UNIVERSITY OF IONDON
 IMPERIAL COLLEGE OF SCIENCE AND TECHVOLOGY DEPARTMENT OF ELECTRICAI ENGINEERING

AUTONATIC RESYNCHRONISATION

OF SYNCHRONOUS MACHINES
Thesis submitted for the Degree of Doctor of Philosophy in the Faculty of Engineering
by
Om Parkash Malik, N.D.E.T., M.E.
October 1965

ABSTRACT

The theme of the project wes the development of a scheme to re-establish synchronism automatically in the contingency of a synchronous machine falling out-of-step while in operation. To esteblish the necessary criteria on which the proposed scheme for resynchronisation could be based, machine behaviour during esynchronous operation and the process of resynchronisation has been studied in detail.

Rotors in comon use are of two different types; laminated and solid. The two types produce different damping effects and both have been studied. All the studies have been performed on a general-purpose analogue computer. To study the two types of rotor, mathematical models have been developed. Each of these models is suitable for cylindrical or sclient-pole construction. Results obtained on the analogue computer have been verified by comparison with results obtained on both actual lerge alternators and làoretory micromachines.

Auxiliary equipment can play a significant part during asynchronous operation and in the process of resynchronisation. The effects of various auxiliary equipment, different machine parameters and system conditions on out-of-synchronous operation and resynchronisation, have been studied. Investigations have been made into the process of pulling-into-step from the state of steady asynchronous operation using an entirely different approach and the process is expleined in simple physical terms.

Based on the results obtained from various studies, a transistor relay, for the automatic resynchronisation of synchronous machines, using static relaying techniques is proposed. This relay hes been constructed and its effectiveness has been demonstrated on a micro-machine.

The proposed scheme for eutomatic resynchronisation is perticularly adaptable to the controls of the future and is suited to 'on line' computer control.

ACKMOMITDGMENTS

The work described in this thesis was carried out in the Slectrical Engineering Department of the Imperial College of Science and Technology, London under the supervision of lir. B.J. Cory, B.Sc.(Eng.), A.M.I.E.E., to whom the author is greatly indebted for his guidance, encouragement and keen interest throughout the course of the work. The author expresses his gratitude to Dr. B. Adkins, D.Sic., M.I.E.E., for his helpful advice on many machine problems.

The author expresses his thanks to Dr. J.R. Barker and Mr. R.A. Sulley of the mathematical machines laboratory for tieir help and co-operation during the work on the Analogue Computer and to lir. H. Hardie for help in the laboratory. Information received from the C.IF.G.3. about various full scale tests is gratefully acknowledged.

It is a metter of pleasure to record the inspiration derived from numerous stimulating and useful discussions held with colleagues during the entire stay at Imperial College. Help received from several colleagues has proved invaluable in the fulrilment of the task and is highly appreciated.

Finally, the author wishes to take this opportunity to place on record his feelings of gratitude and indebtness tovrards his friends Sarvshri G.S. Dhatt, S.B. Devan and S.K. Mitra for their encouregement and generous financial support for one year (1962-63), which mede it possible for the author to take up studies at Imperial College in the first instance. Thanks are also
due to the C.E.G.B. for the awerd of a bursary - through the good offices of Mr. B.J. Cory and Dr. D.G.O. Morris for the remaining two years (1963-65), which enaioled the work to be completed.

INDEX

PAGE
ADSTPLCT 2
ACTIFOWLEDGEMENTS 4
ITIDEX 6
LISR OP SMBBCLS 12
CHAPIER 1 - INIRODUCTION 15
1.1 Historical review 15
1.2 Formlation and study of the problem 17
1.3 Present work 18
1.3.1 Assumptions 19
1.3.2 Scope of studies 19
1.3.3 Rotor construction 21
1.3.4 Asynchronous operation 22
1.3.5 Resynchronisetion 22
1.3.6 Automaticresymchronisation relay 23
CHAPTER 2 - E UUPYENT SPECIPICATIONS 24
2.1 Introduction 24
2.2 Test machines 24
2.3 Micro-machines 25
2.3.1 Electrical characteristics 25
2.3.2 Mechenical oharacteristics 26
2.3.3 euxiliary equipment 28
2.4 Analague computer 29
CHAPTER 3 - GETERAL HECHINE EGUEIIONS 31
3.1 Generel 31
3.2 Per-unit system 31
3.3 Sign convention 32
3.4 Assumptions 32
3.5 Volteee equations 33
3.F.l Fundanental equations 33
3.5.2 Simplifiea ecuations for a machine connected to afixed supply voltage 35
3.6 General equations of the synchronous machine 37
3.7 The equivalent circuits 37
3.8 The operational impedances 39
PAGE
3.9 Torque equation 40
3.9.1 Expression for electrical torque 40
3.9.2 Torque equation under asynchronous operating conditions 41
CHAPTER 4 - Smulation of maminated rotor machine 44
4.1 Introduction 44
4.2 Representation of the damping circuit 45
4.3 inalytical method 46
4.4 INathemetical model 47
4.4.1 General 47.
4.4.2 Formulation of the mathematical model 49
4.5 Procedure for practical solutions 53
4.5.1 Analytical solution
4.5.1 Analytical solution 54
4.5.3 Nechenisation of the equations for solution by analogue computer 55
4.6 Comparison of results 60
CHAPTER 5 - SIMULATLY OF SOLID ROTOR MACFIINE 69
5.1 Introduction 69
5.2 Representation of damping circuit 70
5.2.1 General expression 70
5.2.2 Considerations involved in calculat- ine numerical values 72
5.3 Mathematical nodel 73
5.3.1 General 735.3.2 Explanation of the adopted method
5.3.3 Pormulation of the mathenatical model 7874
5.4 Erocedure for proctical solutions
5.4.1 Iarge machines 80 80
5.4.1.1 Tests without speed governor
5.4.1.2 Tests with speed governor end voltage regulator 80
5.4.2 Micro-me.chine 82
5.4.3 Solution by ancilogue comiuter 83
5.5 Comparison or results 85
5.5.1 Tests on a 60 MW turboalternator 86
5.5.2 Tests on a 30 NW set 86
5.5.3 Tests on a I20 MW turboalternator 92
5.5.4 'Iests on micro-machine 92PAGE
CHAPIER 6 - BEHLVIOUR DURING ASYNCFRONOUS OPERATION 102
6.1 General 102
6.2 Studies performed 104
6.3 Pulsations invarious quantities 105
6.3 .1 Slip pulsations 130
6.3.2 Pulsetions in Watts and VArs 139
6.3.3 Pulsations in current 141
6.4 Mean torque-slip characteristics 141
6.5 Reactive voltamps 146
6.5.1 General 146
6.5.2 Power output 150
6.5.3 External reactance 150
6.5.4 Mode of operation with respect tofield 150
6.6 Current 151
6.6.1 General 151
6.6.2 Temperature rise 152
6.6.3 Terminal voltage 152
6.6.4 Reactive voltamps 155
6.7 Effect of various factors on asynchronous operation 155
6.7.1 External reactance 155
6.7.2 Bus-bar voltage 158
6.7.3 Moment of inertia 158
6.7.4 Turbine speed-governor 160
6.7.5 Automatic voltage regulator 161
6.8 Comparison of operation withdifferent field connections162
6.8.1 Field excited 162
6.8.2 pield unexcited and shorted 163
6.8.3 Field open 164.
CHAPITR 7 - RESYNGHROIVISAIIUN - THEOREIICAL ANAIYSIS 165
7.1 General 165
7.2
Theoretical explanation ofresynchronisation process166
7.2.1 Physical description of the criterion for resynchronisation 166
7.2.2 Mathemetical formulation of thecriterion for resynchronisation169
7.3analogue computer175
PAGE
7.3.1 Tature of the problem 175
7.3.2 Fechenisation and procedure for the solution of the problem 176
7.3.3 Assumptions involved in the present studies 177
CEIAPIER 8 - RESYNCHROTISATION - PRACIICAL INVESTIGAIONS 179
8.1 Criterionfor resynchronisation 179
8.2 Slip magnitude 180
8.3 Magnitude of slip pulsations 184
8.4 Angle of field application 184
8.5 Magnitude of excitation 194
8.6 Swing in output 194
8.6.1 Magnitude of slip 195
8.6.2 Nature of asynchronous torque-slip charecteristics 195
8.6.3 Ansle of application of excitation 196
8.6.4 External reactance 196
8.6.5 Magnitude of field excitation 196
8.7 mode of field connection 198
8.7.1 Field shorted 198
8.7.2 Field excited 199
8.7.3 Field open 199
8.8 Moment of inertia 200
8.9 Turbine speed-governor 200
8.10 Voltege regulator 200
8.10.1 Effect of the regulator on the out-of-step machine 201
8.10.2 Eiffect of regulators on the system 201
8.11 Simulation of full scale tests 202
CHAPTER 9 - AUTONAIC RESYECHRONISING REIAY 206
9.1 General 206
9.2 Criteriafor resynchronisation 207
9.2.1 Ma.gnitude of meen slip 207
9.2.2 Anele of field application 207
9.2.3 Magnitude of excitation 208
9.2.4 Accomplishnent of the criteria. 208
9.3 Resynchronisation scheme 209
PAGE
9.3.1 General functional arrangement 209
9.3.2 Loss of synchronism 211
9.3.3 Field control 213
9.3.4 The delay circuit 213
9.3.5 Resynchronising circuit 215
9.3.6 Speed-governor control circuit 215
9.4 Resymchronising circuit 216
9.4.1 Initiation of operation 216
9.4.2 Slip measurement 216
9.4.3 Ensuring proper relay operationat low slip values 218
9.4.4 General 219
9.5 Transistor circuits 220
9.5.1 Squaring circuit 220
9.5.2 Phase comparator 222
9.5.3 Monostable timing circuit 226
9.5.4 Bistable trigger circuit 226
9.5.5 Output signal from resynchronising circuit 228
9.6 Power supplies 228
9.7 Operation and performance of theautomatic resynchronising relay230
9.7.1 Complete circuit and construction 230
9.7.2 Slip limitations 232
9.7.3 Advence time setting 232
9.7.4 General test arrangements 233
9.7.5 Records of operation 233
CHAPTER 10 - CONCLUSIONS 236
10.1 A review of results 236.
10.1.1 Asynchronous operation 237.
10.1.2 Resynchronisation 238
10.1.3 Automatic resynchronisation scheme 239
10.2 Further work 239
10.2.1 Mode of field connection 239
10.2.2 Effect of speed governor and voltage regulator 240
10.2.3 Digital techniques 241
10.3 Concept of stability 241
BIBLIOGRAPHY 243
APPENDIX 'A' - FaCHINE DATA 259
A. 1 Solid rotor mechines 259
A. 2 Laminated rotor micro-machine 266
APPEIMDIX 'B' - ANAIYTICAL SOLUTION FOR LAMINATPD RONOR MECHINE 269
B. 1 Torque pulsations based on constant slip 269
B.l.l Calculation of torçue with no field voltage 270
B.l. 2 Calculation of torque with a field voltege 272
B. 2 Calculation of slip pulsations 273
APPENDIX 'C' - ALTERHAIVE MORIS OF EXPRESSIONS FOR OPERATIONAL IFPEDANCES 275
APPENDIX 'D' - EXPRESSION FOR SOLID ROTOR IMPEDANCE 277
D. 1 General 277
D. 2 Direct axis electric and magnetic circuits 277.
D. 3 Quedrature exis circuits 281
D. 4 Calculation of impedance of the rotor body 283
D.4.1 Basic equations 283
D.4.2 Explanation of the approximation 283
D.4.3 Calculation of impedance 284

IIST OF SYMBOLS

Most commonly used symbols and notations are defined below. finy symbol not given below will be explained where used in the text.

Unless otherwise stated, all quantities are expressed in per-unit. In general, varying quantities are denoted by smell letters and constent quantities by capital letters.

Mein symbols

f	- Frequency in cycles per second
i	- Instantaneous value of current
I	- Constent or phesor value of current
e	- Instantaneous value of voltage
E	- Constant or phasor value of voltage
r	- Resistance
x	- Reactance
X	- Totel reactance
ℓ	- Leakage inductance
L	- Total self inciuctance
t	- Time in seconds
T	- Torque or Time-constant
p	- Tumber of pole pairs or Operator $d / d t$
P	- Power
s	- Instantaneous machine slip
2	- Impedance
j	- Operator $\sqrt{-1}$
H	- Machine Inertia constant in K : sec/KVA or Megnetising force in AT/metre

J	- Current donsity in amperes/metre ${ }^{2}$ or Moment of Inertia in $1 b$. ft. ${ }^{2}$
B	- Flux density in weber/netre ${ }^{2}$
iv	-. Bffective number of stator turns in series per phese
ℓ	- Iength of flux path through the rotor iron in metres
w	- Arial length of the rotor in metres
S	- Relvctance in AT/Weber
$\mathrm{x}_{\mathrm{d}}(\underline{p})$	- Operational impedance relating i_{α} to ψ_{α}
$\begin{gathered} x_{q}(p) \\ G(p) \end{gathered}$	- Operational impedance relating i_{q} to ψ_{q} - Operational quantity relating e_{f} to ψ a
$\left(\mathrm{T}_{\text {as }}\right)_{\text {m }}$	- Asynchronous mean torque
$\left.\begin{array}{l} Y_{a}, Y_{b} \\ Y_{c}, Y_{d} \end{array}\right]$	- Operational admittances as derived from $x_{d}(p)$ and $x_{q}(p)$
$\alpha_{\text {d1 }}, \alpha_{\text {d2 }}$	
$\left.\begin{array}{ll} A_{d 1} & A_{d 2} \\ B_{d 1}, & B_{21} \end{array}\right\}$	- Coefficients as defined in Section 4.4.2
ω_{0}	- Anguler velocity of infinite bus in radians per second (Synchronous speed)
ω	- Slip in radians per second
Ω	- Instantaneous speed
ν	- Angular velocity of rotor in radians per second
θ	- Ancular position of rotor in space
δ	- Load--angle of synchronous machine with respect t.o bus
λ	- Phese angle or Value of θ at zero time
ρ	- Resistivity in Ohm-metre
ψ	- Flux linkages
\varnothing	- Flux per pole in Webers

Suoscripts

a	- Acceleration or phase A or Armature
d	- Direct axis
q	- Quadrature axis
f	- Field winding
k	- Demper winding
e	- Electrical or External
m	- Magnetising or Mean or Mechanical or Maximum
g	- Governor
s	- Synchronous
as	- Asynchronous
$m d$	- Direct axis mutual
$m q$	- Quadrature axis mutual
t	- Turbine
o	- Initial or Surface value

Superscripts

```
' - Transient
" - Sub--transient
```


CHAPTER I

INTPODUCTION

1. 1 Historical review
"... the least known or available in Iiterature are the Ghenomena of pulling into step ... (of a) synchronous motor in thet range of speed where it is not an induction notor anymore and where it is not yet a synchronous motor." I

It is more then half a century since the above words, equally applicaiole to synchronous machines in general, were said by Steinmetz. At present, a lot more is known of the process of synchronisation, which in the earlier years was studied primarily from the point of view of pullins-in of synchronous motors when startins up. The probler of deciing with a synchronous motor thet accidentally lost synchronism while on load was, however, given only cursory attention.

By virtue of the availability of a prine mover, power-systems engineers introduced the method of fine synchronisation to connect their synchronous machine (generator) to the system. To deal with the eventuolity of accidental loss of synchronism, the ee.sy way out was adopted. This hes resulted in the present usual accepted practice in power-system operation, that in the event of an alternator losing synchronism either due to loss of excitation or following system disturionces of any kind, it is immediately disconnected from the system. With the continued increase in the size of the individual generating
units, the process of shutting down and bringing the set back onto the bus-ions eb initio enteils a considerably long period which is very undesixable both from the point of view of un-intermpted maintenance of supply and economic operation of the system. In mony such cases it would be very desireble if the machine is able to operate asynchronously for a short period until synchronism can De restored.

Although some attention was paid to the asynchronous operation and resynchronisetion of synchronous machines in the early thirties ${ }^{2}, 3, r_{r}, 5$, it is only in the last decade that serious attention has sterted to be devoted to this problem. References 6 to 22 give a selected bibliography for this period.

Full scale tests reported in various references have shown that, under certain conditions and for a limited period, it is permissible to leave the machine connected to the system until some action can be taken to bring it back into synchronism. Iron these tests, it hes been observed that after e time the machine setties com to a condition of stecdy esumchronous operation end is cepeble of supplying a reasonably large percentege of its rated output at quite Low slip. For a given power output, currents are, however, high compered with the valves during normal synchronous operation and currents in the supply leads pulsate.

This problem received internationcl recognition when it was explicitly referred to the C.I.G.R.巴. Study Committee No. 17. f report on the work of this committee is given in Ref. 23. The present attitude to this problem is well summed up in the following concluding remarks ${ }^{24}$ to
the discussion on asynchronous working and resynchronisation at C.I.G.R.E. Convention No. 18, 1960:

> "Ihis type of operation runs certain risks, but it would seem that these risks have been over estimated and that asynchronous operation can be permited in certain cases and in fact can render certain services."

1. 2 Formulation and study of the problem

Instances have been observed in practice ${ }^{2,3}$ when the machine lost synchronism temporarily and pulled back into synchronism without eny prolonged asynchronous operation. In other cases when it does not pull back into synchronism, but settles down to a steady asynchronous operation, it can be resynchronised either menually or automatically. fef. 5 has given certain concitions for resynchronisation based on full scale experiments conducted in Russia. Further theoretical investigetions have jeen conducted by various authors (References 8, $14,15,25$ to 29) but mone of these investigetors has carried out a sufficiently. comprehensive stridy of the effect of various paraneters of the system on asynchronous operation and process of resunchronisation. In adiition; all of them have adopted certein sweeping assumptions in the working out of their results i.ithout estcolishing the validity of the same.

Study of asynclironous ojeration and
resynchronisation requires the solution of a number of nonlinear differential equations. To simplify the solvtion, most of the anthors referred above have adopted the following assumptions in their investiçations:
i) Voltage behind the transient reactance is constent; and
ii) Tariation in speed during the transient process is small in comparison with the steady state speed. The eifects of all such terms as $p \psi$, $p \psi_{\text {, }}$, etc. are neyleched.

The effect of these assumptions may be referred to as neslecting the stator trensients. ${ }^{30}$

In addition to the above two assumptions, the third, most commonly adopted, simplifying factor is to neglect stator resistance of the synchronous machine.
1.3 Present work

The problem under study in this thesis originated with the development of the synchronous mechine. It has been studied and aiscussed in one form or another since that time. It is, therefore, rather a difficult exercise to differenticte between thet which is new and that is old. However, this is jelieved to be the first time that such a systematic study of the problen has been made in its entirety, particllarly with so eleborate a representation of the synchronous machine.

The study has been divided into a series of logical steps culminating in the devising of a suitable scheme for automatically resynchronising the machine in the event of an accidental loss of synchronism. The various steps are outlined below.

1.3.1 Assumptions

Assumptions mentioned in Section 1.2 diove are the standard assumptions made in most transient stability studies. They moke the problem easily amenable to a solution by the :cil-known step-by-step method $31,32,33$ on an A.C. Network Anelyser 34,35or a cisital computer 36,37. In this fiele they heve rendered e very useful service in the past. Doubts have, however, already been expressed as to the justification of these assumptions end a better representation of the synchronous machine is becoming more and more desirable.

Although these assumptions mey have some justification in trensient stability studies, they cannot be justified in the study of asynchronous operation and resynchroniscition. In the present work, the synchronous machine has been simulated by adopting the minimum number of assumptions possible. In fact, most of the work is based on ascumptions no more then those inherent in the two-reaction theory of synchronous machines as enunciated by Park in his clessical pepers 38,39 .
1.3.c icope of studies

Theoretically, a synchronous machine will operate reversibly either es a generetor or a motor depending upon the direction of flow of power and current. Thus there is no difference in its behaviour during asynchronous operation and the process of res nchronisation. It is, therefore, desirable thet any system of equations should be equally Valid for either of the generating and motoring modes of
operation. Ireatinent of a synchronous machine, described henceforth, is on the most general basis without any distinction, whatsoever, between motor and generator. Equations are eciually applicable to both machines, so far as proper sisn convention is used to interpret the results in a physical sense.

Because of the different positions occupied by the two machines in a system, it is essential that there should be enough scope to include the effect of other associated equipment. The system of equations described and the method of simulation adopted for the representation of a synchronous machine is very adaptable, such that, the effect of any major or auxiliary equipment associated with the machine to be studied can very easily be included. Thus it is easy to study the effect of turbine or load characteristics, voltage regulators, speed governors, transmission lines or other system conditions. Effect of changing any of the electrical or mechanical parameters of the machine can also easily be studied.

Success or otherwise of any series of studies can be gauged by their usefulness when applying them to actual system operating conditions. Full scale tests are therefore conducted from time to time to verify the validity of various theories. These tests can only be representative and not exhaustive. For more exhaustive studies, resort must be made to various other methods such as analytical investigetions, physical models or mathematical models. Each of these methods has its usefulness and limitations in certain respects. The method to be adopted depends upon the requirements of each individual case.

In the present investigetions, the system has been stradied by a methematicel model on an electronic analogue computer. To test the efficacy of the simulation some full scale tests conducted by the C.E.G.B. ${ }^{20,40}$ on its system in the past, have veen simulated and the results obtained from the computer compared with the test results. Even though a reasoneble agreemont was obtained between these two, it was not considered sufficient to justify the adoption of results obtained from exhaustive studies on the mathematical model only. Nicro-machines ${ }^{41,42}$ have proved very userul as physical models for the study of power system problems $40,43,44$. It was decided to carry out the simulation by mathematical model on the computer and simultaneously perform tests on the micro-machine as a physical model.

Investigations have been carried out using both these model forms and also by an analytical method suggested elsewhere ${ }^{44}$. Encouraging agreement has been found between the results of the mathenatical model and those of the physical model and full scale tests. In contrast, wide differences between the laboretory results and those based on assumptions of earlier investigators, not only shows the need to reduce these assumptions to the minimum, but also clearly estailishes the valiaity of the proposed simulation.

1.3.3 Rotor construction

Any system of ecuations representing the salientpole rotor construction can be easily modified to study cylindrical rotor machines by suitably choosing the direct
and quadrature axis peremeters. The main difference lies in different damping effects caused by eddy currents in the laminated and solid rotors.

This thesis is aivided into two parts to deal with the laminated end solid rotors separately. Iwo different sets of equations and simulations heve been developed and the complete phenomena studied under each heading.

1.3.4 Asynchronous operation

Study of resynchronisation implies that the machine is already in tue asynchronous mode of operation. Before attempting to pull the machine back into synchronism, it is essential that its behaviour during asynchronous operation be known. An investigation has, therefore, been made into the asynchronous operation with both types of rotors. The effect of various electrical and mechanical paraneters, alternative field connections, system conditions, and auxiliary equipment, on the behaviour of the machine has also been strdied.

The theoreticel study is besed on the well known Parks 38,39 theory as put forverd in a nore comprehensive form by Adrins ${ }^{45}$.

1.3.5 Resynchronisation

Most of the earlier studies of resynchronisation are based on the hypothesis that 'the instantaneous slip
of the machine during a slip cyrcle should pass through zero' is a necessery concition to be realised prior to successful resunchronisation. During the present investigetions, it has veen shown that this is a myth, and that successfful resynchronisation can be achieved without this pre-condition being fulfilled, provided, certain other conditions have been established. Necessary conditions for resynchronisction heve been detailed in Chapters 7 and 8.

1.3.6 Automatic resynchronisetion relay

Besed on the results of the various studies detailed anove, a scheme is proposed for the antomatic reestablishment of synchronism. A relay jased on static relaying principles hes been built according to this scheme and tested on the micro-machine. This relay is desisned to sense loss of synchronism, and initiate necessary corrective action to re-este:blish synchronism automatically in the shortest possible time without eny human intervention. the relay can be assembled from standera logic units end is very easily adaptable to suit the operating characteristics of any particular machine in the contert of its location in a system.

The proposed scheme for automatic resynchronisation is particularly suitable for use with 'on line' computer controls which are envisaged for the future.

CHAPTER 2

EQUIPRENI SPECIBICATIONS

2. 1 Introduction

The usefulness of a mathematical model lies in the degree to which its results can be relied upon in practical cases. To establish the validity of the models developed in the present vork, it was considered desirable to simulate sone actual full scale tests and to compare the results obtrined. Date of three full scele tests conducted by the C.E.G.B. on two large machines in $1960^{20,40}$ and on one machine in 1962^{46} was available. These three series of tests have been simulated and the results discussed later.

For a proper investigation into any phenomena, it is essential to carry out a large number of studies. For these studies to be reclistic, two different sets of micro-miechines heve been used, so that results obtained on the anciocue computer can be correlated.

E. 2 Test machines

The C.E.G.B. carried out series of asynchronous tests on a 60 IW turbo alternator at marchmood power station in Narch, $1960^{\circ 0}$ and on a 30 NG twro alternator at Goldington power stetion in Niey, 196040. Imperial College actively participated in these tests. Some data about the physical parameters of these machines and some test results are availeble in references 20,40 and 47.

Some further data not available in these references has been collected from Ref. 48 and from the records available in the power-systems laboratories of the Imperial College. All the relevant machine date recuired for the present stadies is given in Appendix 'A'。

In addition to the ebove, tests conducted on a 120 Int reheat type turbogenerator in June, 1962 have been simulated. Details of this set are siven in Appendix 'A'.

2. 3 Licro-mechines

2.3.1 Electrical characteristics

Ticio-machines 41,42 have become quite a hanāy and usecul tooj in the hande of power-system analysts in Britein ${ }^{4 E}$, U.S.S.P. ${ }^{43}$, and Frence ${ }^{49}$ for investigations into theories essociated with syrnchronous mechines. Different types of problems 40,44 stuaied heve shown them to be very reliable for this type of vorl. for a fuller study of the present problem, two sets of micro-mechines - one with a leminated selient-pole rotor and the other with a solid cylinaricel rotor - heve been used.

Lo De C Dle to compere and check the results obtained from the nethenatical model set up on the analogue computer, verious constents of each micro-mochine set were first evaluated by well known tests ${ }^{50}$. These constents and other parameters were then used to ccilculate the coefficients for the equations to be solved on the computer. All the necessery date about the two sets of micro-machines used is fiven in Appendix 'A'. A perusal of the data will
show thet, except in one or two respects, to be mentioned later, micromechines are cuite comperable with typical large zachines and cen be seid to be relieble models for the purpose of investigeting procticel problems associated with eynchronous mechines.

2.3.2 Bechanical characteristics

Simalation of the mechenical characteristics of synchronous achines consists essentially of simulating the mechine inertia, the inherent torcue-speed characteristics of the turbine driving a generator or the load imposed on a notor. In adaition, time constants of the turbine speed-Governor are recuired in the case of the generator.

Whe incrtie constant of the micro-mechine was obtained by means of ε deceleration test ${ }^{51}$. It coula be adjusted to eny desired vciue by means of aciational flywheels. Actual values of the incria constents used in the present work are oiven in Appendix 'A'.

Whe torque-speed characteristics of ε turbine can be approximately representec. as show in Pig. 2.I(a) ${ }^{33}$, having a slope of -1 . The prime mover of the micromachine is a d.c. shunt motor heving a slope or the order of -20 or more as shown in Pig. Z.I(b). By adaing resistence in series with the armature of the c.c. macline, it is possible to recuce the slope of the torque-speed characteristics. Because of the limitetions of the current rating of the motor and of the supply voltage, it was not possible to achieve cn ideal turbine characteristic. By adding resist-

(a) Approximate turbine characteristic

(b)Approximate micro_machine drive characteristic
I. Micro-machine drive characteristic
II. Modified micro_machine drive characteristic

Fig. 2.1
ance in the cracture and increasing the supply voltege, a slope of about -8 wrs obteined.

£. 3.3 Axiliexy equipment

3y suiteble aumiliary ecuipment, it is possible to simulete and study the effect of different field timeconstants and Fielc connections, eaterncl reactance, busBer voltege, monent of inertio, turoine speed fovernor and voltege reguletor cheracteristics.

The control panel associeted with the micromachines contains auto-trensformers and reactors with a number of taps, by which different values of bus-ibar voltrges aind verious megnituces of externel reactences can conveniently be arranced. (peration with different field connections can very simply be studied by malring suiteble comections.

The field resistance of a micro-machine, on a per-unit basis, is wach hicher then in a large mechine. This results in a compratively low fiela transient timeconstant. in electronic device celled "the time-constent resulctor" 52 hes been develope to feduce the effective field resistance and therejy elter the trensient timeconstant to the recuired value. this equipment operates essenticulu jy introducinc controlled velues of negative resistence in the field circuit by means of feed-beck circuits. By introducing cifferent velues of feed-beck resistance, it is possible to aimulete different field time-constents. Use of this ecuipment has been made to study the effect of verying time-constents on the behaviour
of the machine.
hparetus is bejng developed to control the d.c. driving motor in such a. Wey as to simalete a tribine arive. As this control apparatus was not yet recey when the studies were performed, the effect of the speed governor could not be demonstrateci on the ricro-nachine, even though a few studies with speed boremor ection were perforned on the computer.

With the micro-mechine tests it was possible to record the vaiations in electrical power, VArs, current and rachine teminal voltage by recording ecuipment. For a iew tests, the instentaneous electricel power wes meesured oy a mmell enclogue computer using operational amplifiers and electionic multipliers with suitable voltage cnd current transformers. The output of this mini iuter was recorded Dy on UV recorder. Jy using the scme ecuipment, instanteneous Vars could also be measured and recorded.
2.4 Analogue computer

Host of the investigations into symchronous machine problems by mathemetical models have tended to employ special purpose electronic computers end simuletors (References 53 to 6I). With these nodels it hes been possjble to similate suchronous mechines cnc cssociated equipment to a fairly sood degree or cocuracy end to achieve a very good correlation between full scele tests and precicted results. By their nature, their applications have, however, tenced to be rather restrictec to the type of problem for which they were specifically designed.

