	0 

Fig 6, 

C (x) 

The cost of being at points close to C is very high, and it will be 

impossible to actually cross C. The constraint has the effect of transfor-

ming the isotims covering the vhole of infinite space into the region enclos-

ed by C, and their density will be very high (Fig 7 ) 

As K4 0 the isotims collapse towards C, for the cost at each point 



cost increases 

Fig 7 

/rig-

not on C decreases (Fig6 ), and in the limit they will actually lie on C 

for pai4t of their range, though points in the interior will not be at all 

affected by the addition of the penalty function. There will be a sharp dis-

continuity manifesting itself as a corner in the isotim as it meets the 

boundary ( Fig. 8). 

Since the isotims actually coincide on the boundary, J
x
, expressing 

the change in cost for a variation in x must be undefined for 8x 
normal to C, though it will be defined for Sx tangential 
to C, and as a consequence 

Fig 8 



any multiple of C. will satisfy the equation describing the normal to the 

isotim. The jump at the point of intersection with the boundary is caused 

by the sharp corner, and the actual component that we use is the projection 

of 	p
1 onto C (Fig 8' ). 

It is easy to conceive this situation for a 3 -space. C is a sur-

face and A ( F.ig 5  ) a curve. The trajectories form a sheet on the boundarY, 
it 

leaving/in the curve 	which is the intersection of 

c(x). o 	; 	Cx.f(x,u) = 0 

u being optimal without consideration of C. The isotims are surfaces meet-

ing C at a sharp edge, When trajectories leave C they do so tangentially, 

for they follow the unconstrained trajectories B, which are tangential Lt 

the control is continuous. This strongly suggests that in all cases where 

the unconstrained optimum is stationary the trajectories will be tangential 

to the boundary. It is not legitimate to transfer this argument to the point 

of entry to the boundary, for optimal trajectories are not, in general, 

symmetric. 

The Mayer problem presents a somewhat different picture, involving 

the concept of reachable set. In accordance with the principle that constr-

aints should be regarded as part of the background to the problem, rather 

than as extra conditions, the reachable set must be considered in terms of 

the restricted sate space, for no points outside of it can be reachable in 

the context of the problem. The state space boundary forms a natural bound-

ary to the reachable set, and also to the isotim which coincides with the 

extreme points of the reachable set. 

The situation is rather like that of a toy balloon blown up close to 

a fixed surface, the neck of the balloon corresponding to the source point 
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of the reachable set which evolves in time, As it expands, the walls of the 

balloon reach the surface and will lie upon it with a sharp edge at the meet-

ing point. A nest of the reachable sets will share the same boundary over 

this region. Since a trajectory must remain upon the same isotim throughout 

its range, boundary or no, the curve in which the isotim surface meets the 

state space boundary must itself be a trajectory, and since this trajectory 

corresponds to an edge of the isotim the normal Jx  is not uniquely defined 

along it. As for the Lagrange problem, the coincidence of isotims on the 

boundary rules out the possibility of uniquely defining a normal component of 

Jx, and it is only the projection of Jx onto the tangent plane (tangent 

space for higher dimensions ) that may be considered. 
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Chapter 5 	CRITICAL REVIEW OF OPTIMAL CWPROL THEORY 

Having established the principles and major properties of optimal 

systems from a particular viewpoint we must compare these results, and , 

perhaps even more important, this attitude to the problem, wUh those famil-

iar from other studies. It will be necessary to discuss the state-constrained 

problems separately, for although no real distinction has been made hitherto, 

other methods tend to introduce new techniques to deal with such constraints, 

treating inequalities with quite unmerited respect. 

5.1 	Unrestricted State Space  

5.1.1. Classical calculus of variations  

It was suggested in the introduction that the calculus of variations has 

developed sufficiently to be able to cope quite satisfactorily with the math-

ematical difficulties of the problem of optimal control. The details of the 

particular techniques required may be found in Burkovitz (25) and Hestenes 

(78), but what is more important to the present work is the general approach 

of the classical calculus, for which the simpler, formal derivation by 

Troitskii (26) will suffice. 

What is described here as 'classical' is the method based upon the 

construction of a linear functional representing the first variation of cost, 

and the application of the 'fundamental lemma' to obtain the necessary cond-

itions for a stationary extremum with respect to weak variations. 

Given a cost function 

g(x(tf)) + 	L(x,u)dt, 	 5.1. 

a dynamic system 

= f(x,u) 	 5.2 

!. .5 



initial and terminal ads defined by 

S(x) = 0 	 5.3 

T(x) = 0 

An a.'g mented cost function is formed by adjoining all the vector equIlliY 

constraints to the minimand with undetermined vector multipliers. Thus, 

P= 
	
6(  x(tf  + a S(xtto)) + bT(x(tf)) + 
t, 	 5.4 

+ t  L(x,u) + p( x - f(x,u)) dt o 
Extending the idea of differentiability of a function, a functional is 

said to be differentiable if its variation can be expressed as a linear func- 

tional of variations of its arguments plus terms of hither order but insigni- 

ficant magnitude. ( Gelfand & Forain 27 p.11 ) The first variation of 

5.4 is 
SP = gx.ax(tf) + 	Sa.S + a Sx.Ax(to) * 

+ b T x 
	 to 
.6x(tf) + 	

L + p(i - f)1 	
rf 

+ 
tf 

• Lx 
 . U x + Lu. Cu + Sp. 	-f) + 

+ j4(g x - fe  Sx - fu. u ) dt 

All the variations being arbitrary and independent, their coefficients Tn— 
.-0 

be set equal to zero, which gives, after integrating p.'14x by parts and 
. , 

setting 	A x = gx + x 6t , 

Sp :  

	

x - f(x , u) = 0 	a 

x(t) : 	p + pfx  - Li = 0 	1) 

u(t) : 	pfu  - u = 0 	c 

a : 	S(x(t0)) 	= 0 	5.6 	O. 

b : 	T(x(y) = 0 	e 

L x(t 0 ) : 	 p(to) - aSx 	= 0 	f 

A x(tf ) : 	 p(tf) + gx + bTx = 0 	g 

5.5 
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t
f 

cito , 
Dt 
f 
: 	

DI  - Pailt 	
= 0 	 h 

o 
If two arcs meet at a manifold M(x(t'))1:0 it must be adjoined as a con-

straint in a similar way, giving relations between the right and left limit:: 

at t' t' + - 

p(t') - p(t1.) + cMx 	0 

t' 
[L 	PifItT 

The use of Lagrange multipliers involves a concept that we rejected in the 

earlier chapters, namely, that equality relations are 'constraints' prevent-

ing the system from behaving in a natuma way. Some relations do in fact 

have this effect 	terminalconditions, for example 	for if the problem 

were posed without them the system would behave quite normally, finding a 

'natural' unconstrained solution with, as it happens, a lower value of cost. 

It would, however, be stretching this interpretation to the limit t, 

regard, say, the differential equations in this light; rather, they define 

the system, and the supposedly unconstrained system that would exist in 

their absence, has no physical significance at all. The practice of regard-

ing the equations in this light is in the tradition of the calculus .)f 

variations, in which the problem is quite sensibly posed without differen,--

ial side constraints which merely reduce the number of degrees of freedom; 

in engineering, the equations obviously have a different significance. This 

distinction, between essential and inessential conditions (which is similar 

to the different types of inequality constraints discussed in 2.1) does not 

emerge at all in this formulation, though it is important in practice. 

The effect of a constraint is to remove one degree of freedom from 

the system; the role of the multiplier is to replace the lost freedom by the 

516 
= 0 
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addition of a new variable, upon which the system may be treated as uncon-

strained. The result is an increase in the complexity of the system descrip-

tion, now involving more variables, but a simplification in its behaviour, 

and with finite constraints it is usually a matter of taste whether this 

technique is used, as a pure device, obscuring the true nature of the situ-

ation, or a direct reduction in the system is made,by elimination or trans-

formation. When differential equations behave as constraints, the latter 

course is not available, and multipliers must be used. The magnitude of the 

multiplier is a measure of the degree of restriction represented by the 

constraint 	the effort, as it were, that is required to ensure that the 

system conforms with the constraint. (Lanczos 28 p.84). 

5.5 illustrates this interpretation of the multiplier as a force in 

a different way. If the cost is regarded as a potential, a potential gradient 

being a force, the multipliers become potential gradients in the constraint 

space. For example, a = 	, the change in cost due to variations 

(violations) of S ; similarly p represents the effort of satisfying the 

dynamic constraint. If any constraint would have been satisfied automatic-

ally by the unconstrained system, (for example, a terminal condition which 

happens to be the same as the free terminal point) the corresponding multi-

plier is zero. In the same way, since all the variables in 5.4 are on the 

same footing, 5.6b represents a gradient in the function space of x(t). The 

corresponding equation 4.15 was derived, it will be recalled, as the grad-

ient of H(x). The distinction between the gradients in the space of x(t) 

and in the space of x is related to the reduction of the minimisation of an 

integral to the minimisation of a function in section 4.1.1. 



Arothuv, equally fundamental, process involved in 5.5 is the use of 

the condition for a stationary value, i.e., that the first variation of cost 

shall 1.,anish. In the control problem, where inequality constraints are the 

rule, the minimu_ is often not stationary. This highlights a feature of the 

classical problem -5hich can be overlooked when the true minimum turns out 
out 

to be stationary. The classical treatment does not set/to find a true mini- 

mum at all;  but a stationary value, which, even in the classical context is 

only a secondary property of the minimum. This is a serious matter,for it 

implies that the whole approach to the problem is not sufficiently 

fundamental. 

The problem did not arise until late in the development of the cal-

culus, for it did not affect the treatment of state-inequalities, these being 

handled by the theory of unilateral variations (Hadamard 33), but only 

differential inequalities----in this context a very sophisticated refinement. 

The way in which writers fought shy of this problem is an indication that it 

raised extrpordinary questions; Valentine(81) produced a technique to get 

round the difficulty, bul: other reference to the problem is rare. His method 

uses a slack variable to convert the inequality to an equality, which is then 

dealt with in the rsual -qay. Thus two additional variables are introduced, a 

slack variabe an' n unt,)rmined multiplier, when, on the face of it, the 

inequality shol-7;. sim711.7y the problem by reducing the region in which a 

minimum may 	sought. 	a device, it is satisfactory, and will solve pro- 

blems involvi-hp: control-variable inequalities (Berkovitz 25), 

A comparison of the resul ts obtained here and those derived from the class-

ical approach sho-:rn little difference as far as practical application is 

concerned. it is usual, using the latter method, to impose on constraints 
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of the type 

R.(x,u) 	0 	i = 1,. • • • I r 	5.7 

the condition that, when the first S components of R vanish, the matrix 

DRi/uk  (k = 1, . 	. , m > s) shall have maximum rank.(25, 78). This 

enables the zero components of R to be adjoined to H with multipliers clr 

obtaining, together with the constraint 

R.(x,u) = 0 

the stationarity condition 

H
u 

+ qR
u 

= 0 
	 5.8 

Furthermore, 1* allows the Clebsch condition to be derived from the Weier-

strass inequality (cf. Bliss 5 p.224). The condition is 

e(Huu + qR )e -- 0 	

5.9 
where 
	Ru e = 0 , 

only those components of R being taken which are zero. 

If 5.9 is satisfied with a strict inequality, the trajectories will 

always occupy an n-dim. region, for u will have a unique differentiable 

solution u(x,p) and the differential equations for the state and auxiliary 

variables will have differentiable right hand sides. This result is of the 

greatest importance in applying our earlier technique, for while we assumed 

that u(x) was differentiable in certain subspaces, it was always doubtful 

whether p(x) should be interpreted as the n-dim. normal to the isotim or 

merely a directional derivative of J(x). This test indicates immediately the 

type of field to expect, and should be applied before attempting any comput-

ation. It is, in fact, a test of the singularity of (Huu  + caRuu). 

5.1.2 	Paths of steepest descent.  

It is quite evident that a method based upon stationary minima does 
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not get to the root of the problem, and a radically different approach is 

called for. Caratheodory provided such an approach, ( 29, Bliss 5 p.77), 

which, though not designed specifically to overcome the difficulties of 

constraints, nevertheless can lead to a satisfactory treatment. 

The differentiability of the extremals and their slope functions 

= f(x) leads, in the classical calculus, to the possibility of embedding 

an optimal trajectory in an entire family of such trajectories. In a field 

of trajectories a one-parameter family of hyDersurfaces 

W(x) = 

can be constructed, crossed by trajectories at a rate 

= W
x
.* 

For a problem with cost function J= L(x,*)dt the relation between the 

cost and the parametric value of the surfaces is expressed by 

dJ = dJ . dt 
dw dt dw 

5,10 

The direction of 	steepest descent is that which 

minimises dJ/dw, giving, for a stationary minimum, 

L. W .* - L W = 0 
X X 

	

L. 	= mW 

	

x 	x 

L 	= mW .x 

m being a factor of proportionality. If the surfaces are chosen in such a 

way that the value of the cost along any curve of steepest descent between 

two fixed surfaces is the same, m becomes unity. Such surfaces were call-

ed by Caratheodory 'geodesically equidistant', for which the last equation 

in 5.11 is the Hamilton - Jacobi equation. 

