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ABSTRACT 
••••••••••,....41.10.04. 

This thesis examines the general concepts of limit design 

of reinforced concrete structures, in relation to the European 

Concrete Jommittee (0,D.B) recommendations and current design 

Wno investigations have been divided into four parts 

representirr,  different aspects of limit design. 

riho basic properf.ies of reinforced concrete members, 

particularly effective flexural stiffness, plastic rotation 

capaoty and'ultima-tle strength are discussed in Part (2). 

S..imr-Ified design calculations are suggested which have also 

been compared 	experomental results to determine the relative 

erg e:7 involved, 

Cbe limit design of continuous beams as a special 

caory of struct..zres is fully investigated in Part (3), 

It a7.:pcars that the degree of redistribution could be used 

as a 	between ultimate lead and working load states. ample 

m,:thcas of detailing to ensure minimum limit requirements have 

been dereloped, 

the last part of the thesis deals with the application 

of -V.mit motheds to skeletal structures. A general method of 

superposition cf load systems to obtain the adverse load 

combinations in skeletal structures have been developed. 
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The method of ultimate load design using plastic hinge systems 

by a trial and adjustment procedure has been investigated. The conditions 

under which an assumed hinge system would be considered satisfactory 

for inelastic compatibility analysis have been discussed in relation 

to statically admissible release systems. 

It is recognised that instability effects would play an 

important role in frame analysis. The limits within which an elasto-

plastic design may have advantages over an elastic design, have been 

derived using an approximate method. This is illustrated by a worked 

example. 



I!. 

ACKNOWLEDGEMENTS 

This work was carried out under the.supervision of 

Prof. A.L.L.Baker, to whom the author is indebted for his advice and 

encouragemen'.. 

The author-also wishes to.acknowlcdge- his-debt-of gratitude 

to the following :- 

Dr. C,W.Xu for his sclvice,and_suggestions throughout 

- the-laboratory tests.and.in_the preparation of the 

thesis, 

Dr.,J,Munra anclDr.-k..D.Edwards_for their - T 

Comments on.Chapters 14-and-151, 

Messrs.M.T.„Solimani.P.K.Neogil_DO.Paranagama,.and .  

R.G. Matheson for their-help withhm-perimental- work 

and contributions by way of discussions, 

Messrs. H.-Wilson, P.J.Je131s,.J.Turner, R.Loveday 

and C. Mortlock:for their technical assistance., 

Miss. J Gur' and Mrs. a._White for taking the 

photographs and typing the tesis. 

Lastly the author wishes to express his appreciati-n-of 

the financdal assistance of the Department of-Scientific and Industrial 

Researcb!who sponsored this-project. 

*now Science Research Council 



5 

CONTENTS 

Abstract 

Acknowledgements 

Contents 

Notation 

Page No. 

2 

4 

5 

12 

PART 1 - Design Criteria 
	.01.1101.11•••••••• 

Chapter 1. Introduction 	 15 

Chapter 2. Reveiw of design methods 	 17 

2.1 Early developments 	 17 

2.2 Permissible stress method 	 17 

2.3 Rigid-plastic Analysis 	 19 

2.4 Ultimate Load theory 	 20 

2.5 Limit design methods 	 20 

Chapter 3. Limit design of reinforced concrete structures 	23 

3.1 Limit design criteria 	 23 

3.: Basis of limit analysis 	 24 

3.3 Application of limit concepts to design 	30 

PART 2 - Properties of reinforced concr-,te members 

Chapter 4. Stress strain characteristics of bound concrete 	32 

4.1 Basic properties of concrete 	32 

4.2 Ultimate strain in bound concrete 	33 

4.3 Maximum stress in concrete under flexure 	35 



6 

Chapter 5. Design of sections 40 

5.1 Interaction curves for columns 40 

5.2 Simplified calculations for beams 41 

5.3 Comparison of theoretical calculations with 

C.E.B. -beet results 42 

Chapter 6. Flexural stiffness of reinforced concrete members 

in limit design 53 

6.1 Idealised flexural stiffness 53 

6.2 Relative error in total rotation due to bilinear 

and trilinear :assumptions 57 

6.3 Semi-empirical relation for the EI value of beams 61 

6.4 Experimental results 62 

6:5 Flexural stiffness of columns 69 

Chapter 7. Inelastic rotation capacity of Reinforced 

concrete members 74 

7.1 Plastic rotation 74 

7.2 Experimental results 76 

PART 3 - Limit Design of Continuous Beams 

Chapter 8. 	Limit design of reinforced concrete continuous 

beams 
	

81 

	

8.1 	Ultimate load on continuous beams 
	

81 

	

8.2 	Redistribution of moments 
	

83 

	

8.3 	Secondary modes of failure 
	 84 

Chapter 9. 	Criteria of economic design of reinforced concrete 

continuous beams 
	

86 



7 
9.1 	Economic design 	 86 

9.2 	Volume of shear reinforcement 	88 

9.3 Volume of tension reinforcement 	91 

Chapter 10. Inelastic compatibility 	 95 

10.1 Introduction to inelastic compatibility 	95 

10.2 Particular cases of inelastic compatibility 	97 

Chapter 11. Serviceability limits 	 106 

11.1 Serviceability criteria 	 106 

11.2 Yield safety 	 106 

11.3 Limit crack width 	 1aq 

11.4 Serviceability parameter 

11.5 Correlation between ultimate load analysis and 

serviceability parameter 	 110 

11.6 Mid span sections 	 113 

11.7 Limit deflection 	 113 

Chapter 12. Criteria for limiting shear 	117 

Chapter 13. Experimental investigation on reinforced concrete 

continuous beams 	 121 

121 

121 

132 

135 

PART 44- Design of reinforced concrete skeletal structures  

Chapter 14. Limit design of R.C. skeletal structures 	179 

14.1 Ultimate load 	 179 

13.1 Introduction 

13.2 Materials and fabrication 

13.3 Theoretical calculations 

13.4 Discussion of experimental results 



8 
14.2 

14.3 

Ultimate load theory 

Serviceability requirements of frame structures 

181 

189 

Chapter 15. An investigation into elasto -plastic design of 

skeletal frames using plastic hinge systems 191 

15.1 Statical determinancy and elasto-plastic analysis 191 

15.2 Suitability of plastic hinge systems 196 

15.3 Propexties of quasi-mechanisms 197 

Chapter 16. An approximate method of design of multistorey 

structures for ultimate load 208 

16.1 Elasto-plastic design of multistorey frames 208 

16.2 An approximate limit method 209 

Chapter 17. Conclusions and suggestions for further research 221 

17.1 Reveiw of limit design 221 

17.2 Application of limit design criteria 224 

17.3 Suggestions for further research 229 

Appendix 1. Details of C.E.B. tests 231 

Appendix 2. List of references 232 



9 

LIST OF DIAGRAMS Page No. 

4.1 	(a) Effective stress strain curves for four short R.C. columns 37 

4.1 	(b) Variation of ultimate strain with neutral axis depth 37 

4.2 State of stress in concrete under flexure 38 

4.3 Limit strain in bound concrete 38 

4.4 Idealised stress strain relation for bound concrete 38 

4.5 Column section 39 

4.6 Stress block parameters 39 

5.1 Interaction curves for columns 49 

5.2 Computation curves for beams at limit L2 
 50 

5.3 Neutral axis depth results 51 

6.1 Limit L
1 

properties for beams 56 

6.2 Typical moment curvature diagram for R.C. section 58  

6.3 Typical moment rotation diagram for R.C. beam 58 

6.4 Simply supported beam tests 59 

6.5 Effective flexural stiffness of R.C. beams d-ay  =40,000psi 
64 

6.6 ti 	it 	it 	tt 	6- 
 Y
=60,000psi 

a 
65 

6.7 it 	n 	it 	n 	
day  =80,000psi 

66 

6.8 (a) Empirical relationship between flexural stiffness of 

R.C. beams and the tension reinforcement 67 

6.8 Flexural stiffness of reinforced concrete beams - 

Test results. 67 

6.9 Distribution of txp / 	cal 68 
 

6.10 Limit calculations for flexural stiffness of R.C. columns 71 

6.11 72 Plot of 	'column / 	beam 	against 	(.4 



10 

	

6.12 	Plot of e / 	against e/h 	72 
column lbeam 

	

6.13 	Variation of flexural stiffness of R.C. columns with 

axial load ( Test Results). 	 73 

	

7.1 	Idealised plastic rotation capacity of R.C. members 	79 

	

7.2 	Ductility ratio for beams 	 80 

	

8.1 	Typical span in continuous beam 	82 

10.1 

10.2 

10.3 

Variation of ductility ratio with reinforcement (40,000psi) 100 

it 
	

Vi 
	

(60,000psi) 101 

11 
	

(80,000psi) 102 

10.4 	Inelastic compatibility limit for intermediate spans 	105 

10.5 	tt 	it 	ci 	end spans 	105 

13.1 	Main reinforcement details of continuous beams 	122 

13.2 	Typical stress strain curves for reinforcement bars 	124 

13.3 	General layout for three span continuous beam tests 	126 

13.4 	Support details 	 128 

13.5 Instrumentation 	 130 

13.6-13.25 Presentation of test results 	142- 170 

13.26-13.33 Beam Nos. CA 1 - CA 8 after failure 	171- 178 

14.1 	Yield polygon 	 187 

14.2 	Critical serviceability conditions for a typical storey 190 

15.1 	Typical moment values suggested by Baker 	194 

15.2 	Continuous beam 	 201 

15.3 	Portal frame 	 203 

15.4 	Two storey frame 	 205 

16.1 	Typical moment release system 	 210 

16.2 	Internal panel 	 210 

16.3 	End panel 	 210 



11 

LIST OF TABLES  
Page No. 

•  
3.1 	Super-imposed loads and over load coefficients 	26 

3.2 	Over load coefficients for combined loads 	27 

3.3 	Coefficients of variation 	 29 

5.1 	Beam test results 	 43 

5.2 	Column test results 	 44 

5.3 	Stress block parameters 	 47 

6.1 	Comparison between bilinear and trilinear assumptions 60 

Itvw VmosiNtittry-A-Iwt 

9.1 	Typical values of stress block parameters 
	89 

11.1 C.E.B. Recommendations on permissible crack width 
	• 408 

11.2 Limit deformations of slabs and beams 	114 

13.1 - 13.3 Continuous beam test results 	136 



12 
NOTATION 

The notetion given below are used with a general 

set of suffixes ( one or more suffixes may be used at the same time) 

indicated by the following. 

Suffix 	General Meaning 	Example  

a 	tension reinforcement 	A
a 

a 
1 	 I compression reinforcement A

a  
b 	concrete 	 eb 
O cracking limit - Lo 	eb0 
1 	idealised limit - L

1 	eb1 
2 	idealised limit - L2 	eb2 
Y 	yield conditions 	eay 
u ultimate load conditions 	M

u 
e elastic stage 	 (EI)

e 
* design value 	 GI 
g permanent load Yg 
q superimposed load (vertical) 

n 
✓ superimposed load (lateral) ?v 

General Notation  

Symbol 	General Meaning 	Suffixes used 

A 	area 	 a,b a 
b 	width of rectangular section 

h 	effective depth of tension 

reinforcement 

h' 	effective depth of compression 

reinforcement 

1, 2 

1, 2 

1, 2 

ht 	total depth 

x 	neutral axis depth parameter 

lever arm parameter 

0c 	mean compressive stress parameter 

pit 	 100.Volume of binders per unit length 
bh 
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Symbol 

I 

E 

e 

EI 

G 

Q 

V

y  

W42 

'v1 

K2 

)kc  

>ks  

N 

T 

m 

n 

r 

General Meaning 

second moment of area of section 

length of span 

stress 

standard cylinder strength of concrete 

maximum concrete stress in it's idealised 

stress strain relation 

strain (or eccentricity of axial load) 

elastic modulus 

coefficient of variation (partial safety 

factor) 

standard deviation 

flexural stiffness 

EI/Cr'bh3 

permanent load 

superimposed load (vertical ) 

superimposed load ( lateral) 

over load coefficient for Q under G+Q 

G+Q+V 

V 	G+V 
It 	 11 V It  G+Q+V 

work load coefficient 

crack width parameter 

yield safety parameter 

serviceability parameter 

load factor 

moment 

axial force 

shear force 

M,/ oqbh2  

N/ (Gbh2  
17 4. n2 

Suffixes used 

a, a, b, 0, 

1, 2, y, u, * 

same as for 

a, b, e, *, 1 

at  b, g, q, v 

a, b,  g, q, v 

et  1$  * 

el  1, * 

1, 2, *, u1  y 

19 21 * 1 111 	y 
* 

1, 2, *, u, y 

1, 2, * 9 U9 y 

1, 2, *, u1  y 
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General Notation ctd. 

Symbol 	General Meaning 	 Suffixes used  

WI 	Ala Cqbh 

6,1 	AVT:obh 

0 	curvature ( or diameter of bars) 	1, 2, u 

G 	rotation 	 1, 2, u 

plastic rotation 

D 	ductility ratio 

deflection 

R 	degree of redistribution of moments 

X 	release moment or force 

P. 	applied load system 

f.. 	influence coefficient i3 

Any other symbols used are defined on the first 

time they occur. 
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PART 

Chapter 1 

Introduction  

The use of reinforced concrete as a structural 

material has grown enormously in the last two or three decades, in 

which period considerable improvement in the methods of construction, 

workmanship, and quality control has been affected. At present 

extensive informatio is available on both the properties of materials 

and the functional requirements of the structures. The main problems 

dealt with in current research concern ways and means of bringing 

in these two aspects together to arrive at a rationalided design 

p-ocedure encorporating safety, serviceability and economy expressed 

interms of the random variation in the prchperties of materials and 

design loads. 

The concept of limit design first developed in 

in the U.S.S.R. and currently investigated in greater detail under 

the European Concrete Committee may be considered as a logical devel-

opment in this direction. The preliminary recommendations on the 

principles of limit design have already ben published under the 

European Concrete Committee(  P)  The main object of this thesis is 

to consider the application of limit design concepts to skeletal 

structures. 

A qualitative assesment of the basic criteria 

in the limit design is outlined in the first part of this thesis. In 

view of the radical change in the design concepts, it has been found 

necessary to consider the basic properties of materials and loads as 

limit conditions subject to individual variations. The structural 

properties of reinforced concrete members in relation to moment-

rotation characteristics are discussed in Part 2. These are illustra-

ted by the test results reported by the European Concrete Committee 

recently.(9) 
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The application of limit concepts to the design 

of statically indeterminate strucjtures has been treated in two parts. 

The design of continuous beams to conform to specified limit require-

ments ixi terms of yield safety, crack width, deflection, ultimate 

shear and inelastic compatibility is outlined in Part 3. The results 
of eight three-span continuous beams carried out at the Imperial 

Coolege laboratory are discussed with particular reference to the 

above design methods. 

Part 4 deals with the design of multistorey 
skeletal frames. The basic concept of elementary load systems is 

used to derive a general priciple of combined loading which is aimed 

at obtaining the ultimate load configuration for a given set of loads, 

thus red#cing safety analysis to a minimum. This would have similar 

advantages to limit design as the principle of superposition in 

ordinary elastic design. 

The suitability of release systems in an ultimate 

load design as suggested by Bakcx(.*-' is discussed as a special 

case of inelastic compatibility. A simple method of ultimate load 

design for multistorey structures which encorporates instability 

effects is put forward as a particular limit application of 

inelastic compatibility. 
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Chapter 2  

Reveiw of Design Methods.  

2.1 	Early developments. 

In the early stages of the development of reinfo- 

rced concrete design, from about 1880's to 1920's, Koenen, Empreger, 

and many others have laid down the foundation of what may be termed 

as the first attempts at ultimate load design. The foundamental 

design concepts were mainly empirical, in which the safety of the 

structure was based on the ultimate strength as determined by tests 

on simple structures. The safety as such was similar in concept to 
2 the load factor of safety as it appears in current practice( .5)  

a 
But as/ method of analysis of complex structures 

no suitable ultimate load design procedure was available, hence the 

method was necessarily restricted to simple structures.A rigourous 

method of analysis of complex structures was to await the development 

of the elastic theory of bending in relation to statically indeter-

minate structures, which is also refered to as the permissible sttess 

method of design. 

2.2 Permissible stress method.  

The application of the linear elastic theory to 

the design of statically indeterminate structures was to change 

the design concepts from ultimate strength to that of permissible 

stress derived from idealised elastic properties of reinforced 

concrete members. In the permissible stress method the safety of the 

structure was defined interms of the " stress factor of safety ". 

As a method of design, the elastic theory 

offered great advantages in the superposition of stresses due to 

combined loading and simplified analytical means bused on slope 
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deflection (1918), moment distribution (Hardy Cross Method - 1930) 

and other methods of relaxation. 

However, it was known that the elastic ideali-

sation of the deformation characteristics of reinforced concrote 

members was very approximate, and that in reality reinforced con-

crete undergoes considerable inelastic deformation befOre failure. 

Experimental work by Glanville and Thomas(1) Whitney(2) and many 

others showed that continuous beans and simple portal frames could 

carry much higher loads than those estimated under the permissible 

stress method. The additional loads in these indeterminate stfuc-

tures were seem to/possible due to the plastic totation at critical 

sections which helps to " tOdistribute " the moments to those sections 

whidh afe still elastic, until mechanism conditions were 

attained or localAgInlace. This was to show the shortcomings of 

the permissible stress method to predict the actual safety inherent 

in elasto-plastic structures. 

The permissible stress method of analysis was 

partly modified to take into account of the above observations by 

the introduction of the concept of " redistribution of moments " 

applied to the conventional elastic analysis. In it application 

to the design of indeterminate structures a maximum of 15% redistr-

ibution has been permitted by the British Code of Practice since 

1939, where as the Russian, Danish and some other European Codes have 

permitted larger amounts of redistribution under particular circums-

tances. The main difficulty in obtaining a quantitative limit for 

the degree of redistribution was due to it44 dependenbe on the 

requirements of serviceability conditions under working load and 

the limited degree of plastic rotation observed in reinforced 

concrete members. In contrasts it must be noticed that these 

difficulties have not been encountered to the same extent in steel 

structures for which en idealised plastic analysis has been 

developed subsequently. 
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2.3 Rigid - plastic analysis. 

The experimental investigations into the plastic 

behaviour of steel structures in the 1930's by Leibnitz and later 

by J.F.Baker and others(3) have laid the foundation for a rational 

basis of safety analysis based'u  on the collapse state. This has 

been later developed into the Rigid -Plastic Theory, which is also 

refered to as a " Limit Design " due to the upper and lower bound 

limits of the collapse load factor.(,50,52)  

simple 
This theory is extermely/in its application, 

and where the priliminary assumptions are satisfied, the accuracy 

of the analysis is quite reliable as in the case of continuous 

beams and portal frames etc(3)  .However, subsequent research has 

shown that in multistorey structures and those that contain members 

that carry large axial loads, the instability effects may seriously 

affect the limits on the collapse load factor, as the collapse mode 

may be altered due to the deterioration of the structural stiffness 

with the formation of a few local hinges before complete mechanism 

conditions are reached (51). The seriousness of the problem has 

been illustrated by Wood(51)  in a typical example of a four storey 

single bay frame, in which the collapse load factor has been reduced 

from 2.21 ( as estimated by the rigid-plastic theory ) to about 1.70 

due to instability effects ( 23 % reductibn ). Some approximate 

method+f correcting for the instability effects have been later 

suggested by He.yman
(45) Holmes and GhandiC55).  

The main difficulty in extending this method 

to reinforced concrete design was the uncertainty of the degree of 

plasticity of reinforced concrete members.It was known already due 

to early tests, that when concrete commences to crush at critical 

sections due to excessive strains  the strength of the section 

tends to decrease, which was contrary to the basic assumptions 

in the plastic "theory.. A method of reconsiling the limited 

plasticity in reinforced concrete has been put forward by 
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A.L.L.Beker in the Ultimate Load Theory(5) 

2.4 Ultimate Load Theory. 

In 1949 Baker (5)  has suggested that the classical 

Muller Bresleau equations for hinge rotations in a statically 

determinate structure could be used as a basis for an elasto-plastic 

method of design for reinforced concrete structures. Statical' 

determinancy in a hyperstatic structure was attained by the introdu-

ction of suitably placed " plastic hinges ". The method of design 

was formulated to en ultimate theory for reinforced concrete and 

prestressed concrete structures in 1956(5)•  

The ultimate load theory is based on an elasto-

plastic idealisation of the moment rotation characteristics of 

reinforced concrete members and the maximum load at collapse which is 

refQrred._ to as the ultimate load. The design procedure involves 

. trial and adjustment of the plastic hinge moments to obtain compat-

ible hinge rotations, which must also lie within specified permissible 

limits. 

out 
Extensive research tins been carried/on the proper-

ties of plastic hinges in reinforced doncrete members (8'283423) 

and the flexural stiffness characteristics( .27)  The basic problems 

involved in the determination of the ultimate load and binge compati-

bility in general frame design are considered in greater detail in 

Part 4 of this thesis. 

2.5 Limit Design Method. 

It must be remembered that in an ultimate 

load method of design aimed at greater economy, whether a plastic 

hinge method or an idealised elastic method with subsequent redistr-

ibution of moments is used, the nett effect is to reduce the over-all 
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safety.This may also result in higher stresses at critical sections 

larger deflections and crack widths at working load which would 

necessarily call for more stringent checks for unserviceability 

than hitherto recognised. 

. In Russian design practmw(T0,11) where ultimate 

load analysis with redistribution of moments upto 30 % has been 

allowed for a considerable time, the problem of unsOrviceability 

at working load has been investigated in greater detail. Since 1955, 

the method of design for reinforced concrete structures has been 

based on the concept of limit requirements. The safety and servicea-

bility requirements which are defined interms of the different modes 

of failure and caused of unserviceability are considered as limit 

conditions. These conditions1ire related to the probability of over-

load, variation in the properties of materials, errors in the design 

assumptions and methods of construction irrterms of individual design 

coefficients, which replace the concept of overall safety factors 

that are being used in the load factor method of design and the 

stress factor of safety . 

The following limit conditions have been recomm-

ended in the Russian Specifications
(10) as the most important factors 

to be considered in the limit design of general structures. 

(1). Ultimate strength based on the probable load bearing capacity 

of the structure which must be sufficient to withstand the specifidd 

load. 

(2). Excessive deflection at working load depending on the type of 

structure and it$1, utility. 

(3). Excessive crack width at working load subject to enviromental 

and aesthetic considerations. 
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The introduction of the limit concepts to both design 

and specifications helps to reduce the "universal factor of safety " 

as applied in the permissible stress method and the load factor method 
* 

to its constituent basic causes of uns iceability and partial or 

overall failure. This would enable the individlml limits to be invest-

igated thoroughly so that they may be provided for with a reasonable 

degree of probability which would be compatible with the minimum 

requirements of the structure and the type of loading. 

The application of limit concepts to ,the design of 

reinforced concrete structures has given rise to considerable interest 

in a statistical study of the interlinking parameters affecting the 

design methods. The investigations by Tichy(15) illustrate the 

advantages in the limit design methods in evluating the actual safety 

in structures. Cohn and Petcu (12,13) have recently suggested the 

application of the limit concepts to obtain an " optimum solution 

for continuous beams. 

The proposed European Concrete Committee recommend- 

ations (14) for an International Code of Practice are based on the 

limit design approach in its specifications of the material propert-

ies and the design principles. It further suggests that further 

investigations should be carried out so as to determine suitable 

design methods of ensuring the desired limit conditions. 

It 
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Chapter 3 

Limit Design of Reinforced Concrete Structures  

3.1 Limit design criteria  

The application of the limit concepts to the design of 

reinforced concrete structures is closely related to the deformation 

characteristics of reinforced concrete members and the minimum requi-

rements of the structures. These may be broadly classified into two 

limit categories depending o# the loads at which they are to be 

investigated. 

(a) Failure Criteria or Collapse Limit. 

The ultimate strength required of the structure 

could be defined by the probability of the over load and the possible 

modes of collapse such as, 

(1) formation of partial or complete mechanisms of collapse 

in the structure, 

(2) excessive shear resulting in local failure, 

(3) failure due to insbility effects either in the elasti 

stages or under elasto-plastic conditions. 

It must be noted that each of the above modes of failure must take into 

account the probable distributions and the adverse effects of the 

combination of the live loads and the dead load. 

(b) Serviceability Criteria or Service Limits. 

The minimum service requirements for different 

structures may be specified depending on the type of structure and 

its  utility. Structurally it would be required to satisfy these 

minimum conditions for all the possible combinations of the super-

imposed loads and the permanent load which together comprises the 

working load. A structural/gaiR that ensures both the limiting colla-

pse and service requirements is termed a limit design method. 
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3.2 Basis of Collaps...Limit Analysis 

Recent investigations into the basic criteria of limit 

analysis(11,38) ndicate that it could be separated into the following 

three stages, 

(1) Load Analysis 

(2) Material Analysis 

(3) Structural Analysis 

Each of the above investigations may be carried out 

independently and the minimum requirements could be easily specified 

individually. Thus the limit design procedure really consists of ensu-

ring the limit requirements with a reasonable degree of probability 

based on the above analysis, which replaces the concept of universal 

safety completely. 

(1) Load Analysis. 

The degree of accuracy with which any structure could 

be analysed for safety would not exceed the degree of accuracy with 

which the applied loads ate known, however precise the method of 

analysis may be. Hence a thorough analysis of the applied load systems 

including the mean working loads and the degree of variation of leach 

of the loads within a given period of time would be absolutely vital. 

The over load coefficient ( or partial safety factor 

for load ) would depend on the probability of the specified load being 

exceeded within the lifibtime of the structure. Even then, the most 

adverse effect of the loads may occur due to different combinations 

of the permanent load with the superimposed loads. Thus the over load 

coefficient when applied to groups of loads must also take into accou-

nt the probability of their acting together. 

The loads acting on structures in general may be 

devided into four categories based on their characteristics. 

