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ABSTRACT 

A covariant theory of polarization analysis of 

particles of arbitrary spin s is developed. This theory 

is based on a 3habha type equation which admits multiple 

.mass values for the particles. We begin by describing 

Stapp's method for obtaining the covariant scattering and 

density matrices for particles obeying the Dirac equation. 

In order to apply the method of Stapp'to the present 

case, a complete momentum space expansion of the wave 

function satisfying the Bhaha type equation is per-

formed. This expansion contains a summation over the 

various mass states and for each mass state the particle, 

antiparticle projection operatorst. ;  the invariant spin 

projection operators and the helicity projection operators 

have been obtained. Working in the fusion theory repres-

entation of thee matrices it has been found possible to 

establish for each mass value an orthonormal basis in 

the 423  simensional space and to derive certain useful 

orthonormality relations. For a collision process 

between particles of spin S and scalar particles the 

forms of the covariant density and scattering matrices 

have been derived by expanding them in sums of 2S-fold 

Kronecker products of Dirac matrices and restricting 
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them to operate only iu the Subnpacc ehRracterized. by 

the particle projection operator and the invariant 

projection operator for the highest spin S. The 

covariant scattering equation is then evaluated in the 

centre of mass frame and after a reduction process it 

it expressed in terms of (2S+1) dimensional matrices of 

the rotation group. The relativistic corrections are 

the same as found by Stapp — the only difference being 

that the rotational corrections are to be applied to 

each index of the polarization tensors. 

In the last chapter the quantization of the free 

field is considered and a closed expression for the 

commutation relations for the free field operators is 

derived. 
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INTRODUCTION 

A covariant theory of the polarization analysis of Wolfenstein 

and Jshkin type has been developed by H. Stapp(). This theory is based 

on the Dirac equation and the covariant forms of the density matrices 

(f ) 	z' (ft) and the scattering matrix 	S( f', t I f ) have been 

obtained by the use of the hole theory condition. f and f' denote 

the initial and final 4-momenta of the spin 2  particle and t is the 

momentum of the centre of mass. The density matrices are the same as 

given by Michel and Wightman(2) and involve 4-vectors p and p' which 

are orthogonal to f and f' respectively and therefore reduce the 3-vectors 

and 21  in the respective rest frames f = o 	o . z 	and 13 

are called the proper polarization vectors . Stapp(1) has also developed 

a technique for reducing the covariant scattering equation giving the 

total differential cross-section I. 

I qt(ft) = S ( f',t,f) 	e (f.,t,f) 

into a form in which the S-matrix is given in the centre-of-mass frame and 

are given in their respective rest frames with certain 

rotations applied to the proper polarization vectors Pi  and pi. In thic 

form the scattering equation is expressed in terms of the Pauli matrices 

and is of the usual form obtained from considerations of space rotation 

invariance. 

The Lorentz transformations involved in the reduction give rise to 

certain kinematical and rotational corrections when one applies the usual 



non covariant theory to the analysis of high energy multiple scattering 

experiments. 

In the present work scattering of particles of arbitrary spin s 

off spinless target particles has been considered and an attempt is made 

to develop a covariant theory of polarization analysis On the lines laid 

down by Stapp. For this purpose the wave function 4).( 	for the free 

particles of spin s has been supposed to obey the Bhabba typo equation 

(PA 	+ms) 4)(x) = o 
A 

There are two types of theories associated with this equation. In the 

first type RBI s obey the characteristic equation(3)  

2s-1 
(32 

PIA 	
( 

 
and op( x .) satisfies the Klein-Gordon equation. However for s )1 , p Is 

C4 
have no hermitian representation and for this reason this theory will not 

be used here. 

In the second type of the theory P's obey the characteristic 

equation 

( a-s ) 	(s-1)) 

 

(Rµ+s)= o 

 

In this case Vs have hermitian representations but unfortunately instead 
(3) 

of the Klein-Gordon equation q (x) satisfies the multiple mass equation 

( 0 - 	) (0 -(m 
	 = 0 



the last factor being ( 0 	(ms)2  ) for n = 2s 	even and ry_ (ms/A-\2  

for  n = 2s odd. This introduces certain difficulties but in view of 

the fact that we can use the well known fusion theory representation of 

the p matrices the present work will be based on this second type of 

the theory. 

In order to define a hole theory condition and covariant S and e 

matrices a complete momentum space expansion of 9(x) 
	

has been perfo=1 

and positive and negative energy projection operators have been defined. 

This expansion oftp(x) contains a summation over the various mass states 

m s ' m s-1 
	 and for each mass state there are bebides energy 

projection operators the invariant spin projection operators belonging t() 

the spin values sy s-1 	in particular the one whichSetlicA 

the highest spin value s. Working in the fusion theory representation 

of the 3 matrices it has been found possible to establish for each mass 

value an orthonormal basis in the 4n  dimensional space and to derive 

certain useful orthonormality relations. Free 'particles' or 'anti-partjeles 

of mass 'm' and spin s are described by the momentum space wave 

functions U ( f ) 	with f lying on the lowest mass-shell f
2= m

2 

/ U (f) belongs to a (2s+1) 	dimensional sub-space yt-k
+. 
 f) 0(s)  (f) 

,. 

1
Mare the 'particle' and the 'anti-particle' projection operators 

satisfying 

(Li pl., ftl+ ms) 	(f) = o 

0(s)(f,) is the spin projector operator which characterises the spin. S 

subspace as it belongs to the eigen value s (s + 1) of the invariant spin 



projection operator 0(f) 

0(f) 0(8)(f) = s(s+1) o(s)(f). 

The (2s+1) 
	

independent vectors within the subspaces ik±(f) o(s)(f) 

have been chosen as the eigenstates of the helicity operator 11(f) 

LW Z(si)  = s. Z(si)  (f) 

If a non quantised version of scattering theory is employed the effect 

of the higher mass states can be ignored, covariant S and 	matrices 

for particles of the lowest mass m can be defined for 'particles' and 

tanti—particles' of half integral spins but only for particles of 

integral spins. The S and 	matrices can be shown to obey the 

hole theory condition 

S(fl,t,f) .7-± 	0(s)(f) S(fIlt,f)0(8)(f) 	(f) 

The algebraic relations obeyed by the p matrices even for s=1 (The 

Duffin—Kemmer relation) are so complicated that the only hope of carryin 

out the analysis lay in using a method which makes the p algebra to 

depend on the properties of the Y matrices of Dirac algebra. For this 

reason the well known fusion theory representation of the p matrices has 

been used andl)(x) 	is considered as a spinor of IrvA4 . n=2s 

each index of which transforms as a Dirac spinor index. The S and q.  

matrices are then ex-oanded as a finite sum of n fold Kronecker product 



of Dirac matrices. The covariant forms of S and ? matrices are 

then obtained by using the hole theory condition and the form of the 

covariant equation q= szs is written down. These are so 

complicated that hardly anything concerning the states of polarization caw% 

be got out of them. But fortunately Stapps method of reducing the 

equation mentioned earlier can be applied with some simple modification 

and an equation is obtained in which the s-matrix is given in the cents,-7, 

of mas frame and the c. (s) and VM matrices are given in their 

respective rest frames with certain rotations applied them. From this 

another equation which involves n fold Kromcker product of Pauli's 

matrices is obtained. This too bs highly reducible and a (2s+1) 

dimensional irreducible equation is extracted from it. This means that 

(s) vie have an equation in terms of the matrices Oi  of the irreducible 

spirtirenresentation of the rotation group which is the usual non 

covariant form of the scattering equation. 

The rotational and kinematical corrections which would have to be 

applied if one used the usual scattering theory for the analysis of the 

high energy multiple scattering experiments are shown to be the same as 

given by Stapp provided the rotational corrections are applied to each index 

of the polarization tensors. 



The last chapter is devoted to the quantization of the free 

field 1p (x). Umezawa and Visconti ( 	) have obtained the 

bo 	cp cyti) 1, 	/3 	i  

by rather formal methods but have mentioned no details of the 

quantization except that the energy is not positive definite. By 

using the orthonormality relations of the rank n spinors it is shown 

that free field corresponds to an assembly of Pais-Uhlenbeck ( 

oscillators and Sudarshenis ( 18 	) method of quantizing such 

oscillators has been utilised. 	This involved the introduction of an 

indefinite matric and consequently the norms of states are not positive 

definite. 	The states which contain no particles of masses higher than 

m have positive norms and we invoke a subsidiary condition• which 

restricts the physical states to have particles of the lowest mass m 

only. 

The classical probability density for antiparticles of 

integral spins and of mass m has negative values. By calculating the 

expectation values of the electromagnetic current j (>1'.) for the state 
/- 

with one particle of mass m or an antiparticle of mass m, it is shown 

that one obtains the usual values for particles and current densities 

for arbitrary spins. The expression for [7_110 (x), ar 	 )J 	given 
GAL 	13 

in ref ( 17 ) has its own advantages but it involves certain 

recurrence relations. We have been able to derive the same relation in 

a closed form. 

commutation (or anticommutation) relation 



\(ti  
(u) = 	1 

(uvuvY°  
(1.1a) 

1(u9iAh 	( 	I 2 s 	+ 	1 ) 
i.J 6i1 r (1.1b) 
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CHAPTER I.  

As the present work leans heavily on Stapps theory for spin -1--  

particles we begin by describing his method for obtaining the covariant 

forms of the S and 	matrices. Also the parity non conserving term 

which wore not given in the original work have been obtained. This is 

necessary for our purpose as will be seen later on. 

Consider a collision process involving spin 2  and spinless particles: 

Let 	f and f' be the 4-momenta of the initial and final spin 71-  particle 

and 't' be the momentum of the centre of mass. The S-matrix element 

in momentum space depends on these three independent vectors and is 

denoted by S(f; t, f) . For any two 4-vectors u = ( u 1 u
4 
 =iu

0 
 ) and 

L) and Stapp has defined the following quantities 

where the square root in ( u.0 )2  is to be taken as positive or positi,, 

imaginary. Using the equation 

(u))((u) = (111w) 7i(u,o) = 1 	(12.a) 

one can prove that 

1(u)‘((u761) =1(11,4 ‘(0) 	(12.b) 



The particle and anti-particle solutions of Dirac equation 

71) 
(1.1 ax 	 m)N0 (x) = o 

in momentum space obey the equation 

U+(f) = o 

Or 

Ic(f) u+  (f) = + u+  (f) 

u+  (f) th(f) = 

t , 
where U (f) is the adjoint of 	U (f) defined by 

t 	ux u (f) = 	(f)k) 4  

The adjoint of a matrix operator is defined by 

= 	Yx Y4 

For time like vectors u and w, 	(Lk) and 	(u,v;) are self 

adjoint 

)(,
)r

(u) = Y(u) 
	

(1,6a) 

6 (uoa) = (u, t.3) 

( 113.a) 

(11 4a) 

(1,4b) 

(1,4c) 

(1,5a) 

(1,5b) 

The particle and antiparticle projection operators are given by 



(f) = z (1 + **6/(f)) 
(1.7a) 

Suppose now that the initial and final. spin z  particles are both 

either 'particles' or 'antiparticles'. In these cases Stapp has imposda 

the hole theory condition on the S matrix 

%(f') S(ft,t,f))/(f) = S(fl,t,f) 
	

(1.8) 

This equrtion can be obtained by noticing that in the case being 

considered the idempotent expression of the s matrix is 

s = Al-(rt) SK(f) 
	

for particles only 	(1.9a) 

Or 

S = 'qv) S ic(f) 	for antiparticles only (1,9b) 

Since 

®(f)A+(f) =6±-0(f) = ± A±  (f) 
	

(1,10a) 

equation (1.8) holds for both of these cases. It should be mentioned 

that the case considered here is less general than that considered by 

Stapp who has put only the condition 1.8 on the s—matrix. This corresponds 

to the fact that if the incident beam consists of a mixture of particles 

and antiparticles, by conservation of Baryon number or the lepton 

number the particles remain particles and the antiparticles remain 

antiparticles after the scattering. The idempotent expansion of the 
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S matrix is then 

S = /\+(f' )S /f(f)  + fc(f 	S K(f) 

which again gives (1.8). For the sake of simplicity we have chosen the 

incident particles to be either 'particles' or 'antiparticles' throughout 

this work. Stapp has furtherla quantity St(k;t9k)  given by 

S (f',t,f) = 	S' (kt,t,k) '((t9f) 	(1.11a) 

where k, and k' are the initial and final relative momenta. The 

advantage of S(WIt9.-/)  k 	is that the hole theory condition for it 

becomes 

Si(k' I t,k)4(t) Sl(kl,t9k)/A(t) 	(1.11b) 

This follows immediately by using (1.2a) and (1.2b). S'(k',t,k) 	is now 

expanded in terms of the bases of Dirac algebra. 

S' (k;t ,k)=A+131. ‘,.14 

Application of (1.11b) gives no condition on the invariant A and 

= 	0 1,) (1.12a) 

B cc t (1.12b) 

C 	t 	=C 14z  tv  =o (1.12c) 

D I-1  t11 	
= 	o (1.12d) 
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In determining the form of vectors C 	and 	Stapp has 
1."  

discarded all terms which are not invariant with respect to parity 

operation. For example D is determined by the condition (1.12d) 
(1 ) 

and Stapp has selected only the first of the following three independent 

vectors with this property 

D(1)  

D(2)  
11  

=-1N(1)  D(1  k k1.),o- V 	t or 

=-1N(2) 
	 t- 

	

D(2) c 	k 	t 
pvAm 1,  X 1-  

D(1)n' 
A 

D(2)n" 

D(
A
3) (3) D(34. 	k' n' t07' = D

(3)n"' 	(1.13c) 
W  

Normalised in such a way that 

D(i) 	D(i) 	= 	D(i) 	D(1) 	i = 1,2, or 3 	(1.13d) 
11 	11  

D(i) for i = 1, is a pseudovector and for 1=1,2 is a p6lar-  vector and 
A 

consequently 	5 ffA A D(i) 	for i = 1 is a scalar and is a pseudoscalar 

otherwise. 

As we shall see later cn it is necessary for our purpose to 

determine the 5 matrix obeying (1.11a) completely i.e. we must include 

the parity non conserving terms as well. Writing D
A 	

a linear 

combination of n' 	n" 1  nu"' we have 
P 	A 

D  = D(1)n, + D(2) nu + D(3)mu! 	(1.14a) 
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C
vP 

-CPu satisfying (1.12c) is expanded in terms of 4 independent vectnrr 

t P 9kP4 
9k' and n' instend of t P1c 

-4  
9k 9 .' e11.,as has been done for parity 

conserving case. 

C = 11 Li 
I 

a '1 kµ k' - kJ0 
LL' 	AJP 

+ b (t k 	t k ) v 	II 

+ 	c 	(t 
P
k' 	k' µt,) 

	

) 	+ 	d (nt k2/  -n' k11  ) 
(1.15) 

+ 	e 	(n' 
4
k' - n' k'µ) + G (n' t - n' t ) 
1)  

Let the masses of initial and final spin zero particles be M and M' 

and their momenta 4 q and q' respectively. The masses of initial and 

final spin particles are denoted by m and m' respectively. Then 

by definitions of k, k' and t 

`if 
4------ 	 \ 	/ 

>,-...-1  
',---- 

/ti` 
t = f + q = f' +q' (1.16a) 

k = f - q (1.16b) 

k'= f' - (1.16c) 

These equations give at once 

k.t = 	m2 
	

(1.17a) 

k'.t = M'2 - m'2 
	

(1.17b) 



k.t 
C= - --t  - -2 

e k.t + d 10.t 
g - 

M2- m2 

tit 

and 

13 

Multiplying (1.15) by tv  and equating to zero the coefficients of 

k
P 
 ,k'

P 
 and t we obtain the values of the invariants b,c, etc. 

k'.t 

 

2 mt _m 2t 
(1.18a) 

    

t .t 	t.t 

t.t 

B 	r.nd C
Pti 
 are finally given by 

1 
Bu 	

(t.t)0 
(1.19a) 

Cup+ 	
aCkp 	p 	t.t 

- k k' + 	 ( tuk -t L, k ) 

M2-m2  

111 2..m,2 

 

(tIA0 k'-t0  IA 	P 
hi )+d(nt k

°1  
-n1 k

11 
 ) 

 

t.t 
(1.19b) 

+ 	 k1  -n' k' e(n1
PP

) 
V 

d k.t + e 14!.t 
(nA 	tp) 

t.t 

 

To separate the parts refering to positive and negative energy states 
(0 

Stapp has proved the following relations (1.22a and 1.22b) 

2 
n = 	

( 

111) - 2  117) 	 ,6" 
1-1 



51! 

( 1 20n) 
_ 	

cps, erQ esriv 5 

If for in the last equation we write 

6:t 	vt  
t.t 

 

( - 	t 4- 2 t6.) ?4 

 

t.t 
(1.20b) 

- t.t (•t - 2tecr+ 2rt 

and utilise the condition 

) 

 

C 	g(t) 	c 
Ind 	1-1.1-' 

2 • C cr can be shown to be given by 111-i 

2 • c Pj 	i/(t) a; 

 

(1.21) 

( 1 .22f..) 

with 

= (-j1.3)  61111 	t.t .t 
1 

(1.2213) 

On substituting for C11)-'  from 0.110 7  CC is at once seen to be 

+ C(2)  nie + C(3)  n".k.  ( 1 . 2 3o ) 
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and hence s( k',t,i1t) is of the form 

S'(0,t,k)= A + B(t)+i4(t)X5  t.(C(1)nil_c(2)nn+c(2)nui,) 

+ ia5  a.(D(1)ni-i-D(2)n"+D(3)n"") 
	

1.24a:; 

This can be put in the form in which particle and antiparticle parts 

are separated by writing 

1 = A (t) + ,' (t) 
	

(1.25a) 

in the first and the last term and 

b(t) = f(t) 	f\-(t) 	 (1.25b 

in the 2nd and 3rd term on the R.H.S. in ( 1.24a) 

S' 	= f\ (t) 	F + i
e5 

. (H+  n' + K+  nfl+E+  n"1) 

+ f; (t) F +
5 
	(H n' + K-n".+E7n") 
	(1.24b) 

It is to be noted that on account of 

n'it = n".t = n".t = o 
	 (1.26) 

fot ±(t) commute with 0(
5 

1(.n' etc., and n'In"0" reduce to 3 

vectors in the centre of mass frame. For the sake of conciseness let us 

introduce the notation 

G- n = H- n' + Kt n" + B- n"' 
	

(1.27) 



16 

The S matrix is related to S' by 

S (f't,f) 	 (Lt,t,k) ?4 (f,t) 

= 	61(t) 	St (k',t,k) 	(t) I (f,t) 

= KF(f , ) -6l(fit) -t(t) 	F++i)(5 	ii(t)U(f,t)Alf(f) 

+ 	/V (f') `‘(f',t)‘(t) 	F-+i715 1.C.nG(t))6f2t)"A(f) 

(1.28) 

Stapp has let this form of S(19,t,f) remain as it is, but equations (1.9a) 

and (1.9b) for particles only or antiparticles only show that for 'particle 

to 'particle' scattering F-  and G vanish and for antiparticle to anti-

particle scattering F+  and G+  vanishMenotine'the S matrix for these two 

cases by g 

(fsyttf) =A±(±)1(e2 0(t) (F"±-Fat i::(5)(.n)i(t)`1(f,t) N(f) 

= '(f;t)'(t) A±(t) (F4-c± if5"g.n) ((t)'(f,t) 

= 	(±1-b) 1((t) 	 (t) i((f,t) 	(1.29) 

The operator /((t) Ii(f,t) is closely related to the Lorentz transformatio 
CI) 

between the centre of mass frame and the rest frame of the incident partic?,. 

