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5. 

ABSTRACT  

We study the group-theoretic techniques used in 

obtaining consequences of the Unitary Symmetry schemes for 

the strong interactions of elementary particles as proposed 

by Sakata and Gell-Mann and Neeman. The mathematics .of the 

groups I,.(n) and SU(n) is discussed in Chapter I. We obtain 

the irreducible representations and, by decomposing the 

bases relative to one of the subgroups SU(n-1), we arrive 

at a reduction formula for calculating the dimensions of 

these representations. In particular, this method gives 

the (I,S) multiplets in a unitary supermultiplet. 

In the second chapter, we elaborate the use of Young's 

tableaux in obtaining the Clebsch-Gordan series in the 

reduction of the product of two irreducible representations. 

We also give a technique which starts from first principles 

and obtain the complete reduction of the products of two 

and three octets. We then describe another method which does 

not use the form of the basis elements in terms of the funda-

mental fields. Some of the applications are also given. 

In particular, we are able to discard the Sakata model. 

The third chapter is devoted to the consideration of 

the breakdown of the symmetry and, following Okubo, we 

generalize the mass formula to any order. We see that the 

lowest order formula fits nicely the beryoll a.nd pseudoscalar 



6. 

meson octets. However, for vector mesons, neitherc nor w 

masses can give a reasonable fit. Following Sukurai, we 

try to see whether these could be mixtures. The consequences 

can be experimentally verified. 

In the fourth v.:hapter, we follow the U—spin approach 

6-1 Lipkin et al for the discussion of the electromagnetic 

interaction and obtain the results already arrived at by 

Cabibbo et al in a very simple fashion. 

The concluding chapter is devoted to a critical exami—

nation of the present position of the octet version and its 

comparison with schemes based on other rank 2 groups. 



7. 
INTRODUCTION 

Gell—Mann and Nishijimal  classified the strongly 

interacting particles (baryons and mesons) into isotopic 

multiplets (forming basis vectors for the irreducible 

representations of the isotopic spin group SU(2)) charac-

terized by three quantum numbers I, S and N. On the basis 

of the conservation of these quantum numbers, one can write 

the strong interaction Lagrangian for the Yukawa type 

baryon—meson interaction in terms of 8 (strong) coupling 

constants. The search for higher symmetries was the natural 

outcome of the success of the above classification, the main 

purpose being to examine whether the strong interactions are 

more restricted or not. Historically, the quest started with 

the introduction of the Global Symmetry independently by 

Gell—Mann and Schwinger2  with the basic assumption that all 

the 8 baryons are alike and so also their interactions with 

the 7c—mesons. The 'Z,-mesons being much heavier have an 

interaction with the baryons, the strength of which is an 

order of magnitude smaller than the corresponding one for 

the pions. We may, therefore, neglect the K—meson inter—

actions while considering the very strong interactions. 

However, as the experiments indicated that the K—meson 

couplings are comparable to those of the pions, the scheme 

gave way to the consideration of many a priori choices of 
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equations between the above coupling constants, some of 

which met limited success.3 

Another reason for postulating higher symmetries is to 

understand the systematics of the vast number of strongly 

decaying resonances — in order not to have too many elemen—

tary entities, one would very much like to consider these 

as bound states in a scheme which also tells when and where 

to look for new resonances.,(This sort of thinking might 

lead one to discarding the notion of elementarity attached 

to some or all of the commonly listed elementary particles. 

The latter approach, where every particle is considered to 

be a bound state of every other, is very much in fashion 

these days.4 Unfortunately the presentation of such dynam—

ical calculations is beyond the scope of the present thesis.) 

The answer to the question of which could be the elementary 

entities was first provided by Sakata5 who suggested that 

we consider p, n, A and their anti—particles as the elemen—

tary ones. This proposal, being one of many possible 

solutions, has the virtue that the least massive baryons are 

considered elementary.6 However, noting that p, n, and A 

have very nearly the same mass, we may think of them as 

forming the triplet representation of some symmetry group 

which has SU(2) as one of its subgroups. Apart from the 

phase group associated with the baryon number operator, 
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the only solution is the group SU(3). This is how Ikeda, 

Ogawa and Ohnuki7  suggested U(3) as a possible symmetry 

group for the strong interactions. 

Now E has a mass very nearly the same as of A, but there 

is no place for E in the 3-dimensional representation. 

This is not very nice, particularly when the ZA parity 

appears to be even. We shall see later that resonances do 

not fit properly in this model. We shall see also that this 

model forbids 

Thus the Sakata model of unitary symmetry has to be 

abandoned. 

Can we remedy the above defects within the context of 

the group U(3) or SU(3)? We have eight baryons and both 

1:7(3) and SU(3) have an 8-dimensional representation. How-

ever using strangeness as the Quantum number, we find that 

these will not fit into it. But if we abandon the baryon 

number and consider the hypercharge in place of strangeness, 

then eight baryons can be placed in the 8-dimensional repres-

entation. On the other hand, if we use the other rank 2 

groups like G2  and C2  (or B2), we do not have any 8-dimen-

sional representation to fit all the 8 baryons. 

Coleman8  and, independently, Speiser: and Tarski9  

analysed all the Lie groups which have an eight-dimensional 
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representation, which breaks up into isomultiplets so as 

to fit the 8 baryons. Clearly, if we want them to be in the 

same multiplet, the highest symmetry that we can think of 

is SU(8). The maximum symmetry existing in nature might 

corresponftto ;:ust a subgroup of it. The analysis of these 

authors is summarized in the following diagram. 

SU(8) 

SO(8) 	SU(2) (DSU(4) 

1 
SO(7) 	SU(3) 	SU 2)4F)Sp(2) 

I 
(SU(2 ) 

There are two ends of the chains pictured here, namely 

the groups SU(3) and (SU(2))3. The second one of these 

corresponds to the Global Symmetry,10 the predictions of 

which are not supported by experiment. Thus the only other 

choice to be tried is SU(3) which can give rise to an octet 

with correct isospin and hyperchange values. It is clear 

that in the above the analysis has not been restricted to 

rank 2 or even semi—simple Lie groups. In fact 

SU(2)(i)SU(2)CDSU(2) group of Global Symmetry is neither 

semi—simple nor of rank 2. It is also evident that the 



existence of a symmetry higher than au(3) necessarily demands 

the existence of SU(3) at least as a symmetry. We must, 

nevertheless, emphasize that the analysis is based on the 

demand that we want to have an octet representation to fit 

in all the 8 baryons in the same super—multiplet. This is 

only justified by the existence of 8 baryons of the same 

spatial properties. If the spin of E should turn out to be 

2, all this analysis would have to be abandoned. 
If we now consider the Yukawa type couplings between 

the baryons and the mesons, we shall have to look for the 

mesons in the decomposition of the direct product of two 

octets which breaks up into the representations 1, 8 , a 8s, 

10, 10 , 27. The known pseudo—scalar and the vector mesons 

have the quantum numbers which can fit into the 8 as well 

as the 27—dimensional representation, though the second 

possibility requires the existence of many more such states. 

Thus Neeman11 and Gell—Mann,
12 preferring the first choice, 

proposed the "8—fold way" wherein the baryons, the pseudo—

scalar and vector mesons, were all considered to form octets. 

The mathematics of U(3) and SU(3) can now be used to 

obtain the consequences of the Sakata as well as the Gell—Man 

Neeman models. This is the principal goal of our thesis. 

In Chapter I, we give as much of the mathematics of the 

groups U(n) and SU(n) as is necessary for our purpose. 
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The contents of this chapter appear in many texts on group 

theory.13 Our main purpose is to emphasize the points 

relevant to the physics we are to consider. 

In Chapter 2, we describe the Young tableau technique 

and reduce14 the direct products 8e 89  8 010, 8010, 
8C) 27 modifying the work of the Japanese group.7'15  The 

reduction of 808 has been carried out by Edmonds16 and 

also forms part of Tarjanne's Ph.D. thesis27  Recently 

Tarjanne and, independently, de Swart,18 obtained the 

reduction of the products 10 ®10, 106)1I), 10010, in 

addition to those carried out by the author. 

The third chapter is devoted to the consideration of 

the breakdown of the symmetry and, following Okubo,19  Diu 

and Ginibre,20 we generalize the mass formula to any order. 

In the fourth chapter, we follow the U—spin approach of 

Lipkin et al21  for the discussion of the electromagnetic 

interaction and obtain the results already arrived at by 

Cabibbo et a122  in a very simple fashion. 

In the concluding chapter, we review the present position 

of the octet model and compare it with schemes based on 

other rank 2 groups. 
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CHAPTER 1. 

The Groups U(n) and SU,Or"). 

i) Definitions. 

The group U(n) is the group of all the unitary  

(generally complex) transformations in a space of n dimen-

sion. These are described by n x n matrices M which satisfy 

MNit = 1 = MtM 	 ....(1.1) 

where M is the hermitean conjugate of M. As the matrix M 

has, in general, complex enterties, it can always be des-

cribed by 2n2 real numbers. The condition (1.1) is equiv-

alent to n2 conditions on these 2n2 real numbers. Thus a 

basis for the nxn unitary matrices could be constructed in 

terms of n2 nxn matrices. 

If we impose the further condWion 

det M = 1 	 ....(1.2) 
we obtain a unitary unimodular matrix which corresponds to 

a unitary unimodular transformation. The group of such 

matrices is denoted by SU(n). Since (1.2) is one additional 

restriction ((1.1) implies that the determinant of the matrix 

M has unit magnitude), the set of unitary unimodaarnxn 

matrices will have n2 - 1 matrices in its basis. 

In particular, the groups U(3) and SU(3),have 9 and 8 

elements in their basis. 



14. 

Considering infinitesimal transformations described by 

M = 1 + iaH 	 ....(1.3) 

( a a real infinitesimal) 	
is satisfied 

we see that the condition (1.1) ((1.2))/if, and only if, H 

is hermitean (traceless). An H satisfying condition (1.1) 

(conditions (1.1) and (1.2)) can then be expressed as a 

linear combination 

H= a .H. a. ....(1.4) 

2 // of n kkn2  - 1)) hermitean (hermitean and traceless) matrices 

H. with real coefficients a.. 

A particular set of such n2 nxn hermitean matrices 

can be taken to consist of 

1 Al 	In = 

A. = f 	0 0 

• -1 0 
0 ) 

(2 5 i < n) where -1 is in the ith position, 

A. . = 



B. . = ij 

15. 

(1 < i, j <n, i / j) 

where Aij  (Bij) has 1 (7 i) in the ij and ji positions. 

These n2 matrices form a particular basis for the 

nxn hermitean H in (1.4) and thus generate the infinitesimal 

algebra corresponding to the group U(n). The infinitesimal 

algebra which corresponds to the group SU(n) has a partic—

ular basis consisting of all the above matrices with the 

neglect of the identity which is, in fact, the only matrix 

which is not traceless. As shown in (1.4), the coefficients 

that appear in the expression of a hermitean (or hermitean 

traceless) in terms of these bases are all real. This 

result is actually evident from the fact that these bases 

consist of hermitean matrices. 

Another basis, which is called "canonical", consists 

of n2 realmatrioesAi.where 

(Ai.)
lm 
 = 6 jm 

i.e. Aij  has a unity in the position of ith row and jth 

column and zeros everythwere else. These matrices satisfy 

the commutation relations 
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[Ai j, Al m] = 6 lj  A
i
m  - 6. A

l 
j 	....(1.6) 

im  

It is evident that an nxn hermitean matrix H expressed 

in terms of the Ai. as 

H = ij  . Ai. 

will no longer have all the aij's as real. In fact the 

hermiticity requires 

a. • = a.. 
2.0 	OI 

Now the groups U(n) and SU(n) are Lie groups. Thus 

their structures are_related_locally to the structures of 

their Lie algebras, i.e. their infinitesimal parts. Again 

the commutation relations (1.6) are sufficient to allow a 

reconstruction of the Lie algebra associated with these 

groups. Finally we also note that these groups are compact, 

i.e. their elements vary over a finite range as follows 

from the unitarity of the matrices representing the trans- 

formations belonging to these groups. Thus by a famous 
13,23 

theorem of Weyl, all the finite-dimensional irreducible 

representations of these groups are equivalent to unitary 

representations. 

In fact, we only construct the finite-dimensional 

irreducible representations of the generators Aij  of the 

Lie algebras which satisfy the commutation relations (1.6) 

and there, by the usual techniques of exponentiation, we can 



construct the representations of the elements of the 

groups. Thus the problem of understanding the structures 

becomes very much simpler when we deal with the infinites—

imal generators of :the groups. The price we have to pay is 

however the fact that the determined structure is applicable 

only locally. The problem of global structure is also very 

interesting. We shall, nevertheless, not try to go any 

further on this point. 

ii) Irreducible Representations. 

In the last section we mentioned the fact that the 

groups U(n) and SU(n) are compact Lie groups, and as a 

consequence every finite—dimensional representation is 

equivalent to a unitary representation. 	In this section 

we shall enumerate the irreducible representations.13,23  

Let a = (aid) be any unitary nxn matrix operating on 

an n—dimensional vector space consisting of vectors u with 

components ui  (1< i < n) such that 

u
1 .  Ni uJ 

ij 

Then the nr quantities 

i2 	it 
uo- .• • . 

formed from r vectors 

1 < ik n) 
1 < k < r) 

 



transform as follows: 

1 8 . 

• 0 II 

i ' r u(r)  = a. • 
2-1°1 

j1 	jr 
... a 

rt'r 11(1) age 
u(r)  

....(1.10) 

Thus the product (1.9) of vectors transforms according to 

the direct product 

a x a x 	x a 	(r factors) 	....(1.11) 
- - 

If we consider a as an irreducible representation of U(n) 

with u as forming the corresponding basis vector, thenthe 

product (1.9) with components (1.8) acts as a tensor space  

for the operation of the direct product represention (1.11). 

We show below that this is, in general, a reducible repres-

entation of the group. For this purpose, we abbreviate the 

product in (1.8) as 

....(1.12) 

and take its transformation law under a to be 

j1 ,"jr = a. . 	... a. . u 
1'101 	3r r 	

....(1.13) 

In fact, any collection of nr  quantities of the type 

(1.12) which transform according to (1.13) is called an 

rth rank tensor under the considered group (here U(n) or 

SU(n)). 

To each permutation 

1 2 ... r 
P = 

(1'2' ...r' 
....(1. 1 4) 
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of the symmetric group Sr  on r symbols, we associate an 

operator E which acts on the subindices i1  i2 	it  of 

(1.12) and transforms them to i1'  i _2' • 	irI. Thus 

i1i2 	it 1' 	. rt E u 	= u 	....(1.15) 

As E operates on the subindices il ...ir, it transforms 

u and u' in (1.13) alike. Therefore applying (1.15) on 

both sides of (1.13), we obtain 

11,-. 1oesi ' 1 z 	r = a. . a. . 	... a. . 
1/ J 1  1202 	1 j r r 

j11.-jr' 

=a. ' 1 
. t 	0_ ai21e 

. 	

I 	

11—jr1 j, , ...a. . u 1 r-"r 

....(1.16) 

The last step follows from the fact that all the a..'s 3.0 

appearing in (1.16) commute. Thus we can rearrange them 

which is equivalent to applying the same permutation to 

both the first and the second indices. 

We may rewrite (1.16) as 

u' = E(axa ...xa)u =axax ...xaEu 

....(1.17) 

This shows that the permutation operator 2.  commutes with 

the group operations on the tensor space. This result is 

very important as it clearly indicates that tensors of a 

particular symmetry type remain tensor of the same symmetry 

type under operations of the group. The space of the 
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tensors is, therefore, reducible into subspaces consisting 

of tensors of different symmetry types. This result, 

evidently, holds for any proper or improper subgroup of the 

group of linear transformations in n-dimensional space. 

These symmetry types are associated with Young's tableau 

which consist of a number of squares arranged in rows, each 

starting from the same vertical line such that the number 

of squares in the ith line is not less than the ones in 

the i+lst line. When we are considering any subgroup of 

linear transformation in n dimension, it is evident that 

the number of rows could be at most n. This is because each 

index can take only n values, and therefore a tensor which 

is anti-symmetric in more than n indices is identically 

zero. However, a diagJam with more than n rows corresponds 

to a tensor with asymetry in more than n of its indices. 

Again the total number of squares in any diagram is equal 

to the rank of the tensor, i.e. the number of indices it has 

been constructed from. 

Up till now, our discussion was confined to apply to 

any proper or improper subgroup of the group of linear 

transformations in n dimensions and we say that r-rank 

tensors of different symmetry types are associated with 

different Young's tableau consisting of r squares. These 

tensors reduce the full tensor space. 
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For the full linear group, this is the only operation 

for reduction of the tensor space, and so,to each Young's 

tableau there corresponds an irreducible tensor. We now 

show that these tensors are irreducible even when we restrict 

to the subgroups U(n) and SU(n) of the full linear group 

GL(n) in n dimensions. We first consider SL(n). Any matrix 

of GL(n) can be written as a = ab where det b = 1 by 

setting a = (det a)2. Thus, to each matrix a of GL(n), 

there corresponds a matrix b of SL(n). For reducibility 

under SL(n), some of the polynomials which are homogeneous 

in the elements of the matrix b must vanish. From a = a b 

these very polynomials will vanish for the elements of the 

matrix a which belongs to GL(n). Thus reducibility under 

SL(n) implies reducibility under GL(n) also. In other words,, 

a representation irreducible under GL(n) remains so when we 

go over to the subgroup SL(n). To prove the result for U(n) 

and SU(n), we look at the infinitesimal generators. In 

equation (1.4) we expressed a generator of U(n) as a linear 

combination, with real coefficients, of n2 hermitean matrices. 

Reducibility under U(n) will lead to some homogeneous poly—

nomials in these coefficients vanish for arbitrary real values 

of the arguments. These very polynomials will therefore 

also vanish for complex values of these coefficients. 

Considering complex coefficients in (1.4) describes the full 



22. 

group GL(n). Thus reducibility under U(n) implies reduci-

bility under GL(n). The argument for SU(n) is now essen-

tially the same as given before for SL(n). 

Thus we have seen that to each Young's tableau corres-

ponds an irreducible tensor under the group U(n) or SU(n). 

However, for the group SU(n), all these tensors are not 

independent. This is clear from the fact that the matrix 

of transformation of an n-rank tensor which corresponds to 

the Young's tableau [ln] 

is just the determinant of the matrix a. For SU(n), 

det a = 1. Thus the representation matrices of two irred- 

ucible tensors which differ in their Young's tableau by 

the addition of some n-square columns only, are the same. 

These tensor spaces are therefore equivalent. 

We can summarize above conclusions as follows: 

The irreducible representations of the groups U(n) 

and SU(n) are given by n integers 

	

f1 + f2 + 	+ fn = r 

	

and f1 f2  > 	> fn > 0 

f1  ,f2, ...9fn  where 

(r = 0,1,2 • 0 • ) 

....(1.18) 
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The representations.: connected by 

f. = f 	+ e 	 ....(1.19) 

where 'el is some integer independent of the subindex til 9 

have their representation matrices the same except for a 

factor (det a)e  in the case of U(n). 