(a) Permanent load or dead load, (b) Superimposed load or live load 
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(c) Lateral load due to aerodynamic forces or earthquake movements, 

and (d) Transient loads. 

(a) Permanent load or dead load consists of the weight of the structure 

and permanent fixures. These have very small coefficients of variation 

due to change in the moisture content, denaity and errors in the size 

of members; but in general they remain constant throughout the life of 

the structure. In most cases they could also be determined.acgura-. 

tely. In U.S.S.R. it has been found(11) that the dispersion in the 

permanent loads varies in the range 0 - 0.15 . In taking these into 

account, the Russian specifications provide for a small over load 

coefficient of 1.1. Although the British Code does not recognize the 

distinction betwedn the dead and the live loads in safety analysis, 

it provides an equivalent load factor of 1.8 (25).  Similarly the ACI 

Code of practice provides for a factor of 1.5 under dead and live 

load and a factor of 1.25 under dead load, live load and wind load. 

(b) Superimposed load or live load. The moveable loads that the 

structure is intended.  to carTy'duting its lifetime could be termed as 

the superimposed load. Naturally it could be expected that the variat-

ion in the superimposed load to be greater than in the previous case. 

This may also depend on the type of structure and the load itself. 

For example it has been found that the coefficient of variation in the 

superimposed loads in private buildings is about 0.10 and in industri-

al buildings it was about 0.15. Hence the over load coefficient would 

be defined according to the type of structure and the loads anticipated. 

A list of comparative over load coefficients and specified loads is 

given in Table 3.1. 

(c) Lateral loads. These are subject to large variations depending 

on the locality, nature of building and its environment. Hence in 

structures where the lateral loads are of primary concern, considerable 

precautions must be taken to safeguard against their unduly large 

variations. But in structures in which it is not of primary concern, 
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TABLE 3.1  Superimposed loads and over load coefficients  

Type of structure B.S.(17)  A.S.A.(58)  Russian(11)  

1. Apartments 30 (1.8) 40 (1.8) 32 (1.4) 
2. Offices , dormitaries 50 (1.8) 80 (1.8) 42 (1.4) 
3. Offices and dormitary halls 70 (1.8) 100(1.8) 63 (1.3) 

4. Dinning halls, restaurants 

auditoriums, stairways. 80 (1.8) 100(1.8) 63 (1.3) 
5. Theatre"hall e itlacesca 

100(1.8) 100(1.8) 85 (1.2) public gathering. 

6. Light storage (minimum) 150(1.8) 125(1.8) 85 (1.2) 

7. Minimum 	for book storage 

and warehouses in commercial 

and industrial buildings. 200(1.8) 250(1.8) 105(1.2) 

8. Hydraustatic pressure of 

liquids.+  - - - (1.1) 

9. Crane loads + - - - (1.3) 

10. Pressure of granular 

materials.+ - - - (1.2) 

* The figures represent the specified loads in lbs/sq.ft. 

The figures within the brackets refer to the over load 

coefficient or to its equivalent partial load factor 

implied in the safety analysis. 

+ In these cases the actual loads must be considered. 
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it could be assumed that the probability of the simultaneous occurance 

of loads in categories (b) and (c) at their peak values are much less, 

so that the over load coefficients when these are considered together 

may be reduce)d.A similar consideration is given in the stress factor 

method of design, where the permissible/ play 	exceeded by as much 

as 40 % due to the wind loads(17). Table 3.2 shows 	a comparative 

study of the over load coefficients. 

Table 3.2. 

Type of Load Over load coefficients 

B.S. A.C.I. Russian 

G 

G 

G 

+ 

+ 

+ 

Q 

Q 

V 

+ V 

1.8(G+Q) 

1.3(G+Q+V) 

- 

1.5G + 1.8Q 

1.25(G+Q+V) 

0.9G + 1.1V 

1.1G 

1.1G 

+ d Q 
q 

+ 	Q + NJ 
q 

- 

* This is based on an allowance of 40 % increase in the stress when 

wind load acts. 

(d) Transient loads. Special loacls that m7-4 act on the structure at 

different times although it has not been designed primarily for 

these loads may be considered as transient loads. Some examples are 

constructional loads and loads due to flooding in particular areas 

and due to variation in temperature and creep in ordinary structures. 

These loads cannot be assesed accurately but must be allowed for in 

the design so that no permanent damage may result due to them. 

(2) Material Analysis  

The basic properties of concrete and reinforcing 

steel vary considerably depending on the conditions under which they 

are being manufactured. Thus the actual properties could only be 

denoted by their statistical mean values and the respective coefficie-

nts of variation. Fig 3.1 shows the typical variations in the strength 
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frequency 

j  
.85 .90 .95 1.00 1.05 1.10 1.15 

T./ a- a a mean 

(a)Variation in the yield strength 

of reinforcing steel.  

frequency 

r 	1 	I  
*85 .90 .95 1.00 1.05 1.10 1.15 

Ci /Cf 
b 	b mean 

(b)Variation in the crushing  

strength of concrete. 

Fig. 3.1 

The frequency distribution of the ' strength ' 

of both reinforcing steel and concrete approximates to a normal curve and 

the respective coefficients of variations are about 0.05 and 0.10-0.20, 

the latter depending on the degree of quality control. 

The differences in the probability of failure 

of steel and concrete are taken into account in the limit design of members 

by the introduction of coefficients of variation as in the Russian 

Specifications (11)  or by the use of partial safety factors as in the C.E.B. 

recommendations(14). Table 3.3 gives the comparative reduction factors for 
the mean strength (coefficients of variation or the inverse of the partial 

safety factor) to be used in limit design. The coefficients of variation 

are obtained by using the standard formula, 

= - k 

where E is the standard deviation as obtained from distribution curves as 

above and k is a factor based on the desired risk of failure. 
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TABLE 3.3  Coefficients of variation 

Grade of concrete+ 
Russia# C.E.B. 	-1 

35-200 300-600 

Concrete in compression (A)* 0.60 0.65 0.67 
it 	(B) 0.55 0.60 0.67 

Conofete in tension 	(A) 0.45 0,50 0.67 
u 	(B) 0.40 0.45 0.67 

Mild steel 0.90 0.90 

Cold worked steel 0.80 0.90 

+ The grade of concrete refers to the specified strength in kg/cm
2
. 

* (A) and (B) refer to the concrete obtained under factory and site 

conditions. 

(3) Structural Analysis  

The-iythods of structural analysis available at 

present whether conventional elastic, elasto-plastic, or rigid plastic 

are based on idealised properties of members which may be considered 

necessary to obtain simple methods of analysis. However it could be 

seen that some of the idealisations are in greater error than others, 

leading to 'safe' and 'unsafe' results as the case may be. If these 

factors inherent in the methods of anlysis are taken into account, it 

would be possible to associate a coefficient with each of the methods 

of anlysis based on any particular idealisation representing the 

reliability of the method of anlysis. This would enable the design to 

be related to the actual structure on a similar basis of probability 

of collapse irrespective of the simplified idealisations. Such a 

coefficient could also take into account incidental errors due to 

variable phinomena like differential settlement of foundation, 
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vibrations, partial fixity at footings etc. 

(11) 
The work load coefficient suggested by Goldenblatt 

serves some of the above purposes. A similar suggestion has been 

made by. Wood amounting to as increase of 25 % in the ultimate load 

factor in conjunction with the rigid-plastic method of analysis which 

ignores instability effects. In this respect the work load coefficient 

serves as a 'safety factor' on the method of analysis and must be 

determined for individual categories of structures in relation to the 

simplified methods of analysis used in the design. 

3:3 Application of limit concepts to design 

.1n limit design theresults of the material 

and load analysis are used individually to determine the respective 

coefficients of vatiation in the material properties and the over load 

coefficients(10'14).  Thus the following coefficients may be assumed 

to be known. 

Coefficient of variation of concrete 	lb =1-kgb 
111 	steel 	y = 

Over load coefficient for permanent loadva  = 1+k Sa  dg 

superimposed load 

(vortical) 	q = 1+k S 

superimposed load 

(lateral ) 	= 1+k gv  

Work load coefficient 
	

?ro 

where k and S etc. depend on the degree of control and acceptable 

risks. In the case of over load coefficients, the value of k also 

depend on the probability of combined load when different systems of 

loads are considered together. 

The design loads are then given by, G* = K G, Q*= 	etc. 
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The forces in the members of the structure are obtained by using any 

particular method of analysis as a function of the design loads, 

which may be expressed in the form, 

M = F ( G*, Q*, etc. ) 	
41,00 (A) 

N = F ( G*, Q*1  etc. ) 

Similarly the design stresses of the materials are obtained as follows, 

Cr i; 	= 	Cr- b 

C*a 	Ya 

where (1"
a ' 

Tip  refer to the mean strengths. 

The strength of members M*1  N*, etc. may be calc-

ulated from the stress strain characteristics of the materials 

(idealised) 	and the member properties. The work load coefficient 

is encorporated to allow for the deviation in the actual member 

properties from the idealised properties assumed in the method of 

analysis (A) above. Then the strength of the members are given 

by, 

M* 	= (c)  F ((Ft , 6" a* 	b h 	etc.) 

N* 	F ((jb I  a- a* 	b 	h 	etc.) 

The compatibility of (A) and (B) produces a 

limit design which when all conditions of loading are considered 

could be regarded as a sufficient safeguard against all modes of 

failure. Thus this method this method provides an ideal collapse 

limit design 

The detail anlysis of service limits are discus-

sed in Chapter 11 with particular reference to continuous beams. 
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Chapter 4  

Stress strain characteristics of bound concrete 

4.1. Basic properties of concrete 

Extensive research has been carried out' in the 

recent years to study the basic characteristics of structural 

concrete as it forms the primary material used in the Cnstruction 

industry. The stress strain characteristics of plain concrete under 

varying loading conditions show that it is a brittle material, but 

under carefully controlled test conditions, some plastic properties 

could be detected(21'29).  It has been found that the maximum stress 

in uniaxial tests on plain concrete varies from 0.8 times the standard 

cylinder strength to about the cylinder strength depending on the 

fate of loading
(21)  . The failure strain which is much more influenced 

by the nature of loading and the test machine may vary from about 

0.0015 to 0.004 (19'21'22) 

The effect of reinforcement on concrete is to 

change some of the above characteristics, so that reinforced concrete 

shows more marked plastic properties. Richart et al(19)  and CothX 3)  

have shown that the effective strdngth of axially loaded columns could 

be increased by the use of binders as given in the following 

empirical equation, 

N 	= 	A Cr " 	2.1 A" may 

	

b 	a ay .... (4.1) 
where A"a  is the area of binders per unit length of the column. 
They also found that the ultimate concrete strain i.e. strain in the 

extreme compression fibres in concrete just before the applied load 

starts decreasing, was raised from 0.0015 to about 0.015 due to the 

presence of closely spaced binders. Similar results have been 

observed in bound columns subjected to axial load and bending 

Lately it has been shown that binding is one of the many parameters 

influencing the restraining sffects of concrete, thus effectively 
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(8,28 31) increasing its ultimate stress and strain 	The other parameters 

that influence the ultimate strain are bending moment gradient and 

curvature at the section. An approximate empirical relation to evaluate 

the effects of the above parameters on the ultimate strain is derived 

in the next section. 

4.2 Ultimate strain in bound concrete. 

Consider the forces acting on the concrete in the 

compression zone near the critical section of a beam which is subjected 

to bending as in Fig. 4.2. Let the area of binders per unit length 

of the beam at the section be A"
a
., let F

x 
be the axial force in the 

compression stress block and F be the lateral restraining force 

per unit length as indicated. The lateral restraining force F is a 

function of the axial force, the curvature at the section and the 

force exerted by the binders. The latter is mainly due to poissons 

ratio effect of the concrete under compression. Thus if Fb  be the 

force in the binders, it may be regarded as proportional to the ratio 

of the depth of binders embeded in the compression zone and the depth 

of the compression zone. 

i.e. Fb 	B 	) A" 
Xh 	a ay 

where Btaay be regarded as an empirical constant. 

The curvature at the section is given by eb/xh 

and the force Fx 
is equal to the force in the tension reinforcement. 

Then the lateral restraining force F could be given by the 

semi-empirical relc.,tion, 

F 	= Fxeb /Xh Fb 

. A 
 ray 

e
b 	

( 2512= 1211  ) A" 
a 	

cr 
xh a ay 

xh 
where Aa 

is the area of the tension reinforcement. 

 

(4.2) 
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If e
bo be the ultimate strain in the concrete due 

to axial load in the absence of any lateral restraint, the the increa-

sed ultimate strain value e
b2 when the concrete is under the action 

of a restraining force F may be given in the form 

f ( Fy  ) eb2 = ebo 

 

(4.3) 

 

Considering a simple function of the type 4.3, the following expression 

for the ultimate strain is obtained, 

e
b2 	

= e
bo 

+ k F 	(4.4) 
Y 

where k is a constant. 	SIstituting for F from 4.2, e
b2 

is given by, 
Y 

e A ar 	xh - d' e
b2 = ebo 

+ k( 	b a ay + B 	A"
a  G-  ) .4'l a 

	

xh 	xh 	y  

	

eb2 p 	ISILL11  ) = ebo + k is- bh ( ----- + B p" - ay 
	

xh 	xh 

= ebo 	1 + ki  p" + ( k2 	k3  p" ) 	....( 4.4a) 

where ebo k1 , k2 
k
3 

could be considered as approximate constants 

which may be obtained from test results where each of the parameters 

are varied 	ern. 

The effect of variation of the neutral axis depth 

on the ultimate strain when the amount of binders is kept constant 

has been studied by the author in an earlier series of tests as shown 

in  dig.  4.1b.
34) 

 The stress strain curves for four axially loaded 

short columns in which the amount of binders are varied from 0 - 3.5% 

are shown in Fig. 4.1a. From these results the following approximate 
values of the empirical constants in equation 4.4a are obtained 

	

ebo = 0.0015, k
1  = 1.5 	k2  = 0.7 , k3  = 0.1. 



35 

bubstituting for these values in the original equation, the ultimate 

strain in bound concrete subject to bending could be given by the 

simple semi-empirical formula, 

eb2 	0.0015 [ 1 + 1.5 p" 	( 0.7 - 0 	1 p" ) 
x2 

	 ( 4.5) 

Equation 4.5 seems to explain the observations that have been reported 

bl Chan
(23)

, Richart et al(19). It may be noted that when the axial 

load is large, the neutral axis depth is also large. Then the ultimate 

strain in concrete with little or no binding could be as low as 

0.0015 as in the case of plain concrete specimens. In beams where 

x2 
is generally less than 0.5, the C.E.B. recommendation of 

eb2 	
0.0035 seems to be a safe limit. But in very under-reinforced 

beams higher values of the ultimate strain as reported by Bremner
(3) 

and the author may be obtained. 

4.3. Maximum stress in concrete under flexure. 

The concrete subjected to flexure as in Fig. 4.2 

also shows an increase in the crushing stress due to the biaxial 

nature of the stresses around the concrete in the compression zone. 

Thus in beams the maximum stress before concrete starts spalling 

may be as high as the standard cylinder strength or even the cube 

strength, depending on the nature of the restraining force F PS 

explained earlier 

Considering the neutral axis depth as the most 

important parameter influencing the ultimate stress, the following 

approximate expression for the maximum stress in concrete has been 

suggested by the author, which is applicable for rectangular beams 

and coluons as shown by test results. 

2. ) 
2 '

1.1 = 	( 0.8 	x 

 

(4.6) 
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where 	is the cylinder stress. For x2< 0.5, the upper limit of 

6'1'0  is assumed to be equal to 6q. As a reasonable approximation the 
maximum stress in the concrete in axially loaded columns may be 

assumed to 0.8 of the cylinder stress and in under reinforced beams 

it may be assumed to be equal to the cylinder stress. 

Considering the separate relations for the ultimate 

stress and strain, the idealised stress strain curve for concrete 

subjected to bending is given in Fig. 4.4. The variation of eb2 
with the neutral axis depth and the amount of binders is shown in 

a diagramatic form in Fig. 4.5. The properties of the stress block 

in a rectangular section are given in Fig. 4.6 where C‹ and 	are 

the usual stress block parameters. Since the ultimate strain and the 

neutral axis depth are now inter related, the actual properties 

could only be obtained by trial and error. But it could be seen from 

Fig. 4.6 that when eb2  is greater than 0.004, the change in both c< 
and 6#  is very small. 

It may be noticed that in beams the strength 

calculations are relatively unaffected even if an approximate value 

for the ultimate strain is assumed. However the neutral axis depth 

thus determined may be used to obtain a better approximation for the 

value of the ultimate strain to be used in the permissible rotation 

calculations. 
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D 

column 
No. 

Pll  

Experimental 

4-b max 
Richart 
trit3+2.1p"(ray 

(ri; a- t b 
A 0 1.0 1.0 
B 0.875 1.1 1.13 
C 1.75 1.2 1.26 
D 3.5 1.5 1.52 

0.5 

0 (Imperial College) 

reinforced concrete columns 

eu- ultimate 
strain 

o Amarakone's tests 

o Bremner's tests 

al = 4500 psi. 
pIt 0.6% 

eu  = 0.003+ 
(Mattock) 

--- 

0 

0 

0 

eu = 0.0015( 1+
21) 

(safe limit for experimental 
results) 

CrL 	

411\ 

eu = 0.004- 	C.E.B.: cu = 0.0035 6.5 x 106 
(Hognestad) 

J  

0.010 

0.005 

Fig. 4.1(a). Ef ective stress strain curves for four short 

0 	2.0 	4.0 x 
Fig. 4.1(b). Variation of ultimate strain with neutral axis depth 
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Fx Fx 

neutral axis 

5 10 

- limit strain. 

0.010 

0.008 

0.006 

0.0014 

0.002 

0 

Fig. 4.2 State of Stress in Concrete Under Flexure  

Fig. 4.3 Limit Strain in Bound Concrete  

• 0 	0.002 	eb2 
	strain 

Fig. 4.4 Idealised Stress Strain Relation for Bound Concrete 
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Fig. 4.5 Column Section 

oC , 
1.0 

        

       

0.5 

       

  

I 	I 	I 

   

        

   

0.010 
Limit Strain - eb2 

 

0.005 

 

Fig. 4.6 Stress Block Parameters 
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CHAPTER 5  

DESIGN OF SECTIONS 

5.1. INTERACTION CURVES FOR COLUMNS. 

Consider a rectangular section subjected to axial load and 

bending as shown in Fig. 4.5. Let Aa  and Ala  be the area of tension 

and compression reinforcement and x2h be the depth of the neutral 

axis from the extreme compression fibres at limit L.2. Then for 

equilibrium of axial load and moment in the section, 

N2 . Nb + NIa  — Na  
M
22

h Nb — NIa
dt + Nah + N2ht 

.2 
r 

where the forces Na, NIab  N.  are given by 

N
a 
. AaOPa . 7.7) blir a 	b 

Nt 	
y_ 

. A I cr t 
a7a

Lof bhTb r a a a 	a 

Nb 	of  x2 bh b- 
	ay 

• • 

• • 

'al 
T.'a.

I depend on the strain in the tension and compression 

reinforcement which could be easily obtained in terms of the ultimate 

strain in concrete and the depth of the neutral axis. The stress block 

parametersCgand al  could be read off from Fig. 4.6 corresponding to 

the ultimate strain. _Hence the axial load N2  and moment M2 
at limit 

L2  could be expressed in terms of the single parameter x2. 
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Equations 5:1 and 5.2 may be non-demensionalised by dividing 

them by4Tis t ph and C3  bla  respectively substituting n2. N2  /6Tt bh, 

and m2= 1u2/(rbibh 2  

_ 	(a  

-00- 11c, )11c2 	—VI dt 
Li) a 

•••••••••••••••••••••• 

ay h 

• . . ( 5.3 ) 

'0.4 ) 

41 • • 

The interaction curves in Fig. 5.1 are obtained by plotting 

n2 against m2 for varying percentages of reinforcement. These 

curves also show the values of x
2 which in term would determine 

the value of the ultimate strain in concrete to be used in inelastic 

compatibility calculation4. 

5.2 Simplified calculations for beams  

In practice reinforced concrete beams are under-reinforced and 

their design could be greatly simplified as the changes in stress-

block parameters for variation in the amount of reinforcement has 

very little influence on the ultimate moment when the actual amount 

of reinforcement is small. 

When (7:5-(J.6 < 0.3, the average values of X.0.41 and 

0.85 have been used to obtain the following simple expressions 

for x2 and m2 at limit 

'2 = 1.18 ) . 	. 	. 	( 5.5 ) 
m2 - (w-- Lai) [ 	1 -0.48 (433-1-31)] 

+ 7.75 /(1 	— cif ) . 	. 	. 	( 5.6 ) 



x2  and m2  are plotted against (...0—ZZ' in Fig 5.2 for a value 

of d' = 0.10. Similar design charts may be obtained for other 
h 

values of d'. It may be noticed that the grade of steel is 
h 

already taken into account in 	hence the charts are applicable 

for all grades of steel. 

5.3 Comparison of theoretical calculations with CEB test results. 

The experimental results of an extensive series of tests to 

determine the moment — rotation characteristics of reinforced 

concrete beams and columns carried out under the European Concrete 

Committee have been reported recently (ref.9). The results of 

80 beam tests and 32 column tests 12---:.ve been analysed using the 

stress—strain relation suggested in chapter (4) and the results 

are presented in Tables;  5.1 and 5.2,the details of the beams are 

given in table 2 in reference (9) (see Appendix I). 

The beam calculations based on the proposed stress block 

were compared with the similar calculations based on other stress 

blocks suggested by the European Concrete Committee (ref 14) which 

allowe for a rectangular — parabolic stress block (CEB. R.P.) or 

a parabolic stress block (CEB.P) and the stress block suggested 

by Hognestad (ref 22). The essential properties of the different 

stress blocks are expressed in terms of the (>4 X' parameters as in 

the table below. 

42 
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Beam No. Ultimate Strength 	Stiffness 

D exp 

Ductility_ 

D cal 

M exp 

 

calf 
cal goal 

Imperial College 1 .145 0.98 46.3 0.97 _ 

.196 1.06 53.8 1.00 - - 
H 	2 % 

.372 1.08 74.1 1.20 10 7 
H 	3 1.14 7 5 
H 	4 .431 

.489 

1.11 
1.04 

84.2 
88.7 0.96 10 5 

II 	5 6 
H 	6 .435 1.03 86.5 1.00 10 

il 	7 .381 0.98 91.9 1.14 22 4 

H 	8 .582 0.97 107.o 0.97 11 4 

Madrid 	6 	-1 .374 1.16 73.7 1.60 - - 

U 	6 	-2 .362 1.18 72.5 1.60 - - 

II 	6 	-3 .371 1.09 69.6 1.48 8 4 

Paris(IRABA) 	A2 .050 1.18 27.3 1.17 55 29 

II 	A5 .240 1.08 60.4 1.06 6 8 

II 	A8 .074 1.21 34.2 1.29 49 25 

It 	A11 .038 1.21 24.5 i.00 48 29 

II 	B2 .048 1.91 26.8 1.09 30 29 

11 	B5 .250 1.10 62.0 1.08 20 8 

II 	B8 .083 1.07 35.8 1.26 33 27 

II 	Bil .038 1.21 24.4 1.18 38 27 

Porto 	B4 .394 0.95 76.5 1.30 - - 

" 	B6 .238 1.04 58.6 1.23 1? 8 

H 	B7 .147 1.11 46.1 1.21 8 16 

H 	B9 .065 1.18 31.4 1.43 72 26 

II 	B10 .078 1.06 33.6 1.01 42 25 

H 	B12 .032 1.28 21.6 1.06 110 27 

Torino 	A6 .197 1.18 54.5 1.23 11 10 

II 	A9 .o68 1.23 30.3 1.62 - - 

II Al2 .037 1.1? 21.9 1.46 28 26 

It 	D5 .621 1.21 77.2 1.31 - - 

'o 	D11 .119 1.41 30.4 1.15 2? 12 

tt 	D8 .138 1.36 32.? , 1.32 22 10 

cca. 
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TABLE 5.1 ctd. 

C&CA 	A4 
u 	A7 
u 	A10 

.411 

.144 

.077 

1.16 

1.01 
1.10 

77.5 

45.9 
33.5 

1.42 

1.57 
1.08 

- 
- 
- 

- 
- 
- 

Imperial College 	9 .124 1.11 28.1 0.91 9 11 
►► 	10 .176 1.09 33.4 0.96 12 8 
►► 	11 .266 1.12 41.1 0.97 9 6 
ii 	12 .296 1.25 43.4 0.99 4 6 
►► 	13 .507 1.10 58.1 1.00 3 4 
►► 	14 .197 1.13 35.4 0.98 15 14 
►► 	15 .389 1.15 49.7 0.98 11 12 

Torino 	F4 .447 0.95 65.9 0.97 - - 
►► 	 L4 .568 1.07 74.2 0.96 4 4 

Paris (IRABA) 	E6 .452 1.16 58.2 1.35 2 2 
►► 	E9 .138 1.08 32.1 1.22 10 12 
►► 	F6 .316 1.07 44.1 1.23 3 4 
►► 	F9 .078 1.05 23.3 1.03 13 11+ 

►► 	 1.12 .097 1.24 28.2 1.03 16 8 
►► 	H5 .525 1.04 63.9 1.18 2 2 
►► 	H8 .179 1.09 39.9 0.94 15 10 
►► 	H11 .090 1.10 26.9 0.90 10 15 
►► 	R4 .516 1.03'• 79.5 1.31 - - 

11 	R5 .323 1.09 63.o 1.11 3 3 
►► 	R6 .296 1.15 47.1 0.96 5 5 
►► 	N2 .186 1.17 39.9 1.23 21 8 

►► 	N5 .649 1.05 75.7 1.33 2 2 
►► 	N8 .170 1.22 39.6 1.21 7 9 
►► 	N9 .115 1.05 30.1 1.15 8 12 

Porto 	C6 .430 1.01 63.4 1.17 4 4 
.24o ►► 

	
07 1.00 46,7 1.00 14 9 

►► 	C9 .077 1.23 29.1 1.20 27 19 
►► 	C10 .119 1.07 31.5 0.95 25 13 
►► 	C12 .042 1.36 21.4 0.90 28 19 

ctd. 
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TABLE 
	

5.1 ctd. 

