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ABSTRACT

——r

i"ais lhesis examinhes he genersl concepts of limit design
of reinforced concrete structures, in relation to the European
Concrete Jommittee (5.B.B) recommendations and current design
praciico. Whe investigations have been divided into four parts
representing ditfercnt aspects of limit design.

Ynz tasic properties of reinforced concrete members,
rarbiculerly effective flexural stiffness, plastic rotation
zapacity and ultimate strenglh are discussed in Part (2);
Simplificd design caleculations are suggested which have also
beoen comparad with experomental results Lo determine the relative
L involved.

Tphe 1limit design of continuous beams as a special
caloyory of struchares is fully investigated in Part (3);
Tt conears that the degiee of redistribution could be used
as a 1irlt Tetween ulvimate load and working load states; dmple
msthods of detailing to ensure minimum limit requirements have
heen doreloned.

"he last part of the thesis deals with the application
of 1imitv mchhcds to skoletal structures; A general method of
superposition c¢f load systems to obtain the adverse load

combinasions in skeletal structures have been developed.



| | 3
The method of ultimate load design using plastic hinge systems
by a trizl and adjustment procedure has been investigated. The conditions
under which an assumed hinge system would be considered satisfactory

for inelastic compatibility analysis , have been discussed in relation

to statically admissible releasc systems.

It is recognised that instability effects would play an
important role in frame analysis. The limits within which an elasto-
plastic design may have advantages over an elastic design, have been
derived using an approximate method. This is illustrated by a worked

example,

A etn s masarra e oo
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12
NOTATION

The notztion given below are used with a general
set of suffjxes ( one or more suffixes may be used at the same time)

indicated by the followinge

Suffix General Meaning Example
a tension reinforcement Aa
; compression reinforcement Aé
b concrete €
0 cracking limit - LO €50
1 idecalised limit - L1 ©p1
2 idealised limit - L2 ho
v yield conditions eay
u ultimate load conditions Mu
e elastic stage (EI)e
design value G';
g permanent load Xg
q superimposed load (vertical) Ya
v superimposed load (lateral) X+
General Notation
Symbol gﬁﬂ??ﬁ% Meaniqg Suffixes used
A area aivéi b
b width of rectangular section
h effective depth of tension
reinforcement
h! effective depth of compression
reinforcement
hy total depth
x neutral axis depth parameter 1y 2
§ lever arm parameter 1, 2
ox mean compressive stress parameter 1, 2
p" 100.Volume of binders per unit length

bh
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General Notation ctd.

Symbol General Meaning Suffixes used
I second moment of area of section
1 length of span
d"  stress ay 11 by 0,
1y 29 ¥y W
G% standard cylinder strength of concrete
gﬁ; meximum concrete stress in it's idealised

stress strain relation
strain (or eccentricity of axial load) same as for
elastic modulus a, b, e, *, 1

e
E
x coefficient of variation (partial safety a, by gy 9
§

factor)
standard deviation 2y Dy 8y Qs
EI flexural stiffness ey 1y *
g€ /e’ ey 1y *
G permanent load
Q superimposed load (vertical )
\' superimposed load ( lateral)

&fl over load coefficient for Q under G+Q

qu n " "o n G4+Q+V
Kv1 " " noy " G+V

362 " " "y GrQ+V

&5 work load coefficient

>b crack width parameter

}y yield safety parameter

s serviceability parameter

A load factor

M moment 1y 2, *y Uy ¥
N axial force Te 2y ¥y Uy

T shear force *

m M/G'bh Ty 24 %y Uy

n N/J'bh 1y 24 %y Uy

r \/—r-n + n 1y 2y *y Wy ¥



h

General Notation ctde.

Symbol General Meaning Suffixes used
w , A/ @bk
3 A;/ g;,bh
¢ curvature ( or diameter of bars) 1y 24 u
e rotation 1, 2y 1
Op plastic rotation
D ductility ratio
A deflection
R degree of redistribution of moments
X release moment or force
Pi applied load system
fij influence coefflclent
S ‘) "

time they occur.

Any other symbols used are defined on the first

A o s e e
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PART I

Chapter 1

Introduction

The usce of reinforced concrete as a structural
materlal has grown cnormously in the last two or three decadeg, in
which period considerable improvement in the wmethods of construction,
workmanship, and quality control has becn affected. At present
extensive informatio is available on both the properties of materials
ond the functional requirements of the structures. The main problems
dealt with in current research concern ways and means of bringing
in these two aspects together to arrive at a rationaligded design
P ocedure encorporating safety, servicenbility and economy expressed
interrns of the random variation in the praperties of materials and

design loads.

The concept of limit design first developed in
in the U.5.5.R. and currently investigated in greater detail under
the European Concrete Committee may be considered as 2 logical devele-
opment in this direction. The preliminary rccommenflations on the
principles of limit design have alrcady becn published under the
Furopean Concrete Commitbee' IF) The main object of this thesis is
to consider the application of limit design concepts to skeletal

structures.

A qualitative asscsment of the basic criteria
in the limit design is ocutlined in the first part of this thesis. In
view of the radical change in the design concepts, it hos been found
necessary to consider the basic properties of materials and loads as
limit conditions subject to individual variations. The structural
properties of reinforced concrecte members in relation to moment-
rotation characteristics are discussed in Part 2, These are illustra-
ted by th?9§est results reported by the Furopean Concrete Committec

recently.
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The application of limit concepts to the design
of statically indeterminate strucpurces has been treated in two parts.
The design of continuous beams to conform to specified limit require=-
ments in terms of yield safety, crack width, deflection, ultimate
shear and inelastic compatibility is outlined in Part 3. The results
of eight three-span continuous beams carried out at the Imperial
Coolege loboratory are discussed with particular reference to the

above design methods.

Part 4 deals with the design of multistorey
skeletal frames. The basic concept of elementary load systems is
used to derive a general priciple of combined loading which is aimed
at obtaining the ultimate load configuration for a given set of loads,
thus redicing safety analysis to a minimum. This would have similar
advantages to limit design as the principle of superposition in

ordinary elastic design.

The suitability of rclecase systems in an ultimate
load design as suggested by Bakcrgi}" is discussed as a special
case of inelastic compatibility. A simple method of ultimate load
design for multistorey structures which encorporates instability
effects is put forward as a particular limit application of

inelastic compatibility.
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Chapter 2

Reveiw of Design Methods.

2.1 Barly developments.

In the early stages of the development of reinfo-
reed concrete design, from about 1880's to 1920's, Koenen, Empreger,
and mony others have laid down the foundation of what moy be termed
as the first attempts at ultimate load designe. The foundamental
design concepts were mainly empiriccol, in which the safety of the
siructure was based on the ultimate strength as determined by tests
on simple structures. The safety as such was similar in concept to

(25)

the load factor of safety as it appeocrs in current proctice s
a

But as/ method of analysis of complex structures
no suitable ultimate load design procedure was available, hence the
method was necessarily restricted to simple structures, A rigourous
nethod of analysis of complex structures was to await the development
of the elastic theory of bending in relation to statically indeter-
minate structures, which is also refered to as the permlssible steess

method of design.

2.2 Permissible stress method,

The application of the linear elastic theory to
the design of statically indeterminate structures was to change
the design concepts from ultimate strength to that of permissible
stress derived from idealised elastic properties of reinforced
concrete members, In the permissible stress method the safety of the

structure was defined interms of the " stress factor of safety ",

As a method of design, the elastic theory
offered great advantages in the superposition of stresses due to

combined loading and simpllified analytical means based on slope
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deflection (1918), moment distribution (Hardy Cross Method - 1930)

and other methods of rcelaxationes

However, it was known that the elastic ideali-
sation of the deformation characteristics of reinforced concréte
nembers was very opproximate, and that in reality reinforced con-
crete undergoes considerable inelastic deformation befdre failure.

(1), Whitney(a) and meny

Experimental work by Glanville and Thomas
others showed that continuous becms ond simple portal frames could
carry much higher loads than those estimated under the permissible
stress method. The additional loads in these indeterminate stfuc-
tures were seen to/ggssible due to the plastic rotation at critical
sections which helps to " Pédistribute " the moments to those sections
which  afe still elastic, until mechanism conditions were

attained or local/%%&%%?%lace. This was to show the shortcomings of
the permissible stress method to predict the actual safety inherent

in elosto-plastic structures,

The permissible stress method of analysis was
partly modified to take into account of the above observations by
the introduction of the concept of M redistribution of moments "
applied to the conventional elastic anplysis, In ity application
to the design of indeterminate structures a maximum of 15% redistr-
ibution has been permitted by the British Code of Practice since
1939, where as the Russian, Donksh ond some other BEuropean Codes have
permitted larger amcunts of redistribution under particular circums-
tances. The main difficulty in obtaining a quantitative limit for
the degree of redistribution was due to itd#4 dependente on the
requirements of serviceability conditions under working load and
the limited degree of plastic rotation observed in reinforced
concrete members. In contrast, it must be noticed that these
difficulties have not been encountered to the same extent in steel
structures for which an idealised plostic analysis has been

developed subsequently.
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2.3 Rigid - plastic analysis.

The experimental investigations into the plastic
behaviour of steel structures in the 1930's by Leibnitz and later
by J.F.Baker and others(B) have laid the foundation for a rational
basis of safety analysis based’', on the collapse state. This has
been later developed into the Rigid -Plastic Theory, which is also
refered to as a " Limit Design " due to the upper and lower bound

(3450,452)

limits of the collapse load factor,
simple
This theory is extermely/in its application,
and where the priliminary assumptions are satisfied, the accuracy
of the analysis is quite reliable as in the case of continuous

(3)

beams and portal frames etc ~’. However, subsequent research has

shown that in multistorey structures and those that contain members
that carry large axial loads, the instability effects may seriocusly
affect the limits on the collopse load factor, as the collapse mode
may be altered due to the deterioration of the structurdl Atiffness
with the formation of a few local hinges before complete mechanism

(51). The seriousness of the problem has

(51)

conditions are reached
been illustrated by Wood

single bay frame, in which the collapsc load factor has been reduced

in a typicol cxample of a four storey

from 2.21 ( as estimated by the rigid-plastic theory ) to about 1.70
due to instability effects ( 23 % rcductitn ). Some approximate
methodékf correctin% for the instobility ?ffects have been later
suggested by Heymon 45), Holmes and Ghand£$53).

The main difficulty in extending this method
to reinforced concrete design wos the uncertainty of the degree of
plasticity of reinforced concrete members.It was known already due
to early tests, that when concrete commences to crush at critical
sections due to c¢xcessive strain, the strength of the section
tends to decrease, which was contrary to the basic assumptions
in the plastic ° ‘theory,_ . A method of reconsiling the limited

plasticity in reinforced concrete has been put forward by
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A.L.L.Baker in the Ultimate Load Theory(5).

2.4  Ultimate Load Theory.

In 1949 Baker (5) hos suggested that the classical
Muller Bresleau equations for hinge rotations in a statically
determinate structure could be used as a basis for an elasto-plastic
method of design for reinforced concrete structures. Statical’
determinancy in a hyperstatic structure was attained by the introdu-~
ction of suitably placed " plastic hinges ". The method of design
was formulated to on ultimate theory for reinforced concrete and

5(5)

prestressed concrete structures in 195

The wltimote load theory is based on an elasto-
plastic ideclisation of the moment rotation characteristics of
reinforced concrete members and the moximum load at collapse which is
refgrred. . to as the ultimate load, The design procedure involves
. trial and adjustment of the plastic hinge moments to obtain compat-
ible hinge rotations, which must also lie within specified permissible
limits.

out

Extensive research Eos been corried/on the proper-

(8,28,34,23)

ties of plastic hinges in reinforced doncrete members
and the flexural stiffness characteristics(§7) The basic problems
involved in the determination of the uliimate load and hinge compati-
bility in general frome design are consideped in greater detail in

Part 4 of this thesis.

2.5 Limit Design Method.

It must be remembered that in an ultimate
load method of design aimed at greater economy, whether a plastic
hinge method or an idealised clastic method with subsequent redistr-

ibution of moments is used, the nett effect is to reduce the over-all
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safcty.This may also result in higher stresses at critical sections
. larger deflections and crack widths at working load which would
necessarily call for more stringent checks for unserviceability
than hitherto recognised.

(10,11 where ultimate

In Russian design practice
load analysis with redistribution of moments upto 30 % has been
allowed for a considerable time, the problem of unseérviceability
at working load has been investigated in greater detail. Since 1955,
the metho® of design for reinforced concrete structures has been
based on the concept of limit requirements, The safety and servicea-
bility requirements which are defined interms of the different modes
of failure and causes$ of unserviceability are considered as limit
conditions. These conditionsFre related to the probability of over-
load, variation in the properties of matérials, errors in the design
assumptions and methods of construction i%terms of individual design
coefficients, which replace the concept of overall safety factors
that are being used in the load factor method of design and the

stress factor of safety .

The following limit conditions have been recomm-

(10)

ended in the Russian Specifications as the most important factors

to be considered in the limit design of general structures.

(1). Ultimate strength based on the probable load bearing capacity

of the structure which must be sufficicnt to withstand the specifiéd

load.

(2). Excessive deflection at working load depending on the type of

structure and it%p utility.,

(2). Excessive crack width at working load subject to enviromental

and aesthetic considerations,
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The introduction of the limit concepts to both design

and specifications helps to reduce the Mumiversal factor of safety "
as applied in the permissible stress method and the load factor method
to its constituent basic causes of unsY iceability and partial or
overall failure. This would enable the individual limits to be invest~
igated thoroughly so that they moy be provided for with a reasonable
degree of probability which would be compatible with the minimum
requirements of the structure and the type of loading.

The application of limit concepts to the design of
reinforced concrete structures has given risc to considerable interest
in a statistical study of the interlinking ?j;§meters affecting the

illustrate the

advantages in the limit design methods in cvluating the actual safety

(12,13)

design methods. The investigations by Tichy
in structures. Cohn and Petcu have recently suggested the
application of the limit concepts to obtain an " optimum solution "

for continuous beams.,

The proposed European Concrete Committee recommend-

(14)

ations for an International Code of Practice are based od the
limit design approach in it specifications of the material propert-
ies and the design principles. It further suggests that further
investigations should be carried out so as to determine suitable

design methods of ensuring the desired limit conditions.
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Chapter 3

Limit Design of Reinforced Concrete Structures

3,71 Limit design criteria

The application of the limit concepts to the design of
reinforced concrete structures is closely related to the deformation
characteristics of reinforced concretc members and the minimum requi-
rements of the structures. These may be broadly classified into two
1limit categories depending or the loads at which they are to be

investigated.

(a2) Failure Criteria or Collapse Limit.

The ultimate strength required of the structure
could be defined by the probability of the over load and the possible
modes of collapse such as,

(1) formation of partial or complctec mechanisms of collapse
in the structure,
(2) excessive shear resulting in local failure,
(3) failure due to insbility effects either in the elasti
stages or under clasto-plastic coriditions.
It must be noted that each of thé above modes of failure must take into
accotint the probable distributions and the adverse effects of the
combination of the live loads and the deod load.

(b) Serviceability Criteria or Service Limits.

The minimum service requirements for different
structures may be specified depending on the type of structure and
its wutility. Structurally it would be required to satisfy these
minimum conditions for all the possible combinations of the super-
imposed loads and the permanent load which together comprises the
working load. A structuraL/%g%ﬁga that ensures both the limiting collg-

pse and service requirements is termed o limit design method.
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2.2 Basis of Collapse.limit Analysis

Recent investigations into the basic criteria of limit

(11,38) indicate that it could be separated into the following

analysis
three stages,
(1) Load Analysis
(2) Material Analysis
(3) Structural Analysis

Bach of the above investigations may be carried out
independently and the minimum reguirements could be easily specified
individually. Thus the limit design procedure really consists of ensu~
ring the limit requirements with a reasonable degree of probability
based on the above analysis, which replaces the concept of universal

safety completely.

(1) Load Analysis.

The degree of accuracy with which any structure could
be analysed for safety would not excced the degree of accuracy with
which the applied loads are known, however precise the method of
analysis may be. Hence a thorough analysis of the applied load systems
including the mean working loads and the degree of variation of each

of the loads within a given pericd of time would be absclutely vital.

The over load coefficient ( or partial safety factor
for load ) would depend on the probability of the specified load being
exceeded within the lifgtime of the structure. Even then, the most
adverse effect of the loads may occur due to different combinations
of the permanent load with the superimposed loads. Thus the over load
coefficient when applied to groups of leoads must also take into accou-

nt the probability of their acting together.

The loads acting on structures in general may be
devided into four categories based on their characteristics,

(a) Permanent load or dead load, (b) Superimposed load or live load
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(c) Lateral load due to acrodynamic forces or carthquake movements,

and (d) Transient loads.

(2) Permenent load or dead load consists of the weight of the structure

and permanent fixures, These have very small coefficients of variation
due to change in the moisture content, dencity and errors in the size
of members; but in general they rcmain constant throughout the life of
the structure. In most cases they could also be determined- accura=- .
tely. Tn U.S.8.R. it has becn found ' !

permenent loads varies in the range O - 0,15 « In toking these into

that the dispersion in the

account, the Russian specifications provide for a small over load
coefficient of 1.1, Although the British Code does not recognize the
distinction betweén the dead and the live loads in safety analysis,
it provides an equivalent load factor of 1.8 (25). Similarly the ACI
Code of practice provides for a factor of 1.5 under dead and live

load and a factor of 1.25 under dead load, live load and wind load.

(b) Superimposed load or live load. The moveable loads that the
structure is intended to caxpy’ during its lifepime could be termed as
the superimposed load. Naturally it could be expecied that the variat-

ion in the superimposed load to be greater than in the previous case.
This may also depend on the type of structure and the load itself,

For example it has been found that the coefficient of variation in the
superimposed loads in private buildings is about 0,10 and in industri-
al buildings it was about 0.15. Hence the over load coefficient would
be defined according to the type of structure and the loads anticipated.
A list of comparative over load coefficients and specified loads is

given in Table 3.7.

(¢) Lateral loads. Thesc are subject to lerge variations depending

on the locality, nature of building and iiS environment. Hence in
structures where the lateral loads are of primary concerpn, considerable
precautions must be taken to safeguard against their unduly large

variations. But in structures in which it is not of primary concern,
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TABLE 3,1 Superimposed loads and over load coefficients *
;

Type of structure B.S.(17) A.S.A.(Sg) Russian(11)
1o Apartments 30 (1.,8) | 40 (1.8) | 32 (1.4)
2. Offices , dormitaries 50 (1.8) | 80 (1.8) | k2 (1.4)
3. Offices and dormitary halls|70 (1.8) | 100(1.8) | 63 (1.3)
4, Dinning halls, restoaurants,

auditoriums, stairways. 80 (1.8) | 100(1.8) | 63 (1.3)
5« Theatre hills, ifitaces odf

public gathering. 100(1.8) | 100(1.8) | 85 (1.2)
6. Light storage (minimum) 150(1.8) | 125(1.8) { 85 (1.2)
7. Minamum for book storage
and warchouses in commercial
and industrial buildings. 200(1.8) | 250(1.8) | 105(1.2)
8. Hydraustatic pressure of
liquids.® - - - (1e1)
9, Crane loads - - - (1.3)
10. Pressure of granular

materials.” - - - (142)

* The figures represent the specified loads in lbs/sq.ft.

The figures within the brackets refer to the over load

coefficient or to its

implied in the safety analysis.

equivalent partial load factor

+ In these cases the actual loads must be considered.
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it could be assumed that the probability of the simultaneous occurarnce
of loads in categories (b) and (c) at their peak values are much less,
so that the over load coefficients when these are considered together
may be reduccd.A similar consideration is given in the stress factor
method of design, where the permissible/%gégig exceeded by as much

as 40 % due to the wind loads 17). Table 3.2 shows a comparative

study of the over load coefficicnts,.

Table 3.2.
Type of Load Over load coefficients
B.S. AC.T. Russian
G + Q 1.8(G+Q) L | 1esE 1.8Q [1.1G + XqQ
G + Q + V 1.3(G+Q+V) | 1,25(G+Q+V) }1.1G + qu + gvV
G + V - 0.9G + 1.1V -

* This is based on an allowance of 40 % increase in the stress when

wind load acts,

(d) Transient loads. Special loads that meg act on the structure at

differant times although it has not becen designed primarily for
these loads may be considered as transient loads. Some examples are
constructional loads and loads due to flooding in particular areas
and due to variation in temperature and crecp in ordinary structures.
These loads cannot be assesed accurately but must be allowed for in

the design so that no permanent damage may result due to them.

(2) Material Analysis

The basic properties of concrete and reinforcing
steel vary considerably depending on the conditions under which they
are being manufactured. Thus the actuol properties could only be
denoted by their atatistical mean values and the respective coefficie~

nts of variation. Fig 3.1 shows the typical variations in the strength
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of specified samples of steel and concrete(qo).

frequency frequency
1
N
/
\
I’ !
’ \‘ //5\
] \ . .
14 \ /" \\
,// \\ {/ \\
1 e =~ SN~ | =7 | | Ny
¢85 .90 495 1.00 1.05 1,10 1,15 e85  «90 495 1400 1405 1.10 1.15
4 f
G;/ G; mean 61)/,6% mean
(e)Vopiation in the yield strength (b)Variation in the crushing
of reinforcing steel, strength of concrete.
Figo 301

The frequency distribution of the ' strength !
of both reinforcing steel and concrete approximates to & normal curve and
the respective coefficients of variations are about 0,05 and 0.10-~0.20,

the latter depending on the degree of quality control.

The differences in the probability of failure
of steel and concrete are taken into account in the limit design of members
by the intréduction of ccefficients of variation as in the Russian

Specifications ‘11 or by the use of particl safety factors as in the C.E.B.

recommendations(qu). Table 3.3 gives the comparative reduction factors for
the mean strength (coefficients of variation or the inverse of the partial
safety factor) to be used in limit design. The coefficients of variation

are obtained by using the standard formula,

¥F = 1 - k%
¢

where ¢ is the standard deviation as obtained from distribution curves as

above and k is a factor based on the desired risk of failure.
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TABLE 3.3 Coefficicnts of variation

Russiazi C.E.B: |
Grade of concrete 35-200 | 300-600
Concrete in compression (4)* 0.60 0.65 0.67
" (B) 0455 0.60 0.67
Concrete in tension (a) Oekt5 0450 0.67
" (B) G0 | 0.45 0.67
Mild stecl 0.90 0.50
Cold worked steel 0.80 0.90

+ The gradé of concrete refers to the specified strength in kg/cmz.
* (A) and (B) refer to the concrete obtained under factory and site

conditions.

(3) Structural Analysis

The-vthods of structural analysis available at
present whether conventional elastic, elasto-plastic, or rigid plastic
are based on idealised properties of members which may be considered
necessary to obtain simple methods of analysis. However it could be
seen that some of the idealisations are in greater error than others,
leading to 'safe' and 'unsafe' results as the case may be. If these
factors inherent in the methods of anlysis are taken into account, it
would be possible to associate a coefficient with each of the methods
of anlysis based on any particular idealisation representing the
reliability of the method of anlysis. This would enable the design to
be related to the actual structure on a similar basis of probability
of collapse irrespective of the simplified idealisations. Such a
coefficient could also take into account incidental errors due to

variable phinomena like diffemential settlement of foundation,
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vibrations, partial fixity at footings etc.

(11)
The work load cocfficient suggested by Goldenblatt

serves some of the above purposes, A similar suggestion has been

made by. Wood amounting tc as incPease of 25 % in the ultimate load
factor in conjunction with the rigid-plastic method of analysis which
ignores instability effects. In this respect the work load coefficient
serves as a 'safety factor' on the method of analysis and must be
determined for individual categories of structures in relation to the

simplified methods of analysis used in the design.

