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ABSTRACT 

Fourier techniques are frequently used in 

quality evaluations of optical systems. It is of 

value to inspect the relationship between these tests 

and the subjective evaluation of image quality made by 

the human eye. An instrument for the measurement of 

the Fourier spectra of photographic images has been 

constructed. It is based on a modification of Young's 

experiment involving polarized light and a Wollaston 

prism; real and imaginary parts of the Fourier spec-

trum may be obtained over a range of from zero to 

five lines per millimeter. This equipment has been 

used to obtain the Fourier transforms of a group of 

photographic slides whose images suffer from varying 

degrees of comatic, Gaussian and slAgrical aberration 

blur. These results are compared with subjective 

evaluations of the same images obtained by the method 

of paired-comparisons at three different distances. 

It becomes clear from this cormarison that the methods 

of Fourier analysis offer a more stringent method of 

quality evaluation than is offered by subjective 

testing. 
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CHAPTER I 

Methods of Optical Image Assessment  

INTRODUCTION 

By observing and measuring the diameter and 

structure of the image of a point source a reasonably 

critical evaluation of the quality of the intervening 

optical system may be made. From the shape and 

structure of the image, a knowledge of the types and 

relative amounts of aberrations present in the system 

may often be roughly inferred: and from measurements 

of the intensity distributions within the image 

quantitative judgements may be madeas to the quality 

of that system. 	So it is that w e recognise the flare 

patterns of coma, the broadening of the disk from 

spherical aberration and defective focus, and the line 

images of astigmatism. 

This means of image assessment was a direct 

outgrowth of the astonomer's need to test and perfect 

the objectives for his telescope. .A perfect stellar 

image would be one that was limited only by the 

diffraction parameters of the system, and Rayleigh (1879) 

and Striihl (1895) set empirical limits by which an 

1 
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estimate of the performance of optical systems might 

be tested. 

Although optical objects are not generally 

composed of isolated point sources, one may certainly 

think of any scene as being made up of a large number 

of adjacent points. 	To obtain an idea of the perfor—

mance of an optical system which has been tested by a 

star image one has to sum:the interactions of these 

points over the image field. 	In practice the structure 

of the spread functions of these individual points is 

inclined not only to be complex but variable over the 

image field. 	The process of summing these spread 

functions and interpreting the results would be both 

tedious and extremely difficult. 

The scenic objects presented to photographic 

objectives and visual observing instruments are of an 

extended nature. 	Moreover, a knowledge of the profile 

of a line spread function, rather than of a point 

spread function and its variation over the area of the 

image plane, adequately indicates the performance of 

an optical system used. to observe extended objects. 

Rather than applying a quality criterion to this spread 

function directly, it is more directly informative to 

take the Fourier transforms of the line spread functions 

for different azimuths to give the frequency responce of 
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the system in these azimuths. 	Comparison of the 

resulting response curves of various systems with the 

curve for an ideal system will supply the bandwidth, 

or limit of resolution, of the system as well as a 

description of its performance at all lower frequencies 

in any azimuth for each point of the image field. 

The limit of resolution of a system may be 

obtained more directly by noting the highest frequency 

at which a square-line grating can be just resolved by 

an observer. Numerous ingenious and valuable test 

charts of the square-bar type have been invented and 

used for this purpose. 	Typical are the Cobb test chart 

and Inglestam's test pattern. 	But, as was mentioned, 

these tests only indicate the band width of the system 

and, because of effects such as spurious resolution and 

contrast reversal produced by the interactions of higher 

frequency harmonics, too many personal equations must 

be added to the result to make the quality predictions 

as reliable as one might wish* 

OPTICAL FREQUENCY RESPONSE 

The usefulness of Fourier analysis, and hence 

frequency response techniques, in optical systems 

evaluation is due to two main factors. 
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The first is that under two simple conditions, which 

will be discussed below, a grating-like object, across 

which the intensity varies according to the formula 

B (") =a + pcos 

has as its image an intensity distribution, of exactly 

the same form, namely 

B' (?) = a' + peas [2nRy + 6 (R)]. 

The primes refer to the image space in accordance with 

normal procedure. 	The contrast transfer function 

T(R011) of the optical system is equal to the ratio of 

the image contrast (13 /a') to the object contrast 0/a) 

and is always less than unity. 	The contrast transfer 

function is dependent on both the azimuthal orientation 

(*) of the grating with reference to the optical system 

1 and of the grating spacing (7). 	The coordinates (() and 

(e) are usefully chosen to be such that their ratio will 

equal the magnification of the system. 	In this case the 

spatial frequencies R' and R are numerically equal. 

This characteristic of a cosinusodial fringe 

pattern being transmitted without change of form allows 

one to avoid all the difficulties of data reduction called 

for with point or square-wave line test-objects. 	The 

effect of aberrations and diffraction caused by the optical 

system will result in either a reduction of image contrast 

or in both a contrast reduction and a phase shift. 	The 

lateral shift in the image plane may be represented by, 
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' = -0 (Roil) / 2nR 

o(Rolf) being the angular measure of the phase-shift 

resulting from asymmetry in the spread function. 	The 

complex transfer function is then 

D(R,O= T(Roli) exp { i0 (Roll)} 

in accordance with the customary formalism. 

The second important factor making Fourier 

analysis so important to optical systems evaluations 

is that any two-dimensional spatial distributions of 

intensity (i.e. any extended optical object) may be 

represented as the super-position of sets of unidimen-

sional cosinusoidal spatial distributions of intensity 

arranged with the proper azimuth, position and amplitude. 

In other words, any optical object may be built up out 

of a variety of Fourier components in such a way that it 

represents exactly the object. 	If one were to reduce 

the object to these components each would be transferred 

to the image plane in such a manner that they would all 

suffer a decrease of contrast equal to the contrast 

transfer function and a shift of lateral position equal 

to fbt' and these changes would be the direct result of 

the optical system's failure to produce a perfect image 

(i.e., a direct point to point correspondence, scaled 

to the magnification of the system, between the object 

and image). 
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The only two conditions which need to be 

placed upon this treatment of optical images are. that 

the intensities in the image add in a linear fashion 

(i.e., that the object be of an incoherent nature) 

and that the aberrations vary smoothly and slowly over 

the image plane. 	This later condition, known as 

isoplanatism, will be better satisfied as the state of 

correction of a system is improved, but is generally 

of an acceptable nature in any event. 

Calculations have been made to estimate the 

frequency response curves of lens systems when they are 

suffering from defect of focus (Hopkins, 1955), astig—

matism (De, 1955) and spherical aberration and coma 

(Goodbody, 1959). 	Many of these results have been 

verified by K.G. Birch (1960) using a slit scanning 

method and by Kelsall (1959)  usingan automatically 

recording interferometer working in monochromatic light. 

In this case not only was the contrast transfer function, 

T(R,i) measured but, in some experiments, the phaseshift, 

6 1 , was also obtained. 

Frequency response curves have also been 

obtained for photographic emulsions (Eastman Kodak, 1961) 

making it possible to predict a system's performance by 

the same method, through to its final recording. 	There 

are however, a few peculiarities in the application of 

frequency response methods to a photographic emulsion. 
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Firstly the problem is simplified since under most 

conditions there is no spatial phase shift, between 

the 'object' cosine-wave and the recorded 'image' cosine- 

wave. 	The problem is complicated, however, by the non- 

linear properties of the photographic emulsion. 	Because 

of the non-linear toe and head portions of a normal H-D 

curve a pure cosine-wave input image may suffer an 

effect exactly similar to the harmonic distortions 

found in an audio amplifier. However, unless the gamma  

is exactly equal to unity, the opacity on the straight 

portion of the characteristic curve is not proportional 

to the exposure. There is a linear relation only between 

the logarithms of these quantities. 	The signal as 

recorded on the photographic emulsion now contains 

harmonics of the original pure cosine-wave. Frieser 

(1935) suggested that the photographic process could 

be best thought of in two stages; the exposure of the 

emulsion to the incoming signal which leads to, in this 

case, a linear scattering of light in the emulsion; and, 

secondly the development of the exposed plate. 	In the 

first stage a cosine-wave image will only suffer a 

decrease in contrast but in the second stage the non-

linear relation between the effective exposure and the 

developed density results in the introduction of 

harmonics to the signal and this effect is a function 

only of the development process. 
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Wilczynski's (1960) work on this subject 

shows that while the best linear contrast transfer 

function may be obtained over the straight portion 

of the H—D curve with gamma equal to one, the highest 

contrast is obtained in the lower, or toe, region of 

the curve. This confirms the empherical studies 

made by McKenzie (1931) in connection with studies 

of variable density sound recording. 

Wilczynski also showed that harmonic 

distortion occured in the image for any value of 

gamma not equal to one by his method of Fourier 

analysis. His technique of analysis involved the use 

of laterally moving monochromatic fringes generated by 

a Michelson interferometer. 	These fringes were passed 

through the photographic transparency under test and 

the light transmitted was collected to obtain the 

modulus of the Fourier transform of the test object. 

The application of the concept of frequency 

response in the photographic process is further 

complicated, however, by neighbourhood effects. 	The 

effect, first described by Eberhardt (1912), consists 

in the fact that even for a uniformly exposed image the 

developed density of small spots was greater than that 

of large spots. 	The effect grows with the exposure 

but is greatly diminished by a background exposure and 
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the resulting development of fog. During the course 

of development, the neighbourhood effect rises to a 

maximum and then decreases as development is continued. 

The effects were ascribed by Eberhardt to the accumu-

lation, during development, of development products and 

partial exhaustion of the developer in the region of 

heavily exposed areas, which tends to slow down the image 

growth. With very small images, this production of 

oxidation products and soluble bromide is low. 	The 

developer then retains its original concentration and 

produces greater density than for larger areas. [After 

Nees (1952b)]. 

The Eberhardt effect is often pronounced at 

the edges of high contrast images where both an over-

shooting and undershooting of the edge may be seen. 

These effects, known as the border effect and the fringe 

effect are described by Mees (1952c) as follows:- 

ao 	border effect appears as an increase 
in the density of the margins of a 
uniformly exposed, sharply defined edge, 
relative to the density within the image 
itself. 	It is caused by the diffusion of 
the fresh developer into the exposed image 
from the neighbouring unexposed background. 

b. 	The fringe effect appears as a diminution 
in the fog density along the boundary of a 
well-exposed and sharply defined image as 
a result of the diffusion of reduction 
products from the image. 
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In terms of Fourier 
Density 	

analysis this implies, and 

was shown by Wilczynski to 

be so, that for low frequency 

sinewave test objects an 

increase of even harmonics 

Fringe Effect 	will occur, giving higher 

average opacity and lower 

fundamental amplitude for the 

same opacity. 	This in fact, 

explains the apparent rise above unity of the frequency 

response curves, given by Eastman Kodak for the lower 

portion of the response curve. 

While it has been suggested that the overshooting 

effect tends to correct the contrast transfer function 

of the optical system by intensifying the mid-range 

frequencies this is really not generally so. 

Frequency filtering occurs only in those parts of the 

imaze where contrast is high and the resolution would 

be good in any event. 	In the low contrast detail no 

filtering occurs at all. 	Basically the Eberhardt 

effect only distorts the image in a non-linear and non- 

correctable manner. 	It is frequently the best course 

to reduce the effect, by brush development, to a 

minimum value. 

Border Effect 
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As was previously mentioned, the use of 

Fourier techniques in optics aims to set up an 

objective method of evaluating the image quality, 

based on the transfer factors of the system. 	The 

lens designer may find the effect on the frequency 

response of a lens of different aberrations by 

calculation and testing, and is able, to some extent, 

to control the frequency response of the system; he 

will know the effect that the photographic emulsion 

will have on the image and so will know the limiting 

and controlling quality factors of the entire system. 

There remains the important question, namely, whether 

the sensitivity of frequency response as a means of 

assessing image quality is greater than the sensitivity 

of assessment of image quality made subjectively by 

observers, 

An attempt to solve part of this problem was 

made by Crose (1956) when he filtered out certain 

spatial frequencies from photographic scenes and observed 

them over the resulting restricted bandwidth. 

Other experiments, such as those by Higgins, 

Lambert and Wolfe (1959), have been carried out involving 

controlled degredation of image quality and a variable 

contrast transfer factor. 	While these experiments are 

valuable and useful, they do not seem to establish a 

direct relationship between the observer's criterions 
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of quality in a photographic image and the contrast 

transfer functions of the preceding system. 

The purpose of the work described in this 

thesis has been of a two-fold nature: first, the 

development of an instrument to obtain the Fourier 

transform of photographic images (which, although 

not in itself an entirely new development, does 

describe a new method of instrumentally obtaining 

these ends) and secondly, an investigation of the 

effect that a degradation of image quality by Gaussian blur, 

spherical aberration and coma will have both on the 

Fourier components of the image *44 the observer's 

judgement of the quality of that image. 	Correlation 

of these factors will then be made. 

PRELIMINARY STUDIES INTO VISUAL DEFOCUS TOLERANCES 

MAKING USE OF FOURIER TECHNIQUES. 

In an effort to obtain a rough idea of the 

parameters which would be expected in this research a 

group of preliminary experiments were carried out. 

These tests all involved the ability of observers to 

discriminate the minimum defect of focus of a dark 

strip on a brighter background which could be tolerated 

when compared with a juxtaposed comparison slit. 	Crude 

as these experiments were, the results are of interest. 
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Ten experienced observers were asked to set 

a series of dark strips and a knife-edge so that their 

images, viewed in projection, just became unsharp. 

They were asked to choose the minimum defocus position 

that produced a just discernable defocus of the image, 

whether this involved an apparent loss of contrast or 

a softening of the edges. 	The observers vere allowed 

to 'zero-in' on what they felt this position to•he. 

As mentioned, to aid their discrimination, an equivalent 

image of perfect focus was projected through the system 

to act as a comparison. 	See Figure (3). 

At the one meter observing distance used, the 

slit images viewed had a real width of 2.0", 0.250", 

0.33", 0.007" and 0.001". 	The last and narrowest slit, 

being below the resolution of theeye, exhibited a contrast 

reversal and was, therefore, not used. 

Neglecting phase changes the Fourier transform 

of the defocused image is given by 

Ib' (s)I =-- lb(s)1,1D(s)1 

In Hopkins' convention D(s) is, here, the frequency 

response of a defocused lens and b(s) is the Fourier 

transform of an object, B(u). 	However, due to the 

comparatively large amounts of defocus required to 

affect the observer's judgement in these experiments 

b(s)ikliand we may approximate the image transform thus 

lb' (s)l -=-'1D(s)l 
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Now D(s) has been calculated by Birch (1959) for 

various degrees of defocus. 	If 4120 is the marginal 

difference of optical path corresponding to a longi-

tudinal defect of focus, dl, for a lens accepting a 

cone of rays of semi-angle (a),then 

W20 =- 	Nsin2 () 	=-nX/n 

The frequency response of ad efocused lens is dependent 

on (n), and these values may be obtained easily after 

the substitution, sina= (2F)-1 In fact 

dL=8n X F2  /n N 

These results are shown in Figure (4), plotted 

as a ratio of the image frequency loss against the 

spatial frequency. 	The size of the error range 

indicates that the observer is using subtle (to him) 

variations of image structure as his basic criterion, 

not gross, rapid changes of frequency content. For 

this reason, and intensity considerations, it is to be 

assumed that all variations of the data below b(s)/13'(s) 

0.1 are unimportant. 

Each observer was asked to make three separate 

settings for each object. Although the averaged 

probable error of these settings is only 3.7, Figure (5) 

shows that this resulted, in part, from his memory of 

previous settings. 	While there is a tendency to 

retain the basic individual criterion for sharpness, 
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it is not of a definitely predictable value. 	This 

variation in the focus criterion of an observer indi-

cates the need to keep towards the high side of the 

response function in order to be sure of satisfying 

the observer of the comparison image's sharpness. 

Figure (6) shows"that the frequency content 

has dropped to nearly 10% of the perfect image for 

values of (s) ranging about 0.025. 	This is roughOy 

equivalent to 14 lines/inch at our observing distance. 

