THEORY OF EWEMENTARY PARTICLES

by

ARIF-UZ-ZAMAN

A dissertation presented for the Degree of Doctor of Philosophy, University of London, and for the Diploma of Imperial College.

Department of Theoretical Physics,
Imperial College of Science \& Technology,
Lond on.
December 1963.

PREFACE.

The work described in this thesis has been carried out under the supervision of Professor A. Salam between October 1961 and December 1963 in the Department of Theoretical Physics, Imperial College, University of London. The material contained herein is original (except where stated in the text) and has not been previously presented for a degree in this or any other University.

The thesis is based on a paper entitled "Covariant Polarization Analysis of Spin 1 Particles" published in the Proceedings of the Royal Society, A, volume 268, 1962 and the extension of this work to the case of arbitrary spins.

The author wishes to thank Professor A. Salam for suggesting this problem and for his continued guidance. He also wishes to thank Professor P.T. Matthews and Dr. T.W.B. Kibble for the encouragement and advice he received from them in the course of this work. He is also indebted to his colleagues Mr. J. Strathdee, Mr. M.A. Rashid and Mr. I. Castell for many helpful discussions. The author gratefully acknowledges a bursary awarded from the funds provided by the United States Air Force.

ABSTRACT

A covariant theory of polarization analysis of particles of arbitrary spin s is developed. This theory is based on a Shabha type equation which admits multiple - mass values for the particles. We begin by describing Stapp's method for obtaining the covariant scattering and density matrices for particles obeying the Dirac equation. In order to apply the method of Stapp'to the present case, a complete momentum space expansion of the wave function satisfying the Bhabha type equation is performed. This expansion contains a summation over the various mass states and for each mass state the particle, antiparticle projection operators, the invariant spin projection operators and the helicity projection operators have been obtained. Working in the fusion theory representation of the β matrices it has been found possible to establish for each mass value an orthonormal basis in the $4^{2 S}$ simensional space and to derive certain useful orthonormality relations. For a collision process between particles of spin S and scalar particles the forms of the covariant density and scattering matrices have been derived by expanding them in sums of 2S-fold Kronecker products of Dirac matrices and restricting

iii

them to operate only in the subapacc oharacterined by the particle projection operator and the invariant projection operator for the highest spin S. The covariant scattering equation is then evaluated in the centre of mass frame and after a reduction process it it expressed in terms of ($2 S+1$) dimensional matrices of the rotation group. The relativistic corrections are the same as found by Stapp - the only difference being that the rotational corrections are to be applied to each index of the polarization tensors.

In the last chapter the quantization of the free field is considered and a closed expression for the commutation relations for the free field operators is derived.

CONTENTS

Page No.
INTRODUCTION 1
CHAPTER I 7Notation; S matrix and matrix for $\operatorname{spin} \frac{1}{2}$particles
CHAPTER II 21
Preliminaries
Particle and antiparticle projection operators 32
Invariant spin projection operator 41
Projection operators for helicity components 49
CHAPTER III
Orthonormal basis in the spinor space 51
CHAPTER IV 69
Polarization Formulae 69
CHAPTER V 74
The S-matrix 74
CHAPTER VI 83
Covarient polarization formalism 83
Relativistic corrections 111
CHAPTER VII 117
Quantization of the free field 117
Commutation relation for free field operators 123
Flux densities for one particle states 128
A Reduction Formula for the Duffin-Kemmer case 131

INTRODUCTION

A covariant theory of the polarization analysis of Wolfenstein and Astkin type has been developed by H. Stapp ${ }^{(1)}$. This theory is based on the Dirac equation and the covariant forms of the density matrices $\ell(f), \ell^{\prime}\left(f^{\prime}\right)$ and the scattering matrix $S\left(f^{\prime}, t, f\right)$ have been obtained by the use of the hole theory condition. fand f^{\prime} denote the initial and final 4-momenta of the spin $\frac{1}{2}$ particle and t is the momentum of the centre of mass. The density matrices are the same as given by Michel and Wightman ${ }^{(2)}$ and involve 4-vectors p and p ' which are orthogonal to f and f^{\prime} respectively and therefore reduce the 3-veciors
$\overline{\mathbf{L}}$ and $\overline{\mathbf{p}}^{\prime}$ in the respective rest frames $\underline{f}^{\prime}=0, \underline{f}^{\prime}=0 \cdot \overline{\mathrm{p}}$ and $\overline{\mathrm{p}}^{\prime}$ are callod the proper polarization vectors . Stapp (1) has also developed a technique for reducing the covariant scattering equation giving the total differential cross-section I.

$$
\text { I } e^{\prime}\left(f^{\prime}\right)=S\left(f^{\prime}, t, f\right) \quad e(f) \quad S^{+}\left(f^{\prime}, t, f\right)
$$

into a form in which the S-matrix is given in the centre-of-mess frame and $\ell(f)^{\prime}, P^{\prime}\left(f^{\prime}\right)$ are given in their respective rest frames with certein rotations applied to the proper polarization vectors \bar{p}_{i} and \bar{p}_{i}^{\prime}. In thic form the scattering equation is expressed in terms of the Pauli matrices and is of the usual form obtained from considerations of space rotation invariance.

The Lorentz transformations involved in the reduction give rise to certain kinematical and rotational corrections when one applies the usual
non covariant theory to the analysis of high energy multiple scattering experiments.

In the present work scattering of particles of arbitrary spin s off spinless target particles has been considered and an attempt is made to develop a covariant theory of polarization analysis on the lines laid down by Stapp. For this purpose the wave function $\varphi(x)$ for the free particles of spin s has been supposed to obey the Bhabba type equation

$$
\left(\beta_{\mu} \frac{\partial}{\partial x_{\mu}}+m s\right) \quad \varphi(x)=0
$$

The are two types of theories associated with this equation. In the first type β_{μ}^{\prime} 's obey the characteristic equation (3)

$$
\beta_{\mu}^{2 s-1}\left(\beta_{\mu}^{2}-1\right)=0
$$

and $\left.\varphi_{\alpha}(x)^{\prime}\right)$ satisfies the Klein-Gordon equation. However for $s>1, \beta_{\mu}^{\prime} \approx$ have no hermitian representation and for this reason this theory will not be used here.

In the second type of the theory β_{μ} 's obey the characteristic equation

$$
\left(\beta_{\mu}-s\right)\left(\beta_{\mu}-(s-1)\right) \ldots \ldots\left(\beta_{\mu}+s\right)=0
$$

In this case β_{μ} 's have hermitian representations but unfortunately instead of the Klein-Gordon equation $g(x)$ satisfies the multiple mass equation

$$
\left(\square-\left(m \frac{s}{s}\right)^{2}\right)\left(\square-\left(m \frac{s}{s-1}\right)^{2}\right) \ldots \ldots=0
$$

the last factor being ($\left.\square-(\mathrm{ms})^{2}\right)$ for $\mathrm{n}=2 \mathrm{~s}$ even and $\square-\left(\frac{\mathrm{ns}}{(1)} / \overline{c^{2}}\right)^{\prime}$ for $n=2 s$ odd. This introduces certain difficultios but in view of the fact that we can use the well known fusion theory representation of the β matrices the present mork will be based on this second type of the theory.

In order to define a hole theory condition and covariant S and P matrices a complete momentum space expansion of $\Phi(x)$ has been perfcizol and positive and negative energy projection operators have been defined. This expansion of $\varphi(x)$ contains a summation over the various mass states $m \frac{s}{s}, m \frac{s}{s-1} \ldots .$. and for cach mass state there are besides energy projection operators the invariant spin projection operators belonging t, the spin values $s, s-1 \ldots$.... in particular the one whichselects the highest spin value s. Working in the fusion theory representation of the β matrices it has been found possible to establish for each mass value an orthonormal basis in the $4^{\text {n }}$ dimensional space and to derive certain useful orthonormality relations. Free 'particles' or 'anti-partjeles of mass ' m ' and spin s are described by the momentum space wave functions U (f) with f lying on the lowest mass-shell $f^{2}=-m^{2}$. $U(f)$ belongs to a ($2 s+1$) dimensional sub-space $\eta^{ \pm}(f) \quad 0^{(s)}(f)$. $\eta{ }^{+}(f)$ are the 'particle' and the 'anti-particle' projection operators satisfying

$$
\left(\pm i \beta_{\mu} f_{\mu}+n s\right) \quad \eta^{ \pm}(f)=0
$$

$0^{(s)}(f)$ is the spin projector operator which characterises the spin S subspace as it belones to the eigen value $s(s+1)$ of the invariant spin
projection operator $O(f)$

$$
O(f) \quad O^{(s)}(f)=s(s+1) \quad 0^{(s)}(f) .
$$

The (2s+1) independent vectors within the subspaces $\chi^{ \pm}(f) 0^{(s)}(f)$ have been chosen as the eigenstates of the helicity operator $\Sigma(\underline{f})$

$$
\Sigma(\underline{£}) z^{\left(s_{i}\right)}=s_{i} z^{\left(s_{i}\right)}(f)
$$

If a non quantised version of scattorine theory is employed the effect, of the higher mass states can be ignored, covariant S and p matrices for particles of the lowest mass m can be defined for 'particles' and 'anti-particles' of half integral spins hut only for particles of integral spins. The S and f matrices can be shown to obey the hole theory condition

$$
S\left(f^{\prime}, t, f\right)=\eta^{ \pm}(f) 0^{(s)}(f) S\left(f^{\prime}, t, f\right) 0^{(s)}(f) \AA^{ \pm(f)}
$$

The algebraic relations obeyed by the β matrices even for $s=1$ (The Duffin-Kemmer relation) are so complicated that the only hope of carrying out the analysis lay in using a method which makes the β algebra to depend on the properties of the γ matrices of Dirac algebra. For this reason the well known fusion theory representation of the β matrices has been used and $\varphi(x)$ is considered as a spinor of rank e. $n=2 s$, each index of which transforms as a Dirac spinor index. The S and Q matrices ere then expanded as a finite sum of n fold Kronecker product
of Dirac matrices. The covarient forms of S and ρ matrices are then obtained by usin; tho hole theory condition and the form of the covariant equation $\mathrm{f}^{\prime}=\mathrm{SeS}^{+}$is written down. These are so complicated thet hardly anything concorning the states of polarization cin be got out of them. But fortunately Stapps metlod of reducing the equation mentioned earlier can be applied with some simple modification and an equetion is obtainod in which the s-matrix is given in the contre of mass frame and the $\left((s)\right.$ and $\mathbb{P}^{\prime}\left(f^{\prime}\right)$ matrices are given in their respective rest frames with certain rotations applied then. From this another equation which involves n fold Kronecker product of Peuli's matrices is obtained. Tris too bs higkly reducible and a (2s+1) dimensional irreducibie equation is extracted from it. This means that wo have an equation in torms of the matrices $\vartheta_{i}^{(s)}$ of the irreducible spins' representation of the rotation group which is the usual non covariant form of tho scattering equation.

The rotational and kinematical corrections which would have to be applied if one used the usual scatterine theory for the anolysis of the high energy multiple scattering experiments are shom to be the same as given by Stapp provided the rotational corrections are appliea to each index of the polarization tensors.

The last chapter is devoted to the quantization of the free field $\varphi(x)$. Umezawa and Visconti (17) have obtained the commutation (or anticommatation) relation $\left[\varphi_{\alpha}(x), \phi_{\beta}^{\dagger}\left(x^{i}\right)\right]_{\mp}$ by rather formal methods but have mentioned no details of the quantization except that the energy is not positive definite. By using the orthonormality relations of the rank n spinors it is shown that free field corresponds to an assembly of Pais-Uhlenbeck (18) oboillators and Sudarshan's (18) method of quantizing such oscillators has been utilised. This involved the introduction of an indefinite matric and consequently the norms of states are not positive definite. The states which contain no particles of masses higher than m have positive norms and we invoke a subsidiary condition which restricts the physical states to have particles of the lowest mass m only.

The classical probability density for antiparticles of integral spins and of mass m has negative values. By calculating the expectation values of the electromagnetic current $j_{\mu}(x)$ for the state with one particle of mass m or an antiparticle of mass m, it is shown that one obtains the usual values for particles and current densities for arbitrary spins. The expression for $\left[\varphi_{\alpha}(x), \phi_{\beta}^{+}\left(x^{\prime}\right)\right] \mp$ given in ref (17) has its own advantages but it involves certain recurrence relations. We have been able to derive the same relation in a. closed form.

CHAPTER I_{0}

As the present work leans heavily on Stapps theory for spin $\frac{1}{2}$ particles we begin by describing his method for obtaining the coverian' forms of the S and $\&$ matrices. Also the parity non conserving terms which wore not given in the original work have been obtained. This is necessary for our purpose as will be seen later on.

Consider a collision process involving spin $\frac{1}{2}$ and spinless particles. Let f and f^{\prime} be the 4-momenta of the initial and final spin $\frac{1}{2}$ particle and 't' be the momentum of the centre of mess. The S-matrix element in momentum space depends on these three independent vectors and is denoted by $S(f ; t, f)$. For any two 4-vectors $u=\left(\underline{u}, u_{4}=i u_{0}\right)$ and (w) and Stapp has definod the following quantities

$$
\begin{align*}
& \gamma(u) \equiv \frac{\gamma_{\mu} \cdot u_{\mu}}{\left(u_{v} u_{v}\right)^{\frac{1}{2}}}=\frac{\gamma \cdot u}{(u \cdot u)^{\frac{1}{2}}} \tag{1.1a}\\
& \gamma(u, w) \equiv \gamma\left(\frac{u}{|u \cdot u|^{\frac{1}{2}}}+\frac{\omega}{|\omega \omega|^{-\frac{1}{2}}}\right) \tag{1.1b}
\end{align*}
$$

where the square root in (usu) ${ }^{\frac{1}{2}}$ is to be taken as positive or positive imaginary. Using the equation

$$
\begin{equation*}
\gamma(u) \gamma(u)=\gamma(u, w) \gamma(u, w)=1 \tag{12.0}
\end{equation*}
$$

one can prove that

$$
\begin{equation*}
\gamma(u) \gamma(u, w)=X(u, w) \gamma(w) \tag{12.b}
\end{equation*}
$$

The particle and anti-particle solutions of Dirac equation

$$
\begin{equation*}
\left(\hat{\theta}_{\mu} \frac{\partial}{\partial x_{\mu}}+m\right) \psi(x)=0 \tag{1,3.a}
\end{equation*}
$$

in momentum space obey the equation

$$
\begin{equation*}
\left(\pm i \gamma_{\mu} f_{\mu}+m\right) U_{ \pm}(f)=0 \tag{1,4a}
\end{equation*}
$$

or

$$
\begin{align*}
& \gamma(f) U_{ \pm}(f)= \pm U_{ \pm}(f) \tag{1,4~b}\\
& U_{ \pm}^{+}(f) \gamma(f)= \pm U_{ \pm}^{+}(f) \tag{1,4c}
\end{align*}
$$

where $U(f)$ is the adjoint of $U(f)$ defined by

$$
\begin{equation*}
U^{\dagger}\left(f^{\prime}\right)=U^{x}(f) \gamma_{4} \tag{1,5a}
\end{equation*}
$$

The adjoint of a matrix operator is defined by

$$
\begin{equation*}
\gamma^{\dagger}=Y_{4} X^{x} \gamma_{4} \tag{1,5b}
\end{equation*}
$$

For time like vectors u and $w, \gamma(u)$ and $\gamma(u, v)$ are self adjoint

$$
\begin{align*}
& X^{\dagger}(u)=\gamma(u) \tag{1,6a}\\
& \gamma^{\dagger}(u, w)=\gamma(u, w) \tag{1,6b}
\end{align*}
$$

The particle and antiparticle projection operators are given by

$$
\begin{equation*}
\Lambda^{ \pm(f)}=\frac{1}{2}\left(1 \pm \partial^{\prime}(f)\right) \tag{1.7a}
\end{equation*}
$$

Suppose now that the initial and final spin $\frac{1}{2}$ particles are both either 'particles' or 'antiparticles'. In these cases Staph has imposed the hole theory condition on the S matrix

$$
\begin{equation*}
X\left(f^{\prime}\right) S\left(f^{\prime}, t, f\right) \gamma(f)=S\left(f^{\prime}, t, f\right) \tag{1.8}
\end{equation*}
$$

This equal ion can be obtained by noticing that in the case being considered the idempotent expression of the s matrix is

$$
S=\Lambda^{+}\left(f^{1}\right) S A^{+}(f) \quad \text { for particles only } \quad(1.90)
$$

or

$$
S=\bar{N}\left(f^{\prime}\right) S \bar{N}(f) \quad \text { for antiparticles only }(1,9 \mathrm{l})
$$

Since

$$
\begin{equation*}
\gamma(f) \Lambda^{ \pm}(f)=\Lambda^{ \pm}(f) \gamma(f)= \pm A^{ \pm}(f) \tag{z}
\end{equation*}
$$

equation (1.8) holds for both of these cases. It should be mentioned that the case considered here is less general than that considered by Step who has put only the condition 1.8 on the s-matrix. This corresponds to the fact that if the incident beam consists of a mixture of particles and antiparticles, ky conservation of Baryon number or the lepton number the particles remain particles end the antiparticles remain antiparticles after the scattering. The idempotent expansion of the

S matrix is then

$$
S=\Lambda^{+}\left(f^{\prime}\right) S \AA^{+}(f)+\Lambda^{-}\left(f^{\prime}\right) S \Lambda^{-}(f)
$$

which again gives (1.8). For the sake of simplicity we have chosen the incident particles to be either 'particles' or 'antiparticles' througinoti this work. Staph has further/ def ing quantity $S^{\dagger}(k ; t, k)$ given by

$$
\begin{equation*}
S\left(f^{\prime}, t, f\right)=\gamma\left(f^{\prime}, t\right) S^{\prime}\left(k^{\prime}, t, k\right) \gamma(t, f) \tag{1.11a}
\end{equation*}
$$

where k, and k^{\prime} are the initial and final relative momenta. Tho advantage of $S((k, t, k)$ is that the hole theory condition for it becomes

$$
\begin{equation*}
S^{\prime}\left(k^{\prime}, t, k\right)=\gamma(t) S^{\prime}\left(k^{\prime}, t, k\right) X^{\prime}(t) \tag{1.11b}
\end{equation*}
$$

This follows immediately by using (1.2a) and (1.2b). $S^{\prime}\left(k^{\prime}, t, k\right)$ is now expanded in terms of the bess of Dirac algebra.

$$
S^{1}(k ; t, k)=A+B_{\mu} \gamma_{\mu}+\frac{1}{2} C_{\mu \nu} \sigma_{\mu}+D_{\mu} i X_{5} \gamma_{\mu}+\gamma_{5}
$$

Application of (1.11b) gives no condition on tho invariant A and

$$
\begin{align*}
& W=0 \tag{1.12a}\\
& B_{\mu} \propto t_{\mu} \tag{1.12b}\\
& C_{\mu \mu \nu} t_{\nu}=c_{\nu \mu} t_{\nu}=0 \tag{1.12c}\\
& D_{\mu} t_{\mu}=0 \tag{1.12d}
\end{align*}
$$

In determining the form of vectors $C_{\mu \nu}$, and $D_{\mu \nu}$, Stamp has discarded all terms which are not invariant with respect to parity operation. For example D_{μ} is determined by the condition (1.12d)
(1) and Step has selected only the first of the following three independent vectors with this property

$$
\begin{align*}
& D_{\mu}^{(1)}=-i N^{(1)} D_{D}^{(1)} \epsilon_{\mu \nu \lambda \sigma^{\prime}} k_{\lambda} k_{\lambda}^{\prime} t_{\sigma}=D^{(1)} n_{\mu}^{\prime} \tag{1.13n}\\
& D_{\mu}^{(2)}=-i N(2) D_{D}^{(2)} \epsilon_{\mu \nu \lambda \sigma} k_{\nu} n_{\lambda}^{\prime} t_{\sigma}=D^{(2)} n_{\mu}^{\prime \prime} \tag{1.13b}\\
& D_{\mu}^{(3)}=-i N(3) D_{D}^{(3)} E_{\mu \nu \lambda \sigma} k_{\nu}^{\prime} n_{\lambda}^{\prime} t_{\sigma}=D^{(3)} n^{\prime \prime \prime}{ }_{\mu} \tag{1.13c}
\end{align*}
$$

Normalised in such a way that

$$
\begin{equation*}
D_{\mu}^{(i)} D_{\mu}^{(i)}=D_{D}^{(i)} D^{(i)} \quad i=1,2 \text {, or } 3 \tag{1.13~d}
\end{equation*}
$$

$D_{\mu}^{(i)}$ for $i=1$, is a pseudovector and for $i=1,2$ is a polar vector and consequently $i \gamma_{5} \gamma_{\mu} \exists_{\mu}^{(i)}$ for $i=1$ is a scalar and is a pseudoscaliar otherwise.

As we shall see later on it is necessary for our purpose to determine the S matrix obeying (1.11a) completely ie. we must include the parity non conserving terns as well. Writing D_{μ} as a linear combination of $n_{\mu}^{\prime}, n_{\mu}^{\prime \prime}, n_{\mu}^{\prime \prime}$ we have

$$
\begin{equation*}
D_{\mu}=D^{\left.(1)_{n_{\mu}^{\prime}}+D^{(2)} n_{\mu}^{\prime \prime}+D^{(3)_{m}^{\prime \prime \prime}}{ }_{\mu}\right)} \tag{1.14a}
\end{equation*}
$$

$C_{\nu \mu}={ }^{-C_{\mu \nu}}$ satisfying (1.12c) is expanded in terms of 4 independent vector, $t_{\mu}, k_{\mu}, k_{\mu}^{\prime}$ and n_{μ}^{\prime} instead of $t_{\mu}, k_{\mu}, k_{\mu}$ only ns has been done for parity conserving case.

$$
\begin{align*}
c_{\mu \nu} & =a\left\{k_{\mu} k_{\nu}^{\prime}-k_{\nu} k_{\mu}^{\prime}+b\left(t_{\mu} k_{\nu}-t_{\nu} k_{\mu}\right)\right. \\
& +c\left(t_{\mu} k_{\nu}^{\prime}-k_{\mu}^{\prime}{ }_{\mu} t_{\nu}\right)+a\left(n_{\mu}^{\prime} k_{\nu}-n_{\nu}^{\prime}, k_{\mu}\right) \tag{1.15}\\
& \left.+e\left(n_{\mu}^{\prime} k_{\nu}^{\prime}-n_{\nu}^{\prime} k_{\mu}^{\prime}\right)+G\left(n_{\mu}^{\prime} t_{\nu}-n_{\nu}^{\prime} t_{\mu}\right)\right\}
\end{align*}
$$

Let the messes of initial end final spin zero particles be $\mathbb{N a}$ and F ' and their momenta be q and q^{\prime} respectively. The masses of initial and final spin $\frac{1}{2}$ particles are denoted by m and m^{\prime} respectively. Then by definitions of k, k^{\prime} and t

$$
\begin{align*}
& t=f+q=f^{\prime}+q^{\prime} \tag{1.16a}\\
& k=f-q \tag{1.16b}\\
& k^{\prime}=f^{\prime}-q^{\prime} \tag{1.16c}
\end{align*}
$$

These equations give at once

$$
\begin{align*}
& k \cdot t=m^{2}-m^{2} \tag{1.17i}\\
& k^{\prime} \cdot t=m^{2}-m^{2} \tag{1.17b}
\end{align*}
$$

Multiplying (1.15) by t_{ν} and equating to zero the coefficients of $k_{\mu}, k_{\mu}^{\prime}$ and t_{μ} we obtain the values of the invariants b, c, etc.

$$
\begin{align*}
& b=\frac{k^{\prime} \cdot t}{t \cdot t}=\frac{M^{t^{2}-m^{2}}}{t \cdot t} \tag{1.18a}\\
& c=-\frac{k \cdot t}{t^{2}}=-\frac{\mathbb{M}^{2}-m^{2}}{t \cdot t} \tag{1.18b}
\end{align*}
$$

and

$$
\begin{equation*}
g=-\frac{e k \cdot t+d k^{\mathrm{t}} \cdot t}{t \cdot t} \tag{1.18c}
\end{equation*}
$$

B_{μ} and $C_{\mu \nu}$ are finally given by

$$
\begin{align*}
& B_{\mu}=\frac{1}{(t, t) \frac{1}{2}} B t_{\mu} \tag{1.19a}\\
& c_{\mu \nu}=a\left\{k_{\mu} k^{\prime}-k_{\nu} k_{\mu}^{\prime}+\frac{M^{2_{-m}^{\prime}}}{t_{0} t}\left(t_{\mu} k_{\nu}-t_{\nu} k_{\mu}\right)\right. \\
& -\frac{M^{2}-m^{2}}{t_{0} t}\left(t_{\mu} k_{\nu}^{\prime}-t_{\mu} k_{\mu}^{\prime}\right)+d\left(n_{\mu}^{\prime} k_{\nu}^{-n} k_{\mu}^{\prime}\right) \tag{1.19b}\\
& \left.+e\left(n_{\mu}^{\prime} k_{\nu}^{\prime}-n_{\nu}^{\prime} k_{\mu}^{\prime}\right)-\frac{d k \cdot t+e k^{\prime} \cdot t}{t \cdot t}\left(n_{\mu}^{\prime} t_{\nu}^{-n_{\nu}^{\prime}} t_{\mu}\right)\right\}
\end{align*}
$$

To separate the parts refering to positive and negative energy states
(1) has proved tho following relations (1.22a and 1.22b)

$$
\frac{1}{2} c_{\mu \nu} \sigma_{\mu \nu} \equiv \frac{1}{2} c_{\mu \nu}\left(-\frac{1}{2}\right)\left(\gamma_{\mu} \gamma_{\nu}-\gamma_{\nu} \gamma_{\mu}\right)
$$

ill!

$$
\begin{align*}
& =-\frac{1}{3} c_{\mu v} \gamma_{\mu} \gamma_{\nu} \\
& =-\frac{i}{4} c_{\mu v} \gamma_{\sigma} \gamma_{\rho}^{\prime} E_{e \sigma \psi} \gamma_{5} \tag{1.20a}
\end{align*}
$$

If for $\gamma_{s} \gamma_{p} \quad$ in the last equation we write

$$
\begin{align*}
x_{\sigma} x_{2} & =\frac{\gamma_{0} t \gamma_{0} t}{t \cdot t} x_{\sigma} \gamma_{t} \\
& =\frac{\gamma_{0} t}{t \cdot t}\left(-x_{5} x_{0} t+2 t_{\sigma t}\right) \gamma_{C} \tag{1.20~b}\\
& =\frac{\gamma_{0} t}{t_{0} t}\left(x_{\sigma} \gamma_{\rho} x_{0} t-2 t x_{\sigma}+\frac{2 \sigma_{0}}{\sigma}\right)
\end{align*}
$$

and utilise the condition

$$
\begin{equation*}
\chi(t) \frac{1}{2} c_{\mu \nu} \sigma_{\mu_{2}} \gamma^{\prime}(t)=\frac{1}{2} C_{\mu 2} \sigma_{\mu \nu} \tag{1.21}
\end{equation*}
$$

$\frac{1}{2} C_{\mu \nu} \sigma_{\mu \nu}$ can be shown to be given by

$$
\begin{equation*}
\frac{1}{2} c_{\mu \nu} \sigma_{\mu \nu}=i \nsucc(t) \gamma_{5} \gamma_{\rho} c_{Q} \tag{1.223}
\end{equation*}
$$

with

$$
\begin{equation*}
C_{E}=\frac{1}{2}\left(-i t_{\sigma}\right)\left\{\sigma \mu \nu{ }^{C}{ }_{\mu \nu}|t \cdot t|^{-\frac{1}{2}}\right. \tag{1.22w}
\end{equation*}
$$

On substituting for $C_{\mu \nu}$ from (0.19 b), $C_{C} f$ is at once seen to be

$$
\begin{equation*}
c_{\rho}=c^{(1)} n^{\prime} c+c^{(2)} n_{e}^{\prime \prime}+c^{(3)} n^{\prime \prime} \tag{1.23c}
\end{equation*}
$$

and hence $s\left(k^{\prime}, t, k\right)$ is of the form

$$
\begin{align*}
S^{\prime}\left(k^{\prime}, t, k\right)=A & +B X_{(}(t)+i \gamma(t) \gamma_{5} \gamma_{0}\left(G^{\left.(1)_{n^{\prime}+C^{\prime}}(2)_{n^{\prime \prime}+C}(2)_{n^{\prime \prime \prime}}\right)}\right. \\
& +i \gamma_{5} \gamma_{0}\left(D^{\left.(1)_{n^{\prime}+D}(2)_{n^{\prime \prime}+D^{(3)}}(3)_{n^{\prime \prime}}\right)}\right. \tag{1.24+2}
\end{align*}
$$

This can be put in the form in winch particle and antiparticle parts are separated by writing

$$
\begin{equation*}
1=n^{+}(t)+n^{-}(t) \tag{1.25a}
\end{equation*}
$$

in the first and the last term and

$$
\begin{equation*}
\gamma(t)=\Lambda^{+}(t)-\Lambda^{-}(t) \tag{1.25b}
\end{equation*}
$$

in the and and 3 rd term on tho R.H.S. in (1.24a)

$$
\left.\begin{array}{rl}
S^{\prime}= & \Lambda^{+}(t)\left\{F^{+}+i \gamma_{5} \cdot\left(H^{+} n^{\prime}+K^{+} n^{\prime \prime}+E^{+} n^{\prime \prime} \cdot 1\right)\right\} \\
& +\Lambda^{-}(t)\left\{F^{-}+i \gamma_{5} \cdot\left(H^{-} n^{\prime}+K^{-} n^{\prime \prime}+E^{-} n^{\prime \prime}\right)\right. \tag{1.24b}
\end{array}\right\}
$$

It is to be noted that on account of

$$
\begin{equation*}
n^{\prime} \cdot t=n^{\prime \prime} \cdot t=n^{\prime \prime} \cdot t=0 \tag{1.26}
\end{equation*}
$$

A $^{ \pm}(t)$ commute with i $X_{5} X_{0} n^{\prime}$ etc., and $n^{\prime}, n^{\prime \prime}, n^{\prime \prime \prime}$ reduce to 3 vectors in the centre of mass frame. For the sake of conciseness let us introduce the notation

$$
\begin{equation*}
G^{ \pm} n_{\mu}=H^{+} n_{\mu}^{\prime}+K^{+} n_{\mu}^{\prime \prime}+\mathbb{B}^{+} n^{\prime \prime \prime} \tag{1.27}
\end{equation*}
$$

The S matrix is related to S^{\prime} by

$$
\begin{align*}
& S\left(f^{\prime} t, f\right)=X\left(f^{\prime}, t\right) S^{\prime}\left(K^{\prime}, t, k\right) Y(f, t) \\
& =\gamma\left(f^{\prime}, t\right) \gamma(t) \quad S^{\prime}\left(k^{\prime}, t, k\right) \gamma(t) \gamma(f, t) \\
& =A^{+}\left(f^{\prime}\right) \gamma\left(f^{\prime} t\right) X(t) \quad\left\{F^{+}+i X_{5} \gamma \cdot n G^{+}\right\} \gamma(t) \gamma(f, t) \Lambda^{+}(i) \\
& +N^{-}\left(f^{\prime}\right) \gamma\left(f^{\prime}, t\right) \gamma(t)\left\{F^{-}+i X_{5} X, n G^{-}\right\} X(t) X(f, t) \cdot \bar{\Lambda}\left(f^{\prime}\right) \tag{1.28}
\end{align*}
$$

Stop has let this form of $S\left(f^{\prime}, t, f\right)$ remain as it is, but equations (1.9a) and (1.9b) for particles only or antiparticles only show that for 'particle' to 'particle' scattering F^{-}and G^{-}vanish and for antiparticle to antiparticle scattering F^{+}and G^{+}vanish. Denoticie the S matrix for these two cases by s^{+}

$$
\begin{align*}
& S^{+}\left(f^{\prime}, t, \hat{I}\right)=\Lambda^{ \pm}\left(f^{\prime}\right) X\left(f^{\prime}, t\right)^{\prime \prime}(t)\left(F^{+}+G^{+} \quad i X_{5} X, n\right) \delta(t) X(f, t) \Lambda^{ \pm}(f) \\
& =\gamma(f, t) \gamma(t) \Lambda^{ \pm}(t) \quad\left(F^{ \pm}+G^{ \pm}{ }_{i} \gamma_{5} \gamma . n\right) \gamma(t) \gamma(f, t) \\
& =\gamma(f ; t) \gamma(t) \quad S^{\frac{t}{1}}\left(k^{\prime}, t, k\right) \gamma(t) \gamma(f, t) \tag{1.29}
\end{align*}
$$

The operator $X(t) \gamma(f, t)$ is closely related to the Lorentz transformatio:: between the centre of mass frame and the rest frame of the incident particle? This can be seen as follows.

