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ABSTRACT 

In Part I a general two-dimensional expression for 

the transfer function of the photographic exposure 

image is derived, including as factors the optical 

transfer function, the film transfer function, the 

shutter function, and the motion of the image. The 

effect of shutter operation is discubSed and it is 

shown that a focal-plane shutter acts as an independent 

agent with its own effective transfer function, whereas 

a between-the -lens shutter is not independent but acts 

as an apodizing agent. The effect of image motion is 

then discussed. The concept of an equivalent spread 

function for image motion is developed, and uniform 

linear image motion and simple harmonic: image motion 

are diSctssed 'in detail. An approximation for small. 

degradations is then obtained in which all possible 

combinations of uniform linear motion and simple 

harthonic motion are contained. 

Part II deals with the claSsical properties of an 



image formed by an optical system looking through a 

turbulent medium, namely scintillation, agitation, and 

blur. First a simple but adequate statistical model is 

obtained describing the pupil function in the presence 

of random wavefront disturbances in both amplitude and 

phase. A measure of scintillation is then obtained in 

the form of a normalized, weighted integral in 

frequency space containing all the pertinent properties 

of the optical system. A similar measure of agitation 

is then developed, and finally a description of the blur 

is obtained in the form of an equivalent transfer 

function for the turbulent medium in which the contri-

bution from amplitude variations and the contribution 

from phase variations are independent. 



GENERAL INTRODUCTION 

The relatively recent realization that an optical 

image-forming system can be treated as a communication 

channel has led to a remarkably fruitful application of 

many of the ideas developed in the field of communication 
(i) 

engineering.' Particular emphasis has been placed on 

the application of Fourier analysis, although modern 

statistical theory and information theory have also 
(1-M 

begun to be applied. The use of these tools has extended 

,and deepenedour understanding of the image-forming 

process, and is making the conception, design, and 

evaluation of image-forming syStemb less of an art and 

more Of:a science 
('0 

The classicalcommunication channel consists of 

three basic operations: origination, transmission, and 

reception. In the origination stage a carrier '(trans-

missible form of energy) is modified in one way or 

another so as to conform to the message to be sent. This-

modification may be analogous in form to the message. 

(1) A superscript in parentheses denotes a reference in 
the Bibliography. 



(e.g. amplitude variations of a radio frequency carrier 

which follow the form of the sound pressure variations 

sensed by a microphone), or.  may be in coded form, for 

example, the dots and. dashes of Morse code. The carrier 

must be transmitted by an appropriate, medium in the course 

of which the signal may be altered or- degraded, and 

spurious. (unwanted) signals andneise may be picked up._ 

The transmitted signal is received bya.mechanism capable 

of translating the modification of the carrier into a 

form which can be comprehended as-the received message. 

An image-forming optical system Can be treated in' an 

•. analogouvfashion. In the origination stage the carrier 

.is the illumination incident on the object. This carrier,  

is modified by the geometric structure and the reflect- 

.ance (or transmittance) variations of the object. If 

the, object is self7luminous it can be assumed to be both 

source and. modifier. The transmission channel'is the 

optical path between the object and the.detector, this. 

path containing an optical: system which forMs a real image 

of the object at the detector. In a visual system the 



retina of the eye is the detector. In a photoelectric 

system a photosensitive element behind an aperture of 

some sort is the detector. In a photographic system the 

photographic emulsion is the detector which converts the 

received illumination into a developable latent image, 

and subsequent development converts this latent image 

into a permanent silver image. 

We are still in the process of understanding the 

various phenomena which are involved in each of these 

systems from this new viewpoint. Unfortunately a large 

part of both the visual and the photographic process is 

non-linear, and the most powerful tools which are avail-

able, in particular Fourier analysis, depend for their 

validity on the linearity of the ,,Ystem. However, it is 

possible to consider the. linear and nonlinear parts of 

the system Separately*, and at least discover as much as 

The hon-linearity can to some degree be circumvented 
by restricting the range of thcyariables sufficiently so 
that the system is adequately close to being linear within 
thib'smallTange. 
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we can shout Lhe 31near parts. 

The performance of any image-forming system is 

determined primarily by the performance of the optical 

system which it contains, and the performance of the 

detector. These are the intrinsic factors. There are, 

however, for some systems other factors which can have 

a significant effect on the performance. Since these 

.other factors may or may not be significant, we shall 

call them extrinsic factors. The aim of. this thesis is 

the investigation of several of theSe extrinsic factors. 

In part I we shall investigate two important time-

dependent factors affecting the Performance of a photo-

graphic syStem. :These are:the effects of the shutter in 

obscuring part of the pupil of the optical system dUring 

the finite opening and closing time it requires, and the 

effects of motion of the image relative to the film during 

the exposure time. In part II we shall investigate the 

effects of a:turbulent medium between the object and the 

optical system on the properties of point images. This 

partcovers the classical phenemena of scintillation, 



agitation (image motion), and blur which have been 

observed for many years by astronomers. 

10 
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PART I 	INTRODUCTION 

The spatial distribution of the effective exposure 

obtained in creating a photographic image is not, in 

general, identical to that of the instantaneous optical 

image being recorded. Apart from the blurring resulting 

from the diffusion, of light in the emulsion, effectively 
(s) 

treated elsewhere, there are, in general, time-dependent 

variations in the optieri image taking place during the 

exposure tire. Two classes of phenomena which are 

considered in this thesis are: (1) the modification of 

the image structure resulting from the action of the 

shutter, which causes, the shape and size of the pupil to 

vary as it opens and closes, and (2) motion of the 

image. 

For the purposes of this thesis we do not wish to 

concern ourselves with the photographic process as a whole 

but only with the formation of the latent image and not 

even with all of that. The latent image consists of a 

distribution of discrete grains of silver halide made 
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developable by the action of light. This discrete R'truc-

ture can be related to the practically continuous struc-

. ture of-the optical image by postulating; a continuous.  

statistical latent image, the vale of which at any point 

represents the probability that a developable silver 

halide grain will occur of that point after exposure.. 

This probability will depend on a variety of factors, for 

example, the distribution of grain sensitivities and the 

population density of the grains, but the major factor 

which determines the spatial structure of the image is 

the amount of light received and integrated over the 

exposure time. 

Thus the statistical latent image is related to the 

optical image producing it by the process of time inte-

gration. The time-integrated optical image is itself 

a kind of hypothetical image, which is in units of energy 

distribUtion rather than power distribution over. the image 

.surface. It is commonly called the exposure image. 

The exposure image is an intermediate stage between 

the optical image and the statistical latent image. The 



13 

statistical latent image can be obtained from the exposure 

imge through a nonlinear transfer, taking Into account 

the grain distribution fpctors, etc,- However, if reci-

procity can be assumed to hold, the exposure image can 

be obtained from the optical image by a linear process 

of integration. This means that the formation of the 

exposure image is the logical termination of the linear 

input stage of the photographic process, after which 

nonlinear procedures must be employed. Throughout the 

linear stage, Fourier methods can be applied and the 

image-forming capability of that part of the photographic 

system can be characterized by its transfer function, or, 

alternatively, its spread function. 

Throughout the thesis the transfer functions and .  

spread functions discussed are functions of two spatial 

dimensions. To avoid unnecessary complication in the 

symbology, the same spatial coordinates U,V are used to 

represent object and image space. It is understood 

that the necessary, and simple, geometrical transforma-

tion'thas taken place. Also, to avoid using a great 
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Many different symbols, the author has chosen to use 

the tilde over those functions and variables which are 

in the. spatial frequency domain, but .maintaining the.  

symbol-which is used in the spatial 'domain. Thus 0 

end V represent spatial coordinates whereas u and V 

represent the corresponding spatial frequency coordi-
, 

nates, and 
	

is the Fourier transform of 	. The tilde, 

which is seldom used In optical symbology, suggests a 

sine wave. 

To simplify the .appearance of several of the mathe- 

matical expressions,• 	will be used to represent the 

frequently: occurring (,,;m -,x)/A 

In chapter I-i a general expression for the transfer 

function of the exposure Image is derived. Chapter 1-2 

discusses the possible effects of a focal-plane and a 

between-the-lens shutter on the transfer function in the 

absence of image motion. Chapter 1-3 discusses the effect 

of image motion. The concept of the image-motion spread 

function is developed and uniform linear and simple harm-

onic motion are discussed in detaili,, the latter especially 
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for exposure times which are of the same order of magni-

tude as the period of vibration. An approximation 

appropriate for small derwadations is obtained, and 

combined motions area considered. 
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CHAPTER I-1. THE T1Afl5FER FIJ1\!CTIW OF THE EXPOS= 

In this chapter wo shall derive a general express-

ion for the transfer Nr!ction of the exposure ire 

In order to do this we must examine the process of 

-formation of the exposure image, starting with the.  

object. - 

The Fourier Description of the Object 

Let 1\11(u,V) represent the radiance distribution 

over the object plane, limited to a finite field of 

area 4. It will'be advantageous to factor out the 

mean value: thus 

N (a, v.-) 	(u, 	 I 

where 

N (a v) 	d 	A fi  (0-) Cult_ C - z- 



5Seikt, [-2fr 	it, 4.. 	(ILI (14J- 

/71 fTv, 02, 	d u ctv7- 
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The total radiant intensity of the object is given by 

The purpose of the factoring is the separation 

of the object function into two factors, one without 

spatial structure but carrying the dimensional units, 

and the other providing the structural information in 

a dimensionless form. 

The spatial Fourier transfOrm of the object, which 

we shall call its structure speetrum, is given by 

( (7: 	) 	 v-) e ).1 , 	( 	4- 13 17) I cl CA. r l v , 	I.- , 3 

Here, too, we wish to separate the function into a 

dimensional factor and a structural factor. In order 

to do this, we define the normalized structure spec- 



which is seen to be the normalized Fourier transform of 

the structural factor of the object distribution.  The 

dimensional structure spectrum of Eq. 1-43 is then given 

by 

N(u,v)= A IC1 .17( 	11 

from which it is seen that the dimensional factor of the 

structure spectrum is simply the total radiant intensity 

of the object. 



The Fourier Description of the Optical Image 

In the same fashion, assuming the effective size 

of the spread function is much smaller than A , the 

irradiance in the image plane is given by 

H 	I-1 4 (tt, 	 , 

and the image structure spectrum by 

	

ti (u.,.0-)- A 	Uz, '17-) 	 3:- 1,7 

The average irradiance in the image is related to 

the average radiance of the objebt by 

	

= K 
	

T - 1 , 

where 	represents the usual photometrie factor, and 

the normalized image structure spectrum is related to 

corresponding object peCtruM:by 

19 



ing the path of. motion. Then, on interchanging the 

order of integration, 	1-1,10 become8 

where the structure spectruM of the exposure image 

The Fourier Description of the Exposure Image 

The exposure image is obtained by a time Integra-

. tion of the optical image in the emulsion. Thus, 

20 

E tt tr. t 1r) Ch 

540-.){ cr 	e2r L2-11.1 ( 	 ca f.  
I- i, io 

where tqt) is the shutter function in the usual sense, 

and II is retained under the integral sign because it may 

also be time-dependent. If we assume that the image is 

moving, 

1-f( (4 1 ) H 	 a) 'kr- 	(-01, 
where tO. and 4176.0 are parametric-expressions describ- 



where 

E =  i , 

WhiCh is the usual sensitometric exprebsiOn and 

am 	11(6c.,,i)!) 

ti 
2:ir L l ii7Y- i)'11-7)1 

is the effective transfer function for the exposure image.. 

21 

i„) 	fs 	IT 	Lic)] ctt, 	I - ( 3 
Substituting for )71 from eq. 1-1.7 and using eq. 1-1.8 

we obtain 

E (c 	7) - AK N te b 	. c, 	1:2 71" 7: ( itf,L 	 ‘1 	'01), 

-/./1 

where 
	

f ctt: 
	

is the effective exposure time. 

Comparing Eq. 1-114 with Eqs; 1-1.5 and 1-1.7 shows that 

L can be faCtored in the same way as N and H ; that is, 

E 	A Er 
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The optical transfer function`_ in the integrand 

of Eq."-/dg is the optical transfer function in the 

emulsion, i.e., it includeS the effect of light scatter 

in the emulsion, Thus 

where - L 

(I) 	(1)  

is the transfer function for the optical 

system per se, and 171F  is the transfer function for 

the scattering in the emulsion. The latter is indepen-

dent of time and can be taken outside the integral. The 

former, as we shall see in the next "chapter, is not, in 

general independent of time and must be kept inside. 

The exposure-image transfer function then becomes 

LeXpr- 21TLC ìt 	I-1,2o 



- 2,2 
ae 

.54 

, 
-̂ 0e,  

CHAPTER I-2, THE EFFECT OF THE SHUTTER 

In this section we - shall assume the absence of 

image motion, The transfer function for the exposure 

image then becomes 

23 

(1? 
.-", 

ci? F , 'e -Z 

If we can also assume that 
	

is is independent of time, 

then 

and the shutter has no effect 

Strictly speaking, this condition holds only when 

the oPening and closing times of the shutter are negli-, 

gibly small with respect to the:effective exposure time, 

or when the shutteraction is obtained by varying the 

transparency of the pupil unifermly, as with an ideal 

polarizing shutter, In practice however,'MoSt shutters 

are meChanical devices which vary the shape of the 

pupil during their opening and closing tiMes thereby 
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altering the pupil function and the optical transfer 
N  

function which depends on it. 

The two most common types of shutter arc the focal-

plane and the between-the-lens shutter. We shall 

consider both in our investigation. 

The Focallane Shutter 

.The influence of •a narrow focal-plane shutter on 

the image has been•investigated.by Bechtel and by 

Asakura by calculating the effect on the spread fund.-

tion of diffraction by the slit. Approaching the 

problem from the- point of view of transfer function 

theory however, leads to a very simple and elegant 

solution, as follows. 

For mechanical reasons the so-called focal,-plane 

Shutter. is never actually in the focal plane, bUt is 

a considerable distance forward of it. We shall assume 

for our purpose8 that the shutter is sufficiently 

removed from the focal plane ferjits effect to be 
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virtually identical to that of an equivalent' shutter in 

the pupil. Then the shutter function canle incorporated 

as a time-dependent modifier of the pupil function frot 

which the optical transfer function can be CalculatecL 

Thus 

0 O't ))  

and 

F 	 , 

 

7- 2 3 

The modified optical transfer function can be expressed 

as the autocorrelation integral of the modified pupil 

function 

Let us represent the unmodified pupil function by 

4-)(-)(f tp and the pupil shutter function by a C x -1- X t )  

where.the shutter velocity X is constant and the.: 

shutter is moving in the negative direction Of 

Then the modified pupil function is. given by 

and the transfer function for the exposure image 

given by 



x 1- 	• 

C-1-; _L. r 
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) i '(;< 	is tz, 	- 	(txci,61 

( x,)  - 	UI , 
where A represents the area of the pupil and the asterisks 

indicate complex conjugates. The time integral in the 

brackets is An the form of an autocorrelation integral 

in which both components have been shifted by an amount X 

but equal shifts in the same direction do not alter the 

value of the integral which is therefore independent of 

X 	The integral is also independent of W. and therefore 

may be taken outside the larger integral: 

14(kt+ ii.z•)A() 	t.t] 
_ 

Jj C,K 4- - (2.  - 	Gtv ,L6] , 
The expression within the second:square bracket is 

simply the transfer functiOn for the ,Optical: system 

with the shutter fully open, so the expression within 

the firSt square bracket must deScribe the eqUivalent 

transfer function for the focal plane shutter, and 
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By changing the variable of integration, letting 

/ 	• 	,, 
> = XL- the form of-the integral for the shutter 

transfer function is given by 

' 	ix) "‘( x 3:0 X‘ 

r 4 (x- ) A ( 

which is the form of a normalized spatial autocorrela-

tion.functiOn strictly analogous to the expression for 

the optical transfer function. It is, however, a func-

tion of it alone, being independent of lr 

It is interesting to note the rather unexpected 

result that the equivalent:shutter transfer function for 

a focal plane shutter is Vite independent of the shape 

and size of the pupil and the aberrations of the optical 

system. UnfOrtunatelY, this independence only holds in 

5 

the absence of image motion 



Ct".1 
U." 0 < I CL'i < 

I >ur, I-2,S 

 

This is a roofshaped function of triangular cross 

sectien, as shown in 

28 

The derivation assumes the most general complex 

form for the pupil shutter function, subject to the 

restrictions that it be independent of , convergent 

in X , and constant in its velocity. However, the most 

common form of shutter is a simple slit. If we let ur 

represent the ratio of the shutter width projected into 

the pupil to the radius of the pupil aperture then, 

for a simple slit shutter 
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Fgure I-1.-  Transfer Function for Focal-Plane 
Shutter. The cylinder in the figure represents 
the boundary Of the frequency domain limited by' 
optical-diffraction. 
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The Between-the7Lens Shutter 

The between-the-lens shutter was also investigated 
. (0 

by Bechtel by calculating the spread function. The 

following illustrates the transfer function approach. 

Unfortunately, the between-the-lens shutter which 

operates approximately radially in the pupil does not 

lend itself to the elegant reduction of the previous 

section°  It is not possible in general to separate the 

shutter effect from the aberrations or the diaphragm 

setting, and the problem is usually complicated by the 

shape of the shutter aperture, which usually resembles 

a bent star or pinwheel. 

In general Eq. 	must be used.where the variation 
lV 

of 	4. with time must be determined beforehand The 

shutter function 51  is given by the ratio of the area 

of the clear aperture at time t to the area of the 

'105 aperture when the shutter is fully open. j3oth -L L  and 

iS will depend on the diaphragm setting as well., 
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In order to 	a :eneral idea of the effect of a 

between-the-lens shutter, a simplified model consisting 

of a circular aperture, the radius of which varies with 

time, will be examined. It will be assumed that its 

area, increases linearly during its opening and that it 

closes linearly at the same rate. 

-1. 	- agraphical interpretation of Eq. T-Z,1 

for this simplified model in the absence of aberrations. 

Note that as the spatial frequency of a component 

increases there is a corresponding delay before a con-

tribution to that component can pass through the 

spatial filter, and a corresponding reduction in the 

effective transfer function This occurs because the 

smaller aperture of the partly open shutter results in 

a lower maximum spatial frequency which can be trans.,. 

ferred. 

Figure 1-.3 is a corresponding illUstration for the 

Same model with a defect of focus of 	Here 

the same spatial ffequency limit applies as in Fig 7-2 

but the amplitudes are reduced. The amount of reduc 



time 

spatial 
frequency 

Fifriure 	:Influence of a Between-the-Lens 
Shuttor.. on the Transfer Function. This' figure 
is a graphical interpretation of 	 (1-2.l).  
The optical 'system is.:assUmed to be free of 
aberrations. 



transfer 
factor 

time 

spatial 
frequency 

12;izure L-T.  Same as Figure 1-2, except that the 
optical system is defocussed by 71/z 



tion, however, increases rapidly with the size of the 

shutter aperture, so that the amplitude with the shutter 

Partly open may exceed that obtained with the shutter 

fully open, and the resultir transfer function value 

may be greater than that; obtained with a "perfect" 

shutter which opens and closet instantaneously. 

Figure 	shows for the same model the difference 

between the two extreme shutter functions, the rectangu-

lar "perfect" shutter function and the triangular "50% 

efficient" shutter function.. In Fir:. I-44. we see the 

difference in shape of the transfer functions and in 

Fig.I-4b the manner in which the transfer function val-

ues vary with focus for a particular frequency. 

Taking the defect of focus as an aberration, it is 

clear that, although a finite shutter effect degrades 

an aberration-free system it can improve an aberrated 

system. The improvement should be even more striking 

for higher order aberrations. 

The character of the curves in Fig. -J-4 implies that 

the ripples of the corresponding spread functions must 
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B 1.0 

w 
-J 

z 
17- 
20.5 
2 

J5 

0.5 
	

1.0 0 
	

0.5 	 1.0 
NORMALIZED SPATIAL FREQUENCY 	 DEFECT OF FOCUS in k-units 

defect of focus. 0 and 0.5 	 normalized spatial frequency a 0.25 

Figure 1-4.  Influence of a Between-the-Lens Shutter 
on the Transfer Function. The solid curves are for 
the rectangular shutter fUnction and-the dotted 
curves for the triangular shutter function. 
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- be considerably reduced for the. triangular shutter 

function relative to those of the rectangular shutter 

function; that is, a kind of apodization has taken 

place. In fact, the simplified model of shutter we 

employed does result 'in noncoherent apodization for 

. the exposure image, and the effect of a between-the-

lens shutter can be thought of in terms of-such an 

apodization. The manner and.extent of the apodization 

will depend heavily on the shape of the actual shutter 

aperture, hOwever, and the. concept of apodization in 

.the usual sense only applies in the absence of. image 

.-motion,; 
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CHAPTER 1-3. 	IMAGE MOTION 

Earlier investigations of the effect of image 

motion on the quality of the image have mostly been 

concerned with predicting the reduction in resolving 
(3) 

power resulting from image motion. Scott reported 

expressions for dimple forms of one-dimensional image 
(q) 

Motion. Rosenau reported an expression for parabolic 
Cw) 

image motion. Chang has investigated the effect of 

simple harmonic motion on resolving power when the 

expoture time is a fraction of a cycle of the motion. 
00 

Paris has attempted to determine the two dimensional 

transfer functionfor combined linear and simple:har 

(11) 
monic image motion.,  Paris, and Hendeberg and Welander 

have contidered the modifiCation of the transfer func-

tion for linear motion by ai.ow-efficiency shutter, 

neglecting:the effects described in Chapter 1-2 of 

this thepis. 

In this chapter we shall also neglect the effects,. 

described in Chapter 1.72 ieo, 	shallatsume that the 



3c.  

Optical transfer function is independent of time. As 

should be clear from Chapter 1-2; this assumption is 

Strictly valid only in comparatively rare cases. However, 

it is a reasonably good approximation if the effective 

exposure time is appreciably greater than the time it 

takesfor the shutter to open and clobe, or if: we are 

restricted to low spatial freqUencies and small aberra- 

tions. 

The Transfer Function and Spread Function for Image 

Motion 

Under this assumption the expressionfOr the trans-

fer -function for the exposure image becomes 

where the effective transfer function for image motion 



11-• COd 	4- 

a 1" u. ce/ 	 I- 3,3 

and 

.1f we change the variable of integration to GI,: 

f ES 	'1 el ' (- 2Tr a tt') du: -06 

I 	L.S AL (t 
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Remembering that U and 1r are parametric expressions 

describing the.path of image motion, we shall hence-

forth omit the bar. 

In order to evaluate this integral at some spatial 

frequency (am we can simplify our problem by 

rotating the reference axes through an angle 10  so that 
.v /  

the new.abscissa.U. is in the direction of (u, v) 

Then 



4 0.  

which has the form of a normalized Fourier tansform, 

and, consequently, the quantity in the square brackets 

represents an equivalent image-motion spread function. 

However, the form of this quantity depends on orienta-

tion, suggesting that it corresponds to a line-spread - 

function rather than a point-spread function. 

AnoqUiValent point-spread function does exist, but 

it differs radically in character,froM the more familiar 

optical or emulsion spread functions. The latter func-

tions can be represented by continuous, approximately 

yell-shaped surfaces overlaying the ulT7' plane, whereas 

the former is represented by a ribbonlike cylinder, the 

directrix of:Whichis the path traced-  by the parametric 

variables :(1(-0 and v-60 and the zeneratrix of which 

is a line 'segment perpendicular to and extending up. 

from the.  

SA '  

plane and having a length given by 

that is, the, shutter function div- 

ided by theAriagnitude of the velocity of the image motion 

along the' path (see Fig. S5). 

The:line-spread funetion ln the 
	

direction ib  



point sEead function 

line spread function  

Figure I-5.  Image Motion Spread Functions. 



cc-ct 	--t- 

e.4-0 	(I) ) -'3, 7 

,so the element 

represented by 

of area of the -line-spread function - is, 

dA = ES/0 ct 

in agreement 

11-2 

found by integrating thid point-spread function in the 

perpendicular direction. That is, an element of area 

in the line-spread function of width (Ili' is equal to 

the area of that portion of the ribbon representing the 

point--spread function intercepted by the interval dm: 

this area being given by 

du a A 
c,v op - 	W 

where 4 is the angle between the IL axis and the tangent 

to the curve of the directrix. But 
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It should be noted that the directrix may be a 

multi-valued function of a', in which case the line-

spread function is the sum of all the Intercepted 

elements (see Fig. 	and has aninfinite discontin-

uity each value of U.' corresponding to a bend and 

possibly a finite discontinuity at each value corres-

ponding to a terminus. But the integral of the line-

spread function exists (it is equal to the total area 

of the ribbOn representing the point-spread function, 

which in fact is equal to the effective exposure time 

t ) and there can be only two termini and a finite 

number of bends, so the, validity of the Fourier trans-

form expressed in Eq. 1-3.3 is not jeopardized. 