The matheratical models developed and described in the present work are such thet no special anelogue equipment is recuired. All the studies described were carried out on an ordinary electronic aifferential analyser the P.A.C.T. TR48 computer in the methemetical mochines leboratory of Inperici college. TRA^{62} is a general purpose anelogue comprter comprising standard computing elements thet would be availcible in eny good compreter. rihe following fecilities are available on this computer.

> i) D.C. operational amplifiers used for summation and integretion - neximum of 48 emplifiers including 16 integrators.
> ii) Potentioneters - inaximun of 60. Four out of every $\mathcal{Z i v e}$ have one end earthed.
> iii) Diode function generators.
> iv) (uarter-scuare multipliers.
> v) Servo-miltipliers.
> vi) Relay comperators end menvally operated function suitches.
> vii) Operation modes - Pot set, Feset, Hold, Cperate and Repetitive.
> viii) Itwo voltueters - one Cigital cnd one dial type.

The problem is set on a removeble patch-board using pluseing leade.

Whe present analoune computer hes only 42 operational ampifiers and 50 potentioreters.

An X--Y plotter was used in conjunction with the computer to record any one variable with time or with any other varizble.

GHAPTER 3

GENSRAL IACHINE EQUATIONS

3.1 General

The metheratical basis for the investigation of the probler of resynchronisation is a set of operational equations which express the ralationships between the various volteces, currents end flux linkeges in the machine. These equations know as the 'general equations' of the synchronous machine are the basic equations of the two axis general theory of electrical mechines ${ }^{45}$ and are based on the assumption that the mechine is iceal as defined by Park ${ }^{63}$.
3.2 Per-unit system

To be able to correlate results obtained from mechines of wilely different physical aimensions, the method of reducing all the dicmtities to a per-unit basis is visec. It is, however, cesiraible that the per-unit systen acoptea should se consistent. fincre are a number of cifferent perfinit sustems in use at present. All the ecuations and other cuentities given in this thesis are expressed in per-unit terms as defined. by Fankin 64,65 .

The bese-curreat ratio termed by Rankin as the ' $x_{a d}$ ' bese ${ }^{65}$ hes jeen adopted as the standerrd base. According to this definition, bese field current is thet field current which will incuce in ecch stetor phase a voltage equal to $x_{a d} i_{\text {a0 }}$. The main advantage of using this base
is that it makes $x_{m f}$ numericelly equal to $x_{\text {ed }}$ (equal to x_{md}).

3.3 Sign convertion

The sign convention adopted is that of Adkins ${ }^{45}$. The reference axes are fixed and the direction of rotation of the rotor, relative to the ares, is anticlockwise as shown in Fié. 3.14. The prinery wis windings are located on the rotating member and those of the field and dampers on the stationary member. the coil voltages are assumed positive when impressed on the coils from an externel source and currents are measured in the same direction as the driving positive voltege.

With this convention, the instcntaneous power flows into the circuit from outside if both voltage and current are positive. A positive current is assumed to produce a positive flux in a direction alone the axis c.wey from the centre. Positive electrical torcue is obtoined when mechenical power is passing into the nachine from outside at a positive speed. Positive torcue thus indicates generator action.

The sign convention capted corresponds directly to notor operation and introduces negetive signs for generator operation.

3.4 Assumptions

It has already been mentioned that the 'General

Wheory of Electricrl Machines 45 is based on the essumption that the mechine is ideal es defined by Park ${ }^{63}$. In acdition, the following generally cocepted assumptions ${ }^{4.5}$ heve been nede in working out the theory.
i) Symaetricel conditions erist on the system, i.e. zero saquence cuantities are nil.
ii) Per-unit mutual incuctances for all the coils on a particuler axis are equal.
iii) Damping circuits can be represented by a single coil on each axis. For the present, the impedance of the damping circuit will be assune to be a function or slip. It may thus be written as

$$
Z_{k}(j \omega)=r_{k}(j \omega)+j \omega l_{k}(j \omega) \quad \text {. . (3.I) }
$$

with eppropriate subscripts for the two axes.
3.5 Voltage equetions
3.5.1 Fundmental ecuctions

On the basis of the cuove assumptions, the voltage impressed on each coil of the ideained synchronous machine, represented by Fis. 3.1(a), can be witten in terms of the corresponding currents cric flux Iinlages. This lecds to a set of ecuctions on a three phase Dasis. When the phase quantities are tronsfomed into the axis cuentities, using the usual trensformations ${ }^{45}$, the following equations are obtained, neglecting zero secuence quentities:

Fig.3.1a Diagram of an idealised Synchronous machine

Fig.3.1b Diagram of a Synctronous machine with two damper coils

$$
\begin{align*}
& e_{d}=p \psi_{d}+\nu \psi_{q}+r_{a} \cdot i_{d} \tag{3.2}\\
& e_{q}=-\nu \psi_{d}+p \psi_{q}+r_{\varepsilon} \cdot i_{q}
\end{align*}
$$

. . (3.3)

The voltages e_{d} and e_{q} in Eqns. (3.2) and (3.3) can be physically interpreted as the voltages impressed on fictitious coils on the direct and quadrature axes respectively. With this interpretation, the three 'phase coils' of Fig. 3.I(a) are replaced by the direct and quadrature axis coils as shown in Fig. 3.l(b), which is thus the two axis equivalent diagram of the synchronous machine.

3.5.2 Simplified equations for a machine connected to a fixed supply voltage

Considering a synchronously rotating axis, its position at any time 't' can be written as

$$
\begin{equation*}
a_{r}=\omega_{0} t \tag{3.4}
\end{equation*}
$$

During asynchronous operation, the position θ of the machine rotor, assuming the value of 0 et zero time is λ, is given by

$$
0=\omega_{0} t-\delta+\lambda
$$

which on differentiation fives

$$
\begin{equation*}
v=\frac{d \theta}{d \dot{t}}=\omega_{0}-p \delta \tag{3.6}
\end{equation*}
$$

With a sinusoidal applied voltage at frequency $\omega_{0} / 2 \pi$, the voltage of phase A cen be expressed as

$$
\begin{equation*}
e_{a}=\Xi_{m} \cdot \operatorname{Sin}\left(\omega_{0} t+\lambda^{\prime}\right) \tag{3.7}
\end{equation*}
$$

where, $E_{\text {m }}$ is the maximum value of the fixed supply voltage, and the phase is given by an angle λ^{\prime}.

For an ac. problem, the instant of zero time can be chosen arbitrarily. In the present instance, working is considerably simplified if zero tine is chosen so the $\lambda=\lambda^{\prime}$. Substituting $\omega_{o} t=(\theta+\delta-\lambda)$ from Eqn. (3.5) in Eqn. (3.7) end expanding, gives

$$
\begin{equation*}
e_{a}=E_{n} \cdot \sin \delta \cdot \cos \theta+H_{i n} \cdot \cos \delta \cdot \sin \theta \tag{3.8}
\end{equation*}
$$

e_{q} gives $45^{\text {Also the transformation }}$
$e_{a}=e_{d} \cdot \operatorname{Cose}+e_{C_{1}} \cdot \operatorname{Sin} \theta$
e_{d} and

The two values of e_{a} must be identical for all values of t. Fence, equating the coefficients of $\cos \theta$ and Sins in Ens. (3.8) and (3.9), gives

$$
\begin{align*}
& { }^{\cdot e_{d}}=\mathrm{E}_{\mathrm{II}} \cdot \operatorname{Sin} \delta \tag{3.10}\\
& \mathrm{e}_{\mathrm{q}}=\mathrm{E}_{\mathrm{II}} \cdot \operatorname{Cos} \delta \tag{3.11}
\end{align*}
$$

Substituting Bans. (3.6), (3.10) and (3.11) in
Ens. (3.2) enc. (3.3) Gives

$$
\begin{aligned}
& e_{\mathrm{d}}=E_{\mathrm{m}} \cdot \operatorname{Sin} \delta=p \psi_{\mathrm{a}}+\omega_{\mathrm{o}} \psi_{\underline{q}}-\psi_{q} p \delta+r_{\mathrm{a}} \cdot i_{\mathrm{d}} \cdot \cdot(3.12) \\
& e_{\mathrm{q}}=E_{\mathrm{m}} \cdot \operatorname{Cos} \delta=-\omega_{\mathrm{o}} \psi_{\mathrm{d}}+\psi_{\mathrm{d}} \cdot p \delta+\mathrm{p} \psi_{q}+r_{a} \cdot i_{q} \cdot(3.13)
\end{aligned}
$$

3.6 General equetions of the synchronous machine

With the assumptions ©iven in Section 3.4, the ecuations for $\begin{gathered}\text { system of stetionery mutuelly coupled coils }\end{gathered}$ es shown in Fig. 3.l(:) cen ve written down in terms of their incivicual cuments, flux linkages and mutual and self incuctances. These equations are:
i) Direct axis equations;

$$
\begin{align*}
& \psi_{d}=I_{m d} \cdot i_{f}+I_{m d} \cdot i_{k d}+\left(I_{m d}+e_{a}\right) i_{d} \cdot(3.14) \\
& e_{f}=\left[r_{f}+\left(I_{m d}+e_{f}\right) p\right] i_{f}+I_{m d} \cdot p i_{k d}+I_{m d} \cdot p i_{d} \quad \text { •.(3.15) } \\
& e_{k d}=I_{m d} \cdot p i_{i}+\left\{\because k d(j \omega)+\left[I_{m d}+i_{k d}(j \omega)\right] p\right\} i_{2 d} \\
&+I_{m d} \cdot p i_{d} \tag{3.16}
\end{align*}
$$

ii) Quadroture axis equations;

$$
\begin{aligned}
& \psi_{q}=I_{\text {maq }} \cdot i_{\mathrm{kq}}+\left(I_{\text {mog }}+\ell_{\mathrm{a}}\right) i_{q} \quad \text { ••(3.17) } \\
& e_{k Q_{-}}=\left\{r_{k q}\left(j(\omega)+\left[I_{m C_{L}}+l_{k q_{q}}(j \omega)\right] p\right\} i_{k c_{-}}+I_{m q} \cdot p i_{q} \quad \cdot(3.18)\right.
\end{aligned}
$$

The two demper winaings $K D$ and Fi [Fig. 3.1(b)] would in general be short-circuited, and hence

$$
e_{\mathrm{Kd}}=e_{\mathrm{Kc}}=0
$$

3.7 The equivalent circuits

Eqns. (3.14) to (3.18) can be represented by two equivalent circuits ${ }^{45}$, one for the direct and one for the quedrature axis as shown in Fig. 3.2. The equivalent circuits are of value in that they show a clearer picture

(a) Direct axis

(b) Quadrature axis

Fig. 3.2 Equivalent circuits
of the mathematical representation given by fris. (3.14) to (3.18) and also for solving ac. problems for which the musical resits cen be obtained. The way they have been used in the present work will be shown in Chapter 5.
3.8 The operational impedance

$$
\text { Eliminating } i_{f} \text { and } i_{k d} \text { from the direct-axis }
$$

Ecus. (3.14) to (3.16), the following equation is obtained:

$$
\begin{align*}
\psi_{d}= & {\left[\frac{I+\left(I_{4}+I_{5}\right) p+I_{4} \cdot I_{6} p^{2}}{I+\left(I_{I}+I_{2}\right) p+I_{I} \cdot I_{3} p^{2}}\right] L_{d} \cdot i_{d} } \\
& +\left[\frac{1+I_{L d^{2}}}{I+\left(I_{I}+I_{2}\right) p+I_{I} \cdot I_{3} p^{2}}\right] \frac{I_{n d}}{r_{f}} \cdot e_{I}
\end{align*}
$$

which cen be put in the form

$$
\begin{equation*}
\psi_{d}=\frac{x_{d}(p)}{w_{0}} \cdot i_{d}+\frac{G(\underline{p})}{w_{0}} \cdot e_{f} \tag{3.20}
\end{equation*}
$$

In a similar way it can be show that by elimintine $i_{k q}$ from the cuadreture axis $E q n s$. (3.17) and (3.18),

$$
\begin{align*}
\Psi_{q} & =\frac{I+T_{q}^{\prime \prime} p}{1+I_{Q O}^{\prime \prime}} I_{q} \cdot i_{q_{1}} \\
& =\frac{x_{C}(p)}{\omega_{0}} \cdot i_{q}
\end{align*}
$$

where the functions $x_{d}(p)$ and $x_{C_{1}}(p)$ are termed operationel impedances and the tine constents T_{I} to T_{6}, $\mathrm{T}_{\mathrm{kd}}, \mathrm{T}_{\mathrm{q}}{ }^{\prime}$ end $\mathrm{T}_{\mathrm{q}}^{\mathrm{i}}$ are as defined in hef. 45.

It may be mentioned here thet Eqns. (3.19) end (3.21) as obtaned from the litereture are perticularly appiceiole to laminated rotor mechines. Ecns. (3.20) and (3.22) are a more general form or the same cnd can be applied to both leminated and solid rotor icchines. Reasons for this difference will ve given in Chapters 4 and 5.

3.9 Sorque equation

3.9.1 Expression for electrical torcue

The electrical torcue is obtained from the power passing into the cirect and cuadrature axis amature coils due to the rotationel voltage terms in the Eqns. (3.2) and $(3.3)^{45}$. The electrical power is

$$
\begin{aligned}
P_{e}=\frac{1}{2} & {\left[\left(\text { Rotational component of } e_{d}\right) \times i_{d}\right.} \\
& \left.+\left(\text { Rotational component of } e_{C_{1}}\right) \times i_{q}\right]
\end{aligned}
$$

which on substitution from Ens. (3.2) and (3.3) gives

$$
P_{e}=\frac{\nu}{2}\left(\psi_{\underline{Q}} \cdot i_{d}-\psi_{\bar{a}} \cdot i_{\underline{Q}}\right)
$$

Hence per-mit torciue is given by 45

$$
\begin{equation*}
T_{e}=-P_{e} \frac{\omega_{0}}{\nu}=\frac{\omega_{0}}{2}\left(\psi_{d} \cdot i_{q}-\psi_{q} \cdot i_{d}\right) \tag{3.24}
\end{equation*}
$$

3.9.2 Torque equation under asynchronous operating conditions

Under sufficiently proloned abnormal conditions on the systen or the machine, such as sustained shortcircuit, loss of loed or loss of field with a generator on locd and tied in with a system, the speed of a synchronous generator will increase above synchronous. Under these conditions, it will nomally continue operatince as an induction generator supplying energy to the system - the magnitude of siip and load supplied being dependent upon the initial locding, generator constants, impedance of the systen connected to the generator and the turbine speedsovernor cheracteristics. Tinder steady asjnchronous operating conditions, the average generator power is in equilibrium with the twrbine power, which decreases when the slip increases as shown in Fig. 2.l(a). Ihe steady state should consequently correspond to the point of intersection of the generator characteristic - which indicates how the average power depends on the slip - with the turbine governor characteristic es show in Fig. 3.3(a) ${ }^{66}$. In this fisure, the slip s_{m} and the corresponding esynchronous torcue ($\left.T_{Q S}\right)_{m}$ are the cucntities which describe the sta.te of stecay esjunchronous operation.

In actual practice, the machine will not follow the streight patin A-3 shown in Fig. 3.3(a) to come to a stable state, beccuse of the dead zone (if any) of the speed fovernor and the delay in the servo-motor. Depending upon the tine constant of the governor, it will setile down efter a few oscillations around the point of stable asynchronous operation (A) as show by the helical path in Fig. 3.3(i).

Fig.3.3a Asynchronous generator torque ($T_{a s}$) and turbine torque (T_{t}) as functions of slip
(Figure not to scale)

Fig.3.3b Change of turbine torque with slip 1. Change of turbine torque with slip (actual)
2. Turbine torque -slip characteristics (theoretical)
3. Asynchronous torque - slip characteristic

Under these conditions, the summation of the instantaneous torques acting upon the mechanical systeil must be zero. Consequently, the relative motion of the generator rotor is determined by the equation

$$
\begin{aligned}
\Sigma I= & \text { Accelerating torque }
\end{aligned}=\text { Input torque(mechanjcal) }
$$

Now,

$$
\begin{equation*}
\text { Accelerating torque }{ }^{67}=J \frac{d^{2} \dot{\delta}}{d t^{2}}=\frac{2 H}{\omega_{0}} \cdot \frac{d^{2} \delta}{d t^{2}} \tag{3.26}
\end{equation*}
$$

Input torcue(mechanical) ${ }^{25} T_{t}=T_{o}+a p \delta+\mathbb{N}$

$$
\text { where } T_{0}=\text { initial torque per-units }
$$

$$
a=\text { slope of prime mover torque speed }
$$

$$
\text { curve } 33=-\mathrm{I}_{0}
$$

$$
N=\frac{b \cdot p \delta}{I+T_{g}}, \text { turbine governor characteristics }
$$

(simulating the governor characteristics by
a single time constant $-T_{g}$, and governor amplification factor-b).

- Output borque(electrical) as given by Eq. (3.24)

$$
=\frac{\omega_{0}}{2}\left(\psi_{\alpha} \cdot i_{C_{1}}-\psi_{Q_{-}} \cdot j_{d}\right)
$$

En. (3.25) ray be rewritten as

$$
\begin{equation*}
\frac{2 H}{\omega_{0}} \cdot p^{2} \delta=-\frac{\omega_{0}}{2}\left(\psi_{\mathrm{Q}} \cdot j_{\mathrm{q}_{1}}-\psi_{\mathrm{q}} \cdot j_{\mathrm{d}}\right)+I_{t} \tag{3.29}
\end{equation*}
$$

Eqi. (3.29) is equally applicable in the case of synchronous motors, when T_{t} is suitably represented to toke account of the ciziractewistics of the driven load.

CHAPTER 4 4

STMULATION OF IAMINATED ROTOR VACHINE

4.1 Introduction

Operating characteristics of synchronous machines are generally defined by certain mell-mown constents. In the strictest teriss these constents are not constant as they vory with slip, which in turn depends on the operating conditions in the systern. This dependence of the mechine percmeters on the system opereting conditions nelkes an exact solution of the equations impossiole. Llso, due to the rotor not being symetrical on its two axess currents in the supply leacis pulsate. This results in pulsations in the watts and VArs components of the esynchronous voltarips eccompenied by constent oscillations of speed (slip) about a fixed average value.

Whe solution of the machine ecuations by cnalyticel metaods 4 je possible oniy by adopting simplifyine essumptions. The veliditty of solvtions thes obteined is coubtivl. With the help of on cnelogue computer, it is possible to solve these equations without cecoptinc any further assumptions.

Using the perometers of a cet of micro-wachines, the equations have been solved both by an cnalytical method cud as a mathencticcl model on an anclogue comovter. The results obteined by these two methods have been compared with those obtoine ${ }^{3}$ on the micro-machine itself. It is shown that the results obteined by the nethericticel model produce a much better correlation then those obtcined by
the analytical method.

The anelytical method and the anelogue computer simletion are described below.

4.2 Representation of the damping circuit

Decause of the Iemineted construction of the rotor, eddy currents in the rotor body are elirinated to a very large extent. Instead a squimel-ccege daper windind is provided to procuce the necessary damping effect. In prectice, this winding consists of a number of circuits carrying dirferent currents and would require a large numer of coils for its exact representetion. However, for most practicci purposes, representation of the damper vinding by onlu two coils $K D$ end $K Q$ es shown in Pig. 3.l, is well accepted es sufficiently accurate ${ }^{45}$. In this case, impedance \mathbb{Z}_{K} of the damper circuit Given by Eqn. (3.1) is generelly teken to be

$$
\begin{equation*}
z_{k}=r_{k / s}+j \omega_{0} \ell_{k}=r_{k / s}+j x_{k} \tag{4.1}
\end{equation*}
$$

Whe values of constants $r_{k d}, x_{k G}, x_{k d}$ and $x_{k q}$ cemot be ontanea drectiy by any test. Whey have to be onteined either from desion calculations or inairectly by switable manipulation of the expressions for the constants \mathbb{T}_{1} to I_{6} II $_{10}$ and $T_{q}^{\prime \prime}[$ Eqns. (3.19) and (3.21)] as given in Rer. 45.

Out of the time-constents T_{1} to $I_{6}{ }^{\prime} T_{q 0}^{\prime \prime}$ and $T_{q}^{\prime \prime}$, constants $T_{1}, I_{3}, T_{4}, T_{6}, T_{q 0}$ and $T_{q} "$ weie obtained directiy by tests ${ }^{50}$ and all other peraieters were calculated there-
from. The value of etator leakace reactance x_{a} has, however, still to be coloulated either from desion deta or 亡t hay be aproximeted by the Potier reactence x_{p}. For the set of micro-nechines used in the laminated rotor stody, the vane of x_{a} as calculated by videer 68 from design dete was aciopted.

4.3 Malytical method

A muber of ecuetions describing asynchronous operation, given in Chopter 3, are functions of slip (speed). owinc to inlsations in speec, an exact malysis of asynchronous operation would require the solution of non-linear cifferenticl equetions. Une of the wethods of solving these would be by the wall-known step-by-step process $31,32,33$ usually adortec in trensient stepility stadies of power systems.

> to je of any value for the asynchronous operating concitions, nomal step-oy-step methods would heve to be refine to tare into account, in each intervai, the changes of the turbine output, the synchronous power ena the asyncironous powey. jot only will this meke the colculations extremely lent thy and lajorions, the lesults obtaned will still be of douttul velue, es they will cepend directly wipon the accurcou with which the turaine output and asynchronous power with variing speed can je preaioted. To simplify this cumbersore process, an approxinate method hes been suggested by Mehta and Adrins ${ }^{44}$. Ey this method, the pulsetions in toreve are celculated on the following assumptions:
i) Speed is constent; for which conation the equations become linear.
ii) Slip is veren gaall, i.e. slow transient changes; thus tems which depond on the rate of change of $\psi_{d} \psi_{\text {c }}$ or o con be nélected.
iii) ermature resistance is neglected.

These torize pulsations are then used to determine the pulsetions of speed.

Details of this method are given in Appendix B.

4.4 Hathematical moder

4.4.1 General

It would be observed from Section 4.3 ajove, that some of the assumptions made to arrive at an analytical soivtion of the asynchronous operetion are very drestic and difficult to justify for the perticuler conditions under study. Io obtcin rore relianle and accurate results, it is imperetive theit the number of assumptions be kept to a minimu and the direct effect of maximun possiole system perameters be inciuded in the solution.

In 1935, Bhoults et. al. ${ }^{69}$, carried out certain swades on the pull-in characteristics of synchronous motors using a mechenical differential enalyser. In the present work, their approcich hes been suitebly modified to study the asyachonous operetion of synchronous mechines in general. Various stodies described henceforth were corried out on the in4 $\begin{gathered}\text { andobue connuter cescribed in Section 2.4. }\end{gathered}$

The main advanteges of using the analofue computer are detailed below.
i) Ge minber of assumptions macle is reduced to a minimum. In fact no more assumptions than those inheront in the basic theory enmerated in Section 3.4 are nede to arrive at the solution of the resulting non-linear differential equations.
ii) With the use of mathematical models, it is possible to achieve, without any special difficulties, a wide variation of the perameters of the machine. Characteristics and parameters of the auxiliary esuipment such as turbine speed-Governors and voltage resulators, and the size of the system, as is compatible with the size of the anslogue computer availeble, can be studied in detail.
iii) The equations developed for simulation on the cnalogue computer permit the application of suggested rethods ${ }^{33}$ of allowing for saturation.
iv) L.s will be seen in Section 7.E, analytical study of the process of resynchronisation by the method of section 4.3 will involve still further assumptions and will lead to very approximate results. By the use of an enalogue computer, it is possible to stucly both the asynchronous operation and the process of resynchronisation by a single progreme without making ang further assumptions. Also, this progrome cen very easily be adapteā to study all modes or operation.
v) Investication by racthemetical models mekes it possible to define and analyse those problems which are either not defined at all in other methods or require special devices for defining ther.

4.4.2 Formalation of the mathemetical model

The problen of asynchronous operetion and resynchronisetion cen be studied in full by the simulteneous solution of Eqns. (3.12), (3.13), (3.19); (3.21) and (3.29) on an enelogue compajer. However, to the capable of easy representation, these equations will be stated in a modified form. Fere Lqns. (3.19) and (3.21) are to be interpreted on the basis of Eqn. (4.1).
(a) Eqns. (3.12) end (3.73)

By re-arranging Eqns. (3.12) and (3.13), the followins more suitable form is obtained:

$$
\begin{array}{ll}
p \psi_{\mathrm{a}}=E_{\mathrm{m}} \cdot \sin \delta-r_{a} \cdot i_{d}-\omega_{o} \psi_{\mathrm{G}}+\psi_{\mathrm{q}} \cdot p \delta & \cdot(4.2) \\
p \psi_{\mathrm{q}}=E_{\mathrm{m}} \cdot \cos \delta-r_{a} \cdot i_{q_{1}}+\omega_{o} \psi_{d}-\psi_{d} \cdot p \delta & \cdot(4 \cdot 3)
\end{array}
$$

(b) Enn. (3.19)

$$
\begin{equation*}
I_{e} \psi_{d}=I_{d} \cdot i_{d}+\psi_{d I}+\psi_{d 2} \tag{4.4}
\end{equation*}
$$

Where $\psi_{d I}=\frac{I_{d}\left(A_{d I} \cdot p i_{d}+\alpha_{d I} \cdot B_{d I} \cdot e_{f}\right)}{p+\alpha_{d I}} \quad$. (4.5)
and $\psi_{d 2}=\frac{\bar{i}_{d}\left(A_{d 2} \cdot p i_{\alpha}+\alpha_{d 2} \cdot B_{d 2} \cdot e_{f}\right)}{p+\alpha_{d 2}} \cdot$.(4.6)
From Ein. (4.5), $\psi_{\text {di }}$ can be expanded and is
$\psi_{d I}=I_{d} \cdot A_{d I} \cdot i_{C I}+\frac{L_{d} \cdot B_{d I} \cdot \alpha_{d I} \cdot e_{f}}{p}$

$$
-\frac{I_{\alpha} \cdot \alpha_{\alpha I}\left(A_{d\urcorner} \cdot p i_{\alpha}+\alpha_{d I} \cdot B_{d I} \cdot e_{f}\right)}{p\left(p+\alpha_{\alpha I}\right)}
$$

$$
\psi_{d I}=I_{\mathrm{c}} \cdot A_{d I} \cdot i_{\bar{a}}-\alpha_{d I} \int\left(\psi_{d I}-I_{d} \cdot B_{d I} \cdot e_{f}\right) d t \quad .(4.7)
$$

Binilafly, firn En. (4.6),

$$
\psi_{\mathrm{a} 2}=I_{\mathrm{a}} \cdot A_{\mathrm{d} 2} \cdot \dot{I}_{\mathrm{d}}-\alpha_{\mathrm{d} 2} \int\left(\psi_{\mathrm{ac}}-I_{a} \cdot \hat{3}_{\mathrm{d} 2} \cdot \mathrm{e}_{f}\right) d t \quad .(4 \cdot 8)
$$

Prom Wins. (3.19) and (4.4),

$$
\psi_{d I}+\psi_{d 2}=\left[\frac{x_{d}(p)}{\omega_{0}}-\frac{x_{\bar{d}}}{\omega_{0}}\right] i_{d}+\frac{G(p)}{\omega_{0}} \cdot e_{f} \text {.. (4.9) }
$$

The coefficients of Bins. (4.7) and (4.8)
can be obtained by substituting Ecus. (c.2) and (0.3) [Appendix ' C^{\prime}], (4.5) end (4.6) in $\mathrm{Eqn} .(4.9)$ and dividing both the denominator and numerator of rieht-hand side by $\left(\ell_{f} \cdot I_{k d}+\ell_{k d} \cdot I_{m a}\right)$. The denominator of the resulting expression is

$$
\left.p^{2}+\frac{\left(r_{k a^{2}} \cdot L_{f}+r_{f} \cdot I_{k d}\right)}{\left(e_{f} \cdot L_{k d}+e_{k d} \cdot L_{m d}\right.}\right) p+\frac{r_{f} \cdot r_{k d}}{\left(l_{Y} \cdot I_{k d}+\ell_{k d} \cdot I_{m d}\right)}
$$

Which on factorisation and simplification gives
$\alpha_{\mathrm{dI}}: \alpha_{\mathrm{d} 2}=\frac{\left(\mathrm{I}_{I}+\mathrm{T}_{2}\right) \mp \sqrt{\mathrm{T}_{I}^{2}+T_{2}^{2}-2 T_{I} \cdot T_{2}+4 \mathrm{~L}_{\mathrm{md}}^{2} / r_{ \pm} \cdot r_{\mathrm{kd}}}}{2 T_{I} \cdot T_{3}}$
Solving the identity resulting from Ban. (4.9), the constants and coefficients of p and p^{2} can be obtained as below:

$$
\begin{align*}
& \text {. . (4.12) } \\
& B_{d I}=\frac{x_{\text {md }}}{x_{d}} \cdot \frac{\left(\alpha_{d 1} \cdot T_{2 d}-1\right)}{\left(\alpha_{d I}-\alpha_{d 2}-M_{1} \cdot \alpha_{d I} \cdot r_{1}\right.} \tag{4.13}\\
& S_{d 2}=\frac{x_{\text {ma }}}{x_{d}} \cdot \frac{\left(-\alpha_{d 2} \cdot I_{12}+1\right)}{\left(\alpha_{d 1}-\alpha_{d 2}\right) I_{I} \cdot I_{3} \cdot \alpha_{d 2} \cdot r_{f}} \tag{4.14}
\end{align*}
$$

ricn. (4.4) re-arranged for representation on the analogue computer becomes

$$
\begin{equation*}
i_{\mathrm{a}}=\frac{\omega_{0}}{\mathrm{x}_{\mathrm{a}}}\left[\psi_{\mathrm{d}}-\psi_{\mathrm{d} 1}-\psi_{\mathrm{d} 2}\right] \tag{4.15}
\end{equation*}
$$

where $\psi_{d 1}$ and $\psi_{d 2}$ are given by Eqns. (4.7) and (4.8) respectively.
(c) $\operatorname{sgn} .(3.21)$

Fromacn. (0.5), sppendix 'C',

It ney be expended to

$$
\begin{gather*}
\text { By definition }{ }^{45} \\
\left.\left[I_{G_{q}}-\frac{I_{m q}^{2}}{\left(I_{m q}+e_{k q}\right.}\right)\right]=e_{a}+\frac{I_{m q} \cdot e_{k q}}{\left(I_{m q}+e_{k q}\right)}=\frac{x_{q}^{\prime \prime}}{\omega_{0}} \tag{4.17}
\end{gather*}
$$

Which on substitution into En. (4.16) and by suitable re-arranement gives

Earn. (4.18) re-arranged for analogue computer solution would be
(d) En. (3.29)

Bon. (3.29) rearranged for solution on the computer becomes

$$
\begin{equation*}
p^{2} \delta=-\frac{\omega_{0}^{2}}{4 H}\left(\psi_{d} \cdot i_{\underline{C}}-\psi_{C_{d}} \cdot i_{d}\right)+\frac{\omega_{o}}{2 H} \cdot I_{t} \tag{4.20}
\end{equation*}
$$

where \mathbb{I}_{t} can easily be represented on a computer by Etch. (3.27).