By means of (1.19), we can, for the irreducible 

representations of SU(n), just forget about the columns 

containing n squares. Thus we can replace the set of 

numbers 

(f1 9  .." fn)  

characterizing any irreducible representation of SU(n) by 

(f1-fivf2-fn,  ...9fni-fn) 
	 ..,.(1.20) 

The corresponding diagram will now consist of n-1 rows only. 

iii) The Contragradient Representation. 

As multiplications of matrices is preserved by complete: 

conjugation, if some matrices form a representation of some 

group, so will the complex conjugates of these matrices. 

These two representations are called contragradient to each 

other. We took the vector with components ui  to form a 

basis for the representation matrices a. Thus we had the 

equation 
1i 

u 	= aij ui 
(1,7) 
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We define the space for operation of the contragradient 

representation to consist of vectors with components ui. 

Thus 

Then 

u 	= a.. u. 
13 

t- 
u .11.,  a. . a. u. uk 10 ik 

....(1.21) 

....(1.22) 

If the matrices a are a representation of the group 

U(n) (or SU(n)), they must be unitary. In other words, 

a: ik a = ij 	8jk 

with the help of which (1.22) becomes 

ti 
u 	u 	u. uj 1 ....(1.23) 

Thus we have obtained an invariant tensor in the space of 

the product of a _contragradient and a cogradient vector. 

In general, if we have a certain number of upper and lower 

indices in a tensor of a certain rank, by "contracting" a 

number k of upper indces with the same number of lower 

indices, we shall obtain a tensor with its rank reduced by 

2k. This result is well-known in relation to the various 

orthogonal groups, where there is no distinction between 

contravariant and covariant indices. The tensor obtained 

by contraction is called a trace. 

Finally we consider the transformation law of a com-

pletely anti-symmetric n-1. rank tensor, i.e. the one which 



corresponds to the Young's,  tableau 
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(n-1 squares) 

It has only n independent components. These can be con-

structed as 

r 1 2 	i-1 
U1  . = LU 	U 

ui  , • • Lkn  ....(1.24) 

where the square bracket signifies that we have to construct 

the completely anti-symmetric combination in the indices. 

Its transformation matrix is found to have as its elements 

just the cofactors of the matrix a which transforms each 

one of the u1. 

Thus 
u .= (a-1)ji  (det a) uj 	....(1.25) 

As a( U(n) or SU(n) 

a-1 
= at 	 ....(1.26) 

• • u i = aij  (det a) uj 	;:..(1.21') 

Thus relative to the group U(n), the completely asymmetric 

n-1 rank tensor is eauival.ent to the contragradient vector 

except for the fact that the transforming matrices are 

multiplied by the determinants. For SU(n), it is clear 

from (1.21') that we have found another equivalence. In 
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terms of the Young's tableau 

(111-1)E (1)*  

In fact, this result can be generalized by 

* 
(f1  ,f2, 	,fn-1 ,fn) 	(f1-fn'fl fn-1' —",f1-f2)  

....(1.28) 

So far we have been considering every irreducible 

representation to be given by a set of +ve integers which 

are then directly associated with a Young's tableau. 

However, in (1.21') we have seen that the contragradient 

representation at  is not completqr equivalent to the one 

obtained by completely anti-symmetrizing the tensor space 

in n-1 indices. To make them completely equivalent, we have 

just to apply the transformation 

f. 	f. 	1 

This transformation will remove (det a) from equation (1.21') 

with the consequence 

(1,0,0,...,0) E a*  E (1n-1)f  f. 	= (0,0,...,09-1) 
i -1 

....(1.27') 

The general result (1.2a) gets modified in the case of U(n) 

as 

(-f n,-f n-1 ,...,-f l ) 	....(1.281) 

....(1.27) 
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As the operation fi 	+ e leads to equivalent 

representations for SU(n), we may adopt the equation (1.26') 

as defining the irreducible representation contragradient 

to any representation in both these groups. Evidently, 

some of the integers may now be negative. However, since 

f > f > f 1 	2 	3 '• 

we necessarily have 

fn'- fn-1 >- • • • 	fi  

Now we shall have the same tableau associated with 

many irreducible representations of U(n) (these are equi-

valent from the point of view of the SU(n)) wherein we shall 

have the understanding of adjoining a certain number of 

(possibly -ve) columns, each containing n squares, to arrive 

at the correct representation matrices. Thus if we started 

from the representation 

(1'1 

where 
	

fl 11.2 • • ?- fn 	°St 

the corresponding contragradient representation 

(-f -f n9  

with 
	

° 	fn 	fn-1 ° 	fl 

will have its associated Young's tableau as 
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with the understanding that in the end we shall adjoin 

f1 columns, each containing n squares, to obtain the 

correct representation matrices. 

iv) Specialization to the Groups U(3) and SU(3). 

We state below the results arrived at in the last 

section as applied to the groups U(3) and SU(3): 

The irreducible representations of these groups are 

characterized by sets of three integers (f1 ,f2,f3) such 

that f1  > f2  > f3' To each one of these corresponds a 

Young's diagram with f1-pe,f2te,flte squares in the first, 

second and third rows respectively, such that f
3
+e > 0 with 

the understanding that, to obtain the correct representation 

matrices, we shall further assume — e columns of 3 squares 

each to be adjoined to the diagram. The representation 

contragradient to (fvf2,f3) is given by (—f3,—f2,—f1). The 

f's that are positive (negative) correspond to the contra—

gradient (cogradient) indices in the corresponding tensor 

space. 

v) Dimension of an irreducible Representation of U(3) or  

SU(3). 

To obtain the dimension of the irreducible represent—

ation (ff2'f3)  we first subtract f2 from each one of the 
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three fi  to obtain another representation (f1 —f2,0,—f2+f3). 

These two have the same dimension,. Now f1 —f2 = p.> 0, while 

f
2
+f
3 
	v >0. The corresponding tensor, therefore, has 

11  upper and v  lower indices, and is completely symmetric 

in all the upper as well f':s the lower indices. As we are 

Working in dimension 3, each of the indices can take only 

3 different values. Thus the number of independent compon—

ents in such a tensor will be 

(11+2) (1+1 ) (v+2) (v +1 ) 	....(1.2?) 
2 . 2 

Vie note now that symmetrizing the upper and lower 

indices does not necessarily result in an irreducible tensor 

with respect to U(n) or SU(n). We ought now to remove the 

traces. This can be done by considering 

( 11+1 ) (v +1 )v 	 ....(1.3 ) 
4 

of the components in (1.29) to be identically zero. 

Thus 

d(f1 ,f2,f3) = d(f1-f290,-f2+f3) = d(11,0,-i) 

(11+1)(v+1)  (4+2) (v +2) —µv] 
4 

(114.1)(%) +1)(1 -1-v+2)  

2 

Clearly this method is not applicable to U(n) or SU(n) 

with n more than 3, as in such cases we cannot, in general, 
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replace the representation (f1 ,f2,...„fn) by (µ,0,01...9-v). 

However, wherever such a replacement is possible, the above 

procedure will be applicable. 

vi) The Branching Law. 

In this section we give a general method of decomposing 

an irreducible representation of SU(n) (or U(n)) relative 

to one of its subgroup SU(n-1) (or U(n-1)). This is clear 

that an irreducible representation of SU(n) will, in general, 

be reducible under any one of its subgroups. Also we note 

that SU(n) has many subgroups SU(n-1) and we choose one of 

these such that its matrices only operate on the first n-1 

indices. For this purpose, we first see how we can write 

the linearly independent components for an irreducible tensor 

which corresponds to the tableau (f1 ,f2,..,fn). The tech-

nique is evident. We try to fill - the squares of the 

tableau by the integers 1,2,....n to form "standard" 

patterns such that 

(i) no integer is repeated in the same column, 

(ii) the integers in the same row or column are in a non-

decreasing order. 

The number of such standard patterns is clearly the dimension 

of the irreducible representation, as one and only one 

independent component of the tensor corresponds to each one 

of these patterns. 



31. 

On account of the above restrictions, it is evident 

that the integer 'n' can only appear in the 'overhung' 

squares crossed in the following diagram. 

The set of independent components of the tensor which 

correspond to the standard patterns with some of these over—

hung squares contairing the integer n form a basis for 

an irreducible representation of SU(n-1). For the corres—

ponding tableau, we may, in addition, remove these squares 

altogether. Finally, by using the cqaivalence of the 

representations corresponding to the tableau differing by 

the addition of some complete columns, we arrive at the 

following branching law: 
1 	1 

Each set of integers (f1  sf2, ... , fn.r.1, ) such that 

1 
f > f >f >f 	> f n 1 	1 	2 	2 •s° 	—1 	fn 	.••.(1.32) 

corresponds to an irreducible representation of gU(n-1) 

contained in the irreducible representation (fl ,...,fn) of 

SU(n). These sets complete the decomposition. 

We also conclude that 

t 

d(f1 ,f2,•••,fn) =E d(fvf2,•••,fn..1) ....(1.33) 
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, 

where the summation is over all the sets (f t f1 2"..fn-1)  

in equation (1.32). 

Now clearly the diagram (f90) has dimension f+1 when 

considered as describing an irreducible representation of 

SU(2). It follows from equivalence that 

d(f1lf2) = d(f1-42,0) = f1-f2+1 
	1 .34 ) 

From (1.33) now 

f
E
1 	f2 1 

d(f1 ,f2,f3) = ft=f 	(fi 	f2  + 1) 
1 2 2=f3 

= 2(f1-f24-1)(f2-f3+.1)(f1-f3+2)  

This remains the same when the transformation 

....(1.311 ) 

f. 	f.1  + e a.  
is applied to it. 

Equation (1.31) is reproduced on writing 

f1 	f2 = µ 
....(1.35) 

f2 - f3 
_v 

vii) Eigenstates and eigenvalues for any irreducible  

representation. 

In this section we elaborate the connection of the 

groups U(3) and SU(3) to strong interaction physics. We 

use the familiar technique of considering the infinitesimal 
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generators of these groups to be operators with some 

physical significance. Firstly we note the fact that 

the group U(3) (SU(3)) is of rank 3 (2). Thus we can  

construct only three (two) inde.2endent and mutually commuting 

linear operators from the infinitesimal generators. These 

operators can, therefore, be simultaneously diagonalized in 

any representation. Again we know two operators, namely 

the strangeness and a component of the isotopic spin 

operator which commute with each other. Thus we can choose 

two of the diagonal elements to be S and 13. The choice 

of 13 is purely conventional and just fixes the direction 

of quantization of the isotopic spin. The other components 

of isotopic spin do in fact commute with S but not with 13. 

Thus they cannot be simultaneously diagonalized with 13. 

Now a basic distinction between theories based on U(3) 

and SU(3) will arise out of the existence of another 

operator in U(3) which commutes with both S and I3. This 

is the identity operator and must therefore be associated 

with a quantum number which is to be shared equally by all 

the members of a supermultiplet. We could take it to be 

the baryon number as any super—multiplet resulting from 

strong interactions cannot consist of members with different 

baryon numbers. Thus the baryon number arises naturally in 

U(3) theories while it is to be imposed from the outside on 

SU(3) theories. 
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There is a difficulty which arises in the classification 

of eigenstates in a representation with only S and 13  as 

diagonal. In some representations, more than one state.' 

will have the same 1
3 

and S eigenvalues. This incomplete 

classification is the result of the fact that the group 

SU(3) is of rank 2 and has 8 generators. In fact we need 

2(8  - 3 x 2), i.e. one more operator which commutes with 

S and 1
3 

but does not commute with all the generators of 

the group. For otherwise, by Schur's Lemma, 	it will be 

a multiple of the identity in every representation and will 

not help us to distinguish some of the eigenvectors within 

a representation (such operators are called Casimir operators 

and their eigenvalues can be used to characterize various 

irreducible representations). 	As the group has rank 2, 

we cannot have any other linear operator commuting with 

both S and 13. Thus we must consider a   operator. 

Fortunately we have III2 which commutes with 13 
and S and 

we can see from the commutation relations (next chapter) 

that it odes not commute with all the infinitesimal gener-

ators. Thus a complete classification of eigenvectors can 

be obtained by specifying for each eigenvector the corres-

ponding I,13,Y eigenvalues. As said earlier, each repres-

entation will now be diagonal in these three operators. 

The above-Toned problem is even worse in G2  and C2  

which have 14 and 10 generators respectively and therefore 
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we shall require 4 and 2 such - nun—linear operators for 

complete classification of the eigenstates in the bases 

for the irreducible representations of these groups. In 

passing we also state that in SU(2), there is no such 

problem, as it is of rank '1' and has three generators. 

This is why eigenvalues of only one operator 13  are sufficient 

to distinguish various eigenvectors. 

Now we determine the various (I,S) multiplets in the 

basis of an irreducible representation (f1 ,f2,f3) of U(3) 

or SU(3). We have already seen that an irreducible repres— 

entation of U(3) or Su(3) can be decomposed relative to one 

of the SU(2) subgroups these contain. This SU(2) subgroup 

we take as the isotopic spin group. By the technique we 

gave before, the subspaces have dimensions given by 	1 1  
f —f 

f1 	f2 + 1 which corresponds to the I—spin value of 
	1 2 • 

2 
Ta determine the corresponding eigenvalue of the S operator, 

we have to define a basis vector for the 3—dimensional 

representation (1,0,0). By the branching law, it contains 

a doublet and a singlet and our decomposition was such that 

1 and 2 components form the doublet and the third component 

is a singlet. 

Thus we take 

....(1 .3Ea) 
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/0 1 0.  

I+ = 0 0 0 

k0 0 01  
0 0 0 

and I 	= 0 ....(1.36a) 
0 0 0 

The strangeness operator in this representation must be 

diagonal and not just a multiple of the identity matrix. 

Further,: its value for the indices 1 and 2 must be equal. 

It is therefore of the 'form 

( a a 

	
\ 

bl 
i e 0 0 

which is aI + (b—a) 0 0 0 

0 0 

As the fixation of the scale as well as the starting point 

is arbitrary, we can take it to be 

O 0 O '  
O 0 0 

O 0 —1/ 

....(1.36 1) 

 

Again the particles p, n and A satisfy all the above 

conditions.• i.e. they have the correct values of the iso—

topic spin, its third component, and the strangeness. We 

have therefore obtained the Sakata model wherein n:- form 
A, 

a basis for the 3—dimensional representation of the group 

U(3). 



....(1.36e) 

(13\  
ni where 
Al 

37. 

The matrix in (1.36d) is not traceless and is therefore 

not an SU(3) generator. The corresponding traceless operator 

is 
1 0 o\ 

7 0 1 o 
o 0 -2/ 

S for the basis 

1 0 0 
O 1 0) 
O 0 1 

1 This is 
3
—N + 

N = 

Now the Young's tableau corresponding to the irreducible 

representation (f1lf2,f3) has f1+f2+f3  squares. In the 

branching into representations of SU(2), corresponding to 
1 	I 

(fl ,f2), we have (f1+f2+f3) 	(fl+f2) overhung squares, each 

containing the index 3. All the (f1+f2+f3) squares contri— 

bute 	to the operator N (equation (1.36f)) and each of 

the(f1+f2+f3) 	(f1+f2) squares containing index 3 contri—

butes —1 to the operator S (equation (1.35d)). Thus the 

eigenvalues n and s of the operators N and_S are given by 

n = f1 + f2 + f3 	....(1.36f') 

I 	I 
s  = f1 	f2 	(f144.24.f3) 	....(1.36dt) 

For completeness, we also quote here 
f1 f2  ....(1.36g') 

 

2 
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The operator 
3
—N + S in equation (1.36e) has the eigenvalues 1 

f1 	+ f
1
2 — -(f1  +f2  +f3  ) 
	.... (1.36el)  

This combination of N and S is evidently invariant under 

the transformations 

f. 	f. + e 

f! + e 

though N and S separately are not. Thus from the point of 

view of the SU(3) as a symmetry group, the operator (1.36') 

should replace the S in (1.36d1). In addition, as the 

identity matrix is not a generator of SU(3), this group 

does not directly include the nucleon number operator. 

We have seen before that the irredUcible representations 

of the groups U(3) and SU(3) are the same. Thus if we agree 

to consider SU(3) supermultiplets to contain members with 

different baryon numbers, the consequences of schemes 

based on these two groups will be identical. This point 

was first emphasized by Okubo. 
19 

We may however forget about the baryon number and 

consider the operator (1.36e) which arises quite naturally 

in SU(3). It is clear from (1.36e') that its eigenvalues 

will not all be integers in any irreducible representation. 

If, however, this is to be considered as strangeness or 

hypercharge operator, its eigenvalues must necessarily be 
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'4 
24 

integral. 	This will restrict us to only those represen— 

tations for which f1  + f2  + f3  = 0(mod 3). Indeed using 
1 

the equivalence of the representations connected by f = 

fi  + e, we may replace this condition by fi  + f2  + f3  = 0. 

In such a case, we are not considering the full group, but 
SU(3)/ 

rather its quotient group 	/0(3). 

The Gell—Mann—Neeman model, where this condition is 

implicit, is based on this quotient group. In particular, 

the three dimensional representation does not exist in 

this model (f1  + f2  + f3  = 1 + 0 + 0 V 0(mod 3)). The 

least—dimensional non—trivial representation is (1,0,-1) of 

dimension 8, which we shall see can fit the baryons as well 

as the pseudoscalar and vector mesons. 
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CHAPT12 2. 

Reduction of the Direct Product  

of Irreducible Representations. 

(i) The Clebsch—Gordun Series. 

We have already considered the decomposition of an 

irreducible representation of the groups U(3) and SU(3) 

relative tAto the isotopic spin subgroup and we were able 

to give the (i,$) value of the various isotopic sub—

multiples. Next we consider the direct product of two 

irreducible representations. Evidently this product is a 

representation, though,in general, reducible. The problem 

of reduction of a direct product of two irreducible repres—

entations has already been solved for all semi—simple groups 

and the graphical procedure is beautifully explained in 

the review article by Behreiads, Dreitlein, Fronsdal and Lee.
25 

For U(3) and SU(3), however, the Young's tableau technique 

is much simpler. We have seen that, for these groups, each 

Young's tableau corresponds to an irreducible representation. 

Thus each tableau in the product of the tableau for two 

irreducible representations will correspond to an irreducible 

representation contained in the direct product. For the 

multiplication of two tableau, we first of all forget about 

the complete columns containing three squares each in one 

of the diagrams and fill in the squares in the remaining 



41. 

skeleton a's and P's in the first and second rows respec—

tively. Next we adjoin these squares containing a's and 

Ps, in this order, to the other diagram in a manner such 

that 

(i) the final diagram has < 3 rows, 

(ii) when we finish adjoining squares containing a's (p's), 

it is a Young's tableau, 

(iii) the adjoined a's and Ots when read from the right, 

exhausting the first row first, and then the second, 

etc., form a lattice order, i.e. at each stage in this 

order, the number of a's is not less than the number 

of P's. 

Corresponding to each of the manners that satisfies the 

above three conditions, there is a Young's tableau and 

consequently corresponding irreducible representation in the 

product. Complete columns can just be added at the end and 

due consideration also given to the —ve integers appearing 

in the characterization of some of the irreducible represen—

tations. 

It must of course be noted that we are actually trying 

to consider the product of two simple characters and to 

express this product as a linear sum of simple characters. 