We shall now use Eqs. 1-3.4• and 1-3.5 to investigate 

a few special cases of image motion which are of 

practical importance. 



Uniform Linear Motion 

If Cc and .Cr  are constant with respect to time, 

then we have uniform linear motion having a velocity 

of magnitude 

in a direction 

= 	(1); 	 -3,/a 

In Eq. 	3,C 

,e Lau 

ad 
it a constant with respeOt to U' so f, becomes 

simply the normalized Fourier transform of the shutter 

function.. If S is assumed to be unity during the 

exposure, then 

.W V7 /lite) 

7 91  Lir it 

1414 



..'. T, ( -1-  (T ia,it ) [ G'Cir iz Li '.k, te  ) 	-- 	---_________!-_____LL 
iz`Lift„) -- 3,14 
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where 	te 	is the distance the image travels in 

the exposure time. The corresponding point-spread func- 

tion'is a rectangle of )ength i and height 	. The 

two functions are shown in Fir:;. 

If the shutter function is a trapezoid with a rise 

time tA  , then 

a 1 6 	) E:5(ria." Cc; t„) 	 - 3,1:3 

because a trapezoid is the convolution of two rectangles. 

If the shutter' function ip S--shaped during the rise 

time, that is, the convolutiOn'of a rectangle and a 

circle (focalplane shutter), 

Thus for uniform linear motion the image-motion 

transfer function can be factored into a term dependent: 

only on the effective exposure time regardless of the,  

so-called shutter efficiency, and a term dependent only 
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Figure i-6.  Spread Function and Transfer Function 
for Uniform Linear Motion and a Rectangular Shutter 
Function. The Cylinder represents the ,boundary of 
the frequency domain limited by optical diffraction. 
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on the rise time. The first is the Fourier transform 

of a rectangular function and the second the Fourier 

transform of the derivative of the shutter function dur-

ing the rise time. 

This result is valid only if the optical transfer 

function V I_ is independent of time and no other form 

of image motion is present. 



Simple Harmonic Motion 

Next bo uniform linear motion the most important 

elementary kind of image motion is that resulting from 

vibration in the camera system.. In its simplest form 

this is simple harmonic mOtioh, described by 

Lc= (.1„4. 	( 	-r- 	 .,It!tt, (2"11-1-)1: 

where u 	and VL are the component amplitudes of 

the motion (assumed constant), ic is the frequency of 

the vibration in cycles per second, and :ce. :is a phase 

term defining the position of the image in its path at 

time 	The path of the image motiOn is a straight 

line making an angle 

3,-16 

with the u. axis and the amplitude is 



On rotation of coordinates we obtain 

ti 9 

- 3, / 

where 

L.tai 	a cc-17 ( 

Substituting into Eq,I-3.ifwe obtain 

S exp L- TT i it 'tit,: 	zrr;‘,,,t, ÷ x)1a 

3;/,  

3. 2.0 

 

It is convenient to normalize the variable by 

t 	/te  ; thus,  

 

f- 	13 11.1.„/ 	 1/7 :1-1 a.)1 	 3,2 1 

Where 	jY7 = N -t-c; 	is the number of cycles of vibra- 

tion occurring in the effective expOsure tithe. : If now 

we assUme that the shutter.function is constant during 

the exposure:time (rectangular shutter function then 

We obtain 



e, ep L- zir 	Li,: 	( 2.1r- 	+ 	cas  
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where the origin of t is taken in the center of the 

exposUre time. 

It can be shown that, for integral values of Vn 

Eq.1.-324 reduces to the Bessel function 

(Z17ir 1.4.‘,/ 
	

3,23 

which is independent both of a: and of the order of n, 

Also, for continuous valueS of ml 

I- 3,'2 -̀i 

(6 
The latter expression given by Scott, is o 

limited Practical value, however, because, in most cases 

not more than a few CyCleb of vibration will occur. in 

the exposure time, and in thip regiOn the general 

dependence on 0wr. and on of:, (an uncontrolled parameter) 

may make 	in any particular instance deviate consider,-

ably:,from that PrediCted by ,Eqs.I-3,430r17-3. 
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Figure .1-7 shows the manner in which 	varies 

with ,X and with hi for 1,1,1 ranging from 0 to 2. Tn this 

range, at least, it is clear that LM depends strongly 

on both 	and hi • Fir,urei-8shows this dependence 

more clearly, at least for the main lobe of 	• 

Several features are apparent. -The general trend 

is for -Sfm to approach the limiting value specified by. 

Eq.1-9,21, hut, for small values. of rvi , 'fp., rises as VY).  

decreases, aPproachin& unity as tr} approaches zero. 

The reason for the rise is, of course, the fact that, 

if the exposure time is less than one period, the dist-

ance the image travels during the exposure diminishes 

with w , and the blur is,  less. At integral values eon 

we have the nodes predicted by Eq.1-3,23. netween 

. and 	= 2 is another node of which more will be said 

later. Between the nodes, --m can take on, a range of 

values dependent on cK 

The dependence on ..094' ibquite important 	AlthoUgh 

the amplitude and freqUency.of theyibratiOn might con-

CeiVably be specified ln aditanee :the reference phase 
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.Figure 1-7. Transfer Functions for Simple Harmonic 
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of cycles in the effective exposure time. The 
shutter function is rectangular The solid curve is 
for cx.o , the dotted curve is .for pc.rAt', and the 
dashed curve is for c(=TV4 . 
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F1gure I-B.  Variation of the Simple Harmonic Image 
Motion Transfer Function with m and % 	for a 
Normalized Spatial Frequency Value of 0.5. The 
shutter,function is rectangular. The solid curve is 
for oc=0 , the dotted curve is for a=174 and the 
dashed curve is for xm- Vz. 
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is unpredictable in any .given case, all values of 

. - bein.g equally 	Thus the best that can be done 
•4'5 

in describing or predicting ...Tm is to specify its 

probability distribUtion 	In the present case.this 

distribution has an upper and a lower litit, and it 

is more probable that a given.Value of I'm will be.  near 

one or the other of these liMitb than that it Will lie 

midway. between. 

If inatead..'of a rectangular shutter function, a 

triangular one is assumed j  -the sane nodes occur. at 

integral values. of 0-1 - 	and the- same limit-

...ing.function applies (Eq.4-3121),:.bUt .the..function.con-

Verges mUch..more- rapidlyHto the limiting.yalue. Figure 

1-9 Showd..the resUlt•obtained for'the::saMe parameter& as.  

seen thatl  except' for-values Of 

aess than about.a.Ti the value specified by the.limit-

ing function is qUite a reasonable prediction for  

,at'least for the main lobe of the 



1.0 

u..<  
cc 0.5 w 

z 

I 

• • 
• 

i:MmImil01.4.WOMO.NatOMMPOISO 	OPIPm0.  

I 	II 	II 	I 	I 	I 	I 	I 	I 	till 0 
0 0.5 	1.0 	 1.5 

	
2.0 

NUMBER OF CYCLES IN EXPOSURE TIME 

Figure 1-9.  Same as Fig. 1-8 except that the shutter 
function is triangular. The solid curve is for ot=o , 
the dotted curve is for ct--.T4 	and the dashed curve 
is for = n/, 



Combined Motions 

.In the general problem of combined motions  

U = 	+ 	„ 	 -11; + Z'-71.+;,, ,  

from which we obtain 

and • 
. / 
U 	

1 
+ 

It should be noted that each pair of functions in I-3,25" 

is associated with a particular set of parameters, but 

because `the orientation in general differs from pair to 

pair, the distribution of. parameters in Eqs.I-3,24and 

~~3.i7 will vary with 

The equivalent line-spread function is; given by, 

from-which it can.-be seen that the resultant :Spread 

function is not a linear: combination, prOduct, or con- 

volution of the separate component spread functions, 

and so the equivalent imagemotien transfer function: 



cannot be a simple combination of the component 

transfer functions. It, of course, is given by 

f 	 4 	 te,' 	 3 cct 	f- 3.7_9 

The simplest case of combined motions is the sum 

of two or more uniform linear motions. Clearly the 

resultant is itself a uniform linear motion, and no.  

further di8cussion is necessary. 

The next most simple case of combined - Motions is 

that resulting from two or more vibrations of.the same 

frequency. Then 

tc 	Lia 4t 'p (21TW + 	- 	vt 4 473 ), 	Z-,,30 
from.  which we obtain, 
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and 

:t 	L (etz 	z li/ 
	

y1 4 	1.1„ 	 c.ev. 	C.1,-1/50 	f - 3,.3 

Equation !_-3,31 has the same form as Eq. 1.-:m, and thus 

the preceding analysis for a single source of vibra-

tion applies here as well for each direction, but in 

general the variation of 45.m with 7/' is different. 

Of course, if 	the two components of motion 

are in phase and the resultant motiont is indistin-

guishable:from that resulting from a single source of 

vibration, and the previoub analysis:applies exaCtly. 

On the other hand, if 

the path of motion is a circle and 

a 	C Fri) t ix. 

villere the amplitude is independent of orientation but 

the reference phase is a linear funOtion 

FigUre1-10 illustrates these two extreme 

along With.a general , intermediate case for ri 

The three different point-spread functions have ident7  

-,14 TT 
	

and 



Figure 1-10.  Spread Functions for Combined Simple 
. Harmonic Motions of the Same Frequency. Exadtly 

one cycle in the exposure time is assumed. The 
shutter function is rectangular. 
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ical line-Spread functions in the ..direction of /1 but 

different ones in the direction' of Is. 

The more general problems of the combination of 

linear •and simple harmonic motions and combined 

vibratory motions of different frequencies do not have 

any corresponding simplicity, Equations 173,zs and .I -3,2ci 

- Must be applied direCtly. 



( - 2 TT a ") c( , 

The effeCt of Shifting the coordinates is Only 
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Approximation for Small Degradations 

One of the principal uses of transfer function theory 

is in the establishment of performance tolerances, that 

Is, the determination of the magnitude of a source of 

degradation when the degradation is assumed to be just 

tolerable. For this purpose we can use an approximation 

which is valid for small values of the total degradation, 

the approximtion being the use of the first three terms 

of the power series expansion for the expOnehtial 

expression in the integrand of 

First, however., let us ebtablish.as Our:coordinate 

-reference for the spread function its: center of gravity 

Thus :before shifting. our coordinates we let 

/ 	—1 u r cc"  

and substitute in Eqj:3.q. 

Shifting our Coordinates -by making bt 	we obtain 



introduction of a phase term which is a.linear function 

of the spatial frequency. 

We not, make our approximation, obtaining 

(...1 re, 	7 
	

3{1 	fr t Li tt 
	

2  Fr tr. 
	ict_t 

z  CA:1 	te  

(V

,c 
al 2 

I --  3,37 

ThiS expression is free of imaginary terms, thus 

indicating that, to the extent that the, approximation 

is valid, asymmetry of the spread function is of no 

importance, and any central section of the transfer • 

function is a parabola. It is always pessimistic, 

actual values of the function being somewhat higher 

A transfer function which corresponds to no degra 

dation of the image is simply equal to unity for all 
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spatial frequencies. Thus the second term 

is conveniently considered as the loss Lm  asseciated 

with the transfer function: ,  

of Eq. I-3,37 



"1--" .11-111 - 3,q4, 

then u = 0 and 

L,,4 	77-  a cif  2 

If the image motion is simple harmonic 

ti 

M 	 3 -;3g 

where 

= 2AT I, 
iU 

S it,s2cH 
	

- 3, 3'1 

By changing the variable of integration to u 	as in 

Eq. 	Eq. 1-3.20 becomes 

i tA'''' z 	ICI a ' 7 
-- / - 3,1-6 

and it becomes apparent that the quantity in square 

bracl,cets is the second moment of the spread function. 

If we assume a rectangular shutter function and 

the image motion is uniform linear ..that is, 



and 

Lt; = TT-2  tr' TT-2 u2 	-czybrm 	4. c,c,-/ 24e)[ 	Wry., 	Q--5(2 ii-11-0]
ttt  

3,4 3 

The quantity inside the curly brackets expresses 

the dependence on ry 	the number of cycles of vibra-

tion in the effective exposure time, and oc. , the refer-

ence phase. It is plotted in Fig.111, Which on compari.,,  

son with Fig. 	shows that the dependence is quite 

adequately accounted for. 

The quantity in the first set of square brackets 

gives the average dependence on v1 . The quantity in 

the second set of brackets defines the amplitude by 

which the loss fluetuates with 	about the average 

value given by the first quantity, 

total expression in the. curly trackets goes 

to zero for all ac as v approaches zero and to.unity: 

as m approachet 
	

It also goes to unity for 

integral values of rn . The intermediate node previously 

mentioned occurs when the quantity in the second set,of 
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Figure 1-11.  Dependence of the Transfer Function Loss 
Factor on m and ix (see equation (1-3.43)). The 
solid curve is for Co--. , the dotted curve is for 
tx=1T1 and the dashed curve is for ice. 	. This 
figure should be Compared with Fig. 1-8. 
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square brackets is zero, that is, when -tit4,1n,-, 

Other intermediate nodes will occur at larger values of 

which satisfy this relationship. 

If the image motion is the sum of uniform linear 

and simple harmonic motion, that is 
• 

u 	 f 	(7.Triq 	, 

.then 

1  1,44/ z 

(Cev 	II G 
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Here it is apparent that the first term is the loss which 

would result from the linear motion alone, the second 

is the loss which would .result froth the simple harmonic 

motion alone, and the third the loss resulting from the 

Interaction between the two. 

The interaction loss also depends on hi and 0,- 1  

as shown by. the expression Inside the curly brackets. 

This expression is shown in Fif,;,,i'14, where it can he:  

been from the nodes present that the interactbn term 

vanishes when the quantity inside the square brackets 

is zero, thdt is, when tvp,:lr. 1Tvv , the same condition 

Which applies to the intermediate nodes of the pure 

vibration dependence. Thub, at theSe values of oo 

the image motion transfer funCtion is independent of the 

reference phase (g. 	The interaction term, however 

does not, ingeneral vanish at integral values of vi4 

It is instructive to observe how the transfer func-

tion varies With of and % as the proPortion between 

the linear component and the vibration component is,  

varied, keeping the total lops constant (for ill 
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Figure I-12.  Interaction Loss Factor for Uniform 
Linear Image Motion combined with Simple Harmonic 
Motion (see equation (I-3.44)). The factor 2 is 
incorporated in the figure. The solid curve is for 

0 or Tr , the dotted curve for g t'ir/4 or 311;4 0  

and the 'dashed curve for cc -- Tr/2 . 
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Fi(-urej- i:3 shows this for a total loss of 0.2 with the 

proportion rangin,,  from pure linear motion to pure 

vibratory motion. 

The most strikin feature is the dominant effect 

of the interaction term for even small amounts of 

vibration added to the linear Image motion. This of 

course reflects the fact that when the vibratory 

component travels in the same direction as the linear 

component the blur is increased, whereas when it travels 

in the opposite direction the blur is reduced or even 

cancelled. 

As was stated previously, 	is a parameter over 

which there is normally no control, all values of X. 

being equally likely. Thus, even if all other para-

meters are specified, no specific value of the transfer 

function can be predicted unless the value of no 

corresponds to one of the nodes as seen in Fig.1.713. 

Instead, the transfer function may take on a range 

Of values which is best described by a probability 

distribution, and a tolerance level can be established 
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U1 	0.349 

1.1c; 

UI' = 0.322 

Uc; = 0.054 

U1' =0.247 
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Ua = 0.131 

uI' = 0 

1.431.  = 0.142 

1.0 

0.8 

1.0 

0.0 

z 1.0 

U. 0.8 

ts.. 
u)z  0.6 
4 
- 1.0 

0 

• 0.8 

0 
1.0 

• • 
0.81- 'ft 

1 
NUMBER OF CYCLES DURING EXPOSURE 

Figure 1-13.  Variation of the Transfer Function for 
combined uniform linear image motion and simple 
harmonic motion as the proportion of the two compon-
ents is varied from pure linear motion to pure simple 
harmonic motion. The solid curve is for co:o or -m 
the dotted curve for co.11/4  or 314 and the dashed 

curve for 0C.114,.. 
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on the basis of the statistical performance requAred. 

In the present case a fair approximation to the correct 

procedure can be made by using absolute values for the 

quantities in square brackets in Eq. I-3,`Piand choosing 

a value of X to conform to the statistical performance 

required. Thus, no photograph will be worse than the 

value obtained by setting ok-o , and if the peak-to-

peak amplitude of the vibration does not exceed the dtt-

ance of linear motion, then 75% of the photographs taken 

will be better than the value obtained by setting ix=47T 

and 50%for (;<- 7101- • 

If the image motion is the sum of two simple 

harmonic motions of differing frequency, that is, 
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LA, 	Tr 2  CZ it  (A(111 j L - 	(i1.})11)] 
	

cc -a 2 ced[ 	(Ti 141 	- 	(2 rr 

IT 2  Cif /(22 lift - \r7 (trw4)] 

41, Tr 	1,4 
a 
	cOs, (t,e, - az  ) 	 Trim) 1:ti(Trro 7 )1 

cc-) ( 3( ( 	!1-,) EF)- 011,1,) iC3 IT 	 (MI), 	irrri 	S(  

Here again the first two terms are the losses which 

would result from each component of image motion by 

Itself and the third term is the loss resulting from 

interaction between the two. 

This example is more difficult to describe than the 

previous examples because we now have six parameters, 

two of which are independent random variables. In part-

icular the probability distribution of i- m  becomes 

much more complicated. 

In order to get a general idea of the properties 

of Eq.-1-3,4swe must look more closely at the interaction 

term. This term itself contains all six parameters, 

they are conveniently grouped. The expressions in the 

square brackets descibe the dependence on both v 

and 1112 	Figurel-H shows the manner in which the 
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Figure 1-14. Interaction loss factor for combined 
simple harmonic motions of different frequencies. 
This is for the expression in the first square 
brackets of the interaction term in equation (1-3.45). 
The dependence on V, and vz  is not shown. 
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ountity - in the first square brackets varies and Ft. I-LY 

the second. The parameters 	and 	have been 

transformed to (01, 070,, ""?)..• 	and 

in the firrures. 

It is clear that the magnitudes of the expressions 

•generally 'increase as the difference between the fre- 

• cuencaes f.,Te,7reasez. ,tThe 	C.• 	 k. • 

between the two components reaches its maximum when 

the two frequencies become the same. If the two 

frequencies are the same, then the loss is a maximum 

when the motions are in phase with each other, that is,  

al 	In which case the loss can be expressed 

. 	( as in 	whore U, 	For all 

other frequency and phase combinations, the loss will 

be diminished. Thus, if. a tOlTance is to be established 

for a combination of two different:freouenciet, then a 

safe maximum limit for the loss can be set by assuming 

that both frequencies are equal to their average and 

that they are in phase with each other; ThiS prOcedUre: 

is, of course, a short-cut and may be excessively conserv7 
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Figure I-15.  Interaction loss factor for combined 
simple harmonic image motions of different frequencies. 
This is for the expression in the second square 
brackets of the interaction term in equation (1-3.45). 
The dependence on 	and e is not shown. 

2.0 



76 

at -L7e if the frequency difference is large. The correct 

procedure is to calculate the probability distributions 

from :71-iich the tolerance can be determined according to 

the statistical performance required. 

If the imarr,e motion is the sum of any number of 

uniform linear motions and simple harmonic motions, then 

the loss can be calculated with the terms contained in 

Ens.T5MandT- iA5-. First all linear motions can he 

combined into a resultant linear motion and the vibra-

tions for each frequency combined into a single result-

ant term. Then the loss will consist of a term for the 

linear motion as given by the first term in Eq..1-3,LN 

term for each vibration as given by the second term in 

Eq.D0 or either of the first two terms in 

an interaction term between the linear motion and 

each of the vibrations as given by the third term in 

Eq.P3M, and an interaction term for every pair of 

vibrations 	given by the third term in Eq.1-3,4s: 

The general procedure followed in this chapter 

can easily be extended to other kinds of image motion, 
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if clesired. The two kinds which have been used in this 

chapter are, howeVer, the' ones of greatest practical 

interest.. 



PART•II. 	INTRODUCTION 

The first part of this thesis dealt with two time-

dependent factors which are significant in determining 

the image-forming properties of a photographic system. 

The remainder of this thesis deals with some Of the 

properties of images formed by an optical system 

looking at the object through a turbUlent medium.. 

The principal effect of a turbulent medium is to 

distort the transmitted wavefront for each point in 

the object so that far each object point, the wave-; 

frOnt reaching.the optical system contains random 

structure in both- phase and amplitude6. 

In the main we will not concern ourselves here 

with the details of the manner in, which the phase and 
03, ii-f) 

amplitude variations arise, but with the manner'in 

which they interact with the optical system in deter-

mining the properties of the images formedo.:.  However, 

a few words might be said in a qualitative way about 

the source of the phase and amplitude variations so 

that their significance might be more easily Understood 



First of all, turbulence by itself does not 
05) 

result in wavefront disturbances. This will occur 

only if inhomogeneities in refractive index are 

present, and in the cash of the atmosphere, the 

latter result almost entirely from thermal inhomo- 
(16) 

geneities. The turbulence establishes the random 

structure of the inhomogeneities, and consequently 

the structure of the random disturbances in the 

transmitted wavefront. 

The immediate effect on the wavefront passing 

through the inhomogeneous medium is that only phase 

disturbances are -imposed. However as the wave 

propagates; the energy is redistributed along the 

wavefront because of the random "focus-defocus" effect 

of the phase. disturbances and this gives rise to the 

random amplitude component. Thus if the turbulent 

portion of the medium is near the optical system, 

only phase disturbances will be significant in the 
07) 

received wavefront, unless the turbulence is severe. 

If amplitude fluctuations are observed, then they 
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(r7) 
must arise from distant turbulent structure. Of course, 

both near and distant turbulence may, and generally 

will, be present, in which case the amplitude structure 

comes only from the distant turbulence, whereas the 

phase structure arises from both. 

Another point is of considerable importance. If 

the disturbance were literally in the entrance pupil 

of the optical System, then, at any given moment the 

wavefronts from all points in the object would be 

affected (in phase alone) identically, and, to the 

extent that the optical system is isoplanatic, 

stationarity in the image plane will•be achieved for 

each instantaneous image as well as for the average 

image. However, if the disturbance is distant from 

the entrance pupil, then wavefronts from separated 

points in the object will pass through different 

portions of the inhomogeneous Medium before reaching 

the entrance pupil, and the image at any given moment 

will not be stationary. Thus for the instantaneous 

image, Fourier transform theory is not valid. However, 



if the random structure of the disturbance is statis-

tically stationary, then the avera7e image will again 

be stationary, and as long as we restrict ourselves 

to considering  stationary random structures and aver-

age properties of the image, we are free to use 

Fourier transform theory. 

Historically, the principal concern with the 

effects of wavefront propagation through a turbulent 
08) 

medium has been that of astronomers, partly because 

they are accustomed to using well-corrected, large 

optical instruments looking through a very long air 

path, and partly"because they deal primarily with 

isolated stars, which are in effect discrete point 

sources, and the effects of atmospheric turbulence 

are most noticeable for such objects. 

In observing the effects of atmospheric turbulence 

on star images, they have distinguished three image 

properties. These are 1) scintillation or fluctuations 

in the total intensity of the star image, 2) agitation, 

or moving about of the star image, and 3) blur, or 



spreading of the star imacz;e beyond the diffraction 

pattern which would be expected from the optical system 

in the absence of turbulent structure, Terminology in 

8) 
this area is anything out consistent among astronomers, 

but the general character of the three distinguishable 

properties is commonly agreed upon. 

Unfortunately, these three properties do not in 

general depend on the random structure of the received 

wavefront alone, but also on the properties of the 

optical system used to form the image. For example, 

it has been observed that at least scintillation and: 

agitation vary with the size of the entrance pupil. 

The object of the remainder of this thesis is to 

investigate the manner in which the optical system 

and the random structure of the received wavefront inter-

act in producing the above three phenomena. 