Porto 	M9 .079 1.34 29.5 0.95 18 19 
It 	M10 .107 1.07 30.9 0.63 11 14 
It 	M12 .040 1.38 20.9 0.76 22 19 

Mexico 	A464C .165 1.36 38.2 0.86 14 11 
It 	A413A .132 1.34 33.7 0.62 5 13 
tt 	A4192D .150 1.31 34.8 0.83 19 12 
it 	A400D .163 1.24 36.3 0.83 19 8 
it 	A2640 .083 1.24 25.5 0.83 10 15 
it 	112127F .087 1.27 25,7 0.90 15 14 
It 	A21921-I .072 1.34 23.8 0.80 10 15 
C&CA 	C4 .557 0.96 77.8 1.24 - - 

c5 .517 1.07 73.4 1.22 - - 

C8 .131 0.94 36.4 0.89 - - 
C11 .073 1127 2742 0.89 - - 
L5 .485 1.07 71.2 1420 - - 

M5 .158 1.36 4o.o - - - 
M11 .078 1.28 28.2 1.35 - - 

Mean 1.14 1.11 

Standard Deviation 0.117 0.21 

TABLE 
	

5,2. COLUMN TESTS 

Column. No. 
x2 cal 1112 cal 

. 

-- 

"2 cal r2 cal 

. 

ru expru 

. 

exp 
r2 cal 

Imperial College Al .50 .28 .40 .488 .456 0.935 
tt 	A2 .65 .28 .53 .599 .596 0.995 
ft 	A3 .71 .26 .59 .645 .644 1.000 
tt 	A4 .92 .31 .84 .904 1.033 1.140 
tt 	A5 1.10 .11 .98 .987 .996 1.010 

ctd.. 
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TABLE 	5.2 ctd. 

Imperial College A6 
II 	BI 
H 	B2 
It 	B3 
It 	B4 
VI 	B5 
it 	B6 

1.09 
.55 
.60 
.75 
.97 
1.00 
- 

-...- 

.09 

.31 

.27 

.25 
418 
.o8 
.08 

1.03 
.46 
.50 
.64 
.86 
1:04 
1.07 

• 1.003 
.555 
.570 
.688 
.88o 
1.042 
1.072 

4  1.071 

.555 

.546 

.658 

.875 

.990 
1.204 

4'710070 

1.000 
.958 
.957 
.995 
.951 
1.118 

Torino 	A2 .81 .17 .57 .594 .660 1.111 
H 	D2 .90 .21 ,55 .589 	.4 .76o 1.290 
II 	 Fl .8o .18 .62 .645 .657 1.020 
ft 	 F2 .82 .16 .67 .64o .664 1.o40 
H 	F3 .6o .2o .48 .522 .536 1.028 
H 	Gl - .12 .83 .839 .991 1.182 
H 	H2 .78 .21 .54 .580 .670 1.155 
it 	Ll 1.05 .13 .80 .811 .902 1.11Q 
Iv 	A3 .65 .21 .51 .551 .571 1.040 

C8c0A 	Al .89 .11 .74 .750 .678 .905 
if 	A2 .38 .16 .32 .362 .364 1.000 
It 	Ci .94 .13 .81 .820 .785 .958 
It 	C2 .38 .21 .39 .445 .425 .958 
tt 	03 .18 .15 .15 .211 .234 1.110 
it 	El .75 .10 .84 .845 .606 .718 
It 	E2 .54 .25 .45 .517 .520 1.010 
if 	E3 .18 .17 .16 .234 .246 1.050 
It 	G2 .33 .18 .32 .367 .326 .890 
It 	L2 .45 .22 .40 .459 .429 .935 
It 	M2 .45 .38 .6o .711 .439 - 

k R 	 - 

Mean 1.020 

. 
Standard Deviation 

. 	, 0.105 
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Table 5.3 stress—block Parameters. 

Parameter CEB. R.P. CEB.P. Hognestad Proposed 

11/6-1, 
0.8 — 0.82 1.0 0.85 1.0 

0‹. 0.81 0.67 0.79 0.85 

er 0.41 0.375 0.43 0.41 

The standard deviation in the ratio of ultimate moment 

to calculated limit moment due to the four methods are 12.5% 

(CEB. R.P), 11.8% (CEB.P), 11.7% (Hognestad) and 11.7%  (proposed 

method). The corresponding mean values were 1.16, 1.15, 1.17 

and 1.14. These results show that the differences in the 

assumptions in the above methods have little influence on the 

ultimate strength calculation of beams. The error in the 

calculated moment was in all casss on the safe side, which may 

be due to the safe limit assumptions of the ultimate stress of 

reinforcing bars. 

However the proposed method yields smaller values for the 

neutral axis depth than the other three methods. These results 

agree well with the experimental values as shown in Fig. 5.3. 

The column tests were analysed using the proposed method 

and interaction curves of the type described earlier. The methods 

of comparison of the strength of columns subjected to axial load 

and bending that are often used are found to be misleading due to the 
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need to compare the axial load and moment results at the same 

time as they are inter—related. (ref.59) 

This was over come by comparing the column strength in terms of 

the radius sector of the interaction curves given by 

r2 	I m2
2 
 + 112

2  

to the corresponding experimental results. The above values 

of m2 and n2 were determined for the same values of eccentricity 

as in the test results. 

The calculations are presented in table 5.2 and Fig. 5.4. 
The mean value of r 	f.or 31 tests was 1.02 and its standard 

exp cal 

deviation was about 10%. The calculated neutral axis depths of 

the columns are compared with the observed values in Fig.5.3. 

These results indicate that the proposed method forms a 

satisfactory basis of calculation of the short term strength and 

ultimate load charactistries of beams and columns. 
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Fig. 5.1 Interaction Curves for Columns  . 
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C.E.B.Test results 
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ru - experimental 

,/ 
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dt 
 

r2 calculated 

Fig. 5.4. Column ,results (Nos. 31 Tests) 
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CHAPTER 6  

Flexural Stiffness of Reinforced Concrete Members in 

Limit Design  

6.1 Idealised flexural stiffness  

In the stress and deformation analysis of reinforced concrete 

structures, the flexural stiffness of members forms an extremely 

important factor influencing the calculated stress state. 	But 

it is not unusual to formulate and attempt a rigorous analysis 

based on very aporoximate stiffness values which in turn could 

create large errors in the final results. 	In classical elastic 

analysis, reinforced concrete members are assumed to be homogeneous 

and elastic. They are then treated in the same way as any other 

elastic material. Thus most designers may use the formula 

for EI involving the second mom,:mt of the area of entire section 

and the elastic modulus of concrete (a reduced value of F is 

normally employed to allow for creep and cracking, etc.) 

where the area of reinforcement is completely ignored. Other 

provisions included in the British Code
25 

allow the reinforcement 

to be included in the above calculations on the basis of the 

modular ratio. 

The differences in the EI values calculated by the different 

assumptions are quite large. 	In the analysis of multistorey 

structures where the relative error in the EI values between 

the beams and columns is more important than their absolute values, 



54 

the basic assumptions for the determination of EI may give rise to 

large differences in the design values. 	It has been shown that 

under extreme conditions, the error in the stress analysis, due to 

,24 
different assumptions for the 	values, could be as much as 407o . 

In limit design m thods where the degree of safety is more critical, 

it is considered essential to base the stiffness calculations on 

safe limit assumptions. 

The results of extensive experimental investigations into the 

study of moment-curvature and moment-rotation characteristics8'9'23'34  
concrete 

show that essentially reinforced/is inelastic but the moment- 

rotation characteristics could be closely approximated to a 

bilinear5  or a 'bilinear curve
26 

 . 

Baker in introducing the ultimate load method of analysis,5  

has suggested a bilinear relation for the moment-rotation character-

istics of reinforced concrete members. A lower limit EI value is 

based on the idealised limit Li  as given by equation 

EI = 1 
r 
 1  h  ... (6.1) 

  

ebi 

where the suffix 1 denotes the stress state at the critical 

section (referred to as limit 14), when either reinforcing steel 

reaches the elastic limit (or 0.1% off set strain in the case of 

cold worked steel) or the concrete reaches a strain of 0.002 . 

EI may then be calculated based on the stress-strain relations for 

concrete and reinforcement. 

For an under-reinforced rectangular section, the following 

limit Li  values for ebl, Ni may be derived in terms of the neutral 
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rz 
1 

blbh2  = E  Co 	i-y x 1 1 ... (6.4) 

y1 has a value ranging between 0.33 and 0.375 

From Fig.6.1 
m1 
 and x1  may be obtained for a known value of 

, hence the EI value could be evaluated. 

The himit calculations for EI values of under-reinforced and 

over-reinforced beams have been considered in greater detail by 

the author in a recent publication27. 

The resultant bilinear representation of the moment-curvature 

and moment-rotation curves for typical members are shown in Fig. 

6.2 and 6.3 An idealised balinear representation as shown 

in Fig.6.2 as suggested by Chan
23 

and iiacchi
26 

seem to be a closer 

approximation to experimental results than the bilinear assumptions. 
in 

However, the advantages/the bilinear idealisation may have to be 

weighed against the fact that a departure from a bilinear 

representation of the moment-rotation relation makes stress 

analysis extremely complicated even in very simple structures. 

The relative error involved in the two methods may be compared 

easily for simple cases as in the next section. 
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The total rotation 91 
due to bilinear assumptions is given by 

91 
Iii PI14 

EI ds 	
Mll 

2(21)1  
• • • • (6.5) 
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6.2 Relative error in total rotation due to bilinear and trilinear  

assumptions. 

Consider a simply sugoorted uniform beam subjected to a central 

point load as in Fig.6.4. 	The curvature distribution at limit 

L
1 

corresponding to the bilinear and the trilinear assumptions 

are shown in (c) and (d). 	The total rotations could be easily 

obtained by integrating the area of the curvature distribution 

diagrams. 	Let (EI)e  and (EI)1  be the values of flexural stiffness 

in the uncracked elastic stages and cracked stageSrespectively. 

These are given by the idealised assumptions, 

(EI)e
1  Eb.bh3 
12 

M1 x1 h (EI)1 

eb1 

The corresponding total rotation Al 
due to the trilinear 

assumptions, is 	 -r2 

e = 14 	2.1 
EI ds = -1- 

N-1 	c2  

2 	(EI)e 	
(1.-A "  (6.6) (El) 

 

0 
Mo 

where c = M
1  

and Mo is the cracking moment. 

From equations 6.5 and 6.6, 

Al = 	1 	 .... (6.7) 

e
1 	

42  (304  + 1-c
2 

(EI)
e 
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Fig. 6.2 Typical Moment Curvature Diagram for 

Reinforced concrete section  

A - Rotation 

Fig. 6.3 Typical Moment Rotation Diagram for 

Reinforced concrete section 
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(a) Loading 
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(e) Typical experimental moment - rotation curve 
Fig. 6.4. Simply supported Beam Tests  
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(EI)1 increases with the increase in the tension reinforcement 

in beams
27
. 	Thus equation 6.7 shows that the error in the 

bilinear assumption compared to the trilinear assumption varies 

with the ratio of the cracking moment to the ultimate moment and 

the degree of reinforcement. 	Table 6.1 gives the calculations 

for typical beams where (EI)1/(EI)e  may vary from 0.10 to 1.0. 

Table 6.1 Comparison between bilinear and trilinear assumptions. 

(EI)1 A
B 
/ 0

T 
1 	1  (EI)e 

R.C. Pre-stressed concrete 

C = 0.3 	- C = 	.6 c = 0.7 c = 0.8 
- 	, 

.10 1.09 1.47 1.79 2.36 

.25 1.07  1.37 1.59 1.92 

.50 1.05  1.22 1.33 1.47 

.75 1.02 	...: 1.11 	' 1.14 1.20 

1.00 1.00 1.00  1.00 1.00 

For reinforced concrete beams where the average value of 

C is about 0.3 the maximum difference in the ET values due to 

the two assumptions is about 9%. 	However in the prestressed 

concrete where c depends on initial prestress the differences 

vary widely with a maximum of 136% for c = 0.8 and (EI)1/(EI)e  = 

0.1. 



% 
= (565 - 12500 eay )( 1 	Y1x1)3c1

2 
 1 - x 

	( 6.9 ) 
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Thus it is clear that the bilinear assumptions are perfectly 

in 
adequate for reinforced concrete design while prestressed concrete 

design, the trilinear assumptions or an equivalent must be used. 

6.3 Semi-empirical relation for the EI value of beams  

The determination of the limit EI value from equation 6.1, 

even when assisted by diagrams of the form Fig.6.l, remains 

difficult and subject to large error due to small inaccuracies in 

all secondary terms like M1, x
1 
or eb1, which must be first calculated 

from the section properties. 

However, if the sections are under-reinforced (or has compression 

reinforcement to enable tension sta to yield before concrete), 

the calculation of limit ET may be simplified. 

Let represent the fluxural stiffness reduced to non- 

dimentional terms given by 

EI 

Then from equations 6.2, 6.3 and 6.4 ht.may be expressed 
).) 

in terms of the single parameter, ):11  representing the neutral 

axis depth at limit L1 given by, 

	 (6.8) 

The neutral axis depth in under-reinforced beams could be 

related to the degree of reinforcement as in equation 6.3, but it 

is not possible to express directly in terms of the degree 

of reinforcement. 	Hence may be obtained graphically as in Figs. 

6.5, 6.6 and 6.7 for different grades of steel. 
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However, in considering the idealised calculations and actual 

test results it was found that the fluxural stiffness factor 

may be given in the approximate form 

(a - p eay),Aff   (6.1C) 

where a .4 175, 3 31200. 	This expression has the advantage that 

the flexural stiffness is expressed directly in terms of the section 

properties and the grade of steel. 	This is discussed with 

reference to 80 beam tests carried out under the European Concrete 

in the next section. 

6.4 li,Xperimental results  

The mean experimental fluxural stiffness in reinforced 

concrete beams could be obtained from the moment rotation 

diagrams as in Fig.6.4. 	Table 5.2 gives the stiffness results 

determined for 80 beam tests9  the properties of which are given 

in Table 2 in reference 9. 	exp indicates the mean experimental 

fluxural stiffness value as described above. 	cal represents 

the calculated value of g using equation 6.10. 	exp have been 

plotted against] eal in Fig.6.8 and the frequency distribution 

of 	exp" 
 al is given in Fig.6.9. 
:7c  

The mean value of .5F
ex / cal f. 	for 80 test results has been 
p  

found to be 1.11 and the standard deviation was 0.21. 	It is 

known that the actual stiffness of beams is dependent on the duration 

and nature of loading and the creep characteristics, hence the values 

predicted by the approximate equation 6.10 represents as an accurate 
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measure of the mean fluxural stiffness in short term test 

results as may be expected. 

The above tests also cover a wide range of steels, varying 

from mild steel of yield strength N31000 psi to cold worked steel 

of 0.1% proof strength of about 85,000 psi. 	The expression 6.10 

for g, seem to adequately take into account the effect of 

different grades of steel. 	This was considered in greater detail 

by selecting the test results for beams with the same grade of 

steel. 	Figs. 6.5, 6.6, 6.7 show the variation ofexp  with the 

degree of reinforcement for three grades of steel. 

These results may be compared with the bilinear idealisation 

as predicted by Baker's equation 6.1 and the simple empirical 

equation 6.10. 	In mild steel beams the values predicted by both 

these methods aggree very closely and forms a lower limit of the 

experimental results. 	In both grades of cold worked steelithe 

results predicted by equation 6.10011s slightly larger than those 

given by 6.1 but agrees well with the experimental results. 

The value of 21 obtained by the present code
25 

method assuming 

a modular ratio of 15 is also shown in the above diagrams. 

The actual variation of El is not reflected at all by the provisions 

in the Code rules, but in the range of qz ranging from 0.1 to 

0.2 which is most common in design practice, the Code provisions 

may be considered reasonable. 
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6.5 Flexural stiffness of Columns  

In considering the relative EI values between beams and columns, 

Baker has r,ointed out that the EI Values of columns must also be 

determined from the limit properties as in equation 6i1. 

The values of M
1' 

e
1)1

, for columns at limit L1  could 

easily be determined in terms of the neutral axis depth x1  as for 

the strength calculations. 	Fig. 6.10 shows a plot of EI for 

columns against e/h where e is the effective eccentricity at the 

critical section. 

If 4col 
represents the flexural stiffness factor for a column 

under axial load and bending and if b 
refers to the extreme case 

of 
col 

when e/h-lroch i.e. the column with no axial load and 

failing in fluxure, the ratio co1 b gives a measure of the 

increase in the fluxural stiffness due to the axial load. Using 

the previous calculations based on limit L.1, 	
b is plotted 

against (.0 and e/h in Figs. 6.11 and 6.12. 	These show that 

col _ b as calculated do not change appreciably over the whole 

range of Gj  -- and e/h considered, the mean value being 1.51. Thus 

based on Baker's limit L
1 
assumptions for columns, the EI for columns 

with eaual tension and comiaression reinforcement may be regarded 

as 1.51 times that for beams with the same amount of tension 

reinforcement. 	However it may be expected that with larger axial 

load, the degree of cracking in columns would be reduced and the 

effective stiffness would be appreciably increased. This aspect 

cannot be taken into account in the idealised limit calculations 
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as the cracked length could no'.. be well defined. 	An empirical 

approach to a closer approximate value of the column stiffness 

may be preferred under these conditions. 

The mean effective El for 26 short column tests reported in the 

CEB tests9 and four tests by Soliman28, which were obtained from 

moment-rotation results in the same way as described for beams are 

plotted against t-he axial load shown in Fig.6.13. 	The results 

clearly indicate 
thatcol 

increases with the axial load and the 

test results could be expressed by the empirical equation 6.11. 

col = (1 + 1.8n 	) g: 	...(6.11)  

The axial load Aral-ies from zero to about 1.2 depending on the 

degree of reinforcement and the ratio of the axial load to moment. 

Hence col may vary from,13  to about 3i6113. The value predicted 

by the idealised limit L
1 

calculations is a mean of these 

variations. 

Substituting fort
b/ 

from equation 6.10 the mean effective 

flexural stiffness of columns may then be written as 

= (1 + 1.8n )(1
col 	

75)31200 e
ay
) 	6.12 

The expression 6.12 for the stiffness of columns has the 

same advantage as the corresponding expression of beams as it 

depends only on the primary variables assumed in the design. 

The charts given in Fig.6,8(a) could be used to determine 

col as 
n  in the column is known separately, 
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CHAPTER  7, 

Inelastic rotation capacity of reinforced concrete members. 

7.1. Plastic rotation. 

Experimentally it has been observed that the plastic rotation)  

that a reinforced concrete member may undergo without effectively 

reducing the carrying capacity)is of the same order as the elastic 

rotation(9) 	The limit of the plastic rotation is primarily 

controlled by the ultimate strain in the concrete as discussed 

in Chapter 4, or in extremely under-reinforced members where 

the reinforcement may have brittle characteristics, the strain 

capacity of reinforcement itself may determine the maximum 

plastic rotation. 	These limits are referred to as Limit L2
(5) 

Extensive experimental observations(5' 8' 23, 31, 34) on 

simple reinforced concrete members, show that the plastic rota-

tion capacity (9p) is subject to large fluctuations, even when 

the members are tested under similar conditions. Hence, in 

calculations involving plastic rotations, it would only be possible 

to use approximate values of ep, which may be considered to be 

safe values as compared to experimental results. 

In 1956, Baker(5) has suggested the following empirical 

formulae for 9p, 

Tension hinges i.e. under-reinforced beam hinges 

9 _ o.ol 
p 	X

2 
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Compression hinges i.e. column hinges or over-reinforced beam 

hinges 

9 = 0.01 for yell bound sections. 
p 

e = 0.001 for unbound sections. 
p 

A more comprehensive formula for e , which incorporates the 

influence of section
(20)

parameters is given by 
 

, 	4  
= k1k2k3  (0.0035 - .%1) ... (7.1) 

where k1 , k2, k3  are factors which take into account the 

influence of grade of steel, axial load and grade of concrete 

respectively. z refers to the length of the member between 

critical section and point of contra-flexure, h is the effective 

depth of section, and obi  is the concrete strain at limit L1. 

The values of e predicted by equation (7.1) has been 

previously compared by the author with moment-rotation charac-

teristics for beam and column tests carried out under the European 

Concrete Committee (). The large scatter in the test results 

and the variation in the ultimate strain in concrete as shown 

in Chapter 4 9 show that the main parameters affecting 9 are 

the degree of binding and the depth of concrete in the compression 

zone at the critical section as expressed by the reutral axis 

depth. The latter also takes into account the axial load if the 

hinge section happens to be a column hinge. Thus the author has 

suggested the simple empirical formula 

e 	= 2.4 (e b2 	e -b1 ) 	
... (7.2) 



where e.
12 is the ultimate strain in concrete as given by ) 

 

equation (4.5), and e bi_ corresponds to the concrete strain at 

the limit L1, for which an upper limit of 0.002 may be assumed 

as a further simplification. Fig. 7.l shows a plot of Gp  as 

given by equation (7.2) against x2  for varying amounts of bind- 

ing. 

Recent experimental research by Soliman
(28) 

shows, that 

the spacing of binders must not be greater than about 12 times 

the diameter of binders, if they are to be effective in restrain- 

ing concrete. It has also been shown by Base and Read(61) that 

helical binders in the compression zone may be more effective, 

so that even larger rotations than indicated by the above formula 

may be obtained. Thus it appears that by suitable detailing, 

particularly in beams, the ductility in reinforced concrete 

members may be increased as required for design purposes. But 

in most cases the use of large amounts of binders to increase 

the ductility must be compared with the actual advantages gained 

by the extra redistribution, particularly from the point of view 

of economy. 

7.2. Experimental results. 

In the application of the elastic rotation capacity of 

reinforced concrete members as a limit criterion in the design 

of indeterminate structures, the hinge rotations are obtained 

as a function of the idealised elastic properties of the members. 
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Thus the ratio of the plastic rotation to the elastic rotation 

of the member may be used to enable a comparative estimation of 

the ductility of the members. 

In a simply supported beam, as in Fig.6.4, the elastic 

rotation Qe is given by, 

8 = f El ds e 	LI 

substituting for EI = Mixih/4901  and assuming that M1.:.;.1. M2, 

bl 1 
(;)e 	A --- 

h 
• (7.3) 

where A is a dimensionless factor representing the shape of the 

bending moment diagram, having the value 1. for a single point 
2 

load, 	for a third point load or a uniformly distributed load. 
3 
Using equation (7.2) for ep, the ratio of Op/Ge  is given by 

eP 	2.4x1(eb2- (bbl )h  
a 	A ebl1 

• (7.4) 

where D = 2.4 x1( -- 
eb2 1 ) 
ebl 

.0. (7.5) 

The fctor D gives the reto of the plastic rotation at the 

critical section to the elastic rotation of the member in terms 

of the section parameters. It may be noted that D is independent 

of the length, effective depth and the shape of the bending moment 

diagram. Thus this value may be used to compare the test results 
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obtained for beams with va_rying span to depth ratios and different 

types of loading. For convenience D..is referred to as the Ductility  

or the Ductility Ratio of the member. 

Table 5.2 gives the calculated and experimental values of 

the ductility ratio for the C.L.B. test results quoted earlier(9). 

The results for 58 beam tests are plotted in Fig.7.2. The scatter 

in the results are as expected, but it may be noted that the 

calculated values of the ductility ratio are a reasonable safe 

limit as compared to the experimental results. 

The direct application of the ductility ratio in the 

detezmination of suitable detailing in continuous beams are 

discussed in Chapter 7. 
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Fig. 7.1. Idealised plastic rotation capacity of 
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PART III 

CHAPTER 8. 

LIMIT DESIGN OF REINFORCED CONCRETE CONTINUOUS BEAMS. 

8.1. Ultimate load on continuous beams  

In the deign of continuous beams, the primary,ftiode of 

failure could/as
_,be 

sumed to be due to beam mechamism.Fig 8.1 shows 

the collapse mechamism in a typical span. Let G and Q be the 

permanent and super-imposed loads on any span and ?f and 	X 

be the corresponding over-load coefficients.Then the equilibrium 

condition in the beam mechamism is given by 

(1-x) M' + rlift 	+M .FIG1 	. . 
1 

Mn 	ir.n+1 	- g g 	q q 
where Mn M' 	nre moments at.sutpOits n. n+1 

M
n 

is the moment at span hinge,x is the distance of span hinge 

from support n ;FYg' 
 P

q  are free bending moment coefficients which 

depend on the distribution of the loads and the distance x. 

Since the beam mechamism in each span is independent of 

the loads in other spans, the collapse load factor for the whole 

structure is determined entirely by the weakest span. Given 

that the super-imposed 10,...,13 in the separate spans are equally 

probable either individually or in combination, the 

configuration of the load corresponding to all spans been 

loaded with the maximum super-load would incorporate the 

condition of loading corresponding to the collapse load factor. 

This may be termed the ultimate load configuration for 

continuos beams as it forms a special arrangement of a given 

setlitt*loads having the largest probability of causing collapse 

of the whole structure or part of it. 

or 

4 • • 	 rr I 	••••0 • 

8i 

(8.1) 
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Fig. 8.1 Typical Span in Continuous Beam  



( see also chapter 14 on the principle of combined leading). 

Limit design of continuous beams, and redistribution of moments 

could now be introduced with respects to the ultimate load as 

defined above. 