The problem can therefore also be solved by means of 

characters. The diagrammatic procedure is rather easy to 

work with. 
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Thus we may write 

D(f1
1 	1 	 11 	11 	11 ,f 2 ,f 3) (50 D(f l ,f 2 ,f 3) = E v 	p(f1 ,f22f3) 

c 	filf29f3 

....(2.1) 
where the direct sum on the right in equation (.1) consists 

of representations which occur in the reduction of the 
product on the left and of 4f is the multiplicity of 

1 -2' 3 
occurrence of such a representation. 

The series on the right in the above equation is called 

the Clebsch—Gordan series. 

(ii) The Clebsch—Gord!An coefficients. 

The basis vectors for any representation (f 1 ,f 2 ,f 3) 
with 1113,3 diagonal are of the form 

l ( fvf27f3) 

which we shall abbreviate as 

I 	
i21.39 s> 	 11  2) 

In the space of the product of the two representations 
-I 	T 	it 	it 	it (f1 ;f 2 ,f3) and (f1 ,f 2 ,f 3) we may choose basis vectors as 

the direct products 

1 	1 	.1 	t 	tT 	11 	1T 	11, If ; i„i3,s >I f.;i 1i3 s ....(2.3) 

To obtain the basis wherein the matrices of the direct 
product representation reduce according to the decomposition 

(2.1), we shall have to operate upon the bases in (2.3) by 
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a unitary transformation. This expresses the basis vectors 

I a; 
as linear combinations of the vectors in equation (2.3) in 

the form 

jf
a 

i1i3 
1 	1 	1 	1 	11 	11 	. 	11 

EC(fa; ii39slf ; i i3  s 99  f 9i 9I3,s ) 

. 	I - 114 ii 3,s " If ; I 91,
3t
s >lf;Iii3ls ,> ....(2.4) 

where the summation on the right is over all the dummy 
. 1 	. 	I 

variables 2 ,I3,s 	11.3,s and the index a is for the 

enumeration of equivalent representations. For a particular 

f this takes the values 1, 2, 	vf  where vf  is the 

multiplicity of the representation((f1 ,f2,f3) appearing in 

equation (2.1). 

From equation (2.4) we however see that 

S = s 	s 	 ••••(205a) 

i3 = i
3 
 + i

3 	

1(221::) and 	i 	6(i
II, 

 ) 	 ••• 

(i 	• 	
It 

where 6 	71 ) stands for any one of i + i 	+ i 	1, 
I • 

I 	i I . 

Thus we may write 

t 	.1 
C(fa; i,i3 ,s If ; I . 1 	I 

11 9s ;; 
91 .n .11 n 

f 	I 9I3,s ) 

6. . s .11 8 1 n 
5i,8-(i

1
i
n
) 1

3
1
3
+1
3 	

s s +s 
X 

, 	1 	. t 	1 	1 	 n 
01(fa 9 - i9i37 slf;1 113,s ;;f;1 2131s ) 
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The coefficients C in this equation are the Clebsch-

Gardan coefficients for the groups U(3) or 5[1(3). 

We can obtain the vectors If
a 
 0.0.39s> in two steps. 

First of all we select any pair of multiplets (f 
t 

;i 
t

t s ) 
11 	11 	11 

(f 0. ,s ) such that 

1 	11 
S = s + s 	 ....(2.5a) 

I 	11 i = A(i 	) 	 ....(2.5c) 

and construct from the (2i 1  + 1)(2i
11  
 + 1) basis vectors in 

their products a vector which corresponds to the correct i 

and i3 we reqftire. The coefficients in this linear combi-

nation are the ordinary SU(2) Clebsch-Gordan coefficients 

and are independent of the irreducible representations of 

SU(3) to which (i ,s1) and (i
n 
 7s

11 
 ) belong and also of the 

t 
s 7s .  values. To signify this independence, we do not write 

I 	11 	t 	11 
f„f ,s ,s in the coefficients in the following cciaation: 

11 	.11 	11 
If ;i Is ;;f 71 ,s ;1,13,s >  

. 	it 	1, 

C(i,j. 	IIt 13 9 	9 3 ) 1.: 1t  

3 	3+I  3 
1 	t 	1 	1 

X if ;i 9 i3/ 	> 
11 .n . n 11 
f 	9139s > ....(2.7) 

We can construct as many vectors of the type appearing 

on the left of this equation as there are ways of choosing 
II 	11 	11 

pairs of multiplets (f 	9s )9  (f ;i 9s ) which satisfy 

equations (2.5a) and (2.5c), the number being again equal 
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to the number of representations (taking into consideration 

multiplicities also) on the right in equation (2.1) which 

contain this (i,$) multiplet. 

Now to obtain if a9 7 i39 s> we have to express it as a 

linear combination of the vectors on the left in equation 

(2.7). Thus we may write 

a 7  
I 	.1 	. 1 	It 	. 11 	n 

= Z C(fa;i9i39s I  f ;1 913;;f 91 9 s ) 

.1 	1 	II 	It 	It .  
X If p. ,s ;;f 	,s ;i9 139s, 

The coefficients that appear in this equation are 

independent of i3  as can be seen by operating with 

operators, and are therefore known as the "isoscalar 

factors".
26

In future we rewrite them without the i3  and 

the C in the front. Combining this equation with the 

previous one, we arrive at 

I f 	i s> a, 2 39 

I 	I 	I 	II 	II 	It 
= Z(fa;ils If ;i Is rif ;1 9s ) X 

I 	. 1 	.11 . 11 	I 	. 	. 	11 .11 . 11 	11 . 

	

C(i,i3 	0-3;1 0.3)If p. 913,S >lf ;1 ,13IS > 

0000( 2 09) 

where the summation is over all the primed and double 

primed indices restricted by the equations (2.5). If we 

take into consideration the property (2.6), then we may 
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extend the summation to all the values of these variables. 

We also define 
t 	1 	t 	it 	It 	II 

(fa0.9 s If ;i ,s ;;f ;i ,s ) = 0 	
....(2.10) 

unless fa  is included in the decomposition of the direct 
t 

product f (,=.)f
u 
 when its value is determined from the above 

equation. 

Remarks. 

(i) In the reduction of the direct product, we have 

considered the eigenvectors to have an additional index 

which is the result of the fact that some representations 

occur more than once in the reduction. From the point of 

view of the group, these representations are equivalent and 

there is nothing within the group with the help of which 

we can distinguish these. For the cases that we shall 

consider, we will see that the R—operation of Gell—Mann, 

which does not belong to the group, is sufficient to distin—

guish the multiply—occurring representations (the multiplicity 

in the cases we consider is ftt Most 

(ii) The matrix of transformation from the basis in the 

product space which diagonalizes the eigenvalues of the 

individual state vectors to the one that diagonalizes the 

total I, 13  and S becomes unitary on normalization of the 

basis vectors. We may, however, make it real orthogonal by 

a special choice of phases, which in turn makes all the 
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isoscalar coefficients real if we take all the SU(2) 

coefficients real. 

(iii) That we have essentially done in equation (2.9) is 

to factorize the Clebsch—Gordsin coefficients as a product 

of two — one of which is an ordinary SU(2) coefficient with 

the help of which we combine two isotopic spins, and the 

other which we called the isoscalar factors. This factor—

ization is very useful for the purpose of tabulation, for 

it allows us to give a very small number of such coefficients. 

The SU(2) coefficients are already tabillated. The isoscalar 

coefficients multiply these to give the Clebsch—Gordan 

coefficients for the groups U(3) and su(3). 

Ladder Operators. 

In section 2(vii) we obtained the eigenvalues of the 

operators N (= 0 in the Gell—Mann—Neoman model) and S for 

the basis vectors belonging to any irreducible representation 

of these groups. These results are sufficient to give all 

their matrix elements as the operators are diagonal in any 

representation. The matrix elements_ for the operators IItI3 

of the subgroup SU(2) can be read off from the angular 
27 

momentum theory as for example we know 

li,i3  > 	4(iTi3)(iti3+1) 	
....(2.11) 

13 li,i3  > 
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In our context we may rewrite these as 

I Ifo.pi3's >= 4(i7i3)(i±i3+1) 	> 

13 9 i39 s >. I3 1f0.4.30› 

Thus if we know the highest member of any sub—multiplet, 

by repeated application of the operator 	we shall be able 

to complete the submultiplet. To complete the multiplet, 

we must determine some other operator (operators) which 

takes (take) one from one submultiplet to another. 

For this purpose, we first of all write the commutation 

relations. These can be obtained:in particular from the 

three—dimensional representation. In equation (1.6) we had 

the commutation relation 

[Aij, Alm] = 	6.  A1j  im 

for the nine matrices A1j such that 

(Ali)lm = iljm 

....(1.6) 

i.e. A1j has a unity in the position of the ith row and jth 

column. These nine matrices form the generators of the 

group U(3). To obtain the generators for the group SU(3), 

we have just to make the three diagonal ones traceless 

which will leave only two of these as linearly independent. 

These can be taken to be 



....(2.13) S S 

—2 

where 

49. 

I
3 
 = 	

—1 	I 
11 	= 	— A22) 

° 

....(2.12) 

	

\ 	, 
N= /1 1 	

% 
and S = ( ° I 	0 

1 ; 

The off—diagonal generators are 

....(2.14) 

= + 

/0 0 0 A21  = 1 0 0 
\O 0 0 

and A23,  A32,  A13,  A31. Operating then on the basis 

for the 3—dimensional representation, we can see 

that 

A2 	= 1°'  etc. 
3 n 	A 

A23, thus, increases Cdecreases) the strangeness (13) by 
1 (i). The result is true whether we take S or S' as the 
strangeness and holds for all representations as is clear 

from the operation by both sides of the commitationrelations 

Al  = 2 
/0 1 0 

0 0 
0 0 0/ 



A2
3A1 - 2 Al 3(I3 

A32A
2
1 

A1
3
A2

1 

+ A31A12 
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[A2
3'S]. [A23, A33] 

	A2 

") [A23,13 ] = i[A'3 ,A1  1 , - 	= 4,A23  

on an eigenstate 

if;i,i3,s› 

of I,13 ,S with the corresponding eigenvalues i ,i3,s which 

leads to 

(s+1)A231f0.0.3,s> 

(i -i)A2  if.i 	s 3  	3  9 9 39-> 

S A23 9 i3 9 s > = If--i f-"  

. 
I A23 ".3' s> = 3  

By the same method, we can see that all the 
1 A 3' A23, A

3
1' A

3
2 change  s (i3

) by 1 (i). 

will be presented in table I. 

....(2.16a) 

....i2.16b) 

four operators 
The details 

[ A13,12]  = 

C A31  ,12] = 

E A23 	= 

C A32,12] 

....(2.17) 

....(2.18a) 

....(2.18b) 

....(2.18c) 

Again 
12 	_I+  ) + 123 

= i(A12A2 + A2  1 A.1  ) 2  + 4 1. (A1 1  - 

Thus from (1.6) 

A22)
2 
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Operating both sides of the equation (.2.18c) on the 

eigenstate 

I f;i,i3  = —i,s> 

and noting that A21  is I and 

I_If;i,i3  = —i,s> = 0 

we obtain 

2 
-r22.1
. 
 3 ' 3 

= —i,s >. (ifi+1)+i+)A23 1f;i3  = —i,s> 

(i-i2)(i+4)A231f;ili3  = —i,s> 

....(2.19) 

Combining this with (3.16b), we see that the operator 

A23 increases i by i when applied to the lowest member of 

an isotopic multiplot • (i3  = i) in any irreducible 

representation. The operator A31  has exactly the same 

effect. However A13' A3  2 increase i by 2  when applied to 

the highest member of a aubmultiplet (:i3  = i). 

Finally 

[A
l2,3 ] = [Al2,I2] = [A21 ,S ] = [A21,12] = 0 ...(s.20) 

we summarize the above results in the following 

table: 
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Table I. 

Effect of the operators on I, I3, S eigenvectors. 

Operator A i3 L, s New i 

N = EAii 

I3  =  A11--A2  2 
S = — A3

3 
1 	1 S 	- - - 3N+S 

0 

0 

0 

0 

0 

0 

0 

0 

i 

i 

i 

i 

I+ . Al2 
I 	= A21  

1 

—1 

0 

0 i  

i 

Al 3 
A31 '''.21  

1 

-..1 

i. + -1-- at i = i3 2 

i + i at i = — i3 

A23 
A32 

.---'1  

.1 
2 

1 

—1 

i + 2  at i = — i3 
i + -.';- at i = i3 

We now describe the method of the construction of the 

hikhest' member of the supermultiplet (f1 ,f2,f3), i.e. the 

one that has the highest i3  amongst those which have the 

(

highest s value. In 1131.  , the highest is p, then comes n 

and then A . Thus we A  must obtain this highest member 

by putting in as many of the p's as is possible, then as 
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many n's as are consistent with the symmetry of the 

representation, and take the remaining 	as A's. 

Evidently we can take at most f1  p's, and, having made this 

choice, at most f2  n's and the remaining f3  A's. These, 

when arranged in accordance with the symmetry of the 

corresponding Young's tableau, give the highest eigenvector. 

This state then has 

(i3)0 = 	f2)  

and 	(s)0  = 3 

We see from equation (1.28d) and 

f >f >f >f >f 1 	1 	2 — 2 	3 

....(2.21a) 

....(2.21b) 

....(2.22) 

that (s)0  = — f3  is indeed the highest strangeness in the 

supermultiplet, the corresponding i being f1  2  f 2  which 

shows that the (i3)0  given above is definitely the highest 

1
3 

eigenvalue of the submultiplet .which has -the highest s. 

From equations (2.21 a,b) it is also evident that the 

highest eigenvector can be uniquely fixed for each repres—

entation by knowing only the eigenvalues of the diagonal  

generators. 

We now want to use the above table to obtain all the 

eigenvectors. To do it, we shall first of all use 

A21 = 	repeatedly to complete this very isotopic multi—

plet. We must now know an operator which .will enable us 
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to jump to other aubmultiplets. From table I9  it is 

clear that we must use A32 which increases the isotopic 

spin by i and decreases the strangeness by 1 when applied 

to the highest member of any submultiplet. As i3  also 

increases by 29  we are actually lead to the highest member 

of another sub—multiplet. The repeated application of A21 

will complete this sub—multiplet. 

We must now have an operator which can decrease the 

strangeness as well as the isotopic spin. A31 does have 

the properties of decreasing i3  and s but does not in fact 

reduce i in general. Rather it mixes the I values i 

We try to look for such an operator as a linear 

combination of A3113 and A
3
2I— both of which have the same 

Ai
3 

and As. 	From the commutation relations 

[ A3113912 = A3113 (13 — + A321_13  

[A32—/ '2 ] — A3 2  (I3  + — + A31  I+  I 

= A32I— 	3 (I 	— ) 
4 	+ A31I—I + 2A31I3 

follows 

A3113  + A321_,12]= A31I3(aI3 —-
3  + 2) 4 

A321....(a13 	13  + i) + A31I—I+ 

We search for the solution of 



aI, — -la + 2 

aI3 — I + 3 	4  
which is independent of 13. This requires that we must 

have simultaneously 

4a=4a+   2 	and a( a —1) = G 

Thus a= 2. 

With this value of a, we obtain 

2A3113  + A321_,12  = (2.A. 1I3  +,A 21-)(13  + 1-4.) 

+ A31I—I+ 

Operating both sides on an eigenstate of i,i3,s with 

= i
3' 

we arrive at 

12(2A31I3  + 	3 = i n s > 

(i + i)(i -)(2A31I3 + A
3
2I—'i3 = is>  

7 9 15 
Thus the operator 

1 = 2A3113  + A32I— 

operating on the highest state of an isotopic submultiplet 

gives a pure I value equal to i I-, the corresponding S 

being s — 1. This operator is therefore the one we have 

been looking for which reduces the strangeness and 

simultaneously the isotopic spin. 

55 . 

a 
1 



56. 
It may be checked that the operators A32  and A3  

commute. They may therefore be applied in any order. 

The above procedure is illustrated diagrammatically 

in the following (i,$) plot for an irreducible represen— 

tation: 

so,  (i3)0  

Fig. I:  (i,$) plot for an irreducible representation. 

Having obtained all the eigenvectors in any representation, 

we can determine all the matrix elements of the generators 

for the representation. We have just to operate upon the 

various eigenvectors by the generators and express the 

result in terms of the other eigenvectors. We shall, of 

course, have to use the 3—dimensional representation of 

these generators. What we essentially need are relations 

of the type 
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A2

3 A = n 	A2
3 

= •••• A 

A23p(n i9 I) = 0 

In fact we need the matrix elements of only one of the 

four strangeness changing operators. The others can be 

obtained either by 	complex conjugation or by using 

SU(2) coefficients. These matrix elements have also been 

obtained as expressions valid for all the representations 

by using analysis which is similar to the one used in 

deriving the relations (3.11) in angular momentum theory. 

The following tables for the basis vectors and the matrix 

elements of A31 and A
3
2 for the representations (1,02-1), 

(2,-1 2-1)2  (2,0,-2) have been obtained by using our 

straightforward technique. 
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Table II. 
Basis Vectors for the Representations (1,0,-1), (2,-1,-1), 
(2,0 9-2). 

Reps. Dims. li9 i3 	Basis Vectors 	; 

(1304-1) 8 Ii92,1> 	 P X 

li-,4-0> 	 n X 

le 

v 

110 ,o> 	 - PE 
11 7010 (,- 	1053 	- 	nn 

- .7t4.  

so 

It- 
1.;'2 

11,-1,0> 	 nT 

10,0 	- PT - nil' + 21 ,0> _ To f 

4-6 

11-7i--,-- 1 > 	- Ari 

Ii941-1> 	 - 1115 

- Ro 

K7 

The last column is for future reference. 

2,-1 1-1 

, 	 

1013- 21  2 	PPCII X] 1> 	
-2 

1 

IMO> 	
1 
- 
6 
 (( rip)[ 11E] - 	Ply 137Q4 

12 	--1- , 	2  2  1>  
4.6  

( nn[E EJ - ( nip )E 	X]) 

- nn[PT] *41>- 
1 

4'2 
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11 ,1 ,0> 

11,0,0> 

I1,-1 ,0> 

- 
6 
 (i) A)CFIXJ - PPEITI5 J 

1- 
02

((nt.)[73.X] - (pA)[15A] - ( -pn)[rifl) 

L 
6 
 ( -( nA)[ii IQ - nn [TO j) 

I 1 ,i- 9 -1 > 

I 1 , 41-1: 

.1-(AAE n X] - ( p AK ni-7)]) 
46 
14 -AA[ 15 Xj - (n A) [E13]) 

,\T6 

10 901 -2> - 1  /vigil-0  J 
42 

(2,0,-2) 27 

' 

 11,1 ,2› 

11,0,2> 

11,-1,2> 

pp a 
1 	( pn) - 	/TA 

4-2 
nn XX 

li 4-  9 1 > 

3 
I'2' 1> 2 

1.3-' 	2  -1
9 
1> 2 

ii-/-i,i> 

f "-  
..