It will be noted that the tilde notation will be 

only sparingly used in this part. This is because the 

emphasis here is on operations on the pupil function, 

in which displacement corresponds to spatial frequency 



in the :i.magc plane. Thus we will use 	1- to 

represent displacements in the pupil, and it will be 

understood that these variables, being normalized in 

the pupil, can be identified with the reduced spatial 

frequency variables a , 	in the image plane. 

A word is in order about the statistical averages 

with which we shall deal. 

The principal random function of concern is the 

random portion of the incident wavefront which varies 

with both space and time. The area of the pupil can be 

considered to be a kind of window through which we can see 

a finite portion of a hypothetical infinite disturbed 

wavefront which coincides with our observed wavefront 

where we observe it. Also, we can observe it for only 

a finite period of time, but we can assume that our 

spatially infinite hypothetical wavefront is also infinite 

in time, coinciding with our observed wavefront during 

the time of observation. This hypothetical infinite,  

wavefront is itself a member of a set, or ensemble, of 

all possible hypothetical wavefronts which could b 



(94 

generated by the same random process which produced our 

observed wavefront. 

Now the fundamental Statistical properties (averages) 

are obtained in principle by averaging over the ensemble. 

If we assume that the generating pi4opess is strictly 

stationary, then the averages we obtain are independent 

of space and time. Furthermore, we can invoke the ergodic 

hypotheSis, which means that the averages obtained over 

any (infinite) sample are the same as the corresponding 

ensemble averages. Moreover, for any sample, the averages 

over space alone or Over time alone are also the same as 

the ensemble averages. Throughout the following material 

all averages:indicated by:angUlar brackets,‹ > rppresent 

ensemble aVerages although in most cases they can be.  

interpreted as time or spade averages wher*evei' appropilate. 
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CHAPTER II-1. THE PUPIL FUNCTION WITH RANDOM COMPONENT 

If the medium between the object and the optical 

system were perfectly homogeneous, then the wavefront 

emanating from any point on the object would, on 

entering the optical system, be coincident with a 

sphere centered on the object point and of uniform 

amplitude ap. The essential function of the optical 

system is to change the curvature of each of the trans-

mitted wavefronts so that each of them converges to a 

point in the image space providing a total image which 

is a point-for-point map of the object., However, it can 

only do this imperfectly, and apart froth changing the 

curvature the optical system modifies the incoming 

wavefront in both amplitude and phase according to its 

pupil function so that the transmitted wave can b 

described by 



where both: 11 and 1AL arc functions of position in the 

Pupil, TL  describing the imposed amplitude alterations, 

including the boundary. ef. the clearaperture, and VIL  

describing the aberration of the transmitted wavefront, 

If the medium.between the object and the optical:::  

system is turbulent, containing random inhomogeneities 

of refractive index, then in general the wavefront reach- 

g the optical system contains random diStUrbances in 
03,1 4) 

both amplitude and phase, and can be represented by 

where both (34 and 	are functions of position in the. 

wavefront and also functions of:bite. On being trans 

mitted by the optical systeM the wave can be described by 

Ce
04. 4  

On comparison withequationRI,.it can be seen 

that the effect of,the,turbulent medium can be considered:. 

as a time-dependent modifier of the pupil function, or: 

better as a.random component of the effective pupil 



medium 

function. Thus we can define the random part of the 

pupil function as 

F.37 

(I. 

We can now assume simple statistical properties 

for the two real random functionb -04 and /3 and 

'still retain a reasonable physical model. The assump-

tions we shall make are. asfollowS:' 

1). Both x and 	are are continuous functions of 

space,and time. This property is not essential 

for many of the imager.forMing properties we shall 

obtain, but 'it is reasonable if the disturbances 

have arisen from the turbulent structure of the 

Both X and 	are at least locally stationary 

in the statistical sense..  This assuMption corres-

pond's to that of locaLisOplanarity in the linear 

treatment of the image-forming properties 

aberrated optical: syStems. 



31) B0-01 M encl./6 have normal (Gaussian) probabil: 

A convincing theoretical justifica- 

00 

3). The. random phase function (-3 has a mean value 

of zero. Again, this assumption is not often 

.necessary, bUt it is reatonable if the disturb-. - 

ances-have arisen from the turbulent structure of 

the medium. 

4) The random amplitude function g.has a non- 
C'7 

zero mean. This is necessary for the conservation 

of energy, as will be discussed in the following 

section. 

tion for this assumption would be difficult to 

obtain, but we can say that observable properties 

derived with this' assumption are at least, not 

incompatible with experimental observationt. 

We shall use the common symbols 

to represent the standard deviations and variances 

f k and '/.3 	and also o represent the 

A superscript in square brackets indicates an entiv.  
under NOTES at the end of part. II. 



When turbulence is present, the nstantaneous".intensity 

is given by 

the mean value of which is 

2i1e 
e 

which, :hOWever, must be equal t 

be conserved. Therefore 

89 

normalized auto- and cross-correlation functions of x: 

and r 
Returning now to the question of the mean value of 

WO first note that in the absence of turbulence'the 

intensity of the light incident; on the optical system is 

given by 



equation we find.  

Substituting eqUatiOns:II-110 and. II-1.11 into 

TL" - 12 

from which we conclude that 

1.13 

If we separate 	into the sum of its mean valUe and, 

the fluctuations with zero mean, that is 

, 	< aC 	 - 	,9 

then 

e. —isio 

If we assume a normal probability density for Dz, 

then (see Appendix III)9  

The validity of theHabove model as far as aMplitude 

fluctuations are concerned is indicated in figure I2-1. it': 
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I(06•01) 

I(( a0.5) 

Figure 	Variation of the intensity function 
17e' and its probability density for several values 
of co;,.; assuming a normal probability dehsity foroc. 
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was constructed from a table of random normal deviates. 

The top line shows the assumed fluctuations in oc 

The middle line shows the observable fluctuations in 

intensity for an assumed value of qi =0.1 generated by 

the function shown in the top line. The bottom line 

shows the correspondinrs intensity fluctuations if 	0.5, 

The probability density distributions of the three func-

tions are shown on the left. Qualitatively the model,  

fits experimental observations in that when scintillation 

(intensity fluctuations in star images) is moderately 

severe there occur bright flashes of intensity several 

(M) 
times the average intensity in the image. This indica- 

tion that the model is reac'onable is attributable t the 
.x 

exponential form e rather than to the assumption of a 

normal diStribution in 	1).1,1t the assumption.  of normality 

is at least consistent with the experimental data which 
(04) 

has come to the author t0 attention. 



93 

CHAPTER 11-2. 	SCINTILLATION 

As described in the introduction, one of, the phenomena 

familiar to astronomers and attributable to atmospheric 

turbulence is the fluctuation in the intensity of a star 

image as observed by the eye or a photoelectric detector 

in the image plane of a telescope. 'It has been observed 

that the magnitude of the fluctuations depends among 
(0,20 

other things on the size of the telescope aperture. - 

In this section we shall obtain a reasonably simple 

relation between the essential statistical variable ,  

describing scintillation and the assumed statistical 

properties of the random component of the pupil function. 

This relation contains as Parameters the essential 

(non statistical) properties of the pupil function, so 

that the eiTect on the scintillation of the shape as well 

as the size of the pupil, and including obseurations and 

apodization ab.well„ can readily be determined. 

The essential statistical variable describing 

scintillation is thecoefficient of variation of the 

observable fluctuations of the light contained in the 



Z2  ff 	lax (,k. 7-z, I 

Its mean value is given:by 

> 7-2,2 

9)1. 

total image of a point source, or star. This is the ratio 

of the standard deviation of the fluctuations to the mean 

value of the signal obtained. 

The total instantaneous power in the image at any 

given moment is equal to the total instantaneous power 

in the exit pupil. Thus 

which 
204. because e is the only random variable involved, 



correlation involved in the auto integral of the pupil 

image plane. The use to which 

Lci:- 	14- 	ct. 	f fic C At 
ct. , -2,S  

By changing the variables so that 

we obtain 

/ 	fc I j  i 2.  

At this point it is . Worth noting that the variableS 

X,'"6 X., 	can be identified with the same variables 

function Which is used to obtain the Optical transfer 

• 

function. In particular, 

spatial frequencies in the 

x 	' and 	are associated with 
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is the total transmittance (area multiplied by mean 

transmittance) of the pupil. 

The square of the total instantaneous power in the 

image is given by 



the letting V represent 

1—I 	L2- T 1- 	ck)L 

a 11: 

whereupon 

we have 

coefficient of variation, Now 

we shall pOt this identification will occur later. 

The mean value of J-2.  is given by 

cs. 
a 

.— Ora ..... (,t+, 

	 T 
	

1 7  10 fz, I t > 	,tg.cCa t, 

OaR, iqnt 4  > clx 2  

Let us define the normalized function 



11 
/ 

ci, 

tv 

SI ct'i6  Cbj. 	GIA/1  
•••• 

T if Do ct/Y, 	/ c. 2,1z 

we see that'? can also be represented as 

--2, 13 

X-2. I( 

Noting that 
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r<16,12 10"1 j) 	- " 	..;4 
- 

V 
LY. 16(.4.4 

Therefore We obtain 

.1) 1),, 	clx 	

Tr - 	, 
T), ay 
	1 

where -Os  is exclusively dependent on the random part 

of the pupil function and E, is exclusively dependent 

on the non-random part.  

Let us look more closely at the function I), 

(eq. 11.,.2.9) which we shall call the Core function. 

the absence of apodization, TL. merely describes the 

'boundary of the pupil, and is assumed to be constant 

within the pupil. The integrandthen describes 

two overlapping pUpils displaced with respect` to each, 

other, and is identically zero everyWherp-except-in the 

region they hOld in cOmmon TherefOre we see that, 

the absence'of apodiZation, the core function —Pc, 
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identical to the aberration-free transfer function of 

the optical system, whether the optical system is free 

of aberrations or not, This is of course reasonable, 

since the aberrations affect the distribution of power 

in the image and not the total power itself. 

When apodization is present, the identification of 

the core function with a form of transfer function is 

lost, except in a qualitative sense. However, it 

should be noted that the integrations indicated in 

eq. 11-2.14 can be taken as over the spatial frequency 

domain of the system, transfer function. 

First let us note that 
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Now if tiO) is Gaussian, then fiCd.i-60 is also Gaussian 

(see appendix 1 ), and we obtain (see appendix 	) 

<,,<> • 	. 	( x/-1. 04t,  ) 
< e 	 e 	e 	/ 

jf O, zi 	
- 2, 17 

SO 

- 2, 18 

Which is a very simple function of the statistical 

properties of the incident wavefront, and is of course 

independent of its phase variation. It is a function 

of (Y;1) becau-se the autocorrelation function 

is a function of (xiAit) 	Note that 13s  is a.  maximum 

when /14 is a maximum, and goes to .zero when,  foli„, goes, 

to zero-. mother words, .the shape.of I3s  is similar:  

to that of 	In fact, if we normalize 	to its 

value-: at (0,0) that is, 
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- 

- 	is) 	 c 	 2 , 

then we find that 4 approaches /‘,, as kl; approaches 

zero. Figure 11-2 shows how 1:L varies with ()„ for 

several assumed values of 0: 

We see, therefore, that the squared coefficient of 

variation can be obtained as a normalized, weighted 

integral of the core function De, which is similar if 

not identical to the aberration-free transfer function 

of the optical system (in any case, it covers the same 

range in ( X , •AJ,1 )), and where the weighting function 

a simple function of the amplitude disturbances, is 

similar to the correlation function 7), , having the same 

scale in (g',i) as 	. Note in particular that, if the 

transfer function of the optical system has a finite 

limit in as it must iflany real optical system, 

the core function has the same limit So that the inte- 

grals involved need by taken only over 'a finite range.. 

In examining the effect of the Optical system on the 
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Figure,  11-2.  Variation of the normalized weighting 
function B ts1 with the autocorrelation function tc< 
for several values of o (see eq. 11-2.19). 
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intensity fluctuations in the- image we must -first be- 

concerned with the relative scale of the functions 17 

and T ° Because of its usual .circular symmetry and 

sharp outer boundary, the radius of the pupil of the 

optical system can usually be used to represent its - 

characteristic length. 

The characteristic length of the weighting function 

U or the autocorrelation function -  /7,, - is not So 

clearly distinguished because of the general lack of 

common identifying features for the class of possible 

fUnctions. In fact, there are two scale faCtors generally 
(-1) 

used in turbulence theory, the microscale, and the 

integral scale. The microscale is determined by the 

size of the smallest eddies formed, and the integral 

scale is determined by the larger eddies, the sizes of 

which depend on the boundary conditions of the situation 

in which turbulence is created. In the present context 

the integral scale would be the radius of the cylinder 

of unit height which would contain the same volume as the 

correlation function under consideration. 
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If .  we assume a continuously varying index gradient 

an the medium and a minimum eddy size, then any possible 

autocorrelation function must have a zero derivative at 

the origin and must be parabolic in the vicinity of the 

origin. One way of defining the microscale in terms of 

the. properties of the autocorrelation function is the 

radius at which the function ceases tO'be parabolic, 

althoub thiM 1,s necessarily vague  because the transition 

is gradual. Another. way would be to use a measure of the 

parabola, such as the radius at which the.  parabolic 

approximation would drop to 1/2 (the radius at which 

the parabolic approximation would drop to zero would. 

generally'be a little too large to be consistent with: 

the meaning of microscale),. - A third way would be to 

use a characteristic length of a function - which is used 

to-  generate•the form of the .autocorrelatibn function.. 

For the functions we will use for illustrative 

purpoSes in thiS thesis we - will only use-.a measure of the 

microscale and -.neglect explicit. discussion of'the integral 

Scale :because we shall use simple mathematical models ' 
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in which the two are strictly related. 

The ratio of the characteristic length J. of the 

pupil function to the characteristic length of the 

autocorrelation function /9, is the relative scale 

factor 	. The manner in which the observable scintilla- 

tion varies with aperture size is described by the 

dependence of V on 4,!, . Let us consider two limiting 

cnses, 

n. 
As 	o the range of integration is limited to the 

central peak of the autocorrelation function 

which approaches unity, and 4 	which is 

independent of (Air) and can therefore be taken outside 

the integral so that 

116;,z  
V 	e 71:- 2,20 

The matiner, in which 1/6  varies with 9-; is Shown in fig„a-30 

The general expression for V 2  can therefore be written 
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Figure 11-3, Dependence of the coefficient of 
variation for scintillation on the standard 
deviatibn of64. 
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The function C5  as a function of 4 describes the manner 

in which the scintillation varies with the size of the 

pupil, and is practically independent of 	for small 

ValUes of 
	

(see figure11-2). 

In the ease where /i!-)00 the range' of integration 

is essentially limited by the range of 	, and R 

approaches unity over this range. The volume represented 

'by the upper integral then approaches. the volume under 

the funCtion 	(approximately; the volume under )7?, 

although slightly less), but diminishing at a rate 

of Ve Now if we assume that the volume under /.20,: 

is finite, then V must fall off at least as fast as 

1//C for large values of 42 

othetical illustrative example will serve 

show the manner in which V dppends on le, and at the 

same time demonstrate the effect of a central Oscura-

tionandof apodization. 

The assumed aptoeorrelation fUnction /0,4  and its 

equation are shown in figure:RH-V!  It is assumed to be 

isotropic.. The special propertY characterizing this 
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Figure II-1.  Family of hypothetical autocorrelation 
functions for•oG . • 
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00 
function is that its integral is zero. Tatarski claims 

that this is a necessary property, but he bases his 

argUment on the conservation of energy, whereas we have 

shown that the conservation of energy is satisfied by 

merely assuming a non-zero mean for 4'4 . However, his 

experimental determination of /ox indicates the dip below 

zero which is necessary if the integral is to be zero, 

so we-shall also assume that he is correct. The value 

of the parameter Yr) for the curve in figure 11-4 which 

most nearly conforms to his experimental 'determination 

is 0.1, and this is'assumed in the remainder of the 

illustration, 

The core functions which we shall assume are those 

for a Ciroular aperture, annular apertures with obscura7  

tion ratios of 005 and 0,91  and effectively Gaussian 

apodization. The core:functions, shown in figure 11-5, 

Are all assumed to.have the maximum radius of the aperture 

As the Characteristic length. 

The.  results are shoWn in:figure 	where the 

aperture scale factor is the ratio of the radius of the 
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Figure IT-5.  Core functions for several types of 
aperture, all having circular symmetry and equal 
maximum• dimensions. 
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Figure 11-6.  Variation in scintillation with.  
aperture size for the several types of aperture 
shown in Figure 11-5. 
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aperture to the standard deviation of the Gaussian 

function used to generate A , and the scintillation 

aperture factor is C5. It can be seen that scintillation 

is reduced by using an annular aperture (at least if the 

radius of the aperture is of the order of the mieroscale 

of ioct  or less), but the reduction is small for obscura-

tion ratios up to 0.5:and only moderate for ratios as 

great as 0.9 whereas the amount of light received is 75 

and 19% respectively relative to the-unObscured circular 

aperture, so that the deliberate obstruCtion of the 

circular aperture to reduce the observed scintillation 

is not generally to be recommended, On the -other hand, 

apodizing the aperture results in a significant increase 

in-the scintillation. 

It is interesting to'observe how well the assumed 

function fits.observed experimental data. Figure II 
00 

shows obServatiOnb made byTrotheroe: averaged for Summer 

and winter along with the best fitting curves. 	It can 

be seen that the general qualitative character is con-,  

"firmed, but that the experimental data &yes not fall off 
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It was used primarily because it is a simple two-

parameter function which has the approXimate character-

istic8 to be expected. 

114 

as rapidly as 	This is undoubtedly due to the fact 

that the macroscale of the turbulence must'be larger 

than the maximum reported aperture of 12 inches and 

the experimental data does not go out far enought to 

indicate the'limiting slope. ,The apparent discrepancy 

is also compounded by the fact that each point repres- 

-, ents the average of a number of observations in which 

the scale .of the turbulence may have varied appreciably. 

However, it is unlikely that the function used to describe 

/0,e in the illustration is a really good representation'. 



the transfer function of the system. 

Firpt consider 

transfer function 	and the spreadfunctiOn 

SPOA,41-) e 	 41-11)c{A'GC,- 
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CHAPTER IL-3. AGITATION 

Another observable property of an image formed by 

an optical system looking through a turbulent medium 

is that the image appears to dance about, at least for 

small apertures. As in the case of scintillation, this 

property, which we shall call agitation, also decreases,  
('a) 

as the size of the aperture increases. A measure of 

agitation is the radiUS of gyration ,(rm.s, deviation) 

of the centroid'of the image fromAtb mean position. 

In order to develop an exprespion for:the agitation, 

let us first develop-the relationship between the position 

Of the centroid -of the instantaneous, image and the pupil 

.function. We shall do this by using as an intermediary 



t( 	1,-) act tttr 

-coordinate of the centroid is tt- but the 

The same argument holds for the •ir -coordinate: 
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-v 

If we differentiate 	with respect to x' , we obtain 

2+1'  if LC (I1)4r) e-.2r1  ctiA d41-, dr- 3, 2. 

Evaluating the derivative at yi,Ifi= 0 	we obtain 



• — (is/ 	T. 
CF1 	• 4-  C'219 c)x 
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Now consider the relationship between the transfer 

function jr!- 	and, the pupil function -1-66„5,) 
	, 4 1.  

where 	e 	 v_-1-WF 	and WR  (Yi< (3,7(zT177,): 

1 	X 
SS 6( 4  )-c ) 	) 	- 

--- ct̀ d 

 

3, g 

Differentiating,' we obtain 



of the centroid and the pupil function. It is of 

interest to note that, although these. equations apply 

-)1A1 3;7 	'T 1 	dhz cad_ 

as the required relationship between the coordinates 

to the centroid of the diffraction image, exactly.  

- 3, 13 

Evaluating at X Aff c), 

o .zow' 
, 7 2-7--  )3 .2. l< 	-c v 

-40 

oo 

and correspondingly 

'19 

21r);4A): 
r jr- 3 

and'we finally obtain 
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the same equations apply to the geometrical image, 

so that even though the predicted image distributions 

are different for the two types of image, their 

centroids are the same. 

We are not, however, interested in the absolute 

coordinates of the centroid but the deviations result-. 

ing from the random component of the pupil function. 

Noting that 



< cc g  = < 	o - 3,18' 

First note that 

We have already demonstrated that 

• the first integral vanisheb. Let 

the term 

<e2' ›̀ = I so 

us consider next 

-3,   

and correSpondirigly 
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Gs,  

I 	( 	11.1 
el-7--R 7 	 Tr' 	I  

C —1" j) 

201. 
- 2cWR 	'loll II  

77  — e (i46 elf Ai) 	• 
- 3, 1 7 

Before proceeding further let us verify that 



. Noting that 
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If the joint probability density /1(06) is known, 

-then 

1 	1 ce > S 
 

I  
- 3,2 I 

If we assume a joint Gaussian distribution, 

1 	
z 	. 

[ 	-2,1 	 ),1 ... . 
, t 	 -2- (I 

then 
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	• 
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then 

< 	 . 

tp. Imo: zs->c- . 
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and the second integral vanishes, verifying that 

• 3,2 6 

'Returning now to the problem of the radius of 

gyration, we note that the square of the radius of 

gyration is'given by 

-- 2 

C VIZ + 

and 
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-I- Z A 13 

1) -t- C 

12.3 

A 3 	C 	 - 73.29  

• 1E -3;3e 

4- C 

Using the same technique for converting a sqUared 

integral into a double integral that we ubed.ln the 

section on scintillation, we obtain 
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Consider the average within the last integral. It can 

be expanded as 
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*Noting that if. oC has a Gaussian probability density 

distribution, then (641+60 has also (see Appendix II), 

and each of the four averages in the last expression 

is identically zero by the argument leading to equation, 

xr 	Therefore <AV +CD> is zero and 
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Let us consider each of these terms separately. 

The average within the integral of the first term 

becomes 

< , e 	 e 
z (y, 	, . 

< 	> < 	- e ».3,37 

which, by the equations -IL bY and -Jr-2.17, becomes 

*467, 
e 	15, , - 3,3V 

the same function obtained in the case of scintillation. 
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numerator of the function Po 	and we can define the 

function 
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which is related to the function I), obtained in the.  

case of scintillation, we obtain for the first term 

> 

This term desCribes the effect of the interaction 

betWeen the amplitude fluctuations and the properties 

of the optical system, and is independent of the 

random phase fluctuations, Note also that it vanishes 

if the optical system id free of aberrations. 

Finally, let us consider the remaining term 

The integral within the square brackets is the 
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so that we obtain 

I))  PI C. 
< 1) 	P 2 7'• - 	' 

II 11, ̀ 1' '1(U 

which is independent of the aberrations of the optical. 

system. 

The general solution of the average represented 

by 7 	involves a four-point correlation which is 

much too complicated to be -included .here. However, 

if we assume that the amplitude and phase functions 

are essentially uncorrelated,,as is.very often 

approximately the case when the larger.part of the 

phase variations come about by turbulence near the 

aperture of the system, whereas the amplitude variations'. 

can only come àbout from distant turbulence, then, 
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,." 
011  factors into two parts, one dependent on the 

amplitude variations and the other on the phase 

variations: 

-13t, < e 
2 (OO 1 	„ 
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The first factor, which is familiar by now, reduces to 

(ot 	fit:- 1 
61  > • 

1/0-7, 14/c. 