8.2 Redistribution of moments. 

Consider a continuous beam subjected to ultimate load as 

defined in section 8.1 ( all spans loaded). FOX equilibrium 

in each span, any arbitrary distribution of moments that 

satisfie4 equation (8.1) could be assumed with the single 

'Provision that the moments at hinges at sections n, 

ate compatible with respect to their rotation i.e. the rotations 

fin' 
EP  n+1 must be of the same sign in regard to the moments M, 

M', M' n 	n+1. Suppose the special solution that reduces the 

hinge rotations On, G' 9' 	to zero be represented by the , n n+1 
additional suffix ei then the degree of Tedistribution R .  

at support n' may be de7ined by (8.2) 

R M
ne' 	

M
n' 	. . . 	(8.2) 

M ne 
Nov Mne  could be given in the form 

M'
ne 	

./ pg n g G1 + leg 	q Q1 • • • 
	(8.3) 

where N,pq are elastic coefficients corresponding to 

the distribution of the loadwhich could be easily obtained 

from any standard hand book. Then the least value of MI is 

determined by the maximum value of R. 

The above definition of the degree of redistribution of 

moments although similar in concept to the general idea of 

redistribution as presently used in design practice, differs 

fundamentally from them  in that it is applied to a special 
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loading configuration as defined by the ultimate load. Thus 

R depends only on the elastic properties of the beam and the 

plastic moment capacity. This enables the degree of 

redistribution to be used as a general parameter which could 
however be related to other loading configurations such as those 

that cause unserviceability at critical sections during working 

load. 

8.3. 	Secondary modes of failure 

There are other modes of failure in continuous beams not 

incorporated in the definition of collapse discussed in the 

earlier sections. They may be due to (4) shear failure 

(2) bond failure in the reinforcement (3) excessive rotation 

at plastic hinges (4) buckling of compression reinforcement 

particularly during plastic stages as the concrete may start 

crushing (5) lateral buckling of beam. 

In beams most of the above requirements could be catered 

for by suitable detailing and choice of size of members. Safe—

guards against shear failure and excessive plastic rotation 

have been discussed in greater detail in subsequent sections. 

The other modes of failure may be prevented by empirical rules 

for detailing as in the present codes of practice. 

8.4 Limit design of continuous beams. 

The general requirements in tle limit issign of reinforced 

concrete structures have boon discussed in chapter 3. As a 

particular group of structures, the design of continuous 

beams would be based on the following:— 

(1) Safety requirements expressed in terms of the load 

carrying capacity with special consideration for inelastic 
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compatibility and limiting shear at ultimate load. 

(2) Serviceability at working load expressed in terms of 

(a) deflections, (b) crack width and (c) yield safety. 

Each of the above limits are related to the material 

properties and the load configuration that produces the critical 

limit conditions, ,Alich in general have to be evaluated separately. 

Since these conditi:ns do not give rise to a unique solution, 

an optimising criteria based on the total cost of the structure 

may be used to obtain an ideal limit design. 

In the next three chapters an attempt is made to evaluate the 

relationship between the degree of redistribution R and the 

following criteria in limit design. 

1. Economic criterian based on an idealised concept of total 

cost. 

2. Inelastic compatibility at ultimate load based on the 

bitinear moment rotation characteristics discussed in Part II. 

3. Serviceability of structure under working load based on yield 

safety and permissible crack width. 

The application of limiting deflection and permissible shear 

stress to continuous beams have been discussed in chapter 11 

and 12. 
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CHAPTER 9  

Criteria of Economic Design of Reinforced Concrete continuous beams  

9.1 Economic design. 

The economic aspect of reinforced concrete design has been 

given very little consideration so far, although it cannot be 

denied that it is one of the most important factors to be considered 

in a satisfactory design. Under the assumption of brIttle.fzlilure 

in the classical elastic theory, the actual design procedure 

consisted of determining the worst stress condition at critical 

sections, and then designing each section as economically as 

possible.Th6 Criterihnfor caonomic d,Ld171 	rointorCed.conciete 

sections is generally interpreted as talineed4esigh-vithrespect to 
steel and concrete stresses. 

The discussion of the elasto—plastic properties of 

reinforced concrete members in the preceding sections show 

that moments in the structure could be more equitably distributed 

provided that-  witson the hinge rotations are not exceeded. 

This was used as a basis of economic design by Baker (ref 20) 

in suggesting, that the support moments may be made equal to 

the span moments under conditions of ultimate load; thus producing 

an "economic distribution of moment", 

However in practical terms the economy of the structure 

must be related to the total cost of design and construction. 
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wIt 

This would depend on Volume of material, cost of fabrication, 

formwork labour rates and many other factors which may even vary 

for individual cases.depending on the circumstances. The volume 

of concrete in itself is dependent on the sizes of members which 

are subject to architectual and other requirements. However in 
affected 

most cases the nett economy is not appreciablyjby the size of members, 

as the reduction in size is always accompanied by increase in the 

total quantity of reinforcement, while the cost of shutters and 

labour involved in placing the concrete remains almost unaffected. 

On the other hand, the cost of fOrication of reinforcement is 

quite large. An increase in the volume of reinforcement is also 

accompanied.by an increase in the labour required in placing and 

compaction of concrete due to larger conjestion of reinforcement. 

A process of ultimate load design by minimising the amount of 

shear and tension steel at critical sections has been outlined 

by Peredy and Vizy (ref 40,7 Kalinsky (ref 41) has extended the 

above method to obtain a theoretical solution for beams and slabs 

based on the total volume of steel, which has been expressed by an 

approximate quadratic function. The results show that the economic 

solution for a continuous beam of given external dimensions and 

requiring the minimum quantity of reinforcement is the same as a 

especial elastic solution" in which the shear and flexural rigidities 

are expressed by special terms. 



The following investigation into the economic design of continuous 

beams as a particular aspect of limit design is based on the 

following assumption: 

(1) Ultimate load as the unique conditon of load 
at collapse as shown in chapter 8 

(2) Uniform size of members. 

(3) Limit properties of reinforced oonorete as discussed in 
Part II. 

(4) Least total volume of reinforcement as the criterion of 
minimum cost. 

9.2 	Volume of shear reinforcement. 

Let T be the shear force at any section in a continuous beam. 

Then the shear stress s at the section, may be given in the form 

(ref 42) 

S 
	 T •  • • 	(9.1  ) 

(1 — )(x) bh 
where 1 —yx  is the lever arm factor at the section. 

If 	61ot 	be the maximum shear stress 

permissible in plain concrete, then no shear reinforcement is 

required if s  < 	t . When 	3  ?' 	bt 	
vie 

may assume that the total shear force is taken by the shear 

reinforcement. Then any span in a continuous beam may be 

divided into distinct zones where shear reinforcement is required 

and where it is not required as shown in Fig. 8.1. 
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In general, shear is catered for either by stirrups or 

by bent up bars. Horiever expressed in terms of the equivalent 

area of vertical stirrups the 	of shear reinforcement per 

unit length is given by, 

at 	 ..., 	(9.2) 
C7'a3r 

where ay  is the yield stress of shear reinforcement. The volume 

of shear reinforcement over a length dl assuming the stirrups are 

vertical bars of length h is given by dVt  where, 

dVt 	Th dl 
Cray 

Then the total volume of shear reinforcement in the span is 

given by 

Vt 	Th 	dl 	• • •- 
	(9.4) 

* aay 

bt 

9.1 Typical Values of stress block parameters  

TZ x1 Y 1—gx 
-2 

1...yx. 
2 

1 
0.05 .25 .327 .918 1.22 

0.10 .33 .330 .891 1.34 

0.15 .40 .335 .866 1.44 

0.20 .45 .350  .845 1.54 

0.25 .49 .355 .826 1.62 

,0..30  .53 .36o .809 1'.68 
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Table 9.1 gives the variation in 1- yx  with the amount 
-....- 

of reinforcement. Over the practical range of 	and allowing 

/4 
for cut off in tension reinforcement up o 2/3  of maximum value 

the variation in the lever arm is less than 10%. Thus assuming 

all stirrups are at its yield limit, Vt  is given by the simple 

function, 

Vt 	r T dl 
e' ay 

s rtt 

) 	Ili•• 9.5 
(ray 

where W is total load on span a  and 

70 is the lca3 on length 10  over which no shear 

r6,4mforcement is required. 

For uniformly distributed permanent and super imposed load 

W and Womay be easily worked out. 

( g G + 

2 (1- y x)`.bh 1 

)'g G +Yq Q 

	

Wo = 	(Yg G +Yq. 	) 

	

= 	2 (1- y 3.c) fi-tt  . bh 

Hence, V
t 

	('g G +y q Q,) h 20Dt(17,?rx)bh2  

   

   

 

Tay 

 

Tx./  
(9.6) 
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Equation (9.6) shows that the total volume of shear 

reinforcement is independent of the laendirtg moment' a1 

either end of the span as lo is independent of the end shears. 

V' depends only on b and h which in most beams could only 

be varied with in narrow limits. Thus for design purposes 

the volume of shear reinforcement remains an invariant for all 

arbitrary distributions of the support moment. 

9.3 	Volume of tension reinforcement. 

Consider an intermediate span AB as in Fig. 8.1. If 

M' 	MI
n+1 and Mn 

are the limit moments at ultimate load, 

then equilibrium condition is given by equation (8.1). 

Ideally if the beam is reinforced so as to fully utilise the 

tension reinforcement the stress in reinforcement must equal 

yielVvaluotat all Sections: 'In practice a close approximation 

may be bade.by cutting off the tension reinforcement at as many 

sections as possible. Let An  be the area of tension reinforcement 

at any section. Then the volume of tension reinforcerkent over 

a length dl is given by, 

However 

dv = Aa dl/ 

75.  7'7Y-6 bh dl 
	... 	(9.7) 

=  
erms of the limit properties of beams as discussed 

in part II the energy due to bending in the length dl could. 

be expressed as. 
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(1) 
I 	1; bh dV .  

Ea 
1 —x2 

... (9.9) 

dU = 	M2 	dl 

92 

    

EI 

where EI and M are given by EI 
	

M (1—x1  ) h 

ay 

,7,-; (1 — Xxa ) co* 13112  

Substituting for My and EI in (9.8), and replacing 47 in terms 

of dv from 9.7, 

x. eat . 	bh . dV 
1 -x2 (ray ---- 

Ea 

dU 

Table (9.1) shows that for a variation of 	by a factor 

of 2,(a reasonable amount for cut off) the stress block parameter 

varies only by about 10%. Hence it appears that this 

  

1 — x2 

factor may be regarded as a constant for a particular span. 

Then the total energy in the beam due to bending for any 

aritrary distribution of bending moment could be expressed 

as the energy in each span (say i) obtained by integrating 

equation (9.9) and summing it up over the total number of spans 

(say N) 



ri  dv b 
E
a 

bh 
i.e. U = 	( 1 - x i 

! (1'x2   

= 	(1 - x .1 ) 
N .mm.4 	 b  

x 2) 	
a bh Vi  

(1  

K . V 
y 	cr where Ki  = 1 	

bh 1 - x 2 	-"LIP- 
a 

which is a constant for each span, and 

... (9.10) 

V is the total volume of tension reinforcement in each span. 

From the theory of elasticity it is well known that the state 

of minimum bending energy in a struoture corresponds to the 

unique distribution of moments given by the Eipstic equilibriu41 

state. In terms of an elasto—plastic analysis this corresponds 

to the case when the plastic discontinuities at the releases are 

zero. The correspondence between the volume of tension 

reinforcement and the total energy due to bending in equation 

(9.10) implies that the limiting elastic distrilation of moments 

also corresponds to the least volume of tension reinforcement. 

Thus under ultimate load conditions, the least total 

volume of reinforcement (shear and tension reinforcement) is 

given under the equilibrium state where the plastic hinge 

rotations are zero i.e. the spans are elastically continuous. 

The degree of redistribution (R) as defined in section 8.2. 
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under these conditions is zero. In practice it may be necessary 

to redistribute momr.t.s-rml 	ltiuularl&v'for,ponvenience in detailing 

over supports, etc. But such a procedure seems to involve in an 

increase in the total vOnmll_of reinforcement in contract to currently 

held assumptions. 
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CHAPTER 10  

INELASTIC COMPATIBILITY 

1t.1 	Introduction  

In the earlier chapter, the optimum conditions that must be 

satisfied to obtain an economic solution has bean discussed. 

However, this ideal economic solution has been entirely based on 

the safety requirements at ultimate load. In practice, the 

difficulties arising out of detailing at support sections, and 

minimum serviceability requirements may lead to modification of 

this solution. Under these conditions, moments at supports may 

be redistributed to mid—span ssctions making use of the yield 

characteristics of the "plastic hinges" thus formed. 

Unlike in steel structures, it has been emphasised (ref: 20) 

that the actual rotation in the hinges due to the redistribution of 

moments must be compared with the inelastic rotation capacity so 

as to prevent a possible reduction in the moment capacity of the 

hinges.If 9 be the actual rotation in a plastic hinge due to a 

set of equilibrium forces, and G be the permissible inelastic 

rotation for the hinge as defined in chapter 7, then the inelastic 

compatibility requirement may be expressed by 8 g'Qp. This 

inequality in general implies two conditions. (1) G must be 

compatible with the yield moment at the hinge i.e. the hinge 

opens in the tension side (2) Q does not exceed the limit inelastic 

rotation capacity. The term "inelastic compatibility" is used by 
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1.! 

Baker to mean an investigation of both of the above properties(ref 18). 

Connected with the problem of limit design it may be assumed 

that 0 and Op are both variable based on the initial .assumptiOhs fox 

the pfastie:IMOments and sectionYpreperties.. 	Hence a considerable 

amount of discretion could be applied by the engineer as in the 

trial and error method put forward by Baker. (ref,4) 

However in continous beams, the problem of inelastic compatibility 

is enormously reduced, due to the fact that the condition (1) 

stated above is always satisfied, when the degree of redistribution 

as defined in chapter 8 is possitive i.e. support moments are less 

than the elastic moments (see chapter 15). 

The condition (2) could be easily ensurd4by suitably designing 

the hinge sections so to provide minimum ductility as discussed 

in chapter 7. 

Some attempts have already been made in this direction to 

determine suitable limits for detailing of sections in specific 

cases where the maximum degree of redistribution is restricted. 

The Institution ofavil Engineers Research Committee (ref.20) 

has suggested that in continuous beams consisting of four or more 

spans, each span length differing by not more than 15%,and where 

the live load does not exceed the dead load by more than 50, 
of 

the degree/redistribution upto 25% may be permitted, provided 

that the tension reinforcement satisfies the condition 

(A) 	 10.1) 
N/4  10 1 
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In practice this may restrict the maximum value of i."-) 

to about 10%. However under the above conditions the 

Russian code (ref.10) requires that the neutral axis depth 

at hinge sections be loss than 0.55h which allows v)to be 

as much .as about. 30. %. Irtu.  'optimum design of reinforced concrete 
reinforcement 

beams) Cohcil3 as suggested an upper limit of/ corresponding to 

2% of the effective section area.T.hen he derived that the 

degree of redistribution for moments due to super—load be 

limited to 20%, 25%, 30% for support sections of beams with 

2,3,4 or more spans and with free ends, and 15%, 20% and 

25% for support sections of beams with 2,3 and 4 or more spans 

with fixed ends. 

In general the rotation of plastic hinges in continuous 

beams could be related directly to the degree of redistribution 

ebabling inelOastic compatibility to be expressed in terms 

of a single parameter. The limit requirements under uniformly 

distributed loads are discussed in detail below. Other types 

of loads could be treated similarly or could be represented 

by their equivalent ditributed loads. 

10,2. Particular cases of inelastic compatibility. 

Intermediate span under uniformly distributed load  

Consider an intermediate span AB of a continous beam 

as in Fig 8.1. Assuming that the end conditions at A and 

B are similar, tiVaq the hinge moments Mt, MT 	at ultimate 
n n+1 



load could be given by 
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Mn = Mn+1 ' 	= 	(1 — R) MI ne • • . (10.2) 

 

where M'
ne  corresponds to the fixed end moment given by 

Mno = 	1 	( Y G + Y Q 	) 1 . . . 	(10.3) 

	

12 	6 	q 
G and Q are the total permanent and super—imposed loads on 

the span and R is the degree of redistribution. 

The inelastic rotation Q at the binges is given by 

Q = R MIne 	1 	. . 	(10.4) 

2 EI 

where EI is based on the idealised cracked stiffness of beams 

given in equation (6.1Q) 

As limit 1;
1
moments in beamsAte approximately equal to the limit 

L2  moment, EI could be expressed as 

EI = (1—R) Mee  . x1h 

ebl 

From 10.4, and 10.5, G is given by 

Q = R 	ebl 1 • • • (10.6) 

1 	R 	2 xih 

If g be the permissible rotation for the hinge the minimum requirement 

for inelastic compatibility would be satisfied if, 

Q
P 
 R 

  

e
bl 

1 

 

(10.8) 

  

• 0 • 

      

• • • 
	 (10.5) 



Substituting for Q from equation 'P.,4 and expressing 

the inelastic properties in terms of the ductility ratio as 

defined in chapter 7, equation 10.8 can be reduced to 
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1 

1-R 	2h 

Equation 10.9 could be used to determine the maximum 

9 9- 
	10.9 

permissible 

redistribution for a limiting value of the ductility ratio or it may 

be used to determine the minimum value of ductility ratio so as to obtain 

a required degree of distribution. As the ductility ratio depends 

only on the section parameters such as percentage of reinforcement, 

binding ratio, and the grade of steel, the permissible redistribution 

corresponding to the detailing conditions could be easily determined. 

Figs10.1.0..21and-  'MO gives the relationship between ductility 

ratio and percentage of reinfor,.,',ment for three typical grades of 

steel. 

End spans in a continous beam under uniformly distributed load 

The degree of redistribution in the end span of a continuous 

bears depends on the pen-ultimate support moment which is affected' by 

the adjoining spank, A two-spant&beam with freely supported ends forms 

the limiting case of this category. Hence in limit design the 

inelastic compatibility derived for this case would be considered 

satisfactory for other end span conditions as well. 

As before let MI be the support moment)R and Q be the degree 

of redistribution and the inelastic rotation at hinge)thensthe elastic 
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moment Mee  is given by, 

ne = s ( f.gG 	Y'g.Q ) 1 	. . . (10.10) 

The inelastic rotation is given by 

0= 2 R MI 	1 
ne . . 	(10.11) 

   

3 EI 

Substituting for ET, as in 10.5, the minimum requirement for 

inelastic compatibility is given by 

g 	R 	2 
	 • 3 • ebl 1  . . .(10.12) 

   

1 — R 	x
1
h 

When Q is expressed in terms of ductility ratio, the 

inequality 10.12 sauces  to, 

R 	2 1 
. . .(10.13); 

1—R 	3 h 

Thus 10.13 defines the limiting case of inelastic 

Compatibility for end spans and could be used in the same 

way as 10.9. 

The inelastic compatibility conditions given in equations 

10.9 and 10.13 are presented in graphical form in Figs 10.4 and 

10.5. The minimum ductility ratio corresponding to particular 

values of span, effective depth and degree of redistribution could be 

read out as in the illustration. Then the reinforcement detailing 

may be obtained from the relation betgeen ductility ratio and the 

percentage reinforcement as given in Figs. 10.1, 10.2, and 10.3. 



Limitinf; cases. — (a) Internal spans  

For a maximum redistribution of 25% as suggested by the 

Institution of:ei;tilEngineors research committee (ref.20) the 

limiting ductility ratio in intermediate spans is given by 

D 	1 
,"? 6h 

Assuming an extreme value of 1/h = 30, the maximum ductility required 

under such circumstances is found to be 5. Figs. 3.2, 3.3 and 3.4 show 

that in all cases this may be satisfied with no extra binders if 

t 	 1/i,  would be much smaller. (tou--U3 ).,c_ 0.20. However in most beams 

Thus in pr'acticer0-17. 0.20 may be regarded as an upper limit for the 

percentage of reinforcement below which no checks for inelastic 

compatibility would be required in the intermediate spans, of 

continuous beams. For larger percentages of reinforcement, the limit 

redistribution could be determined from equation 10.9. 

(b) 	End Span  

The degree of redistribution necessary to eoualise the span 

and support moments in en end span under uniformly distributed load 

as discussed earlier is about 33%. Hence for the extreme case of 

1/11  . 30, the value of ductility ratio from equation 10.13 is given 

by D 	10. From Figs 10-1, 10-2 and 10-3, this condition could be 

satisfied by (0-0 ) 4: 0.15 without additional binders. This 

value of reinforcement may then be regarded as a limit below which 

no inelastic compatibility checks are required in end spans. 

.1oLE 
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D- Ductility Ratio 

Fig104.4.  Inelastic Compatibility for Intermediate Beams  

Fig.10.5 Inelastic Compatibility for End Spans  
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CHAPTER 11  

SLInfICEALILIPY LIMITS  

11.1 Serviceability criteria. 

The most important factors that determine unserviceability in 

-reinf6i-cedif6tcrote iAr'uctth-e'n have b(icn discuoge in" Chapter 3. 

In the limit design hT continuous beams the followihg ccnditiono 

have*-1Didilz.dis6ussed. 

1. Excessive stress at critical sections under working load, 

which gives rise to long term creep and deflection. The 

type of structure and the nature of the super-imposed 

load would determine the maximum stress that could be 

alloihed under working load conditions. 

2. Excessive crack width  

3. Large deflections, due to super-imposed load which may 

render the structure unserviceable or physically unsound. 

11.2. Yield safety. 

The madmum permissible stress under working load is 

generally specified in relation to the yield stress of either,the 
or 

tensi-on reinforoesnentkof concrete (14)  and it is generally 

assumed that there must be no plastic hinges in any part of 

the structure under working load conditions. 

In practice, almost all the beams are under-reinforced, 

i.e. tension reinforcement yields before concrete reaches 

maximum stress, hence the degree of safety against yield 
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could be represented by the ratio of yield stress of the 

reinforcement to the maximum permissible stress at working load. 

i.e. X = Cra 	... (11.1) 
Y Caw 

where cra*  is the specified yield stress 

zrawis the permissible working load stress. 

Then X is referred to as the yield safety parameter Y  

The C.E.B. recommendations suggest values varying 

between 1.0 and 1.3 for the yield safety parameter(14) 

However since very little experimental information is 

available on the requirement of structures from the point of 

view of yield sefPty,this parameter may be assumed as a var-

iable greater thai unity whose value must be specified depen-

ding on the circumstances. 

11.3. Limit crack width. 

The maximum crack width in structures,though significant 

as an important serviceability requirement can only be described 

in relatively broad limits. However it is known that the type 

of structure and the environment in whic':1 it is situated may 

influence the permissible limit for the crack widths. For 

example, close to the sea or in an industrial area with corro-

sive waste gases the atmospheric conditions may have adverse 

effects on the reinforcement if the crack widths are large 

enough to expose the reinforcement to weather. In the interior 

of structures, the maximum crack width may be limited by 



aesthetic considerations. 

The values given in table (11.1) hive been recommended 

by the European Concrete Cannittee as suitable limits for 

design purposes. 

Table 11.1. C.h.D. RecorAnendations onyermissible 
crack width. 

Type Description. Permissible crack 
width. 

1.  Structures in aggressive 
atmosphere. 

0.1 mm. 

2.  Unprotected exterior of 
structure. 

0.2 mm. 

3.  Protected structure or interior. 0.3 mm. 

4.  Limit of harmful cracks. 0.4 mm. 

The relation between the crack width (w) and the stress 

in the tension reinforcement (da) could be given by the follow-

ing approximate empirical formula due to Drice
(36) 

= A 411 
	 ... (11.2) 

where 1t = diameter of bar 

percentage of reinforcement based_on the equivalent 

tie bar 

10,04 
2b(ht- h) 

A = an empirical constEnt which has the following 

values. 

108 
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Smooth bars a A = 2.25 x 10-3 mm2/kg. 

Deformed bars: A = 1.40 x 10-3 mm2/kg. 

The crack width parameter (X1.3) is defined as the ratio 

of the yield stress in tension reinforcement to the limit 

stress as given by (me), then Xis given by 

?\.(j 	
e:ra* 
da 

WW 
where ova* is the specified yield stress in tension reinforcement. 

11.4. Serviceability parameter. 

The minimum service requirements of limiting stress and 

crack width are expressed in terms of the yield stress in the 

tension reinforcement. 	But to simplify the design procedure, 

let Xs be defined as the serviceabiliti parameter given by 

x 	Yield moment at critical section  
s 	Maximum permissible moment under work-load. 

My 	 ... (11.4) 

Considering under-reinforced sections, the yield moment (My) 

and the permissible work-load moment (M4) could be expressed 

in terms of the yield stress 

stress (04,1) as follows. 

= Aarc 0,* 	--Y1x1)d 

Mo =~~a0.aca (1 - 'y x) d 

Substituting in (11.4), 

ea '(1 Y1x1) 

and permissible limit 

... (11.3) 

 

6 	(1 -)/x) 

  

a* 
	... (11.3) 
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In the limit conditions the stress at working load is 

dbse to that at yield, hence the lever arm factor is nearly 

equal to that at yield (c.f. Fig.4.6) . Then equation (11.5) 

may be simplified to the form (11.6) which is similar to the 

definitions of yield safety parameter and crack width parameter. 

x
* 
a 	 ... (11.6) s T —7r— 

'.1a‘4 
From (11.6) it could be seen that the minimum value of the 

serviceability parameter is equal to either the yield safety 

parameter or crack width parameter whichever is greater. 

11.5. Correlation between ultimate load analysis and  

serviceability parameter. 

Strict serviceability analysis could generally be more 

detailed than collapse analysis due to the fact that in the 

former case various combinations of the super-imposed load 

producing the most critical condition at each section of the 

elastic structure must be investigated, whereas in the latter 

only the ultimate load at the collapse state of the structure 

need be considered. However, in practice, these calculations 

need be only approximate and may be simplified to obtain 

suitable limits for the degree of redistribution. 

Consider the continuous 1Jeam at ultimate load as defined 

in Chapter 8. The elastic moments in a similar beam could be 

given in the form, 

($g  Ye 	q Yq  01 	(11.7) 

where og, $41  are elaEtic coefficients which depend only on 
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the distribution of load and the ilexural stiffness properties 

of the beam. 