5.11 
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The requirement of steepest descent does not imply that the minimum of 

5.10 with respect to x should be stationary. We might ask directly for 

min (L/W
x.it ) 

and the presence of differential inequality constraints would not affect the 

formulation at all. 

To translate this into control terms requires merely the replacement 

of * by f(x,u), and minimisation with respect to u. This overcomes two 

difficulties at one stroke;. first, the question of the equality relation 

= f(x,u), which is handled here by substitution rather than by multipliers, 

secondly, the inequality consraint on u, which merely reduces the range of 

the minimisation. 

We have, then, 

min L(x,u) / Wx.f(x,u) 	= 1. 

J and W are equivalent, apart from arbitrary constants, so we may 

write, if L 	0, 

min ( L - Jx 
.f ) = 0 

This was the source of the ideas of chapter 4, the supporting arguments and 

constructions being no more than refinements designed to align these ideas 

more closely with the needs of engineering systems. 

It is at this stage that the translation is made from the minimisation 

of a functional to that of a function. The requirement of steepest descent 

for a family of geodesically equidistant surfaces is equivalent to the observ-

ation that the increase in optimal cost J represented by a movement from 

one surface to another cannot be greater than the cost actually accumulated 

1 L dt - cost must be earned, it does not appear by jumps. This fascinat-
ing interpretation becomes somewhat dulled in reduction to mathematical form, 
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and appears more prosaically in equations 4.3, 4.4. 

5.1.3 	Dynamic programming.  

This technique was developed as a computational algorithm to treat a large 

class of multistage decision processes of which the optimal control problem 

is a special case. It may be summed up in the simple 'principle of optimal. 

ity': 'every E: art of an optimal process is optimal ', which , for the 

Lagrange problem, leads to the following. 

Let the optimal cost from x
o 

to the terminal set be J
o 

and let the 

optimal trajectory from xo  pass through x, on Ji  at tl, Then 
fti  

Jo  = J0 L(x,u)dt 	Ji  , 

a simplified version of 4.3. A formal analogy between this principle and the 

results of the classical calculus of variations has been discussed by Bellman 
using 

and Dreyfus (19)/ principles similar to those of chapter 4, but without care- 

ful consideration of the differentiability properties of J(x) - they require 

second partial derivatives in all arguments - gInd without the geometric back-

ground used here. One might say that the work presented here is a geometric 

interpretation of dynamic programming, though this would give a mistaken 

impression of the genesis of the 'minimum principle', which was a direct 

evolution from Caratheodory rather than Bellman. This discussion throws a 

clear light on the antecedents of dynamic programming, and one is surprised 

not to find adev!lte aemmledgement made to Caratheodory in Bellman's works. 

(cf. Osborn ::70 ) 

5.1.4 Pontryagin's maximum principle.  

The concept of a field of optimal trajectories leading to the Weierstrass 

condition, dynamic progrnrming and isotiins,marks a watershed in the calculus 

of variations. On one side a trajectory is seen as a member of a family of 



97 
similar optimal trajectories; on the other it appears as the unique optimal 

member of a family of trajectories whose other members are non-optimal. The 

latter approach is usually made the basis of the derivation of the Euler-

Lagrange equations, the optimal trajectory x(t) being regarded as that 

member of the family x(t) a  ey(t) for which e , a scalar parameter, is 

zero, y(t) being arbitrary. Minimisation is then carried out with respect 

to the single variable e. (e.g. Bliss 5 p.9; Bolza 31 	; Forsyth 32 ; 

Hadamard 33 ). This chain of tradition meets control engineering in the 

'maximum principle ' of Puntryagin, which can also ( but, amazingly, doesn't) 

claim roots far back in the classical theory. 

The essential step taken towards modern problems was the introduction 

of differential side constraints. (This is perhaps putting the cart before 

the horse, for the reoresentation of systems by differential equations in this 

context probably oleos a great deal to this development in the calculus.) 

These are different from finite constraints, for while a relation g(x) = 0 

merely reduces the dimension of the admissible space, and dan be dealt with 

by eliminating one variable, a differential relation g(x,) = 0 limits the 

directions in which a trajectory may move from x. If an n-dim. tangent space 

X
t 

is centred at x, the vectors X , if unconstrained, will span the whole of 

Xt' 
but if restricted to satisfy g(x,X) = 0, will only sweep out a cone in 

Xt  , (Nc Shane 34 ) possibly of reduced dimension. 

This tangent space contains not only the direction vectors X, but 

also the differentials dx = X dt, representing the points rea&nable from x 

in the interval dt. This set can be extended to include points reachable in 

finite time, and will still be a cone but will only lie in Xt  at, points 

infinitely close to the vertex. The trajectories must lie either in the 
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interior or along the boundary of this reachable set, and we have already seen 

(section 4.2.1 ) that the latter condition holds for the optimal trajectories 

of a Mayer problem. Recalling that a Lagrange multiplier is a component of a 

generalized gradient in the direction of a violation of a constraint (i.e. 

a variation of g (x,*)) it is a straightforward interpretation to describe 

the multiplier which adjoins the differential constraint to the cost function 

as a vector dieected towards the unreachable zone, and if the boundary of the 

reachable set has a unique ncrmal it will coincide with this multiplier. 

If there are no constraints on X the concept of a reachable set is 

meaningless, for all points arc reachable, but in the context of the classical 

problem a set of r differential equalities reduces the number of degrees of 

freeC.em of the directions * to n-r, (obviously r 4  n ). It is shown by 

Bliss (5 	) eee. e s_ 	, constraints 

gi(x,X) = 0 

can be extended by the addition of 

/1.(xpi) = z. 

the Jacobian 

gia 

i = 1,...,r 

j = r +1,...,n 

being non-zero, while retaining the same freedom for 5c. The restriction rep-

resented by each additional constraint is relaxed again by the introduction 

of new variable z. 

The dynamic system of control problems is very similar, a set of n 

differential equations involving the n+m variables X,u being equivalent, 

in some sense, to a set of n-m constraints g(x,X) = 0. Evidently the 

concepts of admissible cones, etc., introduced by McShane for the classical 
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problem, can be applied without essential modification to the control problem, 

and this was done by Pontryagin. His technique is to formulate every problem 

in Layer form, and introduce the auxiliary variables p defined by 

= -pf, 

which, though not given any important geometric significance, can be recognized 

as normals to the reachab:_e set. (Pontryagin 1 pp.86, 99; Roxin 8 ). 

In section 6.3 a version of Pontryagin's use of p will be applied 

in a similar context, and need not be reproduced here, but some important 

remarks should be made about this approach. It is a definite improvement 

upon the multiplier technique, from the point of view of engineering mathem-

atics,in that it presents optimality as a property of dynamic systems rather 

than as an abstract mathematical problem, but it does not go far enough in 

this direction. Insisting upon the Mayer for: is admittedly consistent, but 

it lacks the true generality of the classical technique which can deal with 

both forms together (see 5.4 ); ignores the physical meaning of the cost 

function, and quite overlooks the different geometric interpretation of the 

Lagrange problem. The further demand that the coot variable x°  shall not 

appear in the other differential equations even raises mathematical difficulties 

The inclusion of the latter property ensures that the auxiliary variab-

le Po corresponding to x°  shall be constant, and since H = p.f = 0 is 

homogeneous in p, Po can be set equal to one, unless it is zero. This allows 

us to use the classical concept of 'normality for a solution is normal if pc)  

is one, and abnormal if zero. Approaching the problem from the point of view 

of fields precludes the possibility of a normality analysis, for no field can 

be constructed for abnormal trajectories. It is a merit of Pontryagin's 
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method that it leaves the door open to such considerations. 

The treatment of p, however, is not at all satisfactory. These 

varin1.- are very difficult to motivate a priori, and their geometric 

can only be grasned in the light of the analysis; They =mot 

be 1.1-,ocl in this way for a satisfactory 'engineering' derivation. Mixed 

cor:;G::afats P,(x,u) 	aIe not dealt vdth directly by Fontryagin's principle, 

and require a cor.plicatc- cLastruction to handle them (1 Chap.6.) Halkin(7) 

adopt;; 	s' - . vhat si!Alor approach, using the concepts of reachable sets a-1cl 

beun,..a...Aes, but where,  Poyltryagin uses infinitesimal cones comprising 

vectors Sx(t) such that for two trajectories, 

(t) 	f(x,u) ds 

x
2
(t) = X

o 
 + 

co 
 f(x,v) ds 

x(t) = x
1 
 • 
 x2 

is given by 

x (t) =I f • x 	[f(x1(s),u) - f(xi(s),v 	ds 	5.12 
•o 

only when 

by 5.12, introducing an'a„proximate system' 

= f(x(u,t),v) 
iheiJ 	

So n(n.,t) = x
o 
+ 	f(x,u) ds.  

The baSic approach is in the McShane -Pontryagin tradition though the ccmflt3 

ction is different. 	Mayer form is retained, but without requiring no to 

be an independer ,R2.2..table mixed constraints are not considered. 

:t ia i::.teresting to note that, as Halkin hints in his introduction 

(quoted in socticn 1.2 above ), the ideas reflected in the mathematics are 

not quite those ...".rich originally motivated the scheme. The geometric basis 

of his analysis 	clear enough, concerning the trajectories of curtain 

22
0  

ct 

c is small, Halkin uses a space of vectors given pr,aefiqcm 



'approximate systems' and their reachable sets. His introduction discusses 

a geometric construction which is quite beside the point, relating to a diff-

erent ,.:.ppr_pach to the problem, which he develops in (6); it is based upon 

BUR;en'9 -.onstrucficn, a majestic device, which is sufficiently fundament il 

to demanC. a sepal:ate chanter. 

5.2 	 tat. ;Space 

State - variable inecy.a:.ity constraints 

0 	 5.13 

are not of the same ratre as mixed or control constraints, for they impose 

no immediate restriction on the control 	any choice of u(ti) where 

C(x(t
1
)) = 0 is apparently satisfactory. 	When the strict inequality 

is satisfied the constraint can be ignored, but when equality holds 5.13 

implies that u must be chosen such that 

C(x) = C
x
.f(x,u) 5  0 	 5.14 

If 	';.)C/ 7)u = 0, then we turn to higher time-derivatives, and a q' ;:h 

order constraint is 

C(x) = C(1)(x) = 	= C(q-11(x) = 0 	5.15 

together with 

C(q)  (x,u) s" 0 	 5.16 
r , 

where 	C(r) 	= --
d C 

dtr  
The recognition that the pro',1em can be treated in two parts - the 

interior section, ignoring these cmstraints, and the boundary section, on 

which 5.15 and 5.16 (equality) .old - bring this situation into the realm 

of the classical problem. ( Bliss 	Underhill 35). A set of terms 

/ 
Irk 	C 

(k) 
 (pqt)) 	k= 0,,..., q 	 5.17 

are added to the cost function 5.4 within the integral, and two similar sets 
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with k = 0,...,q-1 independent of the integral, for the instants at whiCh 

the trajectory meets and leaves 

the inequality in 5.13. 	Variation 

of 5.6 	b,b 

Pfx 	- L
x 
 + 

Pfu 	
- L 	+ 

while the corner conditions 

p(t') 	p(t!v) 

the boundary. 	T4(t) 

	

of 	x(t), 	u(t) 

,ek 
	x  C
(k) 	

= 	0 

71' 	C(q)  = 	0 q 	u 

5.6 	i,j 	appear as 

+ mkCx(k) 	= 0 

p.dt; = 0 

is identically zero for 

gives extended versions 

5.18 a  
b 

5.18 ° 

d 

5.18.1 is equivalent to 5.8 , the mixed inequality being R in one case and 

C(q)  in the other. Similarly an equation of the form 5.18a holds for the 

case of the mixed constraint, but only involving additional terms of the 

type qRx  , when q can be eliminated. Now, however, the multipliers 

irk  r k = 0 r • • . q - 1 cannot be eliminated, and remain unknown. All 

that can be stated for certain is that they are negative, being _gradient* of 

cost, for if any member of 5.15 could iztoreagemr tita oust would diminish. 

Similar remarks apply to m in 50c . 