The second factor also reduces to a simple expression 

as follows.. In terms of /3 it becomes 
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and noting that 
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we obtain 
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Expanding the last two terms in a Taylor's series 

we obtain 
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and similarly for 	, so 
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In terms terms of the wavefront fluCtuation, 
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The complete expression for 	then becomes 

ror illustrative purposes we shall assume that 

Only phase variations are present. 

cC 	' 
) jr - 3,5 ti 

Assuming that 	is parabolic near the origin, 

it may be represented in the vicinity of the origin by 



we obtain 
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where 

- 

Now (5.;;I  is measured in the same units as (L and ir 

which are reduced from actual spatial coordinates by 

the factor 114.>1 where 4 is the radius of the 

132 

As in the case of scintillation, /l is the rela-

tive scale factor, the ratio df the radius of the pupil 

function, assumed circular in perimeter, to the micro-

scale factor of the autocorrelation function, which 

is the value of V' and Aif! for which the parabolic 

approximation for /l drops to a value of 1/2. We 

then obtain, in the vicinity of the origin; 

, 

jt - 3 ; 5-4 • 

which is its peak value at the origin. Normalizing 
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aperture and 4' the distance to the image plane. It 

can be expressed in angular units by multiplying by >th 

Mn 	
— h 	 - 3 , 

and noting that CM goes to unity for vanishingly 

small apertures)  the maximum angular radius of gyra-

tion of the image is given by the ratio of the standard 

deviation of the WavefrOnt disturbances to the 

microscale of the disturbances, We note that, if' we 

assume a microscale of about 25 mm., we get a radius 

of gyration of 1 arc-second for 0-7„ .,-- h25xt074mm., or 

about 0 of visible light which is of the right 

order of magnitude 

The manner in which the agitation diminishes as 

the scale factor /C,  increases is described by the 

function CM  , end it is clear from its formal similar-. 

ity to the funCtion C for scintillation that its 

qualitative variation, and the,effects of modifying 
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the transmission of the pupil by obscuration or apodiza-

tion, is very similar to that obtained in the case of 

scintillation. 

In order to provide a numerical example, we 

must assume a form for the autocorrelation function /qv . 

In the case of phase variations there is ho reason to. 

assume that /4 does not fall off monotonically. 

could use the Gaussian function 

160, 

but this function falls off too quickly to be realistic. 

Another function which is very nearly as easy:to 

handle is the hyperbolic. secant: 

, 	 Azdt, /ow e e 

Both functions are shown in figure Ir.S). It is clear 

that the latter function is more desirable. 

Its Laplacian is obtained as 
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PHASE AUTOCORRELATION FUNCTION 

Figure 11-8.  Hypothetical phase autocorrelation 
functions. 



is borne out (see fig. TE-0. 
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-? Az c 	A,Eck 	 3 	-3 , 

and by by substituting this in the integral. and 
.9 evaluating Cm 	as a function of ft__ for the various' 

pupil functions we used in the case of scintillation,. 

we obtain the curves shown in figure jr-`1 	The expec- 

tation that the dependence of agitation on the geometry 

of the pupil would be similar to that of scintillation 
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Fd,gure 11-9.  Variation in agitation with aperture 
size for several types of aperture. 



CHAPTER 11-.4. 	BLUR 

The third phenomenon observed in stellar images 

Obtained When the Observation is through a turbulent 

medium is that the form of the image is distorted, 

and the:average, or time-integrated, image is blurred 

by the random amplitude and phase structure of the 

Wavefront incident on the optical system. Other 
013,14) 

investigators have tried, usually with some awkward- 

ness, to obtain the blur effects by Calculating the 

propertieb of the spread function obtained. Diffieule• 

ties have usually arisen because the process involves 

convolutions which are -difficult to identify when an 

equation is being developed. We will show that by, 

approaching the problem by:.calculating the effective. 

transfer funCtion, the.  expressions obtained easily 

factor into independent components, and indirectly the 

properties of the spread function are simply'obtained. 

Also, whereas scintillation and agitation are 

only signifiCant when isolated star images are involve 

138 
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Taking the average, 

but, because the random functions involved are assumed 

to be stationary, the mean value under the integral is 

independent.. of X and 

outside the integrali: 

and it can:be:taken 
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the spread function or transfer function describing 

the blur of the star image is directly applicable to the 

understanding of the images of extended objects. 

First, let us consider the expressibn for the 

transfer function when the pupil function contains• 

a random Component: 

< 	„Ty)
qviit,-4VLL) 

e 	) (%,40.o+i(A73) 
c'146c(Ad-

r - 4;2 



that r: and S are uncprrelated Whether ()4 and 
[3] 

are correlated or not. Ponsider the correlation 

1140 

The quantity inside the square brackets is seen to' be 

the intrinsic transfer function of the optical system, 

So the average quantity outside can be considered to 

be the eqUivalent transfer function of the turbulent 

medium; 

((A, 4-6(0 -14. (75, '132  

Let us consider this average. First it can be seen 



and 

let7;,> = 

so the correlation function <vs> is identically zero. 

The equivalent transfer function then becomes 

That iG it factors into two component equivalent 

transfer functions, one for the amplitude variations 

and the other for the phase variations. Let us 

consider each of these Separately 

First we note that r can be separated into a 

Mean value and afluctuation with zero mean:' 

ita 

The variance;:of 
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The equivalent transfer function for the turbulent medium 

is therefore 

It is interesting to note that both the amplitude and 
CSI 

the phase components have the same form, shown diagram-

atically in figure F-w„ However, something might be  

said about their relative contributions. 

As discussed in the section on scintillation, and 

as can be ,seen in figure 	a value of 0-", = o,S 

corresponds'to fairly strong scintillation. The same 

value of ..07x- • reduces the effective•transfer•function..  

by only 22% in the limit. 	 .the other hand, 'the • 

standard deviation in-  the wavefront which.would produce 

the same degradation is. less than Viz, which is fairly.. 

• 

 

weak. Therefore.  it .is to be expected. that phase 

wavefront,` fluctuations will dominate over amplitude 

fluctuations. in their cOmbined effect on the blur. 

• 

 

Let. us look at. the form of. the•equivalent•-transfer 
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Figure 	General character of equivalent. 
transfer function and corresponding spread 
function for a turbulent medium. 



In terms of this pidture the equivalent transfer 

function can be written as 

3.45 

function more closely, taking the phase factor transfer 

function alone for simplicity. 

As the displacement 	X 
	

(to which the spatial 

frequency is proportional) approaches zero, the auto- 

correlation function 	approaches 1, and the equivalent 

transfer function also approaches 1, as it should. As 

idA 	and the equivalent transfer 

function approaches a plateau of height c
- ir 
- . Thus 

the equivalent transfer funetion can be interpreted as 

a uniform' plateau surmounted by a be117shaped function. 
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The latter function is formally similar to the function 

(eq.g-24 in the section on scintillation, and like--

wise resembles the autocorrelation function /7(, in that 

it is unity when 	o , approaches zero as y 	----P- co.  

and approaches the shape of //,.4  as 
	e' , 

The significance of the abOve interpretation of the 

equivalent transfer function is most dramatically Shown 

in the inferred properties of the corresponding spread 

function. Taking the transfer function to be the sum 

of two functions, the corresponding spread function is 

'the sum of the inverse transforms ofthe two component 

functiOns. The plateau transforms into a. delta function, 

and the bell-shaped component transforms into another 

bell-shaped function. This is equivalent, to saying 

that the star appears to the optical sYstem as an undis-

turbed star of diminished intensity surrounded by a halo, 

as if a fraCtion of the light transmitted by the turbulent 

atmosphere were scattered, the rest remaining undisturbed. 

Moreover, the fraction of the total light which appearS 

to be scattered is simply the factor 13 
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The image formed by the optical system likewise 

will appear to consist of the sum of two components, 

a core which is the delta function convolved with the 

spread function of the optical system, and a halo 

which is the bellshaped halo, also convolved with 

the optiCal system spread function. The ratio of the 

powers in the two components of the image is,the same 

as that of the apparent object. 

The core and-halo effect will, however, only be  

apparent if the aperture of the telescope is consider-7  

ably larger than the autocorrelatiOn length of the phase 

structures If they are about the same size, then the 

spread function for the optical systet will be about 

the same size as the halo disc, and the appearance will 

be that of a slightly degraded spread functien.' 

The relative power diStribution betyeen the core, 

and the halo will in general depend on the wavelength 

of the light. This is most easily seen by considering 

the fraction A of the power remaining.in:the core 

A 2 	
-LA-Tr2(E,W 



from which it can be seen that the fraction remaining 

in the core approaches zero as A.->o, and approaches 

unity as X --->c>n, if we assume that 0;„ is constant. 

In general, of course, 	(3- will also vary with the 

wavelength, but as the latter variation depends on the 

dispersion of the medium, it will except in very unusual 

cases by a very weak dependence, and the above 

variation of A 	and by implication 13 	will be 

generally found to hold. 

When the turbulence is sufficiently severe, the 

power in the core will be negligibly small, and the 

halo function Q will have significant values only over 

the range of X1,1 	for which the autocorrelation 

ftinction can be represented by its parabolic approxima-

tion: 

in which case the equivalent transfer function is 



given' by 
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R 

Where it is seen that as the turbulende increases in 

severity, the transfer funCtion becomes more nearly 

Gaussian in form, and consequently so does the halo.. 

The core, of course, diminishes to the vanishihg point. 

In the form of equation :11'V/, the variables involved 

are reduced coordinates. If we restore them to real 

angular coordinates, we obtain 

4(4rrl () 43R 

Where 'V,., is the angular spatial frequency, expressed 

in cycle per radian, and is obtained by Multiplying 

the linear spatial frequency in the image plane by the 

distance from the exit pupil. Note that when eXpressed 

in real angular coordinates the transfer function and -

spread function for severe turbulence are not only 

Gaussian, :but also independent of the wavelength of 

04 
the light. In fact, this is the same result that would 
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be obtained by applying geometrical optical theory, and 

corresponds to the observation that, in ordinary 

aberration theory, the diffraction image approaches the 

geometrica) image in appearance as the aberrations 

become severe. 

One other point is interesting to note. The 

above expression for the transfer function corresponds 

to the transfer function for the image motion obtained 

in the section on agitation when Cm, is unity; that is, 

for small apertures. In other words, when the 

aperture is small, the blur of the apparent (average) 

star is almost entirely due to the motion of the centroid. 

As the aperture of the optical system increases relative 

to the scale of the phase autocorrelation function, 

the apparent motion of the star decreases according to 

the functiOn C, 	but the blur (halo function) of the 

apparent star is independent' of the aperture size, and 

we observe that, as the aperture increases, the motion 

diminishes but the form of the instantaneous image 

becomes more distorted in such a way that the average 
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- blur remains constant. 

Again, in order to provide a quantitative illustra-

tion, an •arbitrary form of phase autocorrelation function 

will be assumed. In fact, we will use the same function 

employed in the section - on agitation, and figure T-11 

shows the family of curves obtained for different 

values of rW  . Note that the extent of the bell-shaped 

portion of the curve is essentially constant as long as 

the plateau is appreciable, after which it decreases in 

inverse proportion to 0-1,4  

Tt would be interesting to see how well this form 

of transfer functiOn„ containing as it does a single 

parameter arbitrary autocorrelation function, fits 
(2q) 

experimental data. There are just the minimum possible 

number of two parameters involved in the transfer fune 

tion, namely q-,:v  and 4 , and the results of one 
(21) 

investigation are shown in figureii-14. Except for one 

set of experimental data, the theoretical curves fit 

very well,: The assumed values of asw and it 

shown in the figure. 



Figure II-11.  Variation in equivalent transfer 
function with depth of wavefront disturbance. 
Autocorrelatioh function of wavefront disturbance 
is assumed constant. 
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Figure 1I-12". Best fit of the equivalent transfer 
function model to experimental data obtained by 
Djurle and Bace°  The data labelled D could not be 
fitted. For the:others the assumed correlation 
length and the r.m.s. depth of the wavefront 
disturbances is indicated. 
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NOTES 

(vi) 	(:q) 
Both Chernov and Tatarski incorrectly assumed a 

mean value of zero for 	This however does not 

have any serious effect on the validity of their 

conclusionS as to the statistical properties of 

the transmitted wavefront. 

Essentially the same result was obtained by 

Diederichs in investigating the effect of imper-

fect polish on optical surfaces. 

L
The fact that ' and S are uncorrelated was 

(1 -3) 
shoWn by;Chernov. 

• 	(10 	(2) 
1_4] Both Keller and Hardie and Hufnagel and Stanley 

obtained an expression fOr the equivalent transfer 

function having the same form as either of the 

factors in equation 11-4.16, butthe random variable 

involved was the refractive index fluctuation of 

the medium rather than the wavefront - disturbance. 

Although Keller and Hardie obtained this function, 



155 

they did not recognize it as a transfer function but 

considered it to be merely a mathematical convenience. 

Hufnagel and Stanley, on the other hand, called it 

a transfer function, and obtained it in a most 

elegant manner, They did not, however, distinguish 

between amplitude and phase contributions. 
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SUFEARV 

The intrinsic factors which determine the over-

all performance of an image-forming system are the 

performance of the optical system and the performance 

of the detector° Other factors may or may not affect 

the over-all performance, and are therefore in this 

thesis caned extrinsic We have investigated in this 

thesis several of these extrinsic factors. 

In part I we examined two important time-dependent 

factors affecting the performance of a photographic 

system, namely the effects of the shutter in obscuring 

part of the pupil of the optical system during the 

finite opening and closing time it requires and the 

effects of motion of the image relative to the film 

during the exposure time. In chapter I-1 a general 

expression for the transfer function of the exposure 

image was derived, including as factors the film transfer 

function, the shutter function, the optical transfer 

function, and the motion of the image; 



In chapter 1-.2 the effect of the shutter on. the 

exposure-image transfer function in the absence of image 

motion was discussed, and it was shown that a focal-

plane s ,ut ter introduce an effective shutter transfer 

• function which is independent of the pupil size and of 

aberrations. It was also shown that a between-the-lens 

shutter acts as an incoherent apodizing agent which is 

capable of improving the performance in the presence of 

aberrations. 

In chanter 1-3 the effect of image motion was 

investigated, assuming that the shutter does not signifi-

cantly modify the optical transfer function. A two-

dimensional treatment was pursued throughout. The 

concept of an equivalent spread function for image motion 

was developed. Uniform linear motion and simple harmonic 

motion were discUssed in detail, and elementary forms 

of combined motions were considered. An approximation 

appropriate for small degradations was derived, and 

expressions for all possible combinations of uniform 

linear motion and simple harmonic motion were obtained. 
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In part II we 	the effects of- a 

turbulent medium between the object and the optical 

system on the properties of point images. This part 

covered the classical phenomena of scintillation, 

agitation (image motion), and blur which have been 

observed for many years by astronomers. 

In chapter II-1 the concept of a pupil function 

with a random component was developed, the random 

component being expressed as an exponential with a 

complex argument in which the amplitude fluctuations 

depend on the real part of the argument and the phase 

fluctuations on, the imaginary part. It was shown that 

this exponential model with both the real and the 

imaginary parts assumed to have Gaussian probability 

densities is a reasonable one considering its simplicity. 

In chapter 11-2 scintillation was investigated 

and it was shown that the coefficient of variation 

of the total flux in a star image (ratio of the standard 

deviation to the mean value), which is a measure of 

scintillation, can be obtained as the square root of the 
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normalized integral in frequency space of the product 

of two functions, one of which depends only on the 

random amplitude fluctuations and the other, which was 

called the core function, only on the pertinent proper-

ties of the optical system. For illustrative purposes 

a function was assumed for the amplitude autocorrelation 

function and the dependence of scintillation on the 

size of the aperture was determined for, several forms 

of aperture including one which was apodized. The 

dependence for a circular aperture was then fitted to 

experimental data reported in the literature and it was 

seen that at least qualitatively the form of the depen-

dence is quite reasonable. 

In chapter 11-3 agitation was investigated and 

it was shown that the radius of gyration of the centroid 

of a star image (r.ms. deviation of the centroid from 

its mean position) can he obtained as the square.root 

of the sum of two normalized integrals, one of which 

depends only on the amplitude fluctuations, whereas the 

other depends on both amplitude and phase fluctuations. 
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Tile first depends also on the aberrations of the optical 

system and is zero if the aberrations are zero. The 

second is independent of the aberrations of the optical 

system. Both integrands are products of two factors, one 

of which depends on the random components alone and the 

other on the optical system alone. For illustrative 

purposes it was assumed that only phase fluctuations 

were present, and a function was assumed describing 

the phase autocorrelation function. The dependence of 

agitation on aperture size was then obtained for the 

same apertures used in the scintillation illustration, 

and it was seen that agitation depends on aperture size 

in much the same way that scintillation does. 

Incidental developments obtained in chapter 11-3 

were (1) that the position of the centroid of any point 

spread function calculated by diffraction is the same 

as the position of the centroid calculated by geometrical 

optics, and (2) the position of the centroid of the spread 

function depends only on the gradient of the transfer 
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function at the origin, which, as shown in Appendix IV, 

is the gradient of the phase component of the transfer 

function at the origin. 

In chapter II-!I blur was investigated, and it was 

shown that the effect of the turbulent medium on the 

average image is just as if the turbulent medium were 

an independent blurring factor with its own transfer 

function. Furthermore it was shown that the contribu-

tions from amplitude and phase fluctuations are inde-

pendent of each other, the effective transfer function 

for the turbulent medium factoring into two parts one 

dependent on amplitude fluctuations and the other on 

phase fluctuations the form of the two being identical. 

This form is such that it may be separated into the sum 

of two parts, one a plateau of uniform height and the 

other a bell-shaped function determined by the auto-

correlation function of the disturbance. The corres-

ponding apparent spread function consists of a delta 

function added to a be117shaped spread function; that 

is, the apparent star has'=an undisturbed core surrounded 
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by a halo. Again for illustrative purposes it was 

assumed that only phase fluctuations were present and 

that they had the same autocorrelation function as was 

used in the agitation illustration, and the resulting 

function was fitted to experimental data reported in 

the literature. Although one set of data could not be  

fitted, the others fitted very well 'and again at least 

qualitatively the forM of the'dependence is quite 
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APPENDIX I. GRAPHICAL-NUMERICAL INTEGRATION • 

In cases involving image motion where the optical 

transfer function cannot be assumed independent of 

the shutter,or where the path and 'velocity of motion 

cannot be reduced 	simple functions, a direct integra- 

tion based on equation 1-1,20 is required. As in the 

chapter on image motion, it is convenient to rotate the 

reference coordinates, Thus, 

-If 

The evaluation of this integral depends on knowledge 

of the three functions S  and u. 	The first two . 

wilitenerally be determined empirically and.they enter_ 

into the integrand directly. Thef-third, however, will 

generally have to, be calculated from a pair of parametric 

function60)andlra)by means of equationI-3.3,for each 

orientation and in addition must beftransforMed into the 

cbmplex exponential function contained in the integran 
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The real and imaginary parts of this function can 

be readily calculated graphically from the basic 

functions a(0 and v-(-() with the aid of a simple pair 

of transparent plastic overlays shown in fig.A -I. One 

overlay is for the real (cosine) component and the other 

for the imaginary (sine) component, Each overlay has 

marked on it a set of ten sawtooth waves, each represent 

ing one frequency component u 	Theoretically the 

Waves should be sine and cosine waves but the curved 

lines which that would require*are difficult to scribe 

accurately, whereas straight lines are extremely simple. 

The "distortion" of the sine and cosine waves into 
..- 

sawtooth Waves is exactly compensated by calibrating 

them with a ponlinear scale, 

In Order to:Use these overlays the following. 

procedure is required. A set Of:points is marked on ai  

piece of paper representing the image plane, each point 

representing the position of the image ateach of a set 

of equally.-spaced intervalsOf time during the exposure, 

The points are labelled serially and:the center of the 



• .5 	-.5 -.5 

1.65 

Figure A-1. ,,,  :_. Overlay pattern to aid in the 
calculation of equation  
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pattern is estimated and given a distinctive mark. 

The piece of. paper is fastened down on a drawing 

board with the chosen direction of scan 'P vertical, 

A T-square is then Iodated so that, with either of the. 

overlays riding against it, the horiZontal oenter line 

of the overlay passes through the center mark of the 

• pattern, The T-sqUare is fastened to the board in this 

. position. 

NoW if one of the overlays is slid horizontally 

along the T-square until a chosen point on the paper .  

lie6 on a chosen 11  wave the distance of that point from 

the vertical center line, measured on the ..hon 

scale, is. equal to the value Of the:real or imaginary 

part of the complex function 	integrand of 

.equation 

if the non-linear scale had extended' up  through the 

pattern of waves, this value could have been read directly. 

However, such an extension of the scale would have clut-

tered the overlay to such an extent that it would have 

been difficult to set. Insteadi the reading is obtained 
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by bringing a straight-edge (such as the overlay not 

in use at the moment, or a drawing triangle) up against 

the side of the overlay and, hOlding the straight-edge 

stationary, sliding the overlay vertically until the 

point on the paper 1s on the scale.: 

In this manner the complex function in the 

integrand can be evaluated for ten spatial frequencies 

at uniformly spaced intervals of time. Each value is 

multiplied by the corresponding values of S and ..eL  

and the product is integrated, For other orientations 

is simply rotated and the process.  
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APPENDIX II. PROBABILITY DENSITY DISTRIBUTION OF THE SUM 
OF TWO NORMALLY DISTRIBUTED RANDOM .VARIABLES WHICH ARE 
CORRELATED 

It is usually stated in the literature that the 

SUM of two normally distributed random variables is  

also a normally distributed random Variable if the two 

component variables are uncorreiated. We shall show 

that this restriction is unnecessary, and that the sum 

is normally distributed even when the two cornponets 

are correlated. 

Let the two componet Variables be represented by 

X(t) and 4j_(t) and the sum by .“-E) = x(t) ,(16) 
	

Each of. 

the three variables can be assumed to haVe zero mean 

value without loss of generality (if each were separated 

into the sum of its mean value and its fluctuation with 

zero mean, the mean value of the sum would be equal 

the sun of the mean values of the components, and the 

fluctuations with zero mean would be related as above) 

The Variances-and covariances would be 



r- (-icy 0,--r-2e(ice-)(1;) , 	—  
2 ir (rAci  VT-7;11, 	XP 	z 	10'9 

The probability' density of: 

4- 2-X 	6;14- 	2- 4- 6,-; (5:d 3 

A 
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. ilhere. /9 is the cross-correlation of .?5 and 

The joint probability of X and 1 is 



*31 x (72 	f 	I X 	2— x 	c"; 

0-x z  67,1 L 	J d 

_ 	  
p(). 	--( etkP  L 	2 /1-6  q, 	L 	z ( 17  2 

Id 
) 

f1,72_ 
air tr 	kii7Tr. 	ct . - 	e/yp 

which is is a normal distribution. 

A - 	If 

[- G X 11 
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Consider the numerator in the exponent: 

'(
) X(EIX) 

(1-$ 2 	0-1) 2 	 Cr, 



ecP‹ c ".V> 

'Where 

APPENDIX III. AVERAGES OF EXPONENTIAL FUNCTIONS OF 
NORMALLY DISTRIBUTED RANDOM VARIABLES. 

Throughout the second part of the thesis average 

values of exponential functions of normally distributed 

random. variables frequently occur, If 

is such a variable and does not have a zero mean, 

then the mean should be subtracted 
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Thus without loss of generality we can assume that the 

randomivariab1e•under consideration has zero mean. Then 



<e > 

are arbitrary, constants and, where 

CC,  

qL( 

-I--- 	 4-,5 
:277 	Lr 2 Irtri j e -2-:  

A - 3,t. 

If the random function r7i- is a linear combination of 

normally distributed random functions, 

- ;n,x+- r,, 

< 	\ 11 4  X 	)1

2 

 41 4-  2 /71 Vi X 

y 
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Thus 

<e 4. GEC 	= c i:(q•c, ) 	
C 

V 	2. 	, 	) 	( 	 -4- ki;;2  4- 	 4(1 1/40 
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provided the component partial derivatives exist. Now 
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APPENDIX IV. DERIVATIVE OF THE TRANSFER FUNCTION AT THE 
ORIGIN 

The transfer function is in general a complex 

function:' 

el) - 1 
(1, (y' „/ 

') ( 1 

Its partial derivative with respect to 	is 

I 
	4„. 	 A -- 

c71X" la - 

Evaluated at the origin, 



SO 

gs: 
si x '  x 

A - it, -5- 
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The derivative of the phase function 4  is continuous 

at the origin, so it presents no problem. However, the 

derivative of the modulus is not continuous for an 

optical system having a sharply defined pupil boundary. 

It is continuous for 14
a  1
4-6, and has the value of zero 

for all j.` C>but when t/.= o at x , it has a 

finite non-zero negative value in the limit when 

approached from the positive side of X' 	 and an equal 

but positiVe value in the limit when approached from 

the negative side of X' 

cbinuity is similar to that frequently obtained in 

Fourier series analysis, and it seems reasonable to assume 

that the value at the origih can be defined as the average 

between the right and left limiting values. This value 

is identically zero, so the partiar,'deriVativewith 

respect to 'xi  bedomes 

xI 
 

° 	x 	 - , 

The nature of the discon-, 
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The same argument holds for the partial derivative with 

respect to 	, so the important conclusion can be 

Made (see the section on agitation) that the position 

of the centroid of the image  in  determined by the 

gradient of the phase of the transfer function at the 

origin, irrespective irrespective of the. shape of- this phase.  

function. 
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Characteristics of an Image-Forming System 
Roland V. Shack 

Two general approaches to the analysis of an image-forming system are considered. 
One depends on the image of a point object and the other on the Fourier transform of this 
image. The two are developed independently and then coordinated, a practical character-
istic function being determined for each approach. The relative merits of the two approaches 
are considered. 