Clearly this value is well within the resolution limits 

of the eye. 	Simply by making the crude calculations 

relating the average separation of the retinal sensory' 

units (which Hecht and Mintz (1939) take to be 2g) to the 

best situation of resolution we find that 126 lines/inch 

should be resolvable at this distance. 	(It is interes-

ting to note here that the generally accepted value of 

angular acuity in terms of a grating is 2' of arc 

(Emsley, 1936) or 67.8 lines/inch in our terms. 	Hecht 

and Mintz (1939) found that under conditions of extreme' 

contrast and high background illumination a thread of 

0.5" of arc could just be decerned as existing. Fechner's 

Law (1860) states that a variation of 1% of light level, 

at normal illumination may be detected by comparison). 

Although no really firm conclusion may be made 

from these data, they do indicate two things. 
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First, that the visual criterion for image 

sharpness is surprisingly crude as compared with the 

techniques of frequency response. 	Second, that the 

threshold lies within a small enough region of the 

spatial frequency spectrum to allow instrumental 

techniques of Fourier analysis of good sensitivity. 
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CHAPTER II 

Instrumentation 

GENERATION OF FRINGES 

The illumination at any point (A) from two 

coherent point sources of light, P1  and P2, will depend 

on the relative phase of the beams from P1  and P2. 

When they are in phase, constructive interference results; 

out of phase gives destructive interference. 	This 

relative phase depends on the difference of path API  - 

AP2, which in turn varies with the angle LP1P2A. 

If A is at a distance and the angle z.PiP2A 

is nearly a right angle, the variation of path length 

with angle is almost linear. So, for monochromatic 

light, the illumination on a screen parallel to P1P2  

at some distance will be wholly covered by cosinusodial 

fringes. 	The fringe spacing will be inversely propor-

tional to the separation of P1  and P2  and directly 

proportional to the distance from the screen. 	These 

are Young's fringes. 

24 
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The classical method for production of 

Young's fringes is the illumination of two slits 

by a third equidistant slit or by a collimated coherent 

beam. This has the disadvantage of wasting most 

of the light on the slit jaws and requiring that the 

slits be very narrow so that they act as true diff— 

raction sources. 	The resulting light level is too 

low to be of great practical use. 	This problem can 

be overcome by using two images of one slit. 	The 

various standard techniques for this are the Fresnel 

biprism, Lloyd's mirror, the Billet split lens and 

Newton's double mirror. A Wollaston (or Rochon) 

PrigM MAy alao "ID@ Utili0@ds 

These prisms are made out of a birefringent 

material and have the effect of refracting incident 

light of two different polarizations slightly differently. 

Thus a slit viewed through such a prism will appear 

double and can be made to act as effectively two 

separate coherent sources. 	It is necessary to place 

a polarizer oriented at 45°  to the optical axes of the 

prism, on each side of the prism. 	The first ensures 

the coherence of the two images; the second removes 

the orthogonality of their polarizations, permitting 

interference. 

The separation of the two virtual slits is 

proportional to the distance of the original slit from 
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the prism interface. For an actual slit this limits 

the maximum separation of the fringes to a scaling 

factor times one half of the prism thickness. 	While 

in theory it would be perfectly acceptable to use a 

real image of the slit, which could' then be formed 

inside the prism the practical considerations of 

high.  lens speed with small aberration tolerances 

make this an impractical solution. 

If, however, two Wollaston prisms are placed 

face to face,in the manner shown in Figure (7), the 

plane of the apparent slits will lie outside the 

resulting prism system. 	This will enable one to 

obtain a zero fringe spacing position giving no fringes 

by making the prism to slit distance such that the two 

images exactly overlap. This was the system finally 

adopted. 

The effect of a lateral shift of the prism 

may be best thought of by considering an axial ray 

from the real slit through the center of the prism. 

This ray will pass through equal thicknesses of the 

prism halves; the two polarizations of the ray will have 

equal optical path lengths and so will emerge in phase. 

If, however, the prism is laterally displaced with res— 

pect to the ray, there will be different thicknesses of 

the two prism halves traversed by the ray. 	This is 

equivalent to adding a retardation plate to the early 
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situation; there will be a path difference for 

the two polarizations and they will no longer emerge 

in phase. 	This appears as a sliding of the fringe 

pattern in the image space. 

Neglecting the second order effects caused by the 

variation in path angle through the laterally shifted 

prism, the total optical path difference between the 

orthogonally polarized beams I & II resulting from a 

lateral prism motion, S, will be of the following form 

021) = 2(n 
o 
 —n 

e
) S tan() 

In practice it is vry difficult to make 

the prism move exactly along the optical axis. 	A 

pure translation, with disregard to the direction is, 

however, reasonably simple to produce. 	It is of 

interest then to inspect this case. 

28 
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A pure translational motion of the prism 

with respect to the slit will linearly vary both the 

frequency and the spatial phase of the fringes. 	This 

may be described by writing 

I = cos2ki(D)u + f2(D)1 

where (I) is the intensity in the fringe pattern, 

(D) is the prism position and (u) a coordinate in the 

fringe plane. 	The functions f1(D) and f2(D) are due 

to the longitudinal and lateral components of the 

motion, respectively, and both are linear functions 

of position. A suitable choice for these functions 

can be made as follows:— 

f1(D) = aD 	f2(D) = bD + c 

then 	I = cos2(aDu + bD + c) 

Here both the phase and the frequency are changing 

with the position (D). 	However, shifting the fringe— 

plane coordinates to 

u' = u+b/a 
gives 

I = cos2(aDu' + c) 

The phase at u' = 0 is now independent of the frequency. 

Here (a) represents the constant of proportion between 

the fringe spacing and the longitudinal prism motion 

and (c) represents the lateral position of the image. 
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This, in summary, merely says that for a 

fringe pattern which is linearly changing in frequency 

and linearly shifting in phase, there is some point 

at which the phase is constant. 	If this point is 

kept to the center of the image space, the lateral 

shifting of the fringes may be determined and controlled 

through alignment. 

Figure (9) shows the optical system which has 

been used. 

If the analyser is rotated it will appear to 

the photomultiplier that the pattern in the fringe 

plane, constitutes what may be described as a standing 

wave of intensity distribution; the temporal frequency of 

this standing wave being twice the rotational frequency 

of the analyser. As we have seen, the spacial frequency 

will depend on the distance between the actual slit and 

the prism interface. 

THE MEASUREMENT OF THE 
FOURIER TRANSFORM. 

If a transparency which is described by a 

one-dimensional function of position B(u), which we 

wish to analyse, is placed at the fringe plane, the 

flux, F(t), arriving at the receptor will be given 
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by integrating the product of the transparency and 

the illumination, that is by 

F(t) =fi(u)pc + pcos 27tsu coswt] du 

= aj(B(u)du + p costptj(B(u) cos27tsu du 

where (a) is the average intensity in the fringe pattern 

and (p/a) is the fringe contrast,(u) is the spatial 

coordinate in the fringe plane, (s) is the spatial frequency, 

(t) is time and (22) is the temporal frequency. 	This 

last is equal to twice the frequency of rotation of the 

analyser. 	The light flux F(t) will give a corresponding 

time—varying signal from the photomultiplier used to 

detect the flux. 	If one filters out the temporal 

frequency (w) from this signal, the ratio of its aVlitvde 

to that of the constant term is proportional to 

f+ cc°  
B(u) cosi2n u*Iu 

that is, the Fourier cosine transform of B(u). 

If the position of the fringe system is shifted 

laterally by an amount u1, the component of frequency 

w will be 

p 

and, if 2itsu1  = n  the ratio of the A.C. to D.C. ' 2:  

amplitude will be proportional to 
+Qo 
B(u) sin27tus du 

sine that is, the Fourier sine transform of B(u). 

+ csa 

)1  
coswt B(u) cos2ns(u—u1) du 

—co 
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If the phase difference between the two 

different polarisations from the source is changed 

by a quarter of a period (by inserting a quarter wave 

plate) the Pouriercosiretransform of B(u) may be 

measured. 

Armed with these facts, plus the knowledge 

of the variation of the fringe spacing with prism 

motion, it will be understood that an instrument 

based on these procedures can measure the Fourier 

spectra of photographic images over a finite range 

of spatial frequencies. 	It remains only to examine 

the departures from linearity of 	system. 	These 

will be dealt with as four separate sub-sections. 

PRIMARY ABERRATIONS ARISING FROM 
THE WOLLASTON rriism. 
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Because of the mode of illumination of 

the slit all rays are substantially parallel to 

the horizontal plane. 	Hence, with optical axes as 

shown, we shall have the ordinary index of refraction 

for E-vectcrc parallel to the horizontal plane. 	In 

determining the primary aberrations arising from the 

Wollaston prism the values obtained from a single 

horizontal section will be representative of the entire 

fringe field and these aberrations will appear as a 

cylindrical wave-front distortion perpendicular to 

the horizontal plane. See Figure (10). 

The action of the Wollaston prism on a 

wavefront originating at the point S1  of a slit source 

may be considered in terms of diagrams (11) and (12). 

In (11), 
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for example a wavefrcnt polarized with the E-vector 

in the plane of the diagram leaves Si  and is 

refracted successively at the three surfaces of the 

prism. 	It has the ordinary refractive index in the 

first prism and the extraordinary refractive index 

in the second prism. 	In (12), on the other hand, 

the wave 

CASE (ii) 

leaving S1  is polarized with its E-vector normal 

to the plane of the diagram, so that it has the 
extraordinary refractive index in the first prism 

and the ordinary refractive index in the second prism. 

Ideally in both cases the wavefronts 

emerging from the prism should be spheres centred on 

the image points S o. Variations in optical path 

difference arising from aberrations are easily 

calculated using the primary aberration formulae 
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W(r) = 8 SIr4  + - iSIIr3 	2SIIIr2 

	
(1) 

as given by Hopkins (Wave-Theory of Aberrations, p.79). 

It has of course, to be remembered that we are here 

not dealing with an axially symmetric optical system. 

Thus the coefficients 

S1  =EA2  h A(n) 
	 (2) 

SII =EAB hA (12i)  

SIII 	132  h A (k )  
should strictly speaking use a close sagittal ray for 

the values of A, h anclA(31-711), and a finite trace of the 
axial ray S1AlA2A3A' 

of B. 	Because of t 

it is permissible as 

in each case to give the values 

he small angles involved, however, 

a first approximation to put 

--r  B = n sira nT, where i is the angle of incidence of 

the reference (axial) ray S1A1  at the different surfaces 

of the prism. 

Let ()be the angle of each prism. 	Then 

for the successive surfaces, in case (i) 

(i) 	1 = 0 	B1 = 0 no 
2 	01 	= 0 	B2 = nee 

T3 = 2-i2 	 B3 	(no-ne)4i) 

n 

	9 

• 

(3) 



For the second case 
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(ii) 	T.1 = 0 
-1 	ne 12 2 no 

B1  = 0 

B2 = nog (3) 

(  a . I 2 - i2 
= - 1 - ne 
( i0)19  

B3o-n.e)0  

The values of B3 are thus numerically equal. 

To find the values of u, 1.
1  
0 we note that, 

for plane surfaces, 

n'us'-n us  = h scA(nusT) = 0 

Thus 
nus u - s n' 

giving, in the two cases, the following values. 	The 

angle ul  is chosen equal to the full aperture used 

in forming the fringe pattern. 

(i) 	u1  u1  A ( ) = 2 n- 

- 1) u
1 1 	o =, u1 u 

7o  

2 = ui 

u' = nou2 = nbui = ul 2 

	

A (u 	_ 1 	1 

	

n 
	n e ) 2 	- n )111  o 

ne 	ne 	
7 

(4) 



Similarly we find 
( i ) 	A (1_1 	(2 2 - 1) u1 

1 ne 
A 

 Gla

_ 1 	1 
— 2 - 2 u1 

2 no ne 

°\n/
— 2 )ul no 3 

The values of Al'  A2, A3 are also easily found, since 
A = ni = n(hc-u) = -nu when c = o. 
Thus: 

(i) 
	Al -n1u1 -u1 

A2 = -n2u2 = -n u 

	

o 2 	1 
A3 = -1.11 

Similarly 

(ii) 	Al = A2 = A3 = -u1 
Let d be the half-thickness of the prism, and suppose 
the distancesA1A2'  A2  A3  to be equal, and, within 

the desired approximation, each equal to d. 	Then, 

if 11 	 1 is the distance of S from A1, 

(i) 	ha.  =[11u1.] 
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(4)  

(5)  

(5 ) 

h2 = h1 - du1  =[h1 - (6) 



(ii) 	1-,1 	L  =r11 u1] '  

h2  = hi  - dui = 'ha.  - 	 1] 
{ n

du
a 

du 1 h3 =[h2 - -n-oli 

We now have all the prime data required for the cal-

culation of S1, SII and SIII. 

A convenient choice for the numerical value 

of the angle u1  is found by consideration of the fol- 

lowing diagram. The emergent axis for the polarization 
CASE ( ) 
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(6) 

Emergent Axis 

P 

(÷) 

2 

9 
	

••••••••• 

ho 

0 

(i) appears as S3A', and the ray S3-212  is that ray Which, 

emerging, passes tilrough the edge'
2  of the fringe area. 

The and 	is numerically equal to A1S3P:2, and is 

lull. "c,  
17'  

(7) 

where ho and 1,q are taken to be essentially positive. 

As the prism moves from left to right, the value of 

hl  will decrease, so that the maximum  value of hi 
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occurs when the prism is in its extreme position to 

the left of the diagram. 	It is in this case that 

the greatest relative shear exists between the two 

wavefronts (i) and (ii). 

The numerical values of hl and ho are, 

sinceOP= 2°6 = 0.0367 radians 

hte,1,01?... 19.8 x 0.0367 = 0.727 cm 1 

ho  = 0.95 cm 

Hence 	li — 156.787  — 0.0847 

For any calculation it is useful to choose ul  to be 

positive when ccnsidered in the customary sign 

convention of instrumental optics. 	In this latter 

the sense of the angle is that of a rotation from the 

ray to the axis, and this rotation is positive when 

anti—clockwise. 	The angle F2S3'A1' is thus positive, 

and u1  = 0.0847.. 	The calculations of the aberration 

coefficients SI' SII' III S 	are carried through using 

this angle. 	Then for any point in the fringe field 

the aberration of each wavefront is found by sub—

stituting an appropriate value of the fractional 

aperture, r, in the formula (1). 	For a point P 

in the fringe plane, at a distance h from the origin 

0, r will have the values 
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Emergent Axis 

L 
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r 	= 
1 

r 	= 2 

h1 	h 

(8) 

h 

_1 
h1 

- 

+ ho- 

2 + 
t 

h2 + hoj 

where h, the bright of a current ray now takes positive 

or nerative values, according as the point P is above 

or below the axis of symmetry. 

It will be necessary to calculate the effects 

of aberrations for, say, three positions of the prism. 

This is because there are two opposing factors. 	As 

the prism moves to the right, the incidence heights 

of the ray at the surfaces of the prism increase, and 

so the aberration coefficients SI etc., for each 

polarisation, will also increase. 



On the other hand the relative shear between the 

wavefronts at the fringe plane will decrease as 

the prism moves to the right. 	Thus if the prism 

were moved from an extreme left to an extreme right 

position, there would be a large shear acting with 

zero aberration changing to a large aberration with 

zero shear. 	In both cases there would be no effect 

of aberration on the fringes. 

Let I, II and III be used to denote the 

extreme, mean and further positions assumed by the 

prism in the practical case as it moves from left 

to right. 	For each of these cases the values of 

B will be those given in (3). Now 0= 12°  = 0.2094 

radians, and ne = 1.486 	n0  = 1.658. 