This can be seen as follows. 
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Let f be along the z 	axis.r,he Lorentz operator corresponding 

to the Lorentz transformation which brings the particle to rest is given 

by 

L (f) = 	021 1  ve = 	0 ii(-44aA 
	

(1.30a) 

-,a v 
= 	e 	cosh z - al  sinh 2 

(1.30h) 

where 9 is given by 

U 
sinh 0 - 

11 -U2  

f = m (U)U 

mU  

71—U2  
(1.30c) 

A little calculation shows that 
U 

1 
2 , 

L(f) = 	(1+ 	
1 	

- a 
,/1-U2) 
	l  J 1-U2  

1 	1  ( 1 + 	 
11 -U2  

( f 	f )  1 1 1  4 	" 
-1-)4" 

•-t 

(1.31a) 

/2m (m+fo) 

  

  

Triting Y f +i f = f 1 1 4 4 	P P 

f 	L(f) is given by 

WO see that for arbitrary direction of 

L(f) = 

 

+ m1( 

 

(1.31b) 

   

 

2m (f
o
+m) 

  



n'1 	(Nl lo) 

= (NVo) 2 

n' = (N"1 10) 3 

- 
licr.k 1 1 

k AN' 
N" - 	- 

(1.34a) 

(1.34) 

(1.340) k N 
is ?Alit I 

N"'-_ 

13 

4Lt 
In the centre of mass frame i(t) = 	andtcalculation of L(f) 

and '(t) )((f2t) in this fran 	shows that 

( t ) 	(t i f i  ) = L(f1 ) 

and hence 

1 t1  ) Ir(t1  ) = 17(v) 	L-1(v) 

(1) 

(1.32a) 

(1.32-c) 

where the subscript 1 denotes centre of mass values. Thus 

S 	= 
	(f;) Si(k;It19k1) L(f1) 	(1.33) 

The first factors L(f1
) is the Lorentz operator which reduces the incominrr 

spinors from their centre of mass values u(f1
) to their values in the 

rest frame of the incident Dirac particles. The unitary operator St 

then gives the effect of scattering upon these spinors and finally L(f1) 

converts these spinors (in the rest frames) to their values as seen in the 

centre of mass frrtme
) 

The vectors nt,nu,nni are all normal to tIk4t.' and in the centre 

of mass frame reduce to 

k k' 



(ti) = ti (144) 
	; 1 	0 

0 

(ti  ) = ir  4) = ( 0 0 

0 	/ 

0 

= — 
o N 

1 

(1.35a) 

(1.35b:: 

(1.35x;  

Since 

19 

S':4.:(k1,t,k) in the centre of mass frame becomes 

, 
S'+ kk1''  t1' k1  ) 

	F++ 01.(eNt+eN"+TeN") o\ 	(1.36) 

0 	 0' 

° 
o F-+Od. (1.1N-1-K+N"+E+N" ' ) 

4 

	) 
(1.361') 

Density matrices:- 

Stapp has obtained the forms of the covariant density matrices(f) 

ii(f') also by the application of the hole theory condition. 

e(f) 	= 	•Ag'-'(f) (f) 4(f) 

which gives 

(f) = )((f) 	Zci( 

Lgain expanding(f) in terms of the 16 bases of Dirac algebra it 
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can be shown that 

(f) 	(fj 	( f) ( 1 + iY5  4 1) 

p- are 4-vectors orthogonal to f 

p-+  f = 0 

and in the rest frame f = o p- aro 3-dimensional vectors . p- are 

relativistic generalization of the polarization vectors of the non-

relativistic theory. 
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CHAPTLR II 

The generalization of Stapps theory for spin particles to particles 

of higher spins will be based on the Bhabl,a type equation 

ms) 4( x) = 0 (2.1) 

With pT s satisfy!a certain algebraic relation of degree 2s+1 9 s is 

the highest spin contained in (2.1). There is considerable literature 

associated with this equation(4). We give below some of the relevant facts  

connected with it and then by writing ip(c) as a momentum space integral 

'particle' and 'antiparticle' projection operators are derived. Later on 

spin projection operators are introduced and an orthonormal basis in the 

momentum space spinors is established in the next chapter. 

The requirement of Lorentz covariance of (2.1) demands that under 

a Lorentz transformation (3)  

x 	xl
4 
 = apjd  xv 	 (2.2a) 

tf(x) should transform as 

44) (x) 	(x') = 	, A 99  ( 
	

(2.2b) 

with 

/\ 	di  11 13 11 	= (3 .) 	 (2.2c) 
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Or 	 p A 
	 (2.2a) 

Lot Ier7„. denote the infinitesimal generators of the Lorentz group 

= 1+ -'-,t?_ Iea- 
	

(2.3a) 

= 	
Cec-  -eer 
	 (2.7b) 

Substituting for A anda(g- (2.2d) and keeping only the terms up 

to first order in f: 1  we get . x. 

	

( I or_ 	- Ry  leo.) = 	c,11 	 (2.4a) 

Vlriting 
	

in the form 

1) 	)A 
	2 

1 	
& 
	e 	e.T.v / 1k 

(2.4b) 

I
Qv 

 are seen to satisfy the commutation relation 

••••• 
Naga — 1r- 	(2.5) 

(3) 
There are two types cf theories connected with the equation (2.1). The 

first is one in which (Q(11) satisfies Kelin-Gordon equation 

(2.6a) 
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and p , satisfy tLe characteristic equation 

	

,BAs-1 	(p2 _1)  = 
11  

and 	is given by 

	

= 	p 	P 3- 	Pa- 

A = 1,29 3, or 4. 	(2.6h) 

(2.6o; 

For s 3  A cannot be hermitian. For if PA 
 were hermitian its 

eigen values would be + 1 and o and P
A 
 would satisfy 

(311 (Pµ - 1  ) = 
	 (2.7) 

(3) 
which is not the characteric equation (2.6t). Also Harish-Chandra has 

shown that for s 1 	the algebra generated by (2.6a) is not finite. 

The theory which we shall adopt in this work is the one in which p 

satisfy the characteristic equation 

s.=+s 
1 

(p +s) (p1-1 +s-1) 	(p —s) = I 	—s.) = o II =— 	1 1 
(2.8a) 

and 
	= 	Pt, = P;:i 
	

(2.8b) 

That is f P P -1 satisfy 

Peqj  - 13)12e' Pd-l= 	(3 - Stu  Pa_ 	(2.8c) 



The eigenvalues of p are Sis-1,... 	-s and all p can be 

taken to be hermitian. The trouble with this theory is thatp( x) 

does not satisfy Klein-Gordon equation but an equation (to be written dowl: 

later) which shows that for s > 1 	there are several values of the 

mass of the particle. For s = 2 and s = 1 both of these theories become 

equivalent. This is easily seen by noting that in these cases the chara3t,  

eristic equation (2.6b) and (2.8a) become the same. 

For S = 3 , the algebra generated by (2.8a) and (2.8c) has been 

investigated by Madhaval.ae(5). For s=1 we have the Duffin-Kemmer-Petiau 

theory
(6) 

( 

 

m) 	(x) = (2.9a) 
Gx 1-1 

CR S ' kr:Pv 'S RC kr- 	(2.9b) 

PA (34
2 	

1) = 0 
	 (2.9c) 

From the last two equations one can obtain the Duffin-Kemmer relation 

PPP+PP 	5 	4. Rb 	= 	13  A 	DIA (2.9d) 

Defining i1µ  by 

1p = 2R2µ 
 - 1 	 (2.10a) 

( 
we have for V

11 
 's the relations

6)  
1  
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2 

711  = 1  

I R YA) = v6,111  

Rµ 1,, --- 

= 	R 

no summation over µ 

no summation over µ 

(2.101)) 

(2.10c) 

(2.10d) 

(2.10e) 

With the help of 's and p 's one can form 126 basis of the semisimple 

algebra generated by (2.9d) or equivalently by (2.9a) and (2.9b). Moreover 

there are three elements which commute with all the base elements. These 

are  (6( )  

4 

11 'El 7P 	)(I µ< A , 	
17213t 	 ?P )  

4=  

and thus (6) there are 3 irreducible representations of this algebra 

of dimensions 10, 5 and 1 

102 + 52 + 12 = 126 

There are many ways of proving that the 10 dimensional representation 

belongs to spin one and the 5 dimensional representation belongs to spin 

zero( .3) 

It can.bs.easily verified that matrices p given by 
f ) 

P = a 	(1 xAr
A 	A 

 x 1) 
	

(2.11) 

satisfy the relation (2.9b,c) and hence (2.9d). 
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X stands for Kronecker product and ( are hormitian Dirac matrices. 1 .F.1 

unit four dimensional matrix. In this 16 dimensional rupresentation 

fis a 16 dimensional 	. vector. Venn also be looked upon as a 

4 x 4 matrix 4.1a0  with each index transforming as a Dirac spine/. under 

Lorentz transformation. Klein 	has developed a theory of Duffin-Kemmor 

formalism by utilising the fact that the quantities 

uc-1) 	(x) 5 	cl-P 
'dap 

u 	(i 5  '12 C-1)0  94 (x) 	 (2.12b; 

to which only the antisymmetric part of epo  contributes, constitute/wave 

functions of the 5 dimensional spin zero equation. The symmetric part 

contributes to 

Fes= (;uL, C-1)ap(pap () 
	

(2.12c) 

A 	= 	(.(pC-1)ap ap (x) 
	

(2.12d) 

Fµ . and A satisfy the usual spin one wave equations. C is the 

charge conjutation matrix and ce( x) satisfies Duffin-Kemmer equation. 
Thus the 5 independent components of the anti-symmetric to  belongs to spin 

zero and the lo components of the symmetric to  belong to the spin 1 sub 

spaces. 	Klein has also shown the m C-1 17r3 is the trivial component GO a 

and is identically zero. 

It is very difficult to generalise this method to the case of higher 

spins but a heuristic way of identifying the symmetric part of the spinor 

(q) 
space with the highest spin is the following one. 
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The symmetric part 1144 = no,  defines an invariant subspace of the 

Duffin-hemmer algebra. This is a 10 dimensional subspace. The Dirac 
, 

equation belongsl.D2' + D 92  representation of the Lorentz group. The 

Duffin-Kemmer equation with the representation 2.11 of the p matrices 

belongs to the representation 

(D-2-9° EDD °'2) x 	D°'2) 
	

(2.13a:: 

By the generalised Clebsch Gordon theorem the spin one part of the above 

product representation is 

D11° e D2 1  049 D°21 
	

(2.13b) 

where each irreducible spin one representation has been taken only once 

in (2.13b). D2'2  occurs twice in (2.13a) but in (2.13b) only one D2'2  

is included. The spin one representation (2.13b) is (3 + 4+ 3 .)10 

dimensional and identifying the symmetric spinor space ce lo with 
aP Pa 

the representation (2.13b) it follows that this subspace belongs to a 

spin one representation of the Lorentz group. 

Coming now to the case of arbitrary spins, we take the following 

representation of the Ws.() 

(2.14a) 

where 

( 	1 x 1 1   1 x d u  x 1 	1 	(2.14b) 



contains n = 2s factors and )11  occurs just once in thal".th factor. 

(x) has 4n = 12s components and may be considered as a srinor of 

anh n 

= 	
a1a

2 ... a 

which transforms unO.er Lorentz transformations as an Inl fold Kroneckel 

product of Dirac spinors. This 4n  dimensional representation belongs to 

the representation 

, 
(D29A)  D'-'2 ) X (D29'-'

,  
D°92) 	x (D 9u(dip ) 

n factor 	(2.15a :  

Again the spin s part in the product representation (2.15) keeping each 

irreducible representation only once is 

n 	n-1 i 	n-2 2 o 	
2 '2 	2 

D 	al) D 	a) D 

The dimensions of this representation are 

(n+1). 1 + n. 2 + (n-1)3 + (n-2).n 	- 

- (n-1).1 	(n+1) 

1. 1 + (1-1).2 + (1-2) 3 	(1-1)11 t 

with 1 = n+1 

The sum of the series is 

1 (1+2 +3 ...1) - (1.2 + 2.3 + 3.4....+(1-1)1) 

(2.15b) 



1(1+1) 
= 1. 	 

1(1-1 )(1+1) 	1(1+1)(1+2) 

   

2 	 3 	 6 

(n+1)(n+2)(n+3) 

6 

But this is exactly the number of independent symmetric components of thr. 
tke 	ikulk gull- spacg 

spinor 	. I defined by the completely symmetric spinors 
a1a2 ** *an 

Ta
1 a2 1  

...a.a.
+1 

 esoC.4 4hoeU 
os.Q.Q. 	....a....a j 14-1• 1 	n ( 2.1 7 ; 

represents the highest spin value S -fn = . Invariance of the subspace moall:, 

that if d 	is completely symmetric then 
a1 wan 

011  
al a2***Gm 

is also symmetric. This can easily be proved by using the form (2.14) 

of p
P
. 	a- 

D i co-c s' -nor ero,,,-..811-4:0 yr 8 a.4 

)1.0
a 	Lao  4,13  

under a Lorentz transformation,' Tap 	y-  transforms as 
(7) 

(tap 	(LxLxL... x L 	 (2.181) 

Lace  L", • .. •Ln, ( a, (3, 	 (2.180 .  

(L(11) 14) )ap• • • • ,506 	 (2.18F,) 



(747 
Writing 

71; 

 

(e-i9,4) x 

(all factors are ) and ill summation over 0 

The adjoins of () is defined by 

(2,2s. ,k1 

and the adjoint of an operator is defined by 

~lL• 	X . a ri 
4 

Thu adjoint of L
(n) is 

A l ( 2 . 2 A>) 

L(n)t — 	4 L(n)x11x\/ 14 -v4 44— '4 
LXxLX . 4 4 	4 

	

4 	4 
LWa...a 

= 	II   

	

-1 	 1 	-1 
= L 	x L 	x L 

= (1,
(n)

)
-1 (2.20c) 

Defining p(u) by 

3(u) = 
13.0 1 

6.1.11)2 posititi'z or positive,imaginary 

(2.21) 
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For time like ut  P(u) is self adjoint 

(2.21) 

p(f)+ 
 

= `y°  p(u)x(u) J7 = 13(u) 	 (2.22) 

4 
This is so because p

11  
anti..:omuies with 

14 
for ;44 and 

commutes with14 
74 

 for P=4. 

The Lorentz transformation defined by 

xplin.) (t) = x110 - r- x (t=o) 1.— 
(2.23E) 

x
P 

= 	(t) x11/ 	 (2.23b) 

r :where X12.0 = xu(t=o),"the value of the 4-vector xL, in the Lorentz frame 

in which the space part t of t vanishes is represented in the Dirac space 

by L(t) with the properties 

L(t)Y12 L-1(t) =,n v  7rk 
	 (2.23c) 

or 

L-1  (t) Qv  L(t) = 	 tA4)  (t) 	(2.23ff) 

As shown by Stapp(1) the Lorentz operator which brings the Dirac spinor 

u (f1) to its values in the rest frame f = o is given by 

ir(t1)1((ti,f1 ) = L(f1) 	 (2.24a) 

Aftt
1 
 ))((t1  ) = L-1(fl1) 	

(2.24b) 

If x is either f or f' 
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L (t) r(t) )/(x,t) L-1  (t) 	?.((t1)1((xl,t1 ) 	 (2,2 F...) 

L-1(t))c(t1)($,,x r
,t

1
) L(t) = )(6)4;f9 t) 	(2.25b) 

In the space of spinors of malt'n'... The Lorentz operators are given by 

L(n)  (f ) = (L (f) x L(f) 	L(f) 	 (2.26a) 

L(n)-1  (f) = L 1(f) x L 1(f) 	L 1(f) . 	(2.26b) 

Particle and antiparticle projection operators. 

It is profitable to consider first the simpler case of spin 1. One 
P.f 

can verify by usinc the Duffin-Kemmer relation that 13(f) = --r satisfies 
(f.f)2  

the characteristic equation. 

B(f) 02(f) 	 = 0 	 (2.27) 

Vie e •  N))  now make use of the following well known theorem  

If A is a linear hermitian operator which satisfies the characteristic 

equation 

n 
11 	(A-Ai) = o 	 (2.28a‘ 
i=1 

A.arerealcmembersand.allA.are distinct than there are n 

projection operators 

(1) 	7S7 	(A - Aj) 

7 = 	jai A. - A. a. 

i = 1,2, ....n (2.28b) 
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with the properties 

y(i) = 	7(i) 

(i) 	(i) = 	(i) 
10, 

(±) 
= 1 

This theorem shows that these are 3 projection operators 

lt  +(f.) = 2 ve2(f)-1- 1 

7  - (f) 	t(?2m - 1 

1,1  0 (f ) = 

(9,2c_;c) 

(2.284 

(2,280 

(2.29a) 

(2.290 

(2.2;c) 

/ If we take f on the mass shell f2 = -m
2

y then. \+(f) satisfy the particle 

and anti-particle equations respectively 

(iP.f +ni 	(f) = o 	 (2.3(a) 

while IT(f) satisfies 

0.f N°(f) = 0 	 (2.30b) 

Let us now perform the fourier analysis of 00. Writing 

41(x)  = 	if.x d4f 0 	q9  (1) 

and substituting in the Duffin Kerner equation we get 

(2.31) 



* 
I. ( 

(2.33 • 
_ 

— A iIrt2  L 
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(i p.f + m4(f) = o 	 (2,3! 

or 13.4(f) = im;(f) 

Multiplying (2.27) byiif) and using the last equation 

im 

(f.f)2  
m2 - f.fll = 

(2.31L .  

This shows that f2 has a single value equal to -m2. For arbitrary f we 

define 

 

1 

  

(f) = 12.1') 2+01B•f) (2.3:J- 
-2im2 

   

(1(f) °(f) 
Co7L,-)1,11  

a.  fiV+1"-.) (2.3C. 

so that 

14( f) t(f) ± 	f-) 
t; . 

and By using the relation (13.f)2  = f2p.f one can show thatIcf)1/(f) 
24.m2‘.  

(1') 1/°(f) contain a factor (f 2+m2). 	More precisely 

1f ) '37 4*(1) 	2- 6' f)
2 „.„.„2.) 

(2.33. 



In view of the fact that 

35 

Cf) 	P-f -rrt) A 5 (2.35) 

 

The solution of (2.31a) can be written 

iPrf) = SI(P± w?) f h÷(5) XV) li)09)10 	
(2.36) 

Wherep) andTo(f) are arbitrary spinors in momentum space. 

Substituting for(f) in (2.31) and integrating over fo  with the help 

of the 	function one obtains easily 

cp6o_ foe ;). 	[ 
ec 

 
71 (1) x(fi +17 Tdc, (01 

e-t1-,4 13- 5-  1+ "( AL f1i-c---f) 	(2.37) 

The 4-momentum f occuring in this equation lies on the mass shell 

fo 	= 	/ f2 + M2 	
(2.38a) 

Hence 

(2.38b 

0 
and f 	m1 1,-) (f) occurring in this eauation can be written 

p(f) 	13 g).1 



J1C-(f) m ± (f f)LA (f) 

p T 01°0) 

and 

(2.40n 

(2:40b; 

(2.41a,. 

(2.41b) 

p•fy)q± (f) s k_ 
+ 

o 

Them satisfy all the properties of projection operators. Also wo have 

from their definitions 

By virtue of these equations the fourier decomposition of0P(x))equation 

(2,37) can be written 

2W 
fliFicf))((i)e(i-licq7(f)XL--C) (2.42) 

e. 
It is seen that in the momentum space representation the second rank spinor 

space splits up into three subspaces characterised by the projection 

° operators •7-(f), ?(f). The fourier decomposition ofCY(X) satisfying 

Duffin-Kommor equation contains only the spinors satisfying particle or anti.... 

particle equations (2.41a),)t0(f)  having been annihilated by the operator 

P.f. Moreover1P(x) satisfies the Klein-Gordon equation. 

Our next task is to generalise this procedure to the case of arbitrary 

spin s. 
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Lot f be an arbitrary timelike vector. In the Lorentz frame in which 

f= o, 

r3'S 

(f4 2. 
since p

4 
satisfies the characteristic equation (2.8a), P.f satisfics 

S S- 2.- e 
_s 

For even n - 2s, this can be written 

Pit  (2.43,. 

(2.431. 

63 	5  f• f(131) (3-94 f 	t) 	(244.  

  

For n = 2s an odd integer 

ff— SY.43[03-5)'"-- 	01-1-!] • 

  

( ) (2.41!' 