The re-arranged Ens. (4.2), (4.3), (4.7), (4.8), (4.15), (4.19) and (4.20) for the mathematical model. Their simultaneous solution renders it possible to study any mode of asynchronous operation and resynchronisation of a laminated rotor synchronous machine.
4.5 Procedre for practicol solutions
4.5.1 Analyticel solntion

Using Ecns. (B.I5) and (3.17) [Appencix 'B1], output torque pulsations and mean esyachronous torque can be calculeted by using appropriate jus-ber voltage E and the values of the operational edmittonces Y_{a}, Y_{b}, Y_{c} and Y_{d} derived from Enns. (B.JI) snē (3.21) For a renge of slip vilues. the effect of different time-constants and various values of discherge resistor cen be studied by substituting apropriate time-constants into these equations. Whe beheviour of the machine with an external reactance between the machine terminals and the infinite bus-ber can be studied by combining the external reactance with the armatore leakage reactance and modifying accordingly all the machine constants $45,70,71$.

Field open-circuit condition can je studied by taking field resistance as infinite i.e. field timeconstent as zero. For conditions with the field excited, totel torque may je calculated es described in jection B.I.2.

Slip pulsetions cen be celculated by substituting appopriste values into man. (1.25).

This method lends itsely, quite readily, to
 adopted in criving et the various equations can be justified or mprover methods found to incorporate the verious non-linear factors involved. Fecently some literature has been published in fussie. $72,73,74$ and Fungery 21,75 for the determinetion of response charecteristics, but this either
gives approximate representation or requires actucl tests on the machine which are not alwaje Peasiule. Further, because the extcrnal reactance and the armature Leakage reactance are Iumiea together, it is not possible to calculate the voltage fluctuations at the machine terminels.

4.5.2 Use of the micro-machine

The micro-mechine consists of ε three-phese wound stetor with c. set of rotors of different types, for example, cylindrical or selient-pole, lemineted or solid, ith or without damper bars, end rings, etc. Some rotors also have auxiliary windings on the direct and cuadrature axes for the stody of various phenomene. For the study of individual mechine beheviour and investigating new problems it is very userul and convenient. Due to the number of model wechines requized and the cost involved, their use is, in ceneral, iimited to smell-system studies.

With suitcbly designed micro-machine good simulation of lerge machines ie possible. In order to check the relicbility of the cnalosue computer riodel, a selected number of tests were cerried out on a micro-mechine using a lamineted salicnt-pole rotor. The rotor hed damper bars with complete end rines jetween the direct and quadrature axis bars forminc a squircel caje. The terts correspond to a few out of the extensive set of studies performed on the enclogue computer. For these tests, output power, current, terminal voltege and slip were measured or recorded.

Details of the micro-machine are given in Section A. 2 and c comperison of the results is made in Section 4.6 .
4.5.3 Liechanisation of the equations for solution by analogue computer

Fig. 4.1 shows an outline diagram for the simultaneous solution of Eqns. (4.2), (4.3), (4.7), (4.8), (4.15), (4.19) and (4.20) on the IR4. analogue computer. All factors such as scales, signs and other considerations involved in obtaining the solution of the numerous simulteneous equations ere omitted from this diagram. For the studies performed, a mathematical model of the micromachine mentioned in Section 4.5.c was set up. Various studies were perionned by suitably adjusting the attenuator settings and making alterations to the patch diagram where necessary.

It is quite easy to represent the following modes of operation.
i) No excitation, field shorted on itself. This condition is represented by putijng $e_{p}=0$ in Ens. (4.7) and (4.8).

Different time-constants were studied simply by changing the coefficients of these two equations.
ii) Field open circuit ie. $r_{f}=\infty$. In this case, the values of coefficients $\alpha_{d 1}, \alpha_{d 2}, A_{d l}$ end $A_{d 2}$ given by Fins. (4.10), (4.11) and (4.12) reduce to

$$
\begin{equation*}
\alpha_{\partial I}=I / 2 \Psi_{3} \tag{4.2I}
\end{equation*}
$$

$\alpha_{d 2}=\infty$
. . (4.22)
$A_{d I}=-x_{\text {mad }}^{2} x_{d} \cdot x_{\text {lr }}$

$A_{d 2}=\frac{x_{\mathrm{md}}^{2}}{x_{d} \cdot x_{k d}}-1$
. . . (4.24)

Eqn. (4.8) in the licht of Eqn. (4.22) recuces to

$$
\psi_{d 2}=0
$$

iii) Field closed and excited. This condition was simulated by aujusting the setting of relevant attenuators according to the required e:ccitation. Using a comparator relay, the field can be boosted - if desired - a.t any preset moment in the slip cycle.
iv) Irensiuission line or externel reactance between the machine terminals and the infinite bus-bar. Representing the extemal reactance or the transmission Iine by a resistence (r_{e}) and reactence $\left(x_{e}\right)^{75}$, (Tis. 4.2), XCns. (3.12) and (3.13) are modified to

$$
\begin{aligned}
& e_{d m}=E_{m} \cdot \sin \delta-w_{e} \cdot i_{q}-r_{e} \cdot i_{d}=p \psi_{\alpha}+\omega_{o} \psi_{c_{1}}-\psi_{q_{1}} \cdot p \delta+r_{a} \cdot i_{d} \cdot(4.26) \\
& e_{q m}=E_{m} \cdot \cos \delta+x_{e} \cdot i_{d}-r_{e} \cdot i_{c_{q}}=-\omega_{o} \psi_{d}+\psi_{d} \cdot p \delta+p \psi_{q}+r_{a} \cdot i_{q} \cdot(4.27)
\end{aligned}
$$

For this condition, the patch diagram was nodified to correspond to 3 Fns . (4.28) and (4.29) given below [instead of Eqns. (4.2) and (4.3)].

$$
\begin{aligned}
& p \psi_{d}=E_{m} \cdot \operatorname{Sin} \ddot{\delta}-x_{e} \cdot i_{c}-\left(r_{e}+r_{a}\right) i_{d}-\omega_{o} \psi_{q}+\psi_{q} \cdot p \delta \quad . \quad(4.28) \\
& p \psi_{q}=E_{m} \cdot \cos \delta+x_{e} \cdot i_{d}-\left(r_{e}+r_{a}\right) i_{q}+\omega_{o} \psi_{d}-\psi_{d} \cdot p \delta \quad .(4.29)
\end{aligned}
$$

v) Infinite bus-bar at different voltages. This

Fig.4.2 Representation of Transmission system on the Analogue Computer \&
requires chenging the value of Em_{m} in Eqns. (4.2) and (4.3) to the required per-unit value.
vi) Moment of inertia. Changing the value of H in Eqn. (4.co) to the required value, effect of noment of inertia can je studied.
vii) Effect of speed-Eovernor and its characteristics. In the present sexies of studies, only a velocity governor represented by a aingle time-constant 25 [Eqn. (3.23)] wes simuluted. Typicel constants $2,77,78$ for speed-govemors fitted to hydraulic turbines were used and the effect of verying the droop cheracteristics was studied.

Tilhe first step in carrying out any set of studies was to let the computer run with the selected conditions of operetion. Bach of these mus was carried to a point where the slip oscillations vecame repetitive. By making use of the 'hold' focility on the computer, outputs of various integrating units were read and noted down for a complete slip cycle. Values from these records were then used in making 'initial condition' settings for all subsecuent runs for that study. By repeating the same run, cny desired quantity was recorded by an X-Y plotter.

Records of wetts and VArs were telren by mechonising the following two ecuetions:

$$
\begin{align*}
& \text { Watts }=-\frac{\omega_{0}}{2}\left(\psi_{d} \cdot i_{C_{q}}-\psi_{q} \cdot i_{d}\right) \tag{1.30}\\
& \text { Vars }=\frac{\omega_{0}}{2}\left(\psi_{d} \cdot i_{d}+\psi_{q} \cdot i_{q}\right) \tag{4.31}
\end{align*}
$$

The terminal voltage of the machine was recorded by simuleting the following equetions:

$$
\begin{array}{ll}
e_{d \mathrm{II}}=E_{m} \cdot \operatorname{Sin} \delta-\bar{x}_{e} \cdot i_{q}-r_{e} \cdot i_{d} & \cdot \cdot \cdot(4 \cdot 32) \\
e_{\mathrm{qII}}=\bar{I}_{\mathrm{m}} \cdot \operatorname{Cos\delta }+x_{e} \cdot i_{d}-r_{e} \cdot i_{q} & \cdot \cdot(4 \cdot 33) \\
e_{t}=\sqrt{\left(e_{d m}^{2}+e_{q \mathrm{~m}}^{2}\right) / 2} & \cdot \cdot(4 \cdot 34) \tag{4.34}
\end{array}
$$

4. 6 Comparison of resuits

The mean asynchronous operation characteristics, derived by three different methods, viz.,
i) analytical solution
ii) micro-machine
iii) analogue computer
described in Section 4.5 for E. salient-pole synchronous machine under different conditions of operation, are shown in Figs. 4.3 to 4.8. The verious curves given in these figures clearly show that, on the whole, the results obtained on the enclogue comuter cre more reaistic and closer to the practical values then those obtained by the anelytical solution of jection 4.3, which is besed on a number of assumptions. As a further check on the dependability of the computer results, mean current is plotted in Fig. 4.9 against mean torcue for three different conaitions. Results obtcined on the computer are considered to ve cuite reasonable and justify this method of studying the behaviour of a. laminated rotor synchronous machine durine asynchronous operation (Chepter 6). This sives confidence to the study of resynchronisation (Chepter 8) by the method detailed in Section 4.4 .

Fig.4.3 Asynchronous mean Torque-slip characteristics Field open, $\quad x=0, \quad$ gis 10 pu. Laminated rotor

Fig.4.4 Asynchronous mean Torque-slip characteristics

$$
\text { Field open, } \quad \begin{aligned}
x_{e} & =\frac{1 z p y}{}=e_{\text {mus }}=1.0 \text { pu. }, \text { Laminated rotor } \\
& 0.12 \text { pu. }
\end{aligned}
$$

Fig.4.5 Asynchronous mean Torque_slip characteristics
Field open, $\quad x_{e}=0.2$ pu., $e_{\text {bus }}=1.0$ p.u.
Laminated rotor

Fig.4.6 Asynchronous mean Torque_slip characteristics
Field open, $\quad x_{e}=0.2$ p.u., $e_{b u s}=1.1 \mathrm{pu}$
Laminated rotor

Fig.4.7 Asynchronous mean Torque_slip characteristics Field shorted, $\quad T_{d o}^{\prime}=4.425 \mathrm{secs},. x_{e}=0.2$ p.u.,$e_{b u s}=1.0 \mathrm{p} . \mathrm{u}$. Laminated rotor

Fig.4.8 Asynchronous mean Torque_slip characteristics Field shorted, $T_{d o}^{\prime}=0.885 \mathrm{secs} ., x_{e}=0.0$ Pu., $e_{b u s}=1.0 \mathrm{pu}$. Laminated rotor

Fig.4.9 Variation of line current with asynchronous torque under different conditions of operation
Laminated rotor

$$
\begin{aligned}
& \text { I. Field open II. Field open III. Field shorted on itself }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IV.Field excited } \\
& r_{f}=0.00089 \mathrm{pu} x_{e}=0, e_{b u}^{e}=1.0 \mathrm{pu} \\
& \text { 区. Field open } \\
& {\underset{e}{e}}^{x}=0.2 \mathrm{pu}, \underset{\text { bus }}{e}=1.1 \mathrm{pu}
\end{aligned}
$$

A number of parameters required to calculate the coefficients of different terms in Eqns. (4.7) and (4.8) could not be found by any direct test 50 and had to be calculated by indirect procedures from the various expressions for standard time-constants ${ }^{45}$ where-in these parameters occur. Some of these parameters can be calculated from more than one expression and the values differ slightly depending upon the assumptions involved in arriving at that expression. By a suitable choice of.expressions from which these parameters should be derived, results obtained from the analogue computer can give even better correlation with the practical results than those shown in Figs. 4.3 to 4.9 .

CHATMTR 5

SIMULATION OF SOLID ROTOR MACHINE

5.1 Introduction

Laminated rotor machines are generally provided with damper bars, with or without end rings, to provide a Cumping effect in case the rotor speed departs from synchronous speed. Unlile lamineted rotors, damping action in solid rotors is produced by the eddy currents induced in various parts of the rotor body. The main solid-iron rotor body contributes much more to the total damping action than the metal wedges ${ }^{40}$ which have a much smaller effective cross-section.

Because of the complicated distribution of the eddy currents in the rotor, their damping circuits cannot simply be represented by a single coil on each axis as in Section 4.2. Attempts have been made in the past to calculate the effect of eddy currents in a synchronous machine $79,80,81,82$ based mostly on consideration of a rotating flux in a uniform air gap. Some of these investigators also developed methods to take account of the variation of permeability. For studying the asynchronous operation of synchronous machines, none of these approaches is realistic, because flux in the rotor body reverses periodically as the rotor slips.

In solid rotor machines, eddy currents may result in pronounced 'skin effect'. Thus the magnetising characteristic tends to be highly non-linear. To investigate effects involving magnetic saturation, a number of
authors ${ }^{20,23,40}$ have recently made use of the limiting non-linear magnetic theory ${ }^{83}$. This theory uses an idealised rectangular curve to represent the magnetisation curve of rotor material, as shown in Fig. E.I. All these authors have worked out expressions for the impedance of the rotor using various simplifying assumptions.

The expression derived by Bhereli and Adkins ${ }^{40}$ is based on minimum assumptions and is also particularly amenable for use in a mathematical model. Representation of the damping circuit and the development of the mathematical model is described in the following sections. To check the viability of the method adopted, certain full scale tests conducted by the C.E.G.B. on their system were simulated.

5.2 Representation of the damping circuit

5.2.1 General expression

Representation of synchronous machines by equivalent circuits, one each for the two axes, has been mentioned in Section 3.7. One branch in each of the two equivalent circuits given in Fig. 3.2 represents the rotor damping circuit for that axis. To allow for the effect of eddy currents in the solid-rotor body, impedances of these two branches are represented by variable complex impedances $Z_{k d}$ and $Z_{k q}$. The expression for $z_{k d}$ has been derived in Appendix ' D ' and is given by

$$
\begin{equation*}
z_{k d}=\frac{640}{9 \pi^{2}} \cdot k_{v} \cdot k_{i} \cdot \frac{w^{2}}{\ell} \cdot \frac{2 \cdot B_{s}}{\varnothing_{r 1}} \cdot \frac{1}{s} \cdot \varepsilon^{j 26.6^{\circ}} \tag{5.1}
\end{equation*}
$$

Fig.5.1 Magnetisation curve for forged steel
I. Actual curve
II. Non_linear approximation
which in the case of a laminated rotor machine is expressed in the form

$$
Z_{k d}=\frac{r_{k \bar{d}}}{s}+j \omega_{0} \cdot e_{k d}=\frac{r_{k d}}{s}+j x_{k d}
$$

On the basis of the experimental results, it has been suggested. (Appendix 'D') that the value of quadrature axis rotor impedance be taken equal to that of the direct axis impedance as given by Eqn. (5.1). In the case of cylindrical rotor machines, this assumption is considered quite reasonable and is confirmed by the virtual lack of pulsations during asynchronous operation with open field.

5.2.2 Considerations involved in calculating numerical vaiues

Eqn. (5.J) renders it possible to calculate, from the physical dimensions of a rotor, the damping effects produced by rotor eddy currents. Tc obtain numerical results, it is, however, necessary to estimate the effective length ' ℓ ' as well as the approximate value of B_{S}, both of which are somewhat indefinite.

For the cirect axis, the length is teken equal to the peripheral length in the iron of the path passing below the teeth.

The value of B_{S} has to be determined on an empjrical basis. The value of B corresponding to normal flux would be too low for B_{s}, since that would mean that the flux would always penetrate to the centre at the
meximum value. Various proposals $40,83,84$ have been mede for the appropriate value to be taken. A value about 30% coove the normel value was Iound to give best results while checking this theory on some lerge machines ${ }^{40}$. Because of rutually cancelling effects, selection of a suitable value of B_{S} is, however, not very critical.

In practice, machines are generally connected to a source of fixed voltage through a high impedance. Because of the lower effective voltage at the machine terminals, the effect of B_{s} is further decreased.

Having fixed the appropriate value of B_{s}, the calculation of $Z_{k d}$ can be made for a definite value of \varnothing. Because of the stator leakage and transformer reactance drops, the flux varies slightly with load. A correction has been mede for this effect by estimating the terminal voltage for each condition studied and then correcting the value of \varnothing used in calculating the rotor impedances.
5.3 Mathematical model
5.3.1 General

Keeping in view the general observations made in Section 4.4.1 regarding the usefulness of studying the problem of asynchronous operation and resynchronisation with the help of a mathematical model, it was considered desircible to simulate the solid rotor machine in adaition to the laminated rotor machine. Damper circuits in the solid rotor have a variable complex impedance as described above, instead of a single valued impedance as wes assumed
in the case of the laminated rotor. It is, therefore, not possible to use the same mathematicel model as adopted in Section 4.4, and a completely different approach, described below, has been aciopted.
5.3.2 Explanation of the adopted method

The problem of asynchronous operation and resynchronisation for a solid-rotor synchronous mechine can be stucied in full detail by the simultaneous solution of Eqns. (3.12), (3.13), (3.20), (3.22) and (3.29). Out of these, Eqns. (3.20) and (3.22) cannot be treated in their corresponding form given by Eqns. (3.19) and (3.2I) respectively, as was the case with the laminated rotor machine. Instead Eqns. (3.14) to (3.18), from which Eqns. (3.20) and (3.22) are derived, can pe represented by the two equivalent circuits shown in Fig. 3.2. Employing TR48 as a direct analogue ${ }^{85}$, it is possible to synthesise the mathematical model from these two equivalent circuits in conjunction with Eqns. (3.12), (3.13) and (3.29).

The method described in Rer. 85 is applicable directly to obtain the solution of ordinery linear differential equations with constant coefficients. In the case of solid rotor machines, one branch in each of the two equivalent circuits contains terms which are functions of a system variable, and, therefore, cannot be represented in the ordinary manner. These brenches have been simulated in the mathematical model by an alternative approach. The approach adopted highlights still further the two axis the ory.

Since the two axes are at right angles to each other, corresponding axis quantities such as e_{d} and e_{q} or i_{d} and $i_{G_{G}}$ have a time phase relation of 90 degrees with each other. This was shown to be a valid representation (Figs. 5. 2 and 5.3) from the analysis of tull scale tests conducted by the C.E.G.B. on a 30 Im turbogenerator set at Goldington in 1960 and also by the analogue computer studies performed in the present work. This phase relationship remains unaltered even when the waveform of these quantities is far from sinusoidal during certain esynchronous operating conditions. Since the rotor impedance on the two axes has been assumed equal in phase and magnitude (Section 5.2.1), the property of a constant phase relationship has been used in developing the mathematical model for the present case.

Putting $p=j s \omega_{o}$, it will be observed that the two equivalent circuits, shown in Figs. 3.2(a) and D. 3 are identical. From Eqn. (5.1), by expansion of the exponential term,
$Z_{k d}=\frac{640}{9 \pi^{2}} \cdot k_{v} \cdot k_{i} \cdot \frac{w^{2}}{l} \cdot \frac{\rho B_{s}}{\varnothing_{\mathrm{m}}} \cdot \frac{1}{s}[\operatorname{Cos} 26.6+j \operatorname{Sin} 26.6]$
or $s Z_{k d}=0.894 Z_{d I}+j 0.448 Z_{d I}$

Where

$$
\begin{aligned}
z_{d I}= & \frac{640}{9 \pi^{2}} \cdot k_{v} \cdot k_{i} \cdot \frac{w^{2}}{\ell} \cdot \frac{p \cdot B_{\mathrm{S}}}{\phi_{\mathrm{m}}} \\
= & \text { constant, for particular conditions of } \\
& \text { operation. }
\end{aligned}
$$

Fig. 5.2 Axis_voltages and current Goldington $30 \mathrm{M} . \mathrm{W}$. Turbo-alternator Goldington 30M.W. Turbooalter
Asynchronous running test.
Field Field open 21M.W. Load

Fig. 5.3 Axis_voltages and current
Goldington 30 M.W. Turbo_alternator Asynchranous running test Asynchranous running test
Field shorted through discharge resistor 21 M.W. Load

Comparing Figs. 3.2(a) and D.3, s $Z_{k d}$ may be written as

$$
\begin{align*}
& s Z_{k d}=r_{k d}(j \omega)+p l_{k d}(j \omega) \\
& \text { From Eqns. }(5.1) \text { and }(5.6), \text { therefore, } \\
& r_{k d}(j \omega)=0.894 Z_{d I}=F(\text { say })
\end{align*}
$$

$$
\cdot .(5.6)
$$

and $p \ell_{k d}(j \omega)=j 0.448 Z_{d 1}=j G($ say $)$
Similarly, the quadrature axis rotor-circuits can be represented by

$$
\begin{align*}
r_{k q}(j \omega) & =z_{d I} \cdot \cos 26.6^{\circ} \tag{5.9}\\
\text { and } p \ell_{k q}(j \omega) & =j z_{d I} \cdot \sin 26.6^{\circ}
\end{align*}
$$

Using Eqns. (5.7) to (5.10), the following equations can be written to simulate the two equivalent circuits shown in Fig. 3.2.
i) Direct axis

$$
\begin{align*}
& p \psi_{d}=e_{a} \cdot p i_{d}+I_{m d} \cdot p\left(i_{d}+i_{k d}+i_{f}\right) \tag{5.11}\\
& e_{k d}=s Z_{k d} \cdot i_{k d}+I_{m d} p\left(i_{d}+i_{k d}+i_{f}\right)=0 \tag{5.12}\\
& e_{f}=\left(r_{f}+e_{f} p\right) i_{f}-s Z_{k d} \cdot i_{k d} \tag{5.13}
\end{align*}
$$

ii) Quadrature axis

$$
\begin{align*}
& p \psi_{q}=e_{a} \cdot p i_{q}+I_{m q} p\left(i_{q}+i_{k q}\right) \tag{5.14}\\
& e_{k q}=s z_{k q} \cdot i_{k q}+I_{m q} p\left(i_{q}+i_{k q}\right) \tag{5.15}
\end{align*}
$$

5.3.3 Formuletion of the mathenatical model

Eqns. (3.12): (3.13), (3.29) and (5.11) to (5.15) set up for simultaneous solution on an analogue computer form a mathenatical model for the study oif asynchronous operation and resynchronisation of a solid-rotor synchronous machine. Of these, the first three equations need to be re-arranged as described in Section 4.4.2. Modifications necessary in Eqns. (5.11) to (5.15) to make them also suitable for simulation ere given below.
(a) Eqns. (5.11) and (5.14)

By re-arranging and integrating both sides, the following suitable form is obtained:

$$
\begin{align*}
& i_{d}=\frac{I}{I_{d}} \cdot \psi_{d}-\frac{I_{m d}}{I_{d}} \cdot i_{k d}-\frac{I_{m d}}{I_{d}} \cdot i_{f} \tag{5.16}\\
& i_{q}=\frac{I}{I_{q}} \cdot \psi_{q}-\frac{I_{m q}}{I_{q}} \cdot i_{k q}
\end{align*}
$$

(b) Eqns. (5.12) and (5.15)

$$
\begin{aligned}
& \text { Re-arrancing Eqn. (5.12), } \\
& I_{m d} \cdot p i_{k \alpha}=-I_{m d} \cdot p\left(i_{\alpha}+i_{f}\right)-s Z_{k d} \cdot i_{k \alpha} \\
& \text {. . (5.18) } \\
& \text { Substituting } s Z_{k d}=(F+j G) \text { from Eqns. (5.6) } \\
& \text { to (5.8), Eqn. (5.18) becomes } \\
& I_{m d} \cdot p i_{k d}=-I_{m d} \cdot p\left(i_{d}+i_{f}\right)-(F+j G) i_{k d} \quad \cdot(5.19)
\end{aligned}
$$

which may be put in the alternative form,
$I_{m d} \cdot p i_{k d}=-I_{m d} \cdot p\left(i_{\alpha}+i_{f}\right)-F \cdot i_{k d}+G \cdot i_{k q} \cdot \cdot(5.20)$
Substituting for pi_{a} from En. (5.11) in Eqn. (5.20) and re-arranging,
$p i_{k d}=-\frac{I_{\alpha}}{\ell_{a} \cdot I_{m d}}\left[F \cdot i_{k d}-G \cdot i_{k q}\right]-\frac{I}{e_{a}} \cdot p \psi_{d}-p i_{f} \cdot(5.21)$
Integrating Eq. (5.2I), gives
$i_{k d}=-\frac{I_{d}}{\ell_{a} \cdot I_{m d}} \int\left[F \cdot i_{k \alpha}-G \cdot i_{k q}\right] d t-\frac{I}{\ell_{a}} \cdot \psi_{d}-i_{f} \cdot(5.22)$
Similarly, Eq. (5.15) can be written as
$p i_{k q}=-\frac{I_{q}}{\ell_{a} \cdot I_{m q}}\left[F \cdot i_{k q}+G \cdot i_{k \alpha}\right]-\frac{I}{\ell_{a}} \cdot p \psi_{q} \quad \cdot \cdot(5.23)$
Integrating Eq. (5.23), gives
$i_{k q}=-\frac{I_{q}}{l_{a} \cdot I_{m q}} \int\left[F \cdot i_{k q_{1}}+G \cdot i_{k d}\right] d t-\frac{I}{l_{a}} \cdot \psi_{q} \quad . .(5.24)$
(c) En. (5.13)

Rewriting and substituting for $s Z_{k d} \cdot i_{k d}$ in
the same way as described for Eqn. (5.12),
Fin. (5.13) can be written in the alternative form as

$$
\begin{equation*}
p i_{f}=\frac{I}{\ell_{f}}\left[e_{f}-r_{f} \cdot i_{f}+F \cdot i_{k d}-G \cdot i_{k q}\right] \tag{5.25}
\end{equation*}
$$

5.4 Procedure for prectical solutions

5.4.1 Large mechines

5.4.1.1 Tests without speed governor

Certain records of asynchronous running tests conducted by the C.E.G.B. in 1960 on a 30 MW turboalternator in Goldington power stetion and a 60 mW set in Marchwood power stction were available. The various parameters and dimensions of these two machines and system conditions a.t the time of the tests, as far as known, are given in Appendix 'A'. Using these conditions and keeping in view the considerations mentioned in Section 5.2.2, constants for the various equations forming the nathematical model were calculated and the tests simulated on the analogue computer. In the full scale tests, the turbine speedgovernor was set at its maximum value, thus making it ineffective for the range of slips encountered. Studies on the mathematical model have accordingly been done without simulation of the governor characteristic and a constant mechenical input was essumed.
5.4.1.2 Iests with speed-governor and voltage regulator

In addition to the above tests, a further series of tests which were conducted on a 120 MW set at Staythorpe 'E' generating station during June, 1962^{46} have been simulated. All the necessary data of this machine is given in Appendix 'A'. In this test series, the automatic voltege regulator and the turbine speed governor were both in use. Due to the non-availability of sufficient elements
on the $\mathbb{R} 40$ analogue computer, it has not been possible to simulate these tests fully. However, two of these tests have been simulated in a slishtly modified form.

In one of the tests, the mechine was pulled out of synchronism by suadenly switching three $132 / 275 \mathrm{KV}$ supergrid transforners Irom parallel to series connection thereby simulating the suaden disconnection of one circuit of a nominally-loeded 100 mile 400 KV double circuit line. During the ensuing out-of-step operation, the autonctic voltage regulator maintained an effectively constant excitction and the speed-governor reduced the load on the set. In the anclogue computer studies, out-of-step operation was initiated by the same means i.e. suddenly increasing the reactance between the machine teminals and the infinite bus, but due to the absence of a speed-governor simulator, the mechanical torcue was sradually reduced by hand to the real test value in such a way that the maximum slip attained was approximately the same as in actual test conditions. This of course, gave a very crude regulation during the transient period till the mechine settled down to a steady operation.