It is here that the transformation technique proves itself, for all these 

awkward variables are transformed away. Indeed, far from the boundary involv-

ing extra variables, the fact that its form is explicitly given enables us 

to reduce the complexity of the problem.(Bellman and Dreyfus 19 p.20). A 

glance at 5.18 shows that all the additional terms are in fact multiples of 

the 	components of the outward normal to the boundary= this is why they 

are indeterminate and vanish from a discussion which is restricted to trajec-

tories in the boundary. 
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If p,/Cis a solution to 5.18a then also p + qkC(t) 	(Irk 	qk-1) 

is a solution (q-1 
 = 0) , as may be seen by direct substitUtion. The 

numbers qk  are arbitrary, implying that the addition of any vector with 

the direction of Cx 
has no effect on the solution, as we predicted. It is 

evident from 4.14 that such a vector may be added not only to p but even 

to the equation 4.15 ; being normal to the trajectory's tangent at every 

point it is immaterial which of the terms itke(kx)  are added to the equation, 

if any. This accounts for the divergence between the results obtained by 

various writers. Gamkrelidze (1 chapter 6) dealing with the case q = 1 

includes only the last termli.q C(q) 	Berkovitz (36) has a similar result, 

as a constraint to be satisfied along the boundary. This is reasouable,for 

if the remaining constraints C
(k) k c: q , axe satisfied at the point of 

entry to the boundary, they will remnin so if the q'th is satisfied.(Again, 

he deals only with q = 1). Dreyfus (39), by reducing the state space, 

Obtains a result for a similar case which has been shown (Berkovitz and 

Dreyfus 37) to be eq ivalent to that of Berkovitz and Gsmkrelidze , despite 

a difference of form. Chang (2) does not have the q'th term, but only the 

first (where q = 1), viz.,l'ioCx(x). 

The so-called 'jump conditions' 5.18c are subject to a sinilar 

interpretation, and are given in that form by most writers (Berkovitz and 

Dreyfus 37). In our consideration of reduced spaces, it was Clear that the 

jump is caused, at entry to the boundary, by the disappearance of certain 

components of Jx  (or rather, their ignoration, for they do not really 

vanish), and at re-entry to the interim, by their re-emergence as essential 

variables. The problem of determining the magnitude of the jump does not 

for in the extension of the linear functional he includes only C(4)  (x,u) =0 
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appear to have been satisfactorily dealt with. Gamkrelidze chooses the 

jump at entry to reduce to zero the component of p normal to the boundary 

(1 p.269), but is reticent concerning the exit point. Bryson and Denham 

(39), forced to deal with the problem in order to obtain solutions rather 

than principles, give the jump condition at the entry point but ignore it 

at the end, presumably on the grounds that the equations of constraint are 

automatically satisfied there, and to supply a constraint would be super-

fluous. As a result they obtain continuity of p at the exit. However, they 

assert, without proof, that a combined jump, at entry and exit, is deter-

mined by the problem, but the distribution between the two points is arbitr- 

ary 	p may be chosen to be continuous at either end, but will turn out 

to be discontinuous at the other. 

This result is not incorrect, though the reasoning is not clear. 

We shomd in section 4.3.2 that the number of extra variables appearing 

when the trajectory re-emerged into n-dim. space exactly compensated for 

the number of extra constraints imposed by the boundary. Had it been 

desired to retain all n equations along the boundary, there would have 

been required the same number of extra variables, this time in the form of 

'jumps' in p (for there is one multiplier to each boundary equation) and 

it is quite immaterial whether they are introduced at the beginning or end---

or even the middle ---- of the boundary arc. 

The other corner condition 5.18d expresses continuity of H. In the 

classical problem it is merely the application of the Weierstrass condition 

comparing the two directions of a trajectory at a corner, giving both 

inequalities, hence equality. This result is given by Hadamard (33) who 
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notes that in many cases it precludes the possibility of a discontinuous 

direction vector. This applies to the control problem too: in many cases 

corners are ruled out (see 4.25 et seq.), but each example must be invest-

igated separately - there is as yet no general rule. 

The test suggested in 5.1.1. for the dimension of the optimal space 

applies on boundcries too. 	The q equalities 5.15 constitute an (n-q) -
dim. manifold, on which the inequality 5.16 and possibly other permanent 

inequalities 11 hold. If the matrix 	H + F c()  uR 
uu 	o uu 	1-uu is nonsingular 

the trajectories do form an (n-q) -dim. field, and u(x) is differentiable 

in the boundary. 
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Chapter 6. 	HUYGENS' CONSTRUCTION 

6.1 	Reachable Sets and Waves.  

Huygens' construction, one of the most beautiful in the entire 

literature of dynamics, is major link between the sciences of particle 

mechanics, continuum mechanics and geometry. Amazingly, it appeared before 

the study of dynamics was at all advanced - Galileo, the founder of modern 

dynamics, was a contemporary of Huygens; Euler, pioneer of field theory, 

was born in 1707, twelve years after Huygens' death, and it was only with 

Hamilton's work that optics and particle dynamics were finally matOd in a 

geometric coup which cannot be quite absolved of responsibility for the up-

heavals of 20th-century physics and the modern fervour for unified theories. 

Its relevance to the oalculus of variations is often remarked (e.g. 

Courant & Hilbert 40 vol.2 p.124, Gelfand & Fomin 27 p.209 ), usually in the 

spirit of en interesting aside rather than as a fundamental principle, and it 

has been applied to the optimal control problem by Halkin (6, 7 ) to derive 

the necessary conditions. The construction and oven the formulation of the 

problem presented here is quite different from Halkin's, and is intended to 

emphasize the geometric rather than analytic situation. 

Suppose the problem to be of Lagrange form, with cost function 

I
'L(x,u)dt; L(x,u) is supposed to be positive for all admissible x,u. 

Let x
o. 
be  a point on the isotim Jo

, and let there be constructed all possible 

admissible trajectories from xo. For a given number w there will be a 

point y on every trajectory such that 
ct 
Y  L(x,u) dt 	= 	

6.1 

y =
o 
	Y f( x,u) x,u) dt 
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Designate the set of all such points by 

(1(xo' Jo  , w  ). 

That is, Q is the set of all points reachable from xo 
with cost w. 

The topological properties of this set may be complicated in general, 

but the particular properties we require turn out to be quite simple. 

Definition 6.1. 	y is a boundary point of Q(x0,J0,w ) if i) yeQ(x0,J0,w); 

ii) there exists some w' )0- w and a set Q(x0,J0,w1 ) 	such that every 

neighbourhood of y contains points of Q(xo,w') 	Q(x
o
, w) 

This implies that the slightest extension of a trajectory from a 

boundary point can attain points that are only reachable from xo  with cost 

greater than w. 

Q (x
o
,w) contains no points reachable optimally with cost greater than 

w, for, suppose z is such a point; if it is in Q(xo,w) it is reachable 

with cost equal to w, therefore the optimal cost cannot be greater than w. 

Q(x
o
,w) might not be bounded, but if there is an optimal trajectory 

through xo, and .70). w, there must be at least one boundary point, for, 

consider the point on the optimal trajectory with cost from xo  equal to w; 

if it is interior, a small extension of the trajectory will remain interior 

to Q(x
o
,w), but the cost will exceed w. This point must be a boundary point 

of Q. It is not suggested that there is only one boundary point or that Q 

is entirely enclosed by a boundary - neither is in general true - but the 

unique boundary point through which the optimal trajectory passes is the only 

one of immediate interest. 

The optimal trajectory meets the isotim with value (J0-w) at the point 

at which the optimal cost from xo 
is w, that is, at the boundary of Q. 



The set Q(xo  ,J o
,w) meets the set J(x) = J-w at only one point, all other 

points in Q lying on isotims with greater value. This gives a characteriz-

ation of the necessary conditions similar to 4.3, for the optimal control 

must take the trajectory to that point for which 

J(Y) - (J0-  w) 
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is least, under the constraints 6.1. 

The set Q(xo,w) is a wavelet issuing from x
o. Every point on J(x)=J0  

is the source of a similar wavelet meeting the isotim (J
o-w) at one point. 

Since all the wavelets lie on one side of the isotim it may be regarded as a 

wavefront. In the study of optics for a homogeneous medium the wavelets are 

spheres. Here they are considerably more complex - not necessarily closed or 

containing their source - but the essential construction is the same. 

To investigate the implications of 6.2 it is necessary to make 

comparisons between different paths. Unfortunately the interval of integra-

tion 0,t ] depends upon the path taken, which is most inconvenient, and 

to make the interval Uniformwe may use a simple parameter transformation 

which gives the problem a new, but familiar, form. 

6.2 	The generalized time - optimal problem. 

A justification for treating the Lagrange and Mayer problems separate- 

ly was that practical problems fall naturally into one or other farm. But 

in one outstanding case the distinction fails. The problem of time - optim- 
t 

ality can be regarded equdly well as a path integral ( c dt ) or a terminal 

value (g(x(tf)) = tf) problem, without any drastic reinterpretation. The 

equations resulting from either formulation are precisely the same, for the 
• 

expressions gin (1 + J) and min J are &ivalent (cf 4.6, 4.19 ). The only 

difference lies in the magnitude of the vector J
x
(or p), depending upon 
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ulitthcrjx.17 _isj.,„oorjx.f.=0,butitisonlythcrat
iosoihich 

x 
are relevant. The pict,.)rial significmce and nature of the isotime are diff- 

ent, but this is not fundLmental. 

Since the two formulations of the goneral probie are mathematically 

equivalent, and the optimal - time proi)le is actually identical in both forms, 

it suggests that the latter is the link between the 	and that the general 

equivalence can be traced to a basic similarity between the optimal - time 

problem and the general problem. 

That all Mayer problems are basically equivalent is apparent, for the 

auxiliary variables p satisfy the same equations p = -pfx, differing only 

in the boundary values derived from the cost function g(x). In particular 

they are all equivalent to the time - optimal problem, for which g(x) .= tf. 

(Yashilev 41 ) In fact the equivalence extends also to all problems of 

Lagrange form, for we may introduce an arbitrary parameter s, (indicating 

d by the prime ), then the cost function is 
ds 

L (x,u)t'ds 	 6.3a 

and the dynamic system is 

x' = f(x,u) t'. 	 6.3b 

Defining 	t' = 1/L(x,u) 

6.3 becomes 

ds 	
a 

6.4 4x,1  
x' = L x,u 	= f (x,R) 

which has the form of a time optimal problem for the new system. 

This allows considerable simplification of many aspects of the problen. 

for the two monotonically increasing scalars - time and cost - have been 
• 

reduced to one. The condition min (L J) no longer represents a compromise 
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between rapid reduction of optimal cost J and increase in actual cost L, 

but simply reduces to a condition of steepest descent in d, since L is const—

ant ( =1 ). Similarly 6.2, representing a minimization of J(y) under the 

rather clumsy constraint 6.1 now becomes a minimization and a trivial 

constraint, jr s 0  
d = w : s = w 

The set Q(x o 
 ,J 
o,w) becomes the set of points reachable from xo  by the 

system 6.4 b in time w, and the isotims are isochrones. The transformation 

is possible only if L> 0, when it is simply the replacement of one monoton—

ically increasing parameter by another, together with a scale factor. 

6.3 Properties of the  wavelet. 

We can now interpret the necessary conditions obtained. in chapter 4 in terms 

of the wavelet issuing from a point. 

Suppose a trajectory to be constructed in accordance with the equatio:.. 

min p. f (x,u) 	 a 

p' = —pf (x,u) 	 6.5 b 

p(0).f(0) + 1 = 0 

No reference is made to the origin of the expressions, and no assumption 

concerning optimality. Our purpose is to investigate the trajectory that 

emerges from this construction. The procedure is essentially the same as 

Pontryagin's . 

The trajectory and control corresponding to 6.5 is x(s), u(s); a neigh—

bouring trajectory x
1
(s) corresponds to some admissible control v(s), which 

is arbitrary except that Ilys) — x(s)J 	is small. 

We have 	x(s) = x
o 	

f (x,u)ds 

f 

o 	
s f kx ,v) ds xl(s)  — 1 
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If 	x(s) = xl(s) - x(s) is to be a small quantity of first order, 

the control variation v(s) - u(s) may be either a) first order for finite 

time, or b ) finite over a first order interval. A 'berturbedi control 

may be constructed in the following way. 

In the interval 

I = [so,si.,] 

choose instants 	s., s. 	(i,j = 1,2, 	), as many as desired, non- j 

negative finite numbers 

	

	
J 

r1., and non-negative first order quantities Ss. 

such that the intervals 

I. = (s.,s.
3.  + r.] 	I.

a 	j + 

are disjoint, and if 

K.
1  = 
	I. . 	K. 	

J 
= 	V I. , 1 	J  

then 

s's31 

K.UK. C:  I . 

The control function v(s) is defined as 

u(s) , S I 

V(S) = 	V. 	, 	S 	K. 
J 	J 

v.1(s) 9 	s E' hi  

K. L) K. = I
ie 1 

6.6 

where vj  isanarbitrarypointofthem.dim.controlspacell;v.(s) is 

an arbitrary continuous function to the control epace with the restrictions 

that 
	

II 	 u(s) 	= II vi(s) - 	u(s) 

shall be of first order, and xl(s), v(s) shall be admissible for all s I. 

It is not assumed that the state space is unrestricted. Both u(s) 

and v(s) .are constructed to ensure that the trajectories remain admissible. 

In the case of u(s) this means that certain constraints are implicitly 

satisfied in addition to 6.5. Thus, the minimization of H is carried 

Ki  
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out subject to the requirement (which 'Light completely define u ) that the 

trajectory does not leave X. It will be recalled frou secti:n 5.2 that the 

degree of arbitrariness involved in the boundary equations. allows 6.5b to 

hold ovon on the boundary of state space. 