   

Substituting for (x) from (2.31) in (2.1) we get 

f 	Ion 5 ) 	( 	 ( 2eE1 5 

or 
	

4 c-(f) 	c:13(-SJ 
	 (2.45 

pa 
Multiplying equations (2.44a) and (2.44b) by (f) and using (2.45b) one 

finds that th se are S = - possible values of f
2 = ff for even n (8) 

2 

2 
. s 	2 f2 = -f \  m 	- ( s 	27m

1 
. . s 	 s-2 i 

s Li 2 
• \,.:1 (2.46u 

n+1 	2s+1 
and 	2 	2 

	values for odd n 



5  )1 
17A 	— 	

,) 2.. 2 	-4 . 	- 2 	7-rf 	( 2 . 461: . 

Let a denote the set 
A 

S 
k s ) 	3  ! c)(T 	S-2 i  (d1  t 

\- 	 1,  if  

) 	0 
)1/4  

In this case it is much bettor to put in the momentum integral f2 on the 

various 7nass shells give:1 by (2.46a and b) 

4)(31-- 	e 	0(.C 4- 1̀"',..)99i'%)(Pd-11-f 

Integrating this with the help of the 
C  t functions 

,,t'.) :-.. E3'e 
'f(x) 

cp ( ., 	c  (...)...)) 	,.0. 	fn.-0) 	Qj ti 41.  S 
,,, 	1_—  w 	(... 3- 	+ ..%- 	cp (-- S. i  

___ A 	 c?-0 	J(2.48W 
>, 

The time component of f ' has the mass shell value 

'11P: 04  5.9  

2- 	)) 

0 

91 2- 
e), c 

(2.49a. 

(2.491). 

(x) 

Substituting for,19(x) from (2.48b) in 

-v1/1  ) cc,(x..) 
411k 

we obtain 	
o) 

X r- I.A) Ix) 
(‘‘ 1(1.- 13- 	+v )'4) 	5 ) e 

) eWx 10
(x)(— 0,1) 

= 

. 
IX) 	3 
. 	cif 

e
ta), 

(2.50) 



For each of these a 
1' 

Satisfying 

YS- ) is thus seen to satisfy 

(2,T,1a) 

or 

(2.51b.: 

	

For each value ofd , B.f 	satisfies the characteristic equation 

+S 

( 	S
-0') 

-S• C 	ot, -- 0 	(2.52a) 

S. —S 

there is a sot of unique projection operators 

1-rN 

S . 
/3. S t)t- S • C inel 4.. 	ok 

 
' r  7 ( 

• S.  

21 
Si  -r-- S 	

= 
7 

	

Si 	()  
ik 	) 7, 	( SI.  ) = 

Comparing equations (2.51a) and (2.53a) satisfied by cf, (f
A 

 ) and 70) 
, to)  

one finds that there is ono 17 ( f ) which satisfies the same equation 
ea(X)  (>4 

	

as 4P ( 	); this is the ono for which 	-_. s , s \ o 

- ft>*).- s tic • t Yv7 SO(  
= 0 (2.54a) 

5, 

S. 

f 

g ' . L 1 

1 
1 ) 

(2.52b) 

(2.53a)  

(2.53c) 

S• ) z  

) 
1 j  

z 

• ryr, at 

C) 

( . 



gives since 

5 C A  

, (A) 
t 'N111 

&I  09 
There is no other el,  ( 4. ) 

can write 

;6  ) 	)  

S ) 

ty? 	S 	( >4) 	0  

(2.54-0 

2.540) 

which satisfies this equation and hence we 

(SA I 

17. 	'cf `; ) 	 ( 2.55) 

(A) 
whore X(f ) 

(A)( 

( 

is some arbitrary spinor of rank 'n'. Substituting this form 04 

(S,) 0.) 
)3c(t ) 

(2.56)

(4"°(— f'') ‘f) .  

4.--gx)(i..(x))  

	

in (2.50) 	(T) 
c • X 

apx 
e 

(s,,) 	(Ai 

(--.f ))a- J-) satisfies the same equation as 

0 (2.57) 

Finally putting 

( ) 
.17.. 	c

3
f 

+ e 

54)) 14' (÷) 
e_ 	 ( (>) (X) 

11 Cf.  

(2.58) 

(2.59) 



where tJ,  ( 	) 	satisfy the 	and 'antiparticle' equation 

(ti g..5-0•) + rims) 	(-f 	_m 
(2.60a) 

r)  = 	 —4o(A) 	

2  
f 	

I 
 oc)- 	(2c60b) 

From (2.59) it is readily seen th:-.4(x) obeys the multiple mass equation
(3) 

efl(y.)  .0 (2.61) 

2 s
2 
) 
	2 	 2  GS  2-)2.  The last factor being (0' 	mfor even n = ,15 and 0- 	 - 

for odd n. 

Invariant Spin Projection Operator.  

There are two invariants associat-A with the extended Lorentz group 

defined as the sum of proper Lorentz group and the group of translations in 

the 4—space. One of them is the rest mass operator and the other the 

operator which gives the intrinsic spin of the particle.. ' This is given 

bye) 	(i) 

0 ( g_N ifN 	 11‘ 	 /Lk "I‘ 	
(2.62a) 

The infinitesimal generators Tlip  for the equation (2.1) are given by 

(2.8b). Therefore 0(f) is given by 

0 ( 

0.)  ex] 
tgx,4-][1%, go] -C 

(2.62b) 



t• 4110. 

•.•••• 

142 

IA) 

0(f )  
00 

group. In the rest frau° of the particle f 0y0 (f°9) reduces to 

° (f 	0( 0) 
	

ik gd( ft,Pj J  

	

7:- . 
	 (2.63) 

where 	is defined by 

(2.64) 

commutes with all the generators of the extended Lorentz 

The properties of /I. are easily obtained by going over to the 

representation (2.14) in which • is given by 

—f— 	?g, cr • x. 1 	x l  

. • 	 r. I X— 	I/ 09 	n terms t I 

with 

(2.65) 

0" • (2.66) 

satisfy the commutation relation of angular momentum matrices 

ri- 
ec 	11.4z. 	 (2.67a) 

and the characteristic equation 

1r: 	(Y_ • -41 
	

C 	 (2.67b) 



9 

2 
a2 = 3- 2a 

2 a3  = 

(2.71a) 

(2.71b) 

143 

ShoWirg that the eigenvalues of 11. are -s, (s -1),....+s.  

The spin operator (o) = 	is now easily seen to be given by 

0 69 	
1. 

Vri 4- 

- )(1•X 	+. 
(2.68) 

The sum involving (p, contains 
nC
2 

terms each term has 0-, occurring 

• 

twice. Denoting such a symmetrical sum of 	by 

erz 
er9 

ka) 

[ 

(2.69a) 

(2.69b) 

For s=1, n=2 

x. CX (2.70a) 
Cg-) 

For 	-5 7= a  ) lq = 3  
..2. 

1...• 

••••▪ •▪ • 	15"'  . X. OS  : )( i L 	L 	4---  1 A CZ ,c 4;•:. 
4.- 01 

t: CI 

	

	 (2.70b) 
s 

For s= 1 and2'  the eigenvaluos of 2: can easily be calculated by finding 

the  oieermalues of   a2  and a3 and utinsin6—the properties of a. matrices 



1- 

This shows that the characteristic equation obeyed b5.. 	is 

O 	S 
(2,72) 

Calculation of the eigenvalues of L by this method becomes extrum,,dy 

coplicated for higher spins and WG must fall back on some general 

considerations. The algebra obeyed by Z. defined by (2.65) is the same 
4- 

as obeyed by the spin operators 

( 	yi X i • • 	iac 	 XCZX1 	Ixlfi 

-FIXIX - 	JXcJ 4  71  talhf 	(2.73) 

This is the direct product representation 

L 
X _D a  

tyt 	CA irtplij (2.74) 

1 
where D' boons to the spin -g- representation of the 3-rotative croup. 

By Clebsch-Gordon theorem a similarity transformation SI reduces (2.74) 

into the form 

D e 	b c 
3,1 (2.75) 

The representation belonging to the highest spin value s occurs just once 

while the lower spin representations occur a times in general. D(s),D(s-1) 

belung to the eigen spaces corrasponding to the eigen values s(s+1),(s-1)s.., 

of the transformed operator 

(2.76) 



where 
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fr P 
(2.77) 

Ai 9- 
The eigenvaluos of 	E_ and hence of 1:- are s(s-1), (s-1)s, 

The characteristic equation of S is therefore 

z2_ 5(S-1-0)(1e—H1 	 o 
	

(2.73c) 

(J 
By covariance considerations 0 ( 	) also satisfies this characteristic 

s s+ 	0(f ) 	(s-os ::..'.' 0-  (2.781.) 

CN 	 () I 3  
The last term being 40(f ) for integral s and 0(1) z 2 

for half integral s. 

(19 ) 
0 (f 	is hermitian in the sense 

f 
0 (5' 174  ox(4:A) 17 ,1  	(4 r:} 	(2.79) 

and by the theorem (2.28) the projection operators are given by 
("I 

0 
( Sp #)9 	

1 
0 (f )- ... .,1.1 - _ 

•s. 	.s• 	si  - si  
-1 	c 

where s. denotes the set 
J 

ar1, 15 d „ v.,,)  ., (s,-- 0  5, _ _ 	, 4 	-21.-  • 
oi 

o t"  cf"9) 
satisfy the usual properties of projectirn operators 

(A) 
(-5  • j 	0.9 ( 

c̀ ' ) D - ( 5 	0 (f ) 

4; 	
(2.80) 

(2.80a) 

(2.81a‘; 



(Si) 	(A) 
( f 

4r.  

(s..) 
0(f-) defines an eigen space of the invariant spin operator 0 C 4 (") 

(so
( f') Si 4-1  ) 	( -f ) 

cse.) 
(2.81c) 

The form of 0( ) for f=o is cbtaincd by substituting from (2.3) 

in (2.62b) 

-0•1 

t.1  ) 
[ 	+ a 71— u jpi * adi )5r), 	)] 

(.14 	 Ca) (2.82) 

65,) j)) 
We shall be interested in the following properties of 0 (f ) 

5i.) , t AA 
(1) 0 	(f' ) commutes with 11 i  (f' ) 

This can easily be proved by going over to the frame f = o. In this 

frame 0 (?1 ) is given by (2.63), 0(o) = 27 (pi, p j3 [poi] and 

AY- 
.1Z t  (f ()  ) contains only p

4
. By (2.8c) p4 

andipioi ] commute 
ei 

Covariance consideration show that 0(f(.9 ) and hence 0 '1(f 69  ) and 
5- 	), 1  
1  (f (s  ) commute in any Lorentz frame 

(2) Since 0(f
,k) 
 ) and hence 0(Si 

(f tm )  commutes with all the 

generators of Lorentz group, in any irreducible representation of the 
(SI 

Lorentz group 0  (f -̀''\) will bo given by a scalar matrix. Since 

(s) 
(f' 	(V 	, 	, 

o 	) 	(f ) = 0 (f') this scalar matrix is just the unit 

matrix. 

(2.81:) 

D( f-t`') 



s-) 	(f) = ± A(f) 

qZ,±(i) 	x A±( f) 

G(4) 1 -1Z- ) =i-lzroa-f)xreOW) —2.VA (2.85) 
At(f) %A .1-(f) 

=-2t_J‘A4).-1Y.A?(,)(KAy.t..+ItriAvixAtci 

1?  -±-0) 

.47.  

(3) 	 / 09 ) (f) is closely related to a base element of the p algebra 

which commutes with the whole p alcebra. This relation will now be 

investigated and the following result (whic might some times be useful) 

r 	1- 1-
0 - 	

2- 
will bo proved /

h 

off` ir 	- 

	

d f)rY/ 	(5) = K (5) 0 
(s)  

(.01Z—U) 

if 1Z (f) commutes with K(f). 

For s = 1, n = 2 i.e. for the Duffin-Kemmer algebra, the 

element (4  

	

111.1- 	 v/Aq)) 

— 122  r,t,rt> xf/Az( 

L 	 -1- a, 
IA IV 

Commutes with the whole Ruffin-Kemmer algebra. This element is closely 

connected with the spin operator 0(f). Infact since 

(2.83) 

(2.84) 



PC re 	n factors 

)48 

where except for the difference of multiples of unity G is the 

same element as given in (2.84). 

In the general case one defines 

414.„ 
(2.86) 

1r occuring in the ith and jth Positions. The element 

.4._ 	 c 
	

dr-:0 	lb 	for each i,j < n 	(2.87) 

commutes with all the elements of p algebra(8). Again 

Z- 2) 	[(All)  /71 ( 2.88a) 

	

- 2- 
r:01-+1)  4- L 	 ±(f) 2- 	t.< 

Denoting by g the factor within the square brackets in (2.88) 

4- 

°(f rY1 It( f 	 12.±(f) t_7( (f) c 
G has the same commutation ,,?roperty as G

ij and it follows that if 

commutes with K(f) 

= 	7 ±41 

(2.88b) 

±- (f) 

(2.89) 
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The same result obviously holds fir 0 

Projection operators for Helicity components.  

The operator E(f) defined by 

ti 
(2.90) 

 

x 	. 	 x  . 1(1  

4 1 — 4- - 	 )] 

 

where 

(2.91) 

reducos to 4`, for f along the ith space axis. E(f) is 3-space 

rotation invariant and so E (f) satisfies the characteristic equation 

= 0 	 (2.92) 

S' -5 

The projection operators for different helicity components are given by 

. 	
( ) 	

(2.93) 

Theyobey the usual properties of projection operators. 

c , 
z CO 
sc  :.- 5  

c 	7-6-i-‘ f ) 5) 

(2.94a) 
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7-,sV) = s, 	 (2.94c) 

Since C)  (f) commute the generators 17. of 3-space rotations 
CY') 00 

(a sub group of the extended Lorentz group), 	Q (f) commute with 

I: (f) and hence with Z. (f). 
0,7 

The commuting set of hermitian operators f3( 	, 0(f) and t(f) 

have simultaneous eigenvectors. Unfortunately this set is not complete 

but utilising the representation (2.14) of the p matrices it is possible 

to build up for each mass value ma an orthogonal basis in the 4n  dimensional 

spinor space. This will be done in the next Chapter and some useful 

orthonormality relations will be derived. 



••••1,- (3.1b) s s 
I 
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CHAPTER III 

AN ORTHONORMAL BASIS IN THE SPINOR SPACE 

SA  We have lien that the projection operators 	satisfy the 

"particle equation 

sf-W f)? 3 ‘ ). 	) 	C:fj-  ) 
(3.1a) 

A
O ) O  ot 	ft- °( S I (3.1c) 

takes s values 0, 1, 2, 	 S for integral S and 2 S2
+ 1  values 

—  0, 1, 2, 	 2 S
2  1  for half integral S. 	SA  takes values 

A S 	= So, S1,  S2, 	 SS-1  or S2S-1 
2 

S , S-1, S-2, ... 1 or i 

74-1"particle" equation can be written in two ways 

(3.1d) 

(3.1e) 

s . p. s-' .4- 	s i? Ac f ") 7- 0 	 (3.2a) 

Vrt 

t T••} 	

s'N( 	t)*) 

or 	( 13 .  ( 04 	Ste) 	Sx 	0%) =_ 0  
e 

antiparticle equation is 

(3.2b) 

(3.3a) 

or 	 0,)) 	4,),) 	- -TA 0 
. 	. 

(3.3b) 
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In the representation (2,i4) of the p mario,s 

Ficf( )')) 7: 	 x - 

)4. I5C5 7̀9 )1 
(3 

Fur.ither 

?c(?}) 	NkCiLL 

f) Yi- 	L  

The projection operators in th(: Dirac space are 

t\ 	 (X))= 	( 1 ± 	(f(')) 

A + (f( x)) +A —(t(')) 

	

(f"') )/v/3  (f(T)) .± 	(f( 1 /4 )) 

(f ( >,)) A— (f ( x)) 	A— (f (?.,  )) 	-4- (f ( N) )  = 

f(>, ) is timelike and. Z5 (f(  ))) and A±  (f (  X) ) are s3lf adjoint 

wf(fm) . (4  ;x(f( x)) w(4  

±(f(x)) 	(f (A)) 

In the rust frame f = o, 0 f()‘)  = 	m, 	(1*(1  )) 	 '(o) = 

and /V.+  (2(1)) 	=:A-(1 	WO, (3.5e) r.auced to 

y 4  A (o) = A(0) d4 = 	c!) 

(3.5b) 

(3.5c) 

(3.5C 

(3.53) 

(3.6a) 

(3.6b) 
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Now consider the quantity 

(f (  )) = f\+(f ( x ) )x —(f 00).•• 	c )) x 	.p 	n = 2S factors 
(3.7a) 

in which ic(f())) occurs 1 times. This satisfies 

(f ( T ) ) 	= 	(1 - 1 + ..t\, (f ( ' ) ) 	" • 
	

+ 1)A (f(A)) = 
	

2 	r. 

	

1 ) A4f ( A ) ) 
	

(3.7b) 

Moreover there are 1':.r quantities of the type (3.7a) whose square is the 

same and which are orthogonal to each other but each of them belongs to the 

same eigenvalue (S —1`) of g (f()b )). 

It is advantageous to write these down in a table form 

TABLE I 
()-j 

I/1C 	A, A 	• 
0 ) 

 

+ 
/\ 	t\ X — 	 x 	x A. 

A X• A - -_ X I\ X P\4- 

_• _ 

t\- 	_ • _ 	- -- 

„'.1) 	)••; 

( 4 )- 

 

  

  

    

-t- 
A?c A x- 

11C 2 	(A) 
••••- 



-4- 
4 f\ 	P`. 

511 

_ _• 	_ 
yA+ (xl.) 

nnh 

The total number of the6o projection ope rators is 

Co oy. 	VI 	 -r% 	 , 11 
= 2 

11 
C + C1 + 40. 0 	

+ 000 	C 	= (1 + 1) 

i 	th 

and they are co:thosonal to each vM.er in the sense 

f\ (j) 
	(f(

X 
)) 

/\ 
(di) (f( 

jk 
 ) ) . A ( :5 ) (f('` ) ) sal, S-011 

Y 

The sum of all those projection operators is the identity operator 

("eJsj/ p‘  

(3.9a) 

-r =0 

MCA 
1,\ 	) 

-1  
(3.91) 

For X = a, i.z,Sx  7..:S07-7  5)  0(0  = 1 	there is only one projection 

operator/NY ) (f())) which satisfies the particle equation (3.2) and 

only which satisfies i.he antiparicle equation (3.3) 
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( f3 (f(0)) — S) 	0(1)(f(o). 

	

) = o 	(3.10a) 

(A (f(°)) 

	

+ 5 ) 	1,1  (1)(f(°)) = o 	(3.10b) 

while any member of thelat 	satisfies 

LA (,(0 ) 	(s 	 (f(0))  _ 

	

2 	(3.11a) 

and for T 

	

[08 (f(°)) + (s 	I At, (f(°)) 	o 23.1 1 b) 

In general for any 	the members cf the set A( ) (f( )) satisfy( 

the particle equation 

(Of( X )--VirS) /\ (.4)(f( X)) =LP (f( A)) 	sx.7 A (f I (X)) o (3.12a) 

and the 	C
h— 	

members of tha group A6" (f (\)) satisfy 

the antiparticle equation 

(i A • f (1‘ )  _.:YA0A),( ,\)f.f (A  )) =14 (f (  )) + 	A)) = 0 (3.12b) 

The sum of all the operators Ath(f(  )) is equal to 1 +(f(A)) . 	(f()1/4)\ 

That is 

fit + 
) ( 3 1 3a ) 

This is so because both the sides satisfy the same particle equation and 

their squares aro the same and both are hermitian. Similarly for the 

antiparticle projection operators 
_ 	, 

— (f()s)) = 	'(f(?' )) A „(f. ,) 
(8) 	( ) ( 3 . 1 3 b ) 
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") (X)\ (f 	/ for and Y 	do not satisfy the 

particle or antiparticle equations but rather those satisfied by 

si  Si\ (f())).  