In a second test, asynchronous operction was started by manual tripping of the main field switch and shorting the field through a discharge resistor. The supergrid transfomers were operated in perallel throughout. After steady esynchronous operation was attained, resynchronise.tion was attempted by applying field excitetion at rendom. Stecdy asynchronous operetion and resynchronisation has only been simileted on the analosue computer without taking into account the effect of turbine speedgovernor anc automatic vol.tage regulator auring the process of resynchronisation.

5.4.2 Njero-machine

Studies periomed on the analocue computer were also repeated on a micro-machine using a solid cylinarical rotor. All the necessery details of the set used are siven in Appendix 'A'.

A good deal of experimental work in connection with operational impedances of the solid rotor wes carried out by Bharali ${ }^{48}$. The same rotor as used by Bharali hes been used in the present studies. The theoretical derivation of the expression for the rotor impedance, as worked out in Appendix 'D', is based on an idealised, static electro-magnetic model and a semi-infinite slab of iron.

The result of assuming a semi-infinite sleb is to neglect end effects. This essumption is reasonable in the case of modern lerge wruositarnators having a high Iencth to diameter ratio (about 5 to 6^{86}) for the rotor. For the micro-machine, this retio is very small - 0.543 for the rotor used - ond end effects cannot be neglected. Coirection factors have been suggested 87 to account for the increase in the length of tine eady current path. In the present case, the lengith of the end path was added to the exial length of the rotor veing a correction factor

$$
\begin{aligned}
\mathrm{K}_{\mathrm{I}} & =I+0.3 I 2 \mathrm{Z} / \mathrm{v} \\
& =1.45 \text { for the rotor used. }
\end{aligned}
$$

The assumption of en idealised concition leads to the effect of space harmonics being neglected. However, because of the relatively siall air-gep and wide slot open-
ing, a considerable anount of spece harmonics are present. Presence of space harmonics at sub-synchronous speed results in increased secondary reactonce。 A similar effect was observed by Gibbs 80 in small induction motors and salient-pole synchronous motors. He suggested that the secondary reactence be increased by a factor of between 1.0 to 1.35 .

Measurements made during operational impedance tests ${ }^{48}$ on the present rotor showed that the phase angle of the rotor impedarice is 45° compared to 26.6° as worked. out by the theory based on simplifying assumptions. According to this, the correction factor for this rotor works out to be 2 instead of 1.0 to 1.35 as mentioned a.oove. Values of rotor reactance used in the analogue computer studies were the corrected values given by

$$
\begin{gather*}
X_{k d}(\text { corrected })=G(\text { corrected })=a \cdot{ }^{T} k d \\
=\frac{1}{2} \cdot a \cdot R_{e}\left[Z_{k d}\right]=F \tag{5.27}
\end{gather*}
$$

where $a=2$ in this case.

5.4.3 Solution by analoere computer

Fig. 5.4 shows an outine diagran for the simultaneous solution of Echs. (4.2), (4.3), (4.20), (5.16), $(5.17),(5.22),(5.24)$ and (5.25) on the rr48 analogue computer, all factors such as scales, signs etc. having been omitted. Mathematical nodels of the machines described in Sections 5.4.1 and 5.4.2 were set up for the various studies.

Procedure for carrying out the studies in the present case is in general the same as for the Iaminated rotor machine described in Section 4.5.3. Asynchronous operation with field open is studied by disconnecting the section simulating Bon. (5.25) on the patch panel and connecting it only when applying field excitation for resynchronisation. A field shorted through a discharge resistance is easily simulated by putting $e_{f}=0$ and using the total value of field resistance plus discharge resistor instead of r_{f} in Eqn. (5.25) and by readjusting the setting of relevant potentioneters at the instant of the application of excitation.
5.5 Comparison of results

The validity of the mathematical model for a solid rotor machine hes been verified by simulating asynchronous muning tests conducted on three large turboalternators and a micromachine with a solid cyindrical rotor. The results obtained on the simulator gave a reasonable correlation with the actuel test results for the four machines of widely varying proportions. on this basis, this model is considered a sufficiently reliable tool to be employed for the study of asynchronous operation and resynchronisation (Chapters 6 and 8) of a solid rotor synchronous mechine.

The results obtained in each individual case are briefly discussed below.

5.5.1 Tests on a 60 HW turboaternator

Figs. 5.5 to 5.9 show a comparison of the values obtained from the analogue computer with the test results for a 60 NW set et Marchwood. Fig. 5.5 shows the corresponding values of the mean asynchronous torque against mean slip for four tests with field open and Fig. 5.6 shows the corresponding values for asynchronous operation with the field shorted through a discharge resistor. The mean stator current versus mean slip for the field open circuit condition is shown in Fig. 5.7. For the condition of field closed through $\varepsilon_{\text {a }}$ uischarge resistor in Fig. 5.8. Fig. 5.9... shows the pulsations of stator current for one of the four tests plotted in Fig. 5.8.

It should be pointed out that the bus-bar voltage varied appreciably from test to test. The test points would nots therefore, be expected to be on a smooth curve, as would be the case with constant voltage operation.

In Figs. 5.5 to 5.9, values obtained by Chalmers ${ }^{20}$ have also been plotted for comparison. A study of these figures shows that the rathematical model can be used to predict within a reasonable margin ($\pm 5 \%$) the operating characteristics of a' large mochine. The results obtained by this method are certainly an improvement over those predicted by the Chamers method.
5.5.2 Tests on a 30 rw set

As a further check on the efficacy of the method suggested, asynchronous tests conducted on a. 30 MW turbo-

Fig. 5.5 Variation of output torque with slip 60 M.W. Marchwood machine , Field open Asynchronous running tests

Fig. 5.6 Variation of output torque with slip 60 M.W. Marchwood machine asynchronous running tests Field shorted through discharge resistor

Fig. 5.7 Variation of stator current with slip 60 M.W. Marchwood machine asynchronous running tests

Field open

Fig. 5.8 Variation of stator current with slip 60 M.W. Marchwood machine asynchronous running tests Field shorted through dischorge resistor

Fig. 5.9 , Pulsation of stator current with time 60. M.W. Marchwood machine asynchronous running tests

Field shorted through discharge resistor
Output torque-0.932p.u., Slip-0.31\%
alternator at Goldington power station were also simulated on the analogue computer. Results obtained from the simulation are given in Figs. 5.10 to 5.13. Actual test results 40 are elso plotted in these figures for comparison. It is shown py Fiss. 5.10 and 5.11 that the variation between the theoretical and actual test results lies within $\pm 10 \%$ except in one cese. Full information about the system conditions at the time of the tests was not availeble for the present studies. In view of this, the degree of agreement obteined is considered reasonable to justify the adoption of the proposed method in the further study of the problem.

5.5.3 Tests on a 120 IN turbo-altemator

In 1962, a series of tests was conducted on a 120 IMW set at Staythorpe 'B' power station. Out of this series, one out-of-step running test and one test for asynchronous operation with attempted resynchronisation has been simulated on the analogue computer. Due to the lack of full information on the turbine speed-governor and the automatic voltage resulator, and non-availability of computer elements, these tests could be simulated only approximately. The results obtained are tabulated in Tables 5.1 and 5.2, and keeping in view the drastic simplifications involved, correlation obteined seems satisfactory.
5.5.4 Tests on a micro-machine

For a fuller study of the problem of asynchronous operation and resynchronisation, a large number of tests

Fig. 5.10 Variation of mean torque with slip 30 M.W. Goldington machine asynchronous running tests Field open \div

Fig. 5.11 Variation of mean torque with slip 30 M.W. Goldington machine asynchronous running tests Field shorted through discharge resistor

Fig. 5.12 Variation of mean current with slip 30 M.W. Goldington machine asynchronous running tests Field open
Corresponding points plotted for same output torque

Fig. 5.13 Variation of load_angle with time 30 M.W. Goldington machine asynchronous running tests Field shorted through discharge resistor
were conducted on a micro-machine and simultaneously simulated on the mathematical model. Figs. 5.14 to 5.16 show a comparison of the mean torque-slip characteristics obtained from the machine and the computer. Fig. 5.17 shows the mean stator current obtained by the two methods. Further details of the studies on the micro-machine and their comparison with the analogue computer results are given in Chapter 8 on resynchronisation. It will suffice to mention here, that a very good agreement has also been obtained in this case.

Table 5.1

Out-of-step munning with approximately constant excitation

Parameter

1. Miean rotor slip $\%$
2. Maximum stator current p.u.
3. Maximum variation of MW output p.u.
4. Maximum variation of

MVAR p.u.
5. Maximum variation of stator terminal voltage p.u.
0.19 to 0.82 0.13 to 0.73
6. Maximum rotor current during disturbance p.u. I.72 I. 642

Staythorpe Test results

Analogue Computer results

Table 5.2
Asynchronous operation and attempted resynchronisation

	Parameter	Test results	Analogue Computer results (see note)
	Mean value of slip \%	2.0	1.56
2.	Mean value of MVAR p.u.	0.72	0.64
3	Mean level of stator terminal voltage p.u.	0.53	0.61
4.	Magnitude of fluctuations in MW output p.u.	+0.8 to +0.33	$\begin{aligned} & +0.88 \text { to } \\ & +0.27 \end{aligned}$
	Magnitude of fluctuations in stator current p.u.	1.01 to 1.436	1.03 to 1.52
6	Magnitude of fluctuations in MVAR $\mathrm{p} . \mathrm{u}$.	$\begin{gathered} 0.673 \text { to } \\ 0.767 \text { lead } \end{gathered}$	$\begin{gathered} 0.5 \text { to } \\ 0.74 \text { lead } \end{gathered}$
7	Maxirnum variation of MW output during attempted resynchronisation at $\delta=135^{\circ} \mathrm{p}$.u.	+1.12 to -0.5	+1.32 to -0.3
8.	Maximum variation of generator stator voltage during a.ttempted resynchronisation at $\delta=135^{\circ}$ p.u.	0.35 to 0.75	0.26 to 0.81
Note: Analosue computer results in Table 5.2 relate to steady asynchronous operation at $0.52 \mathrm{p} . \mathrm{u} .(78 \mathrm{Mw})$ output.			
Attempted resynchronisation is fully discussed in Section 8.11.			

Fig. 5.14 Mean torque_slip characteristics Micro_machine with solid rotor asynchronous running tests Field open

Fig. 5.15 Asynchronous mean torque.slip characteristics Micro_machine with solid rotor

Field shorted through discharge resistor

Fig. 5.16 Asynchronous mean torque_slip characteristics Micro-machine with solid rotor

Field excited

Fig. 5.17 Variation of stator current with asynchronous

CHAPTER 6

BEHAVIOUR DURING ASYNCHRONOUS OPEPATION

6.1 General

During asynchrorous operation, the power and electrical toruue cieveloped in a syrchronous machine depena not only on the load ansle, but also on the time rate of change of the load-angle. Lorque 'I' can then, as an approximation, be considered to be made up of a synchronous component and an asynchronous component.

$$
\begin{equation*}
T=\mathbb{T}_{S}+\mathbb{T}_{a s} \tag{6.1}
\end{equation*}
$$

The symohronous component T_{s} will be present only when ficld eacitation is present during asynchronous operation. Its magnitude depends on the constants applicc.ble to synchronous operation, on the applied voltege, excitcition and the load engle. The asynchronous component $T_{\text {as }}$ depends or the esynchronous constents, the applied voltage, the load encle o anc jts time rate of change i.e. the slip s.

A mrke a asmmetry exists between the direct and quadrature axes of a rachine with salient-pole rotor. In comperison, esymuetry is very slicht, and in some cases, may even be absent in the case of machines with cylindrical rotor. Dre to asymmetry on the rotor, the watts and Vars cowonents of the asynchronous volt ams pulsate about a mean value curing asynchronous operation. Because of these variations in power, there are constant oscillations of speed (slip) cbout a fixed average value.

Operating as a gencictor, the machine will always run at super-synchronous speeds as an induction generator. As a motor it will run at sub-synchronous speeds as an induction notor. The asynchronous power supplied is generated by virute of the induced rotor currents - which depend on the slip.

Under asynchronous conditions, VAs demand is met by the gysten to which the machine is connected. These VArs consist of two components, namely;
a) Yegnetising component, i.e. reactive volt amps required For magnetisetion,
b) Esynchionous comonent, i.e. VArs taken by the shunt reactance, as the mechine under these conditions can be represented by an equivalent circuit containine series and shunt brenches like the equivalent circuit of an ordinary irduction mechine.

Because of the comperetively large air-geps of the nomel synchronous mechines, resnetising Vars demend of these machines is Iarge. This results in the current being hicher when compared with the valves reached during normel symchronous operation for the same power output. rhis excessive VAr cemand can produce a lerge voltage reduction at the machine terminals as well es in the system, which con cause difficulties. In addition, the mognitude of the Var pulsations about the mean value is importent, since these pulsations can cumse fluctuations of the system voltage over a wide area.

6.2 Studies performed

T: 0 study the effect of various parameters, modes of machine operation and the system conditions, extensive studies have been performed for a lemineted salient-pole rotor and a solid cylindrical rotor by setting up appropriate mathemotical models on an analosue computer. Results from the computer have also been compered with the results obtained under appropricte conditions on micro-machines using corresponding rotors. The verious asynchronous studies carried out are enumerated below.
i) No excitation, field shorted on itself with different time constents. These studies could also be interpreted as studies with field closed through a discherge resjstor hevine various values.
ii) Open circuit fielà.
iii) Field closed and excited.
iv) Nechine connected to an jnfinite bus through external reactance of various values.
v) Infinite bus et verious fixed volteges.
vi) Veriation of moient of ineria of the mechine.
vii) Effect of speed-governor and its cheracteristics.

6.3 Pulsetions in various quantities

Bgn. (E.2I) for torcue and ECn. (I.25) for slip cen both be split into three perts contributing separately to the total instantoneous torque and slip. The parts of these two equations wich are independent of load-angle (δ) give the mean torque and mean slip, and do not contribute to the pulsations. The second pert, which is proportional to the load-ongle is present only when the field is excited and generates pulsetions at slip frecuency. Whe third pert of these ecuetions produces twice the slip frequency pulsations in all quantities.

In physical terms, this can be explained easily. the domper circuits are generally assumed to be symetrically distributed cbout the two axes. Whe field, shorted on itself or throuch e discharge resistor, is elso symetrically distributed about the two axes. Jhus the pulsctions arc caused only by the variation of reluctance as each rotor pole slips with respect to the stator mmf wave. the field, open or shorted, is symetrical over every 180 electrical degrees and would, therefore, cause pulsations cit twice the slip frecuency. However, in the case of the excited field, synchronous torque proportional to sind is producec. This torque pulsates at slip frequency, causing pulsations which cominate the comparatively weak double frequency pulsetions cansed by the veriations in reluctence.

A few representative records or asynchronous operation obtained on the analogue computer are given in Higs. 6.1 to 6.32 and the various cuantities shown in these ficures are tabulated in Table 6.1. Fies. 6.1 to

Table 6.1

a) Iaminated rotor picro-machine

$\left.\begin{array}{l}\text { Slip versus load-angle } \\ \text { Watts versus load-engle }\end{array}\right]$	$\begin{aligned} & \text { Fiss. } 6.1 \text { to } 6.6, \\ & 6.8 \text { to } 6.11 \& 6.1 \end{aligned}$
VArs versus losd-male	$\begin{aligned} & - \text { Piss. } 6.4,6.8 \text { to } \\ & 6.11 \& 6.13 \end{aligned}$
Loed-anjle versus vine	- Pigs. 6.10 \& 6.11
Effect of variction of monent	
of inertia	- Fig. 6.7

Ioze of synchronism and steady asynchronous operation - Fig. 6.12
Effect of speed-governor - Fif. 6.13
Line current versus load- _ Figs. 6.14, 6.18 angle \& 6.19
Line current versus tine - Figs. 6.14 to 6.17
b) Solid rotor micro-mechine

Slip versus load-anele
Slip versus time
Ioed-crigle versus tine
Watts versus time
VArs versus time
Field current versus time

- Fiss. 6.22 to 6.24

Line current versus tine

- Tigs. 6.20 to 6.24
6.32 clearly show that all cuantities pulsate exactly as described in the preceding paresraph. It is elso observed fron these figures that during operation with the field excited all the quantities fluctuate much more violently than in either of the other two modes of operetion

Fig.6.16 Variation of line current with time
Field open, $T_{m}=1.0$ p.u., $x_{e}=0$, Laminated rotor
Steady asynchronous operation
Resynchronisation

Fig. 6.17 Variation of line current with time
Field open , $\zeta_{m}=0.75 \mathrm{p} . \mathrm{u} ., x_{e}=0.12 \mathrm{p} \cdot \mathrm{u}$. , Laminated rotor

Fig.6.18(aNariation of line current with load_angle Field excited, $\quad T_{m}=1.0$ p.u., $\quad x_{e}=0$, Laminated rotor

Fig618(b)Variation of line current with load-angle Field excited, $T_{m}=0.75$ pu. , $x_{e}=0$, Laminated rotor

Steady asynchronous operation Resynchronisation

Fig. 6.19 Variation of line current with load_angle as offected by turbine speed.governor action after loss of synchronism
$T_{g}=4.0 \mathrm{secss}$. \quad Droop $=4 \%$ $T_{m}=1.0$ p.u.,$\quad x_{e}=0.12$ pu. Laminated rotor Without governor \qquad With governor

Fig. 6.25 Variation of line current with time Solid rotor. Field open, $\quad T_{m}=0.522$ pu., $x_{e}=0$

Fig 6.26 Variation of line current with time Solid rotor, Field excited, $T_{m}=0.496$ pu., $x_{e}=0$

Fig. 6.27 Variation of line current with time
Solid rotor, Field open, $T_{m}=0.47$ p.u. , $x_{e}=0.142$ p.u.

127

i.e. (i) with field open and (ii) field shorted and unexcited. This is brought out even more clearly in Figs. 6.33 to 6.38 where the mexima and minina are plotied against the mean of a number of experimental ciuantities.

6.3.1 Slip pulsetions

The masnitude of siip puisctions is inversely proportional to the mean slip, as for example, at a mean slip of $2.18 \%[F i g .6 .6(b)]$, the slip varies between 1.75% and 2.62%, whereas at ε mean slip of 3.23% (Fig. 6.9), the veriation is only between 3.06% and 3.38%. This fact is hore clearly shown in Figs. 6.39 and 6.40 where the fluctuation in slip $\left[\left(S_{\max }-S_{\min }\right) / S_{\text {mean }}\right]$ has been plotted against mean slip for a large number of cases. It will be noticed from these iigures, that the amplitude of slip fluctuations drops rapidly with increase in speed. Ihis is because the rotor, due to its high moment of inertia, cannot follow the variations in torque that the various fectors tend to produce.

At vexy low values of slip, i.e. most of the studies with slips below 1.0%, fluctuations were found to be so lerge, that in certain cases, the machine even went into the motoring region for a prief interval of time during each slip cycle. At these intervals, the machine tended to lock, but after a brief interval of synchronous motion again went into the next slip cycle. Examples of this are shown in Figs. 6.5, 6.8 and 6.24.

From Eqn. (B.25), variations in slip were expected to be sinusoidel, but at low values of slip (the only range

Fig. 6.33 Effect of field connection on magnitude of torque pulsations Micro_machine with laminated rotor

Asynchronous operation study on analogue computer

Fig. 6.34 Effect of field connection on magnitude of slip pulsations Micro_machine with laminated rotor

Asynchronous operation study on analogue computer

Fig. 6.35 Effect of field connection on magnitude of slip pulsations Micro_machine with solid rotor

Asynchronous operation study on analogue computer

Fig. 6.36 Effect of field connection on magnitude of torque pulsations
Micro_machine with solid rotor
Asynchronous operation study on analogue computer

Fig. 6.37 Effect of field connection on magnitude of VAr pulsations Micromachine with solid rotor

Asynchronous operation study on analogue computer

Fig. 6.38 Effect of field connection on magnitude of current pulsations Micro_machine with solid rotor

Asynchronous operation study on analogue computer

Fig. 6.39 Effect of different modes of field connection on asynchronous operation

Fig. 6.40 Effect of different modes of field connection on asynchronous operation
of importence for a practical study of resynchronisetion as shown in Chapter 8) pulsations are far from sinusoidal. Also at these low values, the concept of mean slip on which the entire analytical solution of Section 4.3 is based, cannot be justified.

With the field excited, the amplitude of pulsations depends directly on the value of the synchronous component of torque, i.e. the megnitude of excitation maintained. Llso in this case, the slip has its minimum value at an angle δ very near to 180° in every slip cycle, if the asynchronous torque is comperatively small. In other cases, the point of minimum slip will depend upon the proportional contribution of field winding and damper winding towards the total asynchronous torque.

6.3.2 Pulsetions in watts and VArs

Pulsations in both these quantities in general follow the same pattern as that of slip. The magnitude of variation depends directiy on the ouiput of the machine and the slip. Operetion with the field open produces the lowest magnitude of verictions and with the field excited, the most violent fluctuations as shom in Figs. 6.36 and 6.37 .

Lore external resctance increcses the average slip for the same power outqut, with corresponding smaller magnitude of slip pulsations. This reduction in slip pulsations is directiy reflected in the fluctuations of watts and VArs, and the machine mans comparetively smoothly.

With small megnitudes of slip, every time the slip passes through a minimum value or passes through the brief interval of synchronous type of motion mentioned in Section 6.3.1, there is a violent fluctuation in the active power, followed by a less violent fluctuation in the VArs as shown in Figs. 6.5, 6.8 and 6.24 . The tendency to lock is caused by the reluctence torcue set up due to the seliency effect of the rotor. It is, therefore, perticulerly merked in rechines with selient-pole rotors and to a much smeller extent in cylindrical rotor nachines.

This phenomena has also been observed in the form of deriped oscillations during full scale tests conducted by the C.E.G.B. on a 120 Niv generator at Uskmouth 'B' power station in Avgust 1963^{88}. When the instantaneous slip is moving to its minimum value, the reluctance torque tends to pull the mechine into synchronism with a high accelerciion. The rotor releases a lerge amount of kinetic energy in a comperetively short time, thereby causing a big jurp in the active power output [Eqn. (3.25)]. This hes only an indirect and, therefore, a minor influence on the VArs which ere primarily affected by the system conditions. Reluctance torque fluctuates at twice the slip frecuency, and, therefore, a big jump in power will take place twice every slip cycle. Also the nagnitude of reluctance torque jeing comparatively small will produce a significent effect on pulling the machine into synchronism only at small velues of slip.

In the case of lerge machines, this sudden jump will be accompenied by rotor oscilletions caused by the semi-rigid mechanical system comprising the shaft, coupling, turbine rotor and the entraped fluid. The frequency of
these damped oscilletions will depend upon the natural period of oscillation of the mechanical system conjointly with the entrapped fluid.

6.3.3 Pulsations in current

Figs. 6.14 to 6.19 and 6.25 to 6.32 show the fluctuations in current under various modes of operation. Pulsations are almost sinusoidal at twice the slip frequency for the high slip values experimented with during operation on open or shorted field, but depart from sinusoidal at the low values of slip. During operation with excited field, both the fundamental and twice the slip frequency components are present in the pulsations, the fundamental components being by far the dominant of the two. Also the pulsetions are far more violent in this mode of operation than in either of the other two cases.

It was observed that with the field open, the pulsations in general have the minimun magnitude as shown in Fig. 6.38. Also, adcitionel external reactance has a slight effect in reducing the magnitude of the fluctuations, and this can be atiributed directily to the higher slips and smaller variations in speed produced thereby, as olready mentioned in Section 6.3.1.

6.4 Eean torcue-slip cheracteristics

Fi̇s. 6.41 to 6.44 show curves relating nean torque and nean slip during stecay asynchronous operation for a mechine connected to an infinite bus through various

Fig.6.41 Asynchronous mean Torque-slip characteristics

$$
x_{e}=0 \quad c_{b u s}=1.0 \text { p.u. Laminated rotor }
$$

Fig. 6.42 Asynchronous mean torque-slip characteristics $x_{e}=0.12$ p.u. ebusist.Op.u. Laminated rotor
Computer
Micro-machine

Fig.6.43 Asynchronous
mean torque-slip characteristics
Laminated rotor

Fig. 6.44 Asynchronous mean torque slip characteristics Micro-machine with solid rotor
values of external reactonce. Curves I and II in Fig. 6.43 also show the effect of bus-bar voltage on the asynchronous characteristics. A perusal of these curves shows that, particularly for small power outputs, operation with the field shorted on itself or through a discharge resistor is advantageous, in that slips are in general low compared to the open-circuit field concition. This is because the field winding, being generally of lower resistance than the demper circuits, is more effective at low slips when the dampei circuit torque is low. At higher slips, the damper circuits become more important and the contribution from the field winding is of less significance. The adventage of the field shorted condition is almost completely lost at higher outputs or with high external reactance, even for low power outputs. These results are also corroborated by the investigetions of Mehta and Adkins ${ }^{44}$.

6.5 Reactive voltamps

6.5.1 General

Reactive voltamps demand of the machine during esynchronous operation under certain conditions, can be as high es 2 to 2.5 p.u. Figs. 6.45 to 6.47 show the effect of
i) watts output,
ii) external reactance and iii) mode of field connection
on the VArs demand of solid rotor machines. The effect

Fig. 6.45 Variation of mean VArs with torque
Miero-machine with solid rotor
Asynchronous operation study on analogue computer

Fig. 6.46 Variation of mean VArs with slip Mieromachine with solid rotor

Asynchronous operation study on analogue computer

Fig. 6.47 Variation of mean Vars with slip Asynchronous operation studies of large turbo_alternators on analogue computer

of these factors is, in éneral, similar for solid and laminated rotors as discussed below.

6.5.2 Power output

Active power supplied by the machine has only a small effect on Vars demend, which tends to reduce with fall of watts output as shown by Figs. 6.37 and 6.45.
6.5.3 External reactance

The external reactance hes a profound effect on the Vars demand, because of the reduction in the machine terminal voltage caused by high reactive current. Bus-bar voltage level has a similer effect. The higher the external reactance or lower the bus-bar voltage, the smaller will be the VArs intake as shown by Figs. 6.45 to 6.47 .

6.5.4 Mode of operation with respect to field

A machine operating with excitation or with the field unexcited and shorted without a discharge resistor takes approximately the same VArs. The effect of introducing a discherge resistor in the field is to improve the power factor of the rotor currents with a corresponding reduction in VArs derand.

6.6 Current

6.6.1 General

Because of the lerge Vhrs derend of the machine as mentioned in Section 5.1, the crmature current during asynchronous operation is also high. Figs 4.9 and 5.17 show the variction of current with mean torque for a few cases. As cen be seen, ameture current during asynchronous operation can rise to as ruch as $2.5 \mathrm{p} . \mathrm{u}$. depending upon a number of fectors such as watts output, field connections, external reactence, bus voltage etc. Keeping in view the remorks mede in Section 6.5.4, currents are a minimum in the case of operation with field open. Particularly at hish valves of power output, the external reactance has a morked effect in increasing the armature current.

A general conclusion that can be dram from Figs. 4.9 and 5.17 is that if a machine can be allowed to run at upto 1.5 p.u. current for e short period of tine, it is possiole to obtain a porver output of about 50% of its rated capacity. This estimate of 5090 cen be considered as a safe ficure from the results of tests on various lare machines as reported in the iiterature ${ }^{18}$. For sheller velues of overloca or longer duration of asynchronous operction, the output obtainable will be proportionately less. the value of curront at which the mochine can be allowed to operate under asynchronous conditions, however, depends upon a number of considerations, the effect of each of wich has to be taken into account for each individual machine. Some of the points requiring consideration ere mentioned hereunder.

6.6.2 Temperature rise

The tempereture rise in different parts of the machine will depend upon the length of tine for which machine will have to opercte asynchronously vefore successful resymchronisation can be effected, the average load at which machine has been operating before the onset of the disturoance, the cooling system etc. It has generally been observed ${ }^{12,} 17,21$ that output during asynchronous operation is limited more by the heating of the stator than by that of the rotor.

It has been suģested that modern synchronous machines can be allowed to operate under asynchronous conditions for as long as 30 minutes if the stator current does not exceed 110% of reted velue 46,86 . With the stator curcents as high as 130% of normal, mechines can be opercted for about 2 minutes 86,89 without excessive temperature rise in either the stator or the rotor. Thus, 江though the temperature rise is the major limiting factor in sllowing e machine to operate asynchronously, it is still feasible to operate modern nachines in this regime with a view to reaynchronisation by the scheme proposed in Chepters 7 to 9.

6.6.3 Ferminal voltege

Depencing upon the reactance ietween the machine teminels and the point of effectively constant voltage in the systern, the voltage drop at the mechine terminals will be directly proportional to the line current. Figs. 6.48 to 6.52 show the veriation of teminel voltage for verious

Fig. 6.49 Variation of terminal voltage with time
Solid rotor. Field shorted through discharge resistor. $T_{m}=0.500$ p.u., $x_{e}=0.142$ p.u

loads and values of external reactance. As can be seen, in certain cases, the terminal voltage can drop considerably, thereby affecting the operation of various machine auxiliaries if connected as a unit system. Continuous operation of the machine auxiliaries under depressed conditions is vital for the operation of the machine, particularly in the present case where it is proposed that the machine be automatically brought back to synchronism and normal load in the minimum possible time.

The maximum load that can be supplied during asynchronous operation is, therefore, limited by the minimum terminel voltage requiredfor the normal functioning of the auxiliaries. Figs. 6.48 to 6.52 show that the limit set by this requirement is less critical than that of temperature rise as discussed in Section 6.6.2 above.

6.6.4 Reactive voltamps

The system capability to supply the VAr demand of the machine and its effect on system stability in other branches also requires careful consideration. By incorporating autometic regulation and means to raise the excitation in the system ${ }^{66}$ under fault conditions, it is possible to overcome this dirficulty.