3,3 hpplication of limit concepts to design

‘In 1dimit design,the results of the material
and load analysig are used individually to determine the respective

coefficients of vatriation in the material properties and the over load

coefficients(1o’14). Thus the following coefficients may be assumed
to be known.
Coefficient of variation of concrecte ¥y = 1-kgb
" " steel Y, = 1=k
Over load coefficient for permanent load ¥g = 1+k Sg
" " supcrimposed load
(vertical)l =1tk §
¢ ¥ a
" " superimposed load
(lateral ) T, = 14k Sv
Work load coefficient Ko

where k and $ etc. depend on the degreec of control and acceptable
risks., In the case of over load coefficients, the value of k also
depend: on the probability of combincd load when different systems of

loads are considered together.

The design loads are then given by, G* = Xgﬁ" Q* = KAQ etc.
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The forces in the members of the structure are obtained by using any
particular method of analysis as a function of the design loads,

which may be expressed in the form,

M F ( G*, Q*, etc. ) e (1)

N F ( G*, Q*, etc. )

i

Similarly the design stresses of the materials are obtained as follows,

o = ¥y Ty
Ca = ¥q 04

where §_ , §. refer tc the mean strengths,
a b

The strength of members M*, N*, etc. may be calc-
ulated from the stress strain characteristics of the materials
(idealised) , and the member properties. The work load coefficient
is encorporated to allow for the deviation in the actual member
properties from the idealiscd properties assumed in the method of
anAlysis (A) above. Then the strength of the members arc given

by,

M*

xo F(Ty 0% +b, b, etc.) ®

N*

KOF (G;, gr1byh, etc.)

The compatibility of (A) and (B) produces a
1imit deslgn which when all conditions of loading are considered
could be regarded as a sufficient safeguard against all modes of
failure. Thus this method this method provides an ideal collapse

limit design

The detail anlysis of service limits are discus-

sed in Chapter 11 with particular refercnce to continuous beams.
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Chapter 4

Stress strain characteristics of bound concrete

4,1, Basic properties of concrete

Extensive roscarch has been carried out in the
recent yeaxrs to study the basic characteristics of structural
concrete as it forms the primary material used in the tonstruction
industry. The stress strain characteristics of plain concrete under
varying loading conditions show that it is a brittle material, but
under carefully controlled test conditions, some plastic properties
could be detected(aq’ag). It has bhecn found that the moXimum stress
in untexial tests on plain concrete varies from 0.8 times the standard
cylinder strength to abcut the cylinder strength depending on the
fate of loading(ai) The failure strain which is much more influenced

by the nature of loading and the test machine may vary from about
0.0015 to 0.004 (19:21,22)

The effect of reinforcement on concrete is to
change sorie of the above characteristics, so that reinforced conerete
shows more marked plastic propertiess Richart et al(qg) and 6thé¥§123)
have shown that the effective strdngth of axially loaded columns could
be increased by the use of binders as given in the following

empirical equation,

— " 131
N = Ab G’b + 261 Aa cray eeee (He1)

where A; is the area of binders per unit length of the column.

They also found that the ultimatc concrete sfrain i.e. strain in the
extreme compression fibres in concrete just before the applied load

starts decreasing, was raised from 0,0015 to about 0.015 due to the

presence of closely spaced binders. Similar results have been

(819).

Lately it has been shown that binding is one of the many parameters 4

observed in bound columns subjected to axial load and bending

influencing the restraining sffects of concrete, thus effectively
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(8,28,31)

increasing its ultimate stress and strain The other parameters
that influence the ultimate strain are bending moment gradient and
curvature at the section. An approximate empirical relation to evaluate
the effects of the above parameters on the ultimate strain is derived

in the next section.

L,2 Ultimate strain in bound concrete.

Consider the forces acting on the concrete in the
compression zone near the critical section of a beam which is subjected
to bending as in Fig. 4.2. Let the area of binders per unit length
of the beam at the section be A"a" let Fx be the axial force in the
compression stress block and Fy be the lateral restraining force
per unit length as indicated. The lateral restraining force Fy is a
function of the axial force, the curvature at the section and the
force exerted by the binders. The latter is mainly duwe to poissons
ratio effect of the concrete under compression. Thus if Fb be the
force in the binders, it may be regarded as proportional to the ratio
of the depth of binders embeded in the compression zone and the depth

of the compression zone.

. _ xh - d' W
i.e, Fb = B( e ) Aa Cf;y

where B fiay be regarded as an empirical constant.

The curvature at the section is given by eb/xh,
and the force Fx is equal to the force in the tension reinforcement.
Then the lateral restraining force Fy could be given by the

semi-empirical relation,

Fy = erb /xh+F.b
xh- @'
= _— A-” 0’ seesae (4.2)
AaG—aY—ei-&'B( xh)a ay
xh

where Aa is the area of the tension reinforcement.
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1
f ebo be the ultimate strain in the concrete due

to axial load in the absence of any lateral restraint, the the increa-
sed ultimate strain value e when the concrete is under the action

b2
of a restraining force Fy may be given in the form

= +
e 1o £ ( Fy ) cenee (4.3)
Considering a simple function of the type 4.3, the following expression

for the ultimate strain is obtained,

ebz = ebo + k F}}' sseve (1'*‘-1'*‘)

where k is a constant, S astituting for Fy from 4.2, e . is given by,

b2

e A G Xh hand d' 1]
v o +  k( bxha ay + B -—;;;—— Aa G;W')

€ P a1
= e + k-d. bh ( bz + B pH - E—E—Ji ]
ay xh

bo xh
1
— 1t it -
= ebo 1 + k1 P + ( k2 - k3 P ) x -Q-o( 4.4&)
where e s K. 4y k., 4, k, could be considered as approximate constants
bo 1 2 ) PP

which may be obtained from test results where each of the parameters

are varied iﬂtern.

The effect of variation of the neutral axis depth
on the uvltimate strain when the amount of binders is kept constant
has been studied bg the author in an earlier series of tests as shown

(8,34

in fig. 4.1b. The stress strain curves for four axially loaded
short columns in which the amount of binders are varied from O - 3.5%
are shown in Fig. 4.1a. From these results the following approximate

values of the empirical constants in equation b4.ta are obtained

e = 0.0015, k1 = 1-5 s kz = O.? 3 k} = 041,

bo
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bubstituting for these values in the original equation, the ultimate
~ strain in bound concrete subject to bending could be given by the

simple semt-empirical formula,

epp = 0.0015 [_1 + 1.5 p" + (0.7 - 0.1p" )%2]
eeees CL4,5)

Equation 4,5 seems to explain the observations that have been reported
bg Chan(23), Richart et al(qg). It may be noted that when the axial
load is large, the neutral axis depth is also large. Then the ultimate
strain in concrete with 1little or no binding could be as low as

0.0015 as in the case of plain concrete specimens. In beams where

x, is generally less than 0.5, the C.E.B. recommendation of

Cp = 0.0035 seems to be a safe limit. But in very under—reinforc?%h)
beams higher values of the ultimate strain as reported by Bremmer

and the author may be obtained.

L.2, Maximum stress in concrete under flexure.

The concrete subjected to flexure as in Fig. 4.2
also shows an increase in the crushing stress due to the biaxial
nature of the stresses around the concrete in the compression zone.
Thus in beams the maximum stress before concrete starts spalling
may be as high as the standard cylinder strength or even the cube
strength, depending on the nature of the restraining force Fy as

explained earlier

Considering the neutral axis depth as the most
important parameter influencing the ultimate stress, the following
approximate expression for the maximum stress ig concrete has been
suggested by the author, which is applicable for rectangular beams
and colurms as shown by test results,

gt = gy o8+ 2l ceeen (1.6)

2
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wherecré is the cylinder stress. For x,< 0.5, the upper limit of
G‘E is assumed to be equal to G’é. As a reasonable approximation the
maximum stress in the concrete in axially lcaded cclumns may be
assumed to 0.8 of the cylinder stress and in under reinforced beams

it may be assumed to be equal to the cylinder stress,

Considering the separate relations for the ultinate
stress and strain, the idealised stress strain curve for concrete
subjected to bending is given in Fig. 4.4, The variation of eo
with the neutral axis depth and the amount of binders is shown in
a diagramatic form in Fig. 4,3. The properties of the stress block
in a rectangular section are given in Fig. 4.6 where &X and [ are
the usual stress block paramecters, Since the ultimate strain and the
neutral axis depth are now inter related, the actual properties
could only be obtained by trial and error. But it could be seen from
Fig. 4.6 that when e ., is greater than 0.004, the change in both

b2
and ) is very smzll.

It may be noticed that in beams the strength
calculations are relatively unaffected even if an approximate value
for the ultimate strain is assumed. However the neutral axis depth
thus determined may be used to cbtain a better approximation for the
value of the ultimate strain to be used in the permissible rotation

calculations.
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Fig. 4.1(a). Ef ective stress strain curves for four short
reinforced concrete columns
e -~ ultimate v 4]
. strain
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u Z u Xu
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(safe limit for experimental

results)
CchBo: C = 0'0035
6.5 x 10° u
(Hognestad)
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X

Fige 4.1(b). Variation of ultimate strain with neutral” axis depth




Fig., 4.2 State of Stress in Concrete Under Flexure
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CHAPTER 5
DESIGN OF SECTIONS

Se1. INTERACTION CURVES FOR COLUMNS,

Consider a rectangular section subjected to axial load and
bending as shown in Fig; 4,5, Let Aa and A‘a be the area of tension

and compression reinforcement and th be the depth of the neutral

‘v

axis from the extreme compression fibres at limit L,2. Then for

equilibrium of axial load and moment in the section,

= r . (
N, =N, +§_ W .o o'5.1)
My, =wxh N = N' 4t 4 N b + Nh, e s «(5,2)

21 o ! 2 ) i il

- ?
K

where the forces Na’ N‘a, N:D are given by

N =4® &3, bha™

Q

ay .
oL ATE o o3t t
Na Aa 'a a bh%

/

N, = O(X_, bh ¢ G;y

b 2 b-
G'a, G'a' depend on the strein in the tension and compression
reinforcement which could be easily obtained in terms of the ultimate
strain in concrete and the depth of the neutral axis; The stress block
parameters ey and ) could be read off from Fig. 4.6 corresponding %o
the ultimate strain; .Hence the axisl load N2 and moment M2 at limit

L2 could be expressed in terms of the single parameter Xse
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Fquations 51 and 5.2 may be non-demensionalised by dividing

them by 0~_bt ph and 6{3' h;hz respectively substituting n= N, /c:;)t bh,

2
and my= M,/ (7 toh

n= o 0" + T T <o (5:3)
: > ne
03 (r;y :réy /s
W, D X ¥ WO
T2 = T oy 2h at G B ‘ .

The interaction curves in Fig, 5.1 are obtained by plotiing
n, against m, for varying percentages of reinforcement. These
curves also show the values of Xy which in term would determine
the value of the ultimate strain in concrete to be used in inelastic

compatibility calculatlons.

5.2 Simplified calculations for beams

In practice reinforced concrete beams are wnder-reinforced and
their design could be greatly simplified as the changes in stress~
block parameters for variation in the amount of reinforcement has

very little influence on the ultimate moment when the actual amount

of reinforcement is small,
PR 4
When (w-W) < 0.3, the average values of K=0.41 and
of,= 0,85 have been used to obtain the following simple expressions

for x, and m, at limit Lz,

_—
= 1.18(“—‘_‘.&3) e e 2 (5.5)
e @-T) [ 1-o0us (®-3))

+ ‘L:-J/('l—%') ...(5.6)
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X, and m, are plotted against W~w! in Fig 5.2 for a value

2
of d' = 0;10. Similar design charts may be obtained for other
h
values of d'. It may be noticed that the grade of steel is
h .
already taken into account in T3, hence the charts are applicable

for all grades of steel.

5.3 Comparison of theoretical calculations with CEB test results.

The experimental results of an extensive series of tests to
determine the moment -~ rotation characteristics of reinforced
concrete beams and columns carried out under the Buropean Concrete
Committee have been reported recently (ref;9). The results of
80 beam tests and 32 column tests have been analysed using the
stress-strain relation suggested in chapter (4) and the results
are presented in Tables. 5.1 and 5.2,the details of the beams are
given in table 2 in reference (9) (cee Appergix I).

The beam calculations based on the proposed stress block
were compared with the similar calculations based on other stress
blocks suggested by the Buropean Concrete Committee (ref 14) which
allowa for a rectangular - parabolic stress block (CEB. R.P.) or
a parabolic stress block (CEB.P) and the stress block suggested
by Hognestad (ref 22), The essential properties of the different
stress blocks are expressed in terms of thed¥ ¥ parameters as in

the table below.
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TARLE 541
Beam No, Ultimate Strengéh Stiffness | Ductility
X fﬂszn Eexp
° M cal % oet écal Dexp Dcal
Imperial College 1 A5 0.98 46,3 | 0.97 - -
«196 1.06 53,8 1 1,00 - -
" : 372 1.08 | 7.1 | 1.20) 10 | 7
X i 31 1.11 8.2 | 1.1k 7 5
) 489 | 1.00 | 88.7 1096 10| 5
X Z 435 1.03 86.5 | 1.00 | 10 6
14)
" 7 «381 0.98 91.9 | 1.4 | 22 4
n 8 502 0.97 |107.0 | 0.97 | M L
Madrid 6 =1 37k 1.16 73.7 | 1.60 - -
" 6 =2 362 118 72.5 | 1.60 - -
" 6 -3 371 | 1,09 | 69.6 | 1.8 8
Paris(IRABA) 42 .050 1.18 27.3 | 1417 | 55 | 29
" A5 2ho | 1.08 | 60. | 1,061 6| 8
" A o7k | o121 | B2 [ 1,29 k9125
" 411 038 | 1,21 | 24.5 | 1000 8| 29
" B2 o8 | 1,01 | 26.8 | 1.09 | 30 | 29
" BS 250 | 1.10 | 62.0 | 1,08 ] 20 | 8
" B8 083 1407 35,8 | 1.26 | 33 | 27
" B11 038 | 1e21 | 2.l | 1018 | 38 | 27
Porto BL <39k 0.95 76.5 | 1.30 -
" B6 2358 1,04 58.6 | 1.23 | 17
" BY 157 1¢11 Le,1 | 127 8 16
" B9 065 | 1.18 | B1.h | 143 72| 26
" B10 078 1.06 33.6 | 1,01 k2 { 25
" B12 032 1,28 | 21.6 | 1.06 | 110] 27
Torino A6 197 1.18 54.5 | 1.23 11y 10
) A9 068 | 1.23 | 0.3 162 - | -
" A12 037 | 1.7 | 219 b6 | 28] 26
" D5 621 121 | 772 43| - | -
" D11 .119 1o49 30,4 | 1415 | 27| 12
" D8 +138 1.36 32,7 1 1.32 | 22| 10

ctd.
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TABLE 5.1 ctd.

C&CA Aly L1 1a16 775 1.42 - -
" A7 ok 1,01 4549 1457 - -
" A10 « 077 1410 3345 1.08 - -

Imperial College 9 124 1¢11 2841 0.91 9 11
" 10 | 4176 1.09 33.4 0.96 12 8
" M | 266 | 1.12 | 41,1 | 0,97 | 9 6
" 12 | r96 1e25 Lz L 0.99 L 6
" 13 | 507 1410 5841 1.00 b
" 1197 | 1413 | 35.4 | 0.98 | 15 1h
" 151 389 1415 k9.7 0,98 11 12

Torino FlL L7 1 0,95 | 65,9 | 0.97
" L 568 | 1.07 | 74.2 | 0.96

Paris (IRABA) E6 52 1.16 58.2 1435
" K9 «138 1408 32.1 1.22 10 12
" F6 316 | 1,07 | 4.1 | 1.23 | 3 4
" F9 .078 1405 23,3 1.03 13 14
" He 097 | 1.24 | 28.2 | 1.03 | 16 8
" H5 «525 1.0 | 63.9 | 1.18 | 2 2
" H8 179 | 1.09 | 39.9 | 0.9% 1 15 10
" 511 .090 1410 26,9 | 0.90 10 15
" Rk 516 | 1,03 79.5 | 1.31 | - -
n RS 6323 | 1,09 | 63.0 | 1.11 ]| 3 3
" R6 296 | 1415 | 47.1 | 0.96 | 5 5
n N2 186 | 1417 | 39.9 | 123 | 21 8
" N5 649 1405 757 1433 2 2
" N8 70 | 1422 | 39.6 | 1.21 ] 7 9
" N9 «115 1405 3041 1.15 8 12

Porto 6 L300 | 1,01 63.4 | 1,17 | b
" C7 2ho 1.00 he,7 1,00 14
" C9 077 1423 29.1 1.20 27 19
" ¢10 119 | 1,07 | 315 | 0495 | 25 15
" Cc12 LOL2 1436 214 0.90 28 19

ctd.
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TABLE 5.1 ctd.

Porto M9 079 | 134 | 29.5 1 0.95 | 18 | 19
" M10 .107 1,07 30.9 0.63 1 14
" "Mz | oo | 1.38 | 20,9 | 0.76 | 22 | 19
Mexico AlghC «165 136 38.2 0.86 14 11
" At134 132 | 1.3h | 33.7 | 0.62 | 5 13
" AL192D 150 1¢31 348 0.83 19 12
" ALOOB +163 124 36.3 0.83 19 8
" A264G $083 | 1.2k | 25.5 ] 0,83 | 10 | 15
" h2127F 087 1427 25;7 0.90 15 14
" A2192H 072 1034 23,8 0.80 10 15
C&CA Ch 557 0.96 778 1.24 - -
C5 517 1 1,07 | 73 122 | - -
c8 « 131 04Ok 36.4 0.89 - -
C11 073 1§27 2742 0,89 - -
L5 o485 1407 712 1420 - -
M5 «158 1436 40,0 - - -
M11 078 1.28 28,2 1435 - -

Mean Te1% 1.1

Standard Deviation 0,117 0.21

TABLE De2e  COLUMN TESTS

C
olumn No, %o cal| ™ cal] %2 cal| T2 cal| Tu exp f_}}__@_}gg
r
2 cal
Imperial College A1 .50 .28 L0 488 | W4s6 0,935

" A2] .65 .28 53 <599 .596 |0.995
" A3 .7 26 +59 J6h5 Gl 11,000
" At 92 31 «Sh +904  11.033 |1.140
" A511.10 11 ,98 .987 .996 |1.010

ctd..
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TABLE 5.2 ctd.
Imperial College A6 | 1,09 .09 11.03 } 1.003 T 1.071 %’ 14070
" B1 155 31 16 «555 «555 | 1.000
n B2 | .60 .27 «50 570 Sk6 .958
" B3| .75 25 | WJ6h .688 658 957
" By | .97 +18 .86 .880 .875 .005
" B5 | 1.00 +08 | 1.0k 1,042 «990 «951
n B6 | - .08 | 1,07 1.072 1.20% | 1.118
Torino A2 | .81 «17 57 <594 660 | 1.111
L D2 | ,90 | W21 55 589 1 760 | 1.290
n 1] .80 .18 W62 W645 «657 | 1.020
i F2 | .82 «16 o67 640 664 | 1,040
" F3| .60 +20 o48 2522 536 | 1,028
" G1 - «12 +83 .839 «991 | 1.182
" H2 ] .78 | .21 oSkt +580 670 1 1.155
n L1 | 1.05 v 13 «80 «811 .902 | 1.119
" A3 ] .65 21 51 «551 571 | 1.040
C&CA A1l .89 o1 o7 +750 o678 <905
" A2 | .38 .16 o32 0362 $364% I 1,000
n C1] 9k o13 «81 820 . 785 «958
" c2| .38 021 39 45 25 «958
L €3] .18 »15 «15 o211 234 | 1.110
" E1{ .75 «10 o3 845 606 .718
" E2| .54 25 W45 «517 «520 | 1.010
" E3| .18 o 17 .16 W23k 2246 | 1.050
" G| W33 | 18 ] 32 «367 326 | .890
" L2 | .45 o22 40 159 429 0935
n M2 | W45 o328 60 «711 .4394 -
Mean 1.020
Standard Deviation 04105

e

ol
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Table 5.3 stress=block Parameters.

Parameter CEB. R.P. CEB«P, Hognestad ; Proﬁosed
ij/cré 0.8 =~ 0.82 1.0 0.85 1.0
X, 0.81 0.67 0.79 0.85
¥ 0.41 0.375 0.43 0.1

The standard deviation in the ratio of ultimate moment
to calculatsd limit moment due to the four methods are 12.5%
(CEB. R.P), 11.8% (CEB.P), 11.7% (Hognestad) and 11,7% (proposed
method). The corresponding mean values were 1.16, 1.15, 1.17
and 1.14. These results show that the differences in the
assumptions in the above methods have little influence on the
ultimate strength calculation of beams. The eiror in the
calculated moment was in all casss on the safe side, which may
be due to the safe limit assumptions of the ultimate stress of
reinforcing bars;

However the proposed method yields smaller values for the
neutral axis depth than the other three methods; These results
agree well with the experimental values as shown in Fig. 5.3

The column tests were analysed using the proposed method
and interaction curves of the type described earlier; The methods
of comparison of the strength of columns subjected to axial load

and bending that are often used are found to be misleading due to the
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need to compare the axial load and moment results at the same
time as they are inter-related. (ref.59)

This was over come by comparing the column strength in terms of
the radius sector of the interaction curves given by

2 2
g, = Jue 4 nd

to the corresponding experimental results., The above values

of m,, and n, were determined for the same values of eccentricity
as in the test results;

The calculations are presented in table 5.2 and Fige 5.4
The mean value of r /r gfr 31 teste was 1,02 and its standard

exp "¢

deviation was about 10%. The calculated neutral axis depths of
the columns are compared with the observed values in Fig.5.3.
These results indicate that the proposed method forms a

satisfactory basis of calculation of the short term strength and

ultimate load charactistries of beams and columns,.
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CHAPTER 6

Flexural Stiffness of Reinforced Concrete Members in

Limit Design

6.1 Idealised flexural stiffness

In the stress and deformation analysis of reinforced concrete
structures, the flexural stiffness of members forms an extremely
important factor influencing the calculated stress state, But
it is not unusual to formulate and attempt a rigorous analysis
based on very apsroximate stiffness values which in turn could
create large errors in the final results. In classical elastic
analysis, reinforced concrite members are assumed to be homogeneous
and elastic, They are then treated in the same way as any other
elastic material, Thus most designers may use the formula
for EI involving the second momznt of the area of entire section
and the elastic modulus of concrete (a reduced value of E% is
noraally cmployed to allow for creep and cracking, etc, )
where the area of reinforcement is completely ignored, Other
provisions included in the British Code25 allow the reinforcement

to be included in the above calculations on the basis of the

mpdular ratio, -

The diffcrences in the EI valuces calculated by the different
assunptions are quite large. In tha analysis of multistorey
structures whore the relative error in the EI values betwaen

the beams and columns is more important than their absolute values,
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the basic assunptions for the determination of EI may give rise to
large differeonces in the design values, It has been shown that
under extrems conditions, the error in the stress analysis, due to
different assumptions for the ZI values, cculd be as auch as 40%24.
In limit design m,thods)where the degree of safoty is more critical,
it is considered essential to base the stiffness calculations on
safe limit assumptions,

The rcsults of extensive experimental investigations into the

134

. . ... 8
study of moment-curvature and moment-rotation characteristics 19,25
concrete

show that essentially reinforced/is inelastic but the moment-
rotation characteristics could be closely apnroximated to a
bilinear5 or a Hilinear curve26.

Baker in intréducing the ultimate load method of analysis,5
has suggested a bilinear relation for the moment-rotation character-

istics of reinforced concrete members, A loyer limit EI value is

based on the idealised limit L, as given by equation

El= "1 1 (6.1)

where the suffix 1 denotes the stress state at the critical
section (referred to as limit L4), when either reinforcing steel
reaches the elastic limit (or 0.1% off set strain in the case of
cold worked steel) or the concrete reaches a strain of 0,002 .,
EI may then be calculated based on the stress=—strain relations for
concrete and reinforcement,

For an under-reinforced rectangular section, the following

limit L, values for €pqs i1 may be derived in terms of the neutral
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axis depfh.