Let f be along the x axis. The Lorentz operator corresponding to the Lorentz transformation which brings the particle to rest is given by

$$
\begin{align*}
L(f) & =e^{\frac{1}{2} i \gamma_{1} \gamma_{4} \vartheta}=e^{\frac{1}{2} i\left(-i \gamma_{4} a_{1}\right) \gamma_{4} \vartheta} \tag{1.30a}\\
& =e^{-\frac{1}{2} \alpha_{1} \vartheta}=\cosh \frac{\vartheta}{2}-a_{1} \sinh \frac{\vartheta}{2} \tag{1.30t}
\end{align*}
$$

where ϑ is given by

$$
\sinh \vartheta=\frac{U}{\sqrt{1-U^{2}}}, \quad \begin{align*}
\mathrm{I} & =\mathrm{m}(\mathrm{U}) \mathrm{U} \tag{1.30c}\\
& =\frac{\mathrm{nU}}{\sqrt{1-U^{2}}}
\end{align*}
$$

A little calculation shows that

$$
\left.\begin{array}{rl}
L(f) & =\frac{1}{\sqrt{2}}\left\{\left(1+\frac{1}{\sqrt{1-\mathrm{U}^{2}}}\right)^{\frac{1}{2}}-\alpha_{1} \frac{\frac{U}{\sqrt{1-\mathrm{U}^{2}}}}{\left(1+\frac{1}{\sqrt{1-\mathrm{U}^{2}}}\right.}\right)^{\frac{1}{2}}
\end{array}\right\}
$$

Writing $\gamma_{1} f_{1}+\gamma_{4} f_{4}=\gamma_{\mu} f_{\mu}$ we see that for arbitrary direction of f, $L(f)$ is given by

$$
\begin{equation*}
L(f)=\gamma_{4} \quad \frac{-i \gamma_{\cdot f}+\mathrm{m} \gamma_{4}}{\sqrt{2 \mathrm{~m}\left(\mathrm{f}_{0}+\mathrm{m}\right)}} \cdots \cdots \tag{1.316}
\end{equation*}
$$

$\gamma(t)=r$ the
In the centre of mass frame $\gamma(t)=\gamma_{4}$ and α calculation of $L(f)$ and $\gamma(t) \gamma(f, t)$ in this frame shows that

$$
\begin{equation*}
\gamma\left(t_{1}\right) \gamma\left(t_{1} f_{1}\right)=I\left(f_{1}\right) \tag{1.32a}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\gamma\left(f_{1}^{\prime}, t_{1}\right) \gamma\left(t_{1}\right)=L^{+}\left(f_{1}^{\prime}\right)=L^{-1}\left(f_{1}^{\prime}\right) \tag{1.32z}
\end{equation*}
$$

where the subscript 1 denotes centre of mass values. Thus

$$
\begin{equation*}
S\left(f_{1}^{\prime}, t_{1}, f_{1}\right)=L^{-1}\left(f_{1}^{\prime}\right) \quad S^{\prime}\left(k_{1}^{\prime}, t_{1} ; k_{1}\right) L\left(f_{1}\right) \tag{1.33}
\end{equation*}
$$

The first factors $L\left(f_{1}\right)$ is the Lorentz operator which reduces the incoming spinors from their centre of mass values $u\left(f_{1}\right)$ to their values in the rest frame of tho incident Dirac particles. The unitary operator $\mathrm{S}^{\mathbf{t}}$ then gives the effect of scattering upon these spinors and finally $L\left(f_{1}\right)$ converts these spinous (in the rest frames) to their values as seen in the centre of mass frames. ${ }^{(1)}$

The vectors $n^{\prime}, n^{\prime \prime}, n^{\prime \prime \prime}$ are all normal to tyke! and in the centre of mass frame reduce to

$$
\begin{align*}
& n_{1}^{\prime}=\left(\underline{N^{\prime}}, 0\right) \quad \underline{N}^{\prime}=\frac{\underline{k} \wedge \underline{k^{\prime}}}{\left|\underline{k} \wedge \underline{k^{\prime}}\right|} \tag{1.34a}\\
& n_{2}^{\prime}=\left(\underline{N^{\prime}}, 0\right) \quad \underline{N}^{\prime \prime}=\frac{\underline{k} \wedge \underline{N}^{\prime}}{\left|\underline{k} \wedge \underline{N}^{\prime}\right|} \tag{1.34b}\\
& n_{3}^{\prime}=\left(\underline{N}^{\prime \prime}, 0\right) \quad \underline{N}^{\prime \prime}=\frac{\underline{k} \wedge \wedge \underline{N}^{\prime}}{\mid \underline{k^{\prime} \wedge \underline{N}^{\prime} \mid}} \tag{1.34c}
\end{align*}
$$

Since

$$
\begin{align*}
& \Lambda^{+}\left(t_{1}\right)=\frac{1}{2}\left(1+X_{4}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \tag{1.35a}\\
& \Lambda^{-}\left(t_{1}\right)=\frac{1}{2}\left(1-\gamma_{4}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \\
& i \gamma_{5} \gamma \cdot \underline{N}=\left(\begin{array}{cc}
\underline{\sigma} \cdot \underline{N} & 0 \\
0 & -\boxed{N} N
\end{array}\right) \tag{1.350}
\end{align*}
$$

$s^{\prime} \pm\left(k^{1}, t, k\right)$ in the centre of mass frame becomes

$$
\begin{align*}
& S^{\prime^{+}}\left(k_{1}^{\prime}, t_{1}, k_{1}\right)=\left(\begin{array}{c}
\mathrm{F}^{+}+\underline{\sigma}^{\prime}\left(H^{+} \underline{N}^{\prime}+K^{+} \underline{N}^{\prime \prime}+\mathbb{B}^{+} \underline{\underline{N}}^{\prime \prime}\right) \\
0
\end{array}\right. \\
&)_{0}^{0}(1.36 \pi) \\
& S^{\prime^{-}}\left(k_{1}^{\prime}, t_{1}, k_{1}\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & F^{-}+\underline{0} \cdot\left(H^{-} \underline{\underline{N}}+\mathrm{K}^{+} \underline{W}^{\prime \prime}+\mathbb{E}^{+} \underline{N}^{\prime \prime}\right)
\end{array}\right) \tag{1.35~L}
\end{align*}
$$

Density matrices:-

Staph has obtained the forms of the covariant density matrices $\rho(f)$: $f^{\prime}\left(f^{\prime}\right)$ also by the application of the hole theory condition.

$$
\rho(f)=M^{+}(f) Q(f) N^{+}(f)
$$

which gives

$$
F(f)=\gamma^{\prime}(f) P(f) X^{\prime}(f)
$$

Again expanding (f) in terms of the 16 bases of Dirac algebra it
can be shown that

$$
P(f)=\left[\frac{1}{2} \operatorname{tr} \varphi(f)\right] \wedge^{ \pm}(f) \quad\left(1+i \gamma_{5} \gamma \cdot \mathrm{P}^{ \pm}\right)
$$

$\mathrm{p}^{ \pm}$are 4-vectors orthogonal to f

$$
p_{\mu}^{+} f_{\mu}=0
$$

and in the rest frame $\underset{ \pm}{ }=0, p_{\mu}^{ \pm}$are 3 -dimensional vectors $p^{ \pm}$are relativistic generalization of the polarization vectors of the nonrelativistic theory.

CHAPTYR II

The generalization of Stamps theory for spin $\frac{1}{2}$ particles to particles of higher spins will be based on the Bhabha type equation

$$
\begin{equation*}
\left(\beta_{\mu} \frac{\partial}{\partial x_{\mu}}+m s\right) Q(x)=0 \tag{2.1}
\end{equation*}
$$

With β_{μ}^{i} s satisfy g a certain algebraic relation of degree $2 s+1$, s is the highest spin contained in (2.1). There is considerable literature associated with this equation ${ }^{(4)}$. We give below some of the relevant facts. connected with it and then by writing $\varphi(x)$ as a momentum space integral 'particle' and 'antiparticle' projection operators are derived. Later on spin projection operators are introduced and an orthonormal basis in the momentum space spinors is establishod in the next chapter.

The requirement of Lorentz covariance of (2.1) demands that under a. Lorentz transformation (3)

$$
\begin{equation*}
x_{\mu} \rightarrow x_{\mu}^{\prime}=a_{\mu \nu} x_{2 \prime} \tag{2.2a}
\end{equation*}
$$

$W(x)$ should transform as

$$
\begin{equation*}
\phi(x) \rightarrow \phi^{\prime}\left(x^{\prime}\right)=\cdots, A \varphi(x) \tag{2.2b}
\end{equation*}
$$

with

$$
\begin{equation*}
\Lambda \quad \alpha_{p}, \beta_{\mu} \quad \Lambda^{-1}=\beta_{2} \tag{2.20}
\end{equation*}
$$

or $\quad \Lambda^{-1} \beta_{2,} \wedge=a_{\mu \mu \beta_{\mu}}$

Let I den de te the infinitesimal generators of the Lorentz group

$$
\begin{align*}
& \Lambda=1+\frac{1}{2} \epsilon_{P_{\sigma}} I_{P \sigma} \tag{2.3a}\\
& q_{P_{\sigma}}=\delta_{\rho \sigma}+t_{P_{\sigma}}, \quad \epsilon_{\beta \sigma}=-\epsilon_{Q_{T}} \tag{2.7b}
\end{align*}
$$

Substituting for \wedge and a_{σ} in (2.2d) and keeping only the terms up to first order in $\epsilon_{\nu \mu}$ we got

$$
\begin{equation*}
\frac{1}{2} \epsilon_{e \sigma}\left(I_{(\sigma)} B_{\nu}-\beta_{\nu} I_{e \sigma}\right)=-\epsilon_{\nu \mu \mu} \beta_{\mu} \tag{2.4a}
\end{equation*}
$$

Writing $\epsilon_{\nu \mu}$ in the form

$$
\begin{align*}
\epsilon_{\nu \mu} B_{\mu} & =\frac{1}{2}\left(\epsilon_{\mu \mu} \delta_{e_{2}}-\epsilon_{\mu \sigma} \delta_{\sigma \nu}\right) \beta_{\mu} \\
& =\frac{1}{2} \epsilon_{\sigma \sigma}\left(\delta_{\rho \nu} \beta_{\sigma}-\delta_{\sigma \nu} \beta_{\rho}\right) \tag{2.4b}
\end{align*}
$$

$I_{\rho_{\nu}}$ are seen to satisfy the commutation relation

$$
\begin{equation*}
I_{a_{5}} \beta_{1,}-\beta_{2} I_{p_{\sigma}}=\delta_{\sigma \nu} \beta_{p}-\delta_{p_{2}} \|_{0} \tag{2.5}
\end{equation*}
$$

There are two types of theories connected with the equation (2.1). The first is one in which $\varphi(x)$ satisfies Kelin-Gorden equation
and β_{μ}^{\prime} satisfy the characteristic equation

$$
B_{\mu}^{2 \mathrm{~s}-1} \quad\left(\beta_{\mu}^{2}-1\right)=0 \quad \mu=1,2,3, \text { or } 4
$$

and If is given by

$$
\begin{equation*}
I_{f \sigma}=\beta_{e} \beta_{\sigma}-\beta_{\sigma} \beta_{e} \tag{2.60}
\end{equation*}
$$

For $s>1, \beta_{\mu}$ cannot bo hermitian. For if β_{μ} were hermitian its eigen values would be ± 1 and 0 and β_{μ} would satisfy

$$
\begin{equation*}
\beta_{\mu}\left(\beta_{\mu}^{2}-1\right)=0 \tag{2.7}
\end{equation*}
$$

(3)
which is not the characteric equation (2.66). Also Harish-Chandra hes shown that for $s>1$ the algebra generated by (2.6a) is not finite. The theory which we shall adopt in this work is the ono in which β_{μ} satisfy the characteristic equation

$$
\left(\beta_{\mu}+s\right)\left(\beta_{\mu}+s-1\right) \ldots\left(\beta_{\mu}-s\right)=\stackrel{s}{i}_{s_{i}=+s}^{s_{i}=-s}\left(\beta_{\mu}-s_{i}\right)=0
$$

and $\quad I_{\mu \nu}=\beta_{\mu} \beta_{\nu},-\beta_{\nu} \beta_{\mu}=\left[\beta_{\mu} \beta_{\nu}\right]$
That is $\left[\beta_{\mu} \beta_{\nu}\right]$ satisfy

$$
\begin{equation*}
\left[\beta_{e}, \beta_{\sigma}\right]_{\nu}-\beta_{\nu}\left[\beta_{e}, \beta_{\sigma}\right]=S_{\sigma \nu} \beta_{e}-S_{e_{\nu}} \beta_{\sigma} \tag{2.8c}
\end{equation*}
$$

The eigenvalues of β_{μ} are $5,5-1, \ldots-5+1,-s$ and all β_{μ} can be taken to bo hermitian. The trouble with this thoory is that $\phi(x)$ does not satisfy Klein-Gordon equation but an equation (to be written douma later) which shows that for $s>1$ there are several values of tho mass of the particle. For $s=\frac{1}{2}$ and $s=1$ both of these theories boone equivalent. This is easily seen by noting that in these cases the charasit eristic equation (2.6b) and (2.8a) become the same.

For $S=\frac{3}{2}$, tho algebra generated by (2.8a) and (2.8c) has been investigated by Madhavarae (5). For $s=1$ we have the Duffin-Kemmer-Potiau theory ${ }^{(6)}$

$$
\begin{gather*}
\left(\beta_{\mu} \frac{\partial}{\partial x_{\mu}}+m\right) \phi(x)=0 \tag{2.9a}\\
{\left[\beta_{0}, \beta_{\sigma}\right] \beta_{\mu}-\beta_{\nu}\left[\beta_{\rho}, \beta_{\sigma}\right]=\delta_{\sigma \nu} \beta_{e}-\delta_{\mu} \beta_{\sigma}} \tag{2.9b}\\
\beta_{\mu}\left(\beta_{\mu}^{2}-1\right)=0 \tag{2.9c}
\end{gather*}
$$

From the last two equations one can obtain the Duffin-Kemmer relation

$$
\begin{equation*}
\beta_{\mu} \beta_{\nu} \beta_{\lambda}+\beta_{\lambda} \beta_{\nu} \beta_{\mu}=\delta_{\mu \nu} \beta_{\lambda}+\delta_{\lambda \nu} \beta_{\mu} \tag{2.9d}
\end{equation*}
$$

Defining η_{μ} by

$$
\begin{equation*}
\eta_{\mu}=2 \beta_{\mu}^{2}-1 \tag{2.10a}
\end{equation*}
$$

we have for $7_{\mu}{ }^{1}$ s the relations ${ }^{(6)}$

$$
\begin{array}{ll}
\eta_{\mu}^{2}=1 & \text { no summation over } \mu \\
\eta_{\mu} \eta_{\nu}=\eta_{\nu} \eta_{\mu} & \\
\beta_{\mu} \eta_{\nu}=-\eta_{\nu} \beta_{\mu} \quad \mu \neq \nu \\
\beta_{\mu} \eta_{\mu}=\beta_{\mu}=\eta_{\mu} \beta_{\mu} \quad \text { no summation over } \mu \tag{2.10e}
\end{array}
$$

With the help of η_{μ} 's and β_{μ} 's one can form 126 basis of the semisimple algebra generated by (2.9d) or equivalently by (2.9a) and (2.9b). Moreover there are three elements which commute with all the base elements. These are (6)

$$
\text { 1, } \sum_{\mu=1}^{4} \eta_{\mu}-\sum_{\mu<\nu} \eta_{\mu} \eta_{\nu} \quad, \eta_{1} \eta_{2} \eta_{3} \eta_{2}\left(1-\sum_{\mu} \eta_{\mu}\right)
$$

and thus (6) there are 3 irreducible representations of this algebra of dimensions 10, 5 and 1

$$
10^{2}+5^{2}+1^{2}=126
$$

There are many ways of proving that the 10 dimensional representation belongs to spin one and the 5 dimensional representation belongs to spin zero (:3)

It can. be easily verified that matrices β_{μ} given by

$$
\begin{equation*}
\beta_{\mu}=\frac{1}{2} \quad\left(1 \times \gamma_{\mu}+\gamma_{\mu} \times 1\right) \tag{2.11}
\end{equation*}
$$

satisfy the relation (2.9b, c) and hence (2.9d).
X stands for Kronecker product and γ_{μ} are homitian Dirac matricos. 1 is unit four dimensional matrix. In this 16 dimensional representation φ is a 16 dimensional \because vector. φ can also be looked upon as a 4×4 matrix $f_{a \beta}$ with each index tronsforming as a Dirac spinor under Lorentz transformation. Klein ${ }^{(8)}$ bas developed a theory of Duffin-Kemmar Formalism by utilising the fact that the quantities

$$
\begin{align*}
& u=\left(x_{5} c^{-1}\right)_{\alpha \beta} \varphi_{\alpha \beta}(x) \\
& u_{\mu}=\left(i x_{5} \gamma_{\mu} c^{-1}\right)_{\alpha \beta} \psi_{\alpha \beta}(x) \tag{2.125}
\end{align*}
$$

ねね
to which only the antisymmetric part of $\varphi_{\alpha \beta}$ contributes, constitute wave functions of the 5 dimensional spin zero equation. The symmotric part onntributes to

$$
\begin{align*}
& F_{\mu \nu}=\left(\sigma_{\mu_{\nu}} C^{-1}\right)_{\alpha \beta} \varphi_{\alpha \beta}(x) \tag{2.12c}\\
& A_{\mu}=\left(\gamma_{\mu} C^{-1}\right)_{\alpha \beta} \varphi_{\alpha \beta}(x) \tag{2.12a}
\end{align*}
$$

F_{μ}. and A_{μ} satisfy the usual spin one wave equetions. C is the charge conjutation matrix and $\varphi(x)$ satisfies Duffin-Kemer equation. Thus the 5 indopenclent components of the anti-symmetric $\varphi_{\alpha \beta}$ belongs to spin zero and the 10 components of the symmetric $\varphi_{a \beta}$ belons to the spin 1 sub spaces. Klein has also shom the $\operatorname{m~}_{a \beta}^{-1} \varphi_{\alpha \beta}$ is the trivial component and is identically zero.

It is very difficult to goneralise this method to the case of higher spins but a heuristic way of identifying the symmetric part of the spinor (9) space with the highest spin is the following one?

The symmetric part $\varphi_{\alpha \beta}=\varphi_{\beta \alpha}$ defines an invariant subspace of the Duffin-Kommer algebra. This is a 10 dimensicnal subspace. The Dirao equation belonss $\operatorname{lD}^{\frac{1}{2}, 0}+D^{c, \frac{1}{2}}$ representation of the Lorentz group. The Duffin-Kommer equation with the representation 2.11 of the β matrices belongs to the representation

$$
\begin{equation*}
\left(D^{\frac{1}{2}, \circ} \oplus D^{0, \frac{1}{2}}\right) \quad \times \quad\left(D^{\frac{1}{2}, \circ} \oplus D^{0, \frac{1}{2}}\right) \tag{2.13n}
\end{equation*}
$$

By the Eeneralised Clebsch Gordon theorem the spin one part of the above product roprosentation is "

$$
\begin{equation*}
D^{1,0} \oplus D^{\frac{1}{2}, \frac{1}{2}} \Theta D^{0,1} \tag{2.13b}
\end{equation*}
$$

where each irreducible spin one roprosentation has been taken only once in (2.13b). $D^{\frac{1}{2}, \frac{1}{2}}$ occurs twice in (2.13a) but in (2.13b) only one $D^{\frac{1}{2} y^{\frac{1}{2}}}$ is included. The spin one representetion (2.13b) is $(3+4+3=) 10$ dimensional and identifying the symmetric spinor space $\varphi_{\alpha \beta}=\varphi_{\beta \alpha}$ with the representation (2.13b) it follows that this subspaco belongs to a spin one representation of the Lerentz Eroup.

Coming now to the case of arbitrary spins, we take the following ropresentetion of the $\rho_{\mu} s .(.7)$

$$
\begin{equation*}
\beta_{\mu}=\frac{1}{2} \sum_{y=1}^{n} \Gamma_{\mu}^{(x)} \tag{2.14a}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{\mu}^{(\gamma)}=1 \times 1 \times 1 \ldots \ldots 1 \times \gamma_{\mu} \times 1 \ldots x 1 \tag{2.14b}
\end{equation*}
$$

contains $n=2 s$ factors and γ_{1} occurs just once in thor th factor. $\mathscr{H}(x)$ hes $4^{n}=4^{2 s}$ components and nay be considered as a spinor of y and n

$$
\varphi=\varphi_{a_{1} a_{2}} \ldots a_{n}
$$

Which transforms un? or Lorentz transformations as an ' n ' fold Kronecker product of Dirac spinous. This 4^{n} dimensional representation belongs to the representation

$$
\begin{aligned}
\left(D^{\frac{1}{2}, O} \oplus D^{O^{\frac{1}{2}}}\right) \times\left(D^{\frac{1}{2}}, \circ\right. & \left.D^{0, \frac{1}{2}}\right)
\end{aligned} \ldots \times\left(D^{\frac{1}{2}, 0} \oplus D^{D^{\frac{1}{2}}}\right)
$$

Again the spins part in the product representation (2.15) keoring each irreducible representation only once is

$$
\begin{equation*}
D^{\frac{n}{2}, 0} \overbrace{D^{\frac{n-1}{2}}, \frac{1}{2}}^{\oplus D^{\frac{n-2}{2}}, \frac{2}{2}} \ldots D^{0, \frac{n}{2}} \tag{2.15b}
\end{equation*}
$$

The dimensions of this representation are

$$
\begin{aligned}
& (n+1) \cdot 1+n \cdot 2+(n-1) 3+(n-2) \cdot n \ldots \ldots[n-(n-2)] n \\
& \quad+[n-(n-1)](n+1) \\
& =\quad 1 \cdot 1+(1-1) \cdot 2+(1-2) 3 \ldots \ldots[1-(1-1)] \ell
\end{aligned}
$$

The sum of the series is

$$
1(1+2+3 \ldots 1)-(1.2+2.3+3.4 \ldots \ldots+(1-1) 1)
$$

$$
\begin{align*}
& =1 \cdot \frac{1(1+1)}{2}-\frac{1(1-1)(1+1)}{3}=\frac{1(1+1)(1+2)}{6} \\
& =\frac{(n+1)(n+2)(n+3)}{6}
\end{align*}
$$

But this is exactly the number of independent symmetric components of tr:Hence the invariant subspace spinor $Q_{a_{1}} a_{2} \ldots a_{n} L^{\text {defined }}$ by the completely symmetric spinous
represents the highest spin value $s=\frac{n}{2}$. Invariance of the subspace means that if $\alpha_{a_{1}} a_{2} \ldots a_{n}$ is completely symmetric then

$$
\left(\beta_{\mu} \varphi\right)_{a_{1} a_{2} \ldots a_{n}}
$$

is also symmetric. This can easily be proved by using the form (2.14)
of β_{μ}. If a D irc spinor transforms as

$$
Y_{\alpha} \rightarrow L_{\alpha \beta} \Psi_{\beta}
$$

under a Lorentz transformation, $\varphi_{a \beta \ldots . . . \gamma \text { transforms as }}$ (7)

$$
\begin{align*}
\varphi_{\alpha \beta \ldots \gamma} \ldots & \left(L_{x L x L} \ldots x \mathrm{~L} \varphi\right)_{\alpha \beta \ldots \gamma} \ldots \\
& =I_{\alpha A^{\prime}} I_{\beta \beta^{\prime}} \ldots I_{\gamma \gamma^{\prime}} \varphi_{\alpha^{\prime} \beta^{\prime} \ldots \gamma^{\prime}} \\
& =\left(I^{(n)} \varphi\right)_{\alpha \beta} \ldots \gamma^{\prime}
\end{align*}
$$

$$
(7)
$$

Writing

$$
\eta_{\mu}=\gamma_{\mu} \times \gamma_{\mu} \times \gamma_{\mu} \ldots \ldots \times \gamma_{\mu} \times \ldots \gamma_{\mu}
$$

$$
(c-13 \mu)
$$

(all factors are γ_{μ} and in summation over μ)
Tho adjoint of 0 is defined by

$$
\phi^{t}=\phi^{x} \eta_{4}
$$

$$
(2,<, a]
$$

and the adjoint of an operator is defined by

$$
\begin{equation*}
A^{i}=7 / 4 \quad A^{x} \eta_{4} \tag{2.20b}
\end{equation*}
$$

The adjoint of $L^{(n)}$ is

$$
\begin{gathered}
L^{(n)} \dagger=\gamma_{4} L^{(n)^{x}} \eta_{4}=Y_{4}^{x} Y_{4} \ldots x \gamma_{4} L^{x} x L^{x} \ldots x L^{x} \gamma_{4} x Y_{4} \ldots x \alpha_{4} \\
=\gamma_{4} L^{x} X_{4} x \gamma_{4} L^{x} \alpha_{4} a \ldots a_{4} L^{x} \gamma_{4}
\end{gathered}
$$

$$
\begin{align*}
& =L^{-1} \times L^{-1} \ldots \times L^{-1} \\
& =\left(L^{(n)}\right)^{-1} \tag{2.20c}
\end{align*}
$$

Defining $\beta(u)$ by

$$
\begin{equation*}
\beta(u)=\frac{\beta_{0} u}{(u . u)^{\frac{1}{2}}}, \quad(u . u)^{\frac{1}{2}} \text { positive or positiveimaginary } \tag{2.<1}
\end{equation*}
$$

For time like $u, \beta(u)$ is self adjoint

$$
\begin{equation*}
\beta(f)^{+}=\int_{4} \beta(u)^{x}(u) \eta_{4}=\beta(u) \tag{2.22}
\end{equation*}
$$

This is so because β_{μ} anti:omules with $/_{4}$ for $\mu \neq 4$ and commutes with $/ 4$ for $\mu=4$.

The Lorentz transformation defined by

$$
\begin{align*}
& x_{\mu} \mathscr{\chi}_{\mu \nu}(t)=x_{1 \nu} \equiv x_{\nu}(t=0) \tag{2.23E}\\
& x_{\mu}=\mathscr{L}_{\mu \nu}(t) x_{1 \nu} \tag{2.23b}
\end{align*}
$$

(where $x_{1 \nu}=x_{\nu}(t=0)$, in the value of the 4-vector x_{ν} in the Lorentz frame in which the space part t of t vanishes) is represented in the Dirac space by $L(t)$ with the properties

$$
\begin{equation*}
L(t) \gamma_{\mu} L^{-1}(t)=\mathcal{X}_{\mu \nu} X_{\nu} \tag{2.23c}
\end{equation*}
$$

or

$$
\begin{equation*}
L^{-1}(t) \gamma_{\nu} L(t)=\gamma_{\mu} \mathcal{L}_{\mu, \nu}(t) \tag{2.23a}
\end{equation*}
$$

As shown by Stapp ${ }^{(1)}$ the Lorentz operator which brings the Dirac spinor $u\left(f_{1}\right)$ to its values in the rest frame $f=0$ is given by

$$
\begin{align*}
& \gamma\left(t_{1}\right) \gamma\left(t_{1}, f_{1}\right)=L\left(f_{1}\right) \tag{2.24a}\\
& \gamma\left(f_{1}^{\prime}, t_{1}\right) \gamma\left(t_{1}\right)=L^{-1}\left(f_{1}^{\prime}\right) \tag{2.24b}
\end{align*}
$$

If x is either f or f^{\prime}

$$
\begin{align*}
& L(t) \gamma(t) \gamma^{\prime}(x, t) L^{-1}(t)=\gamma\left(t_{1}\right) \gamma\left(\kappa_{1}, t_{1}\right) \\
& L^{-1}(t) \gamma\left(t_{1}\right) \gamma\left(x_{1}, t_{1}\right) L(t)=\gamma(t) \gamma(x, t) \tag{2.25b}
\end{align*}
$$

In the space of spinous of rank ' n '. The Lorentz operators are given by

$$
\begin{align*}
& L^{(n)}(f)=(L(f) \times L(f) \ldots L(f) \tag{2.26a}\\
& L^{(n)-1}(f)=L^{-1}(f) \times L^{-1}(f) \ldots L^{-1}(f) . \tag{2.26b}
\end{align*}
$$

Particle and antiparticle projection operators.
It is profitable to consider first the simpler case of spin 1. One con verify by using the Duffin-Kemner relation that $\beta(f)=\frac{\beta . f}{(f . f)^{\frac{T}{2}}}$ satisfies the characteristic equation.

$$
\begin{equation*}
B(f)\left\{\beta^{2}(f)-1\right\}=0 \tag{2.27}
\end{equation*}
$$

We now make use of the following well known theorem (! '10)

If A is a linear hermitian operator which satisfies the characteristic equation

$$
\begin{equation*}
\prod_{i=1}^{n}\left(A-A_{i}\right)=0 \tag{2.28a}
\end{equation*}
$$

A_{i} are real c members and all A_{i} are distinct then there are n projection operators

$$
\begin{equation*}
\eta^{(i)}=\prod_{j \neq i}^{\mathbb{I}} \frac{\left(A-A_{j}\right)}{A_{i}-A_{j}} \quad i=1,2, \ldots . n \tag{2.28b}
\end{equation*}
$$

with the properties

$$
\begin{align*}
& A^{(i)}=A_{i} \eta^{(i)} \tag{c}\\
& \eta^{(i)} \eta^{(j)}=\sum_{i j} \eta^{(i)} \tag{28d}\\
& \sum_{i=1}^{\mu} \eta^{(1)}=1 \tag{2.28e}
\end{align*}
$$

This theorem shows that these are 3 projection operators

$$
\begin{align*}
& \eta^{+}(f)=\frac{1}{2}\left\{\beta^{2}(f)+1\right\} \tag{2.29a}\\
& \eta^{-}(f)=\frac{1}{2}\left\{\beta^{2}(f)-1\right\} \tag{2.295}\\
& \eta^{\circ}(f)=\left\{\begin{array}{l}
\}
\end{array}\right\} \tag{2.2,c}
\end{align*}
$$

If we take f on the mass shell $f^{2}=-m^{2}$, then $\eta(f)$ satisfy the particle and anti-particle equations respectively

$$
\begin{equation*}
(i \beta . f \pm n) \eta^{ \pm}(f)=0 \tag{a}
\end{equation*}
$$

while $r^{O}(f)$ satisfies

$$
\begin{equation*}
\beta . f \quad \eta^{0}(f)=0 \tag{2.30b}
\end{equation*}
$$

Let us now perform the fourier analysis of $\mathbb{Q}(x)$. Writing

$$
\begin{equation*}
\phi(x)=\int e^{i f \cdot x} \underset{\varphi}{\varphi}(f) \quad d^{4} f \tag{2.31}
\end{equation*}
$$

and substituting in the Muffin Kenmer equation we get

$$
(i \beta \cdot f+m) \tilde{\varphi}(f)=0
$$

or $\quad \beta \cdot f \tilde{\varphi}(f)=\operatorname{im} \tilde{\varphi}(f)$
(2. 312

Multiplying (2.27) by $\tilde{\varphi}(f)$ and using the last equation

$$
\begin{equation*}
\frac{i m}{(f . f)^{\frac{1}{2}}}\left[-m^{2}-f \cdot f\right]=0 \tag{2.22}
\end{equation*}
$$

This slows that f^{2} hes a single value equal to $-m^{2}$. For arbitrary f wo define

$$
\begin{align*}
& \left.\eta^{\mp}(f)=\frac{1}{-2 i m^{2}}\left[i(f \cdot f)^{2} \pm m B \cdot f\right)\right]= \\
& \eta^{0}(f)=\frac{1}{-2 i m^{2}}\left[-2 i m^{2}-2 i(\beta \cdot f)^{2}\right]
\end{align*}
$$

so the .t

$$
\eta^{+}(f)+\eta^{-}(f)+\eta^{0}(f)=1
$$

By using the relation $(\beta . f)^{2}=f^{2} \beta . f$ one can show that $\eta^{-}(f) \eta^{+(f)}$ and

$$
\begin{align*}
& \eta^{-}(f) \eta^{\circ}(f) \text { contain a factor }\left(f^{2}+m^{2}\right) . \text { More precisely } \\
& \eta^{-}(f) \eta^{+}(f)=\frac{-1}{(-2 i m)^{2}(\beta \cdot f)^{2}\left(f^{2}+m^{2}\right)} \\
& \eta^{-}(f) \eta^{\circ}(f)=\frac{-2 i}{\left(2 i m^{2}\right)^{2}}\left\{i(\beta \cdot f)^{2}+m i \beta \cdot f\right\}\left(f^{2}+m^{2}\right)
\end{align*}
$$

In view of the fact that

$$
\begin{equation*}
\eta^{--}(f)=(i \beta \cdot f+m) \frac{\beta \cdot f}{-2 i m^{2}} \tag{2.35}
\end{equation*}
$$

The solution of (2.31a) can be written

$$
\begin{equation*}
\tilde{\varphi}(f)=\delta\left(f^{3}+m^{2}\right) \beta \cdot f\left\{\eta^{+}(f) X(f)+\eta^{\circ}(f) x_{0}(f)\right\} \tag{2.36}
\end{equation*}
$$

Where $\mathcal{X}(f)$ and $X_{0}(f)$ are arbitrary spinous in momentum space. Substituting for $\tilde{\varphi}(f)$ in (2.31) and integrating over f_{0} with the help of the δ function one obtains easily

$$
\begin{align*}
& \varphi(x)=\int \frac{d^{3} f}{2 w} {\left[e^{i f \cdot x} \beta \cdot f\left\{\eta^{+}(f) x(f)+\eta^{0}(f) x_{0}(f)\right\}\right.} \\
&+ e^{-i f \cdot x}(-1) \beta \cdot f\left\{+\eta(-f) x(-f)+\eta^{0}(-f)\right. \tag{2.37}\\
&\left.x_{0}(-f)\right\}
\end{align*}
$$

$\left.\begin{array}{r}\chi_{0}(-f)\end{array}\right\}$

Hence

$$
\begin{equation*}
\frac{\beta \cdot f}{i m}=\frac{\beta \cdot f}{(f \cdot f)^{\frac{1}{2}}}=\beta(f) \tag{2.383}
\end{equation*}
$$

and $\eta^{ \pm}(f), \eta^{0}(f)$ occurring in this equation can be written

$$
\begin{align*}
& \eta^{ \pm}(f)=\frac{1}{2}\left\{\beta^{2}(f) \pm \beta(f)\right\} \tag{2.39a}\\
& \eta^{0}(f)=1-\beta^{2}(f)
\end{align*}
$$

Thenesatisfy all the properties of projection operators. Also wo have from their definitions

$$
\begin{align*}
& \eta^{+}(-f)=\eta^{-}(f) \tag{2.40n}\\
& \eta^{0}(-f)=\eta^{0}(f)
\end{align*}
$$

and

$$
\begin{gather*}
\beta \cdot f \eta \pm(f)= \pm i \eta \eta^{+}(f) m= \pm(f \cdot f)^{\frac{1}{2}} \eta \pm(f) \\
\beta \cdot f \eta^{0}(f)=0 \tag{2.41b}
\end{gather*}
$$

By virtue of these equations the fourier decomposition of $\varnothing(x)$, equation

$$
\rho(x)=\int \frac{d^{3} f}{2 w}\left\{\eta^{+}(f) \times(f) e^{i f x}+\eta(f) \times(-f)\right.
$$

It is seen that in the momentum space representation the second rank spinor space splits up into three subspaces characterised by the projection operators $\eta^{ \pm}(f), \eta^{\circ}(f)$. The fourier decomposition of $\mathcal{\varphi}(x)$ satisfying Duffin-Komer equation contains only the spinous satisfying particle or antiparticle equations (2.41a), $\eta^{\circ}(f)$ having been annihilated by the operator B.f. Moreover $\boldsymbol{f}(\mathrm{x})$ satisfies the Klein-Gorden equation.

Our next task is to generalise this procedure to the case of arbitrary spin s.