The helicity operator 2:(f()°) E(f) given by 

	

(1') 	( 47-(s) x 1 x 1 	 x1 	+ x 	(f) x1 x 	 x1+ •• 

	 +1x1x1x...x1x;:(f) 	), im terms 	(3.14) 

has helicity eigenvectors of the type 

§ (S) = 	(S) x 	(L.) x 	 x + (S) 	(3.15) 

where 

	

+ 	
rrii'i  g - (t) = i (1 + ;- (s.)) 	, tr- (1) = (1.sii  (3.16a) 

and satisfies 

 

± (L) ± (S.) = § ± (S.) 

i.  (S.) t ± (L) = 0 	

(3.16b) 

(3.16c) 

1 + (1) + 	(f) = 1 	 (3.16d) 

	

<77- 	
+ 

(1) 	— (f) = t 	±(f) 	 (3.16e) 

If in (315) 	g (f) occurs 	times then these are 'd, orthogonal 

projection operators of this type,they have the same helicity eigen value 
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= 1, 2, 

 

) C . _ 

 

Again there are 	11Co + "01 +  	
= 2 	helicity projection 

operators and they are orthogonal to each other 

cr.  r 8' 	(f) Q. (r. er, (3.18, 

It is better to arzango these helicity projection operators in such a way 

that the first 2 S + 1 belong to the 0(s)  (f()4)) space 

Os  (f(A)) Z(j)  (E) 	i = 1, 2, 	 2 S + 1 	(3.19' 

0 sa 	(r()).  " ‹S  
and the rest attached to lower spin operators 	There 

.5%cc 
will be several 0 	(f (A)) subspaces but an orthogonal basis may be 

constructed within each s" 	s spin space also. Lot these bo denoted by 

(P)) 	1, 2, 	 2 S + 1, 2 S + 2 	
 2 

(3.20) 

For 	fr= i 4. 2 S + 1 

E i  (f ( X)) 	0(s) (f ('))7. (i)  (1.) 
	

i = 1, 2, ... 2 S + 1 (3.21: 

0- 
POT higher values of e , 	are formed by 0 0 ' s(f( x)) 

/fr  sum of (1). The orthogonality condition reads 

adin 
and/appropriate 

Oi-(A)) f(f('')). e-(f(A)) 
-07 

= 	2, ••• 2. 

(3.22) 

eq—, 
It should be noted that 17_(i)(f) can also be written in terms of St_tt). 
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In general 
"'", (f' x) ) is of the form 

k --(f (x) ) _ C  (Si )  , k f (N), sLEg  (0-) (323 

By multiplying A(i) 
	I 

(f (;k)) and 	(f' 
( 
'

N
) one obtains 2n  2n  

orthogonal primitive projection operators. Let 	e (f()\)) denote 
'() 

(f  (x)) 	j\,1 	(f  (x)) 	 (t.(x)) ;(f) 

Then Lt. • (f(> ) satisfies the particle equation (3.2) and IL (f(Y‘)) 
A • 	 111-X,  

satisfieJ the aA.uiparticle equation (3,3). 	The operator 

(f (  h )) 	(f (')) 	-ir(f()) x “--•••• 1/(f (A) ) 

has the property 

.47 (f(A  )) 	114,;4 lf( A  )) = (-1) 	IC:(0j 	(f (A) ). 	(3.25) 

Finally 	LL 4r-. (f(  X  )) are orthogonal to each other in the sense 
'1,g 

t 
(f(A)) 	uy 	(f(/\)) = 11A:f  (f (X) ) /94_ 	(f ( ')) 

YOB 

	

- 	(3.26) 

= 0  

if 	q. t a.•  • 9 or j 	j or 

To normalise these orthogonal vectors their transformation properties under 

Lorentz transformatiox along f() f should be examined. 

(N) 	 to its rest 
The Lorentz transformatio:1 	(f 	) which brings f()1/4) 
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frame f() f = op fo 	= 1,r1e4 is represented in the Dirac space 

by L (f (x)) and is given by 

L 	(f(  ))   tit f\  ) 	
"  Gt  A (4)  

1 2 darnf "N.  ) 	IA, 	2" 0 	X 

(3.27a*  

Its properties are 

L (f(")) x (f ( X)) = X (f = o) j 	(f (  A)) a Dirac spinor (3.27b 

L 	(f(A)) is  L (f(>•)) 	of, (f(A )) 	, 	 (3.27c 

- 	 f 

	 (3.27C 

Before we apply 

L(n)  (f()1/4)) = L (f(A)) x L (f(")) x 	 L(f (")) 

to the rank 	n spinors tfri  (f( A)  it is convenient to apply first 

the rotation operator R(n1,7)which corresponds to a space rotation that 

brings f along the 	—axis 

p 	3  fi 4 ij = fj 	1 	
o f =IL i 	 (3.28a) 

R (T. ) 	i. 	R  ('t) 	= (3.28b) 

R (k. R (t) = 	0-2  (3.28c) 
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Thus 
f (A) 

R(Yt
)  
1  	R+(n) (f ( ) f ( )) 

f"')  3 3 + 4 4 	.... Ic(i7 (X) ) 
(f 

(3.29a, 

R(K) 	(f(x)) R+(tt 3.29b) 

since 

(1.( )1( ) )1 	( A ) f ( ) )2 (3.303 

Hence 

) 	( )t) • f4 	4 f  

R(n)(t13  rt\(i) 	(f(")) Dp(X1) 
it)AO) 

	 )) 
J.6 (   

(3.30b; 

(3.31) 

The effect of the transformation by R (30 on 	(11) is 

, , 	 Zr-ef 
R 	Rt 

	iR (I — y.f)17 R  

= 
f3  

= z (1  ± Cv.3 ) 	± (
3

) (3.32) 

Also R

(n)  osi  (f()) R (n)  , 0(si) 6( x)) 
	

(3.33) 

Combining these results 

R(r1). LL (f (>)) = R(n) 	^(j) (f ( A )) 0(Si) (f( ))11. 	(a)(s:)1)(..(f(A)) 



A(i)(i(A)) 0(si)(i() 
	

t_(a )(3)1 x (i,(n 	(3.34) 

L Operating now by L (f) yields the value of LI_ 
,J  
.(f) in the rest frame 

st 
with spin components along the 3—axis. Since 

L (5(A))Ai.  (;(')) Lt  (7.()) =Ai.  (0) = 	(1  ±Y ) 4 

algid L (f) boing given by 

ii-f()  .4" 	3 3 	4  
°4- 

i
20(1.7),;(  (f()‘')  -ori to)) 

(3.35) 

(3.36) 

commutes with a--3  = 

L(n) (5) R(n) 	• 11 (f ()`)) =A 	 (Si) (0) 0(si)  (0)iL (a )(3)] x (0) 

Writing this equation for taking the hermitian 

(3.37) 

conjugate and multiplying by 	= .64 x‘r4 

 

Y4 from the right 

 

(f (A)) R(n)  • L'k(i(A))7 	'17, (JP)) R(n) 	L (n)  6(A) ) 
Y.,111 	 4 	ri 6 	 • 

= ;K:(0)E2 )(3), 	0(si) (0) 	( j) (0) "Ne
4 

(3.38)  Since 	(3)1 	0(Si)(o) and f!(1)(o) aro hermitian self adjoint. 

Now A(j)  (o) contains A(o), -e-  times therefore f- 
(i) 

A I- (43)  174 	(-1)f-,t(i)(0) (3.39) 
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giving 

to! 	\ 	4 
LA ,.(ICA)) 11.°1)611) L (.1()) 

From these results ono obtains at 

( (f (1)) L 1.  a( )) = (..1 )Y- 
v-41' 	j 

-7: (-I 	if 

( ) 

. 

( 3 	1 /4-)  

r 
Z." 

) 

r 

(310) 

4 
9 	J9 

3,0) 

0-  

(3.40) 

(3041 2.. 

= (-1)1X(0) E t(a)(3) 

(-1) II  

4' 
No7mallsation of L1 . (f(A)) is affect :'d Ly setting the positive definite j 

quantity 

A 
cl. 0.  . 

(J) LI, (39 IL 
'6i 	1-0 

Hence writing Ey = (-1) f  

(3,0) L  1 	 3.41b) 

n  r (f ' 
(.\

) 
. 	

(f()) = E g • gi j 
	(3.42) 

This is the generalisation of the similar remit for the Dirac equation. 

For the dorivaUon of this result the introduction of 1.1" n) 021 was not 

necessary and one could have directly operated by L(n)(f°)), but then it 

would have taken some time and space to show that L(f) commutes with 

(1)  = yi 	) 

1 

N 	(f.f)L- 

Tho idmtity operator is given by 

.0 	911  hc,/ 	t 
= 4._ 	

W.-• " 1):-  

=o 	j=1 	
•r" I i 	f 

±.(a.) e, 	(3.43a) 
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or 

S =z (1 47  (f (>)) e 	1— g s 06 
a(f3 	ri,o. 	 t 	j  

(f (x))4:3  
2 4"-°(9 P 4  (3.43E' 

In this last equation (A
tyi 

(f ) is considered a el  dimensional vector 

rather than as a spinor of rank n. The trace of an operator in 	space 

is defined as 

= Z— Lt 	(f(A)) 	0 (f(A))
fl oc 

p  eo  

cat 	 0( id. 
	 (3.430' 

The spinors belonging to two different mass values Nand ,\ are not 

. (N) 	If 

orthogonal to each other in the sense U (f` 1) U (f°)). However there 

0/0 
are some useful orthogonality relations with respect to Ut(f()'))/ 43  U (f` 1) 

typo of scalar product. From the free field equation 

(I3i 71: 	1/7s) cet,c) 
	

6 

one can prove in the usual way that the 4—divergence of 

1? (Kw4  fis) (x.) vanishos(6)  f 4 

4 	
-nt X 

 /014  
15,14. 	 cp (x_) 	0 

(3.44) 

In the non—quantized theory is defined as the 

probability current density and its 4th component 
	

EP 1-4 	: as the 



probability density. 	App
4 	

„ is conserved in time. In 

the L. S. 	formulation of the Quantum field theory the free field 

wave functions are normalised with respect to the type of scalar product 

which is cons(:)wed in time. Hence we must look for the orthonormality 

properties of U17 '(f(.°) 	U 	(f(A)) 	Also the Fourier expansion ylj 	4 Nr./ 
°." j 

(2.59) of ep (x) contains only the "particle" and "antiparticle" spinors, 

U(4)(f()) = U° (f(')) and 	Ucr-  . (f(A)). 
n—N,0 

Theaesatisfy the particle and the antiparticle equation 

(.1. 	
I 

1220 	
(fN) ) rzt 0 	 (3.45) 

n— y; 

U 	 (A') \ kf 	) from the 
A 
)1/4  

Taking its Hermitian conjugate and multiplying by 

right 

(x)) 	± • 13 (x) U kf (p) ) 4fio 	ms) u 	= o 
, 	 X 

n— 	j 	 n— X j 
(3.46a) 

On the other hand 

Ufa' f°)() 	 i' 4f0 
	ms) 

X 
	 0 	 3.46b) 

n— 	 n— j 

Subtracting these two equations we get 

). \ 
(f 	) ) f5 	(f(X)) = o for /11:/ X 4 A 	

(3.47a) 

11—  )N j 
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04-  We cannot prove that U 	(f(›')) 0, U .(f- •
>%) ) vanishes but if 

A93 9 i  

( )') .f, f 	= —f + f + m oc, 
1 

f  (A) = 51_fq f() 7--  
+ 	f2 + 2 

1.34 tyC 
A 

we have 

4 f°°) +   ms) 	 ( )1 /4 '  ) = 0 

or 

±0'1- 	( ) )4' U 	• ., (f 	) f — a
f  4 4 ) + ms 1 u°- . (f (A) ) 	0 

A93 

Also 

un 	())) 

	

f f 	f(A) 

	

— — 	4 
MS] g— (X) U . AyJ 

= 0 

The difference of the last two equations gives 

stz u 	 (f 	) 	
9.  ,, u A 1 J

(f (*)) . o 	for f = — f 

since 	(X)  + f ( 	 j o. 

Thus the?-4  scalar product of mixed particle and antiparticle spinors 

vanishes for f = f , so that for A = A it is only necessary to 

consider products of the type 

(3.47b; 

4  ' u147- 	(AO) 4 	(f. 0")  ) 
A 

n— X 	 la— 

U 
4 
(f ) (h)N 	 ..f (,)4))4(i')(0) /34  pp)(f (X)) r-(f 0)) u  WA)) (3,4 ea) 

= A 
n— A 	 n—X 	 n— A 



U,6  

It is easily seen that 

(̂i
A
)(f0))fl

4
A()(f(X)) 

n— 	n— 

=AP(f(A)) 	Xx 1 A  ...XI+ ixV 	...,1 (3.481,  
X 

n- 

...1440)(f(A)) 

n2kN 

vanishes if j / j since Aj(f(X)) and /0(?)) contain an equal number 
A 

ri—A,k 	ri-- 

( X or n —)) off\(f(1)) factors and if j r  j'  at least one 

±, 09N A
N 
 -1/ 

kf s  ) I 	kf ) will oocur in each of the n term on the R.H.S. of 

the last equation. 	Now from (3.37) and 3.40) 
X 	4. 

1-' 	i%% 	 % 
°' (fvr")P 	(f(A)) (-1)n—/' 	(3,o) 

•, 	4 ,\ 4 	 A 
a-7A 93 	 11—N d  

1,-(n)(iN) 	U A 
	J J (3,0) 	.1 

	 (3.49) 
1-1 

To calculate the R.H.S. consider 

r.P1) (11 (X) g4  L-F(r1)(7:(A)) 	 (f (A) )xtrix • • • 1X 1 

X L (f (A)) (4 IJ(f ('‘) )X S x t ••• 1 „ I 

x 1 x • •• f x L (f (A) ) /CI  L+  (f ('̀)) 

 

(3.50) 

  

But L (f") Y
4 
L+  (P°) 

L(n)(i(X)) 1.4  
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'(4 -cf 	ctn.(f ()°) ce4 	— ,..    2m( (f o(A)+ IX ) 

+ (m 
	(A))2 
	

(3.51) 

Writing the spinors in (3.49) in the form 

u Q̀  (3,0) . A(j)  (0) 
U (3,c 

). 	• 
j 	 n— A 

(3, 52t:::) 

and 
4 / .-- .0, 	, 	 X 

U • 	k390) 	= 	U 41' 	(3,o) A ,(j) ( 0) 
n— X 	 n--,\ 	n—A 	 (3.52b) 

and substituting for L L+ from (3.51) in (3.49) we wee that 
lif;it 

(K4  i 23: i - i K L iir 4  ) term vanishes since this will get multiplied. with 

	

(o) from thy; right and left. 	Also the ir4  on tho extreme left in (3.51) 

will give X or n— 	times —1 and n— or h times +1. The coefficient 
— A arising from this is 	+ 2S 	S or —(2s 4A:).1-A  

2 	 2 

Thus 
f (A)S 
—2 U+°- (f(A)) 3

4 u 	• (f▪ 	(X)) 
= 	

in *C 
A 

A  
la—A• " n—Ay3 

A 
(_1 ),1-/\+1 U  0- 13,0  

11)y 3 

f (A)  S o  
m tX),1/ 4  

(3.53) 

—S 



It is convenient to rewrite the antiparticle spinors U 	
(A)N ) in the 

0-4,3 

form 

un—X, J (1—  .(fN) 	Vx3  = 	(r(>)) (354) 

f(N)S 
U+(A.,(f(A)) 	U°--(f(X)) = (-1) 	

0 	N  g , c 	,„ 3.55'1) X,J 	4 A9 0 	m okx 	xx crut- 6  i i  i 

fNS 
V ., f 	) 
+0.*  ( (A)N  pA 	vc,.(fN)  = (..1)2S—A-1 	o 	

N GC 	sN 	(3.5513) 
k3 	 m 0( 	A): 	ili 0,0( 4 	A23 	 .),• 

11
A

,G":
' 
 (f 

Ay3 
(f (h)) >k) 

))
) 	o 	 (3.550) 

/J  

for f 	—f 

and then col]ect the 
	
type of orthonormality relations together 



Equations 3.55 in this case become 

U WS
4
U(f) - 

fo s ( 	. 	a ) 
m 

POLARIZATION FORMULAE 

By taking 	oyCiy 1, the wave function in momentum space of a free 

particle or an antiparticle of mass m, spiri0 momentum f and helicity 

can be taken to be U 1 W= U+(f) or V;(f) = U:f). Such vectors belong 

to the subspaces)
( 	

50 (f) 0(s)(f).-.1/±(f) 0(s)(f). In the configuration 

space the wive functions are 

= U(▪ f)e 
if.x (4.1) 

, 
• (f)041L(f) (_1)25-1A 	f s 

t3L
,

o~ 
 (4.2b) 

-f9f0 )°4u+(19f, ) = 0 
	

(4.2c) 

For "antiparticles" of integral spin the particle density is negative, for 

"particles" or "antiparticles" of half integral spin the particle density 

is positive as well as for "particles" of integral spin(8). First consider 

the case of ''particles". 
m 

sfo 

S
\4/4. 	P4V+cx,f) d3x = 1 	(4.3) 

m - 
sf 

0 

the density of states in momentum space is 
m d3f r7E-1 

• The spinors — U+ 4̀,) 
sfo 	••,1 sf

o 
/ 

Enclosing the system in a box of volume 



r) 17-  
uter(fV((f) + 

sfo 	4  
2 , 

Ut(f)13 U+ 	+ 
(f)((f)13 U

+ 
 (f) 

q•-•
(4.41 a) 

+ 4   

2 

wo„(4.4a) 
sfo 

m 

sfo 

f U f) WU(f)U+ f) ) + (4.4c) 

where we have used the fact that 

CA) (df)= 
md3f 

sfo 

md3f 

 

sfo 

md3f 

 

sfo 

7 

are normalised with respect to 2
4 

typo of scalar product as shown by (4.2): 

If the probability of finding a particle in the helicity state a-- is Wu_ 

the probability of finding it in a region d3f at f is 

tsfo 
G." 	

c- 
U 	(f) p

4
u
+ 
(f) 	G~ 	U( f) U (f) 

m 
(4.5) 

4 LIc 
In equationj Up, (f) can now be replaced by U 	(f) (-1)r  and the summation ryj 

over 	extended to 2n and a summation over 1.1  j performed without 

altering the value of4)(df). Using (3.4,) and (1.'13) this gives 

n ne 

df -  	

t, f and 	<7 	
2: T.- 	(2s41)U 	( 	0,1f) U°- 

 ( o.ol l 	ro 
f)WUt  (f)U

Os. 
 .(f) ( ) 

sfo 4;=1 

	

	
r 

r =1 j=1 

md3f 	md3f 	2s+1 

	

tr (f) = 	r- 	(4.6a) o,  

/3  (f) is defined by 

sfo 	sfo 	0- =1 



2s+1 
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(f) U7-(f) Wol U',(f) 
o1  

(4.613) 

2s41 
U+'-(f) W +  (f) 

P(f) is a covariant matrix, and tr.P(f) = L W,, . i,  (df) is invariant since 
the R.H.S. is so. For antiparticles of half integral spin, (f) can be 

defined in exactly the same way. The result is 

md3f 
66 (df) = 

	

	tr 	(f) 	 (4.7a) 
sf
o 

2s+1 
md3f 

0- 
Sr

o 

(f) ( f) 
0- 

v1, 
	

U
n, 1 

(4.7b) 

The probability density for antiparticles of integral spins is negative and 

so we cannot define a p matrix for them. This difficulty can be removed 

in the quantised version of the theory as will be shown later on. 
S. 

For collision process in which the initial and final spin particles are 

either 'particles' or 'antiparticles' a non quantised potential scattering 

theory can be built up. The fact that equation 2.1 with equationr(9. ) 

admits various mass states will have no effect on the scattering since the 

interaction potentials acting on a state in which the momenta lie on the 

2 mass shell -'pn will give a state on the same mass shell. 
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1,5 4-A4 	we are interested in is .chat the total differential cross-section 

for the final spin .!,'; particle with momentum ft lying in a solid angle 

d17- is given by 

d 
2s+1 2s+1 

c-  =1 U+ = 1 (ft )N  0 (f',t,f) U4  (f)i 
2 

(4.E.  

t is the centre of mass momentum given in terms of initial and final 

momenta by 

t = f + q = f' + q' 

q and ql being the momenta of the irftial and final spin zero particles. 