1. Introduction 

For the past few years considerable energy has been expended in the search for an objective 
procedure for evaluating the quality of images formed by optical instruments. Existing pro-
cedures have been found to be not entirely satisfactory, and much work has been done in 
measuring previously unused physical parameters, which are objectively determinable, for the 
purpose of correlating them with the existing quality criteria. 

The objection to this is that such an empirical, and therefore much limited, correlation 
eliminates only one of the faults of the existing criteria, and this is the subjectivity of their 
determination. Any other weakness is ignored. 

A better approach is to analyze the image-forming process as a phenomenon, the aim being 
to characterize the process in as general and inclusive a way as possible, consistent with practical 
instrumentation. New criteria of image quality would of course be expected to be developed. 
Many approaches have been made in this direction also, and the present paper is to be included 
among them. However, in contrast to some of the published material, the emphasis here is on 
the practicality and usefulness of the results obtained rather than on mathematical rigor, al-
though the treatment should be rigorous enough to include all essential factors. 

Let us consider this matter of practical instrumentation. The heart of the test instrument 
is the photosensitive detector, for it is this which provides the data by which the tested instru-
ment is evaluated. Three practical photosensitive detectors are available—the eye, the 
photographic emulsion, and the photocell. 

The only test of image quality for which the eye is capable of making quantitative measure-
ments is the resolving-power test. This test is rapid and relatively inexpensive, but the in-
formation obtained is incomplete, the precision is low, and the results are subject to variation 
from individual to individual. 

A photographic detector allows quantitative measurements to be made under nonthreshold 
conditions, but time is required for processing, the processing conditions must be rigidly stand-
ardized, the granularity and diffusion in the emulsion affect the results, the response of the 
film is nonlinear with respect to incident flux, and, in the end, an additional sensing mechanism, 
such as a microdensitometer, is needed to reduce the emulsion properties to numerical values. 

The photocell is probably the most satisfactory photosensitive detector for the test in-
strument. Within its proper operating range, its characteristics remain reasonably constant, 
its response is linear with respect to incident flux, its spectral response can be adjusted so as to 
approximate that of the eye, and its output can very easily produce graphical or numerical 
results. However, it must be used in conjunction with an aperture that limits the spatial 
integration of the detail in the image being examined, and there must be provision for relative 
displacement between the aperture and the image so that various portions of the image may be 
sampled. 

It should also be pointed out that the report is illustrated throughout by the characteristics 
of an aberration-free system with a circular aperture in monochromatic light, diffraction being 
the sole source of image degradation, and the light from various points in the object space 
being noncoherent. This has been selected as an interesting and informative type of system, 
which real systems tend to approximate as their quality improves. It must be emphasized, 
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however, that this is used for illustration only. The material covered applies to all types of 
images, assuming noncoherence. 

There are two viewpoints from which image evaluation can be approached. One, the clas-
sical viewpoint, considers the point image to be the most fundamental element in an image 
process. Any object can be regarded as a summation of points, and its image as the summation 
of the corresponding point images. An evaluation of the point image would be sufficient 
to characterize the system. 

The other viewpoint involves the concepts of Fourier analysis. Here the object is con-
sidered to be the summation of a set of sinusoidal waves distributed in the object plane. These 
component waves, differing from each other in amplitude, frequency, phase, and direction, are 
spatially distributed waves. That is, they are spatial, not temporal, sinusoidal variations in 
brightness throughout the object plane. The image consists of the summation of the images 
of these component waves. A description of the manner in which the optical system forms 
images of these component waves would also be sufficient to characterize the system. 

In section 2 a way of describing the point image is developed, which can be obtained, at least 
in principle, from a variety of test objects, namely, a point, a fine line, a variable slit, and a 
knife edge. Data from any or all of these objects can be represented by a single common 
curve, which can be interpreted in terms of any of the objects. 

Section 3 deals with the Fourier type of approach. An imaging system does not affect the 
frequency, direction, or sinusoidal character of the component waves. It can only affect their 
amplitudes and phase relationships. The function that describes these modifications as a 
function of the frequency and direction of the component waves is also characteristic of the 
imaging system. The test object required to obtain this information consists of a series of 
patterns in which the luminance varies sinusoidally, each pattern having a different spatial 
frequency and all oriented in the same direction. The directional variation can be obtained by 
rotating the test object with respect to the system being tested. 

Section 4 is concerned with the coordination between the two viewpoints. It is shown that 
it is possible to obtain from either approach the characteristics for a periodic test object consist-
ing of alternate dark and light stripes of equal width, such as is commonly used in resolving-
power work. It is also shown that it is possible to transform the characteristics of either 
approach into those of the other. 

Section 5 discusses the application to practice, the interpretation of the results and the 
relative merits of the two approaches. 

The appendix gives the mathematical formulation of the diffraction images used as 
illustrations. 

In the following mathematical statements, constant coefficients are ignored in the integra-
tions unless otherwise indicated. The functions are assumed to be normalized after integration. 
Also, the object-plane coordinates are reduced to the image plane by application of the magni-
fication. 

2. Evaluation of the Point Image 

2.1. General Image Formation with the Point Image 

The point image is the flux-density distribution in the image plane when the object is a 
point source (figs. 1, 2). A general object can be considered to consist of a summation of 
points, and its image the summation of the corresponding point images. 

Let 0(x,y)=general object function, 
co(x,y) ----point image function, 
1(x,y)=general image function. 

Then 

i(x,,v)=f - 5-  0(x, y) (x'— x, y'—y)dxdy. 	 ( 1 ) -cc -co 
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FIGURE 1. Point-image model. 
In this model the vertical dimension represents flux den-

sity (per unit area). It is understood that the rings actually 
continue indefinitely, whereas only the first bright ring is 
shown completely. 

FIGURE 2. Section of point image. 
The normalized distance in the image plane is measured in 2-units, 

as explained in appendix 1. 

 

The primed variables represent the displacement between the 0 and co functions required 
for the integration. For each displacement, the integral, being a definite integral, establishes 
a specific value for I. The image function, I, then, is a function of the displacement involved 
in the integration. The space described by x',y', however, is the same as that described by 
x,y. 0 and I can be compared point for point. 

The integration can also be written in such a form that the object function is the displaced 
function, that is, 

/(x', y')= co (x, y) 0 (x' — x, y' —y)dxdy. Li 5: 	 (2) 

Either of these forms is perfectly valid, and either may be transformed into the other, 
provided one recognizes that x,y in eq (1) is not the same as x,y in eq (2). To distinguish them, 
one might use subscripts on the symbols, but this would make the equations more confusing, 
and is not necessary if one understands the situation. 

The image function is to be sampled with a space-integrating detector in the image plane, 
that is, a photocell behind an aperture. 

Let A(x,y)=detector aperture transmission function, 
E(x, y) = total flux passing through A as a function of the position of A. 

Then 
E(x" 	51I(x' ,y') A (x" —x' , " —y')dx' dy'• 	 (3) 

Combining this with eq (2) we obtain 

E(x", 	 yo(x,y)0(x' —x,y'—y)A(x"—x' , y"—y')dxdydx' dy'• 	(4) 

From this it can be seen that the functional characteristics of 0 and A can be interchanged 
without affecting the measured flux, E. For example, suppose the object were a point source 
and the aperture a circular hole centered on the point image. The output from the photocell 
will indicate amount of flux passing through the hole. Then interchange the object and aper-
ture. Now the object is a uniformly luminous disk with a reduced diameter equal to that of 
the previous aperture, and the new aperture is a minute hole, equal in size to the reduced 
geometric size of the previous point source. The output from the photocell will be the same 
as before. 
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FIGURE 3. Point-image evaluation— 
Hopkins' method. 

The solid represents the portion of the total flux that 
passes through the circular aperture. 

0 
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RADIUS OF CIRCULAR REGION rt  

FIGURE 4. Radial flux distribution of point image. 
This curve shows the normalized volume of the solid of figure 3 

as a function of the radius of the limiting cylinder. 

Mathematically, and in a more general sense, this situation is as follows: 
If 0 is a point source, then 

E(x",y")-= 	A(x"—x',y"—y')[5- 	co(x,y)0(x'—x,y'—y)dxdddx'dy' 

f:yo(x',y')A(x"—xt,y"—yt)dx'dy', 	 (5) 

and the flux detected depends on the nature of A. 
On the other hand, if A is a point aperture, then 

E(x",y")= 	5' 40(x,y)[5' f 0(x'—x,y'—y)A(x"—xt,y"—yt)dx'dytidxdy 

= f 	fl io(x,y)0(x"—x,y"—y)dxdy, 	 (6) 

which is identical in form with eq (5), except that A is replaced by 0. If 0 in eq (6) had the 
same functional characteristics as A in eq (5), then they would be mathematically indistin-
guishable, and the same E will be obtained from either. Also.note that eq (6) has the same 
form as eq (2). As one would expect, the use of a point aperture would produce an undistorted 
map of the flux-density distribution in the image plane. 

2.2. Determination of a Characteristic Function of the Point Image 

It should be clear from the above that the function which distinguishes one image-forming 
system from another is the point-image function co. The problem is to find some way of de-
scribing co, which can be obtained experimentally and which provides significant information 
to the user. 

The direct mapping of the flux-density distribution in the image of a point object with a 
point aperture is impractical because of the very low-energy levels involved. A practical 
method must involve in some manner the integration of the flux over an area. 

One method, used by Hopkins [7] 1  is to measure the flux contained within successive 
concentric circular regions about the center of the point image (fig. 3). The ratio of the flux 
contained within a circular region to the total flux of the point image is plotted as a function 
of the radius of the circle (fig. 4). 

I Figures in brackets indicate the literature references at the end of this paper. 
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FIGURE 5. Determination of point-image 
characteristic. 

The solid represents the portion of the total flux that 
Passes through the receiver slit, the point image being cen-
tered on the slit. 

1.0 

—1 

EL 

0.5 

0 z 

0 	 5 	 10 
WIDTH OF INTERVAL 

FIGURE 6. Point-image characteristic. 

This curve shows the normalized volume of the solid in figure 5 as 
a function of the width of the slab. 

This method has several advantages over mapping the flux-density distribution directly. 
Of course, there is an increase in the energy involved, which increases the signal-to-noise ratio 
of the measurements. Also, there is a reduction of a three-dimensional function to two 
dimensions, which is more convenient. Further, this method provides the user with an idea 
of the contrast with which small detail will be imaged, for, by the interchangeability of the 
object and aperture function, the resulting curve (fig. 4) can be considered to represent the flux 
density at the center of the image of a disk as a function of the size of the disk. This disk 
corresponds to a small object in the scene, later observed by the user. 

This method does have disadvantages, however. It is satisfactory for systems in which 
the point image is radially symmetrical, but is insensitive to the presence of radial asymmetry, 
such as exists in an astigmatic or comatic image. It also presents the practical difficulty of 
locating the centers of the apertures or disks in two dimensions with precision. 

A different integrative method that allows a considerable increase in the available energy 
is one in which the integration is limited in one direction only. This is done by measuring the 
flux contained in successive widths about the center of the point image (fig. 5). The normalized 
flux contained in a region as a function of the width of the region (fig. 6) is the function that 
is here proposed as the most useful and practical characteristic function describing the point 
image. It will hereafter be called the point-image characteristic K(w), where w represents the 
width of the region. For example, if the integration is limited in the x-direction, then 

K(wr )= 	co(z,y)dydx. 	 (7 ) 
—iv4'2 

It should be noticed that this function does not actually involve a reduction of three 
dimensions to two, because the curve obtained is a function of the direction in which the 
integration is taken. This makes the data somewhat less convenient than is true of t  the 
previous method, but this is not objectionable because of the additional information obtained. 
The new method will detect a lack of radial symmetry. However, the inconvenience involved 
is not too great because most images are bilaterally symmetrical, or nearly so, and two mutually 
perpendicular orientations are all that are necessary to characterize the image. 

The point-image characteristic has other virtues beyond the relatively large amount of 
available energy and 'the ability to detect lack of radial symmetry. These arise out of the 
unidirectional limitation of the integration. 

For example, the point-image characteristic is closely connected with the fine-line image. 
The fine-line image is the image of a line of infinite length but infinitesimal width. The flux 
density is constant along the length of the line image and varies in a direction perpendicular 
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FIGURE 8. Cross section of fine-line image. 

The vertical line corresponds to the area of the section shown in 
figure 7. 

FIGURE 7. Generation of fine-line image. 
The flux density at a point in a fine-line Image is propor-

tional to the area of the section of the point image orien-
tated in the direction of the line. 

1 
to the length. It is obtained by integrating the point image in one direction only. For 
example, the image function for a fine line, the.  Jength of which is in the y-direction, is given by 

L(x)---= f:(p(x,y)dy. 

This is illustrated in figures 7 and 8. 
The point-image characteristic can be obtained from the fine-line image by 

K(wx)= f w12  L(x)dx. 
—w.12 

This is illustrated in figure 9. 
Up to this point we have been considering the object to be a point or a fine line and the 

detector aperture to be a variable slit, the operating mechanism that produces the variation 
in w. But, because of the interchangeability of the object and aperture, an illuminated variable 
slit could be used as an object and a fine slit centered on the variable slit image as the detector 
aperture. This method of obtaining the point-image characteristic is illustrated in figure 10. 

The point-image characteristic is also closely connected with the knife-edge image. The 
latter is related to the point image as follows: 

fS(x')= f 	co(x,y)dydx. 	 (10) 

This is shown in figures 11 and 12. 

The relationship between the knife-edge image and the fine-line image is given by 
x, 

S(x')=.1 L(x)dx. 	 (11) 

The point-image characteristic is obtainable from S(x) by observing the values of S(x) at 
x=—wx/2 and x= +wx/2. Then. 

/2 Ic: /2 	 , 
K(wx)=S(wx12)— S( —wx/2)=f L(x)dx— f 

/2 
L(x )dx=  f

tz 
 L(x)dx. 	 (12) 

—ac,/2 

These relationships are illustrated in figures 13 and 14. 
In summary, it may be pointed out that the point-image characteristic provides a simple 

yet practical and informative way of evaluating an imaging system. It may be obtained from 
a variety of test objects, namely, a point, a fine line, a variable-width line, or a knife edge. 
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FIGURE 10. Cross sections of images of finite- 
width object lines. 

The reduced object line widths are 1, 3, 5, 7, 9, and H x-units. 
Plotting the central flux density as a function of the reduced object 
line width results in the point-image characteristic curve shown in 
figure 6. 

NORMALIZED DISTANCE IN IMAGE PLANE 

FIGURE 12. Cross section of knife-edge image. 
The vertical line corresponds to the solid shown in figure 11. 
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FIGURE 9. Determination of point-image character-
istic from fine-line image profile. 

The cross-hatched area corresponds to the solid in figure 5. 

FIGURE 11. Generation of knife-edge image 
from point image. 

The flux density at a point in the knife-edge image is pro-
portional to the volume of the solid indicated where the 
limiting plane has the same orientation as the knife edge 
and passes through the point in question. 
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FIGURE 13. Generation of knife-edge image from fine-
line image. 

The flux density at a point in the knife-edge image is proportional 
to the area under the fine-line image to the left of the corresponding 
abscissa. The area under the fine-line image between any two 
abscissa values is proportional to the difference between the corre-
sponding ordinate values of the knife-edge image. 

_ W12  0 W/2  
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FIGURE 14. Determination of point-image character-
istic from knife-edge image. 

If the abscissa values a and b in figure 13 are made equal to -1012 
and -I-w12 as in this figure, then the ordinate difference shown here is 
proportional to the corresponding area in figure 13, which itself is 
proportional to the corresponding value of the point-image character. 
istic, as indicated in figure 9. 
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Furthermore, regardless of which way it is obtained, it can be interpreted in terms of any of the 
objects. This is discussed further in a later section. 

3. Evaluation by Fourier Analysis 
A general object 0(x,y) can be analyzed into a continuum of sinusoidal spatial waves, differ-

ing from each other in direction, frequency, amplitude, and phase. The characteristics of these 
waves are given by the Fourier transform of the object, 

cc 	cc, 
To(wz, wy)=5 f 0(x,Y) exp  [—i(corx-Pcuyy)]dxdy, 

- OD 	CO 

where To(w,,wy) is complex, containing both amplitude and phase factors, and to, and 	are 
directional frequency components of the component waves. 

A component wave itself is represented by 

TVc= To(wx, toy) exp  [i(torx-ktoyA• 	 (14) 

Consider this to be an object. Then by applying eq (2), 
OS 	OS 

IW(X',y')=  f 	co(x,y)To(cor ,coy) exp [if (.0,(x'—x)+0.,,,(y'—y)}]dxdy 
- CO - CO 

=7' 0(cox ,ce,) exp [i(corx' -[- toy'?")] 	co(x,y) exp [—i(corx+ce„y)]dxdy. 	(15) 

- The integral is the Fourier. transform 4)(cor,coy) of so(x,y), and therefore 

-Tiv(x'd)--4)(toz,toy)To(cor,cov) exP {i(coxx' 	 (16) 

The function modified by 43 is seen to be simply the component object wave. Each component 
image wave then will be the product of tf. and the corresponding component. object wave. 
Therefore, 

TI(Oh ,Wy)=43(C0x)(4)11)TO(CO.ry°31/), 
	 (17) 

where Tr  is the Fourier transform of the image. 
If I(x,y) can be considered to be the object of a second imaging precess, then 

7,2(wx,toy)=r132(cor,toy)Ti,(tor,coy)---=c132'i'ITo• 	 (18) 

This can be extended to as many imaging processes as desired. 
The transform 

co (x,y) exp [—icorx-Eco„y)]dxdy 	 (19) -cc — 

is seen to be characteristic of the imaging process. Let us examine it in more detail. 
The transform is the double integral of the product of two functions, one being the point 

image so(x,y) and the other a two-dimensional wave exp[—i(curx+ce,y)]. 
This two-dimensional wave is sinusoidal in one direction and constant in the perpendicular 

direction, like a corrugated roof. The direction of the sinusoidal variation is inclined to the 
x-axis by an angle 0, where tan e=c0,/wx., and the frequency is given by we ----i'ce!-1--co2v  (see fig. 15). 
The transform can then be considered to be 4 (0,w0). 

For 8=0, wr=0 and the transform becomes 
CO j• CO 

4)((.0r) = 	 ,y) e x p [—i(coix)]dydx= f L(x)exp[—i(corx)]dx, 	 (20) 
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FIUURE 15. Transformation of coordinates. 

If the direction of the pattern is inclined to the original x-axis by an 
angle 0, then, in the new coordinate system in line with the pattern, 

ah,24-,,,,a and tan 6' =.440.. 

0 	 1.0 	 2.0 
NORMALIZED SPATIAL FREQUENCY 

FIGURE 16. Sine-wave response curve. 

This is the positive side of the cross-section of the Fourier trans-
form of the point image shown in figure 1. It is also the Fourier 
transform of the fine-line image shown in figure 8. 

I.0 
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5) 

 
CL 

cr 0.5 
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0 

0 

where L(x)--- f so(x,y)dy is the fine-line image (fig. 16). 

If the x, y coordinates are rotated in xe, ye  through the angle 0 (fig. 15), then eq (20) can be 
generalized into 

43(0,(00)=f L(xe)exp [—i(wexe )]dxe. 	 (21) 

For any 0, the transform 43 of eq (21) is the cross section in the 0-direction of the solid 
representing the transform 43(4,x, w5 ). This is shown in figure 17. 

Equation (21) serves as the basis for the experimental determination of 4', since for each 0 
it is the transform of the fine-line image oriented with its length perpendicular to the 0-direc-
tion. The object can be one in which the flux density varies sinusoidally in one direction, and 
the detector aperture can be a fine slit. 

The object can be represented by 

0(x0 )-= A H-B exp Fwex01, A> B. 	 (22) 

The constant term is necessary because all flux densities must be positive. The image is 
given by 

/(xe)--= 4 +4,(coe)B exp[icoexe]. 	 (23) 

Let 1110=BIA be defined as the modulation in the object. The corresponding modulation in 
the image is 311=-13BIA. The transform is obtained by 

c1)=—„ • 	 (24) 
ma 

The use of the modulation automatically compensates for any factor that changes the 
signal output of the testing device proportionally, such as the transmission factor of the 
lens, change in brightness of the source, change in gain of the detector amplifier, etc. 

It must be remembered that is actually complex, involving both an amplitude and a phase 
factor. However, if the origin of cp(x,y) is properly selected, the phase shift is small. If co(x,y) is 
symmetrical about its origin, then there is no phase shift involved. In most cases, for evaluation 
purposes, the phase-shift factor can be neglected. 
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FIGURE 17. Three-dimensional model of Fou-
rier transform of point image. 

Each radial cross section is the sine-wave response in that 
direction. Note that the space is frequency space. 

1.0 

0 
O 	 1.0 	 2.0 

NORMALIZED SPATIAL FREQUENCY 

FIGURE 18. Square-ware response curve. 
The dashed line is the sine-wave response curve  from which this 

was derived. The vertical lines separate regions in which the square-
wave image contains different numbers of harmonic components, 
each region having one more component than its neighbor to the 
right. In the region farthest to the right, the square-wave image con-
tains only the fundamental. 

4. Coordination 

If 41(0.)) is given, it is possible to predict a similar response curve in which the test object con-
sists of alternate dark and light stripes, a spatial square wave. The square-wave test object 
can be analyzed into its component harmonics, each of which is attenuated by the value of cl) 
corresponding to its frequency, and the image is obtained by adding together these attenuated 
harmonics. For the response curve we are only interested in the peak-to-peak values that are 
obtained from the values at the centers of the lines and spaces. The square-wave response 
curve then is given by 

V4)=-4P(C0-1•13(3C0-1-4(5C0)—• • •]• 
7 	3 	5 (25) 

It should be noticed that there will be only a finite number of terms in the sum because there 
is a limiting value of w beyond which 4 remains at zero. This limit exists because of the finite 
dimensions of the aperture of the system; the larger the aperture the higher the limiting 
frequency. 

Because of the finite range in co, it is possible to obtain Co)) from ik(co) by the inverse 
process. Here it is necessary to start at the limiting value of w and work backward. From this 
limiting value we  back to coc/3 the sine-wave response is given by 

43(c0)--=7:-/4 Ow) 	 (26) 

because 1. and if. are both zero for the odd multiples of ce for w greater than we/3. 
From we/3 to coc/5, 

(1'(co)----= 7/4 '(w)+  14'(3c0), 	 (27) 

where 41(3w) may not be zero, and has already been found. 
From we/5 to we/7, A 

1.(w)=71-/41,/,(co)+1-43(3w)-1(1)(5co), 	 (28) 

and so forth. 
• The relationship between the square-wave response and the sine-wave response is illustrated 

in figure 18. 
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FIGURE 19. Generation of square-wave response from 
point image. 

The sum of the volumes of the slabs is proportional to the flux 
density at the center of a bright line in the image. The sum of the 
volumes of the slabs that have been removed corresponds to the dark 
line. The difference between the two is proportional to the square-
wave response. 

FIGURE 20. Generation of square-wave response from 
fine-line image. 

The cross-hatched areas correspond to the slabs in figure 19. The 
marked widths indicate how the square-wave response can be ob. 
tamed from the point-image characteristics. 

The square-wave response may also be obtained from the point-image characteristic. If 
we consider the imaging of a square-wave test object as a point-image integration, then the flux 
density at the center of the image of a bright line in the pattern is proportional to the sum of the 
volumes of the slabs illustrated in figure 19, or the areas of the stripes in figure 20. The flux 
density at the center of the image of a dark line is proportional to the sum of the volumes of the 
slabs (or areas of the stripes) which lie between those illustrated. The sum of these two flux 
densities is proportional to the total flux in the point or fine-line image, and the square-wave 
response is given by 

1 	1 T(co)=E( 	— E (a= 2 E ( 2z) . 1 , (29) 

where E(1/2(0) is the flux density at the center of the image of a bright line and 1/2co=w is the 
width of a line, bright or dark, in the pattern. 