*q
= — e asee 602 )
®by 1-x1 aq (
. 5 2
Xq €a 1 {*1 ®a (6.3)
az — S L R e (6.
55;—‘:‘—3'\ = @ = " %1% | 6.002f” 2| 17x, ) \0v002 3
i\ / -
‘”“ M,
T — = FX) - sre )
Dy %5 'ohl o [1 Y1x1] (6os
Y1 has a value ranging between 0.33 and 0.375

From Fig.6.1 my and x, may be obtained for a known value of
¢ , hence the EI value could be evaluated.

The limit calculations for El values of under-reinforced and
over-reinforced beams have been considered in greater detail by

R . . 27
the author in a recent publication '.

The resultant bilinear representation of the moment-curvature
and moment-rotation curves for typical members are shown in Fig.
5.2 and 6.3 An idealised Bilinear representation as shown
. .. 23 . .26
in Fig.%.2 as suggested by Chan and riacchi seen to be a closer
approxination to experimental results than the bilinear assumptions.

in
However, the advantages/the bilinear idealisation may have to be
weighed against the fact that a departure from a bilinear
representation of the moment-rotation relation makes stress
analysis extremely complicated even in very simple structures.

he relative error involved in the two methods may be compared

easily for simple cases as in the next section.
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6,2 Relative error in total rotation due to bilinear and trilinear

assumptions.

Consider a siaply supported uniform bean subjected to a central
point load as in Fig.6... The curvature distribution at limit
L1 corresponding to the bilinear and the trilinear assumptions
are shown in (c) anda (d). The total rotations could be easily
obtaiﬁ;d by integrating the area of the curvature distribution
diagrams, Let (ZI), and (EI)4 be the values of flexural stiffness

in the uncracked elastic stages and cracked stage§respectively.

These are given by the idealised assumptions,

(z1) =1% Eyebh3
(E1); = Ma% M
ebi

The total rotation 9? due tec bilinear assumptions is given by

M
" M
e]; = ff %I ds = M_il se s (6-5)
2(ET),
o
The corresponding total rotation Gf due to the trilinear
R s po-
assumptions, is LT .
4 2
T 1 M Mql c (1—&3
[2] = —— = —— ( )
1 f 5T 98 > |GDh * Go, | '%®
e 1
o
where ¢ = %2
1
and Mo is the cracking moment.
From equations 6.5 and 6,6,
B
91 = — 1 seee (6.7)
T 2. 2
I D) -
1 € (“I).| + 1-c
(81)
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M - moment

— e o s ’ e o,

Trilinear ldealised curve

Bilinear Idealised Curve

@ - Curvature

Pig, 6.2 Typical Moment Curvature Diagram for

Reinforced concrete section

M - moment

6 - Rotation

Fig, 6.3 Typical Moment Rotation Diagram for

Pl

Reinforced concrete section
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(EI)1 increases with the increase in the tension reinforcement
in beamsz7. Thus equation 6,7 shows that the error in the
bilinear assumption compared to the trilinear assumption varies
with the ratio of the cracking moment to the ultimate moment and
the degree of reinforcement, Table 6,1 gives the calculations

for typical beams where (EI)l/(EI)e may vary fron 0,10 to 1.0.

Table 6,1 Comparison between bilinear and trilinear assumptions.

(E1)4 B/ of
(EI)e 1 1

R.C. Pre-stressed concrete

C = 0,3 C= ,b C =0,7 C = 0,8
.10 1,09 1,47 1.79 2,36
.25 1.07 1.37  } .59 | 1.92
.50 1.05 | 1.22 1.33 1.47
.75 1.02 F 1,11 ] ik 1.20
1,00 1,00 1.00 1 1.00 1,00

For reinforced concrete beams where the average value of
C is about 0,3 the maximum difference in the EI values due to
the two assumptions is about 9%. However in the prestressed
concrete where ¢ depends on initial prestress the differences
vary widely with a maximum of 136% for ¢ = 0,8 and (EI)l/(EI)e =

0,1,
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Thus it is clear that the bilinear assumptions are perfectly

in .
adequate for reinforced concrete design while/prestresseg concrete

design, the trilinear assumptions or an equivalent must be used,

6.3 Semi-~empirical relation for the EI value of beams

The determination of the limit EI value from equation 6.1,
even when assisted by diagrams of the form Fig.6.1, remains
difficult and subject to large error due to small inaccuracies in

all secondary terms like M,, x_  or ebl’ which must be first calculated

1 71
from the section properties,
However, if the sections are under-reinforced (or has compression
reinforcement to enable tension stgl to yield beflore concrete),
the calculation of limit BT may be simplified.

Let % represent the fluxural stiffness reduced to non-

dimentional terms given by

D3 8
S =q7. s ceees (6.8)

| TN
Then from equations 6,2, 6.3 and 6.4J§nmy'be expressed
in terms of the single parameter, K1 representing the neutral

axis depth at limit L1 given by,

€ = (565 - 12500 ay )( 1 - v,x )x,° ceead 609)

1 - x1

The neutral axis depth in under-reinforced beams could be
related to the Jdegree of reinforcement as in equation 6.3, but it
is not possible to express ; directly in terms of the degree
of reinforcement, HenceES may be obtainecd graphically as in Figs,

6,5, 6,6 and 67 for different grades of steel.

AR e
Y
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However, in considering the idealised calculations and actual
test results it was found that the fluxural stiffness factor QE
may be given in the approximate form

g = (a0 ~ B eay)\/b-_j— csses (6'10)
where o & 175, B £ 31200, This expression has the advantage that
the flexural stiffness is expressed directly in terms of the section
properties and the grade of steel, This is discussed with
reference to 80 beam tests carried out under the Luropean Concrete

in the next section,

6.4 ixperimental results

The mean experimental fluxural stiffness in reinforced
concrete beams could be obtained from the moment rotation
1
diagrams as in Fig.6,4. Table ng\gives the stiffness results
determined for 80 beam tests9 the properties of which are given
in Table 2 in reference 9. ggexp indicates the mean experimental
fluxural stiffness value as described above, s;cal represcents
the calculated value of g using equation 6,10, gexp have been
plotted against §_,; in Fig.6.8 and the frequency distribution
a » > 3 F- .6.
of _@; exp/>cal is given in Fig.6.9.
The mean value of /é? for 80 test results has been
exXp cal D
found to be 1,11 and the standard deviation was 0.21, It is
known that the actual stiffness of beams is dependent on the duration

and nature of loading and the creep characteristics, hence the values

predicted by the approximate equation 6,10 represents as an accurate



63
measure of the mean fluxural stiffness in short term test
results as may be expected,

The above tests also cover a wide range of steels, varying
from mild steel of yield strength £,0,000 psi to cold worked steel
of 0,1% proof strength of about 85,000 psi, The expression 6,10
for EE seem to adequately take into account the effect of
different grades of steel, This was considered in greater detail
by selecting the test results for beams with the same grade of
steel, Figs. 6,5, 6,6, 6,7 show the variation of 2§exp with the
degree of reinforcement for three grades of steel.

These results may be compared with the bilinear idealisation
as predicted by Baker's equation 6.1 and the simple empirical
equation 6,10, In mild steel beams the values predicted by both
these methods aggree very closely and forms a lower limit of the
experimental results, In both grades of cold worked steel,the
results predicted by equation 6.10is slightly larger than those
given by 6,1 but agrees well with the experimental results,

The value of EI obtained by thas present code25 method assuming
a modular ratio of 15 is also shown in the above diagrams,

The actual variation of EI is not reflectcd at all by the provisions
in the Code rules, but in the range of = ranging from 0,1 to
0.2 which is most common in design practice, the Code provisions

may be considered reasonable,
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6.5 TFlexural stiffness of Columns

In considering the relative EI values between beams and columns,
Baker has geinted out that the EI Values of columns must also be
determined from the limit properties as in equation 641,

The values of M_, e, for columns at limit L, could

1! "bq

easily be determined in terms of the neutral axis depth x4 as for
the strength calculations, Fig. 6.10 shows a plot of ZI for
columns agzinst e/h where e is the effective eccentricity at the
critical section,

If é§col represents the flexural stiffness factor for a column
uhder axial load and bending and if g}b refers to the extreme case
of égcol wheh e/h~» ®, i.e, the column with no axial load and
failing in fluxure, the ratio g? / gives a measure of the

col5h
increase in the fluxural stiffness duc to the axial load. Using
the previous calculations based on limit L1, Egcol/égb is plotted
against =3 and e/h in Figs. 6,11 and 6.12, These show that
: a ia hol
E%cml/gfb as calculated do not change appreciably over the whole
range of = and e/h considered, the mean value being 1,51, Thus

L)

based on Baker's limit L1 assumptions for columns, the EI for columns
with eaual tension and compression reinforccment may be regarded

as 1,51 times that for beams with the same amount of tension
reinforcement, However it may be expected that with larger axial
load, the degree of cracking in columns would be reduced and the

effective stiffness would be appreciably increased. This aspect

cannot be taken into account in the idealised limit calculations
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as the cracked length could nol be well defined, An empirical
approach to a closer approximate value of the column stiffness
may be preferred under these conditions,

The mean effective EI for 26 short column tests reported in the

9

CEB tests’ and four tests by Soliman28, which were obtained from
moment-~rotation results in the same way as described for beams are
plotted against the axial load shown in Fig.6.13, The results
clearly indicate that $§col increases with the axial load and the
test results could be expressed by theée empirical equation 6,11,

S . = (- 1.8n ) & vee (6411)

The axial load/égkies from zero to about 1.2 depending on the
degree of reinforcement and the ratio of the axial load to moment;
Hence E?éol may vary from E?b to about BEEb. The value predicted
by the idealised 1limit L1 calculations is a mean of these
variations,

Substituting for !Eb’ from equation 6,10 the mean effective

flexural stiffness of columns may then be written as
_ AN /: 6 13
E_ . = (1 +1.8n )175{x)31200 e ) YT ... 6.

The expression 5,12 for the stiffness of columns has the
same advantage as the corresponding expression of beams as it
depends only on the primary variables assumed in the design; '
The charts given in Fig.6.8(a) could be used to determine

g? as §pn in the column is known separatelys
CO]. u
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CIAPTER 7.

Inelastie rotation capacity of reinforced concrete membars.

T.1. Plastie rotation.

Experimentally it has been observed that the plastic rotation)
that a reinforced concrete member may undergo without effectively
reducing the carrying capacity)is of the same order as the elastic
rotation(9)p The limit of the plastic rotation is primarily
controlled by the ultimate strain in the concrete as discussed
in Chapter 4. or in extremely under-reinforced members where
the reinforcement may have brittle characteristics, the strain
capacity of reinforcement itself may determine the maximum

(5)

plastic rotation. These limits are referred to as Limit L2 .
Bxtensive experimental observations(5’ 8, 23, 31, 34) on
simple reinforced concrete members, show that the plastic rota-
tion capacity (ep) is subject to large fluctuations, even when
the menbers are tested under similar conditions. Hence, in
calculations involving plastic rotations, it would only be possible
t0 use approximate values of ep, which may be considered to be
safe values as compared to experimental results.
In 1956, Baker(5) has suggested the following empirical

formulae for ep,

Tension hinges i.e. under-reinforced beam hinges

_ 0.01
p X2

e
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Compression hinges i.e. column hinzes or over-reinforced beam

hinges
ep = 0.01 for well bound sections.
g = 0.001 for unbound sections.
p
A more comprehensive formula for epa which incorporates the

. . . . 20
influence of section parameters is given by( )

Y
7 <
ep = ke, (0.0035 - _cm) (E) coe (741)

where k19 k2, k3 ara factors which take into account the
influence of grade of steel, axial lcad and grade of concrete
respectively. =z refers to the length of the member botween
critical section and point of contra-flexure, h is the effective
depth of section, and 1 is the concrete strain at limit L1.

The values of ep predicted by equation (7.1) has been
previcusly compared by the author with moment-rotation charac-
teristics for beam and cclumn tests carried ocut under the European

(9)

Concrete Committee The large scatter in the test results

and the variation in the ultimate strain in concrete as shown

in Chaptexr 4 s show that the main paramsters affecting Gp are

the degrse of binding and the depth of concrete in the compressicn
zone at the critical section as expressed by the reutral axis
depth. The latter also takes into account the axial lcad if the
hinge section happens to be a column hinge. Thus the author has
asuggested the simple empirical formulsa

8 = 2.4 (eb2 - cee (7.2)

e
p b
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where e,

(o)
4

5 ig the ultimate strain in concrete #s given by
equation (4.5), end g4, corresponds to the coacrete strain at
the limit ng for which an upper limit of 0.002 mey be assumed
as a further simplification. Tig.T7.1l shows a plot of Gp as
given by equation (7.2) against x, for varying amounts of bind-
ing.
Recent experimental research by Soliman(za) shows, that
the spacing of binders must not be greater than about 12 times
he diameter of binders, if they are to be effective in restrain-

<6” that

ing concrete. It hss also been shown by Bose and Read
helical binders in the compression zone may be more effective,

so that even larger rotastions than indicated by the above formula
may be obtained. Thus it appears that by suitcble detailing,
particularly in beams, the ductility in reinforced concrete
members may be increased as required for design purposes. But

in most cases the use of large amounts of binders to increase

the ductility must be compared with the actual advantages gained
by the extre redistribution, particularly from the point of view

of economy.

T.2. Experimental results.

In the application of the »lastic rotation capacity of
reinforced concrete members as 2 limit criterion in the design
of indeterminate structures, the hinge rotations are obtained

as e Tunction of the idealised elastic properties of the members.
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Thus the ratio of the plastie rotation to the elastic rotation
of the member may be used to enable a comparative estimation of
the ductility of the members.
In a simply supported beam, as in Fig.6.4, the elastic

rotation Ge iz given by,

1
= f 1 98

substituting for EI = Myx h/ey; and ascuming that My# Mo,

bl

B, = A
e Xl

veo (7.3)

SR L

where 4 ig a dimensionless factor representing the shape of the
bending moment disgram, having the value % for a single point
load, % for a third point load or a uniformly distributed load.

Using equation (7.2) for ©_, the retio of @p/Qe is given by

6,  2.4x (€~ @y )h

-—p— =
8, A ebll
L
= :D :I oo e (7-4)
e
vhere D = 2.4 xl( 2 ee (7.5)
€p1

The frctor D gives the retio of the plastic rotation at the
critical section to the elastic rotation of the member in terms
of the section parameters. It may be noted that D is independent
of the length, effective depth and the shape of the bending moment

ciagram. Thus this velue may be used to compare the test resulis
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obtained for bveams with vorying span to depth ratios and different
types ¢f loading. For convenience D.is referred to as the Ductility

or the IDuctility Ratio of the member.

Table 5.2 gives the calculated and experimental vslues of
the ductility ratio for the C.L.B., test results quoted earlier(9).
The results for 58 beam tests are plotted in Fig.7.2. The scatter
in the results are as expected; but it may be noted that the
calculated values of the ductility ratio are a reasonable safe
limit as compared to bthe experimentel results.

The direct application of the ductility ratio in the
determination of suitable detailing in continuvous bemms are

discussed in Chapter 7.
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Xy - neutral axis
depth
1.0 '
0 o 1.0 1.5%] 2L0%
- N p"- degree of binding
0.5 \\\\\ \\\ .
I B I
0 0.,0125 0,0250

Gp - plastic rotation capacity

in radians

Fig, 7.1. Idealised plastic rotation capacity of

reinforced concrcte members
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PART JII

CHAPTER 8., .
LINIT DESIGN OF REINFORCED CONCRETE CONTINUOUS BEAMS,

8els Ultimate load on continuous beams

In the de2ign of continuous beams, the primary mode of
failure could/ggsumed to be due to beam mecharism,Fig 8.1 shows
the collapse mechamism in a typical span. Let G and Q be the
permanent and super-imposed loads on any span and X' and ¥
be the corresponding over-load eoefficients,BPhen the equilibrium

condition in the beam mechamism is given by

gl-xl M o+ r-M;
7 n

T . n+1

where M! M!
n

[ .4 e motents at. supports n, nile-

Mn is the moment at spen hinge,x is the distance of span hinge

from.support n.ﬁ%g Fq are free bending moment coecfficients which
depend on the distribution of the loads and the distance x.
Since the beam mechamism in each span is independent of
the loads in other spans, the collapse load factor for the whole
structure is determined entirely by the we;kest span. Given
that the super-imposed losd3 in the separate spans are aqually
probable either individually or in combination, the
configuration of the load corresponding to all spans been
loaded with the maximum super-load would incorporate the
condition of loading corresponding to the collapse load factor.
This may be termed the ultimate load configuration for
continuq&g beams as it forms a special arrangement of a given
setiiaq/loads having the largest probability of causing collapse

of the whole structure or part of it.
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+ U =__ng£gcl + Fq]{gl « e (8.1)
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Fig. 8.1 Typical Span in Continuous Beam
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( see also chapter 14 on the principlc of combined leading).
Limit design of continuous beams, and rcdistribution of moments
could now be introduced with respects to the ultinate load as
defined above.

8.2 Redistribution of moments.

Consider a continuous beam subjected to ultimate load as
defined in scction 8.1 ( all spans loaded). For equilibrium
in each span, any arbitrary distribution of momonts that
satisfied equation (8.1) could be assumed with the single
‘provision that the moments at hinées at scctions ny n',:n'+1
afe compatible with respect to their rotation i.e. the rotations
€y exln-;-“!
Mﬁ, M

must be of tho same sign in regard to the monents Mh,

t
n+1. Suppose the special solution that reduces the

hinge rotations @q, e! to zero be represented by the

1
! ns On+1
additional suffix e; then the degree of yedistribufion R

at support n' may be deined by (8.2)
Relg = My (5.2)

M
ne
Now Mée could be given in the form

) . n\/ 8

43 ~{3° g6l +Bqg ¥a Q1 ... (8.3)
where ?g,‘3q arc elastic coefficients corresponding to

the distribution of the loadﬂwhich could be ensily obtained

from any stendard hand book. Then the least value of MA is

doternined by the mazximum velue of R.

The sbove definition of the degres of redistribution of
noments although sinilar in concept to the general ideas of
redistribution as prescntly used in design practice, differs

fundamentally from thep in that it is applied to 2 special

83
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loading configuration as defined by the ultimate load. Thus

R depends only on thoe elastic properties of the beam and the
plastic moment capecity. This enables the degree of
redistribution to be used as 2 gencral parameter which could
however be related to other loading configuraztions such as those
that cause unserviceability at critical sections during working
load.

8.3, Secondary modes of f£ailure

There are other modes of failure in continuous beams not
incorporated in the definition of collapse discussed in the
earlier sections. They may be due to (4) shear failure
(2) bond failure in the rcinforcement (3) excessive rotation
at plastic hinges (4) buckling of ccmpression reinforcement
particularly during plastic stages zs the concrete may start

crushing (5) lateral buckling of beam.

In beams most of the above requirements could be catered
for by suitable detailing and choice of size of mecmbers. Safe~
guards against shear failure and excessive plastic rotation
have been discussed in greater detail in subseguent sections.
The other modes of failure may be prevented by empirical nules

for detziling as in the presont codes of practice.

8,4 Limit design of continuous beams.

The general roguirements in tie limit lasiagn of reinforced
concrete structures have been discussed in chapter 3. 4s a
particular group of structures, the design of continuous
beams would be based on the following:~
(1) safety requirements expressed in terms of the load

carrying capacity with specizl consideration for inelastic
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compatibility and limiting shear at ultimate load.
(2) Serviceability at working load expressecd in terms of
(a) deflections, (b) crack width and (c) yield safety.

Bach of the above limits are related to the matcrial
properties and the load configuration thad produces the critical
1imit conditions, which in general have to be evaluatcd separately.
Since these conditi-ns do not give rise to a unique solution,
an optimiéing ocriteria based on the total cost of the structure
may be used to obtain =n ideal limit design.

In the next three chapters an attempt is made to cvaluate the
relationship between the degree of redistribution R and the
following criteria in limit design.

1. Bconomic criterian based on an idealised concept of total
ceste.

2. Inelastic compatibility at ultimate load basced on the
bitinear moment rotation characteristics discusscd in Part II.
3. Serviceability of structure under working load based on yield
safety and permissible crack width.

The azpplication of limiting deflection and permissible shear
stress to continuous beams have been discussed in chepter 11
and 12,
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CHAPTER 9
Criteria of Economic Design of Reinforced Concrete continuous beams

9.1 Economic design.

The economic aspect of reinforced concrete design has been
given very little consideration so far, although it cannot be
denied that it is one of the most important factors to be considered
in a satisfactory design; Under the assumption of britile foilure
in the classical elastic theory, the actual design procedure
consisted of determining the worst stress condition at critical
sections, and then designing each section as economically as
possible The criterian fur Gconomic duui’n <f roinforced’ concrete
sections is generally interpreted as palansed dusigh.with ' vespect to
steel and concrete stresses:

The discussion of the elasto-plastic propertiss of
reinforced concrete members in the preceding sections show
that moments in the structure oould be more equitably distributed
provided that X&wits on the hinge rotations are not exceeded.

This was used as a basis of economic design by Baker (ref 20)

in suggesting, that the support moments may be made equal to

the span moments under oonditions of ultimate loads thus producing
an M"eoonomic distribution of moment",

However in practical terms the economy of the structgre

must be related to the total cost of desigh and construction.



87
-
This would depend on Volune of material, cost of fabrication,
formwork)labour rates and many other factors which may even vary
for individual cases;depending on the circumstances. The volume
of concrete in itself is dependent on the sizes of members which
are subject to architectual and other requirements; However in
affected
most cases the nett economy is not appreciably by the size of members,
as the reduction in size is always accompanied by increase in the
total quantity of reinforcement, while the cost of shutters and
labour involved in placing the concrete remains almost unaffccted,
On the other hand, the cost of fahrication of reinforcement is
quite large. An increase in the volume of reinforcement is also
accompanied.by an inecrease in the labour required in placing and
compaction of concrete due to larger conjestion of reinforcement.
A process of ultimate load design by minimising the amount of
shear and tension steel at critical sections has been outlined
by Peredy and Vizy (ref 402}Kalinsky (ref 41) has extended the
above method to obtain a theoretical solution for beams and slabs
based on the total volume of steel, which has been expressed by an
approximate quadratic function.' The results show that the econonmic
solution for a continuous beam of given external dimensions and
requiring the minimum quantity of reinforcement is the same as a

"special elastic solution" in which the shear and flexural rigidities

are expressed by special terms,
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The following investigation into the economic design of continuous
beams as a particular aspect of limit design is based on the
following assumption:

(1) Ultimate loaed as the unique conditon of load
at collapse as shown in chapter 8

(2) Uniform size of members.

(3) Limit properties of reinforced conorsté as discussed in
Part 1T,

(4) Least total volume of reinforcement as the criteriOn of

miniaum cost,

9;2 Volume of shear reinforcement.

Let T be the shear force at any scétion in a continuous beam;
Then the shear stress s at ths section, may be given in the form
(ref 42)

s = T ‘ ee- £9.1)
(T = yxjbh

where 1 -y, is the lever arm factor at the section,
If 5;;3 be the maximum shear streas
permissible in plain concrete, then no shear reinforcement is
required if s < 5::;t . VWhen s > G’;‘b vie
may assume that the totadl shear force 1s taken by the shear
reinforcement. Then any span in a continuous beam may be

divided into distinot zones where shear reinforcement is required

and where it is not required as shown in Fig. 8.1,
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In general, shear is catered for either by stirrups or
by bent up bars. Howvever expressed in terms of the equivalent
area of vertical stirrups the ar.a of shear reinforcement per

unit length is given by,

8 = I . coe. (942)
Cay

where ﬂiy is the yield stress of shear reinforcement, The wolume

of shear reinforcement over a length dl assuming the stirrups are

vertical bars of length h is given by th where,
av, = _Tpdl . (9.3)

ay
Then the total volume of shear reinforcement in the span is

given by
_Th 41 . (9.4)

* day ’

I
5z gy

9,1 Typical Values of stress block parameters

= x, v 1=y | 1=y%,
0.05 .25 327 | 0918 | 1.22
0.10 33 1330 .891 1.34
0.15 .40 335 | .866 | 1.4
0.20 .5 350 | .845 | 1.54
0.25 .49 355 | .826 | 1.62
0.30 ;53 1360 .809 1;63_4
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Table 9.1 gives the variation in 1- ¥y with the amount
of reinforcement. Over the practical range of A3 and allowing
for cut off in tension reinforcement ugko 2/5 of maximum value
the variation in the lever arm is less than 10%. Thus assuming
all stirrups are at its yield limit, Vt is given by the simple
function,

v = b [ 7 a
TV e

= h, (W-W, ) ] ves 9.5
G ay

where W is total load on span 4 and

Wo is the les? on length ly over which no shear
reinforcement is required;
For uniformly distributed permanent and super imposed load

W and Wp may be easily worked oute.