Thus: 

(i) B1  = 0 	B2  = 0.3112 	B3  = 0.3'60 

(ii) B1  = 0 	B2  = 0.3472 	B3  = = 0.360 (9) 

Again, since only plane surfaces are involved, the 

angles u, u'1  are also the same for all the cases I, 

II and III. 	By (4), these are 

(i) 	ul  = 0.0847 	
(10) 

= — 0.0539 

42 



0.0075 

= 0.0463 

(ii) n1  0.0847 

	

A [ LI 	0.0463 

	

[11 	— 0.0075 n2 

4S[FLI1 3]. 0.0539 

Further the value of A is the same for each surface 

in each case, so that 

(i) A — A = A 2 	= 	9.047 

(ii) 	Al  = A2  = A3  = — u1  = — 0.0847 

For case I, 11  = 0, and then, by (6), 

(i) 	h1  = 0 

h2 . 0.00639 

h3 . 0.01352 

(ii) 	h1 1. 0 

h2 = .00713 

h3 = .01352 
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(10) 

(12) 



For case II, 11  = 1.25 cm: 

(i) 	h1  = 0.1059 

h2  = 0.1123 

h
3 = 0.1194 

h1  = 0.1059 

h2  = 0:1130 

h3 = 0.1194 

For case III, 11  = 2.50 cm: 

(i) 	hl  = 0.2118 

h2 = 0.2182 

h3 = 0.2253 

h1  = 0.2118 

h2  = 0.2189 

h3 
= 0.2253 

The values of the aberration coefficients for the 

three cases are now found to be: 

Case I  

(i) 
	

SI  = .0000048 	SII = .0000204 
	

SIII = .0000857 

	

S = .0000048 
	

SII = .0000238 
	sIII = .0000870 
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(13)  

(14)  
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Case  II 

(i) S =.0000043 

(ii) SI  =.0000049 

Case III  

(i) SI  =.0000046 

(ii) SI =.0000051 

To show the 

SII = .0001908 

SII = .0002211 

SIII = .0007980 

SIII = .0006219 

SII =.0003612 
	

SIII = .0015104 

SII = .0004136 
	

SIII = .0013769 

variation in wavefront aberration 

-over the full aperature it will be adequate to obtain 

five values of r. 	These will be found at equal 

intervals of h, such that h = 0, 1/ 	/ h 	h (4"0, 
1 
 2 o' 	4 o 

andh.Asithasbeenshown 1 =1, and h = 0.95 cm; 

further, it is a good approximation to call El 

From formula 8, 

1 

r2 

hl - h 

— 	ho 

h  
72  + ho 

For the five separate points the values 

will be: 

Case I  

POINT 1 

r1 = .4335 

r2  = .4335  

Case II  

h = 0 

rl  = .4175 

r2  = .4175  

Case III  

ri  = .3870 

"2 = '870 
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Case I 
	

Case II 	Case III  

h =  POINT 2. 1/4 ho  

r1  = .2952 .2716 .2336 

r2 - .5760 - *5635 - .5907 

POINT 3. 	h 1/2 ho 

ri  = .1503 	.1263 	.0806 

r2 = -.7168 	- .7088 	- .6935 

POINT 4. 	h = 3/4 h0 

ri  = .0083 	- .0196 	- .0729 

r2 = r .8587 
	

• .8546 	- .8471 

POINT 5. h=ho 

r1  = -.1330 	- .1649 	- .2258 

r2 = - 1.000 
	- 1.000 	- 1.000 

By applying formula (1) the variation 

in optical path difference between the two beams may 

be obtained for these various points over the fringe 

field. 	These results are plotted with the aperature 

appearing as the ordinate. Formula (1) states: 

11 W(r) = s1 r4 r3 
	

siii r2  



Beam (i) Case I Case II Case III 

W(r1) 	3:58  x 8.90 74.85 129.59 

W(r2)= 3.36 31.34 43.50 

W(r3)= 1.00 6.55 5.00 

W(r4) = 0.01 0.15 3.94 

W(r5)--,  0.78 10.42 36.42 

Beam (ii) 

Vi(r1)= 158  x 9.15 62.27 115.25 

W(r2)= 16.77 118.58 261.94 

W(r3)= 26.88 195.74 483.59 

W(r4)= 39.92 296.32 621.58 

W(r5)= 56.00 422.11 898.39 

The total wave—front aberration difference 

between the two beams, W(r), expressed in 

wavelengths of mercury green (5461R), being: 

W(r1)= 0.000 0.002 0.003 

W(r2)= 0.002 0.016 0.040 

W(r3)= 0.005 0.035 0.078 

W(r4)= 0.007 0.054 0.115 

W(r5)= 0.010 0.079  0.158 
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TOTAL PRIMARY ABERRATION 
FROM A •WOLLASTON PR-ISM 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 

AWN in waves of Mercury green light 
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These aberrations will have virtually no 

effect on the fringe field and there is no need to 

make any corrections for them. 

VARIATION OF FRINGE VISIBILITY 
WITH SLIT WIDTH. 

Since the signal-to-noise ratio of the final output 

is directly dependent upon the visibility, (V), of 

the interference bands, it is of great interest to 

examine the formula expressing the influence of the 

width of entrance slit on the visibility of the fringes. 

Referring to Figure (16) we find that: 

t }2 
(P1Q).? 	(x 	xo) 	

4. D2 

2 	)2 

(22°2  = (x 	xo) 	) 	4. D2 

Where (x), (y) and (z) are coordiates in the slit 

field and (0, (n) and (D) are coordinates in the 

fringe field. Subtracting and factoring gives for 

the path difference to the point Q in the fringe plane, 

[(P1Q) - (P2Q)]•[(P2Q) 	(P101 	x o (2 x - 2i) 

[(P1Q) - P2Q 
4 0 (x - ) 

[ PlQ) 	(P2Q )] 

or, with 
(P1Q) = R1  and (P2Q) = R2/ 
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Nx,y,0) 

F(x+xo,y,0) 

P(x-x0" yO) r. 

Real Slit 

D 

Q  

Fringe Field 



4xo (x - ). 
R1 -R2 = 	  

[2R1  - (R1  - R2)] 

Since (R1  - R2) << Ri  (R1  being very nearly equal 

to R2), we may,write: 

R1 -R2 

4xo (x - 

 

(R1 R2)  

4x0  (x - 

 

   

12D- (D - R1) 	(D - R2)1 

Since also, ID - Ril(D and jD - R2I(D (R1  and R2 

being very nearly equal to D as well), 

4x0  (x - E) 
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R1 - R2 = 	2D (Ri  + R2) 1 
2D [1 	 

2D 

2D - (R1 + R2) 1 + 
D 

Clearly the second term in this 

equals one, so that we may make  

2D 

statement very nearly 

the following approximation 

to obtain an expression for the optical path difference 

between rays from the two apparent slits 
[2x0  (x 

R1 -R2 = D 	 

The general two dimensional formula for the distribution 

of intensity in an interference pattern is: 

I (k,n) = Al + A2 + 2i A2  cos (1) 
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Putting K = 2 
X wherecD= 2  x (path difference). 

and substituting the above we 
2x (x - 

c1) = K
D  

1 	° 

see that: 

Our frinEe pattern is a unidimensional system which 

is independent of (n) and, so, the expression becomes: 

I() = 

2x, K(x - 
dl(f) = 	2 + A22  +2A1A2  cos ( 	D 	dxdy 

+ A2) 	
Y 

11dxd + 2A1A2f Y-x (x  cosfcos (° 	)) dxdy I  

expressed as:  

If the slit half-width is (a) and 

half length (b) making the area of 

the slit 4ab, then: 

2 10') = (A2  + A2) 4ab+ 21a0(x - 
+ 4A1A2 (ab) 	cos 	 

. -a 

The'term under the integral may be 

+a 2kxo cos 
D 

L 

2kxo 
dx 

-a 

  

     

1 	2kx 	+a (2kx 
. —cos (---2)f cos 	

o 
 

D 	D -a 

(2kx )./+a (kx 
+ sin ---2i- 	sin o  
DD -a 

dx + 

dx 



D -a 

The second integral, being of a symmetrical form, 

cancels itself. 	So, the above expression becomes: 
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2kx 
= cos a 

= cos 2X0—) 
2 sin 

( 2kx
°  D  

2kx0\ a  

D 

D 

Substituting back into the above: 

1(0 	.....: 	4ab 

A1A2 	2 

(AT.  + 

[ 	

A2)+,  

(2kxo sin 	a) 

a 

or dividing both sides 

Cos cos( 
D ) (2kxo a) 

by the slit area 

+A2+ 
4ab 

 

sin(
2kx0 
----

(2kxo

D  

  

+ 2A1A 

 

. (kxo cos 
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The maximum and minimum values of (I) will then be: 

2Kxo  sin 	a 

'max 
A2 	A2 ± 2A,A2  4,2  + 	\ D 	/ 

2KX min 	 o 

- D 

The Michelson definition of (V) the fringe visibility 

is: 

I max .-, I min 
V 	 

I max + I min 

so that the visibility of the fringes as a funbtion2', 

of slit width is: 

      

sin 
 (

2Kx, 
—=-1  a
D  

(2Kxo  

D 

 

    

••• 

 

       

V = 

 

2A1  A2  
2 Al + A2 

• 

   

 

As. 

    

     

       

The first term in this expression expresses the effect 

of unequal amplitudes in the two interfering waves, 

and in our case their ratio is essentially equal to 

one; the second term is due to the finite size of 

the source- slit. 

It is of interest to note, at this point, 

that after the final instrument parameters were 

settled on the calculations for expected visibility 

gave reasonable results. 	For a visibility, (V), 

of 0.95 (1.00 being perfect) the required slit width 

was 4.3t; while a visibility of 0.84 gave a width 
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of 8.6g. Both values are physically possible. 

VARIATION OF AVERAGE INTENSITY OVER 
THE FRINGE PATTERN FIELD. 

A variation of the average intensity in 

the fringes (a), over the field will effectively 

attenuate the signal output thereby causing a vari-

ation of response with the location of the sample 

object. 	Since the virtual slits are never greatly 

separated (0.04" maximum), it was felt that the 

difference in intensity between the center and the 

edge of the field which occurs with a single slit 

would serve to place limits on this errors 	Thus 

we need to consider'the variation of intensity 

across the far-field diffraction pattern of a single 

narrow slit. For the dimensions used, calculations 

show that the maximum variation across the image space 

is less than 1% The effect of this small variation 

is negligible. 

An experimental verification of these 

calculated results will be given later along with the 

entire performance record. 	Before this, however, 

we must describe the construction of the instrument 

which was based upon the foregoing considerations. 



DESIGN CONSIDERATIONS 

It was felt that the position previously 

reached in the measurement of Fourier spectra of 

photographic images called for a somewhat more 

sophisticated instrumental approach. An instru-

ment was needed which would be able to handle a 

large number of photographic transparencies, of 

some convenient and standard size, over a useful 

spatial frequency range, and operating in a semi- 

automatic manner. 	This proposed instrument should 

be easy and foolproof in operation, require low 

maintenance while possessing a long life expectancy, 

be self-contained and capable of operation in a 

fully lighted room while requiring no more than a 

normal AC input. 	The output should be linear, 

scaleable and permanent. 

Figure (18) shows the completed instrument. 

DESCRIPTION OF EQUIPMENT 

Figure (19) is a block diagram of the 

equipment. Actuation of the Fringe Programme block 

results in a programmed linear variation of the fringe 

spacing at a fixed standing wave frequency. 	The 

sequence also controls the chart recorder drive and 

the standing wave generator (or modulator) turning 

them on and off at the beginning and end of a scan. 
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Over-riding switches for independent operation of 

these functions are also included on the instrument's 

front apron. 

Each. slide magazine will hold thirty trans-

parencies and these may be processed one immediately 

after the other. 	The complete sequence of scanning 

and re-setting is fully automatic and takes just one 

hundred seconds. 

There are two major exceptions to the above 

times for processing. 	If, first, the real and the 

imaginary parts of the Fourier spectrum are required. separately 

two scans will be needed for each object, thereby 

doubling the time. 	The choice of solutions is cont-

rolled by one of the pull knobs on the cover; the 

second pull knob zeroes the light level by eliminating 

the fringe pattern while holding the light level 

constant. 	The second exception arises from the 

design assumption that all test objects would have 

symmetry about the horizontal axis. 	If it is of 

interest to check this quality each slide must be 

turned upside down and rescanned; the results are 

then averaged. Any difference in values would be 

due to a failure of the instrument to maintain a 

constant light level in the vertical direction. 
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MECHANICAG DESIGN 

The base, prism holder and slit mounts were 

all poured from a 700 series, medium heat treatment 

aluminium. 	This particular alloy series, with 

its high copper-iron content, was used because of 

its good mechineability, high mechanical stability 

without ageing and its low relative cost (this 

because of its popular useage;a melt is nearly 

always in process at a large foundry). 	The patterns 

for these items were all made in the Imperial College 

shops. 	It is interesting to note that no cores 

were required for these casts and that the base was 

poured with an irregular split line. 	One small 

wall failure occured in the rear apron because of 

this requirement, but adequate patching was possible. 

The wall thickness of the apron and bottom webbs, it 

3 will be noted, is only 1  . 	If a fully cored pat- 

tern had been used, with the resulting draw taper, 

it is doubtful that it would have been tastable. 

THE LINE-PLANE REFERENCE SYSTEM. 

The base casting has been machined in 

such a way that there is only one reference plane 

and one reference line from which the optical axis 

is established. The particular procedure here was 

It 
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to true the top of the casting with skin cuts to 

obtain a stable base from which to machine the 

bottom footings. 	The base was then strapped down 

and the top inside pads were all milled to an equal 

level, establishing a horizontal reference plane. 

The front outside edge was then cut and cleaned. 

The lamp center-line was then taken as an artificial 

location point and all lateral measurements were taken 

from it. 

While not wishing to belabor the point, 

it does seem valuable to understand this concept of 

plane-line referencing for optical systems. 	The 

system is well known and used in good optical benches, 

but in normal practice it is almost invariably passed 

over. 	Since optical elements usually are in the 

form of short cylinders the designer is too often 

tempted to mount them in circular cells. A little 

thought will show how difficult it is to align 

several of these cells. 	Once the mechanical center 

point of a cylinder is lost, through machining, it is 

very difficult to establish again. 	This means that 

the concentricity of the elements is very doubtful. 

It can be achieved by mounting all the elements 

inside a totally enclosing outer cylinder, as in the 

method of the telescope, but this leaves one with either 

a problem of establishing the perpendicularity of the 
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element to the enclosing cylinder or of not knowing 

the spacing between the elements. 	Full-length, 

squared-off internal spacers will solve all these 

problems although one is then left with no chance of 

adjustment in spacing& 	Clearly, in all but a few 

special cases, this design technique is awkward and 

wasteful of time and materials. 

Several other referencing systems are 

immediately obvious. 	A few of these are shown in 

Figure (20). 	In both cases (a) and (c) some sort 

of artificial cross line does in fact have to be 

established. 	The difference between this and cases 

(b) and (d) is that the second line is artificial and 

is not machined into the system. Case (0) is the 

most commonly encountered reference. system for 

optical systems of high quality while case (e) is 

rarely used. 	The main fault with cases (0), (d) 

and (e) is that one must rely on a machine tool to 

establish the perpendicular faces. 	It cannot be 

strongly enough emphasised that this is one job that 

machine tools are not in general capable of doing 

nor is it their purpose. 	The only common tool which 

is capable of establishing perpendicularity is a 

try-square. A designer must never forget this fact. 
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The only fault with case (b) is that if 

the second line, the cross line, is machined in, one 

is tempted to measure directly from its edge rather 

than along the main reference line. With case (a) 

adequate information is included in the machining 

to establish an optical axis while no opportunity 

occurs for mistaken trust *in machine generated 

angles. 

OPTICAL MOUNTS. 

For convenience a copy of the optical train 

is included as Figure (21). 	Three items are mounted 

without provision for adjustment. 	These,  are: the 

Wollaston prism, Pl, the condenser Cl  and the objective 

01. 	These mountings are shown in figures (22) and 

(23). 	These items, as well as the other optical 

units, were carefully aligned and checked before 

being finally located. 	Most of the lens are held 

into their mounts by phosphor-bronze clips. 	It 

might be of interest to mention that when this 

material is used for clips care should be taken that 

the rolling mill grain should be perpendicular to 

the bending lines of permanent deformation or, finally, 

fracture will occur. 
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The photomultiplier socket is mounted 

directly on the base casting and the voltage divider 

network is directly underneath. 	The potential at 

this point is -1000 v. relative to earth when the 

power supply is on, and appropriate care should be 

taken when handling. 	The charges on the condensers 

decay through the voltage divider with a time constant 

of the order of a few seconds. 	This section is shown 

in Figure (24). 