6.7 Effect of various fectors on asynchronous operation

6.7.1 External reactance

Figs. 6.44, 6.53 and 6.54 show the effect of interposing external reactance between the infinite bus

Fig. 6.53 Asynchronous mean torque-slip characteristics
Field shorted through discharge resistor $r_{f}($ total $)=0.00223$ p.u.,$\quad e_{\text {bus }}=1.0$ p.u.
Laminated rotor

Fig. 6.54 Asynchronous mean torque_slip characteristics
Field open,
$e_{b u s}=1.0 \mathrm{p} . \mathrm{u}$.
Laminated rotor
and the machine terminals, on the torque-slip cheracteristics of a synchronous machine under different conditions of operation. Even a small value of external reactance reduces the asynchronous torque considerebly, although its effect is comparatively more pronounced in the case of operation with field shorted then in the case of field open.

6.7.2 Bus-ber voltege

Fig. 6.55 shows the variation of slip with busbar voltage for afixed power output. Higher bus voltage is very helpful in keeping the ragnitude of slip within reasonable values. It will be shown in Chapter 8 , that to be able to restore synchronism easily and successfully, it is essentiel that the siip be within certain limits. By the use of automatic voltage regulators and boosting the excitation on the rest of the system, it is possible to raise the bus voltage to the highest values allowed within proper safety limits and thus keep the slips reasonaioly low. Raising the excitation on the machines located nearest to the machine runing asynchronously will help to a very lerge extent in reuncing the disturbance to the rest of the system.
6.7.3 Moment of inertia

The wonent of inertia of the rotating parts has no influence on the wen torque-slip characteristics as is shown by Fig. 6.7. It does, however, affect the magnitude of the slip prisations, a higher value tending

Fig. 6.55Variation of slip with Bus voltage $T_{m}=0.5 \mathrm{p} \mu$. , Laminated rotor
to smooth out the fuctuctions and a lower moment of inertia increasing them. flthough the effect of moment of inertia is small within the limits for which its value can be altered in a practical machine, nevertheless it does have some influence on the process of resynchronisation as is discussed later.

6.7.4 Turbine speed-governor

When a generator loses synchronism, its speed rises and the speed-governor comes into action to limit the speed increase by closing the inlet valve of the turbine. The machine vitimately settles down to steady asynchronous operation about the point of intersection of the generator torque-slip characteristics ond the turbine governor cherecteristics as shown in Fig. 3.3. Beceuse of the drooping nature of the turbine-fovernor characteristics, an alternator will, thereiore, in practice, always generate less than its reted power output while operating asynchronously.

The behaviour of a simple speed governor and its effect on the vitimete slip and porrer output is shown in Fig. 6.13 for afferent governor cheracteristics. Although itt is not easy to alter the droop of the governor charecteristics durins aunomal conditions which may occur suddenly in the syster, the characteristics can easily be displeced (as shown by dotted lines in Fig. 3.3(a)) by senaing an electrical signal to the speeder gear. Power outiput and racinine slip can thus be controlled as desired. This control operation to bring the mechine slip within the required limits may take between 5 and 10 seconds.

6.7.5 Autometic Voltage regulator (AVR)

The voltage regulator is only effective when the field is closed and excited during asynchronous operation. In the literature, this mode of operation is sometines also referred as 'out-of-step' operation. In the other two modes of operation i.e. field open and field shorted, the voltage regulator will be out of action and will come into play only when the excitation is reapplied for resynchronisation.

The AVR merely increases the magnitude of both the transient generating and motoring torques which occur alternately every half slip cycle during out-of-step operation, without materially contributing to the positive damping of the system. Because of the drop in machine terminal voltage, the AVR tries to boost the field excitation. Although this may tenc to reduce the slip and increase the power output of the machine slightly, it will tend to decrease the VAr demend. Also the fluctuations of verious quantities will become very violent, thereby affecting the entire system. Furthermore, the voltace regulator will try to follow the silp frequency pulsations in the terminal voltage and should be stable in operation at all the recsoneble slip frequencies likely to be encountered in prectice.

Due to the non-availability of sufficient units on the TR48 computer, it was not possible to simulate and study the effect of the AVR. Also, because of the violent fluctuations set up in the system during out-of-step operation, operation with excited field is not very desirable and was, therefore, not studied in greater detail.

6.8 Comparison of operation with different field connections

In the present work, only the following three modes of field connection have been studied:

> i) field excited,
> ii) field unexcited and chorted, iii) field open.

6.8.1 Field excited

a) Without meterially affecting the mean power output, the pulsations in verious quantities are at slip freçuency and are very violent as shown in Figs. 6.8, 6.10, 6.11, 6.18, 6.19(b), 6.24, and 6.30 to 6.32. Thus there is much greater likelihood of the entire system getting disturbed and various auxiliary equipment such as speedgovernor, voltage regulator, etc. becoming unsteble.
b) Because of the lower effective field resistance compered to the case of the field shorted through a discherge resistor, the per-unit slip for the same p.u. power output could be higher in this case. (Tig. 6.41 shows the effect of various values of field resistance.)
c) Current and VAr demend are also, comparatively greater than in the other modes of operation.

All the undesirable effects associated with asynchronous operation are thus exaçgerated in the case of out-of-step operation without gaining any advantage over other modes of operation.

6.8.2 Field unexcited and shorted

If the machine is operated asynchronously with the field unexcited and shorted either directly on itself or through a discharge resistor, then:
a) pulsations are at twice the slip frequency and less violent in magnitude then in the case of excited field.
b) without externel reactance or at very low values of externel reactance, output is generally higher than with field open, but the presence of external reactance has a comparatively greater effect. At the values of reactance likely to be met in practical systems, this adventege is only marginal.
c) current and VAr demend though smaller than in the cose of out-of-step operation, are comparatively higher than the field open mode or operation.

There are two factors which govern the size of the discharge resistor in this mode of operation:
i) magnitude of current circulating in the field winding when supplying various outputs. The discherge resistor should have a suitable value
to hold the current within safe limits under all conditions.
ii) as an ordinary induction machine, there is a critical value of̂ effective field resistance (total resistance of field winding and discharge resistor) beyond which the torque-slip characteristic starts to drop. The discharge resistor should be of a value such as to keep the effective field resistance below this critical value for the particular machine under study.

6.8.3 Field open

Asynchronous operation with the field open tends to produce more favourable conditions of operation from almost every aspect. The magnitude of pulsations of practically all quantities is generally smaller than in all other modes of operation, thus giving much smoother operation. Although under certain conditions of operation, the power output has to be sacrificed by a few percent, the advantages gained under most conditions far out weigh this. In most conditions and particularly with external reactance in the circuit, VAr demand, current and slip are all smaller than in the corresponding other cases.

With the field open, a voltage proportional to slip is induced in the field winding. This voltage cannot be allowed to exceed the insulation level of the field winding and thus sets a limit to the maximum slip at which the machine may be allowed to operate asynchronously.

CHAPPER 7

RESYNCHRONISATION - THEORETICAL ANALYSIS

7.1 General

One of the taboos still lurking in the minds of most of the modern power system planners and operators is to stick to the outdated definition of system stebility as that limit which keeps the synchronous machine in step with the system to which it is connected. Even though the possibility of restoring synchronism without taking a machine off the bus-bars, after it has lost synchronism following system disturbances, was considered as far back as 1931^{90}, it is only recently that this problem has started to attract more serious consideration.

Most of the investigators have studied resynchronisation on the basis of the instantaneous speed, during a slip cycle, touching or going below synchronous speed by virtue of pulsations in speed. In the present studies carried out on an analogue computer, it has been demonstrated decisively that for successful resynchronisation to be esteblished, it is not at all essentisl that the machine speed should reach synchronous speed even momentarily during a slip cycle. In fact, by applying sufficient excitation at the proper instent, it is possible to pull a synchronous machine into synchronism from fairly large values of slip.

7.2 Theoretical explanation of resynchronisation process

7.2.1 Physical description of the criterion for

 resynchronisationBoth steady state and transient stability of synchronous machines are generally explained in physical terms on the basis of the ecual area criterion ${ }^{33,91}$. By extending this idea sufficiently further, the phenomena of falling out of synchronism and ste:ple asynchronous operation can be expleined quite simply. The mean point of steady asynchronous operation is determined by the trend of the mean torque-slip characteristics and the combined turbine speed-governor torque-speed characteristics as shown in Fig. 3.3 for the case of a generator, or the load torque-speed characteristics in the case of a motor. The point of intersection A [Fig. 3.3(a)] represents only the mean point of operation, as in practice both the speed and torque are pulsating about this point at the mean slip frequency.

By virtue of the increcse in speed, a certain amount of kinetic energy $\triangle A=\int \Delta P d t i s$ stored by the rotor. This stored energy varies with the variation of speed over a slip cycle end will at any instant 't' be given by the sum of the energies contributed between the interval 'to' - the initial condition - and 't' by the following individual components:
i) net accelerating torque ΔT (Fig. 3.3(a)) produced due to the pulsations in slip (curve I, Fig. 7.1)
ii) synchronous torque present only with field excitation (curve II, Fig. 7.1)

Fig.7. 1 Torque and Energy characteristics during asynchronous operation with field open or shorted Machine will resynchronise any instant that

Ordinate of curve II becomes equal to the sum
(Figure not to scale)
iii) the quantity 'M' [Bqn. (7.11)] depenaent on the initial and the instantaneous values of slip (curve III, Fig. 7.1).

If at any instant, the increase in kinetic energy ($\triangle \mathrm{A}$) becomes equal to zero, the rotor speed becomes equal to the synchronous speed and the machine attains a condition such that it may pull into synchronism. Most of the previous investigators $5,14,15,44,66$ have studied the problem of resynchronisation on the basis of the instantaneous speed touching synchronous speed as a necessary condition and leaving it to resynchronise more by chance than by design.

A study of the components contributing to the stored kinetic energy of the rotor reveals that components (i) and (iii) depend on the design parameters of the machine, and thus cannot be controlled during the process of resynchronisation. Component (ii) is, however, very much under control and within the limits of the exciter and voltage regulator can be fully menipulated to influence resynchronisation. By applying sufficiently large excitation at a suitable instant in a slip cycle, it is possible to make the energy contributed by component (ii) equal and opposite to the combined energy contributed by components (i) and (iii) and thus resynchronise the machine before the load-angle o reaches 180°.

In the case of a synchronous motor, the rotor speed is less than synchronous speed. Thus kinetic energy $(\triangle A)$ will be of opposite sign to that in the case of a generator. Otherwise the process of resynchronisation will be exactly the same.

7.2.2 Mathematical formulation of the criterion for resynchronisation

The relative motion of the synchronous machine is described by Eqn. (3.25) as

$$
\begin{aligned}
& \Sigma \mathbb{T}=\text { Accelerating torque }=\text { Input torque }- \text { output torque } \\
& \text { where, from Ign. }(3.26) \\
& \text { Accelerating torque }=J \cdot d^{2} \delta / \mathrm{dt}^{2} \\
& \text { Putting } s=d \delta / d t, \\
& \text { accelerating torque }=J \cdot \frac{d s}{d \delta} \cdot s \quad \text { •. } s \text { (7.I) }
\end{aligned}
$$

According to the definition of per-unit quantities adopted earlier ${ }^{45}$, the excess power P_{t} of the turbine is given by

$$
\begin{equation*}
P_{t}=T_{t}(1-s) \tag{7.2}
\end{equation*}
$$

where, the incult torque T_{t} is a complex function of time and speed, after allowing for the action of the speed-governor.

Output torque is the total sum of synchronous torque T_{s} and asynchronous tor we Teas. The synchronous torque T_{s} and the synchronous power P_{s} are functions of the load-angle δ, while the asynchronous power $P_{\text {as }}$ is a =. complex function of time, slip and the load-angle. In the per-unit system, power and torque are related by

$$
P_{S}=T_{S}(I-s)
$$

$$
\text { and } P_{a s}=T_{a s}
$$

Using per-unit quantities and substituting
Ens. (7.1) to (7.4) into En. (3.25) gives

$$
J \cdot s \cdot \frac{d s}{d \delta}=\frac{P_{t}-P_{S}}{(1-s)}-P_{a s}
$$

Rewriting the above equation,

$$
J(I-s) \cdot s \cdot d s=\left[P_{t}-P_{s}-P_{a s}(I-s)\right] d \delta \cdot \cdot \cdot(7.6)
$$

and integrating, gives

$$
J\left(\frac{s^{2}}{2}-\frac{s^{3}}{3}\right)+C=-\int_{\delta}^{\delta} P_{s} \cdot d \delta+\int_{\delta}^{\delta}\left[P_{t}-P_{a s}(1-s)\right] d \delta \cdot(7.7)
$$

where C, additional stored kinetic energy of the rotor at $\delta=\delta_{0}$,

$$
=-J\left(\frac{s_{0}^{2}}{2}-\frac{s_{0}^{3}}{3}\right)
$$

assuming the initial value of slip to be s_{0} at $\delta=\delta_{0}$.
The actual change of kinetic energy ΔA of the rotor from the state of synchronous operation to steady asynchronous operation cen be written as

$$
\begin{align*}
\Delta A & =\frac{1}{2} J J_{0}\left[\Omega^{2}-\Omega_{s}^{2}\right]=J\left(\frac{\Delta \omega^{2}}{2}+\Delta \omega\right) \\
& =J\left(\frac{s^{2}}{2}-s\right)
\end{align*}
$$

for the particular case of a generator, where the slip s is negative according to the sign convention adopted ${ }^{45}$.

Substituting the value of C from Eqn. (7.3) in Eqn. (7.7) and rearrencing,

$$
\begin{gathered}
J\left(\frac{s^{2}}{2}-s\right)=-\int_{\delta}^{\delta} P_{s} \cdot d \delta+\int_{\delta}^{\delta}\left[P_{t}-P_{a s}(I-s)\right] d \delta+\mathbb{M} \cdot(7.10) \\
\text { Where } \mathbb{I}=\left(\frac{s_{0}^{2}}{2}-\frac{s_{0}^{3}}{3}+\frac{s^{3}}{3}-s\right) \cdot J \quad \cdot(7.11) \\
\text { Putting }\left[P_{t}-P_{a s}(I-s)\right]=\Delta P_{a s} \text {, Eqn. (7.10) can }
\end{gathered}
$$

$$
\begin{equation*}
\Delta A=\int_{\delta}^{\delta} \Delta P_{a s} \cdot d \delta-\int_{\delta_{0}}^{\delta} P_{s} \cdot d \delta+\mathbb{N} \tag{7.12}
\end{equation*}
$$

The three right-hand components of Eqn. (7.12) represent in mathematical terms the three components mentioned in Section 7.c.1. During steady asynchronous operation with or without the field, over one slip cycle i.e. $\delta=\left(\delta_{0}+2 \pi\right)$, the three right-hand components of Eqn. (7.12) would be

$$
\begin{aligned}
& \text { (a) } \int_{\delta}^{\delta} \Delta P_{a s} \cdot d \delta=0 \\
& \text { (b) } \int_{\delta_{0}}^{\delta} P_{s} \cdot d \delta=0
\end{aligned}
$$

(c) $M=\int_{\delta_{0}}^{\delta}\left(\frac{s_{0}^{2}}{2}-\frac{s_{0}^{3}}{3}+\frac{s^{3}}{3}-s\right) \cdot J \cdot d \delta$

$$
=J\left(\frac{s_{m}^{2}}{2}-s_{m}\right)
$$

where s_{m} is the mean slip.
For synchronous operation, the additional kinetic energy of the rotor would be equal to zero. Therefore, from Eqn. (7.12),

$$
\begin{gather*}
\Delta A=\int_{\delta}^{\delta} \Delta P_{a s} \cdot d \delta-\int_{\delta}^{\delta} P_{S} \cdot d \delta+\mathbb{N}=0 \\
\quad \text { or } \int_{\delta}^{\delta} P_{S} \cdot d \delta=\int_{\delta}^{\delta} \Delta P_{a s} \cdot d \delta+\mathbb{M}
\end{gather*}
$$

The mathematical formulation of the criterion of resynchronisation as presented above, is, in general, very similar to the treatment of Venikov ${ }^{66}$, but the philosophy of approach to the whole problem as adopted in these studies is entirely different.

The synchronous power P_{S} is a function of the load-engle and the magnitude of field excitation E_{0}, and for a salient-pole machine is given by the well-known equation ${ }^{4.5}$

$$
P_{S}=\frac{E \cdot E_{0}}{x_{\alpha}} \cdot \sin \delta+\frac{E^{2}}{2}\left(\frac{I}{x_{q}}-\frac{I}{x_{\alpha}}\right) \sin 2 \delta
$$

In the case of the cylindrical rotor machine, the second term, proportional to Sin 28 in Tqn. (7.14), is generally neglected, even though it is present in most cases.

The variation of $P_{S}\left[E C_{n} .(7.14)\right]$ and that of the expression

$$
\int_{\delta_{0}}^{\delta} P_{S} \cdot d \delta
$$

with δ as derived from Ecn. (7.14) is shown by the curves IV and II respectively in Pig. 7.1 and that of the two right-hend expressions of Eqn. (7.13) by curves I and III in the same figure. A study of Eqn. (7.13) in essociation with Egn. (7.14) shows that by applying a sufficiently large megnitude of field excitation, it is possible to satisfy Eqn. (7.13), and when satisfied, the machine will synchronise. Fig. 7.1 is drewn with the initial condition for the start of the process of resynchronisation being teken as $\delta=0^{\circ}$. Although, the process of resynchronisation can be sterted at any point in co slij cycle, values of δ_{0} of any practicel importance will be in the neighbourhood of 0° i.e. the start of a new slip cycle.

At a first glance, Eqn. (7.13) shows in a very simple mathematical form the condition $\hat{\text { for }}$ resynchronisation. It points to an easy straichtforwerd method of studying the required magnitude and the most appropriate instent of application or boosting the field excitetion. However, it soon proves to be illusory because of the following non-linear factors involved in practice.
i) Ron. (7.14) as well as curves, II end IV in Fig. 7.1 are all based on the assumption that the field is applied as a step function with zero time-constant, whereas the field has a finite time-constant and will take some time to build up to its full value. Curves II and IV (Fig. 7.I) will thus both be considerably modiried and will be very difficult to calculate in a simple manner from Eon. (7.14).
ii) During the process of resynchronisation, the speed is changing very fast and thus the two right-hand components of Eqn. (7.13), which vary with speed in a complex manner, will be extremely difficult to calculate unless some drastic simplifying assumptions are made.

The mathematical analysis given above is useful in the sense that the process of resynchronisation is made clearer in physical terms, but the solutions obtained by this method are of a doubtful value if applied to a practical problem because of the various'non-linear factors involved. However, solution of these equations on an analogue computer as described in section 7.3 is very simple. By this method, the effect of each factor is very easily teken into account without any simplifying assumptions.

7.3 Study of resynchronisation on an analogue computer

7.3.1 Nature of the problem

Resynchronisation can be studied by solving
Eqn. (4.20) describing the motion of a synchronous machine. This equation is a non-linear dirferentiol equation of the second order for which no straight forward analytical solution exists. To investigate the conditions for resynchronisation, it is necessery to obtein a renge of solutions for this ecuation with different system conditions. It has already been pointed out earlier that because of the highly complex and non-linear nature of the problem, step-by-step or numericel methods are not very suiteble for its solution. Eiforts to solve this equation by the methods of Non-Linear Rechanics 92,93 have been made by a few investigators $8,14,26$. These solutions relate the slip (which is the first derivative of the angle) with the angle and are called solutions in the phese plane. Solvtions this obtained are called trajectories of motion.

A realistic solution of Egn. (4.20) in the present problem can only be obtained by a simulteneous solution of the set of Eqns. (4.2), (4.3). (4.7), (4.8), (4.15), (4.19) and (4.20) or Eins. (4.2), (4.3), (4.20), (5.16), (5.17), (5.22), (5.24) and (5.25) for the two types of rotor and obtaining the solution in the form of phase-plane trajectories relating the slip (po) with the load-angle (δ). To obtain a renge of solutions with different system conditions and minimum simplifying assumptions, it was found convenient to use an enalogue computer.

7.3.2 rechanisation and procedure for the solution of the problem

Mechanisation of the equations for the study of resynchronisation is exactly as described in sections 4.5 .3 and 5.4.3. The main advantage of this method is that the study of asynchronous operation and resynchronisation under eny condition of operation con be mede with a single setting for both.

After taking the necessary records for the asynchronous operation under a certain condition, the required megnitude of excitation voltage given by the step functions $I_{d} \cdot B_{d I} \cdot e_{f} \cdot I$ and $I_{d} \cdot B_{d 2} \cdot e_{f} \cdot I$ (lamineted rotor) or

$$
\frac{I}{e_{f}} \cdot e_{f} \cdot I \text { (solid rotor) }
$$

was introduced into the solution at the required point in the slip cycle and the stibsecuent resynchronisation process studied. In the case of asynchronous operation with different field connections, computation was stopped at the desired point in the slip cycle by making use of the 'hold' facility availeble in the computer. Chenges, if any, recuired to be made in
i) the patch panel in respect of aifferent field connections as mentioned in Section 4.5.3, or
ii) attenuator settings necessitated by the removal of the discharge resistor
were made manually and excitation voltage introduced simultaneously. Computation was then allowed to proceed and the subsequent pulling into step studied and recorded.

7.3.3 Assumptions involved in the present studies

The above procedure for resynchronisation studies assumes that the machine is permitted to attein steady asynchronous operation before resynchronisation is attempted. To study how fer this assumption is valid, a few runs were mode by pulling the wechine out of synchronism either by renoving the excitation or by suddenly increasing the load under weak field conditions and noting the subsequent variation in slip. The results of these studies, shown in Figs. 6.12, 7.2 and 7.3, suggest quite conclusively that the machine can be said to have reached steady asynchronous operation after only one complete slip cycle from the time of loosing synchronism and hence the above assumption is cuite justified. This is also confirmed by the records obtained from the asynchronous operation tests conducted on large machines. From this it can also be concluded that, provided certain other conditions mentioned subsequently ere satisried, it is possible to force the machine back into step in two slip cycles instead of recuiring it to run asynchronously for a prolonged period of time.

One besic condition thet is implicit in the entire study of resynchronisation is that the fault which initiated the systen disturbence in the first instance has been cleared by the time resynchronisation is attempted and that the system will be capable of normal operation under the new conditions.

Fig. 73 Loss of synchronism and establishment of steady
asynchronous
openation
(Paper speed $-25 \mathrm{~m} . \mathrm{m} . / \mathrm{sce}$.)

CHAPTER 8

RESYMCERONISATION - PRACTICAL INVESTIGATIONS

8.1 Criterion for resynchronisation

To study the effect of different factors, such as;
i) machine parameters,
ii) modes of operation with respect to field connections,
iii) load on the machine,
iv) auxiliary equipment characteristics, e.g. speed Governor,
v) system conditions, e.g. external reactance, busbar voltage, etc.,
a range of solutions for resynchronisation was obtained in the form of phase-plene trajectories. It is not possible to include in this thesis all the solutions obtained on the andlogue computer. A representative selection of the more important solutions is given in Figs. 6.1 to $6.11,6.13$ and 6.20 to 6.24 and the effect of various factors are discussed below.

With the computer operating in a steady asynchronous state as descrioed in Section 4.5.3, different values of excitation voltage were applied to find the minimum excitation required for resynchronisation for a certain run. The criterion for minimun excitation was fixed as that value which pulls the machine into synchronism within one slip cycle of application. After obtaining
the minimum masnituce of field required, the instant of field application was delayed so as to obtajn the optimum value of the load-angle at which the field must be applied or boosted to achieve synchronism under the above criterion.

The figures mentioned above show the solutions of phase plane trajectories for resynchronisation obtained on the analogue computer under the conditions described. For any higher excitation or any load-angle smeller than that show in these figures, the machine will definitely resynchronise within one slip cycle of field application under the conditions of operation mentioned.

The reason for fixing the criterion for resynchronisation within one slip cycle is that with the discharge resistor removed from the field circuit after the application of excitation, the machine will, in most cases, develop less asynchronous torque. This will result in an increase in average slip. Thererore, if resynchronisation is not achieved within one slip cycle, there is a great likelihood of the machine pessing through several slip cycles. As will be show subsecuently, this is very undesirable for the system.

8.2 Slip magnitude

A study of Eqn. (7.13) shows that the most important single quantity influencing resynchronisation from steady asynchronous operating state is the quantity \mathbb{M}^{\prime}. This quantity as given by Eqn. (7.2l) is a function of slip, and thus slip would play the most significant part in resynchronisation.

Assuming a fixed mechanical input i.e. neglecting the effect of trubine torcue-speed and govermor cheracteristics, the electrical output must be increased to supply to the syster some additionel energy equal to the additional stored kinetic energy of the rotor. This trensfer of rotor energy must take place in the time between the instant of application or boosting of the field and the instant the machine atteins synchronous speed. Also, for the machine to remein in step, synchronous speed rust be achieved before the load-angle reaches 180°. At low slips, the additional stored energy is comparatively small and the time available for resynchronisation (i.e. time for half slip cycle) is comparatively large. Thus at small values of slip, it would be quite easy to resynchronise the machine with the application of a small excitation with a snall swing of power output.

However, at high values of slips a lerge amount of energy has to be prmped out of the machine electrically in a much shorter time. Thus it needs a proportionally much larger excitation and the swing in power while pulling into step will be large. The relation between the mean slip and the ragnitude of field excitation recuired is not linear but perebolic as would be evident from the expression for 'IF' [Eqn. (7.11)]. Figs. 8.1 and 8.2 show this effect by an average plot of a large number of studies mede on both the analogue computer and the micro-machines. Because of the parabolic nature of the curves, Figs. 8.1 and $\frac{8.2}{5}$ point to a critical velue of slip beyond which it would be incossible to resynchronise. This wes also shown by studies on both the computer and the micro-machines, and has also been suggested by Heno et. al. ${ }^{29}$ A few cases where the slip was higher then the optimum and the machine

Fig. 8.1 Effect of slip on the magnitude of field excitation required to resynchronise
Computer results:- Resynchronisotion achieved o
No resynchronisotion achieved A
Miero-machine results:- Resynchronisation achieved x No resynchronisation achieved A

Laminated rotor

Fig. 8.2 Effect of slip on the magnitude of field excitation required to resynchronise Micromachine with solid rotor

Micro_machine results:- Resynchronisation achieved \odot No resynchronisation achieved Δ
Computer results :-Resynchronisation achieved x No resynchronisation achieved \triangle
failed to synchronise even for very hish magnitudes of excitation are shown in Figs. 7.4 and 7.5.

Average curves for a particular group of studies have been drawn in Figs. 8.1 and 8.2, the scatter of the points showing chiefly the effect of the magnitude of slip pulsations. From this it can be safely concluded that the mean slip magnitude plays the major part in resynchronisation, other factors producing only marginal effects.

8.3 Magnitude of slip pulsations

Fig. 8.3 shows the effect which the magnitude of slip pulsations has over the value of excitation required to pull a machine into step. Large pulsotions help towaras resynchronisation and their effect is even more pronounced at higher slips then at lower slips. Thus all ractors or modes of operation which in any way influence the magnitude of slip pulsations, as discussed in Chapter 6, would in a like maner also affect resynchronisation of the machine.

8.4 Angle of fiela application

After slip masnitude, the second most important factor influencing resynchronisation is the angle in the slip cycle at which the field is reapplied or boosted. According to the theory for resynchronisation as postulated above, the field should be switched in at the instant the load-angle passes through zero degrees or at any time after.

Fig.8.3 Effect of slip' pulsations on the magnitude of field excition required to - resynchronise Laminated rotor

The amount of delay in switching is, however, subject to the condition that the equal area criterion described by Eqn. (7.13) and Fig. 7.l is satisfied before the load-angle reaches 180°. Thus there is a limiting value of loadangle before which the excitation must be applied. This is clearly shown in Figs. 6.1 to 6.6, 6.8 to 6.11, 6.13, and 6.20 to 6.24 relating to the studies on the analogrie computer and Figs. 8.4 to 8.13 relating to tests on the micro-machines. That this is so, is elso shown by the studies carried out on a tidal power station in France ${ }^{94}$.

Because of the non-linear nature of the whole problem as formulated by Eqn. (7.13), it is not possible to calculate the limiting value of the angle in a straight forward manner. The exact value would depend upon the system conditions at the time of resynchronisation and a number of other factors. The effect of the two most important factors is briefly discussed below.
i) Time-constant of the field circuit. Because the field circuit has a finite time-constant, the field current cannot reach its full magnitude immediately at the instant of switching. Thus the synchronous torque component as given by Eqn. (7.14) would be modified. For a machine with a large time-constant, it takes a long time for the excitation to ovild up and though the machine sterts to slow down almost imediately, the synchronous power supplied is not sufficient to bring it to synchronous speed by the time loadangle reaches 180°. fifter that the machine again starts to accelerate under the negative synchronous

Fig. 8.11 Resynchronisation on micre machine Solid rotor Field shoried through ischarge resistor $m=0.500 \mathrm{pu} . \mathrm{X}_{\mathrm{c}}=0.1 \% 2 \mathrm{pu}$ fapplied $=0.573 \mathrm{p} \cdot \mathrm{u}$.

Fig.8.12 Resynchronisation on micro_machine Solid rotor Fizid rotor shorted through discharge resistor
$T_{m}=0.442$ p.u.,$x_{\mathrm{e}}=0.284 \mathrm{p.u}$. $c_{\text {f }}$ applied $=0.58 \mathrm{pu}$

Fig.8.13 Resynchronisotion on micro_machine Solid rotor
Field excited
$T_{m}=0.471$ p.u,,X_{e} e. 284 p.u.
c_{f} initial $=0.6$ p.u., ef boost $^{2} .315$
torque, until the slip cycle is completed and the machine can resynchronise in the first half of the ensuing slip cycle [Figs. 6.1, 6.2, 6.10, 6.20 and 6.21].