W= (Yg&+YqQ)

L, = 2(l-yx)gi.bh 1
Yg G+¥aQ

Wo= (YgG+¥YaQ) _lo

il

= 2 (1-¥yDspr. bh

2 g (1= ) D2
Hence, Vt = (g G+yqQ)h - dbtl1-¥x
q—ay Ty

see (9°6)
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Equation (9.6) shows that the total volume of shear
reinforcement is independent of the bending moment 4t

either end of the span as lo is independent of the end shears,
V% depends only on b and h which in most beams could only

be varied with in narrow limits. Thus for design purposes

the volume of shear reinforcement remains an invariant for all

arbitrary distributions of the support moment.

9.3 Volume of tension reinforcemepnt.

Consider an intermediate span AB as in Fig; 8.1, If
Mr‘1 , Mln—i-‘l and Mn arc the limit moments at ultimate load,
then equilibrium condition is given by equation (8.1);
Ideally if the beam is reinforced so as to fully utilise the
tension reinforcement the stress in reinforcement must equal
yield” valuc: 4t all soctionss "In practits & close approximation
nay be pade.by cutting off the tension reinforcement at as many
sections as possible; Let A, be the area of tension reinforcemené
at any section; Then the volume of tension reinforcement over
a length dl is given by,

dv = Aa dl:

8
- b
-5 g ma e (92T)

However iﬂﬁerms of the limit properties of beams as discussed
in part II the energy due to bending in the length dl could

be expressed as,



a2

EI
where EI and M are given by EI = M (1-—3:1 }h
e

ay

*x
M- T (1 = Kxp) O 122
Substituting for M, and EI in (9.8), and replacing o. in terms

of dv from 9.7,

s e
W= 1=¥x Cay .G bh. av

T
1 -x ay
2 E
a
L3 -
= (1 -rx) § bhav
1‘-X -00(9-9)
2
Ea

Table (9.1) shows that for a variation of 3 by a factor

of 2,(a reasonable amount for cut off) the streas block parameter
1 - )fx1 varies only by about 10%. Hence it appears that this
1-%

factor may be regarded as a constant for a particular span.

Then the total energy in the beam due to bending for any
arvitrary distribution of bending moment could be expressed

as the encrgy in each span (say i) obtained by integrating

equation (9.9) and summing it up over the total number of spans

(say N)



= < »
LeCoe U.‘ :.;( 1 - x-L) O“‘b

¥ T =x, ) E; bh fi dv

== (1 - X.q) (fg

] g‘:‘;‘z’)“ = W
1 N ;:iivig* (9'10).

where K. = —— 324 b
1T T, e PR

' a
which is a constant for each span, and

z is the total volume of tension reinforcement in each span.

From the theory of elasticity it is well known that the state
of minimum bending energy in a strueture corresponds to the
unique distribution of moments given by the elostic equilibriug
state. In terms of an elasto-plastic analysis this corresponds
to the case when the plastic discontinuities at the releases are
zero. The correspondence bhetween the volume of tension
reinforcement and the total energy due to bending in equation
(9.10) implies that the limiting elastic distritution of moments
also corresponds to the least volume of tension reinforcement.
Thus under ultimate load conditions, the least total
volume of reinforcement (shear and tension reinforcement) is
given under the equilibrium state where the plastic hinge
rotations are zero i.e; the spans are elastically continuous,

The degree of redistribution (R) as defined in section 8.2.
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under these conditions is zero. In practice it may be necessary
to redistribute momzntS*partﬁcularlyifordgpnvenience in detailing
over supports, etc. But such a procédure seems to involve in an
increase in the total vqlume.of réinfq;gemenﬁ in contrast to currently

held assumptions.
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CHAFTER 10

INELASTIC COMPATIBILITY

107 Introduction

In the earlier chapter, the optimum conditions that must be
satisfied to obtain an economic solution has besn discussed.
However, this ideal economic solution has been entirely based on
the safety requirements at ultimete load. In practice, the
difficulties arising out of detailing at support sections, and
minimum serviceability requirements may lead to modification of
this solution. Under these conditions, moments at supports mey
be redistributed to mid-span ssctions making use of the yield
characteristics of the "plastic hinges" thus formed,

Unlike in steel structures, it has been emphasised (ref: 20)
that the actual rotation in the hinges due to the redistributicn of
moments must be compared with the inelastic rotation capacity so
as to prevent a possible reduction in the moment capacity of the
hingessIf @ be the actual rotation in a plastic hinge due to a
set of equilibrium forces, and Qp be the permissible inelastic
rotation for the hinge as defined in chapter T, then the inelastic
compatibility requirenent may be expressed by & s;@p. This
inequality in general implies two conditions, (1) 8 nust be
compatible with the yield moment at the hinge i.e. the hinge
opens in the tension side (2) © does not excecd the limit inelastic

rotation capacity. The term "inelastic compatibility" is used by
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Baker to mean an investigation of both of the above properties (ref 18).

Connected with the problem of limit design it may be assumed
that © and Op are both varieble based on the initial .nssumpticns £or
the plustiemoments and sectiont propertisss. . Hence a considerable
amount of discretion could be applied by the engineer as in the
trial and error method put forward by Baker. (ref,4)

However in continous beams, the problem of inelastic compatibility
is enormously recducsd, due to the fact that the condition (1)
statcd above is always satisfied, when the degree of redistribution
as defined in chapter 8 is possitive i.e, support moments are less
than the elastie moments (see chapter 15).

The condition (2) could be easily ensurédby suitably designing
the hinge sections so to pfovide ninimum duetility as discussed
in chapter T.

Some attémpts have already been made in this direction to
determine suitable limits for detailing of sections in specific
cases wherc the maximum degree of redistribution is restricted,

The Institution ofCi¥i} Engineers Research Committee (ref.20)
has suggested that in continuous beans consisting of four or nore
spans, each span length differing by not more than 15%?and where
the live load does not exceed the dead load by more than 50%,
the degreq/%gdistribution upto 25% may be pernmitted, provided

that the tension reinforcement satisfies the condition

h
W j> eevees{10.1)
10 1 .
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VPPV, V- W AN

In practice this may restrict the maximun value of )

to zbout 10%. However under the above conditions the

Russian code (ref.10) requires that the neutral axis depth

at hinge s=ctions be less than 0.55h which allows Tzs'to e

as rmch as abouf. 30-%e Frf '* gptimum design of reinforced concrete
b C h&'}f}% 8 csted al 1inmit jyr%j;'nrfeogcenrgeint to

eams, Co as sugge n upper it o ¢ ponding

2% of the effective section areaBhen he derived that the

degree of redistribution for moments due to super-load be

limited to 20%, 25%, 30% for support scctions of beams with

2,3,4 or more spans and with free ends, and 15%, 20% and

25% for support scctions of beams with 2,3 and 4 or more spans

with fixed ends,

In general the rotation of plastic hinges in continuous
beams could be related directly to the degree of redistridbution
enabling inelgastic compatibility to be expressed in ferms
of 2 single paraneter. The limit requirements uwnder wniformly
distributed loads are discussed in detaill below. Other types
of loads could be treated similarly or could be represented
by their equivalent distributed loads,

10.2. Particular cases cf inelastic compatibilitye.

Intermediate span under uniformly distributed load

Consider an intermediate span AB of a continous beam
as in Fig 8,1. Assuming thet the end conditions at 4 and

B arc Similar, @R the hinge moments Mﬁ, Mﬁ ; 2t ultimate
+
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load could be given by

| t — - (]
Moo=, = O R) Mo < e (10.2)
where Mﬂe corresponds to the fixed end moment given by
Moo= _1_%_ (Xge +XqQ Y1, .. (10.3)

G and Q are the total permanent and super~imposed loads on
the span and R is the degres of redistribution.
The inelastic rotation 6 at the hinges is given by
6= RN 1 o o (10.4)
2 EI
vhere EI is based on the idealised cracked stiffness of beams
given in equation (6.10)

As linit quomonts in beamsa¥e approximately equal to the limit

Lp moment, BEI could be expressed as

EI = (l-R) Mﬁe * X1h e & o (10,5)
®p1
From 10.4, and 10.5, O is given by
6 = R epy 1 c e (10.6)

1-F oxm
If oy be the permissible rotation for the hinge the ninimum requirement

for inelastic compatibility would be satisfied if,

L eyt e (10.8)




Substituting for QP from equation 9,4 and expressing
the inelastic properties in terms of the ductility ratio as

defined in chapter 7, equation 10.8 can be reduced to

R
D> L c e s 10,9
1-R  2h

Equation 10.9 could bs used to determine the maximum permissible
redistribution for a limiting value of the ductility ratic or it may
be used to determine the minimum value of ductility ratic so as to obtain
a reguired degree of distribution. As the ductility ratio depends
only on the section parameters such as percentage of reinforcement,
binding ratic, and the grade of steel, the permissible redistribution
corresponding to the detailing conditions could be easily dotermined.
Figs10.ﬂ3HD¢23and'1D.3 gives the relationship between ductility
ratic and percentage of reinforw~ment for three typical grades of

steel,

End spans in a2 continous beam under uniforwly distributed load

The degree of redistribution in the end span of a continuous
beam depends on the pen-ultimate support moment which is affected by
the adjoining span: » 4 two-span®d beam with freely supported ends forms
the limiting case of this category. Hence in limit design the
inelastic compatibility derived for this cose would be ccnsidered
satisfactory for other end span conditions as well.

As before let MA be the support moment,R and & be the degree

of redistribution and the inelastic rotation at hinge)ihen‘the elastic



Grade of steel - L40,000psi.

e

D - ductility ratio D=(—8 Z4)
€1
30 N
13
t
15 .
e :
\“NWM\&&%__«__
: T —— e o/
— P
p'"'=0 !
" |
0 0.1 0.2 0.3 0.4

Fig. 10.1 Variation of Ductility Ratio with Reinforcement

0oL



Grade of steel - 60,000psi.

. ®p2
D - d?ctlllty ratio D=( - 1)
20
10
p"=1 00%
o -

0.1 0.2 0.3

Fig. 10,2 Variation of Ductility Ratio with Reinforcement

Lot



20

10

D - ductility ratio

e
( b2

®p1

-1)

Grade of steel - 80,000psi.

T

T

p"'=1.0%
\ >__*\‘-.Jg" =O ’“5%
7T
0.1 0.2 0.3 0.4
Fig. 10.3 Variation of Ductility Ratio with Reinforcement

2oL



103

moment Mﬁe is given by,

AN ()(ga + qu )1 . « . (10.10)

The inelastic rotntion is given by

= 71
-2 RMne 1 " 0 (10-11)

3 EX
Substituting for EI, as in 10,5, the minimum requiremcnt for

inelastic compatibility is given by

o R 2
P?/—-—-"?' &1 1 . . o(10.12)
1-R z.h
“

When ep is expressed in terms of ductility ratio, the

inequality 10.12 rsluces to,

22 R 21

o o o(10.13)i

1-R 3nh
Thus 10,13 defincs the limiting case of inelastic

Compatibility for end spans and could be uscd in the same
way as 10,9.

The inelastic compatibility conditions given in equations
10.9 and 10.13 are prescnted in graphical form in Figs 10.4 and
10.5. The minimum ductility ratio corresponding to particular
values of span, effective depth and degres of redistribution could be
read out zs in the illustration, Then the reinforcement detailing
may be obtained from the relation between ductility ratio and the

percentage reinforcement as given in Figs. 10.1, 10.2, and 10.3.
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Limiting cases. — (a) Internal spans

For a meximum roedistribution of 25% as suggested by the
Institution of @iw1) Pngineers rescarch committec (ref,20) the

limiting ductility ratioc in intermediate spans is given by

D 1

? %
Assuming an exbreme value of l/h = 30, the maximun ductility required
under such circumstances is found to be 5. Figs. 3,2, 3.3 and 3.4 show

that in a2ll cases this nay be satisfied with no extra binders if

— L4 5 - : a
(Ls~w )£ 0.20. However in most beams l/h would be much smaller,

Thus in practiceiﬁiﬁé=0.20 may be regarded as an upper limit for the
percentage of reinforcement below which no checks for inelastic
compatibility would be required in the intermediste spans, of
continugus beams, For larger percentages of reinforcoment, the limit

védistribution could be determined from equation 10.9.

(b) End Span

The degreec of redisbtribubion necessary to egualise the span
and support moments in 2an end span wnder wiformly distributed load

as discussed earlier is about 33%. Hence for the extreme case of

l/h = 30, the value of cductility ratio from equetion 10,13 is given

by D > 10. TFrom Figs 10-1, 10-2 and 10-3, this condition could be
— M’

satisfied by (W-T3 ) & 0.15 without additional binders., This

value of reinforcement may then be regerded as a limit below which

no inelastic compatibility checks are required in end epans,
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D~ Ductility Ratio

1/h

Fig10s4 Inelastic Compatibility for Intermediate Beams

D -~ Ductility Ratio

Fig,1005 Inelastic Compatibility for End Spans
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CHAPTELR 11

SEIWVICEASILINY LIMITS

11.1 Serviceability criteria.

The most importaent factors that determine unserviceability in
reinforcedd bohicrete Biructures have becn difcusged in Chapter 3.
In the limit desigh 6 continuous beams the following ccnditions
have 'bkeht diséussed.

1. Excessive stress at critical sections under working load.

which gives rise to long term creep and cGeflection. The
type of structure and the nature of the super-imposed
load would determine the maximum stress that could be
allowed under working load conditions.

2. Bxcessive crack width

3, Large deflections, due to super-imposed load which may

render the structure unserviceable or physically unsound.

11.2. Yield 3afety.

The maidimum permissible stress under working load is
generally specificd in relation to the yield stress of either:the

or (14)

tensibn.rainforcemenqyf concrete and it is geneselly
assumed that there must be no plastic hinges in any part of
the structure under working load conditions.

In practice, almost all the beams are under-reinforced,

i.e. tension reinforcement yields before concrete resaches

maximum stress, hence the degree of safety against yield
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could be represented by the ratio of yield stress of the

reinforcement to the meximum pemmissible stress at working load.

*
g a

i.e- k = LR (ll.l)

Y G
where ¢ ¥ is the specified yield stress
‘rau)is the permissible working load stress.
Then Ky is referred to as the yield safety parameter
The C.E.B. recommendstions suggest values varying
between 1.0 end 1.3 for the yield safety paxameter(l4),
However since very little experimental information is
availaeble on the requirement of structures from the point of
view of yield sefrty,this parameter may be assumed as a var-
iable greater tha: unity whose value must be specified depen-

ding on the circumstances.

11.3. Limit crack width.

The maximum crack width in structures, though significant
as an important serviceability requirement can only be described
in relatively broad limits. However it is known that the type
of structure and the environment in which it is situated may
influence the permissible limit for the crack widths. For
exemple, close to the ses or in an industriel area with corro-
sive vaste gase% the atmospheric conditions may have adverse
effects on the reinforcement if the crack widths are large

enough to expose the reinforcement to weather. In the interior

of structures, the maximum crack width may be limited by
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aesthetic considerations.
The values given in table (11.1) hove been recommended
by the European Concrete Committee as suitcble limits for

design purposes.

Table 1l.1, ¢.bL.B. RBecoumendations on permissible

crack width.

Type Description. Permissible crack

width.

1. Structures in aggressive 0.1 mm.
atmosphere.

2. Unprotected exterior of 0,2 mm.
structure.

3. Protected structure or interior. 0.3 mm.

4. Limit of harmful cracks. O¢4 mm.

The relation between the crack width (o) emd the stress
in the tension reinforcement ( da) could be given by the follow-
N 6
ing approximate empirical formula duve to J:‘\r:i.ce(3 ).
= A 'é- oo e l2
[I8) & ,J'a (ll )
where % = diameter of bar

u'= percentage of reinforcement based.on the equivalent

tie bar
100 &,
2b{hi~ h)

A = an empirical constent which has the following

values.
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Smooth bars : A = 2.25 x 10 mmz/kg.

Deformed bars: A = 1.40 x 1072 mmz/kg.
The crcck width parameter (A,;) is defined as the ratio
of the yield stress in tension reinforcement to the limit

stress as given by (11.2), then A is given by

_ e’
Ay = g,
= M d* PR (11.5)
1 a
3
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where g’a* is the specified yield stress in tengion reinforcement.

11.4. Serviceability parameter.

The minimum service requirements of limiting stress and
crack width zre expressed in terms of the yield stress in the
tension reinforcement. But to simplify the design procedure,

let ks be defined as the serviceability parameter given by

. Yield moment at critical section
S lMeximum permissible moment under work-load.

% vee (11.4)
U A
Considering under-reinforced sections, the yield mowent (My)

and the permissible work-lozd moment (Mgﬂ could Le expressed
in terms of the yield stress ( (¢) and permissible limit
stress (QE%Q) as follows.

My = hoerg* (1 -¥Y1%)d

Moy = A -¥x)d

B Al AG 'Ta(,a (1 y )
Substituting in (11.4),

y _ a1 -y1x) ee. (11.5)
6aw(1 —Yx)
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In the limit conditions the stress at working load is
cbse to that at yield, hence the lever amm factor is nearly
equal to that at yield (c¢.f. Fig.4.6) . Then equation (11.5)
may be simplified to the form (11.6) which is similar to the

definitions of yield safety parameter and crack width paremeter.

P ¥*
A+ =& ees (11.6)

2

From (11.6) it could be seen that the minimum value of the
gerviceability parameter is egual to either the yield safety
parameter or crack width parameter whicg%ver is greater.

11.5. Correlation between ultimate load analysis and

gerviceability psrameter.

Strict serviceability analysis could generally be more
detailed than collapse analysis due to the fact that in the
former cese various combinetions of the super-imposed load
producing the most critical condition at each section of the
elastic structure must be investigated, whereas in the latter
only the ultimate load at the collapse state of the structure
need be considered. However, in practice, these calculations
need be only spproximate and may be simpliiied to obtain
suitable limits for the degree of redistribution.

Consider the continuous beam at ultimate load as defined
in Chapter 8. The elastic moments in az similar beam could be
given in the form,

n, = (Fg ye® + ﬁq Yq Q)1 oo (11.7)

where !

Gg, Bq are elastic coefficients which depend only on



the distribution of load and the .lexural stiffness properties
of the beam.
If R is the degree of redimtribution, and the yield

moment at support is M&9 then
; B 4
g Yg" "7 qlq

Similarly the moment at the same scction under working

M§ = (1 -R) (B Q)1 vee (11.6)

load could be given in the form

M = (BG + Eg Q) 1 ee. (11.9)

111

whexre ﬁ is an elastic coefficient depending on the distribution

g

of super-imposed load corresponding to the most critical con-
figuration of loading.
Substituting for M& and MY, i (11.4) in terms of (11.8)

and (11.9), KS may be given in the form

A= (1 -R) A e (11.10)
where XO = Sg Yg G + BQ.yq “
G
Bg G+ B Q

Xo could be easily determined for the specified over-load
coefficients end the type of load. Experience in elastic

-

design show that in practice B may be determined only for the
adjacent spans locded, as this gives rise to near critical
conditions at the support(29).
The 1imit on the degree of redistribution corresponding
to the servicesbility parameter XS may be given by
A=Ay

Rg -0

A

[

ves (11.12)




This gives the maximum degric of redistribution of moment
at ultimate load without causing unserviceability in terms of
excessive stress and crack width.

Particular case - Uniformly distributed lozd.

jin Chapter 10
The two special cases consideredkfor inelastic compata-

bility also provide the extreme examples that would be encoun-
tered in serviceability celculations. The following approximeate

values for A, is easily obtained by substituting fer ,Sg, Bg and

Bq,
Intermediste spans: )\o = _¥ G+ yq @
G+ 1.25 Q
v G+ v Q
End span b = Ye q
0 G+ 1.05Q

As >“s is defined by either the crack width limit or
permissible stress, the maximum permissible redistribution
corresponding +o the given over-load coefficients could now
be calculated from (11.12).

Example I. If Yg = )’q =1.75, G =7 and A g = 1.1,

Then, >‘o = 1.56 and B €26% for intermcdiate spans and

Ao =1.71 and R £35% for end spans.

Example II. If y, = y = 1.5, 6=@, *Xg=1.1
Then, )\o = 1,32 and RS 1% for intermediate spans and

A

o = le46 and RS 254 for end spans.

112
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11.6.Midspan sections.

The minimum requirements at midspan (or the critical
section close to midspan) under working load is given by
M= Ay ( a G+ 0 Q) 1 vee (11.13)
vhere MM is the midspan design moment
X g,CJ% are elestic coefficients corresponding to the
permaiient load G and the critical distribution of the
super-imposed load Q, which may be obitzined from
design tables. In general the critical distribution
of the super-load Q corresponds t;z;i€§¥§2€gugg;nsiTg2ded.
The design moment &t midspan could now be based on the
service limit in (11.13) gbove or the minimum equilibrium
condition given by equation {8.1).

Particular csgse - Uniformly distributed load.

The minimum service conditions at midspan under U.D.L.
for typical spans ere given by the approximate values,

M =X (0.046G + 0.086G) 1 for intermediate spans

M = *(0.078G + 0.10Q) 1 for end spans.

11.7. Limit Deflection.

The deflection of beams under working load must be taken
into consideration in view of the safety requirements of par-
tition walls, peeling of plaster, and other conditions depen-
ding on the general utility of the structure (e.ge beams

carrying crane loads, etc.). Under th:ese conditions, only
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the relative deflection due to ghe super-imposed load (without
the use of over-load coefficients) need be considered(l4)’(lo).
The initial deflection due to the permcneat load takes place
during construction and may be ignored as it generally occurs
before the structure is put into use.

Specific limits for deflection are not specifically
provided in the Iritish Code, but the values given in Table
11.2 have been recommended in the Russian structural standards

(10)

and Regulations ,

Table 11.2 Limit deformations of slabs and beams.

1
Designation of element. Limit deformation.
1. Peams supporting cranes, hand-operated —%5
cranes. >
2. Seme for elcctric cranes. .

N
C
(@]

3. Deck elements znc stairs with
ribbed slabs : (a) for 1€ 5m.

(v) 5a 1< 7m.
(e¢) 1Y 7 m.

4. Flat slabs and roofs (2) 17 m.

N BN W )
— of— o~ O o+
of o of O

(b) 12 7 m.

N
(o]
(@]

where 1 = length of span.
The limit requirements that are necessery to ensure that

the deflections are not exceeded could be derived as follows.
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Consider the central deflection 4 in a span under the
action of the critical live load {the condition of alternate
spans loaded is generally the most critioal) given in the form
(11.14)

= B e .
A= B== (11.14)

where 2 depends on the nature and position of the live load,
which could be obtained from design tables, and Q fs the total
live load. Substituting for the lower limit value of EI as in
(6.13) where the yield moment of support section is used,

is given by

~ 2
A= 8 o, eay 1 )
(1—x1)(1—R)(?g8gG +-yq.BqQ)h
i.en A- - B ea.Y Q 1
1 h

1- -1 F 0 F
(1) (B (Y08 + ¥gq @)
.. (11.15)
: *
If the permissible limit of deflectlon is represented by Qf%) ,

the deflection limit may be given by

.]:. + ;L_. (1—X1) (1"3)(Vg3g G +)"qu Q’:) ( A)*

‘ Cay Q

=

1

.o (11.16)
Bquation (11.16) could be used to obtain the minimum depth of
beam that is necessary to satisfy the deflection requirecment,

depending on the reinforcement and degree of redistribution.
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Particular case - Uniformly distritated load.