The push-pull slides, shown in Figure (25) 

control the polarization of the light falling on 

the slits. 	One slide holds two pieces of polaroid 

whose axes of polarization are set at 45?. to the slit 

and parallel to the slit. 	The other slide holds a 

quarter-wave plate and a clear position. 	The slides 

run on two steel shafts in open "V" grooves, being 

constrained on the other side by phosphor bronze clips. 

Centering is accomplished by a combination of spacers 

and adjusting the knob shaft length. 	Although the 

units operate smoothly and firmly they are decidedly 

too complex for their purpose. 	Simplifications, 

however, are often more obvious after the fact. 

LAMP AND HOUSING. 

The lamp is mounted into a modified three-pin 

socket. 	The socket plate, made of Tufnel, is suspended 
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below the base casting by three pins of the same 

material as shown in Figure (24). By making the holes 

in the socket plate decidedly oversize it is possible 

to adjust the lamp, within limits, in all directions. 

At the same time a large supply of air is free to pass 

by the lamp for cooling. 

This particular lamp, with its high internal 

pressure and all glass shell, is capable of fracture 

during operation. 	The resulting explosion of glass 

particles could be serious. 	It is therefore, impor-

tant that the lamp never be operated with the cover 

off. 

The cooling of the lamp proved. to be a 

substantially more difficult proposition than was 

originally thought. 	The first design allowed a 

constant air passage of over 3 square inches through 

a one stage light trap, and relied on convection. 

The condenser (C1) mount was made of a machinable 

furnace material and the walls of the ease were 

lined with asbestos. 	This system was not satisfactory. 

Forced air cooling was considered but it 

seemed both cumbersome and awkward. 

I am indebted to Mr. Shack, currently of 

this laboratory, for suggesting the final solution, 

Figure (25) illustrates the lamp housing. 	The 
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inner, black cylinder acts as a thermal collector. 

1" 
It encircles the lamp with about -., 4 

 clearance with 

the only opening being in the optical path. 	The 

surface temperature of this part of the chimney rises 

to about 250°C in the neighbourhood of the lamp. 

The conditions are so adverse that the black dye, 

used in anodizing the tube, has been substancially 

bleached out. 	The heat that is reradiated on the 

outside of this tube is reflected by the outer tube. 

This outer tube has been silver—rodium plated and 

is highly polished. 	The inner tube cools itself 

by conduction to the air which passes by it by 

convective currents and by radiation from the section 

above the case. 	The heat transfer that does occur 

seems to occur mostly along the six spacers separating 

the inner and outer parts of the housing. 	The 

efficiency of the chimney is improved by thermally 

isolating these spacers and by putting cooling fins 

on the inner tube. The end of the case becomes warm 

to the touch after about two hours of operation, but 

it never seems to rise about 40°C. 	The free air 

passage space has remained at about 3 square inches. 

A thermal isolation of more than 200°C in 

3" 8 (inner —outer shell separation) by convective air 

is an impressive result. 
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MODULATOR DRIVE AND MOUNT 

The modulator (standing wave generator), 

comprising a rotating polaroid, is suspended in a 

stable balance position from the ears on the top 

of the base casting by two dural arms. The connection 

between the arms and the modulator itself is by way 

of heavily loaded polyethelene pads. 	These pads 

are heavily damping in the audible range and they 

help to prevent the whole unit from "ringing". 

The polaroid sheet (.010" stock) is surrounded 

on its perimeter by a light dural ring to which it 

is glued. 	The ring prevents the disk from setting 

up destructive standing waves in its surface at 

high speeds. 

In operation the polaroid disk revolves 

at between 15000 and 20000r.p.m. to give an output 

frequency of between 500 and 600 c.p.s. 	The 

stability of the particular frequency chosen seems 

to be better than 1% after a 10 second warm-up. 

The prime mover is a size 10 DC servo-type 

motor. 	It is mounted to the face plate by the 

normal two-flange-and-clips servo-motor method. 

Directly pinned to the shaft is a passivated bronze 

gear of high quality (A.G.M.A.5). 	In a step-up 

of 8:1 this drives an equivalent quality steel gear 

at 120 D.P. for the pair. 	This second gear is 



74 

pinned to the shaft carrying the polaroid disk. 	The 

unit is shown in Figure (26). 

It will be noticed that on the periphery 

of the polaroid disk a black quadrant has been painted. 

This is used to operate a synchronous transitorized 

switch which produces a reference beam for use in the 

electronics, 	Both the phototransistor and the mini- 

ature lamp to activate it are mounted in a brazed brass 

arm which bolts to the top of one of the chopper hangers. 

The arm is electrically insulated from the chassis. 	In 

the lamp housing section a red Wratten filter and a 

small, short focus lens have been mounted with Canadian 

balsam. 

'The shaft is supported by two very high 

precision ball bearings (A.B.E.C.7). 	These bearings 

have only half shields because of the speed required 

of them; appropriate care should be exercised. 	The 

normalised life factor of the bearings is about 1.7 

which should result in a life of about 500 hours. 

The majority of the "ringing" in the unit 

is suspected as coming from the passivated bronze gear. 

Two dissimilar metals were chosen in an effort to 

equalise the wear in the two gears. Quieter running 

would be obtained, at a small sacrifice in life, if 

the larger wheel had been of a somewhat smaller face 

width and cut from an anodized aluminium blank. 
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Control of the unit's speed is held by the 

screwdriver type rheostat on the rear apron. 

CAM DRIVE AND PRISM MOUNT. 

The 1 rpm clock motor that hangs below 

the center of the base casting drives a three-wheel 

gear-train. 	There is a 3:5 step-down in the first 

pair, the second pair being 1:1. 	The gears are 

again of dissimilar metals to ensure quiet running 

and equal wear. 	Staked to the hub of the second 

gear is a ground, 2% constant rise cam. At both 

extremes of the cam travel there is a short flat 

position for location of the slit-prism separation. 

The third gear is mounted on an extended shaft. 

The upper extension carries two adjustable position 

cams which each actuate a micro-switch. 	These 

switches control the scan sequence (lower switch) 

and the chart drive (upper switch). 	See Figures(23) 

and (27). 	The two independent wheel shafts are housed 

in bushed nylon flange bearings. 	This material is 

very satisfactory for slow-speed, low-load bearings; 

the motion is exceptionally smooth and soft. 	Some 

tricks are involved in its use, however. 	The bearing 

should be made with a .002" - .003" oversize O.D. and 

a decidedly undersize bore (say .010"). 	After 
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pressing the bearing into the housing a sharp reamer 

may be put through the bore with a long push and small 

twist. 

	

	This assumes the shaft to be of an 'f6' to 'h6' 

tolerance and will produce reasonably reliable results. 

The constant-rise cam mentioned above, 

drives the prism 

which is held by 

The prism itself 

celulose cement. 

pressed into the  

mount along a splined steel shaft 

a heavy force fit in the slit mount. 

is held in the cast mount by a 

A mild steel sleeve has been 

casting; it has been broached and 

bored to accept the splined shaft. 

This particular design of way was used in 

an effort to discover whether it produced fewer 

problems than normal techniques. 	It is not a total 

success, for the fitting and lapping require both 

time and skill far in excess of the quality of the 

results. 	It is not a recommended technique where 

a double-shaft way may be used instead. 

FINISH 

All of the painted parts have been first 

primed with zinc chromate and finished with several 

coats of celulose lacquer. 	Aerosol bombs (under 

the trade-name "Rust-o-leum") were used for spraying. 
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Dural parts have been either clear or acid black 

anodized. Copper and brass parts have been ammonia 

blackened or left bright. 	Some steel parts have 

been blued, but the majority have been left bright. 

OPTICAL ALIGNMENT AND SET-UP 

The major components of the optical system 

have been mechanically located to be in good alignment. 

The lamp and prism-slit systems, however, must be 

aligned separately. 

The lamp is simply set so that the light 

falling upon the slit is maximized. By loosening 

the three screws on the socket board underneath, 

the whole socket may be slid back and forth or 

1 " sideways with a freedom of - 3- . Vertical adjustment 

may be achieved by adding spacers to the support 

cylinder or by the simple expedient of not pushing 

the lamp full home. 	The mediumpressure mercury 

source must not be operated without a safety cover 

for reasons of explosive danger. 	It need hardly 

be pointed out that the UV output of the lamp is 

decidedly dangerous to the eyes. 

The prism itself must be in a good state 

of alignment before beginning to adjust the slit. 

With the photomultiplier housing, modulator disk 
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and objective removed it is possible to observe the 

returned images from the prism surfaces and from 

the slit face, with a dark-ground angle dekkor. 

Images will be seen from all the interfaces and they 

must be sorted out to avoid confusion later. 	The 

prism holder is adjusted (preferably after removing 

the front plate as.  noted previously) until the coloured 

images (i.e.., the doubly transmitted beam reflected 

from the slit face) coincide in the vertical plane 

with the images from the last prism surface and the 

unobstructed image from the slit face. 	The latter 

two images should be aligned in the horizontal plane. 

The angle dekkor is then replaced by'a 

low-power microscope focused in the area of the fringe 

field. 	With the mercury source and two polarizers 

in the beam, oriented at 45°  to the slit axes, fringes 

will be seen. 	Notice first the zero fringe, which 

will now be near the center of the field, as the 

prism is driven through its travel. 	If this fringe 

wanders strongly to*one side it implies that the 

driving axis is not parallel to the optical axis. 

This is corrected by rotating the entire prism mount. 

This assembly is adjusted so that the zero fringe 

state occurs at the extreme end of the travel. 	It 

is probable now that the slit-prism relation will have 

to be checked again. 	This time place the prism holder 
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under operating tension by advancing the cam a little 

way through its operating cycle. 	It only remains, 

then, to set the angle of the prism parallel to the 

axis of the slit thereby giving maximum contrast to 

the fringes. 	This is done by adjusting the side- 

ways motion of the bridge at both ends of the travel. 

Replacing the removed optics it should be noted 

whether the optical beam falls clearly on the central 

area of the photomultiplier's sensitive area. 

ELECTRONICS 

The signal, as viewed by the photomultiplier, 

is composed of three parts; the AC signal, a DC 

background and noise. 	The AC signal is derived 

from the variation of transmission of the test object 

when illuminated by the generated set of standing 

wave fringes. 	The frequency is dependent on the 

rotational speed of the chopper, while the amplitude 

is related to the spatial frequency content of the 

object and its transparency. 	The DC signal, however, 

is dependent only on the transparancy and size of 

the test object. 

Figure (28) illustrates the relationship 

of these quantities as the width of the object is 

varied. 	Clearly the optimum situation for lowest 

signal to noise ratio is when the object being 
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examined has the same width as the basic frequency 

being generated. 	This indicates the nature of the 

optimum type of object that should be presented to 

the instrument. 	There is a minimum level of total 

signal indicated by the dark current below which 

one should, however, not drop. 	In other words, while 

the ratio of AC to DC signal ( and thus signal to 

noise) should be kept as low as possible by not 

presenting the instrument with an object whose DC 

content is high (e.g., a simple circle of diameter 

several decades greater than the fringe width). 

The other extreme situation could result in such 

a low intensity of light being transmitted that it 

is totally masked by the dark current of the photo-

multiplier. 

The output of the photomultiplier is fed 

directly into an Elliott type B801 Synchronous 

Amplifier. 	This instrument comprises a high-gain 

low-noise amplifier with coarse and fine attentuation 

of 80 dB in steps of 20dB and 2dB, plus a smooth 

interpolating attenuation of 6dB at all positions. 

The amplifier charactersitics are stated, by Elliott 

Bros., to be stabilized throughout by negative feed- 

back circuits. 	The output is coupled to a phase 
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sensitive rectifier which rectifies those components 

of the signal which are in synchronism with a refer- 

ence signal which is derived from the poloroid chopper. 

The reference signal is automatically controlled to 

a constant level within the instrument and it can 

be varied continuously in phase before being presented 

to the phase sensitive rectifier. 

Figure (30) is an illustration of the complete 

electronic circuit showing the basic operations. 

All those units within the dashed lines are incor- 

porated within the Elliott amplifier. 	Since only 

those parts of the signal in phase with the reference 

signal are rectified all signals in quadrature and 

at harmonics will give rise to no deflection. Any 

signals. at frequencies different to that of the reference 

(e.g. noise) will produce an alternating voltage at 

some beat frequency. 	If the frequency of these 

beats is at a lower value than the time constant 

of the output they will be integrated and not appear. 

The effective bandwidth (and, therefore, apparent 

signal to noise ratio) of the amplifier is then 

controlled by the time-constant of the output. 

Following the convention of Smith, Jones 

and Chasmer 	the effective bandwidth may be 

expressed as: 
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OD 
1 	do  

Af = -2- 2T.2 
0 

where T=  RmeterC' the time constant of the output 

circuit and w = 2nf. 	Then, 

Af = 1 — 
AT 

The Brown Potentiometric Recorder that is being used 

has an internal time-response of about 1 second, 

meaning that the effective bandwidth of the system is 

about 0.25 cps and that only noise within these limits 

should contribute to the output deflections. 	This, 

however does neglect the noise picked-up through 

stray couplings between reference channel and signal 

channel and the drift due to variations in the lamp's 

output. 

The Elliott Amplifier requires a sinusodial 

(or triangular) wave form of 2 to 20 volts r.m.s. 

at an input impedance of approximately 10K to 20K 

ohms for the reference channel. The range of 

frequencies over which it is intended to operate 

is 400 to 4000 c.p.s. 	Since the reference signal 

here is derived from a phototransistor being driven 

by a square wave chopper it was necessary to integrate 

the output into a triangular form. 	(It might be 

noted here, more or less in passing, that it was 

necessary to use a square-wave chopper on the edge 
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of the polaroid disk, rather than obtaining a sine 

wave directly with crossed polarizers for two reasons. 

Primarily, the sensitivity of the OCP71 phototransistor 

is extended far enough into the infrared to exceed 

the polorization abilities of sheet Polaroid. 

Infra-red sensitive Polaroid is, annoyingly, poor 

in the visible. 	Secondly, phototransistors and 

photodiodes are usually grossly non-linear and the 

resulting sine wave would be rich in harmonics). 

Figure (31) is a schematic diagram of the 

reference channel prior to the Elliott Amplifier. 

The OCP71, a junction transistor, is effectively 

bottomed by the nearfocused light from a peanut-lamp. 

This lamp is colour separated from the main optical 

beam by a red Wratten fitter. 	The signal is direct 

coupled to the 0C201 making a simple DC amplifier.. 

Allowance for temperature compensation is made in 

the base voltage divider of the OCP71 to avoid thermal 

run-away. 	The output of this circuit is 4.5 volts 

RTES (as read on a VTM integration) and consists of a 

clean triangular waveform with slightly clipped peaks 

on the negative (or overdriven) side. 	It appears 

to drive the Elliott Amplifier satisfactorily. 
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Because of the extemely high sensitivity of 

the Elliott Amplifier, extreme care must be used in 

separating the input channels. 	Input leads should 

always be kept short and well shielded. 
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CHAPTER III  

An Evaluation Process Compatible to Both 

Subjective and Instrumental Testing  

INSTRUMENTAL EVALUATIONS 

The Fourier transform of a general scenic 

image will contain frequency components over a 

finite range. The lower limit to this range will 

be set by the dimensions of the image boundaries, 

while the upper limit will depend on the frequency 

content of the image, the transfer functions of the 

optical system and the photographic process. The 

amplitude function of the Fourier components will 

not exhibit discontinuities for a general image, but 

will vary smoothly over the frequency range. These 

frequency components will occur, in general, in all 

phases and azimuthal angles throughout the image. 

Neither the phase nor the azimuthal angle of a part-

icular frequency occurring in a particular elemental 

area of the image will, in general, be equal to the 

phase or azimuthal angle occuring in any other elemental 

area at the same frequency. 