Lot f be an arbitrary tinelike vector. In the Lorentz frame in which $\underline{f}=0$,

$$
\frac{\beta \cdot f}{(f \cdot f)^{2}}=\frac{\beta_{4} f_{4}}{f_{4}}=\beta_{+}
$$

since β_{4} satisfies the characteristic equation (2.8a), Bu satisicics

$$
\begin{equation*}
\prod_{s_{i}=-s}^{+s}\left\{\beta \cdot f-s_{i}(f \cdot f)^{\frac{1}{2}}\right\}=0 \tag{2.43i}
\end{equation*}
$$

For even $n=2 \mathrm{~s}$, this can be written

$$
\left[(\beta \cdot f)^{2}-s^{2} \cdot f \cdot f\right]\left[(\beta \cdot f)^{2}-(s-1)^{2} f \cdot f\right]
$$

$\beta \cdot f=0 \quad(2.14$

For $n=2 s$ an odd integer

$$
\left[(\beta \cdot f)^{2}-s^{2} f \cdot f\right]\left[(\beta \cdot f)^{2}-(5-1)^{2} \cdot f\right] \cdots \cdot\left[(\beta \cdot f)^{2}-\frac{1}{2} \cdot f \cdot f\right],(2 \cdot A \cdot
$$

Substituting ford (x) from (2.31) in (2.1) we get

$$
(i \beta \cdot f+\operatorname{ms}) \tilde{\varphi}(f)=0
$$

or $\quad \beta \cdot f \tilde{C}(f)=i \cos (\tilde{\varphi}(f)$
Multiplying equations (2.44a) ane (2.44b) by $\tilde{\rho}(f)$ and using (2.45b) one finds that th se are $S=\frac{n}{2}$ possible values of $f^{2}=f f$ for even n

$$
f^{2}=-\left(\frac{s}{s} i^{2} m^{2},-\left(\frac{s}{s-2} i^{2} m^{2} ; \cdots \cdot\left(\frac{s}{v}\right)^{2} m^{2}\right.\right.
$$ and $\frac{n+1}{2}=\frac{2 s+1}{2}$ values for ord n

$$
f^{2}=-\left(\frac{s}{s}\right)^{2} m^{2},-\left(\frac{s}{s-1}\right)^{2} m_{1}^{2} \ldots,\left(\frac{s}{y_{2}}\right)^{2} m^{2}
$$

Let a_{λ} denote the sect

$$
\begin{align*}
\left\{\alpha_{\lambda}\right\} & =\frac{s}{s}, \frac{s}{s-1}, \frac{s}{s-2}, \cdots \frac{s}{1}\left(0, \frac{s}{12}\right) \tag{2.4i}\\
& =\left\{\frac{s}{s_{\lambda}}\right\}, \quad 5 \gg 0
\end{align*}
$$

In this case it is mucin bettor: to put in the momentum integral f^{2} on the various mass shells give: by (2.450 and b)

$$
\begin{equation*}
\varphi(x)=\sum_{\lambda} \int e^{i f \cdot r} \delta\left(f^{2}+m^{2} \alpha_{\lambda}^{2}\right) \ddot{\phi}^{(\lambda)}(f) d^{4} f \tag{2,43a}
\end{equation*}
$$

Integrating this with the help of the \mathbb{C} functions

$$
\varphi(x)=\sum_{\lambda} \int\left[\frac{e^{i f^{(\lambda)} \cdot x}}{2 \omega_{\lambda}} \stackrel{\varphi}{\varphi}^{(\lambda)}\left(f^{(\lambda)}\right)+\frac{e^{-i f^{(\lambda)}}}{2 \omega_{\lambda}} \tilde{\varphi}^{(\lambda)}\left(-f^{(\lambda)}\right) d_{(2.48 b)}^{d^{3} f}\right.
$$

The time component of $f^{(\lambda)}$ has the mass shell value

$$
\begin{align*}
& f_{0}^{(\lambda)}=+\sqrt{f^{2}+m^{2} \alpha_{\lambda}^{2}}=\omega_{\lambda} \\
& f^{(\lambda)} \cdot f^{(\lambda)}=f^{2}-f_{0}^{2}(\lambda)=-m^{2} \alpha_{\lambda}^{2}
\end{align*}
$$

Substituting for $\varphi(\mathrm{x})$ from (2.48b) in

$$
\left(\rho_{\mu} \frac{\partial}{\partial x_{\mu}}+m s\right) \rho(x)=0
$$

$$
\begin{aligned}
& \sum \int_{1}\left\{\left(i \beta-f^{(\lambda)}+m s\right) \wp^{(\lambda)}\left(f^{(\lambda)}\right) e^{i f^{(\lambda)} \cdot x}\right. \\
& =0+\left(-i \beta \cdot f^{(\lambda)}+m s\right) \varphi^{(\lambda)}(-f
\end{aligned}
$$

$N(\lambda)(\lambda)$
$\phi^{(}(f)$ is thus soon to satisfy

$$
\begin{equation*}
(i \beta f+m s) \stackrel{\varphi}{\varphi}^{(\lambda)}\left(f^{(\lambda)}\right)=0 \tag{2,j,c}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\beta \cdot f^{(\lambda)}-i m s\right) \tilde{\varphi}^{(\lambda)}\left(f^{(\lambda)}\right)=0 \tag{2.5in}
\end{equation*}
$$

For each value of $\alpha_{\lambda}, B_{f}^{(\lambda)}$ satisfies the characteristic equation

$$
\begin{equation*}
\prod_{s_{i}=-s}^{+s}\left(\beta \cdot f^{(\lambda)}-s_{i} \operatorname{im} \alpha_{\lambda}\right)=0 \tag{2.52a}
\end{equation*}
$$

For each of these a_{A} there is a sot of unique projection operators

$$
\begin{equation*}
\eta^{s_{i}}\left(f^{(\lambda)}\right)=\prod_{\text {Satisfying }}^{s_{j} \neq s_{i}}\left\{\frac{\beta-f^{(\lambda)} s_{j} i m \alpha_{\lambda}}{\left(s_{i}-s_{j}\right) i m \alpha_{\lambda}}\right\} \tag{2.52b}
\end{equation*}
$$

$$
\begin{align*}
& \left\{\beta \cdot f^{(\lambda)}-s_{i} \operatorname{sim}_{\lambda}\right\}^{\frac{s}{k}} \eta^{s_{i}}\left(f^{(\lambda)}\right)=0 \tag{2.53a}\\
& \eta^{s_{i}}\left(f^{s_{i}}\left(f^{(\lambda)}\right) \eta^{(\lambda)}\right)=1 \tag{2.53b}
\end{align*}
$$

Comparing equations (2.51a) and (2.53a) satisfied by ${\underset{\rho}{~}}_{(\lambda)(\lambda)}^{(\lambda)}$ and $7^{i}(f)$ one finds that there is ono $\eta\binom{(\lambda)}{f}$ which satisfies the same equation as $\mathcal{Q}^{(\lambda)}\left(f^{(\lambda)}\right) ;$ this is the ono for which $s_{i}=s_{\lambda}, s_{\lambda}>0$.

$$
\left(\beta \cdot f^{(\lambda)}-s_{\lambda} \not \alpha_{\lambda} i m^{\prime} \eta^{\left(S_{\lambda}\right)}\left(f^{(\lambda)}\right)=0\right.
$$

gives since

$$
\begin{align*}
& s_{\lambda} \alpha_{\lambda}=s_{\lambda} \frac{s}{s_{\lambda}}=s, \quad s_{\lambda} \neq 0 \tag{2.54b}\\
& \left(\beta \cdot f^{(\lambda)}-i m s\right) \eta^{\left(s_{\lambda}\right)}\left(f^{(\lambda)}\right)=0 \tag{2.54,c}
\end{align*}
$$

There is no other $\eta^{s_{i}}\left(f^{(\lambda)}\right)$ which satisfies this equation and hence we can write

$$
\tilde{\varphi}^{(\lambda)}\left(f^{(\lambda)}\right)=\eta^{\left(S_{\lambda}\right)}\left(f^{(\lambda)}\right) \chi\left(f^{(\lambda)}\right)
$$

where $X\left(f^{(\lambda)}\right)$ is some arbitrary spinor of rank ' n '. Substituting this form of $\tilde{\varphi}^{(\lambda)}\left(f^{(\lambda)}\right)$ in (2.50)

$$
\begin{align*}
& \varphi^{(\lambda)}\left(f^{(\lambda)}\right) \text { in }(2.50) \tag{2.56}\\
& \varphi(x)=\sum_{\lambda} \int \frac{d^{3} f}{2 \omega_{\lambda}}\left\{e^{i f^{(\lambda)} \cdot x}{ }^{-i f^{(\lambda)} \chi^{\left(s_{\lambda}\right)}\left(f^{(\lambda)}\right) X\left(f^{(\lambda)}\right)}\left(-f^{(\lambda)}\right) X(-f)\right\}
\end{align*}
$$

$\eta^{\left(S_{\lambda}\right)}\left(-f^{(\lambda)}\right) \times\left(-f^{(\lambda)}\right)_{\text {satisfies the same equation as }} \eta^{\left(-S_{\lambda}\right)}\left(f^{(\lambda)}\right)$

$$
\begin{equation*}
\left(\beta \cdot f^{(\lambda)}+i m s\right) \eta^{\left(-s_{\lambda}\right)}\left(f^{(\lambda)}\right)=0 \tag{2.57}
\end{equation*}
$$

Finally putting

$$
\begin{align*}
& \eta^{\left(\pm s_{\lambda}\right)}\left(f^{(\lambda)}\right) \chi\left(\pm f^{(\lambda)}\right)=u^{(\pm)}\left(f^{(\lambda)}\right) \tag{2.58}\\
& \varphi(x)=\sum_{\lambda} \int \frac{d^{3} f}{2 \omega_{\lambda}}\left\{e^{i f^{(\lambda)} \cdot x} u^{(+)}\left(f^{(\lambda)}\right)\right. \tag{2.59}\\
& \left.+e^{-i f^{(\lambda)} \cdot x} u^{(-)}\left(f^{(\lambda)}\right)\right\}
\end{align*}
$$

where $\lfloor(\pm)(\lambda)$ satisfy the 'particle' and 'antiparticle' equation

$$
\begin{align*}
& \left(\pm i \beta \cdot f^{(\lambda)}+m s\right)\left(\ell^{(\pm)}\left(f^{(\lambda)}\right)=0\right. \tag{2.60a}\\
& f^{(\lambda)}=\left\{f_{0}, f_{0}^{(\lambda)}=+\sqrt{\underline{f}^{2}+m^{2} \alpha_{\lambda}^{2}}\right\} \tag{2.60b}
\end{align*}
$$

From (2.59) it is readily seen the. $\ell(x)$ obeys the multiple mass equation (3)

$$
\begin{equation*}
\left\{\left(\square-m^{2}\left(\frac{s}{s}\right)^{2}\right)\left(\square-m^{2}\left(\frac{s}{s-1}\right)^{2}\right) \cdots \varphi(x)=0\right. \tag{2,61}
\end{equation*}
$$

The last factor being $\left(\pi-m^{2} \frac{s^{2}}{1}\right)$ for even $n=25$ and $D-m^{2}\left(\frac{5}{y 2}\right)^{2}$ for odd n.

Invariant Spin Projection Operator.
There are two invariants associated with the extended Lorentz group defined as the sum of proper Lorentz group and the group of translations in the 4 -space. One of then is the rest mass operator and the other the operator which gives the intrinsic spin of the particle.' ' This is given by (7)

$$
O\left(f^{(\lambda)}\right)=\frac{i^{2}}{f^{(\lambda)} \cdot f^{(\lambda)}}\left\{\frac{f^{(\lambda)} f^{(\lambda)}}{2} I_{\mu \nu} I_{\mu \mu}-I_{\lambda \mu \lambda_{\lambda \nu}} I_{f^{(\lambda i} f^{(\lambda)}}\right.
$$

$$
\begin{aligned}
& \lambda \mu \lambda^{\lambda}, \\
& f_{\mu}^{(\lambda i} f_{\nu}^{(\lambda)} ;(2.62 a)
\end{aligned}
$$

The infinitesimal generators $I_{\mu,}$, for the equation (2.1) are given by (2.8b). Therefore $O(f)$ is Given by

$$
\begin{align*}
O\left(f^{(\lambda)}\right)=\frac{i^{2}}{f^{(\lambda)} \cdot f^{(\lambda)}}\left\{\begin{aligned}
f^{(\lambda)} f^{(\lambda)} & {\left[\beta_{\lambda,} \beta_{\mu}\right]\left[\beta_{\lambda)} \beta_{\mu}\right] } \\
& \left.-\left[\beta_{\lambda,} \beta_{\mu}\right]\left[\beta_{\lambda, j} \beta_{\nu}\right] f_{\mu}^{(\lambda)} f_{\nu}^{(\lambda)}\right\}
\end{aligned}\right.
\end{align*}
$$

$O(f)$ commutes with all the generators of the extended Lorentz (7) In the rest frame of the particle $\underline{f}=0,0\left(f^{(\lambda)}\right)$ reduces to

$$
\begin{align*}
O(\underline{f}=0) & \equiv O(0)=\frac{i^{2}}{2}\left[\beta_{i}, \beta_{j}\right]\left[\beta_{i} ; \beta_{j}\right] \\
& =\Sigma_{i} \Sigma_{i}=\Sigma_{1}^{2}+\Sigma_{2}^{2}+\Sigma_{3}^{2} \tag{2.63}
\end{align*}
$$

where Σ_{i} is defined by

$$
\begin{equation*}
\Sigma_{i}=-i \epsilon_{i j k}\left[\beta_{i,}, \beta_{k}\right] \tag{2.64}
\end{equation*}
$$

The properties of Σ_{i} are easily obtained by going over to the representation (2.14) in which Σ_{i} is given by

$$
\begin{align*}
\Sigma_{i}= & \frac{1}{2}\left(\bar{\sigma}_{i} \times 1 \cdots \times 1+1 \times \bar{\sigma}_{i} \times 1 \cdots \times 1\right. \\
& \left.+\cdots+1 \times 1 \times \cdots \times \bar{\sigma}_{i}\right), n \text { terms } \tag{2.65}
\end{align*}
$$

with $\bar{\sigma}_{i}$

$$
\bar{\sigma}_{i}=\left(\begin{array}{ll}
\sigma_{i} & 0 \tag{2.66}\\
0 & \sigma_{i}
\end{array}\right)
$$

\sum_{i} satisfy the commotion relation of angular momentum matrices

$$
\begin{equation*}
\left[\Sigma_{i}, \Sigma_{j}\right]=i \epsilon_{i j k} \Sigma_{k} \tag{2.67a}
\end{equation*}
$$

and the characteristic equation

$$
\begin{equation*}
\prod_{s_{i}=-5}^{1 s}\left(\sum_{j}-s_{i}\right)=0 \tag{2.67b}
\end{equation*}
$$

Showing the the eigenvalues of Σ_{i} are $-s,(s-1), \ldots+s$.
The spin operator $(0)=$ is now easily seen to be given by

$$
\begin{align*}
O(0)= & \Sigma^{2}=\frac{1}{4}\left[3 n+2\left(\bar{\sigma}_{i} \times \bar{\sigma}_{i} \times 1 \cdots \times 1\right.\right. \\
& \left.+\bar{x}_{1} \times 1 \times \bar{\sigma}_{i} \times 1 \cdots \times 1+\cdots \cdots\right) \tag{2.68}
\end{align*}
$$

Tho sum involving $\bar{\sigma}_{\dot{\sigma}}$ contains $n_{C_{2}}$ temps each term hes $\bar{\sigma}_{i}$ occurring twice. Denting such a symmetrical sum of $\bar{\sigma}_{c}$ by

$$
\begin{gather*}
{[\bar{\sigma}]_{(2)}^{(n)}} \tag{2.69a}\\
\Sigma^{2}=\frac{1}{4}\left[3 n+2[\bar{\sigma}]_{(2)}^{(n)}\right] \tag{2.693}
\end{gather*}
$$

For $s=1, n=2$

$$
[\bar{\sigma}]_{(2)}^{(2)}=\bar{\sigma}_{i} \times \bar{\sigma}_{i} \equiv a_{2}
$$

For $\quad 5=\frac{3}{2}, n=3$

$$
\begin{align*}
{[\bar{\sigma}]_{i 2}^{(3)} } & =\bar{\sigma}_{i} \times \bar{\sigma}_{i} \times 1+\bar{\sigma}_{i} \times 1 \times \bar{\sigma}_{i}+1 \times \bar{\sigma}_{i} \times \bar{\sigma}_{i} \\
& \equiv a_{3} \tag{2.70~b}
\end{align*}
$$

For $s=1$ and $\frac{2}{2}$, the eigenvalues of ε^{2} can easily be calculated by finding the eigenvalues of a_{2} and a_{3} and utilising the properties of \bar{a}_{i} matrices

$$
\begin{align*}
& a_{2}^{2}=3-2 a \tag{2.71a}\\
& a_{3}^{2}=9 \tag{2.71b}
\end{align*}
$$

This shows that the characteristic u equation obeyed by \mathcal{Z}^{2} is

$$
\begin{equation*}
\left(\Sigma^{2}-s(s+1)\right)\left(\varepsilon^{2}-(s-1) s\right)=0, s=100 \frac{3}{2} \tag{2.72}
\end{equation*}
$$

Calculation of the eigenvalues of Σ^{2} by this method becomes extremely complicated for higher spins and we mus'u foll back on some general considerations. Tho algebra obeyed by E defined by (2.65) is the sane as obeyed by the span operators

$$
\begin{aligned}
& \Sigma_{i}^{\beta}=\frac{1}{2}\left(\sigma_{i} \times|x| \cdots|x|+1 \times \sigma_{i} \times 1 \cdots \cdots|x|+\cdots\right. \\
&\left.\cdots \cdots+1 \times 1 \times \cdots \sigma_{i}\right) \text {, } n \tan \beta
\end{aligned}
$$

Phis is the direct product representation

$$
\begin{equation*}
D^{\frac{1}{2}} \times D^{\frac{1}{2}} \times \cdots \times D^{\frac{1}{2}} \tag{2.74}
\end{equation*}
$$

n factors
where $D^{\frac{1}{2}}$ besones to the spin $\frac{1}{2}$ reprosentation of the 3 -rotative group. By Clebsch-Gordon theorem c similarity transformation ff reduces (2.74) into the form

$$
\begin{equation*}
D^{5} \oplus \alpha_{S-1} D^{s-1} \oplus \alpha_{S-2} D^{s-2} \oplus \tag{2.75}
\end{equation*}
$$

The representation belonging to the highest spin value s occurs just once while the lower sin representations occur a times in general. $D_{D}^{(s)}, D^{(s-1)}$ belong to tie eigen spaces coriosponding to the eigen values $s(s+1),(s-1) s \ldots$ of the transformed operator

$$
\begin{equation*}
\tilde{\Sigma}^{p}=\tilde{\Sigma}_{i}^{p} \tilde{\Sigma}_{i}^{p} \tag{2.76}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\Sigma}_{i} P=f P \Sigma_{i} P H^{-1} \tag{2.77}
\end{equation*}
$$

The eigenvalues of $\tilde{\Sigma}^{2}$ and hence of \sum^{2} are $s(s-1),(s-1) s, \ldots \ldots$ The characteristic equation of Σ^{2} is therefore

$$
\begin{equation*}
\left(\Sigma^{2}-5(5+1)\right)\left(\Sigma^{2}-(5-1) s\right) \cdots \cdots \cdots=0 \tag{2.73.2}
\end{equation*}
$$

By covariance considerations $0\left(f^{(\lambda)}\right)$ also satisfies this characteristic equation

$$
\begin{equation*}
\left\{O\left(f^{(n)}\right)-s(s+1)\right\}\left\{O\left(f^{(n)}\right)-(s-1) s\right\} \cdots \cdots \cdot=0 \tag{2.780}
\end{equation*}
$$

The last tom being $O\left(F^{(N)}\right.$ for integral s and $O(f)-\frac{1}{2} \frac{3}{2}$ for hell integral s.
$O\left(f^{(\lambda)}\right)$ is hermitian in the sense

$$
\begin{equation*}
O^{f}\left(f^{(\lambda)}\right)=7_{4} O\left(f^{(\lambda)}\right) \eta_{4}=O\left(f^{x}\right) \tag{2.79}
\end{equation*}
$$

and by the theorem (2.28) the projection operators are given by

$$
\begin{equation*}
0^{\left(s_{j j}^{j}\right.}\left(f^{(\lambda)}\right)=\prod_{\overline{s_{j}} \neq \tilde{s}_{i}} \frac{O\left(f^{(\lambda)}\right)-\bar{s}_{j}}{s_{i}-\bar{s}_{j}} \tag{2.80}
\end{equation*}
$$

whore s_{j} denotes the set

$$
\begin{align*}
\left\{\bar{s}_{j}\right\} & =s_{j}(s+1),(s-1) s_{i} \ldots, \text { or } \frac{1}{2} \cdot \frac{3}{2} \tag{2.80a}\\
& =\left\{s_{j}\left(s_{j}+1\right)\right\}
\end{align*}
$$

$0^{\left(s_{i}\right)}\left(f^{(\lambda)}\right)$ satisfy the usual properties of projection operators

$$
\begin{equation*}
O^{\left(s_{i}\right)}\left(f^{(\lambda)}\right) D^{\left(s_{j}\right)}\left(f^{(\lambda]}\right)=S_{i j} O^{\left(S_{i}\right)}\left(f^{(\lambda)}\right) \tag{2.810}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{s_{i}=0, \frac{1}{2}}^{5} 0^{\left(5_{i}\right)}\left(f^{(\lambda)}\right)=1 \tag{2.817}
\end{equation*}
$$

$0^{(5 \cdot)}(f)^{(N)}$ defines an dizen space of the invariant spin operator

$$
\begin{equation*}
O\left(f^{(v)}\right) O^{\left(s_{i}\right)}\left(f^{(\lambda)}\right)=s_{i}\left(s_{i}+1\right) O^{\left(s_{i}\right)}\left(f^{(\lambda)}\right) \tag{2.81c}
\end{equation*}
$$

The form of $O(f)$ for $f=0$ is contained by substituting from (2.3) in (2.62b)
$O\left(f^{(\lambda)}\right)=\frac{1}{4}\left[n^{2}+2 n-\left[\gamma_{\lambda} \gamma_{\mu}\right]_{2 *}^{(n)}+2\left[\gamma_{\lambda} \gamma^{+}(f)\right]_{(2)}^{(n)}\right]_{(2.82)}^{(n)}$
We shall be interested in the following properties of $O^{\left(S_{i}\right)}\left(f^{(\lambda)}\right)$
(1) $0_{0}^{\left(s_{i}\right)}\left(f^{(\lambda)}\right)$ commutes with $\eta^{s_{j}}\left(f^{(\lambda)}\right)$

This can easily be proved by going over to the frame $f=0$. In this frame $O\left(f^{(\lambda)}\right)$ is given by $(2.63), O(0)=\frac{i^{2}}{2}\left[\beta_{i}, \beta_{j}\right]\left[\beta_{i} \beta_{j}\right]$ and $\eta^{S_{\dot{e}}}\left({ }_{f}(\lambda)\right)$ contains only β_{4}. By (2.8c) β_{A} and $\left[\beta_{i}, \beta_{j}\right]$ commute Covariance consideration show that $O\left(f^{(\lambda)}\right)$ and hence $0^{\left(s_{i j}\right.}(f(\lambda)$ and $\eta^{S_{j}}\left(f^{\left(\lambda_{1}\right)}\right.$ commute in any Lorentz frantic
(2) Since $O\left(f^{(A)}\right)$ and hence $O^{(S)} \quad\left(f^{(A)}\right)$ commutes with all the generators of Lorentz group, in any irreducible representation of the Lorentz group $\mathcal{O}^{(5)}\left(f^{(N)}\right)$ will bo given by a scalar matrix. Since $0^{(s)}\left(f^{(\lambda)}\right) \quad 0^{(S)}\left(f^{(\lambda)}\right)=0\left(f^{(\lambda)}\right)$ this scalar matrix is just the unit matrix.
(3) $\quad O\left(f^{(\lambda)}\right)$ is closely related to a base element of the β algebra which commutes with the whole β aleebra. This relation will nov be investigated and the following result (which might some times be useful) will bo proved Jor $f^{2}=-m^{2} \alpha_{0}^{2}=-m^{2}$

$$
\begin{equation*}
O^{(s)} \eta^{ \pm}(f) K(f)=K(f) O^{(s)}(f) \eta^{ \pm}(f) \tag{2.83}
\end{equation*}
$$

if $\eta^{\ddagger}(f)$ commutes with $K(f)$.
For $\mathrm{s}=1$, $\mathrm{n}=2$ ie. for tho Duffin-Kemner algebra, the element ${ }^{(; 0)}$

$$
\begin{align*}
& \sum_{\mu} \eta_{\mu}-\sum_{\mu<\gamma} \eta_{\mu} \eta_{\nu} \\
& =\gamma_{\mu} \times \gamma_{\mu}-\frac{1}{2} \gamma_{\mu} \gamma_{\nu} \times \gamma_{\mu} \gamma_{\nu}+2 \tag{2.84}\\
& =\sum_{\mu} \eta_{\mu}-\sum_{\mu, \gamma} \eta_{\mu} \eta_{\nu}+2
\end{align*}
$$

Commutes with the whole Duffin-Kenmer algebra. This element is closely connected with the spin operator $O(f)$. Infract since

$$
\begin{align*}
\gamma(f) \Lambda^{ \pm}(f)= & \pm \Lambda^{ \pm}(f) \\
\eta^{ \pm}(f)= & \Lambda^{ \pm}(f) \times \Lambda^{ \pm}(f) \\
O(f) \eta^{ \pm}(f)= & \frac{1}{2}\left\{\gamma_{\lambda} \gamma(f) \times \gamma_{\lambda} \gamma(f)-\frac{1}{2} \gamma_{\lambda} \gamma_{\mu} \times \gamma_{\lambda} \gamma_{\mu}+4\right\} \tag{2.85}\\
& \Lambda^{ \pm}(f) \times \Lambda^{ \pm}(f) \\
= & \frac{4}{2}\left\{\gamma_{\lambda} \times \gamma_{\lambda}-\frac{1}{2} \gamma_{\lambda} \gamma_{\mu} \times \gamma_{\lambda} \gamma_{\mu}+4\right\} \Lambda^{ \pm}(f) \times \Lambda^{ \pm}(f) \\
\equiv & G \eta^{ \pm}(f)
\end{align*}
$$

where except for the difference of multiples of unity G is the same element as given in (2.84).

In the general case one defines

$$
\begin{equation*}
\eta_{\mu}^{\dot{i} j}=1 \times 1 \times \cdots\left|\times \gamma_{\mu} \times 1 \quad\right| \times \gamma_{\mu} \times 1 \cdot x \mid, n \text { factors } \tag{2.86}
\end{equation*}
$$

γ_{μ} occuring in the eth and fth positions. The element (7)

$$
\begin{equation*}
G^{i j}=\sum_{\mu} \eta_{\mu}^{i j}-\frac{1}{2} \sum_{\mu, j} \eta_{\mu}^{i j} \eta_{\eta}^{i j} \quad \text { for each } i, j \leqslant a \tag{2.87}
\end{equation*}
$$

commutes with all the elements of β algebra ${ }^{(8)}$. Again since

$$
\begin{aligned}
& \eta^{ \pm}(f)=\Lambda^{ \pm}(f) \times \Lambda^{ \pm}(f) \times \cdots \Lambda^{ \pm}(f) \\
& O(f) \eta^{ \pm}(f)=\frac{1}{2}\left[\frac{n(n+2)}{2}+\frac{1}{2}\left[\gamma_{\lambda} \gamma_{\mu}\right]_{(2)}^{(n)}+\left[\gamma_{\lambda}\right]_{(2)}^{(n)}\right]_{(2.88 i}^{ \pm} \\
&=\frac{1}{2}\left[\frac{n(n+2)}{2}+\sum_{i<j}^{n} G^{i j}\right] \eta^{ \pm}(f)
\end{aligned}
$$

Denoting by \bar{G} the factor within tho square brackets in (2.88)

$$
\begin{equation*}
O(f) \eta^{ \pm}(f)=\frac{1}{2} G^{ \pm} \eta^{ \pm}(f)=\frac{1}{2} \eta^{ \pm}(f) \bar{G} \tag{2.88b}
\end{equation*}
$$

G has the same comrratation property as $G^{i j}$ and it follows that if $\eta \pm(f)$ confutes with $K(f)$

$$
\begin{align*}
O(f) \eta \Psi^{(f) K(f)} & =K(f) G^{ \pm}(f) \cdot \frac{1}{2} \\
& =K(f) O(f ; \eta(f) \tag{2.89}
\end{align*}
$$

The same result obviously holds fir $0^{(s)}(f)$.

Projection operators for Felicity components.
The operator $\Sigma(f)$ defined by

$$
\begin{aligned}
\Sigma(\underline{f})= & \frac{\sum_{i} f_{i}}{(\underline{f} \cdot \underline{f})^{\frac{1}{2}}} \\
= & \frac{1}{2}[\bar{\sigma}(f) \times 1 \times 1 \cdots 1 \times 1+1 \times \bar{\sigma}(f) \times 1 \cdots \times 1 \\
& +\cdots \cdots+1 \times 1-1 \times \bar{\sigma}(\underline{f})]
\end{aligned}
$$

where

$$
\begin{equation*}
\bar{\sigma}(\underline{f})=\frac{\overline{\underline{o}} \cdot \underline{f}}{(\underline{f} \cdot \underline{f})^{\frac{1}{2}}} \tag{2.91}
\end{equation*}
$$

reduces to $\bar{\sigma}_{i}$ for f along the th space axis. $\Sigma(\underline{f})$ is 3 -space rotation invariant and so $\sum(\underset{\sim}{f})$ satisfies the characteristic equation

$$
\begin{equation*}
\prod_{S_{i}^{\prime}=-s}^{s}\left(\sum\left(\frac{f}{-}\right)-S_{i}\right)=0 \tag{2.92}
\end{equation*}
$$

Tho projection operators for different helicity components are given by

$$
\begin{aligned}
& Z^{s_{i}}(f)=\frac{\prod_{j}}{s_{j} s_{i}} \frac{\Sigma(f)-s_{j}}{s_{i}-s_{j}} \\
& s_{i}=-s_{j}-s+1,-\cdots---s-1, s
\end{aligned}
$$

They obey the usual properties of projection operators.

$$
\begin{align*}
& \sum_{s_{i}=-s}^{s} Z^{s_{i}}\left(\frac{f}{f}\right)=1 \tag{a}\\
& Z^{s_{i}}(f) Z^{s^{j}}(f)=s_{i j} Z^{s_{i}}(f) \tag{2.9:b}
\end{align*}
$$

$$
\begin{equation*}
\Sigma(f) 2^{s_{i}}(£)=s_{i} Z^{R^{i}(£)} \tag{2.940}
\end{equation*}
$$

 (a sub group of the extended Lorontz group), $\because 0^{(S i)}\left(f^{(\lambda)}\right.$ commute with $\Sigma(\underline{f})$ and hence with $Z^{S_{i}}(\underline{f})$.

The computing set of herraition operators $\beta\left(f^{\boldsymbol{\lambda}}\right), O\left(f^{(\lambda)}\right.$ and $\Sigma(f)$ hove simultaneous eigenvectors. Unfortunately this set is not complete but utilising the representation (2.14) of the f matrices it is possible to build up for each mess value ma, an orthogonal basis in the $4^{\text {n }}$ dimensional silinor space. This will be dene in the next Chapter and some useful orthonomality relations will be derived.

CHAPTER III

AN ORTHONORMAL BASES IN THE SPINOR SPACE
We have zen that the projection operators $\eta^{S \lambda}\left(f^{(\lambda)}\right)$ satisfy the "particle equation

$$
\begin{align*}
&\left(\beta \cdot f^{(\lambda)}-i m s_{\lambda} \alpha_{\lambda}\right) \eta^{3}\left(f^{(\lambda)}\right)=0 \tag{3.1a}\\
&\left\{\alpha_{\lambda}\right\}=\frac{s}{s}, \frac{s}{s-1}, \cdots \cdots, \sigma_{1} \frac{s}{y_{2}}=\left\{\frac{s}{s_{\lambda}}\right\} \tag{3.ib}\\
&=\alpha_{0}, \alpha_{1}, \cdots \cdots, \alpha_{s-1} \text { or } \alpha_{2 \frac{s-1}{2}} \tag{3.1c}
\end{align*}
$$

takes s values $0,1,2, \ldots \ldots S$ for integral s and $\frac{2 s+1}{2}$ values $0,1,2, \ldots . . \frac{2 S-1}{2}$ for half integral s. S_{λ} takes values

$$
\begin{align*}
S_{\lambda} & =S_{o}, S_{1}, S_{2}, \ldots . S_{S-1} \text { or } \frac{S_{2 S-1}}{2} \tag{3.1d}\\
& =S, S-1, S-2, \ldots 1 \text { or } \frac{1}{2} \tag{3.1e}
\end{align*}
$$

The "particle" equation can be written in two ways

$$
\begin{align*}
& \left(i \beta \cdot f^{(\lambda)}+m s\right) \eta^{s_{\lambda}}\left(f^{(\lambda)}\right)=0 \tag{3.2a}\\
& \left(\frac{\beta \cdot f^{(\lambda)}}{i m \alpha_{\lambda}}-s_{\lambda}\right) \eta^{s \lambda}\left(f^{(\lambda)}\right)=0
\end{align*}
$$

or

$$
\begin{equation*}
\left(\beta \cdot\left(f^{(\lambda)}\right)-s_{\lambda}\right) \eta^{s_{\lambda}}\left(f^{(\lambda)}\right)=0 \tag{3.2b}
\end{equation*}
$$

The antiparticle equation is

$$
\begin{equation*}
\left(i \beta \cdot f^{(\lambda)}-m s\right) \eta^{-s}\left(f^{(\lambda)}\right)=0 \tag{3.3a}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(\beta\left(f^{(\lambda)}\right)+s_{\lambda}\right) \eta^{-s_{\lambda}}\left(f^{(\lambda)}\right)=0 \tag{3.3b}
\end{equation*}
$$

In the representation $(2, i 4)$ of the β matrices

$$
\begin{align*}
\beta\left(f^{(\lambda)}\right) & =\frac{1}{2}\left\{\gamma\left(f^{(\lambda)}\right) \times 1 \times 1 \ldots\right. \\
& \left.\cdots+1 \times 1 \cdots 1+\cdots\left(f^{(\lambda)}\right)\right\} \tag{3:4}
\end{align*}
$$

Further

$$
\gamma\left(f^{(\lambda)}=\frac{\gamma_{\mu} f_{\mu}^{(\lambda)}}{(f \cdot f)^{\gamma_{2}}}=\frac{\gamma_{\mu} f_{\mu}^{(\lambda)}}{i m \alpha_{\lambda}}\right.
$$

The projection operators in the Dirac space are

$$
\begin{align*}
& \Lambda \pm\left(f^{(\lambda)}\right)=\frac{1}{z}\left(1 \pm \gamma\left(f^{(\lambda)}\right)\right. \tag{3.50}\\
& \Lambda^{+}\left({ }_{f}(\lambda)\right)+\Lambda^{-(}\left(f^{(\lambda)}\right)=1 \\
& \left.\Lambda^{+}\left(f^{(\lambda)}\right) \Lambda^{-}\left(f^{(\lambda)}\right)=\Lambda^{-}{ }^{\left(f^{(}(\lambda)\right.}\right) \quad \Lambda^{+}\left(f^{(\lambda)}\right)=0 \tag{3.50}\\
& \left.\left.\gamma\left(f^{(\lambda)}\right) \Lambda^{ \pm}{ }_{(f}(\lambda)\right)= \pm \Lambda^{ \pm}{ }_{(f}{ }^{(\lambda)}\right) \tag{3.53}
\end{align*}
$$

${ }_{f}(\lambda)$ is timelike and $\gamma\left(f^{(\lambda)}\right)$ and $\Lambda^{ \pm}\left(f^{(\lambda)}\right)$ are self adjoint

$$
\begin{align*}
& \left.\gamma f_{f}(\lambda)\right)=\gamma_{4} \gamma^{x}(f), \gamma_{4}=\gamma(f(\lambda)) \tag{3.6a}\\
& \left.\Lambda^{+}{ }_{(f}(\lambda)\right)=\Lambda^{ \pm}\left(f_{f}(\lambda)\right. \tag{3.6b}
\end{align*}
$$

In the rest frame $f=0, f_{0}^{(\lambda)}=\alpha_{\lambda} m, \gamma\left(f^{(\lambda)}\right) \rightarrow \gamma(0)=\gamma_{4}$ and $\Lambda^{ \pm}\left(\mathrm{r}^{(\lambda)}\right) \rightarrow \Lambda^{ \pm}(0)=\frac{1}{2}\left(1 \pm \hat{\gamma}_{4}\right)$, (3.5e) reduced to

$$
\gamma_{4} \Lambda^{ \pm}(0)=\Lambda^{ \pm}(0) \gamma_{4}= \pm \Lambda^{ \pm}(0)
$$

Now consider the quantity

$$
\begin{equation*}
\Lambda_{\gamma}\left(f^{(\lambda)}\right)=\Lambda^{+}\left(f^{(\lambda)}\right) \times \Lambda^{-\left(f^{(\lambda)}\right)} \cdots \times \Lambda^{+}\left(f^{(\lambda)}\right), \quad n=2 \text { factors }(3.7 a) \tag{3.7a}
\end{equation*}
$$

in which $\left.\Lambda^{-\left(f^{(}\right)}\right)$occurs $\stackrel{\text { times. This satisfies }}{ }$
β

$$
\begin{gather*}
\left(f^{(\lambda)}\right) \wedge_{r}\left(f^{(\lambda)}\right)=\frac{1}{2}(1-1+\ldots+1) \wedge_{r}^{\left(f^{(\lambda)}\right)=\frac{(n-r)-r}{2} \wedge_{r}\left(f^{(\lambda)}\right)} \\
=(S-r) \wedge_{r}\left(f^{(\lambda)}\right) \tag{3.7b}
\end{gather*}
$$

Moreover there are ${ }^{n} C_{r}$ quantities of the type (3.7a) whose square is the same and which are orthogonal to each other but each of them belongs to the same eigenvalue ($s-r$) of $\beta\left(f^{(\lambda)}\right.$).