2 
	ppkAn) 

1  (—(11p)(XE) + Plo(X15)) 
,16 

 (- nn (Xii) 4-  ( laPXX13 )) 4.6  
1 

4.2  nn (X i5 ) 

12,2,0> 

(2,1,0> 

12,0,0> 

I2,-1,0> 

12,-2,0> 

ID P I 71  

-Id (pn)nn - pp 	(Tli- )) 

1  ( mil-. - ( np ) (15n ) + pp1515 ) 
.16 
2(-nn(15n ) + (np)1515) 

nni515 	. _ 
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1-if221> 

li,-i-,1> 

1 	(3( pA)Alc. - 2 pp(15 iC) - 	( p n)( TEIT)) 
4'30 

1
0 

 (3( nA).ETA - ( pn)(15T) - 2nn(iiii)) 
4-3 

11,1,0> ri A) 	 ) 	( 	riri) 
24
1 	(-2(p A) ( 	+ pp (fri 	+ 	pn) 
.5 

I i ,0 ,o> 1 	(-( n A) (ri .K) + ( p A) ( 15 X) - pp1515 
r 4-1 0 

+ 	nnriri ) 
li ,-44 ,0> 1  (2( n A) (FT.) - ( pn)lip. 	- nn(iiii)) 

24-5 
10,0,0> 6AA2T - 3( pA)(151C) + 2PAPP 1,0 4 

- 3(A n)(rri) + 2 nnriri + (pn)(pn) 
, 

, The basis vectors for —ve strangeness can 

be obtained from the ones for +ve strange— 

. ness by the operntion 

pf---->15, n • • 	• - ri , 	Af-9X 
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Table III. 

Matrix Elements of the operators A31, A32  for the 

Representations (1,0,-1), (2,-1,-1), (2,0,-2). 

Reps. 
A-1  A32 

ii9i3.is> Ai3  = — i, As = —1 
, 
Aiq  = + i, As = — 1 

-' 
. 	1 -ff A 1 = Ai = 4- Ai = i Ai = — i 

(1,0,--1) ii-,i,i> - i-4•2 -I-4'6 1 0 

Ii--,4,1> -1 0 24-2 -i-46  

1 1 9 1,0> 0 1 0 0 

11,0,0> 0 3'42 0 -I-4.2 

1 1 ,-1 ,0> 0 0 0 1 

I0,0,0> —.4..4-6 0 24.6 0 

, 1  i9-29-1> 0 0 0 0 

1  it—i/-1> 0 0 0 0 
	1 .... 

(2,-1 ,.1) 1 4,4,1>  0 .f3 0  0  

3 	I 	1 7919 	> 0 42 0 1 

2
' .--- 

1 
' 1 > 0 1 f2 

 
0 

3 	9 	> 1 ' 	0 0 0 43 

1 0 ,0>  0 '2 0 0 

1 9 0,0> 0 [2 0 4-2 

1,-1,0> 0 0 0 2 

' 11 9*9 -1> 0 4-3 0 0 

1 ,-1---,-1> 0 4 	0 0 4-3 

0,0,-2> 0 0 0 
) 

0 



3 u  
1 15 

0 

10 

3 
30 

1 

0 

2 

0 
L4-6  
3 

3 
0 

4-2 

3-43  
146 3 

0 

0 

0 

0 

0 

0 

0 

13 

4-2 

16 

1 

22 

0 

0 

746  
24-3 3 
12-470 

0 

0 

0 

2 

3 

3 
0 

0 

0 

3  
3 
14-6  
3 
4- 2 

0 

0 

0 

0 

1\175 

3 
30 

0 
.147; 

1\175 

0 

1\73 

3 
0 
-0  

14-6  

4-2 

0 

0 

0 

0 

0 

0 

3 

3 
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(2,0, 41 ,1,2> 

11 ,0,2> 

11 ,-1 ,2> 

12929 1> 

129291>  

4,4,1 > 

14,40 > 

12,2,0> 

12,1,0> 

12,0,0> 

12,-1 ,0> 

12,-2,0> 

129291>  

1/- 9411  > 

11  91 9 0 > 

11 ,0,0> 

11 ,-1 9 8> 

	

13- 	> 2' 2' 
10,0,0 > 

	

1- 	, -1 > 

- 	9  - 1 > 

11,1 9 -2 > 

11 ,0,-2> 

11 9••••1 7-2 > 

0 

0 

0 

0 

0 
2 - -13 3 

- 	246 
 

1 .77,7 
3- - I)  

0 

0 

0 

0 

- 2 
_ 175  

3 
14-37)  

0 

0 

0 

4-2 

0 

2 

0 

3 3 

1 



(1 90,-1) (1 2o 9o) 	(0 20 9-1) 
650) 

The suffix 1 under (0,0,0) is indicative of the fact that 

Tables of the first type appear in Refs. 74' 15 in a 

different context. The matrix elements have only been 

tabulated for completion and for some future reference. 

Similar tables also appear in Ref. , I83 	Many of the 

coefficients in the table of matrix elements are related 

by 	operations which commutes with A31  (A32). 

iv. Evaluation of the reduction coefficients for the  

products 3 07  and 8 XP, 8. 

The Young tableau representation fo r the product 

3 05 is 

63. 

one trace is being taken. Now we have just to know the 

highest members of the representations (1,0,-1) and (0,0,0) 

in terms of the basis vectors for (1,0,0), (0,0,-1). We 

already know about (1,0,-1). In fact, in table II, we 

tabulated all its basis vectors. (0,0,0)1  is just 

pp + nn + AT which is orthogonal to the corresponding 
4-3 	pTi 	TIE + 2AX  

1 0,0,0> state — 	which appears in (1,0,-1). 
4.6 
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This completes the reduction of the product 3 3. 

Next we go on to 8® 8. Here the product is represented 

as 

03) 

i.e. 

(1,0,-1) ®(1,0,-1) = (2909-2) e) (2,-1 	e (19 1 9-2) 

2(1 909-4)1  OD (0,0,0)2 	....(2.23) 

Taking into consideration the fact that the +ve and —ve 

integers appearing in the above correspond to the upper 

(cogradient) and lower (contragradient) indices, we see 

that (210,-2) is symmetric in both the upper and lower 

indices, (2,-1,..-1) ((1,1,-2)) symmetric (anti—symmetric) 

in the upper and anti—symmetric (symmetric) in the lower, 

while (1,0,-1), (0,0,0) have no special symmetry as some 

traces have been taken. 
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Again, (1,0,-1) corresponds to a second rank tensor 

Tc  such that T aa  = 0, We can also symmetrize and anti—
symmetrize the upper and lower indices in the product 

T a 
 OT P  to obtain 

T; 	Tg = T(YS) 	T (Lay135 	T ay P69 	T {yo] 
	

• • t • (2.24) 

The tensors on the right hand side are still not 

irreducible. To decompose each one of these into irred—

ucible parts, we have to take out the traces. Some of these 

traces are identically zero: to analyse it, we perform the 

above decomposition in another manner which corresponds to 

the equation (2.24). For this purpose, we again multiply 

the Young's tableau taking the following correspondences: 

1"--  (1) 	T (1:43) 	L I J 	(ii) 	P3 	r--4 
Li 

T TLy6J--) 

The symmetric and the anti—symmetric tensors above are 

6.and 3 dimensional respectively. 
(4f3) 

CorrespondingtoT
(YO) 

 we have the multiplication 

171 ® = n- ra_ 
6 x 6= 27 + 8+ 1 

 

1 Tqp 0. pup 

 



The other multiplications give 
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e 

      

      

       

       

6 x 3 = 10 + 8 

3 x 6 = 10 + 8 

TT!  

3 x 3= 8 + 1 

Neglecting how any diagram was obtained, we write the 

conclusion as 

   

e I 	 I  
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which represents 

((1 90,-1) (i) (0,0,0)) 0 ((1,0,-1) e (o,o,o)) 

(2 9 0,...2) 0 e (2,..1,-1)9 ® (1 91 9"2)0  ® 4(1 ,09"1 )1  e (0 9 090) 2  

•••.(2.25) 

It is evident that 9 diagrams have been obtained as we 

did not impose the condition of tracelessness on the tensors 

TCti, T. This is actually the reason why the decomposition 

is difficult as there is no direct method of imposing this 

condition. However, we know that these conditions must 

reduce equation (2.25) to (2.23). Thus, under the conditions 

of tracelessness, the vectors we obtain from the above 

symmetry characters will not be linearly independent in the 

cases of 1 and 8.dimensional irreducible parts, and we must 

be able to pick a set of linearly independent ones which 

correspond to the equation (2.23). In the following table 

we give the highest eigenvectors which belong to the dia—

grams iffloresenting (2.25). These have been written by taking 

into account the symmetry of the tableau and the trace 

indices in equation (2.25). 
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Table IV.  

Tensors 
Symmetry 
of the 
Irreducible 
Parts 

Highest eigenvectors 

	

,;1) T(a13) 	
" (2 0 -2) 

	

(yó) 	 SS 

(1 9 0 9  —1) ss  

(0 9 0,042  

40.111111110•01111111111.11~14.1•W 

2) T(GcP)
No] (2,-1  -1) sa 

(1,0,-1 ) sa  

PP 117 
21Dp(ia) + (np)(iiX) + 2(ildp)i nt 

2pp15-5 + 2nnnE + 2hAIK + (pn)(FE) 

+ (pA)(TI) + (nA)(E1D 

PPLEE3 

2PPETX3 + (rip)on..]. . 

	••••••••••••••••••••••••.m11.01•111.0.1.1.....1~0111......1•1••••..11.011 

a 1 3) TE  P- 	(1,1,-2)as 06) 
(1,0,,1) 4  

CP/13 XX 

Lpn](171X) + 2kg 

4) T" 	(1 90, -1)aa  CY63 
(0,0,0)aa  

[pn) 

CPnRFE] ;-E PAR FA1 *+ EnATET1 

The first (second) index describes the symmetry or 

symmetry-  in the upper (lower) indi,oes. 

Using the condition that 

T: = pr) + 	+ AK = 0 

we see that 

anti— 



2nn 1 nT 	— 3 	- 3(10-15 + nA 

An 	341 — 3(p17 + 

....(2.28) 

(1,01-1)ss = — (1,00.1)aa  

(1 909 —1)sa  = (1/09-1 )as 

(0,0,0)ss 	= (0,0,0)aa  

....(2.26) 

To complete the decomposition (1,0,-1)0(1,0,-1), we 

consider the associdion of particles to the 8—states. In 

both the unitary symmetry models, the 8 pseudoscalar =sons 

la% 	. collected into an octet. As this is a self— 

contragradient representation, the bosons appear in it with 

their anti—particles. Hence the choice of phases is 

important. We choose the phases such that 7i4- 1  K+  K° 

have their anti—particles as i-, K.-, i°. *With this choice, 

we indeed get the correct spinors as (:;) and (-19 and 
K 

) 

the isotopic vector is taken as (::  

We can collect the same 8 	states in a 3 x 3 
"traceless" matrix as 

, 

i
7 
1 _.,0 4.416 .110 I  

4 " 

7t 
0 .L. 1 0 , -4-fit 

le\ 
Ko 

• • • • 2.27) 

  

     

—o 2 01 
\ 	/ 

where in "components" form this expresses 

IPP 	+ A./ ) 	P17 P b 
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With these assignments, we can finally calculate the 

vectors in the decomposition of the direct product of two 

octets (starting from the highest member of an irreducible 

representation, we have to operate by 	A32, 7.31  as 

described in Section 2(iii)). The results are presented 

in the following table wherein each vector has been 

normalized to unity to ensure unitarity of the reducing 

matrix. 

Table V. 

Eigenvectors in the Reduction of the Direct Product of  

Two Octets. 

1 

Irr. 
Rep. Dim., i i3. s 

Eigenvector Sym 

(2,0,-2) 

. 

27 

- 

1 

- 

} 

1 

 0 

-1 

1 

2 K+K+ 

iyeKo 4. KoK+) 

KoKo 
A..........._ 

S 

3  
1 

. 

3  7 

"
1

".-Z. 
- 	3 
—7 

— 

.32,_  

1 1 ( _ Tc+x+ — K+7,+) 
If 

( 
	2 Tc0K+ ...... It+ KO 	... KO Tt÷ + „sr2 K+ To), 

412 Tc°K°  + i-  le + K+  7C".  + 4.2  K° 1°) 
4'6  

2 
(T,- Ko + Ko 7c-) 
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Irr . 
Rep . 

Dim. i i3 s Eigenvector 	 Sym. 

1 

- - - 

. 

1 

1. ---2 

• A. 

1 1  
71 

1 	01
IE 
 ot)ic+

'-' 
le ( 1  110 +9 

j 'n 
01 

—2 
'-' 7E

+  KO + IC
0   n 

(_1 	0 	9 olive 	.Trot1 	0_2 
v27' 77-6n 1" 	+ " TO .16 

•-• 7t K+.. K+ 7E .. 	 ... 

1  
4-3— 

2 2 . 

1 

0 

-1 

-2 

0 

, 

7t+ I+ 

1 	 0 

	

-- .12 ( 7E
:I- 

 7E
0 	+ 	TE n

4. 	
) 

	

1( - 71+7E-  -I- 	2110710 	- 	7t 7T+  ) 
4-6 

1 	- 0  
-( 7t lt 	+ 	•TE°7c- 	) 

4-2 

TE 	7E 
, 

1 1 

0 

_1 

4- 

0 

. 

..1
1
(:3 7c

4 
i
0 f + d3  7t 

t I 
7E
4 
  -KK 	-K0  

it .4.3710710 I .... 4.3710 !no_ KoT.co - Roe 

4 

K+) 

) 

, • 

it 
+ 1C+IC + K—K-E) 

	

1,....,4-3 	

it 
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Rep
r 
 . Dim. Ir .  

i i3 s •• 	Eigenvector 
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Irr. 
Rep. . Dim. i i3 

s Eigenvector Sym, 
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Irr . 
Rep •. Di m. i i 3  
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Irr.  . 
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In the above, we have taken the following combinations 

in terms of quantities in table IV. 
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(2,0,-2)s  = (21 0 ,-2)ss  

(2,-1,-1)A  = (29  

,-2) A  = 	
(191 9-2)as 

(1 90,-1)s  = (1,0,r1)aa  

(1'0'-1)A = (1'°9-1 )sa 

(010,0)s  = (0,0,0)ss  

The above reduction of the direct product of two octets 

was first done by Edmonds.
16 

Considering the fact that in the decomposition of the 

product of two identical angular momenta, the various 

angular momenta that appear have the corresponding wave-

functions as symmetrical or anti-symmetrical, we can try, 

by analogy, to understand the symmetries of the vectors in 

the above decomposition. For this purpose, we have to 

interchange simultaneously the upper and the lower indices. 

Evidently under such a transformation ss and as combinations 

are symmetric while sa and as are anti-symmetric. The last 

column in table IV describes this. 

In the above reduction of the direct product of two 

octets, the octet representation appears twice. There is 

no operator in the group which can distinguish these equi-

valent representations. In the case of identical particles 

forming the two octets, we have seen that symmetry of these 
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octets under their exchange can distinguish the two. This 

can again work only when the multiplicity is 2. In the case 

of non-idential particles forming the octets we shall have 

to construct some other operation. We shall see that under 
9 

the R-operation of Gell-Mann,
2 
 8s  -,. 8s  while 8A  -> - 8A' 

This very operation is sufficient to distinguish the twice 

occurring representations in the reductions we consider. 

For higher multiplicities, some other mechanism will have 

to be developed. This R-operation is a reflection in the 

(i3's) space i.e. under R9 i3 -› 	i
3 

S . 	s. The 

operator therefore does not, in general, leave a represen-

tation invariant. In fact, only those representations which 

are symmetrical, i.e. contain the submultiplet (i,-s) when- 
are invariant under this operation 

ever they contain (i9 44 In the case of other represen- 

tations, we shall obtain state vectors with strangenesses 

reversed. These new vectors will belong to the represen-

tation contragradient to the one we started with. To see 

this, we know that (ff2'f) and-f3'-f2'-f1) are contra-

gradient to each other. Corresponding to each (ff2) such 

that 
1 

-1 a.  f - fi 	f2 L f2 1 f2 

there exists a sub-multiplet (i,$) of (f1 ,f2,f3) 
i 	1 

f1  - f2 i = 	9 	s = f1 + f2  - (f1+f2-1.f3) 
2 

....(2.22) 

where 

....i2,29) 
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Equation (2.22) can also be written as 

-f > -f > -f > -f > -f1  - 2 - 2 - 1 - 1 

Thus Thus (il,s') for (-f3'-f2'-f1)  are given by 

= f1 	
f2  

2 

s' = — fi 	f2 	(f14f2+f3) 

Corresponding to any (i,$) in (f1 ,f2,f3) there is an 

(i,-s) in (-f3,-f2,-f1). A representation will be symmetrical 

i.e. containing (i,±s) if, and only if, it is self-

contragradient. In other words, 

f1 	- f3'  f2 = -f2'  f3  . 
	f

1  

or it is of the form (f,0,-f). The dimension of such a 

representation can be found to be (f1  + 1)3  from equation 

(1.26'). Again from the fact that R does not leave a 

representation space invariant, we conclude that R is not 

a group operation. Thus invariance of the interaction 

iagrangian under U(3) or SU(3) does not necessarily imply 

invariance under R and vice versa. 

by 
 In terms of the 3-dimensional basis ( , R is defined 

p 	p 	n 	-71, A <.•>. X 
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From table II we see that, under R, the octet transforms 

as 

_ 	01 K+  <-> 	<6.> 	7-0 9 n 	- 7C 	lt
o f 	

7C 

The effect on the various representations appearing in 

Table IV is as follows: 

(2,0,-2) -> (2,0,-2) 

(2,-1,-1) 	(1,1,-2) 

(1,1,-2) 	(2,-1,-1) 

(1,0,-1)s -, (1,0,-1)s  

(1,0,-1)A  

(0,0,0) 	-› (0,0,0) 

We can summarize the operation R by 

RI(fl,f2,f3);i,i3,s> 

= 	1( f 

where the phase-factor 	depends only on the representation 

(f1  ,f2,f3) and not on .its basis vectors. 

It is also evident from above that the eigenvectors in 

Table V for -ve strangeness could be obtained from those of 

+ve strangenesses by the application of the R-operation. 

We have, however, given the complete table on account of 

their extreme usefulness. 
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Product of Three Octets. 

The procedure for reduction of the product of three 

octets is similar to the one for the product of two octets. 

However, this introduces new complications as might have 

been expected. Our first step is to consider various 

possible symmetries of the upper and lower indices. This 

can be obtained by considering the product 

® ❑  af; 	till  EF) 	 

i.e. 3 x 3 x 3= 10 + 8 + 8 + 1 

T x '' 1 "41' v  = T X" 
CU • 	13 x T Y 	aPy 

(Xvv) 	xl- 1 	[Xplv 	EXpv] = T , \ 
4.  l 

T ,L , + T „ + T „ 
laPY) 	aPY) 	OW 	(af3y) 

= T(X")  + T XE"3  + T :X iii v  + T EX vv i 
:CRY] 	Gall] 	eLPY] 	aCPY1 

= T (Xl-tv) 	m X[Vv3 	m  EXPI) 	[Xpv] 
EaPh + 4.  CaRh + - CaPIlY + [Oh 

=T XaRivY) + 	
XCINJ 	, EXP3v 	T  EXIIv3 

T  CaPY1 ÷ ' CaPY1 4. 	Eak] 

Each one of the sixteen tensors above except the ones in the 

last row and column are again reducible. The reduction is 
carried out by drawing Young's tableau, which now corresponds 

to taking out traces. The following table gives the results 

along with the vectors that correspond to the largest S and 

the largest 13  for that value of S in the irreducible spaces 

obtained in this manner: 
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Table VI.  