A larger time-constant field would thus require the excitation to be switched-in much earlier then the field with a smaller time-constant, as is shown by a comparison of points marked I, $12 \& 13$ (unity \mathbb{T}_{m}) or of points $7,12(a) \&$ $16\left(0.75 \mathrm{~T}_{\mathrm{m}}\right.$) in Fig. 8.14 for different values of time-constants.

This can also be put in an alternative form, that for the same magnitude of field excitation, the machine with a small field time-constant can be resynchronised from a larger slip than the machine with a field circuit having a large time-constant.
ii) Field circuit connection during asynchronous operation. The effect of this factor is shown in Figs. 8.1, 8.2, 8.14 and 8.15, and is discussed in greater detail in Section 8.7 below.

If the rield is switched-in just before the limiting value of load-angle, the machine will pull into step with a minimum swing in current, power and VArs. The swing will be bigger if the field is switched-in earlier, although there is a fairly wide ronge over which the swing will increase only slightly as shown in Figs. 6.10 and 6.11.

Figs. 6.1, 6.3, 6.5 and 6.14 also show the effect of applying the field excitation beyond the limiting angle. In these cases, the machine does not synchronise within the recuired period but goes through another slip cycle before pulling into step. Thus there will be one more system fluctuation. In some cases it may even be of bigger amplitude. To avoid this, it is desirable that the field be switched-in before the limiting angle so as to ensure resynchronisation in the shortest possible time.

8.5 Magnitude of excitation

Theoretically, the minimum excitation required to achieve resynchronisation may be very small if the slip is small. However, the excitation applied must be more than the minimum required to keep the machine in synchronisn subsequently. In most cases this minimum value is large enough to effect resynchronisation if applied at the correct instant.

It has been previously mentioned that it is possible to pull the machine into synchronisn from any slip likely to be encountered in practice, provided that a sufficiently large magnitude of excitation is applied. However, there is a maximum value of the excitation that can be obtained from any excitation system. The maximum value of slip admissible will, therefore, be limited by the maximum excitation aveilable from the excitation system.
8.6 Swing in output

During the time the resynchronisation process
lasts, in addition to its nomel output (equal to the mechanical input minus losses) the machine must elso discharge, in the form of electrical output to the system, the additional stored kinetic energy of its rotor. In general, therefore, the output of the machine would be expected to rise momentarily before settling down to synchronous running. In the case of a motor, a similar swing will be caused by the power required by the machine to meet the increase in kinetic energy of the rotor when it attains synchronous speed. The swing in power and Vars is shown in Fi gs. 6.1 to $6.6,6.8$ to 6.11, 6.13 and 6.20 to 6.24 , and in current in Figs. 6.14 to 6.19 and 6.25 to 6.32. The magnitude of swing in the various quantities is dependent upon a number of factors and their mutual interaction, as briefly discussed below.

8.6.1 Ragnitude of slip

The energy to be dissipated depends directly on the magnitude of slip [Eqn. (7.9)], and thus, the smaller the slip, the smaller the swing in power and current.

8.6.2 Nature of asynchronous torque-slip charecteristics

As the machine approaches synchronous speed, the asynchronous torque decreases. Depending upon the gradient of the torque-slip characteristics, some of the excess energy would be absorbed by this reduction in the generated electrical power, thereby limiting the jump in output.

8.6.3 Angle of application of excitation

The angle at which the field is applied has a profound eifect on the swing in various quentities. After the application of the field, if the machine pulls into step without passing through another slip cycle, there will be a single jump, generally of a comparatively small masnitude, in the power output. If, however, the machine passes through enother slip cycle, there is a violent fluctuetion in all the cuantities because the synchronous torque component becomes negative in the second half of the slip cycle. These two conditions are clearly marked out by a random plot made in Fig. 8.16 for a large number of studies with successful resynchronisation.

8.6.4 External reactance

The value of the external reactance has a relatively smail effect on the swing in power, but it significantly reduces the jump in VArs. Even with reasonably small values of external reactence (of the order of 0.15 p.u.), the swing in VArs is practically eliminated.
8.6.5 Magnitude of field excitation

In general, higher the value of field excitation required to pull the machine into step, larger the swing in watts and VArs.

Fig. 8.16 . Swing in watts, vars and current at the instant of resynchronisation related to the angle of field application

8.7 Node of field connection

The effect on asynchronous operation if the field is connected in one of the three stetes (i) shorted, (ii) excited or (iii) open, has been discussed in Section 6.8. Effect of these modes of operation on resynchronisation is shown in Fiçs. 8.1, 8.2, 8.14 and 8.15, and is discussed below.

8.7.1 Field shorted

Asynchronous operation with a shorted field would generally be obtained in practice with the field shorted through a discharge resistor. While applying excitation to resynchronise the machine, the discharge resistor is switched out, thereby increasing the effective field time-constant considerably and simultaneously trapping the flux linking the field circuit at that instant. By virtue of the property or 'constant flux linkages' in a closed circuit, the applied excitation does not become fully effective in producing sufficient synchronous torque until the trapped negative linkages have decayed and finally reversed by the joint action of armeture reaction and applied excitation. It therefore requires a comparatively large excitation end long time to resynchronise the machine in this mode.

Also, beceuse of the longer time required for the decay of trapped flux linkages in a machine with a large field time-constant, the magnitude of excitation required to resynchronise will be larger than for a machine with a field circuit of smaller time-constent. This was
clearly proved to be so by the verious studies performed on the analogue computer and is shown in Fig. 8.14.

8.7.2 Field excited

As in the previous case, the flux linkages in the field circuit at the instant of boosting the excitation heve a considerable influence on the magnitude of field recuired to resynchronise the machine. Because the field excitation is already present, the time required for the field to be fiully effective is shorter than in the previous case, but the total magnitude of excitation, i.e. the initial excitation present plus the boost required, is no less than in the case of field shorted throush a discharge resistor. This is shown by Tigs. 8.1, 8.2, 8.14 and 8.15.

8.7.3 Field open

On exciting the field from the field open condition, the flux starts building up immediately. Because of the absence of any trapped linkages in the field circuit, the rise in the synchronous torcue is controlled by the field time-constant only. The applied excitation is thus more effective in this mode of operation than either of the other two cases discussed eioove. It requires the least time and the minimum magnitude of excitation to resynchronise a machine operating asynchronously with the field open as shown clearly in Figs. 8.I to 8.3, 0.14 and 8.15. Becaxse of this, it would also enteil disturbance to the system for the shortest time.

8.8 Moment oi inertia

The total moment of inertia of the machine offects the magnitude of the slip pulsations. A small value increases the pulsations ebout the meen value, while a lerge anount of inertia has the opposite effect. As discussed in Section 8.3 and shown in Figs. 6.7 and 8.3, the larger pulsations need smaller field excitation. Thus a lower moment of inertia generelly helps in resynchronisation.

8.9 Turbine speed-governor

The twine speed-governor affects the mean slip and power output of the machine by controlling the input to the turbine. As it has no direct effect on the electrical side of the system, it can simply be used as a useful tool to control the speed of the machine during asynchronous running and to keep it below the optimum slip value so as to render resunchronisation possible. The governor can thus play an important part in the ultinate scheme for autometic resynchronisation. For this purpose, some device will need to be incorporated in the turbine control system to initiate a change in the governing set point during operation in the asynchronous regime.

8.10 Voltage regulator

futometic voltage regulators affect resynchronisation in two ways; firstly, by the direct effect of the regulator on the machine which has fellen out-of-step,
and secondly, by the effect of regulators on other mechines in the system.
8.10.1 Pffect of the regulator on the out-of-step machine

It hes been shown in Section 8.2 thet for a particular mean slip value, a minimum value of excitation is recuired to successfully pull the mechine into step. Conversely, for a siven per-unit ceiling voltage of a particuler voltage regulator, there is a maxinum value of mean slip beyond which it would not be possible to resynchronise the machine. The ceiling voltage of modern autometic voltage regulators is generally between 5 and 7 times 95 the value recuired for no-load excitation to produce rated voltage. Keeping in view the limitations on output during asynchronous operation as discussed in Section 6.6, Figs. 8.1 and 8.2 show thet this ceiling is sufficiently high and coes not impose any unreasonable limitetions.
8.10.2 Pffect of regulators on the system

During asynchronous operation, a machine demands heavy lagging reactive voltamps Irom the system. Under these conditions, if the excitation on the rest of the machines on the system is boosted, it will raise the voltage on the system, which is analogous to the studies made on the computer with high bus-bar voltages. Higher voltage keeps the siip of the out-of-step machine low and thus helps in resynchronisation as shown by a few cases in Fig. 8.14.

8.11 Simulation of full-scale tests

Rarely has a series of tests been conducted with the primery object of studying resynchronisation of synchronous machines under controlled conaitions. The literature is, therefore, devoid of any information on this topic. In one test in the Staythorpe series (mentioned in Section 5.5.3) resynchronisation was attempted by applying the field at a rendom angle. At the instant of switching-in the field. the load-angle was 135° and the machine did not pull-intostep immediately. Instec d it started to operate out-ofstep at a higher mean slip. It passed through several slip cycles and synchronism was restored by reducing the load setting with the help of the turbine speeder gear mechanism.

This test has been simulated on the analogue computer for further study and the results obtained are given in Fig. 8.17. In Fig, 8.17(a) is shown the attempted resynchronisation as in the test and, as expected, the machine did not bynchronise immediately. Fig. 8.17(b) shows the optimum result of a resynchronisation study. With field excitation of l.O p.u. [same value as for the - case of Fig. 8.17(a)] applied at an angle of 68° instead of 135°, the machine pulled in very smoothly.

Resynchronisation studies have also been performed in al few of the asynchronous operation tests mentioned in Sections 5.5.1 and 5.5.2. The results obteined are summarised in Table 8.1 below. All these studies show that it is possible to resynchronise the machine by applying a reasonable magnitude of field excitation at the correct instant in the slip cycle.

Fig. 877 (a) Attempted resynchnonisction of a 120 MW . Turbo-alternator I. Steady asynchronous operation with field shoried through dischange resiator II. Behaviour after opplication of field at an angle of 134°.