93 

If the Fourier transform is obtained 

for the integrated area of such a general scene in 

only one azimuthal orientation and at a fixed or 

constant phase relation, the sum of the sine trans-

form and thecrosiiketransform will usually be less than 

the true modulus of the transform. This will be 

the effect of the apparent phase variations result-

ing from azimuthal tipping and real phase variations 

over the image field. These phase variations will, 

to some degree, cause signal interference and thus 

reduce the apparent amplitude of the transform at 

any particular frequency. 

It is necessary then that test objects be 

chosen for the instrument just described which have 

a fixed or constant phase relation, at each part-

icular frequency, over the entire field upon which the 

transformation is to be performed. It is also necessary 

to establish a control on the azimuthal orientation of 

the image by either holding the angle constant, max-

imizing the signal by rotating the image with respect 

to the fringe field, or having rotational symmetzyin the 

image. 

Instrumental design features make it dif-

ficult, in this case, to rotate the image in the 
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fringe field and it was found, as we shall see in the 

next section, to be more convenient to produce one 

dimensional blurring in the image, thus precluding the 

use of rotational symmetry. Thus we have two criteria 

in the production of images for a comparison study 

between their Fourier transforms, and a subjective 

evaluation of their quality; first, that the phase 

relation, at any particular frequency, be constant over 

the field and, second, that the rotational orientation 

be held constant between the different series of images 

being examined. The particular pattern chosen for 

this study was that of a square-line transmission 

grating. 

TEST OBJECT PRODUCTION 

The master test object grating was produced 

by enlarging a photoengraver's equal-space half-tone 

grating onto an Ilford "Special Contrasty Lantern Plate". 

This plate was then normally developed in a fine-grain 

developer and, afterwards, intensified by dissolving 

away the undeveloped portions of the exposure, and 

bleaching and dying the remaining exposed portions. 

Great attention was paid to the alignment of the gra-

ting with the sides of the plate. 
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This process. produced a grating of very 

high contrast and extremely sharp edges, with a spacing 

of about ten lines per inch. Whenan attempt was made 

to measure the profile of this master grating on the 

linger's microdensitometer it was found that the edges 

were sharper than the diffraction disk of the densi-

tometer's scanning slit; this imples that the edges 

were sharp to better than a 4p. blur. 

When this master grating was crossed, slight-

ly, with another similiar grating (which had been pro-

duced by the same process, but had been rejected be-

cause of irregularities in density) moir4 fringes 

could be seen in transmission. These fringes appear-

ed to be straight and evenly spaced over the whole 

aperture,; thus indicating that the square-wave pat-

tern itself contained no distortion of any importance. 

Further, when the grating was used as a transmission 

diffraction grating to view a narrow slit , the first 

order (second harmonic) spectrum was not visible to 

the naked eye, although the second and fo
A
rth orders 

were clearly seen. This indicates, of course, that 

the line to space ratio of the grating was 1:1 to a 

very high order of approximation, and again implies 
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that very little distortion was present in the grat-

ing. 

Figure (32) is a 

direct copy of the grat- 

ing and is included only 

to give a clearer idea of 

its size and scale. 

This grating was 

then used to produce 

three sets of differently blurztd photographic objects. 

Each set was composed of six slides covering the same 

range of blur resulting from three shaped sources. 

These shaped sources produced one-dimensional blur 

spots which had the form of a comatic distribution, 

a Gaussian distribution and a distribution similiar 

to that produced by a first-order spherical aberration. 

Their shapes are shown in Figure (33) in the above order. 

sue-

p gl P 
4„( 104 

-4/ 

The optical system used to produce these sets 

of controlled blur is shown in Figure (34). 



	 Shaped Source 

f/I0 Objective 

Test 

Slide 

Positions 

V//// /e// //  Le 

2 
3 

4 
5 

6 

Enlarger 

summarized as follows. Go is a source plane, having 

0 Xe  
° I. 

/ xi  

G 	x, y 

S 
L 

y 

Do  

97 

The theory underlying this process may be 

a distribution of intensity Go(xoty0). Light from 

Go, which is-in'.the focal plane of a lens L, passes 

through a grating in contact with this lens and having 
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a transparency B(x,y). Consider that light from all 

parts of the source which reaches a screen, S, through 

the point (x,y) of the grating. Clearly light from 

0o will go to the point x'= x, y'= y on S; and light 

from Po(x0,y0) will reach a point 13(1)  on the screen, 

where x' = 3-5 xo  and yo = yo. Thus each point (x,y) 

of the grating will give rise to a spread 

the screen, having intensity proportional 

parancy B(x,y), centered-on the point (x,y) on S and 

having a scale 7  times that of the source Go  itself. 

Thus, if G(x'-x, y'-y) is the form of this 

'projected' source, constituting a spread function, 

the intensity distribution on the screen will be 

given by 

B'(x1 ,y') =f)(B(x,y).(4(x'-x, y'-y) dx dy 

and the transfer factor of the process is.  

g(E 	) =ffG(x',y').e-i271(x'E'YIT)dx' 

or, ,in terms of Go 

g(E ,T) =.)5(Goafx', 

Go(xo,y0) e-i2q3.co 12ff 

Hence 

E , T tD12 	= DT] 
= vut go r(T,  Do  

function on 

to the trans- 

13 0 y 	e--1.27[(x'a 	) dx' dy' 

dx' dy' 
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or, normPlized 

g(E,T) go6t Do  
D 	D 

g(7,75) go(0,0) 

for a unidimensional object we need 

( 	)  

	

D(z) _.ga'90) 	(go 21.)50E'°  

	

g(0,0) 	go(0, 0) 

= _.= It may now be seen that with E0 
 Do ' 

-00 

go(20,0) 7--' )1  fGo(xo'Yo). e
-i2nxcEo dxo dyo 

or 

g (E ,0) o 	o 	f -G°  
G o  (xo  ) 

e-i2nxoo dxo 

where 
-co 

Go  (xo  ) = o(xotyo)  dyo 
+co 

is the integrated intensity along yo. It follows that 

a source of uniform intensity may be used, 'shaped' to 

simulate different forms of spread functions; the 

effective spread function being Go(x) as defined above. 

In practice the shaped masks were placed in 

an enlarger's even-illumination field, with the enlarg-

er's objective removed. An f/10 objective then col-

limated the light which was transmitted by these masks. 

+OD 

+CO 



As required above, the master grating was placed 

as close as possible to the objective. Exposures 

were then made with the unexposed slide and the 

grating in intimate contact and at five other fix- 

ed separations. This produced a series of six 

slides in each set ranging from the very sharp direct- 

copy print to a copy where the blur spot was very 

nearly equal to 1/4 the grating spacing. 

The plates used to produce these copies 

were the Ilford "Selochrome" emulsion. This plate 

was chosen because the gamma of the H-D curve could 

be held nearly equal to one while a large density 

range was covered. The plates were developed for 

four minutes, at 70°F., in ID-2 developer mixed 1: 

21- with water. The plates for each set were pro- 

cessed all together in a specially adapted tank. 

The tank was continously tip agitated to reduce the 

Eberhardt effect to a minimum. The plates were 

normally fixed and washed, with a final wetting- 

agent wash. 

A test plate with varied steps of exposure 

was made with this emulsion using the above exposure 

and development process and from it an H-D curve was 

100 



calculated. It will be seen that this curve, shown 

in Figure (36), is roughly linear from a density of 

101 

2 

Density 

2 	3 
	4 

Reolitive Log Exposure 

0.6 to 1.8. By extrapolation, the corresponding 

exposure times, for these densities, were found 

and used for producing the slides. This helped to 

assure that the non—linearities of the photographic 

process were reduced to a minimum and that the images 

were degraded only by the mask contours. Reproductions 

of microdensitometer'traces of the contours of these 

test slides, for all three series, are shown at the 

end of this chapter [Figures (48), (49) and (50)]. 

A variable R—C timer was designed and built 

to control the exposure times. A background exposure 

being put on each slide first, before exposing the 

grating structure, to bring the photograph into the 

linear density region. 
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PAIRED—COMPARISON QUALITY EVALUATIONS 

These series of six slides in each set 

were then shown to a group of observers who were 

required to make a preference judgement; each of the 

three series was shown at three different distances. 

The distances chosen were calculated such that the 

normal eye could just resolve the fourth harmonic 

of the pattern (Distance I), the second harmonic 

(Distance II) and a spacing midway between the first 

and second harmonics of the test grating (Distance III). 

The slides were back—illuminated with 

green light (to coincide with the other instrumental 

parameters) and shown to each observer in random 

pairs. 	The slides were placed side by side and 

both orientated in a vertical direction; this direction 

giving the most favourable acuity for the eye. 

Each pair was shown twice, in opposite arrangement, 

and all possible combinations of each set were employ— 

ed. The pairs were kept in random order by marking 

each separate arrangement on a separate card; a 

different deck being used for each full set. 	Each 

pair was then shown in the order given on the card 

newly turned up, the deck being shuffled before each 
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new series of observations was made. The results 

of the observer's choice were marked on this card, 

with separate sections being used for each distance. 

The only statement made to each observer 

was that he was to choose, right or left, which of 

each pair he found to be better. If he was not sure, 

he was to guess. This is the major advantage of the 

paired-comparison method; that only the bare min-

imum of information has to be given to the observer 

before he is able to make a judgement. Since an 

equality judgement is not allowed in this method, 

we are able to observe, quite clearly, the neighbor-

hood of reactions close to the point where the ob-

server is no longer able to make a conscious quality 

judgement. Also, since each pair was shown later in 

interchanged positions any inequalities of the obser-

ving parameters (such as unequal, illumination) tend 

to cancel. 

Since we are here interested primarily 

in the threshold of the quality discrimination for 

the observer, it is imperative that he be not able 

to discriminate between all of the pairs of slides 

with any degree of certainty; in fact, we wish the 
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observer to be forced to guess nearly half of the 

time. 

To control the quality of the image a cir-

cular patch of even illumination was overlayed on the 

viewed slide images. This was done by interposing 

a large beam-splitter between the observer and the 

slides being viewed. This reduced the contrast, that 

is the Michelson visibility, of the objects, equally. 

Several preliminary tests were made to establish a 

satisfactory level of visibility' for the final tests. 

The results of the judgements of such a pair-

comparison give a preference ratio for each pair so 

compared. The preference ratio of one object relative 

to another is the ratio of the number of assesments 

of that object as superior in quality to the total 

number of assesmenta made. Clearly the greater the 

preference ratio for any pair the greater the differ-

ence between them as judged by observers. These pre-

ference ratios may be converted to give a linear scale 

of the magnitude of the subjectively perceived dif-

ference between any pair of objects. 

This,  interpolation is based on Thurstone's 

(1927) 'Law of Comparative Judgement', which assumes 
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Cattell's principle that "equally often noticed 

differences are equal unless always or never noticed". 

Thurstone postulates that the dispersion of the sub-

jectively-assessedmagnitudes of a given stimulus will 

have the form of a normal distribution about a mean. 

In a pair-comparison two different physical stimuli 

are presented, each having normally distributed 

subjectively-assessed magnitudes about its own mean. 

The probability distribution for the difference be-

tween two normally distributed quantities is itself 

a normal distribution. 

In Figure (37) for example the quantity xl  

is the subjectively-assess9d magnitude of a stimulus 

Subjeclively-assesed Magnitude 	X 
of Stimulus 

having a normal distribution of standard deviate a
1 

about the mean Tir  Thus 	x 	2  1_ 1 1 

-2  
Ty 

P(x1) = 	 e 	'71 
v2n 



P(x1)2(x2 
1 

2 II a
l
a 
2 

7  2 
—2  --- 

I_ [C
1

— 
1

)  
2 

(x2-72', 
2 e 	1 

x1=--m  
This integral may be integrated using the result 

+ co 	
2 

(Xi-A-72)21 
= 

1 _i 

2 
x1-xl  ) 

ir  2na la 2 	
°1 	

+ 	 
a  e 	2  	d xi  

and similarly 

P(X2 ) 

x2-  3)2 

1 	2 

2 	
2

•7-271  
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If the subjective reactions to the two stimuli are 

completely uncorrelated, the probability of finding 

x1, x2 together is 

Now for any x1  the value of x2 will be x1  -A'  if the 

difference xl- x2=A ; so the probability of finding 

x1  and x2 such that x1- x2=A is 

P(xl)P(xl—A) = 2110
1 

 1(1 
e 

2  

[(x1-a'I.)2  (xi-A -72)2i 

a 2 	/ 

and the probability of finding xi- x2  =A is 

P(0 ) = P( xi- x2) 

dx = 1 



Thus, expanding the square bracket in the first 

integral and completing the squares in xi  and A 

gives, after considerable reduction 

2 	2 a 
2 1+  

= 

G  a 262 
1 2 

Thus, after substitution and putting the integral above 

equal to 

ala 2 
2 	2 

2 
11CY 
1 
 + 

one finds that 

P(A) 	 
S'2712-  1 2 [

A - f7c,_ 12 

N 1 2 
Jo  2 +a  

so that the probability of finding xl- x2= A is a 

normal distribution of standard deviate and mean 

given by 

/ 1 2 

	2 a = 0
1 

+ a 2 

a1 - 2 

The situation is illustrated in Figure (38) where the 

magnitude of the subjective difference between the two 

stimuli x1, x2 is clearly the value of A for which P(A) 

is a maximum. 

107 

xl 

2 a 2  x1  a 1{ A-f-x 

2 2 
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The difference 71.- x2  is thus given by 
the abscissa of  p ax  on the curve of P(A). This co-

ordinate is easily found from the method of pair-

comparison. The totality of judgements that 01  is 

better than 02  (A = xl- x2> 0) is equal to the area 

under the curve between A = 0 and A = 4-c° . Conversly, 

the totality of judgements that 02  is better than 01  

(A< 0) is equal to the area under the curve between 

a = -co and a = 0. Thus if X is the value of the 
variable of A in 	A  - -A- 2 

[ 

or 

""2 	

1 
.3.1" " 

2 

a dA 

- 	
A -27 i2  

7 [—a  
dA 

X 	1  A -12 

R= 
	

1 
fa ,21i. 	

dA 

co 
and, therefore, X can be found by inverse interpolation 

from-a table of the error function integral. This 

a.J 27t 
for which the preference ratio is R, then 

1 	-7 
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value of X provides a scale—measure of the difference 

of the two stimuli, which is found directly from the 

preference ratio. 

It will be seen now why the judgement "don't 

know" is excluded, for this is in a mathamatical sen—

se of measure zero, but would nevertheless be a too 

often preferred statement if this judgement were not 

excluded. 

The difference in scale value for any two 

stimuli a and b is now defined to be 

2 
= Xab 6 + 0 2  ab a b 

where Xab is found, as described above, from a knowledge 

of the preference ratio. Xab  is the upper limit of the 

integral which makes the fraction of the area under 

the normal curve equal to the preference ratio; this 

upper limit is interpreted, in accordance with the 

above discussion, both in magnitude and sense, as the 

response difference between the two stimuli constituting 

the pair under comparison. 

In our use of the above law we assume that 

there is no correlation between the two stimuli when 

they are being compared. This assumes that r = 0 



in the more general formula 

2 	2 Xab 	° a + b —  2raacb 

where r is a correlation factor.between individual 

discriminal dispersions during the same judgement. 

We further assume that 0a = b' which is reasonable 

in view of the close similarity of the two stimuli 

being compared. 	Inaccuracies in the scaling would 

result mostly from this latter assumption but, as 

we shall see, the errors are generally small. The 

law can now be stated as 

-eda 	= Xabc°/7 = Add 

or, if we use a as the unit of scale 

-1a --db = Xab~ Add 

From the judgement data for all of the 

observers, a preference ratio (the ratio of actual 

to possible number of times that one stimulus is 

judged better than the other) is thus computed for 

each pair. These ratios are arranged in a skew com—

plementary matrix as shown in the following tables; 

the skew axis being the estimated 50% preference 

ratios which were not observed. The corresponding 
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[ ]observed response differences -Rda --edb are then 

obtained. Figure (38) illustrates an observed re-

sponse difference of -0.89, obtained from a prefer-

ence ratio of 0.264. 
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Er = 0.264 
times 

Total Area 

P 	t (XI- 2) (L)  _ 2 

e  
A-A 

P(A)- 012-7-r 

-0•63j 

= -0.89 

-3.0 	-2.0 	-1.0 	0 0 	1•0 	2.0 	3.0 
Subjectively-assesed Magnitude of 

Difference Between Stimuli 

A second matrix, which is now skew symmetric 

is formed from these values of observed response 

difference. It should be noted that it has no ele-

ments shown in positions corresponding to zero or 

unity preference ratios. These missing elements 

are to be interpreted as response differences either 

too great or too small to be representable by finite 

standard normal deviates without an increase in the 

number of observers. 
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The occurence of these "gaps" in the skew 

symmetric matrix are attributable to the fact that, 

if the number of stimuli cover (in terms of the re— 

sponses which they evoke) a gamut which is large as 

compared to the discriminal unit, then many of the 

pairs will inevitably consist of stimuli which are 

so far apart that, unless the number of observers 

is made extremely large, no disagreement amongst 

observers occurs and hence no finite estimate of 

their scale separations. can be made. For example, 

in order for the possibility to exist of detecting 

any finite standard normal deviate greater than 

3.00 the number of observers would have to be at least 

741. 