(f',t,f) should be a covariant matrix since d..7-is an invariant. U+(f) 

satisfy 
I 

U(f 1 ) = 1.1°-  (f') = o9 1 

) 
0(ft) U:,1(f') for all o'• S. 2-4 -4-1 

and so do- can be written 

2n  ,_ 2s+1 .i.  
\ (s)/ 	, - do-= E. L__ , . u--' (v )  0 	w )  s uo1(e) ur.„. 

0-:=1 r/i a- Y,j 

dir` 
131-  	(f) 	(f') 0(s)(f') Ur  .(f) (-1)/'  o,1 	 /J 

(4.11a) 

(4.11b) 

(s)- 	-+ S(fl,t9fr 	S (f) 	(f1 ,t,f)i(f') 0(8)(f') 

f (f) given by (4.6) satisfies 

(4.11c) 

(f) = /?+(f) 0(s)(f)13(f(f) 0(s)(f) 	(4.12) 
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Substituting 4.12 in 4.11 

= tr S(f'Itlf)r(f) e(fi,t,f) = tr P(f1) 

S(f',t,f) and 5 (ft,t1f) are connected by 

S (f',t,f) = "kil-(;) 0(s)(f) 	?+(f) 0(s)(f) 

The final 1° matrix/c; 1(fi) is defined by 

(4.13) 

(4.14) 

= S(1"„tlf)i)(f) S-1-(ft,t,f) 	(4.15) 

2s-1-1 
In case tr (f) = S W is not equal to unity, equation (4.15) is 

replaced by 

trp (ft ) 
c1,3 - 

tri--)(f) 

The average values of a matrix operator A in the state of a particle 

characterised by the matrix (f) is given Ly 

< A% 
2s+1 

ut r( f ) A U (f) 
tis" 

1 

tri;(f) 
(4.16) 

This is easily shown to be given by 

tr Alp(f) 
< A i =  	 (4.17) 

tr f(f) 
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CHAP ridV 

THE S — MATRIX 

The spinors U , 	(n) describing the states of particles of 
r.A. C,c 	cA, 

the highest spin S are completely symmetric in the spinor indeces 
/ 

The S—Matrix operating in the space defined by 

such spinors may therefore be assumed to be completely symmetric in its 

rows as well as the columns.. 

	

S (f ,t,f) 	 = S (f 	t,f) 

(1) 	(2) 	(n) 	(1) (2) 	(n) 	 f d) (2) 	(n)N  g t  d 
is
; (2 
a
) 	rK) 

ct 	wszst, 	p 	• .. 	r 	, 	— 	r
'

k 	.• 

and fr  denote any two permutations of `n/  objects acting on 
0,,J(24 	(n) 

and AS ,p 	respectively 

(5.1 ) 

o( c4 • •• 

of 	/9/4. 'r fully we In ords, to utilise the representation (2A4) 

must write the S—matrix as a Kronecker product 
Po 

s(fi 	 = tt,.0 	/g(1) 	0 (2) 	d ( 3) r 	 x 

	

' 	
e 	x  (5.2) 	 ,g (n) 

where RI
o 
 is some finite integer. 	It is not possible to write down a sum 

in Kronecker pyoducts which satisfies (5.1) also. 	However the form 

,t(1)(fi/t/f) ic ,,,e(2), 	 is ( n) 	(503) S(f'  2t,f) = 
L., 

where 	denotes 	 4 (  of  the sum of all the Lppermutations 	„it2(1), ,f 2)  ... 

/4(n),  
satisfies (5.1) for 13  -4 	i.e. for permutations on14

(1)
,0(

.(2) 
... 

ok(n) and. IP),  13(2) 	(n) ,. A 	being the same. 
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This can easily be proved in the following way. Dropping 2  for the 

moment 

0(0) (2) 	(n) ok 	2 A(1) (2) le 	
(2) 	...,8((n) 	 (1)  (»'S 	 ;) (2) Gi((n)(n) (1) 	• 

c( A  cx a 
(5./) 

If the same permutation is applied. to o(1 44
(2) ... ,(n) and. 4

(1) 
 is(2)  ... 

flA' (n) then the same permutation ty is applied to the subseriptsa.(1)(3(1) 

(2) A(2) 04 n) A:i(n) on the R.H.S. 	But this is eq!livalent to the same 

permutation D  being applied to the super. scripts (1) (2) goe (Jri)  and 

since all such permutations are boing summed up)the result follows. 

S (f ,t,f) is a cAvariant matrix but the matrices,8(i)  (f ,t,f) are not 

(.) necessarily so. 	In general, 8 1  (f ,t,f) will contain tensor indices in 

the form f
A  9 
 f , t

Ak 
 and rs. 	These are all contracted with the ones 

occurring iu other/8(i) so as to leave S(f ,t,f) ›xlvariant. 	As far as 

the tensors formed by f 9  t 9  f are concerned we note that these can be 
! 	A 

taken over the Kronecker product signs, and contracted with the other tensor 

indices. 	So the remaining tensor indices are formed out of 
	

matrices. 

As an example .5 	,t,f) may be 

,t,f) 	E 75- ,8„(1)  
P. IL 

x 
"eu  

Q (2) ,r) L3) 
x r A 

 

 

= 	,A (1)  xd%3
(2) x ,e"x 

e 	 A k(  

To indicate this S is rewritten in the form 

 

(5.5) 
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S(f,t,f) = 7./3 L1) x 	(2) 	9( 
L
1) 
	

(5.6) 

where EL includes the summations over tensor indices also. Now each 

S(i)(f'l t,f) can be expanded in the form 

.,i)(f,t,f) --)0\+(f I ),S,(„i;e\+(f) +1 (f1 ),...13 1)  /\ -(f) 

+f\—(f#)4(i)A+(f) +/c (f )S.,i)  A  —(f) 	(5:7) 

Using the nota-Aon 

/\ ±(f ),41(2")(f ,t,f),/\±(f) .)3C1?„ 	(f-,t,f) 	(5.8a) 

(5.7) can be written 

j(i) 	9(i) 4(0 (''.) 
L (f ,t,f)  =-LH 	f  L-1-j-'  

9 (i) 
+'d L (5.8h) 

The matrices on the R.H.S. obey the conditions 

A+(i )4 (i)  A +(f) = "gm 	 (5.9a) 

A+(f') eSV A(f) = o 	 (5.9b) 

etc. 	Since the initial and final spin s particles are either particles 

or antiparticles, S (f',t,f) obeys the hole tLeory condition 

, 	+ 
WS(f ,t1f)1r(f) = S (f- ,t,f) 

—(f) 	t\(f) x f\(f)••• x/c(f) 	n factors 

(5.10a) 

(5.10b) 
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Substitutjlg the form (5.8) of,g 1C,i)  (f ,t._) in (5.6) and applying the 

holc theory nondition w' get at once 

s r1E4(1)  4 (2)  x 9 (3) 	 
%(11) L L++ L++ L++ 

From the definitions (5.8a) ofA(i)  it follrws that 
L++ 

(5.1i; 

) 	(f 9 t 7f) 	(f) 
L±± 	

-20-1++  (f'  t f) 	(5.12: 
L-- 

it . 
As in Stapps rnrk a matrixA*(14'yt,k) f.s define0. 1:y• 

/, 
(f ,t,f) 	(f Jt) 	,k_ii ) (1,-,t,k) 	17 (f ,t) 	 (5.13, 

and as 1b:-,fore the condj.tic:i (5.12) is transforme0. into a commutation 

relation, 
• 

r 	(1 (k,t,k) lif(t) 	Moc" 
	

(5.14'  

A suffioibntly gene .. form ofj (i)  is 
++ L-- 

,g(i) (k',t,1c) 
4+ f 	J--(i)( • (5.15' 

IT and N arc, 	nur7)er of rmatlires on 	left and the right of 

(k', 	2(1)(ki,t9k) itself is avit•ovariant matrix. 	Substituting 

tilis form (5.15) of A (1)  in (5.14) 1++ 
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(t) yo  1.) 	 (t) 
2i) 

• • •rg,t • • . )r.1  (5.16) 

The next obvious step is to multiply the equation by )- 	from the 
▪ of. 

left and IC' ... -1r from the right and use the results 
vu• 	P 

((t) r = — 2 	(t) (5.17a) 

roe,  f„ 	= 4 	 (5.17b) 

This operation gives 

 

	

f(t) 411)±.(ki tt,k) 	(t) 	(-2)nr(i)  (ljytyk) 
e  +4_ 	

(5.18) 

By expanding 	in terms of the Y‘ matrix as previouslys  it can be 

• proved that (5.18) is satisfied by non vanishing,81  only for N + 11/  = o. 

This is easily seen without going into detailed calculations by multiplying 

(5.18) by r(t) from the left and from the right. 	This gives 

(..2)  N + N --(1) 
(-2)41  = 	 (5.19) 

showing that N + N. = o for non trivialX(1). N and N being positive 

integers are separately zero. Hence 	is just the invariant 

matrix 1<i)  and we have the rather unexpected result that in the 

Kronecker product expansion of S(f ,t,f) the Dirac matricesA(i)(f pt,f) 

are separately Ise'variant. 	In terms of these matrices S (f ,t,f) is given 

by 
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S (fyt71) = r:d(f I t)j (n)7.4 A(1) xx(2) 	_(n) 
17±± 

	(f, t).] (n )  
?A  (5.20) 

(f, t) (n)  is the n fold Kronecker product of Y.(f2t) 

The matrices 	(k ,t,k) obeying (5.13) with N N , o have already 

been determined in Chapter I. 

t 	±0.) 	. 
(t)  (Pe 	1.(1-- 	n)  

1( (6 ) A+(t) (F  ±(') +G±i 1 6-Y.  (5.21) 

S(f ,t1f) is not completely symmetric in its rows and columns and must 

be multilffolied by 0(s)(/) and Os(f) from the left and from the right 

respectively to describe scattering of particles of spin !sk only. 

S(f I t,f) = (s) 	) [Y(f/  ,t)); (t] (n 	
1

) -- 

	

Pt 	et-4 

./`\±.(t) (F1(i)  +ajzt(i) 	n)} 	(±) 	(f,t)j (n) of 	(5.22) 

117 is the product symbol for Kronecker products. For farther 

reduction of the S—matrix in the next Chapter it is necessary to show 

that 

int) 	(f,tg (r)ds) (f) = 0(s) (t) [c (t) lc (f,t)] (n) 	(5.23) 

This can be proved in the following way 



(s 0 ) (t) 	 lc 	e (f,t )1 (n) 	Lf(n)(t) L(n)(t) 0(s)(t) 3-:1(-1)  (t) L(n)(t; 

Cr(t) tr-- (f 5 t)] (la) L(n) (t) L(1.1)  kt) 	(pc24a) C  
Ca) \ L 	(t) is the Lorentz operator L(t) x 1(t) 	xL(t) which transforms 

0(s)(t) to its value in the centre of mass frame t = o. 

L(n)(t) 0(s)(t) 	L(n)  (t) = 0(s)(o) 

Further using (2.24) 	(2.25) 	it is seen that 

L(n )(t)Ef(t) 	(n)  1(n)  (t) =[nt i) T(ft  t 

= L(n) (f1) 
	

(5.24c) 

the subscript)  denotes centre of mass values. Hence 

0(s)(t) Eir(t) 	(f,t)J (n) . n)  (t) 0(s?,u) L(11)(1) L(n)  (t) 

= Sfl)  (t) L(n)(f) L 11) (f)  0(s o) L(n)(fl) L(n)(t) l 1 

L(n) (t) L(n)(fl) 0(s)(f1) L(n)(t) 

= L(11)  (t) L(n)(f
t.  

i 1 

 , 	
) L(n)(t)  ) L(n)(t) L\n/

,  
(t) 

= L(11)  (t) [6'  (t1) ic (f ,t )11 (11)  L(n)(t) L(n)  (t)0(ski)L((t) 1 

o 
(t) CUM] (n) 	)(f) 	Q. E. D. 

, It can be proved directly from its definition that 0(f) and hence 0(s)  (f) 

is self adjoint. 	Taking the adjoint of (5.23) and replacing f by f 

(5.24b) 



(5,.?5) 

rtitt  
, , 	+ ..N f 	.  p  ,1) = o 	 (5.28) 
sr 

are orthogonal to f -)na f respectively 

S 

0(61(f ) 	((f',t) S' (t)]  (n)  = t:iIf > t) r1/ 4q (pN, 	( 0,s)  . ( t) 
Equations (2.31c), (2,81:. permit us to write 5 (f yt,f) in the form 

:t,f) 	(f yt) 75 (t)(r1) 	)(t) 
sc7— 

__ jrx (t)(ri 	y (i) -1-Gi 

e  
^(t)-((f il (0 	 (,5.2(,1 

( -matrices 

The initial and fin l density matrics P(f) and 	ip can be 

determined in the same m=,:nner as toe S—matrix. 

k/°(1).  (.S) 	+ 	+ 
= 	

• 	° 	(f) - :117 	
) (1 ► 

i= 1x  
± 7r- • r 

+ 
—(f ) (1 + /1(f ) = 	(111Z]. 

T 

L._ +I-) 
The 4—vectors 	 1/ 

ri( 

f. 

)(f' z 

1=1 

and 

-)s Ar 	Y  - 
(5 • 27bj 

ana in the respective rest frames f= o, 	= 0 reduce to 1—vectors. 

T and T are the traces of the whole expressions on the right of 

r 
. 	 	 and T' .respectively. 1,01,7  S .: 1, p can be easily 

calculated by going over th the rest ....28.ma f = G5  since the trace remains 

inva:?iant under unitary transformation 

'2 
	(6+ 2f,11).p.S.2) 

	
for 	S = 	= 1 
	

(5.29a) 



P=C t(2)N  
1,6A& / 

1,,,,,(±)(1) )  

0, and. 

(5.29c) 

(5.29d) 

(5.29e) 

Pp; . 	((1) ±(2)  + i 

E_2. C 

82. 

The form of (f) for s = 1 is 	17 

= 	rf)  0(1)(f)EC--k1 

A +CO r

(±)(1))x(f)(1+1-6-- r (±)41 ) 

G.T (f)  0(1)(f)A±(f) xAi(f)E.0 [2 + (itic  rxi+tx 	) 
T 	 t 

+ (i 6.Z.)cit  x its` 	) 	
(1)p±(2)+/:±(s) 

, 	
,,t(#)) 

ti, r, 
(5.29b) 

Defining now a 4-vector 	and. and a 4-tensor 111 	by 

ti 	i; (f) 	
- 	

+ f  
ekfi

, 	
0 = 	T 	°)(f) 1?  (f) a+ 	+ x 	p;" 

.i r, 	c  /rip , 	 (5.30) 

P-  % is symmetric in indices /4  and V . Pfr,± 
 

and p Y  areizelativistic 

generalisations of the polarization vector and the polarization tensor in 

terms of which the noncovariant /5  matrix is expressed. In the rest 

frame f = o, the 4-vector f and the 4-tensor 	reduce to 3-vector 

114:1., and 3-tensor 	. These are called the proper polarization 

quantities. 
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CHAPTER VI  

COVARIANT POLARISATION FORMALISM 

Covariant scattering equation is obtained by inserting the expressions 

(5.26)9 (5.27a) and (5.27b) in the equation 

	

(f ) = s (f ,t pf) 	(f) 	SI  (f
• 
 ,t,f) 

St  (fi ttlf) is easily formed by remembering that i(f,t), "(t) etc are 

self adjoint and so 

1 te P(f )  o(s)(i ) 	+ 
) ( 1 + i r 	±(i)) T" 	e(f) 

	

P, 	i=v7 

(fl  ,t) t(t)) (n)  0(s)(tE ftjA(t) (F (i)  +6-(i)  i  1(; Y:h)? 

	

13,,e 	1.1 

ff (t) ?r(f,t)J (n) 1  0(8)(f)Z 	
X
X:(f) (1 + 	1:11„ (i)) T 	P).1- r 1121  

Vust) f(f).3(n)  0(s)(t) 	A 	/ 	7 t(t) (P:(i)  4-G (i)  i 
, 

Ey (t) 	,t)] (A) 	 (6.1) 

fhts e4setten is so esspltated that Partly aorthtai can be 40 oat of it 

concerning the state of polarisation of the particle after the scattering. 

But except for the presence of 'n' fold Kronecker products and of spin 

projection operations O(s), (6.1) is very similar to the equation obtained 

for spin I-by Stapp and, by employing the same method, it canbe reduced 
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into a form in which S and St are given in the centre of mass frame 

t = o and f (f) 	/1" (f) are given in their respective rest frames 

with a certain rotation applied to each index of the proper polarization 

tensors. 	It will be seen that all matrices occurring in this equation 

are of the form 

(a1 o (a2 o) 

o o, 	o o 

and it would be possible to write it in terms of the Kronecker product 

ofthel'aulimatricesa..Our next task would be to obtain an eauation 

in terms of the rotation matrices 	(s)  of the spin 	s representation 

of the 3 dimensional rotation group. 	Finally the reduced I and. 

matrices will be expressed in terms of the traceless symmetric tensors 

Tij 	formed from (s) .and the symmetric traceless polarization 
	n OW 	 91 

tensors pli.ij 	The S matrix will involve T. 	and tensors n. 13...n. . . 

formed from initial and final momenta k, W and k ." lie. 
fitst 

To carry out these reductions theAstep is to bring 

D7(fi tt) ((t).3 (n)  and 
[3 

 (t) r (f,t)] (n)  on the left hand side 

of (6.1). 	This is easily done since 

[-c (f',0 ire43 (4) [ 	(t) 	(f ,t) 3 (n)  

= (t) 	r(f.',0j(") 

= 	Ei l (n) 
	

(6.2) 

 

x 
0 

 

o 



8 6- 

, 0  

Also .--4-1°1-1  is replaced by the total differential cr000-seotion 
tki°  (f) 

and the Lorentz trannformatinn I161 (t) ls used to give 

1. 
 I 1,(J1)(t) 	(t) 	WM] (n) L(n)  (t) L(n)(t) o(s)(fa  ) 

	

C t JI n+(f) 	+ ordetp: ( i ) )/ L(n) 	L (n) (t) 
P. y- 

(fi 	(t)] (n) 	L6'1(t) 	 (6.3) 

L(r1)(t) Le)  t) : 	 ix iAt(t) (F'it(i)  +G;(i)  i 	)/1 	(t) 
P,€ 

L(n)(t) 	V(t) r(f,t)](n)  ,4(n)(t) L(n)(t) 1 0(8)(f) 

	

A±(f) (1 	f4. 	+(1))2 L(n) ( t) Ls
(  
n' (t) ((fat) 	(t)1 

= P,r 
+ 

±(i) 	-G (1)  i-{-) 	(to, 	(.) 
L( t) L'-'vb) 0' •(t) 	--- 	pc-(t) (F 

;lx  L 	 -I' 	6  

(6.4) 

Let us consider different factors of this equation one by one, 

L(n)(t) 	(t) 	(f ,t)j(n)  ii(n)(t) 	V(t, ) 	(f", t, ) (n)  

= L (n)  (f ) 

L(n)(t)[ f(f, t) 1(t)1(n)  Lin)(t) [11(fi  yt ) Zr(t )1 

= Lril  (f,)  

(6.5a) 

(6.5b) 

P,e" 
L(n) 

 
(t)  



o) 
	U (f ) 
	

(6.1a) 

• • 
fram t 	t y 	 0 	f 	0004 i.e. 

L(4) (f) 	U (f' 

L(11)  (t) brings U(f ) to the 

86 

These two equations and the corresponding ones for f are uced on the 
, • 	, 

extreme ends of theft (f ) and PM of equations (6.4). Further 

note that 

L(n)(30 L(n)(t) L(n)  

(I) 

is a Lorentz operator corresponding to pure space rotation. This is 

easily seen in the following way. To fix our ideas let 	f 

If U(f' = o) is the value of a spinor in the frame of res.+ f = o, 

n, 
L
4
ǹi(f1 ) acting on U = o) takes it to framo ja whichf = I i.e.  

t = t 

(X) = R 
	

X-= f or f 
	(6.6) 

the centre of mass frame 

L(n)  (t) U(F) = u (ft  ) 
	

(6.27b) 

11(11) (f ) 
	

brings U (f: ) back to the frame in which f' = o. 	Thus 

R (f" ) can only be a pure space rotation. 