Using 6.6, x
1
(s) becomes 

x
1(s) = x + 1  f (x u) ds + f  f (x v.) ds se

Ik
-  

seI. 

+ s  fI f(xl' v(s)) ds .  

Sx(s) = xl(s) - x(s) 
. 1 f (xvu) - f (x,u) ds + 

s 6. Ik  

+ f I (xl,vi) - f (x,u) ds + 	6.7 
s4iI. i 

+ f  f (xl,v(s)) - f (x,u) ds. 
s<EI. 

i 
Applying the mean - vnlue theoreu, these three integrals becoue, 

respectively 

(xtu) C)x ds 

if (., u) a x + f (x,v) - f (x,u) ds 
* 

where 	x = 	a4 (xl-x) 	0 	0( S 

u* = 	(v -u) 	0 .5. 	1 

6.9 

+ 

+ 

+ 

11(x,u) 

f (x,vi) 	- 

f (x,ulgu -u 

- ui] 

f (x,ui) 

ds 

ds 

ds 6.8 
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If the solution of an equation 

y' = f--x  (x*(s), u(s)) y 

is 	y(s) = A(s2'sI) y(s1), 	 6.9 

we !ay apply 6.9 to 6.7, which , in view of 6.8, is a linear non-homogen- 

eous equation in x. 	Treating, for example, the typical intervals 

(si,s1  + r1J (s,  + ri,s2] 	(s2, 32+ S s2) 

we obtain, recalling that 

A () ) 1 = A (s3,s2) A (s2,31) 

and 	A (si,s1) 	= unit Lia.trix, 

x(s2+cs2) = A (s2+Ss2, s2) [ x(s2) +  ( f (v(s2))- f(u(s2)) 	sj 

S x(s2) 	= A (s2,s1+ri) S x ( si+ r1) 

S x(si+r,) 	= A (sl+ri,s1)D x(s1) + 

.91+ ri  

+ 
	A(s1,$) 	f (v) - f (u) 	ds 

8 1 r 
.•. 41 x(82+ 52) = A (02+c52,52) [ f ( w(.2)) - f(u(s2))J S .2  ÷ .-Fr 

+ A(82+6's2,si) [c x(51) +(is  1  A(si,s ) !.(v)-- E(u).} dsJ  
) 1 

Treating all the intervals in a similar fashion, 

x(sd =   A (o 	
s. +r. 

f,si  ) 	 2-   lA (si,s ) i f(v) - E(u)i ds + 
6.10 

f  + ,:at:: A(s,s.) 1: (v(s.)) -f (u(si)) j S si  
i 

6.5b is fdjoint to 6.9 in the limit S'x -1› 0, for then x* 4x, therefore 

p(s2) = 	P(si) A (s1,52 ). 
s.+r. 5' 

... 	
s

1 1 p(  
p(sf). 	x(sf) 	f(v(s)) - f(u(a))J ds 6.11 

s).L.  

 

+ .' 	p(s j) . Li: (v(s.))  - f (u(si  )).1 S si  
j 

In view of 6.5 a, every member on the right hand side of 6.11 is non-negative, 

. . p(sf). 	x(sf) 	0 
	

6.12 
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c;x(sf) is any vector from the terminal point of the trajectory (x(s), u(s)) 

constructed according to 6.5, directed toward the set Q(xo,sf), for 

xl(sf) = x(sf) + 	x (sf  ) represents any point c lose to x(sf) that is 

reachable in the same ( generalized ) tine. From the manner of construction 

6.12 applies for any s Sf  

• • 	p(s). 	x(s) 	0 	 6.13 

where Sx(s) = x1(s) - x(s). 

p (s) can be interpreted as the normal to a hyperplase supporting Cl(xo,$) 

at x(s), and we have the interesting result that the reachable set is convex 

in the neighbourhood of the point on the trajectory 6.5, which is evidently 

a boundary L)oint. This result should be more rigorously proven by an applic-

ation of Lyapunov's theorem on the range of a vector measure (cf. the use of 

this theorem in similar cases by LaSalle 42, Halkin 7 ) but cur cruder 

construction demonstrates the geometric lActure sufficiently clearly. 

We may show too, that under certain restrictions the trajectory constr-

ucted with the help of 6.5 is optimal, for, suppose both xl(v,$) and x(u,$) 

reach the sane point x2, the former at s = s2, the latter at s = si, 

then 	x(s
2
) = x2 

- x(s2  ), 
s 

and 	x(s2) = x
2 	

2 f (x,u)ds 

6.13 gives 

	

s1 	s2 
p(s2). gx(s2 ) 	-p(s2  ). 	1:(x,u) ds 	0 	6.14 

1 
Since 	x is small we may suppose Cs = s2  - s1 to be small, and 

6.14 becomes 

that H = p.f is constant. 	6.15 then implies 

r- 
b s = s

2 
- s

1 	
0 

- p(s2).  f(s2) :s 	›' 0 

The initial value of p.f (see 6.5 c) is -1, and it was shown in 4.3.1 
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and the time taken to any point along x(u,$) is less than that along any 

other neighbouring path. 

6.4 Sufficient Conditions  

The above is far from being a proof of sufficiency, fur it compares only 

trajectories that are close over their entice range, and it is possible that 

a trajectory through the same two points but not uniforaly close to x(s) 

gives an even better performance. However, when the aystem f(x,u) is linear 

in x the analysis applies even when Sx is not small, and the result, apart 

from the assumption made between 6.14 and 6.15, becomes more significant. 

More satisfactory and more extensive sufficiency proofs have been obtained 

(Lee 43, Neustadt 44 ). 

Our purpose, however, was not to obtain sufficiency pra:ofs, but to estab-

lish an interpretation of the optimal trajectory via a via the reachable 

'waveluts'. If en optimum exists it d_11 be provided by 6.5, for an optimal 

trajectory is certainly locally optimal, and 6.13 informs us that the reachable 

sets Q(xo,w(s)) are convex in the region of the boundary points at which they 

meet the isotim. If the isotim has a normal at that point it will coincide 

with p, the wavelet normal, but it is possible that the wavelet has a smooth 

boundary and the isotim does not. 

It was remarked that 6.5 can provide a trajectory that is not optimal, 

but nevertheless the optimal trajectory must be constructed according to 6.5, 

the minimum principle. The paradox is resolved by noting the fax from obvious 

fact that two trajectories from x
o 
with different initial values pi(0),p2(0), 

might intersect at some point xl. The limit approached by xt  as 

p2(0) - pl(0) 	0 is a focal point for extremals from xo, and beyond 

this point the trajectories cease to provide true minima cf cost. The 
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geometric significance of the situation has been described in various ways. 

Lanczos (28 p.272 ) describes it as corresponding to a reduction in dimension 

of the wavofront; Yashilev (41) shows by example, but without analytic 

discussion, that isotims of different value coincide at such points; Bliss(5) 

states that the trajectories satisfying the minimum principle (or its classical 

equivalent ) met an envelope at that point. No doubt these characteriza-

tions are all equivalent, and imply that the trajectories, on reaching the 

boundary of the set Q.(x_,w), are tangential to it, and for cost greater than 

w return to the interior of Q.(xo,w), thus arriving at points which can also 

be reached with cost equal to ( or less than ) w, while still satisfying the 

minimum principle. Under these conditions p cannot represent a normal to the 

reachable set boundary. 

A complete account of this situation is lacking, and, more important 

an easily computable criterion to judge whether or not it occurs. A. promising 

approach is afforded by the fact that through every point xc  there passes an 

n-paranoter family of trajectories constructed accordine to 6.5. the para-

meter being the initial value p
c
. The trajectories are solutions of the 

equations f (x,u(x,p)) 

-pf (x,u(x,p)) 	
6.16 

 
x 

whose right hand sides are piecewise differentiable with respect to x,p, for 

f is assumed to be differentiable for x,u; u, expressed as u(x,p) as a 

result of the rdnimizAion operation under constraints cf the type 2.4, 2.5, 

is piecewise differentiable. Thus according to the results obtained in sect-

ion 3.2.3, the partial derivatives 

'Dx/Dpo  ; 'Dp/Dpo 



will exist if the boundaries between the various regions f state space are 

differentiable manifolds. 

We are concerned with the matrix 
	
/Po• At anj time the difference 

between two neighbouring trajectories approaches 

'a x 
a p0 Spo  

ascpo  4 0, su that if trajectories do meet, it can only be because 
= 0 	 6.17 

0 Po 

Of course this refers to trajectulies meeting within a region of differentia-

bility of u(x), fur a reduction of dimentiona .lity, often incurred in the 

transition to a different region, means that trajectories originally distinct 

must meet; this is not the situation alluded to here. It w7;uld seem necessary 

only to ensure that in each region there is no focal point (or, 'conjugate 

point' - a distinction is ;ade by Bliss (5, p.170 )) of the initial point, 

say xi, of that region. There is no need to retain the derivatives with 

respect to po, which would entail consideration of the discontinuities at 

/rN 
boundaries (cf. 3.2.3 ), but m 	

--Dx 
merely the partials 	/ "Op , where pi  is the 

value of p at the point xi  where the trajectory enters that particular 

region. The transformation suitable to each local subspace will ensure that 

the matrix of derivatives remains square. 

The equations giving the partials are the linearized versions of 6.16,viz. 

(f 
x 
 +f

u  ux 
 )z +fu  up 

 w 

w= 	
x 

- o 	1 	 of u w 	
6.18 

[ f 	+f u  xx xu x 	xu 

z =
lx
/po 

where 	 P/Po, the initial values being 

z(o) = 0, w(0) = unit matrix. 	The focal point occurs where 	= O. 

This is not a rigorous derivation, nor has it been shown that satisfaction 

of the minimum principle together with the non-occurrence of a focal point is 
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sufficient for optimality, nevertheless, if this arLalogy with the classical 

results proves to be valid, this provides a useful comput,:..tional test. 

There are a number of situations in which the technique of the minimum 

principle breaks down. It may be that between given points no optimal traj-

ectory exists, a focal point intervening; or that an optimal trajectory is 

isolated and cannot be embedded in a field (abnormality ); or that minimizat-

ion of H(x,p,u) does not provide a unique value of control (singilar, non -  

normal, problems ). The problems of normality ( in the classical sense ), 

accessibility and focal points are evidently closely connected, if nut in 

their mathematical formulation, at least in physical meaning, for they are 

all concerned with the question whether, given an optimal trajectory to a 

certain point, such trajectories can be constructed to all points in a suffic-

iently small neighbourhood of it. Recent work has also connected these prob-

lems with that of singularity. The examination of all these problems is in 

its infancy, but something can be gleaned from references 10,11,22,49, 50, 

and probably a thorough study of Caratheodoryb work on these topics in a 

'classical ' context would throw a great light on the matter (18). 
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Chapter 7 	APPLICATIONS 

Certain practical applications are suggested by the concept of a 

field of optimal trajectories. Few of these are new, but their significance 

becomes much clearer in the light of the constructions we have made. 

7.1 	Solution of the Equations of Optimality.  

7.1.1 	Initial value approximation.  

The set of 2n differential equations for p and x from which the control 

is constructed are notoriously difficult to solve, involving boundary values 

at tw3 - or, as in state - constrained problems even more - points. The 

obvious method of solution ( Kipiniak 45 p.95 ) is to compute a number of 

members of the field corresponding to a variety of boundary values, gaining 

a reasonable approximation to the values required for the unique trajectory 

satisfying all the given conditions. This technique is doomed to failure, 

for variations of the boundary values of p have quite unpredictable effects 

on the trajectories; the smallest change in p(o) can produce wild 

fluctuations in x(t'}, or, on the other hand it may be that a trajectory 

cannot be persuaded to budge even by the most provocative variations of p(o). 

The task of choosing, a priori, values of p(o) that will give a trajectory 

in the region of interest would drive the most phlegmatic temper to distraction. 

This is a problem wbich has not been studied in its own right, though 

more will be said on the matter, but we may note first of all that it is 

usually more practicable to compute the field of trajectories whose members 

all satisfy the same initial condition than to conttruct the field that we have 

been considering hitherto, whose members all satisfy the terminal conditions. 

It is possible to repeat the entire theory of fields and isotims for this 

reversed situation with no modification other than in the definition of the 

optimal cost function J(x), which is now 'cost so far' rather than 'cost to go'!; 
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6c(0) = JL(x, Li) at 
The isotims will envelope the reachable sets ( or wavelets ) on their 

concave instead of convex side. The equations associated with the one field 

will be the same as those for the other, except for a difference in sign of 

the vector JX , and the one trajectory which satisfies both the specified 

initial and terminal conditions will be a member of both fields. 

If the two fields could be superimposed it would be found that along 

this unique trajectory common to both1the isotims of one field are osculatory 

to those of the other, the sum of the two values being constant, equal to the 

tutal cost for that ...;rajectory. An Oxample of this is the disturbances 

issuing from iwo point sources in still water; the ripples from each meet 

tangentially along the straight line joining them. In this example the circular 

waves are isochrones. 