	Field	Table 8.1		
		```Outqut during asynchronous operetion, p.u.```	$\begin{gathered} \text { Magnitude } \\ \text { of } \\ \text { excitation } \\ \text { applied, } \\ \text { p.u. } \end{gathered}$	```Angle of field applicetion, degrees```
Marchwood	Open	1.036	1.190	82.0
60 MW	Open	0.790	0.923	87.0
machine	Shorted	0.953	1.117	85.0
Goldington				
30 MW	Open	0.560	0.884	85.5
machine	Shorted	0.560	1. 000	85.5

## CHAPTER 9

## AUTOLATIC RESYMCHRONISING RELAY

2.1 GeneraI

Althouch the suggestion $\mathfrak{F o n}$ providing a relay to detect out of synchronism conditions was mooted as far back as $1930^{96}$, no attention has been devoted to its development, except in the USSR where the only known scheme for automatically resynchronising generators has been developed ${ }^{97}$. In this scheme, electromagnetic relays have been used to monitor various conditions and to initiate necessary corrective action. The USSR relay is designed to apply excitition after the slip has been reduced to a predetermined magnitude, but has very little control on the angle $\delta$ at which field is actually switched-in.

It has been shown, by the studies described in the previous chapter, thet the angle of field application plays a very important pert in achieving successfrul resynchronisation. Based on the results of these studies, an entirely new scheme has been proposed to bring the machine automatically back into synchronism, and an electronic relay employing static relaring principles developed. This relay uses transistors es individucl switches and component parts of trieger circuits to monitor various variables, so that the necessary sienals to resynchronise the machine can be provided after the recuired criteria have been sctisfied. The relay described is capable of adjustments within wide limits to suit the requirements of individual mechines with respect to their location in the systera.

### 9.2 Criteria for resynchronisation

Chapter 8 shows that for a perticular machine in operetion, there are three factors which heve to be controlled to esteblish resynchronisation. The reuuirements in respect of these three factors are speciried below.
9.2.1 Magnitude of mean slip

There is a meximum value of mean slip beyond which it is practically impossible to resynchronise a machine. In practice, this meximum value is determined by the ceiling voltage of the excitation system. It is desireble that at the instant of initiating necessary action to resynchronise, the mean slip should be within prescribed limits. A check is, therefore, required on the slip magnitude.

### 9.2.2 Angle of field application

The second most important requirement is that the excitction should be applied at e definite instent in the slip cycle. the exact angle cepends upon the system conditions at the instent of the disturbance, but the zone in which the field cair be applied is usually fairly wide. So long as the field j.s switched in berore the limiting angle is reached, the machine will pull in smoothly.

Without the aid of some 'on line' computing equipment, a simple resynchronising scheme will need to
be pre-cajusted for a definite ancle. Based on the limiting slip specified above, it is possible to fix an average value of the angle $\delta$ at which the field must be applied or boosted. The actual engle at vhich action must be initiated will be advanced depending on the time-constant of the field circuit and the operating time of the field circuit-breaker.

### 3.2.3 Magnitude of excitetion

Depending upon the systern conditions and the slip, there is a certain minimum megnitude of field excitation which must be applied to wull the machine into step. Depending upon the maximum slip mentioned in Section 9.2.1, the meximum velue of excitetion that will be require $\mathfrak{C}$ for positive resynchronisation can be determined. By a comparatively simple control loop it is possible to arrange that in the event of a mochine losing synchronism, the output of the excitation system would be raised to the predetermined level, thus ensuring that the recuired value of excitation is switched in at the proper instant.

### 9.2.4 tccomplishment of the criteria

Depending upon the systern conditions, every individual case of resynchronisation will require a different excitation me.gnitude and engle of application. Any practical scheme using $\varepsilon$ relay composed of preadjusted single valued components would perforce be a compromise. However, with schemes of automatic control of power stations
using 'on-line' digital computers $98,99,100$ now being envisaged, it would be very exsy to realise the optimum values of all variables as recuired by the chove criteria. By storing a mathematical model of the mochine in the computer, it would be possible to recall it in the event of loss of synchronism. By computing the optimum requirements depending upon the actual systen conditions, successful resynchronisation can be effected with minimum disturbance. This scheme could be integrated into any scheme for power stetion control.

### 9.3 Resynchronisation scheme

### 9.3.1 General functional arrangement

Any scheme for automatic resynchronisation must perform the following functions in their respective order:
a) detect loss of synchronism,
b) switch the field connection to the desired mode of operation during the disturbance,
c) monitor various cuantities to initiate resynchronisation under proper conditions,
d) control the speed-governor, if denanded by (c) ebove,
e) switch the field circuit back to nomal operation.

Fig. 9.1 shows a block schematic representing the performance of the avove functions. Functions (a) to (e) and the criteria outined in Section 9.2 can all be fulfilled quite easily by the use of static releying techniques. The necessary equipment consists essentially

of four parts - all trensistorised - each with a distinct function, es follows:
i) sngle measurement,
ii) maximum slip magnitude control,
iii) phase indicators,
iv) sequential control circuits.

The sequential errangement of individual transistor circuits for the fulfilnent of the required functions is shown in block schematic form by Fig. 9.2.

### 9.3.2 Loss of synchronism

Loss of synchronism can be detected by continuously monitoring the load-angle of the machine. As soon as the load-angle goes beyond a certain value ( $\delta_{5}$ ), it can be considered as an indication that the machine has lost synchronism. In the present case two voltage signals - one from the machine stator terminals and the other derived from a tachogenerator on the rotor - are compered in a phase comperator (V). The tacho is initially aligned such that the phase difference between the two voltages is always equal to the instantaneous load-angle.

The phase comparator $V$ has been arranged to generate an output pulse each time the phase difference between the two signals is $180^{\circ}$. This output is fed to the field control circuit and a time delay circuit as shown in the fisure.


Fig. 9.2 Automatic Resynchronising Relay
Sequential arrangement of transistor circuits $\left(\delta_{1}<\delta_{3}<\delta_{2}<\delta_{4}\right)$

### 9.3.3 Field control

During out-of-stop operation, the fiela can be in one of three different modes as described in Chapter 6. Of these, the field excited condition is considered to be the least desircible from on operational point of view. Therefore, provision is recuired to be made to operate the field circuit-breaker and simultaneously to open the field or short it through a discharge resistor. This hes been arranged by means of a simple bistable circuit and a power transistor used as a switch. The signal from the out put synchronism detector opens the switch and shorts the field through a discherge resistor. It can also be arranged to leeve the field open. A further signal from the resynchronising circuit will switch in the field at the desired moment.

The micro-machine on which the relay was tested has no voltage regulator. Therefore, no provision was made in the relay, as built, to control the excite.tion as recuired in Section 9.2.3. However, in a practical scheme, a signal to the field control circuit, in adaition to operating the field switches in the desired memer, can also be made to adjust the excitation to a predetermined level.

### 9.3.4 Time delay circuit

After losing synchronism, it takes a short time for the machine to settle dom to steady asymchronous operation. The resynchronising circuit is, تherefore, arranged to come into operation only after this time delay.

In absolute terms, the recuired time deley wold depend upon the nean slip and would thus very in each case. Some errangement thet woula provide a varieble time delay proportionel to the siip, is therefore, required.

It hes been shown in Section 7.3.3 the the machine atteins the state of stecdy asynchronous operation in about two slip cycles. In the present case, a counting circuit hes been used to count the number of slip cycles and to provide an output to the resynchronising circuit aiter the machine has passed the required number. An out-of-synchronism circuit provides an output pulse once every slip cycle. The counting circuit gives an output after the pre-arranged number of slip cycles, thereby providing a variable tine delay proportional to the mean slip.

To sefeguard against any spurious operation of the counting element, a monostable delay timer hes been introduced between the inputs of the bistable VI and the 'And' gete II as shown in Fis. 9.2. This wes essential in case the output pulse from the phese comperator $V$ was of sufficient lensth so that the output pulse from the counting circuit would be fiven in one slip cycle instead of efter the desired number of cycles.

In practice, the countinç circuit could be arranged to give a count of two or three. Whe circuit shown in Fig. 9.2 is designed to provide an output after two slip cycles.

### 9.3.5 Resynchronising circuit

The resjuchronising circuit is the heart of the relay. Its function is to check thet all the conditions for successiful resynchronisation outlined in Section 9.2 are fulfilled and to Eive an output signal to apply the ercitation et the desired instent. This circuit will be described in detail in Section 9.4.

### 9.3.6 Speed-governor control circuit

A signal to resynchronise will be given only if the slip is within a certain range. Slip measurenent in the resynchronising circuit is achieved by measurement of the cngle advenced by the rotor relative to the stator minf in a rixed time. If the slip is less than the predetermined velue, bistables II and III (Fig. 9.2) can operate and send a signal to operete the field circuit, simultineously blocking the operation of the speed control circuit.

In the case of the slip being high, the phase comparator VI (Fis. 9.2) will produce an output pulse. This pulse will set bistable $V$ which controls the turbine speeder gear mechenism, and reduce the speed. As soon as the speed cones within the required range, the output from the resynchronising circuit will block the operation of phase comparator VI end reset bistalle $V$, thereby returning the governor to normal operation.
9.4 Resynchronising circuit

Operation of the equipment is essentially based on measuring the phase angle between two voltage signals, as already mentioned above. Fig. 9.3 shows the sequential operetion of the entire circuit.

### 9.4.1 Initiation of operation

After receiving an "operate" signal from the time-delay circuit (Section 9.3.4), the actual sequence of operations starts when the load-engle reaches $\delta_{1}$. Phase comparator I is arranged to produce an output signal [Fig. 9.3(a)] only when both the signels have a phese difference of $\delta_{1}$. Thus this circuit acts as the operation initiation circuit and also as a reference for the time and phese measurements.

Initial setting of the bistable circuit $I$ is such that it blocks the operation of phase comparators II and III so as to guerd a\&ainst their operation before the desired time. A pulse from phase comparator I sats the bisteble circuit I [Fis. $9.3(b)$ ]so thet the phese comperators II and III are rec.dy to operete.

### 9.4.2 Slip measurement

The signel from the phase comparator I is led to-a monostable timing circuit. This is designed to give a negative going scuare-wave output [Fig. 9.3(b)] of duration $T_{c}$ proportionel to the setting of maximur


Fig. 9.3 Sequential operation of resynchronising circuit $\left(\delta_{1}<\delta_{3}<\delta_{2}<\delta_{4}\right)$
slip below which the relay is required to operate. The pulse duration is to suite the required maximum values of slip.

A load angle of $360^{\circ}$ is traversed in one slip cycle, and this gives the load angle-time relationship. By suitable co-ordinetion of the delar time of the monostable circuit and the cngle of operction fixec. for phese comparator JI, it cen be ensured thet tie equipment will not operete at a slip higher then a predetermined vaiue. Phase comparator II is so arranged that it will operate only upto a certain load-angle $\delta_{2}$ [Fig. 9.3(c)]. This is to ensure that the output signal is generated at the correct instant in the slip cycle taking into eccount the field time-constant end the fiele circuit-breaker operating time.

At the end of the predetermined delay, fixed by the monostable timing circuit, phase comparetor II will measure the locd-angle. If the load-angle is more than the preset value ( $\delta_{2}$ ), the slip is more than the prescribed vailue end bistable II will not give en output. The operation of the relay will this be blocked for the rest of the slip cycle and instead the governor control circuit will operate. On the other hand, if the slip is less than the prescribed value, bisteble II will give a negative-soing output [Fis. 9.3(d)].

### 9.4.3 Ensuring proper relay operaiion at low slip values

In case the slip is very small, it is the function of phase comperator III to ensure thet the output signal is
sent only after the locd-angle hes reached an appropriate value and not before. It is so amranged that phese comparetor III does not produce on oviput signel till the angle has reached $\delta_{3}$ [Fig. $9.3(\mathrm{e})$ ]. This ensures that in the case of slips lower than the prewcribed maximum value, the relay still operates such that full field excitation is established at the desired angle.

As shown in Fis. 9.3, which depicts the sequential operetion of the various elements, it is evident that no output signel can be produced until the slip is jelow a certain maximum and the load-angle has reached a predetermined value.

### 9.4.4 Generel

Phase comparetor IV will ensure that the ecuipment is reset to stert its operation again ofter the loadcngle passes through $\delta_{I}$ and that a faulty secuence of operations does not trike place at $360^{\circ}$ minus the preset values of angles obtrined froin the phase comparators II and III. Iike phase comparator III, phase comparator IV has also been arrenged to operate for load-angles greater then a certain value and not below [Fig. 9.3(g)].

The phase difference for the operation of various phase comparetors and the delay tine of the monostable timing circuit can be adjusted to any desired value using suitable components. This ensures that the equipment can be celibreted to suit machines with different field timeconstents and field circuit-breaker operating times.

# 9.5 Transistor circuits 

9.5.1 Squaring circuit

To obtain a better consistency in the operation of the relay, it is imperative that undesirable eifects due to varictions in stator terminel voltage and tacho generated voltage during asynchronous operating conditions be eliminated. This can easily be achieved by converting the two sinusoidally varying a.c. signels into square waves in two independent squaring circuits.

The squering circuit used (Fig. 9.4) is a simple cominon-emitter circuit, consisting of one trensistor to convert the a.c. sine wave signal into a square wave and the second transistor as a phese invertor, so that two negative-going constant magnitude square-waves of equal mark-space ratio but exactly opposite in phase are obtained at the collectors of the two transistors.

During the positive half of the input signal, the first transistor is cut-off and the second transistor is so biased as to be in the fully conducting state. During the negetive halif of the wave, the first transistor will be fully conducting. Thus the voltege at its collector will be very nearly equal to zero and the second transistor is biased to cut-off, thereby giving an output of $-V_{c c}$ volts.

To restrict the maximun voltage at the base of the first transistor end also to minimise the effects of voltage variation, two diodes have been connected in its base circuit. Ihese diodes restrict the maximum voltage at the base to the voltage drop accross the diodes, both during the positive ha'f and negative half of the a.c. input waves.


Fig. 9.4
Squaring circuit

### 9.5.2 Phase comparator

The phose comperator (Fig. 9.5) ${ }^{101}$ used in this equipment has been described in detail in references 101 and 102. It consists of a coincidence stege controlled by the two voltage signals which are compared in phese and the storting input (eg., from the time-deley circuit in the case of phase comparator I or from bistable circuit I in the case of phase comparators II and III (Fig. 9.2)). It is followed by an integrating circuit and a level detector output stage as shown in Fig. 9.5(a).

The coincidence circuit will allow operation only if all its input sicnals are zero or positive at the same time. Should any of the input signals be negative, no operation takes place, since the collector voltage of the circuit will be zero, i.e. the transistor will be conducting.

Phase comperators IV and $V$ are similer with the only difference that they heve been set to produce output signals at different angles. Phase comparators I, II and III are normally blocked, es input 1 from the preceding bistable circuits is nomally negative, thus maintaining the transistors 'on' irrespective of invuts 2 and 3. When the bistebles are set by a pulse from their corresponding circuits, input 1 assumes zero potential, thereby allowing operation of the phase comprrators at the appropriate angles. To safeguard against mal-operation, phase comperator IV resets bisteble circuit I thereby blocking operation of the relay for the rest of the slip cycle.

(a)

(b)

Fig. 9.5 Multiple -input phase comparator

In eddition to the normal blocking input I Erom the bistaible circuit $I$, phese comprator VI has an additionel input 4 from the 'And' gate $I$. When the resynchronisation signal is given, phase comparator VI is blocked, thereby preventing any further unloading of the machine.

The integroting circuit is a straightforward series $R-C$ arrangement which operates during intervals when the transistor is not conducting.

The level detector, Fig. 9.6, is an emitter coupled trigger circvit ${ }^{103}$. It remains in one steible state i.e. $T_{1}$ cut-off and $T_{2}$ fully conductins, so long as its input voltage is lower then the 'pick up' voltage $V_{p}$. If the base potential of $T_{1}$ is gradually lowered, the collector current of $T_{2}$ remains constant until $V_{i n}$ reaches the pick up value, when $T_{1}$ sterts to conduct and its collector voltege sterts to rise. This increase in the collector potential is applied to the base of $\mathrm{r}_{2}$ by the potential divider. The collector current of $\mathrm{T}_{2}$ thus begins to decrease as the base potentiel of $\mathrm{T}_{1}$ continues to foll. When the current of $\mathrm{T}_{1}$ hes become large enough to provide sufficient gain for this action to be cumalative, the circuit sneps over into the ste te in which $\mathbb{T}_{\mathcal{I}}$ is 'on' and $T_{2}$ is 'off'. Transistor $T_{1}$ is now fully bottomed end the potential divider biases $\mathrm{T}_{2}$ beyond cut off.

If the base potential of $T_{I}$ is now brought back towards earth potenticl, $T_{2}$ will remain cut-off for as long as the base of $\mathbb{I}_{1}$ is sufficiently negative to keep its collector bottoned. However, the circuit does not return to its initial state at the same voltage $\mathrm{V}_{\mathrm{p}}$, but will do

1


Fig. 9.6

so at a lower drop out voltage $V_{d}$, as it is necessary not only to reduce the current passing throuch $T_{1}$ but also for $T_{2}$ to start conducting.

### 9.5.3 Honostable timing circuit

The monostaible timing circuit ${ }^{101}$ used in the ecuipment is a common emitter configuretion as shown in Fig. 9.7. In the steble stete, transistor $T_{2}$ is conducting, transistor $\mathrm{II}_{1}$ being biased to cut off. When the trigger signel at the base of $I_{1}$ causes transition from the stable to the cuesi-stable state, $T_{2}$ cuts off and $T_{1}$ sterts concucting. After the initial abmpt transition, the base voltage of $\mathrm{I}_{2}$ sterts to $\mathfrak{E c} 1 \mathrm{ll}$ exponentially towards $V_{c c}$ all other volteges remaining constant, until the base voltage of $T_{2}$ reaches the pick up voltage. tit this point the quasi-stable state is terminated, and the voltoge finally stabilises to its cuiescent level given by $I_{2} \mathrm{P}_{\mathrm{e}}$.

The circuit thus produces $\varepsilon$ negative pulse at the collector of $T_{2}$ with a duration determined by the tine-constent of the $R C$ coupling end the voltege $V_{s}$.

### 2.5.4 Bistaje trigeser circuit

This circuit has two stable states, in either of which one transistor is fully conducting end the other is cut off. It can remain in one of these states indefinitely uniess it is forced to the other state by some means. The circuit can be triggered by a negative pulse


Fig. 9.7 Monostable timing circuit
applied to the base of either of the transistors through a diode depending upon the state to which it is required to be driven.

Whe bistable trigger circuits ${ }^{101,104}$ are all similar consisting of two transistors $\mathbb{T}_{1}$ and $\mathbb{T}_{2}$ (Fig. 9.8) with their emitters connected to the zero voltage line through a comon emitter resistance $R_{e}$ shunted by a capacitance $C_{e}$. The sifnal at the collector of each transistor is fed to the bese of the other trensistor through coupling attenuators $R_{11}, R_{21}$ and $R_{12}, R_{22}$. Resistors $R_{11}$ and $R_{12}$ are shunted by small capacitors to speed up the triggering. Eistables I, IV and $V$ have, however, been provided with an additional stege, so as to provide an output varying between zero and $-v_{c c}$.
9.5.5 Output signel Prom resynchronising circuit

The output signel from the resynchronising circuit is provided through an 'And' gate followed by a single output stage. Sjigncls from the bisteble circuits II and III are fed into a. simple 'And' gate consisting of diodes end resistors. then both the bisteble circuits heve been operated by the phase comprators II and III, it will produce a negetive-soing ovtput signal [Fig. 9.3(j)]. In the event of neither or only one of the two bisteble cir-- cuits having operated, no output sisnal will be produced.

### 9.6 Power supplies

The power supply requirements for the relay built in the laboratory are a negative direct voltage of 9 Volts,


Fig. 9.8 Bistable trigger circuit
capoble of delivering upto $100 \mathrm{~m} . \mathrm{a} .$, and a 4 volts positive bias of $250 \mu \mathrm{~A}$ current drein.

In the laboratory a twin transistor power unit was used. For this unit, the change in output voltege canced by a chenge in supply of $\pm 7 \%$ is always less than 5 mV .

### 9.7 Operation end periormence of the automatic resynchronising relay

### 9.7.1 Complete circuit and construction

The complete circuit arrangement is shown in Fig. 9.9, which also shows the coupling connections between the various individuel component circuits and the provision of an initial setting pulse for the bistable circuits. Arrangements made in the relay for field control and Governor control for testing on the micro-machine are also shown in this figure. For the field control, a power trensistor controlled by bistable IV is used as shown in Fig. 9.9. 4 s no governor was available at the time of conducting the tests, indication of the operation of that circuit was obtained iy the illumination of a small 4 volt bulv.

To simplify the firing of the electronic circuits, various circuits have been constructed on veroboerd sheets made as plug-in units to suit stendard plugs. The complete relay has been built into one unit of size 17 in . x l0 in. $x 5$ in.


### 9.7.2 S1ip Iimitations

The combination of monostable $I$ c.nd phase comparator II circuits einsures that the relay does not operate until the slip megnitude hes been reduced below a prescribed velue. The relay as constructed has been calibrated to stert operation for a slip frequency less than one cycle per second i.e. $2 \%$ of the nomal supply frequency of $50 \mathrm{c} / \mathrm{s}$, althoush it can be adjusted to any value avove or below $2 \%$ as desired. The relay, as colibreted, will operate for any slip between $\pm 1 \mathrm{c} / \mathrm{s}$.

### 9.7.3 Advance time setting

The relay can be adjusted such that for a range of neen slip velves, full rield excitation is established within a desired renge of load-angle. However, if at the instent that the relay comes into operation, the magnitude of slip is very low, excitation is likely to be established fully at an angle somewhat less than the desired range. Although the machine will still synchronise, this operation will be accompenied by a comparatively large jump of power and VArs.

This difficulty can be overcone by carrying out a few studies on $e$ mathemeticel model of the mechine on which the relay is to be ritied and determining the values for the setting of the verious phase comprators and the monostable timer I which are best suited to the actual conaitions.

### 2.7.4 Genere1 test arrangements

In the initicl stages of construction and calibration, the two voltege signals were obtained from the laboretory mein aurely - one direct and one through a phase shifter. fiter the relay hed been fully assembled, it wes initiclly tested by these two signels. Finclly the relay was terted under actual worling conditions on a micro-machine.

A two phese a.c. tacho is available on the micro-machine. The voltage wave form of one of these two phases was compared with the wave form of one phase of the machine stator at no load. The tacho was adjusted so thet the two wave forms were aligned. These two signals the phase difference between which would always be equal to the load-angle - were applied to the relay for all studies.

The two input signals were stepped down to 6.3 volts r.m.s. before being aplied to the squaring circuits.
9.7.5 Records of operetion

A few resynchronisation studies with the help of the relay described were made on a micromechine using a scilient-pole laminated rotor. Based on the studies of the mathematical model of this machine, phase comparators I, II, III and IV were calibreted to operate for phase angles of $0^{\circ}, 30^{\circ}, 25^{\circ}$ and $50^{\circ}$ respectively. Phese comparator $V$ was adjusted for $180^{\circ}$, thet is, if the load-
angle reached $180^{\circ}$, the mechine was considered to heve lost synchronisrn. The maximum slip for attempting resynchronisation was adjusted to 2 percent. The resynchronisation circuit wes edjusted to come into action with a time deley of two slip cycles ofter losing synchronism.

With the micro-mechine connected to the laboratory mains either direct or through an external reactance, the relay was switched in. By reducing the field excitation, the machine wes brought out of synchronisn. The test arrangements were, that on losing synchronism, the relay would remove the excitation and leave the field shorted through a discharge resistor. After nonitoring the necessary conditions, the excitetion was switched on automatically at the recuired instant and the subsequent resynchronisation observed. The full process was elso recorded on a pen recorder.

Figs. 9.10 and 9.11 show the actual records obtained during the resynchronisation study on the micromachine. Fig. 9.10 shows the operation when the slip, after loss of synchronism, was less then the prescribed mexinum value. In Big. S.ll is shown the case where on losing synchronism, the mochine atteined a slip higher then the prescribed merimu. In this cese, the slip was reduced by reducins the output menually by adjustment of the eriving motor. These fieures clearly show that the relay functioned correctly as specified and the mechine pulled into synchronisn very smoothly in the minimum time without any menuel intervention,

FIELD CIRCUIT EXCITATION REMOVED : EXCITATION REAPPLIED

SLIP CYCLE


Fig. 9.10 Relay operation for slip magnitude less than the prescribed maximum ( $2 \%$ ) after loss of synchronism ( $\left.T_{a s}\right)_{m}=0.643$ p.u. , $X_{e}=0$, Paper speed $-25 \mathrm{~mm} / \mathrm{sec}$

FIELD CIRCUIT



Fig. 9.11 Relay operation for slip magnitude greater than the prescribed maximum ( $2 \%$ ) after loss of synchronism $\left(T_{a s}\right)_{m}=0.85$ p.u. , $X_{e}=0.115$ p.u. . Paper speed $-25 \mathrm{~mm} / \mathrm{sec}$

## CHAPIER 10

## CONCLUSIONS

### 10.1 A review of results

Asynchronous operation and resynchronisation of synchronous machines has been studied by a number of investigators in the past. Most of this previous work is based on assumptions that are not strictly valid for the particular conditions of operation under study. In the present thesis, asynchronous operation and the process of resynchronisation has been studied using an elaborate representation of the synchronous machine. Most of the work presented. in the preceding chapters is based on no additional assumptions then those inherent in the 'General Theory of Machines: ${ }^{45}$.

Two mathematical models, one for laminated rotor and one for solid rotor mechines, have been developed for the study of asynchronous operation and resynchronisation on a general purpose analogue computer. Salient-pole or cylindrical rotor construction can easily be simulated by either of these two models. Also, the effect of various system or mechine parameters and auxiliary equipment can be studied. The equations, on which the two mathematical models are based, are in the general form. The entire work is thus equally valid for both generators and motors.

Every previous attempt to study resynchronisation resulted in studying conditions for what is now called 'spontaneous resynchronisation'. In simple words, spon-
taneous resynchronisation may be termed as resynchronisation by chance with practically no control over the actual process of resynchronisation. In this thesis, resynchronisation hes been studied by an original approach and the process explained in detail. It has been shown feasible to control fully the entire process. Criteria for resynchronisation have been laid down and a scheme for automatic resynchronisation proposed. This scheme can easily be integrated into any overall scheme for automatic control of power stations using 'on line' computers.

The behaviour of an individual machine is of considerable theoreticel interest, but of even greater importance is its behaviour when forming part of a power system. In a practical case, a machine's behaviour, though influenced to a certain extent by its parameters, is dictated by its ločition with respect to other machines and the interconnection of the system. By the very nature of a synchronous machine, there are certain conclusions that can be drawn regarding its behaviour during out of step operation and during resynchronisation. Inferences based on the studies of Chapters 6 and 8 are summarised below.

### 10.1.1 Asynchronous operation

1. At ressonably low slips, it is possible to obtain a considerable amount of output from a normal machine munning asynchronously.
2. Under the operating conditions obtaining in practice, asynchronous operation with open field gires the
best results since this condition produces the minimum of disturbance to the system. Thismode of operation is subject to the over-riding proviso that for the slips at which machine operates, the induced voltage in the field winding is not allowed to exceed its designed insulation level.
3. Figh bus-bar voltage is an aid in the reduction of disturbances on the system and in obtaining higher power output from the machine.
10.1.2 Resynchronisation
4. There is a maximum value of slip beyond which it is almost impossible to resynchronise a machine.
5. Because of the ceiling voltage of any excitation system, there is, in practice, an upper limit on the slip magnitude - generally lower then the maximum value - beyond which it is not precticable to resynchronise a machine.
6. To effect easy resynchronisation with the minimum of disturbance to the system, the angle of field application should be well controlled. In the majority of practical cases, the most favourable angle of switching lies between zero and 45 degrees in a slip cycle.
7. Resynchronisation is, in most cases, accompanied by a swing in power and current, which is only of short duration when resynchronisation is effected under properly controlled conditions.
8. Resynchronisation from the field open mode of asynchronous operation is generally the easiest, requiring minimum time and least magnitude of field excitation.
9. Lower moment of inertia generally helps in resynchronisetion.
10. Control of turbine speed-governor and automatic voltage regulators is essential in achieving automatic resynchronisation.

### 10.1.3 Automatic resynchronisation scheme

On the basis of the above conclusions, it is possible to specify a practical scheme for achieving automatic resynchronisation without human intervention. The proposed scheme has been described in Chapter 9. This scheme can be incorporated in any scheme for the automatic control of power stations by computer as is being now developed.

### 10.2 Further work

10.2.1 Miode of field connection

With the usual d.c. excitation systems, the field can be in one of the three modes as considered in the present studies. A.C. exciters and rectifiers are now being introduced to replace the d.c. exciter. Beceuse of different forward and backward resistances of the rectifiers, asymetry is introduced into the field circuit during out of step operation, and may considerably affect the operational characteristics of the machine. This is likely to have a significant effect on asynchronous operation, but the process of resjnchronisation should not be affected to any great extent.

Depending upon the actual configuration of the scheme adopted, its effect on asynchronous operation needs to be studied as a special operational problem. Although the simulation techniques described in Chapters 4 and 5, in general, still hold good, the simulation of the field circuit would need to be modified to take account of the changed circuit parameters.
10.2.2 Effect of speed governor and voltage regulator

Because of the lack of sufficient elements on the rr4.8 analogue computer used in the present studies, the effect of a simple velocity governor with a single time-constent only has been studied. This is reasonable for the case of hydraulic turbines. To study the operation of alternators driven by modern reheat, compound steam turbines, a more elaborate representetion of governor and turbine is essential. Also the effect of a more sensitive governor compounded of velocity and e.cceleration feedback signals needs to be studied.

Throughout the present studies, no voltage regulator action has been considered. It has been proposed that excitation should be removed as soon as me.chine loses synchronism. Thus the voltage reguletor would be out of action during out-of-step operation end will come into play only during the process of resynchronisation. To study resynchronisation, constant excitation was applied. If, however, sufficient additional elements are available on the computer, it would be worthwhile to simulate a voltage regviator and study its influence, if any, on this process.

### 10.2.3 Digital techniques

Availability of a sufficient number of elements is one of the main limitations in the use of the analogue computer. For the study of larger problems, it is becoming possible to develop suitaile digital techniques, particularly as larger digital computers are available. Most of the programes so far developed for the study of power system problems on digital computers are based on a step-by-step method using a fixed step length. This necessitates introduction of many simplifying assumptions which are not always valid, thereby introducing meny errors in the solution particularly if the computation is cerried out for a reasonaible lensth of time.

A programe called 'MIDAS' ${ }^{105}$, employing variable step length, has been developed recently for use on the IBM 7090 digitel computer. This programe can be written directly from the analogue computer flow chart, without any further simplifying essumptions. It would be interesting to carry out studies on the two computers simultaneously and to compare resuits. In the event of reasonable results being obtained by the 'IMIDAS' programe, it would be possible to study the problem in much greater detail.

## 10. 3 Concept of stability

In general terms, the stability of synchronous machines may be defined as their ability to remain in synchronism with the power system to which they are connect$e d^{67}$. Traditionally, the stability limit is determined
on the basis of first swing and does not provide for any pole slipping. This concept was adopted because of the lack of proper control devices. With the development of the modern fast-acting eutomatic voltage reculators and electro-hydraulic speed-governors $106,107,108$, transient stability bounderies are being considerably modified.