Decomposition into irreducible spaces. 

Tensor Corre- 
sponding 

repproduct 	' 

Decomposition Vectors corresponding 
„ 

. '' . 	men- a 
sion 

to the largest S and 
the largest 13 for 
that value of S 

(Xpv) 
1) T ( coy ) 0300l0o03] [303] 64 (ppp) ( Hi) 

C207J 1  27 (iopp)(pE)+(ripp)(Tirri) 
+ (App) ( FE ) 

[1OT] l  8  (ppp)(TTE) + 2(imp)(THE) 
+2(ill\-P)(FM-42(n4i3)(ri M 
+(innp) (iiii.X)+(a. p) ( AAA-1111) 

E0003 1  1 (PPP)(Y33)+3(Plon)(175) 
+3 (ppA) ci515X)+3 (pnn) (Fin) 
+6(pnA) (31iE)+3 (pAA. ) (3 XA") 

+(nnn) (iiiiii)+3(nnA. ) (E.ii -A) 
+3(11AA)(EITA)+( 11111 )(AAA) 	4 

2) T ( ap y ) -ir_ 	"T-1 L2101003_1 r_._ 1213 li  35 p Cpri,HAtiA] 

[202 ]2  27 p [ip] ( rail ) +IDEA p J ( AAA) 

[112]1  10 P [Pril (117:)+PCAn J(AAA ) 
-nDlipi (n Al  --.TICA P.] (A 7-A ) 

01 01] 2  8 p [nip] CO E)+PEA ID 1(5 XA-) 
+n Enp 17E21) +nEA p:1- (nE) 
+ ACnp Irii../1)+ACA p](  AAA) 

5) 	tD( ccoy )tp]v  Diavn [2'17] 2  35 Obtained from (2) by 
the operation 

[207 ]3  A[BC] 	-> DOI& 

[112 j2  

Do T 13 
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irr . 
rep. 

Decomposition 

sion 

Vectors corresponding to 
the largest S and the 
largest T3  for that value - of S. 

Tensor Corr—
esponding 
product 

[202]5 	27 

[27] 2  10 

4  10 

[107]5 	8 

E10736 	8 

[000]2 	1 

[107] 4  

35 

27 

10 

10 

8 

[pnA](AAA) 

( PPP )10E 11-E] 

(PPP)X[ 15X1+(riPP)FEETJ 

(P13011 Ii5X1 + (nPOR[ El] 
-(PPP) X[FE] - pp) A[MM] 

(PPP)15027]+(PTIP)TEEXJ 
+(nPP)FIE15 	(nnp )U,IX] 
+(APP) A[TE] +( Anp)A[ TIT] 

pEnpTEE ET] 

P[nOri Pal -pEApIXEX 

PrOXE ISTJ 	[EX] 

n015[51Q+nEnpi ri[ri X] 
+ AEnp3X [rg] 

pE pnI/CE 	Ep AlT[13 X] 
+ P En A]X[ii X] 

P [PI]T 	Cp 
-1-P [n1.315 Cn 700-nErn3EETTIJ 
+n[pA]n O.K] +n[n AR ii171 
+ A[pn] 	+11[P AScri5E.3 
+ A[nA] ATM 

4) T o4131‘iyi" i [111"001 

5) Tow 
 
Y3 C30 0][012] 

6) 714.`ay3  [210][012] 



,7) TExtdv 
a[Py] 

10) t[p] 
LaP]y 
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Tensor 
Corr-
esponding 
product irr. 

rep. 

Decomposition 

sion 

Vectors corresponding to 
the largest S and the 
largest 13  for that value 
of S. 

	

120216 	27 

	

[211]3 	10 

	

[112]5 	10 

	

[107]7 	8 

[ci  J8 8 

C000 ]3 1 

C37712  35 

[2a]7  27 

[27 ]4_ 	10 

01 01 0 	8 

Obtained from (6) by the 
operation A MC] ->D8Clik 

[107]9 	8 	Epni0 ATE X] 

[202]8 	27 	Obtained from (6) by the 
operation 

[277] 5 	10 

[117] 6 	10 

C1013 11 	8 

[10] 12 	8 

[000]4 	
1 

7, 676 	G-5 

[210] [072-  ] 

Ei 1 iHoT21 

2.00][07 

p101[071.  

Obtained fil:om (5) by the 
operation 

A[BC[.6C ]A  
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ICorr- 
Tensor esponding 

product 

Decomposition Vectors corresponding to 
the largest S and the 
largest I3 for that value of 	S. 

irr. 
rep. 

dimen- 
sion 

11)  

12)  

13)  

14)  

' 15)  

, 16)  
, 

TPa 

TP4Lvi  

TEapy]  

TEctoyi  

EicCY 
(Xilv ) 

ttEry] 

' 

xpv] coy]  

[10][077] 

[111][0121 ' 

[20] 9  

[2T7]6  

[112] 7  

[1o1] 13  

[1071-] 14  

[000] 5 

[lo-T] 15  

[27]7  

[107] 16  

[107 117 

[00016  [ 

Exillv - 

27 

10 

10 

8 

8 

1 

8 

10 

8 

8 

1 

0btained..from (7) by the 
operation 
A[BC] -> 	Fa-  5 

CpnA] Di 11-] 

(PPP) 071 X1 DIDOK111] 

C2101571 

[210][111j 

r 	lr 	 , 011_1011J 

P EprOTE Il 

Unliffil X] 

„ 	
1pn Ari5ii Xi 

We have to obtain the results for the product of 3 octets. 

This means that the tensors TaX  y To, Tv Y we started with are 

in fact traceless, i.e. 

T
X 
= T = 	= 0 X 

These conditions give rise to linear relations in the vectors 

belonging to the irreducible spaces corresponding to the same 

Young's tableau (equivalent representations). Application 
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of these equations reduce the linearly independent ones to 

precisely the ones required by the decomposition. 

[105] ® [107]®El 07j 

[207] e) [211] € -CE 	El -7] s  ® [101]a  e [000 ]  

The linear combinations that we selected are given in 

table VII. 

Table VII. 

1) [202] x [10.1-] = [ 	+ [312] + f217 + [202 	+ [202 
+ [211]+ [112]+ [101 ]  
C3.717] 	2 C3--t 1  + G312] 2  

E217] = 	2[217 	[213 

C202 3' 	[207 13  - 2[207]4  + 2[ 2035  + 3 [207] 6  + 3 [207] 8  
+[20-i]9  

T' = 10C202]5  + 5 [2a] 6  + 5 [20 8  + 3[202]9  

C211]= 5 [27 ].1  + [2777.]2  - 6 [277] 6  + 5[21117  
[112] = - 5[ 11f]i  - 4[1171 2  - 5 [112-  ]3  + 6[117] 7  

[107] = 5[107]1  + 33 [107114 	12[1071]15  - 12[107 

2) [277 x [101] = [372] + [202] + [277 + [107 ] 

[312 ] = • [3712  

[202]. 2  [20 3 + [202 6  + 9[20. 8  + 5[ 202] 9  

[211 	2[277]4  + 4[27]7  
[i07]. 

	

	+ 6 [1011 11 + 3[101]i5  - 4 [101] 16 

- 2[107]17 



[213] = 
[207] = 

E1073 = 

[10% 

[2073 = 
02771 = 

4) 
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3) 	C 112jxC1oT1 = [21-3- ] + [20n + D 10 + Eio-T1 
— 21312  

[202] 3  + 8[207]6  + 4[207]9 
2  - 4[11713  

	

12 E1073 7  - E1073 10  + 6E107 	+ 3 [10T] 15  

+ 8 C1071 16  + 10 [101117  

[107] =[2o2 + [211] + [117] + El oT]ss  

+ [10-1]sa  + 000 
E2023 

2113 6  
= + [11217 — 

C101] ss 	— E1013 14  + 3[107315  + 3[101]17  
E1013 sa  = - [101115 +[101]17 
[000]-- = [00016  

5) 01011 a  x E ioT1 = [20L + t2.7-0 + 	+ [1oT]  as  

+ [1 071 as 	[000 ] 

202] = 	[20713  - 2 [20716  - [207]9  

271-] = 2 [211] 4  + 4.[277]7  

E1171 = 	i[112.1 2  - -4.[117]3  

DoT]as  = 2E1071 7  + 2[107]8  - [107]i  - [107]12  

+ E10733  - [107110  

[107],6a  = 	[107]3  + 2E1073 9  + 1073 15  

[000J = [00013  — [00014 

6) [000] x [1073 = [10] 

[101-114  
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The linear combinations appear fairly complicated. 

However, they have been obtained by very simple consider-

ations as orthogonality etc. 

In table VII we give the reduction coefficients in the 

form of isoscalar factors defined earlier. Tables are only 

given for the +ve strangenesses as the ones for the -ve 

strangenesses can be inferred by the application of the 

R-operation defined earlier. It introduces some further 

changes in the "isoscalar factors": 

(") 2(o) (") 2(o) 9 09'..1)s 51 09.1.1)s 

(")1 (")1 (1„0,-1)A  -› - 	(1,0,-1)A  

(.711°3/2  (I/  1)3/2 (290,-2) -> (2,0,-2) 

(7c101 - (n1)1 (2,0,-2) -> - (2,00.2) 

(2,-1,-1) -> (1,1 9-2) 

(3,-1,-2) -› (29 1 9-3) 

In the product 2708, two 27 dimensional representations 

occur. These equivalent ones can again be distinguished by 

means of this R-operation, as is clear from the different 

associated phases. 
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Table VIII.a. Isoscalar Factors. 
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S = 0 (Y = 0) 
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The above reduction finally leads to the isoscalar factors 

for the products 10®8, 10M8, 2700. We have already 

computed these for 81(,0?0. We might like to obtain the same 

for 10®10, 10®10 and 1007 10. With this end in view, we 

try to reverse the problem and see whether we could get the 

isoscalar factors directly from the basis of the two repres—

entations. We already know how to compute the matrix 

elements of the operators A3
1' A

3
2' I— for any given repres—

entation. Thus if we can determine the highest state 

vectors for the representations occurring in the reduction 

of the direct product, we shall be able, by means of these 
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operators, to complete the reduction. The quantum numbers 

i,i3,s of these highest eigenstates can be determined from 

the branching law. We order these sets of states corres-

ponding to inequivalent representations by the definition 

li,s> 	>I i',s' > 
if either 

s > s' 

or if s = s', 

This definition is possible as two rer•resentations in 

the direct product having the same I,S eigenvalues for their 

highest states are necessarily equivalent. For let us 

suppose that (f1 ,f2,f3), (f1 ,f2,f3) are two representations 

occurring in the direct product which have the same (i,$) 

values for their highest states. Then from equations (3.21) 

f1 - f2 = fl - f2 

f
3 
 . f

3  

Again these occur in the reduction of a direct product, we 

therefore have 

fl + f2 + f3 = fl + f2 + f3 

Now the highest eigenstate in the first representation 

in the above ordering is just the direct product of the 
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highest states in the basis of the two representations. 

This representation, which fortunately has multiplicity 

one, can now be completely determined by means of the 

operators A31 , A32, I. The next set of equivalent rep-, 

resentations will have their highest states having either 
than 

the same or different quantum numbers/of any state occuring 

in the first one. In the second case, we have no orthog-

onality to worry about and we can start directly from 

suitable total I,S eigenstates. In the second case, 

however, we have to consider only those linear combinations 

which are orthogonal to the state in the first representation 

having the same sub-quantum numbers as the highest states 

under consideration. For the set of the equivalent repres-

entations, we have no method of choice (within the group) 

and might be required to determine some other criterion to 

choose suitable sets of linear combinations. After com-

pleting this set of states, we can proceed further in an 

obvious manner. In the above procedure we have implicitly 

assumed that the number of representations in the decompos-

ition, each of which contains isomultiplets with the sane 

I, eigenvalues, is just the same as the number of different 

ways of constructing these eigenvalues. This result is 

obviously true as is clear from dimensional considerations 

and is even independent of the particular group under 

consideration. 
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vi .Application of the Clebsch—Gordan Coefficients. 

1. Calculation of the Scattering Amplitudes. 

This is a familar exercise in the context of 5U(2) where 

we express the scattering amplitudes as a sum of a number 

of invariant ones by applying charge independence. By 

means of this higher symmetry, believing that it is exact, 

we can calculate a large numbJr of scattering amplitudes 

in terms of a few describing various symmetry channels. 

By way of technique, there is nothing new to be said. One 

minor point, however, is worth mentioning. In the decom, 

position of a direct product, some representations have 

multiplicities higher than one. From the point of view of 

the group, there is no method of distinguishing between 

them.. So the symmetry allows transitions between equivalent 

representations in contrast to the case of inequivalent 

representations where the existence of the symmetry demands 

that no transition takes place between them. 

Let us, for example, considerM+M—,M+ ;scattering 

of two pseudoscalar mesons. We assume that the bosons 

form an octet as in both the Sakata and the Gell—Mann—

Neeman models. Now the decomposition 

8 ® 8 

leads to 	1 e 8s  .-08Amioeme27 

Thus there will be six diagonal invariant amplitudes, 

namely the ones for 



9 8 . 

	

1 	1 

8 -*8 

	

s 	s 

-› 8a  8a  

	

10 	10 

10 

27 27 

and two off-diagonal ones* i.e. 

8a  8s  

8s  8a  

In strong-interaction, time-reversal invariance holds. Thus 

the two off-diagonal ones are actually equal. This reduces 

the total number to seven. 

Tables expressing the various scattering amplitudes have 
30 

already appeared. It can be seen from these that it is 

impossible to verify the symmetry by looking at the cross-

sections. Use of R-invariance, which is not a good symmetry, 

reduces the number of independent amplitudes to 5. This is 

still inadequate for our purpose. 

Though we could not obtain anything useful from the 

scattering of pseudo-scalar bosons in the two models, we 

shall see that the Sakata model makes very definite 

* The total number (diagonal + off-diagonal) is equal to 

2 En.where ni  are the various multiplicities of inequiv- 

alent representations. Thus in the above case it is 

1 + 22 + 1 + 1 + 1 = 8. 
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predictions in the case of proton — anti—proton annihilation. 

This reaction in terms of the representations is now 

30-3- --48 0)8 

or 	1 e8se 8a® 10 ED -to 

In this case there are only three amplitudes, namely the ones 

for 1-41, 8--)8s-, 8-48a. We tabulate below the various 

annihilation amplitudes. 

Table IX. 

Process Al A8 A8 A  
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In this case, much can be said if we also fix the 

symmetry of the final 2 boson-state. Believing in the 
r: 

existence of the symmetry means taking the true boson 

multiplets as just two sets of identical particles, and so 

the symmetry or anti-symmetry of the spatial part of the 

wavefunction would demand symmetry and anti-symmetry of 

the unitary spin parts of the wave-function. We also know 

that from the point of view of the unitary spin group, 1 and 

8s are symmetric and 8A is anti-symmetric. Thus knowing 

precisely the spatial symmetry of the wave-function will 

help a great deal in verifying the Sakata model. 

For example if annihilation at rest is believed to 

proceed via s-wave. This means that the spatial wave-function 

of the two. boson-system is anti-symmetric. Thus we must 

take only the anti-symmetric amplitude 8A  for the various 

annihilations. This is extremely fortunate as now the 

annihilation rates are just proportional to the square of 

the anti-symmetric amplitudes. 

Thus we see that if the Sakata model holds, p+15 

annihilation at rest cannot occur. This resultl  however, 

depends on the annihilation occurring via s-wave. Can we 

improve upon this situation? 

We see in table IX that the amplitudes for the reactions 

p  ▪ 15 _,Ko 

and 
	p • 17) 	 + KO 
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are equal. Thus 

K2<p + I ei  + 
, 

> = p 
4 

-<p + 

T1  KoKo — RoRo> 

DIK0R0 — RoKo> 

The first matrix element on the right hand side is zero 

F4s strong interactions conserve strangeness. The second one 

vanishes as the matrix elements 

< 	yi KOi0 > 9  < p 	Tcoico > 

are equal. 

Thus the Sakata model completely disallows the existence 

of this decay mode. This result was first noticed by Lipkin, 

Levinson, Meshkov, Salam and the author. 
31 

Experimentally the annihilation p + F > K4 + 4 occurs 

with the same abundance as p + 	+ K7. 

This is clearly against the Sakata model. Actually this 

was the first clear-cut prediction of the model which 

contributed to its downfall. The Gell-Mann-Neeman model, 

however, does not make any positive prediction. 

2. Existence of the Resonances. 

The job of assigning particles to various representations 

has now become classical. We look for the sub-quantum numbers 

that a particular representation contains and try to find a 

set of known particles which have those quantum numbers. 

The rule for the assignment is that these particles must 
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have the same spatial properties, i.e. spin parity, baryon 

number, etc. Again the existence of a symmetry demands 

perfect equality of masses between the various members of 

the same super-multiplet, or that they are indistinguishable. 

However the group has operators which allow one to allocate 

different symmetry quantum numbers to the various members. 

These quantum numbers and just sufficient to allow complete 

identification. Evidently these quantum numbers are diff-

erent from the extra-symmetry ones which must necessarily 

be the same. 

Let us now go back to the Sakata model. It has as its 

starting point a 3 dimensional representation of the group 

U(3) or SU(3) and we assume that the particles p, n andA 

belong to this representation. This is valid as this 

representation contains an isospinor with zero strangeness 

and an isosinglet with minus one strangeness. The philosophy 

now is to build all the states from these particles and their 

anti-particles. The anti-particles form an inequivalent 3 

representation. We have already obtained the decomposition 

3(g) 3 which contains an octet and a singlet. Both these 

are states with baryon number zero. 

For the octet, we have two sets of bosons, namely the 

set of pseudoscalar bosons consisting of 719 K, K, I) and the 

set of vector bosons 0,to, K*, K*. Of course we have one 
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more state K *  (725) with the same quantum numbers as the K*  

(888) in addition to another vector meson p. The Sakata 

model allows an octet and a singlet of vector mesons only. 

We emphasize here that the symmetry requires equality of 

masses of members of a supermultiplet and 1;9 Kg K9 7) have not 

that equality. However, we shall consider it to be a 

violent breakdown of the symmetry. 

Before going on to see what the octet model has to say, 

let us try to allocate positions to the remaining baryons, 

i.e. to E and = . We haleto look for these in the decom—

position 

30 8 

which leads to 15 	(D3, 

corresponding to 

(1,0 9 0)Z (1,0,-1) = (2,0,-1) 0 (1,1,-1)Eb (1,0,0) 

The new representations that appear here are (2,0,-1) and 

(1,1,-1) of dimensions 15 and .g respectively. Both 6 and 

15 have places for E but only 15 has a place for E . These 

masses are nearly equal, so we may tentatively like to put 

them in the same 15—dimensional mUltiplet. This contains a 

non—strange quartet also which we can take as the 3-3 

resonance. This then requires the spins of both E and E. 
3 to be 7. We do not know anything so far about the spin 

of E. However both these are probably -12-- and the choice 

might not be reasonable. Again putting them in any one of 
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the places requires the existence of a strangeness + 1 

baryon while KN system does not resonate. This may be 

taken as another argument against the model. Finally A and 

E have very nearly the same mass. Putting them in different 

super-multiplets must have some strong reason behind it. 