It can be seen from figure 20 that 

E( 2co )=E(w)— KM+ [K(5w)—K(3w)]+ [K(9w)— K(7 w)] . . . , 	(30) 

where K(w) is the point-image characteristic, so 

( (4) = 2 K(w) [K(5w)— K(3w)] . . . } —1 . 	 (31) 

It is now apparent that (D(co), the sine-wave response, may be obtained from K(w), the 
point-image characteristic. This is done by determining OW, the square-wave response, from 
K(w) and then applying the procedure indicated in eq (26), (27), and (28) to obtain the sine-
wave response.2  

To obtain the point-image characteristic from the sine-wave response is more direct. Con-
sider the test object to be a variable-width line. The transform of the image of this object is 
obtained by multiplying the transform of the object by the sine-wave response of the system. 

2 This calculation for the case of the unaberrated image was made by the author before he was aware of Steel's equation (see appendix). It 
was done for 30 different spatial frequencies, using the tabulated values for the knife-edge image given by Struve (see appendix) as well as his 
approximation for values beyond those tabulated. The agreement between this calculated sine-wave response and Steel's equation is well within 
the error of calculation. 
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The transform of this object is of the form 

To=w sin 	ircew 
IrcoW 

shown in figure 21, and the transform of the image is given by Ti= (13 To. The image itself would 
be given by the inverse transform 

C 0 

c13To  exp [i(woxe )]dcoe , 	 (33) ' 

but we are interested only in the value at the center of the line image where xe=0, so 

K(we)=I(0)=J m  (13Todwo=2wf 4,(6,0) 
sin 

umrww (Iwo. 	 (34) r 

This equation shows the direct manner in which K(w) may be obtained from 4,(c0). For each 
w selected, the sine-wave response is multiplied by the proper calculated function of the form 
sin x/x, and the product is integrated graphically or numerically. The result is then multiplied 
by 2w, and the value obtained is the desired K(w). 

5. Application 
It has been shown that an imaging system can be evaluated by means of a description of 

the point image or, alternatively, a description of its Fourier transform. Each of them has 
its advantages. 

The Fourier approach allows us to combine several systems or to analyze a system into 
its components, under certain conditions. The principal condition is that each intermediate 
image formed by each component must be equivalent to a real luminous object having the same 
flux-density distribution in the image plane. Thus the combining or analyzing process can be 
applied to a photographic process, a television system, or a system in which each intermediate 
image is formed on a diffusing surface. It cannot be applied to a telescopic system because 
the light emerging from the primary image still contains the wave-front deformations produced 
by the objective and is subject to aberration correction by the ocular. 

This does not mean that the Fourier approach cannot be applied to the entire telescopic 
system. It is just that the whole telescope cannot be precisely evaluated by simply evaluating 
the components. 

Using the Fourier approach also enables one to apply the concepts developed in information 
and communication theory to imaging processes. 

Another virtue of the Fourier approach is that the transform determined for any orienta-
tion of the sine-wave pattern in the image plane is a true section of the solid representing the 
entire transform in the image plane. A similar property does not hold for the point-image 
characteristic. 

It should be noticed also that the sine-wave response of a lens has a finite boundary deter-
mined by the aperture of the system, whereas the point-image characteristic is unbounded. 

The point-image characteristic, on the other hand, directly provides two basic types of 
information about the performance of the system, apart from the distribution of flux in the 
point image. These are the contrast at which an isolated object will be imaged as a function 
of the object size, and the gradient in the image of the edge of an extended object. The first 
holds because the point-image characteristic can be obtained by measuring the flux densities 
at the centers of finite-width line images. The second holds because the characteristic can 
also be obtained from the image of a knife-edge object. 

However, if one knows either the point-image characteristic or the sine-wave response, 
he can calculate the other, as has been shown. It would probably be preferable to have a 
research instrument that would determine the sine-wave response, because the transformation 
to the point-image characteristic is more direct and more suitable for calculating machines than 
the reverse transformation. 

256 

(32) 



NO
RM

AL
IZ

ED
 R

ES
PO

N
SE

 

 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

NO
R
M

AL
IZ

E
D

 AM
PL

I T
U

D
E
 

0 

FIGURE 21. Transform of finite-width line object. 
co is the frequency of the component wave, and w is the reduced 

object-line width. 

NORMALIZED SPATIAL FREQUENCY 

FIGURE 22. Schade's equivalent bandwidth. 
The solid curve is the sine-wave response curve; the dashed curve is 

the square of the solid curve; and the rectangular area is equal to the 
area under the dashed curve. This rectangular area is measured by a 
single number, its limiting frequency, thereby providing a single 
number to describe the sine-wave-response curve. 

2 
	

3 

Ia W 

Another problem that comes up is one that is involved in routine testing. It would be 
desirable to reduce the evaluating curve to a single number with as little loss of significant 
information as possible, and it would be desirable that this reduction be done automatically in 
the test procedure. 

With respect to the sine-wave response curve, Schade has suggested a reduction in which 
the curve is squared, ordinate by ordinate, and then integrated. The resulting number 
is equal to the limiting frequency of a rectangular "response" curve having the same area 
as the squared sine-wave response curve. This establishes an equivalent bandwidth, shown 
in figure 22. 

The mechanism that would permit this determination directly would be similar to the 
sine-wave response mechanism, except that a "noise" pattern instead of a sinusoidal pattern 
would be used. The ideal noise pattern contains all frequencies at equal amplitude but with 
random phase relations. The fluctuations in the photoelectric output produced by this pattern 
are fed through a squaring circuit and then integrated. The resulting steady current, indi-
cated on a meter, is proportional to Schade's equivalent bandwidth. One trouble with this 
system is the difficulty involved in producing an acceptable noise pattern. 

Equation (34) indicates another approach to the problem of representing the sine-wave 
response curve with a single number. The object transform To  in this equation can be con-
sidered to be a weighting factor for the sine-wave response curve, and the integral to represent 
the equivalent bandwidth 2. Then this equivalent bandwidth can be determined by the use 
of a variable slit or a knife edge, for 

St=K(w)  
• 2w 

For this to be single-valued, w must be fixed, and two convenient possible values appear 
evident. One is to set w=1/we, where we  is the limiting frequency for a theoretically perfect 
lens having the same aperture as the lens under test. Then the weighting function goes to 
its first zero at co,. This method is illustrated in figure 23. 

The other convenient value for w is zero, for the limit of K(w)/w as w goes to zero is the 
slope at the center of the knife-edge image, as can be seen with the aid of figure 14. As indi-
cated in eq (35), this equivalent bandwidth is given by one-half the slope at the center of the 
knife-edge image. The weighting function approaches unity for small values of w as w ap-
proaches zero, so this equivalent bandwidth is given by the area under the sine-wave response 
curve itself. This is illustrated in figure 24. It might be emphasized that this latter relation-
ship is an important and fundamental condition. The slope at the center of a knife-edge 
image is exactly proportional to the area under the sine-wave response curve. 
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FIGURE 23. Another equivalent bandwidth. 
The solid curve is the sine-wave response curve; the long-dashed 

curve is the transform of the finite-width-line object; the short-
dashed curve is the product of the other two; and the rectangular 
area is equal to the area under the short-dashed curve. This provides 
a different single characteristic number, which can be obtained more 
easily than Schade's equivalent bandwidth. 

NORMALIZED SPATIAL FREQUENCY 

FIGURE 24. A third equivalent bandwidth. 
This bandwidth is measured by the area under the sine-wave-

response curve itself. The area is exactly proportional to the slope at 
the center of a knife-edge image. 

The idea of measuring an equivalent bandwidth may be a good way of reducing the sine-
wave response curve to a single number, but this process eliminates one of the advantages of 
the sine-wave approach, and that is the ability to combine directly a sequence of imaging proc-
esses. For most telescopic systems this may be unimportant, but if such a combination is 
desirable, then perhaps the sine-wave response curve can be characterized well enough by some 
particular frequency. If the response to some such frequency were established as a measure of 
quality, then the measure of the quality of the combination is simply the product of the measures 
of quality of the components. 

To summarize, the Fourier approach seems to be more desirable for research and detailed 
testing, but the determination of the point-image characteristic lends itself to rapid routine 
testing. 

6. Appendix 

6.1. Images Produced by an Aberration-Free System With a Circular Aperture in Mono- 
chromatic Light 

The extended objects are assumed to be illuminated noncoherently. In the following expressions, the 
unit of displacement in the image is: 

27rax 
Xd (36) 

where a is the radius of the circular aperture, x is the distance in the image plane from the center of the image, 
d is the distance from the image plane to the aperture, and X is the wavelength of light. 

a. Point Image 
This is well known, and its section is given by 

ic(z)=4 (Jizwy 	 (37) 

It is illustrated in figures 1 and 2. 

b. Fine-Line Image 

An expression for the cross section of the fine-line image, implicit in the original work of Struve [1], is explic-
itly given by Steel [2] as 
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L (z) =3 
8 
r H1(2

22) 
z) 

( 2  

where H1  is what is known as the Struve function, and has been tabulated.3  The cross section of the fine-
line image is illustrated in figure 8. 

c. Knife-Edge Image 
Struve [1] developed this in a series expansion and tabulated it for z up to 15. If the edge is oriented so 

that the gradient for the image is positive, then the image is given by 

f 	 1 	2 {3 222 5  2423  _„_7 	2625  
Sk,2)=Firz 	12.32-3 12.32.52m5 12.32.52.72 	• • l• (39) 

Struve also gave a simple approximation, which is in error by less than 0.1 percent for Z>7 and 1.0 percent 
for Z>3. 

(38) 

(40) 

The knife-edge image is illustrated in figure 12. 

d. Finite-Width Line Image 
If the width of the Gaussian image is tv,, then 

L(z)=S (2 +10— S (z— 	 (41) 

This family of images is illustrated in figure 10. 

e. Point-Image Characteristic 

This is given by 

K (w S 2Z /—S  	)=2S (1-0-1. 

Combining this with eq (39) gives 

4{1 12.32  3 12.32.5 5 2-1—  12.32.52./
3 2wz  5  (2w3)3  L7  (2wzr  

ir - 	 • • •)" 

This is illustrated in figure 6. 

f. Sine-Wave Response 

Steel [2] gives the following expression for the sine-wave response: 

9 
1.(w) 	'7r  

{ ---?- (arc cos - 2 w---(:-2  °- 1.— 6- 4 	
0<w<2 

, 	 (44) 

	

=-0 	 , co>2, 

where 0)=-7v/w„ and w, is the wavelength of the sinusoid. Notice that there is an absolute limit to the fre- 
quency of the pattern that a lens can form, this limit being where the wavelength of the pattern in z units 
is equal to ir. 
The frequency, v, in the image plane is given by 

 

v=2NX' (45) 

where N=(1/2a and X is the wavelength of light. If X is in millimeters, p is in cycles per millimeter. 
Figures 16 and 17 show the sine-wave response. 

 

3 E. Jabnke and F. Emde, Tables of functions with formulas and curves, 4th ed. (Dover Publications, New York, N. Y., 1945). 
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The relationships between certain fundamental characteristic functions relating to an optical image-
forming system are indicated, some being observable experimentally and others being unobservable. Of 
the observable characteristics two are especially useful in the analysis of the image-forming properties of the 
system. One of these represents the image of a point object and the other the Fourier transform of this point 
image. The two are considered for their practicality as bases for objective laboratory techniques in image 
evaluation. The transform of the point image is practical as it stands whereas the point image itself is not. 
A function directly related to the point image and to a number of other simple objects is suggested as a 
practical representative function. The practical functions are correlated and the relative merits of the two 
approaches are considered. 

1. INTRODUCTION 

DURING the past few years the National Bureau 
of Standards, as well as a number of other 

laboratories, has been concerned with the problem of 
developing an objective procedure for evaluating the 
quality of images formed by optical instruments. One 
general approach has been to try to find some physical 
parameter which can be measured objectively and then 
to try to correlate this parameter with some already 
existing quality criterion. Although it is true that, if 
successful, such an empirical approach will eliminate 
the subjective element in the determination of image 
quality, it is made under the assumption that the chosen 
criterion is in itself a satisfactory index of image quality. 
There is reason to doubt the validity of this assumption. 

A more fundamental approach is to analyze the 
image-forming process as a phenomenon, the aim being 
to characterize the process in as general and yet in-
formative way as possible, consistent with practical 
instrumentation. New criteria of image quality would 
of course be expected to be developed. The present paper 
is intended to be an outline of such an approach.t 

2. OBSERVABLE AND UNOBSERVABLE 
CHARACTERISTICS 

Figure 1 illustrates the relationships existing between 
some of the more significant or characteristic functions 
of an optical image-forming system. The actual func- 

tions are functions of two spatial dimensions, but to 
avoid complexity in the figures, they are drawn as 
functions of one dimension. These curves can be con-
sidered to represent cross sections of the more complete 
functions. 

Perhaps the most elementary characteristic function 
is that represented by Fig. 1(a). This curve represents 
the variation in optical path length between an object 
point and its Gaussian image point plotted across the 
pupil of the system. It can also be interpreted as the 
wave-front deformation across the pupil. 

From this function can be derived the complex 
amplitude of the wave function in the pupil [Fig. 1(b)], 
another characteristic function. The Fourier transform 
of this complex amplitude in the pupil gives the complex 
amplitude of the wave function in the image plane 
[Fig. 1(c)]. The product of this third characteristic 
function with its complex conjugate yields a function 
which has been traditionally called the intensity 
distribution in the image of a point [Fig. 1(f)]. 

Of the functions so far considered, only the last is an 
observable characteristic: That is, it can be directly 
ascertained by experimental means. The others cannot, 
and must be considered to be unobservable character-
istics. 

However, the point image is not the only observable 
characteristic. The product of the complex amplitude 
in the pupil [Fig. 1(b)] with its complex conjugate 

Fourier transformation 	 Fourier transformation 

 

WAVE AMPLITUDE 
IN IMAGE PLANE 

C 

  

Squaring f 	 POINT IMAGE 

       

         

* This work was done in connection with a project sponsored by Army Ordnance, Frankford Arsenal. 
f Most of the material in this paper is somewhat more thoroughly dealt with in another paper by the author, "Characteristics 

of An Image-Forming System," to be published in the Journal of Research of the National Bureau of Standards. 
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yields the function represented by the curve of Fig. 
1(d), the kind of curve obtainable by means of an 
interferometer. This last function is also observable, 
and from it can be inferred the nature of the wave-front 
deformation [Fig. 1(a)], although not unambiguously. 

A third observable function, only recently investi-
gated, is that represented by Fig. 1(e). This is the 
Fourier transform of the point image [Fig. 1(f)]. It 
can also be obtained by convolving the complex 
amplitude in the pupil [Fig. 1(b)] with its complex 
conjugate. 

We therefore have six interrelated functions charac-
teristic of an optical image-forming system. Three of 
these (on the left of Fig. 1) are unobservable, cannot be 
directly obtained experimentally. The other three are 
observable. The interferogram [Fig. 1(d)] is valuable 
primarily because of its indication of the nature of the 
wave front in the pupil, but it is very difficult to infer 
from it the manner in which an image will be formed 
by the system. However, both of the remaining ob-
servable functions are concerned with object-image 
relationships.t 

3. OBJECT-IMAGE RELATIONSHIPS 

That both are equally applicable to the problem of 
relating the image to the object is indicated in Fig. 2. 
Any object can be looked at as a summation of points 
and its image as the summation of the corresponding 
point images. The point image function is the charac-
teristic modifying function. 

On the other hand, the object can be considered to be 
the summation of a set of sinusoidal waves distributed 
in the object plane. These component waves, differing 
from each other in amplitude, frequency, phase, and 
orientation, are spatially distributed waves. That is, 
they are spatial, not temporal, sinusoidal variations in 
brightness throughout the object plane. The image 
consists of the summation of the images of these 
component waves. 

Now an image-forming system, if linear, does not 
affect the frequencies, orientations, or sinusoidal 

t Strictly speaking, both are significant only when the objects 
with which the system is to be used can be considered to be 
noncoherent extended luminous sources. 

character of the component waves. It can only affect 
their amplitudes and phase relationships. The function 
which describes these modifications as a function of the 
spatial frequencies and orientations of the component 
waves is that represented by the curve in Fig. 1(e), the 
Fourier transform of the point image. This function 
has many names in the literature, e.g., sine-wave 
response, system function, modulation function, trans-
mission factor, contrast reduction factor, etc. 

It might be noted, as indicated in Fig. 2, that, since 
an object can be considered to be made up of component 
sinusoidal waves, it can also be represented by a func-
tion in which the amplitudes and phase relationships 
of the component waves are plotted against their 
frequencies and orientations. This function is the 
Fourier transform of the object function. Multiplying 
this by the modulation function yields the Fourier 
transform of the image. An inverse transformation will 
yield the image function itself. 

Now an image-forming process is useless unless the 
image is picked up ,by a detector, which may be the 
eye, a photographic emulsion, or a photoelectric de-
tector. The detector itself modifies the image and must 
be considered to be a secondary image-forming process. 
Its inclusion in the over-all process is easily done with 
the approach involving the modulation function because 
the modulation function of an entire system is the 
product of the modulation functions of the components. 

The approach involving the point image, however, 
requires a convolution for every component image-
forming system, rather than a simple product. 

4. EXPERIMENTAL DETERMINATION 

Although any given optical system may be intended 
for use with one type of detector (i.e., the eye, a 
photographic emulsion, or a photoelectric detector). it 
is not necessary that a laboratory performance test use 
the same detector, provided that the effect of the 
detector on the image is predictable. The choise of 
detector for laboratory use should be made on the basis 
of convenience, controllability, and objectivity of the 
data obtained. The photoelectric detector in most cases 
will best meet the requirements. 

However, to avoid integrating the fine detail in the 
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image, the photoelectric detector must be used behind 
a small aperture, and provision must be made for 
producing a relative displacement between the aperture 
and the image in order to explore various parts of the 
image. 

The required smallness of the detector aperture places 
a premium on the amount of energy available, but the 
development of the photomultiplier tube has made this 
technique feasible. The shape of the detector aperture 
can be rigidly controlled and the results obtained should 
be highly reproducible. However, the photomultiplier 
will generate noise which will interfere with weak 
signals. 

It should be pointed out that the electrical signal 
obtained from the detector cannot distinguish between 
the effect 6f the object and the effect of the detector 
aperture. The test object and the detector aperture are 
interchangeable. For example, the signal obtained by 
using a luminous disk for a test object and a pinhole for 
the detector aperture will be the same as the signal 
obtained by using a pinhole for a test object and a 
circular hole for the detector aperture, provided that 
the 6aussian geometry is the same. Also there are a 
number of ways of producing the relative motion 
bet*en the image and the detector aperture. The 
dethctor aperture can be moved across a stationary 
in-/age, or the image can be moved across a stationary 
d tector aperture by moving the object or by rotating 
9k rocking some element in the optical train. 

The modulation function of an optical system can be 
obtained experimentally by using an object whose 
transform is known and a detector aperture whose 
modulation function is known, and determining the 
transform of the output signal. The modulation 
function of the optical system is given by the ratio of 
the latter to the product of the former. There are a 
number of ways of doing this, but the maximum energy 

/ 

in the signal for any given frequency will be obtained 
by using a sine-wave or a square-wave pattern for one 
of the functions. 

The point image is not so easily obtained. The effect 
of the detector aperture cannot be divided out as in the 
case of the modulation function, and so the detector 
aperture must be made as minute as possible. This 
reduces drastically the energy available. To make 
matters worse, a large part of the energy in the point 
image may be distributed in the flare about the central 
peak, the area of the flare region being so large that the 
intensity is very low at any given point. The effect of 
this flare is noticeable with extended objects, although 
it may seem to be negligible in the image of a point. 

A test object which is more easily handled and which 
shows the effect of the flare is the well-known knife- 

edge. If the data obtained with a knife-edge object is 
recorded as a curve in which the intensity difference 
between two points located at equal distances on either 
side of the geometric image is plotted against the 
distance between the points, it can be shown that this 
curve can be obtained from or interpreted in terms of a 
variety of objects, namely, a point, a fine line, a variable 
slit, and, of course, a knife-edge. Such a curve would be 
a useful characteristic, related to the point image, for 
determining image quality, and in the rest of this paper 
will be called the point-image characteristic. 

• 
5. COORDINATION 

If the modulation function is known, this point-image 
characteristic is easily obtained because the Fourier 
transform of a variable slit object is simple and well 
known. When multiplied by the modulation function it 
yields the transform of the image, and because only the 
value at the center of the image is needed, the desired 
value for a given width is obtained by a direct numerical 
or graphic integration of the product of the two curves, 
the oscillatory component of the inverse transformation 
dropping out. 

An interesting result of this relationship is that the 
area under the curve representing the modulation 
function itself is exactly proportional to the slope at the 
center of the knife-edge image. This is also the Strehl 
definition for the image of a fine line. 

The modulation function can also be obtained from 
the point-image characteristic. For a given frequency 
the response of the system to a square-wave bar pattern 
can be predicted from the point-image characteristic by 
a simple addition and subtraction of selected ordinates. 
Once a square-wave response curve is obtained, the 
sine-wave response curve (modulation function) can 
be obtained by subtracting out the harmonic com-
ponents. 

6. MERITS 

The modulation function has a number of features to 
recommend it for image evaluation. It is a bounded 
function, relatively simple in form, relatively easy to 
measure, and easily manipulated. It allows the con-
venient analysis of cascaded systems. Its use opens the 
possibility of applying to optical image formation many 
of the concepts of communication theory and allied 
fields. 

The point-image characteristic has the advantage of 
presenting graphically the image characteristics of a 
number of important types of objects. It is also easy 
to obtain. However, it is an indirect measure of the 
properties of a point image and is relatively difficult to 
manipulate. 
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A method is described for obtaining the modulation-transfer function from an edge in an image, 
making the procedure especially useful for evaluation of images not containing targets. Micro-
densitometric data obtained from an image-edge is treated to yield the square-wave response 
from which the sine-wave response, or the modulation-transfer function, is determined. The 
method only involves the taking of finite sums and differences. In addition to a discussion of the 
method, a detailed example is given of two typical applications. 

The increasing use of the modulation-transfer 
functions in the design and performance evaluation 
of optical and photo-optical systems has been ac-
companied by an increasing variety of methods of 
its measurement. One method for obtaining the 
modulation-transfer function, based on a principle 
described by one of the authors, 2  is discussed. 

The procedure to be described results in a good 
estimate of the modulation-transfer function of 
systems producing images which do not contain 
targets normally used for measurement purposes. 
Instead, data obtained from an edge in the image is 
treated to yield the square-wave response from which 
the sine-wave response, or the modulation-transfer  

theoretically is exact, only involves the taking of 
finite sums and differences. The accuracy of the 
procedure is limited primarily by the practical as-
pects of microdensitometry and graphical tech-
niques. The theoretical basis and the mathematical 
treatments involved in modulation-transfer func-
tions have been described 2-7  and will not be dis-
cussed in this paper. 

Description of Method 

If an edge in an image is assumed to have a step-
function brightness distribution, like a knife-edge 

function, is determined. 	This method, which 3.  
4.  
5.  

Received 18 July 1963. 6.  
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Fig. 1. Square-wave modulation from knife-edge image. 

image, the image of any structure made up of sharp 
edges (Fig. la) can be calculated by the corre-
sponding addition and subtraction of the images of 
each edge (Fig.,  lb). Specifically, the intensity of 
the image of a bar of finite width can be calculated 
by the difference of two displaced edge-images or by 
the ordinate difference between two points on the 
knife-edge image curve plotted against the midpoint  

between the abscissas of the points, the separation 
of the points being equal to the width of the bar 
(Fig. 1, b and c). The central intensity of the image 
is obtained when the midpoint is at the center of the 
sharp-edge image curve. 

If the object consists of bars sufficiently close 
together for the successive knife-edge images to 
overlap appreciably (Fig. 1d), the intensity at 
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Fig. 2. Sine-wave modulation from square-wave modulation. 
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Fig. 3. Microdensitometer trace of sensitometric exposure (left) and image edge (right). 

any point is the sum of the contributions from all 
the bars in the vicinity, or alternatively is the sum 
of the ordinate differences between pairs of points 
along the knife-edge image curve representing the 
bars. Thus, if the object is a square wave (bars and 
spaces all equal), the intensity at the center of a 
bar or space8 is obtained from the ordinate values of 
points equally spaced along the knife-edge image 
curve and straddling the center. The square-wave 
modulation is obtained from these two intensities 
by the usual formula. This procedure can be re-
peated for different frequencies in order to build up 
the square-wave modulation curve (Fig. 2). 