Given a system x = f (x,u) and a cost function 	dt, the 

initial point has a uniqu6 reachable set Q(x0,w) for a given w; i,e. a 

set of points reachable from xo  with cost w. 

For the field of trajectories issuing from xo, the boundary of this 

set is identical with the isotim of value w, if x
o represents the entire 

initial set. p(t) is a normal to such a set and the space of the p - vectors 

can be regarded as a linear tangent space dual to that of the contravariant 

vectors k. (The duality between p and * extends very deeply into the basis 

of the calculus of variations - cf. Rund 17 p18 Courant & Hilbert 40 vol 1 

p 234 Gelfand & Fomin 27 p211. Pearson 46 ) Since the boundary of Q is not 

necessarldy closed the totality of normals for all its points do not span the 

entire dual tangent space, but only a certain cone in it, corresponding to the 

cone of directions swept out by k under the constraints x = f(x,u). 

In particular, p(dt) is the normal to the infinitesimal wavelet Q(x
o dw). 



If dw is very small , p(dt) is a good approximation to the initial value po. 

Evidently there is only a restricted range of values of po  for which the 

corresponding trajectory is a number of the field at all, quite apart from 

consideration of the terminal conditions. The actual construction of the 
admissible cones 1

o 
, p

o is not 
infinitesimal wavelet, or bettexetheidirectly available,but some relevant 

information may be gleaned by direct application of the fundamental inequality 

H(xo,p0,u) 	H(x p v) 	 7.1 o, o, 

where u is optimal and v is any admissible control. 

This may be used in various ways. For example, if the minimum is 

stationary for u, then we 119.ve 

Huu (x  o, Po) a 0 	 7.2 

which gives an immediate constraint for p
o. Again, u(x,p), derived as a 

result of minimising H, may be substituted for k in H. 

H(xo, po  ) 	H(xo, po, v) 	 7.3 

which, by direct inspection, substituting possible values of v, can give 

useful information. Another interesting relation arises out of the fact that 

the minimum value of H is constant along a trajectory, thus, expressing 

values at t1 t2 
by suffixes1 2 

	and where t2-t1 
= dt 10 0, small, , 	, 

H(x2,p2,u2) = H(xl p1 111) 	7.4 

Using,for brevity, the DI:payer form H = p.f, set 

x
2 

= xl  +11f(x1 111) dt. 

p
2 

= pl  -Ifp1  fx  (x1,111) dt. 

and expanding the left member of 7.4 we have 

H(x1,p1ou2) + Hx(x
l,pi,u2) f(xlul) dt 

- Hp(xl,p,,u2) pifx(xl u1) dt = H(xl,p1,u1) 

Recalling that H = p.f , this become 

H(u2) - H(u1) +1[Pifx(u2)f(u1) - f(u2) plfx(u1) dt = 0 



Since 
H(x1,pi,u2) — H(xi,pi,u, ) 

there must hold 

Pl[f(u2) fx(u1) 	f(u1)  

the summation being according to 

pi  ffi(u2  ) f1. (u1) 	fi(u1  ) fi.(u xj 2 

Both u1 u
2 are optimal, but at successive instants of time. Thi6 relation 

can be helpful when physical considerations dictate that u should be increa—

sing or decreasing, or at switching instants, but it also supplies a further 

constraint for the choice of po, albeit a somewhat cumbersome one. 

If the isotims for the original field (based on the terminal set)are 

convex, the relation 

p
o . ( x( tf  ) — xo  ) 10

holds, for po  is the outward normal to the isotim at xo . Unfortunately, it 

is not always known in advance when this applies, though conditions can be 

given for certain systems (LaSalle 42, Lee 43, Pearson 46), but when it is 

valid it can be very helpful. 

Interesting information can be obtained by actually constructing an 

approximation to a small wavelet from xo  in the following way. Choose a small 

value dw of cost; let u take all possible values, giving corresponding 

time increments satisfying 

dw = L(x,u) dt. 

For each (u,dt) there will be some point 

x = x
o + f(x,u)dt 

f(x u) , 
= m + 	dv 

° L(x,u) 

This is a set of n equations with m variables, the components of u ; it 

> 0 

f.(u2)1 0 
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is equivalent to an (n-m)-dim hypersurface. The shape of this surface can . 

indicate whether or not any awkward behaviour is to be expected: sharp corners 

may indicate sources of instability(cf. Kreindler 94). 

Constructing similar curves for a further dw from points on the 

first set, and examining their envelope can be interesting, for it occasion-

ally happens that the second set can be reached only from a restricted region 

of the first, suggesting that initially the optimal trajectories are confined 

to a very restricted cone of directions. Of course, this is only feasible 

for 2 or 3 dimensions, beyond which too much effort is involved to make 

these simple tests worthwhile. 

It is impossible to predict in general how powerful any of these 

criteria are; sometimes they can limit the choice of p sensationally 

(Haikin 47), more often they reduce the region to little better than a half-

space, and each condition turns out to be a repetition of the others. 

Certainly this does not amount to a systematic technique for approximating 

initial values, and the problem deserves considerably more attention. 

Convergence schemes.  

7.1.2.1 	Convergence in solution space.  

Once an approximate initial value of p is obtained in the manner 

described above, it must be improved upon, and a recursive scheme is suggested 

by a closer examination of the structure of the field. An incorrect solution 

represents a member of the field satisfying the specified initial but not 

terminal conditions. An improvement is gained by adjusting the initial value 

in such a way as to ensure a closer fit at the end point. 



124 

The terminal values may be written 

x
f = x(xo, po

, tf) 

Pf = P(xo• Po, tf) 

being the solution of 2n differential equations. As discussed above, the 

partial derivatives 

-OPo 
	W = k).-0  

can be found, and used to implement a scheme such as Newton's method, or a 

hillclimbing technique, or some modification of these methods based upon the 

use of derivatives. A practical technique of this type has been developed by 

Levine (48), but is unfortunately subject to the usual handicap of such 

schemes---- the initial approximation must be sufficiently accurate to ensure 

convergence ( Saaty and Bram 52 p58). There is, however, no doubt that the 

solution obtained is truly optimal, for it is quite clear if the sequence 

has converged to a false limit, which is usually a hazard in such schemes. 

(This is, of course, subject to the satisfaction of the sufficiency 

conditions). (Levine 53). 

With the help of the transformation techniques of chapter 3 and the 

results relating to the partial derivatives with respect to initial conditm . 

ions, such a technique should cope with state constrained problems and dis—

continuous controls. Consider, for example, a problem involving a switching 

surface described by a differentiable function 

M (x(T), P(T)) = _0 	 7.5 

and a q'th order state boundary 

C(x) = C(1)(x) = . . . . = C(q-1)(x) = 0 	7.6 



The 2n
2 

equations 6.16 with initial conditions 
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z. 1)xi (o) 
= 	 = 

-41)6 (0) 
; w. 

pi (o) 

. 13i(o) 
7.7 

provide the partial derivatives until the switching surface is reached. 

According to 3.27 the derivatives are discontinuous, requiring the addition 

of terms of the form 

C(-r) - X(-4+-g 
0 

cg-c --)- brc4i9r 
Po  

at 1: . Tp0  can be found from 7.5, for 

M 	= Mxz + M w + (M
x + m

P 
 fp)q5 

pn 	 Po 

= 0 
Miz + Mpw . 	irp 	_ 	 a 	. 	0 = 	Mx  i(T) + MP 

 15("e) 	7.9 

values being taken as M is approached from the left. 15 	becomes undefined 
Po 

if the trajectory approaches M tangentj.ally, but in that case k and 

are continuous and the discontinuity 7.8 is zero. With the addition of 7.8 

at 1: the solution of 6.18 continues normally for t )--r until the next 

jump occurs. 

At t = to  the boundary C(x) = 0 is reached, and the remaining q - 1 

conditions in 7.6 can be treated as terminal boundary values for the arc 

0 ,s 	lb/  and pc)  altered accordingly until they are satisfied. Along 

the boundary a suitable transformation eliminates q components of x and 

of p , leaving the (n-q)x n matrices x , p . At a point of return 
Po Po 

(t = t
2) to the interior the q rows of each matrix are reinstated, together 

7.8 
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with new variables p(t2) (cf.section 4.3.3), but the partial derivatives 

are now taken with respoit to p(t2). The n2 elements of each matrix z and 

w now comprise nq derivatives with respect to p(t2), and n(n-q) with 

respect to po  a The n m q variables pc) • p(t2) must be adjusted to ensure 

satisfaction of the n q conditions at the boundary and terminal point. 

This is only a brief sketch of the procedure----it is not possible 

to give a complete recipe for solving problems in a straightforward way, for 

each raises its own peculiar problems requiring endless modification and 

refinement. The amount of work involved in solving these problems is daunting 

in the extreme. 

Another technique of boundary-value approximation----too well-known 

to require repetition here----is Neustadt's method (60) applying convexity 

properties of the reachable set for linear time-optimal problems. With the 

transformation indicated in 6.2, every problem can be expressed in time-

optimal form, but the convexity requirement isareal restriction. Where it 

applies, Neustadt's technique and the various modifications of it (61, 62) 

can be quite attractive, for they do not require a large number of additional 

differential equations. 

7.1.2.2 	Convergence in control spEe. 

There are basically two lines of attack for the two-point boundary 

value problem of control. The first, discussed above, involves approximations 

of optimal trajectories; the other, of which there are many possibilities of 

variation, uses a sequence of non-optimal trajectories converging to the 

optimum. (Aoki 65, Bryson and Denham 66, Dreyfus 38, Kelley 67, Halkin 47). 

All these schemes fit into our geometric construction in the following way: 

a point x(h) on an arbitrary admissible trajectory from xo  at which the 
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accumulated cost is h, is interior to the reachable set for that value of 

cost. Thus, if the optimal values corresponding to h are x.Li  , ph  , we 

have, from 6.13, 

Ph- [x(h) - xhJ 

The object of the iterative process, whatever its technical details, is to 

decrease the value of this inequality. 

One possibility is the following: the cost function is fL(x,u)dt, 

the terminal conditions 

Tk(x) = 0 	k = 1,. . .,r 	n 	7.10 

A non-optimal trajectory will not, in general, satisfy 7.10, and we may 

construct an additional cost function 	(Tk(x))2  which is to be minimised. 

The terminal value of p for this Mayer function is 

pi(tf) = TkTki 	 7.11 

Choose a nominal control vi(t) , giving a trajectory 

x(t), 	0 t 5't
f 
 where t

f 
is chosen either arbitrarily, or using one of 

the Tk  as a stopping condition. This x(t) is the basis of a new dynamic 

system 	
= f(x(t), u) 	 7.12 

the right hand side being a function only of (t, u). For this system, an 

optimal trajectory can be constructed in reverse time from t f  using the 

minimum principle, and yielding a control v
1 (t) , which is optimal for 

the approximate system 7.12. The next control chosen for a forward integra-

tion is 

v2(t) = vi(t) + c(t)v-1(t) 	7.13 

c(t) being chosen in some way to ensure rapid convergence. This is only 

one possibility, but most techniques exhibit properties in common with this. 

It is not to be recommended as a practical scheme without a careful 

convergence analysis. 
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7.2 	Feedback. 

The techniques discussed above relating to the solution of the differential 

equations, also have direct relevance to the construction of feedback control 

schemes. The obvious, but crude, flooding technique, involving the construct-

ion of a skeleton field of optimal trajectories, all satisfying the specified 

terminal conditions, is subject to the difficulties of finding suitable 

boundary values for p(tf), and, at the present time, not a feasible tech-

nique in general, though if in special cases the field proved easy to con-

struct, a suitable interpolation scheme could provide a reasonable approxim-

ation to the control. More promising techniques are based upon approximation 

of the isotims J(x) , for if their functional form is known, u(x,Jx) will 
be given at every point. 

Such schemes were proposed early in the development of optimal 

control, but without this geometric motivation, and involved the approxim-

ation of J(x) by a quadratic function, (Merriam 51) 

= ac(t)/ i 
	/ a.kt)x 	+ a. .kt)x x ij 

differential equations being found for the coefficients, which absorb the 

higher order non-linearities. The technique founders on the difficulties of 

determining boundary values for the coefficients, but where this can be 

satisfactorily done, useful results can be obtained, (Pearson 63, Davis 64), 
especially for the linear regulator prublem fur which 7.14 is a precise 
representation. (Kalman 9). 

Another popular scheme, frankly local in character, is closely 

allied to the technique of the previous section involving partial derivatives 

with respect to boundary 7alues, but here the basic field is constructed 

with reference to the terminal conditions, and the object is to obtain a 

J(x) 7.14 



scheme for correcting errors due to perturbation from the prescribed 

trajectory. 