From (6.6) we derive 

L(n)(f, ) L(n)(t) = R(f) L(n)(f) 	 (6.8a) 

u " 
Lf(n)(t) L

Clt (f') 	L t'n' (if  ) 	) 	 (6.8b) 

Using these equations (6.4) becomes 



with 
	

pi =  

Sirop f . p = 09  

rj,/ 

oe (f) %),A. 

is a 3 vector. 

37 

1 	I 	R(f: ) L(n)  (ft) 0(s)(f) 2: 

, (n) L 	(f ) R t  (f1  ) 

n + , 	 /+(.) 
x  k" (f )(1 ir Ir:13-01 .5- 	-1- 1.1 

L(n)  (t) 0(s)(t) 	ftn .(t) (1) 	 L( vi) (t) 
P, 

i=1 

R(f i  ) L(n)  (f) 	1 0(s)  (f):5_77C1: 	"1 L (f) (1 + 	t) i(i)  
P, 	

4- r 

- Lt(n)  (f) 	(f) L(n)(t) 0(s)(t)L. 	 A ±(t) (-Tel*,±(i)  + e±,(i)  p,  e, 	 4- 	J 

L(n)  (t) 
	 (6.9) 

Consider the L.H.S. of this equation. 	The expression in between 

L(n)(f) and L'-' (f) is transformed to a Lorentz frame in which f = o. 

Thus 0(s)(f ) 	0`•s)  (o) 

A -(fi 
 

--*/<-(0) = 	± lc) and dropping the suffices on 

Now R(f ) commutes with 0(s)(o) and 

r  
R (id r 	Rt(f) = R 	) 3 a.  R (f ) b i 

(6.11) 
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.(I) is the space rotation to which R (I) our:responds. i3 

Defining the rotated vt:otor 

P-1 	= 	 ( ft ) 

R (f ) 	p 	R

t 

 (f)) = ?ct  • 

Similar considerations apply to the R„H.S. of (.,9) and defining 

,A 	i")› 4-Y)  

P I" i t 

, 

Equation (6.9) reduces co 

i 
1 I 	

+ n + 
0(s)(0) 	C TE,( 110°) (1  ':C6- E 	 Ft-r 	1=1 t 

0(3) (0) E s
-( 	(F 
	 -;-(. 

r . I)(  A 	 J 

r1i3;,-(4)  hi(f: 

T 
(s)(0)E 

P, 
IL, A (0)( 1  + 	f i p4111 (1) „1- k  

Os(0) E 	11 	A (°) (F±(i) 
 

0.7•-• ( 1 ) 	N 
	

(6.14) 
p 



00) 

0\ 

0 

01 
0 / • • 0 7 : 

0 
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It will be noticeri that in (6.14) the /0  and f matrix parts are not 

exactly the same astif(f=o)9 e(fl. u). A rotation ' 41s applied to the 
- co 

proper polarization indices. 

From now on we restrict ourselves to the case of 'particles' only 

so the superscript + over P, P, G9  F will be omitted. In the representatioi. 

of y matrices we are using 

	

(1 	0 
a (o) = 	(1 -00 	(6,15 )  

0 0 

lf7-• Pr  0 
it5  (.Py. = r4  i°,24 i)  (6.15b) 

- 0 

PC°  

	

/ 1 	0 
,P.) (6.150 

	

( 0 	0; 

/\:f  (0) (Fii) 	Gds' 11(5  YE) cr • N) 

 

0 

 

(6.15a, 

s) 	- Keeping 	mind the form of 0(  to)and equation 6.15 we sec that the 

left and right hand sides of (6.14) aro of the form 

	

(1) 	f-) 	 (") 

	

A - 	c A'`' 	x A - 	s= A (6.16a 
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Acting in the space of spinors of zanh n 

Ua(1) m(2)....a(n) 
	a(i)  = 1,2,3,4, 

we have for the matrix clement 

VA U = 

4 
) (0\ 	( 	_ a0=1 	Va(1)a(2)..01(n) 	

A 
a
(,
"'a‘`'...a"

n)
;13'
(1) 

 Ps
(2) 

 ..41(n)  

up(1)p(2)...p(n) 

4 4. 

=Y 
aP. 

V  a(1)...a(n)  AY') *1)(1) A4' 
a
(2)

P
(2) --A 

n a
(n)

P 

LA 13 u)13(21 	ithq 

Since from (6.16) A ,,, a(m)p(m) = o if a(m)  > 2 or for P(m)>- 2 

and for a(m)2 	(m) , P 	.< 2, (i)  
(m)P  (m) 	D'y jm)0(m) 

(6,161)) 

	

2 	
(1) 	OA) 

	

VI-AU =1' Z- 	11  (1) 	(11) a 	(1)A(1) ". a  (V) .(711) Y 	a0=1 	b, 	...a . 	1 ,G9 	H 	r 9a 	p 

f • a(1) x a(2) 	(1n) 	 X a 	. 

v and u are Pauli sldnors of rank n where as V and U were Dirac 

spinors of rank n. Equation (6.14) is thus equivalent to 

Hence 
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0 (s)(0) 	27-  0? 1..t 	( 1 + e. Pl,r(i)) 
P 	P91 g  =1X  

= 	0 
P 
 (s)(0) 

	A 
II „ ( Iii)  + G(i)  a....N) 1 	— — 
i=1 

Op(s)(o) 	p,ir. c !li  x  ( 1 + 47...1)(i) ) i 
Y =1  

o  (s)(0) 	

ri' 4-  
1 !II 	(x(k) 4.  Gish) ty.N)  

P'- 	lc-1 

0 (s)(o) is now given in terms of the Pauli matrices 
P 

I 

-r- 

1 

T 

(6.17) 

(S)(0) = II 
si  s(s+1) 

(0 (o)  - E.) 
_T' 
s (s+1)-g. 

(6.18a) 

with 

0 (o) = 	(3m + 2 P.:- 	
(2)

) 	 (6.18'0) 
1   

The S and. ,o matrices in 6.17 are given as n-fold Kronecker products of the 

corresponding quantities for spin -Is particles. The projection operator 

(s) 
0"(o) selects the spin s part. But this equation is given in a highly 

reduciitform and one of the methods to obtain from it the usual (2s+1) 

dimensional irreducible scattering equation is the following one. 

One defines the spin operator 

J = 	(o x1 x 1... x 1 + 1 xo:" x 1 • • • + 1 x 1... x1xM) 1 

(6.19) 

It is at once seen tLat 

er.) / J.J. = J2 	-4- O = 	n + 2[0.),k2 N) = 0_()
o) a.  (6.20) 
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and so 

0(s)(o) = II 	

;i) 

(6.21) 
p 	E. ;.( s (s+1) 

 s(s+1)-s. 

Equation (6.17) can be completely expressed in terms of J1's . This 

is facilatated by the presence of the perliutation symbol 77i). 

However further analysis is so complicated for the general case of 

arbitrary spin that it is better to carry out the calculations for s = 1 

first. 

For S = 1, n = 2 

( ) (1) 	\ 
if Op 	ko) 

2 	 (j) 
II 

1x 
 (1 + cr Pr ) 

= 

1 (1 
op

) 
 (0) 

(1) 	 (2) 
C (1 	a-. 13r 	 G--- ) x (1 + 	. _Pr  ) 

-I-  

(2) 	 (1) 
+ (1 + c- .Pr ) x (1 + .6' Pr  ) 

L  
r 

(1) 	 (2) 	(1) 1 — ,T• Op  (o) 	'Zr(2.1x1,1x,;-.P-r. 	+lx (,--.Er  

(1) 	(2) 	(2) 	-(1) 
+ G--•  Pr  x1 + c-- .1)r 	x 1 + 0-- . P—r 	x 	Pr 	) — 	— 

	

-I— ‘'.7`• - r 	X 0"- - 
(1) 

= IT 0 	(o) Z-- Cr 
1 

(1) 	(2) 
• (Fr 	4- Pr ) + 

P 
2 	1 x 	1 	•;- 	(1 	x (-)- 

	

(1) 	(2) 
--- 	.:P ( q: 'Pr 	x 0 — 	.-=r  

+ 

+ 

L:x 1) 

(2) 	(1) 
G-  .Pr 	x 0--  .Pr  

(6.22) 

The second term on the right hand side is just 
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(1) 	(2) 	 ) 

2 J.(Pr 	+ Pr  ) e 2 J. 27.. Pr  (6.23) 

The third term is calculated by considering 

(41) 	('x2) 	(1) 	(2) 	(2) 	(1) 
<"j.P 	J.P 	= J.P 	J.P 	+ J.P 	J.P r 	-r 	- r -r 	- r - r 

	

(1) 	(1) 	(2) 	 (2) 
= 	( 	.Pr  xl+lx cr .Pr  )(7:-  .Pr  x 1 + 1 x 0- 	) - 

+ 	2-6,-1= 1 
,,/ 	(1) 	(2) 

= 	CS" •Pr 	- .Pr 	x 1 + -  
(1) 

0--  • L'r  X 1 

(1) 	(2) 	(2) 	(1) 
1 x 0-- .P 	6.- .1D 	+ 1 x —r — r 	4-  'f-r 	°.- 'Pr 

(1) 	(2) 	(2) 	(1),  ) 
+ 2( c .Pr 	x 6- ,Pr 	+ 6-  ._Pr 	x G-- .Pr  ) 1 (6.24) _ -   

The first two terms on the R.H.S. can be written 

(°l) (X2) 	(1) 	(2) 	(2) 	(1) 
G-  .P 	.Pr 	x 1 = ( .Pr 	Gs .Pr 	+ G.-  Pr  G's •P r 	 - 	-r 

x 1 

	

(1) (2) (2) (1) 	(1) (2) (2) (1) 
= P v  , .Pr 	+ Pr 'Er 	+ 	. Pr 	+ Pr 	Pr  ) AI - 	- - 

(1) (2) 
= 2 Pr  .Pr  + 0 - 

Thus from (6.24) one obtains 

(1) 	(2) 	t f 	(1) 
cr  * Pr 	+ (ET *Erx rs- .Pr 	7- 

(`X1) (°(2) (1) (2) 
= 2 ( 	J.P 	J.P 	- 1=r  .Pr  - p    

(6.25) 

(°a) 	(vc2) 
0" • P 	x cr  

(6.26) 



(1) 

	

Hence 	can be written in terms ofJ1  .'s as follows 

	

„(1) 	(1) 	(1) (2) 	(1) (2) 
r- T  Op  (o) 	Cr 2 - 2 Fr  .Pr 	+ 2 J.(F-r 	+ .12r ) - 	-  

(1) (2) (2) (1) 
+ 2 J. Jj  (P r,i  P  r,j  + P r,i  P  r,j) 

K 

(1) 	(1) (2) 	(1) (2) 
T  0p (o) 	Cr  2 - 2 P I  .2 	+ 2 J.(Pr 	+ F 	) r -r 

(1) (2) (2) (1) 
(J.J. +J- -)(P 	P 	+ P . P 	) 	(6.27a) ij 	ji 	r,i -r,j 	r,I r,j j  

(i) 
It is convenient to introduce N0 through 

.(i) 	 (i)  H,. 	N1  + Ke N11  + Fe N111 

 

 

(i) 
(6.27b) 

(i) 

	

The reduced S matrix is obtained in terms of N0 	Ji and 's 

in the same way as above 

(1) 	2 	(i) (i) 
= 0

P 
 (o) 2: 	II (1- 	+ , y-  .Y e  ) 

1-p t i=1 	e 	- -  

(1) 	(1) (2) 	(1) (2) 	(2) (1) 
= 	 2 Fe  Fe  0

P 
 (0) 2: 	- 2 No  .Ne 	+ 2 J.(Fe  Ne  

(1) (2) 	(1) (2) 	(2) (1) 
+ F 	N 	) + (J.J.+ J.J.)(N . N j  + N 	N 	) 

e -e 	i j 	a l 0,1 e 	e,i e,j 

(1) 
= 0 	(o) 

(1) (2) 	(1) (2) 	(c1.) 
2 Fa Fe - 2 N .N 	+ 2 J. E F 	N e -e p   

0'.1) (c. 2) 
+ (J.J. + J.J.) 2: Nazi  N ia 	a l e,j (6.27c 

k ip 
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To express (6.17) for arbitrary s in terms of the Ji's 

consider 

(1) 	(2) 	 (n) 
'21 (1  + r ) x (1 + 	.Pr  ) x . 	• • 	+,5-•PT  ) 

= 
(0k) 	 (c-) Pr  x 1 ..xl + r 

. . lxlx . . (°k 	?G"'• P 
r • 

s- (g1 	(a2) 
+. 	

, 
 x (7 .Pr 	x 1 x 1 . • • x 1 
P / 

(41) 	 ( 41) 
(7-  . P 	x 1 x (is .P 	x 1 r 	-r 

c 	(e41) 	(a2) 	(03) 
+ ,, • 	.Pr 	x fr P 	x 	.1' 	xlxl 	. x1 

(u1) 	(,A2) 	(-.3) 	Nn) 
+ 	7: (I-.P 	x 6-  .P 	X 7 . P 	A . . . . a-  . _T 	- -r 	- r 	P  r 

(6.28) 
The second term within the brackets contains nC1 terms 

.the third term contains 1102  and so on, 	stands for the sum 

of all possible permutations for example 

21 	Gs.  p (ckl) x 	op( /̀2 ) x 1 x • • 	x r - r 

means the sum over all the IIP2  permutation of (fxi,  'A2). 

• • 
	• 

p 

p 
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The second term is just 2 J. 	Pr. 	To calculate the 3rd 

term vie form 

('41) 	(512) 	(°(1) 	 (,41) 
2_ J.Pr 	J.Pr 	= Z( c;•Pr 	xlx...xl+lx .Pr  

X1X 1 • • • X 1 + • o n 

(V2) (c<2) 
( .P 	xlx...xl+lx •P 

	

r 	 r 

	

x 1 x 	. x 1 	• • • 

= 

	

	fr
.P(r .41)o--  .Pr 

a2) 
x 1 x 1 	x 1 + 1 x 	})

( ) 
- - - 	 r 

(2) r. Pr 	x 1 	. x 1+ 	+ . • 	2(f7- .1(1.1)  x 	.P 	x 1 x 1 

	

(°41) 	(2) 
• . x 1 + 	.P 	x 1 x 	+ . . 	(6.29a) 

now 

.P(c)=2) .12
(c2) 

 c.-- 
_I-. 

P - 
P  -r - r 	_r P 	 1,  

----(s-A1) 	((l'2) 	(41) 	(=̀( 2) 	(2) 	(''kl), = 2_ F 	•P 	+ lh 7.: 6". (P 	/. -Pr 	+ P 	A P 	) r 	-r 	- -r 	 -r 	-r P 	 P 
,-- (*1) ('2) 

= c-'-Pr 	.Pr 	+ o 
P 

Therefore 
('S'1) (0(2) 	 ('`1)  

7- .Pr 	x .Pr 	x 1 -x 1 . . x 1 + (7- .Pr 	x 1 x --  
( 2) G" ••P 	x 1 . . 	x 1 + . • • • -• -r 

(X1) (°k2) n  (xi) ("2) 
= 24 J . Pr  J.11 •---r (6.30) 

(6.29b) 
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(s .41) 	042) 

Uhen we form 2: J.P_r 	J.Pr 	J.Pr 	equation (3.291) 

shows that terms like 

21 •_ .P
(di) 

T .P(« 
2) 
 x 	

(x3) 
x 1 x 1 . . x 1 

reduce to 

p(r-41)
.p
(2) 

—r —r 

and terms like 

(•43) 
1 x 	x 1 x 1 	• x 1 	(6.31a) 

(°(1) (r42) 	(-4 3) 
27- —r 	r 

	

. 	lxlx ▪ . 	x 1 
- 	— p 

reduce to 

P
(.&1) 	(•.2) 	(0y 

.p 	.p 	x 1 x 1 x . 	. 	(6.31b) 
p —r  

and therefore the third term in (6.28) 

(4i) 	0,(2) 	(.<3) 
.Pr 

c 	x 	.Pr 	x CT .1-)r 	x 1 x . 	. x 

6 .P 	x 	x 
(G41) 	(°(2) 

1 	.Pr 	c7 x - 
) 

'IC- terms 

(2) (443) 
can be expressed in terms of .7L J.Pr  J.Pr 	J.P 

 

(A1) (°(2) (Y3) 
and 	J.P 	.P 

Similar reductions occur for higher terms and we can write 

-I- 



1 (s) 

	

	(j) 
= .T Op (o) 21. Cr  11 (1 .1- :7- • T  ) P,rj=1 

1 0  (s) = 	(o) ao  + J . E 

(1) (1'2) 
+ J.J. ) Pr,i  1? 	• 

(r41) (2) (A3) 
+ J.J.Jh 	P, 

21 
r ar(r41°12 4̀3) Er,i Er,j Erlh 

OOOOO 	••••• 

+ J.J. . . . J 	, ,-, 	„.:11. ,(
2 	

f, • • 
1 0 	e 	r  

,r 
('hi) 0g2) 	(4n) 
P 	P • ' . r,i 	r,j 	P r,e 

(6.32) 

The coefficients ar1a(
2•

.0(1,) ri.re all completely symetric in 

a ,( 1,' 2 ° ° .0t,m md are rotation invariant. 	This symetry of 

ar(N  1°1'2 • . • n) means that the cocficients of J.J. . . . J 

i.e. 

• 
(c<)

7.7 ar(=1-142 ° . .ao(-)n) P
(0(1) 

P
((-2) rh 

P,r r,i r,j 

are completely symetric in i, j . . . h. 

In the same way the s matrix is 

S 	= 05 0) 21 	(Bp) 	G-  .1\1(i)  ) 
P' P,i 1=1 

= 05(0 J.7:b Ni)Htl)  7-  
'17- 	 p 

(6.33) 



+ J.J. j 2 b 

Q0 

+ J J.Jj h 

(d.1) (cA2) 

(e41-.42) Ne,i NE,J 

((Al) (Q(2) (c<3) 
b1 (0(10(243) N 9 1 	j 

(0k1) 
+ J.J. 	. 0.4„ 	. 	• . 	N

( n) 

	

j 	. J •2_..b(01 h 	1 2 ° • 	n 

The invariants b (,412 • • . r) arc again symetric in 

2' • • • '(r° 

Equation (6.17 can now be completely expressed in terms of 

J.'s. 

Jj's defined by (6.19) satisfy the commutation s.1.4e..t.e-lat,s 

[ 	J = i(ijk Jk 
	i,j,k = 1,2,3, 	(6.34a) 

and the characteristic equation 

(Ji - s)(Ji - (s - 1)) 	. 	(Ji + s) = G 	(6.34b) 

Those relations can be seen to hold without going into details 

by noting that %i satisfy these r; lations .and ~'i 	Ji are 

given in the same way in terms of 	and c respectively. 

4i and u iobey the same algebraic 2Glations. 
(s) 

The matrics gi belonging to the spin s representation 

of the 3 dimensional rotation group also satisfy the relations 

(6.34a,b). 	The matrices for lower spins also satisfy (6.34a1b) 

but the latter is not the characteristic equation for them. 
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Consider now equation (6.17) expressed completely in 

termsoftheJ.'s 	Therepres (6.19)ofthe-J-'s 

is the n fold Kronoclver product of spin Ya representation of 

the rotation group. 	By(telasch Gordon decomposition theorem 

there exists a similarity transformation which transforms the 

representation 

1  D312  x B'2 	x TV2  

into the direct form 

D(s) 	s-1 D(s-1) + 	. . 	(6.35a) 

(s)s 
SinceJi  .'s and 0i  s obey the same algebraic relation this 

similarity transformation will reduce the Ti's into 

(s) c. 	e(s-1) . . 	 (6.35b'  „  
s-1 

As mentioned already the i_n,ducible representation of 

0(s)(o) is just the(2s + 1) dimension ullit matrix e(s)  and 

therefore this projection operator is redud by the 

similarity transformation to the form 

a (s) (-, o e o . 	. 