If R is the degree of redistribution, and the yield 

moment at support is MI, then 

My = (1 - R) (Pg YgG  r qyq  (i1)1 	... (11.5) 

Similarly the moment at the same section under working 

load could be given in the form 

= (egG 	g Q) 1 	(11.9) 

where
g  is an elastic coefficient depending on the distribution 

of super-imposed load corresponding to the most critical con-

figuration of loading. 

Substituting.  for 1‘1 and M1,4  in (11.4) in terms of (11.8) 

and (11.9), Xs  may be given in the form 

= (1 - R) X0 	... (11.10) 

where X = 5g ya  G + 94  y
q  

8g  G+ 

x
o 
could be easily determined for the specified over-load 

coefficients and the type of load. Experience in elastic 

design show that in practice le§ may be determined only for the 

adjacent spans locded, as this gives rise to near critical 

conditions at the support(25). 

The limit on the degree of redistribution corresponding 

to the serviceability paramoier Xs  may be given by 

R 	 ° - As 	... (11.12) 

)1 c 



This gives the maximum degn:d of redistribution of moment 

at ultimate load without causing unserviceability in terms of 

excessive stress and crack width. 

Particular case - Uniformly distributed load. 
in Chapter 10 

The two special cases considered for inelastic oompata-

bility also provide the extreme examples that would be encoun-

tered in serviceability calculations. The following approximate 

values for X0  is easily obtained by substituting 	8g, 8 g and ,  

Intermediate spans: X =  Yg G  
G + 1.25 Q 

End span 	X 
yg  G + aiqQ, 

 

o 	G 4. 1.05Q 

As Xs  is defined by either the crack width limit or 

permissible stress, the maximum permissible redistribution 

corresponding +o the given over-load coefficients could now 

be calculated from (11.12). 

Example I. If yg  = yq  = 1.75, G=CJand X s  = 1.1, 

Then, X 0  = 1.56 and R .::207/10 for intermediate spans and 

X0  = 1.71 and R ..;35% for end spans. 

Example II. If yg  = Al  = 1.5, G = Q, Xs  = 1.1 

Then, X0  = 1.32 and R < 15,0 for intermediate spans and 

X0  = 1.46 and R 25% for end spans. 

112 



113 
11.6.Midsan sections. 

The minimum requirements at midspan (or the critical 

section close to midspan) under working load is Oxen by 

M = Xs  ( Ug  G + % Q)1 	... (11.13) 

where M is the midspan design moment 

9 0( are elastic coefficients corresponding to the g q 

permanent load G and the critical distribution of the 

super-imposed load Q, which may be obtained from 

design tables. In general thE critical distribution 
the case where are 

of thE super-load Q corresponds twlternate spansiloaded. 

The design moment at midspan could now be based on the 

service limit in (11.13) above or the minimum equilibrium 

condition given by equation (8.1). 

Particular case - Uniformly distributed load. 

The minimum service conditions at midspan under U.D.L. 

for typical spans are given by the approximate values, 

M = X(0.046G + 0.086Q) 1 for intermediate spans 

M =Xs(0.078G + 0.10Q) 1 for end spans. 

11.7. Limit Deflection. 

The deflection of beams under working load must be taken 

into consideration in view of the safety requirements of par-

tition walls, peeling of plaster, and other conditions depen-

ding on the general utility of the structure (e.g. beams 

carrying crane loads;  etc.). Under thsse conditions, only 
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the relative deflection due to the super-imposed load (without 

the use of over-load coefficients) need be considered
(14),(10) 

The initial deflection due to the permaneLt load takes place 

during construction and may be ignored as it generally occurs 

before the structure is put into use. 

Specific limits for deflection are not specifically 

provided in the British Code, but the values given in Table 

11.2 have been recommended in the Russian structural standards 

and Regulations(lo) 

Table 11.2 Limit deformations of slabs and beams. 

Designation of element. Limit deformation. 

1. Beams supporting cranes, hand-operated 
cranes. 

2. Same for electric cranes. 

3. Deck elements Elie_ stairs with 
ribbed slabs ; (a) for 1 t 5m. 

(b) 5a 	14(7m. 

(c) 1) 7 m. 

4. Flat slabs and roofs (a) 1(7 m. 

(b) 	1.1. 7 m. 

1  

1  
500  

1 
500 

1 
200 

1 
300 

400 
1 
200 

1 
300 

where 1 = length of span. 
The limit requirements that are necessary to ensure that 

the deflections are not exceeded could be derived as follows. 
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Consider the central deflectIon Di  in a span under the 

action of the critical live load (the condition of alternate 

spans loaded is generally the most critical) given in the form 

(11.14) 

= 0QI3 
	

... (11.14) 

where 3 depends on the nature and position of the live load, 

which could be obtained from design tables, and Q is the total 

live load. Substituting for the lower limit value of EI as in 

(6.13) where the yield moment of support section is used, 

is given by 

- 	
Q eay  12.  

I7-11)(1—R)(-4,g  %G. + v ci  e cic)h 

i.e. I_ _ f3  eay 	Q 	 1 1 	(1-x1) (1-R)(ygngG + yeci  q) 	h 

... (11.15) 

If the permissible limit of deflection is represented by 

the deflection limit may be given by 

1 (1-x1) (1-R)(ya G +yeci  ( ) 
h B 

eay 	Q, 

A \* ' 

... (11.16) 

Equation (11.16) could be used to obtain the minimum depth of 

beam that is necessary to satisfy the deflection requirement, 

depending on the reinforcement and degree of redistribution. 



is given by 1 
h 

Particular case - UY)ifolmly distrThated load. 

In the case of uniformly distributed super-load on an 

intermediate span, 

g  = 	= 1  - 8 - 
q 12 2 	768 

1 - xi 
The lower limit of 	is given by 

ay 

    

aY 	ebl 

 

e 
ay ' ebl 
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where ebl is taken as 0.002. 

Substituting in equation (11.6) the limit of 

h 
1, 

1 
(1--R) (fgG 	q Q) 	4.y 

\ 11  

	

where k; 	1  

	

- 	5 (ea3/ 0.002) 

. depends only on the grade of reinforcement. 

Similarly for an end span 	= q = 

5 = 1., which gives the following limit 
96/ 

1-P-61 (1 -R)(Yg G -1- Yq Q)  

	

(40, 	 --)* 
where d - 	12  

	

1 	e 	+ 0.002 ay 

• • • 

... (11.17) 

Other types of loads could either be treated similarly or 

represented by their equivalent uniformly distributed load. 
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CHAPTER 12. 

Criteria of lim4;pg shear 

Although the exact nature or the mechanism of shear 

failure in reinforced conor,,te beamspaale still under intensive 

investigationithe importance of this type of failure is well 

established particularly as it is preceeded by very little or 

no wtrning of failure. The present methods of design for shear 

is based on empirical results most of which have been evaluated 

in terms of the well known formula attributed to Mrsch mentioned 

in chapter 91where the nominal shear stress in a rectangular 

section is defined in terms of the shear force, the lever arm 

and width of section. 

i.e. 	s 

(l—Yx)bh 

In the latest A.C.I. recommendations however the lever 

arm factor (1-AX) in the above equation has been omitted in the 

determination of the nominal shear stress. 

In general,if s is less than the permissible shear stress 

in plain concrete (5r*bt  ) no shear reinforcement is required, while 

if it lies between this value and an upper limit which may be 

defined as permissible shear stress in reinforced concrete 

(1**), the shear may be resisted by additional reinforcement. If 
bt 	 is 
the shear stress is aboveol:r then iTonsidered excessive and 

the beam section must be redesigned. 

12.1 
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The actual values of64 andV* and the method of 

reinforcing for shear are subject to variations. The current 

B.S. code (ref. 25) suggests a value of approximately i , of the 
T1 

permissible compression stress in bending for,5t while !fit** is 

given by4 * In recent research, Leonhardt and Walther (ref 42) 
t • 

recommendedi 	= teb  / 9 ) 	50;; . They have also 

suggested a different basis for reinforcing when the shear stress 

lies in the intermediate range. The CEB recommendations (ref.14) 

differ from both of the above methods in its approach to the design 

for shear but on the same basis of comparrisowir has been 

increased to 5 1514 for rectangular beams and 6/1'bt* for beams 

with a compression flange.ACI standard (ref. 57) recommends a 

conservative value of 2.7ft.b* foratr Thus it appears that the 

permissible shear stress in reinforced concrete may lie in the range 

gt to gt wherefa varies fromot79  to 6'4(110 and in no case must 

abt 	
exceed the above limits. The limits of the section parameters 

that is necessary to ensure the shear requirents at ultimate load 

oauld be easily determined as an integral part of a limit design 

prafedure. 

Consider a beam loaded with the permanent and super—imposed 

loads G and Q associated with load factors 'g and Y. The shear force 

T could be given in the form 

T =Xg  ye  G Xol  y Q   12.2 

has 
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where X , X
q 
 are constant5depending on the loads. 

g  
Using equation 12.1, shear stress s is given by 

s 	g yq  G 	X.(1  'q Q 	 12.3 

(1-Yx) 1)1 

But the support section parameters could be expressed in'iserme of 

the plastic moment as in the earlier chapters which may be given 

* 	2 	M' 	(1-R) 	g  y cr b bh 	g Ci+16 Vq  Q) 1 	12.4 q  

where R is the degree of redistribution, 	y are elastic 
g/ q 

constants as defined in chapter 8. 

From 12.3 and 12.4, the following relation for 1/h could be obtained. 

h 	. ( g  X y
q 	q 
a+X yq  Q) 	(c0 

a 

in the form, 73— (1-'x) 

12.5 

G qq Q) (1-R) 

Since the maximum limit of s is given byCs- bt, 
can be given by 

?. 	( 'Kg  yq  G 	q yq  Q) 

* * 
the limit based on shear 

g 	g 
G +18 

q  )q 
 Q ) ( 1 - R)  	1246 

Equation' 12.6 may be used in the limit design to obtain the minimum 

value of lth compatible with the s'-ear requirements 

Particular case - Uniformly distributed load  

In a uniformly distributed beam, the following values can be easily derived 

Intermediate span. 	X . X = 0.5, 



k .18  
g 1  12 

I 	A' 6 Z5 	
/1/45:b* 

1 R 

K),:-bt1 

Ead span 	= q  = 0.6 

a 

  

0 --
4.0 

  

h 

   

12.8 

 

- R 

 

    

Assumingft** = 4. c' 	equation 12.6 and 12.7 reduce to 

9 	' 

1/h -414r- 13.5 	() 	and 1 4-10.8 . 	6) 

1-R 	M 	1 - R 

Considering a maximum value of 0 . 0.3 and 

R = 0.25, for internal spans and R = 0.33 for end spans, the shear 

limit reduces to lib 41.t. 5.4 for internal spans and, 

4 449 for end spans. 
These two values may be considered to be extreme cases which may 

not be exceeded under practical design conditions. ' 
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CHAPTER 13  

Experimental Investigations on  Reinforced Concrete Continuous Beams  

13.1 Introduction 

The following test programme was set out in order to study 

the serviceability and ultimate load characteristics in continuous 

beams, as discussed in the preceding chapters, in relation to the 

idealised member properties as derived from simple beam tests. 

A three span continuous beam was chosen as a suitable test 

specimen as it encorporates the extreme types of span conditions that 

may be encountered in a wide range of structures. The size of 

beam was mainly determined by the available test facilities in the 

laboratory but it was considered large enough to prevent any scale 

effects. The test programme covered eight beams, six of which were 

reinforced with mild steel bars and the others reinforced with 

cold worked steel bars. 

13.2 Materials and Fabrication  

(a) Aggregates 

Ordinary Portland cement was used to obtain a mix of approxi- 

mate strength 5000 psi on 28 days. 	The coarse aggregates 

consisted of i" maximum size crushed Thames Valley river gravel. 

The fine aggregates were from the same source. 

(b) Steel 

Mild steel reinforcement used in the beams varied in diameter 

from in to 5/8". 	In the case of cold worked steel only t" 

diameter bars were used. 	The details of the reinforcement are 

given in Fig.13.1 and the section areas are given in Table 13.1. 



1 No. i" 0 M.S. bars 2Nos z1i RS M.S. bars 

3/16"0 stirrups @  5"c/c 

	 Lf 
2 Nos. i" 0 M.S. 

x/16" 95,.R 5"nte, 

2 Nos. e" 0 M.S. bars 

1-"91 @ 2" cic 
	 1 _,IL3/16 '0 @5"c/c 

I- 	
Beam No.CA 2 

2 Nos. -4" M.S. bars 	1 Ho. r 0 M.S. bar 

2 Nos. i" 0 M.S. bars 	2 Nos*  e" 0 M.S. bars 

Beam No. CA 3 

Beam No. CA 4 

Beam No. CA 5 

C LOg 4.11c/ 

3/16"0 @ 4"c/c 	@ 4" c/c 	 @2"49Kc 3/16" 

2 Nos. 4" 0 M.S. bars 	2 Nos. -PO M.S. bars 

3/16"0 @ 4"c/c 	@  4" c/c A' 

	L No. CA 7 

A3/16"0, @ 4"c/c 

Beam 

2 Nos. 71" 0 C.W.S. bars 	1 No. e" 0 C.W.S. bar 

4"c/c 

Beam No. CA 6 

Z" f6 @ 4" c/c 
A, -41'0 @ 2"c/f,. 	2"e/c 

	 Beam No. CA 8 
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Beam No.CA 1 

bars 

2 Nos. i" 0 M.S. bars 	2 Nos. in 0 M.S. bars 

tt 	gyi c/c 

	 3/16"  .0 @  
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mid span 	support 	 mid span 	support 

Beam Nos. CA 1 & CA 5 	 Beam Nos. CA 2 & CA 6 

• • • 

mid span 

re 

• 

0 a 

u 

support support 	 mid span 

Beam No. CA 3 
	

Beam No. CA 4 

    

t. 

 

e t 9 a 

 

a a O C 4 

mid span 	support mid span 	support 

Beam No. CA 7 	 Beam No. CA 8 

Fig. 13.1 (b). Sectional Details of Beams 



stress in psi. 
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failure stress 

50,000 

0 

diameter of bgr. -" 
E
a = 28.6 x10 psi. 

yield stress = 43,700 psi. 
failure stress = 74,500 psi. 

III 	t 
.01 	.02 

strain 

Fig. 13.2 (b). Typical stress strain curve for mild steel 

reinforcement bars  

stress in psi. 

50,000 

0.1% off-set strain diameter of bar. 4.," 

Ea = 28.0 x 10
6 psi. 

failure stress = 74,100 psi. 

0 	.01 	.02 
strain 

Fig. 13.2 (a). Typical stress strain curve for cold worked 

steel reinforcement bars 
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The yield characteristics of the reinforcement bars were determined 

from the stress-strain curves of at least three random samples 

of each grade of steel; typical examples of which are given in 

Fig.13.2. 	The yield stress in cold worked steel was defined by 

0.1% off set strain. 	Strain hardening effect of tension reinforce-

ment were not taken into account in the calculation of the moments. 

In all the beams mild steel stirrups were used, which were lap 

welded and tied to the main reinforcement using steel wire. 

(c) Casting and Curing  

iovm 
The beams were cast in steel/Alibi work which consisted of 

three sections, each of 61  6" long, bolted together with the 

joints sealed Ath plasticene. Two batches of the same mix were 

used in each beam and the concrete was placed in four layers, each 

layer being well comuacted using a shutter Vibrator mounted on the 

top of the formwork. 

Three standard 6" cylinders and three 6" cubes were cast 

as control test speci:aen for each beam. 	The moulds were 

stripped after one day, and the specimens were cured under wet 

hessian for 7 days before allowing to dry cut under standard 

laboratory conditions for a further three weeks. The beams were 

tested at an approximate age of four weeks. 

(d) Test rig 

The details of the test rig are shown in Figs.13,3 and 13.4, 

The 19'  0" long beam was mounted on three roller bearings and one 

rocker bearing the details of which may be seen from Fig.13.5)each of 

which was supported on similar electrical resistance gauge type load 
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Fig. 13.3 Test Rig for Three Span Continuous Beams. 
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Load Cell 
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k4 
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2' -0" 
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3, -0" 

LE" 
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Note: The Amsler Jacks J
1 

and J' were 

connected in series to one loading cabinet.  
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which 
cells/were used to measure the support reactions. 

The loads on the beam were applied by three 20T iv_:sler jacks 

mounted on 50T load frames reacting against the laboratory floor. 

The outer jacks were coupled in series to a loading cabinet. 

The centre load was applied independently using a separate loading 

cabinet. 	The loading platens as well as the support platens 

consisted of steel plates 211" x 4" x 1", 	Similar to those that 

have been used in the simple beam tests quoted earlier8 3h ' 	The 

applied loads were measured by the loading cabinets as well as 

by electrical resistance gauge type load cells. 

(e) Instrumentation 

The strain in the concrete compression zone was measured 

along the length of the beam using 4" Denec Strain gauges and 

30mm electrical resistance strain gauges as shown In the layout 

diagram Fig.13,5(a). The readings close to the critical sections 

were taken on Denec points spaced at 2" apart, so that the 

local variations could be better extrapolated. 

The strain gauge layout was designed to obtain : 

(a) the strain at the extreme compression fibres at sections close 

to the critical points. 

(b) neutral axis depth at each of the above positiond, 

(c) the curvature profile along the beam. 

The reliability of the electrical gauge system was + 1 micro 

strain and that of Demec gauges was + 10 micro strains. But 

at each section four sets of gauges were used, so that the effects 
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of random errors in individual readings could be reduced to a 

minimum. 

The rotation in the beam was measured at six positions using 

4 clinometers as shown in Fig.13.5(0. 	The clinometers3  - had an 

accuracy of + 25 x 10
6 

radians. 	The total rotation of any part 

of the beam enclosing a critical section could be determined 

using the clinometer readings. 

The deflections at the critical sections, as in F1g.13.5(0-, 

were measured using mechanical deflection gauges reading to 0.001". 

The settlement of the supports were measured using similar gauges, 

the details of which could be seeh from Fig413.3(c). 

The maximum crack width corresnonding to each significant 

crack vere measured using a gauge reading to the nearest 0.001", 

(f) Setting up of beam  

The strain gauges were mounted on the test beam after the 

beam had dried out for about two weeks, but at least two days in 

advance of testing. 	In the setting up of the beam it was found that 

the base of the bear was not straight, in some cases the out of 

alignment being as much as i". 	This was corrected in the initial 

alignment using additional packing until approximately equal reactions 

were registered at the outer and the inner supports. 

(g) Test procedure  

Six of the eight beams were tested under incremental loading, 

where the loads were increased in 12-15 stages. 	The first four 

load increments were apnroximately 15% of the calculated ultimate 
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load, and each of the subsequent increments was about 5% of the 

ultimate load. 	On the average each load stage required about 

15 minutes before all the readings could be taken. 	This was 

similar to the test procedure in the simple beam tests conducted 

under the European Concrete Co:amittee9. 

The beams CA5 and CA6 which were similar to CAl and CA2 

were subjected to repeated loading corresponding to yield safety 

factors, 1.6, 1.2 and 1.1, each load being repeated four times 

from zero to maximum. 

In each of the tests the applied loads were kept approximately 

constant while the instrument readings were taken. 

13.3 Theoretical calculations  

The loading on the three span continuous beams consisted of 

a single point load on the end span and third point load in centre 

span as shown in Fig:1346. 	Assuming constant EI value for all the 

Spans, the moments at the critical sections during the elastic 

stage of the beam are given by 

17 	- P2I 	) 
N1 = ga Pil 

	

0— 	) 
) 

40 
p M

2 	
3 

1
1 	

15 

P
2
1 

) 
) 13.1 

) 

M3 = 7.6 
1 

1-2.L  
, 	3 

4- 0 P11 ) 
) 

Where P
1 
is the load on the end span and P2 

is the total load 

on the centre span. 	Substituting for the experimental values 

P
2
/P
1 

= 2.0 and 1 = -729, the above moments reduce to 
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The elastic rotation in the lengths AG, CE, EE' (Fig.13.6) 

could now be obtained by integrating the area of the leftding 

moment diagram. 	If Off, OcE, 0,E, representA the elastic 

rotation in the above sections of the beam corresponding to the 

critical moments 
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and centre 

the central deflection 

span (A2) before the supports 

1
2 

in the end span (Al) 

yielded are given by 

) 
Al = (6141 - 15M2) 	72E1 ) 

= 
, 	12 ) 

) 
13,4 

A2  (23m
3 

m bM2,216E1 
) 

After the supports yield,the increase in deflection in each 

span is given by the same expressions when A1 
 and M

3 
 are sub-

stituted by the increase in the free span moment and M2 is 

equated to zero. 

Correction for settlement of support  

If AD and AD! be the settlement of the supports D and DI, 

relative to A and AI, then the virtual reactions at the supports 

D and DI are given by 
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1)  - 7Api] RD - 5 13 [86  
) 	13.5 

RD 
= 6 EI 5 3  E-74+ 8'D'J 	) 

1 	) 

Hence the moments at the critical sections due to the 

settlement of supports could be calculated. 

13.4 Discussion of experimental results  

(a) Load-moment curves  

The applied loads, reactions, critical moments and the 

moments due to settlement of sunports wer9evt]uated from the 

observed results using a computor programme. The settlement of 

supports in general were less than 0.020" and the correction 

required was less than 1% of the actual moments, which was 

smaller than the accuracy of the load measuring devices] Hence 

if sufficiently rigid su,pports are used in continuous beam tests 

it may be concluded that the support settlements could be 

ignored. 

Table 13.2 gives the ultimate moments of critical sections 

obtained experimentally compared with the calculated values. 

It was found that at the ultimate load, the moments at the support 

sections were consistently larger than those at the mid-span 

sections even though they were designed to have si.nilar moments. 

This was similar to the observations made by Macchi
49 

and could be attributed to strain hardening of the tension steel 

at the support hinges, due to the large rotation taken place 

before the ultimate load was reached. 	In some beaus, the mid-span 
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TABLE 13-1 
Beam 
No 

SupportTgction 1 Midspan Section 
b 

'ns 
h 
ins • 

-453 / (7-13 psi 
-, 

arlu psi h  insins h  CO 
. 
-CZ/ 

. 
cj 

CAl 
CA2 
CA3 
CA4 
cA5 
CA6 
cA7 
CA8 

4 
4 
4 

4 

4 

4 

4 
4 

5.37 
5.25 
5.32 
5.22 
5.37 
5.25 

5.37 
5.37 

.1012 

.2155 

.1188 

.2005 

.0950 

.2050 

.0745 

.1030 

.0506 

.0505 

.0583 

.0553 

.0475 

.0480 

.0495 

.0515 

4680 
4800 
410o 
4410 
5000 
5030 

5070 
4650 

- 

5907 
5750 
595o 
6300 
7030 
645o 
6650 

4 

4 
4 

4 
4 

4 

4 

4 

5.25 
5.12 
5.20 
5.10 
5.25 
5.12 
5.25 
5.25  

.1040 

.2210 

.1220 

.2035 

.0965 

.2012 

.0759 

.1102 

.0520 

.0520 

.0600 

.0565 

.0464 

.0402 

.0506 

.0551 

TABLE 13-2  

Beam 

No. 

, 	i 

Support Section 
--,- 

Midspan Section 
M2  in-lbs 

4 A 

Mu in-lbs 
x2 

4 

xu Mu/M2 M2 in-lbs Mu in-lbs 
x2 xu Mu/M2 

CAl 54600 61000 .120 .12 1.12 53500 61000 .120 .190 1.14 
CA2 103000 112000 .255 .19 1.09 101000 100000 .260 .23 0.99 
CA3 54700 57000 .140 .23 1.04 53200 50000 .144 .22 0.94 
CA4 89000 99000 .236 .25 1.11 85000 92000 .240 .30 1.08 
CA5 51800 62000 .112 .18 1.07 50700 60000 .114 .28 1.20 
CA6 103000 125000 .242 .29.  1.21 97800 110000 .238 .27 1.12 
CA7 42000 60000 .088 .13 1.43 42000 54000 .089 .15 1.29 
CA8 53000 70000 .122 .12 1.32 53000 58000 .130 .134 1.09 

TABLE 13-3  

Be
am 
No. 

P 
'teal 
lbs 

P 2cal 
lbs 

P lexp 
lbs 

P 2exp 
lbs 

P 
lexp P 2exp (EI) 1  (EI) 

6  1 	6e 
10 psi 10 psi P

1c
ai P

2c
a
1 

CA1 4500 9010 4800 9900 1.07 1.10 113 250 
CA2 8470 17000 8800 17000 1.04 1.00 166 251 
CA3 4470 9000 4600 850o 1.03 - 106 24o 

CA4 7190 145oo 7600 1510o 1.06 1.04 145 246 
cA5 855o 4800 9800 1.12 1.15 105 254 
CA6 8300 16700 9500 19500 1.14 1.17 169 254 
CA7 3580 7200 4700 9600 1.31 1.33 100 254 
CA 4620 9200 5200 10100 1.13 1.10 107 250 
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moment had not increased very much beyond the limit L1, but 

larger ultimate loads than calculated were observed as a result of 

the increase in the support moments. 

The moment at critical sections were plotted against the 

span load as in Figs.13.7(a) - 13.14(a), 	These may be compared 

with the theoretical curves which are also shown. 	In beams CA1, 

CA7, and CA8 which were reinforced with about 1% tension 

reinforcement, there was some transfer of moment from support 

to mid-span in the 'elastic' stages due to cracking and 

reduction of the flexural stiffness over supports. 	In the other 

beams the theoretical curves correspond very closely to the 

experimental results. 

Post yield redistribution of moments could be clearly 

seen from the load-moment curves for beams with mild steel 

reinforcement. These are similar to the predicted behaviour based 

on idealised yield properties. However after the mid-span 

sections reached yield limit, the support moments had increased 

due to strain hardening as explained earlier, which is clearly 

indicated in Yigs.13.7(a), 13.11(a) and 13.12(a). 	In beams 

CA7 and 0A8, which were reinforced with cold worked steel, a definite 

yield stage could not be detected from the load-moment curves. 