It is advantageous to write these down in a table form
TABLE I
"yo each $f^{(x)}$

$$
\begin{aligned}
& { }^{m} C_{0,}\left\{^{+} \times \Lambda^{+} x\right. \\
& \times \Lambda^{+} \times \Lambda^{+}=\Lambda_{0}^{(1)}\left(\frac{f^{\prime}}{}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =A_{2}^{(b)}\left(f^{(y)}\right. \\
& \left\{\begin{array}{l}
\Lambda^{-} \times \Lambda^{-} \cdots \cdots \cdots \cdots \cdots \Lambda^{+} \times \Lambda^{+} \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
\Lambda^{+} \times \Lambda^{+} \times \cdots \cdots \cdots \Lambda^{-}
\end{array}\right. \\
& =A_{2}^{{ }^{n} c_{2}}\left(f^{(\lambda)}\right)
\end{aligned}
$$

The total number of these projection operators is

$$
\begin{equation*}
n_{c_{0}}+{ }^{n} c_{1}+\ldots{ }_{n_{1}}+\ldots{ }_{c_{n}}=(1+1)^{n}=2^{n} \tag{3.8}
\end{equation*}
$$

and they are orthogonal to each cher in the sense

$$
\begin{equation*}
\Lambda_{r}(j) \quad\left(f^{(\lambda)}\right) \quad \Lambda_{r^{\prime}}^{\left(j^{\prime}\right)}\left(f^{(\lambda)}\right)=\Lambda^{(j)}\left(I^{(\lambda)}\right) \delta_{j j^{\prime}} \delta_{r \gamma^{\prime}} \tag{3.9a}
\end{equation*}
$$

The sum of all these projection operators is the identity operator

$$
\sum_{r=0} \sum_{j=1}^{n} C_{r}(j)\left(f^{(\lambda)}\right)=1
$$

For $\lambda=0$, ie. $S_{\lambda}=S_{0}=S, \quad \alpha_{0}=1 \quad$ there is only one projection operator $\Lambda_{0}^{(1)} f_{f}(\lambda)$ which satisfies the particle equation (3.2) and only which satisfies the antiparticle equation (3.3)

$$
\begin{align*}
& \left(\beta\left(f^{(0)}\right)-s\right) \wedge_{0}^{(1)}\left(f^{(0)}\right)=0 \tag{3.10a}\\
& \left(\beta\left(f^{(0)}\right)+s\right) \wedge_{n}^{(1)}\left(f^{(0)}\right)=0 \tag{3.10~b}
\end{align*}
$$

while any member of the set $\Lambda_{r}, r \leqslant \frac{n}{2}$ satisfies

$$
\begin{equation*}
\left[\beta\left(f^{(0)}\right)-(s-r)\right] \wedge_{r}\left(f^{(0)}\right)=0 \quad r \leqslant \frac{n}{2} \tag{3.11a}
\end{equation*}
$$

and for $r>\frac{n}{2}$

$$
\begin{equation*}
\left[\beta\left(f^{(0)}\right)+(s-r)\right] \wedge_{r}\left(f^{(0)}\right)=0 \quad r>\frac{n}{2} \tag{3.11~b}
\end{equation*}
$$

In general for any λ, the members of the set $\Lambda^{(\dot{j})}\left(f^{(\lambda)}\right)$ satisfy the particle equation

$$
\left(i \beta_{f}(\lambda)+m s\right) \wedge_{\lambda}^{(j)}\left(f^{(\lambda)}\right)=\left[\beta\left(f^{(\lambda)}\right)-s_{\lambda}\right] \wedge_{\lambda}^{j}\left(f^{(\lambda)}\right)=0 \quad(3.12 a)
$$ and the ${ }^{n} C_{n-\lambda}={ }^{n_{C_{\lambda}}}$ members of tho group $\Lambda_{\mu_{1} \lambda}^{(j)}(f(\lambda))$ satisfy the antiparticle equation

$$
\begin{equation*}
\left(i \beta \cdot f^{(\lambda)} ; m s\right) \Lambda_{n-\lambda}^{(j)}\left(f^{(\lambda)}\right)=\left[\beta\left(f^{(\lambda)}\right)+s_{\lambda}\right] \Lambda_{h-\lambda}^{(j)}(f(\lambda))=0 \tag{3.12b}
\end{equation*}
$$

The sum of all the operators $\Lambda_{\lambda}^{(j)}\left(f^{(\lambda)}\right)$ is equal to $\eta^{+}\left(f^{(\lambda)}\right)=\eta^{s}{ }^{s}\left(f^{(\lambda)}\right)$
That is

$$
\begin{equation*}
\eta^{+\left(f^{(\lambda)}\right)}{\underset{i}{i=1}}_{\sum_{\lambda}}^{\sum_{\lambda}(j)}\left(f^{(\lambda)}\right) \tag{3.13a}
\end{equation*}
$$

This is so because both the sides satisfy the same particle equation and their squares are the same and both are hermitian. Similarly for the antiparticle projection operators

$$
\begin{equation*}
\left.\eta^{-\left(f^{\prime}\right.}(\lambda)\right)=\eta^{-S_{1}}\left(f^{(\lambda)}\right)=\sum_{j=1}^{n C_{\lambda}} \Lambda_{n \rightarrow \lambda}^{(j)}\left(f^{(\lambda)}\right) \tag{3.13b}
\end{equation*}
$$

$\wedge_{r}^{(i)}{ }_{\left(p^{(\lambda)}\right)}$ for $r \neq \lambda$ and $r \neq n-\lambda$ do not satisfy the particle or antiparticle equations but rather those satisfied by

$$
\eta^{s_{i} \neq \pm s_{\lambda}} \quad\left(f^{(\lambda)}\right)
$$

The telicity operator $\sum(\underline{f}(\lambda))=\sum(\underline{f})$ given by

$$
\begin{aligned}
& \Sigma(\underline{p})=\frac{1}{2}(\bar{\sigma}(\underline{f}) \times 1 \times 1 \ldots \ldots \times 1+1 \times \bar{\sigma}(\underline{f}) \times 1 \times \ldots \ldots \times 1+\ldots \\
&+\ldots \ldots+1 \times 1 \times 1 \times \ldots \times 1 \times \bar{\sigma}(\underline{f}) \quad), n \text { terms }(3.14)
\end{aligned}
$$

has helicity eigenvectors of the type

$$
\begin{equation*}
\xi_{r}^{a}(f)=\xi^{+}(\underline{f}) \times \xi^{-(\underline{f}) \times \ldots \ldots \times \times \xi^{+}(\underline{f})} \tag{3.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi^{ \pm}(\underline{f})=\frac{1}{2}(1+\bar{\sigma}(\underline{p})) \quad, \bar{\sigma}(\underline{f})=\frac{\bar{\sigma}_{i f i}}{(\underline{f} \cdot \underline{p})^{\frac{1}{2}}} \tag{3.16a}
\end{equation*}
$$

and satisfies

$$
\begin{align*}
& \xi^{ \pm}(\underline{f}) \xi^{ \pm}(\underline{f})=\xi^{ \pm}(\underline{f}) \tag{3.16b}\\
& \xi^{\mp}(\underline{f}) \xi^{ \pm}(\underline{f})=0 \tag{3.16c}\\
& \xi^{+(\underline{f})+\xi^{-}(\underline{f})=1} \tag{3.16d}\\
& \bar{\sigma}(\underline{f}) \quad \xi^{ \pm}(\underline{f})= \pm \xi^{ \pm(\underline{f})} \tag{3.160}
\end{align*}
$$

If in (3.15) $\xi^{-}(\underline{P})$ occurs r times then these are ${ }^{r} C_{r}$ orthogonal projection operators of this type, they have the same helicity eigen value. $s-Y$

$$
\Sigma(\underline{\perp}) \quad \xi_{r}(\underline{p})=(s-r) \xi_{r}^{\sigma} \quad \sigma=1,2, \ldots \ldots,{ }^{n} c_{r}(3,17:
$$

Again there are ${ }^{n} C_{0}+{ }^{n} C_{1}+\ldots . .{ }^{n} C_{n}=2^{n}$ helicity projection operators and they are orthogonal to each other

$$
\begin{equation*}
\xi_{r}^{\sigma_{r}^{\alpha}(t)} \delta_{r}^{\alpha}(t)=\delta_{r^{\prime} r} \quad \delta_{r a} \sigma_{r}^{\alpha} \delta_{r}^{\alpha}(t) \tag{3.18}
\end{equation*}
$$

It is better to arrange these helicity projection operators in such a way that the first $2 s+1$ belong to the $j^{(s)}\left(f^{(\lambda)}\right)$ space

$$
0^{s}\left(f^{(\lambda)} \not Z^{(i)}(\underline{f}) \quad i=1,2, \ldots \ldots 2 s+1\right.
$$

and tho rest attached to ? over spin operators $0 s_{j}<{ }^{s} \quad\left(f^{(\lambda)}\right)$. There will be several $0^{5_{d}<\leqslant}\left(f^{(\lambda)}\right)$ subspaces but an orthogonal basis may be constructed within each $s_{j}<$ s spin space also. Let these bo denoted by

$$
\begin{equation*}
\xi^{\prime 2}\left(f^{(\lambda)}\right) \quad \sigma=1,2, \ldots \ldots 2 S+1,2 S+2 \ldots \ldots \tag{3.20}
\end{equation*}
$$

For $\quad \sigma=i \leqslant 2 s+1$

$$
\xi^{i}\left(f^{(\lambda)}\right)=0^{(s)}\left(f^{(\lambda)}\right) \not{ }^{(\lambda)(i)}(\underline{f}) \quad i=1,2, \ldots 2 s+1 \text { (3.21) }
$$

For higher values of σ, ξ^{∞} are formed by $0^{s} j<s\left(f^{\prime}(\lambda)\right.$ and appropriate sum of $\zeta_{r}^{\sigma}(\underline{f})$. The orthogonality condition reads

$$
\begin{equation*}
\xi^{\sigma}\left(f^{(\lambda)}\right) \quad \xi^{a^{\prime}}\left(f^{(\lambda)}\right)=\xi^{a}\left(f^{(\lambda)}\right) \delta_{a}^{\infty} \tag{3.22}
\end{equation*}
$$

$$
=1,2, \ldots 2^{n}
$$

It should be noted that $Z^{(i)}(\underline{f})$ can also be written in terms of $\xi_{r}\left(\frac{f}{2}\right)$.

In general $\quad \xi^{\sigma(f}(\lambda)$ is of the form

$$
\begin{equation*}
\xi^{\gamma}\left(f^{(\lambda)}\right)=0^{(S i)}\left(f^{(\lambda)}\right)\left\{\sum \xi_{\gamma}^{(a)}(f)\right\} \tag{3.25}
\end{equation*}
$$

By multiplying $\Lambda_{r}^{(j)}\left(f^{(\lambda)}\right)$ and $\xi^{\alpha}\left(\hat{r}^{(\lambda)}\right)$ one obtains $2^{n} 2^{n}=4^{n}$ orthogonal primitive projection operators. Let $U_{\gamma, j}^{\alpha}\left(f^{(\lambda)}\right)$ dents

$$
\left.U_{r, j}^{\sigma}\left(f^{(\lambda)}\right)=\Lambda_{r}^{(j)}\left(f^{(\lambda)} ; \xi_{(f}^{j}(\lambda)\right) X(f(\lambda)) \quad \text { (,., }-4\right)
$$

Then $\|_{\lambda, j}^{\sigma}\left(f^{(\lambda)}\right)$ satisfies the particle equation (3.2) and $U_{n-\lambda, j}\left(f^{(\lambda)}\right)$ satisfies the airiparticle equation (3.3). The operator

$$
\eta\left(f^{(\lambda)}\right)=\gamma\left(f^{(\lambda)}\right) \times \gamma\left(f^{(\lambda)}\right) \times \ldots \ldots \ldots \gamma\left(f^{(\lambda)}\right)
$$

has the property

$$
\begin{equation*}
\eta\left(f^{(\lambda)}\right) \quad u_{r j}^{\sigma}\left(f^{(\lambda)}\right)=(-1)^{r} \quad u_{\gamma, j}^{\pi} \quad\left(f^{(\lambda)}\right) \tag{3.25}
\end{equation*}
$$

Finally $U_{\nabla, j}^{\sigma}\left(f^{(\lambda)}\right.$) are orthogonal to each other in the sense

$$
u_{r, j^{\prime}}^{t_{\sigma^{\prime}}^{\prime}}\left(f^{(\lambda)}\right) \quad u_{r, j}^{a}\left(f^{(\lambda)}\right)=u_{r, j^{\prime}}^{x_{\sigma}^{\prime}}\left(f^{(\lambda)} \eta_{4} u_{r, j}^{\sigma}\left(f^{(\lambda)}\right)\right.
$$

$$
=0
$$

if $\sigma \neq o^{\prime}$, or $j \neq j^{\prime}$ or $r^{\prime} \neq r^{\prime}$

To nor:nalise these orthogonal vectors their transformation properties under Lorentz transformations along $\underline{\underline{f}}^{(\lambda)}=\underline{£}$ should be examined.
The Lorentz transformation $\mathcal{L}_{\mu \nu}\left(f^{(\lambda)}\right.$) which brings $f(\lambda)$ to its rest
frame ${\underset{f}{f}}^{(\lambda)}=\underline{f}=0, f_{0}^{(\lambda)}=m \alpha_{\lambda}$ is represented in the Dirac space by $L\left(f^{(\lambda)}\right)$ and is given by

$$
I\left(f^{(\lambda)}\right)=\frac{\gamma_{4}\left(-i \gamma_{\mu} f_{\mu}^{(\lambda)}+m \alpha_{\lambda} \gamma_{4}\right)}{\left[2 \alpha_{\lambda} m\left(f_{0}^{(\lambda)}+m \alpha_{\lambda}\right)\right]^{\frac{1}{2}}}
$$

Its properties are

$$
\begin{align*}
& I\left(f^{(\lambda)}\right) X\left(f^{(\lambda)}\right)=X(\underline{f}=0), X\left(f^{(\lambda)}\right) \text { a Dirac spinor }(3.27 \mathrm{~b} \\
& L\left(f^{(\lambda)}\right) \gamma_{\mu} I\left(f^{(\lambda)}\right)=\mathcal{L}_{\mu y}\left(f^{(\lambda)}\right) \gamma_{p}, \tag{3.27c}\\
& f_{\mu}^{(\lambda)} \mathcal{L}_{\mu i}\left(f^{(\lambda)}\right)=0, f_{\mu}^{(\lambda)} \mathcal{L}_{\mu 4}\left(f^{(\lambda)}\right)=i \sigma_{\lambda},
\end{align*}
$$

Before wo apply

$$
L^{(n)}\left(f^{(\lambda)}\right)=L\left(f^{(\lambda)}\right) \times L\left(f^{(\lambda)}\right) \times \ldots \ldots L\left(f^{(\lambda)}\right)
$$

to the rank n spinors $U_{y, j}^{a}(f(\lambda)$ it is convenient to apply first the rotation operator $R^{(n)}(\tau)$ which corresponds to a space rotation that brings $£$ along the \because-axis

$$
\begin{align*}
& f_{i}=\tilde{f}_{j} \quad \tilde{f}_{1}=\tilde{f}_{2}=0, \quad \tilde{f}_{3}=1 \pm 1 \tag{3.28a}\\
& R(r) \quad \gamma_{i}^{t}(\pi)=r_{i j} \gamma_{j} \tag{3.28b}\\
& R(x) \quad \bar{\sigma}_{i} R^{+}(z)=\tau_{i j} \bar{\sigma}_{j} \tag{3.28c}
\end{align*}
$$

ri'hus

$$
\begin{align*}
& R(\mu) \Lambda^{ \pm}\left(f^{(\lambda)}\right) \quad R^{+}(\pi)=\Lambda^{ \pm}\left(\tilde{f}^{(\lambda)}\right) \tag{3.29b}\\
& \text { since } \\
& \left.\left(\tilde{f}^{(\lambda)}\right)_{f}^{f}(\lambda)\right)^{\frac{1}{2}}=\left(f^{(\lambda)} f_{f}(\lambda)\right)^{\frac{1}{2}}=i \alpha_{\lambda} m \\
& \tilde{f}_{4}^{(\lambda)}=f_{4}^{(\lambda)}
\end{align*}
$$

Hence

$$
\begin{equation*}
R^{(n)}(r) \wedge_{r}^{(j)}\left(f^{(\lambda)}\right) \underset{R^{(n)}}{(n)}=\Lambda_{t}^{(j)}\left(f^{(\lambda)}\right) \tag{3.31}
\end{equation*}
$$

The offect of the transformation by $F(\imath)$ on $\xi^{ \pm}(\underline{f})$ is

$$
\begin{align*}
R \xi^{ \pm(\pm) R^{\dagger}} & =\frac{1}{2} R\left(1 \pm \frac{-\vec{\sigma} \cdot f}{(\vec{f} \cdot \underline{f}) \frac{1}{2}}\right) R^{+} \\
& =\frac{1}{2}\left(1 \pm \frac{\widetilde{\sigma}_{3} \ddot{\mathbf{f}}_{3}}{\widetilde{f}_{3}}\right) \\
& =\frac{1}{2}\left(1 \pm \bar{\sigma}_{3}\right) \equiv \xi^{ \pm}(3) \tag{3.32}
\end{align*}
$$

Also

$$
\begin{equation*}
R^{(n)} 0^{s_{i}}\left(f^{(\lambda)}\right) R^{(n)}=0^{\left(s_{i}\right)}\left(\tilde{f}^{(\lambda)}\right) \tag{3.33}
\end{equation*}
$$

Combining these results

$$
R^{(n)} \cdot U_{p, j}^{\sigma}\left(f^{(\lambda)}\right)=R^{(n)} \wedge_{r}^{(j)}\left(f^{(\lambda)}\right) j^{(S i)}\left(f^{(\lambda)}\right)\left\{\sum S_{r}^{(a)} f_{f}\right\} X_{\left(f^{(\lambda)}\right)}
$$

$$
\begin{equation*}
=\Lambda_{r}^{(j)}\left(\tilde{f}^{(\lambda)}\right) 0^{(S i)}\left(\tilde{f}^{(\lambda)}\right)\left\{\xi_{r}^{(a)}(3)\right\} \chi\left(\tilde{f}^{(\lambda)}\right) \tag{3.34}
\end{equation*}
$$

Operating now by $I(\tilde{f})$ yields the value of $U_{r, j}^{*}(f)$ in the rest frame with spin components along the 3-axis. Since

$$
\begin{equation*}
L\left(\tilde{f}^{(\lambda)}\right) \Lambda^{ \pm}\left(\tilde{f}^{(\lambda)}\right) I^{\dagger}\left(\tilde{f}^{(\lambda)}\right)=\Lambda^{ \pm}(0)=\frac{1}{2}(1 \pm \underset{4}{\gamma}) \tag{3.35}
\end{equation*}
$$

and $L(f)$ boing given by

$$
\begin{align*}
& L(\tilde{f}(\lambda))=\gamma_{4} \frac{-i \gamma_{3} f_{3}-i \gamma_{4} f_{4}^{(\lambda)}+m \alpha_{\lambda} \gamma_{4}}{\left\{2 \alpha m_{\alpha}\left(f_{0}^{(\lambda)}+m \alpha_{\lambda}\right)\right\}} \\
& \text { commutes with } \vec{\sigma}_{3}=i \gamma_{1} \gamma_{2} \\
& L^{(n)}(\tilde{f}) F^{(n)} \cdot u_{r, j}^{a}\left(f^{(\lambda)}\right)=A_{r}^{(j)}(0) 0^{(S i)}(0)\left\{\sum_{r}^{(a)}(3)\right\} X(0) \\
& \equiv U_{r, j}^{a}(3,0) \tag{3.37}
\end{align*}
$$

Writing this equation for $\bigcup_{r, j}^{\sigma^{\prime}},\left(f^{(\lambda)}\right)$ taking the hermitian conjugate and multiplying by $\eta_{4}=\gamma_{4} \times \gamma_{4} \ldots \ldots \ldots \times \gamma_{4}$ from the right

$$
\begin{align*}
& =X^{x}(0)\left\{\Sigma \xi_{\gamma}^{\left(a^{\prime}\right)}(3)\right\} \quad 0^{\left(s^{\prime} i\right)}(0) \Lambda_{\mu^{\prime}}^{(j)}(0) \eta_{4} \tag{3.38}
\end{align*}
$$

Now $\wedge_{r}^{(j)}(0)$ contains $\Lambda^{-}(0), r$ times therefore

$$
\begin{equation*}
\Lambda_{r}^{(j)}(0) \eta_{4}=(-1)^{r} \wedge_{r}^{(j)}(0) \tag{3.39}
\end{equation*}
$$

giving

$$
\begin{align*}
& \left.U_{r^{\prime}, \dot{d}^{\prime}}^{\dagger_{0}^{\prime}}(\lambda)\right) R^{(n)}(\pi) L^{f}\left(\tilde{f}^{(\lambda)}\right)=(-1)^{t} X(0)\left\{\sum \xi_{i^{\prime}}^{(a)}(3) \quad 0^{\left(S^{\prime} i\right)}(0) \Lambda_{r^{\prime}}^{(j)}(0)\right. \\
& =(-1)^{r} U_{y^{\prime}, j}^{\prime \prime} \quad(3,0) \tag{3.40}
\end{align*}
$$

From thess results on u obtains at once

$$
\begin{align*}
& =0 \text { if } r^{\prime}, j^{\prime}, \dot{\pi} \quad \neq r, j, \sigma \tag{3.41C}
\end{align*}
$$

Non me? isation of $U_{r, j}^{\sigma}\left(f^{(\lambda)}\right)$ is affect od by setting the positive definite quantity

$$
\begin{equation*}
u_{r, j}^{x}(3,0) u_{r, j}^{\alpha}(3,0)=i \tag{3.41b}
\end{equation*}
$$

Hence writing $\varepsilon_{r}=(-i)^{r}$

$$
\begin{equation*}
U_{r^{\prime}, j^{\prime}}^{t_{\prime^{\prime}}\left(f^{\left(\lambda^{\prime}\right)}\right) \|_{r, j}^{\sigma}\left(f^{(\lambda)}\right)=\epsilon_{r} \delta_{r \gamma^{\prime}} \delta_{j j^{\prime}} \delta_{\sigma \sigma},} \tag{3.42}
\end{equation*}
$$

This is the generalisation of tho similar result for the Dirac equation. For the derivation of this result the introduction of $R^{(n)}(\mathbb{R})$ was not necessary and one could have directly operated by $I^{(n)}\left(f^{(\lambda)}\right)$, but then it would have taken some time and space to show that $L(f)$ commutes with

$$
\xi^{ \pm}(\underline{f})=\frac{1}{2}\left(1+\frac{\bar{\sigma} f^{f} \cdot}{(f \cdot f)^{\frac{1}{2}}}\right)
$$

The identity operator is given by

$$
\begin{equation*}
\left.1=\sum_{r=0}^{n} \sum_{j=1}^{n c_{r}} \sum_{\sigma=1}^{2^{j i}} u_{r, j}^{\sigma}\left(f^{(\lambda)}\right) u_{r, j}^{+} f^{(\lambda)}\right) \epsilon_{r} \tag{3.43a}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta_{\alpha \beta}=\sum_{r, j, \sigma} U_{r, j}^{a}\left(f^{(\lambda)}\right)_{\alpha} \varepsilon_{r} U_{r, j}^{j_{a}^{a}\left(f^{(\lambda)}\right)_{e}} \quad, j \leqslant \alpha, \beta \leqslant 4^{n} \tag{}
\end{equation*}
$$

In this last equation $U_{r, j}^{\sigma}\left(f^{(\lambda)}\right)$ is considered a 4^{n} dimensional vector rather than as a spinor of rank n. The trace of an operator in λ space is defined as

$$
\begin{gather*}
\operatorname{Fr}_{\lambda} Q=\sum_{\gamma, j, \sigma} u_{r, j}^{t}\left(f^{(\lambda)}\right)_{\alpha} \quad Q_{\alpha \beta} U_{r, j}\left(f^{(\lambda)}\right)_{\beta} \\
=\delta_{\alpha \beta} Q_{\alpha \beta}=Q_{\alpha, \alpha}
\end{gather*}
$$

The spinous belonging to two different mass values λ and λ are not orthogonal to each other in the sense $U^{+}\left(f^{(\lambda)}\right) U\left(f^{\left(\lambda^{\prime}\right)}\right)$. However there are some useful orthogonality relations with respect to $\left.U^{t}{ }_{(f}{ }^{(\lambda)}\right) \beta_{4} U\left(f^{\left(\lambda^{\prime}\right)}\right)$ type of scalar product. From the free field equation

$$
\left(\beta_{c} \partial_{1}+\beta_{4} \partial_{4}+m s\right) \phi(x)=0
$$

one can prove in the usual way that the 4 -divergence of

$$
\begin{align*}
& \varphi^{\dagger}(x) \beta_{\mu} \varphi(x) \text { vanishes } \\
& \quad \partial_{\mu} \phi^{t}(x) \beta_{\mu} \varphi(x)=0 \tag{3.44}
\end{align*}
$$

In the non-quantized theory is defined as the probability current density and its 4 th component $\therefore \phi^{\dagger} \beta_{4} \varphi^{\prime}$: as the
probability density.
$\varphi{ }^{+} \beta_{4} \Phi$. is conserved in time. In the L S. Z formulation of the Quantum field theory the free field wave functions are normalised with respect to the type of scalar product winch is conserved in time. Hence we must look for the orthoncrmality properties of $U_{Y^{\prime}, j}^{+\prime}\left(f^{(\lambda)}\right) \beta_{4} U_{V, j}^{\sigma}\left(f^{(\boldsymbol{\lambda})}\right)$. Also the Fourier expansion (2.59) of $\varphi(x)$ contains only the "particle" and "antiparticle" spinous, $U^{(+)}\left(f^{(\lambda)}\right)=U_{\lambda j}^{\sigma}\left(f^{(\lambda)}\right)$ and $U^{(-)}=U_{n-\lambda, i}^{\sigma}\left(f^{(\lambda)}\right)$. The satisfy the particle and the antiparticle equation

$$
\begin{equation*}
\left(\pm i \underline{\beta}_{f} \pm i \beta_{4} f_{0}^{\left(\lambda^{\prime}\right)}+m s\right) \mathrm{U}_{\lambda^{\prime}, \mathrm{n}^{\prime}}\left(f^{\left(\lambda^{\prime}\right)}\right)=0 \tag{3.45}
\end{equation*}
$$

Taking its Hermitian conjugate and multiplying by $\mathcal{Z}_{4}^{\mathrm{U}} \underset{\mathrm{n}-\lambda_{j}^{\sim}}{\sim}\left(\mathrm{f}^{(\lambda)}\right.$) from the
right

On the other hand

Subtracting these two equations we get

We cannot prove that $U_{n-\lambda^{\prime},}^{\sigma}{ }_{j}^{\left(f^{(\lambda)}\right)} \beta_{4} U_{\lambda, j}\left(f^{(\lambda)}\right)$ vanishes but if

$$
\begin{aligned}
& f^{\prime\left(\lambda^{\prime}\right)}=\left\{-\underline{f}, f\left(\lambda^{\prime}\right)\right\}=\left\{-\underline{f}+\sqrt{\underline{f}^{2}+m^{2} \alpha^{2}}\right\} \\
& f^{(\lambda)}=\left\{\underline{f}_{9} f_{0}^{(\lambda)}\right\}=\left\{\underline{f},+\sqrt{\underline{f}^{2}+m^{2} \alpha_{\lambda}^{2}}\right\}
\end{aligned}
$$

we have

$$
\left(i \underline{B}_{\underline{f}}-i \beta_{4} f_{4}^{\left(\lambda^{\prime}\right)}+m s\right) u_{n-\lambda^{\prime}, j}^{\dot{\sigma}}\left(f^{\prime}\left(\lambda^{\prime}\right)\right)=0
$$

or

Also

$$
\left.U_{n \rightarrow \lambda^{\prime}, j^{\prime}}^{+f^{\prime}}\left(\lambda^{\prime}\right)\right) \quad\left[i \underline{\beta} \underline{f}+i i_{4} f^{(\lambda)}+m s\right] U_{\lambda, j}^{\sigma}\left(f^{(\lambda)}\right)=0
$$

The difference of the last two equations gives

$$
\begin{aligned}
& U_{n-\lambda^{\prime}, j}^{f_{j}^{\prime}}\left(f^{\prime}\left(\lambda^{\prime}\right), \beta_{4}^{U}{ }_{\lambda}, j\left(f^{(\lambda)}\right)=0 \quad \text { for } \underline{f}=-\underline{f}\right. \\
& \text { since } f_{0}^{(\lambda)}+f_{0}^{\left(\lambda^{\prime}\right)} \neq 0 .
\end{aligned}
$$

Thus the β_{4} scalar product of mixed particle and antiparticle spinors vanishes For $\underline{f}=-\underline{f}$, so that for $\lambda^{\prime}=\lambda$ it is only necessary to consider products of the type

It is easily seen that

$$
\begin{aligned}
& \left.\left.+\ldots+|x| \cdots \mid x \gamma_{4}\right\} \underset{n-\lambda}{\wedge_{n}^{(j)}(f}(\lambda)\right)
\end{aligned}
$$

 ($\boldsymbol{\lambda}$ or $n-\lambda$) of $\lambda^{-}\left(f^{(\lambda)}\right)$ factors and if $j \not f^{\prime} j^{\prime}$ at least one $\Lambda^{ \pm}\left(f^{(\lambda)}\right) \bar{\Psi}_{(f}(\lambda)$ will occur in each of the n term on the R.H.S. of the last equation. Now from (3.37) and 3.40)

$$
\begin{align*}
& I^{+(n)}\left(f^{\sim(\lambda)}\right) \quad u_{n^{2} \cdot \lambda^{\prime} j}^{\sim}(3,0) S_{j j^{\prime}} \tag{3.49}
\end{align*}
$$

To calculate the R.H.S. consider

$$
\begin{align*}
& I^{(n)}\left(\vec{f}^{(\lambda)}\right) R_{4} I^{+(n)}\left({\underset{f}{f}}^{(\lambda)}\right)=\frac{1}{2}\left\{I\left(\vec{f}^{(\lambda)}\right) \gamma_{4} L^{+}\left(f^{(\lambda)}\right) \times(y|\times \ldots| \times \mid\right. \\
& +i x L\left(f^{(\lambda)}\right) \chi_{4}^{\sim} L^{\dot{r}\left(f^{(\lambda)}\right) \times \mid \times 1 \ldots 1 \times 1} \\
& \left.+|x| x \cdots 1 \times L\left(f^{(\lambda)}\right) \gamma_{4} L^{+}\left(f^{(\lambda)}\right)\right\} \tag{3.50}
\end{align*}
$$

But L $(\underset{f}{(\lambda)}) \quad \chi_{4} I^{+}\left(\tilde{f}^{(\lambda)}\right)$

$$
\begin{align*}
\left.=\frac{\gamma_{4}}{2 m \alpha_{\lambda}\left(f_{0}(\lambda)\right.}+m \alpha_{\lambda}\right) & \underline{\gamma} \underline{\underline{\gamma}} \underline{\underline{f}}+\left(m \alpha_{\lambda}+f_{0}^{(\lambda)}\right)\left(\gamma_{4} i \underline{\underline{f}}-i \underline{\underline{f}} \tilde{\gamma_{4}}\right) \\
& \left.+\left(m \alpha_{\lambda}+f_{0}^{(i)}\right)^{2}\right\} \tag{3.51}
\end{align*}
$$

Writing the srinors in (3.49) in the form

$$
\underset{n-\lambda}{U_{n}^{\sigma}, j}(3,0)=\underset{n-\lambda}{\lambda_{n}^{(j)}}(0) \underset{n-\lambda}{U_{n}^{a}}\left(3, c_{j}^{j}\right.
$$

and
and substituting for $\mathrm{L} \gamma_{4} \mathrm{I}^{+}$from (3.51) in (3.49) we wee that

$\Lambda^{ \pm}(0)$ from the right and left. Also the \mathcal{X}_{4} on the extreme left in (3.51) will give λ or $n-\lambda$ times -1 and $n-\lambda$ or λ times +1 . The coefficient arising from this is $\frac{-\lambda+2 S-\lambda}{2}=S$, or $\frac{-(2 S+\lambda)+\lambda}{2}=-S$

$$
\begin{align*}
& \underbrace{(-1)^{j+\lambda+1}} \underset{U_{n-\lambda}^{\lambda}, j}{\lambda}(3,0) \underset{n-\lambda}{U_{n-\lambda}^{\sigma-}}(3,0) \tag{3.53}\\
& =(-1)^{\lambda-\lambda-1} \frac{f_{0}^{(\lambda)} S_{\lambda}}{m \alpha_{\lambda}} \delta_{j j}, \delta_{\mu \alpha}
\end{align*}
$$

It is convenient to verite the antiparticle spinous $U_{n-\lambda, j^{f}}(\lambda)$ in the form

$$
\begin{equation*}
U_{n-\lambda, j}^{\sigma}\left(f^{(\lambda)}\right)=V_{\lambda, j}\left(f^{(\lambda)}\right) \tag{3.54}
\end{equation*}
$$

and then collect the $\boldsymbol{\beta}_{4}$ type of orthonormality relations together

$$
\begin{align*}
& V_{\lambda^{\prime}, j^{\prime}}^{+\alpha^{\prime}}\left({ }^{\prime}\right), \beta_{4} \quad V_{\lambda, j}^{\sigma}\left(f^{(\lambda)}\right)=(-1)^{2 S-\lambda-1} \frac{f_{0}^{(\lambda)_{S}}{ }_{m} \alpha_{\lambda}}{\delta_{\lambda \lambda}} \delta_{j^{\prime} j} \delta_{a a^{\prime}} \quad \text { (3.5jb) } \\
& V_{\lambda^{\prime}, j^{\prime}}^{+\sigma^{\prime}}\left(f^{(\lambda)}\right) \beta_{4} U_{\lambda, j}^{\alpha}\left(f^{(\lambda)}\right)=0 \tag{3.55c}\\
& \text { for } \underline{\underline{I}}^{\prime}=-\underline{f}
\end{align*}
$$

By taking $\lambda=0,0_{\lambda}=1$, the wave function in momentum space of a. ire particle or an antiparticle of mass m, spins ${ }^{5}$, momentum $£$ and helicity a
 to the subspaces $\eta \pm s_{c}(f) 0^{(s)}(f)=\eta^{ \pm}(f) 0^{(s)}(f)$. In the configuration space the wive functions are

$$
\begin{equation*}
\Psi_{ \pm}^{\prime}(x, f)=U_{ \pm}(f) c^{i f \cdot x} \tag{4.1}
\end{equation*}
$$

Equations 3.55 in this case become

$$
\begin{align*}
& f_{+}^{f_{j}^{\prime}}(f) \beta_{4} U_{+}^{\sigma}(f)=\frac{f_{0} s}{m} \delta_{a \sim} \\
& U_{-}^{U_{\sigma}^{\prime}}(f) \beta_{4}^{U} U_{-}^{\sigma}(f)=(-1)^{2 s-1} \frac{f_{0} s}{m} \delta_{\sigma \alpha} \tag{4.2~b}\\
& (4.2 b) \tag{4.2c}\\
& U_{-}^{+}\left(-f_{0}, f_{0}\right) \beta_{4} U_{+}\left(f, f_{U}\right)=0
\end{align*}
$$

For "antiparticles" of integral spin the particic density is negative, for "particles" or "antiparticles" of half integral spin the particle density is positive as well as for "particles" of integral spin ${ }^{(8)}$. First consider the case of "particles".