The effect of the trans.Cormed 0(s)(o) i.s that D(s)  part of 

the operatov-sis multiplied by unity while (..)'s 1D(s1)  + 

(s-1) 6:.-- ,D 	+ 	. . part just gets -myiihiled.  s- 	 Hence 

(6.17) reduces to 

(6.36a) 

TP Sfs 
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in which 

• ,P:-_- TSB   a + 0(s);: z ar
(%1) p

(c(1) 
-:- ci, r 	— - 	—I- 

r p 

91st Gcs) ,_ 
' 	

(xl) ("2) 
rli 	ri Z ar(̀'TX2)P  • P , • r p 

0( s )  
"( 	(°( e(s) 	 ( 1) 	2)  

r 	p --‘-r(̀41°<2 • • c<n) Pr, Pr, 

. 
(gin) 

P- 
- (,.k 

(6.36b) 

	

S = L o 	_
0(s) 7 

s: 	2  

(41) 
b, (oki) Iu OCs)0(s)  I a 

0.A1) (4,2) 
(cA 04, ) N 	N 	. 	0 • • 

,t 	1 2 Li x„-)  

(s)  + o. 	e. 	( o(s)z 	ID, (0(1,42 	• n) i 	a 	. Ohs) Z 

(4n) 
N k 

(0( 1) (a2) 
N N 

(6.36c) 

_7D  is obtained from Jrby replacing ar 's 13.7 a"s and Pr's by 

P" 

If we sum up ov:r r and 	we obtain the usual non 

relativistic cc.rtician forms of the S and fm.atrices. 

This is done first for the s T.- 1 case. 	From (6.27a) we 

got for /D 



3.02 

1 	 2  p( ).p(2)) e(1) 	2e(1).(p(1) Cr (2 	
—r 	

+ E(2)) 
—r 

(e -) °CI) 4. a  ej
u) ec1)) (p(l) p

(2). 	p(2) pub 
r,i r,j  

(6.37) 
It is usual to express 	in terms of the traceless tensor 

(12,) 1) operator T1 . and the traceless polarization tensor a  

This can be done by defining 

P(1)  P(2)  + . r,i r,j 
p(2) .2(1).  = p  
r,i r,0 

r 	iS )  traceless, i.e. t! . . 	0 Ti. . 	defined by j  

Ta 	
)  = 	(eI

1)  G(1)   + o(i ) (11) ) - 7  o 
6 

T(1) . 	. 

(6.38) 

(6.33b 

(6.38e) 

(6.380) 

= o 

Since 0C1)0C1)  = 2 (e), by using the known forms of 0C1)  1 	1_ 
one can prove easily that tFt 4.1? = o for all i,j. 	Using 

these equations 

(0(1)0cl) 	0(1)0(1) )  
1 	1)2, i 2 TI(-12cr,i  4.3 -0 

9 'r,hh 

1) = 2 T(. .0 	. 

and 	becomes  

2 P( ) (2) —r —r 
(6.39) 



2(P(1)  + P(2)) 
C —r —r  

r r  

2 	1 
Z• Cr T r,i j = 3 Qd- j = r 

Then j°  is siply given by 

i'= 3 
0(1) 	e(1).p 	Tcl) 

1  
. . 

J
)  

13  

1 
3 P 

1 
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/9_ 	(1) (2) 	
e(i) (1) 	(1) 	(2) 

70  2= Cr(6 + 2Pr.Pr  ). 	+ e 	. 2(P 	+ P 	)C 3 	—r —r r 

(1 + T. )  2Q, . 	C j 	jr (6.40) 

Remembering the value of T for s = 1, equation (5.29a), the 

1 c;(1) first term is just 3 	. 	This is not by chance and the 

reason for this is that T was originally defined as the trace 
(419(f)  

of the expression on the right of 	T 	in (5.27). 	This 

is equivalent to saying that T is the trace of the expression 

1 on the right of y in (6.40), the trace having remained the 

same throughout the similarity transformations. Now as 

0(1  and T) are traceless and trace of 0 1)  is 3, T must be 

equal to 
(, 

Cr  (6 + 2 Pr1)  .Pr(2)  ) 

The summation over r can now be performed by defining 

Similarly 

= 1 3 

for 

	

T. . 	. 

	

13 	j 

(6.42a) 

(6.42b) 
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02) 

These are exactly of the same form as given by Bicdonharn. 

For S vie have from (6.27c) 

s = 7 (,ar
x
o.)1,(2) - 2 N(1)N(1))e(1) + 2 G(1).(F(2)N(1) + ( ' o 	'.e 

F(1)1T(2)) 	(0(1)e(1) + o(l)e(1))(N(
t
1) H(2) 4. N(2) N(1))  

Fe i 	a. j 	3 1 	li k9j 	(li ild 

(6.43) 

N(:-)  is given by 

("t.) 	) 1 	(f-A  ) 11 	E 	) 111 
N 	4. N 	-H 	N + K T\T- of .= 1,2 

(6./Ma) 

where 

(6.44h) 

(6.44c) 

(6.44d) 

IT11 = 

k A 

N111 = k' N 

) r a n N' 

(0( 
can be expressed in terms of k and .kand NI as 

(t ) 	(,(• ) ) k.k' 	.) 	? 	1 
N 	= H 	N• + k K 

L 	t 	I 	4- 	 ig A 

+ k' 

H
(c)(  )

N
1 

) k . 	(-49  k .111
K  

	1, 	1  

17 	11 A Al 	
(6.45a) 

 

(< 
F X 	k + 	 (6.45b) 



Using the definition of 

of T. . (1) and all)  . a  

0(1) 	0(1).  
'o o 	(a1- Ni  + a21C + a31c.') 

S eau also be written in terms 

2TC ) 5 aL, 11-.N a . + 	(E .k 
a5 . N.jk.) 

a6 	a (N.k + N.k.) + a7  k 

	

i_ 	oshiAj  ± a,(1411(0. + 

-„ 	 (6.46) 

The invariants ao, al, a2  . . a 	p;ivan in terms of the 

original invariants by 

„(1) 7A2) , 2  avr(1) .„ v(2) ao 	"t 	 e  

z  E.  F(2) FM . 2:  r(2) F( ) (2) 01  
H 	F 

pe 	 e e 

a 	1,(2) x(1) 3 	 etc, 	 (6.47) 
P e 	e 

In the cenure of mass franc (6.46) is the most general 
.ferve1 

iotation invariant S matrix that can be - 	_with the halp 

of the 011)  matric,,s and the initial and final momenta lAw 

and 1h11 of the particles. 

Under time reversal 

(1) 	- 0. (1) 

• / ) 

k)) 

••.') .1 

N E 

(6.48a) 

(6.48b) 

(6.480) 



a2 	a3  

a5  = a6  

a7 	
r-18 

Under space reflection 

eC1) 	(1) ei  

k 	- k 

k 
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Hence if time reversal invariance holds 

(6.49a) 

(6.49b) 

(6.49c) 

(6.50a) 

(6.50b) 

(6.50c) 

Hence if only parity conserving t,:rms are present 

a2 = a7 
	 (6.51a) 

a5  = a6 = o 	 (6.51b)  

(VO 
The form 6.46 with 6.49 :,old 6.51 has been used by Stapp. 

In writing the S matrix for spin ih particles, i.e. 

S(fi,t,k) we had included the parity non cons,:rving term also. 

When this form is used Zor dar,i(ting the S matrices of higher 

spins such terms give rise to parity conserving as well as 

the non conserving terms. Also if only parity conserving 

term had been kept in S (X,t,X) via would have missed a large 

number of terms in S matrix for higher spins. 

Coming back noc. to the general case, the first thing we 
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can do is to replace in (6.56b) and 

e(s) 
G.  
(s) 

. j 
e(s) 

(6.36c) 

m factors 

by O. (s) G.  (s) j 
G(s) 
h 

This is possible on account of the complete symetry of 

a(0(1.2 	em) and b(be.142  

matrix we define traceless 

:,cm) inl 2 '" a m. 	For the 

tensors 

- r,ijk — • r p 
a('Tp(2  --°(m)  

T 
(c.'1 (A2) ('K5) 
r,i 	P 

-r,j 	1.0( " 

OA].) 
P 

(f1 
 6
2>e% 

• P
(Am) 

Cam) 
P 

Km) 
▪ F 

(6.52) 

ij 
m -1- 4) —T 	—T  

_Co(l) 

	

Pr 	ih 

(42) 
4. 	' -fr 	S jk 

O 0•O 	0 	0 	0•0 	00 

There are m02 terms within the ( ) brackets on the R.H.S. as 

all combinations of tensor indices arc taken in the form of 

Kronockor 's. 	It can easily be proved that if any two of 

the tensor indices of Qij 	are contracted the 

result is zero. 	This can easily be proved; suppose i and 

k are contracted, i.e. we calculate (:) dj i ... e- 

((3) (1&4) 
PrIk  Prat 

(c(2) OA4) 
P Fr,t rl j  

(Al) (0(3) 
P P 	. r,i Prat 



.0(s) = T(s) 
. 	o 	1 

(6.54) 
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1̀('T)(2 —d'm)(45'1"c43""°4  24) 
.

(0(m) 
Qi j i t • =   Pr • P -r 	P  r, a Prat 	°  r p 

1 	(Al) (42) (,43) (°(4) 	@n1) 
P P 2 4_ r -r rla r,u °" Pr /2(m2 1/4m -m 4) 

+ 3P 
(0(1) 

P 
 ("p)

P 
 (0(2)1 
	.. 
(A4) 	(gym) 

-r • -r 	r,j rIt 	.. 	
1P 

Pr  

('42) (°43) 6k1) ("(4) 	(An) 
+ P 	P 	P 	. P , 	.. .. P . -r • -r 	r,a r1 G 	r,;" 

• 0 O O O O O O O O 	 ) (6.53) 

The presence of the permutation symbol makes it possible to 

write all terms within the ( ) brackets ia the form 

(at ].) (,A3) 0:4 2) 	(gm) 
P 	.P 0 .L 	. . . P -r 	_1- 	r, j 	E 

The number of such terms within these brackets is 

mC2  - 1 + 3 	(m2 - m + 4) 

Hence the R.H.S. of (6.53) vanishes. 
1 (0Cs)0(s) 	s) From the tensor operator 7 	j 	ei  eis)  ) 

we define 

T s.) = 	(61_s)0 s) 	0(s)ecs))  Ti  s) 	J 	1 	3 

(s) Ti  vanishes since 

s(s)  O(s)  1 	1 s(s + 1) tic (6.55a) 

s(s-;-1 
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) For the tensor operator of 3rd rank T(.'. h  is defined by ij 

	

(s)1 	(s) (s) (s) 	1 Ks(s + 1) ( 	(s) 
i 
T 	= - 	G: 0j 01 	 b . jh 15 I j 1.! - 13 	5 	ij k 

) + 	ej 	(6.56) 

TNissymietricinijX- andT..vanishes. Ida 1  

easily be proved by using (6.55) and 

(s) (s) 	(s) (s) 0. 	- 0 	8. 	- i k 	h 	k 
e(s) 

 

This can 

(6.570 

It is very difficult to write down the forms of symetric 

tensor operation of higher orders (up to order n = 20), but in 
(71)-- 

principle it can be done. Summing up 	we define 

(2s -1- 1) 	fir, . . 	= 0. 1 	. . e 	. . e  
The 1' matrix then takes the form 

1 	( ) 
2s 4- 1 	Cos) + G

(. s o. 	T(  . .s) q. . 

(s) + T.. 0 	m(s) 
lah 	' 

(6.56) 

(6.57) 

The reason for the crefficient of the unit matrix 0o being 

unity has already been given in connection with the spin 1 

case. 

If  e(s)e(s) 	Ohs) j 
	in the s-matrix are replaced by 

Tij
(s)  ..h then (6.36c) is perhaps the most concise form of 

writing the complete rotation invariant S matrix. However 

if the expression (6.55b) for 	is substituted and a 
V,1 
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summation is performed °ye' l el, s can also be written as 

9 = a 	-1.0(s) 	N,11,14 	11( s  ) 	1-1. 
o 	_ 	-ij ...k t-  ' 	.11" 

(6.58a) 

In this equation C ii,K,1( ij...  is a tensor of rank 	2: rd'' 

defined as a linear sum of all tens.Jrs : 	out of the 

vectors N, X, k 	As an example 

Tic)  ij INA.A? A 
7 	,• 	e 	 , 

,3 = Tick 1 	1:1.11..1T ,Ti k `' 	1fi 	-̀̀ 2 	- 	If 

7 
hinikK  + 04  N. kh 	

—4 

Yi' 

• 

. 	+ 	4. + 
1 	K 	5 	14. 	"6 T

•

i 

	

+ a3 h.hjk + n3 	+ a. h.k.k. + 

	

c15 	 - ft 	 k 
e 1 	 /0 

The restrictions of time reversal and space reflection 

(6.58b) 

invariances on the s matrix can be put in the same way as for 

the case of spin one p7xt_i.cles. 

The lion covariant forms of the S and P matrice 

obtained hero are given in the °artesian tensor forms. Many 

authors have used. the toneor moment forms of these matrices 

and have obtained them from t1& considerations of rotation 

invariance. 	For spil, s a tensor moment T") 	 is 7,, (2s + 1) 

dimensional matrix which transforms under rotation as the 

spherical harmonic 1.1,/  and has the property 
I 3) 

. 	M = S J o (2s + 1) 
	

(6.59a) 

M' Ti 

	
Cimi (2s + 
	

(6.59b) 

(s )J 	 (5) . TGI  be written in terms of  
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Relativistic Corrections 

If the uquation 

I /3 
	

(6.60) 

wit /9, 	and s given by (6.57) and (6.58) is used to 

analyse multiple scattering experiments there are certain 

corrections to be made. 	The situation is very much 

similar to the spin 1/2  case discussed by Stapp(1) and we 

closely follow his arguments. 

In equation 6,14 instead of the propervectors T (i) 

and ir(i)  the rotated vectors P(1) 	(f1) 210 
	P
r (k)  

p(i) 	(f ) 
r,h h j 1 

not present thef matrix would have boon 

o(s) e(2) 
- 2s 	o 	qi 

(S) - 
± 	 . . 	• • 1j 	q a.  

Tcs) 	4 . 	. Ti j 	h . . qi j ..h... i 	.. C 	j 

(6.61) 

and/0 of tne same form with th.) dashed quantities qi  

replacing 	in (6.61). 	The tensors qij 	k  are 

given in terms of  ip(i) in exactly the same way as nig..h are r 	 '  

given in terms of P(i)e 	6.52 and 6.56 show that and g 

are related to each other by 

Q.
= 
	

-131 (f  ) 	
•, • (f ) 	. 	(f  ) 

al32—zIL 	1 	32J2 1 	a a 	1 
e. 

(6.62) 

and P(i). 
r1J 

occur. 	If th,se rotations were 
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The highest rank of each tensor is 2s, 	The last 

equation can be written concisely in the form 

i(0k(4)(f1) 	 (6.63a) 

q(0 	)-1(f1) 	 (6.63b) 

The final quantities are related by 

	

(-- (0 = 	(L) .(8)(11) 	 (6.64a) 

	

El (42 ) = 	- 	'.(e-)-1(f1) 	 (6.64b) 

Since P` h  

	

i)  and iJ(ih 	r)  = 	willies e the 	of 1P(1)A 	r and Vi)t  in the 

	

r, 	r, ,A o 

rest frames f = o and f = o respectively it is the quantities 

q16...h  rather than Pii...h  which are the same in the 

outgoing boom of one scattering and the incoming beam of the 

next scattering. 	Let the superscript (n) denote the 

quantities referring to the nth scattering and the subscript 

n on the 4-momenta denote their centre of mass values. 

Then 

q( /(n-1) _ -(n) 
) 	q(t) 

or from (6.63, 6.64) 

n' (n-1)(0)  ,.(f )- 1(f,n_i) n(n)C) 

Thus 

1)(e) ,2(0-1(fL) 2.(1)(f n) (6.66b) 

AN The rotations which convert the out going tensors Q0r,;, of the 

(6.65) 

(6.66a) 
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(n-1)th scattering into the incoming tensors of the nth 

scattering introduce certain differences between the 

relativistic and the nonrelativistic treatments (in which 

(t) 	= n  (n-l)k'  there are no rotations involved(1(n)" 	In 

analogy with Stapps work these will be called the rotational 

corrections 	The only difference between the case of 

ih particles (discussed by Stapp) and the case of arbitrary 

spins is that these rotational corrections are to be applied 

to each index of the polarization tensors Qii...h. 

There is yet another correction which has to be applied 

to the nonrelativistic treatment of multiple scattering 

experiments. 	This arises out of the use of the relativistic 

transformation of momenta between the successive Lorentz 

frames rather than the Galilean transformations. 	Since the 

incoming momentum of the nth scattering is the Sallie as the 

outgoing momentum of the proceeding scattering 

f(n) 	f' (n-1) 

However 

f(n) 	(tn) .1( 	 I) 

f  (n-1) 4 	(t(n-1))  
t5 

(fn)lk 

(f n-1) = 

(6.67) 

(6.68a) 

(6.68b) 

Thus the relation between the incoming momentum for the nth 

scattering and the outgoing momentum for the proceeding 

scattering as measured in their respective centre-of-mass 

frames is 



14 

(fn)/, 	
(f
n-1) 	

-1 (t(n-1) 	(t(n)) 	(6.69) 
,)A.k 

The major portion of the transformations appearing here will 

except for the extreme relativistic cases, be given by the 

Galilean transformations. The remainder has boon called the 

kinematical corrections by Stapp(1) 

It is convenient to choose the laboratory frame as the 

basic reference frame and to assume that the target particles 

for all the scatterings arc at rest in it. 	From ( C6 ) and 

(‘.1( ) the rotation : )L (f„
"
) is given by 

4 	/.) i 

-{: (fn) --41 , (f(n)):1:, 	(f(n)) 	(fn) 	(6.70) A,-" 	
1?/\ 	,.. 

. 	_ '  5)/A  

Since the Lorentz transformations appearing in this are 

colinear and their product will be unity. 	This gives 

1..(n)(7 ) 	Q(n)(e) 	 (6.71) 

For the scattered particle q(f) and 6S, (Q_) will be different. 

Eouation (6.66b) in view of (6.70) becomes 

	

go(n)(f)  = fl (n-1)(Q) 2,(10- 
1*(fin-1) 
	

(6.72) 

`-i(fn-1) is given in terms of (fn-1) by the Kronecker 

product 

.(ei)(fri  -1)  = 1Z(fn-1) x  

pdp...(e)-1(f, 1)  1 	-1 	-1 (fn-1) x 2. (fn-1)  . . . x 	(fn-1) (6.73b) 

n-1) x . . x(f 	) n-1 (6.73a) 
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There are two modifications to be made in the non- 

-relativistic theory. 	The firs;; is that the relation 

between the momenta in the succession centre of mass frames 

- 1 is given by (6.69). 	The second is a rotation/2, (fn -1)  

applied to each tensor index in the outgoing beam before it 

is interpreted as the incident polarization tensor of the 

next scattering. 

The rotation 

-1 	1  (f l ) 4? -1  (f );if, 	(t) .6e 	(f1) (6.74) 

is the result of three successive transformations. 4f1) 

takes a vector from its value in the rest frame of the 

7,e scattered particle to the centre of mass frame. 	(t)  then  

takes it from the centre of mass frame to the laboratory 
_0_1 • 

frame and. finally- J., -(f ) takes it from the laboiatory 

frame back to a new rest frame of the scattered particle. 