The support moments continued to increase after the idealised 

yield limit as defined by the 0.1% off set strain. 	The final 

collapse load was 10-30% higher than predicted. However, the 

deflections in the post yield stage in these beams were quite large. 
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Marked diagonal cracking due to shear could be seen in 

beams CA2, CAL and CA6 (Figs. 13.27, 13.29, 13.31). 	These were 

accompanied by noticeable increase in deflections and creep at 

higher loads. 

Moment-curvature results  

The curvatures at similar sections were plotted against 

the moment as in Figs. 13.15 - 13.22. 	These clearly show the 

scatter in the test results both in the 'elastic' and in the 

'inelastic' stages which is similar to observations in simple beam 

8, 34 
tests 	In general, the sections remain uncracked upto about 

20-30% of the ultimate moment, the stiffness is then reduced until 

the section yields at limit L1. 

The 'elastic' stages in the moment-curvature curves could 

be compared with the calculated bilinear curves based on the effective 

flexural stiffness of the beams. 	The curve marked (EI) is 
1 

based on the semi-emlirical formula 6.12 discussed in Section 6, 

The conventional elastic calculations are indicated by the curve 

marked (EI)e where the Young's modulus was assumed as suggested 

by Hognestad et al
22 

i.e. 

30 x 106  
Eb 	

6 + 10.000 

and I was the second moment of the entire concrete area. 

The curve (EI)1 agree closely with the test results, where as the 

conventional elastic EI under estimate the actual curvature in 

all tests. 	The behaviour is very similar to that observed in 

cri b 
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simple beam tests. 

The curvatures corresponding to a particular load stage 

are plotted along the length of the beam in Figs.13.23(a) 

13.23(h). 	These indicate the spread of plastic hinges at different 

load stages at mid-span and support sections. 	At ultimate load 

the 'length of the plastic hinge' does not seem to have any 

relation to the point of contraflexure: 	Thus the inelastic 

rotation at each hinge ray be best indicated by a single expression 

as in equation 7,4k 

Load-deflection curves  

The observed central deflection in the end and centre spans 

are plotted against the load in Figs. 13.7(b) 	13,14(b). 	These 

indicate that with the gradual increase in load, the stiffness 

of beam decreases, which iptarn increases the rate of deflection. 

Beyond the load corresponding to the yield of support, the 

deflection tends to increase faster until the mid-spans yield, 

when the deflection increases rapidly. 	At the latter stages, 

considerable creep deflection takes place. 

The experimental curves may be compared with the calculated 

curves based on the effective flexural stiffness of the beams as 

predicted by equation 6.12. 	As may be expected the calculations 

over-estimate the deflections in the 'elastic' stages, but close 

to first yield (at supports), the predicted values agree closely 

with the experimental results. The behaviour of beams after 

yield is closely parched by the calculated curves except for the 
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increase in the ultimate load due to strain hardening and other 

effects not accounted for in the calculations. 

In beams CA5 and CA6, the repeated loads at -Xs equal to 

1.6, 1.2, 1.1 had very little influence on the deflection. 

However when Xs was less than 1.0, considerable permanent 

deflection has taken place. 	Thus, first yield may be 

considered as a minimum serviceability requirement from the 

point of view of deflection. 

Observations on total rotation 

An experimental verification of the total rotation in 

indeterminate structures offers considerable difficulty in comparing 

the measured results with the idealised calculations. 	Upto 

first yield the calculated total rotation in segments AC; CE, 

3E' (Fig.13.6) given by equations 13.3 are compared with the 

corresponding experimental values in Figs.15.25(a) - 13.25(h). 

These are indicated by the full lines. 	Beyond the first 

yield, the amount of inelastic rotation at a hinge at any load 

cannot be calculated using the bilinear idealisation. 	Thus the 

dotted line indicates the measured total rotation after first 

yield plotted against the calculated elastic rotation in between 

the plastic hinges. 	The relative deviation of the curies from 

the lines 9eXp = 9cal could be regarded as a measure of the 

inelastic rotation at the hinge. 	In none of the beams,. has the 

inelastic rotation exceeded the permissible limit. 
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These diagrams show that in general, all the beams are 

stiffer than estimated at early stages of loading, but close to 

first yield, the calculated total rotations are very close to 

those observed. 	This behaviour of continuous beans is similar 

to that of simple be-,ms81 34  and demonstrates the validity of 

the idealised assumptions in the theoretical calculations presented 

in Chapter 6; 
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Chapter 14  

Limit Design of Reinforced Concrete Skeletal Structures  

14.i 	tjltimate Load  

The main loads acting on a structure as discussed in 

Chapter 3 belongs to two main categories (a) permanent loads cons— 

isting of the weight of the structure and permanent fixtures, (b) 

superimposed loads consisting of moveable loads, temporary fixtures, 

wind load and other transient loads. The magnitude of each of the 

loads in the limit design are defined in terms of the mean load and 

over load coefficients, In the case of the superimposed loads, the 

over load coefficients depend on the probability of each of the load 

acting alone or in combination with each other. 

The following characteristics with respect to the loads 

may be assumed. 

(1) The permanent load acting on the structure is defined 

by the mean load G and the over load coefficient y which 
is independent of the other loads. 

(2) The superimposed loads are divided into two categories 

of independent loads. 

(a) Vertical loads denoted by Q1  

(b) Lateral loads denoted by V. 

The over load coefficients for the vertical and 

lateral loads when acting individually are given by Yo  and 
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fvl. When they act together, they are given by
q2 

and 6v2• Each of the loans giVen- above are considered as 

definable in terms of a single parameter ( incremental load parameter). 

The ultimate load of a structure under a given set of specified 

loads is defined as the random combination of the superimposed loads 

with the permanent load that has the greatest probability of causing 

structural failure, the failure state being defined in terms of a 

collapse mechanism (3) 

As an illustration consider the case of a continuous beam. 

In Chapter 8 it was shown that its collapse mechanism consists of 

partial collapse mechanisms for each of the spans, and that the 

equilibrium condition could be explicitly stated in terms of the 

moment at three critical aections in the span. Thus if the loads 

in the different spans could be stated independently, the ultimate 

load for the continuous beam corresponds to the state when all the 

spans are loaded with the maximum load for each span at the same 

time. 

One of the first problems in the design of structures for safety 

is to cleterwine the ultimate load as defined earlier for any structure 

and the specified loads. In elasto — plastic or rigid plastic design, 

this mar be more important thsa in the elastic methods of design, 

as in the former. the combined effects of different loads cannot 

be determined by superposition of resultant stress due to each system 
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of load. It must be remembered that, in elastic methods of 

design, the principle of super—position of stresses confines 

structural analysis to the investigation of individual cases 

of loaling from which the combined effects could be easily derived. 

This process in general reduces the calculations enormously. So 

far a similar simplifying principle has not been available in limit 

design. 

In plastic analysis Baker (3) and Prager (769)  have shown 

that for any structure subject to mechanism type of failure there 

is a unique collapse load factor associated with a particular 

mode of collapse. The probable collapse mechanism as derived in 

the above method of analysis is based on a quantitative 

investigation of combined elementary mechanisms, and the corresponding 

load systems. In design, a qualitative appraach on a similar basis 

may be used to obtain the properties of combined load systems which 

may help to determine the ultimate load configuration. The 

following principle of combined load is derived for a limited 

range of structures where the collapse modes corresponding to 

the elementary load systems could be specified and ensured by 

proper design. 

14.2 Ultimate Load Theory  

As in the plastic theory (3) the members at failure 

are assumed to have a constant moment at the "plastic hinges" 

which possess sufficient "plastic rotation capacity" so that 
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a mechanism type of failure could bo attained: 

Definition (1) Let one or more independent load systems which could 

be represented in terms of a single load parameter be defined as 

anelementaryloadsYstem.1fP.denotes an elementary load system, 

and and i  be the corresponding load parameter, then the load is 

defined by Xi  P. 

Definition (2). The collapse mechanism corresponding to any elemen—

tary load system XiPi  is defined as an elementary collapse mechanism,  

denoted by Si. 

Definition (3). Any two elementary collapse mechanisms are said to 

be independent if the mechanism displacement due to one system causes 
AcliciA of 

no displacementt the load points in the other, while if there is 

any such displacement, they are said to be similar or dis—similar  

deporting on whether this is similar or dis—similar to that caused 

by its own mechanism displacement. The corresponding elementary load 

systems are also referred to as similar or dis—similar accordingly. 

The above definitions could be easily applied to any 

structure in which the modes of collapse are known or could be 

specified for purposes of design. For example, the individual 

span loads in a frame structure can be considered as elementary 

load systems. The resulting elementary beam mechanisms are 

independent with respect to each other as in continuous beams. 

Similarly the lateral wind load on an orthogonal structure can be 

considered as an elementary load system associated with a sway 
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mechanism of collapse. In this case the sway mechanism is 

independent with respect to each of the beam mechanisms, However, 

if the structure is not orthogonal, the sway and beam mechanisms 

may be dependent. They could in this case be separated into similar 

or dis—similar categories depending on the direction of rotation 

of the common members* 

In structures where the load systems could be classified 

under the above definitions, the following general principle of  

combined loading could be established. 

"The collapse load factor of a structure is a minimum 

due to the combined action of all the independent and 

similar elementary load systems". 

Proof. 

Let Pii Pj  be two elementary load systems and Si, Si  be 

the corresponding elementary collapse mechanisms. Let the 

equilibrium condition for the elementary collapse mechanisms 

be given by the equations, 

	

xt y Pi Si  . 2-XiGi 	. . . 	(14.1) 

X3 	Pi Si 	= 	xsei • . . 	(14.2) 

where G
i, G. are the rotation of the hinges in the mechanisms 

due to arbitrary mechanism displaaements.Ei, 	are the displacements 

at the points of application of the loads corresponding to mechanism 

displacement in the mechanisms. 
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* 	w* are the collapse load factors corresponding to the 

elementaryloadsystemsPi endP,
0 
 respectively. 	Xj  are the 

plastic hinge moments. 

Let,Xt 	be the collapse load factor corresponding to the i 

loads Pi and P acting simultaneously. The failure mechanism 
the Siame as 

under the combined load denotedby Si+iimay or may not bya.imii*r 

4are either of the elementary collapse mechanisms. But it could 

be shown that the combined load fac:;or)s 	is unique'3 50)N 

Consider the equilibrium of the mechanism Si  under the 

action of the combined load Pi  P. Since the collapse load 

ft* 
factor/1/4i+j is unique ..C'corresporiding to mechanism_ S11' ) .and 

as S under these conditions is an arbitrary mechanism, the 

following inequality must be satisfied. 

e, 	r- 
/_+j / P. g i 	+ 	P. S. 	4 Q.X.i+J 	1 	ii . 	... 11 1 

where g
.i.j 

is the corresponding displacement of the load system 

P. due to the arbitrary displacement of the mechanism Si. 
0 

Eliminating 2-  X.a.G. from 14.1 and 14.3, a. 

(14.3) 

r-- 
...+i 2i  gi  4. -,X4fr +0  . '1  P. g" 	- Xi pi S , 

1 
‘ 0 

1 / 0 ij 	 1 1  

ii 	0 ..(144) 

	

. 	‘ i.e., (Xt+j  — Xi
f  ) 	Pi gi + 'Xie+j 	

p 

3 

Fer mechanism Si, 	T
1  
P. S i > 0 and from the definition of 

4/--  
load systems, the displacement (if any) in the common members 

are similar. 



PO ij 	0 

Then equation 14.4 gives, 

*x.1+;  c>4 	. • • 	(14.5) 

Similarly it could shown that 

. . . 	(i4.6) 

The conditions given by 14.5 and 14.6 show that the 

collapse load factor due to the combined action of two indepen—

dent or similar elementary load systems is less than either of the 

individual collapse load factors or in the limiting case it could 

equal the least of the collapse load factors. 

Similarly, 	P i+ j may now be treated as an elementary 

load system and the proof could be extended to cover all load 

systems which are mutually independent or similar. 

The principle of combined loading may be applied generally 

to most common applied load systems and structural conditions. In 

all cases it is an advantage to treat smaller units of loads as 

elementary load systems, so that the dependence or the independence 

of the elementary collapse mechanisms may be checked by inspection. 

Then the ultimate load configuration under the combined loads could 

be easily established. 

As an application of the principle of combined loading, 

the following useful corollaries may be easily derived. 
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Corollary 1. 	"The collapse load factor of a structure due 

to the combined action of dis-similar elementary load systems 

is greater than that due to each elementary load system applied 

6 
separately. 

The proof of this follows almost on the same lines 

as that of the principle of combined action of similar and 

independent load systems proved earlier, except that by definition 

the terms involving external work in the expression 14.4 are given 

by 

' 	> / 	5 ij < ° 
When substituted in the expression 14.4 as before the combined 

load factor is given by, 

'XL.; ) 
	

7k1 
Corollary 2. 	"The yield polygon due to the action of independent 

or similar elementary load systems lies within a surface bounded by 

planes normal to the axes and passing through the coordinates defined 

by the elementary collapse load factors". 

This is illustrated in Fig. 14.1 and follows immediately 

from the principle of combined action of similar or independent 

load system as ;:0 Aj.  1+0 
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yield polygon 

boundary surface 

187 

Fig. 	14.1  

Similarly the yield polygon due to the combined action 

of dis—similar elementary load systems may be shown to lie outside 

the boundary surface deined above. It may be noted that under 

both these conditions, the yield polygon remains convex (50)  

Corollary 3. 	oIn multistorey structures where the members are 

orthogonal, when only the permanent loads and the vertical super— 
load 

loads are oonsidered, the ultimate/configuration consists of all 

spans being loaded." 

This condition follows from the principle of combined 

loading as the partial collapse mechanisms due to the vertical 

span loads consist of beam mechanisms which are mutually 

independent. The problem of continuous beams discussed in Part 

(3) of this thesis is a special case of this type. The ultimate 

load may then be deiined by the load configuration where all the 

spans are loaded with YgG 	)(cli Q. Under these conditions, 

the limit design procedure for each storey beam is similar to that 

of continuous beams and the methods outlined earlier could be 

directly used in frames as well. 
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"In orthogonal structures if the span loads and the 
o , 

assumed to act at nodes ) are unidirectjpal, the ultimate 

load configuration consists of the maximum probable vertical and lateral 

load acting simultaneously: 

The partial collapse mechanisms duo to the span 

loads whereeach of the span loads is considered as an elementary 

load systems, consist of beam mechanisms. Similarly eaaa of the 

lateral loads acting at the nodes may be considered as an elementary 

load system. If the lateral loads act in the same direction, as is 

usually the case in frame analysis where the wind pressure and earthquake 

forces form the lateral loads, the elementary collapse mechanisms consist 

of sway mechanisms which are independent or similar. In orthogonal 

structures the beam and sway mechanisms are mutually independent. 

Hence the direct application of the principle of combined loading 

yields the above result. 

The ultimate load may then be represented by 

YgG 	Yq2 Q 	Yv2 V and the load configuration consists of all 
the spans loaded and the lateral load acting at the same time. Baker (5) 

has used the above loading condition in the ultimate load design of 

reinforced concrete structures as the most critical case of loading 

to be considered. However in limit design, the safety analysis would 

be based on three cases of loading represented by, 

(a) \ca. YcliQ 

(b) 1gC 	Ycl2Q-1- 
V2 

V 

.(o) 	G 	\'V 
g 	vi 

Corollary 4. 

lateral loads ( 
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where the over load coefficients are as discussed in Chapter 3. 

Since the over load coefficients y )( 	y g,,  q1 X1 Yv1' Y'v2 

are in general different from each other, each of the above cases 

of loading could give rise to critical safety conditions, and must 

be investigated separately. 

14.3. 	Serviceability requirements of framed structures  

The minimum serviceability requirements discussed with 

respect to continuous beams in Chapter 11 are sufficiently general 

as to include framed structures. In the application of the 

serviceability requirements, they may be expressed in terms of the 

yield safety and crack width parameters as in Section 11.4. The 

minimum critical section moments rewired to satisfy serviceability 

may then be evaluated by an approximate elastic analysis. In this 

context the experience gained in the classical elastic design methods 

may prove quite useful. For example, the critical serviceability 

conditions in beam support sections occur when the adjacent spans 

are loaded, and that of midspan sections occur when alternate spans 

are loaded. In the case of columns the critical conditions occur 

when alternate bays are loaded as shown in Fig. 14.2. 

As in continuous beamst  the minimum serviceability • 

parameter in most cases may be close to unity and the limit EI 

values as discussed in Chapter 6 may be used in all limit calculations. 

The limits for the span to depth ratio derived for beams in Section 

11.7 and in Chapter 12 with reference to limiting deflections and shear 

could also be applied to the bid.ms in framed structures. 
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(a), Critical Load for Support Section X 

(b) Critical Load for Midspan Section X 

(c) Critical Load for Column Section X 

Note. The permanent laoccd- (dc„La load) is assumed to act 

in widition to the above loading ror ail cases 

Fig. 14.2 Critical Serviceability Conditions for a Typical . 

.Storey 
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CHAPTER 15  

An Investigation into elasto - plastic design of skeletal  

Frames using plastic hinge systems  

15.1 	Statical Indeterminancy and elasto-plastic analysis. 

In the conventional elastic design of skeletal structures, 

linear methods of structural analysis involving flexibility methods 

or stiffness methods could be used, (54, 55, 56, 60) both of which 

are easily adaptable for computor analysis. It could also be 

shown that the solution to the stress analysis problem is unique, 

hence any of the methods that is found most convenient for the 

problem may be used. 

In the elasto-plastic analysis however, the flexibility 

method has a considerable advantage as the discontinuities at 

the "plastic hinges" could be taken into account in the analysis 

directly. By this method the post - yield stages of the structure 

under incremental load, may be analysed by treating it as if it  'was  

a reduced structure)where the yielded sections are replaced by 

actual hinge sections. It must however be noted that 	any of 

these sections that may undergo reversed rotations in the subsequent 

way revert back 

until an ideal 

no frame 

La excess of the plastic rotation, 

to elastic conditions. The process may be repeated 

mechanism condition of failure is reached (assuming 

instability and other local modes of failure.). 

stages of loading 
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In this process of analysis the rotation of the plastic 

hinges at any stage of loading could be determined using the 

Muller Breslau virtual work equations or other means, as the 

compatible stress system at any stage of loading is known. 

The reduction in the strength of any of the sections that may 

undergo excessive plastic rotation as in reinforced concrete 

members could also be incorporated in the method, but in 

complicated structures a limit basis as suggested by Baker (5) 

may provide a reasonable safe limit for the collapse load. 

An elasto—plastic collapse analysis as described above 

could give rise to at most n plastic hinges in a structure that 

is n-times statically indeterminate, since the formation of one 

more hinge renders the structure unstable as a mechanism 

condition is reached. But in most cases)collapse may take place 

due to fewer plastic hingeslas partial mechanism conditions could 

take place . From the point of view of design of structuret, the 

limiting case in which n plastic hinges could be envisaged corresponds 

to the maximum utilisation of the largest number of critical sections 

for the given loading system. But the existence of a solution of 

this nature, which is not unique if it exists, can be ascertained 

by compatibility and equilibrium.., Under these conditions if a 

compatible stress system could be determined, the plastic rotation 

at the hinges is given by the virtual work equations as before' 



EI 
strainatthehingesG.andX.rmst be of the same sign. In 

3 	3 

reinforced concrete structures at which the theory is mainly aimed, 

andir M o1  M. ds respectively. For correspondence of stress and 
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A method of ultimate load design of multi-storey 

structures based on the above asE.umptions has been suggested 

by A.L.L. Baker (5). In this method of design a plastic hinge 

system is first assumed. The moments at the hinges are then 

checked for compatibility using the virtual equations as given 

by the set 15.1 

Efijxj, 	fob 	
3 	

. . . 	(15.1) 

where il j : 1-tn2  andf ij  and f
oj 

are given by M is 
EI 

it is also considered necessary to check that the plastic rotations 

are within "permissible limits". In the design procedure2  the 

actual rotation at ultimate load may be taken into account in 

the detailing of the hinge sections or if they are too large, 

they must be reduced by selecting other compatible solutions. 
of 

However the main problem in this methoddesign is to 

arrive at a compatible solution for the position and direction 

of assumed hinges. The equation set 15.1 contains n arbitrary 

variables X. (j:14n), which must satisfy the n compatibility 

conditions simultaneously. This condition that there are n 

plastic hinges with positive rotations so that the system remains 

in stelae equilibrium at the ultimate load is generally referred 
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to as inelastic compatibility (18). Baker has suggested a trial 

and adjustment method of obtaining a suitable moment set. In 

this method a preliminary guess of the moments at the hinges 

are made. These are then substituted in the compatibility 

equations and if any of the rotations are found to be incompatible 

with the assumed sense of the plastic moment, a fresh trial is 

made. A satisfactory moment set is obtained when all the hinge 

rotations are of the right sense. Some approximate values of the 

hinge moments for a typical multi—storey structure under a 

particular hinge system has been suggested by Baker as shown in 

where 	m . storey sway moment 

M . Free moment in span 

y = Ratio of stiffness of beam *.!. that of Column 

Fig 15.1 Typical moment values suggested by Baker. 

One of the implicit assumptions in this trial and adjustment 

method is the existence of an inelastic compatibility state with 

n plastic hinges at the positions as assumed. 
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For different load oolfigurations and hinge position in certain 

categories of structures, these assumptions would be valid. For 

example continuous beams and portal frames, the existence of 

equilibrium conditions with sufficient number of plastic hinges 

to render the structure statically determinate could be verified 

as the failure mechanism conditions are comparatively simple. 

But in more complicated structures particularlymultistorey 

structures, it may not be easy to forsee that the n hinges at 

the sections as assumed could lead to a compatible stress state 

with the plastic rotations GI (irl-7n) being positive at each 

of the sections. Unlike in elastic analysis, a statically 

admissible hinge system may or may not be suitable as a basis of 

inelastic compatibility analysis depending on the possibility or 

the impossibility of 3411 ing the final stress state as assumed 

in the trial and adjustment method. Hence in general, for a 

structure which is n times statically indeterminate, it would be 

necessary to establish the existence of a compatible state with 

n plastic hinges at the positions assumed as an "a priori" condition 

before any trial and adjustment method could be used to determine 

an actual compatible distribution of moments. A basis of 

investigating the suitability of an assumed hinge system for 

inelastic compatibility analysis is outlined in the next section. 

Under these conditions a hinge system for which a compatible solution 

may be shown to exist is referred to as a suitable hinge system otherwise 

it may be referred to as unsuitable. 
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15.2  Suitability of plastic hinge systems 

Consider an n-times statically indeterminate structure. 

Suppose that it is possible to reduce the structure to a state 

of statical determinancy by the introduction of n plastic hinges)  

so that they sustain finite plastic rotations at ultimate load 

(considering the load factor and toad configuration). The actual 

rotation could now be calculated using the virtual work equation as 

in 15.1. 

In this state the structure must be in equilibrium if all 

the compatibility conditions are satisfied,provided that none of 

the critical sections other than those assumed have undergone yield. 

But in a limiting case,it would be possible to have one or more of 

the remaining critical sections to be at the yield limit. Thus 

consider any arbitrary critical section to be at its yield limit, 

which may be considered to be the last hinge to form before eventual 

collapse. Let this last section which reduces the structure to a 

mechanism with any further increase in the applied load be called 

the (n+1) 
th

hinge. Thus the failure mechanism for the structure 

at ultimate load would consist of m+l hinges (m n) of which m 

hinges have undergone plastic rotation prior to ultimate load 

and the (n+l) thhinge is at its yield limit. 

For convenience of nomenclature let the mechanism of 

collapse that may be initiated by the m+1 hinges as in the above 

limiting case be called a quasi—mechanism to distinguish it from 

th an actual mechanism as the (n+l) 	hinge included in the above 
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quasi—mechanism has not undergone any plastic rotation. The m 

hinges that are common to the statical release system and have 

undergone plastic rotation at ultimate load could be referred 

to as the basic hinges of the quasi—mechanism. 

Thus it could be stated that in the limiting equilibrium 

state, a compatible plastic hinge system must contain at least 

one quasi—mechanism. This may in practice be determined by inspection 

or by the properties of the influence coefficients characteristic 

to quasi—mechanisms. The latter may be investigated with respect 

to the basic properties of he quasi—mechanisms and statical 

release systems. 

19.3 Properties of quasi—mechanisms  

A quasi—mechanism as defined above represents the state 

of transformation of compatible elasto—plastic structure into 

a mechanism condition. Hence it may be expected to have properties 

similar to that of mechanisms as well as statical release systems. 

Thus a quasi—mechanism in its limiting state may be considered to 

have the following characteristics. 

(1) An infinitesimal increase in the load factor causes large 

increase in the deformation (collapse) 

(2) An infinitesimal reduction in the moment at any of the 

basic hinges given rise to large deformations (collapse). 
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In elasto-plastic analysis the collapse conditions may be 

expressed in terms of the hinge rotations. If Pi  be the plastic 

rotation at a hinge in the quasi-mechanism, X
i 

be the correspon-

ding moment, and A be the load factor, the collapse properties 

given in (1) and (2) above could be expressed as 

(15.2) 

where i, j2 1 —4 m. 

The rotations at the hinges could be easily obtained as a 

function of the moments (X1  ...... Xn
) and the load factor as 

in equation set (15.1). Suppose for simplicity the plastic 

rotation of the m basic hinges are given by the equations 1 to 

m. Then differentiating each of these m equations with respect 

to X 2 X1  2 
X2, 
	 Xm 

el f. X + .000 	f.   f. X + -Af. - 	 ij 	in n 	io 

= f. 10 

	

?ei 	
.., < - 	 X 	+ f..X. WOO f. X + Af. 

	

X. - )
I
X. 	11 1 	13 J 	in n 	10 

	

J 	J 

= f • • 
13 

for i, j :1 —.-> m. 

As the m hinges are the basic hinges in a quasi-mechanism, the 

collapse properties given in (15.2) provide the following conditions. 

f.10 
fij  

where i, 	j; 

< 

1 

0 

0 

—4 m. 