Enclosing the system in a box of volume $\frac{m}{s f_{0}}$,

$$
\begin{equation*}
\int_{\frac{\mathrm{m}}{\mathrm{sf}}} \Psi_{ \pm}(\underset{\sim}{x}, f) \beta_{4}^{\Psi(x, f)} d^{3} x=1 \tag{4.3}
\end{equation*}
$$

the density of states in momentum space is $\frac{m}{s f_{0}} d^{3} f$. The spinors $\sqrt{\frac{m}{s f_{0}}} U_{+}(f)$
are normalised with respect to β_{4} typo of scalar product as shown by (4.2): If the probability of finding a particle in tho holicity state a is W_{0} the probability of finding it in a region $d^{3} f$ at f is

$$
\begin{aligned}
& =\frac{m^{3} f}{s f_{0}} \sum_{a-\infty}^{2 s+1} U_{+}^{+\quad}(f) U_{+}^{\prime}(f) W_{a}^{U_{+}}(f) U_{+}^{\prime \prime}(f) \quad \text { (4.4c) }
\end{aligned}
$$

where we have used the fact that

$$
\begin{equation*}
U_{+}^{+\prime}(f) \beta_{4} U_{+}^{m}(f)=\frac{s f_{o}}{m} \delta_{\sigma}^{\prime}=U_{+}^{+\sigma^{\prime}}(f) U_{+}^{\pi}(f) \tag{4.5}
\end{equation*}
$$

$$
440
$$

In equation $U_{+}(f)$ can now be replaced by $U_{r, j}^{a}(f)(-1)^{r}$ and the summation over σ^{\prime} extended to 2^{n} and a summation over ry performed without altering the value of 4 (df). Using (3.4) and (3.13) this gives

$$
\begin{aligned}
& \omega(d f)=\frac{m^{3} f}{s f_{0}} \sum_{\sigma^{\prime}=1}^{2^{n}} \sum_{r=1}^{n} \sum_{j=1}^{n C_{r}} \sum_{a=1}^{(2 s+1)_{U_{r, j}}^{\dagger}(f) U_{o, f}^{\prime}(f) W U_{a, j}^{\dagger}}(f) U_{r, j}^{a}(f) \\
& =\frac{m^{3} f}{s f_{0}} \operatorname{tr} \rho(f)=\frac{\operatorname{md}^{3} f}{s f_{0}} \sum_{\alpha=1}^{2 s+1} W_{0} \quad \text { (4.6a) }
\end{aligned}
$$

$\rho(f)$ is defined by

$$
\begin{align*}
\rho(f) & =\sum_{\sigma}^{2 s+1} U_{o 1}^{\sigma}(f) W_{\infty}^{U_{o 1}^{+\sigma}}(f) \\
& =\sum_{\infty}^{2 s+1} U_{+}^{\infty}(f) W_{S}^{U_{+}^{+}}(f) \tag{4.6b}
\end{align*}
$$

$\rho(f)$ is a covariant matrix, and $\operatorname{tr} \rho(f)=\sum_{0}^{-5+1} W_{0} \cdot(d f)$ is invariant since the R.H.S. is so. For antiparticles of half integral spin, (f) can be defined in exactly the same way. The result is

$$
\begin{align*}
\omega(d f) & =\frac{m^{3} f}{s f_{0}} \operatorname{tr} \rho(f) \tag{4.7a}\\
& =\frac{m^{3} d^{3}}{s f_{0}} \sum_{\sigma}^{2 s+1} W_{\sigma} \\
P(f) & =\sum_{a}^{2 s+1}-U_{n, 1}^{\infty}(f) \quad W_{\sigma} U_{n, 1}^{\infty} \tag{4.7b}
\end{align*}
$$

The probability density for antiparticles of integral spins is negative and so we cannot define a ρ matrix for them. This difficulty can be removed in the quantised version of the theory as will be shown later on.

For collision process in which the initial and final spin particles are either 'particles' or 'antiparticles' a non quantised potential scattering theory can be built up. The fact that equation 2.1 with equation t (2.8) admits various mass states will have no effect on the scattering since the interaction potentials acting on a state in which the momenta lis on the mass shell $-m^{2}$ will give a state on the same mass shell.

What i., wo are interested in is chat the total differential cross-section for the final spin s particle with momentum $f_{-}^{\prime} l_{\text {ling }}$ in a solid angle d L is given by

$$
d \sigma=\sum_{\sigma=1}^{2 s+1} \sum_{\alpha=1}^{2 s+1}\left|U_{+}^{+\cdots}\left(f^{\prime}\right) \bar{S}\left(f^{\prime}, t, f\right) \quad U_{+}^{\alpha}(f)\right|^{2} \pi_{\alpha}
$$

t is the centre of mass momentum given in terms of initial and final momenta by

$$
t=f+q=f^{\prime}+q^{\prime}
$$

q and q^{2} being the momenta of the initial and final spin zero particles. $\bar{S}\left(f^{\prime}, t, f\right)$ should be a covariant matrix since $d \mathfrak{r} i$ is an invariant. $\mathrm{U}_{+}(f)$ satisfy

$$
U_{+}^{\sigma}\left(f^{\prime}\right)=U_{0,1}^{\sigma}\left(f^{\prime}\right)=\eta^{+}\left(f^{\prime}\right) \stackrel{(s)}{o\left(f^{\prime}\right)} U_{o, 1}^{\sigma}\left(f^{\prime}\right) \quad \text { for all } \alpha^{\prime} \leqslant 2 s+1
$$

and so da can be written

$$
\begin{align*}
& \bar{i} \sigma=\sum_{\sigma^{\prime}=1}^{2^{n}} \sum_{r, j} \sum_{\sigma}^{2 s+1} U_{v, j}^{+\omega^{\prime}}\left(f^{\prime}\right) j^{(s)}\left(f^{\prime}\right) \bar{S} U_{v, 1}(f) \mathbb{V}_{\sigma} \quad \text { (4.11a) } . \\
& \left.\mathrm{U}_{0,1}^{+\sigma}(f) \bar{S}^{+}\right\}^{+}\left(f^{\prime}\right) o^{(s)}\left(f^{\prime}\right) U_{r, j}^{\sigma}(f)(-1)^{r} \tag{4.11~b}\\
& =\operatorname{tr} \eta^{+}\left(f^{:}\right) 0^{(s)} \bar{S}_{\left(f^{\prime}, t, f\right) \rho(f)} \bar{S}^{+}\left(f^{\prime}, t, f\right) \eta^{+}\left(f^{\prime}\right) 0^{(s)}\left(f^{\prime}\right) \tag{4.11c}
\end{align*}
$$

$f(f)$ given by (4.6) satisfies

$$
\begin{equation*}
P(f)=\eta^{+}(f) u^{(s)}(f) P(f) \eta^{+}(f) o^{(s)}(f) \tag{4.12}
\end{equation*}
$$

Substituting 4.i2 in 4.11

$$
\begin{equation*}
d \sigma=\operatorname{tr} S\left(f^{\prime}, t, f\right) \rho(f) S^{+}\left(f^{\prime}, t, f\right)=\operatorname{tr} \rho^{\prime}\left(f^{\prime}\right) \tag{4.13}
\end{equation*}
$$

$S\left(f^{\prime}, t, f\right)$ and $\bar{S}\left(f^{\prime}, t, f\right)$ are connected by

$$
\begin{equation*}
S\left(f^{\prime}, t, f\right)=\eta^{+}(f) 0^{(s)}\left(f^{\prime}\right) \quad \bar{s}\left(f^{p}, t, f\right) \eta^{+}(f) 0^{(s)}(f) \tag{4.14}
\end{equation*}
$$

The final \boldsymbol{i}° matrixfo' $\left(f^{\prime}\right)$ is defined by

$$
\rho^{\prime}\left(f^{\prime}\right)=S\left(f^{\prime}, t, f\right) P(f) S^{+}\left(f^{\prime}, t, f\right)
$$

In case tr $(f)=\sum_{0}^{2 s+1} W_{\%}$ is not equal to unity, equation (4.15) is replaced by

$$
d r=\frac{\operatorname{tr} \rho^{\prime}\left(f^{\prime}\right)}{\operatorname{tr} f(f)}
$$

The average values of a matrix operator A in the state of a particle characterised by the matrix (f) is given ly

$$
\begin{equation*}
\langle A\rangle=\sum_{0}^{2 s+1} U^{\dagger^{+}}(f) A U(f) \text { W, } \frac{1}{\operatorname{tr} f(f)} \tag{4.16}
\end{equation*}
$$

This is casily shown to be given by

$$
\begin{equation*}
\langle A\rangle=\frac{\operatorname{tr} A P(f)}{\operatorname{tr} P(f)} \tag{4.17}
\end{equation*}
$$

CHAPTER V

THE S - MATRIX

The spinous $U{ }_{\alpha} \alpha^{\prime \prime} \cdots \alpha^{(n)}$ describing the states of particles of the highest spin S are completely symmetric in the spinor indeces $x^{\prime}, \alpha^{\prime \prime}, \ldots, x^{(n)}$. The s-Matrix operating in the space defined by such spinors may therefore be assumed to be completely symmetric in its rows as well as the columns.

$$
\begin{align*}
& s\left(f^{\prime}, t, f\right) \\
& \alpha^{(1)} \alpha^{(2)} \cdots \alpha^{(n)}, \beta^{(1)} \beta^{(2)} \cdots \beta^{(n)} p\left(\alpha^{(1)}, \alpha^{(2)} \cdots \alpha^{(n)}\right), \dot{p}^{\prime}\left({ }_{\beta}^{(1)}{\underset{\beta}{ }}_{(2)}^{\alpha^{(2)}} \beta^{(n)}\right. \tag{5.1}
\end{align*}
$$

β and β^{\prime} denote any two permutations of ' n ' cojocts acting on $\alpha^{(1)}, \alpha^{(2)} \cdot \alpha^{(n)}$ and $\beta^{\prime \prime \prime} \beta^{(2)} \ldots \beta^{(n)}$ respectively.

In order to utilise the representation (2.14) of $\quad \beta_{\mu}^{\prime} s$ fully wo must write the S-matrix as a Kronecker product
$S\left(f^{\prime}, t, f\right)=\sum_{\ell=1}^{Q_{0}} \delta_{l}^{(1)} \times \&_{\ell}^{(2)} \times \delta_{\ell}^{(3)} \times \cdots \delta_{\ell}^{(n)}$
where E_{0} is some finite integer. It is not possible to write down a sum in Kronecker H ducts which satisfies (5.1) also. However the form

$$
\begin{equation*}
s\left(f^{\prime}, t, f\right)=\sum_{P, l} \ell_{l}^{(1)}\left(f^{\prime}, t, i\right) \times \delta_{l}^{(2)} \times \cdots \ldots \delta_{\ell}^{(n)} \tag{5.3}
\end{equation*}
$$

where $\sum_{\mathcal{P}}$ denotes the sum of all the $L n$ permutations of $\mathcal{S}_{l}^{(1)}, \mathcal{S}_{l}^{(2)} \ldots$ $\ell_{l}(n)$, satisfies (5.1) for $p=p^{\prime}$ i.e. for permutations on $\alpha^{(1)}, \alpha^{(2)} \ldots$ $\alpha^{(n)}$ and $\beta^{(1)}, \beta^{(2)} \cdots \beta^{(n)}$ being the same.

This can easily be proved in the following way. Dropping ℓ for the moment

$$
\begin{equation*}
\alpha^{s}(1) \alpha^{(2)} \cdots A^{(n)}, \beta^{(1)} \beta^{(2)} \cdots \beta^{(n)}=\phi_{\beta^{(1)}}^{(1)} \alpha_{\alpha}^{(\eta)}{ }_{\beta}^{(2)}(2) \cdots \beta_{\alpha}^{(n)} \beta^{(n)} \tag{5.1}
\end{equation*}
$$

If the same permutation is applied to $\alpha^{(1)}, \alpha^{(2)} \cdots \alpha^{(n)}$ and $\beta^{(1)} \beta^{(2)} \ldots$ $\beta(n)$ then the same permutation β is applied to the subscripts $\alpha^{(1)} \beta^{(1)}$, $\alpha^{(2)} \beta^{(2)}, \ldots x^{(n)} \beta^{(n)}$ on the R.E.S. But this is equivalent to the same permutation F being applied to the super scripts (1), (2) ... (n) and since all such permutations are being summed up, the result follows. $S\left(f^{\prime}, t, f\right)$ is a invariant matrix but the matrices $\boldsymbol{g}^{(i)}\left(f^{\prime}, t, f\right)$ are not necessarily so. In general $g^{(j)}$ ($\left.f^{\prime}, t, f\right)$ will contain tensor indices in the form $f_{\mu}^{\prime}, f_{\mu},{ }^{\prime} \mu_{\mu}$ and γ_{μ}^{\prime} 's. These are all contracted with the ones occurring isl other $\boldsymbol{B}^{(i)}$ so as to leave $S\left(f^{\prime}, t, f\right)$ 范variant. As far as the tensors formed by $f_{\mathcal{M}}^{\prime}, t_{;}, f_{\lambda}$ are concerned we note that these can be taken over the Kronecker product signs, and contracted with the other tensor indices. So the remaining tensor indices are formed out of matrices. As an example $\left\{\left(f^{\prime}, t, f\right)\right.$ may bo

$$
\begin{align*}
& s\left(f^{\prime}, t, f\right)=\sum_{P, l} \gamma_{\nu} \delta_{l}^{(1)} \gamma_{\mu} \times \delta_{l}^{(2)} \gamma_{\mu} \times \gamma_{\nu} \delta_{l}^{(3)} x \\
& =\sum_{p l} \underset{l, \gamma^{\prime}}{(1)} \times X_{\ell, \mu}^{(2)} \times \mathcal{S}_{\ell, \nu^{x}}^{(3)} \tag{5.5}
\end{align*}
$$

To indicate this S is rewritten in the form

$$
\begin{equation*}
S\left(f^{\prime}, t, f\right)=\sum_{L} \ell_{\mathrm{L}}^{(1)} \times \hat{X}_{\mathrm{L}}^{(2)} \cdots \hat{X}_{\mathrm{L}}^{(\mathrm{I})} \tag{5,6}
\end{equation*}
$$

Where \sum_{L} includes the summations over tensor indices also. Now each $S_{L}^{(i)}\left(f^{\prime}, t, f\right)$ can be expanded in the form

$$
\begin{align*}
\mathcal{S}_{L}^{(i)}\left(f^{\prime}, t, f\right) & =\Lambda^{+}\left(f^{\prime}\right) \mathcal{X}_{L}^{(i)} \Lambda^{+}(f)+\Lambda^{+}\left(f^{\prime}\right) \mathcal{S}_{L}^{(i)} \Lambda^{-(f)} \\
& +\Lambda^{-\left(f^{\prime}\right)} \mathcal{S}_{I}^{(i)} \Lambda^{+(f)}+\Lambda^{-\left(f^{\prime}\right)} \mathcal{X}_{L}^{(i)} \Lambda^{-(f)} \tag{5.7}
\end{align*}
$$

Using the notation

$$
\begin{equation*}
\Lambda^{ \pm}(f) \delta_{L}^{(i)}\left(f^{\prime}, t, f\right) \Lambda^{ \pm}(f)=\delta_{j \pm \pm}^{(i)}\left(f^{\prime}, t, f\right) \tag{5.8a}
\end{equation*}
$$

(5.7) can be written

$$
\begin{equation*}
X_{L}^{(i)}\left(f^{\prime}, t, f\right)=\ell_{L \div+}^{(i)}+\ell_{L+}^{(i)}+\ell_{L++}^{(i)}+X_{L}^{(i)} \tag{5.8b}
\end{equation*}
$$

The matrices on the R.H.S. obey the conditions

$$
\begin{align*}
& \Lambda^{+}\left(f^{\prime}\right) \cdot \mathcal{S}_{I++}^{(i)} \quad \Lambda^{+}(f)=\mathcal{B}_{L++}^{(i)} \\
& \Lambda^{+}\left(f^{\prime}\right) \mathcal{S}_{++}^{(i)} \quad \Lambda^{-(f)}=0 \tag{5.9b}
\end{align*}
$$

etc. Since the initial and final spin s particles are either particles or antiparticles, $s\left(f^{\prime}, t, f\right)$ obeys the hole theory condition
$\quad \because \quad \eta_{\left(\mathfrak{f}^{S}\left(f^{\prime}, t, f\right)\right.}^{ \pm} \eta^{ \pm}(f)=S\left(f^{\prime}, t, f\right) \quad$ (5.10a)
when e $\eta^{ \pm}(f)={ }^{ \pm}{ }^{ \pm}(f) \times \wedge^{ \pm}(f) \ldots \times \wedge^{ \pm}(f) \quad$ n factors

Substituting the form (5.8) of $\ell_{L}^{(i)}\left(f^{\prime}, t, i\right)$ in (5.6) and applying the hole theory condition we get at ace

From the definitions $(5.8 \mathrm{a})$ of $f(\mathrm{~L}+ \pm$ (i) foll cows that

$$
\begin{equation*}
\gamma^{\prime}\left(f^{\prime}\right) \ell_{I \pm+i}^{(i)}\left(f^{\prime}, t, f\right) \gamma(f)=\delta_{L \pm}^{(i)}\left(f^{\prime}, \dot{i}, T\right) \tag{5.12}
\end{equation*}
$$

A: in Stapes work a matrix $f^{\prime}\left({ }^{\prime}\right)\left(k^{\prime}, t, k\right)$: s defined In

$$
\begin{equation*}
X_{L}\left(i^{\prime}\left(f^{\prime}, t, f\right)=\gamma\left(f^{\prime}, t\right) \delta_{L}^{\prime}(i)\left(\dot{k}^{\prime}, t, k\right) \quad \gamma(f, t)\right. \tag{5.13}
\end{equation*}
$$

and as before the condition: (5.12) is transformer into a commutation relation,

A sufficiently gencrisi forme of $\mathcal{S}_{L^{\prime+ \pm}}^{\prime}$ is

$$
\begin{equation*}
\underset{I++}{\prime(i)}\left(k^{\prime}, t, k\right)=\gamma_{\alpha} \ldots \gamma_{\beta}^{\prime} \ddot{B}_{t+}^{(i)}\left(k^{\prime}, t, k\right) \gamma_{p} \ldots \gamma_{\alpha} \tag{5.15}
\end{equation*}
$$

$I T$ and N arc inc number of γ matrices on the left and the right of $\bar{\delta}^{(i j}\left(k^{\prime}, t, k\right) . \bar{S}^{(i)}\left(k^{\prime}, t, k\right)$ itself is ancoviariont matrix. Substituting this for $(5,15)$ of $\underset{S^{\prime}(i)}{S^{\prime}(i)}$ in (5.14)

$$
\begin{equation*}
\gamma(t) \gamma_{\alpha} \cdots \gamma_{\beta} \bar{\delta}_{l}^{(i)} \gamma_{\rho} \cdots \gamma_{\beta} \gamma^{\prime}(t)=\gamma_{\alpha} \cdots \gamma_{\beta} \bar{\delta}_{l \pm}^{(i)} \gamma_{\beta} \cdots \gamma_{\beta} \tag{5.16}
\end{equation*}
$$

The next obvious step is to multiply the equation by $\gamma_{\beta} \ldots . \gamma_{x}^{\prime}$ from the left and $\gamma_{\alpha} \ldots \gamma_{\rho}$ from the right and use the results

$$
\begin{align*}
\gamma_{\alpha} \quad \gamma(t) \gamma_{\alpha} & =-2 \gamma(t) \tag{5.17e}\\
\gamma_{\alpha} \gamma_{\alpha} & =4 \tag{5.i7b}
\end{align*}
$$

This operation gives
$Y(i) \bar{S}_{l \pm+}^{(i)}\left(k^{\prime}, t, k\right) \gamma(t)=(-2)^{i N+N^{\prime}} \bar{S}_{\ell \pm \pm}^{(i)}\left(k^{\prime}, t, k\right)$
By expanding $\bar{\delta}^{(i)}$ in terms of the γ matrix as previously, it can be proved that (5.18) is satisfied by non vanishing \bar{X}^{i} only for $\mathbb{N}+\mathbb{N}^{\prime}=0$. This is easily seen without going into detailed calculations by multiplying (5.18) by $\gamma(t)$ from the left and from the right. This gives
showing that $\mathbb{N}+\mathbb{N}^{\prime}=0$ for non trivial $\bar{S}^{(i)}$. N and N^{\prime} being positive integers are separately zero. Hence $\rho^{\prime}(i)$ is just the invariant matrix $\bar{\delta}_{\mathrm{S}^{\prime+ \pm}}^{(i)}$ and we have the rather unexpected result that in the Kronecker product expansion of $S\left(f^{\prime}, t, f\right)$ the Dirac matrices $X^{(i)}\left(f^{\prime}, t, f\right)$
 by

$$
S\left(f^{\prime}, t^{\prime}, \dot{x}\right)=[\gamma(f, t)]^{(n)} \sum_{P, \ell}\left\{\ddot{X}_{\ell \pm \pm}^{(1)} \times \bar{\delta}_{\ell \pm}^{(2)} \cdots \bar{\xi}_{\neq+}^{(n)}\right\}[\gamma(f, t)]_{(5.20)}^{(n)}
$$

$[\gamma(f, t)]^{(n)}$ is the n fold Kronecker product of $\gamma(f, t)$
The matrices $\bar{X}_{l^{++}}^{(i)}(k, t, k)$ obeying (5.10) with $N+N^{\circ}=$ o have already been determined in Chapter $I_{\text {. }}$

$$
\begin{align*}
\bar{S}_{l \pm \pm}^{-(i)}\left(k^{\prime}, t, k\right) & =\Lambda^{ \pm}(t)\left(F_{l}^{ \pm(i)}+G^{ \pm i} i \gamma, \gamma \cdot n\right) \\
& =\gamma(t) \Lambda^{ \pm}(t)\left(F \pm(i)+G^{ \pm i} i \gamma_{5} \gamma \cdot n\right) \gamma(t) \tag{5.21}
\end{align*}
$$

$S\left(f^{\prime}, t, f\right)$ is not completely symmetric in its wows and columns and must be multinplied by $0^{(s)}\left(f^{\prime}\right)$ and $O^{S}(f)$ from the left and from the right respectively to describe scattering of particles of spin !'s' only.

$$
\begin{aligned}
& S\left(f^{\prime}, t, f\right)=0^{(s)}(f)\left[\gamma\left(\tilde{I}^{\prime}, t\right) \gamma(t)\right]^{(n)} \sum_{P, l}^{n} \frac{n}{i=1} x \\
& \left\{M^{ \pm}(t)\left(F^{ \pm}(i)+G_{l}^{ \pm(i)} i \gamma_{r}, \gamma(n)\right\}[\gamma(t) \gamma(f, t)]{ }^{(n)} 0_{0}^{(s)}(f) \quad(5.22)\right.
\end{aligned}
$$

I_{X} is the product symbol for Kronecker products. For further reduction of the Smatrix in the next Charter it is necessary to show that

This can be proved in the following way

$$
\begin{gather*}
{ }_{0}^{(s)}(t) \quad[\gamma(t) \gamma(f, t)]^{(n)}=L^{t(n)}(t) L^{(n)}(t) 0^{(s)}(t) J_{1}^{1(n)}(t) L^{(n)}(t) \\
{[\gamma(t) \gamma(f, t)]^{(n)} L^{\dagger}(n)(t) L^{(n)}(\dot{t})} \tag{5.24a}
\end{gather*}
$$

$L^{(2)}(t)$ is the Lorentz operator $L(t) \times l(t) \ldots \ldots . \ln (t)$ which transforms $0^{(s)}(t)$ to its value in the centre of mass frame $\underline{i}=0$.

$$
\begin{equation*}
L^{(n)}(t) 0^{(s)}(t) \quad L^{(n)}(t)=0^{(s)}(0) \tag{5.243}
\end{equation*}
$$

Further using (2.24) (2.25) it is seen that

$$
\begin{align*}
L^{(n)}(t)[\gamma(t) \gamma(I, t)]^{(n)}{\underset{L}{L}}^{\prime}(n)(t) & =\left[\gamma\left(t_{1}\right) \gamma\left(I_{1}, t_{1}\right)_{i}^{\prime} \cdot n\right) \\
& =L^{(n)}\left(I_{1}\right) \tag{5.24c}
\end{align*}
$$

the subscript ${ }_{1}$ denotes centre of mass values. Hence

$$
\begin{align*}
& 0^{(s)}(t)[\gamma(t) \gamma(f, t)]^{(n)}=T_{1}^{T(n)}(t) \quad 0^{(s)}(0) L^{(n)}\left(f_{q}\right) L^{(n)}(t) \\
& =L^{\dagger}(n) \quad(t) L^{(n)}\left(f_{1} j L^{(n)}\left(f_{1}\right) 0^{(s)}(0) L^{(n)}\left(f_{1}\right) L^{(n)}(t)\right. \\
& =L^{\dagger}(n)(t) L^{(n)}\left(f_{1}\right) O^{(s)}\left(f_{1}\right) L^{(n)}(t) \\
& =I^{T}(n)(t) L^{(n)}\left(f_{1}\right) L^{(n)}(i) L^{t(n)}(t) \quad 0^{(s)}\left(f_{1}\right) I^{(n)}(t) \\
& =L^{\nmid n)}(t)\left[\gamma\left(t_{1}\right) \gamma\left(f_{1}, t_{1}\right)\right]^{(n)}{ }_{L}^{(n)}(t) L^{\dot{+}}(n)(t) 0^{\left(s_{\left.f_{f_{1}}\right)} L^{(n)}(t)\right.} \\
& {[\gamma(t) \gamma(f, t)]^{(n)} \quad o^{(s)}(f)}
\end{align*}
$$

It can be proved directiy from its definition that $O(f)$ and hence $O^{(s)}(f)$ is self adjoint. Taking the adjoint of (5.23) and replacing f by f

$$
0^{\left(s^{\prime}\right)(f)}\left[\gamma\left(\mathbf{x}^{\prime}, t\right) \gamma(t)\right]^{(n)}=\left[\gamma\left(f^{\prime}, t\right) \gamma(t)\right]^{(n)} \quad 0^{(s)}(t)
$$

Equations (2.81c), (2,83) permit us io write $5\left(f^{\prime}, t_{s} f\right.$) in the form

$$
\begin{align*}
& S \quad\left(f^{\prime}, t, f\right)=\left[\gamma\left(f^{\prime}, t\right) \gamma(t)\right]^{(n)} 0^{(s)}(t) \sum_{R, l} \prod_{i=1}^{n}\left\{A^{ \pm}(t)\left(R^{ \pm i(i)}+G^{ \pm i} \text { i } \gamma \gamma \cdot n\right\}\right. \\
& {[\gamma(t) \gamma(f, t)]^{(n)}} \tag{5.26}
\end{align*}
$$

$P_{-m 3+r i c e s}$
The initial and final density matrioss $\rho(f)$ and $\rho\left(x^{\prime}\right)$ can be devermined in the same manner as the S-matrix.

$$
\begin{aligned}
& \rho(f)=\frac{t \pi \rho(f)}{T} 0^{(s)}(f) \sum_{P, r} C_{r}^{ \pm} \prod_{i=1}^{n} x\left\{A^{ \pm}(i)\left(1+i \gamma_{0} \gamma p^{ \pm(i)}\right\}(5.27 a)\right.
\end{aligned}
$$

The 4-veciuns $P_{r, j i}^{ \pm(i)}$ and ${P_{r,}^{\prime}}_{\prime}^{\prime}(j)$ are onthognnal to f no f^{\prime} respecivively

$$
\begin{equation*}
f \cdot b_{r}^{ \pm(i)}=f^{\prime} \cdot{p_{r}^{\prime}}^{\prime}(i)=0 \tag{5.28}
\end{equation*}
$$

and in the respective rest frames $\underset{f}{f}=0, \mathcal{I}^{\prime}=0$ reduce to 3 -vectors.
T and T^{\prime} are the traces of the whole expressions on the right of
$\frac{\sqrt{2}(\hat{I})}{I}$ and $\frac{V(f)}{T^{\prime}}$ respectively. whom $S=1$, 'I can be easily
calculated by going oven th the rest wame $f=c$ s since the trace remains invariant under unitary transformation
$1=\sum_{r} C_{r}^{ \pm}\left(6+2{\underset{\sim}{r}}_{r}^{(1)} \cdot{\underset{\sim}{r}}_{(2)}^{ \pm}\right) \quad$ for $\quad s=\frac{n}{2}=1$

$$
\begin{align*}
& \text { The form of (f) for } s=1 \text { is } \\
& p(f)=\frac{\sigma \cdot \rho(f)}{T} o^{(1)}(f) \sum_{p, r} C_{\gamma}^{ \pm} \cdot \hat{N}^{ \pm(f)}\left(1+1 \gamma_{5} \gamma_{i}^{p} p_{i}^{(\pm)(1)}\right) \times \Lambda^{ \pm}(f)\left(1+i \gamma_{5} \gamma_{\cdot p}^{(\pm)(\mu)}\right) \\
& =\frac{\sqrt{\Omega} \rho(f)}{T} 0^{(1)}(f) \Lambda^{ \pm}(f) \times \Lambda^{ \pm}(f) \sum_{r} C_{r}^{ \pm}\left\{2+\left(i \gamma_{\gamma} \gamma_{r 1} \times 1+1 \times i \gamma_{\gamma} \gamma_{, 2}\right)\right. \\
& \left(p_{\gamma, \mu}^{ \pm(1 ;}+p_{r, \mu}^{ \pm(2)}\right)+\left(i \gamma_{5} \gamma_{\mu} \times i \gamma_{5} \gamma_{\nu}\right)\left(p_{r, \mu}^{ \pm(1)} p_{r, \gamma}^{ \pm(2)}+p_{r, \mu}^{ \pm(2)} p_{r, \nu}^{ \pm(1)}\right) \tag{5.29b}
\end{align*}
$$

Defining now a 4-vector $P_{\mu}^{ \pm}$and a 4-tensor $P_{\mu \dot{\nu}}^{ \pm}$by

$$
\begin{align*}
& P_{\mu}^{ \pm}=\sum_{r} C_{r}^{ \pm}\left(F_{r, \mu}^{ \pm(1)}+p_{r, \mu}^{ \pm(2)}\right) \tag{5.29c}\\
& P_{\mu, \nu}^{ \pm}=\sum_{r} C_{r}^{ \pm}\left(p_{r, \mu}^{ \pm(1)} p_{r, \nu}^{ \pm(2)}+p_{\gamma \mu}^{(\pm)(2)} p_{r, \nu}^{(\pm)(1)}\right) \tag{5.29a}
\end{align*}
$$

and $\sum 2 C_{r}^{ \pm}=a^{ \pm}$

$$
\begin{align*}
\rho(f)= & \frac{G \dot{\rho}(f)}{T} O(1)(f) \eta^{ \pm}(f)\left\{a^{ \pm}+\left(i \gamma_{5} \gamma_{\mu} \times 1+1 \times i \gamma_{5} \gamma_{\mu}\right) p_{\mu}^{ \pm}\right. \tag{5.29e}\\
& +. i \gamma_{c} \gamma_{\mu} \times i \gamma_{5} \gamma_{\nu} p_{\mu \nu}^{ \pm} \tag{5.30}
\end{align*}
$$

$P_{\mu \nu}^{ \pm}$is symmetric in indices μ and $v . P_{\mu}^{ \pm}$and $P_{\mu \gamma}^{ \pm}$aregrelativistic generalisations of the polarization vector and the polarization tensor in terms of which the noncovariant ρ matrix is expressed. In the rest frame $\underline{f}=0$, the 4-vector P_{μ} and the 4-tensor $P_{\mathcal{K}}$, reduce to 3-vector \bar{p}_{j}, and 3-tensor $F_{i j}$. These are called the proper polarization quantities.