A.perturbation from the expected value of x indicates that 

the state point is on the path of a neighbouring trajectory, and the 

proper control is not u(t) as computed, but u(t)4u(t). Since the 

optimal control is determined as a function u(x,p), the relevant 

correction is 

Su = u Ox + u Sp. 

is the measured error, and Sp is to be found. The difference 

between two trajectories can be traced back to different initial 

conditions, thus 

S X = x
x 

S x
o
, + x C p

o Po 	7.15 
o 

and correspondingly 

Sp =eg x + p (c p 	7.16 
u 
Px o p

o 
o 

The partial derivatiVits are evaluated in a way similar to that described 

in 7.1.2.1, but we require terminal conditions for all the four matrices 

in 7.15 , 7.16. 	We have 

xx (o) = 	p (o) = unit matrix, 
o Po 

and at the terminal point there are n relations of the form 

T (x(tf), p(tf)) = 0, 

giving 

(T
xx+Tp )Sxo 

+ (T +1x + 
Tpppo)  S;po = 0 x px 	x o o 	Po 

from which both x (o) and p
x (o) can be found, but requires the Po 	o 

solution of a linear two-point boundary value problem. Then 

u = [ ux  + up f  px  (xx  ) -1  + p
p (x

P  )
-ln S x 

o o 	o o 
This indicates the bare bones of the scheme, of which several 
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versions have been published, differing in detail but the same in 

essence. 	The usefulness of such a plan is very limited, for feedback 

of this nature is required when the system does not ft,Uow the planned 

course. This only occurs when the differential equation is not a 

sufficiently accurate representation of the physical system, or in the 

presence of unpredictable disturbances. This scheme is based on a 

deterministic system which is assumed to be correct, and therefore 

cannot deal with either of those situations, except in rare cases, 

when perturbations are impulsive, the system being deterministic over 

the intervals between them, or when initial conditions are not accurately 

known. Even in these' cases it cannot be used with any confidence in the 

absence of an estimate of the error involved in the linearization. 

7.3 	Education  

Although every subject must be taught and learnt, the educative poss-

ibilities of any new study are invariably the most neglected. The contribu-

tion to theory or to practical application is always noted, but the question 

whether the ideas are straightforward or easy to grasp, is ignored. This 

may be of little concern to the experienced scholar, but to teachers and 

students it is crucial. In basing the theory upon physical rather than 

mathematical principles, and developing it along geometric and not analytic 

lines, this thesis attempts to contribute to engineering education - as 

much an 'application' as is any practical or computational technique. 
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Chapter 8 	C O N C L U S I O N 

The geometric approach to the study of the optimal behaviour of 

differential engineering systems discloses properties which are obscured 

or 
by other methods. In cases which can be satisfactily handled in other ways 

no great improvements are to be expected, and our constructive conditions 

for optimality are precisely the same, for solutions in open regions of 

state space, as the familiar ones given by Pontryagin and derivable via 

classical arguments; but even here geometric considerations show promise 

of providing powerful tools for the numerical solution of the differential 

equations. The examples in Appendix D indicate the possibilities, but a 

systemic attack on theoretical aspects of the peculiar difficulties of these 

two-point boundary value problems still awaits treatment. 

For problems involving restricted state space the concept of local 

optimal subspaces offers distinct advantages over other approaches. First, 

it does not treat bounded problems as a different species, but applies a 

uniform treatment to all problems, the boundary being regarded as a natural 

part of the background to the problem rather than as an externally imposed 

constraint. Second, it illuminates certain matters, which, approached in 

other ways, have been the source of much confusion. Third, the specification 

of the boundary leads to simplification of the problem in that region by 

virtue of a reduction in the dimension of the system, constrasted with the 

increased complexity incurred by other techniques. This type of simplifica-

tion is not an accident of technique; it is fundamental to the approach, and 

should be expected whenever constraints appear in a problem of any type. 

Lagrange's multipliers, as used in ordinary minimization problems, 

have the effect of introducing extra artificial degrees of freedom to 
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compensate for the restrictions imposed by constraints, as an alternative to 

elimination of variables. It should be a matter for surprise, though we have 

become immune to it, that a restriction on the mode of behaviour of a system 

should not lead to simplification through excluding many alternative possill - 

ilities, rather than complication. When the problem is not simplified it may 

be an indication that the method of treatment is not ideal. 

The multipliers familiar from the calculus of variations are introduced 

to ensure compatibility with the dynamic system. The equivalent variables 

in our treatment obviously are not amenable to this interpretation, but may 

be said to ensure compatibility of the solution with the constraint of optim-

ality, and , pursuing the analogy, they increase the apparent complexity of 

the system while its freedom is reduced from that corresponding to unspecified 

control in a system of n first order equations, to that consonant with a set 

of n completely defined second order equations. 

The insights gained by 'arguments by analogy', of which the above is 

a simple example, are a reminder that no method or viewpoint stands on its 

own, independent of others. The discussion in Chapter 5 demonstrated that 

each approach illuminated the problem in ways which, by their very nature, 

were outside the scope of other methods. Every method must admit the short-

comings of its own merits - the brighter the light, the stronger the shadow 

that it casts - and the temptation must be avoided of adopting one consistent 

viewpoint to the neglect of others. 

An important fact common to all the available techniques is that 

despite talk of fields of trajectories the necessary conditions appear in 

the form of differential equationslthe solution of which is a time function 

appertaining to only one trajectory. Although it is a primary aim of control 
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theory to obtain feedback controls, they cannot arise from any of these 

techniques, and it is perhaps a little deceptive to present the discussion 

in terms of u(x) rather than u(t). Only in the case of a one-dimensional 

system can an explicit feedback control be obtained, by eliminating Jx  

from the equation H(x,jx) = 0, but in other cases the scalar t cannot be 

replaced by the vector x as an argument of u. 

It seems unlikely that this problem can be overcome by anything less 

drastic than a complete reformulation of the problem, for if the system is 

given in the time - like form of a differential equation, and the cost 

function is expressed as a time integral, the solution cannot be expected to 

emerge as a space-like function. Probably, what is required is a different 

form of system description, symmetric in all variables rather than giving 

special prominence to time. This is a fundamental issue in system theory 

and little effort has been put into it.  

The conclusions that we are forced to are not far removed from the 

argument of the introduction: the problem we have been discussing is too 

limited, with its first order ordinary differential equations and scalar cost 

function - certainly it can no longer be regarded as the problem of optimal 

control - and it is time to call a truce to the vast effort being expended on 

it. Perhaps the only aspect of it which re.11y must be dealt with is the 

problem of constructing fields of extremals. If this could be easily done a 

great deal of information would be immediately available about the structure 

of the system, and feedback schemes would not be far behind. This all hinges 

on the boundary value problem, for which the techniques suggested in Chapter 

7 and demonstrated in Appendix D open a door to more thorough treatment. 



For the more general, and perhaps more pressing problems we must find a 

better method of representing systems, and more reasonable measurements 

of performance: the aim is a framework which will support a theory of 

feedback control of multivariable systems in accordance with flexible 

performance demands. 

Nothing has been said of non-deterministic systems, adaptive-

learning systems, or information-seeking systems, or.... but that is 

another story. 

/34- 
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Appendix A. 	Physics in Control Theory. 
mak 

The engineer and the physicist are occupied with two sides of 

what is essentially the same problem. 'Control' is equivalent 

to 'order': a process that is not entirely chaotic is, in a 

sense, controlled, and the physical laws express the princip.  

les governing the control action. For the physicist, the 

system is given and observable,and he must deduce the under-

lying principles. Being generalizations from empirical evid-

ence, these are always subject to doubt. The engineer, on the 

other hand, is furnished with the principle, and he turns it 

into a practical programme for implementation. To perceive 

order ie physics: to impose it, engineering. Nowhere does 

this correlation appear so vividly as in the treatment of the 

optimal control problem. Analogies with natural dynamic sys-

tems abound, and while we can go no further here than point-

ing to superficial likenesses, they are sufficiently inter-

esting to touch upon. If, as Koestler maintains (85 p201), 
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the essence of discovery is the marriage of previously unrel-

ated frames of reference, it is more than likely that the 

further pursuit of these analogies will yield fruitful res-

ults, and it is worth suggesting areas which may prove rich, 

and some where analogies break down under scrutiny. 

The most obvious branch of physics in this context is 

analytical mechanics, which suggests itself by virtue of the 

minimum and variational principles which underlie the science. 

The function H = L(x,u) 	p.f(x,u) is evidently a Hamiltonian 

function, and 

L 	Lk  .k H 

= 	p. (# 	f) 

is a Lagrangian. The canonical form in which the differential 

equations of optimality are expressed is derived from the 

equivalent form in dynamics, but beyond these formal analogies 

little has been done. Deeper parallels are perhaps not to be 

sought, for the very concepts of 'particle* and 'mass' are 

lacking in control theory, precluding the direct use of such 

concepts as kinetic energy, momentum, etc. Nevertheless, 

certain techniques could be formally applied; Poisson-bracket 

techniques (Whittaker 86 p.308) might occasionally provide 



extra integrals of the motion, but are rarely of great help. Transformation 

theory (86 p.283) gives interesting ideas, but to transform a particular 

system into a more convenient form requires too much ingenuity and luck to 

make it a reliably useful tool. The optical analogue of dynamics has already 

been applied in chapter 6. 

A more promising source of ideas is continuum mechanics, though the 

status of variational or minimum principles is uncertain in this area; some 

writers grant them axiomatic status (e.g.,Edelen 87), others are scathing 

in their criticism, claiming that such principles are arbitrary, not suffi-

ciently fundamental (Truesdell 71 p.595), or lacking in physical meaning 

(Kilmister 88 p. 49). This last point is interesting. In a natural system 

for which a variational principle can be found, a suggested variation can 

be effected only by forcing the motion to be other than what it in fact is, 

using constraints. In that case we are dealing with a different system, and 

comparisons are invalid. Borrowing control ideas, it might be possible to 

represent the natural system as an optimal version of a more general system 

in which some variables correspond to the control; this system might have 

an interesting physical interpretation, for, as we shall see, a similar 

situation does arise in thermodynamics. 

Just as the minimum principle can be regarded as less than fundamen-

tal in physics, so can it be given the same inferior status in some contexts 

of control theory. This paradoxical situation arises when dealing with fields 

of optimal trajectories, for all members of the field are 'equally optimal' 

and the concept of optimality, being a comparative property, loses its force. 

Thus the concept was not applied in this thesis until chapter 4, and it 

would have been entirely possible to derive all the properties of optimal 
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trajectories except the inequality relations without its use. The minim-

izing property is crucial to a 'constructive' theory (an engineer's job), 

but not to an investigation of optimal systems as such (a physicist's) 

where a relation such as 

L(x,u) + Jx . f(x,u) = 0 	A.1 

is more important. 

A.1 could be treated as a conservation law in a field theory of 

optimal control. J(20 itself suggests a potential, and Jx  •f would be a 

rate of work in the potential field, L(x,u) representing some deformation 

power. Further conservation laws are provided byLiouville's theorem, of 

which the most familiar form states that the 'volume', 
J 
 dx dp , is an 

invariant of the motion when the points constituting it move in accordance 

with a canonical system of equations. The transformations associated with a 

reduction in the dimension of state space do not affect the canonical form 

of the equations or the validity of this theorem. More general forms of 

such invariants are given by Synge (68 p.173). 

The line integral 5 Jx 
. dx is independent of path, (naturally, 

suitable local transformations must be made, respecting the dimemion of 

each region), indicating that the vector field JX is lamellar (Ericksen 

89 p.824). This type of property invites further analysis along the lines 

of tensor field theory, the relevance of which is evident from results 

obtained, for example, for discontinuities and shocks: the only possible 

jump in a lamellar field is normal to a surface, the tangential components 

remaining continuous (71 p.494). This result we obtained here by the special 

arguments of chapter 3. More interesting results might be gained by ana.lyspvi  

the vector field u(x) along these lines.. 



Thermodynamics offers even more intriguing possibilities. One 

approach to this subject is via the caloric equation of state (71 p.619) 

e = e(4, v) 

being a scalar (entropy) and v a state vector, representing physical 

properties of the system. e is the inter*al energy. Thermodynamic tensions 

are defined as 

q  = e 

O being temperature. Hence we have 

de = A d4 + qdv 

and 	e = 0 	+ 	. 

Inequalities, such as 

e 

de 
	

0 do + qdv 	 A.2 

rule out certain non-equilibrium states. 

The formal simil*rity to equation A.1, and even its more general 

inequality form, is startling, but not so close as to be immediately trans-

latable. What is particularly interesting is the possibility of variation to 

unstable states, admitted by A.2 , which surely bear some relation to the 

non-physical variations of mechanical systems noted above. Truesdell's 

comment (71 p.659): "In a theory where mechanical phenomena are of primary 

interest, it may be natural to seek and impose a requirement of universal 

stability, but in a theory aiming to determine criteria of stability of 

equilibrium it is more natural to include the theoretical possibility of 

unstable states", proclaims , for physics, the distinction between optimal 

and non-optimal behaviour in control theory, and could almost be a reply to 

Kilmister's strictures mentioned above. 