Because the transfer function has a finite upper 
limit in spatial frequency, any square-wave image 
has only a finite number of harmonic components. 
In fact, for all spatial frequencies from i3  maximum 
to the maximum itself, the square-wave image is 
itself a sine-wave, because only the fundamental 
can have a nonzero value. Consequently it is 
possible to derive the sine-wave modulation from 
the square-wave modulation by starting at the high-
frequency end and working backwards introducing 
harmonic components when appropriate. 

Example of Method 

The determination of the modulation-transfer 
function of an aerial camera system is taken as an 
example of the use of the method. The method is, 
however, applicable to other optical and photographic 
systems or components as is briefly discussed later. 

The first and most important step is to provide a 
sensitometric exposure on the film to be evaluated. 
This is done best in the camera at almost the same 
time as the exposure. No absolute intensity cali- 

R. L. Lamberts, J. Opt. Soc. Am., 48: 490 (1958). 

bration is required, but care should be taken that 
the relative exposures are accurately known. A 
uniformly illuminated density step tablet is satis-
factory if the duration of the exposure and the spec-
tral quality of the illumination simulate the scene 
exposure. The exposures may be made at different 
times if the interval to processing is long enough so 
that any time effects between exposures and proc-
essing are minimized. From this sensitometric 
exposure a modified form of a characteristic (H & D) 
curve will be developed and the accuracy of the 
method depends on the accuracy of this curve. 

The steps in this method, to proceed from an edge 
in a picture to the transfer function of the system, 
are as follows: 

1. Select an edge in the scene which is straight 
for many resolution elements and is known to have 
a step-function brightness distribution. Examples 
are shadows of straight edges of buildings on smooth 
surfaces and the ridge of a peaked roof with dif-
ferent illumination on the two sides. The edge must 
separate two areas of uniform density which are 
large enough to be well resolved. 

2. Trace the sensitometric density steps and 
the edge with the same slit and settings of the micro-
densitometer. The slit must be long enough (and 
thus the edge) to give a good trace with a minimum 
of grain noise. The slit must be narrow enough so 
that its transfer function T(k) does not obscure the 
function of the system being evaluated. 

T(k) = 
sin v wk 

r wk 

where 
w = effective width of slit 
k = spatial frequency 

Figure 3 illustrates a typical tracing. 
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3. Convert the deflections of the densitometer 
into relative exposures by plotting deflection vs. 
relative exposure from the sensitometric images. 
The left side of Fig. 4 is typical. 

4. Draw a smooth curve through the edge trace 
(care at this point will be repaid later), convert the 
deflection axis to relative exposure using the curve 
made in Step 3, and draw the curve of relative ex-
posure vs. displacement as shown on right side of 
Fig. 4. If the trace shows excessive deflections due 
to granularity, scan several sections of the edge and 
graphically average the traces. 

5. Find the center of the central intensity. This 
point on the curve is the average exposure; that is, 

center point = (E,,, -I- Emh,)/2 

6. Select a distance increment which is equal to 
Mk where k is a spatial frequency at which the trans-
fer function is expected to have a value greater than 
cc 
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Fig. 5. Measurement of modulation-transfer function of Kodak Plus-X 
Aerecon Film, Type No. 8401, developed in D-19 developer for 8 min 
at 68°  F. 

zero. Center the selected distance increment on 
the center point and divide the remainder of the 
curve abscissa into the selected distance increments, 
as shown in Fig. 4. Determine the ordinate dif-
ference of each distance increment. Add the dif-
ferences of every other increment (solid lines in 
Fig. 4), and consider this to be the MAX value. 
The MAX set must include the center increment. 
Add the differences of the remaining increments 
(dotted lines in Fig. 4), and consider this the MIN 
value. 

7. Determine the square-wave modulation value 
of the selected frequency k, using the MAX and 
MIN values obtained in Step 6. 

Square-wave modulation = 
(MAX — MIN)/(MAX -I- MIN) 

As a check, MAX -I- MIN should equal E. — 
E min . 

8. Repeat Steps 6 and 7 several times in each 
case selecting a different distance increment (spatial 
frequency) which will enable the plotting of the 
square-wave modulation curve as shown in Fig. 2. 

9. Change the square-wave modulation curve 
to a sine-wave modulation curve. This is accom-
plished by treating sections A, B, C, etc. of the curve 
in Fig. 2 separately. In section A, consisting of the 
spatial frequency range of M k,° ,, to kmu,  multiply 
the square-wave modulation 17 by 7r/4 to obtain the 
sine-wave modulation M. 
In Section A, 

Mk = (7r/4)Mk 

In Section B 	kr,„„ to 36 k.), change the 
square-wave modulation to sine-wave modulation by 

Mk  = ( 7114)R k 	M 3k 

.2 
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Likewise, in Section C, 

lrik = (r/ 4)Mk 	/tisk - 

Correction for harmonic components above the 5th 
is usually not necessary as interpolation of the curve 
to a modulation value of 1.0 is adequate. 

10. Remove the transfer function of the micro-
densitometer objective and slit which can be deter-
mined by scanning a knife-edge and applying the 
procedure described in this paper. 

It is to be noted that this method gives the transfer 
function of the aerial camera system without a 
knowledge of the actual intensities at the target, 
the haze'-10 in the atmosphere, or the wide-angle 
scattering in the system. This is because the 
brightness in the scene was assumed to be as 
measured photometrically in the image on the film. 
Thus, these effects are not determined by this method 
without additional knowledge of the target. Never-
theless, in those cases where only unstandardized 
targets are available, the method yields considerable 
useful information on aerial camera system per-
formance. 

Other Applications 

The procedure can be applied to determine the 
modulation-transfer function of photo-optical devices 
other than aerial camera systems. For example, as 
mentioned in the application discussed above, the 
modulation-transfer function of a microdensitometer 
can be determined by this method. 

Another example of application is the measure-
ment of film modulation-transfer functions. Figure 
5 shows the results obtained by this method and 
that obtained by the manufacturer." The par-
ticular procedure followed in this case was: 

1. An edge-image was produced on a high-resolu-
tion film. 

2. The edge-image was contact-printed on the 
film being evaluated. The contrast of the edge-
image produced in Step 1 and the exposure incident 
on the film in Step 2 were such that the minimum 
density produced on the film in Step 2 was above 
gross fog. 

3. The film was processed along with a sensito-
metrically exposed film sample. 

9. M. D. Rosenau, Jr., Phot. Sci. Eng., 6: 265 (1962). 
10. M. D. Rosenau, Jr., F. Scott, and W. F. Thiessen, Jr., Phot. Sci. 

Eng., 7: 92 (1963). 
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4. The processed film was scanned on a micro-
densitometer and the resulting edge-trace changed 
to an exposure-distance plot using the micro-
densitometer trace of the sensitometric exposure. 

5. The edge of Step 1 was scanned on the micro-
densitometer. After application of the procedure 
descri ed in this paper, the transfer function of the 
microdensitometer plus the exposing edge was de-
termined. 

6. From the exposure-distance plot of Step 4 a 
modulation-transfer function was produced which 
when divided by the modulation-transfer function 
produced in Step 5 yielded the film modulation-
transfer function shown in Fig. 5. 

Conclusions 

The procedure described above gives the real 
part of the optical-transfer function' which, in the 
case of symmetrical line-spread functions, is equal to 
the modulation-transfer function. When unsym-
metrical edge-traces are encountered, the imaginary 
part of the optical-transfer function can be deter-
mined by repeating the process using distance incre-
ments not centered on the central intensity. The 
repeated procedure should employ distance incre-
ments centered on points A, B, C, D, . . . in Fig. 4 
and yields the Fourier sine transform of the line-
spread function. As a check, this function should 
have its origin at zero. The modulation-transfer 
function is obtained by combining the first-obtained 
transfer function (which mathematically is the 
Fourier cosine transform) with the function ob-
tained by the repeated process by taking the square 
root of the sum-of-the-squares. 

The method for determining the modulation-
transfer function discussed in this paper should not 
be employed when more conventional methods 
and suitable targets"," are available yielding more 
accurate data. The procedure described does, how-
ever, offer a fairly rapid and accurate determination 
of modulation-transfer functions and is particularly 
useful with images not containing sine-wave or other 
types of targets. 
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The Influence of Image Motion and Shutter Operation on the 
Photographic Transfer Function 

Roland V. Shack 

In Part I a general two-dimensional expression for the transfer function of the photographic exposure 
image is derived, including as factors the optical transfer function, the transfer function arising from 
scattering of light in the emulsion, the shutter function, and the motion of the image. The effect of 
shutter operation in the absence of image motion is discussed and it is shown that a focal-plane shutter 
acts as an independent agent with its own effective transfer function, whereas a between-the-lens shutter 
is not independent but acts as an apodizing agent. In Part II, the effect of image motion is discussed, 
with the assumption that the optical transfer function is independent of the shutter action. The concept 
of an equivalent spread function for image motion is developed, and uniform linear image motion and 
simple harmonic image motion are discussed in detail, the latter especially for the case where there are at 
the most only a few periods in the exposure time. An approximation for small degradations is then 
obtained in which all possible combinations of uniform linear motion and simple harmonic motion are 
contained. Throughout the paper the functions discussed are functions of two-dimensional space. 

Part I 

Introduction 
The spatial distribution of the effective exposure ob-

tained in creating a photographic image is not, in 
general, identical to that of the instantaneous optical 
image being recorded. Apart from the blurring result-
ing from the diffusion of light in the emulsion, effectively 
treated elsewhere,' there are, in general, time-de-
pendent variations in the optical image taking place 
during the exposure time. Two classes of phenomena 
which are considered in the present paper are: (1) 
the modification of the image structure resulting from 
the action of the shutter, which causes the shape and 
size of the pupil to vary as it opens and closes, and (2) 
motion of the image. 

For the purposes of this paper we do not wish to con-
cern ourselves with the photographic process as a whole 
but only with the formation of the latent image and not 
even with all of that. The latent image consists of a 
distribution of discrete grains of silver halide made de-
velopable by the action of light. This discrete struc-
ture can be related to the practically continuous struc-
ture of the optical image by postulating a continuous 
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statistical latent image, the value of which at any point 
represents the probability that a developable silver 
halide grain will occur at that point after exposure. 
This probability will depend on a variety of factors, for 
example, the distribution of grain sensitivities and the 
population density of the grains, but the major factor 
which determines the spatial structure of the image is 
the amount of light received and integrated over the 
exposure time. 

Thus the statistical latent image is related to the 
optical image producing it by the process of time in-
tegration. The time-integrated optical image is it-
self a kind of hypothetical image, which is in units of 
energy distribution rather than power distribution 
over the image surface. It is commonly called the ex-
posure image. 

The exposure image is an intermediate stage between 
the optical image and the statistical latent image. The 
statistical latent image can be obtained from the ex-
posure image through a nonlinear transfer, taking into 
account the grain distribution factors, etc. However, 
if reciprocity can be assumed to hold, the exposure 
image can be obtained from the optical image by a 
linear process of integration. This means that the 
formation of the exposure image is the logical termina-
tion of the linear input stage of the photographic 
process, after which nonlinear procedures must be em-
ployed. Throughout the linear stage, Fourier methods 
can be applied and the image-forming capability of 
that part of the photographic system can be character-
ized by its transfer function, or, alternatively, its 
spread function. 
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Throughout the paper the transfer functions and 
spread functions discussed are functions of two spatial 
dimensions. To avoid unnecessary complication in the 
symbology, the same spatial coordinates u, v are used to 
represent object and image space. It is understood 
that the necessary, and simple, geometrical transforma-
tion has taken place. Also, to avoid using a great 
many different symbols, the author has chosen to use 
the tilde over those functions and variables which are 
in the spatial frequency domain, but maintaining the 
symbol which is used in the spatial domain. Thus u 
and v represent spatial coordinates whereas ii and V 
represent the corresponding spatial frequency coordi-
nates, and F is the Fourier transform of F. The tilde, 
which is seldom used in optical symbology, suggests a 
sine wave. 

To simplify the appearance of several of the mathe-
matical expressions, 65(x) will be used to represent the 
frequently occurring (sinx)/x. 

In the following section a general expression for the 
transfer function of the exposure image is derived. 
Following that is a discussion of the possible effects 
of a focal-plane and a between-the-lens shutter on the 
transfer function in the absence of image motion. Part 
II will discuss the effect of image motion. The concept 
of the image-motion spread function is developed and 
uniform linear and simple harmonic motion are dis-
cussed in detail, the latter especially for exposure times 
which are of the same order of magnitude as the period 
of vibration. An approximation appropriate for small 
degradations is obtained, and combined motions are 
considered. 

The Transfer Function of the Exposure Image 
In this section we shall derive a general expression for 

the transfer function of the exposure image. In order 
to do this we must examine the process of formation of 
the exposure image, starting with the object. 

The Fourier Description of the Object 
Let N(u,v) represent the radiance distribution over 

the object plane, limited to a finite field of area A. It 
will be advantageous to factor out the mean value: 
thus 

N(u,v) = n(u,v), 	 ( 1 ) 
where 

i 
N= A.-' ffAN(u,v)du dv = 21-1  ' f- N(u,v)du dv. 	(2) 

- <0. - . 

The total radiant intensity of the object is given by 
AN. 	The purpose of the factoring is the separation of 
the object function into two factors, one without spatial 
structure but carrying the dimensional units, and the 
other providing the structural information in a dimen-
sionless form. 

The spatial Fourier transform of the object, which we 
shall call its structure spectrum, is given by 

.5i( ii,v) = f- f -  N(u,v) exp[-27ri(uu + Vv)1du dv. (3) 

Here, too, we wish to separate the function into a di-
mensional factor and a structural factor. In order to 
do this, we define the normalized structure spectrum by 

N(u,v)  
N(0,0) 

	

f _:n(u,v) exp[-21ri(nu 	 fiv)]du dv 
N f1 „, J W 0 n(u,v)du dv 

= 
f - - 

	

n(u,v) exp[-27ri(fiu 	tv)]du dv, 	(4) 

which is seen to be the normalized Fourier transform of 
the structural factor of the object distribution. The 
dimensional structure spectrum of Eq. (3) is then given 
by 

/WV) = ANft(ii,V), 	 (5) 

from which it is seen that the dimensional factor of the 
structure spectrum is simply the total radiant intensity 
of the object. 

The Fourier Description of the Optical Image 
In the same fashion, assuming the effective size of 

the spread function is much smaller than A, the ir-
radiance in the image plane is given by 

H(u,v) = 17h(u,v), 	 (6) 

and the image structure spectrum by 
H(u,v) = 	 (7) 

The average irradiance in the image is related to the 
average radiance of the object by 

= KN, 	 (8) 

where K represents the usual photometric factor, and 
the normalized image structure spectrum is related to 
the corresponding object spectrum by 

h(a,v) = Efo(21,0n(fi,V)) 	 (9) 

where ''o is the transfer function of the optical system. 

The Fourier Description of the Exposure Image 
The exposure image is obtained by a time integration 

of the optical image in the emulsion. Thus, 

E(u,v) = fiS(1)H(u,v)dt 

= fisw{f-H expPri(ilu CORN dO} dt, 

(10) 
where SW is the shutter function in the usual sense. 
If we assume that the image is moving, 

H(u,v;t) = H[u - 	v - v(t)], 	 (11) 
where u(t) and v(t) are parametric expressions describ-
ing the path of motion. Then, on interchanging the 
order of integration,

f 

 Eq. (10) becomes 

E(u,v) = f 	 exp[27/(friu 	 f)v)]dii dr, (12) 

where the structure spectrum of the exposure image is 

= 
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E(u,$) = f Sri expl-27ri(liu+ Vv)Idt. 	(13) 

Factoring 17 gives us 

R(rt,v) = AK Nt.{t, f Ao 	exp [ 	up + 

(14) 
where te  = f m Sdt is the effective exposure time. Com-
paring Eq. (14) with Eqs. (5) and (7) shows that E 
can be factored in the same way as N and H; that is, 

= AE-e(a,v), 

where 
E = 

which is the usual sensitometric expression, and 

0,D) = a"E(ft,v)fi(fi,v), 
where 

(13E(fi,i5) = 4-1  i Ao exp[-27ri(fiu + vv)jdt 	(18) 

is the effective transfer function for the exposure image. 
The optical transfer function clo in the integrand of 

Eq. (18) is the optical transfer function in the emulsion, 
i.e., it includes the effect of light scatter in the emulsion. 
Thus 

= aUF, 	 (19) 
where 1L  is the transfer function for the optical system 
per se, and cr3F  is the transfer function for the scattering 
in the emulsion. The latter is independent of time and 
can be taken outside the integral. The former, as we 
shall see in the next section, is not, in general, inde-
pendent of time and must be kept inside. The ex-
posure-image transfer function then becomes 

	

= 41Ft.-1f AL exi)[ —27ri(fiu 	vv)] de. 	(20) 

The Effect of the Shutter 

In this section we shall assume the absence of image 
motion. The transfer function for the exposure image 
then becomes 

	

= aa'Ftrif ScILdt. 	 (21) 

If we can also assume that (I L  is independent of time, 
then 

clE  = 	f Sdt = 	 (22) 

and the shutter has no effect. 
Strictly speaking, this condition holds only when the 

opening and closing times of the shutter are negligibly 
small with respect to, the effective exposure time, or 
when the shutter action is obtained by varying the 
transparency of the pupil uniformly, as with an ideal  

polarizing shutter. In practice, however, most shut-
ters are mechanical devices which vary the shape of the 
pupil during their opening and closing times, thereby 
altering the pupil function and the optical transfer 
function ci,/, which depends on it. 

The two most common types of shutter are the focal-
plane and the between-the-lens shutter. We shall 
consider both in our investigation. 

The Focal-Plane Shutter 

The influence of a narrow focal-plane shutter on the 
image has been investigated by Bechtel2  and by Asa-
kura3  by calculating the effect on the spread function of 
diffraction by the slit. Approaching the problem from 
the point of view of transfer function theory, however, 
leads to a very simple and elegant solution, as follows. 

For mechanical reasons the so-called focal-plane shut-
ter is never actually in the focal plane, but is a consider-
able distance forward of it. We shall assume for our 
purposes that the shutter is sufficiently removed from 
the focal plane for its effect to be virtually identical to 
that of an equivalent shutter in the pupil. Then the 
shutter function can be incorporated as a time-de-
pendent modifier of the,  pupil function from which the 
optical transfer function can be calculated. Thus 

= 	a)-L(o,o;t) = S(t), 
and 

‘71'E = (1"84.-1f ;:fLdt. 	 (23) 

The modified optical transfer function can be expressed 
as the autocorrelation integral of the modified pupil 
function. 

If the unmodified pupil function is represented by 
f(x,y) and the pupil shutter function by s(x B) where 
the shutter velocity z is constant and the shutter is 
moving in the negative direction of x, then the transfer 
function for the exposure image is given by 

a)13 = $Fte-i  f 	 f 
	

[s(x + it + 1/211) 

f(x + 1 /,21, 1 /2V)][S*(x + it — 1 / 2 ft) 

f*(x — 112fi, y — 1/ 2V)]dx dy}dt 

EIFA -If f [trif s(x + it + '/25) 

s*(x + it — 1/211)dtlf(x ± 	1/2s) 

i*(x 	1/2fi, y — 217)cli dy, (24) 

where A represents the area of the pupil and the asterisks 
indicate complex conjugates. The time integral in the 
brackets is in the form of an autocorrelation integral in 
which both components have been shifted by an amount 
x, but equal shifts in the same direction do not alter the 
value of the integral which is therefore independent of 
x. The integral is also independent of y and therefore 
may be taken outside the larger integral: 
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spatial 
frequency 

a)E = CI; 	f 0(tt + 1  /21.1)8*( V — 1/ 2 f)dii 

CA 
	

f CO 
f°

co 	
+ f(x i/211,Y + 1 /20f*(s — V 	M ol,y — 'ax dy]. 

(25) 

The expression within the second square bracket is 
simply the transfer function for the optical system with 
the shutter fully open, so the expression within the first 
square bracket must describe the equivalent transfer 
function for the focal plane shutter, and 

(13E 	 (26) 

By changing the variable of integration, letting 
x' = V, the form of the integral for the shutter' transfer 
function is given by 

s(x' + 1/2,1)s*(x' — 1/2ii)dx' 

	

aSs  —  	(27) 
f W .s(e)s* (e)dx' 

which is the form of a normalized spatial autocorrela-
tion function strictly analogous to the expression for 
the optical transfer function. It is, however, a func-
tion of fi alone, being independent of D. 

It is interesting to note the rather unexpected result 
that the equivalent shutter transfer function for a focal 
plane shutter is quite independent of the shape and 
size of the pupil and the aberrations of the optical sys-
tem. Unfortunately, this independence only holds in 
the absence of image motion. 

The derivation assumes the most general complex 
form for the pupil shutter function, subject to the re-
strictions that it be independent of y, convergent in x, 
and constant in its velocity. However, the most com-
mon form of shutter is a simple slit. If we let w repre-
sent the ratio of the shutter width projected into the 
pupil to the radius of the pupil aperture, then, for a 
simple slit shutter 

= 1— 	0 < 1,11 < w w 
= 0, 	> w. 	 (28) 

This is a roof-shaped function of triangular cross sec-
tion, as shown in Fig. 1. 

The Between-the-Lens Shutter 
The between-the-lens shutter was also investigated 

by Bechtel by calculating the spread function. The 
following illustrates the transfer function approach. 

Unfortunately, the between-the-lens shutter which 
operates approximately radially in the pupil does not 
lend itself to the elegant reduction of the previous sec-
tion. It is not possible in general to separate the 
shutter effect from the aberrations or the diaphragm 
setting, and the problem is usually complicated by the 
shape of the shutter aperture, which usually resembles a 
bent star or pinwheel. 

In general Eq. (21) must be used where the variation 
of IL with time must be determined beforehand. The 
shutter function S is given by the ratio of the area of the 
clear aperture at time to the area of the aperture when 

Fig. 1. Transfer function for focal-plane shutter. The cylinder 
in the figure represents the boundary of the frequency domain 

limited by optical diffraction. 

Fig. 2. Influence of a between-the-lens shutter on the transfer 
function. This figure is a graphical interpretation of Eq. (21). 

The optical system is assumed to be free of aberrations. 

the shutter is fully open. Both 4-)L  and S will depend 
on the diaphragm setting as well. 

In order to get a general idea of the effect of a 
between-the-lens shutter, a'simplified model consisting 
of a circular aperture, the radius of which varies with 
time, will be examined. It will be assumed that its 
area increases linearly during its opening and that it 
closes linearly at the same rate. 

Figure 2 is a graphical interpretation of Eq. (21) for 
this simplified model in the absence of aberrations. 
Note that as the spatial frequency of a component in-
creases there is a corresponding delay before a con-
tribution to that component can pass through the 
spatial filter, and a corresponding reduction in the ef-
fective transfer function. This occurs because the 
smaller aperture of the partly open shutter results in a 
lower maximum spatial frequency which can be trans-
ferred. 

Figure 3 is a corresponding illustration for the same 
model with a defect of focus of '/2X. Here the same 
spatial frequency limit applies as in Fig. 2, but the 
amplitudes are reduced. The amount of reduction, 
however, increases rapidly with the size of the shutter 
aperture, so that the amplitude with the shutter partly 
open may exceed that obtained with the shutter fully 
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open, and the resulting transfer function value may be 
greater than that obtained with a "perfect" shutter 
which opens and closes instantaneously. 

Figure 4 shows for the same model the difference be-
tween the two extreme shutter functions, the rectangu-
lar "perfect" shutter function and the triangular "50% 
efficient" shutter function. In Fig. 4(a) we see the dif-
ference in shape of the transfer functions and in Fig. 4(b) 
the manner in which the transfer function values vary 
with focus for a particular frequency. 

Taking the defect of focus as an aberration, it is 
clear that, although a finite shutter effect degrades an 
aberration-free system, it can improve an aberrated 
system. The improvement should be even more strik-
ing for higher order aberrations. 