These spins are equal and masses nearly equal. If the 

relative AE parity came out to be odd, the two were to 

be placed in different supermultiplets. However, recent 

experiments strongly favour even EA relative purity. This 

therefore is against the existence of a symmetry as demanded 

by the Sakata model. 

In the octet model, the group that is considered is 

SU(3)/C3 and the lowest non-trivial representation is the 

octet representation. We have seen that the pseudo-scalar 

mesons and a set of vector bosons do have exactly the same 

quantum numbers as required by this representation. In the 

case of bosons, the nucleon number is zero, so there is no 

distinction between strangenesses and hypercharge. Also 

we know that hypercharge is related to an operation 

(reflection) in the isotopic spin space, while strangess is 

not. If we look at the eight baryons we see that the hyper-

charge and the isotopic spin values are again the same as 

for the octet representation. This shows that there is a 

possibility of taking the baryons as also forming an octet. 

This is very nice as all these have very nearly the same 
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mass and the only relevant parity, namely the (EA) parity, 

appears now experimentally to be even. The spins of N9 E9A 

are known to be i. If the Fr: spin also comes out to be 29  

this will strongly favour the unitary symmetry in its octet 

version. 

The other argument which we gave against the Sakata 

model, namely the existence of the annihilation 

p + T >Ko  + K2  

does not go against this model as now the amplitudes for 

the reactions 

p + p >1.0o  + Ko  

+ K° 

are unequal. Even if we consider only the assymetric 

amplitudes, it is clear that the annihilation can still 

occur on account of the existence of the off-diagonal 

matrix elements (the symmetric ones are equal). 

We have seen that the vector bosons fit quite nicely 

into an octet and a singlet except for another K*. We can 

start looking at the boson-baryon resonances. These are 

to be in the representations that occur in the direct 

product of 8 and 8. This direct product contains 1,8,8, 

10,75,27. The places for the 4,4 resonance amongst these 

could be found in the 10 and 27 dimensional representations.  

Let us first of all:look at the 10-dimensional one. Relative 
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to SU(2) it decomposes into a Y = 1 quartet, a Y = 0 triplet, 

a Y = —1 doublet and a Y = —2 singlet. All these states 

3 must have spin 7  and even parity as the 3-3 resonance at 

1240 has these quantum numbers. We have also got two 

hyperon- resonances namely the Yi (1385)  and the Eiki(1535). 

These are isotopic triplet and doublet respectively with 

correct value of the hypercharges and spin parity (in so as 

to be accommodated along with the N*  in the 10—dimensional 

multiplet. 

To complete the multiplet we require the existence of 

another resonance, the so—called Q. The predicted mass 

of it on the basis of the lowest order symmetry—breaking 

(see next chapter) should be around (1620). If a resonance 

is found at this mass value, this will not only enhance our 

belief in the symmetry, but also in the validity of the 

lowest order calculations to give fairly reliable estimates. 

3. Interactions. 

We shall only try to write Yukawa type couplings, i.e. 

the ones which involve 3 particles. In particular we obtain 

the technique for writing BBM vertex where B and M stand 

for a baryon (with baryonic number not necessarily equal 

to one) and a meson respectively. B and B belong to contra, 

gradient representations. The representations to which B 
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and M belong may or may not be the same. The general 

Yukawa type coupling is of the form M1M2M3  where these 

three M's belong to possibly different representations. 

Firstly we mention a few general remarks. Baryonic 

number conservation definitely holds and the octet model 

has no place for it. Thus this is to be assured at the 

beginning. This can be done by hand by just counting the 

total baryonic number which must come out to be zero in 

order to conserve the baryonic number. Similarly the spin 

and parity considerations which belong to the spatial group 

will be assumed to have been taken care of. We shall even 

omit these factors which in spinor cases are matrices. In 

short, we shall confine our attention to only the symmetry- 

dependent part of the interactions. 

To demonstrate the procedure we go back to the now 

classic NNIT Yukawa—type coupling in relation to the isotopic 

spin symmetry. As the pion is supposed to be a vector in 
IMO 

the isotopic spin space, we must construct a vector from N 

and N. Such a vector is N t N where I are the familiar ti 

matrices. Thus the interaction will be 

where i has been added to make the interaction hermitian. 

The property of the above interaction that results in 

the isotopic spin conservation is that it is a scalar in 

the isotopic spin space. Again we note that, in this case, 
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there is only one method of constructing a scalar in the 

same way as there is only one method of constructing a 

vector from two spinors. 

We wish to obtain an expansion of the above expression 

by a simple procedure. As R/N is a vector, this is the 

i—spin one that we form from the spinors N and N, namely 

We note that the above has been written in the form of 

non—hermitian components. In the same sense, the vector it 

is 

and the scalar we obtain will be 

p
— + — 
n np + 

In the above we have used the method of constructing a 

scalar from two vectors. 

In the case of SU(3) the procedure is now obvious. For 

the interaction 11052153  we have to construct the representation 

contragradient to M3  from the direct product of M1  ,M2. This 

is obvious from the fact that only contragradient repres—

entations have a scalar representation in the decomposition 

nn 
2 
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of their direct product. (There is no distinction from the 
point of view of the rotation group between contragradient 

representations. Thus, in thiscontext the above restriction 

means that we have to construct the representation to which 

M3  belongs out of the direct product of MI  and M2). Having 

obtained the contragradient representation from the direct 

product of M1 and Y we have simply to determine the scalar 

that is formed out of this determined set of vectors and 

the states of M3. With some phase conventions, this scalar 

is not just the sum of terms each having the same sign. 

(The scalar expression obtained in table V is the sum of 

terms with the same sign only on account of the special 

choice of phases in table II for the association of par-

ticles to the octet representation). For this purpose we 

need not do the complete reduction to obtain just the 

scalar. In fact we have only to multiply the states with 

their charge conjugates (and not R-conjugates). However 

basis vectors in contragradient representations are related 

by R-conjugation (up to a common phase). To see where the 

charge-conjugate state has a phase opposite to that of 

the R-conjugate, we go back to the basis in terms of the 
/11N 3-dimensional ( -1;) as for example the ones in table II. The 

operation of charge-conjugation differs from R-conjugation 

in the fact that n -*-Ti in the former and n 	in the 

latter. We show that the number of n's (or p's) in the 
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basis of any representation depend only on y and i3. Each 

p or n contributes 1 to y but i or 2  to i3
. A contributes 

nothing to either y or i3. Thus 

y = No. of p's + No. of n's 

2i3 = No. of p's — No. of n's 

. No. of p's (n's) = 2y + i3 	i3)  

Thus the phase associated with the products of vectors in 

the scalar is just (-1)2-13. By way of illustration, we 

quote the scalars in the reduction of the basis of the 

products 

808, 10( 775-, 274A)27 

i) 86) 8  

+ 11 20 90 >11 20 ,0> 	 9 ....1 0 >11  ,1 90>+I 0 SI 0 90 >10 510 90 > 

-1 	-1 >12 ,4,1„1-12,4,-1 >ii 7i9 1 > 

ii) gio  
—(3 3  1>I3 	3 	1> 13 -1  1>I 3  1  1> 13  1  1>1 	1> 7979 	79-79- + 7929 	79...29 	79.-29 	7929.-  

+14941  >4949 1> 11 9 1 9 0>I 1 9.••1 9 0>+ 11 20 90 > 1 1 9010 > 

1^1 ,0>I1  91 9 0> i 2,2,-1>1 i9-i91>+4949...1>1 2929 1>  

-10,0„-2>10,0,2 > 



iii) 2727  

11 9 1 9 2>11 ,-1 ,-2>- 11 90 9 2>11 90,-2>+11 ,-1 9 2 >11 ,1 9-2 > 

9 1 >14,49-1).- 149.49 1>1 i-9 12" 9••••1>+1 49.4,1,1 4,4,_1> 2
+12,2,0>i 2,..2,0>_. 12,1 9 0>12,...1,0>+12,090>1290,0> 
_12 9 -1 ,o >12 9 1,0>+ 12,_2,0>1 2,2,8>+ 	>42-4,-1 > 

11 ,1,0>1 1,-1 90>+ 11,0,0 >11 90,0 > 

-11 9-1,0 >11 9 1 90>+1 4949-1>12,-49 1>-14919.71>1:414- 11> 

4-149-i9.-.1>14 91-2- •-• 9 1>14949 --•1 >14949 1>+ 10 9 0 9 0),10,0 9 0> 

>1-3- 2- 50.-1- 9 1>+ 	>1-1- 9 -i- 9 1>+ 11 9 1 5,•-2 >11 	9 2> 

•••11 9 0 5 -:f2 >11 90 ,2>+ h 	•-.2>11 9 1,2.> 

We also know that in the decomposition of the direct 

product of M1 and M2 the representation contragradient to 

M3  might occur more than once. In such a case, the symmetry 

would allow all the interactions that can be obtained this 

way. In general, from the point of view of the symmetry, 

the interaction will be an arbitrary linear combination 

of these. 

Let us, for illustration purposes, try to find the 

Yukawa type interactions when all the 3 M's belong to the 

8-dimensional representation. In this case we know that 

8g8 contains the octet representation twice (octet 

representation is self-contragradient). Thus there are 

two different interactions that we can write, each of 

which is a scalar from the point of view of the group. We 

have only to look for the two octets in table V and to form 
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a scalar with the help of the third octet in the manner 

given again in the same table. The two interactions are 

given below in terms of the following correspondences for 

the baryon and the anti—baryon octets: 

K+  
Ko 

-7
+  

.to 

- % 
-toe 

ico 

P 

n 

Eo 

- E 

-A 
....=) 
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=:to 

--+ -E 

To 

E 

-.T. 

-n 

5' 

BBM interactions in the Octet Model. 

Table X 

D type: 

, -+ - +  
16 [E  n  =7°E  + cif E° 	A) ± (rf E°  X)p JK 

 

, 
+A E— (r- 

ro  + 	x)  n 	, E° + 	A) + 	+ p SZ° 

"1r-2 -E-+A + 	1-E+  + 	+ ripIt- • 10 N3 	N3 

[ ,- foA + r- LP - E°:-; 	4-E + 15P170 +420 43 	N3 

+ 1• 0 4 	— 
T- 

73- 
rf2 	A  + 4-2 E.E — 

+ 2 	
_0 

[2f0E° + 2E+E + 2E E+  - 	- 	_+_ - = = - nn \• 15 
- 	—+ - - r+iTin 

q6 + 1 0 	fo + -• A)E0  - n(47 	)zo + 	A + E 	+ p  
- 	.rx + 3- EE 	+ n. E- 	,1 + 	E 	1 + 	1E + 13 (412. E° — 1 	+ 

io 



F type: 

A - 

	

	2  f° + 	) p 	( 	E° ',Nci" A) - rfn. + tE+]1C--  q 6 	q2 
=0, 1.  _

E0 
	 E p • 	C( if -g° 	X)n  = (12 	A)  - 

(- 4-210E+  + 4-22:4.E0 	Ep - 	) 7t- q• 6 

113. 

	

_ 	_0 0 + 12 (2E E+  - 2E+E- 	15p - 	- nn + a.= )to 

1 I  r 	 _o 
+ 47. wacir - 4-27E° = = 	Tt+ 

_o o 
+ - 	+ nn E- E )r) 

j. 	1 r ( 1 
	

A  -)=C) 	
" ‘4-2- 

( 1 E0 	4.3 A)  -7
+ .4  

‘-'()  
E+=-1K° 

These interactions were first written by Gell-Mann 

in his "Eight-fold Way" and given the names D and F types. 

D type is symmetric and F skew-symmetric in the interchange 

of any two octets occurring in the interaction. 

For this siniple case, Salam and Matthews gave a simpler 

procedure, which corresponds to obtaining a scalar out of 

three vectors. We know that such a scalar is 

a.(b x c) 

Similarly in the product of three 3x3 matrices, we can 

construct scalars by taking traces. Evidently there ar e 

two traces that we can construct, namely 

tr (M1  M2M3  ) and tr (M11\1311E2  ) 

The combinations 

tr (M1  1,112m3 ± 	m3m2  ) 
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are just the D and F types considered above. 

Thus the symmetry allows an interaction of the type 

aD + bF 

i.e. an arbitrary linear combination of the symmetric and 

the anti—symmetric interactions. In particular, this allows 

us to write the 12 coupling constants for the BBM vertex in 

terms of just two. In the old days of Global and restricted 

symmetries, 1 did not exist, and to try arbitrary choices 

of equations between the other eight was a job for the 

theoretician. The final result used to be: "some equal 

and some vanishing". 

The au(3) symmetry, however, is not that ambitious, but 

expresses all the twelve in terms of just two parameters 

which characterize the two types. We give these below in 
g_ 

terms of 41-mm = gp  and 	—r, 
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Table XI  

Yukawa coupling constants in Unitary Symmetry. 

gNNn=  gp 
g==.11 	rgp  

1 gun=43(1+r)gp  

gEE71= (1 -r)gp  

1 
gNAK= -,r (2-r)gp 

gNEK= rgp 

gE-EK=^  gp 

glan=43(1-2r)gp  

71-3-(2-r)gp  

-4.7(1+r) 

g 
EET)

= (1+r) 
q.5 

As the vector mesons are also assumed to form an octet, 

we can write their corresponding interaction in the same 

manner as above. The question finally arises whether we 

can write these in terms of just one. This can be dealt 

with in two manners. Theoretically we would just like to 

eliminate one on the basis of some other consideration or 

another postulated invariance. Thus Nbeman in his thesis 

obtained the F type interaction only when he considered 

gauge transformations which also led him to the existence 

of eight vector bosons as fundamental intermediating 
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particles. However from gauge invariance we cannot write 

any Yukawa type Lagragian for ordinary pseudo-scalar mesons. 

Application of an analogy will rule out D couplings all 

together. Gell-Mann, on the other hand, tried to introduce 

R-invariance. As D and F couplings are respectively 

symmetric and anti-symmetric under the R operator, 

this invariance would demand the existence of D alone. 

The question of whether one or both types exist in 

nature can also be solved phenonmenonlogically. It appears 

that experiments cannot be made to agree with only one type 

of interaction. The, situation is even worse. As Gell-NAnn 

pointed out in the "Eightfold Way", the photoproduction 

data is inconsistent with any value of r. This may be 

accounted for by a large breakdown of the symmetry in the 

pseudoscalar boson octet where it and K have a very large 

mass difference. 

Iipkin
33-  
has shown that the existence of two types of 

couplings of 3 octets can be considered as a strong point 

in favour of the Su(3) scheme. In fact, in the case of 

3 boson couplings, one of the two types is automatically 

excluded on account of charge conjugation invariance and 

the fact that the particles and the anti-particles appear 

simultaneously in the boson octets. Thus the 3 vector 

meson or one vector and 2 pseudo-scalar meson vertices 

must be F type while 3 pseudo-scalar meson or one pseudo- 
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scalar meson and two vector meson vertices must necessarily 

be D type. On the other hand, if we had only one completely 

symmetric (or anti—symmetric) coupling, we would not have 

been able to explain the existence of many reactions. 

Lipkin has further argued that this point goes against 

G2' interest in which was again being revived.
3 
 In this 

group, only one coupling of 3 septets exists and this 

happens to be anti—symmetric. G2  therefore does not allow 

a coupling of the form MVV or MMM. The same argument 
25 

applies to the groups 02  (or B2) where we consider the 

mesons to belong to the 10—dimensional representation and 

in the decomposition 

10®10 = 35 17") 35 ' e 14 	10 	5 (11=+ 1 

the 45 asymmetrical components can only be placed in one 

of the 35 and the 1G—dimensional representation. 
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CHAPTER 3  

Symmetry Breaking  

Symmetry Breaking Interactions. 

The most unfortunate aspect of postulating symmetries 

in elementary particles is the fact that one is expected to 

think of breaking of the symmetry immediately., This is 

obvious from the fact that the masses of the particles said 

to form a supermultiplet are equal only approximately. The 

breaking of the symmetry then allows the mass degeneracy to 

be removed and we are expected to obtain the correct mass 

spectrum from the breaking: Thus if we go back to the 

history of charge independence., it was supposed that parti—

cles with very nearly the same mass form isotopic multiplets 

and that the correct mass spectrum would be obtained if we 

did include the electromagnetic effects which do not observe 

charge independence. In unitary symmetries, likewise, we 

assume that so far as the very strong interactions are 

concerned, particles may be grouped into aupermultiplets, 

these particles having nearly the same mass, and that when 

we consider symmetry breaking we shall again be able to remove 

the masi3 degeneracy. 	Here, however, the situation is 

slightly different. Neglecting weak interactions altogether, 

our hierarchy of interactions consists of very strong, strong 

and electromagnetic interactions. Thus the complete removal 



119. 

of mass degeneracy will now be supposed to take effect in 

two stages. In the first stage, we turn on the strong 

interactions. As strong interactions do not have the 

symmetry of the very strong ones, the supermultiplets will 

decompose into various isotopic multiplets. In the second 

stage, when we switch on the electromagnetic interactions, 

the submultiplets will not be left with any degeneracy. In 

the above, eve were describing only a special case of Pais'35  

hierarchy of interactions. This postulates the existence 

of a series of interactions with progressively weaker 

symmetries, i.e. the summetries of an interaction contain 

the ones for those which are weaker in comparison to it. In 

the language of group theory, the symmetry groups of the 

stronger contains the ones for the weaker. In the above 

context, therefore, we can write the interaction Lagrangian 

in the form 

s + ms  + Iem + 

where 'VS,  the very strong part, is invariant under the 

full symmetry group (U(3) or SU(3) in the unitary symmetry 

models), the medium strong Ims  under a subgroup of the 

full group which in turn includes the subgroup that leaves 

the electromagnetic interaction Iem invariant. 

In this chapter we shall be concerned only with the 

first stage of symmetry breaking, i.e. the breaking of a 

unitary super—multiplet into isotopic multiplets as a result 
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of the switching on of the strong interaction. If no 

restriction is imposed on the form of this interaction, 

obviously no progress can be made. As our goal at this 

stage is to break supermultiplets into isotopic multiplets, 

we suppose that this interaction is an operator T that 

commutes with the isotopic spin, strangeness and the nucleon 

number operators I, 69 N (Assumption I). This restriction 

is highly reasonable as we are still in the realm of strong 

interactions where strangeness and nucleon number are 

conserved, and any non—commutation with I will result in 

mass—splittings between different members of the isotopic 

multiplets. 

The above restriction alone is still not sufficient for 

our purpose. We therefore make the further assumption (in 

analogy with the electromagnetism) that this operator, to 

lowest order, transforms as the adjoint representation of 

the group (Assumption II). These restrictions then fix the 

operator (to lowest order) as the T3
3 
 component of a tensor 

T 1. This tensor T in SU(3)/C3 
is irreducible. However, 

in U(3), as the adjoint representation is reducible, we can 

write it as 

Till = 0+11  

where le is irreducible and transforms as the 8—dimensional 

representation. 
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Henceforth we shall confine ourselves to the U(3) scheme. 

The results, however, apply to both the schemes. 