It has been shown in the present studies that it is cuite practicable to control the process of resynchronisation of synchronous machines with proper control devices. By allowing the synchronous machine to lose synchronism end to resynchronise, substential gains in transient stability are possible ${ }^{109}$. Schemes for fully eutomatic control using 'on line' digital computers are being plenned for the power stations of the future. These schemes envisage control on the basis of a single integrated unit, with every operation during normel functioning or during aisturbed conditions being controlled by a master controller. In schemes like this, asynchronous operation and resynchronisation could be hendled as a routine function.

In view of these modern developments, the entire concept of system stability needs revising. It is suggested that the definition of stability based on the first swing hypothesis be changed and a new definition which allows for pole slipping, unaer certain conditions, be worked out. This will allow for much higher stability limits than at present end could result in quite considerable economies, in addition to increasing the reliability of operation of power systems.

## BIEIIOGRAPHY

I。 $\operatorname{sintman} \mathrm{Cog}$
2. PURCHET, I, I , X HAYMERD: A.P.
3. BUELJ: R RO. CLUGEEY: R.J. d

4. HIGGITS, D.D. 4 WILD: T.
5. BFiDAFO日: E,S.

> Discussion of "The behaviour of synchronous motors during starting" by F.D. NEWBURY. Hrans.A.I.E.E. 32 Part 2 , p. I6I4, I9I3
" Opereting cheracteristics of turbine generators", ibid 49, p. 7I5, I930
"Governor performance during system disturbences", ibid 50 p. 354, 193I
" Reestablishing excitation of $a$ loaded aiternator in parailei with others", ibid 50, p. 1.99: I93I
" La Synchronisation des Machine: en cas de Perturbations Ia Stabilite", C.I.G.R.I. Report no. IIU, 1935
6. BRITISR DLECTMOITY AUPECRITY -. EnSNERG DIVISIONT
> : Mests cerried out at Little Bariord generating station to determine the performance of an eIternetor when the normal source of excitation is weakened or removed", Technical Report no. GE I951
7. IMAKKOVICH, I.I. $\mathcal{Z}$ SOVALOV, S.A.
8. Gormbiting, V.ri.
9. MAMIFONYMTS, L.G., SOVALOV, S.A. \& KHACHLITUROV, A.A.
10. BUSEMAN, F. \& CASSONT, W.
11. KOVACS, P.CH. $\&$ CSÁKI, F.
12. AZARYEV, D.I., MAMTKONYATTS, L.G., SYROMYMITKOV, I.A. \& VENIKOV, V.A.
" Experimental investigation of generator resynchronisation", Elektrichestvo no. 4, p. 24-29, April, 1955, C.E. Translation no. 963
"Conditions of resynchronisation after loss of stability", ibid no. 10, p. 12-18, Oct., 1956, C.E. Translation no. 1078
" Asynchronous operation, nonsynchronous switching and resynchronisation of the KUIBYSHEV hydro-electric station", ibid no. 11, p. 64-72, Nov., 1957, C.E. Translation no. 1231
" Results of full scale stability tests on the Eritish $132 \mathrm{~K} . \mathrm{V}$. Grid system", Proc. I.E.E. 105A, p. 347, 1958
"Asynchronous running of turboalternators", C.I.G.R.T. Report no. 115, 1958
" Increasing the reliability of operation of power-systems and long distence transmission lines", ibid, 318, 1958

$13 .$	MASON, T.H., AYLETT, P.D. \& BIRCH, F.H.	```" Turbogenerator performance under exceptional operating con- aitions",Proc. I.E.E. 106A, p. 357, 1959```
14.	PORTINOI, M.G.	"Resynchronisation of synchronous generators", Plektrichestvo no. I, p. 73-78, Jan., 1960, A.T.I. (Menchester) Transle.tion no. 2792
15.	GHishnov, M.P.	" Investigation of the conditions of asynchronous operation and resynchronisation of a generator after transient stability loss", ibid no.6, p. 21-25, June, 1960, C.E. Translation no. 1875
16.	CSÁKI, T .	" riheoretical methods concerned with the asynchronous operation of turbo-generators", Periodica Polytechnica no. 2, 1960
17.	MAMIEONJAITS, L.G.\& SYPOTHETITIKOV, I.A.	" A study and practical applications of asynchronous operation of sjnchronous generators", C.I.G.R.E. Report no. 129, 1960
18.		C.I.G.R.E. Discussion Group 11 Generators, Vol. I, p. 226-236, 1960

19. 
20. CHALMERS, B.J.
21. IÁZÁR, J.
22. ANISTIOVA, IV.D., VENIKOV, V.A., PORITHOY, L.V. \& TSUKERMIK, I.V.
23. LAUREINT, P. \& CIRPTINIIER, I.
24. LAURENT, P.
25. COTGORDIA, C. \& TEUCSHOK, II
"Asynchronous runnins tests on lerge sets - Results of Tests at Hams Hall ' $C$ ' and Northfleet", Electrical Times 141, p. 273, 22.2.1962
" Asynchronous performance characteristics of turbogenerators", Proc. I.E.E. 109A, p. 301, 1962
" Reduction of pulsations in the asynchronous operation of turbogenerators", Periocica Polytechnica Elec. Engg. Rliektrotechnik, Budapest, 8, no. l, p. 23, 1964
"Stability of power systems in special regimes", C.I.G.R.E. Report no. 321, 1964
" Report on the work of the study committee on generators (no. 17), Q. 3, p. 6-8, ibid, 143, 1960

Concluding remarks to discussion on question 2.2 .1 p. 236 of reference 18.
" Resynchronisation of generators", Trans, A.I.E.E. 66, p. 1512, 1947
26. AYTIETI, P.D.
27. MLHTA, D.B.
28. SUDAT, R.N.
29. HANO , I., VENOSOTNO, C. \& YOSEIKAWA, H.
30. BREPTHON, D.S., IGWIS, D.G. 8 YOUNG, C.C.
31. CRARY, S.B. \& WARIITG, PI.L.
32. KImbark, E.W.
" Synchronous generator performance with special reference to non-linear problems", Ph.D. thesis, London University, 1957
"Varietion, following a disturbance, of torque and load-angle in a synchronous machine ", N.Sc. thesis, London University, 1958
"Digital computer study of the resynchronising of a turboalternator", Trans. A.I.E.E. 79, Part III, p. 1120, 1960
" Optimum slips of self-synchronisation of generators connected to transmission networks ", C.I.G.R.E. Report no. 307, 1960
" Representation of induction motor loads during power system stability studies", Trans. A.I.E.E. 76. Part III, p. 451, 1957
"Torque angle characteristics of synchronous mechines following system disturbances", ibid, 51, p. 764, 1932

> "Power System Stability", Vol. I (Book), John Wiley \& Sons, 1956

33. CRAFY, S.E.	"Power System Stebility", Vol. II (Eook), John Wiley \& Sons, 194.7
34. FIORTJ:OCK, J.R. \& hUMPHREY-DAVIES,M,W,	"Power System Analysis", (Book), Chapman and Hall, 1952
35. Hales, A.W.	```"C.E.G.B. network anelyzer in- stallations", Electrical Times 138, p.667,797 & 951, 1960```
36. GUPTA, P.P. \& HUMPHREY-DAV IES, M.W.	```" Digitel computers in power- system &n\varepsilonlysis", Proc. I.E.E. IO8A p. 383, 1961```
37. ITILS, J.G.	"Analysis of overall stebility of multi-machine power systems", ibid, IO9A, p. 203, 1962
38. PARK, R. H .	"Two-reaction theory of synchronous machines, Part I', Trans. A.I.E.E. 48, p. 716, 1929
39. PARK, R.H.	"Two-reaction theory of synchronous machines, Part II", ibid, 52, n. 352,1933
40. BHRAII, P. \& ADKINS, B.	"Operational impedances of turbogenerators with solid rotors", Proc. I.E.E. 110 , no. 12, p. 2185, 1963

41. ROBERI, II.R.
42. ADEINS, B.
43. 
44. NEFTA, D.B. \& ADKINS, B.
45. ADKINS, B.
46. 
47. SHACHELHET, G.
"Le 'microréseau', modèle dynamicue de résecux", Bulletin de la Société Française des Blectriciens 4, p. 67, 1954
" Hicro-machine studies at Imperial College", Flectrical Iimes I38, p. 3, 7.7.1960
"System development by models in USSR", ioid, 145, no. 3, p. 83, 1964
"Transient torque and load angle of a synchronous generator following several types of system disturbances", Proc. I.E.E. IO7A, p. 61, 1960
"The General Theory of Electrical Machines", (Book), Chapman and Hall, 1959
"Report on series ' B ' generator periormance trials", C.E.G.B., December, 1962
"General-purpose turbo-alternator model", Proc. I.E.E. I10, p. 703, 1963
48. Bharaici, P.
49. ROBERT, R.
50. WRIGHT, S.H.
51. PUCHSTEIN, A.T., IIOYD, T.C. \& COIVRAD, A.G.
52. ALFFORD, R.J.
53. KANETF, S.
54. VAY INESS, J.E.
" Damping effects in a synchronous machine with a solid iron rotor", Ph.D. thesis, Iondon University, 1963
"Micromochines and Microreseaux", C.I.G.R.E. Report no. 338, 1950
" Determination of synchronous machine constants by test", Trans. A.I.T.E. 50, p. 1331, 1931
"Alternating current machines", (Book), John Wiley \& Sons, 1960
" The micromachine exciter system and time-constant regulator", Power System Report no. 49, Imperial College of Science and Technology
"A high frequency simulator for the analysis of power systems", ibid, 100, Part II, p. 405, 1953
" Synchronous machine analogues for use with the network analyser", Trans. A.I.E.E. 73, Part III,
p. 1054, 1954
55. VAII IESS, J.E. \& PETERSON, W.C.
56. ALDRED, A.S. \& DOYTEE P.A.
57. CORLESS, K.G. \& AIDPED, A.S.
58. CEINUS, J. X HAMATA, V.
59. ALDRED, $\mathrm{A} . \mathrm{S}$.
60. OMFAHERY, T. M. \& ATDRED, A.S.
61. DINGIEY, J.L.
"Electronic analogue computer simulation of multimachine power system networks", Proc. I.E.E. 109A, p. 195, 1962
" The use of analogue computers in power system studies", ibid, 75, Part III, p. 238, 1956
" Blectronic-analogue-computer study of synchronous machine transient stability", Proc. I.E.E. 104A, p. 152, 1957
" An experimental electronic power system simulator", ibid, 105A, p. 503, 1958
" Representation of asynchronous operation on an AC synchronous mechine analyser", C.I.G.R.E. Report no. I3l, Fart I, 1960
"Synchronous machine stability under unsymmetrical faults", ibid, 109A, p. 43I, 1962
"Study of power system transient stability on a combined computer", ibid, 111, p. 107, 1964

62. BARKER, J.R.	" The electronic differential anelyser - an introduction to the P.A.C.E. TR48 computer", Mathemetical Techines Loboratory pamphlet, July, 1963
63. PARK, R.H.	" Definition of an ideal synchronous machine ", General Electric Review 3I, p. 531, 1928
64. RANKIN, A.W.	"Per-unit impedances of synchronous machines", Part I, Prens, $\therefore$ I.E.B. 64, p. 569, 1945
65. RAMKIN, A.W..	"Per-unit impedances of synchronous machines", Part II, ibid, 64, p. 839, 1945
66. VENIKOV, V.A.	" Iransient phenomena in electrical power systems", (Book).   Abridged translation by B. Adkins and D. Fiutenberg, Pergamon Press, 1964
67. CRARY, S.B.	"Power System Stability", Vol. I (Book), Joln Viley \& Sons, 1947
68. WIDGER, G.F.T.	"Starting performance of synchronous notors", Power System Report no. 6l, Imperial College of Science and tiechnology

69. SFOULTS, D.R., CRARY, S.B. \& ILUDER, A.H.
70. SOKOLOV, I.I., GUREVJCH, Iv.E. KHVOSHCHINSKAIA, Z.G。
71. CONCORDIA, C.
72. KAZOVSKI, Ye.Ya. ROGOZIN, G.G.
73. FAIBISOVICH, V.A.
74. ZFUKOV̄, I.A. FEPDOROV, D.A.
" Pull-in characteristics of synchronous motors', Trans. A.I.E.E. 54, p. 1385, 1935
"Simuleting e system with many generators on an analogue computer", Elektrichestvo, no. 5, p. I-8, May, 1961. Excerpts in 'Power Express', I, no. 3, p. 1217, 1962
" Synchronous machines, theory and performence", (Book), John Wiley |sons, 1951
" Test determination of the response characteristics of large turbogenerators", Elektrichestvo, no. 10, p. 14, 1963. Electric Technology USSR, 4, 1963
" Calculation and implementation of turbogenerator regines with unezcited turbogenerators", Elekt. Stantsii(U.S.S.R.), no. 6, p. 45, June, 1964
"How to represent generators in equivalent circuits for power systems when approximately calculating out-of-step operating conditions", Blektrichestvo, no. 7, p. I-7, July, 1964
75. CSAKI, F .
76. ALDEED, A.S. SHACKSHAPI, G。
77. CAUGHiEY, R.J. \& HCCLURE, J.B.
78. RÜDENGERG, R.
79. CONCORDIA, C. PCMEIGY, $H$.
80. GIBBS, T.J.
81. COINCCRDIA, O .
"Practical methods for examining the asynchronous operation of turbo-éenerators", Elektrotechnika, no. 2-3, 1960
"The effect of a voltage regulator on the stecdy-state and transient stebility of a synchronous generator", Proc. I.E.E. 105A, p. 420, 1958
"Prime mover speed governors for intercomnected systems", Irans. A.I.E.E. 60, p. 147, 1941
"The frequencies of natural power oscillations in interconnected generating and distributing systems", ibid, 62, p. 791, 1943
"Synchronous mechine with solid cylindricel rotor", ibid, 56, p. 49, 1936
" Induction and synchronous motors with unlamineted rotors", J.I.E.E. 95, Part II, p. 411, 1948
" Syachronous nachine with solid cylindricel rotor - Pert II", Trens. A.I.E.E. 78, Part III, p. 1650, 1959
82. WOOD, A.J.
83. AGGARWA工, P.D.
84. ROSTMBERG, E.
85. PIFER, S.
86. KOSTENKO, M.P., KAZOVSKY, E.I。, IVATOL, N.P., STAMSIAVSKY, I.I.

87. GIBBS, W.J.
88. HUTMILISON, G.P. 8 DROMEY,G.
"Tooth-ripple losses in unwound pole-shoes"s J.I.E.E. 94, Pert II, p. 2, 1947
"An analysis of solid rotor machines - Part I, operational impedances end equivelent circuits", ibid, p. 1657, 1959
" Eddy current losses in solid and leminated rotor", ibid, 78, Part I, p. 169, 1959
"Wirbelströme in massivem Eisen", Blektrotechnik u. Meschinenbau 4, p. 317, 1923
"Analogue computation", Vol. IV, (Book), RcGraw-Hill Dook Co., 1961
" Lerge nodern, highly-utilised turbine and water-wheel generators, their cooling systems, characteristics end parameters", C.I.G.R.E. Report no. l29, 1964
"Setting optimisation of Brown Boveri type ISC A.V.F. and field trials of loss of excitation reley type YCGF at Uskmouth 'B' Power Station", Technical Report no. 83, C.E.G.B. South Wales Division, Transmission Depertment
89. JONES, T.H., TEROSHOK, H. \& WIMCHESTER, 只.L.
90. GEURE, E.E.
91. KIMBERK, R.W.
92. MIMORSITY, N. \& EDWARDS, J.W.
"Design of conductor-cooled steam turbine-ienerators and application to nodern power systems", Trans. A.I.E.E., Power Apparatris and Systems, PAS - 84, no. 2, p. 131, Feb., 1965
Discussion to reference 3, p. 367 "Power-system Stability, Vol. III," (Sook), John Wiley \& Sons, 1956
"Introauction to Mon-Iinear Mechenics", (Book), Ann Arbor, Mich. 1947
" Non-Iinear Oscilletions", (Book), D. Van Nostrand Co. Inc., 1962
Discuscion, Group 32, C.I.G.R.E., Vol. I, p. 780, 1960
" Ierge symchronous machines with rectifier excitation for sudaen locd chenges at minimum dynamic voltege drops", C.I.G.R.E. Report no. 127, Vol. II, 1960
93. EVANS, D.R.

Discussion to reference 2, p. 719

97. ROSMATY, I.V.	" The sterting element for automatically resynchronisine synchronous generators", Elektrichestro, no. 7, p. 72-74, 1959
98.	"Fast start-up of 200 NW unit by computer at West Thurrock", Electricel Review 175, no. 22, p. 809, 27.11.1964
99. LEE, T.S.	```" Computer controls new unit's start-up", Electrical World 163, no. 20, p. 85, 17.5.1.965```
100. CLEVE, U. \& SAUERBECK, U.	"Alatomation in thermal pover   stetions", Brown Boveri Review 5l,   no. 3, p. 12.1, 1964
$\begin{aligned} & \text { 101. ADEISSCN, C. \& } \\ & \text { MOSLAND, O-P. } \end{aligned}$	" Eatomatic check sumehronising equipment using stetic relaying principles", Proc. I.E.E. IO8A, p. 331, 1961
102. ADAMFOIN, C. $\lambda$ TASHAM, E.A.	"The aplication of tronsistors   to phese-comparison carrier protection", iuid, 106A, P. 51, 1959
103. FIOOD, J.E.	```"Junction transistor trigger circuits', Wireless Engineer 32, p. 122, 1955```
104. SHEA, R.F.	" Trensistor Circuit Rngineering", (Book), John Wiley X Sons, 1957


105	HARHEIT, R.T., SANSOM, F.J. $>$ WERSHATSKY, J.	"MIDAS progrenming guide", Technical Documentary Feport no. SEG-TDR-64-1, Office of Iechnical Services, U.S. Dept. of Commerce, washington 25, D.C., Jan., 1964
106	WEDEEN, A.,   VOIPIO, E.   JCHAMSSON, K.B.	"Controlline tine interconnected power-systems of Gweden and Finland", C.I.G.R.E. Report no. 3ll, 1960
107	ANDRES: E.	" Locd-frequency control by steain turbines with electro-hydraulic covernors", Brown Eoveri Review 51, no. 3, p. 180 , March, 1964
108		```Discussion on electricsl covernors, Group 32, C.I.G.R.E., Vol. I, p. 677-693, 1962```
109	HUTIPAGE, W.D.	```Discussion, Group 32, C.I.G.R.E., Vol. I, P. 791, I964```

## APMIMDIX '今'

MACHITE DATA

## A.I Solid rotor meckines



Dase
$\underset{\text { VVA }}{\operatorname{Voltans}} 37.5 \times 10^{3} \quad 75 \times 10^{3} \quad 150 \times 10^{3} \quad 2.286$

Voltege   (phase) KV	6.8	6.8	7.96	0.127
Current   (phese)   amps	1,835	3,675	6,260	6
Impedance   ohms	3.7	1.85	1.27	21.15
Field   current   aimps	266.5	239.6	964	1.06


Gucntity	$\begin{gathered} \text { Goldingtor } \\ 30 \text { ITW } \\ \text { machine } \end{gathered}$	$\begin{aligned} & \text { rohwood } \\ & 60 \text { mw } \\ & \text { machine } \end{aligned}$	Staythorpe 120 MT machine	Ticromachine Stator no. 334818 Rotor no. 334828

Parameters

$x_{\mathrm{d}}\binom{\text { satur- }}{\text { ated }}$	1.68	1.52	1.75	1.59
$\mathrm{x}_{\mathrm{q}}$	1.5	2.52	1.37	1.49
$\mathrm{x}_{\mathrm{d}}^{\prime}$	0.175	0.17	0.30	0.191
$\mathrm{x}_{\mathrm{d}}{ }^{\prime}$	0.125	0.11	0.19	0.138
$\mathrm{x}_{\mathrm{a}}$	0.10	0.096	0.08	0.1
$x_{f}$	0.14	0.13	0.253	0.1276
$r_{\text {a }}$	0.00166	0.0017	0.00121	0.0109
$r_{f}$	$1.195 \times 10^{-3}$	$4.79 \times 10^{-4}$	$1.14 \times 10^{-3}$	$1.135 \times 10^{-2}$
$r_{\mathrm{P}}{ }_{\mathrm{disch} \operatorname{seg} \mathrm{e}}$	$3.61 \times 10^{-3}$	$5.61 \times 10^{-4}$	$4.52 \times 10^{-3}$	$1.48 \times 10^{-2}$
$\mathrm{x}_{\mathrm{e}}$	0.133	0.14 .5	0.24	Various values



$\frac{\text { Physical }}{\text { data }}$				
$\begin{aligned} & T_{\text {effective }} \\ & =\left(T_{p h} \times k_{w}\right) \end{aligned}$	15.8	21.1	22.2	118.5
width w metre	2.66	3.68	3.71	0.114
length $\ell$ metre	1.0	1.1	0.864.	0.2
$\begin{array}{r} \text { pole pairs } \\ -\mathrm{p} \end{array}$	1	1	1	2
$\mathrm{B}_{\mathrm{S}} \mathrm{Wb} . / \mathrm{m}^{2}$	1.75	1.75	2.236	1.6
Frequency $f$ c/s	50	50	50	50
Resistivity   P ohm-m	$27 \times 10^{-8}$	$21.5 \times 10^{-8}$	$27.94 \times 10^{-8}$	$14 \times 10^{-8}$
Inertia constant H KW sec/KVA	4.6	3.98	3.1	4.15
Field curr-entatopencircuit   ratedvolt-   age amps	142.5	168	589	0.71
Magnetisation characteristics	Fig. A.I	Fig. A. 2	Fig. A. 3	Fig. A. 4




Fig. A. 2 Open.circuit and short_circuit characteristics 60 M.W. Marchwood Turbo-alternator
O.C.C.- Open_eircuit characteristic S.C.C. - Short_eircuit characteristic


Fig. A. 3 Open.circuit characteristic 120 M.W. Staythorpe ' $B$ ' Turbo-alternator O.C.C.- Open_circuit characteristic


## A. 2 Leminated rotor micro-machine

Stator no. 334819
Fiotor no. 334818

## Base quantities

Voltamps
Voltage (phase) $-1,525 \mathrm{VA}$
Current (phase) -427 amps
Impedance
Field current -31.75 ohms

- 0.519 amps

Parmeters p.u.

$x_{d}$	
$x_{q}$	(saturated)
$x_{q}^{\prime}$	-0.9403
$x_{d}^{\prime}$	-0.568
$x_{d}^{\prime \prime}$	-0.237
$x_{q}^{\prime \prime}$	-0.1495
$x_{a}$	-0.1425
$x_{f}$	-0.0976
$x_{k d}$	-0.2124
$T_{a}$	-0.0383
$r_{f}^{\prime}$	-0.007
$T_{d o}^{\prime}$	-0.00446
$T_{d}^{\prime}$	-0.188 secs.
$T_{d o}^{\prime \prime}$	-0.046 secs.
$T_{d}^{\prime \prime}$	-0.017 secs.


$T_{q 0}^{\prime \prime}$	-0.094 secs.
$T_{q}^{\prime \prime}$	-0.0218 secs.
$T_{a}$	-0.0672 secs.
$\mathbb{T}_{\mathrm{ka}}$	-0.00832 secs.
$\mathrm{H}_{\mathrm{H}}$	-3.64 KW sec/KVA
Magnetisation   cheracteristics	- Fig. A .5



Fig. A. 5 - Open.circuit and short_circuit characteristics Micro_machine with laminated rotor

## APPENDIX 'B'

## ANALYTICAL SOLUTION FOR <br> LAMINATED ROTOR MACHINE

Based on the assumptions described in Section 4.3, pulsations in torque and slip can pe calculated as described below.

## B. 1 Torque pulsations based on constant slip

With a constant slip s, load-angle increases uniformly with tine, ie. $\delta=s \omega_{o} t$. Eqns. (3.12) and (3.13), neglecting $r_{a}$, then become

$$
\begin{align*}
& E_{m} \cdot \operatorname{Sin} s \omega_{0} t=p \psi_{\alpha}+(I-s) \omega_{0} \psi_{q}  \tag{B.I}\\
& E_{\text {II }} \cdot \cos s \omega_{0} t=-(I-s) \omega_{0} \psi_{d}+p \psi_{q} \tag{B.2}
\end{align*}
$$

Since the equations are linear, the solution may be obtained by superimposing two separate parts for which additional suffixes are used: suffix $I$, solution with applied terminal voltage but no field voltage; suffix 2, solution with applied Field voltage but no terminal voltage. This superimposition is valid on the assumption that the two components are independent of each other. This assumption is not strictly true, and the result obtained is only a first order approximation.

## B.I. I Calculation of torque with no field voltage

During steady asynchronous operation with $e_{f}=0$, axis currents and flux linkages obtained by the simultaneous solution of Plus. ( 3.20 ), (3.22), (B.1) and (B.2) are sinusoidal quantities at slip frequency. These equations can be converted into vector equations ${ }^{45}$ by substituting $p=j s \omega_{0}$ and replacing the variables by the corresponding vectors.

$$
\begin{align*}
& \omega_{o} \bar{\Psi}_{d I}=x_{d}\left(j s \omega_{o}\right) \cdot \bar{I}_{d I}  \tag{By}\\
& \omega_{o} \bar{\psi}_{\underline{q}}=x_{q}\left(j s \omega_{o}\right) \cdot \bar{I}_{q I}  \tag{B.4}\\
& -j E=j s \omega_{0} \bar{\psi}_{\alpha 1}+(1-s) \omega_{o} \bar{\psi}_{q \mathcal{L}}  \tag{B.5}\\
& E=-(I-s) \omega_{0} \bar{\psi}_{d I}+j s \omega_{o} \bar{\psi}_{\mathrm{q} I} \tag{B.6}
\end{align*}
$$

With assumption (ii) of Section 4.3, EaRs. (B.5)
and (B.6) simplify to

$$
\begin{align*}
& \omega_{0} \bar{\Psi}_{d I}=-E  \tag{B.7}\\
& \omega_{0} \bar{\Psi}_{q I}=-j E  \tag{B.8}\\
& \bar{I}_{\mathrm{dI}}=\frac{-E}{X_{\alpha}\left(j S \omega_{0}\right)}=-E\left(Y_{a}+j Y_{b}\right)  \tag{B.9}\\
& \bar{I}_{q I}=\frac{-j E}{X_{q}\left(j S \omega_{o}\right)}=-j E\left(Y_{c}+j Y_{d}\right) \\
&  \tag{B.10}\\
& =E\left(Y_{d}-j Y_{c}\right)
\end{align*}
$$

where $Y_{a}$ and $Y_{c}$ are the real and $Y_{b}$ and $Y_{d}$ are the imaginary
components of

$$
\frac{1}{\bar{x}_{\mathrm{d}}\left(\overline{\left.j s \omega_{0}\right)}\right.} \text { and } \frac{1}{\bar{x}_{q}\left(j s \omega_{0}\right)} \text { respectively. }
$$

Values of $x_{d}\left(j s \omega_{0}\right)$ and $x_{q}\left(j s \omega_{0}\right)$ are obtained from Eqns. (3.19) and (3.21) respectively by substituting p with ( $j s \omega_{0}$ ) in these equations. However, es it is difficult to obtain with reasonable accuracy the values of all the timeconstants $T_{1}$ to $T_{\sigma_{L}}$ in $\mathfrak{E q n}$. (3.19), this expression is further simplified ${ }^{45}$ into the form given below, on the assumption that the per-unit resistance of the damper winding is generally much larger than that of the field winding.

$$
\begin{equation*}
x_{d}(p)=\frac{\left(I+T_{d}^{\prime} p\right)\left(I+T_{d}^{\prime \prime} p\right)}{\left(I+T_{d o}^{\prime} p\right)\left(I+T_{C_{0}}^{\prime \prime} p\right)} \cdot x_{d} \tag{B.II}
\end{equation*}
$$

where $T_{d}^{\prime}, T_{d}^{\prime \prime}$, $T_{d o}^{\prime}$ and $T_{d o}^{\prime \prime}$ are the four well-known principal time -constants of the synchronous machine.

The instantaneous values of the flux linkages end currents are given by

$$
\begin{align*}
& \omega_{0} \cdot \psi_{d I}=-E_{\mathrm{m}} \cdot \operatorname{Cos} s \omega_{0} t  \tag{Bola}\\
& \omega_{o} \cdot \psi_{q I}=E_{\mathrm{rI}} \cdot \sin s \omega_{\mathrm{o}} \mathrm{t}  \tag{B.13}\\
& \dot{i}_{d I}=-I_{\mathrm{Ii}}\left(Y_{a} \cdot \operatorname{Coss} \operatorname{s} \omega_{0} t-Y_{b} \cdot \operatorname{Sins} \omega_{0} t\right)  \tag{B.I4}\\
& i_{q_{I} I}=\mathbb{E}_{m}\left(Y_{d} \cdot \operatorname{Coss\omega _{o}} t+Y_{c} \cdot \operatorname{Sin} \operatorname{s} \omega_{o} t\right) \tag{8.15}
\end{align*}
$$

$$
\begin{align*}
& \text { Substituting Ens. (B.12) to (B.15) in En. (3.24), } \\
& Y_{e l}=-\frac{E^{2}}{2}\left[\left(Y_{0}+Y_{\dot{a}}\right)+\left(Y_{c}-Y_{a}\right) \sin 2 s \omega_{0} t+\left(Y_{a}-Y_{b}\right) \cos 2 \sin t\right] \\
& \text {. . .(B.16) } \\
& \text { iron } \operatorname{Bg} \text {. (3.16), mean torque is } \\
& T_{e(\text { near })}=-\frac{E^{2}}{2}\left(Y_{b}+Y_{d}\right) \tag{3.17}
\end{align*}
$$

B.1. 2 Calculation of torque with a field voltage

Torque component $T_{e 2}$ resulting from the application of a field voltage is calculated by putting $\mathrm{I}_{\mathrm{m}}=0$ in Eris. (B.1) and (B.C). In this case, doris currents and flux linkages are constant quantities and solution is obtained by putting $p=0$.

$$
\begin{align*}
& \psi_{d 2}=\psi_{q 2}=0  \tag{B.18}\\
& i_{\mathrm{d} 2}=-\frac{r_{\mathrm{La}}}{r_{f} \cdot x_{\mathrm{d}}} \cdot e_{\mathrm{P}}  \tag{B.19}\\
& \dot{i}_{\mathrm{q} 2}=0 \tag{B.20}
\end{align*}
$$

Although the components of Pens. (B.18) to (B.20) by themselves would produce no torque, there is, however, a torque due to the interaction of $i_{d 2}$ and $\psi_{q I}$.

Total torque of a machine reaming asynchronously with supply voltage P and field voltage $e_{f}$ is, therefore,

$$
\begin{align*}
T & =T_{e I}+T_{e 2} \\
= & -\frac{T^{2}}{2}\left[\left(Y_{b}+Y_{d}\right)+\left(Y_{c}-Y_{a}\right) \cdot \operatorname{Sin} 2 s \omega_{o} t+\left(Y_{d}-Y_{b}\right) \cos 2 s \omega_{o} t\right] \\
& \quad-\frac{E \cdot E_{0}}{X_{d}} \cdot \sin \operatorname{s\omega _{o}t} \tag{B.21}
\end{align*}
$$

where $E_{0}=-\frac{1}{\sqrt{2}} \cdot \frac{x_{m d}}{r_{f}} \cdot e_{f}$
= open circuit voltage induced by the excitation at synchronous speed

## B. 2 Calculation of slip pulsations

For calculating the slip pulsations, it is assumed that the prime-mover torque has the constant value given by En. (B.17) and that the electrical torque is still given by Eqn. (B.2l) with $s \omega_{o} t$ replaced by $\delta$.

The equation of motion is then
$\frac{2 H}{\omega_{0}} \cdot \frac{d^{2} \delta}{d t^{2}}=-\frac{E \cdot E_{0}}{X_{d}} \cdot \sin \delta-\frac{E^{2}}{2}\left(Y_{c}-Y_{a}\right) \sin 2 \delta-\frac{E^{2}}{2}\left(Y_{\alpha}-Y_{b}\right) \cos 2 \delta$

Multiplying by $\frac{d \delta}{d t}$ and integrating, using $\omega_{0} s=\frac{d \delta}{d t}$,

$$
\begin{gathered}
\omega_{0} H s^{2}=\frac{E \cdot E_{0}}{X_{d}} \cdot \cos \delta+\frac{E^{2}}{4}\left(Y_{c}-Y_{a}\right) \operatorname{Cos} 2 \delta-\frac{E^{2}}{4}\left(Y_{\alpha}-Y_{b}\right) \operatorname{Sin} 2 \delta \\
+X
\end{gathered}
$$

$$
\begin{equation*}
+X \tag{B.24}
\end{equation*}
$$

$X$, a constant of integration is equal to the mean value, taken with respect to $\delta$, of the function on the right-hend side and is given by $X=\omega_{0} \cdot H \cdot s_{m}^{2}$. Consequently,

$$
\begin{align*}
s^{2}=s_{m}^{2}+\frac{I}{\omega_{0} H}\left[\frac{E \cdot E_{0}}{X_{d}} \cdot \cos \delta\right. & +\frac{E^{2}}{4}\left(Y_{c}-Y_{a}\right) \cos 2 \delta \\
& \left.-\frac{E^{2}}{4}\left(Y_{d}-Y_{b}\right) \sin 2 \delta\right] \tag{B.25}
\end{align*}
$$

## APPENDIX 'C'

ALTERATIVE FORMS OF EXPRESSIONS FOR OPERATIONAL IIPPEDANCES

From Ens. (3.19) and (3.20),

$$
\begin{equation*}
\frac{x_{d}(p)}{\omega_{0}}=\left[\frac{1+\left(T_{4}+T_{5}\right) p+T_{4} \cdot T_{6} p^{2}}{I+\left(T_{I}+T_{2}\right) p+T_{I} \cdot T_{3} p^{2}}\right] \cdot I_{d} \tag{C.I}
\end{equation*}
$$

Substituting the expressions for various timeconstants, as defined in Reference 45, in an expended form En. (C.I) becomes

$$
\begin{aligned}
& \frac{x_{d}(p)}{\omega_{0}}=\frac{r_{f} \cdot r_{k d} \cdot I_{d}+\left[r_{f} \cdot e_{a} \cdot I_{k d}+r_{k d} \cdot e_{a} \cdot I_{f}+I_{m \alpha}\left(r_{f} \cdot e_{k d^{\prime}}+r_{k d} \cdot e_{f}\right)\right] p}{r_{f} \cdot r_{k d^{\prime}}+\left(r_{k d} \cdot I_{f}+r_{f} \cdot I_{k d}\right) p+\left(e_{f} \cdot I_{k d}+e_{k d} \cdot I_{m d}\right) p^{2}} \\
& +\frac{\left[e_{f} \cdot e_{k d} \cdot I_{d}+I_{m d} \cdot e_{a}\left(e_{f}+e_{k d}\right)\right] p^{2}}{r_{f} \cdot r_{k d}+\left(r_{k d} \cdot I_{f}+r_{f} \cdot I_{k d}\right) p+\left(e_{f} \cdot I_{k d}+\ell_{k d} \cdot I_{m d}\right) p^{2}}
\end{aligned}
$$

which by some rearrangement can be written in the following alternative form:

$$
\begin{equation*}
\frac{x_{d}(p)}{\omega_{0}}=I_{d}-\frac{\left(r_{f}+r_{k d}\right) p+\left(e_{f}+e_{k d}\right) p^{2}}{r_{f} \cdot r_{k d}+\left(r_{k d} \cdot I_{f}+r_{f} \cdot I_{k d}\right) p+\left(e_{f} \cdot I_{k d}+e_{k \alpha} \cdot I_{m d}\right) p^{2}} \cdot I_{m d}^{2} \tag{C.2}
\end{equation*}
$$

From the same two Eqns. (3.19) and (3.20)

$$
\frac{G(p)}{\omega_{0}}=\frac{I+T_{\underline{k}} \cdot p}{I+\left(I_{I}+T_{2}\right) p+T_{I} \cdot T_{3} \cdot p^{2}} \cdot \frac{I_{m d}}{r_{f}}
$$

and in an expanded form,

$$
\begin{equation*}
=\frac{r_{k d}+e_{k d} \cdot p}{r_{f} \cdot r_{k d}+\left(r_{k d} \cdot L_{f}+r_{f} \cdot L_{k d}\right) p+\left(e_{f} \cdot L_{k d}+e_{k d} \cdot I_{m d}\right) p^{2}} \cdot I_{m d} \tag{ct}
\end{equation*}
$$

Similarly, frown Eqns. (3.21) and (3.22)

$$
\begin{equation*}
\frac{x_{q}(p)}{\omega_{o}}=\frac{I+T_{q}^{\prime \prime} p}{I+T_{q 0}^{\prime \prime} p} \cdot I_{q} \tag{C.4}
\end{equation*}
$$

By substituting the expressions for various timeconstants and rearrangement, Eqn. (C.4) can be put in the following alternative form:

$$
\begin{equation*}
\frac{x_{q}(p)}{\omega_{0}}=L_{q}-\frac{L_{m q}^{2} \cdot p}{r_{k q}+\left(\ell_{k q}+L_{m q}\right) p} \tag{C.5}
\end{equation*}
$$

## AFPEIDIX 'D'

## EXPRESSION FOR SOLID - ROTOR IMPEDAICE

## D. 1 General

Adequate representation of eddy-current effects in the solid rotor body during esynchronous operation of a synchronous machine will require an infinite number of coils on each cxis. The complexity involved will, for most practical problems, render a reliable solution unfeasible. Consjaering the rotor as a semi-infinite slab of iron, eddy currents in the rotor body can be calculated. Based on this method, an expression for the effective impedance of the solid rotor body has been derived ${ }^{40}$. Brief outline of the derivation is given below.
D. 2 Direct-axis electric and magnetic circuits

During asynchronous operation, the synchronous machine cen be considered es a transformer, of which the stetor winding is the primery, while the rotor circuits form the secondary. The configuration of the nagnetic circuit of the transformer is thet of tine mechine, a simplified section of which is shown in Fig. D.I. The main direct axis flux pesses round the stator core and throvgh the main body of the rotor inside the slots, as indicated by the dotted lines. Because of the skin-effect caused by the eddy currents in the iron, the flux is thrown outwards and is concentrated in a band of iron material at each side of the rotor body.


Fig.D. 1 Direct_axis flux path of a turbo-alternator.


Fig. D. 2 Idealised electromagnetic model of the direct_axis flux paths

Hig. D. 2 is a diagramatic representation of the magnetic system. The part corresponding to the solidrotor body is shaded in the two figures D.I and D.2. The unsheded parts in the diagram indicate laminated iron portions, which are assumed to have infinite permeability. The laminated iron portions, show on the rotor side, are fictitious and are used to indicate various leakage flux paths. The main flux $\varnothing_{\mathrm{m}}$ links both the armature and field windings and passes achross the main air-gap of reluctance $S_{m}$ and the rotor body of reluctance $S_{r} . S_{m}$ is a real constant colculated from the dimensions of the air-gap, but including an allowance for the stator core and teeth. On the other hand, $S_{r}$ is a complex number varying both with the frequency and the flux.

The electromagnetic model of Fig. D. 2 can be represented by an equivalent circuit given in Fis. D. 3 . In this equivalent circuit, all the components have the usual values except for the rotor impedance $Z_{k d}$, which is a complex number depending on the reluctance of the rotor body. For prectical purposes, it is more convenient to calculate the reluctance of the rotor body $S_{r}$ in actual units. The reletion between $Z_{k d}$ in ohns and $S_{r}$ in ampere turns per weber is given by

$$
\begin{equation*}
z_{k d}=j k_{v} \cdot k_{i} / S_{r} \tag{D.I}
\end{equation*}
$$

where the constents $k_{v}$ and $k_{i}$ are functions of the effective number of turns in series per phase of the stator winding and the number of phases.

If there is no applied field voltage $e_{f}$, the stator induced voltage depends on the operational impedance


Fig. D. 3 Direct_axis equivalent circuit


Fig. D. 4 Equivalent circuit giving $x_{d}(j \omega)$

$$
\begin{equation*}
V_{a}^{\prime}=j s x_{\dot{d}}(j \omega) \cdot I_{d} \tag{D.2}
\end{equation*}
$$

Hence $x_{d}(j \omega)$ is given by the equivalent circuit of Fig. D.4.
D. 3 Quadrature-axis circuits

The quadrature-axis operational impedance $X_{q}(j \omega)$ can be calculated by a similar method. The dotted lines in Fig. D. 5 indicate the mean path of the quadrature-axis flux if the frequency was high enough to cause a pronounced skin effect. For this case, it is however more difficult to determine an equivalent simplified system. Tests taken on the 30 m machine at Marchwood showed that the quadratureaxis impedance locus agrees quite closely with thet for the direct axis with the rield circuit open. working of the theory is, therefore, based on the assumption the, $t$ the impedances with the field circuit open are the same for the two axes.

Application of the operational impedances to the study of operational problems in synchronous machines assumes that the flux paths on the two axes are independent and that the principle of superposition can be used. Figs. D. 1 and D. 5 show that the flux paths in the rotor body are to some extent independent although there must certainly be some interaction when saturation occurs.


Fig. D. 5 Quadrature_axis flux path of a turbo -alternator


Fig. D. 6 Semi_infinite slab with co.ordinate axes The dotted lines indicate an element of unit area

## D. 4 Calculation of impedance of the rotor body

## D.4.1 Basic equations

The method depends on a mathematical solution for a slab of iron of uniform thickness $2 d$ and extending to infinity in the x-direction, as shown in Fig. D.6. The differential equation for this one-dimensional problem is

$$
\begin{equation*}
\frac{\partial^{2} \mathrm{H}}{\partial \mathrm{x}^{2}}=\frac{I}{\rho} \cdot \frac{\partial \mathrm{~B}}{\partial t} \tag{D.3}
\end{equation*}
$$

where $H$ and $B$ are the magnetic force and the flux density in the $y$-direction. The boundary condition of the problem is that the surface value of $H$, when $x=0$, is given by

$$
\begin{equation*}
H_{0}=H_{m o} \cdot \operatorname{Sin} \omega t \tag{D.4}
\end{equation*}
$$

The problem is to determine the flux per unit width in the z-direction at a given frequency $\omega$. The solution for the condition of asynchronous operation has been made on the basis of a rectangular approximation to the $\mathrm{B} / \mathrm{H}$ curve.

## D.4.2 Explanation of the approximation

The working of the theory is based on the rectangular magnetisation curve shown in Fig. 5.1. The flux density is assumed to have a constant saturated value $B_{S}$ whenever $H$ has a value greater that zero in either direction. The application of this method depends on estimating an appropriate value of $\mathrm{B}_{\mathrm{S}}$ for any particular condition.

The saturated flux density $B_{s}$ must necessarily be greater than that due to the maximum flux $\emptyset_{\mathrm{n}}$ if uniformly distributed. Consequently, at the instant of maximum flux, the distribution of $B$ in the iron is that shown in Fig. D.7(a), where

$$
\delta=\emptyset_{\mathrm{m}} / \mathrm{B}_{\mathrm{s}} \cdot \mathrm{w}
$$

## D.4.3 Calculation of impedance

Eddy currents flow in the iron as a result of the electric force induced by the changing flux. The current density $J$ which flows in the $z$-direction at a distance $x$ from the surface is given by

$$
\begin{array}{rlr}
J & =\frac{l}{\rho} \cdot \frac{d}{d t}\left[B_{S}(\xi-x)-B_{s}(\delta-\xi)\right] \\
& =\frac{2}{\rho} \cdot B_{s} \cdot \frac{d \xi}{d t} & x<\xi  \tag{D.5}\\
& =0 & x>\xi
\end{array}
$$

The current distribution at time 't' is, therefore, that shown in Fig. D.7(c). Since $H=0$ when $x>\delta$, the surface value of $H$ is equal to the total current flowing in the region $x<\delta$. Taking zero time at the instant when $\xi=0$ and $\mathrm{H}_{\mathrm{o}}=0$,

$$
\begin{equation*}
H_{0}=H_{\mathrm{mO}} \cdot \operatorname{Sin} \omega t=\frac{2}{\rho} \cdot \xi \cdot \frac{d \xi}{d t} \cdot \mathrm{~B}_{\mathrm{S}}=\frac{B_{\mathrm{S}}}{\rho} \cdot \frac{d}{d t}\left(\xi^{2}\right) \tag{D.6}
\end{equation*}
$$

Integrating Eq. (D.6) and taking the square root,

$$
\begin{equation*}
\xi=\sqrt{\left(\frac{2 \rho H_{m o}}{\omega B_{s}}\right)} \cdot \sin \frac{\omega t}{2} \text { over the period } 0<t<\frac{\pi}{\omega} \tag{D.7}
\end{equation*}
$$


(a)


(c)

Fig. D. 7 Flux density and current distribution for non_linear theory (a)flux density at instant of maximum flux (b)Flux density at any instant (c)Current density at any instant

The maximum value of $\xi$ is $\delta$, ie.

$$
\begin{equation*}
\delta=\sqrt{\left(\frac{2 \mathrm{pH}_{\mathrm{mO}}}{\omega \mathrm{\omega B}_{\mathrm{s}}}\right)} \tag{D.8}
\end{equation*}
$$

Flux in the rotor body at any instant is given by

$$
\begin{equation*}
\phi=2 w \cdot B_{S} \cdot \delta\left(2 \sin \frac{\omega t}{2}-I\right) \tag{D.9}
\end{equation*}
$$

By Fourier analysis, fundamental component of the flux is given by
where

$$
\begin{align*}
& \phi_{I}=\varnothing_{\mathrm{m}} \cdot \operatorname{Sin}(\omega t-\lambda) \\
& \phi_{\mathrm{m}}=\frac{4 \cdot \sqrt{5}}{3 \pi} \cdot 2 \mathrm{w} \cdot \mathrm{~B}_{\mathrm{s}} \cdot \delta  \tag{D.II}\\
& \lambda=\arctan 2=63.4^{\circ} \tag{D.I2}
\end{align*}
$$

. . .( D.IO)

From Eqns. (D.8) and (D.11),

$$
\begin{equation*}
H_{m o}=\frac{9 \pi^{2}}{640} \cdot \frac{\omega}{w^{2} p} \cdot \frac{\varnothing_{m}^{2}}{B_{s}} \tag{D.I3}
\end{equation*}
$$

Hence the effective reluctance is

$$
\begin{equation*}
S_{r}=\frac{H_{m o} \cdot \ell}{\phi_{\mathrm{m}}}=\frac{9 \pi^{2}}{640} \cdot \frac{\omega l}{w^{2} \rho} \cdot \frac{\phi_{\mathrm{m}}}{B_{\mathrm{s}}} \cdot \varepsilon^{j 63.4} \tag{D.14}
\end{equation*}
$$

and the effective impedance of the rotor body is

$$
\begin{align*}
z_{k d} & =k_{v} \cdot k_{i} \cdot \frac{640}{9 \pi^{2}} \cdot \frac{w^{2} \rho \omega_{o}}{\omega \ell} \cdot \frac{B_{s}}{\phi_{m}} \cdot \varepsilon^{j 26.6^{\circ}} \\
& =\frac{640}{9 \pi^{2}} \cdot k_{v} \cdot k_{i} \cdot \frac{w^{2}}{\ell} \cdot \frac{\rho \cdot B_{S}}{\phi_{m}} \cdot \frac{I}{s} \cdot \varepsilon^{j 26.6^{\circ}} \tag{D.15}
\end{align*}
$$

$$
\text { because } \omega=s \omega_{0} \text {. }
$$

Using rationalised MKS system of units, value of $Z_{k d}$ will be given in ohms.

It is significant to observe thet the phase angle ( $26.6^{\circ}$ ) for the rotor impedance obtained by this method works out to be exactly the same as that sugeested by Chalmers ${ }^{20}$ and Sudan ${ }^{28}$.