The magnitude of this rotation specified by air axial 

vector SZ  has been given by Stapp 

Sin 1-i-2-) = 	V -a A 4 

 

(a) ÷ K(b) + 	(c) 

 

(1 + ( (a))(1 + u  (b))(1 + 	(c)) 

(6.75) 

where '(a), 	(b)  and Zi(c)  are the three Lorentz 

contraction factors associated with the three transformation 

listed above and VG  , Vb  end Vc  are the space parts of the - -  
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three relative relativistic velocities respectively 

R F 

-1 	 (iC) )2. (0 is the same rotation as given by G.C. Wick 	in 

connection with the Lorentz transformation properties of 

halicity states. 
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Chapter WI 

The quanitzation of the theory is not directly connected with. 

this work but we shall briefly discuss this question for the following 

reasons. 

(1) We can show that the particle density (for evewn values) in the 

quantised version of the free field theory is positive definite. 

(2) We can obtain the commutation reactions for free fields in a closed 
('7) 

form whereas the corresponding result of Umezawa and Visconti involved 

recurrence relations. 

It has been mbntioned in reference ( 	T7 	) that the 

Hamiltonian is not positive definite. 	This means that the quantization 

involved the introduction of an indefinite matric operator and 

consequently a subsidiary condition. 	In this section we discuss the 

quantization of the free field only and this is sufficient to obtain 

the results mentioned in the previous paragraph. 
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Equation 	1St/ shows that the momentum space 

expansion of/9,(-) satisfying the free° field equation (2,1) 

contains only the "particle" and "antiparticle" spinors and 

none from the rest of the spinor space. 	Enclosing the 

free field T(x) in a boxK of volume V with periodic 
x 	,, 

boundary conditions ((X .) and G7, (•)4L) 	/7 Ot.) 	are 

expanded in the form 

C, 	G- 
(f (X))

i 

f j=1 	f ()).V. 	f Uhld 	CA A ° 

.(f()) e 	
f (X) 

 (7.1a) 

>' 

c 
2._ /\2-- f 

J =1- 47%.! s,f 	)V c/,  

( 
0--s." 

) I ^ 	.- ,,U , 	(f' ()k  ) 	)2tf  
' 	J 

, 

	

t , 	. 	if ()Dx.., 
+ b 	c"  -- ( 	)) a  - 	, 	(31  

/ 9j
, 
 if 

v 	
i
, 

 
(7.1b) 

IL. these expressions for the first (2s ± 1) values of c, 

TJ °'4'(f(;°)tulde-.(f(;')) belong to C(s)(f(A)) subspace and 
AlJ 

rest to the subspaces with lower spin values. 

the 

The energy momentum vector ...Pps.  derived 

Lagrangiah density - (4) ocy (0.) 21— + ms)C2c) 

V 	 • 11- -ax /44 

Substituting the expansions (7.1) and using 

from the free 

is given by 

(7.2) 

orthonormr.lity 

( ?) 

(P (-X.) = 	 z- 
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relations (3.55) we obtain for P 

ft- 
= 	f(;‘) 

'1- 
(-1) at f • 

a 
2sFX -1 - (-1) 	b. b 

A Jf A t12:. 

(7.3) 

Lot us for the moment neglect the second term on the R.H.S. 

of the above equation. 	The Hamiltonian H = Po is then 

H 
A x 	a- 

1'0  (-1) a
A 
 a 
lif 

(7.4) 

Owing to the presence of (-1) the Hp_miltonian is rot 

positive dofinito. 	Such a Hamiltonian represents an 

assembly of Pais-Uhlonbeck oscillators(I) 	Sudarshm08) 

has shown that the quantisation of a Pais-Uhlenbock 

oscillator involves the introduction of an indefinite metric 

operator and his iaothod can be applied to the present case 

without any difficulty. First the commutation ;or anti-

commutation) relations are written. 
x 	 X 

= g , 	C  C 	g 	(7.5a) n 	• 	 / ( —1 ) 
I_ • ,‘ , a f' 	); if  f -__ 	0 	, ( i i ' 	flf 

+ 	>.) 

, 
f 	a f 	o, 	A\ 

L'a,b] =a b 
• = a , 

4 
a] , T  

JJ 

=['biL  

• . 

k 

(-1) 

= o 

(7.5b) 

(7.5c) 

where in accordance with Pauli's principle the upper sign 

(commutation) is taken for bosons (n = 2s oven) and the lower 

sign (enticommutation) is taken for formions (2s = n odd). 
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Using themer-lationsto bring b on the left in (7.3) and 

neglecting the zero point energy the Hamiltonian becomes 

H= 	f ,)(-1) au
j  a 
	4- 

S f 
(7.6) 

Now we introduce the indefinite metric operator 

iTT 	 N(-1) a GT- 

e 	
f 	A a 

K  

+ X(-1) b 	b°7 
A SL A 

(7.7) 
has the following properties which can easily be proved 

= 1 (7.7a) 

(7.7b) 

(-1) 
 

a 
ha f 

(7.7c) 
5' 

(-1) 10'7 	f (7.7d) 

)( 
This moans that ; commutes with a , a , b , and b for even 

f ti 	A 	A 
\ and anticommutos for odd values of ,\ . 	Following 

t 
Sudarshon(  ) we now define the new adjoint operators a 

and b1  by 

to- 	s'G, f 	A C7- 
x. 

a 	- F a 	= (-1) a 
a 
. 

f 

	

9  d L- - 	0 f  -) 	A 

btu 	= 	ip- 
x 	A A. tu 

N 	Ai 1 	= (-1) b . 
A a f 

	

A , i f = 	b 

t 0' 	1-  0- 

	

In terms of c.,. a 	a 	A6 fnd. b 	::he Hamiltonian is 

--- 	

.,\i. f  

.c.2 
 

• ) 

	

>‘ 0-j f 	° 	AJ 2:- -Ad' 	A 3  Z- 	
r 0 -  

(7.8a) 

(7.0b) 

(7.9) 



	

[A(7; 	
0 

 f  a 
- 

f 	
j j 	ff 

	

b
cr-
. 	

0  
.• b • 	/-1 j f 	

A 	— 	A A 	os 	ff  
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with the commutation relations 

All other commutators or anticommutators vanish. 	a 4. 4, and 
A' 

b can now be inturpreted as the creation operators for 
Att 
particles and antiparticles respectively and a te' , b°-  as 

Ajf  Aif  
the destruction operators for the corresponding quantities. 

Particle states can be constructed in the usual way b7 

applying a and  bt operators on the vacuum state defined 

by 

a „ )
\ 	

.., 
a/  = b 	o\ = o 	(7.11) 

An N.'  particle state is 
fr 

	

, 6-- 	 ow,  

	

1 N / = - I 	a I-  _F. . ,, . 	
1 
 o> 	(7.12) 

A'jlfl A2j2=-2 	2-Ali iN' h' 
In view of the equations (7.7) and (7.) the adjoint of the 

state j N >is given by 

= 	a 
'I

N  N' . f, 	• 	• • 	
C2 	(3- 

. 	. 
)12°2L*2 A13111 (7.13a) 

A +A  + 
= (-1)  1 2 +/\ • N 	o-- i 	6-2 	6-1 o 14, 	. . a, . 	a 	4, 

N tiN 	'2a22 ll1 

(7.13b) 
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This shows that the norms of the states arc not positive 

definite. 	If the state IN> is properly normalised its 
norm is given by 

''N'  I 	• 	= (-1) 1- 2+  • • • A 
 

T y 	
(7.14a) 

Similarly the expectation value of H in the state N is 

lc\  = (-1)  1 2 • 	N 
// 	 -1,o -I-  '2,o • • • 

A -' 
fiv ,o ) 

(7.14b) 

Thus all the states in which there are an odd number of 

particles with odd values of A have negative norms. 	In 

the case of electrodynamics the supplementary condition 

restricted the physical states to have only positive norms 

and we can try the same trick in tho Dr:sant case also. 

But before we pick up a supplementary condition and try to 

obtain a consistent theory, it is better to deriro the 

commutation relations for the field operators. 

In the limit 

V 

V  

f 	3 
(2 TT )2 

s.cd3f 	 (7.15a) 

V f f' 	N,(27)3S(f 
	

) 
	

(7.15b) 

and defining 

aAJ 
.(f) = (7.15c) 



) 
) e -f  

eif 
( ) x  

(7.17b) 

• J I 	f() 

„7- 

/.\ 	q-(2 Tc ) 	s.,\ 

V , 	(f 	) ) 
 

L1 vC 	 A i 	, 
d3f 	(-1) 	a ,̀"., (f ) 
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etc., the commutation 

a 	., 
I 7 

relation can be written 

, (4.; ./ S (f - f ) STs 	(7.16a) 3--  

.13 	(f), 
Ad — 

b , ./ (f 
— j 

(f - f (1` 	(7.16b) G•• 

with all 

In terms 

other commutators or anticommutators vanishing. 

of a ".(f) and b 
AJ  
.(f) the expansions of the field 

AJ  
are given by 

   

4)  :(x) = ra  >•• 	d3 f 
3 j 	 s I 

(2n )7  

. -1 L .(f) 	0-• (f 	) 0I 
(A) 

LAJ 	A 

(-1) b 17.-(f) V cr (f(A)) e-if (A) 
	

(7,17a) 
/j 

Using the commutation relation (7.16) we get 

d3f 

U .(f(A)) eif()() 

fl 

e f . (X) 
(7.18) 

[ 7.) (x), 
 r 

ri (71) 	m c(x  
= 

i T 	X j6-(2 ,T )3 Li S f\ o 



r>2 (f (A) )  
( o( 1,  

Remembering that 

V  (A)) 
AIO 

u n-A , j (f
( ))  

(7.19) 

12L 
The two terms on the righthand side above can be expressed 

in terms of the particle raad antiparticle projection 

operatorslr(f° )) =y-s,A(f()) by using 3.43. 
dLp 	,cp 4--sx 	 t 

u
AJ

(f (A)) e.(f(A)) 
= 
E 31(f(A))u7(f()) IJ.:(f (')F(-1:i4-' 

0( 	A J j, P 	iu-- 	,4,,/ 	AJ 	Aa 
+.s,),  

le 	(f (A) )  u.(f(x)) 
f 
 uo--.(f(>\)) 

‘ 	TIO 
(2,  

..( Of 	 0L 

(-1)•  
r=o j a- 

we obtain in the same way as before 

t, 

-T 	
f t  

V a-'.(f()) 	".A)) 	7 (-1)11-  )‘') (f ()) 
6.̀  A' 	

v 
 A

w  
u( (13 

For bosons the upper sign is taken but n = 2'$is even and for 

the fermions the lower sign.is taken but n is odd in this 

case. Hence 

	

( 	cr (,<1 	1  m (AN d 3 f  

8 	; 	(26 ) 	SA 	f()‘)  

	

01, 	 0 

S 
) 	(A) 

ci 
00 

(x)(x-x) (f k.-) )  
ocp 

f 	• 

(7.21) 

(7.20) 
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Since from the definitions of -s kf (X),  

„,-Es ( 	(_f (x)) (7.22) 

alternative forms of (7.21) are 

pp (x), qP ('' - 2 d4f ► -(f)c-(f.) 
A 	 .AP 

S (f 2 	m2 .1, 2)  eif ()-(-x)(7.23b)  

2m a,‘  
\ (-1--)---x s rx (2r)-1  

f E (f0) 

	

(f2 4. m2 2)eif.(4. 	(7.23b) 

The commutation relations given by Umezawriand Visconti(s7)  are 

of the following form in our notation 

[c4r(x), c)  (x 4, = ± ,,,4  fa() 6 Cy- 	 (7.24a) 

A (x' -X) is given by (19)  

i 	 C142 eif(x- x' 	Q 2 +m  2c  2 )E (f 0 )0(f 	A 6 (K->k) = -i---x 	1 Z 
(217 )-1  ), .D-m2(0(2,  _ 0(2)1 

(7.214-b) 
e 	, 

D(3) is a covariant operator formed from 1 A, (Bad 	-6 
X —  

	

, 	, 
with the property 

( R 	Pas) 	3) 	 2 2 
) 
\ v.: 	( 	Of• 

	

f)( 	
D( 

 

D (I)  ) can be expressed in the form (1 ) 

s 	- - 
D(- ) (X +a1 	+ 

° 
+ . . . 

fr*, 14 4 	-14 2.  

(7.25) 

(7.26) 



 e i f cl4f 6 (f 0 ) (f 	m 0 2 
2d̀ ) 

12.6*  

where 0(14„,..),r  with r < n = 2s are tensors formed from 6,'s. 

D()) can be determined by substituting (7.26) in (7.25) and 

comparing coefficients. 	In this way recurrence relations 

are obtained for ok. 	It is very difficult to prove 
- At 

that the commutation relations (7.23) obtained hero are the 

same as those given by Umezawa and Viscosity for arbitrary's, 

but in the particular case of s = 	, D(b) is easily 

calculated 

) = 6m3  - 
3 

 ra-2 

_196 (p.,0  

+p(.2  - 4m2) /,:‘ 

5 raLP  

(7.27) 

and there are only two mass states 0(om = m, cxl m = 3m. 	In 

this case we can verify by using the definition of//
sA  (f (A)  

that the result (7.23) is the same as (744) given b,-5,  Umezawa 

and Visconti. 	The form (7.24) has the advantage that the 
, 

propagator ( 
( 	 4 
(X.k -x- ) = (o 1 T 4) (x_) cp(

A
a( ) j o) can be 

a  
obtained simply by replacing 

in (7.24h) by 

1 	d4f cif (x -x) 
2 	2 2 	. f + in A - e 

(7(-x) can easily be sh 	to satisfy(19)  

ms)C.-7 (x-7L) = —g (X—X.) (7.28) 



1 () a . f 

for A = 1, 3, 5 • • • 

, j, and f 

=0 

_0 
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On the other hand the expression (7.23) is given in a closed 

form. 

Coming back to the question of selecting a supple-

mentary condition which restricts the physical states to 

have positive norms we note that the single particle states 

with masses mt.!, , 	1, 3, 5 

<01 

0 • 0 
	have negative norms since 

= (-1) 
	

(7.29) 

Thus we define the physical states to be those which have no 

particles with odd 	values. 	Let 1 P> denote a physical 

state then it must satisfy 

We can go a step further and demand that the physical states 

are those which have only particles with the lowest mass 

value m. 	Such state will satisfy 

0- 

	

Aif  IP> 	= 0 

	

bA  if (1> 	= 0 

This last condition is equivalent to 

( 	- m2) 01 ,,(+)(x) 

( 	
m2 	k / t) 	p 

t 
C 

(f) ) and q? 	(X) denote the positive frequency parts 

of 9(x) and cg (K.-) respectively. 	Equations (7.32) may be 

P) = o 

for /\ > 0  
and for all 6--, j, f 

(7.31a) 

(7.31b) 

(7.32a) 

(7.32b) 
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taken to be the supplementary conditions for the free 

fields. 	As in electrodynamics the advantage of putting a 

condition on the states rather than on the field operators 

is that the commutation relation, the propagator and other 

Greens functions remain unaltered. 	The physical states 

satisfying (7.32) have positive norms while the unphysical 

states have positive as well as negative norms. 	The 

expectation values of physical quantities such as the 

Hamiltonian in physical states are also positive definite. 

The difficulty connected with particle densities mentioned 

earlier in 4 disappears in the quantised theory. 	The 

electromagnetic current density is given by 

	

t 	- 

o 	
-, Cam)) = ie i . ----, 	Cp 	, te

a 
(L) 	(Xi 

+ L  

	

oAL 	P 	— 

The symmetrisod expression (upper sign) is taken for bosons 

and the antisyinmetrised expression (lower sign) is taken for 

fermions. 	The vacuum expectation values of lit (x) vanishes. 

For using the expressions (7.1) -..cl_ the commutation 

relations (7.10) we got 

(7.33) 

	

j (x) 	= 
f 

	

(f00) 	U (f('‘)) +V (f (7.34) 

The indices O and j have been absorbed in f. 	From (3.55) 

one at once d:rives the relations 
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U.(f(A)) 	up-  .(f()̀)) 	(-1)
x (-i)f

itk
s
' 	(7.35a) A'a px,J 	m 

04,>. 

(-i)f(A)s A  (_1)25-1-x 	 Vr.(f(A),  vQ--.(,(A)) 	 (7.35b) 
A 	

m to( 

These eauations show that the Quantity within the brackets 

in (7.34) 

i S f/c?.0  
± (-1)

A  
(_1 )2s - 1 - = 0, 	(7.36) 

since the upper sign is taken for 2s even and the lower 

sign for 2s odd. 

Let us now calculate the expectation values of j (>) 

for a free "particle" state ax1, 	C> 	and for a free 

"antip-iticle" state b 	0'> . 	The result of a of 
straightforward calculation is 

m 

0; 

tf A 
a 

S 	
j (x) a 
/1.4 

0 	b, 	j (x) b1 

A 	f(X) 
= (-1) V I..(A) o 

= fit?')  
V —77 fo 

<0I (7.37a) 

f(X) 	X 
f(1)  V (X) V (-1)  
o 

Therefore for fermions as well as for bosons the 

(7.37b) 

expectation value of j (x) for a free particle state with 
ft 



\ 
oven 	is 
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f )  
AA.  

V M fa  

, 

 

(3.38a) 

where tJ is the velocity of the particle. 	For a state with 

free antiparticle of mass ;a 	, Xeven, the expectation 

value of j 	in both of the cases is 

f (X)  
(e.38b) 

; f  ) = (- 	) 	) 

t 
Thus the particle current density for the states a 	0) 

and 	1 10 for even N  values is — u and the particle 
1 v both  density is 	for bosons and fermions. 	Taking :\ = 0, 

covariant density matrices can easily be derived in the 

quantised theory both for particles and antiparticles of 

integral or half integral spins. 

So far we have considered the free field case. 	For 

3 
2 

only two mass states and one might try to develop a 

quantised theory of interacting fields for particles with 

these spins but tiler., are several questions which have to 

be answered satisfactorily. 	Ono of these is how should 

the supplementary condition be modified under the presence 

of interactions. 	Anothor is the question of the unitarity 

of the s matrix. 	For whenever we insert a complete set of 

the comparitively simple cases of s and s = 2 there are 
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states not only all the physical but all the unphysical 

states should be included. The third question we mention 

is whether such a theory with the supplementary condition 

(7.32) is a realistic one. The investigation of these 

problems is outside the scope of this work. 

Several authors have employed the Duffin—Kemmer 

formalism in discussing the quantum electrodynamics of 

spinless and spin one particles.(20,21) Sometimes it might 

be useful to have the rules for contracting the Duffin—

Kemmer particles in a matrix element according to the method 

of Lehmann, Symanzik and Zimmerman. These rules can be 

easily found by using the orthonormality relations (3.42), 

(3.55) and the expansion (7.1) of 4)(4) taking S = 1, 

A= 1, 	= 1 and proceeding in the same way as one does 
(IX) 

in the case of Dirac particles. The 'in' and 'out' destruc— 

tion operators for particles and antiparticles are given in 

the sense of weak convergence by 	+. 

1- '1̀  (-9 (34 CP 
(x) 

 151 

LE T,-, x -• 

tiro 
v  

xt, 
The in and out fields obey the cm-I-natation relations 7.18, 

7.21 with S = 1, X = 1, j= 1 and it can easily be shown 

S c 
V 

fjf'  OC-) At  V ( g
X t 
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that the destruction and creation operators obey the commu- 

tation relations 
.A1  

L 	, 	, 
f 

All other commutators vanish. The indices i and j denote 

the three helicity states of the spin one particles. As an 

example we write down the transition matrix element for 

Compton Scattering of vector bosons 	 J_ 

( 

< 	

IW" l'sq. 

 e > 74-   Vf„ 	21/ V1-74) 

f'X 	(V' i _ fY - j;2/)  

cit,( 	otk 

• 

el,1- 	
i 

(f) (- 1:12) 03--& 
doAl 

'(y)A,(7) 

(-r) I 0> 	P 	))\12, Up  CF) 

f, i and f', j are the momenta and the helicities of the 
initial and final vector bosons, 9/  , e and 5( e' are the 

corresponding quantities for the initial and final photons 

respectively. In these formulae the 10 dimensional 
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representation of the /3 matrices may be used. PeasLee 

has given the traces of these matrices. The contraction 

formulae are very similar to those for Dirac particles 

and many results will be similar in form in the two cases. 
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