CHAPTER VI
COVARIANT POLARISATION FORMALISM

Covariant scattering equation is obtained by inserting the expressions (5.26), (5.27a) and (5.27b) in the equation

$$
\begin{align*}
& \rho^{\prime}\left(f^{\prime}\right)=S\left(f^{\prime}, t, f\right) P(f) \quad S^{\dagger}\left(f^{\prime}, t, f\right) \\
& S^{\dagger}\left(f^{\prime}, t, f\right) \text { is easily formed by remembering that } \gamma(f, t), \gamma(t) \text { etc are } \\
& \text { self adjoint and so } \\
& \left.\frac{1}{T^{\prime}} \frac{\operatorname{tr} p^{\prime}(f)}{t_{r} p(f)} 0^{(s)}\left(f^{\prime}\right) \frac{\sum_{p, r}}{P} C_{r}^{\prime} \prod_{i=1}^{n} x^{\prime} N^{ \pm}\left(f^{\prime}\right)\left(1+i \gamma_{5} \gamma \cdot p_{r}^{\prime}(i)\right)\right\} \\
& =\left[\gamma\left(\dot{p}^{\prime}, t\right) \gamma(t)\right]^{(n)}{ }_{0}(s)(t) \sum_{i=1}^{n} \prod_{i}^{n}\left\{\Lambda^{ \pm}(t)\left(F^{ \pm(i)}+G^{ \pm(i)} i \gamma \gamma_{5} \gamma \cdot h\right)\right\} \\
& {[\gamma(t) \gamma(f, t)]^{(n)} \quad \frac{1}{T} 0^{(s)}(f) \sum_{p_{1} r} C_{+}^{ \pm}\left\{\prod_{i=1}^{n} x_{x}^{ \pm}(f)\left(1+i \gamma_{5} \gamma \cdot p_{r}^{ \pm(i)}\right)\right\}} \\
& \left.[\gamma(f, t) \gamma(f)]^{(n)}{ }_{0}^{(s)}(t) \sum_{P_{1} l^{\prime}} \prod_{i=1}^{n}\left\{\Lambda^{ \pm}(t) \mathcal{F}^{x^{\prime}(i)}+G_{l^{\prime}}^{x^{\prime}(i)} i \gamma_{5} \gamma \cdot n\right)\right\} \\
& {\left[\gamma(t) \gamma\left({ }^{(1, t)}\right]^{(n)}\right.} \tag{6.1}
\end{align*}
$$

concerning the state of polarisation of the particle after the scattering. But except for the presence of ' n ' fold Kronecker products and of spin projection operations $0^{(s)},(6.1)$ is very similar to the equation obtained for spin $\frac{1}{2}$ by Step and, by employing the same method, it canbe reduced
into a form in winch S and s^{\dagger} are given in the centre of mass frame, $t=0$ and $P(f), P^{\prime}\left(f^{\prime}\right)$ are given in their respective rest frames with a certain rotation applied to each index of the proper polarization tensors. It will be seen that all matrices occurring in this equation are of the form

$$
\left(\begin{array}{ll}
a_{1} & 0 \\
0 & 0
\end{array}\right) x\left(\begin{array}{ll}
a_{2} & 0 \\
0 & 0
\end{array}\right) \quad x \ldots \ldots . \quad x\left(\begin{array}{cc}
a_{n} & 0 \\
0 & 0
\end{array}\right)
$$

and it would be possible to write it in terms of the Kronecker product of the Pauli matrices a_{i}. Our next task would be to obtain an equation in terms of the rotation matrices $\theta_{i}^{(s)}$ of the spin s representation of the 3 dimensional rotation group. Finally the reduced P and P matrices will be expressed in terms of the traceless symmetric tensors $T_{i j} \ldots \ldots, n \ldots$ formed from $\theta_{i}^{(s)}$ and the symmetric traceless polarization tensors $\theta_{i j} \ldots \ldots . . . n^{*}$ The matrix will involve $T_{i, j . . . n . . . ~ a n d ~ t e n s o r s ~}$ formed from initial and final momenta k, k^{\prime} and $\underline{k} \wedge \underline{k^{\prime}}$,

To carry out these reductions the $\mathrm{K}^{\text {step }}$ is to bring

$$
\left[\gamma\left(f^{\prime}, t\right) \gamma(i)\right]^{(n)} \text { and }[\gamma(t) \gamma(f, t)]^{(n)} \text { on the left hand side }
$$

of (6.1). This is easily done since

$$
\begin{align*}
& {\left[\gamma\left(f^{\prime}, t\right) \gamma(\hbar]^{(n)}\left[\gamma(t) \gamma\left(f^{\prime}, t\right)\right]^{(n)}\right.} \\
= & {\left[\gamma\left(f^{\prime}, t\right) \gamma(t) \gamma(t) \gamma\left(f^{\prime}, t\right)\right](n) } \\
= & {[1]^{(n)} \equiv 1 } \tag{6.2}
\end{align*}
$$

Also $\frac{\operatorname{tr} P^{\prime}\left(f^{\prime}\right)}{\operatorname{tr} P(f)}$ is replaced by the total differential oross-seotion I and the Lorentz trannionmation $\mathrm{I}^{(n)}(\mathrm{t})$ is used to give

$$
\begin{align*}
& \frac{1}{T}, I \quad L^{(n)}(t)\left[\gamma(t) \gamma\left(f^{\prime}, t\right)\right] \\
& \text { (} n \text {) }{ }_{I}^{\dagger}(n) \\
& (t) L^{(n)}(t) \quad 0^{(s)}\left(f^{\prime}\right) \\
& \sum_{P \cdot r} C_{r}^{\prime} \prod_{i=1}^{n}\left\{\Lambda^{ \pm}\left(f^{\prime}\right)\left(1+i \gamma_{5} \gamma \cdot P_{r}^{\prime \pm(i)}\right)\right\}_{L^{f}(n)(t) L}^{(n)}(t) \tag{6.3}\\
& {\left[\gamma\left(f^{\prime}, t\right) \gamma(t)\right]^{(n)} \quad I^{(n)}(t)} \tag{t}
\end{align*}
$$

$$
\begin{aligned}
& L^{(n)}(t) \quad[\gamma(t) \gamma(f, t)]^{(n)} \dot{L}^{f(n)}(t) \quad L^{(n)}(t) \quad \frac{1}{T} \quad 0^{(s)}(f)
\end{aligned}
$$

$$
\begin{align*}
& \left.L(t) L^{(n)}(t) 0^{(s)}(t) \sum_{P, l^{\prime}} \prod_{i=1}^{n} x\left\{\Lambda^{ \pm(t)\left(F^{\prime} \pm(i)\right.}+G_{l^{\prime}}^{x}(i) i \gamma_{5} \gamma \quad n\right)\right\} \\
& { }_{I}(n)(t) \tag{6.4}
\end{align*}
$$

Let us consider different factors of this equation one by one,

$$
\begin{align*}
L^{(n)}(t)\left[\gamma(t) \gamma\left(f^{\prime}, t\right)\right]^{(n)} \dot{L}^{+}(n)(t) & =\left[\gamma^{\prime}\left(t_{1}\right) \gamma\left(f^{\prime}, t_{1}\right)\right](\\
& =L^{\dagger}(n)\left(f_{1}^{\prime}\right) \tag{6.5a}\\
L^{(n)}(t)\left[\gamma\left(f^{\prime}, t\right) \gamma(t)\right]^{(n)} L^{(n)}(t)= & {\left[\gamma\left(f^{\prime}, t\right) \gamma(t)\right] } \\
& =L^{(n)\left(f_{1}^{\prime}\right)} \tag{6.5b}
\end{align*}
$$

These two equations and the corresponding ones for f are used on the extreme ends of the $P(f)$ and $P^{\prime}\left(f^{\prime}\right)$ of equations (6.4). Further wo note that
$J^{(n)}\left(x_{1}\right) L^{(n)}(t) J^{+}(n)(x)=R\left(x_{1}\right) \quad, x=f \quad$ or f^{\prime}
is a Lorentz operator corresponding to pure space rotation. This is easily seen in the following way. To fix our ideas $1 e \mathrm{i}: x=f^{\prime}$ If $U\left(\underline{f}^{\prime}=0\right)$ is the value of a spinor in tho frame of rest $\underline{f}^{\prime}=0$, $f^{\prime}(n)\left(f^{\prime}\right)$ acting on $U\left(\underline{f}^{\prime}=0\right.$) takes it to a frame $j n$ which $f^{\prime}=\dot{r}_{2}^{\prime} i_{0} e_{a}$ $t=t$

$$
\mathrm{I}_{\mathrm{I}}^{\dagger}(\mathrm{in}) \quad\left(f^{\prime}\right) \quad U\left(f^{\prime}=0\right)=U\left(f^{\prime}\right)
$$

$L^{(n)}(t)$ brings $U\left(f^{\prime}\right)$ to the frame $t=t_{1}, \underline{t}=0, f^{\prime}=f_{1}^{\prime} \ldots$ ie. the centre of mass frame

$$
\begin{equation*}
L^{(n)}(t) \quad U\left(f^{\prime}\right)=U\left(f_{1}^{\prime}\right) \tag{6.27b}
\end{equation*}
$$

$I^{(n)}\left(f_{1}^{\prime}\right) \quad$ brings $U\left(f_{1}^{\prime}\right)$ back to the frame in which $f^{\prime}=0$. Thus $R\left(f^{\prime}\right)$ can only be a pure space rotation.

From (6.6) we derive

$$
\begin{align*}
& I^{(n)}\left(f_{1}^{\prime}\right) \quad L^{(n)}(t)=R\left(f_{1}^{\prime}\right) \quad I^{(n)}\left(f^{\prime}\right) \tag{6.8a}\\
& I^{\dagger}(n)(t) \quad L^{(n)^{\dagger}}\left(f_{1}^{\prime}\right)=I^{(n)} \quad\left(f^{\prime}\right) R^{\dagger}\left(f_{1}^{\prime}\right) \tag{6.8~b}
\end{align*}
$$

Using these equations (6.4) becomes

$$
\begin{aligned}
& \text { 1. I } R\left(f_{1}^{\prime}\right) L^{(n)}\left(f^{\prime}\right) o^{(s)}\left(f^{\prime}\right) \sum_{\operatorname{Pr}} C^{\prime \pm} \prod_{i=1}^{n}\left\{A^{ \pm}\left(f^{\prime}\right)\left(1+i \gamma_{, 5} \gamma \cdot p_{r}^{ \pm(i)}\right)\right\} \\
& L^{t}(n) \quad\left(f^{\prime}\right) \quad R^{\dagger}\left(f_{1}^{\prime}\right) \\
& \left.=I^{(n)}(t) \quad 0^{(s)}(t) \sum_{P l l} \prod_{i=1}^{n}\left\{\Lambda^{ \pm}(t) F_{l}^{ \pm(i)}+G_{l}^{ \pm(i)} i \gamma_{5} \gamma \cdot n\right)\right\}^{t}(n)(t) \\
& R\left(f_{1}\right) L^{(n)}(f) \quad \frac{1}{T} 0^{(s)}(f) \sum_{P, r} C_{r}^{ \pm} \prod_{i=1}^{n}\left\{\Lambda^{ \pm}(f)\left(1: i \gamma_{5} \gamma \cdot p_{r}^{ \pm(i)}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& { }_{I}(n) \quad(t) \tag{6.9}
\end{align*}
$$

Consider the L.H.S. of this equation. The expression in between $L^{(n)}\left(f^{\prime}\right)$ and $L^{(n)}(\hat{f})$ is transformed to a Lorentz frame in which $f^{\prime}=0$. Thus $0^{(s)}(f) \rightarrow 0^{(s)}(0)$
$A^{ \pm}\left(f^{\prime}\right) \rightarrow \Lambda^{ \pm}(0)=\frac{1}{2}\left(1 \pm \gamma_{4}\right)$ and dropping the suffices on $\boldsymbol{\beta}^{\prime}$

$$
\begin{equation*}
\gamma \cdot p^{\prime} \rightarrow \gamma \cdot \bar{p}^{\prime} \tag{6.10a}
\end{equation*}
$$

with $\quad \bar{p}_{\nu}^{\prime}=p_{\nu}^{\prime} \mathscr{L}_{\nu \mu}\left(f^{\prime}\right)$
Since $f^{\prime} \cdot p^{\prime}=0, \quad \bar{p} \quad$ is a 3 vector.
Now $R\left(f^{\prime}\right)$ commutes witt $O^{(s)}(0)$ and

$$
\begin{array}{r}
R\left(f_{1}^{\prime}\right) \gamma \cdot \bar{p}^{\prime} R^{\dagger}\left(f_{1}\right)=R\left(f_{1}^{\prime}\right) \gamma_{i} R^{\dagger}\left(f_{1}^{\prime}\right) \bar{p}_{i}^{\prime} \\
=\gamma_{i j}\left(f_{i}^{\prime}\right) \gamma_{j} \bar{p}_{i}^{\prime} \tag{6.11}
\end{array}
$$

$\pi_{i j}\left(f_{i}^{\prime}\right)$ is the space rotation to which $R\left(f_{1}^{\prime}\right)$ corresponds.
Defining the rotated vector

$$
p_{j}^{\prime}=\bar{p}_{i}^{\prime} \quad \tau_{i j}\left(f_{i}^{\prime}\right)
$$

$a\left(f^{\prime}\right) \gamma \cdot \bar{p}^{\prime}{ }^{\dagger}\left(i_{1}\right)=\underline{\gamma} \cdot \underline{p}^{\prime}$
Similar considerations apply to the K.F.S. of (6,) and defining

$$
\begin{align*}
& \vec{p}_{\mu}=\vec{p}_{\nu} \tilde{\alpha}_{\nu \mu}(f) \\
& \boldsymbol{p}_{j}=\bar{p}_{i} \eta_{i j}(f) \\
& {\overline{n_{n}^{\mu}}}=n_{\nu} \mathcal{L}_{\nu \mu}(t)=(\underline{N}, 0)
\end{align*}
$$

Equation (6.9) reduces to

$$
\begin{align*}
& =o^{(3)}(0) \sum_{P, l} \prod_{i=1}^{a} \times\left\{n^{ \pm}(0)\left(F^{ \pm(i)}+G^{\dot{L}(i)} i \gamma_{5} \underline{\gamma} \cdot \underline{N}\right)\right\} \\
& {\underset{\mathrm{T}}{\mathrm{~T}}}^{(s)} \mathrm{O}_{0}^{(0)} \sum_{P_{i}} C_{r}^{ \pm} \prod_{i=1}^{n}\left\{\Lambda^{\underline{1}}(0)\left(1+i \gamma_{j} \gamma_{j} \bar{p}_{v k}^{i}(i) \quad r_{k j}\left(f_{1}\right)\right)\right\} \\
& O^{S}(0) \sum_{p l} \prod_{i=1}^{n}\left\{\Lambda^{ \pm}(0)\left(F^{x^{I}(i)}+e^{x^{ \pm}(i)} \text { i } \gamma_{5} \text {. } . N\right\}\right. \tag{6.14}
\end{align*}
$$

It will be notice n that in (6.14) the ρ and $\rho{ }^{\prime}$ matrix parts are not exactly the same as $P(f=0), P\left(f^{\prime}=u\right)$. A rotation' $\boldsymbol{R}_{i j}$ is applied to the proper polarization indices.

From now on we restrict ourselves to the vase of 'particles' only aria so the superscript \pm over $P, \dot{P} ; G, F$ will be omitted. In the representation. of γ matrices we are using

$$
\begin{align*}
& \Lambda^{+}(0)=\frac{1}{2}\left(1+Y_{1}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \tag{6.150}\\
& \text { i) } \gamma_{j} \gamma \cdot P_{r}=\gamma_{4} \underline{\underline{\sigma}} \cdot \underline{D}^{(i)}=\left(\begin{array}{cc}
\underline{\underline{\sigma}} \cdot \underline{P}_{r} & 0 \\
0 & -\underline{\sigma} p_{r}^{(1)}
\end{array}\right) \tag{6.15b}
\end{align*}
$$

Keeping in mind the form of $O\left(\begin{array}{l}(S) \\ (0)\end{array}\right.$ ard equation 6.15 we see that the left and right hand sides of (6.14) are of the form

$$
\begin{align*}
& \left(\begin{array}{ll}
a_{r}^{(1)} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a_{r}^{(2)} & 0 \\
0 & 0
\end{array}\right) \cdots \times\left(\begin{array}{cc}
a_{r}^{(b)} & 0 \\
0 & 0
\end{array}\right) \\
= & A_{r}^{(1)} \quad \times A_{r}^{(2)} \cdot 0 \cdot \times A_{r}^{(n)} \equiv A \tag{6.16a}
\end{align*}
$$

Acting in the space of spinous of $\tanh n$

$$
{ }_{a}^{U}(1) \quad a^{(2)} \ldots a^{(n)} \quad a^{(i)}=1,2,3,4,
$$

we have for the matrix clement

$$
\begin{aligned}
& V^{+} A U=\sum_{\alpha, \beta=1}^{4} V_{a}^{+}(1)_{\alpha}(2) \ldots a^{(n)} \quad A_{a}(1)_{\alpha}^{(2)} \ldots a^{(n)} ; \beta^{(1)} \beta^{(2)} \ldots \beta^{(n)} \\
& { }^{\mathrm{U}}{ }_{\beta}(1)_{\beta}(2) \ldots \beta^{(n)}
\end{aligned}
$$

$$
\begin{aligned}
& U \beta^{(1)} \beta^{(2)} \ldots \beta^{(n)} \\
& \text { (6.16b) }
\end{aligned}
$$

Since from (6.16) $A_{\gamma}, a^{(m)} \beta^{(m)}=0$ if $a^{(m)}>2$ or for $\beta^{(m)}>2$ and for $\alpha^{(m)} \leqslant 2, \beta^{(m)} \leqslant 2, \quad A_{r, \alpha}^{(i)}(m)_{\beta}(m)=a_{\gamma}^{(i)}(m)_{\beta}(m)$

Fence

$$
\begin{aligned}
& V^{+} A U=\sum_{\gamma} \sum_{a, \beta=1}^{2} v_{a}^{+}{ }_{a}^{(1)} \ldots a^{(n)} a_{r, a,}^{(1)}(1)_{\beta}(1) \ldots a_{\gamma, a^{(n)}(n)}^{(n)} \\
& U_{\beta}^{(1)} \ldots \ldots . \beta^{(n)} \\
&=v^{\dagger} \cdot{ }_{a}^{(1)} \times a^{(2)} \ldots \ldots \times a^{(n)} u .
\end{aligned}
$$

v and u are Pauli senors of rank n where as V and U were Dirac spinors of rank n. Equation (6.14) is thus equivalent to

$$
\begin{aligned}
& \left.\frac{I}{T^{\prime}} 0_{p}^{(s)}(0) \quad \sum_{P, r}^{C_{r}^{\prime}}\left\{\begin{array}{l}
\sum_{i=1}^{E} I^{B} \\
\left(1+\sigma \cdot P_{r}^{\prime}(i)\right.
\end{array}\right)\right\} \\
& =O_{p}{ }^{(s)}(0) \sum_{P, l}\left\{\operatorname{II}_{i=1}^{n}\left(F_{1}^{(i)}+G_{1}^{(i)} \underline{\sigma} \cdot \underline{N}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& { }_{O_{p}}^{(s)}(0) \quad \sum_{P, l^{\prime}}\left\{\sum_{k=1^{x}}^{n}\left(F_{1^{\prime}}^{x(k)}+G_{1^{\prime}}^{x(h)} \underline{\sigma} \cdot \mathbb{N}\right)\right\} \quad \text { (6.17) }
\end{aligned}
$$

$O_{p}{ }^{(s)}(0)$ is now given in terms of the Pauli matrices

$$
o_{\underline{D}}^{(s)}(0)=\operatorname{II}_{\bar{s}_{i} \neq s(s+1)} \frac{\left(0_{f}(0)-\bar{s}_{i}\right)}{s(s+1)-\bar{s}_{i}}
$$

with

$$
o_{\underline{p}}(0)=\frac{1}{\underline{i}}\left(3 m+2\left[\sigma_{i}\right]_{(2)}\right) \quad \because \cdots(6.180)
$$

The S and n matrices in 6.17 are given as n-fold Kronecker products of the corresponding quantities for spin $\frac{1}{2}$ particles. The projection operator $\rho_{p}^{(s)}(n)$ selects the spin s part. But this equation is given in a highly reducibform and one of the methods to obtain from it the usual ($2 \mathrm{~s}+1$) dimensional irreducible scattering equation is the following one.

One defines the spin operator

$$
\begin{array}{r}
J_{i}=\frac{1}{2}\left(\sigma_{i} \times 1 \times 1 \ldots \times 1+1 \times \sigma_{i} \times 1 \ldots+1 \times 1 \ldots \times 1 \times \sigma_{i}\right) \\
(6.19)
\end{array}
$$

It is et once seen that

$$
\begin{equation*}
J_{i} J_{i}=J^{2}=\frac{1}{4}\left(3 n+2\left[\sigma_{i}^{\sigma}\right]_{(2)}^{(n)}\right)=0_{-2}(0) \tag{6.20}
\end{equation*}
$$

an do so

$$
\begin{equation*}
o_{p}^{(s)}(0)=\frac{I I}{\bar{s}_{i} \neq s(s+1)} \frac{\left(J^{2}-\bar{s}_{i}\right)}{s(s+1)-\bar{s}_{i}} \tag{6.21}
\end{equation*}
$$

Equation (6.17) can be completely expressed in terms of $\mathrm{J}_{i}{ }^{\prime} \mathrm{s}$. This is facilatated by the presence of the permutation symbol \mathcal{E}_{p}.

However further analysis is so complicated for the general case of arbitrary spin that it is better to carry out the calculations for $s=1$ first.

For $S=1, n=2$

$$
\begin{aligned}
& =\frac{1}{T} O_{p}^{(1)}(0) \quad \sum_{I} \ddot{C}_{T}\left(1+\underline{I} \cdot{\underset{r}{r}}_{(1)}^{(1)} \times\left(1+\underline{G} \cdot P_{r}^{(2)}\right)\right. \\
& +\left(1+\underline{\sigma} \cdot P_{r}^{(2)}\right) \times\left(1+\underline{I} \cdot \underline{P}_{r}^{(1)}\right) \\
& =\frac{1}{T} O_{p}^{(1)}(0) \sum_{r}\left(2 \cdot 1 \times 1 \div 1 \times \underset{\sim}{r} P_{r}^{(2 ;}+1 \times \underline{P_{r}}{ }_{r}^{(1)}\right. \\
& +\underline{\sigma} \cdot P_{r}^{(1)} \times 1+\underline{G} \cdot P_{r}^{(2)} \times 1+\underset{r}{(2)} \underline{P}_{r}^{(2)} \times{\underset{P}{r}}_{(1)}^{(1)} \\
& \left.+2 \cdot \dot{F}_{r}^{(1)} \times \Phi \cdot F_{r}^{(2)}\right) C_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6.22) }
\end{aligned}
$$

The second term on the right hand side is just

The third term is calculated by considering

$$
=1 / 4\left\{_{i} \underline{\sigma} \cdot \underline{P}_{I}^{(1)} \underline{T} \cdot \underline{P}_{I}\right.
$$

(2)
(I)

The first two terms on the R.H.S. can be written

Thus from (6.24) one obtains

$$
\begin{align*}
& =2\left(\sum_{\mathrm{p}} \underline{J} \cdot \underline{P}^{\left(\alpha_{1}\right)} \mathrm{J} \cdot \underline{P}^{\left(\alpha_{2}\right)}-\underline{E}_{r}^{(1)} \cdot \underline{P}_{r}^{(2)}\right) \tag{6.25}
\end{align*}
$$

$$
\begin{align*}
& =P_{r}^{(1)} \cdot P_{r}^{(2)}+P_{T}^{(2)} \cdot \underline{P}_{r}^{(1)}+i r \cdot\left(\underline{P}_{r}^{(1)} \wedge{\underset{P}{P}}_{(2)}^{(2)}+{\underset{P}{r}}_{(2)}^{(2)} \underline{P}_{r}^{(1)}\right) \times 1 \\
& =2{\underset{\sim}{P}}_{(1)}^{(2)} \cdot \underline{P}_{T}^{(2)}+0 \tag{6.25}
\end{align*}
$$

$$
\begin{align*}
& \text { (1) } \tag{1}\\
& 1 \times \underline{\sigma} \cdot \underline{E}_{\Gamma} \underline{G} \cdot \underline{P}_{I}+1 \times \underline{\sigma} \cdot \underline{P}_{T}^{(2)} \underline{\sigma} \cdot P_{T}^{(1)} \tag{2}\\
& \text { (1) }
\end{align*}
$$

$$
\begin{align*}
& =1 / 4\left(\underline{\sigma} \cdot \underline{P}_{r} \times 1+1 \times \sigma \cdot \underline{P}_{r}^{(1)}\right)\left(\underline{T} \cdot \underline{P}_{r}^{(2)} \times 1+1 \times \underline{\sigma} \cdot \underline{P}_{r}^{(2)}\right) \tag{1}\\
& +2 \leftrightarrows 1
\end{align*}
$$

Hence $\rho_{p}^{(1)}$ can be written in terms of J_{i} 's as follows

$$
\begin{align*}
& p_{p}^{(1)}=\frac{1}{T} O_{p}^{(1)}(0) \bar{X}_{r} C_{r}\left\{2-2 \underline{P}_{r}^{(1)} \cdot \underline{P}_{r}^{(2)}+2 \underline{J} \cdot\left(\underline{E}_{r}^{(1)}+\underline{P}_{r}^{(2)} ;\right.\right. \\
& \left.+2 J_{i} J_{j}\left(P_{r, i}^{(1)} P_{r, j}^{(2)}+P_{r, i}^{(\hat{2})} P_{r, j}^{(1)}\right\}\right\} \\
& =\frac{1}{T} O_{p}^{(1)}(0) \sum_{r} C_{r}\left\{2-2{\underset{P}{P}}_{r}^{(1)} \cdot{ }_{r}^{(2)}+2 \underline{J} \cdot\left(P_{r}^{(1)}+{\underset{\sim}{P}}_{r}^{(2)}\right)\right. \\
& \left.+\left(J_{i} J_{j}+J_{j} J_{i}\right)\left(P_{r, i}^{(1)} P_{r, j}^{(2)}+P_{r, i}^{(2)} P_{r, j}^{(1)}\right)\right\} \tag{6.270}
\end{align*}
$$

(i)

It is convenient to introduce \mathbb{N}_{e} through

$$
\begin{align*}
G_{e}^{(i)} \mathbb{N} & =\dot{H}_{e}^{(i)} \mathbb{N}^{I}+K_{e}^{(i)} \mathbb{N}^{I I}+F_{e} \mathbb{N}^{111} \\
& =\mathbb{N}_{e}^{(i)} \tag{6.27b}
\end{align*}
$$

The reduced s matrix is obtained in terms of $\mathbb{N}_{e}^{(i)}$ and J_{i} 's in the same way as above

$$
\begin{aligned}
& S_{p}=O_{p}^{(I)}(0) \sum_{p, t}{\underset{i=1}{2}\left(F_{c}^{(i)}+I \cdot V_{e}^{(i)}\right), ~(I)}_{(i)}^{(i)} \\
& =O_{p}^{(1)}(0) \sum_{e} 2 F_{e}^{(1)} F_{e}^{(2)}-2 N_{0}^{(1)} \cdot N_{e}^{(2)}+2 J \cdot\left(F_{e}^{(2)} N_{e}^{(1)}\right. \\
& \left.+F_{e}^{(1)} \mathbb{N}_{e}^{(2)}\right)+\left(J_{i} J_{j}+J_{j} J_{i}\right)\left(\mathbb{N}_{e, i}^{(1)} \mathbb{N}_{e, j}^{(2)}+N_{e, i}^{(2)} N_{e, j}^{(1)}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left(J_{i} J_{j}+J_{j} J_{i}\right) \sum_{p} N_{0, i}^{\left(\aleph_{i}\right)} N_{e, j}^{\left(\varkappa_{2}\right)}
\end{align*}
$$

To express (6.17) for arbitrary s in terms of the J_{i} 's consider

$$
\begin{aligned}
& \text {... } 1 \mathrm{x} 1 \mathrm{x} \cdot \ldots \quad 1 \mathrm{x} \underline{\sigma}_{\mathrm{F}}^{(\alpha)} \text {, \}}
\end{aligned}
$$

$$
\begin{aligned}
& +\underset{T}{ } P_{T}^{\left(\alpha_{1}\right)} \times 1 \times \underline{T}_{T}^{\left(\alpha_{3}\right)} \times 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { \} }
\end{aligned}
$$

The second term within the brackets contains ${ }^{n_{C}}$ terms the third term contains ${ }^{\mathrm{n}_{\mathrm{C}}}$ and so on, \sum_{D} stands for the sum of all possible permutations for example

$$
\sum_{p} \underline{\sigma} \cdot P_{r}^{\left(\alpha_{1}\right)} x \underline{\sigma} \cdot P_{r}^{\left(\alpha_{2}\right)} x 1 x \cdot \cdots x_{1}
$$

means the sum over all the ${ }^{n_{2}}$ permutation of $\left(\kappa_{1}, \dot{x}_{2}\right)$.