... 	(15.3) 
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These relations show that the influence coefficients due 

'to the basic hinges must satisfy certain requirements which depend 

on the whole group of hinges. It may be remembered that in the 

plastic collapse theory, a similar assumption is made, as the moments 

and the rotations at any of the hinges must be such that the 

virtual work terms are positive. It may be possible to obtain 

the above conditions using the principles of energy as at the 

limiting case of a quasi—mechanism, compatibility conditions 

must still be satisfied and the complementary potential energy 

due to the total deformation must be a maximum (54). This would only 

be satisfied if none of the hinges close under the result of an 

increased deformation. 

A necessary condition for a hinge system to be suitable  

for inelastic compatibility analysis assuming positive moments  

atall-hirwesectionsisgivenbyfij ?0)io  f < 0 for at least 

one group of hinges which forms the basic hinges in a quasi—

mechanism. 

The case where m = n may be 4.eferred to as an absolutely  

compatible hinge system, and if m < n, it may be said to conditionally 

compatible. In either case a compatible solution with n plastic 

hinges could be determined. But if the above necessary conditions 

cannot be satisfied for any group of hinges, then an equilibrium 

state as assumed does not exist and the corresponding hinge system 

is unsuitable for inelastic compatibility analysis. 
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A trial and adjustment method applied to such hinge systems 

would always provide a negative result. 

The reduction of the moments of any of the hinge sections 

in an absolutely compatible hinge system gives rise to a compatible 

set. This could be easily 4g(*f verified from the compatibility 

equations. In such cases the concept of moment redistribution 

as stated in Chapter 8 could be applied without a check for 

compatibility, provided that the permissible limits for the 

rotations of the hinges thus formed are not exceeded. However 

in conditionally compatible hinge systems any redistributions must 

be accompanied by a compatibility check. The significance of the 
from 

latter may be easily seen/the subsequent examples, which are selected 

to primarily demonstrate the application of the suitability criteria 

to different hinge systems. The procedure may be extended to other 

structures so that it would be possible to obtain general hinge 

systems for different categories of structures that are suitable 

for inelastic compatibility analysis. 

Example 1. Continuous Beams  

Consider a continuous beam and a typical load system as 

obown in Fig. 15.2. For a hinge system where the supports are 

chosen as the plastic hinges, the influence coeffioients are of 

the type f. . 	0, f. KO for all the hinges. Thus the hinge 

system is absolutely compatible. Similarly in continuous beams 

other hinge systems involving midspans may be !'ound which are also 
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X2  

(a) Ultimate Load  

(b) Influence Diagrams 

i‘ 	 \ 
	 A 

(c) Free Moment Diagrams 

f11Of129f22) 0 	f10sf20 K 

Fig. 15.2 A hinKe Systemfor1a TypicalContinuous Beam 
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absolutely compatible. This would also confirm the validity of 

the concept of moment redistribution as suggested by Glanville 

and Thomas (I)  in the design of continuous beams)as no check for 

compatibility is required except as a limit for the degree of 

redistribution to prevent unserviceability at working load or to 

prevent crushing of concrete. 

Example 2. Portal Frames  

A portal frame with typical vertical and lateral loads as 

shown in Fig. 15.3. Four possible hinge systems that are statically 

admissible are indicated in (b), (c), (d). and (e). The direction of 

rotation of the plastic hinges at each section is indicated in the 

diagramwhicii must be assumed to start with as the same section may 

have different plastic rotation characteristics when hinging one way or 

the other, and the direction of rotation is also required before 

compatibility could be ascertained. 

Considering the first three systems it could be seen that the 

innuencecoefficientsaresuchthatfij  ..7 	1 0, f.0 	
where i,j: 

1 i 3. Thus any of the hinge systems (b), (c) er (d) are suitable 

for compatibility analysis and infact they are absolutely compatible. 

in the hinge system (e) which would be considered similar 

to (b) in elastic analysis, the influence coefficients are such that 

f 	0 while f20' f30 	f 	f 	f 	f 	0 while the 

rest of tho coefficients are positive. The group of hinges (2) and 

(3) which satisfy the condition f10  (.F. 0, fii  > 0 does not form the 
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f11If12If13If22If23 
f33  > 0 

3 f10'f20'f30 < 0 

A 
f11lf22‘f331f231f10 7 0 

f122f131f201f30 	0 

/gG 	X42(2 

(a) Ultimate Load  (b) Hinge System (1) 

2 

f11'f12'f13'f22'f23'f33 0 

f 	f 	f 4.  0 10' zu' 30 

(c) Hinge System (2)  

f
11'

f12sf13/f22'f23'f33 > 

f f f 0 101  201  30 

(d) Hinge System ( ) 

(e) Hinge System (4)  

Fig. 15.3 Portal Frame  
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basic hinges of a quasi-mechanism. Hence this hinge system is 

unsuitable for an inelastic comi3.40-FIrl,lity analysis. 

In the case of multiple portals under vertical and lateral 

loads, the pattern of hinges used in (d) for a single portal frame 

may be used in each bay to obtain a statically admissible system. 

In general such hinge systems may also be found to be absolutely 

compatible. 

ample 2. Multi-Storey Frames  

This example shows a more general structure of a two storey 

frame (Fig. 15.4). The loading diagram is shown in (a). Two of 

the possible hinge systems are shown in (b) and (c) which are 

used primarily to illustrate the application of the suitability 

criteria which may equally well be applied to other possible 

systems. The direction of the hinges are marked by the side of 

the hinges as in the previous case. 

The hinge system (1) corresponds to the type of hinges 

suggested by Baker in order to separate storey sway. (5,9) 

The nature of the influence coefficients is shown in the 

accompaning diagram in which a question mark indicates that 

the influence coefficient may be affected by the magnitude 

of the stiffness values. In these cap,-.3 the likely sign is 

given on the assumption that the structure is symmetrical, but 

in actual cases these values could be easily checked. From the 

influence coefficients it may be seen that this hinge system 
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Ultimate Load  

f..  1J 

1 2 3 4 5 6 7 3 9 

1 + 	 + + + 	+ 
2 	+ + - + + 0 0 0 	- 
3 	+ + - + +?0 0 0 	- 
4 	- - + + +000 	-.7 
5 -+++++--+ - 
6 - + +e+ + + 	—. ... 	— 
7 +000 	 ++- 	- 
8+000 	 +++ 	- 
9 +000+ -++ _ 

f. 10 

Hinge System (1)  

f
13
..  

1 2 3 4 5 6 

1 	+ + + + + + + + + 	- 
2 	+ + + + +?+ + + + 	- 
3 	+ + + + +-i+ + + + 	- 
4 	+ + + + -Ff+ -1-  + 4- 

5 	+ +7++? +?+' +1 .. il. ••• 	 -7 
6 	+ + + +7+ = - - . 

	

- 	—7  
7 	+ + + 4. - - + 4. + 	- 
8 	+ 4. + + _ _ 4. + + 
9 ++++....+++ - 

f. 
3.0 

7 8 9 

Hinge System (2) 

Fig. 15. 4 Two storey frame 
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is not absolutely compatible. Hence ne separate groups of 

hingesforwhichf..ij  >0 fio  <0 may be checked for quasi-

mechanism condition. In this case it may be found that not 

a single group of hinges satisfies quasi-mechanism condition, 

which shows that this hinge system could be considered as 

unsuitable for inelastic compatibility an-llysis as suggested. 

However if the hinge (1) is reversed in sign, the resulting hinge 

system may be found to be suitable as the group 1-4-3-5-6 under 

thesecorditionssatisfiesf10 	1—>Ol f.0 
 <0 and they also form 

the basis for a quasi-mechanism (leading to a sway type 	mechanism). 

But it must be noted that in multistorey structures this type of 

reversal acy not be possible as it may give rise to cantilever 

effect on the first column with the resulting deterioration of its 

stiffness. In general it may be noted that the sway mechanism 

type of failure would also be the least likely for multistorey 

structures. 

The hinge system (2) and the corresponding influence 

coefficients are shown in (b). As in the previous case these 

are not absolutely compatible. But out of these hinges,six 

gi'01-11200flaingesulaybeselectedforwhichfi 	io —770 ,f<0  

and quasi-mechanism conditions are satisfied. These are given 

by 1-2, 2-32 8-9,7-8-9;1-2-3-4-5-6 and 1-2-3-4-7-8-9. Of these 

the last quasi-mechanism leads to an over all collapse mechanism 

for the structure involving the largest number of hinges. Thus 

the hinge system (2) is suitable for inelastic compatibility analysis. 
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Any other statically admissible hinge systems for this 

structure may be analysed in the same way for its suitability. 

In multistorey structures the general type of hinges as in system 

(2) above may be 	suitable when the vertical and lateral 

loads are considered in the ultimate load. In these cases the 

possible quasi—mechanism would also include the over all type of 

collapse mechanism. 
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CHAPTER 16. 

An approximate method of multistorey structures for ultimate load. 

16.1. Elasto-plastic design for multistorey frames. 

A method of combining elementary load systems derived in 

Chapter 14 shows that the different load configurations that must 

be considered in the design of multistorey structures consist of 

only two or three combinations of loads. Of these it has been shown 

that the design of the structure for the combined action of vertical 

loads is similar to that of continuous beams, for which the design 

methods have been completely discussed in Part 3. However, for the 

design of the structure for the combined action of the vertical and 

lateral loads, the whole structure must be considered, which may be 

based on an elastic or an elasto-plastic method. In the latter case, 

the reduction of the structural stiffness considerably increases the 

deflections prior to the ultimate load state, thus increasing the 

danger of premature failure duo to instability(39). This would make 

it inevitable that any olasto-plastic method must include provisions 

to safeguard against instability effects. 

The following analysis shows that in general multistorey 

frames may be divided into two categoric-si de-bonding on whether an 

elastic design or an elasto-plastic design would be more economical. 

In structures whore the axial loads are large, the increased deflec-

tions that arise out of an elasto-plastic design, would outweigh the 

advantages derived from a reduction of the moments. Thus, in such 

cases, a deviation from the elastic design may lead to a more 



209 

uneconomical design if instability offects are to be avoided. 

16.2. An approximate limit method, 

Consider the effects of the vertical and lateral loads act—

ing on a multistorey frame. A typical storey is shomn in Fig.16.1. 

The following simplifying assumptions -would be made in order to 

derive general expressions for beam and column critical moments. 

1. The columns are uniform in size and are equally reinforced 

on either face so that the positive and the negative moments are 

equal. 

2. The lateral displacementsof all the columns aro equal and 

corresponds to the storey sway. 

In general columns axe designed so that the lateral forces 

could act from either side as in the case of wind forces, thus the 

assumption (1) could be considered as generally true in practical 

design. It may also be noted that in columns the reinforcements 

run through the length of each column. The assumption(2)could be 

considered as a first order approximation as long as no beam 

mechanisms are formed,. 

Now consider the release system for a typical storey shown 

in Fig.16.1. The compatibility requirements for each of the 

similar hinges may be derived in terms of the common sway angle 

for the storey. The limit moments for the beam and column 

sections for an intermediate and end panel are obtained in the 

following sections. 
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1
v2

V 	I 4-4G+ F2q QI 

	 ("Nr-Ne" 

Fig. 16.1. Loads and Release System for Typical Storey 

Fig. 16.2. Internal Panel 

Fig. 16.3., End Panel 



Internal panel in an intermediate -torey  

The critical section moments for an internal panel are 

shown in Figo16.2. Let B* and C* be the beam and column moments 

as shown. If y denotes the storey sway, considering the end 

rotation of the members at the column hinge, the rotation of the 
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column hinge e,,,c  is given by;  

- 9' ) = ft 	6E1 F2TA  - 2  (Blf: (1 + )C1(,-) - Bra + 

e • • 

where, Mo  = free span moment, 

EI, EJ,= fle±ural stiffness of beam and column. 

h = height of column. 

to..= ratio of column moment in upper storey to the correspon- 

ding moment in this storey. 

For compatibility, the rotation at the column hinge must satisfy 

the conditionrc-- >O. Thus denoting Q/6EI by k and EIh/EJt by 

Y the minimum beam moment to satisfy compatibility is given by, 

	

B* 	1 + •( 2 + 	+ y) C* - 

	

r 	 r 3k 
... (16.2) 

An approximate value for the internal column moment CT could 

be obtained by distributing the .Morey moment in proportion to the 

column stiffness. The instability effect due to the axial load 

and sway deflection in the folumn is also taken into account in 

the column moment given by, 

	

yv2  vh(EJ)T 	Nrhy 
c* _ 	 

	

r 22N (Ea)i 	2  ... (16.3) 
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where N is the axial load in the r
th 

column, N is the total 

number of columns;  V is the storey. sway force and )v2  is the 

overload coefficient for V. 

It may be noted that in equation (16.3) the increase in 

the sway angle also increases C*, which may not necessarily be 

uneconomical as the actual moment in the column may be larger 

for minimum service requirements. However an increase of 11 

due to larger sway would in all cases lead to uneconomic conditions. 

Substituting for C* in equation (16.2), 

)1v2Vh(I011 	p 	\ 1 
B* 	M + 1  (2 + 2p + y) 	--N 	-H.) b 	31c. 

-r
—\2 + 2p + 

i  
1 

• • 0 (16.4) 

Let P 

 

12 EI 

 

(16.5) 
TO 	th(2+ 2p + y) 

0 0 • 

From equation (16.4), it may be seen that if PP , then an 

increase in the sway angle decreases the beam moment,but if 

P
r 	

P an increase in sway also increases the beam moment. 
ro 

-As the elastic conditions correspond to the least sway, the above 

limiting conditions roprospnt tho approximate limite for the 

axial load above which an elasto—plastic design would be 

uneconomical compared to an elastic design. 

If the axial load in tha column is less than the above 

limit, then a satisfactory value for the beam moment may be 

obtained by substituting a suitable value for the sviay angle (4,/, 
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which may enable the full column ,,oments to be utilised while 

the effective beam moments are reduced, A limiting value for 

the sway angle may be obtained by considering the beams to be 

rigid, and the column to deflect elastically. Since all columns 

sway by the came amount, the corresponding OA Tflmin is easily 

obtained as 

Yv2 Vh2  
4)

mill 
4 	N / 2 

12 -Jr. 	P_ 
1 	1 

... (16.6) 

In practice, the actual minimum value of the sway angle would 

be larger than the above as the beams are flexible. A value of i 
greaterthantheW min may be substituted in equations (16.4) and 

•  

(16.3) to obtain the corresponding values of the critical beam 

and column moments. If the minimum column moments required for 

serviceability are known beforehand, it would be possible to use 

as large a value of 9) as would yield this value of the column 

moment. The corresponding beam moment may be found to be the 

most economical as any further increase in sway would increase 

the column moment, which may eventually prove to be uneconomical 

as unlike in beams )the extra reinforcement that must be introduced 

in the columns are carried over the whole length of the column. 

Further it must be remembered thateven in the case of beams the 

minimum that the beam moments may be reduced with any effect in 

the actual design is given by the serviceability requirements. 
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End panel in an intelmediate storey  

As in the previous case the limit critical moment for the 

end column may be derived in terms of 'the compatibility conditions 

for the penultimate column hinge eNc. Consider the end panel of 

an intermediate storey as shown in Fig.16.3. Let GNI  be the end 

column moment and (1 +-1-)C* be the moment at the last beam sec-
N+1 

tion as indicated in the diagram. The rotation 	is given by, 

(er. -p) = 1  [2i1
° 	

)Cr  2 B* 	(1 +JA* - (114)C I+ 
6E1 	

C*h 

... (17:17) 6Lj  

For compatibility, 810. Then using the same notation for k 

and y as before the following condition for CN+1  may be derived 

from 16.7. 

CN+1 	[Ho  13; + (1  +14 + ) 2 	r 2k 	
... (16.8) 

The instability moment L-1 the column must be added to C/14.1  to 

obtain a limit value of the column moment CJI.4.1 which is required 

to resist both the ultimate load and the instability effects Aue 

to sway. Thus if PIT+, be the axial load in the end column, the 

minimum value of the column moment is given by, 
.•••••••• 

CN+1* 	m_ B* (14-r+ y) Cr (pr+1  h - i ) r.  

... (16.9) 

••••••r• 
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Substituting for -.61, from equation 16.2, 

C 	.›. 2.... I, 	2-y  c; + (PIiah - ..321t. 	..941 

{ 	

... (16.10) 

	

N+1•-• 114 -3- 	 2 6 

Since Cr andlp are known from the previous calculations, C;4_1  

may be determined. Then the minimum beam moment at the end 

span hinge section is given by (1 +1,A)C*  . 
N+1 

Top store 

Generally in the case of the uppermost storey, the 

instability effects would be small. Using a similar set of 

releases as in the case of the intermediate stories, the follow-

ing. limit conditions could be easily derived. 

Vj  min 
121 (LJ). 

1 	1  

)(v2Vh(LJ)r  
C* 	 
r 	N 

(EJ) 
1 

B* = 2 N _,,_ 	(7 + 2y)C*  - 
r 3 0 6 	r 3k 

2 = — 	+ 2-- (5 + 4Y)4 - Eia 3  0 6 	- 3 k 

1v2 '112  
V - 

It may be noted that in this case the beam moments are 

reduced by the increase of sway, but the serviceability require-

ments would invariably place an upper limit for the amount of 

restriction that may be allowed in each case. 
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A similar approach may be made in the case of the 

bottom storey depending on the nature of the foundation but, 

if the assumptions made in the intermediate storeys are applic-

able for the bottom storey, the same equations may be used. 

Lxample  

Consider a typical storey of a multistorey frame shown 

in Fig.16.4, for which the following design values are provided. 

Axial loads in all columns 	= 	400,000.1bs. 

Free moment due to permanent load = 1,000,000 lbs. 

tt 
	

tt 	U 	ti super load 	= 1,000,000 lbs. 

Storey sway moment 
	

Vh 	= 1,000,000 lbs. 

Use overload coefficients 18=1q2  472 = 2.0 

X 1.2 Yield safety in beams 

columns 	= 1.0  

tray  = 40,000 p.s.i.,Crb  = 4000 p.s.i. 

= 0.8. 

18' -0" 

201  -0"  .4 201-0ut,lk20t-0” 10_4_2.01 -0" 

Fig.16.4. Typical Storey. 



Select the following beam and columr sections. 

Beams 	b = 10", h = 18". 

Internal column 	b = 12", h = 15". 

Lnd column 	b = 12", h = 18". 

Assume EI for beams 3  6o 1  bh . 

LI for int.col.-. 2.50(3- 10113, 

LI for end col.= 1000-110 bh3. 

(These values may be checked later). 

. . LI 60 x 4000 x 10 x 183 - 1.39 x 1010 

)II T  = 150 x 4000 x 12 x 153 = 2.43 x 1010 

(Ijj)  ITD = 100 x 4000 x 12 x 183  = 

y  
LI h 

= —• 7---N 	= 0.38 
1 	CuJ)IHT 

From equation (16.5), 

2.20 x 1010  

10 p 	_ 12 x 1.39 x lt)  
ro - 973,000 lbs. 

180 x 240 x 3.98 
 

Thus the actual column loads are less than the above limiting 

case, so that an elasto-plastic solution may be adopted. 

Consider the minimum sway angle in equation (16.6) 

2 x 106 x 180 

12(3 x 2.43 + 2 x 2.20)1010-1802x 5 x 8 x 105  

= 0.00028 

Case 1. Consider, y/= 0.002 

Then from (16.3), CT = 2 x 106 	2.4 x 1010 	8x105x180x0.002  

2 x 11.7 x 107 	2 

= 2089000 + 144,000 

= 352,000 in lbs. 
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'P min 
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From equation (16.2), 

B*r  = 2  x 4x10
6  + 

.  2.90 x 106 

x 3.98 x 3.52x 10-' 	0.002x6x1.39x1010 
3 	3 x 240 

    

The end column moment C*Yml  is given by equation (16.8) 

r* 0.002 x 6x1.59x101°  ,1,+1  = 4x106 - 2.90x106  + 2.19 x 3.52x106  
2 x 240 

= 1,520,000 in lbs. 

Case 2. Consider, ie = 0.004 

As in the previous case the following values for the limit 

moments could be obtained. 

C. = 496,000 in lbs. 

Br = 2,867,000 in,lbs. 

(3: =1 490 000 in lbs. 1,T̀+1" 

Thus the actual reduction of the beam moment in Case 2 is quite 

small as compared to Case 1, although the sway angle is doubled. 

Any further increase in the sway angle may increase the column 

moment beyond the minimum required for serviceability as shown 

below. 

Approximate serviceability calculations. 

The maximum m.oments in any internal column XX under 

working conditions are produced by unsymmetrical vertical load 

and lateral load as shown in Fig.16.5. 
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Fig.16.5. Critical loading for column XX. 

The column moments may be determined by an approximate distri- 

bution of moment locally. 

Thus, minimum column for serviceability = 250,000 + 100,000 

=_550,000  

As in continuous beamsthe critical support moment in the frame 

are obtained when the alternate spans are loaded. 
2 

Thus, minimum moment at internal supports-4dt (-1  -12+ s 12 	10 	10 

18880,000 in lbs.  

Serviceability calculations for the above example show 

that in frames, the internal column moments may be governed by 

the service limits whereas the beam support oziC_ end column moments 

may be primarily governed by ultimate load limits. The service 

calculations also show the,t the Case 12  worked out earlier, yields 

the minimum column moments and any further decrease in beam 



moments increases the column moments which may eventually prove 

to be more uneconomical. 

Check for the assumption for stiffness coefficients. 

As in Case 1, if 4 = 2.90 x 106, 
B 	2.90 x 106 m 	 = .224 

u  crlbh2 4000xl0x182 

. From Fig.5.2, a5.- 0.25 

From Fig.6.8a 	= 65 

which is very close to the value assumed. 

Internal columns: n = aootoop_ - 0.93 

4000x12x18 

n = 1,5209000 - 0.098 
4000x12x18

2 

From Fig.5.1, 6;=. = 0.14 

From Fig. 6.8a ;:md,,qurtion 6.12-for column stiffness, 

= (1 	1.11 1.8)51 
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= 153 
800000 

External column1, : nu= 4767—.0 ig 

M
u

= 1520000 

k000 12 18 

From Fig. 5.1, 	= 0.11 

= 0.93 

0.098 

col = ( I + 0.93 1.8)42 

112 

These values of effective flexural stiffness coefficients are very 

close to those already assumed and no correction need be made to the 

calculated moment values. 
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CHAPTER 17 

Conclusions and sugf.;estions for further research  

17.1 . . Review of limit design criteria  

The main conclusions that may be derived from the over all 

analysis of limit design methods in the foregoing chapters could 

be divided into two categories. 

1. Limit design criteria. 

2. Application of the limit design criteria to the design 

of skeletal structures. 

The discussion in chapters 2 and 3 shows that the main 

conditions that must be considered in the limit design of 

reinforced concrete structures are based on the followings 

1. Adequate safety against probable over load 41-1d 

variation in material properties. 

2. Minimum safeguard against unserviceabilitv of the 

structure for random combinations of the working load. 

3. Highest economy in the over all design and construction 

of the structure within the scope of conditions 1 and 2 above. 

Before a complete and satisfactory method of limit 

design could be adopted, each of the above conditions must be 

investigated in detail, to determine the minimum re -luiremerts for 

different types of structures, and to determine the means by 

which they may be ensured in the actual structure. 

(i) 
	

Safety analysis  

The investigation of safety in general, may be subdivided 
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into three sections: 

a. Load analysis 

b. Material analysis 

c. Structural analysis. 

Of these, the first two sections are independent, 

while the third depends on the first two and the available methods 

and techniques of analysis. 

a. Load analysis  

The loads that are to be used in the limit design, 

may be specified by their characteristic or mean values, 

and respective over load coefficients or partial safety factors. 

These may take into account, the different probabilities of 

the loads being exceeded either individually or with possible 

combinations. The Russian and ACI codes of practice seem to 

have adopted a similar approach already. 

b. Material analysis  

The basic materials used in reinforced concrete 

structures possess widely different characteristics each 

subject to individual variations of different magnitude 

depending on methods of manufacture. These may be taken into 

account in the limit design by respective coefficients of 

variation or partial safety factors. These would also enable 

a rational approach to design which truly reflects the 

individual material characteristics. The CEB recommendations 

on the partial safety factors on concrete and reinforcement 
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may be 27:teilded to take into account varying degrees 

of quality control attaiued in factory coKditions as 

in -,)recast t.erbero and in sjte conditions pith varying 

dereen of quality control. 

C. tructural analysis  

The e::isting 	(icsi:;r1 methods for reinforced 

concrete sLr.)ctures incur different idealisations for the 

7_,ropertics of materials)each of which is siject to 

varying error. 11'e overall .oTect of these 5tIel'lis:Abions 

in pelE,tion to the actual strncture 	be evaluated to 

enable a uLady of the .celiab:lity of the cUfTerent iletheds 

of r:nalysis. 	verk load cc,efficient en in the :Zubsian 

design ii-.actice ,ay be 	.,.che to the Lethod of analysis 

as a ,:eans of correlating the de(2.rec of :rAfety or uns.:IfoLy 

in the iethod of sile rnnlysis to the actual strveLare. 

T'u similar si.ructures that would bo analyseJ hy elifferent 

method's !;ould be expected to have similar over all s%fety 

when the les:ective 1-ork lo( coerlicients are applied to 

then. 

2. k;orviceabjlitz  

Tb :•unctional and aesthetic consideration oc 

tructures vnder normal service loads cou] d be o:;coransed 

in tor is of: 

1. 3fleld safety tich .ay ensure th-t the rink of re,'eatud 

ay not have ony serious affect on the strensth of 



the structure. 

2. Linlit crack tiidth 	'.ay not be c":ceeded 

without exposing the tension roirforceent to adverse 

ueathering conditions or renc?erini'; the structure unsound . 

3. Limit deflection w:lich PUS:: net be exceeded for 

fvlActional and other require,:ents. 