The smallest number of finite response 

differences which can be used to scale n stimuli 

is, of course, (n-1); the largest number of response 

differences which can result from n stimuli is 

n(n-1). If m, the number of pairs for which finite 

response differences are obtained, is such that 

(n-1) m< 2n(n-1) 

the response data are said to be incomplete, but 
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it will still be possible to compute the most pro-

bable values of response difference from the obser-

ved data. The data will be complete when m = in(n-1); 

in our case n, the number of stimuli, equals six. 

The purpose in reducing the visibility of 

the slides by varying the intensity of the overlay 

previously mentioned was, then, really an effort to 

make the data more nearly complete in the above sense. 

For a Michelson visibility of 0.79 it was found that 

m'-'44 and the data could not be used; for a visibility 

of 0.31, rniz-J7 making the data acceptable but doubt-

ful. The value finally settled upon was such that 

with a visibility of 0.07 m was never less than 10 

and often equaled 15, the value for the complete case. 

Guildford (1936) has given a method of 

estimating the most probable response differences 

from the values obtained for the observed response 

differences. It is most effective when used with com-

plete data, but it is of value still in the incom-

plete situation. In this method an nx(n-l) matrix 

is formed from the skew symmetric matrix of observed 

response differences by subtracting, element by ele-

ment, each column of the latter from the column to 
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the left of it whenever such subtraction is pos-

sible. Each column of the nx(n-1) matrix, referred 

to as the 'basic response variations', then contains, 

in the complete case, n estimates, two direct and 

(n-2) indirect, of the response differences between 

the two stimuli of one pair; one of the two direct 

estimates is usually regarded as redundant and is 

therefore not written. 

The mean of the sum of each column times 

is taken to be the best estimate of the response 

difference xd between each pair. From these means 

a matrix of computed response differences is assembl-

ed and, then, a matrix of the corresponding computed 

preference ratios is computed. As a check on the 

reliability of the computed response differences the 

matrix of computed preference ratios is subtracted 

from the observed preference ratios matrix, element 

by element. Examination of this final difference 

matrix shows whether or not the computed response 

differences may be assumed to be valid. 

This method assumes, of course, that the 

response differences between any pair of stimuli is 

both linear and additive as Thurstone points out in 

hiss original efforts to obtain a proper scale. 



115 

Morrissey (1955) points out that in .  

Guildford's method a different set of (n-1) column 

means used in computing the matrix of response dif-

ferences will, in the incomplete case, be obtained 

from the differencing procedure if the order of the 

rows (and columns) in the skew symmetric observed 

response differences matrix is changed; in fact, 

there will be many separate sets of (n-1) column means, 

corresponding to different permutations of the num-

bers 1 to n. In the complete case these sets all 

correspond to one another and any one constitutes a 

unique set of basic response variations. 

Morrissey goes on to suggest that a better 

estimate of the basic response variations could be 

made by making a least-squares solution such that the 

n response values are chosen so as to minimize the 

sum of the squares of the m differences between the 

m observed response differences and the r1 computed 

response differences. But in making this suggestion 

Morrissey seems to forget that since the probable 

error of each element ih the observed response dif-

ference matrix is not linearly proportional to the 

value of the response difference itself, it is not 
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possible to directly compare the pooled observed 

and computed response difference values. He would 

have been more correct in suggesting a least—squares 

solution which minimized the sum of the squares of 

the m differences between the computed and observed 

preference ratios. 

However, since Morrissey also fails to 

apply the necessary scaling factor of 1Z to his 

computed response difference matrix his results are 

perpendicularly skew and produce larger apparent 

discrepancies between the observed and computed 

response differences than exist. 

In any event, Guildford's differencing 

method has been applied in this work and, since 

most of the data sets are complete, it leads to very 

reasonable error values. Following the suggestion 

of Kettler (1957) any values of a difference between 

the observed and computed preference ratios greater 

than 0.080 is taken to be open to question; the 

value of 0.080 being four times the probable error 

of a discrepency when the preference ratio is 0.750. 

The following tables are the result of the 

observations of ten trained observers when they viewed 



the above mentioned three sets of six slides at 

three separate distances. The Michelson visibility 

was held constant throughout the observations at 

0.07. 
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0 	-0.67 

+0.67 	0 -1.28 -1.04 ___ 
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___ 	___ +1.28 +1.04 0 +0.25 
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MATRIX OF OBSERVED PREFERENCE RATIOS 

1 	2 	3 	4 
	

5 
(0.500) 0.250 0.000 0.000 0.000 0.000 
0.750 (0.500) 0.100 0.150 0.000 0.000 
1.000 0.900 (0.500) 0.350 0.100 0.100 
1.000 0.850 0.650 (0.500) 0.150 0.050 
1.000 1.000 0.900 0.850 (0.500) 0.600 
1.000 1.000 0.900 0.950 0.400 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

1 	2 
	

3 
	

4 
	

5 
	

6 

CALCULATIONS' OP FIVE BASIC RESPONSE' VARIATIONS' 

1-2 	2-3 	3-4 
	

4-5 	5-6 

+0.67 --- --- ___ --- 
--- +1.28 -0.24 ___ --- 
--- --- +0.39 +0.89 0.00 

--- +0.65 ___ +1.04 +0.61 
___ ___ +0.24. --- -0.25 
--- --- -0.37 +1.90 0.00 

,0.67 +1.93 +0.26 +3.83 +0.36 

+0.67 +0.97 +0.07 +1.28 +0.12 

+0.95 +1.37 +0.10 +1.81 +0.17 
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6 
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5 6 4 

1 2 3 4 5 6 

1 2 3 4 5 6 

E Md(2)-*  
Mean Error 

= 0,009 

= 0.002 

COMPUTED RESPONSE DIFFERENCES 

1 	2 	3 

COMPUTED PREFERENCE RATIO& 

0.500 0.171' 0.010 0.008 0.000 0.000 
0.829 0.500 0.085 0.071 0.001 0.000 

0.990 0.915 0.500 0.460 0.028 0.019 

0.992 0.929 0.540 0.500 0.035 0.024 

1.000 0.999 0.972 0.965 0.500 0.432 

1.000 1.000 0.981 0.976 0.568 0.500 

OBSERVED MINUS COMPUTED PREFERENCE RATIOS 

1 
2 
3 
4 
5 
6 

1 
2.  

3 
4 
5 
6 

0.000 
-0.079 

0.010 

0.079 

0 

-0.015 

-0.010 

0.015 

0 

-0.008 

0.079 

-0.110 

0.000 

-0.001 

0.062 

0.000 

0.000 

0.081 

0.008 -0.079 0.110 0 0.115 0.026 

0.000 0.001 -0.072 -0.115 0 0.168 

0.000 0.000 -0.081 -0.026 -0.168 0 

-0.061 -0.014 -0.048 0.080 0.008 0.275 

-0.010 -0.002 -0.008 -0.013 0.001 0.046 

-0.007 -0.002 -0.006 -0.009 0.001 0.032 

1 

2 
3 
4 
5 
6 

Ed 

Md  

Md(2)-1- 

COMA. I 
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+0.95 0 -1.37 --1.47 -3.28 -3.45 

+2.32 +1.37 0 -0.10 -1.91 -2.08 

+2.42 +1.47 +0.10 	. 0 -1.81 -1.98 

+4.23 +3.28 +1.91 +1.81 0 -0.17 

+4.40 +3.45 +2.08 +1.98 +0.17 0 

0 -4.23 	-4.40 -0.95 -2.32 -2.42 
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MATRIX OF OBSERVED RESPONSE DIFFERENCES' 

CALCULATIONS' OF FIVE BASIC RESPONSE' VARIATIONS' 

1-2 	2-3 	3-4 	4-5 	5-6 
+0.52 +0.32 +0.81 0.00 -0.61 

+0.25 0.00 +0.42 

+0.59 --- 0.00 +1.04 -0.65 

+1.40 +0.25 +0.84 -0.32 

+0.98 -0.37 +0.20 -0.39 

-0.13 +0.91 

+3.09 +0.45 +0.33 +3.21 -1.97 

1-0.77 +0.11 +0.18 +0.64 -0.39 

+1.09 +0.16 +0.25 +0.91 -0.56 

1 

2 

3 

4 

5 

6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Ed 

I'd 

(0.500) 0.300 0.200 0.050 0.050 0.150 

0.700 (0.500) 0.400 0.400 0.250 0.000 

0.800 0.600 (0.500) 0.500 0.150 0.350 

	

0.950 	0.600 

	

0.950 	0.750 

	

0.850 	1.000 

0.500 (0.500) 0.200. 0.300 

0.850 0.800 (0.500) 0.650 

0.650 0.700 0.350 (0.500) 

-0.52 -0..84 -1.65 

+0.52 0 -0.25 -0.25 -0.67 41••••=k ,••• 

+0.84 +0.25 0 0.00 -1.04 -0.39 

+1.65 +0.25 0.00 0 -0.84 -0.52 

+1.65 +0.67 +1.04 +0.84 0 +0.39 

,l.04 +0.39 +0.52 -0.39 0 

-1.04 



0 -1.09 -1.23 -1.50 
+1.90 0 -0.16 ,-0.36 -1.27 -0.71 

+1.25 +0.16 0 	- -0.25 -1.16 -0.60 

+1.56 +0.36 +0.25 0 -0.91 -0.35 
+2.41 +1.27 +1.16 +0.91 0 +0.56 

+1.85 +0.71 +0.60 +0.35 -0.56 0 

-2.41 	-1.85 

	

0.500 	0.138 	0.106 	0.067 	0.008 	0.031 

	

0.862 	0.500 	0.436 	0.359 	0.002 	0.239 

	

0.894 	0.564 	0.500 	0.401 	0.123 	0.274 

0.933 0.641 0.599 0.500 0.181 0.363 

0.992 0.998 0.877 0.819 0.500 0.712 

0.969 .  0.761 0.726 0.637 0.288 0.500 

0 

-0.162 
-0.094 

0.162 
0 

0.036 

0.094 
-0.036 

0 

-0.017 

0.041 

0.099 

0.042 

0.248 

0.027 

0.119 

0.239 
0.076 

0.017 -0.041 -0.099 0 0.019 -0.063 

-0.042 -0.248 -0.027 -0.019 0 -0.062 

-0.119 0.239 -0.076 0.063 0.062 0 

-0.447 0.148 -0.144 0.167 0.338 0.309 

-0.075 0.025 -0.024 0.028 0.056 0.051 

-0.053 0.017 -0.017' 0.020 0.040 0.036 

1 
2 

3 

4 

5 

6 

1 

2 

3 

4 

5 

6 

1 
2 
3 
4 

5 
6 

COMPUTED RESPONSE DIFFERENCES' 

1 	2 	3 

COMPUTED PREFERENCE RATIOS 

1 	2 	3 
	

4 
	

5 
	

6 

OBSERVED MINUS COMPUTED PREFERENCE RATIOS 

1. 	 2 	3 	4 
	

5 
	

6 

4 5 

122 

6 

Emd( 2 )-1 
 

= 0.043 

Mean Error = 0.007 
COMA II 
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COMA 	DISTANCE II 

WITH MEAN LINE APPROXIMATION 

5a 

Sigma 
Values 

{ -d} 
4 

3 

3.20 

V 

2 

0 
1-2 
	

1-3 
	

1-4 
	

1-5 
	

1-6 

Image Steps 

40 

linit{4= 86% Preference Ratio 



0 	-0.52 	-1.04 	-0.84 	-1.04 	-1.28 

+0.52 0 -0.84 -0.52 -1.28 -1.04 
+1.04 +0.84 0 +0.12 -0.84 -0.67 

+0.84 +0.52 -0.12 0 -0.12 -0.67 
+1.04 +1.28 +0.84 +0.12 0 -0.12 

+1.28 +1.04 +0.67 +0.67 +0.12 0 

0 
O COMA 
O DISTANCE III 
O 10 x 2 OBSERVER& 
0 

100% 

 

V = 0.07 

124 

1 
2 
3 
4 
5 
6 

MATRIX OP OBSERVED PREFERENCE RATIOS: 

1 	2 	3 	4 
	

5 
(0.500) 0.300 0.150 0.200 0.150 0.100 

0.700 (0.500) 0.200 0.300 0.100 0.150 

0.850 0.800 (0.500) 0.550 0.200 0.250 

0.800 0.700 0.450 (0.500) 0.450 0.250 

0.850 0.900 0.800 0.550 (0.500) 0.450 

0.900 0.850 0.750 0.750 0.550 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES' 

1 	2 	3 	4 	5 	6 

CALCULATIONS OF FIVE BASIC RESPONSE' VARIATIONS' 

1-2 	2-3 	3-4 	4-5 	5-6 
+0.52 +0.52 -0.20 +0.20 +0.24 

+0.84 -0.32 +0.76 -0.24 
+0.20 -0.12 +0.96 -0.17 

+0.32 +0.64 +0.12 +0.55 
-0.24 +0.44 +0.72 +0.12 

1-0.24 +0.37 0.00 +0.55 --- 

=1.04 +2.81 +0.06 +2.59 +0.50 

+0.21 +0.56 -0.01 +0.52 +0.10 

+0.30 +0.79 +0.01 +0.73 +0.14 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Ed 

Md 



0 -0.30 -1.09 
+0.30 0 -0.79 -0.80 -1.53 -1.67 
+1.09 +0.79 0 -0.01 -0.74 -0.88 

+1.10 +0.80 +0.01 0 -0.73 -0.87 
+1.83 +1.53 +0.74 +0.73 0 -0.14 

+1.97 +1.67 +0.88 +0.87 +0.14 0 

-1.97 J. 
2 
3 
4 

5 
6 

1 
2 
3 
4 
5 
6 
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COMPUTED RESPONSE DIFFERENCES 

1 	2 	3 	4 	5 	6 

COMPUTED PREFERENCE RATIOS 

1 
	2 	3 

	
4 
	

5 
	6 

0.500 0.382 0.138 0.136 0.034 0.024 
0.618 0.500 I  0.215 0.212 0.063 0.047 
0.862 0.785 0.500 0.496 0.230 0.189 

0.864 0.788 0.504 0.500 0.433 0.192 

0.966 0.937 0.770 0.567 0.500 0.444 

0.976 0.953 0.811 0.808 0.556 0.5.00 

OBSERVED MINUS. COMPJTED PREFERENCE RATIOS 

1 	2 	3 	4 
	

5 
	

6 

1 
2 
3 
4 
5 
6 

Ed 

Md  
Ma (2)- 

0 
0.082 

-0.012 

-0.082 
0 

0.015 

0.012 
-0.015 

0 

0.064 
0.088 
0.054 

0.116 
0.037 

-0.030 

0.076 

0.103 
0.061 

-0.064 -0.088 -0.054 0 0.017 0.058 
-0.115 -0.037 0.030 -0.017 0 0.006 

-0.076 -0.103 -0.061 -0.058 -0.006 0 

-0.180 -0.310 -0.088 0.131 0.134 0.304 

-0.026 -0.050 -0.014 0.022 0.022 0.051 

-0.018 -0.030 -0.010 0.015 0.016 0.036 

EVia 
( 2 ) 2 

 _ 
= 0.009 

Mean Error = 0.002 
COMA III 



P.E. = 0.06 

2.07 

0 
1-3 1-4 

Image Steps 

1-5 1-6 

126 

COMA 	DISTANCE III 

WITH MEAN LINE APPROXIMATION 

5a 
Sigma 

Values 

{-d} 
4 

40 

Unit 
	

86% Preference Ratio 



+1.65 0 -0.39 -0.52 --- -1.65 

+1.65 +0.39 0 -0.13 --- -1.04 

+128 +0.52 +0.13 0 -1.28 -1.65 
___ _-_, +1.28 0 +0.25 

___ +1.65 +1.04 +1.65 -0.25 0 

0 -1.28 	--- -1.65 -1.65 

0 
o GAUSSIAN 
O DISTANCE I 
O 10 x 2 OBSERVERS' 

l00% 

 