In the case of uniiommly distributed super-load on an

intermediate span,

8 .8 =1 g2

& a 12 77 " 768
1 -x
The lover limit of - is given by
ay
l - Xl _ Xl - l
e e e
ay bl ay + ebl

where €1 is taken as 0,002.

Substituting in equation (11.6) the 1imit of % is given by

LpA (1-r) (Y& + X5 Q) A\
h 1 5 (—-l-\ eee (11.17)
wherelﬂi = o4 1 5567
5 (eay+ . )

A:i depends only on the grade of reinforcement.

Similerly for an end span Bg = Bq =.§

8 = -+ which gives the following limit

61
Lpd, (-R)(pg 6 +yq @ /aV*
h 3 (_1') .o (11.18)

12

vhere A, = —2t<%
1 ¢ +0.002
ay

Other types of loads could either be treated similarly or

represented by their equivelent uniformly distributed load.
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CHAPTER 12.

Lriteria of Limiging shear

Although the exact nature or the mechanism of shear
failure in reinforced condrote beamszgae 5111l under intensive
investigation,the importance of this type of failure is well
established particularly as it is preceeded by very little or
no wurning of failure., The present methods of design for shear
is based oh empirical results most of which have been evaluated
in terms of the well known formula attributed to MYrsch mentioned
in chapter 9,where the nominal shear stress in a rectangular
section is defined in terms of the shear force, the lever arm
and width of section.

i.e. S = T

(1-¥z)bh

In the latest A.C.I. recommendations however?the lever

12,1

arm factor (1-¥x) in the above equation has been omitted in the
determination of the nominal shear stress,

In general,if s is less than the permissible shear stress
in plain concrecte @fgt), no shear reinforcement is required, while
if it lies between this value and an upper limit which may be
defined as permissible shear stress in reinforeced concrete
(s *%), the shear may be rosisted by additional reinforcement. If

bt

is
the shear stress is aboveo’bg* then it/considered excessive and
4

the beam section must be redesigned,
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* :

The actual values ofz_{bj; andgmff and the method of
reinforeing for shear arc subject to variations. The current
B.S. code (ref, 25) suggests a value of approximately 13 of the

1

permissible compression stress in bending forgb* Whllesit** is

given by4QL In recent research, Leonhardt and Walther (ref 42) has

recommended, 05t~ = o /9 , %* =D5&¥ . They have also
suggested a different basis for reinforcing when the shear stress
lies in the intermediate range. The CEB recommendations (ref.i4)
differ from both of the above methods in its approach to the design
for shear but ou the same basis of comparrisondb%* has been
increased to 555§ for rectangular beams and 6{}3? for beams
with a compression flange.ACI standard (ref; 57) recommends a
condarvative value of 2 7¢6’* forag** Thus it appears that the
permissible shear stress in reinforced concrete may lie in the range
4@% %o 6%% wheres, ¥ varies fronu%7b to #%/10 and in no case must
ag** exceed the above limits., The limits of the section parameters
that is necessary %o ensure the shear requir-wents at ultimate load
oould be easily determined as an integral part of a limit design
pro.z2dure.

Consider a beam loaded with the permanent and super-imposed

loads G and @ associated with load factors‘yg and Yﬁ. The shear forece

T could be given in the form

-

T =‘Xg yg G +'Xq yé Q 12.2



where Xg, Xq are constantsdepending on the loads.

Using equation 12.1, shear stress s is given by

o= Ko fa Ot ¥y —k — 12.3

(1-¥x) vh
But the support section parameters could he expressed intsrme of
the plastic moment as in the earlier chapters which may be given

in the formy, -—5— Y _ ) .
T () 2 e U (1R) (B ehy, Q1

where R is the degree of redistribution,fé yq.are elastic
’
constants as defined in chapter 8.

From 12,3 and 12.4, the following relation for 1/h could be obtained,

1 -—
+ = (X Yy es+K Y @ 7 j(?f_)_ 2.5

3

B Y, e+f vy ) (1-B)

" ,
Since the maximum 1limit of s is given byﬁiz the 1imit based on shear
b
can be given by
1 - X ¢ +X fo ¥
8 B ¥

By ,o+P Y Q) (1-8) 1266

Equation 12.6 may be used in the limit design to obtain the minimum
value of 1/Tlcompatib1e with the g™sar requirements

Particular case - Uhiformly distributed load

119

12.4

In 2 uniformly distributed beam, the following values can be easily derived

Intermediate span. Xg = xq = 0.5,
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1
8 a9 o
A L €W Jax 2.7
h 1~R T
~
‘bt
Ead span Xé = Xq = 0.6
= 3 =X ‘l'
‘Bg £y &
1 <f; 4.0 (O € *
h b 12,8
1 -R **
t
Assuminggt** = 47&? equation 12.6 and 12,7 reduce to
9 ¥
1n 4135 | _ O ad1 4108 . O
1-R h 1 -R

Considering a maximum value of ES = 043 and
R = 0,25, for internal spans and R = 0.33 for end spans, the shear
limit reduces to 1/h 4 5.4 for internal spans and,

1/h. ‘t 4.9 for end spans.

These two values may be considered to be extreme casces which may

not be exceeded under practical design conditions, -
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CHAPTER 13

Experimental Investigations on Reinforced Concrete Continuous Beams

13,1 Introduction

The fecllowing test prograime was set out in order to study
the serviceability and ultimate load characteristics in continuous
beams, as discussed in the preceding chapters, in relation to the
idealised member properties as derived froam sisuple beam tests,

A three span continucus beam was chosen as a suitable test
specimen as it encorporates the extreme types of span conditionsg that
may be encountcered in a wide range of structures. The size of
bean was mainly determined by the available test facilities in the
laboratory but it was considered large enough to prevent any scale
effects, The test programme covered eight beams, six of which were
reinforced with mild steel bars and the others reinforced with
cold worked steel bars.

13.2 HMaterials and Fabrication

(a) Aggregates

Ordinary Portland cement was used to obtain a mix of approxi-
mate strength 5000 psi on 28 days. The coarse aggregates
consisted of 3" maximum size crushed Thames Valley river gravel,
The fine aggregates were from the same source,

(b) Steel

Kild steel reinforcement used in the beans varied in diameter
from #" to 5/8", In the case of cold worked steel cnly 1"
diameter bars were used. The details of the reinforcement are

given in Fig.13,1 and the section areas are given in Table 13,1,
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Fig. 13.1 (a). Main Reinforcement Details of Continuous Beams
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Fig. 13.1 (b). Sectional Detalls of Beams
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| _stress in psi.
failure stoess. .
//
50,000p——
T it
diameter of bar. 3"
| Ea = 28.6 x10 psi.
yield stress = 43,700 psi.
- failure stress = 74,500 psi.
0 .01 02

strain

Fig., 13.2 (b). Typical stress strain curve for mild steel

reinforcement bars

stress in psi.

50,000
diameter of bar. "
Ea = 28.0 X 106 pSi-
failure stress = 74,100 psi.
Lo
0

.02

strain

Fir, 13.2 (a). Typical stress strain curve for cold worked

steel reinforcement bars
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The yield characteristics of the reinforcement bars werc determined
from the stress-gtrain curves of at least three random sanaples
of each grade of steel} typical examples of which are given in
Fig.13.2. The yield stress in cold worked steecl was defined by
0.1% off set strain. Strain hardening effect of tension reinforce-
ment werec not taken into account in the calculation of the moments,
In 211 the beams mild steel stirrups were used, which were lap
welded and tied to the main reinforcement using steel wire.

(c) Casting and Curing

fovm .
The bheans were cast in steelxiii& work which consisted of

three sections, cach of 6! 6! long, bolted together with the
joints sealed with plasticene, Two batches of the same mix were
used in each beam and the concrete was placed in four layers, each
layer being well comuacted using a shutter Vibrator mounted on the
top of the formwork,

Three standard 6" cylinders and three 6!" cubes were cast
as contrcl test speciuen for each bean, The culds were
stripped after one day, and the speciuiens were cured under wet
hessian for 7 days before allowing to dry cut under standard
labcratory conditions for a further threce weeks, The beans were
tested at an approxinate age of four weeks,

(d) Test rig

The details of the test rig are shown in Figs.13.3 and 13.4
The 19! 0" long bear was mounted on three roller bearings and one
rocker bearing the details of which may be seen fron Fig.13.5)each of

which was supported on similar electrical resistance gauge type load
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which
cells/were used to measure the support reactions.

The loads on the bean were applied by three 20T Auzsler jacks
sounted on 50T load frames reacting against the laboratory floor,
The outer jacks were coupied in series to a loading cabinet,

The centre load was applied independently using a separate loading
cabinet, The loading platens as well as the support platens
consisted of steel plates 21" x 4" x %", Similar to those that
8, 31%.

have been used in the simple beam tests quoted earlier The

applied loads were measured by the loading cabinets as well as
by electrical resistance gauge type load cells.

(e) Instrumentation

The strain in the concrete compression zone was measured
along the length of the beam using 4" Demec Strain gauges and
30mm electrical resistance strain gauges as shown in the layout
diagram Fig.13,5(a), The readings close to the critical sections
as were taken on Demec points Bpaced at 2" apart, so that the
local variations could be better extrapolated,

The strain gauge layout was designed to obtain :

(a) the strain at the extreme coupression fibres at sections close
to the critical points,

(b) neutral aris depth at each of the above positions,

(¢c) the curvature profile along the bean,
The reliability of the electrical gauge system was + 1 micro

strain and that of Demec gauges was + 10 micro strains, But

at ench section four sets of gauges were used, so that the effects
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of random errors in individual readings could be reduced to a
ninimwn,
The rotation in the beam was measured at six positions using

3

clinonmeters as shown in Fig.13.5(b). The clinonecters b had an

accuracy of + 25 x 10-6 radians. The total rotation of any part
of the benm enclosing a critical section could be deterained
using the clinometer readings,

The deflections 2t the critical sections,; as in Fig.13.5(c),
were measured using mechanical deflection gauges reading to 01001";
The settlement of the supports were measured using similar gauges,
the details of which could be seeh from Figyl3.3(c).

The maxinua crack width cortresponding to each significgnt

crack vere measured using a gauge reading to the nearest 0,001",

(f) Setting up of beam

The strain gauges were nounted on the test beam after the
beam had dried out for about two weeks, but at least two days in
advance of testing. In the setting up of the beanm it was found that
the base of the bea was not straight, in some cases the out of
alignment being as much as i, This was corrected in the initial
alignmuent using additional packing until approximately equal reactions
were registered at the outer and the inner supports.

{(g) Test procedure

Six of the eight beams were tested under incremental loading,
where the loads were increased in 12-15 stages, The first four

load increments were avoroxinately 15% of the calculated ultimate
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load, and each of the subsequent increments was about 5% of the
ultimate load, On the average each load stage required about
15 minutes before all the readings could be taken. This was
similar to the test procedure in the simple bean tests conducted
under the European Concrete Committeeg.

The beams CA5 and CA6 which were similar to CAl1l and CA2
were subjected to repeated loading corresponding to yiclé safety
factors, 1,5, 1,2 and 1,1, each load being repeated four times
from zero to maxinum,

In ecach of the tests the applied loads were kept approximately
constant while the instrument readings werc taken.

13,3 Theoretical calculations

The loading on the threc span continuous beams consistcd of
a single point load on the end span and third point load in centre
span as shown in Fig:13i6. Assuming constant EI volue for all the
spans, the moments at the critical sections during the elastic

stage of the bean are given by

1 Pol
My = é'g' Pll - 3%._ ;
)

L 2 P,1

My = %o Pt 7 1—;— ; 13,1

)

- 4 . 2
HB = o le 70 911 ;

Where P1 is the load on the end span and P2 is the total load

on the centre span, Substituting for the experimental values

Pz/P1 = 2,0 and 1 = 72", the above moments reduce to
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M1 = 10,5 P1 ;
Hy, = 15 P, = 7.3 P, ; 13.2
My = k5P, ;

The elastic rotation in the lengths AG, CE, B! (Fig.13.6)
could now be obtained by integrating the area of the Iepding
moment diagram, If Opny Ocpy Ogpt representp the eladtic
rotation in the above sections of the beam correaponding to the

critical moments M_, M_, and M

1t T2 3!
I S )
O = Tgmr (M, - M) )
)
1
Ocz = 85T (15M2 - 3M, - 2M3) ; 13.3
)
)

Ogge = YRS (14M3 - zmz)

Similarly the central deflection in the end span (A1)

and centre span (Ap) before the supports yielded are given by

12 )
By = (6M3 = 1;5Mp) 525t )
) 13,4
I 12 ’
Ap = (23h3 - LMZ)EIEEE )

After the supports yield,the increase in deflection in each
span is given by the same expressions when M1 and M3 are sub-
stituted by the increase in the free span moment and M? is

equated to zero,

Correction for settlement of support

If Ap and Ap' be the scttlement of the supports D and D',

relative to A and A', then the virtual reactions at the supports

D and D' are given by
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Rp = - [8AD ~ 74p1]

13.5

vy iy
[
W

RD = ""5 [-‘-7AD + 8AD']

Nt Nant N Nt Nt

Hence the moments at the critical sections due to the
settlement of supports could be calculated.

13,5, Discussion of experimental results

(a) Load-moment curves

The applied loads, reactions, critical rmioments and the
moments due to settlement of supports wer?%valuated from the
observed results using a computor prograide, The settlement of
supports in general were less than 0,020'" and the correction
required was less than 1% of the actual moments, which was
smaller than the accuracy of the load measuring devicesi Hence
if sufficiently rigid susports are used in continuous beam tests
it may be concluded that the support settlements could be
ignored,

Table 13,2 gives the ultimate moments of critical sections
obtained experimentally compared with the calculated values,

It was found that at the ultimate load, the moments at the support
sections were consistantly larger than those at the mid-span
sections even though they were designed to have si.ailar woments,
Thigz was similar to the observations made by Macchiég,

and could be attributed to strain hardening of the tension steel

at the support hinges, due to the large rotation taken place

before the ultimate load was reached, In some beanus, the mid~-span
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TABLE 13-1
Bﬁim Support Section Midsopan Section
ig‘ ?ns 5 = ’ OP;E g;]i’u iﬁs in:;l w W g
CA1{ b | 5.37 | .1012 | .0506 | 4680 - L 15.25 | +1040 | 0520
CA2 ! 4] 5.25 | .2155 | 0505 | 4800 15907 4 15,12 | .2210 | .0520
CAZ | 4] 5432 | 41188 | .0583 | 4100 | 5750 L 15.20 | .,1220 | 0600
CAk | 4| S5.22 | 42005 | .0553 | b410 | 5950 4 15410 | 42035 | 0565
CAS | 4] 5437 | «0950 | L0475 | 5000 | 6300 L 15425 | <0965 | 0464
ca6| 4| 5,25] ,2050 | LO480 | 5030 | 7030 1 4 |5.12 | .2012 | .0402
CA7| 4] S.37( ,O745 | L0495 | S070 | 6450 | 4 [5.25 | «0759 | .0506
CAB] L Su37| 41030 | 40515 | 4650 | 6650 4 15,25 | «1102 | 0551
TABLE 13-2
Beam Support Section Midspan Section -
Nojﬁﬁg}bs Hips| 2 | ® "M inPivs|intane| 2 | MM
CA1 [SH600 [61000 [.120 .12} 1.12 | 53500 {61000 [4120 [.190 | 1.4
CA2 |103000 {112000 |+255 [+19] 1.09 | 101000{100000 |+260 [.23 |0.99
CA3 {Sk700 57000 l.140 |.23] 1.04 | 53200 |50000 {.44k [.22 |0.9%
CAL {89000 [99000 {.236 [.25] 1.11 | 85000 |92000 [.240 {.30 |1.08
CAS [51800 [62000 [.112 |.18] 1.07 | 50700 [60000 [.11% (.28 |[1.20
CA6 [103000{125000 {.2542 |.29] 1.21 | 97800 |110000{«238 [+27 | 1.12
CA7 {42000 |60000 {.088 |.13| 1.43 | 42000 |SH000 [,089 [.15 [1.29
CA8152000 |70000 [.122 |.12] 1.32] 53000 |58000 [.130 <134 | 1.09
TABLE 13-3

Beam P1cal chal P1exp Pzexp P1exp P2exp (Eé)l (EI)e

No.} 1bs 1lbs 1bs 1bs P1cal P2cal 10 psi 10 psi

CA1 | 4500} 9010 | 4800 | 9900 | 1.07 | 1.10 | 113 | 250

CA2 | 8470 | 17000} 8800 | 17000} 1.04 | 1.00 | 166 | 251

CA3 | L4oo | 9000 | 4600 | 8500 { 1.03 - 106 | 240

cak | 7190 | 14500 7600 | 15100 | 1.06 | 1.04 | 145 | 246

CAS 8550 | 4800 | 9800 | 1.12 }1.15 [ 105 |25k

CA6 | 83001 16700| 9500 | 19500 | 1.14 | 1417 169 |254

CA7 | 3580 | 7200 | 4700 | 9600 |1.31 }1.33 |100 |25k

CA 4620 | 9200 | 5200 | 10100 |1.13 {1.10 {107 |250
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moment had not increased very much beyond the limit L4, but
larger ultimate loads than calculated were observed as a result of
the increase in the support uoments,

The moment at critical sections were plotted against the
span load as in Figs.13.7(a) -~ 13.14(a), These may be compared
with the theoretical curves which are also shown. In beams CAl,
CA7, and CA8 which were reinforced with about 1% tension
reinforcement, there was some transfer of moment from support
to mid-gpan in the 'elastic' stages due to eracking and
reduction of the flexural stiffness over supports, In the other
beams the theoretical curwves correspond very closely to the
experimental results,

Post yield redistribution of moments could be clearly
seen from the load-noment curves for beams with mild steel
reinforcement, These are similar to the predicted behaviour based
on idealised yield properties, However after the mid~span
sections reached yield limit, the support moments had increased
due to strain hardening as explained earlier, which is clearly
indicated in Figs.13,7(a), 13.11(a) and 13,12(a). In beams
CA7 and C48, which were reinforced with cold worked steel, a definite
yield stage could not be detected from the load-moment curves,
The support moments continued to increase after the idealised
yield limit as defined by the 0,1% off set strain, The final
collapse load was 10-3%30% higher than predicted, Hovever, the

deflections in the post yield stage in these beaus were quite large,
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Marked diagonal cracking due to shear could be seen in
beams CA2, CAlL and ca6 (Figs, 13,27, 13,29, 13.31), These were
accompanied by noticeable increase in deflections and creep at
higher loads,

Moment=-curvature results

The curvatures at similar sections were plotted against
the moment as in Figs, 13,15 -~ 13,22, These clearly show the
scatter in the test results both in the 'elastic' and in the
'inelastic! stages which is similar to observations in simple bean

tests8’ 34;

In general, the sections remain uncracked upto about
20-30% of the ultimate moment, the stiffness is then reduced until
the section yizslds at limit Li‘

The 'elastic! stages in the moment-curvature curves could
be compared with the calculated bilinear curvzs based on the effective
flexural stiffness of the beams, The curve marked (EI) is
based on the seni-eanirical formula 6,12 discussed in Section 6,

The conventional elastic calculations are indicated by the curve

marked (EI)e vhere the Young's modulus was assumed as suggested

by Hognestad et al22 i.e.
_ 30 x 105
" = 10,000

6 + ——

g’'b

and I was the second moment of the entire concrete area,
The curve (EI), agree closely with the test results, where as the
conventional elastic EI under estimate the actual curvature in

all tests, The behaviour is very similar to that obserwed in
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simple beam tests, -

The curvatures corresponding to a particular lqad stage
are plotted along the length of the beam in Figs,13.23(a) ~
13,23(h), These indicate the spread of plastic hinges at different
load stages at mid-span and support sections, At ultimate lozd
the 'length of the plastic hinge' does not scem to have any
relation to the point of contraflexure. Thus the inelastic
rotation at each hinge may be best indicated by a single expression
as in equation 7,44

Load~deflection curves

The observed central deflzction in the end and centre spans
are plotted against the load in Figs. 13.7(b) =~ 13,14(b).  These
indicate that with the gradual increase in load, the stiffness
of beam decreases, vhich iptgrn increases the rate of deflection,
Beyond the load corresponding to the yield of support, the
deflection tends to increase faster until the midespans yield,
when the deflection increasces rgpidly. At the latter stages,
considerable creep deflection takes place,

The experimental curves may be compared with the calculated
curves based on the effective flexural stiffness of the beams as
predicted by equation 6,12, As nmay be expectad the calculations
over—-estimate the deflections in the 'elastic' stages, but close
to first yield (at supports), the predicted values agree closely
with the experimental results, The behaviour of beema after

yield is closely paralled by the calculated curves except for the
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increase in the ultimate lond due to strain hardening and other
effects not accounted for in the calculations,

In beams CA5 and CA6, the repeated loads at As equal to
1.6, 1.2, 1.1 had very little influence on the deflection,
However when As was less than 1.0, considerable permanent
deflection has taken place. Thus, first yield may be
considered as a minimum serviceability requirement from the
point of view of deflection,

Observations on total rotation

An experimental verification of the total rotation in
indeteraninzte structures offers considerable difficulty in comparing
the measured results with the idealised calculations; bpto
first yield the colculated total rotation in segments AC) CZ,
iE' (Fig.13.6) given by equations 13,3 are compared with the
corresponding experimental values in Figs,13,25(a) - 13.25(h),
These are indicated by the full lines, Beyond the first
yield, the amount of inelastic rotation at a hinge at any load
cannot be calculnated using the bilinear idealisation, Thus the
dotted line indicates the measured total rotation after first
yvield plotted against the calculated elastic rotation in between
the plastic hinges, The relative deviation of the curves from
the lines eexp = Bcn] could be regarded as a neasure of the
inelastic rotation at the hinge. In none of the beams, has the

inelastic rotation exceedad the pernissible linmit,
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These diagrams show that in general, all the beams are
stiffor than estimated at early stnges of loading, but close to
first yield, the calculated total rotations are very close to
those observed, This behaviour of continuous beams is similar

8, 3t

to that of simple beams and demonstrateg the validity of
the idealised assumptions in the theoretical calculations presented

in Chapter 6,
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PART IV

Chapter 14

Limit Degien of Reinforced Concrete Skeletal Structures

14,4  Ultimate Load

The main loads acting on a structure as discussed in
Chapter 3 belongs to two main categories (z) permanent loads cons-
isting of the weight of the structure and permanent fixtures, (b)
superimposed loads consisting of moveable loads, temporary fixtures,
wind load and other transient loads, The magnitude of each of the
loads in the limit design are defined in terms of the mean load and
over load coefficients, In the case of the superimposed loads, the
over load coefficients depend on the probability of each of the load
acting alone or in combination with each other;
The following characteristics with respect to the loads
may be assumed;
(1) The permanent load acting on the structure is defined
by the mean load G and the over load coefficient Bé which
is independent of tho other loads,
(2) The superimposed loads are divided into two categories
of independent loads.
(a) Vertical loads denoted by Q,
(b) Lateral loads denoted by V.
The over load coefficients for the vertieal and

lateral loads when acting individually are given by Y;1 and
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(v1' When they act together, they are given by Yq2
and.xvg. Each of the loals giVven above are considered as
definable in terms of a single parameter ( inoremental load parameter).

The ultimate load of a structure under a given set of specified

loads is defined as the random combination of the superimposed loads
with the permanent load that has the greatest probability of causing
structural failure, the failure state being defined in terms of a
gollapse mechanism (3).

As an illustration consider the case of a continuous beam.

In Chapter 8 it was shown that its collapse mechanism consists of
partial collapse mechanisms for each of the spans, and that the
equilibrium condition could be explicitly stated in terms of the
moment at three critical dections in the span. Thus if the loads
in the different spans could be stated independently, ‘the ultimate
1oad for the continuous beam corresponds to the state when all the
spans are loaded with the maximum load for each span at the same
time.