To nth order, we take this operator 

3 Tn =T
3  +T3  T-3  + 	+ T3

3  T3...T3
3  

3 	3 3 
n 
z Tc T3  
1=1 i3 

to be 

(n factors) 

....(3.2) 

where 

I n.3 
T3 

 
= T3T3 

' .• 3 T3 	(i factors) 	....(3.3) 3  

Since every product of tensors T is reducible (under 

U(3)), we can express (3.3) as 

n T3
3 r 
= 	

0 ar"3)rM33::3 	...4(3.4) 
= 

(i-r times) 

where M33..3 is a component of an irreducible tensor. 33..3 
From our first assumption, 

[ ' 
	3
I T

3
3 	] - [T3

' 	- 	3 
s 3 — 	

' 	- 
T3  N3 	o 	 ....(3.5) 

and equation (3.1) above, it follows that N3  also commutes 

with I, N, S. By induction now 

1-  M3° °3  I 1 	M
3..3 
	

= ' - 
*3  S1 	[

3  
113

..3
° 	
' 

'3  N] = 0 " 	f- - 	1   ....(3.6) 
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ii) Okubois„ mass formula and its generalization. 

According to our assumptions, the lowest order mass 

splittings are given by the matrix elements of the operator 

T3 between the same state. Okuba was able to write down 

these matrix elements in terms of the matrix elements of the 

operators constructed from the generators. This is in fact 

generally true that the matrix elements of any operator within 

the same representation can be expressed as a linear combi— 
the matrix elemsnts of 

nation of/operators constructed from the generators. This 

follows from the fact that the matrix algebra A gnerated by 

the infinitesimal generators within the same representation 
23 

is the whole matrix algebra. What is remarkable in OkulDOS 

work is the fact that explicit expressions of these operators 

are obtained. In fact he proves that 19a 

< D9  TITvill D 

=<D 9111 	+ bAt1  + 	I D 9  111> 	 ....(3.7) 

where D is an arbitrary irreducible representation and y 

any vector in its basis. Again 

(A.At = AaAav 

where All  are the nine generators of the group U(3). 

The lowest order mass formula follows from the above 

if we use the expressions for A33, (A.A) in terms of I 3 

and S. The final result is that 
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M = a + bS + c(I(I+1) — iS2) 	....(3.8) 
20 

Ginibre and Diu gave a simpler argument to show that 

there will be only three terms in the above and the simplest 

linearly independent ones are precisely 

(A v 9 , A) 
• V 

Thus they obtained this formula rather more directly. 

We shalll in the following, try to generalize the above 

ideas and obtain a mass formula to any particular order. 

Lemma I- In any irreducible representation, 

(A.A...A)33  33 ...3 (m times) 
...3 

n factors 

E arst 3 3  (63)r(A3)s((A.A)3)t  
r,s,t>0 
r+s+t=m ....(3.9) 

Proof: We have 

' ' 	°3 	3' ' 3 CA3  A3J = EA33  (A A)3  J= [(A.A)3  (A A)3  = 0 ....(3.10) 

Since the Casimic operators <A.A> and <A.A.A> commute with 

the generators Alvl y the lemma follows from equation (A.10) 

in Okubo'b paper on replacing 	by A. 

Theorem I: The mass formula to order n for every 

(n+1 ) 
2
(n+2) 

repres— 

entation is a sum of 	terms, and can be written 

as37 
 

n 
M(11)  = E 	E a. .(I(I+1) 	*S2)jSi—j 

1.0 j=8 13  
....(3.11) 
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where aij  are parameters depending upon the representation 

but independent of the sub-quantum numbers I and S. 

Proof: From equation (3.2) we have 

N(n)  = < D,Ti Tn ID9  
As was argued before, the matrix element of Tn in an 

irreduciblerepresentation must be expressible as linear 

combination of the matrix elements of suitable operatros 

constructed from the generators. However, in lemma I, we 

have seen that the number n of '3? indices on Tn is impor-

tant. In fact, the lemma shows that in expressing the above 

matrix element. we have only to include the matrix elements 

of operators like 

(53 )r (A3 ) s((A.A)33 )t  3 	3  
r+s+t = n 

kr,s,t Oi 
Omitting 53  which is just one, we may write 

M (n) 
n i 

= E 	E <D,Tib. .(A3)i-j((A.A)3)il D, T> 
i=0 j=0 	ij  

....(3.12) 

The formula given in the theorm now follows on writing 

- A3 	S - 	 ....(3.13) 
(A.A)3  = (1(1+1) - *s2) + aS + b 

where a and b are independent of I aril S. 
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iii) Specialization to Particular Representations. 

In the case of the 10-dimensional representation, Gell- 

Manri remarks that the first order formula 

M10) = a + bS + 0(1(1+1) .- 482) 

reduces to 

M(1)= a' + b'S 10 
on account of the relation 

. 1 + 

valid in this representation. 

We wish to point out that the second order fOrmula 

obtained by Okubo. 

M2 = a + bS + c(I(I+1) 	4S2) + dS2 

+ eS(I(I+1) 	*S2) + f(I(I+1) 	*82)2  

when applied to the 8-dimensional representation becomes 

42)  = a' + b'S + ci(I(I+1) - *S2) + d'S2  
as a result of the relations 

SI(I+1) = 

3 S = S 

1(1+1)(1(1+2) - 2) = 
	15,2 

valid for this representation. 

In order to see when and why this happens, we shall 

look at the formula from a different point of view. Using 

equations (3.2), (3.4), we can express Tn, the strong 
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symmetry breaking interaction to nth order, as a sum of 

components of. irreducible ';tensors. Each one of these 

components commutes with the operators N,S,I (see equation 

(3.6)). Therefore these appear only in the irreducible 

tensors which correspond to the representations (with N = 0) 

containing in their bases an isotpic multiplet with I = S 

= 0. These representations can only be of the form (f,0,-f) 

as we prove below. 

Lemma II: In representations (f1 ,f2,f3) with N = 0, the 

isotopic multiplet I = S = 0 occurs only when f3  = - f1' 

f2 = °. 

Proof: From equations (1.28d', 1.28f', 1.28gt ) we obtain 

on setting I = S = N = 0 

fl =f2, fl = f2, i.e. f1 = f2 = ° 
Now using (2.22), f2  = 0. 

Finally from (1.28fl ), f3 = - f1 

(3) i Remark: The group S  cU n the Gell-Mann Neeman model has 
3 

the representations (f1 ,f2,f3) with  a restriction which may 

be taken as 

f1 + f2 + f 3 = 0 

So the lemma holds equally well thmghN is outside the 

symmetry group. 

Next we prove another theorm which gives the number of 

times these representations occur in the direct product of 
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a representation and its contragradient. This theorm will 

be of an immense use in the derivation of the final form of 

the mass formula. 

Theorem 2: In the reduction of the direct product of a 

representation D E (f19f2,f3) with its contragradient 

D E(—f39—f2,—f1) the representation (f10,—f) occurs df  

times where 

10 	when µ+v< f 

p. + v — f + 1 iwhen IA -< fg  V > f but µ+v > f 

	

df  = , R + 1 	when ii < f 9 v  > f 

	

v + 1 	when II > f, V < f 

	

f + 1 	when 11> f, v > f 

and 

11  = f1 — f2'v = f2 — f3 

Proof: As some of the integers labelling the representations 
an* 

D and D are negative, we first of all consider the repres— 

entations 

D1 E (f1 —f3'f2-f390) = (p+v,v 10) 

11 E (f1—f39f1 —f290) E  

Corresponding Young's tableaux for Di(Dl ) have 11+v 

squares in the first and v(v) squares in the second. We 

are interested in the representation (f,0,—f) in the 

product Dc D. As D1  (D1)has been obtained from D(D) by 
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subtracting f3(—f1 ) from each of the three integers 

labelling the representation, we should look for the rerres—

entation (f,0,—f) in the product D1®  D1  as associated 

with the Young's tableau 

(f+f1—f3,f1—f3,—f+f1—f3) = (11+y+f,11+v,g+v—f) 

To obtain the product diagrams, we follow the technique 

already given on page 41. The diagrams we are interested 

in should have p+v+f, ti+v, µ+v—f squares in the first, 

second and third rows respectively. This is obtained by 

adding f squares containing a's to the first row of Di  

followed by R and µ-1-y—f squares containing some d'S and 

some 13's to the second and third rows in a manner that 

satisfies the three conditions stated on page 	for the 

product diagrams. The condition (ii) requires p additions 

in the second and third rows to be always on the right of 

all a's. The condition (iii) of lattice order says that 

the number of 13's to be added to the second rwo must be 

< f. Thus the number of diagrams of the above type in 

the product can be at most f + 1 (corresponding to 09 1,2..f 

number of 13's added to the second row). 

However all these cases are not always possible. To 

examine this easefully, let us consider 11. If [t  > f+  all 

the f + 1 cases might be possible. But when 1.1‹ f only 

µ + 1 of these (which correspond to 09112... µ additions 

of (3's to the second row) are possible. All these cases 



129. 

will definitely be possible if we can fill all the squares 

in the second two with the rest of the a's. As there are 

only µ+v-f squares to be adjoined to the third row, this 

requires p+v-f> p orv>f. On the other hand, when 

µ+v -f< g or equivalent v <f, then p- (µ +v-f) = f -v 

Vs (at least) will have to be added to the second row. 

This will reduce the number of possibilities in each of the 

above cases by exactly f - v to (f+1) 	(f-v) = v + 1 and 

(12+1) 	(f-v) = p+v-f+1 respectively. Since the condition 

(iii) is also satisfied by each of these cases, the theorm 

follows. 

Now in equations (3.2, 3.4) we decomposed Tn y the 

symmetry breaking interaction to order n, into its irreduc-

ible parts. These irreducible parts were represented by 

M33**3  (r indices, 1 < r < n). Evidently this can only be 
33..3 
a component of a tensor which is completely symmetric in all 

the upper and lower indices. Also we have seen that it 

must be of the form (f,0„-f). Thus it is necessarily a 

component of a tensor which transforms as the (r,0,.#4i1) 

irreducible representation. In theorem II, we proved 

that it can occur at most r + 1 times in the reduction of 

the direct product D O  D. Also we know that in  differs 

from Tn  1  by the addition of another component of an 

irreducible tensor which belongs to (n20,-,n). Thus we have 

to add at most n + 1 more operators constructed from the 
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generators such that they are linearly independent of the 

ones added before. These are precisely what we have already 

been able to obtain in theorem I. For those representations 

D which have (f,0,—f) exactly f + 1 times in DOD. (such 

representations always exist as is clear from theorem II), 

we shall have to take all these in the formula to fth 

order. 

However for a particular representation D, the repres—

entation (f,0,—f) may not occur f + 1 times in the reduction 
SOS 

of DOD (this is evident from theorem II). In such cases 

there must exist linear relations which will reduce the 

number of terms to be added at the fth stage to exactly 

df' the number of times the representation (f,'01—f) appears 

in the reduction of D( D. In the next few lemmas, we 

carry it out explicitly and we are able to select the set 

of linearly independent operators such that the mass 

formula to order 1.1) for a particular representation D 

takes the form 
n df-1 

14 )  = E 	E 	afj(I(I+1) f=0 j=0 
— *s2)jsf—j ....(3.11) 

Lemma III: In any irreducible representation 

D a (f1 ,f2,f3) of U(3). 

i) 	I takes the [i +v +1 distinct values 0,1,1 942.with 

multiplicities 1,2, ... v, v+1, v+1, 	v+1,v, 	9  . 
	1 

respectively. 
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ii) S takes the p+v+1 distinct values f1+f2—n, f1+f2-1—n, 

...9 f2+f3—n with multiplicities 1,2, w00 %) +1 9  000 '9 +1 1 

V 9  ...9  1 respectively (n = f1l-f2+f3). 
1 

The proof follows from equations 	 .28d 9  ,f ,g ). 

Lemma IV: The points (1,S) corresponding to the isotopic 

multilalets in D form a lattice consisting of 11+1 (v+1) 

equally spaced parallel lines with equations of the form 

I = IS + C 	(I = IS' + C') 

Proof: Rliminating f1 and f2  in turn from equations (1.28&) 

and (1.28g') we obtain 

I = IS 	f2  + i(f/+f2+f3) 	"..(3.15) 

= — IS + fi 	I(fl+f2+f3) 	....(3.16) 

Corresponding to 1.1+1 (v+1) different fixed values 
1 

of f2  (f1), (3.15) and (3.16) are the equations referred 

to in the lemma. 

From lemmas III and IV we can construct the following 

lattice of points (I,S) for the representation D. 
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Figure 1 1 : The (I,S) plot for a representation 

D E (fi ,f22f3) 	( 	f1 —f2 > v = f2—f3) 

Lemma V: If A and B are any functions satisfying 

v+1 
i) A

v+1 = E 	a Av—i+1 Bi + E 	a.. AiBj 	....(3.17) 
i=1 	< 	1 

19 j > 0 

and 

ii) AiB~+v+1 v1 j 
E a

ijk 	A — B 
j=0 k=0 

R _v-1 
+ E 	Ejk A

kv+11-j—k 

j=0 k=0 

+ E 	y .
Jk 

AjBk 
j,k >0 	1 
j+INv+1 

for i = 091,2, ... V, 

....(3.18) 

then all other expressions of the form Aa B0(a t io>0) not 

included in the above equations are also expressible in 

terms of quantities on the right in equation (3.18). 
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FIG. 3. Schematic representation of terms 
appearing in the mass formula. 
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The quantities A\J+1, Ai  131.1-Fvf1-21  appearing on the left-

hand side of the above equations are enclosed in squares in 

(Figure 2). Equation (3.17) has on its right-hand side 

quantities in the v4.1st column except A v+1  and those on 

the left of this column. The quantities on the right-hand 

side of theEquations (3.18) are all the quantities below 

the zig-zag line. The content of the lemma is that all the 

quantities in the figure above the zig-zag line and not in 

the squares are expressible in terms of the ones below this 

line provided that the quantities in the squares satisfy 

(3.17) and (3.18). 

The proof of the above assertion is trivial: we start 

with the expression (3.17) for A9-11  and multiply it first 

by B and then by A, obtaining expressions for e°  B and 

Av+2 in terms of the quantities on the right-band side of 

(3.17) and the ones in v4-2nd column below the zig-zag line. 

This process is repeated. Slight modification is needed 

when we approach the stage where we want to express the 

quantities in the column headed by Av+1. 

Lemma VI. 

The conditions (3.17) and (3.18) in Lemma V are in fact 

satisfied by the functions 

A = I(I+1) - 

B = S 
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Proof.  

(i) From Lemma IV we see that all the points of Figure 1' 

satisfy the relation 

v+1 
n (1(1+1) 	*s2  + b.S + ci) = 0 

1=1 

This is condition (3.17). 

(ii) To prove equation (3.18)9  we divide the set of points 

in Figure 1' into two sets Si 9 Si (i = 09 1 9...0) as follows: 

Let S take the distinct values s19  s2, ,„ sii+v+1 

expressed as a monotonically increasing sequence. For 

i / 09  suppose the set Si  consists of all the points having 

S as any one of 

S2' 	• • • 9 Si  9 S il+v 	• • • 9 S 	 9 S 1.14-V 	13'N)+1 

and let So be the null set. 

The set Si consists of the remaining points in the 

figure. 

Consider first i / 0. 

It is clear from lemma III that the set Si  consists 

of i(i+1) points. Si  can therefore determine a set of 

values of the i(i+1) ratios of the (i(i+1)+1) constants 

ars such that 

d(I(I+1) — iS2)1  + 	a (1(1+1) -- 52 )-r  S$  = 0 
2r+s< 2i rs  

r,s> 0 	°A--(3.19) 
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is satisfied by all the points of the set. Here d is 

necessarily non—zero; for;if it were zero, the equation 

(3,19) which is now of at most i-1 degree in I(I+1);  

cannot satisfy all the i distinct points with S = si  

because the corresponding I(I+1) are necessarily distinct 

and positive—definite. 

Thus all the points of the figure satisfy the set of 

equations 

[(I(I+1) 	*s2)i + 
	

a rs (I(I+1) — 1-S2)r  Ss] 
2r+S< 2i 
r,S > 0 

(S—s1.+1) .... (S—sp+v—i+1 . ) = 0 	....(3.20) 

When i = 0, we have instead 

(S 	s1)(S 	s2) 	(S — sp,+v+1) 	0 	....(3.21) 

These give condition (3.18). 

(iv) Exact formula for a particular representation. 

It is clear from theorem II that the representations 

(f ,0,—f) with f > f1  — f3  do not occur at all in the reduc—

tion of the product D D. From this it follows that an 

exact formula for I) (i.e. one true to all orders) is 

ma) = 	 = fl-f2, 
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The total number of terms in the formula is equal to 
1.t+v 
E 	df 

which by theorem II is 

(µ+1) (v+1) 

Now as each one of these representations (f,0,—f) 

contains I = S = 0 multiplet just once, (µ+1)(v+1) is also 

equal to the number of times I = S = 0 multiplets occur 

in the direct product of D and D. We now prove 

Theorem III: The number of times I = S = 0 multiplet 

occurs in the direct product DOB is equal to the number 

of isotopic multiplets in the representation D. 

Proof. The representations D and D consist. of isotopic 

multiplets of the form (I,S), (I',s1) where the set of I', 

S' is the same as that of I(—S). From (i,s') and (IT ISI ) 

we obtain 

I+I1  
E 	(I, s+s') 

I =1I—I1 

This series contains I = &-= 0 if and only if 

S + s' = o 	— 1' 

i.e. when 

SI  = 	S, I'  = I. 

f=0  
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Therefore there exists a unique solution for (II ,S') for 

each (I,S) which satisfies the theorem. 

As now each of the multiplets (I,S) of D gives rise 

to one and only one method of constructing I = S = 0 in 

the direct product DO15, the theorem follows. 

As a final remark, we see that the mass formula MD  

has the same number of parameters as the number of isotopic 

multiplets in D. The arguments above can be carried through 

even for other symmetry groups proposed for strong inter-

actions with no change in the above conclusion. 

Thus the use of a formula which is true to all orders 

can lead to no predictions at all.
39In fact such a formula 

does not make any approximation and hence will not be useful. 

What is useful above is that we can consider mass formula 

with some of the last few terms omitted. This will lead to 

some relations which can then be checked. The whole philo-

sophy of going to higher orders would make sense only when 

the contributions of the higher order terms is smaller in 

comparison to those of lower order ones, in order to be 

sure that only a few (depending upon the representation) 

terms are essential to obtain the correct mass spectrum. 

There is however a big distinction in the above higher 

order formulae and the contribution (finite) of the higher 

order graphs in perturbation theory. There the expansion 
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is usually carried out in powers of a coupling constant 

which, being small, automatically leads to the belief that 

the series might converge. In fact, right from the begin—

ning, a hope dominates the theoretician that this is so. 

However, the above formulae deal only with the structures 

of the matrix elements and say nothing about the possible 

relationships of the various parameters that occur in the 

theory. Thus no a priori belief exists on which one can 

claim and obtain progressively weaker contributions to the 

parameters. Thus a very real problem exists of determining 

how these parameters can be worked out for various repres—. 

entations knowing only their quantum numbers. Of course 

these parameters will depend upon the spatial properties 

of the particles which formed these (we know that these are 

the same for all the members of a supermultiplet). For this 

purpose, we shall have to consider the dynamics of not only 

the particles but also of the symmetries. We shall have to 

know how from some elementary particles we can obtain others 

and whether the choice of a set of elementary particles can 

be uniquely made. The current belief is that the choice 

is not unique and the "Bootstrap" can be reversed. 

However, though these questions and their answers will be 

highly interesting, we shall not be able to go into their 

details. 
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(v) Application of the mass formula. 