The character of the curves in Fig. 4 implies that the 
ripples of the corresponding spread functions must be 
considerably reduced for the triangular shutter func-
tion relative to those of the rectangular shutter func-
tion; that is, a kind of apodization has taken place. 
In fact, the simplified model of shutter we employed 
does result in noncoherent apodization for the ex-
posure image, and the effect of a between-the-lens 
shutter can be thought of in terms of such an apodiza-
tion. The manner and extent of the apodization will 

spatial 
f requency 

Fig. 3. Same as Fig. 2 except that the optical system is de-
focused by 1/2X. 

depend heavily on the shape of the actual shutter aper-
ture, however, and the concept of apodization in the 
usual sense only applies in the absence of image motion. 

Part II 
Introduction 

Earlier investigations of the effect of image motion on 
the quality of the image have mostly been concerned 
with predicting the reduction in resolving power result-
ing from image motion. Scotto reported expressions 
for simple forms of one-dimensional image motion. 
Rosenau5  reported an expression for parabolic image 
motion. Chang6  has investigated the effect of simple 
harmonic motion on resolving power rwhen the exposure 
time is a fraction of a cycle of the motion. Paris' has 
attempted to determine the two-dimensional transfer 
function for combined linear and simple harmonic image 
motion. Paris,' and Hendeberg and Welander8  have 
considered the modification of the transfer function for 
linear motion by a low-efficiency shutter, neglecting the 
effects described in Part I of this paper. 

In Part II we shall also neglect the effects described in 
Part I, i.e., we shall assume that the optical transfer 
function is independent of time. As should be clear 
from Part I, this assumption is strictly valid only in 
comparatively rare cases. However, it is a reasonably 
good approximation if the effective exposure time is ap-
preciably greater than the time it takes for the shutter 
to open and close, or if we are restricted to low spatial 
frequencies and small aberrations. 

The Transfer Function and Spread Function for 
Image Motion 

Under this assumption the expression for the trans-
fer function for the exposure image becomes 

= CMAM, 	 (29) 

where the effective transfer function for image motion 
is 

ci) m(11,1)) = 	f S exp[-2/ri(fiu 	vp)] dt. 	(30) 

Remembering that u and v are parametric expressions 
describing the path of image motion, we shall hence-
forth omit the bar. 

In order to evaluate this integral at some spatial 
frequency (11,0 we can simplify our problem by rotating 
the reference axes through an angle ik so that the new 
abscissa it' is in the direction of (ii,D). Then .  

it' = it co4 + 	 = 0 

u' = u cos& 	v simp, 	 (31) 

and 
(a) 
	 (b) 

Fig. 4. Influence of a between-the-lens shutter on the transfer 
function. The solid curves are for the rectangular shutter 
function and the dotted curves for the trianglar shutter function.  

= to -1 	S exp(-2riu'u')dt. 	(32) 

If we change the variable of integration to u', 
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= f 	[5  / exp (-27rift'u')du' 
(33) 

f 
which has the form of a normalized Fourier transform, 
and, consequently, the quantity in the square brackets 
represents an equivalent image-motion spread func-
tion. However, the form of this quantity depends on 
orientation, suggesting that it corresponds to a line-
spread function rather than a point-spread function. 

An equivalent point-spread function does exist, but it 
differs radically in character from the more familiar 
optical or emulsion spread functions. The latter func-
tions can be represented by continuous, approximately 
bell-shaped surfaces overlaying the u,v plane, whereas 
the former is represented by a ribbonlike cylinder, the 
directrix of which is the path traced by the parametric 
variables u(t) and v(t) and the generatrix of which is a 
line segment perpendicular to and extending up from 
the u,v plane and having a length given by SI (ii 2  
+0)-1/21, that is, the shutter function divided by the 
magnitude of the velocity of the image motion along 
the path (see Fig. 5). 

It should be noted that the directrix may be a multi-
valued function of u', in which case the line-spread func-
tion is the sum of all the intercepted elements (see Fig. 
5), and has an infinite discontinuity at each value of 
u' corresponding to a bend and possibly a finite dis-
continuity at each value corresponding to a terminus. 
But the integral of the line-spread function exists (it 
is equal to the total area of the ribbon representing the 
point-spread function, which in fact is equal to the ef-
fective exposure time te) and there can be only two 
termini and a finite number of bends, so the validity of 
the Fourier transform expressed in Eq. (33) is not 
jeopardized. 

We shall now use Eqs. (32) and (33) to investigate a 
few special cases of image motion which are of practical 
importance. 

Uniform Linear Motion 
If it and 11 are constant with respect to time, then we 

have uniform linear motion having a velocity of mag-
nitude 

in a direction 
( 112 + 612)112, (37) 

line stxead function In Eq. (33) 

= arc tan (bditi ). 	 (38) 

   

         

         

         

         

        

        

       

oint spread function 

        

        

        

        

        

        

Fig. 5. Image motion spread functions. 

The line-spread function in the direction is found 
by integrating this point-spread function in the per-
pendicular direction. That is, an element of area in the 
line-spread function of width du' is equal to the area of 
that portion of the ribbon representing the point-spread 
function intercepted by the interval du', this area being 
given by 

du'  
dA 	 (34) 

	

cos  (, 	4,) (42 ± 62)1,2' 

where 95 is the angle between the u axis and the tangent 
to the curve of the directrix. But 

= it coq, + v alibi, 

= 	+ n2)"2  cos (0 — 0), 

so the element of area of the line-spread function is 
represented by 

	

dA = 	 (36) 

in agreement with Eq. (33). 
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ie t  = l cos (0 — 0t) 	 (39) 

is a constant with respect to u', so if,m  becomes simply 
the normalized Fourier transform of the shutter func-
tion. If S is assumed to be unity during the exposure, 
then 

= 

= e[irie/ cos (4, — gst)], 	 (40) 

where 1 = lte  is the distance the image travels in the 
exposure time. The corresponding point-spread func- 
tion is a rectangle of length 1 and height 1-'. The two 
functions are shown in Fig. 6. 

Fig. 6. Spread function and transfer function for uniform linear 
motion and a rectangular shutter function. The cylinder 
represents the boundary of the frequency domain limited by 

optical diffraction. 

(35) 
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= f .S exp 	sin (27mi ± a)]di, (49) 
CO 

If the shutter function is a trapezoid with a rise time 
t„ then 

4)m = e(7ra 'it ,,toe( 	i't,), 	 (41) 

because a trapezoid is the convolution of two rectangles. 
If the shutter function is S-shaped during the rise 
time, that is, the convolution of a rectangle and a circle 
(focal-plane shutter), 

[2,11(7ra'7:1001
j  .1.31 = Z-(1rfefilits)  

Thus for uniform linear motion, the image-motion 
transfer function can be factored into a term dependent 
only on the effective exposure time regardless of the so-
called shutter efficiency, and a term dependent only 
on the rise time. The first is the Fourier transform of a 
rectangular function and the second the Fourier trans-
form of the derivative of the shutter function during the 
rise time. 

This result is valid only if the optical transfer func-
tion i;r  is independent of time and no other form of 
image motion is present. 

Simple Harmonic Motion 
Next to uniform linear motion the most important 

elementary kind of image motion is that resulting from 
vibration in the camera system. In its simplest form 
this is simple harmonic motion, described by 

u = u. sin (274 + a), 	v = v. sin (27-vi + a), (43) 

where ua  and va  are the component amplitudes of the 
motion (assumed constant), v is the frequency of the 
vibration in cycles per second, and a is a phase term de-
fining the position of the image in its path at time t = 0. 
The path of the image motion is a straight line making 
an angle 

= arc tan (v./u.) 	 (44) 

with the u axis, and the amplitude is 
a = (u02  + v02)112. 	 (45) 

On rotation of coordinates we obtain 
u' = ua' sin(27vt + a), 	 (46) 

where 
u,,' = a cos(4, — 	 (47) 

Substituting into Eq. (32) we obtain 

= to-1 f s exp [ —27rifeua' sin (27rpt 	aNt. (48) 

It is convenient to normalize the variable by 7 
= t/te; thus 

where m = vt, is the number of cycles of vibration 
occurring in the effective exposure time. If now we 
assume that the shutter function is constant during 
the exposure time (rectangular shutter function), then  

we obtain 
/2 

471)M 	 sin(27rm7 «)]d, (50) 
—1 /2  

where the origin of i is taken in the center of the ex-
posure time. 

It can be shown that, for integral values of m, Eq. 
(50) reduces to the Bessel function 

43ee  = J0(21riVu.'), 	 (51) 

which is independent both of a and of the order of m. 
Also, for continuous values of m, 

m— 	= Jo(27rr/u.'). 	 (52) 

The latter expression, given by Scott,4  is of limited 
practical value, however, because in most cases not 
more than a few cycles of vibration will occur in the ex-
posure time, and in this region the general dependence 
on m and on a (an uncontrolled parameter) may make 
43.2,1  in any particular instance deviate considerably from 
that predicted by Eqs. (51) or (52). 

Figure 7 shows the manner in which ;:1;A/  varies with a 
and with m for m ranging from 0 to 2. In this range, at 
least, it is clear that .1.,/  depends strongly on both a and 
m. Figure 8 shows this dependence more clearly, at 
least for the main lobe of 4M. 

Several features are apparent. The general trend is 
for CI  to approach the limiting value specified by Eq. 
(52), but, for small values of m, 'FM  rises as m decreases, 
approaching unity as m approaches zero. The reason 

NORMALIZED SPATIAL FREQUENCY 2 D'u' 

Fig. 7. Transfer functions for simple harmonic image motion. 
The values of m indicate the number of cycles in the effective 
exposure time. The shutter function is rectangular. The solid 
curve is for a = 0, the dotted curve for a = 1/40r, and the 

dashed curve for a = 

(42) 
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Fig. 8. Variation of the simple harmonic image motion transfer 
function with m and a, for a normalized spatial frequency value 
of 0.5. The shutter function is rectangular. The solid curve is 
for a = 0, the dotted curve for a = 1/47r, and the dashed curve 
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Fig. 9. Same as Fig. 8 except that the shutter function is 
triangular. The solid curve is for a = 0, the dotted curve 

for a = Yaw, and the dashed curve is for a = 1/271-. 

for the rise is, of course, the fact that, if the exposure 
time is less than one period, the distance the image 
travels during the exposure diminishes with m, and the 
blur is less. At integral values of m we have the nodes 
predicted by Eq. (51). Between m = 1 and m = 2 is 
another node, of which more will be said later. Be-
tween the nodes, M  can take on a range of values de-
pendent on a. 

The dependence on a is quite important. Although 
the amplitude and frequency of the vibration might 
conceivably be specified in advance, the reference phase 
a is unpredictable in any given case, all values of a 
being equally likely. Thus the best that can be done 
in describing or predicting [ISM  is to specify its prob-
ability distribution. In the present case this distribu-
tion has an upper and a lower limit, and it is more prob-
able that a given value of 4;11,f  will be near one or the 
other of these limits than that it will lie midway be-
tween. 

If instead of a rectangular shutter function, a tri-
angular one is assumed, the same nodes occur at inte-
gral values of m [Eq. (51) ], and the same limiting func-
tion applies [Eq. (52) ], but the function converges much 
more rapidly to the limiting value. Figure 9 shows the 
result obtained for the same parameters as Fig. 8. It 
can be seen that, except for values of m less than about 
0.7, the value specified by the limiting function is quite 
a reasonable prediction for (1),,, for any value of «, at 
least for the main lobe of the transfer function. 

Combined Motions 
In the general problem of combined motions, 

= u1 + U2 + • • • 

from which we obtain 

= 
and 

= 

I 	v = 

+ /15' + • • 

+ I/2' 4- 

+ va + • • 

• , 

• , (53)  

(54)  

(55)  

It should be noted that each pair of functions in (53) 
is associated with a particular set of parameters, but 
because the orientation in general differs from pair to 
pair, the distribution of parameters in Eqs. (54) and 
(55) will vary with 

The equivalent line-spread function is given by 

S/u' = S/(111' + u2' + 	 (56) 

from which it can be seen that the resultant spread 
function is not a linear combination, product, or con-
volution of the separate component spread functions, 
and so the equivalent image-motion transfer function 
cannot be a simple combination of the component 
transfer functions. It, of course, is given by 

43m = 	f S exp[-27riit'(u1' 	u2' 	 )]dl (57) 

The simplest case of combined motions is the sum of 
two or more uniform linear motions. Clearly the re-
sultant is itself a uniform linear motion, and no further 
discussion is necessary. 

The next most simple case of combined motions is 
that resulting from two or more vibrations of the same 
frequency. Then 

u = ua sin(27rpt + a), 	v = va  sin(27rpt + a + /3), (58) 
from which we obtain 

u' = 	sin(2714 	a'), 	 (59) 

where 

a' = a + 	
(v./u.) sins tamp  tans' — 	 (60) 1 + (v./u„) cos tamp 

and 
= 	cos'' + v.' sin2# 	2u.va  sin# cost cosi3)1 /2. (61) 

Equation (59) has the same form as Eq. (46), and thus 
the preceding analysis for a single source of vibration ap-
plies here as well for each direction, but in general the 
variation of ci3m- with 1,G is different. 

Of course, if g = 0, the two components of mo-
tion are in phase and the resultant motion is indistin-
guishable from that resulting from a single source of 
vibration, and the previous analysis applies exactly. 

On the other hand, if 13 = 1/27r and u4  = va  = a, the 
path of motion is a circle and 

	

= a sin(27rpt + a + #), 	 (62) 

where the amplitude is independent of orientation but 
the reference phase is a linear function of ;G. 

Figure 10 illustrates these two extreme cases along 
with a general intermediate case for m = 1. The three 
different point-spread functions have identical line- 

1.0 

z 
g 0.5 

CO 
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Fig. 10. Spread functions for combined simple harmonic 
motions of the same frequency. Exactly 1 cycle in the exposure 

time is assumed. The shutter function is rectangular. 

spread functions in the direction of A but different 
ones in the direction of B. 

The more general problems of the combination of 
linear and simple harmonic motions and combined 
vibratory motions of different frequencies do not have 
any corresponding simplicity. Equations (56) and 
(57) must be applied directly. 

Approximation for Small Degradations 
One of the principal uses of transfer function theory 

is in the establishment of performance tolerances, that 
is, the determination of the magnitude of a source of 
degradation when the degradation is assumed to be 
just tolerable. For this purpose we can use an ap-
proximation which is valid for small values of the total 
degradation, the approximation being the use of the 
first three terms of the power series expansion for the 
exponential expression in the integrand of Eq. (32). 

First, however, let us establish as our coordinate ref-
erence for the spread function its center of gravity. 
Thus, before shifting our coordinates, we let 

u' = 	u", 	 (63) 

and substitute in Eq. (32). 
Shifting our coordinates by making a' = 0, we obtain 

CO 

= 	S exp( —2rifee)dt. 	(64) 

The effect of shifting the coordinates is only the in-
troduction of a phase term which is a linear function of 
the spatial frequency. 

We now make our approximation, obtaining 

rzfm 	S[1 — 27rii110 — 27016' 2uff 2 ]dt 

=1 — 271-211'2(4,-1 Su" 2 dt). (65) 

This expression is free of imaginary terms, thus in-
dicating that, to the extent that the approximation is 
valid, asymmetry of the spread function is of no im- 

portance, and any central section of the transfer func-
tion is a parabola. It is always pessimistic, actual 
values of the function being somewhat higher. 

A transfer function which corresponds to no degrada-
tion of the image is simply equal to unity for all spatial 
frequencies. Thus the second term of Eq. (65) is con-
veniently considered as the loss LM  associated with the 
transfer function: 

a; Ai  = 1 — LM, 	 (66) 

where 

LM  = 270(4,-1 f Su"dt). 	(67) 
CO 

By changing the variable of integration to u', as in 
Eq. (33), Eq. (67) becomes 

Lm  = 272 fif f (S/14')uff 2dul 	(68) 
CO 

and it becomes apparent that the quantity in square 
brackets is the second moment of the spread function. 

If we assume a rectangular shutter function and the 
image motion is uniform linear motion, that is, u' 
= ii 2't then g' = 0 and 

Lm = 1/67r 2(e2u/ /2. 	 (69) 

If the image motion is simple harmonic, that is 
u' = u.' sin(271-rt + a), 

then 
= u.' sinaS(7m), 	 (70) 

and 
LM = 71-211qu.' 2 [[1 — 2(7rin)] 

(cos2a) [S2(irm) — (27rm)] ). (71) 

The quantity inside the curly brackets expresses the 
dependence on m, the number of cycles of vibration in 
the effective exposure time, and a, the reference phase. 
It is plotted in Fig. 11, which on comparison with Fig. 8, 
shows that the dependence is quite adequately ac-
counted for. 

The quantity in the first set of square brackets gives 
the average dependence on m. The quantity in the 
second set of brackets defines the amplitude by which 

0.5 	1.0 	1.5 	20 

NUMBER OF CYCLES IN EXPOSURE TIME 

Fig. 11. Dependence of the transfer function loss factor on in 
and a [see Eq. (71)]. The solid curve is for a = 0, the dotted 
curve for a = I/47, and the dashed curve for a = 1/27r• 

This figure should be compared with Fig. S. 
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the loss fluctuates with a about the average value given 
by the first quantity. 

The total expression in the curly brackets goes to 
zero for all a as m approaches zero and to unity as m 
approaches infinity. It also goes to unity for integral 
values of m. The intermediate node previously men-
tioned occurs when the quantity in the second set of 
square brackets is zero, that is, when tamrm = 7rm. 
Other intermediate nodes will occur at larger values of 
m which satisfy this relationship. 

If the image motion is the sum of uniform linear 
and simple harmonic motion, that is, 

u' = 	sin(271-4 + a), 

then 
LM  = 1/62-21i/ 2'ut' 2  

7-27.1' 214121[1 	e2(7rM)] +(e0S2cr)[e2(rin) 

+2.-wziwu.,{cosat(7rm)-(e(7r.) — cosz-n)]). 	(72) 

Here it is apparent that the first term is the loss which 
would result from the linear motion alone, the second 
is the loss which would result from the simple harmonic 
motion alone, and the third the loss resulting from the 
interaction between the two. 

The interaction loss also depends on m and a, as 
shown by the expression inside the curly brackets. 
This expression is shown in Fig. 12, where it can be 
seen from the nodes present that the interaction term 
vanishes when the quantity inside the square brackets 
is zero, that is, when tanirm = 7rm, the same condition 
which applies to the intermediate nodes of the pure 
vibration dependence. Thus, at these values of in the 
image motion transfer function is independent of the 
reference phase a. The interaction term, however, 
does not, in general, vanish at integral values of m. 

It is instructive to observe how the transfer function 
varies with m and a as the proportion between the 
linear component and the vibration component is var- 
ied, keeping the total loss constant (for m 	). 
Figure 13 shows this for a total loss of 0.2 with the 
proportion ranging from pure linear motion to pure 
vibratory motion. 

The most striking feature is the dominant effect of the 
interaction term for even small amounts of vibration 
added to the linear image motion. This of course re- 

Fig. 12. Interaction loss factor for uniform linear image motion 
combined with simple harmonic motion [see Eq. (72)]. The 
factor 2 is incorporated in the figure. The solid curve is for 
a = 0 or 7r, the dotted curve for a = Yor or Vor, and the dashed 

curve for a = 1/27r. 

0 	 1 

NUMBER OF CYCLES DURING EXPOSURE 

Fig. 13. Variation of the transfer function for combined uni-
form linear image motion and simple harmonic motion as the 
proportion of the two components is varied from pure linear 
motion to pure simple harmonic motion. The solid curve is for 
a = 0 or 7r, the dotted curve for a = Vor or Vor, and the dashed 

curve for a = 1/27r. 

fleets the fact that when the vibratory component 
travels in the same direction as the linear component 
the blur is increased, whereas when it travels in the 
opposite direction the blur is reduced or even can-
celled. 

As was stated previously, a is a parameter over which 
there is normally no control, all values of a being 
equally likely. Thus, even if all other parameters are 
specified, no specific value of the transfer function can 
be predicted unless the value of m corresponds to one of 
the nodes as seen in Fig. 13. Instead, the transfer 
function may take on a range of values which is best 
described by a probability distribution, and a tolerance 
level can be established on the basis of the statistical 
performance required. In the present case a fair ap-
proximation to the correct procedure can be made by 
using absolute values for the quantities in square 
brackets in Eq. (72) and choosing a value of a to con-
form to the statistical performance required. Thus, no 
photograph will be worse than the value obtained by 
setting a = 0, and if the peak-to-peak amplitude of 
the vibration does not exceed the distance of linear mo-
tion, then 75% of the photographs taken will be better 
than the value obtained by setting a = Yor and 50% 
for a = 1/27r. 

If the image motion is the sum of two simple harmonic 
motions of differing frequency, that is, 
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u' = 	B1.11(27rvit 	at) 	81111(271,21 	a2), 

then 
LAI  = ir2ie1/4.1"1[1 - e2ormol 

+(cos2a1)[e2(rmi) - e(27.-.0] I + 
724, 	/ [1 - e2(7rM2)] 

COS2a2)[e2( 7rM2) - e(2..2)] 
272fi'21.1.1'un' 

I cos(al - aslle(rmi - rnis) - sormoeormoi+ 
cos( al 	cY2)[ecirnil(TTM2) e(ITML IMO] }. 

	(73) 

Here again the first two terms are the losses which would 
result from each component of image motion by itself 
and the third term is the loss resulting from interaction 
between the two. 

This example is more difficult to describe than the 
previous examples because we now have six para-
meters, two of which are independent random variables. 
In particular the probability distribution of LM  be-
comes much more complicated. 

In order to get a general idea of the properties of Eq. 
(73) we must look more closely at the interaction term. 
This term itself contains all six parameters, but they 
arc conveniently grouped. The expressions in the 
square brackets describe the dependence on both m1 
and ms. Figure 14 shows the manner in which the 
quantity in the first square brackets varies and Fig. 15, 

NUMBER OF CYCLES IN EXPOSURE TIME 
.m2  )!2 

Fig. 14. Interaction loss factor for combined simple harmonic 
image motions of different frequencies. This is for the ex-
pression in the first square brackets of the interaction term in 

Eq. (73). The dependence on az and as is not shown. 
1.0 

0 
ct,  0.5 

9 0 
0 

0.5 	ID 	1.5 	2.0 
NUMBER OF CYCLES IN EXPOSURE TIME 

Ory.m21/2 

Fig. 15. Interaction loss factor for combined simple harmonic 
image motions of different frequencies. This is for the ex-
pression in the second square brackets of the interaction term 

in Eq. (73). The dependence on az and az  is not shown. 

the second. The parameters m1  and m2 have been 
transformed to (ml  - m2)/ (mi. + m2) and 1/2(mi ± m2) 
in the figures. 

It is clear that the magnitudes of the expressions 
generally increase as the difference between the fre-
quencies decreases. This means that the interaction 
between the two components reaches its maximum 
when the two frequencies become the same. If the 
two frequencies are the same, then the loss is a maxi-
mum when the motions are in phase with each other, 
that is, al  = a2 = a, in which case the loss can be ex- 
pressed as in Eq. (71), where ua ' = uai' 	u52'. For all 
other frequency and phase combinations the loss will be 
diminished. Thus, if a tolerance is to be established 
for a combination of two different frequencies, then a 
safe maximum limit for the loss can be set by assuming 
that both frequencies are equal to their average and 
that they are in phase with each other. This proce-
dure is, of course, a short-cut and may be excessively 
conservative if the frequency difference is large. The 
correct procedure is to calculate the probability distri-
butions from which the tolerance can be determined ac-
cording to the statistical performance required. 

If the image motion is the sum of any number of uni-
form linear motions and simple harmonic motions, 
then the loss can be calculated with the terms con-
tained in Eqs. (72) and (73). First all linear motions 
can be combined into a resultant linear motion and the 
vibrations for each frequency combined into a single 
resultant term. Then the loss will consist of a term 
for the linear motion as given by the first term in Eq. 
(72), a term for each vibration as given by the second 
term in Eq. (72) or either of the first two terms in Eq. 
(73), an interaction term between the linear motion and 
each of the vibrations as given by the third term in 
Eq. (72), and an interaction term for every pair of 
vibrations, as given by the third term in Eq. (73). 

The general procedure followed in this section can 
easily be extended to other kinds of image motion, if 
desired. The two kinds which have been used in this 
section are, however, the ones of greatest practical in-
terest. 

The author would like to acknowledge the advice and 
encouragement given by H. H. Hopkins, especially 
for suggesting the derivation of the equivalent transfer 
function for a focal-plane shutter, and also the help of 
his wife, Pamela Shack, in doing some of the more 
tedious calculations and preparing the manuscript. 
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