One of the first problems in the design of stguctures for safety
is to determine the ultimate load as defined earlier for any structure
and the specified loads; In elasto ~ plastic or rigid plastic design,
this may be mo?e important th=za in the elastic methods of design)

as in the former, the combined effects of different loads cannot

be determined by superposition of resultant stress due to each system
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of load. It must be remémbered that, in elastic methods of

design, the principle of super-position of stresses confines
structural analysis to the investigation of individual cases

of loading from which the combined effects could be easily derived.
This process in general reduces the calculations enormously. So
far a similar simplifying principle has not been available in limit
design.

In plastic analysis Baker (3) and Prager (§o>).haye shown
that for any structure subject to mechanism type of fazilure there
is a unigue collapse lecad factor asscciated with a particular
mode of collapse. The probable collapse mechanism as derived in
the above method of analysis is based on a quantitative
investigation of combined elementary mechanisms, and the corsesponding
lead systems. In design, a qualitative appreach on a similar basis
may be used to obtain the properties of combined load systems which
may help to determine the ultimate load configuration; The
following principle of combined load is derived for a limited
range of structures where the collapse modes corresponding to
the elementary load systems could be specified and ensured by
yroper design.

14,2 Ultimate Load Theory

As in the plastic theory (3), the members at failure
are assumed to have a constant moment at the "plastic hinges!

which possess sufficient "plastic rotation capacity" so that
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a mechanism type of failure could be attained.

Definition (1) ZLet one or more independent load systems which could

be represented in terms of a single load parameter be defined as

an_elementary load system. If Pi denotes an elementary load systewm,

and and M\ y be the corresponding load parameter, then the load is
defined by“li P

Definition (2). The collapse mechanism corresponding to any elemen—

tary load system 31Pi is defined as an elementary collapse mechanism,

denoted by Si'

Definition (3). Any two elementary collapse mechanisms are said to

be independent if'the mechanism displacement due to one system causes

in the line ¢k ackien of
no displacemght arnthé'loéd points in the other, while if there 1s

any such displacement, they are said to be similar or dis-similar

depaniing on whether this is similar or dis-similar to that caused

by its own mechanism displacement. The corresponding elementary load

systems are also referred to as similar or dis-similar accordingly.
The above definitions could be easily applied to any

structure in which the modes of collapse are known or could be

specified for purposes of design. For cxzample, the individual

span loads in a frame structure can be considered as elementary

load systems. The resulting elementary beam mechanisms are

independent with respect to each other as in continuous beams;

Similarly the lateral wind load on an orthogonal structure can be

considered as an elementary load system associated with a sway
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mechanism of collapse; In thds case the sway mechanism is
independent with respect to each of the beam mechanisms; However,
if the structure is not orthogonal, the sway and beam mechanisms
may be depenaent; They could in this case be separated into similar
or dis-similar categories depending on the direction of rotation
of the common members;

In structures where the load systems could be classified

under the above definitions, the following general principle of

combined loading ocould be established.

"The collapse load factor of a structure is a minimum

due to the combined action of all the independent and

similar elementary load systems”,

" Let Pi; Pj be two elementary load systems and Sy Sj be
the corresponding elementary collapse mechanisms; Let the
equilibrium condition for the elementary collapse mechanisms

be given by the eguations,

At z P, &, = zxioi ce . (1241)

7\321’353 = L% . ce o (18.2)
where Oi, Qj are the rotation of the hinges in the mechanisms
due to arbitrary mechanism disPlasaments.S;, 85 are the displacements
at the points of application of the loads corresponding to mechanism

displacement in the mechanisms,
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?X* ;\* are the collapse load factors corresponding to the
i? j

elementary load systems Pi and Pj respectively; xi’ Xj are the
plastic hinge moments.

Let )* be the collapse load factor corresponding to the

1+
loads Pi and Pj acting simultaneously. The failure mechanism

Wht 3ame as

under the combined load,denoted by S may or may not b?/

is 30
&® either of the elementary collapse mechanisms. But it could

%
be shown that the combined load faotor>§+j is unlque(3 50%

Consider the equilibrium of the mechanism Si under the

action of the combined load Pi + P Since the collapse load

jl
* . - . e . .

factor :Xi +3 is urique ( corresponding to me'cha.nlsm, Siq—'j)"Bnd

as Si under these conditions is an arbitrary mechanism, the

following inegquality must be satisfied;

P } P, § g D

i+a L= L

$.. < z 0.X; +v. (14.3)

i+ i ij
where gij is the corresponding displacement of the load system

Pj due to the arbitrary displacement of the mechanism Si.

Eliminating 2{ Xigi from 14.1 and 14.3,

N ZPi Sy + Nbyy 92y &4y - xk.ip. S,
i.6ey (¥

Fer mechanism 3., 2, I}_S 1 :> 0 and from the definstion of

load systems, the displacement (if any) in the common members

are similar.

- N ) 2 P, 5. +)\.1+JZ 8 € 0 (1400)
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- P, g . s O.
RN
Then equation 14.4 gives,
* - N\*
’)\i+j 1 <§'0 . ‘
¥
l1eCuy Ai_,_a gmi * & e (1405)
Similarly it could shown that
¥ ¥
7‘i+j {7‘3 . o s (14.6)
The conditioms given by 14.5 and 14.6 show that the
collapse load factor due to the combined action of two indepen~
dent or similar elementary load systems is less than either of the
individual collapse load factors or in the limiting case it could
equal the least of the collapse load factors.
Similarly, P, . may now be treated as an elementary

147
load system and the proof could be extended to cover all load

systems which are mutually ihdependent or similar;

The principle of combined loading may be applied generally
to most common applied load systems and structural conditions. In
all cases it is an advantage to treat smaller wnits of loads as
elementary load systems, so that the dependence or the independence
of the elementary collapse mechanisms may be checked by inspection.
Then the ultimate load configuration under the combined loads could
be easily established;

As an applicagtion of the principle of combined loading,

the following useful corollaries may be easily derived.
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Corollary 1. "The collapse load factor of a structure due
to the combined action of dis-similar elementary load systems
is greater than that due to each elementary load system applied
separately?

The proof of this follows almost on the same lines
as that of the principle of combined action of similar and

independent load systems proved earlier, except that by definition

the terms involving external work in the expression 14,4 are given
by

[__Pisij<o ,zl’i i)o
When substituted in the expression 14.4 as before the combined
load factor is given by,

7\%&3}7\’{ LAY

Corollary 2. "The yield polygon due to the action of independent

or similar elementary load systems lies wifhin a surface bounded by
planes normal to the axes and passing through the coordinates defined

by the elementary collapse load factors",

This is illustrated in Fig. 14.71 and follows immediately

from the principle of combined action of similar or independent

load system as -">‘:{+,j \<>\:’: y X
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7\j yield polygon
N /
J
*
}\i+j “““““

boundary surface

Fica 4.1

Similarly the yield polygon due to the combined action
of dis-similar elementary load systems may be shown to lie outside
the boundary surface deZined above. It may be noted that under

| (50)

both these conditions, the yield polygon remains convex N

Corollary 3; "In multistorey structures where the members are

orthogonal, when only the permanent loads and the vertical super—
loads are acpsidered, the ultimate/i%i%iguration consists of all
spans being loadeds"

This condition follows from the principle of combined
loading as the partial collapse mechanisms due to the vertical
span loads consist of beam mechanisms which are mutually
independent. The problem of continuous beams discussed in Part
(3) of this thesis is a special case of this type. The ultimate
load may then be defined by the load configuration where all the
spans are loaded with XéG + \Xq1 Q. Under these conditions,
the limit design procedure for each storey beam is similar to that

of continuous beams and the methods outlined earlier could be

directly used in frames as well;
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Corollary 4. "In orthogonal structures if the span loads znd the

lateral loads ( assumed to act at nodes ) are unidirecti?él, the ultimate
load configuration consists of the maximum probable vertical and lateral
load acting simultaneouslyl

The partial collapse mechanisms duc to the span
loads,where each of the span loads is considered as an elementary
load system, consist of beam mechesnisms, Similarly eaoan of the
lateral loads acting at the nodes may be considered as an elemcntary
load system. If the lateral loads act in the same direction, as is
usually the case in frame analysis where the wind pressure and earthquake
forces form the lateral loads, the elementary collapse mechanisms consist
of sway mechanisms which are independent or similar., In orthogonal
structures the beam and sway mechanisms are mutually independent.
Hence the direct application of the principle of combined loading

yields the above result;

The ultimate load may then be represented by
YéG + };2 Q + Y;E V and the load configuration consists of all

the spans loaded and the lateral load acting at the same time; Baker (5)
has used the above loading condition in the ultimate load dssign of

reinforced concrete structures as the most critical case of loading
to be considered. However in 1limit design, the safety analysis would
be based on three cases of loading represented by,
a G
(a) Yg +Yq1Q
b G + o v
(@) Y&+ Yo+ XY
{e) Yo+ YV
g v
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where the over load cocfficients are as discussed in Chapter 3.

q1’ Yq.?’ Yv1’ sz

are in general different from cach other, each of the above cases

Since the over load coefficients \Yg’

of loading could give rise to eritical safety conditions, and must

be investigated separately,

14.3. Serviceability reculrements of framed structures

The minhimum serviceability requirements discussed with
respect to continuocus beams in Chapter 11 are sufficiently general
as to include framed structures., In the application of the
ssrviceability requiremcnts, they may be expressed in terms of the
yield safety and crack width parameters as in Section 11.4. The
minimum critical section moments reguired to satisfy serviceability
may then be evaluated by an approximate elastic analysis. In this
context the experience gained in the classical elastic design methods
may prove quite usefull For example, the critical serviceability
conditions in beam support sections occur when the édjacent spans
are loaded, and that of midspan sections occur when alternates spans
are loaded. In the case of columns the critical conditions occur
when alternate bays are loaded as shown in Fig. 14.2:

As in continuous beams,the minimum serviceability
parameter in most cazses may be close to unity and the limit EI
values as discussed in Chapter 6 may be used in all limit calculations;
The limits for the span to depth ratio derived for beams in Section
11.7 and in Chapter 12 with reference to limiting deflections and shear

could also be applied to the b3ams in framed structures.
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Fig. 14.2 Critical Serviceability Conditions for a Typical

Storey
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CHAPTER 15

An Investigation into elasto — plastic design of skeletal

Frames using plastic hinge systems

1541 Statical Indeterminancy and elasto-plastic analysis.

In the conventional elastic design of skeletal structures,
linear methods of structural analysis involving flexibility methods
or stiffness methods could be used, (54, 55, 56, 60) both of which
are easily adaptable for computor analysis; It could also be
shown that the solution to the stress analysis problem is unique,
hence any of the methods that is found most convenient for the
problem may be used;

In the elasto-plastic analysis however, the flexibility
method has a considerable advantage as the discontinuities at
the "plastic hinges" could be taken into account in the analysis
directly. By this method the post - yield stages of the structure
under incremental load, may be analysed by treating it as if it was
a reduced structure)where the yielded sections are replaced by
actual hinge sections. It must however be noted that any of
these sections that may undergo reversed rotations in the subsequent
stages of loéding' excess of the plastic rotation, way revert back
to elastic conditions, The process may be repeated until an ideal
mechanism condition of failure is reached (assuming no frame

instability and other local modes of failure.).
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In this process of analysis the rotation of the plastic
hinges at any stage of loading could be determined using the
Muller Breslau virtual work equations or other meahs, as the
compatible stress system at any stage of loading is known,
The reduction in the strength of any of the sections that may
undergo excessive plastic rotation as in reinforced concrete
members could also be incorporated in the method, but in
complicated structures a limit basis as suggested by Baker (5)
may provide a reasonable safe limit for the collapse load.

An elasto-plastic collapse analysis as described above
could give rise to at most n plastic hinges in a structure that
is n-times statically indeterminate, since the formation of one
more hinge renders the structure unstable as a mechanism
condition is reached; But in most cases,collapse may take place
due to fewer plastic hinges,as partial mechanism conditions could
take place . From the point of view of design of structureg, the
limiting case in which n plastic hinges could be envisaged corresponds
to the maximum utilisation of the largest numbex of critical sections
for the given loading system, But the existsnce of a solution of
this nature, wﬁich is not unique 4f it exists, can be ascertained
by compatibility and equilibrium,. ., Under these conditions if a
compatible stress system could be determined, the plastic rotation

at the hinges is given by the virtual work equations as before;
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A method of ultimate load design of multi-storey
structures based on the above assumptions has been suggested
by A.L.L, Baker (5). In this method of design a plastic hinge
system is first assumed., The moments at the hinges are then
checked for compatibility using the virtuval equations as given
by the set 15;1

Stz o+ L, -6, .o (15.1)

s s, . T
where i,J ¢ 1-9n, and fij and foj are given b?SMfdeS
ET

an%fMJM.d? respectively. For correspondence of stress and

ET
strain at the hinges G:iand Xj must be of the same sign. In

reinforced concretc structures at which the theory is mainly aimed,

it is also considered necessary to check that the plastic rotations

are within "permissible limits"., In the design procedure, the

actual rotation at ultimate load may be taken into account in

the detailing of the hinge sections or if they are too large,

they must be reduced by selecting other compatible solutions;
However the main problem in this method[?isign is to

arrive at a compatible solubtion for the position and direction

of assumed hingeS: The equation set 15.7 contains n arbitrary

variables Xj (js1> n), which must satisfy the n compatibility

conditions simultaneously. This condition that there are n

plastic hinges with positive rotations go that the system remains

in stahle equilibrium at the ultimate load is generslly referred
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to as inelastic compatibility (18). Baker has suggested a trial

and adjustment method of obtaining a suitable moment set. In

this method a preliminary guess of the moments at the hinges

are made. These are then substituted in the compatibility
equations and if any of the rotations are found to be incompatible
with the assumed sense of the plastic moment, a fresh trial is
made; A satisfactory moment set is obtained when all the hinge
rotations are of the right sense; Some approximate values of the
hinge moments for a typical multi-storey structure under a

particular hinge system has been suggested by Baker as shown in

Fig. 151 (5) 1.2M
o SM+41m 2+ y

N Y

] . \ ’
stersy sway moment

+ .175“1

g
=
®
H
@
=]
i

M = Pree moment in span

Ratio of stiffness of beam * +hat of Column

U]
1

Fiz 15.1 Typical moment values suggested by Baker;

One of the implicit assumptions in this trial and adjustment

method is the existence of an inelastic compatibility state with

n plastic hinges at the positions as assumed.
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For different load oonfigurations and hinge position in certain
categories of structures, these assumptions would be valid; For
example continﬁous beams and portal frames, the existence of
equilibrium conditions with sufficient number of plastic hinges
to render the structure statisally determinate could be verified
as the failure mechanism conditions are comparatively simple,

But in more complicated structures,particularly multistorey
structures, it may not be easy to forsee that the n hinges at

the sections as assumed could lead to a compatible stress state
with the plastic rotations €i (i:1=? n) being positive at each

of the sections. Unlike in elastic analysis, a statically
admissible hinge system may or may not be suitable as a basis of
inelastic compatibility analysis depending on the possibility or
the impossibility of Bcb#%ing the final stress state as assumed
in the trial and adjustment method. Hence in general, for a
structure which is n times statically indeterminate, it would be
necessary to establish the existence of a compatible state with
n plastic hinges at the positions assumed as an "a priori" condition
before any trial and adjustment method could be used to determine
an actual compatible distribution of moments; A basis of
investigating the suitability of an assumed hinge system for
inelastic compatibility analysis is outlined in the next section.
Under these conditions a hinge system for which a compatible solution

may be shown to exist is referred to as a suitable hinge system otherwise

it may be referred to as unsuitable;
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15.2 Suitability of plastic hinge systems

Consider an n-times statically indeterminate structure.
Suppose that it is possible to reduce the structure to a state
of statical determinancy by the introduction of n plastic hinges)
so that they sustain finite plastic rotations at ultimate load
(considering the load factor and 2oad configuration). The actual
rotation could now be calculated using the virtual work equation as
in 15.1.

In this state the structure must be in equilibrium if all
the compatibility conditions are satisfied,provided that none of
the critical sections other than those assumed have undergone yieid.
But in a limiting case it would be possible to have one or more of
the remaining critical sections to be at the yield limit; Thus
consider any arbitrary critical section to be at its yield limli,
which may be considered to bg the last hinge to form before eventual
collapses Let this last section which reduces the stpucture to a
mechanism with any further increase in the applied load be called
the (n+1) *h hinge. Thus the failure mechanism for the structure
at ultimate load would con-ist of m+l hinges (m £ n) of vwhich m
hinges have undergone plastic rotation prior to ultimate load
and the (n+l1) thhinge is at its yield limit.

For convenience of nomenclaturse let the mechanism of
collapse that may be initiated by the m4l hinges as in the above

limiting case be called a guasi-mechanism to distinguish it from

an actual mechanism as the (n+l) th hinge included in the above
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guasi-mechanism has not undergone any plastic rotation, The m

hinges that aré common to the staticsl release system and have

undergone plastic rotation at ultimate load could be referred

N

to as the basic hinges of the quasi~mechanism,

Thus it could be stated that in the limiting equilibrium
state, a compatible plastic hinge system must contain at least

one guasi-mechanism, This may in practice be determined by inspection

or by the properties of the influence coefficients characteristic
to quasi-mechanisms. The latter may be investigated with respect
to the basic properties of the quasi-mechanisms and statical

release systems.

15.3 Properties of guasi-mechanisms

A quasi-mechanism as defined above represents the state
of transformation of compatible slasto~plastic structure into
a mechanism condition. Hence it may be expected to have properties
similar to thet of mechanisms as well as statical release systems;
Thus a quasi-mechanism in its limiting state may be considered to
have the following characteristics.
(1) An infinjitesimal increase in %he load factor causes large
increase in the deformation (collapse)
(2) An infinitesimal reduction in the moment at any of the

basic hinges given rise to large deformations (collapse);
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In elasto-plastic analysis the collapse conditions may be
expressed in terms of the hinge rotations. If Oi be the plastic
rotation at a hinge in the quasi-mechanism, Xi be the correspon-
ding moment; and A be the load Tactor, the collapse properties

given in (1) and (2) above could be expressed as

39,
(a)*g‘gE >0 (15.2)

-

251 o
X, ™
2%,

where i, 3¢ 1 —¥ nm.

(b)

The rotationa at the hinges could be easily obtained as a
function of the moments (X1 coesee Xn) and the load factor as
in equation set (15.1). Suppose for simplicity the plastic
rotation of the m basic hinges arce given by the equations 1 to
m. Then differentiating sach of these m equations with respect

‘tO k5X13 ij s 6% 000 Xm

S B S S SUTTI S SR
24 DA i1 ijj inn io

= T,

io
e. 2 - 7
.——a—x—-:l:'z_,—-‘ f, X’ acea +f,.X, esanve f. X +Af. ‘
J 3 bxj i1 i3 in'n io |

= T, .

1]

for i, j 1 —> Me

As the m hinges are the basic hinges in a quasi-mechanism; the

collapse properties given in (15.2) provide the following conditions.
f'10 <0
fij > 0

where i1, j: 1 —3> m.

eee (15.3)
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These relations show that the influence coefficients due
*to the basic hinges nust satisfy certain requirements which depend
on the whole group of hinges; It may be remembered that in the
plastic collapse theory, a similar assumption is made, as the moments
and the rotations at any of the hinges must be such that the
virtual work terms are positive; It may be possible to obtain
the above conditions using the principles of energy as at the
limiting case of a gquasi-mechanism, compatibility conditions
must still be gatisfied and the complementary potential energy
due to the total deformation must be a maximum (54). This would only
be satisfied if none of the hinges close under the result of an

increased deformation.

A necessary condition for a hinge system to be suitable

for inelastic compatibility analysis assuming positive moments

at all hinge sections is given by fij e O7fio<: O for at least

one group of hinges which forms the basic hinges in a quasi-

mechanism.
The case where m = n may be r»eferred to as an absolutely

compatible hinge system, and if m < n, it may be said to conditionally

compatibles In either case a compatible solution with n plastic
hinges could be determined; But if the above necessary conditions
cannot be satisficd for any group of hinges, then an equilibrium
state as assumed does not exist and the corresponding hinge system

is wnsuitsble for inelastic compatibility analysis.
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A trial and adjustment method applied to such hinge systems
would always provide a negative result,

The reduction of the moments of any of the hinge sections
in an absolutely compatible hinge system gives rise to a ccmpatible
sets This could be easily ¥ verified from the compatidility
equations. In such cases the concept of momcnt redistribution
as stated in Chapter 8 could be applied without a check for
compatibility, provided that the pcrmissible limits for the
rotations of the hinges thus formed are not exceeded; However
in conditionally compatible hinge systems any redistributions must
be accompanied by a compatibilisy checks The significance of the
latter may be easily seeniiﬁglsubsequent examples, which are selected
to primarily demonstrate the application of the suitability criteria
to different hinge systems, The procedure may be extended to other
structures so that it would be possible to obtain general hinge
systems for different categories of structurcs that are suitable
for inelastic compatibility analysis;

Example 1. Continuous Beams

Consider a continuous beam and a typical load system as
ghown in Fig; 15;2; For a hinge system where the supports are
chosen as the plastic hinges, the influence coeffioients are of
the type fij 7 0, fio<i_0 for all the hinges; Thus the hinge
geystem is absolutely compatible. Similarly in continuous beams

other hinge systems involving midspans may be Pound which are also
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Fig., 15,2 A hinge System for a Typical Continuous Beam
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absolutely compatible. This would also confirm the validity of
the concept of moment redistribution as suggested by Glanville
and Thomas (1) in the design of continuous beams, as no check for
compatibility is required except as a limit for the degree of
redistribution to prevent unserviceability at working load or to
prevent crushing of concrete;

Example 2, Portal Frames

A portal frame with typical vertical and lateral loads as
shown in Fig; 15;5; Four possible hinge systems that are statically
admissible are indiceted in (b), (c), (4). and (e). The direction of
rotation of the plastic hinges at each section is indicated in the
diagram whilci must be assumed to start with as the same section may
have different plastic rotation characteristics when hinging one way or
the other, and the direction of rotation is also reguired before
compatibility could be ascertained:

Considering the first three systems it could be seen that the
influence coefficients are such that f;. 7 0, fié< 0 where i, jt

J
173, Thus any of the hinge systems (b), (c) er (d) are suitable

v

for compatibility analysis and infact they are absolutely compatible,
In the hinge system (e) which would be considered similar
to (b) in elastic analysis, the influence coefficients are such that

f. 7 0 while f £ <0 < 0 while the

16 20? " T3p T00 Typ Tyq, Ty, oy
rest of thc coefficients are positiw=., The group of hinges (2) and

(3) which satisfy the condition 49 < 0y fij > 0 does not form the
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Fig. 15.3 Portal Frame
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basic hinges of a quasi-mechanism, Hence this hinge system is
unsuitable for an inelastic compptiimidity analysis.

In the case of multiple portals under vertical and lateral
loads, the pattern of hinges used in (d) for a single portal frame
may be used in each bay to obtaln a statically admissible systems
In general such hinge systems may also be found to be absolutely

compatible,

Example 2. Multi-Storey Frames

This example shows a more general structure of a two storey
frame (Fige 15.4); The loading diagram is shown in (2), Two of
the possible hinge systems are shown in (b) and (c) which are
used primarily to illustrate the application of the suitability
criteria which may equally well be applied to other possible
systems. The direction of the hinges are marked by the side of
the hinges as in the previous case;

The hinge system (1) corresponds to the type of hinges
suggested by Baker in order to separate storey SWay. (5,9)

The nature of the influence coefficients is shown in the
accompaning diagram in which a question mark indicates that

the influence coefficient may be affected by the megnitude

of the stiffness values; In these ca3-3 the likely sign is
given on the assumption that the structure is symmetrical, but
in actual cases these values could be easily checked; From the

influence coefficients it may be seen that this hinge system
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is not absolutely compatible., Hence he separate groups of
hinges for which fij >0, £, €0 may be checked for quasi-
mechanism condition; In this case it may be found that not
a single group of hinges satisfieca quasi-mechanism condition,
which shows that this hinge system could be considered as
unsultable for inelastic compatibility apslysis as suggested;
However if the hinge (1) is reversed in sign, the resulting hinge
system may be found to be suitable as the group 1-4-3-5-6 under
these conditions satisfies fij >0, f104: 0 and they also form
the basis for a guasi-mechanism (leading to a sway type - mechanism).
But it must be noted that in multistorey structures this type of
reversal rry not be possible as it may give rise to cantilever
effect on the first column with the resulting deterioration of its
stiffness; In general it may be noted that the sway mechanisnm
type of failure would also he the least likely for multistorey
structures.