For the eight dimensional representation, we have seen 

that the general formula is 

M 	
(2) 

= M 8  = a + bS + c(I(I+1) — 152) + dS2  

As this representation has four isotopic multiplets, we 

must consider only the first order formula. 

Now from 

M = a + bS + c(I(I+1) 	1S2) 

writing 'S = N — Y9  

M = a' + b'Y + 0(1(1+1) — IY2) 

M(Y=1, I=i) = a' + b' + ic' 

= a' — b' + 

M(Y=0, 

M(Y=0, 

I=0) 

I=1) 

= a' 

= a' + 2c' 

The relation that exists can be written as 

M(Y=1,I=i) + M(Y=-1,I=I) 

= 2a' + 01  

= 2(3M(Y=0,I=0) + M(Y=0,I=1) 

• 

....(3.23) 
This relation is satisfied to within 	for the baryon 

octet, and to within 5% for the meson octet. However, for 

the vector meson octet, it predicts the mass of the isotopic 

singlet to be 928.MeV. However the known w and cp mesons 
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both do not have a mass near to this value. 

Should we consider it as a failure of the mass formula? 

Without hurrying to such a conclusion, let us see what 

dynamical effect the existence of two isotopic singlet 

vector mesons will have. Evidently from the point of view 

of the very strong interactions, they must be put in diff—

erent supermultiplets. We can take one to be a member. of 

an octet (say 0 and the other (say y) a unitary singlet. 

Thus if the unitary symmetry were exact, no transition can 

take place from w to y and vice versa. However, 	this 

symmetry is not exact, and the very existence of medium 

strong interactions, which conserve only I and S and bring 

about the split in the masses of the various istopic multi—

plets within a supermultiplet, is a manifestation of it. 

From the point of view of these interactions, wf--,3y trans—

itions are allowed. Thus the extent of the breakage of the 

unitary symmetry will have a measure in the transition that 

occurs between them. Evidently as a result of these trans—

itions, the masses of w and p  will not be as required by 

the symmetry. In other words, both w and y are not pure 

states and therefore y (or w) may not have the mass as 

predicted by the lowest order mass formula. After Sakuari, 

we consider them to be linear combinations of (1),  and wo  

which we consider as the actual members of the vector 
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unitary octet and singlet respectively. As these have the 

same quantum numbers, transitions will occur between them. 

Thus their mass can be represented as a 2x2 matrix in the 

form 

rn(q3o ) 	a  

a 	m(63 0 
....(3.24) 

where a = p84....,w0 transition matrix. This matrix is not 

diagonal and can be diagonalized by means of a unitary 

transformation. The two eigenvalues are given by 

X 	= -1-(m(y ) + m(wo 	*". 4  )) 	W-1-(m(q)0  )+m(w0  ))2  + a2  

4.-.(3.25) 

These two eigenvalues are to be 1020 and 81 mev respectively. 

Also the prediction of the lowest order mass formula for 

the m(yo) based on mp  = 750 mev and mit = 888 mev is 

m(Y0) = 927.5 

Now from equation (3.25) 

X 1 + X 2 = m(p0) + m(w ) 

( x1 —X 2)2  = (m(Y0) 	m(w0))2  +4 a2 

Using X1  = 1020, X 2  = 781, m(yo ) = 927.5, we can 

solve these to obtain 

m(w0) = 873.5 mev 

a = 116 mev 



• - 
while 

Thus 

or 
= e++e-  cos20 

w 74 y 

(p0 	Y 
Siria 

(1) ->y 	Cosa 

(1)-› e+- 	sin2e 

143. 

Again the true eigenvectors, namely y and w, may be written 

as linear combinations of yo  and °jo in the form 

cp 	 + a 	wo  sin a  = (Po cos 	 ....(3.26a) 

= -yo sin a + w cos a 	-...(3.26b) 

where 

92.5 tan a TTr- 80 

i.e. 	a = 390  (coca = .78, sina  = .63) ...(3.26b) 

This value of a shows that there ie a large mixing 

going on between po  and wo  which as a consequence gives 

rise to the mass formula very badly broken. 

Let us now try to see the consequences of the above 

phenomenonlogical considerations. First of all let us 

look at the w,cp -> y transitions. As w0  and y0 
 formed 

essentially members of a unitary singlet and octet and 

can be treated as a component of an octet, we see that 

x (phase space part) 

= .64 	x (phase space part) 

As a second consequence, we look at the KK decay mode 

of the p meson (for w -meson, this decay cannot occur). 
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Kit state must be a p-state, i.e. its spatial wave-function 

is anti-symmetric. To make it satisfy Bose Statistics, we 

must take the unitary symmetry wave-function also anti- 

symmetric. Thus coo 	KK as this is a unitary singlet, 

and the singlet state constructed out of KR is symmetric. 
OM* 

Only yo -› XK. This yo  must be taken in the anti-symmetric 

octet. Now from the Clebsch-Gordan coefficients table, we 

obtain 

p 	7L 7C 	= 747 

yo  -*K
+ + 	corresponding 

yo  -*Ko + 	= - 	X 	phase-space 

K> K+  -›.1{ + Tco - 
213 	factors 

	

-* Knit 	=_ 21 3 

Using the width of p as 100 Mev, we can work out the 

Yo  and K 
4. 
 widths as 	and 5 mev respectively. Thus 

Y -> KR has a width which is.about 5 cost a e-•••3 mev. 
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CHAPTER 4  

Electromagnetic Properties and  

Unitary Symmetry  

We know that the electromagnetic interaction conserves 

charge, but not every component of the isotopic spin. In 

fact, it is symmetrical about T3  axis of the isospin space 

only, and conserves strangeness as a consequence of Q 

and T
3 

conservation. Thus the electromagnetic interaction 

is not an isotopic scalar, but a combination of an isotopic 

scalar and vector. The only such operators which also 

belong to the adjoint representation (and satisfy T3  and S 

1 conservation laws) are T1 and T . ° The choice between these 

two can be made by looking at the basis for the 3—dimensional 

representation, in terms of which the electromagnetic inter—

action may be taken to eN,p5, i.e.. T11. 

Here we remark that we are about to look at two types 

of effects of this operator. One concerns the second 

stage referred to in the last chapter, i.e.,the electro—

magnetic mass splittings between various members of an 

isotopic multiplet. As a second attempt, we shall try to 

obtain the hyperon magnetic moments and the boson form 

factors. For the first problem, i.e. the problem of 

electromagnetic masses, considerations entirely identical 
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to the ones given in the last chapter can be applied. We 

are only to exploit the symmetry between T11  and T33. To 

understand this symmetry we consider the various irreducible 

representations decomposed not relative to the isospin 

group, but with respect to another SU(2) subgroup which is or-

thcgonal to the charge rather than to the strangeness. This 

is the U-spin approach of Lipkin et al.
21' 

For example, in 

this decomposition, we treat p as a singlet and 0 as a 

doublet. To obtain the consequences, we have just to apply 

the transformations 

P n9 T--> 

n> A , 
	 ....(4.1) 

A p 	T 

Thus for example, the basis for the octet representation 

takes the form 

Table XI  

Q U U3 r 
—1 1 

2 
1 
-- 

1 
-2 

ni-5 
AT 

r 

n
_ 

K7 

0 

- 

1 1 

0 

—1 

-ra 
nii - AT 

-Ko 

1 	o 	43 .---- n 	+ 	nc" 2 

IC 0 

--77-- 

A Fi 
. 

0 0 0 
_ TIE - AK + 21317 4-3  no + i no 

2 4.6 
4 

1 ff - 
1 1 

2 

.1. 
-.2 

'T 

Prl 

--le 

n+ 
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From the analysis presented in Chapter 2, it is clear 

that the set of (Q,U) for any irreducible representation is 

the same as of (-S,I). In terms of the weight diagrams, we 

see that a rotation of 120°  about the centre does not change 

the diagram. Q and S are measured from two axes which are 

at 120°  to each other. The symmetry of the diagram now 

leads to the result. U and I similarly take the same set 

of values. 

Now on completely the same lines as were followed to 

write the mass formula, we shall obtain the effect of the 

electromagnetic operator to order n as 

(n) n d 
ED = E 	E 	afj(U(U+1) 	4Q2) Qf-j 

f=0 j=0 

This equation is the same as (3.11) where we have just 

replaced I and S by U and Q respectively as a consequence 

of the obvious difference between T1 1  and T3
3
. In fact, 

under this operation, ri.and A of the Sakata model are not 

split (this is analogous to the fact that under transfor-

mations in the isotopic spin space p and n are not split). 

In more sophisticated language, we shall say that the 

electromagnetic interactions are U-spin scalars and thus 

will not create any split between various members of any 

U-multiplet. When applied to the boson U-octet given in 

table XI, we obtain the following equations between some 

....(4.2) 
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matrix elements (we do not write T11 as these equations 

are true to all orders in electromagnetism as we are using 

only the fact that the electromagnetic interactions are 

U-spin scalars and no additional assumption that, to lowest 

order, these are just a component T11  of the adjoint 

representation). 

7t...  1E1 7i-"> = <IC1E1 	> 	 ....(4.3.i) 
lEi 	= 	> 	 ....(4.3.ii) 

KO1 	> = < icOlEIRO > 	 ....(4.3.iiia) 

	

= < 	o +A0.'1E14710+ 	> 2 	2 	....)4.3.iiib) 
< 	no+4-3,„ , 	,_ + 	> = o  = <4:3,0 + 	, IE I n. 43. no > > 2 	2 2 	2 

....(4.3.iv) 

The euation (4.3.iv) follows from the U-spin scalarity 

of the electromagnetic interaction which forbids any electro-

magnetic transition between a U-spin scalar and a U-spin 

vector. 

Now from (4.3.iv), 

< 	1E1 7E0 I > = < 	I E I 11 0 	 ....(4.4) 
• • (4.3.iiib) leads to 

<elEie>=-1-;(<110  1E111P>+ 3<it0ilEkt0,>-24-3<u0'1Ekto›) ....(4.5) 

Also we can rewrite (4.3.iv) using (4.4) in the form 

- <10  1E1 •it'0,+< 701 IE /05, +2 <itoti E l  n°> = o 
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Eliminating <nol El no>  and<Itot tEl .7‘01. in turn from (4.5), 

we obtain 

< IC°  I El IC°> =<7col 	<7toilE ko > 	....(4.6a)) 

=<n°" I E 17c"> 	<7totlEI No > 	....(4.6b) 

In the above we considered the matrix elements of E 

between two octets. We can also consider these between an 

octet and the vacuum. The only interesting matrix element 

amongst these is 

< 01 El -4 	+ 	7c0  > = 0 	....(4.7) 

The above equation is equivalent to 

< 0 IE 11° > = 4-3 < 0 IEI 7t0  > 	....(4.8) 

In the above we have been writing those matrix elements 

of the electromagnetism operator which are true to all 

orders. In fact the equations (4.3-7) are five relations 

between 8 diagonal and one off-diagonal matrix element of 

E. However, if we treat E to the lowest order only, we can 

obtain two more relations. This is because the formula 

(4.2), to first order, has only two parameters. This time 

we shall try to connect diagonal matrix element of EA, 

electromagnetism to lowest order, for different U-spin 

multiplets. In fact, formula (4.2) gives 

<n IE1In > = a 	b + is 
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< letE1 1K°  > = a + 2c 
	....(4.9b) 

13  0 	011E 113 no 	
2 
not > = a 

	

K I E
1 	> = a + b + 	....(4.9d) 

where on account of E1 belonging to the octet representation 

	

a = -c 	 ....(4.1o) 
Thus the above equations give rise to two more 

relations 

-< elEi  I K°> 	4(3 <nc'i 1 > + <n°" 1E11 1101 > 

+ 24.3<•goi E1  I n°t > ) 	....(4.11a) 

= <n-  1E1 1 	>+< IC+  I El I 1C+> 
	....(4.11b) 

In the following we give a few of the interesting 

physical consequences of the equations obtained above. 
41 Some of these were first obtained by Coleman and Glashow. 

They were later derived by Cabibbc and Gatto.
22 

Okubo19  

used another method to arrive at these. We have tried to 

obtain them in a more consistent manner by using the U-spin 

approach. 

(a) Form factors of the bosons. 

Writing E1  in place of E in equations (4.3.i-iii) and 

using charge conjugation (CE1 C-1 	- E1) we find 

(i) form-factor of n+  (n-) is equal to that of e(K-), 

(ii) form-factors of K°  and K°  vanish. 
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(b) Compton Scattering amplitudes. 

Replacing E by E1  E1  we obtain 

(i) Compton scattering amplitudes for Sr are the same 

as for 7c" 

(ii) the ones for the neutral particles are related as 

in equations (4.6a,b). 

(c) The amplitude. for 

n° -2y 

is r- times the one for q3 
,°t > 2 y 

(d) Electromagnetic contributions to the masses of the  

baryons. 

We rewrite equations (4.3.i—iiia), (4.6a,b) for the 

baryon octet: 

<E-  1E1 E->=<E----  I E E7 > 
<E+  1E1 E >= < plElp> 

< nItil n> 	<1:::°)E1 	> 	

....(4.12.b) 

....(4.12.c) 

= <E°I El E(:)> — 4-3 < Al El E°  > 

= 	 AIE IA> 	< 	

(4.12.d) 

< ....(4.12.e) 

The first three of these lead to 

= (5 nip  — b int  + Om 	— 627)1+ 	....(4.13) 
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This relation is quite well satisfied by the masses of 

these particles. We emphasize that this relation is true 

to all orders in electromagnetic and very strong inter-

actions. The medium strong interactions will, however, 

not allow this relation to be satisfied exactly. In fact 

if we treat medium strong interactions quite arbitrarily, 

we will not obtain this relation. 

(e) Magnetic moments of the Hyperons. 

Considering equations (4.12) and (4.11a,b) with K°, ,o 

TE°t %
-

2 K+ replaced by n 9  E0  9 A 9f-  , p respectively, we can 
write the anamolous magnetic moments of the hyperons and 

the 11. - E transition moment.. in terms of µ(C) = a , 

1-1(P) = S as 

[1( E-  ) = 	(E ) = a 	 ....(4.14a) 

R(P) -"=:= il(e) = 0 	 41•0 .(4.1 4b) 

4(11) 	= 1-t(E° ) = -(a+ 	 SO. .(4.14c) 

ti(E°) = -R(A) = i(a+P) .(4.14d) 

	

<A01 E1 lE0  > = < Eol El  I A > = 	+ (3) 	 Ogg .(4.14e) 

An important consequence is 

µ (A) = iµ (n) 	 ....(4.15) 

In the Sakata model, however, we have 

µ(A) = µ(n) 

as follows from In forming a U--spin spinor. We note( -151)  14 
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however, that though equation (4.15') is true in the Sakata 

model to all orders of electromagnetism, equation (4.15) 

for the octet model is only true to lowest order. Believing 

the above analysis, the above values should have been 

another method of prefering one model over the other. 

Unfortunately the present experimental inaccuracy in p(A) 

is so large that it fits both. 

Clearly relations of the above type will also hold 

between form-factors of the vector bosons. 
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CHAPTER 5. 

Conclusion 

Our attention has been focused on the unitary symmetry 

schemes of Sakata and Gell-Mann..Neeman and we have been 

able to see clearly that, if the choice were between these 

theories only, the octet version would definitely have to 

be adopted, the main virtue of this model being the placing 

of all the 8 baryons in the same multiplet which is forced 

upon us on account of even AE parity. In the Sakata model, 

firstly we shall have to find different places for A and 

E , and with a reasonable choice for E we shall have to 

explain the non-existence of a strangeness one baryon. 

Again the Sakata model completely forbids 

p + p -> K0 1 +
o
2 

the occurrence of which has been seen experimentally with 

the same abundance as 

p + -1>e + 

Another distinguishing feature will be the anomalous 

magnetic moment of A which up to now is in agreement with 

both the schemes. 

We have also seen that we can discuss the symmetry 

breaking with results that are quite good for the pseudo-

scalar meson and baryon octets. The vector meson octet, 
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however, presents many difficulties. Firstly we have 10 

and we can accommodate only 9. Secondly no choice of 8 fits 

with the lowest order mass breaking formulae. Attempts 

have been made to explain both these features. Firstly, 

according to Nambu and Sakuraii4 .2 .the existence of.anOther K* 

resonance is in fact the manifestation of symmetry breaking, 

while the existence of two isosinglet vector mesons results 

in disagreement with the lowest order mass formula. The 

second case has also been discussed and consequences 

derived by many authors. It appears that we shall have 

to understand the situation better. Simple calculations 

probably need the existence of another quantum number as 

has been pointed out by Low and emphasized by Heisenberg.43 

There is a mathematical—cumphilosophical question 

which arises. Symmetries based on U(3) or SU(3) are indeed 

the simplest generalizations of the isotopic spin scheme. 

But why is it that nature respects the full SU(2) and only 

a subgroup of SU(3)? Why is it that we have not found any 

use for the 3—dimensional representation which is, indeed, 

the fundamental representation for these groups while the 

corresponding one was necessary for theizetopic spin group 

SU(2)? 44  

We have seen that Y1 can fit quite nicely into the 

10—dimensional representation. This being anti—symmetrical 
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allows both DIE and ATE decay modes. A calculation based

on the symmetry and taking into account the phase space 

gives the branching ratio 

1 -› (")I.1 
Y.  1 

as 14%, though the reaction 4 -> E, appears to be highly 

suppressed. In fact, so far, no event of this type has 

been seen. Placing Yi  in the 27-dimensional representation 

will forbid this decay mode , but we shall then have to look 

for its partners to complete_the multiplet. 

Again the photoproduction data cannot be made to agree 

with any value of the mixing ratio. This might be expected 

as the symmetry is very badly broken. The results of the 

study of A-hyperfragments can be reasonably accommodated 
445-  

in the theory. 	The unfortunate aspect of this problem 

is that the corresponding value cEe.,?-1 	does not agree with 

the ones obtained on the basis of dynamical calculations. 

This might lead one to the consideration of other 
34 

symmetry groups like G2 	and C2 (or B2). We mentioned 

in the introduction that these groups could not accommodate 

all the 8 baryons in the same multiplet. We might, never-

theless, like to consider the consequences of considering 

some of the 8 baryons to form a representation of these 

groups. The only candidate which does have some hope is G2. 
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This can accommodate the 7 pseudoscalar mesons 7E, K, K in 

the septet representation. HoweverA and E have again to 

be separated. Also Lipkin has shown that this group does 

not allow couplings between 2 vector mesons and a pseudo—

scalar meson. In fact, the same argument applies to C2  

(or B2) where we have to allocate the 10—dimensional repres—

entation to the pseudoscalar as well as the vector mesons. 

In C2 we need 3 isotopic singlets with different strange—

nesses in the same multiplet. In these groups, as in G2, 

we cannot accommodate A and E in the same supermultiplet. 

Again in the analysis of the basis vector for various 

irreducible representations of G2  (B2  or 02) we shall require 

3 (1) more non—linear operators in addition to 12  for 

complete analysis. These operators will not be expressible 

as functions of I2, 13, S (or Y). In other words,. the 

first stage of the symmetry breaking will not result in 

non—degenerate isotopic multiplets for some supermultiplets. 

Thus the existence of G2(B2 or C2) as a higher symmetry will 

result in a revision of our ideas about the hierarchy of 

interactions. 
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