V = 0.07 

1 

2 

3 

4 

5 
6 

1 

2 

3 

4 

5 
6 

MATRIX OF OBSERVED PREFERENCE RATIOS 

1 	2 
	

3 
	

4 
	

5 
	

6 

(0.500) 0.050 0.050 0.100 0.000 0.000 

0.950 (0.500) 0.350 0.300 0.000 0.050 

0.950 0.650 (0.500) 0.450 0.000 0.150 

0.900 0.700 0.550 (0.500) 0.100 0.050 

1.000 1.000 1.000 0.900 (0.500) 0.600 

1.000 0.950 0.850 0.950 0.400 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

1 	2 
	

3 
	

4 
	

5 
	

6 

CALCULATIONS' OP FIVE BASIC RESPONSE' VARIATIONS' 

1-2 	2-3 	3-4 	4-5 	5-6 

+1.65 

--- 

+0.26 

0.00 
+0.39 

--- 

-0.37 

+0.13 

+0.13 

___ 

___ 

___ 

--- 

--- 

--- 

+0.76 +0.39 --- +1.28 +0.37 

___ -0.25 
_ +0.61 -0.61 +1.90 --- 

+2.67 +1.39 -0.52 +3.18 +0.12 

+0.92 +0.35 -0.13 +1.59 +0.06 

+1.30 +0.49 -0.18 +2.25 +0.09 

1 

2 

3 

4 

5 

6 

Ed 

Md 



0 -1.30 -1.89 -1.71 

+1.30 0 -0.49 -0.31 -2.56 -2.65 

+1.89 +0.49 0 +0.18 -2.07 -2.16 

+1.7L +0.31 -0.18 0 -2.25 -2.34 

+3.96 +2.56 +2.07 +2.25 0 -0.09 

+4.05 +2.65 +2.16 +2.34 +0.09 0 

-3.96 	-4.05 

0 

0.047 

-0.021 

-0.047 

0 

-0.038 

0.021 

0.038 

0 

0.056 

-0.078 

-0.121 

0.000 

-0.005 

-0.019 

0.000 

0.046 

0.135 

-0.056 0.078 0.121 0 0.088 0.040 

0.000 0.005 0.019 -0.088 0 0.136 

0.000 -0.046 -0.135 -0.040 -0.136 0 

0.030 -0.048 0.064 0.271 -0.160 0.357 

0.005 -0.008 0.011 0.045 -0.026 0.060 

0.004 -0.006 0.008 0.032 -0.019 0.042 

1 
2 
3 
4 
5 
6 

1 

2 
3 
4 
5 
6 

2 
3 
4 
5 
6 
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COMPUTED RESPONSE DIFFERENCES' 

1 	2 
	

3 
	

4 
	

5 
	6 

COMPUTri) PREFERENCE RATIOS,  

1 	2 	3 	4 
	

5 
	

6 
0.500 0.097 0.029 C.044 0.000 0.000 

0.903 0.500 0.312 0.378 0.005 0.004 

0.971 0.688 0.500 0.571 0.019 0.015 

0.956 0.622 0.429 0.500 0.012 0.010 

1.000 0.995 0.981 0.988 0.500 0.464 

1.000 0.996 0.985 0.990 0.536 0.500 

OBSERVED MINUS COMPUTED PREFERENCE RATIOS 

1 	2 
	

3 
	

4 
	

5 
	

6 

= 0.016 

Mean Error = 0.001 
GAUSSIAN I 
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GAUSSIAN 	DISTANCE I 
WITH MEAN LINE APPROXIMATION 

Sigma 
Values 

{4 } 
4 

2 

1 

0 

11.62 

	

1-2 
	

1-3 	1-4 

Image Steps 

42 

	

Unit 
	

86% Preference Ratio 

1-5 1-6 

  



130 100% 

GAUSSIAN 
DISTANCE II 
10 x 2 OBSERVERS 

O 

1 2 3 4 5 

1 2 3 4 5 6 

MATRIX OF OBSERVED 2REFERENCE RATIOS 

(0.500) 0.050 0.100 0.050 0.150 0.000 

0.950 (0.500) 0.200 0.350 0.250 0.200 

0,900 0.800 (0.500) 0.500 0.300 0.250 

0.950 0.650 0.500 (0.500) 0.300 0.300 
0.850 0.750 0.700 0.700 (0.500) 0.450 

1.000 0.800 0.750 0.700 0.550 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

0 -1.65 -1.28 -1.65 -1.04 

+1.65 0 -0.84 -0.39 -0.67 -0.84 

+1.28 +0.84 0 0.00 -0.53 -0.68 

+1.65 +0.39 0.00 0 -0.52 -0.52 

+1.04 +0.67 +0.53 +0.52 0 -0.13 

+0.84 +0.68 +0.52 +0.13 0 

CALCULATIONS OP FIVE BASIC RESPONSE* VARIATIONS 

1-2 	2-3 	3-4 	4-5 	5-6 
+1.65 -0.37 +0.37 -0.61 

+0.84 -0.49 +0.28 +0.17 

+0.44 0.00 +0.53 +0.15 
+1.26 +0.39 +0.52 0.00 

+0.37 +0.14 +0.01 --- +0.13 
+0.16 +0.16 +0.39 

+3.72 +1.16 +0.05 +1.11 +0.45 

+0.93 +0.23 +0.01 +0.22 +0.11 

+1.32 +0.32 +0.01 +0.31 +0.15 

1 

2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Ed 



0 -1.32 -1.64 -1.65 
+1.32 0 -0.32 -0.33 -0.64 -0.79 
+1.64 +0.32 0 -0.01 -0.34 -0.49 
+1.65 +0.33 +0.01 0 -0.31 -0.46 
+1.96 +0.64 +0.34 +0.31 0 -0.15 

+2.11 +0.79 +0.49 +0.46 +0.15 0 

-2.11 1 
2 
3 
4 
5 
6 

1 
2.  
3 
4 
5 
6 
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COMPUTED RESPONSE DIFFERENCES 

1 
	2 	3 

	4 
	5 
	6 

COMPUTED PREFERENCE RATIOS 

1 
	

2 
	

3 
	

4 
	

5 
	

6 

0.500 0.093 0.050 0.049 0.025 0.017 
0.907 0.500 0.374 0.371 0.261 0.215 
0.950 0.626 0.500 0.496 0.367 0.312 
0.951 0.629 0.504 0.500 0.378 0.323 
0.975 0.739 0.633 0.622 0.500 0.440 
0.983 0.785 0.688 0.677 0.560 0.500 

OBSERVED MINUS COMPUTED PREFERENCE RATIOS 

1. 	2 	3 	4 	5 
	

6 

1 
2 
3 
4 
5 
6 

Ed 

Md 
Md(2)-1.  

0 
0.043 

-0.050 
-0.001 

-0.043 
0 

0.174 
0.021 

0.050 
-0.174 

0 
-0.004 

0.001 
-0.021 

0.004 
0 

0.125 
-0.011 
-0.067 
-0.078 

-0.017 

-0.015 

-0.062 
-0.023 

0.125 0.011 0.067 0.078 0 0.010 

0.017 0.015 0.062 0.023 -0.010 0 

0.134 0.178 0.001 0.085 -0.041 -0.107 

0.057 0.030 0.000 0.014 -0.007 -0.018 

0.040 0.021 0.000 0.010 -0.005 -0.013 

= 0.053 

Mean Error = 0.009 
GAUSSIAN II 



0 
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GAUSSIAN 	DISTANCE II 
WITH MEAN LINE APPROXIMATION 

50- 
Sigma 

Values 
{4} 

1-6 1-2 
	

1-3 	1-4 

Image Steps 

43 

Unit{44= 86% Preference Ratio 

1-5 



l00% 

V = 0.07 

1 2 3 4 5 

6 5 1 	2 	3 	4 

GAUSSIAN 
DISTANCE III 

0 	10 x 2 OBSERVERS. 
0 

133 

MATRIX OF OBSERVED PREFERENCE RATIOS 

(0.500) 0.200 0.150 0.250 0.100 0.100 

0.800 (0.500) 0.350 0.400 0.300 0.250 

0.850 0.650 (0.500) 0.200 0.350 0.400 

0.750 0.600 0.800 (0.500) 0.300 0.250 

0.900 0.700 0.650 0.700 (0.500) 0.550 

0.900 0.750 0.600 0.750 0.450 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

CALCULATIONS' OP PIVE BASIC RESPONSE' VARIATIONS' 

1-2 	2-3 	3-4 	4-5 	5-6 

+0.84 +0.20 -0.37 +0.61 0.00 

--- +0.39 -0.14 +0.27 +0.15 

+0.65 --- +0.84 -0.45 -0.14 

+0.42 -0.59 --- +0.52 +0.15 

+0.76 +0.13 -0.13 --- -0.13 

+0.61 +0.42 -0.42 +0.80 --- 

+2.86 +1.05 -0.22 +2.20 +0.03 

+0.57 +0.21 -0.04 +0.44 +0.01 

+0.81 +0.30 -0.06 +0.61 +0.01 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

Ed 
Md 

-dd 

0 -0.84 -1.04 

+0.84 0 -0.39 -0.25 -0.52 -0.67 

+1.04 +0.39 0 -0.84 -0.39 -0.25 

+0.67 +0.25 +0.84 0 -0.52 -0.67 

+1.28 +0.52 +0.39 +0.52 0 +0.13 

+1.28 +0.67 +0.25 +0.67 -0.13 0 

-1.28 	-1.28 



1 

2 

3 
4 
5 
6 

1 

2.  

3 
4 
5 
6 
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COMPUTED RESPONSE DIFFERENCES 

1 
	2 
	

3 
	

4 
	

5 
	

6 

0 -0.81 -1.01 -0.95 -1.56 -1.57 

+0.81 0 -0.30 -0.24 -0.85 -0.86 

+1.01 +0.30 0 +0.06 -0.55 -0.56 

+0.95 +0.24 -0.06 0 -0.61 -0.62 

+1.56 +0.85 +0.55 +0.61 0 -0.01 

+1.57 +0.86 . +0.56 +0.62 +0.01 0 

COMPUTED PREFERENCE RATIOS 

1 	2 	3 
	

4 
	 6 

	

0.500 	0.209 	0.156 	0.171 	0.059 	0.058 

	

0.791 	0.500 	0.382 	0.405 	0.198 	0,195 

	

0.844 	0.618 	0.500 	0.524 	0.291 	0.288 

0.829 0.595 0.476 0.500 0.271 0.268 

0.941 0.802 0.709 0.729 0.500 0.496 

0.942 0.805 0.712 0.732 0.504 0.500 

OBSERVED MINUS COMPUTED PREFERENCE RATIOS 

1 	2 	3 	4 
	

5 
	6 

1 
2 
3 
4 
5 
6 

Ed 

Md 

Md(2)4  

0 

0.009 
0.006 

-0.009 

0 

0.032 

-0.006 

-0.032 

0 

0.079 

-0.005 

-0.324 

0.041 

0.102 

0.059 

0.042 

0.055 

0.112 

-0.079 0.005 0.324 0 0.029 -0.018 

-0.041 -0.102 -0.059 -0.029 0 0.054 
-0.042 -0.055 -0.112 0.018 -0.054 0.500 

-0.147 -0.129 0.115 -0.261 0.177 0.245 

-0.025 -0.022 0.019 -0.043 0.029 0.041 

-0.017 -0.015 0..014 -0.031 0.021 0.029 

Emd(2) = 0.001 

Mean Error = 0.000 
GAUSSIAN III 



1-2 1-3 1-4 1-5 1-6' 

86% Preference Ratio Unit 
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GAUSSIAN 	DISTANCE Di 

WITH MEAN LINE APPROXIMATION 

5cr 

Sigma 
Values 

{-̀2} 
4 

3 

2 

1 

0 

Image Steps 

O 



+1.64 +1.28 0 -1.04 ___ --- 
+1.64 +1.04 0 -0.67 -1.04 
___ ___ +0.67 0 -0.25 

+1.04 +0.25 0 

0 	-1.28 	-1.64 	-1.64 
+1.28 0 -1.28 ___ 

1 

2 

3 

4 

5 

6 

1 

2 

3 

4 

5 
6 

0 
O 	ZEIERICAL o 	DISTANCE' I 

10 x 2 OBSERVERS 
O 

100% 

MATRIX OF OBSERVED PREFERENCE RATIOS 

1 	2 	3 	4 
	

5 
(0.500) 0.100 0.050 0.050 0.000 0.000 
0.900 (0.500) 0.100 0.000 0.000 0.000 
0.950 0.900 (0.500) 0.150 0.000 0.000 
0.950 1.000 0.850 (0.500) 0.250 0.150 
1.000 1.000 1.000 0.750 (0.500) 0.400 
1.000 1.000 1.000 0.850 0.600 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

1 	2 
	

3 
	

4 
	

5 
	

6 

CALCULATIONS' OP FIVE BASIC RESPONSE' VARIATIONS 

1-2 	2-3 	3-4 	4-5 	5-6 
+1.28 

--- 

+0.36 

+0.36 

+1.28 

--- 

0.00 

--- 

+1.04 

--- 

--- 

--- 

--- 

--- 

--- 

--- ___ _-_ +0.67 +0.37 
___ ___ ___ ___ +0.25 
--- _-- ___ +0.79 --- 

+1.64 +1.64 +1.04 +1.46 +0.62 

+0.82 +0.82 +0.52 +0.73 +0.31 

+1.17 +1.17 +0.74 +1.05 +0.44 

1 
2 

3 

4 

5 
6 

Ed 

Md 

Add 



0 	-1.17 	-2.34 	-3.08 	-4.13 	-4.57 
+1.17 0 -1.17 -1.91 -2.96 -3.40 
+2.34 +1.17 0 -0.74 -1.79 -2.23 
+3.08 +1.91 +0.74 0 -1.05 -1.49 
+4.13 +2.96 +1.79 +1.05 0 -0.44 
+4.57 +3.40 +2.23 +1.49 +0.44 0 

1 
2 
3 
4 
5 
6 

1 
2.  