The hinge system (2) and the corresponding influence
coefficients are shown in (b)s As in the previous case these
are not absolutely compatible. But out of these hinges six
groups of hinges may be selected for which fij7 0, fi0<(()
and quasi-mechanism conditions are satisfied, These are given
by 1-2, 2-3, 8-9,7-8-9;1-2-3~4-5-6 and 1-2-3-4-7-8-9, OfF these
the last quasi-mechanisn leads to an over all collapse mechanism
for the structure involving the largest number of hinges; Thus

the hinge system (2) is suitable for inelastic compatibility analysis.
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Any other statically admissible hinge systems for this
structure may be analysed in the same way for its suitability;
In multistorey structures the general type of hinges as in system
(2) above may be suitable when the vertical and lateral
loads are considered in the ultimate load. In these cases the
possible quasi-mechanism would also include the over all type of

b}

collapse mechanism,
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CHAPTER 16.

An approximate method of multistorey structures for ulitimate load.

16.1. Blasto-plastic design for multistorey frames.

A method of combining elementary load systems derived in
Chapter 14 shows that the different load configurations that must
be considercd in the design of multistorey structures consist of
only two or three combinations of loads. Of these it has been shown
that the design of the structure for the combined action of vertical
loads is similar to that of continuous beams, for which the design
methods have becn completely discussed in Part 3. However, for the
design of the structure for the combined action of the vertical and
lateral loads, the whole structure must be considered, which may be
hascd on an elastic or an elasto-plastic method. In the latter casc,
the reduction of the structural stiffness considerably increases the
deflections prior to tho ultimate load state, thus increasing the
dangcr of prematurc failure duc to instability(39). Thig would make
it inevitable that any olasto-~plastic method must include pro&isions
to safeguard against instability effects.

The following analysis showe that in genceral multistorey
frames may be dividsd into two categories)dependimg on whether an
clastic design or an elasto-plastic design would be more economical.
In structurcs whore the axial loads are large; the incrcased doflec—
tions that arise out of an clasto-plastic design, would outweigh the
advantages derived from a reoduction of the moments. Thus, in such

cases, a deviation from the elastic design may lead to a moro
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uneconomical design if instability offects are tc he avoided.

16.2. An approximate limil method.

Consider the offcets of the vertical and lateral loads act-
ing on a multistorey frame. A typical storey is shown in Fig.16.1.
The following simplifying assumptions would be made in order to
derive gencral exprassions for beam and column critical moments.
1. The columns are uniform in sizc and are egually reinforced
on either face so that the positive and the negative moments are
equal.

24 The latcral displacementsof all the columns are cqual and
corresponds to the storey sway.

In general colums are designed so that tho latoral forces
could act from cithor side as in the case of wind forces, thus the
assumption (1) could bc considored as generally true in practical
design. It may also bz noted that in columns the reinforcements
Tun through the length of each colum. The assumption{2)could be
considered as a first order approximation as long as no beam
mechanisms are formed.

Now consider thc relcase system for a typical storey shown
in Pig.16.1. The compatibility requircments for each of the
similar hinges may bo derived in terms of thce common sway angle
for the storey. The limit moments for thc beam and column
sections for an intecrmediate and end panel are obtained in the

following sections.
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Y4

Fig. 1643, End Pancl
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Internal panel in an intermediate -~3orey-

The critical section moments for an internal panel are
~ shown in Fig.i6.2. Let B; and C¥* be the beam and column moments
as shown. If q} denotes the storey sway, considering the end
rotation of the members at the column hinge; the rotation of the

column hinge G“C is given by;

( { b r?l 2 (B* - ( D ox *‘1 C;'sh
= A8~ ¥) = 6EI | "o T € BY - \I+f )Cr) - Biit H
cee (16.1)

where; MO = free span moment,

BI, M y= flezural stiffness of beam and column.

h = height of column.
! M= ratio of column moment in upper storey t~ the correspon-
ding moment in this storey.

For compatibility, the rotation at the column hinge must satisfy
the condition erc;;o, Thus denoting X./6EI by k ana ETh/BI{ by
vy, the minimum beam moment to satisfy compatibility is given by,

B; >

il

2w .1 o8
s M+ 3 (2 + 2u + ¥) C* o cee (16.2)

An approximate value for the internal column moment C§ could
be obtalned by distributing the storey moment in proportion to the
column stiffness. The instability effect due to the axial load

and sway deflection in the folumn is also taken into account in

the column moment given by,

Vh(ET) H_h¢
C;f: yvﬁ r o, rzgv . (16.3)

2?% (27)

i



212

1

where N_ is the axial load in the r ™ colum, N i the total
number of columns, V is the storey sway force and ) o is the
overload coefficient for V.
It may be noted that in equation (16.3) the increase in
the sway angle als;o increases C;, which may not necessarily be
uneccnomical as the actual moment in the column may be larger
for minimum service requirements. Howeveor an increase of B;
due to larger sway would in all cases lead to uneconomic conditions.

Substitubing for C* in squation (16.2),

2 Yo B, P_n( Yk
> = 1 — +w[ 2+ 20+ y }
BY 2 3 M+ 3 (2 + 2p + y) ELN (EJ) 6
1
(16.4)
12 EI
Let P = Tulor T ) eoe (16.5)

From equation (16.4), it may be seen that if Pr<<Pro, then an
increase in the sway angle decreases the beam moment,but if
Pr > Pro an increase in sway also increases the beam moment.
‘As the elastic conditions correspond to the least sway, the above
limiting conditions roproscnt tho approximatc limite for the
axial load above which an elasto-plastic design would be
uneconomical compared to an slastic design.

If the axial load in the column is less than the above
limit, then a satisfactory value for the beam moment may be

obtained by substituting a suitable value for the sway angle Q’,
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which may enable the full eolumn ~oments to be utilised while
the effective beam moments are reduced. A limiting value for
the sway angle may be obtained by considering the beams to be
rigid, and the column to deflect elastically. Since all colums
sway by the same amount, the corresponding mein is easily
obtained as
2

v2 Vh

4)min = cee (16.6)

122 (B),- 1% i3

‘¢<

- n\i_“z

In practice, the actual minimum value of the sway angle would

be larger than the above as the beams are flexible. A value of &
greater than the q)min may be substituted in equations (16.4) and
(16.3) to obtain the corresponding values of the critical beam
and column moments. If the minimum column moments required for
serviceability are known beforehand, it would be possible to use
as large a value of Q) as would yield this value of the column
moment. The corresponding beam moment may be found to be the

most economical as any further increass in sway would increase

the column moment, which may eventually prove to be uneconomical)
as unlike in beams,the extra reinforcement that must be introduced
in the columns are carried over the whole length of the column.
Further it must be remembered)that oven in the case of beams the
minimum that the beam moments may bo reduced with any effect in

the actual design is given by the serviceability requirements.
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Ind panel in an intermediate storey

As in the previous cgse the limit critical moment for the
end column may be derived in terms of 4he compatibility condifions
for the pemltimate column hinge €y . Consider the end panel of

an intermediate storey as shown in Fig.16.3. Let C¥

Rl be the end

column moment and (1 +‘¢)C§+l be the moment at the last beam sec-

tion ¢s indicated in the disgram. The rotation eﬁc is given by,

- 3 C*h .
- - = L ] - * . * - 4 _r
(8, -¢) = [zwo 2 B - (1 + p)og - (e} _)CNHJ L

eeo (16.7)
For compatibility, eygz,o. Then using the same notation for k

and y as before the following condition for Gy, , may be derived

from 16.7.
2
O } e [MO - D (Laphed) oxe %i{—] .e. (16.8)

The ingtability moment i the column must be added to Uil to
obtain a limit velue of the column moment Offy) which is required
to resist both the wltimate load and the instability effects due
to sway. Thus if PN+1 be the axial load in the end column, the

mninimum value of the column moment is given by,

o > 2. * % ¢ n-3) W
a1 2 " PE““ B+ (Lepr y) CF ¢ (B B- 8 &
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Substituting for ¥ from equation 16.2,

D> 2.l 2y ¢t4if(P..n-1) Y ... (16.10
W12 oy 37 ‘gl Cp ¥ ( Ml 3k ) 5 ( )

. . . 7
Since Ci andl/l are knowvn from the previous calculations, Cy 4

may be determined. Then the minimum besm moment at the end

*
N+1

span hinge section is given by (1 +{*)C
Top_storey

Generally in the case of the uppemmost storey, the
instability effects would be small. Using o similar set of

releases as in the case of the intermediate stories, the follow-

ing 1imit conditions could be easily derived.

02
Y;Z 'h
Yo .. (26.11)

R}
2 ~J
123 (£3),
Vh(LJ)
o* _Y.Y_Z_... - ... (16.12)
T N
7. (57)
1 C
B%=..2_3.7 '[‘_],:_ 2 C*"ﬁ' PR 1601
LN (7 + 2y)c¥ . (16.13)
* _ 2 1 * 2
G = 2 uo+_6_(5+43,v)cr-_3.11"Z oo (16.14)

It nay be noted that in this case the beam moments are
reduced by the increase of sway, but the serviceability require-
nents would invariably plece an upper 1limit for the amount of

restriction that may be allowed in each cese.
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4 similer epproach may be msde in the case of the
bottom storey depending on the nature of the foundation but,
if the assumptions made in the intermediate storeys are applic-
able for the bottom storey, the same equations may be used.
Lixample

Consider a typical storey of a multistorey frame shown
in Fig.16.4, for which the following design values are provided.

Axial locds in all columns = 400,000.1bs.

1,000,000 1bs.

Free moment due to permanent load

1 " i " gsuper load 1,000,000 1bs.

Storey sway moment Vh 1,000,000 1lbs.
Use overload coefficients ng X;z =);2 = 2.0
Yield safety in beams :\s = 1.2

" i i columns }S = 1.0

’
ray = 40’000 p"s'i"’ d’b = 4000 p-S.i.
tJ‘ = 038-
181 -Q"
7 —
201 0N 20101 t_0n 1_On
o e o

Fig.16.4. Typical Storey.
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Belect the following beam and columr sections.

Beams b = 10", h = 18",

Internal column b = 12", h = 15".

Ind column b=12", h = 18".
Assume EI for beams = 60 % Who.

LI for int.col.= 150@7 ®h7,
EI for end col.= 1007) bh’.

(Thcse values may be checked later).

il

e « BI = 60 x 4000 x 10 x 183 1.39 x 1010

(£3) gy = 150 x 4000 x 12 x 15 = 2.43% x 108°
(83) gy = 100 x 4000 x 12 x 187 = 2.20 x 100
v %l ' ZEE)INT= 0.7
From equation (16.5),
p - l2al.9x 100 975,000 1bs.

" 180 x 240 x 3.98
Thus the actual column losds are less than the above limiting
case, s0 thet an elasto-plastic solution may be adopted.
Consider the minimum sway angle in equation (16.6)

q} 2 x 106 x 180

min  12(3 x 2.43 + 2 x 2.20)10

il
1

10—1802x 5x 8 x 10

0.00028

It

Cese 1. Consider, Y = 0.002

2 ¢ 10° x 2.43 % 1010 . 8x107%1 80%0 . 002

2 x11.7 x lO7 2
208,000 + 144,000

it

Then from (16.3), Cy

]

il

352,000 in lbs.
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From equation (16.2),

- w61 . % 10
B% = i x 4:}&06 + ‘]; % 5.,98 x 3'52}{ 105 ~ 0.002463\_1.)9}(10

T 3 5 3 x 240
= 2,90 x 10°
The end colunn moment C§+1 is given by equetion (16.8)

0

1
- 6 & . . 6  0.002 x 6x1.39x10
W gen = - 2., ° . -

T+l 4x10 90x10~ + 2.19 x 3.52x10 5 % 240

= 1,520,000 in 1bs.

Case 2. Consider, 3& = 0.004
As in the previous case the following values for the limit

moments could be obtained.

Cr = 496,000 in 1bs.
BY = 2,867,000 in,1bs.
Cf41=1,490,000 in 1bs.

Thus the actual reduction of the beam moment in Case 2 is quite
small as compared to Case 1, although the sway angle is doubled.
Any further increase in the sweay angle mey increase the column
moment beyond the minimum required for serviceability as shown
below.

Appreoximate serviceability calculations.

The maximum soments in any internal column 4X under
working conditions are produced by unsymmetrical vertical load

and leteral load as shown in Fig.16.5.
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X
8 g+a | g
N | l )
R AR AN N .
g g+ a g
l IJJ'IHIHI:IlII1I l
I

Fig.16.5. Critical loading for column iX.
The column moments may be determined by an approximate distri-
bution of moment locally.
Thus, minimum column for serviceability = 250,000 + 100,000
=_%50,000
As in continuous beams,the critical support moment in the frame
are obtained when the alternate spans are loaded.

) 2
Thus, minimm noment at internal supports::k (QL 2l + Lq:l+ i
£112 10 10

= 1,880,000 in lbs.

Serviceability calculations for the above example show
that in fremes, the internal column moments may be governed by
the service limits whereas the beam support =nc end column moments
mey be primarily governed by ultimate load limits. The service
cdlculations also show thaet the Case 1, worked out ezrlier, yields

the minimum column moments and any further decrease in beam
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moments increases the column moments which megy eventually prove
to be more uneconomical,

Check for the assumption for stiffness coefficients.

As in Case 1, if Bf = 2,90 x 1069

BY 2.0 x10° _ 224

o =
u T@ybhY T 4000x10x18

. From Fig.5.2, 0.25

65

1l

w
Trom Fig.6.8a %

which is very close to the value assumed.

Internal columns: n = 800,000 _ 0.93
U 4000x12x18
m = 1:520,000 _ _ 0,098
Y 4000x12x18

From Fig.5.1, =g = O.14
From Fig. 6.8a and..quation 6,92 -for column stiffness,

(1 + 1411 1.8)51

it

= 153
800000
External columns n = 4655'-?§‘wﬁ8 = 0,93
mu= 4520000 = 0,098

5000 12 18°
From Fig. 5.1' = = 0'11

{14+ 0,93 1.8)h2

i}

col
= 112

These values of effective flexural stiffness coefficients are very
close to those already assumed and no correction need be made to the

calculated moment values,
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CHAPTER 17

Conclusions and sugrestions for further research

17.1 . . Review of 1limit design criteria

The main conclusionsthat may be derived from the over all
analysis of limit design methods in the foregoing chapters could
be divided into two categories.

1. I;imit design criteria.

2. Application of the limit design criteria to the design
of skeletal structures.

The discussion in chapters 2 and 3 shows that the main
conditions that must be counsidered in the limit design of
reinforced concrete structures are based on the folloﬁing:

1. Adequate safety asgainst prcbable over load «nd
variation in material properties.

2. Minimum safeguard against unserviceabilitv of the
structure for random combinations of the working load.

3. Highest economy in the over all design and construction
of thé structure within the scope of conditions 1 and 2 above.

Before a complete and satisfactory method cf 1limit
design could be adopted, cach of the above conditions must be
investigated in detail, to determine the minimum re-uiremerts for
different types of structures, and to determine the means by

which they may be ensured in the actual structurc.

(1) Safety analysis

The investigation of safety in general, may be subdivided



into three sections:
a. Load analysis
b. Material analysis
¢, Structural analysis,

0f these, the first two sections are independent;
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while the third depends on the first two and the available methods

and techniques of analysis.

Load analysis

The loads that are to be used in the limit design,

may be specified by their characteristic or mean values,

and respective over load coefficients or partial safety factors.

These may take into account, the different probabilities of
the loads being excceded either individually or with pessible
combinations., The Russian and ACI codes of practice seem to
have adopted a similar approach already.

Matcrial analysis

The basic materials uscd in reinforced concrete
structurcs possess widely different characteristics cach
subject to individual variations of different magnitude
depending on mcthods of manufacture. These may be taken into
account in the limit design by respective cocfficients of
variation or partial safety factors, These would also cnable
a rétional approach to design which truly reflects the
individual material characturisticsf The CEB rccemmendations

on the partial safety factors on concrote and reinforcemeont
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may be extended to take into account varying degrecs
ol nuality control attained in Tactory corditions as
in »recost rerberc and in site conditions vith verying
Cesrees of aualily control,.

ce structurnl nalysis

The eristing sixple desim wmethods for reiaforced

5

concrete sirdctures incur diffcrent icdeslisabions for the

varying evror. e overnll cifect of theso iderlisaticns

in eelotion to the cetual sirvcture ay be cvaluated to

J'

ble a utudy of the rclichility of the &ivfercont iecthods

-

of mnalysis. & vork locd cocelTicient as in the fesian
desisn sractice ny be oitached fo the nethod of cnalysis
as a Jeaus of correlating the dogrec of zaiety or unsafoly
in the relhod of sdiple snnlysis to the actual strvcture.
T us sindlar siructures that wouléd be anclysel Ly diflorent
riethocCs would bhe oxpected to have sinmilar over 2ll s=icty
whon the res_ective tork lozd ccelficicnts are applied to

then.

2« Servicennility Analvsis

The Tunciional and cesthetic considersiion of
strucbturces vnder normal service loads could be citwransed
in coeris of:
1. Yielcd scfety +Mvich oy cnsure thot the risk of rereuted

lending @y not have ony zericus alfect on the usivens;th of



the structurz.

2a ldmit crack vidth vhich 'ay 1ot be c-ceceded
vithout coxposing the teusion reiriorceuent to advers
veathering conditions or renderings; the structure unsound .
%o Limit doilection iiich trusc not be ecxceeded for
fvictional and other reguire.ontse

™e rocont veco mwendations b the C.l.h5. cover sone
of the vbhove isopects, ot detoiled information for difierent

o

types of structures must be availeble, as the serviceability
linits are considerably iuportint, iu view of the fect that
the over nll saofsty Jactors in the liwmit design are less then
thosc, that Mave "ecn used in conventional desipn nethods.

BencC Criiie C2nipn

“hile safely and serviceobility requirenents src
cdndrmur corditions that vust be satisfied, it wcy be concluded
thet ceonomic eritoria based on the total coust oy any other
cost wvelated Tunction could he used as an chiicdsing criteria
to oLtain thoe wost cconormic design within the scone of the
above lindits. Me total voluwie of reinforcewent used in the
ciracture could he used a5 2 s wploe basis of evalnatiuyg the
cconerile cesipn conditions.

1/.7 Avplicotion of 1init desirm criteria

e corclusions derived [rom the exvericeatal and

theoratical investigations in Inrt II, IIY and IV ay

o
[0

divided :into tio uections:

224
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1. Basic propertics of reinforced concrctc members

2. Design of indeterminate structures.

17.21 Basic properties of reinforced concrcte members- Moment

rotation characteristics

 The monent-rotation characteristics of reinforced
concrete members may be represented by a bilinear relation
defined by the offective flerural stiffness, the ultimate
moment and the plastic rotation capacity as discussed
in Chapters 5,6 and 7. In reinforced concrecte members, the
error in the bilinear idcalisation as compared to trilinear
idcalisation secems to be less than 10%, which is less than
the variations in the eyperimental results. The following
simple idealised bilinear characteristics may be used
in limit design methods.

Effective Flexural stiffnoess of reinforced concrete

members could be represented by Baker's idcalised limit
L1 calculations or by the semi-cmpirical rclation given

below.
3
EI=&J bh
5%
where = 1 1200 0g7) (141 NG
sé% = (175 + 3 __%T)( + 8nu) Co
which is applicable for Botn rcctangular beams and
columns. (sce Fig.6.82)

Plastic rotation céﬁacity

This is subject to large variations, but a safe limit
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value is given by

Gp = 4.8( €op = 901)

where o, = 0.0015 [}+ 1.7p" + (0.7 -0.1p") 1.:}
> Yo

(sec Fig. 7.1)

Ultimate strength of scctions

The ultimate moment in beams depends largely on {he
propertics of reinforc&ﬂqétcel, and in practice when the
bcams are under reinforced, the nature of the stress block
has very little effect on thc ultimatc moment. Figs. 5.1
and 5.2 show graphical methods of obtaining the ultimatc
strength properties of beams and columns.

17.22 Dusign of indeterminate structurecs using clasto-plastic

mcthods-ultimate load theory.

The ultimatc load design of indetermilate structurcs
would be greatly simplificd by considering the particular
combinations of elementény load systems which has the
cr. atost probability of collapsc, by using the principle

of combincd loading derived in Chapter 14.

2. Elasto-plastic decsign by trial and adjustment method

The design of indcterminate structures using
inclastic compatibility conditions as a basis must be
checked for suitability of the aicpted hingc svstems using
the ceriteria dcerived in Chapter 15.

The concept of redistribution of moments without
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compatibility checks secemsto be applicable for hinge
systems that are absolutely compatible (Chapter 15) which
is encountered only in continuous beams and portal frames
(single or multiple portal frames), In multistorcy
skeletal structures, the rcdistribution of moments (i.e.
elasto-plastic design) would require an eventual check
for -compatibility of the resultant moments.

3. Design of reinforced concrete continous becams

Continous beams with hinges at the support sections
form an absolutely compatibilc hinge system. Thus the
concept of redistribution could be used and no check for
compatibility would be required cxcept to determine if the
hinge rotations are within pormissible limits.

From the detailed discussion of e¢lasto-plastic
design of continous beams in Part IT the following
conclusions mav be ;wriv;d;

1. Under grevity loading, the ultimate load
configuration consists of all the spans being loaded.

2. If Agis the serviceability parameter defined
either by yicld safety or crack width, then the degree of

redistribution is limited by R 431-3%/}0where‘)0 depends

on the ratio of super-imposcd load and elastic moment
characteristics given in Chapter 11.
3. The permissible hingé rotation at any of the

hinges under a given rcdistribution R may not be excecded
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provided the ductility of thc hinge sections ( Chapter 7)
excceds the following limits:
D\{_ R 1 for intermediate spans
1~R 2n
DL R 21 for cnd spans.
1-R 3h

L. The mayimum deflcction and shear can be used as
limit conditions to derive the upper and lower limits
for 1 of the bcam as in Chapters 11 and 12.

5? Using the total volume of reinforcement as an
optimising criteria, it has been found that thc most
cconomic design corrcsponds to the e¢quilibrium state
which involves the least redistributgon of moments.
(Chepter 9).

5. Experimentel results for eight three-span continous
beams are consistent with the prcdictions bascd on
tho idecalised moment-rotation characteristics given in
secection 17.21. Thus the idcaliscd bilinear relations
form 2 reasonable basis for beth safety and serviceability
calculations. In continous beams, with under-reinforced
scctions, a yicld safuty factor of 1.0 did not have any
adverse offect on the ultimate gafoty when the wcrking

load was rcepeated a few times.

L. Multistorey skcletal structures

“hen an elasto-plastic method of design is used in
the design of multistorey skclctal structures, the instability
effects due to arial loads must be taken into consideration.

The approximatc limit conditions within which an e¢conomic
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clasto-plastic design may be possible is given by the
critical value of the axial load in columns as in equation
16.6. When the arxial loads excecd this walue, it was
found that the most economic design corresponds with the
elastic distribution of moments for ultimate load.

17.4 Suggestions for further rescarch

' As pointed out in the Part 1 of this thesis, tho
development of limit design metheds would primarily depend
on the relinbility of the information available by which
the specific limits could be defined. Particularly, the
greatest advantage in the limit design methods is that,
it lends itself casily to statistical investigations.

Thus the naturc of loads,inclusive of mean values ana
their variations for different types of structures,and the
probability of different loads cccuring separately and
together must be availeble before the maximum advantage
of the limit mcthods could be utilised.

The structural problems involved in the application
of limit methods may be investigated in two steps:

" 1. Development of rigorous mcthods of analysis based
on the non-linear charactcristics of reinforced concrete
membars. Thesc need not he practical methods.