A theorem of Carath4OdorY (75) applied to the problem of adiabatic 



14-o 

accessibility of equilibrium states has been used in a control context in the 

problem of accessibility. by extremals (11, 22) but otherwise the rapproche-

ment between control theory and physics is not yet under way. In control 

one might expect to obtain global results for the solution space, on which 

feedback schemes might be based, but us.Jful developments cannot be guaranteed. 

The outlook for physics is brighter, and we can hope for a unified classical 

field theory in which control concepts play a basic role and minimum 

principles regain a fundamental, though not axiomatic status,(which should 

satisfy everyone, even such prophets of 'variationalism' as Lanczos (28)), 

serving to distinguish actual from theoretically conceivable behaviour. 

Such developments must come from physicists rather than from engineers, and 

judging from the present state of the dialogue between the disciplines, the 

revolution will be a long time coming. Indeed, we might hope to delay it 

until the feedback concept has quite ousted open-loop methods, for, recalling 

the metaphysical excitement caused by the mildly teleological variational 

principle in the eighteenth century, the mind boggles at the thought of 

letting loose the idea. of the universe as an open-loop control system! 



Appendix B. 	Transformation of the Auxiliary Equations. 

The transformation will be carried out for the equations of the Mayer 

problem, avoiding the inclusion of LX which obviously transforms without 

difficulty. 

The notation is that coordinates in the z — system are denoted by primed 

indices, those in the x — system are unprimed. 

The vectors q , g , correspond to p , f , respectively, thus 

k 	s' 	s 

	

qr' = Ar'pk 	g =: Ar  fr  

where 	a1)xs  Ab,= b  
c. z 

We write 	1‘) 	
as 	as 

Zxr 	
'6r 	,-c)zs 

The equations, in x — coordinates, are 

	

pi  + p 	3 = 0 

' pi 
Now 	

= ctt(Air qr,) 

r s 	r . 
oeir qr,  + Ai qr. 

=s 	i  (J r')As,qr  ,gr'  +, A1  t4 ' 

Pi 	= Arj'qr,k(Ais,e') 

= A. r' 	t' 	k 
qr' 1 A. [7()t' s

i 91 + As' 

Adding B.2 and B.3 , and performing the usual manipulations of tensor 

calculus, we have 

Ar' 	A 
r r 

.L 	arS rlAs N r' 	,rt% A  qs, 	' + qrlg S1 	Al1-11  ut141  = 0 

The term in brackets in the second member is equal to 

Are 	is 	As 'Ai' ÷ Art Ai' t'r  (As°  ) r  

= ir s (As,Ar) 

= 0 . 

B.1 

B.2 

and 



Thus, 	
D. .3 J. (fj) = AV [4r'  + qs  , r,gsf:1 
	

B.4 

showing that the expression on the left of B.1 does in fact transform as 

a covariant vector, and maintains its value of zero. 

In anr-dim.space,supposeZto be nxn and chosen such 

• that 	. fr+1 = 	. = fn  = 0 . Using indices 

k , s = 1 , . 	,r ; 	m, t 	= r+l y 	. . n 

the left hand side of B.4 becomes 

Pk /sfk 4. Pm 3sfm m  

	

tit 	Pk tfk Pm atfm  = 

The second equation can be ignored, for pt  is undefined. The expression 

sfm  is the component of a gradient in a direction parallel with the 

tangent space to which pm  is normal. The product p
m sf

m must be zero, 

leaving the r-dim. vector equation 

Pk sfk  = 



143 

Appendix C. 	Discrete Derivation of Auxiliary Equations.  

The basic technique for the classical problem was given by Cicala (92). 

The operations of minimisation and integration can be reversed$  for the 

Lagrange problem, only if they are independent. Obviously they cannot be 

independent, for successive values of x are connected by the dynamic equat—

ions, but if this constraint is included using Lagrange multipliers, the 

interchange is permissible. 

St Lk 	
lt 

f / 

	

x,u)dt = 	0 :E: L(xi  , ui) Q ti  
i=1 

N 
where 	t = tf . i=1 

min :I L dt = it :Ei min [11,(xi  , ui).1Sti  — 	x 

f (xi  , ui) A ti).7 

Minimising with respect to x and u at each instant, since the value of u is 

independent of its value at any other time, we have simply 

min  r" 	ti.) 	p 'f(x. 	u ).] Ui 	1 P 	i 	i 

whereas for xi , assuming a stationary minimum, 

L
. Lx.  + pifx 	— 	4'. pi  = 0 

for each i and in the limit _A ti  —116. 0 , 

p = —L
x 

— pf
x 
. 
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Appendix D. 	Examples.  

We shall discuss several problems from the point of view developed in the 

text. The object is not to obtain solutions 	suchwas never the purpose 

of this thesis 	butto demonstrate certain points which are all the 

clearer for being exemplified by familiar and simple cases. These are taken, 

either directly, or in modified form, from Pontryagin (1), Bryson and 

Denham (39), Dreyfus (38), and Kipiniak (45). Some valuable examples, not 

all reproduced here, of problems with analytic solutions, designed to 

establish the validity of Bellman's partial differential equation, and the 

relation between Jx and PontryaginIstp(t) (our p()) are to be found in 

Fuller 95. 96. 

Example 1. Second order, linear, time-optimal. 

Following the specification of section 2.3 we have 

IC1  = X2 	2 = 

U defined by constraints B1  : (-u - 1) t5:0 	B2 
: (u - I) 1.5. 0 

Initial and terminal sets S : (C1  , C2) 	T : (0 , 0) 

cost function rt
f 
J
o dt al t ... 	f  

Using the Lagrange form, 

H = p1x2 
	

P2u = -I 
The dimensionality test (section 5.1.1) indicates that since 

(H Auu 

is always singular, there may be regions of dimension less than 2 , i.e., 

the field may degenerate to single trajectories. 

The minimum principle gives 

P1 = 0 	P2 = -P1 
	u = ±1 
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This problem has a familiar analytic solution, 

x1 = c1 + c2t ± 	t2  

x2 = c2 
 ± t 

for u = + 1 respectively ; 

the switching curves are given by 

xl 	.(x2)2 M(x) 	0 	 D.1 

on which u = mi. 1 respectively, and are the 1-dim. manifolds alluded to. 

The isotim value is equal to the optimal time to go; for points on M 

J(x) = + x2 	(u = 	1) , 	 D.2 

and for other points, say of  the time to reach M is given by 

(c1  + c2  ±t1t2) ± i(c2  ± t)2  = 0 

• • t = **c2
(2c22  ; c1

)1-  (u = ± 1) 	D.3 

and at the switching point, 

2 x = c2  ± t 

(ic221 )2 	or 	v rTi c2
2 	

C1)4. 
	

D.4 
for u = + 1 , 	1 respectively, before switching. 

D.2, D.3, D.4 give, since c is any point, 

- x2 + 2("(x2)2  xlyi u = + 1 	- 1 

x2 4' 2(Ex2)2  x1)2  u = - 1 , + 1 
D.5 

Evidently J(x) is continuous. In the 2-dim. regions we have 

-(i(x2)2  - 
1 

-(i(x2)2  

x20.(x2)2 

J 2 
1 - x2(i(x2)2  x1)4  

D.6 

which are not continuous and not defined on M. 

Following the arguments of section 3.2.3 we introduce new vectors 

y 	J 	such that one component of Sr is tangent to M , the other normal. 
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1 1 

2x2 2  

1 +x2 
D.9 

giving 

A = 

as M is approached from one side or the other. J 1  is thus uniqely defined. 
y But % ,1 

2 = -(2(x2)2  - x
1) '.1+ 	1 [- 1 + x2( (x2)2 - x1)4.1 

2 

2x '2 2 

= -1/2x2 	and 

= 4i(x2)2+x1)-411 	[ 

1 	
2 1 - x2(2(x2)2  + x1)-4-  

2 2xs 
 

Thus 	y = Ax 	A. = aii 	i j = 1 , 2 . 

2 Choose y = Mx . x 

D.7 

• 
• • N1 = 1 

x 
a22 = M 2 = ± x

2 . 
x 

 

•1 	•2 
Y are mutually orthogonal, 

.•. 	a
11 

(x2)2 	a12 x
2 • 0 

and det A = 1 	 D.8 

+ a11 x2 a12 	1 -  

corresponding to u = 	1 respectively, on M. 

A-1 ▪ • 

+ 2z2. 
Using J = Jx A 1, 
	 D.11 

together with D.6 and D.1 we have, for the upper branch of the switching 

curve (u = -1) , 

-(4x2)2  xl)4X2  + 1 - x2(
7

(x2
)
a 	x 1  )  

1 
• - 1 

and 
J. 	- x ' • x '-ix2 1 	= 	- (1(2 )

2 	l) 	- 1 + x2(2(x2)2  + x1)4  

2 + 1 
2 

  

D.10 

= OQ 



Thus J 2  is not defined, but since 
y2 = 0 

 

H =J.y= - 1 

In principle, the entire problem could be treated in the transform-

ed spaces. D.11 (inverted), D.12 and D.9 give 

H = J 1(-± 1 - u)2 + J
Y
2 	± 
(1 	u)x2  = -1 

then. 
i)x2/i)Y1  

y 
= -J (1 u)  1 2 ± 

 

-J 2(1 ± u) a21
1 

J 2(1 ± u) Y 
2 	J 2(1 + u)1  2  y 	y 2x 

/ u 	= -sign( x2  1)  2 

The transformation was one of tangent spaces, not the state space itself, 

and is x - dependent. The equations for Sr are irrelevant, and what should 

be treated is the set 

xl = x2 2 x = u 

41 = q2 	± (1 	u) 
	

42  = q2(1 + u)/2x2  

u 	= 	-sign(± 2 q2 	Tql)  

After switching, the q2  equation is discarded, and 41  = O. 

Of course, this is not proposed as a practical technique, for M 

is not known until the problem is solved, but it demonstrates the principle. 

If we propose to solve this problem numerically, the ideas of 

chapter 7 came into play. 

Suppose the initial point is (-1 , 0) ; it is necessary to determine the 

initial values of p . Knowing that u(0) = 	± 1 , we may apply 7.4a , 

obtaining 	P1(0)(u(dt) - u(0) 	0 

19-7 

D.12 



which gives no information unless there is a switch at t = 0 . This 

relation can be applied at (t,t+dt) as well as at (o,dt), with the result 

that if u switches -1-4 +1, 	pl  = const. :=:.= 0 , and if the reverse, 

p 

Since the isotims for this problem are known to be convex 

(Neustadt 60) 7.4b applies, giving 

p1(0)(1) 
5  0 

and setting 	H(0) = -1 we have 

p2(0) = ± 1 ; u(0) = T 1 

which considerably reduces the range of search for p(0). 

To construct an infinitesimal reachable set, note that for e small, 

xl(e) = -1 	x2(e) = u(0)e 

x1(2e) = +1 + u(0)e2 	x2(2e) 	(u(0) + u(e))e 	etc. 

Some points reachable in these two stages are shown in Fig. D.1 , for 

pairs u(0), u(e) from -115 	+1, giving a closed curve. Since the 

normals to this set can point in all directions, no further information is 

obtainable for p(0). 

Fig. D.2 shows wavelets fanning out from points on the boundary of 

the reachable set for 2e . The envelope of these gives the boundary of the 

reachable set for 3e, and approximates to the familiar shape of the 

isochrones for this system. 

Example la. 	Bang-bang : state constraint. 

To the above problem add the constraint 

0(x) = x2  - .5 15:. 0 

The boundary represents a 1-dim. manifold----a single trajectory----for 

which we have an explicit form, and can therefore transform to Sr. J on it. 
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As before, choose 

2 	.1 y = C
x 	x 
l x + C2 x2 = u 

The conditions that the Jacobian of the transformation be unity, and that 

1 	.2 
y 	be orthogonal to y , give 

. 	y 1 	2 	.2 y = x 	= u 

which is where we came in ! We are now assured that pl  is continuous 

throughout, and p2  may be ignored on the boundary. 

The trajectory comprises three parts: i, iii interior, ii on the 

boundary. It is usually a good plan in such cases to deal with the interior 

arcs first, as far as possible, fitting in the boundary arc later. For the 

final arc we have the special argument of section 4.3.5: the trajectory 

leaves the boundary at the same point as the unique unconstrained trajectory 

which touches the boundary at only one „Joint. It is imlortant to recognize 

that this condition, whether we can use it explicitly or not, implies that, 

for 2-dim. ptoblems, the final arc can be solved independently of the rest 

of the problem. 

In this case that arc is easily found, as Fig.D.3 shows, the point 

at which it leaves the boundary being x
1 = - .125, but if it were not readily 

obtained we would proceed as follows. To investigate the point of exit from 

the boundary we use 4.25: 

2 
P (x -x

2 
 ) - p2

u = 0 

Evidently,either u = 0 or p
2 
= 0, but since u = -sign p2 	:p2  must 

be zero in either case. 	In addition, 

H = plx2 	P2u  = -1, 

= -2 	and since 17)2  = 	we have u = -1, which gives all the 
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information required to determine the final arc. Similar use of the 

corner condition and the vanishing of H + 1 solves the. initial arc too. 