96
The second term is just 2 I. $\sum_{a} \underline{P}_{r}^{*}$. To calculate the ard term we form

$$
\begin{aligned}
& \sum_{p} \underset{J}{ } \cdot \underline{P}_{r}^{\left(\alpha_{1}\right)}{ }_{J}^{J} \cdot \underline{E}_{r}^{\left(\alpha_{2}\right)}=1 / 4 \sum_{p}\left(\underline{I} \cdot \underline{E}_{r}^{\left(\alpha_{1}\right)} \times 1 \times \cdots \times 1+1 \mathrm{x} \cdot \underline{P}_{r}^{\left(\alpha_{1}\right)}\right. \\
& \mathrm{x} 1 \mathrm{x} 1 . . . \mathrm{x} 1+\ldots \text {. } \\
& \left(\underline{0} \cdot \underline{P}_{r}^{\left(\alpha_{2}\right)} \times 1 \times \ldots \times 1+1 \times \operatorname{Pr}_{r}^{\left(\alpha_{2}\right)}\right. \\
& \mathrm{x} 1 \mathrm{x}, . . \mathrm{x} 1 \div \text {. .) }
\end{aligned}
$$

now

$$
\begin{align*}
& \sum_{p}^{E} \cdot \underline{P}_{r}^{\left(\alpha_{1}\right)} \underline{I}_{r}^{\left(\alpha_{2}\right)}=\sum_{p} \underline{P}_{r}^{\left(\alpha_{1}\right)} \cdot \underline{P}_{r}^{\left(\alpha_{2}\right)}+\sum_{i} \underline{E} \cdot \underline{P}_{r}^{\left(\alpha_{1}\right)} \wedge \underline{P}_{r}^{\left(\alpha_{2}\right)} \\
& =\sum_{p} \underline{P}_{r}^{\left(x_{1}\right)} \cdot \underline{E}_{r}^{\left(x_{2}\right)}+1 / 2 \sum_{p} \underline{q} \cdot\left(\underline{E}_{r}^{\left(x_{1}\right)} \wedge \underline{P}_{r}^{\left(x_{2}\right)}+\underline{P}_{r}^{\left(x_{2}\right)} \wedge{\underset{P}{r}}_{\left(x_{1}\right)}^{\left(x_{1}\right)}\right. \\
& =\sum_{p} P_{r}^{\left(\alpha_{I}\right)} \cdot P_{r}^{\left(\mu_{2}\right)}+0 \tag{6.29b}
\end{align*}
$$

Therefore

$$
\begin{align*}
& \underline{G} \cdot \operatorname{Br}_{r}^{(2)} \mathrm{x} 1 \ldots \mathrm{x} 1+\ldots \cdot \\
& =2 \underset{p}{I} \cdot P_{r}^{\left(\alpha_{1}\right)} \underline{J} \cdot \underline{P}^{\left(x_{2}\right)}-\frac{n}{4} \frac{\bar{E}_{p}}{E_{r}^{\left(\alpha_{1}\right)}} \cdot \underline{P}_{r}^{\left(x_{2}\right)} \tag{6.30}
\end{align*}
$$

 shows that terms like

$$
\sum_{p} \underline{\sigma}_{\underline{r}}^{\left(\alpha_{1}\right)} \underline{\sigma} \cdot \underline{P}^{\left(\alpha_{2}\right)} \times \underline{\sigma} \cdot \underline{p}^{\left(\alpha_{3}\right)} \times 1 \times 1 \ldots x 1
$$

reduce to

$$
\begin{equation*}
\sum_{p} \underline{P}_{r}^{\left(\alpha_{1}\right)} \cdot \underline{P}_{r}^{\left(x_{2}\right)} \quad 1 \times \cdot P^{\left(x_{3}\right)} \times 1 \times 1 \ldots \times 1 \tag{6.31a}
\end{equation*}
$$

and terms like

$$
\sum_{p} \underline{0} \cdot \underline{E}_{r}^{\left(\alpha_{1}\right)} \underline{\sigma} \cdot \underline{E}_{r}^{\left(\alpha_{2}\right)} \underline{\sigma} \cdot \underline{P}^{\left(\alpha_{3}\right)} \times 1 \times 1 \times \ldots \mathrm{x}
$$

reduce to

$$
\begin{equation*}
\sum_{p} \underline{E}_{r}^{\left(\alpha_{1}\right)} \cdot \underline{P}^{\left(\alpha_{2}\right)} \underline{\underline{E}} \underline{E}^{\left(\alpha_{3}\right)} \times 1 \times 1 \times \ldots \tag{6.31b}
\end{equation*}
$$

and therefore the third term in (6.28)

$$
\begin{aligned}
& +\underline{T} \cdot \underline{E}^{\left(\alpha_{1}\right)} \mathrm{x} 1 \times \underline{\sigma} \cdot \mathrm{P}_{\mathrm{r}}^{\left(\alpha_{2}\right)} \times \underline{\pi} \cdot \mathrm{P}_{\mathrm{r}}^{\left(\alpha_{3}\right)} \\
& + \\
& { }^{n_{C}} \text { terms }
\end{aligned}
$$

can be expressed in terms of $\sum_{p} \underline{J} \cdot P_{r}^{\left(\alpha_{1}\right)} J \cdot \underline{P}_{r}^{\left(\alpha_{2}\right)}$ J.P $P^{\left(\alpha_{3}\right)}$ and $\sum_{p} \underline{U} \cdot \underline{P}^{\left(\mu_{1}\right)} P^{\left(\alpha_{2}\right)} \cdot \underline{P}^{\left(\mu_{3}\right)}$.
Similar reductions occur for higher terms and we can write

$$
\begin{align*}
& \rho_{p}=\frac{1}{\eta} O_{p}^{(s)}(0) \sum_{P, r} C_{r} \operatorname{II}_{j=1}^{n}\left(1+\underline{B}_{r}^{(j)}\right) \\
& =\frac{1}{T} 0^{(s)}(0)\left\{a_{0}+\underline{J} \cdot \sum_{r, ~} a_{r}\left(\alpha_{1}\right) \underline{E}^{\left(\alpha_{1}\right)}\right. \\
& +J_{i} J_{j} \sum_{P, r} a_{\Gamma}\left(\alpha_{1} \alpha_{2}\right) P_{\Gamma, i}^{\left(\alpha_{1}\right)} P_{r, j}^{\left(\alpha_{2}\right)} \\
& +J_{i} J_{j} J_{h} \quad \sum_{P, r} a_{r}\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) P_{r, i}^{\left(\alpha_{1}\right)} P_{r, j}^{\left(\omega_{2}\right)} P_{r, h}^{\left(\alpha_{3}\right)} \\
& +J_{i} J_{j} \cdots J_{i} \sum_{i, r} a_{i}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right) \\
& \left.P_{r, i}^{\left(\alpha_{1}\right)} P_{r, j}^{\left(\alpha_{2}\right)} \cdot \cdots \quad P_{r, l}^{\left(\alpha_{n}\right)}\right\} \tag{6.32}
\end{align*}
$$

The coefficients $a_{I}\left(\alpha_{1} \alpha_{2} . \alpha_{n}\right)$ ore ali completely symetric in $\alpha_{1}, \psi_{2} \cdot \cdot \sigma \cdot \sigma_{n}$ and are rotation invarient. This symetry of $a_{r}\left(\alpha_{1} \alpha_{2} \cdot \cdot \alpha_{n}\right)$ means that the coefficients of $J_{i} J_{j} \cdots J_{m}$ ie.

$$
\sum_{P, r} a_{r}\left(\alpha_{1} \alpha_{2} \ldots \alpha_{-m}\right) P_{r, i}^{\left(\alpha_{1}\right)} P_{r, j}^{\left(\alpha_{2}\right)} \ldots I_{n}^{\left(\alpha_{m}\right)}
$$

are completely symetric in i, j. . . h.
In the same way the s matrix iss.

$$
\begin{align*}
S_{p} & =O_{p}^{S}(0) \sum_{P, l} \sum_{i=1}^{n}\left(E_{l}^{(i)}+\sigma \cdot \underline{N}_{l!}^{(i)}\right) \tag{5.33}\\
& =O^{S}(0) \sum_{l} \sum_{l} b_{l}+\underline{J} \cdot \sum_{p} b_{l}\left(\alpha_{1}\right) \mathbb{N}_{l}^{\left(\alpha_{1}\right)}
\end{align*}
$$

$$
\begin{aligned}
& +J_{i} J_{j} \sum_{p} b_{\ell}\left(\alpha_{1} \alpha_{2}\right) N_{k, i}^{\left(\alpha_{1}\right)}{ }_{N}{ }_{\ell}^{\left(\alpha_{2}\right)}, j \\
& +J_{i}{ }^{\top} j^{J_{h}} \sum_{p} b_{l}\left(\alpha_{1} \alpha_{2} \alpha_{3}\right) \mathbb{I}_{l}\left(\alpha_{1}\right) \mathbb{N}_{\ell, j}^{\left(\alpha_{2}\right)} \mathbb{N}_{\ell, h}^{\left(\alpha_{3}\right)} \\
& +J_{i} J_{j} \cdots J_{h} \sum_{p} b\left(\alpha_{1} \alpha_{2} \cdots \alpha_{n}\right) N_{\ell, i}^{\left(\alpha_{1}\right)} \cdots{ }_{\ell}{ }_{\ell}^{\left(\alpha_{n}\right)}
\end{aligned}
$$

The invariants b ($\alpha_{1}{ }^{\alpha} 2 \cdot \cdots \alpha_{r}$) arc again symetric in $\alpha_{1}, \alpha_{2}, \cdots \alpha_{r}$.
Equation (6.17 can now be completely expressed in terms of J_{i} 's.
J_{i} 's defined by (6.19) satisfy the commutation relations

$$
\begin{equation*}
\left[J_{i}, J_{j}\right]=i \epsilon_{i j k} J_{k} \quad i, j, \mathbb{M}=1,2,3, \tag{6.34a}
\end{equation*}
$$

and the characteristic equation

$$
\begin{equation*}
\left(J_{i}-s\right)\left(J_{i}-(s-l)\right) \cdot \cdot\left(J_{i}+s\right)=0 \tag{6.34b}
\end{equation*}
$$

These relations can be seen to hold without going into details by noting that β_{i} satisfy these relations and β_{i} and J_{i} are given in the same wry in terms of γ_{i} and σ_{i} respectively. \widetilde{r}_{i} and v_{i} obey tho sane algebraic relations.

The matrices θ_{i} belonging to the spin s representation of the 3 dimension cl rotation group clio satisfy the relations ($6.34 \mathrm{a}, \mathrm{b}$). The matrices for lower spins olio satisfy (6.34a, b) but the latter is not the characteristic equation for them.

Consider now equation (5.1\%) expressed completely in terms of the J_{i} 's. The representation (6.19) of the $J_{i}{ }^{\prime}$'s is the n fold Kronecker product of spin $1 / 2$ representation of the rotation group. By Clebsch Gordon decomposition theorem there exists a similarity transformation which transforms the representation

$$
D^{1 / 2} \times D^{1 / 2} \cdot \cdots D^{1 / 2}
$$

into the direct form

$$
\begin{equation*}
D^{(s)} \text { if } c_{s-1}^{\prime} D^{(s \cdots 1)}+\ldots \tag{6.35a}
\end{equation*}
$$

(s),

Since J_{i} 's and θ_{i};s obey the same algebraic relation this similarity transformation will reduce the I_{i} 's into

$$
\begin{equation*}
\theta_{i}^{(s)} \Leftrightarrow \varliminf_{s-1} \theta_{i}^{(s-1)} \tag{5.35b}
\end{equation*}
$$

is mentioned already the i.suducible representation of $O^{(s)}(0)$ is just the $(2 s+1)$ dimension witt matrix $\theta_{0}^{(s)}$ n nd therefore this projection operator is reduced by the similarity transformation to the form

$$
\Theta_{0}^{(s)} \oplus 0 \Leftrightarrow 0 \ldots
$$

The effect of the tronsiormed 0 (s) (o) iss that $D^{(s)}$ port of the operations is multiplied by unity while $\alpha_{\underset{\sim}{\alpha} D_{1}}^{(s-1)}+$ $a_{s-2} D^{(s-l)}+\cdots$ pret just gets minilried. Hence (6.17) reduces to

$$
I \rho^{\prime}=S \rho s^{+}
$$

in which

$$
\begin{align*}
& P=\frac{I}{T}\left\{\sum_{r} a_{r}+\underline{\theta}^{(s)} \sum_{r} \sum_{p} a_{r}\left(\alpha_{1}\right) \underline{P}_{r}^{\left(\alpha_{1}\right)}+\right. \\
& \theta_{i}^{(s)} \theta_{j}^{(s)} \sum_{r} \sum_{p} a_{r}\left(\alpha_{1} \alpha_{2}\right) P_{r, i}^{\left(\alpha_{1}\right)} P_{r, i}^{\left(u_{2}\right)}+\cdots \cdots \cdots+ \\
& \theta_{i}^{(s)} \theta_{j}^{(s)} \cdot \theta_{h}^{(s)} \sum_{r} \sum_{p} \sigma_{r}\left(\alpha_{I} \alpha_{2} \cdot \alpha_{n}\right) P_{r, i}^{\left(\alpha_{1}\right)} P_{r, j}^{\left(\alpha_{2}\right)} \\
& \text {..P. }{ }_{-}^{\left(\alpha_{n}\right)} \tag{6.300}\\
& S=\sum_{l}{ }_{l}^{D}+\underline{0}^{(s)} \sum_{\ell} \sum_{\bar{p}} b_{l}\left(\alpha_{I}\right) \mathbb{N}_{i}^{\left(\alpha_{I}\right)}+O_{i}^{(s)} \sum_{j}^{(s)} \sum_{i} \sum_{p}
\end{align*}
$$

$$
\begin{align*}
& \left.+\theta_{i}^{(s)} \theta_{j}^{(s)} \cdot \theta_{h}^{(s)} \sum_{l} \sum_{p} b_{l}^{\left(\alpha_{1} \alpha_{2}\right.} \cdots \alpha_{n}\right) \mathbb{N}_{l, i}^{\left(\alpha_{1}\right)} N_{l, j}^{\left(\alpha_{2}\right)} \\
& \ldots \operatorname{lin}_{\ell, k} \tag{6.36c}
\end{align*}
$$

- D^{\prime} is obtained from -icy replacing Ω_{r} 's by $a_{r}^{\prime \prime} s$ and P_{r} 's by P'ミ.

If we sum up over r and \hat{t} we obtain the usual non relativistic corticion forms of the S and Pinatrices. This is done first for the $s=1$ case. From (6.27a) we get for ρ

$$
\begin{align*}
P= & \frac{1}{T} \sum_{r} \sigma_{r}\left(2-2 P_{-r}^{(1)} \cdot P_{r}^{(2)}\right) \theta_{0}^{(1)}+2 \Theta^{(1)} \cdot\left(P_{-r}^{(1)}+P_{r}^{(2)}\right) \\
& +\left(\theta_{i}^{(.-)} \theta_{j}^{(1)}+\theta_{j}^{(1)} \theta_{i}^{(1)}\right)\left(P_{r, i}^{(1)} P_{r, j}^{(2)}+P_{I, i}^{(2)} P_{r, \dot{j}}^{(1)}\right) \tag{6.37}
\end{align*}
$$

It is usual to express in terms of the traceless tensor operator $T_{i}^{(1)}$ and the traceless polarization tensor $G_{i}{ }_{j}^{(12)}$ This con be done by defining

$$
\begin{align*}
& P_{r, i}^{(1)} P_{r, j}^{(2)}+P_{r, i}^{(2)} P_{r, j}^{(1)}=P_{r, j . j} \tag{6.380}\\
& \mathscr{D}_{r, j j}=P_{r, i j}-\frac{1}{3} \delta_{i j} P_{r, k k}=Q_{r: j i} \tag{6.38b}
\end{align*}
$$

$Q_{r, i j}$ is traceless, ie. $Q_{r, i}=0, T_{i}^{(1)}$ is dorinod by

$$
\begin{aligned}
T_{i}^{(1)} & =1 / 2\left(\Theta_{i}^{(1)} \Theta_{j}^{(1)}+\theta_{\dot{j}}^{(1)} \Theta_{i}^{(1)}\right)-\frac{2}{3} \zeta_{i i} \cdot \theta_{0}^{(1)} \\
\mathbb{T}_{i}^{(1)} & =1 / 2\left(2 \Theta_{\dot{i}}^{(1)} \Theta_{i}^{(1)}\right)-\frac{2}{3} S_{i j} \Theta_{0}^{(1)} \\
& =0
\end{aligned}
$$

Since $\Theta_{i}^{(1)} \Theta_{i}^{(1)}=2 \theta_{o}^{(1)}$, by using the known forms of $\theta_{\dot{i}}^{(1)}$
 these equations

$$
\begin{align*}
\left(O_{i}^{(1)} \Theta_{j}^{(1)}+\theta_{j}^{(1)} \Theta_{i}^{(1)}\right) P_{r, i j} & =2 T_{i j}^{(1)} Q_{r, i j}+\frac{4 \cdot 3}{9} P_{r, h h} \\
& =2 T_{i j}^{(1)} Q_{r, i j}+\frac{4}{3} 2 \underline{P}_{r}^{(I)_{P}(2)} \tag{6.39}
\end{align*}
$$

and ρ becomes

$$
\begin{gather*}
P=\frac{1}{T} \sum_{r} C_{r}\left(6+2{\underset{P}{r}}_{(1)}^{(1)} P_{r}^{(2)}\right) \cdot \frac{\theta_{0}^{(1)}}{3}+\underline{e}^{(1)} \cdot 2{\left(\underline{P}_{r}^{(1)}+\underline{E}_{r}^{(2)}\right) O_{r}}^{+\mathbb{T}_{i j}^{(1)} 2 Q_{r, i j} C_{r}}
\end{gather*}
$$

Remembering the value of T for $s=1$, equation (5.29a), the first term is just $\frac{1}{3} \theta_{0}^{(1)}$. This is not by chance and the reason for this is that T was originally defined as the trace of the expression on the right of $\frac{\operatorname{tr} \cdot(\mathrm{f})}{T}$ in (5.27). This is equivalent to saying that \mathbb{I} is the trace of the expression on the right of $\frac{1}{T}$ in (6.40), the trace having remained the same throughout the similarity transformations. Now as $\underline{Q}^{(1)}$ na $T_{i}^{(1)}$ are traceless and trace of $\theta_{0}^{(1)}$ is 3 , T must be equal to

$$
\mathrm{C}_{\mathrm{r}}\left(6 \div 2 \mathrm{E}_{\mathrm{r}}^{(1)} \cdot \mathrm{P}_{\mathrm{r}}^{(2)}\right)
$$

The summation over r can now bo performed by defining

$$
\begin{align*}
& \sum_{r} C_{r} \frac{2\left(P_{r}^{(1)}+P_{r}^{(2)}\right)}{T}=\frac{1}{3} \underline{P} \tag{6.41a}\\
& \sum_{r} C_{r} \frac{2}{T} Q_{r, i j}=\frac{1}{3} Q_{i j}=\frac{1}{3} Q_{j i} \tag{6.41b}
\end{align*}
$$

Then ρ is simply given by

$$
\begin{equation*}
\rho=\frac{1}{3}\left(\theta_{0}^{(1)}+\underline{Q}^{(1)} \cdot \underline{P}+T_{i j}^{(1)} \varepsilon_{i j}\right) \tag{6.42a}
\end{equation*}
$$

similarly for ρ

$$
\begin{equation*}
P^{\prime}=\frac{1}{3}\left(\theta_{0}^{(1)}+\underline{Q}^{(1)} \cdot \underline{P}^{\prime}+T_{i}^{(1)} Q_{i j}^{\prime}\right) \tag{6.42b}
\end{equation*}
$$

These are exactly of the sane form as given by Bicdenhern.
For 5 wo have from (6.27c)

$$
\begin{aligned}
& S=\sum_{l}\left(2 F_{l}^{(1)} F_{l}^{(2)}-2 \mathbb{N}_{l}^{(1)} \mathbb{N}_{l}^{(1)}\right) \theta_{0}^{(1)}+2 \underline{\theta}^{(1)} \cdot\left(F_{l}^{(2)}{\underset{N}{N}}_{(1)}^{(1)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6.43) } \\
& \text { IV }\left(\alpha^{\prime}\right) \text { is given by }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (6.44a) }
\end{aligned}
$$

where

$$
\begin{align*}
& \mathbb{N}^{I}=\frac{\underline{k} \wedge \underline{k}^{\prime}}{\mid \underline{k} \wedge \underline{\prime}} \tag{6.44~b}\\
& \mathbb{U}^{I I}=\frac{\underline{k} \wedge \underline{N}^{\prime}}{\left|\underline{k} \wedge \underline{N}^{\prime}\right|} \tag{6.44c}\\
& \underline{N}^{I 11}=\frac{\underline{K}^{\prime} \wedge \mathbb{N}^{\prime}}{\left|\mathbb{E}^{\prime} \wedge N^{\prime}\right|} \tag{6.44d}
\end{align*}
$$

IN $^{(\alpha)}$ con be expressed in terms of \underline{k} and $\because \underline{K}^{\prime}$ and N^{\prime} as

$$
\begin{align*}
& =H^{(\alpha)} \underline{N}^{I}+X^{(\alpha)} \underline{K}+X^{\prime(\alpha)} \underline{K}^{\prime} \tag{6.45b}
\end{align*}
$$

 of $\mathrm{ri}_{i}^{(1)}\left(\mathrm{j}\right.$ and $\theta_{i}^{(1)}$.

$$
\begin{align*}
& S=a_{0} O_{0}^{(I)}+\underline{E}^{(1)} \cdot\left(a_{1} \underline{I V}^{I}+a_{2} \underline{k}+a_{3} K^{1}\right) \\
& +2 \mathrm{~T}_{i}^{(1)}\left(\underset { U } { (1) } \left\{a_{4} \mathrm{Ni}_{i}^{\prime} \mathrm{NH}_{j}^{\prime}+a_{5}\left(\mathrm{NH}_{i}^{\prime} \mathrm{k}_{j}+\mathrm{N}_{j}^{\prime} \mathrm{k}_{i}\right)\right.\right. \\
& \div a_{\delta}\left(W_{i}^{\prime} k_{j}^{\prime}+W_{j} K_{i}^{\prime}\right)+a_{7} k_{i} \boldsymbol{K}_{j}+a_{\delta} K_{i}^{\prime} K_{j}^{\prime}+a_{g}\left(K_{i} K_{j}+{ }_{M_{i}}{ }_{i} K_{j}^{\prime}\right) \tag{6.46}
\end{align*}
$$

The invariants $a_{0}, a_{1}, a_{2} \ldots a_{8}$ we given in toxins of the original invariants by
$a_{0}=\sum_{\ell} 2 F_{l}^{(1)} e^{(2)}+\frac{2}{3} \underline{T}_{\ell}^{(1)} \cdot e^{(2)}$
$a_{1}=\sum_{l} \sum_{p} F_{l}^{(2)} \mathrm{H}_{l}^{(1)}=\sum \Gamma_{l}^{(2)} \mathrm{H}_{l}^{(1)}+\mathrm{H}_{\ell}^{(2)} F_{l}^{(1)}$
$a_{3}=\sum_{e} \sum_{p} F_{l}^{(2)} X_{e}^{(1)} \quad$ etc.
Th the centre of mass france (6.45) is the most general rotation invariant s matrix that can be . With the help of the $O_{i}^{(i)}$ matrices and the int.tial and final momenta $1 / 2 \mathrm{~K}$ and 1 KK or the particles.
Under time reversal (3)

$$
\begin{align*}
& 0_{i}^{(1)} \rightarrow-0_{i}^{(1)} \tag{6.48a}\\
& \left.\cdot{ }_{i}^{\prime} \rightarrow-k\right) N^{\prime} \rightarrow-\mathbb{N}^{\prime} \tag{6.48b}
\end{align*}
$$

Hence if time reversal invariance holds

$$
\begin{align*}
& a_{2}=a_{3} \tag{6.49a}\\
& a_{5}=a_{6} \tag{6.49b}\\
& a_{7}=a_{8} \tag{6.49c}
\end{align*}
$$

Under space reflection

$$
\begin{align*}
& \theta_{i}^{(I)} \rightarrow \theta_{i}^{(I)} \tag{6.50a}\\
& k \rightarrow-\underline{k},\left\{\begin{array}{l}
k
\end{array}, \quad \mathbb{N}^{\prime} \rightarrow \mathbb{I}^{\prime}\right. \tag{6.50b}
\end{align*}
$$

Hence if only parity conrorving terms are present

$$
\begin{align*}
& a_{2}=a_{3}=0 \tag{6.51a}\\
& a_{5}=a_{6}=0 \tag{5.51b}
\end{align*}
$$

(18)

The form 6.46 with 6.49 and 6.51 has boon used by step.
In writing the 5 matrix for spin $1 / 2$ particles, ie. $S\left(h^{\prime}, t, k\right)$ we had included the parity non conserving term also. Then this form is used for doriuing the s matrices of higher spins such terms give rise to parity conserving as well as the non conserving terms. Also if only parity conserving term had been kept in $S(K, t, k)$ we would have missed a large number of toms in S matrix for higher spins.

Coming back now to the general case, the first thing we
con do is to replace in (6.36b) and (6.36c)

$$
\theta_{i}^{(s)} \theta_{j}^{(s)} \cdot \cdots \theta_{h}^{(s)} \quad m \text { factors }
$$

by $\frac{1}{1 m} \sum_{p} \theta_{i}^{(s)} \theta_{j}^{(s)} \ldots \theta_{h}^{(s)}$
This is possible on account of the complete symetry of $a\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)$ and $b\left(\alpha_{1} \alpha_{2} \ldots \alpha_{m}\right)$ in $\alpha_{1} \alpha_{2} \ldots \alpha_{m}$. For the F matrix we define traceless tensors

$$
\begin{aligned}
& \text { Q. } r_{r, i j k} \ldots \ell=\sum_{r p} \sum_{p} \frac{a\left(\alpha_{1} \alpha_{2} \ldots \alpha_{m}\right)}{T} P_{r, i}^{\left(c_{1}\right)} P_{r, j}^{\left(\mu_{2}\right)} P_{r, k}^{\left(\alpha_{3}\right)} \ldots P_{l}^{\left(x_{m}\right)}
\end{aligned}
$$

$$
\begin{align*}
& \therefore{\underset{E}{r}}_{\left(\alpha_{1}\right)} \cdot P_{r}^{\left(\alpha_{3}\right)} \delta_{i h} P_{r, j}^{\left(\alpha_{2}\right)} P_{r, t}^{\left(\alpha_{4}\right)} \ldots P_{t}^{\left(\alpha_{m}\right)} \\
& +\underline{P}_{\underline{r}}^{\left(\alpha_{2}\right)} \cdot \underline{P}_{r}^{\left(\alpha_{3}\right)} \delta_{j k} P_{r, i}^{\left(\alpha_{I}\right)} P_{r, t}^{\left(\alpha_{3}\right)} \ldots P_{l}^{\left(\alpha_{m}\right)} \\
& \text {.) } \tag{6.52}
\end{align*}
$$

There are ${ }^{1 n_{C}} C_{2}$ terms within the () brackets on the R.I.S. as all combinations of tensor indices are taken in the form of Kronecker $\hat{\delta}$'s. It can easily be proved that if any two of the tensor indices of $\mathrm{E}_{\mathrm{i}} \mathrm{j} .$. are contracted the result is zero. This con easily be proved; suppose i and k are contracted, ie. we calculate $\beta_{i} j i \ldots i^{\circ}$

$$
\begin{align*}
& Q_{i j i t} \ldots=\sum_{r} \sum_{p} \frac{\alpha_{1}\left(\alpha_{1} \alpha_{2} \cdots \alpha_{L}\right)}{T}{\underset{P}{r}}_{\left(\alpha_{I}\right)} \underline{P}_{\underline{r}}^{\left(\alpha_{3}\right)} P_{r, j}^{\left(\alpha_{2}\right)} P_{r, t}^{\left(\alpha_{4}\right)} \ldots P_{l}^{\left(\alpha_{m}\right)} \\
& -\frac{1}{1 / 2\left(m^{2}-m+4\right)}\left(\underline{E}_{r}^{\left(\alpha_{1}\right)}{\underset{P}{r}}_{\left(\alpha_{2}\right)} P_{r, j}^{\left(\alpha_{3}\right)} P_{r, t}^{\left(\alpha_{4}\right)} \ldots P_{r, t}^{\left(\alpha_{n}\right)}\right. \\
& +3 \underline{P}_{r}^{\left(\alpha_{1}\right)} \cdot \underline{P}_{r}^{\left(\alpha_{3}\right)}{ }_{P_{r, j}\left(\alpha_{2}\right)}^{\left(\alpha_{4}\right)} P_{r, t} \ldots P_{r, t}^{\left(\alpha_{m}\right)} \\
& +P_{r}^{\left(\alpha_{2}\right)} P_{r}^{\left(\alpha_{3}\right)} P_{r, j}\left(x_{1}\right) P_{r, t}^{\left(\alpha_{4}\right)} \ldots P_{r, i}^{\left(\alpha_{n}\right)} \\
& + \text {. } \\
& \text { +) } \tag{6.53}
\end{align*}
$$

The presence of the permutation symbol makes it possible to write ali turns within the () brackets in the Form

$$
\underline{E}_{r}^{\left(\alpha_{1}\right)} \cdot \underline{P}_{r}^{\left(\alpha_{3}\right)} P_{r, j}^{\left(\alpha_{2}\right)} \cdots P_{l}^{\left(\alpha_{m}\right)}
$$

The number of such terms within these bracket, is

$$
m_{\mathrm{C}_{2}}-1+3=1 / 2\left(\mathrm{~m}^{2}-m+4\right)
$$

Hence the R.H.S. of (6.53) vanishes.
From the tensor operator $\frac{1}{2}\left(\theta_{i}^{(s)} \Theta_{j}^{(s)}+\theta_{j}^{(s)} \Theta_{i}^{(s)}\right)$ we define

$$
\begin{equation*}
T_{i}^{(s)}=1 / 2\left(\epsilon_{i}^{(s)} 0_{j}^{(s)}+0_{j}^{(s)} e_{i}^{(s)}\right)-\frac{s(s+1)}{3} \hat{\delta}_{i j} \Theta_{0}^{(s)}=T_{j i}^{(s)} \tag{6.54}
\end{equation*}
$$

$T_{i}^{(s)}$ Vanishes since

$$
\begin{equation*}
\theta_{i}^{(s)} \theta_{i}^{(s)}=s(s+1) \theta_{c} \tag{6.55a}
\end{equation*}
$$

For the tensor operator of 3 rd rank $T_{i j h}^{(s)}$ is defined by

$$
\begin{align*}
\mathbb{T}_{i j h}^{(s)}= & \frac{1}{13} \sum_{p} \theta_{i}^{(s)} \theta_{j}^{(s)} \theta_{K}^{(s)}-\frac{1}{13} \frac{s s(s+1)}{5}\left\{\delta_{i j} \theta_{k}^{(s)}\right. \\
& \left.+S_{i K_{i}}^{(s)}+\delta_{K i} \theta_{j}\right\} \tag{6.56}
\end{align*}
$$

$T_{i j K}^{(s)}$ is symmetric in $i j K$ and $T_{i} i k$ vanishes. This con easily be proved by using (6.55) and

$$
\begin{equation*}
e_{i}^{(s)} \Theta_{k}^{(s)}-e_{h}^{(s)} \theta_{i}^{(s)}=i \dot{r}_{i k \ell} \Theta_{\epsilon}^{(s)} \tag{6.5,~b}
\end{equation*}
$$

It is very difficult to write dorm the forms of symetric tensor operation of higher orders (up to order $n=2 \boldsymbol{S}$), but in principle it can be done. Summing up over r : we define

$$
\begin{equation*}
(2 s+1) \sum_{r} Q_{I, i j \ldots \ell}=\Omega_{i j} \ldots \ell \tag{6.56}
\end{equation*}
$$

The P matrix then takes the form

$$
\begin{align*}
\rho \cdot & \frac{j}{2 s+I}\left\{\theta_{0}^{(s)}+\theta_{i}^{(s)} Q_{i}+T_{i j}^{(s)} Q_{i j}\right. \\
& +T_{i j k}^{(s)} Q_{i j h} \cdots+T_{i j \cdot \ell l}^{(s)} Q_{i j} \cdots l \tag{6.57}
\end{align*}
$$

The reason for the coefficient of the unit matrix θ_{0} being unity has already been given in connection with the spin 1 case.

If $\theta_{i}^{(s)} e_{j}^{(s)} \ldots \theta_{h}^{(s)}$ in the $s-m$ ntri-r are repleced by
$\mathrm{T}_{\mathrm{i} j}^{(\mathrm{s})} \mathrm{H}$...h then (6.36 c) is perhaps the most concise form of writing the complete rotation inverient s matrix. However if the expression (6.55 b) for $\mathbb{N}_{\ell, i}^{(\alpha)}$ is substituted and a
summation is performed over ' ℓ ', s can also be written as

(6.58a)

In this equation $\left\{\mathbb{N}^{\prime}, K, K^{\prime}\right\}$ jj... is a tensor or rank $m \leqslant 2^{\prime} . S^{\prime}$ defined us a linear sum of all tensors: : out of the vectors $\mathrm{N}^{\prime}, \underline{K}, \underline{K}^{\prime}$ 。 is an example

$+a_{3}^{3} M_{i}^{\prime} M_{j}^{\prime} k_{K}^{\prime}+a_{4}^{3} I_{i}^{\prime} k_{j} K_{k}+a_{5}^{3}{ }_{i}^{\prime} K_{j}^{\prime} K_{k}^{\prime}+n_{6}^{3} N_{i}^{\prime} k_{j} K_{K}^{\prime}$
$\left.+a_{7}^{3} K_{i} h_{j} k_{k}+a_{8}^{3} k_{i}^{\prime} k_{j}^{\prime} K_{k}^{\prime}+a_{9}^{3} k_{i}^{\prime} k_{j} k_{j}+\varepsilon_{19}^{3} k_{i} k_{j}^{\prime} k_{k}^{\prime}\right]$
The restrictions of time reversal and space reflection invariances on the s matrix con be put in the sane way as for tho case of spin ore pratiolus.

The mon covariant forms of the S and P matrices:
obtained here are given in the Uartosian tensor forms. Many (15) authors have used the tensor moment forms of these matrices and have obtained them from the considerations of rotation
 dimensional matrix which transforms under rotation as the spherical harmonic Y_{M}^{J} and has the property (1.3)

$$
\begin{align*}
& E_{2} \cdot{ }_{N}^{E I J}=\sum_{J_{0}}(2 s+1) \tag{6.59a}
\end{align*}
$$

$$
\begin{align*}
& { }^{(\varepsilon)}{\underset{M}{N}}^{J} \text { car be written in terms on } \theta_{i}^{(5)} \text {. } \tag{6.59b}\\
& { }^{(E)}{ }_{N} \text { car be written in terms on } \theta_{i}^{(5)} \text {. }
\end{align*}
$$

111
Relativistic Corrections

If the equation

$$
\begin{equation*}
I \rho^{\prime}=s p s^{x} \tag{6.60}
\end{equation*}
$$

with, and s given by (6.57) and (6.58) is used to analyse multiple scattering experiments there are certain corrections to be made. The situation is very much similar to the spin $1 / 2$ case discussed by $\operatorname{stapp}(1)$ and we closely follow his arguments.

In equation 6, 14 instead of the proper vectors $\overline{\mathrm{P}}_{-r}$
 and ${\underset{r}{r}}_{(i)}^{(i)}={\underset{r}{r}}_{(i)}^{(i)} \boldsymbol{Z}_{h j}\left(f_{l}\right)$ occur. If those rotations were not present the p matrix would have been

$$
\begin{align*}
& \bar{p}=\frac{l}{2 s+I}\left\{\theta_{0}^{(s)}+\theta_{i}^{(2)} \ddot{q}_{i}+\underline{m}_{i}^{(s)} \bar{q}_{i j}+\cdots \cdot\right. \\
& +T_{i j \ldots h}^{s} \ldots \bar{q}_{i j \ldots h \ldots} \ldots \ldots \ldots+T_{i j \ldots \ell}^{(s)} \ddot{q}_{i j \ldots \ell} \tag{6.61}
\end{align*}
$$

and $\bar{\rho}$ 'of the some form with the dashed quantities \bar{q}_{i} j... replacing q_{j} j \ldots in (6.61). The tensors $\bar{q}_{i} j \ldots k$ are given in terms of $\overline{-r}(i)$ in exactly the some why as $g_{i g}$...h are given in turns of $\underset{\sim}{p}(i)$. 6.52 and 6.56 show that Q and q ere related to each other by

$$
\begin{equation*}
Q_{j_{1} j_{2} \ldots j_{l}}=\bar{q}_{j_{1}^{\prime} j_{2}^{\prime} \ldots j^{\prime} \eta_{j_{1}^{\prime} j_{1}}\left(f_{1}\right) \ddots_{j_{2}^{\prime} j_{2}}^{\pi}\left(f_{l}\right) \ldots \tau_{l}^{\prime} j_{l}^{\prime}} \tag{1}
\end{equation*}
$$

The highest rank of each tensor is $2 \mathrm{~s}, 0 \leqslant \ell \leqslant 2 \mathrm{~s}$. The last equation can be written concisely in the form

$$
\begin{align*}
& q(v)=\bar{q}(l) k^{(l)}\left(f_{1}\right) \tag{6.63a}\\
& \bar{q}(l)=\varepsilon^{(l)} k^{(l)-1}\left(f_{1}\right) \tag{6.63b}
\end{align*}
$$

The final quantities are related by

$$
\begin{align*}
& \AA^{\prime}(l)=\bar{q}^{\prime}(l) 2^{(l)}\left(f_{1}^{\prime}\right) \tag{6.64a}\\
& \tilde{q}^{\prime}(l)=\varrho^{\prime}(l) e^{(l)^{-1}}\left(f_{1}^{\prime}\right) \tag{6.64b}
\end{align*}
$$

 rest frames $£=0$ and $\underline{f}^{\prime}=0$ ruspectively it is the quentitics $\bar{q}_{i j . . . h}$ rather than $P_{i j \ldots h}$ which are the same in the outgoing beam of one scrttoring and the incoming beria of the next scattering. Let the superscript (n) denote the quantities referring to the $n^{\text {th }}$ scattering and the subscript n on the 4-momenta denote their centre of mass values. Then

$$
\begin{equation*}
\ddot{q}_{(l)}^{\prime}(n-1)=\bar{q}(\eta) \tag{6.65}
\end{equation*}
$$

or from ($6.63,6.64$)

$$
\begin{equation*}
Q^{\prime}(n-1)(e) e^{(\epsilon)^{-1}}\left(f_{n-1}^{\prime}\right)=n^{(n)}(i) e^{(i)^{-1}}\left(f_{n}\right) \tag{6.66a}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\theta^{(n)}(l)=Q^{\prime}(n-1)(l) e^{(l)^{-1}}\left(f_{n-1}^{\prime}\right) e^{(l)}\left(f_{n}\right) \tag{6.66b}
\end{equation*}
$$

The rotations which convert the out going tensors $Q_{(}(\boldsymbol{C}$; of the
(n-I)th scaitering into the incoming tensors of the $n^{\text {th }}$ scattering introduce cortain differences betwoen the relativistic and the nonrelativistic treatments (in which there are no rotations involved $\Omega^{(n)}(\ell)=\Omega\binom{(n-1)}{(i)}$. In anology with Stapps work these will be called the rotationa? corrections. The only difference between the case of : - fyim $1 / 2$ particles (discussed by Stapp) and the case of arbitrary spins is that these rotational corrections are to be applied to each index of the polarization tensors $D_{i j} \ldots{ }^{\circ}$

There is yet another correction which hes to be applied to the nonrclativistic treatiment of multiple scattoring experiments. This arises out of the use of the relativistic tronsformation of momente hetween the succossive Lorentz frames rather than the Galileen transformations. Since the incoming momontum of the $n^{\text {th }}$ scattoring is the scme as the outgoing mementum of the prececdirg scattering

$$
\begin{equation*}
f^{(n)}=f^{\prime}(n-1) \tag{6.67}
\end{equation*}
$$

However

$$
\begin{align*}
& \left(f_{n}\right)_{\mu}=f_{\mu}^{(n)} \mathcal{J}_{\mu \nu}\left(t^{n}\right) \tag{6.68a}\\
& \left(f_{n-1}\right)_{\nu}=f_{\mu}^{(n-1)} \mathcal{J}_{\mu \nu}\left(t^{(n-1)}\right) \tag{6.68b}
\end{align*}
$$

Thus tae rolation botween the incoming morentum for the $n^{\text {th }}$ scattering and the outgoing momentur for the proceeding scattering as measured in their respective centre-of-mass fromes is

The major portion of the transformations appearing here will except for the extreme relativistic cases, be given by the Galilean transformations. The remainder hos been called the kinematical corrections by tap ${ }^{(1)}$.