3 
4 
5 
6 
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COMPUTED RESPONSE DIFFERENCES 

1 	2 	3 
	

4 
	

5 
	6 

COMPUTED PREFERENCE RATIOS 

1 	2 	3 	4 
	

5 
	6 

0.500 0.121 0.010 0.001 0.000 0.000 
0.879 0.500 0.121 0.028 0.001 0.000 
0.990 0.879 0.500 0.230 0.037 0.013 
0.999 0.972 0.770 0.500 0.147 0.068 
1.000 0.999 0.963 0.853 0.500 0.330 
1.000 1.000 0.987 0.932 0.760 0.500 

OBSERVED MINUS COMPUTED PREFERENCE RATIOS 

2 	3 	4 	5 
	6 

1 
2 
3 
4 
5 
6 

Ed 

Md 
Md(2).-4  

0 
0.021 

-0.040 

-0.021 
0 

-0.021 

0.040 
-0.021 

0 

0.049 
-0.028 
-0.080 

0.000 
-0.001 
-0.037 

0.000 
0.000 

-0.013 
-0.049 0.028 0.080 0 0.103 0.082 
0.000 0.001 0.037 -0.103 0 0.070 
0.000 0.000 0.013 -0.082 -0.070 0 

-0.068 -0.013 0.159 -0.244 -0.008 0.139 

-0.011 -0.022 0.026 -0.040 -0.001 0.023 

-0.008 -0.015 0.018 -0.028 0.000 0.016 

Emd(2) 	= -0.017 
Mean .Error = -0.003 
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0 -0.68 -0.84 -1.65 

+0.68 0 -0.68 -1.04 -1.28 -1.28 

+0.84 +o.68 0 -0384 -0.84 -0.84 

+1.65 +1.04 +0.84 0 -0.39 -0.39 

+1.65 +1.28 +0.84 +0.39 0 -0.13 

+1.28 +1.28 +0.84 +0.39 +0.13 0 

-1.28 
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6 
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SPHERICAL 

O 	DISTANCE II 
O 	10 x 2 OBSERVERS 
O 

100% 

MATRIX OF OBSERVED PREFERENCE RATIOS' 

1 	2 	3 	4 
(0.500) 0.250 0.200 0.050 0.050 0.100 

0.750 (0.500) 0.250 0.150 0.100 0.100 

0.800 0.750 (0.500) 0.200 0.200 0.200 

0.950 0.850 0.800 (0.500) 0.350 0.350 

0.950 0.900 0.800 0.650 (0.500) 0.450 

0.900 0.900 0.800 0.650 0.550 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

1 
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3 
	

4 
	

5 
	

6 

CALCULATIONS' OF FIVE BASIC RE SPONSE" VAR IAT I ONS 

1-2 	2-3 	3-4 	4-5 	5-6 

+0.68 +0.16 +0.81 0.00 -0.31 

--- +0.68 +0.36 +0.24 0.00 

+0.16 --- +0.84 0.00 0.00 

+0.61 +0.20 --- +0.39 0.00 

+0.37 +0.44 +0.45 --- +0.13 

0.00 +0.44 +0.45 +0.26 --- 

+1.82 +1.92 +2.91 +0.89 -0.18 

+0.36 +0.38 +0.58 +0.18 -0.04 

+0.51 +0.54 +0.82 +0.25 -0.06 

1 
2 

3 

4 

5 
6 

Ea 
Bid 
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0 	-0.51 	-1.05 	-1.87 	-2.12 	-2.06 
+0.51 0 -0.54 -1.36 -1.61 -1.55 
+1.05 +0.54 0 -0.82 -1.07 -1.01 
+1.87 +1,36 +0.82 0 -0.25 -0.19 
+2.12 +1.61 +1.07 +0.25 0 +0.06 
+2.06 +1.55 +1.01 +0.19 -0.06 0 

	

0.500 	0.308 	0.167 	0.031 	0.017 	0.020 

	

0.692 	0.500 	0.295 	0.087 	0.054 	0.061 

	

0.853 	0.705 	0.500 	0.206 	0.142 	0.156 
0.913 0.794 0.500 0.401 0.425 
0.946 0.858 0.599 0.500 0.524 
0.939 0.844 0.575 0.476 0.500 

0.969 
0.983 
0.980 

1 
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COMPUTED RESPONSE DIFFERENCES 
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Ed 
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Ma(2)4  

0 
0.058 

-0.058 
0 

0.033 
-0.045 

0.019 
0.063 

0.033 
0.046 

0.080 
0.034 

-0.033 0.045 0 -0.006 0.058 0.044 
-0.019 -0.063 0.006 0 -0.051 -0.075 
-0.033 -0.046 -0.058 0.051 0 -0.074 
-0.080 -0.039 -0.044 0.075 0.074 0 

-0.107 -0.161 -0.120 0.202 0.140 0.009 

-0.018 -0.027 -0.020 0.034 0.023 0.002 

-0.012 -0.019 -0.014 0.024 0.016 0.001 
. 

°g 0.004 - 
Mean Error = 0.001 
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0 	-0.52 	-0.68 	-1.04 	-0.84 	-1.65 

+0.52 	0 	-0.39 	-0.68 	-0.67 	-i.04 

+0.68 +0.39 0 -0.67 

+1.04 +0.68 +0.67 0 -0.52 -0.39 

+0.84 +0.67 +0:84 +0.52 0 +0.39 

+1.65 +1.04 +0.39 +0.39 -0.39 0 
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DISTANCE III 
10 x 2 OBSERVERS 

0 
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MATRIX OF OBSERVED PREFERENCE RATIOS 

1 	2 	3 	4 
	

5 

1 (0.500) 0.300 0.250 0.150 0.200 0.050 

2 0.700 (0.500) 0.350 0.250 0.250 0.150 

3 0.750 0.650 (0.500) 0.250 0.200 0.350 

4 0.850 0.750 0.750 (0.500) 0.300 0.350 

5 0.800 0.750 0.800 0.700 (0.500) 0.650 

6 0.950 0.850 0.650 0.650 0.350 (0.500) 

MATRIX OF OBSERVED RESPONSE DIFFERENCES 

1 	2 	3 	4 
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CALCULATIONS' OF FIVE BASIC RESPONSE' VARIATIONS 

1-2 	2-3 	3-4 	4-5 	5-6 

+0.52 +0.16 +0.36 -0.20 +0.81 

+0.39 +0.29 -0.01 +0.37 

+0.29 +0.67 +0.17 -0.45 

+0.36 +0.01 +0.52 -0.13 

+0.17 -0.17 +0.32 --- -0.39 

+0.61 +0.65 0.00 +0.78 

+1.95 +1.44 +1.64 +1.24 +0.21 
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+0.54 +0.41 '+0.47 +0.35 +0.06 
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0 -0.54 -0.91 

+0.54 0 -0.41 -0.88 -1.23 -1.27 

+0.91 +0.41 0 -0.47 -0.82 -0.88 

+1.38 +0.88 +0.47 0 -0.35 -0.41 

+1.73 +1.23 +0.82 +0.35 0 -0.06 

+1.80 +1.27 +0.88 +0.41 +0.06 0 

-1.38 	-1.73 	-1.80 

	

0.500 	0.295 	0.181 	0.084 	0.042 	0.036 

	

0.705 	0.500 	0.341 	0.189 	0.109 	0.102 

	

0.819 	0.659 	0.500 	0.319 	0.203 	0.189 

0.811 0.681 0.500 0.363 0.341 

0.891 0.797 0.637 0.500 0.476 

0.898 0.811 0.659 0.524 0.500 

0.916 

0.958 

0.964 
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Md(2)-i 

0 

-0.005 

-0.069 

0.005 

0 

-0.009 

0.069 

0.009 

0 

0.066 

0.061 

-0.069 

0.158 

0.141 

-0.003 

0.014 

0.048 

0.161 

-0.066 -0.061 0.069 0 -0.063 0.009 

-0.158 -0.141 0.003 0.063 0 0.174 

-0.014 -0.048 -0.161 -0.00( -0.174 0 

-0.312 -0.254 -0.031 0.112 0.059 0.406 

-0.052 -0.042 -0.005 0.019 0.010 0.068 

-0.037 -0.030 -0.004 0.013 0.007 0.048 
/ 

:X(2)-  = 0.003 - 

Mean Error = 0.001 
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CHAPTER IV 

Relating Visual and Instrumental Concepts  

of Quality  

FOURIER TRANSFORMS OF TEST SLIDES 

The Fourier transform of any extended but 

finite two-dimensional area will be the convolution 

of the transforms of the basic function and its boun- 

dary function. While the previously described equip- 

ment is being used to obtain the transforms of grating- 

like objects it is useful to consider the effects of 

the boundary function on the interpretability of the final 

data; if the boundary function is such that large 

side-bands are produced beside the grating peaks it 

may become difficult visually to differentiate between 

the harmonics that we wish to measure and these side- 

band effects. 

The least complicated or confusing spread 

function which is readily produced is a Gaussian 

distribution and, since the transform of a Gaussian 

distribution is itself a Gaussian distribution, this 

shape will be a suitable boundary for grating-like objects. 

Since we are obtaining only a one-dimensional transform 
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of these objects, a mask with a Gaussian shape, 

inserted at the fringe plane of the instrument, will 

be sufficient to eliminate any later difficulties in 

data reduction. 

The size of this limiting aperture, as 

seen by the slide under test, was about 5/8" across 

the peak. 	The choice of size Was somewhat arbitrary, 

being limited on the one hand by the signal-to-noise 

ratio of the equipment and on the other hand by a 

residual curvature of the fringe pattern (the effect 

of which we wished to minimize). 

As a test run, to check the reproducibility 

and accuracy of the instrument, the transforms of a 

sharp, equal-spaced square-wave pattern were obtained. 

The spacing of this pattern was about eleven lines 

per inch. The values of the modulus of this trans-

formation were found to be reproducable to within 2% 

and the values of amplitude were all within 3% of the 

calculated values through to the 7th harmonic. Noise 

level and signal stability at both full and zero 

modulation were better than 2% at all times. These 

values were felt to be adequate and useable. 

The transforms of the eighteen slides used in 

the subjective evaluation tests were then obtained. 
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The following procedure was found to be useful and 

is noted here for future reference. 

1. A one hour warm-up period was allowed 

on all the equipment. 

2. Knob (I) was pulled out (producing full 

modulation) and the reading was adjusted 

to nearly full scale and then noted. 

3. Knob (1:;) was pushed back. 	The ampli-

fier was then reduced in attenuation by 

4db and a scan was made. 

4. Step 2 was repeated for the complimen- 

tary transform (with Knob CD  pulled out) 

and the full-scale reading was adjusted 

to the previous reading. 

5. Step 3 was repe6ted to obtain the com- 
plementary transform (with Knob 	still 
pulled out). 

This procedure eliminates any variation in scale in-

troduced by the insertion of the quarter-wave plate 

and keeps a continual check on the instrument's stability. 

It is important also that the slides being tested are 

kept in the same orientation with one another. All 

readings were repeated twice in these observations. 

The following curves [Figures (51), (52), 

(53), (54), (55) and (56)] are the smoothed values of 

the root-mean-square sums of the sine and cosine trans-

forms of the three series of slides previously shown 
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to the group of observers. The amplitude units are 

arbitrary but constant throughout the readings. 

It will be noticed that there is a variation 

in amplitude between the first slides of each series; 

that the transforms are similar but apparently dif-

ferently scaled. These and other variations in the 

progressive reductions of amplitude in the frequency 

spectrum are due, in spite of the care taken, to a 

variation in the photographic and development processes. 

It is most probable that these variations were the re-

sult of unequal exposure times, thereby causing an 

unequal and irregular variation in the expected 

Michelson visibility of the printed-on grating structure. 

Figure (57) shows these variations as 

changes of the integrated transmission for each slide. 

INTEGRATED TRANSMISSION 

546 0 A 

COMA SPHERICAL 

Slide Numbers 

GAUSSI AN 
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These variations were clearly to be expected from 

the densitometer traces shown in Figures (48), (49) 

and (50). 	The values of the integrated transmission 

were obtained for an area of In diameter, with a 

Beckman spectro-photometer at a wavelength of 5460L 

It will be seen, shortly, that these variations in 

integrated transmission and, therefore, variations 

from even steps in the Fourier transforms are closely 

related to the non-linear progression of response dif-

ference noticed by the observers. 

COMPARISON BETWEEN TRANSFORMS AND SUBJECTIVE TESTS 

If the steps of image degradation, as 

measured instrumentally, proceed in a linear or, at 

least smooth, simple manner and if the scaling tech-

niques used on the observer's judgements of quality are 

valid in their linearity assumptions, it would be re-

asonable to assume that the curves of response dif-

ferences, shown in the previous chapter, would also 

be at least smooth. 	With the possible exception of 

the spherically blurred slides, this is not the case. 

Both the coma and Gaussian response difference 

curves exhibit strong departures from a smooth 
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progression. 	We notice, however, from both 

the densitometer traces [Figures (48), (49) and (50)] 

and the values of integrated transmission [Figure (57)] 

that it is exactly the spherically blurred slides which 

exhibit the greatest degree of constancy in their 

integrated transmission and zero shift. 

It will be of interest to see whether we are 

able to obtain scaling values from the Fourier trans-

forms of the slides which will enable us to smooth 

the response difference curves. 	This would, at the 

same time, show us more clearly the relationship 

between the variation of response difference for the 

observer and the variation in the Fourier transforms 

seen instrumentally. 

Figures (58), (59) and (60) show the prog-

ressive differences between slides resulting from the 

subtraction of the amplitudes of the transforms of 

two slides. 	Included for reference, in these figures, 

are the response difference measurements for all three 

distances for each series of slides. 	It will be not-

iced more clearly in these plots of response difference 

that there is a strong similarity between the shapes 

of the curves for all three distances; that although 

the observer's certainty of quality decreases with dis- 
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tance, the discontinuity effects are present through- 

out. 

Two simple scaling techniques were tried 

in an effort to smooth these discontinuities. 	Nei-

ther was wholly satisfactory but there was, at least, 

evidence that such a correlation might exist. 	In the 

first instance the sums of the peaks of the transform 

differences were obtained for each pair. 	The deviations 

of these differences from a linear progression were used 

as scaling factors to weight the calculated response 

difference values. 	These weights tended to smooth 

the response difference curves somewhat, but the 

effects were far from complete. Secondly, the same 

weighting method was tried, using only the amplitudes 

of the fundamental frequency, rather than the sum of 

the entire frequency spectrum. 	This technique was 

just slightly more satisfactory. 

Since the shape of the response difference 

curve does not seem to be dependent on the observing 

distance it was felt that perhaps the observer was 

basing his entire judgement only on those frequencies 

which were within his resolution limits at all three 

distances (namely the fundamental). 	The poorer per-

formance of the weighting method involving the entire 



frequency spectrum indicates that this is perhaps 

partially true. 

At Distance I (the nearest viewing distance) 

the maximum sigma value of observed response dif— 

ference is at most less than five. 	We may interpret 

this to mean that the majority (86%) of the observers 

will be able to just distinguish five steps of image 

degradation in each set of slides at this distance. 

Instrumentally we find, however, that there has been 

an average decrease in amplitude of the fundotmental 

frequency of 77% throughout each series of slides. 

If we take the instrumental errors to be as much as 

5% we would still be able to detect fifteen steps 

of image degradation by this technique. 	In other 

words, the instrument is at least three times more 

sensitive in detection of image quality than the 

human eye when that eye is able to resolve the 4th 

harmonic of pattern. An increase of observing 

distance, of course, increases the instrumental 

advantage, by reducing the information available 

to the eye. 
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CONCLUSIONS 

Looking back to the modulus of the Fourier 

transforms for each slide, it will be noticed that 

the Gaussian blur slides lose, withthe exception of 

the second harmonic, most of their upper frequencies 

rather quickly. 	This is not the case with the other 

blur shapes. 	The observer, however, does not greatly 

prefer these other slides in his efforts to make a 

quality judgement. Furthermore, changing the obser-

ving distance so that he is only able to see the lower 

end of the frequency spectrum does not change the char-

acter of the observer's ability to discriminate between 

slides, although it does always make the choice more 

difficult. 	Strong discontinuities in the computed 

response differences for the observer do correspond 

to changes in the amplitude of the frequency spectrum 

(such as the slide pair 1-4 in the Gaussian series). 

These factors all tend to the impression that the 

observer is mostly concerned with reductions of 

contrast in the fundamental frequency; complex blur 

functions are no less detrimental to image quality 

than more simple blur functions. 
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While there was a definite and large decrease 

in the observer's discriminal ability when he was moved 

in so that he could not see both the third and fourth 

harmonics (Distance II), the decreased information 

available at Distance III, namely the lack of first 

and second harmonics, did very little in decreasing 

his discriminal ability. 	His response difference 

values were only slightly degraded with this increase 

of distance. 

It seems reasonable then that the failure 

of the weighting procedures was due more to inac—

curacies in the response difference data, from perhaps 

too few observers, than to a basic invalidity of the 

idea. 

It is clear, however, that these instru—

mental measurements of the transform of the image 

constitute a superior method of discrimination of 

image content and quality than the human observer 

with his visual abilities. 

In agreement with the preliminary experiments, 

it appears that quality judgements for many optical 

images are primarily dependent on the lower 
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frequency components of the Fourier transform of the 

image. 	That, in fact, a loss of higher frequencies 

in an image need not be detrimental to the quality 

judgement provided that there has occurred, at the 

same time, an increase in contrast for the fundamental 

frequency. 
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