2. Comparison of simplc and practical methods of
dusign based on idealised propertics of members, with the

rigorous methods as above. This would cnable thc degree
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of error in the simple methods to be estimated, anu the
corresponding design method to be wcighted accordingly
using the wopk load coefficients as suggested in Chapter 3.
This would also involve evalue4ion of safcty factors based
on statistical gariations of thc propertics of paterials
ané theyr rclative influcnec in the over all design.

The use of elasto-plastic dusign mcthods, increcases
the risks of instability considerably, unless special
prccautions are adoptcd. The analysis in Chapter 16
shows that if the axiasl loads in the columns bo greater
than certain critical values, the use of elagp-plastic
methods would always incur instability type of failure
Further investigations on this aspect op gesign would
be nocessary to extend the above methods to different

structural conditions.
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APPENDIX 1

Details of C.E.B. Tests

Extract from: " Inelastic Hyperstatical Frames - Analysis sud
Application of International Correlated Tests"
By, Prof, A.L.L.Baker and A.M.N.Amarakone.
Proc. of the International Symposium on Flexural
Mechanics of Reinforced Concrete, ACI-ASCE

Nov. 1964 Miami, Florida.
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TABLE 1,— BEAM DETAILS
h v h 1 _ m m [
BEAM NO. b oy ¢ T, Tay ] e % m P 0 1Act, [ 2Act, | p Acty Remarks
: : <% u 1Cal. | "pCal.fmy oy | My ca), | pcall
(a) Cord-worked steel reinforcement
1| Imperial College 9] 6in 6.85 in. - 8in, ]4910psi 85.0 ksl 10.5 - - .110 .0270 .035 | 1.09 111 0.8 |CPL L=801n,
2 [ imperial College 10| 6 in. 6.81 in. - 8 in. | 4915 psi 85.0 ksl 14.9 - - .150 0324 027 | 1.04 1,09 1.8 |{CPL L=80in.
3| Imperial College 11| 6 in. 6.76 in. 1.121in. | 6 in. | 4895 psi 85,0 ksl 22,5 2.0 .61 222 L0330 024 | 1.08 1.14 1.5 |CPL L=80in
4| Imperial College 12| 6 in. 6.59 in. 1.121in. | 8in. | 4880 psi 85.0 ksl 25.1 2.0 K3 L2738 0311 019 | 1.19 1,14 1.7 |CPL L =80in,
5 | Imperial College 13| 6 in. 6.40 in. 1.12in. | 8in. 4390 psi 85.0 ksi 45.0 2.0 .81 .387 .0260 017 [ 118 1.34 1.2 | CPL L=80in.
6 | Imperial College 14| §in. 6.67 in. 1.204n. [ 8 in. 4470 psi 85.0 ksi 16.7 11.6 .61 .173 -0320 032 | 1.06 1.13 0.9 | CPL L=80in.
7 |- Imperial College 15| 6 in. 6.76 in. 1.23in. | 8 in. 4450 psi 85.0 ksi 33.0 24.8 1,26 .315 0331 .02 1.09 112 0.8 §CPL L=80in.
8 | Imperial College 16| 6 in. 6.28 in, 1.23in.{ 8in. 4550 psi 85,0 ksi 70.4 16.4 1.51 511 ,0259 024 | 126 1,27 2.5 |CPL L=801in.
9| Torino F4{15cm [245cm 2.5¢m | 26cm | 390 kg/em? | 47.5 kg/mm? | 39.8 14 .132 .306 L0228 .011 1.17 1.00 1.0 {CPL L=280cm
10 | Torino L4[15c¢m |24.5em 25¢cm | 28cm | 308 kg/em2] 47.5 kg/mm2 | 50.6 2.4 117 409 L0210 010 | 112 1.12 2.8 |CPL L=280cm
11 | Torino D8[15em |25.5cm 2.5cm | 28cm | 374 kg/em? | 50.4 kg/mm? 11.0 2.0 .190 .149 L0193 036 | 120 1.32 20 |CPL L=280cm
12 | Torino G4|15em {25.5cm 2.5cm | 28em | 308 kg/om? | 50.0 kg/mm? | 53.5 13.6 .117 344 .025 .009 - 1.14 - CPL L =280 cm
13 | Paris (RABA) E6|15cm [24.5¢m 2.5cm | 28cm | 258 kg/em? | 55,8 kg/mm2 | 22.5 1.67 178 373 0279 011 | 108 1.20 1.5 {CPL L=280cm
14 | Paris ((RABA) E9[15cm [255cm 2.5cm | 26cm | 252 kg/em? [ 54.5 kg/mm® | 1L7 1.67 176 119 0227 037 | 1.14 1.06 06 |CPL L=280cm
15 Paris {IRABA) Fé6[15cm 24.5cm 2,5 cm 28 cma 415 kg/(:m2 60.5 kg/rnm2 23.3 1.04 176 .246 .0270 .m7 1.08 1.06 0.9 CPL L=280cm
16 | Paris (RABA) F9|15ecm [25.5¢em 2.5cm | 25cm | 450 kg/em? | 56.6 kg/mm® 6.6 0.96 176 067 .0213 047 | 1.08 1.03 0.9 |{CPL L=280cm
17 | Paris (RABA) H2[25cm [25.5cm 25cm | 26 cm | 308 kg/em? [ 51.6 kg/mm? 8.2 3.17 .051 097 .0120 041 | 1,07 1.20 1.4 |CPL L=280cm
18 | ‘Paris (IRABA) HS5|15cm |24.5cm 2.5¢m | 28cm | 287 kg/em2 | 54.4 kg/mm® | 46.0 1.50 062 .370 .0252 009 | 1.30 1.27 1.5 |CPL L=280cm
19 | Paris (IRABA) H8[15cm [25.5¢em 2.50m | 28em | 295 kg/em? | 48.9 kg/mm? | 15,2 1.47 .062 .153 .0237 020 | L5 1.06 1.2 |CPL L=280cm
20| Paris (IRABA) H11[30ecm [25.5cm 2.5¢m | 28 cm | 290 kg/em? | 52.1 kg/mm? 7.6 - - 080 .0220 .041 1.18 1,05 1.2 J(T) L=280cm
21| Paris ((RABA) R4[1l5em [246em 2.5cm | 28cm | 292 kg/om?2 [ 48,1 kg/mm2 | 59.0 15.3 176 490 0246 006 | 1.33 1.25 1.8 {(T) L =280 cm
221 Paris (RABA) R5[15em [24.5em 2.5¢cm | 28 cm | 317 kg/em® [ 52,0 kg/mm? | 41.5 14,1 176 394 0270 011 1.09 1.10 14 [(T) L=280cm
23| Paris (RABA) R6[15em [245¢cm 25cm | 28em | 387 kg/em? [ 545 kg/mm? | 25.1 6.6 176 | .262 -0283 018 | 1.27 107 1.6 [(T) L=280cm
24 | Porto C6[1510cm|24.82cm | 3.7cm | 28.02cm|265 kg/em? [ 47.0 kg/mm? | 36.4 3.0 .25 -298 .025 013 | 1.26 1.09 1.8 [(T) L=280cm
25 | Porto C7[15.04 cm |25.60 gm | 3.15cm| 28.07 cm| 303 kg/em? [48,0 kg/mm? | 20.3 2.5 .25 .181 -032 -026 | 1.03 1.07 2.1 |(T) L=280cm
26 | Porto C 9|14.48cm |26.30 em | 4.5cm | 28.07 cm|323 kg/em?2 | 41.0 kg/mm? 6.5 2.5 .25 077 0162 .047 1.17 1.19 0.8 |(T) L=280cm
27 | Porto C10|30.31 em|25.57 cm | 3.58 cm| 28.37 em) 307 kg/em? | 51,0 kg/mm? | 101 - - 102 .025 039 | 1.04 1.05 4.7 |(T) L=280cm
28 | Porto C12|30.14 cm |26.32cm | 3.82 cm| 28.27 cm| 279 kg/em? | 42.0 kg/mm? 3.6 - - 048 .022 047 1.26 1.33 1.6 |(T) L=280cm
29 | Porto M 7}15.20cm (2548 cm | 3.60 cmm| 27,96 cm| 341 kg/cm? | 49.0 kg/mm?2 18.0 - -25 .124 0142 .028 - - - CPL Shear Failure L = 140
30 | Porto M9 |15.24 cm |26.14 cm | 4.20 cm| 28.08 cm | 302 kg/em? | 41.0 kg/mm® 6.7 2.5 25 087 .0081 047 113 1.32 1.2 |CPLL=140cm
31 | Porto M 10 | 30.14 cm | 25.52 cm | 3.35 cm| 28.14 cm) 341 kg/em? | 48.9 kg/mm? 5.1 - - .093 .0126 033 95 1.05 1.7 [(T) L=140cm
32| porto M 12 [29.98 cm |25.94 cm | 3.80 cm | 28.18 cm | 302 kg/cm? | 41.5 kg/mm? 3.4 - - 046 .0108 047 | 118 1.34 1.1 [(T) L=140cm
MEAN 1.14 1.15 1.53
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g0 FLEXURAL MECHANICS OF REINFORCED CONCRETE
TABLE 1,—
(b) MIld steel
1 Imperial College 1} 6in. 6.69 in. - 8 in. 5130 psi 41,3 ksl 12.3
2 Imperial College 2] 6in. 6,62 in. - 8 in. 5760 psi 41.3 ksl 16.6
3 | Impernal College 3] 6in. 6.40 in, 1.12 in, 8 in. 4180 psi 41.3 ksl 31.5
4 Imperial College 4] 6in. 6.24 in. 1.12 1., 8 in. 4150 psi 41.3 ksi 40.7
5 Imperial College 5] 6 in. 5.88 in. 1.12 in, 8 in. 4790 psi 45.1 ksi 45.1
6 Impernal College 6] 6in. 5.88 in. 1.19 in, 8 in, 5030 psi 41.3 ksi 42.9
7 Imperial Coliege 7| 6in. 5.93 in. 1.31 in, 8 in, 4420 psi 41,3 ksi 48.4
8 Imperial College 81 6 in. 5.98 in. 1.31 in. 8 in. 4300 psi 41,3 ksi 65.7
9 | Madrd 6ax-1|15¢cm 24.5em 2.5cm | 28¢em 179 kg/em?2 | 33.5 kg'/x'nm2 34.6
10 | Madrid 6a-2[15em [24.5em 25cm | 28cm 185 kg/em? [33.5 kg/mm? | 33,5
1 Madrid 6a- 3 |l6em 24.5cm 25cm | 28cm 202 kg/cm2 34,2 kg/mm2 31.4
12 Paris (IRABA) A2)25cm 25.5 em 25cm | 28cm 318 kg/cm2 28,2 kg/x:nm2 4.2
13 | Paris (IRABA} A S5{l5em 24.5 cm 2.5cm | 28cm 338 kg/t:m2 27.6 kg/mm2 20.3
14 | Paris (IRABA) A8 {15cm 25.5 cm 2,5cm | 28cm 338 kg/Cm2 26.0 kg/mm? 6.32
15 | Paris (IRABA) A ll {30 cm 25.5cm - 28cm 327 kg/cm2 25,7 kg/mm2 3.27
16 | Paris (IRABA) B 2]25¢cm 25,5 cm 2,5cm | 28cm 333 kg/c:m2 28.2 kg/mm2 4.0
17 | Paris (IRABA) BS5|i5cem 24.5cm 2.5cm | 28cm 310 kg/t:m2 27.2 kg’/mm2 21.2
18 | Paris (IRABA) B8 |l5em  |25.5cm 2.5cm | 28em  |310 kg/em?2 |26.9 kg/mm2 7.1
19 | Paris (IRABA) B 1l |30cm 25,5 ¢cm 25¢cm | 28cm 310 kg/cm2 26.5 kg/mm2 3.23
20 | Porto B4 {15cm 24.8 cm 4.0cm | 28cm 279 kg/r:m2 30.7 kg/mm2 36.0
21 | Porto B6 |15¢cm 25,1 cm 4.0cm | 28cm 306 kg/cm2 34.4 kg’/mm2 23.4
22 { Porto B7{15cm 26.0 cm 4,1cm | 28cm 321 kg/cm2 30.6 kg/mm? 32.8
23 | Porto B9 [15cm  |26.0cm 41cm | 28.3cm |287 kg/em? |27.6 kg/mm? 5.0
24 | Porto B10 [30cm  |25.6 cm - 28.3cm |309 kg/em?® |29.7 kg/mm? 6.6
25 | Porto B12 [30cm |26.0cm ~ | 281cm |284 kg/em? |29.2 kg/mm® | 2.7
26 | Tormo AB |l5cm 24.5 em 25cm | 28cm 297 kg/cm2 28 kg/mm2 16.7
27 | Tormo A9 |15cm 25.5 cm 2.5cm | 28cm 297 kg/cm?2 |28 kg/mm2 4.9
28 | Torino Al2 [30em  [25.5em 25cm | 28cm 297 kg/cm? |28 kg/mm? 2.5
29 | Torwmo D5 |15cm 24 cm 2.5cm | 28cm 224 kg /cm? |28 kg/mm2 32,2
30 | Torino D11 {30em  |26.5cm 25cm | 28cm  |224 kg/ecm? |28 kg/mm? 5.4

Note.—CPL = Central Point Load, TPL = Third Point Load, (T} = Tee Beam.

FRAMES ANALYSIS 91
CONTINUED
reinforcements
- - .113 L0129 ,037 1,00 1.07 - CPL L =80in,
- - .161 ,0145 026 .99 1.07 - CPL L= 80ina,
4.0 .61 284 0193 017 1.00 110 1.9 CPL L =80 in.
4.2 .81 .367 0213 014 107 1,18 2.2 CPL L =80 in.
3.7 .97 Aan .0220 014 1.00 1L.13 1.6 CPL L =80in.
6.0 1,22 2357 0230 020 .99 1,06 L3 CPL L=801ia,
16.1 .46 ,385 .0220 015 .98 1.00 4.3 CPL L =80ia.
16.4 .55 .480 .0212 .010 .92 1.04 2,2 CPL L =80 ia,
2.9 .176 .337 ,0189 011 116 1.14 - CPL L =280cm
2,8 .176 335 .0189 012 1.14 117 1.0 CPL L =280cm
2,6 .176 .288 0181 015 113 1,08 1.6 CPL L=280cm
4,2 .132 049 .0092 047 1,03 1.15 1.6 CPL L=280cm
1.2 .172 J197 L0141 .025 .95 1.09 1.8 CPL L =280cm
1.2 .165 .074 .0102 047 1,22 117 1.7 CPL L=280cm
- - .038 0113 047 1.20 1,19 1.6 (T) L=280cm
4.0 .132 .040 ,0125 .047 99 .01 - TPL L=280cm
1,2 .165 .208 ,0192 .021 1.00 1.10 3.0 TPL L=280cm
1.2 .165 .073 .0133 042 .13 1.04 1.1 TPL L =280cm
- - .038 L0113 .047 113 1.19 L1 (T) L=280cm
1.6 .26 274 .0246 012 .93 0.98 - (T} L=280cm
1.6 .26 .188 0195 .021 .19 0.96 2.0 (T) L=280cm
1.8 .26 L1306 0151 .033 .96 1,06 0.6 (T) L=280cm
1.6 .26 .063 .0148 .047 lL.12 1.25 2,3 (T} L=280cm
- - 067 .0136 047 .87 1.04 1.6 (T) L=280cm
- - .034 .0100 047 .94 1.26 1.5 (T) L=280cm
1.5 132 .180 0120 .021 1.00 118 0.7 CPL L =280cm
1.4 132 069 ,0120 047 - 1.41 - CPL L =280cm
- - 036 L0102 047 L35 l.42 - CPL L=280cm
2.0 132 .486 023 012 - 1.10 - CPL L=280cm
2.0 - .135 .018 047 - 1.27 2,5 (T} L =280cm
MEAN 1,04 113 1,78
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TABLE 2.—BEAM DETAILS
BEAM No. b h h' hy q é 0y sg|s'a|p"
1 | Imperial College Al 6 in 6.71in [ 1.29In}| 8in 4677 psi 45,0 ksi 14.6| 14.6] .61
2 | Imperial College A2 6 in 6.71 in| 1.29m| 8in 4457 psi 45.0 ksi 15.3} 15.3] .61
3 | Imperial College A3 6 in 6.71 in 1 1.20in| 8in 4827 psi 45.0 ksi 14,21 14,2} .61
4 | Imperial College A4 6 in 6.71 m{1.29m| 8in 2600 psi 45.0 ksi 26.3] 26.3] .61
5 | Imperial College AS 6 in 6.71 in| 1.29 in 8in 4683 psi 45,0 ksi 14,61 14.6} .61
6 | Imperial College A6 6 m 6.71 in | 1.29 in 8in 4256 psi 45.0 ksi 16.1§ 16.1} .61
7 | Imperial College Bl 6 m 6.75 m| 1.25in} 8in 4084 psi 80,0 kst 17.0] 17.9) .60
8 | Imperial Coliege B2 6 in 6,75 In| 1.251m| 8in 4758 psi 80.0 ksi 14.6 ] 14.6) .60
9 | Imperial College B3 6 in 6.75 1n | 1.25 in 8in 4820 psi 80.0 ksi 14.4| 14.4} .60
10 | Imperial College B4 6 in 6.7 m [ 1.25in| 8in 4414 psi 80.0 ksi 15.7} 15.7| .60
11 { Impenal College BS 6 in 6.75 in| 1.25m| 8o 4500 psi 80.0 ksi 15.4 ) 15,4} .60
12 | Imperial College B6 6 in 6,75 in}1.25in} 8in 4100 psi 80.0 ksi 16.9 | 16,2} .60
13 Torino A2 }|25cm | 25.5¢em | 2.5em| 28cem | 207 kg/cm2 28 kg/mm2 41| 4.1].14
14 Torlno Dz | 25 om | 25.5 om | 2.5 cm | 28cm | 207 kg/emZ[50.0kg/mm?| 7.4 7.4] ae
15 Toring  F1 | 25 cm | 25.5 om | 2.5 cm | 26 cm | 398 kg/cm?(53.0kg/mm?| 5.9] 5.9].14
16 Torine  F2 | 25 cm | 25.5cm | 2.50m | 28cm | 415 kg/em|53.0kg/mm?| 5.6] 5.6).14
17 Torino F3 {25em | 26.5cm |2.5¢em | 28¢cm | 398 kg/r:m2 53.0kg/mm2 5.9| 5.94.14
18 Tormo  GL | 25cm | 25.5cm | 2.5cm | 26cm | 304 kg/om® [53.0 kg/mmq 7.6 | 7.6] —~
19 Torinp H2 |25c¢m | 25.5em | 2.5¢cm | 28cm | 304 kg/cm2 53.0kg/mm?| 7.6| 7.6].05
20 Torino L1 |25¢m | 25.5¢m {2.5em | 28cm | 304 kg/t':m2 53.0 kg/mm2 77641 17.6}.70
21 Torino A3 |25cm { 25.5em |2.5cm | 28cm §296 kg/cm2 28 kg/mmz 4,1 4.11.14
BEAM NO, b J h W ok he q-L (a.y % |o'% 0%
22 CLCA Al |10ins 10 ins 1 ms 111ins 3840 psi 40,0 ksi 4.08] 4.08].21
23 C&CA A2 [10ins 10 ins 1 ins 11 ins 4200 ps1 40.0 ksi 3.74| 3.74}.21
24 C&cCA Cl |10 ins 10 s 1ins 11 ins 3860 psi 70.0 ksi 8.701 8,70 1.21
25 C&CA €2 [10ins 10 ins 1 ins 11 ins 4490 psi 70.0 ksi 7.45) 7.45 .21
26 c&CAa C3 |10 ins 10 ins 1 ins 11 ins 3610 psi 70.0 ksi 9.251 9.25 ;.21
27 C&CA El |10ins 10 ms 11mns 11 ins 4760 ps1 70,0 ksi 7.05] 7.05 {.21
28 C&CA E2 10ins 10 ms 1ins 11 ms 2620 psl 70.0 ksy 12,42 12,42 ].21
29 C&CA E3 {101ns 10 ins 1 s 11 s 3060 psi 70.0 ksi  |11,00 (11,00 {.21
30 c&CcA G2 [10ins 10 ins 1ins 111s 5610 psa 70,0 ksi 5,96 | 5,96 | —
31 c&CA L2 j10ins 10 ins 1 ins 11 ins 4160 psi 70.0 ksi 8.051| 8,05 (.94
32 c&ca M2 ¢ ins 10 ins 1 ins 11 ins 4160 psa 70.0ksi {22,9 R2.9 }.26
* P“
Pu T
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FOR BIAXIAL LOADING
v ’ P1act| ™ P i

Tuf- | Xu | cal-Yecalp| & E: ::: p_:::: ": ::lt o?x:tlg:l . REMARKS

.265 .373 448 | .0266 019 1.2 0.90 1.28 - m.s L=80
.279 .528 .615 | ,0193 016 1.00 1,02 1.28 - m.s L=80
260 .589% 694 | L0171 013 .96 0.95 1.27 - m.s L=80
.355 .970 ] 1,030 | 0106 .009 - 1.65 1.03 - m.s L=80
115 .990 | 1.185 | .0100 .006 — 0.93 1,00 - m.s |drutinn.w,position L=80
.00 | 1,065 | 1.498 | .0080 .006 - 0.93 0.96 - m.s |driftinn.w, position L=80
310 .460 436 | .0272 019 1.26 1.29 1.88 0.8 cws L=80
.260 .480 .593 { ,0200 .013 1.10 1.09 1.25 1.4 cws L=80
.238 613 .632 .0130 012 1,12 .11 1.45 - cws 1L.=80
.184 .854 | 1,010 ] _o117 .009 .83 1.03 1.06 - cws L=80
.080 .986 | 1.165 | ,0092 .008 - —_ 1.06 - cws |driftin n,w. position L=80
095 f1.20 |1.553 | .0077 .006 - - 1.15 — cws |drift inn.w. position

.192 .633 .77 .0143 .006 1.21 1.16 1,22 1.5 m.s L=280 ¢cm
272 710 W12 L0153 .006 1.33 1.35 1.40 2.5 m.s 1=280 cm
.187 .630 .79 .0139 008 1.04 1,17 1.08 1.5 CWS L=280 cm
157 .645 .90 L0122 .004 1.18 1,12 1,00 - WS L=280 cm
.214 .492 .59 .0127 009 1,07 1.21 1.22 1.4 cws L=280 cm
145 .980 | 1,02 L0109 .004 1.10 1,18 1,30 3.3 cws L.=280 cm
.251 .620 .68 .0162 .007 1.48 1.40 1,29 2.4 cws L=280 cm
151 .890 | 1,00 L0110 ,010 117 1.17 1.21 0.8 cW8 L=280 cm
.22 527 .63 L0143 006 _ 1,01 1,02 - m.s L=280 cm

[ mean 1.14 1.14 121 | —
. ¢ ™y m P, ) '

m, hll xu.ﬂ cal. 1 ci{ P Fl ::; E_z'::: p—: 2:: _.;S 2:; 3?;:;!:1 REMARKS
1203 | .670 [1.11 |.o108 | .o059) .95 .96 1,05 | - m.s L~=117 ins

167 .324 .396 |.0133 .0175| 1.05 1.20 1.18 - m,s L=117 ins

126 775 | 1.06 L0113 L0050 95 99 119 - cws 1=117 mns

205 372 480 |.0250 0140} 1.16 1.11 1.16 - cws L=117 ins
.167 .164 .247 1.0200 028 1.33 1,08 1.05 - cws L=117 ins

.085 .600 |1.180 .0102 .005 .83 .89 0.85 - cws L=117 ins

.258 451 618 ),0194 .0093) 1.07 1.20 1.33 - cws L=117 ins
.183 .164 277 .0193 026 1.28 1.02 .91 — cws L=117 ms
158 .285 .558 L0215 .008 .92 1,02 .96 - cws L=117 ins
.204 377 .513 1.0234 L0125 97 1.11 1.38 - cws L=117 jus
.210 | .as85 [ .687 [.008 .008 - 1.01 .88 - cws L=55 ms
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