The value of J(x) for points before the boundary is : 

Time on final arc = .5 

on boundary = -2(.125 + 40), 

where x1 is point at which boundary is entered, 

Tio to reach boundary = .5 - x2 

J(x) = .5 - 2xl  +(x2)2  - x2, 

confirming that l = -2. 
x 

 

Fig. D.3 shows part of the field, together with isochrones, 

(those corresponding to the unconstrained problem in broken lines ) 

exemplifying the situation discussed in section 4.3.5. 

Example 2 	Linear Feedback. 

With the same system as in Ex. 1, we use the cost function 
cl 

2 
1 — (u)2  dt 

o 
and the terminal set 	T : (0, -1 ). 	Since the time t

f 
is explicitly 

o . 
given we treat this as a 3-dim. problem, adding x = 1, and we have 

1 	, 
H = 2 (u)`• + D0 	p1X2 + P2/1 	C' 

'  

1'30= 	= C 
	

"1)2 m  -P1 	u = -P2 

with huu  = 1 , ensuring a) that Hu = 0 gives a minimum, b) that the

trajectories are always in a 3-dim. region, so that p = Jx. 

This problem has an easy analytic solution: for an initial point 

(0,c,,c2  ) 	we have 

, 	, 
xl(t) 	c1 + c2

t - (3c1+2c2-1)t
2 
 - k2c1+c2 -1)t3  

x2(t) = c
2 
- 2(3c1 +2c2 

-1)t 	- 3(2c1+c2
-1)t2 
	

D.13 

u(t) 	-2(3c1 +202
-1) - 6 (2c1 +c2 

-1) t 
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The isotim value is easily computed : 
1 	 2 

J(x(t)) = 	(12(3cl+ 2c2  -1 ) + 6 (2c1  +c2  -1)ti 	dt 

giving J as a function of c,t, quadratic in c. For a given value of t, 

x = x (c,t) is linear in c (cf. D.13 ) so that J(x) is a quadratic 

function. Isotims at fixed times are shown in Fig.D.4; the ellipses are 

the intersections of J(x) = const., 2= time = const. The surface J(x)= 0 

containing the terminal point is a trajectory corresponding to u = o, for 

which p1= p2(t) = 0, c1= 1 	c2 = -1. This is the value of u which  

minimises fu2dt regardless of the dynamic constraints, and in view of the 

interpretation of the multipliers p as the effort of maintaining the con-

straint, it is natural that p should be identically zero. 

To find an approximate value p(o) we might apply 7.4a, getting, 

p1 (u(dt) - u (o)) -‘
4=t 0, 

but it gives no useful information. 	7.4 b gives 

-plc, - p2 (l+c ) 4  0 

which is more helpful. In addition, 

ii(o) = - p22  -4- Po 
 + p

1
C
2 
 = 0 

reduces the search for initial values considerably, for we may set 1 Po=  

if it is not zero. 

To construct wavelets according to section 6.2 we form the system 

x 	= 2x2  /(u)2  x2 	2/11 	xo' 	2/(u)2 

The points reached from an initial point c = (0,c, ,c2  ) for all u, 

-CO 4  u t00 , s = ds form a parabola. The wavelets issuing from the points 

of this parabola are again parabolae, the envelope of which is the boundary 

of the reachable set for s = 2 ds. (Fig.D.8) 

If the envelope touches every parabola, then every initial value of 

as in Ex. 1. 
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u is a candidate for an optimal trajectory, but this can occur only if all 

pairs of neighbouring trajectories intersect. 

Fig. D.8 

The parabola with origin at 	,c2  ) has the form 

1, x kds) = c
1 + 2c2 

ds / (u)2  

x2(ds) = c
2 

+ 2ds/u 

Thus two parabolas are 

1 
x - c = c

2 
(x2-c2 )2  / 2 ds 

x1- b1 	b2  (x2  - b2  ‘2  ) / 2 ds 

and their intersection has 

c1  - b1 = 	( b2  (x2- b N2 	c  (x2-c  
2/ 	2 (x2-c2 )2  )/ 2ds. 

If such an intersection is possible , 

(c2 b2 .2 ) 	;.1' 2(h2  -c2 	2 2 )((b3-c3  )/idslikb
1 
 -c

1  
)ds 	D.14 2  

b,c are themselves points on the parabola whose origin is at the initial 

point for the problem, say al, a2, and correspond to two values of control, 

say u, v, 	
b
1 
= a

1 + 2a2
dt / u2  

b2 = a2 + 2 dt /6- 

and similarly for c, using v. Substituting into D.14 we obtain, after 

simplifying, 	2 	1 	1 
  . + 	

uv 
 .....; 4 dt2 a2 + 2a2 

.(dt - ds)( u + v ) 	0 	D.15 

If a
2 is not very small, a?,,,dominates. If it is small (dt - ds ) can be 

made as small as desired, and D.15 is positive if u,v are of the same sign. 
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Thus closely neighbouring parabolae will intereeet, and the envelope will 

touch them all. No further restriction can be found for possible initial 

values of u or p. 

Imposing a state-constraint x1 ts7 c on this system, we have a second 

order boundary, 

xl  -c 	0; x
2 
= 0; u 4  0. 

The transformed dynamic system will be identical with the original one, so 

that pl, p2  will not be defined on the boundary, but po  is continuous 

and constant. 	The corner condition reduces to 

p2u = 0, 

implying continuity of u, and H = 0 gives po= 0. The inequality 7.4 
gives cp, 1.." 0 at exit from the boundary, and the problem now presents no 

difficulty to numerical solution. 

Example 3. 	The Brachistochrone. 

An interesting variation of the famous classical problem is furnished 

by the imposition of a state constraint. 

.1 	/ 	2 x 	= 	%roc ) 

.2 	/ 	2 x 	= -Vkx ) 
t 

min 	
1 

f 

	

dt 	a 
o 

S: 	x = (0,6) 

X: 	x
2 
+ .5x1 - 5 

cos 

sin 

min 

V(0) 

0 

u 

u i 

= 

tf 

1 

where 	V = (2g(x2(0)-4V2(0))2  

1 	T: 	x1 = 6 

Dealing first with the unconstrained problem, 

H = 1 + pl  V cos u - p2  V sin u , 

and Huu = -p
1 V cos u + p2 V sin u / 0  

indicates that the space of optimal trajectories is 2- dim. 
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1)1 = 	b2  = -g(p2sin u.- p
1 cos u )/ V 

tan u = -p2/p1. 

Setting Huu N 0 gives p2  N 0, and H = 0 gives cos u = kV(x), 

a convenient semi-feedback form. 

The boundary value p
2
(t
f) = 0 indicates that u(tf

) = 0, and 

therefore k = 1 / V(tf). From given points (6, x2) the dynamic equations 

can readily be integrated backwards to produce a field, part of which, to-

gether with isotims, is shown in Fig. D.5. 'It is interesting to notice that 

in this case transversality is equivalent to orthogonality. This occurs, in 

the classical problem, when 

L(x,k) = G(x)/15:11(ki  )2] 

(Rund 17 1).27 ) implying a locally Euclidean metric, which is the same as 

saying that the infinitesimal wavelets are spherical. For all possible u 

the dynamic equations of this system are, for fixed x, the parametric equat-

ions of a circle. 

When considering the constrained problem we shall again find that the 

final sub - arc, from the boundary to the terminal set, can be isolated from 

the remainder of the trajectory. This will always occur when an n-dim. system 

has a q'th order boundary, and n-q = 1, for the boundary itself provides 

q conditions, the corner condition is the extra one required, and H = 0 

provides for the unknown interval. At T there are always n conditions, 

and the 2n differential equations can be completely solved. 

The 	1 - dim. region is 

C(x) 
	

x2 + .5x1  - 5 = 0 

on which the control is given by 

C(1)(x,u) = - V sin u + .5 V cos u = 0 





%Sig 

... tan u = .5. 

Choosing a transformation k = A(x).± with k2  = 0, we have 

a21 = C 1  = .5 x 	a22 = Cx2 = 1 .1 	.2 y 	is normal to y , 

. 	2 	2 
• 
. 
	.5a11 V cos u + a12 V

2  siǹ  u = 0 

• • 	.4a11 + .2a12 = 0 

det A = 1,• . . all 	- .5a12 = 1 

A 	= 1 .5 	1 

.5 	
A = 
-1 1 1 

- 	—I  

H = 1 + p.f(x,u) 

= 1 + qA.f(x,u) 

/ x 	) 2\  q 	+. 	/ 2\ 	/ 1 + V(x2) 	cos u sin u ) + Vkx )q
2k.5 cos u-sin u ) 1 

(.5 
 

( on the boundary the coefficient of q2  vanishes ). 

41 = V 2  [..q1(.5 cos u + sin u  
x 	

) + q2  (.5 cos u - sin u )1 a21 

• • 41 = - 	ql (.5 cos u + sin u ) + q2  (.5 cos u - sin u )J (--.5) 

2 = - fr  

On the boundary these equations become 

q1 = gig ft(x2)  

42 = 	q1g / v(x2) 

though the second can be ignored. 

The corner condition 	4.25 gives 

q1 r- ( E 	- .5 cos u - sin u ) - q
2 (.5 cos u - sin u ) = 0, 	D.16 

5 
and Hu = 0 gives 

q1 (.5 sin u - cos u ) - q2 (-.5 sin u - cos u ) = 0 
	D.17 
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Substituting for q2  in D.16 gives 

sin u + 2 cos u - 	= 0 

which has only one solution in 04 u 1;"n/2 , namely u = tan -1.5. 

u is continuous, and, from D. 17, q2  = .6 ql  at the point of exit 

from the boundary. 

The same applies, of course, at the point of entry, and again, the 

initial arc can be solved in isolation, using the additional information 

H = 0, or 	47.  + 2Vq1  = O. 

For numerical solution the convexity of the isotims (Fig D.5 ) allows 

the application of 7.4b., which in this case is very useful, for if it is 

not satisfied the solutions of the equations oscillate wildly. 

Example 4 	A Rocket problem. 

Something of a coup is achieved by applying the reachable set technique 

to a problem posed by Kipiniak. The system is 

.1 	-9.8 	1 	
10x

1 X1 = 7- ,Y\ 	exp(-10t) 	2(.1)7 
 8 u  (1+10x2)- 

kl+x-)21.1+exp(-10t) 

.2 	1 x = x 

min
ct 
 f u2 dt 

0. 	x1(0) = 	x2(0) 	= 0 

T: 	x2(tf) = tf - t2 	. 35 	xl(tf) = 2tf, - 1 

The transformed system x' = f(x,u)/L(x,u) is, at t = 0, 

(.5u-9.8)/(u)2  
x1/(u )2 

Allowing u to take all values -00 15  u 	+Po the infinitesimal wave-

let from (0,0) remains on the x  axis (Fig.  D.6 ), dx1  = x1  ds having a 

maximum of .00638 ds at u = 39.2. From a selection of points on this 

1'  
x = 

2'  x = 
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wavelet, infinitesimal wavelets can be constructed in the seine way (Fig.D.6 ) 

/ and show that the set with its source at the extreme point d2 (0) k0) = .00638 ds 

includes all other sets. The boundary of the reachable set for 2 ds can 

only be attained from that point, suggesting that the initial value of 

control must be 39.2, regardless of terminal conditions. The optimal control 

is given by 	u = -p1/4 , giving an immediate value for 1)1(0), 

equal to -156.8. 

Applying 7.4b we have 

131(0) 5(-9.8  + .5 u(ds)) - 5(-9.8 + .5 u(0)7 + 

+ p2(0)E -9.8 + .5 u(0) + 9.8 - .5u (dsg 	0 

(u(ds) -u(0))(2.5p1(0) - .5p2(0)) 	0 	D. 18 

Now, 	p' 	= 	P1 	14 (2x1)6 11 1 	
1 
-2 - 	[ 10 exp(-lOt) 	P u 	1+exp(-10t) (1+10x2) 

R 
 

pi (o) = 	 ''5131 

U (0) 

= -4u'(o) 

. . 	u(ds) - u(0)=4t0)( 5p1(o) 	p2(o) ) 

so that D.18 implies 1102(0)1 '7"2" 784 . The sign of p2  is nat so easily 

determined from the: equations but physical considerations suggest that the 

initial boost of a rocket should be greater than the subsequent thrust, so 

that u' should be negative, implying p2(o) negative. 

A set of trial trajectories was computed, using pi(o) = -156.8 and 

p
2(o) = -800 , decreasing in steps of 50. (Fig. D.7) Such was. the sensitivity 

to the initial value that only one of these would have been a feasible initial 

approximation, the others not meeting the terminal set at all. A second trial 

run produced a solution close to the optimum, only requiring 'trimming' by a 

convergence process to any desired accuracy. Without these techniques the 

search for initial values would be very tedious. 
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