It is convenient to choose the laboratory frame as the basic reference frame and to assume that the target particles for all the scatterings are at rest in it. From (6.6) and (6.11) the rotation $: \Omega_{\mu_{1}}\left(f_{n}\right)$ is given by

$$
\begin{align*}
r_{n, j}\left(f_{n}\right) & =\mathscr{d}_{\mu \nu}^{-1}\left(f^{(n)}\right) \mathscr{L}_{\eta \lambda}\left(f^{(n)}\right) \dot{J}_{\lambda 2}\left(f_{n}\right) \tag{6.70}\\
& =\delta_{\mu \nu}
\end{align*}
$$

Since the Lorentz transformations appearing in this are colinear and their product will be unity. This gives

$$
\begin{equation*}
\dot{q}^{(n)}(\hat{l})=Q^{(n)}(l) \tag{6.71}
\end{equation*}
$$

For the scattered particle $\bar{q}^{\prime}(\ell)$ and $Q^{\prime}(\ell)$ will be different. Equation (6.66b) in view of (6.70) bocornos

$$
\begin{equation*}
Q^{(n)}(l)=\Omega^{\prime}(n-1)(l) e^{(2)^{-1}}\left(f_{n-1}^{\prime}\right) \tag{6.72}
\end{equation*}
$$

$K{ }^{(\ell)}\left(f_{n-1}^{\prime}\right)$ is given in terms of $E\left(f_{n-1}\right)$ by the Kronecker product

$$
\begin{align*}
& 2^{(k)}\left(f_{n-1}^{\prime}\right)=\sum\left(f_{n-1}^{\prime}\right) \times 民\left(f_{n-1}^{\prime}\right) \times \ldots \times 2\left(f_{n-1}^{\prime}\right) \tag{6.73a}\\
& \left.2^{(l)}\right)^{-1}\left(f_{n-1}^{\prime}\right)=2^{-1}\left(f_{n-1}^{\prime}\right) \times 2^{-1}\left(f_{n-1}^{\prime}\right) \cdots \times 2^{-1}\left(f_{n-1}^{\prime}\right) \tag{6.73b}
\end{align*}
$$

There are two modificotions to be mode in the non--rolativistic thoory. The first is that the rulntion Detweon the momenta in tho succossion centro of mass fromes is given by (6.69). The second is a rotation $\gtrless^{-1}\left(f_{n-1}^{\prime}\right)$ applied to cech tensor index in tho outgoing bean before it is interpreted as the incident polarization tensor of tho next scattoring.

The rotation
is the result of three successive transformations. $\mathcal{L}\left(f_{l}\right)$ tokes a vector from its volue in the rest frame of the scativered perticle to the centre of mass irame. Fit (t) then takes it from the centre of mass frome to the laboratory frone and finally $\frac{f^{-1}}{-1}\left(f^{\prime}\right)$ tokes it fron thic laboratory frame back to ? new rest frome of the sonttered particle. The magnitude of this rotation specified by air axial vector Ω has been given by stapp

$$
\begin{equation*}
\sin |\underline{\Omega}|=\underline{V}_{a} \wedge \underline{V}_{b} \frac{1+\gamma^{(a)}+\gamma(b)+\gamma(c)}{(1+\gamma(a))(1+\gamma(b))(1+\gamma(c))} \tag{6.75}
\end{equation*}
$$

Where $\gamma^{(a)}, \gamma^{(b)}$ and $\gamma^{\prime(c)}$ are the threc Lerentz contraction factors associatod with the three transformation listed above and $\underline{V}_{0}, \underline{V}_{b}$ and \underline{V}_{c} are the space paris of the
three relative relativistic velocities respectively

$2^{-1}(f)$ is the same rotation as given by G.C. Wick (16) in connection with the Lorentz transformation properties of helicity states.

Chaper 7π

The quanitzation of the theory is not directly connected with this work but we shall briefly discuss this question for the following reasoris.
(1) We can show that the particle density (for even n values) in the quantised version of the free field theory is pocitive definite. (2) We can obmain the commatation reactions for free fislds in a closed (17) form whereas the corresponding result of Umezaw and Visconti involved recurrence relations. It has been mentioncd in reference (17) that the Hamiltonian is not positive definite. This means that the quantization involvod the introduction of an indefinite matric operator and consequentily a subsidiary condition. In this section we discuss the quantization of the free field cnly and this is slifficient to obtain the results mentioned in the previous paragraph.

Equation 2.5 .9 shows that the momentum space expansion of φ (x) satisfying the froe field equation (2.7) contains only the "particle" and "antiparticle" spinors and none from the rest of the spinor space. Enclosing the free ficla $Q(x)$ in a box of volume V with periodic boundary conditions $\varphi^{(x)}$ and $\varphi^{+}(x)=\sigma^{x}\left(x^{\prime}\right)^{\prime} q_{4}$ are expanded in the form

$$
\begin{align*}
& +b^{\prime \prime} \lambda^{\prime}, j^{\prime} \stackrel{f}{ }_{\prime}^{V^{\prime}}{ }_{\lambda^{\prime} j^{\prime}}^{\sigma^{\prime}}\left(\hat{i}^{\prime}\left(\lambda^{\prime}\right)\right)^{i f^{\prime}\left(\lambda^{\prime}\right)} x^{\prime} \tag{7.1b}
\end{align*}
$$

In these expressions for the first ($2 s ; 1$) values of β, $\mathrm{U}_{\lambda, j}^{a}\left(\mathrm{f}^{(\lambda)}\right)$ and $V_{\lambda j}^{\sigma}\left(f^{(\lambda)}\right)$ belong to $O^{(s)}\left(f^{(\lambda)}\right)$ subspace and the rest to tho subspaces with lower spin values.

The energy momentum vector P_{μ} derived from the free Ingrongian density $-g^{t}(x)\left(\beta \frac{\partial}{\partial x}+m s\right) \hat{\mu}(x)$ is sivan by

$$
\begin{equation*}
p_{\mu}=\frac{1}{i} \int_{V} d^{3} x \phi^{t}(x) \beta_{4} \frac{\partial}{\partial x_{\mu}} \phi(x) \tag{7.2}
\end{equation*}
$$

Substituting tho expansions (7.1) and using orthonormility
relations (3.55) we obtain for P_{μ}
 (7.3)

Let us for the moment neglect the second turn on the R.H.S. of the above equation. The Hamiltonian $H=P_{0}$ is then

$$
\begin{equation*}
H=\sum_{\lambda, \dot{i}, \hat{0}, \underline{f}} f_{0}^{(\lambda)}(-1)^{\lambda} a_{\lambda, j, \underline{f}}^{x_{0}} a_{\lambda, j, \underline{f}}^{\alpha} \tag{7.4}
\end{equation*}
$$

Owing to the presence of $(-1)^{\lambda}$ the Hamiltonian is rot positive definite. Such a Eoniltonirn represents an assembly of Fisis-Uhlonbeck oscillators ${ }^{(18)}$. Sudershan ${ }^{(18)}$ has shown that the quantisation of a Pris-Thlunbeck oscillator involves the introduction of n indefinite metric operator and his method can be applied to the present case without any difficulty. First the computation 'or anticomputation) reirtions are written.

$$
\begin{align*}
& {[a, b]_{\mp}=\left[a, b^{x}\right]_{\mp}=\left[\begin{array}{ll}
x & x \\
a^{x}, &]_{\mp} \\
& =\left[b^{x},\right. \\
x
\end{array}\right]_{\mp}=0} \tag{7.5c}
\end{align*}
$$

Where in accordance with Pauli's principle the upper sign (commutation) is taken for bosons ($n=2 s$ even) and the lower sign (anticomatation) is token for fomions (zs $=\mathrm{n}$ odd).

Using theacrelations to bring b on the left in (7.3) and neglecting the zero point anergy the Homiltoninn becomes

Now we introduce the indefinite metric operator

has the following properties which con easily be proved

$$
\begin{align*}
\xi^{2} & =1 \\
\xi^{x} & =\xi \tag{7.7b}\\
a_{\lambda j f}^{\sigma} \xi & =(-1) \xi_{\lambda^{j} f}^{a^{\prime}} \tag{7.7c}\\
b_{\lambda j f}^{\sigma} \xi & =(-1)^{\lambda} \zeta_{\lambda^{j f}}^{a} \tag{7.7d}
\end{align*}
$$

This means that ξ commutes with $a_{\lambda}, a_{\lambda}^{x}, b_{\lambda}$, on d b_{λ}^{x} for even λ and anticomutas for odd values of λ. Following + Sudarshon () we now define the new adjoint operators a and b^{\dagger} by

$$
\begin{align*}
& a_{\lambda, j f}^{\dagger_{\sigma}}=\xi a_{\lambda j f}^{a_{0}} \xi=(-1)^{\lambda} a_{\lambda j f}^{a} \tag{7.8a}
\end{align*}
$$

In toms of $a_{\lambda}^{\dagger j} \underline{f}$ and $b_{\lambda j \underline{f}}^{+0}$ the Hamiltonian is

$$
\begin{equation*}
H=\sum_{\lambda 0^{-j \underline{~}}} \hat{i}_{0}^{(\lambda)}\left(a_{i j \underline{f}}^{i \sigma}{ }_{\lambda j f}^{\sigma}+b_{\lambda j f}^{\dagger} b_{\lambda j f}^{\sigma}\right) \tag{7.9}
\end{equation*}
$$

with the com nutation relations

 $\mathrm{b}_{\mathrm{t}}^{\dagger \mathrm{F}} \mathrm{f}$ con now be interpreted as the creation operators for
 the destruction operators for the corresponding quantities.
Particle states con be constructed in tho usual way by applying a^{\dagger} end b^{\dagger} operators on the vacuum state defined by

$$
\begin{equation*}
a_{\lambda j f}^{\sigma}|0\rangle=b_{i j f}^{\sigma}|0\rangle=0 \tag{7.11}
\end{equation*}
$$

in N^{\prime} particle state is

In view of the equations (7.7) and (7.8) the adjoint of the state $\left|\mathrm{IN}^{\prime}\right\rangle$ is given by

122
This shows that the norms of the states are not positive definite. If the state $\left|N^{\prime}\right\rangle$ is properly normalised its norm is given by

$$
\begin{equation*}
\left\langle\mathbb{N}^{\prime} \mid \dot{I}\right\rangle=(-1)^{\lambda^{\prime}} 1^{+\lambda_{2}}+\cdots \lambda_{N^{\prime}} \tag{7.14a}
\end{equation*}
$$

Similarly the expectation value of H in the state \mathbb{N} is

Thus all the states in which there are on odd number of particles with odd values of λ have negative norms. In the case of electrodynamics the supplementary condition restricted the physical states to have only positive norms and we con try the sate trick in the present cense also. But before we pick up a supplementary condition and try to obtain a consistent theory, it is better to derive the cominutation relations for the field operators.

In the limit

$$
\begin{align*}
& \sum_{\underline{f}}^{V \rightarrow \frac{V}{(2 \pi)^{\frac{3}{2}}} \int d^{3} f} \\
& V \delta_{\underline{f}, \underline{f}^{\prime}} \rightarrow(2 \pi)^{3} S\left(\underline{f}-\underline{f}^{\prime}\right) \tag{7.15a}
\end{align*}
$$

and defining

$$
\begin{equation*}
a_{\lambda j}^{ज}(£)=\sqrt{v} \frac{1}{(2 \pi)^{\frac{3}{2}}} a_{\lambda j £}^{\hat{m}} \tag{7.15c}
\end{equation*}
$$

etc., the commutation relation can be written

$$
\begin{align*}
& {\left[a_{\lambda j}^{\sigma}(\underline{f}), a_{\lambda^{\prime} j^{\prime}}^{\sigma^{\prime}(\underline{f})}\right]_{\mp}^{\prime}=\delta_{\lambda \lambda^{\prime}} \delta_{j j^{\prime}} \delta_{\ldots(\underline{f}-\underline{f})} \delta_{j,}} \tag{7.16a}\\
& {\left[b_{\lambda j}^{\sigma}(\underline{f}), b_{\lambda^{\prime} j^{\prime}}(\underline{f})_{\mp}^{\prime}=\delta_{\lambda \lambda}, \delta_{j j^{\prime}}, \delta_{(\underline{f}-\underline{f}}\right) \delta_{a a^{\prime}}} \tag{7.16b}
\end{align*}
$$

with all other commutators or enticommutators vanishing. In toms of $a_{\lambda j}^{\dagger_{\sigma}}(f)$ and $b_{\lambda j}^{\dagger_{\sigma}}(\underline{f})$ the expansions of the field are given by

$$
\begin{align*}
& \left.+(-1)^{\lambda} b_{\lambda j}^{f}(\underline{f}) V_{\lambda j}^{a}\left(f^{(\lambda)}\right) e^{-i f(\lambda)} \cdot x\right\} \tag{7.17a}
\end{align*}
$$

Using the computation relation (7.16) we get

$$
\begin{aligned}
& \left\{U_{\lambda, j}^{\sigma}\left(\hat{f}^{(\lambda)}\right) U_{\lambda j}^{\frac{1}{1}}\left(\hat{f}^{(\lambda)}\right) \beta^{i \underline{I^{(\lambda)}}(x-\dot{x})}\right. \text {. } \\
& \left.\left.\mp V_{\lambda j}^{\hat{\alpha}}\left(f^{(\lambda)}\right) V_{\lambda j}^{\dagger_{\alpha}}(\lambda)\right) \quad e^{-i f^{(\lambda)}\left(x-x^{\prime}\right)}\right\}(7.18)
\end{aligned}
$$

The two terms on the righthend side above can be expressed in terms of the particle nd antiparticle projection

$$
\left.=\sum_{r=0}^{n} \sum_{j \sigma}^{\infty}(-1)^{\lambda} \eta_{\alpha \alpha^{\prime}}^{+S_{\lambda}}(\lambda)\right) U_{r, j}^{\sigma}\left(f^{(\lambda)}\right){\alpha^{\prime}}_{U_{r, j}^{\sigma}\left(f^{\prime}(\lambda)\right)}^{\beta}(-1)^{\gamma}
$$

$$
=(-1)^{\lambda} \eta_{\substack{+\prime}}^{\eta^{\prime}}(\lambda), \delta_{\alpha^{\prime} \beta}
$$

$$
\begin{equation*}
\left.=(-1)^{\lambda} \eta_{\alpha \beta}^{\left(s_{\lambda}(\lambda)\right.}\right) \tag{7.19}
\end{equation*}
$$

Remembering that

$$
V_{\lambda, j}^{\sigma}\left(f^{(\lambda)}\right)=U_{n-\lambda, j}^{\sigma}\left(f^{(\lambda)}\right)
$$

we obtain in tho same way as before

For bosons the upper sign is taken but $n=2$ 'sis even and for the fermions the low n sign is taken but n is odd in this case. Hence

$$
\begin{aligned}
& {\left[\operatorname{m}_{\alpha}(x), \oplus_{\beta}\left(x^{\prime}\right)\right]_{\mp}=\frac{1}{(2 \pi)^{3}} \frac{m \alpha_{\lambda}}{s_{\lambda}} \int_{f_{0}}^{d^{3} f}}
\end{aligned}
$$

125
Since from the definitions of $\eta^{ \pm_{\lambda}}\left(f^{(\lambda)}\right)$

$$
\begin{equation*}
\eta^{-s} \lambda\left(f^{(\lambda)}\right)=\eta^{+s} \lambda\left(-f^{(\lambda)}\right) \tag{7.22}
\end{equation*}
$$

alternative forms of (7.21) are

$$
\begin{align*}
& {\left[\varphi_{\alpha}(x), \varphi_{\beta}\left(x^{\prime}\right)\right]_{\mp}=\sum_{\lambda} \frac{m \alpha_{\lambda}}{s_{\lambda}} 2 \int_{\alpha} d^{4} f_{\alpha \beta}^{+\beta_{\lambda}}(f) \in\left(f_{0}\right)} \\
& \delta\left(f^{2}+m^{2} \alpha_{\lambda}^{2}\right) e^{i f\left(x-x^{\prime}\right)}(7.23 b) \\
& =\sum_{\lambda} \frac{2 m \alpha_{\lambda}}{s_{\lambda}} \eta^{+S_{\lambda}}\left(-i \frac{\partial}{\gamma x}\right) \frac{1}{(2 \pi)^{3}} \int \alpha^{4} f \in\left(f_{0}\right) \\
& \delta\left(f^{2}+m^{2} i x_{\lambda}^{2}\right) e^{i f(x-\dot{X})} \tag{7.23b}
\end{align*}
$$

The commutation relations given by Umeznwa and Visconti ${ }^{(17)}$ are of the following form in our notation

$$
\begin{equation*}
\left[: \phi_{\alpha}(x), \phi_{\beta}\left(x^{\prime}\right)\right]_{\mp}=i D_{\alpha \beta}(\partial) \Delta\left(x-x^{\prime}\right) \tag{7.24a}
\end{equation*}
$$

$\triangle\left(x-x^{\prime}\right)$ is given by (19)

$$
\Delta\left(x-x^{\prime}\right)=\frac{-i}{(2 \pi)^{3}} \sum_{\lambda} \frac{1}{\prod_{\lambda} m^{2}\left(\alpha_{\lambda}^{2}-\alpha_{\lambda}^{2}\right)} \int_{\lambda}^{4} f e^{i f\left(x-x^{\prime}\right)} \in\left(f_{0}\right) \delta\left(f^{2}+m^{2} d^{2}\right.
$$

$D(\partial)$ is a covariant operator formed from \mathcal{F}_{μ} and $\frac{\partial}{\partial x,} \equiv \partial_{\mu}$ with the property

$$
\begin{equation*}
(\beta \cdot \partial+m s)_{x \sim}^{D(d)} \underset{\gamma \beta}{D\left(\square-m^{2} x_{\lambda}^{2}\right)} \quad \delta_{i \alpha \beta} \tag{7.25}
\end{equation*}
$$

$D(d)$ can be expressed in the form (3)

$$
\begin{align*}
D(\partial)=\alpha_{0}+\alpha_{\mu_{1}} \partial_{\mu_{1}}+\alpha_{\mu_{1} \mu_{2}} \partial_{\mu_{1}} \partial_{\mu_{2}}+\ldots & +\alpha_{\mu_{1} \mu_{2} \cdots \mu_{n}} \tag{7.26}\\
& \partial_{\mu_{1}, \partial_{\mu_{2}} \cdots \partial_{\mu_{n}}}
\end{align*}
$$

where $\alpha_{\mu}, \ldots \mu_{+}$with $r \leq n=2$ s are tensors formed from $\beta_{\mu}{ }^{\prime}$ s. $D(\partial)$ can be determined by substituting (7.26) in (7.25) and comparing coefficients. In this way recurrence relations are obtained for $\alpha_{\mu, \ldots} \mu_{\gamma}$. It is very difficult to prove that the commutation relations (7.23) obtained here are the same as those given by Umezawa and Viscosity for arbitrary's, but in the particular case of $s=\frac{3}{2}, D(0)$ is easily calculated

$$
\begin{align*}
D(\partial)= & 6 m^{3}-\frac{20}{3} m \partial^{2}+\beta \cdot \partial\left(\frac{40}{9} \partial^{2}-4 m^{2}\right)+\frac{0}{3} m(\beta \cdot \partial)^{2} \\
& -\frac{16}{9}(\beta \cdot \partial)^{3} \tag{7.27}
\end{align*}
$$

and there are only two mass states $\alpha_{0}{ }^{m}=m, \alpha_{1} m=3 n$. In this case wo con verify by using tho definition of $\eta^{s}{ }_{\lambda}^{\left(f^{(\lambda)}\right)}$ that the result (7.23) is the same as (724) given by Umezawa and Visconti. The form (7.24) has the advantage that the propagator $\left(\xi_{\alpha}\left(x_{1}-x^{\prime}\right)=\langle 0|\right.$ I $\varphi_{\alpha}^{\prime}(x) \varphi_{\beta}\left(x^{\prime}\right)|0\rangle$ can be obtained simply by replacing

$$
\int d^{4} f f\left(f_{0}\right) O_{O}^{O}\left(f^{2}+m^{2} \alpha_{\lambda}^{2}\right) e^{i f\left(x-x^{\prime}\right)}
$$

in (7.24b) by

$$
\frac{1}{2 \pi i} \int \frac{d^{4} f e^{i f\left(x-x^{\prime}\right)}}{f^{2}+m^{2} \alpha_{\lambda}^{2}-i \epsilon}
$$

$G_{\alpha \beta}\left(x-x^{\prime}\right)$ can easily bo shown to satisfy ${ }^{(19)}$
$\left(\beta_{\mu}^{\alpha} \frac{\partial}{\partial x}+m s\right){\underset{\alpha \beta}{\mu}}^{x}\left(x-x^{\prime}\right)=-\delta^{\prime}\left(x-x^{\prime}\right)$

On the other hand the expression (7.23) is given in a closed form.

Coming back to the question of selecting ? supplementary condition which restricts the physical states to hove positive norms we note that the single particle states with masses $\mathrm{m} \alpha_{,}, \lambda=1,3,5 \ldots$ have negative norms since

$$
\begin{equation*}
\langle 0| a_{-i \pm}^{\hat{p}} S^{c} a_{i i \pm}^{+}|0\rangle=(-1)^{\lambda} \tag{7.29}
\end{equation*}
$$

Thus we define the physical states to bo those which hove no particles with odd λ values. Let $|P\rangle$ denote a physical state then it must satisfy

We con go a stop further and domond that the physical states are those mich hove only particles with the lowest mass value m . Such state will satisfy

$$
\begin{aligned}
& a_{\lambda i f}^{\sigma}|P\rangle=0 \\
& b_{\lambda i f}|P\rangle=0
\end{aligned}\left\{\begin{array}{l}
\text { for } \lambda>0 \\
\text { and for all } b, j, f
\end{array}\right.
$$

This last condition is equivalent to

$$
\begin{align*}
& \left(\square-m^{2}\right) \varphi^{\prime \cdot}(+)(x)|P\rangle=0 \tag{7.32a}\\
& \left(\square-m^{2}\right) \varphi^{+} ;(+)(x)|P\rangle=0 \tag{7.32b}
\end{align*}
$$

$\Phi(x)$:) and $\varphi^{\dagger}(+)(x)$ denote the positive frequency parts of $\varphi(x)$ and $\varphi^{\dagger}(x)$ respectively. Equations (7.32) may be
taken to be the supplementary conditions for the free ficlds. As in oloctrodynomics the advantage of putting a condition on the states rather then on the ficld operators is that the comatation relation, the propagator and other Greens functions remain unaltered. The physical states satisfying (7.32) have positive norms while the unphysical states hove positive as well as nogetive norms. The expectation values of physical quantities such as the Hamiltonian in physical states are also positive definite. Tho difficulty connected with particle densities mentioned earlier in 4 aissppens in the quantised theory. The electrongegnetic current density is given by

$$
\begin{equation*}
j_{\mu}(x)=\frac{i e}{2}\left[\psi_{\alpha}^{\dagger}(x), \phi_{\beta}(x)\right] \pm \beta_{\mu, \alpha \beta} \tag{7.33}
\end{equation*}
$$

The symmetrised expression (upper sign) is taken for bosons and the antisymetrised expression (lower sign) is taken for fermions. The vacuum carpectation values of $f_{\mu}(x)$ vanishes. For using the uxpressions (7.1) nd the commutation relations (7.10) we get

$$
\begin{align*}
& \langle 0| \xi \quad j(x)|c\rangle=\frac{i o}{2} \sum_{\lambda} \sum_{\underline{f}} \frac{m \alpha_{\lambda}}{s_{\lambda}^{f}(\lambda)_{V}} \\
& \left\{ \pm \mathrm{U}_{\lambda}^{\dagger}\left(f^{(\lambda)}\right) \beta_{\mu}^{U}{ }_{\lambda}\left(f^{(\lambda)}\right) \div V_{\lambda}^{+}\left(f^{(\lambda)}\right) \beta_{\lambda}{ }_{\lambda}{ }_{\lambda}\left(f^{(\lambda)}\right)\right. \tag{7.34}
\end{align*}
$$

The indices σ and j have been absorbed in \pm. From (3.55) one at once derives tho relations

$$
\begin{align*}
& \quad U_{\lambda, j}^{\sigma}\left(f^{(\lambda)}\right) \beta_{\mu U_{\lambda, j}}^{\sigma}(f(\lambda))=(-1)^{\lambda} \frac{(-i) f_{\mu}^{(\lambda)} s_{\lambda}}{\alpha_{\lambda}} \tag{7.35a}\\
& \left\{\begin{array}{l}
V_{\lambda j}^{\sigma}\left(f^{(\lambda)}\right) \beta_{\mu V_{\lambda j}}^{\sigma}\left(f^{(\lambda)}\right)=(-1)^{2 s-1-\lambda} \frac{(-i) f_{\mu}^{(\lambda)} s_{\lambda}}{m \alpha_{\lambda}}
\end{array}\right. \tag{7.35b}
\end{align*}
$$

These equations show that the quantity within the brackets in (7.34)

$$
\begin{equation*}
\frac{-i S_{\lambda} f_{\mu}^{(\lambda)}}{m \alpha_{\lambda}}\left\{ \pm(-1)^{\lambda}+(-1)^{2 s-1-\lambda}\right\}=0 \tag{7.36}
\end{equation*}
$$

since the upper sign is taken for 2 s even and the lower sign for 2 s odd.

Let us now calculate the expectation values of $j_{\mu}(x)$ for a free "particle" state $\left.{ }^{t} \lambda|\mathrm{f}| c\right\rangle$ and for a free "antiparticle" state $\left.b_{\lambda}^{\dagger}|\underline{\prime}| 0\right\rangle$. The result of a straightforward calculation is

$$
\begin{align*}
& =-\frac{f_{\mu}^{(\lambda)}}{f_{0}^{(\lambda)}} \frac{e}{V}(-1)^{\lambda} \tag{7.37b}
\end{align*}
$$

Therefore for fermions as well as for bosons the expectation value of $j(x)$ for a free particle state with
even i is

$$
\begin{equation*}
\frac{c}{V} \frac{f^{(\lambda)}}{f_{0}^{(\lambda)}}=\left\{\frac{e}{V} \underline{v}, \frac{\hat{v}}{\bar{V}}\right\} \tag{3.38a}
\end{equation*}
$$

where $\boldsymbol{\mathcal { V }}$ is the velocity of the particle. For a state with froe antiparticle of mass in α, λ even, the expectation value of j_{μ} in both of the conses is

$$
\begin{equation*}
-\frac{\mathrm{e}}{\mathrm{~V}} \frac{f^{(\lambda)}}{f_{0}^{(\lambda)}}=\left(-\frac{0}{V} \underline{V},-\frac{\mathbb{C}}{\mathrm{V}}\right) \tag{c.38b}
\end{equation*}
$$

Thus the particle current density for the states $a_{\lambda, ~}^{\dagger}|0\rangle$ and $b\rangle, f|0\rangle$ for oven λ values is $\frac{7}{V} \frac{2 r}{}$ and the particle density is $\frac{l}{V}$ both for bosons and fermions. Taking $\lambda=0$, covariant density matrices con easily bo derived in the gunntiscd theory both for particles and antiparticles of integral or half integral spins.

So far wo hove considered the free field case. For the comparitivaly simple coss of $s=\frac{3}{2}$ nd $s=2$ there are only two mass states and one might try to develop a quantised theory of interacting fields for particles with these spins but there ere several questions which have to be answered satisfactorily. One of these is how should the supplementary condition be modified under the presence of interactions. Another is the question of the unitarity of the s matrix. For whenever we insert a complete set of

131

states not only all the physical but all the unphysical states should be included. The third question we mention is whether such a theory with the supplementary condition (7.32) is a realistic one. The investigation of these problems is outside the scope of this work.

Several authors have employed the Duffin-Kemmer formalism in discussing the quantum electrodynamics of spinless and spin one particles. $(20,21)$ Sometimes it might be useful to have the rules for contracting the PuffinHemmer particles in a matrix element according to the method of Lehmann, Symanzik and Zimmerman. These rules can be easily found by using the orthonormality relations (3.42), (3.55) and the expansion (7.1) of $\rho(x)$ taking $s=1$, $\lambda=1, j=1$ and proceeding in the same way as one does (22) in the case of Dirac particles. The 'in' and 'out' destruction operators for particles and antiparticles are given in

$$
b_{\underline{f}}^{i}\binom{\text { in }}{\text { ont }}=-\sqrt{\frac{\gamma_{r i}}{f_{0} v}} \int_{v}^{\operatorname{Lim} x_{i} \rightarrow \mp \infty} e^{-i f \cdot x} \varphi^{t}(x) \beta_{4} V^{i}(f) d^{3} x
$$

The in and out fields obey the commutation relations 7.18 , 7.21 with $S=1, \lambda=1, j=1$ and it can easily be shown
that the destruction and creation operators obey the commutation relations

$$
\begin{aligned}
& {\left[a_{\underline{k}}^{i}, a_{f}^{j}\right]_{-}^{\prime}=\delta_{i j} \delta_{\underline{f}, \underline{f}}} \\
& {\left[\hat{b}_{f}^{i}, b_{f^{\prime}}^{\prime}\right]=\delta_{i j} \delta_{f, f}}
\end{aligned}
$$

All other commutators vanish. The indices i and j denote the three helicity states of the spin one particles. As an example we write dow the transition matrix element for

$$
\begin{aligned}
& \text { Compton Scattering of vector bosons } \\
& \left\langle f^{\prime} j ; q^{\prime} e^{\prime}\right| S-1|f i ; q e\rangle=(-i)^{4}\left(\frac{m}{V f_{0} V f_{a}^{\prime} 2 q_{0} V 2 q_{0} V}\right)^{\frac{1}{2}} \\
& i\left(f \cdot x+i v \cdot \gamma-f^{\prime} y-y^{\prime} x\right) \\
& \int d x d y d t d z e \\
& \left.e_{z}^{\prime} u_{\alpha}^{i}(f)\left(-\square_{z}\right)\left(\beta \cdot \frac{\partial}{\partial x}+m\right)_{\alpha \alpha}<0 \right\rvert\, T \varphi_{\alpha}^{\prime}(x) \quad \mathcal{Q}_{\beta}^{\dagger}(j) A_{\nu}(z) \\
& j_{\mu}(r)|0\rangle\left(\beta \cdot \frac{\partial}{\partial g}-m\right)_{\beta_{\beta}^{\prime} \beta} \| A_{\beta}^{i}(f) e_{\mu}
\end{aligned}
$$

f, i and f^{\prime}, j are the momenta and the helicities of the initial and final vector bosons, $c y$, e and $q \dot{q} e$ ' are the corresponding quantities for the initial and final photons respectively. In these formulae the 10 dimensional
representation of the β matrices may be used. Peasle $e^{(z o)}$ has given the traces of these matrices. The contraction formulae are very similar to those for Dirac particles and many results will be similar in form in the two cases.

RRFERENCES

1. H.P. Stapp, Phys.Rev. 103, 2, 425 (1956).
2. I. Michel and A.S. Wightman, Phys.Rev. 98, 1190 (1955).
3. Umezawa, Chapter V, Quantum Field Theory. NorthHolland Publishing Company, Amsterdam, 1956.
4. H.J. Bhabha, Rev.Mod.Phys. 21, 451 (1949). Other references are given in Ref. 3 and 7.
5. Madhavarao, Proc.Roy.Soc. A 187, 385 (1946).
6. N. Kemmer, Proc.Roy.Soc. A 173, 91 (1939).
7. E.M. Corson, Chapter V, Introduction to Tensors, Spinors and Relativistic Wave-Equations. Blackie and Sons Itd., 1955.
8. A. Klein, Phys.Rev. 82, 5, 639 (1951).
9. The result is true. See ref. 7.
10. E.A.M. Dirac, Principles of Quantum Mechanics, Clarendon Press, Oxford, 1958, p. 32.
11. P. Roman, Chapters II,V, Theory of Elementary Particles. North-Holland Publishing Co., Amsterdam, 1960.
12. I.C. Biedenharn, Annals Phys. 4, 104.
13. J. Hamilton, Chapter VIII, The Theory of Elementary Particles. Clarendon Press, Oxford, 1959.
14. H.P. Stapp, Phys.Rev. 107, 2, 607 (1957).
15. W. Lakin, Phys.Rev. 98, 1, 139 (1954).
16. R. Oehme, Phys.Rev. 98, 1, 147 (1954).
17. H. Umezawa and A. Visconti, Muclear Physics 1, 5, 348 (1956).
18. E.C.G. Sudarahan, Phys.Rev. 123, 6, 2183 (1961) (I am indebted to Mr. I. Castell for pointing out this work to me).
19. Y. Takahashi and H. Umezawa, Prog.Theo.Phys.

$$
\text { 2, } 14(1953) .
$$

20. D.C. Peaslee, Phys.Rev. 81, 1, 94 (1951).
21. A. Salam, Proc.Roy.Soc. A 211, 276 (1952).
22. S. Gasiorowick, Fortschritte der Physik 8, 12 (1961).