The recent recanie(idationo b7; the 	cover some 

of the above espoets, 7_-)rt detailed information for different 

types of structures must be available, as the serviceability 

limits are co,IsiC.embly important, in view of the fact that 

the over all safety fcactors in the limit desicon arc less than 

those, that have been used in conventional design methoes. 

3.7,ce-sac  

hi] e safety and serviceability re:i,:irenents arc 

ck,c'djtions that tqlst be satisfied, it ,:tay be concluded 

thi:t economic criteria based on the total cost er any other 

cost related function could, be used an an eT)tiUE..iAg criteria 

to o:,tain the -Jost economic design within the scone of the 

above limit. The total voluile of reinferceent used in the 

coulf'. be used au a sj mle basis of evahlating the 

ccoacric Co:5ig7.1 conditions. 

17.2 AlTlication of limit desin criteria  

The coclusions derived from the exneri,:ieAal and 

theoretical investiations in Part II, III and TV iiay be 

divided into tyo sections: 
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1. Basic properties of reinforced concrete members 

2. Design of indeterminate structures. 

17.21 Basic properties of reinforced concrete members- Moment  

rotation characteristics  

The monent-rotation characteristics of reinforced 

concrete members may be represented by a bilinear relation 

defined by the effective flexural stiffness, the ultimate 

moment and the plastic rotation capacity as discussed 

in Chapters 5,6 and 7. In reinforced concrete members, the 

error in the bilinear idealisation as compared to trilinolr 

idealisation seems to be less than 10%, which is less than 

the variations in the experimental results. The following 

simple idealised bilinear characteristics may be used 

in limit design methods. 

Effective Flexural stiffness of reinforced concrete 

members could be represented by Baker's idealised limit 

L
1 

calculations or by the semi-empirical relation given 

below. 
/ A  

EI=Ptibh-' 

where 	(175 + 31200 6' a.7) (1+1 .8n  )Nr—.c,--.)  
u 

which is applicable for &th rectangular beams and 

columns. (see Fig.6.8a) 

Plastic rotation capacity  

This ia subject to large variations, but a safe limit 



value is given by 

ep  = 4.8( ec2  - eel) 

(I 

where ec2  = 0.0015 1+ 1.7p" + (0.7 -0.1p") 1 

(see Fig. 7.1) 

Ultimate strength of sections  

The ultimate moment in beams depends largely on the 

properties of reinforctdisteel, and in practice when the 

beams are under reinforced, the nature of the stress block 

has very little effect on the ultimate moment. Figs. 5.1 

and 5.2 show graphical methods of obtaining the ultimate 

strength properties of beams and columns. 

17.22 Design of indeterminate structures using elasto-plastic  

methods-ultimate load theory. 

The ultimate load design of indeterminate structures 

would be greatly simplified by considering the particular 

combinations of elementary load systems which has the 

Lr.atest probability of collapse, by using the principle 

of combined loading derived in Chapter 14. 

2. Elasto-plastic design by trial and adjustment method  

The design of indeterminate structures using 

inelastic compatibility conditions as a basis must be 

checked for suitability of the aiepted hinge systems using 

the criteria derived in Chapter 15. 

The concept of redistribution of moments without 
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compatibility checks seems to be applicable for hinge 

systems that are absolutely compatible (Chapter 15) which 

is encountered only in continuous beams and portal frames 

(single or multiple portal frames). In multistorey 

skeletal structures, the redistribution of moments (i.e. 

elasto-plastic design) would require an eventual check 

for -compatibility of the resultant moments. 

3. Design of reinforced concrete continous beams  

Continous beams with hinges at the support sections 

form an absolutely compatible hinge system. Thus the 

concept of redistribution could be used and no check for 

compatibility would be required cycept to determine if the 

hinge rotations aro within permissible limits. 

From the detailed discussion of elasto-plastic 

design of continous beams: in Part II the following 

conclusions may be J.,.riv;_d: 

1. Under gravity loading, the ultimate load 

configuration consists of all the spans being loaded. 

2. If psis the serviceability parameter defined 

either by yield safety or crack width, then the degree of 

redistribution is limited by R 4140%,,wherOto  depends 
e u 

on the ratio of super-imposed load and elastic moment 

characteristics given in Chapter 11. 

3. The permissible hinge rotation at ony of the 

hinges under a given rodistribution R may not be exceeded 
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provided the ductility of the hinge sections ( Chapter 7) 

exceeds the following limits: 

D4,/ R 1 for intermediate spans 
1-R 2h 
R 21 for end spans. 
1-R 3h 

4. The maximum deflection and shear can be used as 

limit conditions to derive the upper and lower limits 

for 1 of the beam as in Chapters 11 and 12. 
h 
5. Using the total volume of reinforcement as an 

optimising criteria, it has been found that the most 

economic design corresponds to the equilibrium state 

which involves the least redistribution of moments. 

(Chapter 9). 

Experimental results for eight three-span continous 

beams are consistent with the predictions based on 

the idealised moment-rotation characteristics given in 

section 17.21. Thus the idealised bilinear relations 

form a reasonable basis for both safety and serviceability 

calculations. In continous beams, with under-reinforced 

sections, a yield safety factor of 1:0 did not have any 

adverse effect on the ultimata slo.fety when the working 

load was repeated a few times. 

4.Multistorey skeletal structures  

When an elasto-plastic method of design is used in 

the design of multistorey skeletal structures, the instability 

effects due to ayial loads must be taken into consideration. 

The approximate limit conditions within which an economic 
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elasto-plastic design may be possible is given by the 

critical value of the axial load in columns as in equation 

16.6. When the axial loads exceed this value, it was 

foumd that the most economic design corresponds with the 

elastic distribution of moments for ultimate load. 

17.4 Suggestions for further research  

As pointed out in the Part 1 of this thesis, the 

development of limit design methods would primarily depend 

on the reliability of the information available by which 

the specific limits could be defined. Particularly, the 

greatest advantage in the limit design methods is that, 

it lends itself easily to statistical investigations. 

Thus the nature of loads)inclusive of mean values aria. 

their variations for different types of structures and the 

probability of different loads occuring separately and 

together must be available before the maximum advantage 

of the limit methods could be utilised. 

The structural problems involved in the application 

of limit methods may be investigated in two steps: 

1. Development of rigorous methods of analysis based 

on the non-linear characteristics of reinforced concrete 

members. These need not be practical methods. 

2. Comparison of simple and practical methods of 

design based on idealised properties of members, with the 

rigorous methods as above. This would enable the degree 
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of error in the simple methods to be estimated, anu the 

corresponding design method to be weighted accordingly 

using the work load coefficients as suggested in Chapter 3. 

This would also involve evaluatvn of safety factors based 

on statistical variations of the properties of materials 

and their relative influence in the over all design. 

The use of elasto-plastic design methods, increases 

the risks of instability considerably, unless special 

precautions are adopted. The analysis in Chapter 16 

shows that if the axial loads in the columns be greater 

than certain critical values, the use of ela$e-plastic 

methods would always incur instability type of failure 

Further investigations on this aspect of design would 

be necessary to extend the above methods to different 

structural conditions. 
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APPENDIX 1 

Details of C.E.B. Tests 

Extract from: " Inelastic Hyperstatical Frames - Analysis Lind 

Application of International Correlated Tests" 

By, Prof. A.L.L.Baker and A.M.N.Amarakone. 

Proc. of the International Symposium on Flexural 

Mechanics of Reinforced Concrete. ACI-ASCE 

Nov. 1964 Miami, Florida. 
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88 	FLEXURAL MECHANICS OF REINFORCED CONCRETE 

TABLE 1.- 

       

       

BEAM NO. 

   

va' 
1 

h t  I rd 	0;4, 

  

1 

 

    

       

(a) Cord-worked 

Imperial College 	9 6 in. 6.85 in. - 8 in. 4910 psi 85.0 ksl 10.5 

Imperial College 	10 6 in. 6.81 in. - 8 in. 4915 psi 85.0 ksl 14.9 

Imperial College 	11 6 in. 6.76 in. 1.12 in. 8 in. 4895 psi 85.0 ksi 22.5 
Imperial College 	12 6 in. 6.59 in. 1.12 in. 8 in. 4890 psi 85.0 ksi 25.1 

Imperial College 	13 6 in. 6.40 in. 1.12 in. 8 in. 4390 psi 85.0 ksi 45.0 

Imperial College 	14 6 in. 6.67 in. 1.20 in, 8 in. 4470 psi 85.0 ksi 16.7 

- Imperial College 	15 6 in. 6.76 in. 1.23 in. 8 in. 4450 psi 85.0 ksi 33.0 
Imperial College 	16 6 in. 6.28 in. 1.23 in. 8 M. 4550 psi 85.0 ksi 70.4 

Torino 	F 4 15 cm 24.5 cm 2.5 cm 28 cm 390 kg/cm2  47.5 kg/mm2  39.8 
Torino 	L 4 15 cm 24.5 cm 2.5 cm 28 cm 308 kg/cm2  47.5 kg/mm2  50.6 
Torino 	D 8 15 cm 25.5 cm 2.5 cm 2B cm 374 kg/cm2  50.4 kg/mm2  11.0 
Torino 	G 4 15 cm 25.5 cm 2.5 cm 28 cm 308 kg/cm2  50.0 kg/mm2  53.5 

Paris (IRABA) 	E 6 15 cm 24.5 cm 2.5 cm 28 cm 258 kg/cm2  55.8 kg/mm2  22.5 
Paris (IRABA) 	E 9 15 cm 25.5 cm 2.5 cm 28 cm 252 kg/cm2  54.5 kg/mm2  11.7 
Paris (IRABA) 	F 6 15 cm 24.5 cm 2.5 cm 28 cm 415 kg/cm2  60.5 kg/mm2  23.3 
Paris (IRABA) 	F 9 15 cm 25.5 cm 2.5 cm 28 cm 450 kg/cm2  56.6 kg/mm2  6.6 
Paris (IRABA) 	H 2 25 cm 25.5 cm 2.5 cm 28 cm 308 kg/cm2  51.6 kg/mm2  8.2 

• Paris (IRABA) 	H 5 15 cm 24.5 cm 2.5 cm 26 cm 287 kg/cm2  54.4 kg/mm2  46.0 
Paris (IRABA) 	H 8 15 cm 25.5 cm 2.5 cm 28 cm 295 kg/cm2  48.9 kg/mm2  15.2 
Paris (IRABA) 	H 11 30 cm 25.5 cm 2.5 cm 28 cm 290 kg/cm2  52.1 kg/mm2  7.6 
Paris (IRABA) 	R. 4 15 cm 24.6 cm 2.5 cm 28 cm 292 kg/cm2  48.1 kg/mm2  59.0 
Paris (IRABA) 	R 5 15 cm 24.5 cm 2.5 cm 28 cm 317 kg/cm2  52.0 kg/mm2  41.5 
Paris (IRABA) 	R 6 15 cm 24.5 cm 2.5 cm 28 cm 387 kg/cm2  54.5 kg/mm2  25.1 
Porto 	C 6 15.10 cm 24.82 cm 3.7 cm 28.02 cm 265 kg/cm2  47.0 kg/mm2  36.4 
Porto 	C 7 15.04 cm 25.60 cm 3.15 cm 28.07 cm 303 kg/cm2  48.0 kg/mm2  20.3 
Porto 	C 9 19.48cm 26.30 cm 4.5 cm 28.07 cm 323 kg/cm2  41.0 kg/mm2  6.5 
Porto 	C 10 30.31 cm 25.57 cm 3.58 cm 28.37 cm 307 kg/cm2  51.0 kg/mm2  10.1 
Porto 	C 12 30.14 cm 26.32 cm 3.82 cm 28.27 cm 279 kg/cm2  42.0 kg/mm2  3.6 
Porto 	M 7 15.20 cm 25.48 cm 3.60 cm 27.96 cm 341 kg/cm2  49.0 kg/mm2  18.0 
Porto 	M 9 15.24 cm 26.14 cm 4.20 cm 28.08 cm 302 kg/cm2  41.0 kg/mm2  6.7 
Porto 	M 10 30.14 cm 25.52 cm 3.35 cm 28.14 cm 341 kg/cm2  48.9 kg/mm2  9.1 
Porto 	M 12 29.98 cm 25.94 cm 3.80 cm 28.18 cm 302 kg/cm2  41.5 kg/mm2  3.4 
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BEAM DETAILS 

steel reinforcement 

-- .110 .0270 .035 1.09 1.11 0.8 CPL L = 80 in. 

-- .150 .0324 .027 1.04 1.09 1.8 CPL L = 80 in. 

2.0 .61 .222 .0330 .024 1.08 1.14 1.5 CPL L = 80 in. 

2.0 .61 .273 .0311 .019 1.19 1.14 1.7 CPL 1, = 80 in. 

2.0 .81 .387 .0260 .017 1.18 1.34 1.2 CPL L = 80 M. 

11.6 .61 .173 .0320 .032 1.06 1.13 0.9 CPL L = 80 in. 

29.8 1.26 .315 .0331 .029 1.09 1.12 0.8 CPL L = 80 in. 

16.4 1.51 .511 .0259 .024 1.26 1.27 2.5 CPL L = 80 in. 

1.4 .132 .306 .0228 .011 1.17 1.00 1.0 CPL L = 280 cm 

2.4 .117 .409 .0210 .010 1.12 1.12 2.8 CPL L = 280 cm 

2.0 .190 .149 .0191 .036 1.20 1.32 2.0 CPL L = 280 cm 

13.6 .117 .344 .025 .009 - 1.14 - CPL I, - 280 cm 

1.67 .176 .373 .0279 .011 1.06 1.20 1.5 CPL L = 280 cm 

1.67 .176 .119 .0227 .037 1.14 1.06 0.6 CPL L = 280 cm 

1.04 .176 .246 .0270 .017 1.09 1.06 0.9 CPL L = 280 cm 

0.96 .176 .067 .0213 .047 1.08 1.03 0.9 CPL L = 280 cm 

3.17 .051 .097 .0120 .041 1.07 1.20 1.4 CPL L = 280 cm 

1.50 .062 .370 .0252 .009 1.30 1.27 1.5 CPL L = 280 cm 

1.47 .062 .153 .0237 .029 1.15 1.06 1.2 CPL L = 280 cm 

-- .080 .0220 .041 1.18 1.05 1.2 (T) L = 280 cm 

15.3 .176 .490 .0246 .006 1.33 1.25 1.8 (T) L = 280 cm 

14.1 .176 .394 .0270 .011 1.09 1.10 1.4 (T) L = 280 cm 

6.6 .176 .262 .0283 .018 1.27 1.07 1.6 (T) L = 280 cm 

3.0 .25 .298 .025 .013 1.26 1.09 1.8 (T) L = 280 cm 

2.5 .25 .181 .032 .026 1.03 1.07 2.1 (T) L = 280 cm 

2.5 .25 .077 .0162 .047 1.17 1.19 0.8 (T) L = 280 cm 
-- .102 .025 .039 1.04 1.05 4.7 (T)- L. = 280 cm 

- - .048 .022 .047 1.26 1.33 1.6 (T) L = 280 cm 

- .25 .124 .0142 .028 - - - CPL Shear Failure L = 140 

2.5 .25 .087 .0081 .047 1.13 1.32 1.2 CPL L = 140 cm 
-- .093 .0126 .033 .91 1.05 1.7 (T) L = 140 cm 

- - .046 .0108 .047 1.18 1.34 1.1 (T) L = 140 cm 
MEAN 1.14 1.15 1.53 
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TABLE 1.- CONTINUED 

(b) Mild stool 

1 Imperial College 	1 6 in. 6.69 in. - 8 in. 5130 psi 41.3 ksi 12.3 

2 Imperial College 	2 6 in. 	' 6.62 in. 8 in. 5760 psi 41.3 ksl 16.6 

3 Imperial College 	3 6 in. 6.40 in. 1.12 in. 8 in. 4180 psi 41.3 ksi 31.5 

4 Imperial College 	4 6 in. 6.24 in. 1.12 in. 8 in. 4150 psi 41.3 ksl 40.7 

5 Imperial College 	5 6 in. 5.88 in. 1.12 in. 8 in. 4790 psi 45.1 ksi 45.1 

6 Imperial College 	6 6 in. 5.88 in. 1.19 in. 8 in. 5030 psi 41.3 ksi 42.9 

7 Imperial College 	7 6 in. 5.93 in. 1.31 in. 8 in. 4420 psi 41.3 ksi 48.4 

8 Imperial College 	8 6 in. 5.98 in. 1.31 in. 8 in. 4300 psi 41.3 ksi 65.7 

9 Madrid 	6a- 1 15 cm 24.5 cm 2.5 cm 28 cm 179 kg/cm2  33.5 kg/mm2  34.6 

10 Madrid 	Ga- 2 15 cm 24.5 cm 2.5 cm 28 cm 185 kg/cm2  33.5 kg/mm2  33.5 

11 Madrid 	6a - 3 15 cm 24.5 cm 2.5 cm 28 cm 202 kg/cm2  34.2 kg/mm2  31.4 

12 Paris (IRABA) 	A 2 25 cm 25.5 cm 2.5 cm 28 cm 318 kg/cm2  28.2 kg/mm2  4.2 

13 Paris (IRABA) 	A 5 15 cm 24.5 cm 2.5 cm 28 cm 338 kg/cm2  27.6 kg/mm2  20.3 

14 Paris (IRABA) 	A 8 15 cm 25.5 cm 2.5 cm 28 cm 338 kg/cm2  26.0 kg/mm2  6.32 

15 Paris (IRABA) 	A 11 30 cm 25.5 cm - 28 cm 327 kg/cm2  25.7 kg/mm2  3.27 
16 Paris (IRABA) 	B 2 25 cm 25.5 cm 2.5 cm 28 cm 333 kg/cm2  28.2 kg/mm2  4.0 

17 Paris (IRABA) 	B 5 15 cm 24.5 cm 2.5 cm 28 cm 310 kg/cm2  27.2 kg/mm2  21.2 
18 Paris (IRABA) 	B 8 15 cm 25.5 cm 2.5 cm 28 cm 310 kg/cm2  26.9 kg/mm2  7.1 
19 Paris (IRABA) 	B 11 30 cm 25.5 cm 2.5 cm 28 cm 310 kg/cm2  26.5 kg/mm2  3.23 

20 Porto 	B 4 15cm 24.8 cm 4.0 cm 28 cm 279 kg/cm2  30.7 kg/mm2  36.0 

21 Porto 	B 6 15 cm 25.1 cm 4.0 cm 28 cm 306 kg/cm2  34.4 kg/mm2  23.4 

22 Porto 	B 7 15 cm 26.0 cm 4.1 cm 28 cm 321 kg/cm2  30.6 kg/mm2  1,2.8 
23 Porto 	B 9 15 cm 26.0 cm 4.1 cm 28.3 cm 287 kg/cm2  27.6 kg/mm2  5.0 
24 Porto 	B 10 30 cm 25.6 cm - 28.3 cm 309 kg/cm2  29.7 kg/mm2  6.6 
25 Porto 	B 12 30 cm 26.0 cm 28.1 cm 284 kg/cm2  29.2 kg/mm2  2.7 
26 Tormo 	A 6 15 cm 24.5 cm 2.5 cm 28 cm 297 kg/cm2  28 kg/mm2  16.7 
27 Torino 	A 9 15 cm 25.5 cm 2.5 cm 28 cm 297 kg/cm2  28 kg/mil:12  4.9 
28 Torino 	A 12 30 cm 25.5 cm 2.5 cm 28 cm 297 kg/cm2  28 kg/mm2  2.5 
29 Torino 	D 5 15 cm 24 cm 2.5 cm 28 cm 224 kg/cm2  28 lig/mm2  32.2 
30 Torino 	D 11 30 cm 25.5 cm 2.5 cm 28 cm 224 kg/cm2  28 kg/mm2  5.4 

Note.-CPL = Central Point Load, TPL = Third Point Load, (T) = Tee Beam.  

reinforcements 

- .113 .0129 .037 1.00 1.07 - CPL L = 80 in. 
- .161 .0145 .026 .99 1.07 - CPL L = 80 in. 

4.0 .61 .284 .0193 .017 1.00 1.10 1.9 CPL L = 80 in. 
4.2 .81 .367 .0213 .014 1.07 1.18 2.2 CPL L = 80 in. 
3.7 .97 .371 .0220 .014 1.00 1.13 1.6 CPL L = 80 in. 
6.0 1.22 .357 .0230 .020 .99 1.06 1.3 CPL L = 80 in. 

16.1 .46 .385 .0220 .015 .98 1.00 4.3 CPL L = 80 in. 
16.4 .55 .480 .0212 .010 .92 1.04 2.2 CPL L = 80 in. 
2.9 .176 .337 .0189 .011 1.16 1.14 - CPL L = 280 cm 
2.8 .176 .335 .0189 .012 1.14 1.17 1.0 CPL L = 280 cm 
2.6 .176 .288 .0181 .015 1.13 1.08 1.6 CPL L = 280 cm 
4.2 .132 .049 .0092 .047 1.03 1.15 1.6 CPL L = 280 cm 
1.2 .172 .197 .0141 .025 .95 1.09 1.8 CPL L = 280 cm 
1.2 .165 .074 .0102 .047 1.22 1.17 1.7 CPL L = 280 cm 
- - .038 .0113 .047 1.20 1.19 1.6 (T) L = 280 cm 

4.0 .132 .040 .0125 .047 .99 1.01 - TPL L = 280 cm 
1.2 .165 .208 .0192 .021 1.00 1.10 3.0 TPL L = 280 cm 
1.2 .165 .073 .0133 .042 1.13 1.04 1.1 TPL L = 280 cm 
- - .038 .0113 .047 1.13 1.19 1.1 (T) L = 280 cm 

1.6 .26 .274 .0246 .012 .93 0.98 - (T) L = 280 cm 
1.6 .26 .188 .0195 .021 .79 0.96 2.0 (T) L = 280 cm 
1.6 .26 .130 .0151 .033 .96 1.06 0.6 (T) L = 280 cm 
1.6 .26 .063 .0148 .047 1.12 1.25 2.3 (T) L = 280 cm 
- .067 .0136 .047 .87 1.04 1.6 (T) L = 280 cm 
- .034 .0100 .047 .94 1.26 1.5 (T) L - 280 cm 

1.5 .132 .180 .0120 .021 1.00 1.18 0.7 CPL L = 280 cm 
1.4 .132 .069 .0120 .047 1.41 - CPL L = 280 cm 
- .036 .0102 .047 1.35 1.42 - CPL L = 280 cm 

2.0 .132 .486 .023 .012 1.10 - CPL L = 280 cm 
2.0 - .135 .018 .047 1.27 2.5 (T) L = 280 cm 

MEAN 1.04 1.13 1.78 



TABLE 2.-BEAM DETAILS 

BEAM No. b Ii h:  ht ,  i 
--, 

g b tri'i 
zr%  ...7, 96  pn 

1 Imperial College Al 6 in 6.71 in 1.29 in 8 in 4677 psi 45.0 ksi 14.6 14.6 .61 

2 Imperial College A2 6 in 6.71 in 1.29 in 8 in 4457 psi 45.0 ksi 15.3 15.3 .61 

3 Imperial College A3 6 in 6.71 in 1.29 in 8 in 4827 psi 45.0 ksi 14.2 14.2 .61 

4 Imperial College A4 6 in 6.71 in 1.29 in 8 in 2600 psi 45.0 ksi 26.3 26.3 .61 

5 Imperial College A5 6 in 6.71 in 1.29 in 8 in 4683 psi 45.0 ksi 14.6 14.6 .61 

6 Imperial College A6 6 m 6.71 in 1.29 in 8 in 4256 psi 45.0 ksi 16.1 16.1 .61 

7 Imperial College BI 6 in 6.75 in 1.25 in 8 in 4084 psi 80.0 ksi 17.0 17.0„ .60 

8 Imperial College B2 6 in 6.75 in 1.25 in 8 in 4758 psi 80.0 ksi 14.6 14.6 .60 

9 Imperial College B3 6 in 6.75 in 1.25 in 8 in 4820 psi 80.0 ksi 14.4 14.4 .60 

10 Imperial College B4 6 in 6.75 in 1.25 in 8 in 4414 psi 80.0 ksi 15.7 15.7 .60 

11 Imperial College B5 6 in 6.75 in 1.25 in 8 in 4500 psi 80.0 ksi 15.4 15.4 .60 

12 Imperial College B6 6 in 6.75 in 1.25 in 8 in 4100 psi 80.0 ksi 16.9 16.9 .60 

13 Torino 	A2 25 cm 25.5 cm 2.5 cm 28 cm 297 kg/cm2  28 kg/mm2  4.1 4.1 .14 

14 Torino 	D2 25 cm 25.5 cm 2.5 cm 28 cm 297 kg/cm2  50.0kg/mm2  7.4 7.4 .14 

15 Torino 	Fl 25 cm 25.5 cm 2.5 cm 28 cm 398 kg/cm2  53.0 kg/mm2  5.9 5.9 .14 

16 Torino 	F2 25 cm 25.5 cm 2.5 cm 28 cm 415 kg/cm2  53.0kg/mm2  5.6 5.6 .14 

17 Torino 	F3 25 cm 25.5 cm 2.5 cm 29 cm 398 kg/cm2  53.0kg/mm2  5.9 5.9 .14 

18 Tormo 	Cl 25 cm 25.5 cm 2.5 cm 28 cm 304 kg/cm2  53.0 kg/mm2  7.6 7.6 - 

19 Torino 	112 25 cm 25.5 cm 2.5 cm 28 cm 304 kg/cm2  53.0kg/mm2  7.6 7.6 .05 

20 Torino 	LI 25 cm 25.5 cm 2.5 cm 28 cm 304 kg/cm2  53.0kg/mm2  ' 7.6 7.6 .70 

21 Torino 	A3 25 cm 25.5 cm 2.5 cm 28 cm 296 kg/cm2  28 kg/mm2  4.1 4.1 .14 
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FOR BIAXIAL LOADING 

mu • - h X 

0 
cal. 1 

0 
cal. p 

mi act 
ml cal 

m2 act 
ni2 cal 

P2 act 
P2 cal 

.1p act 
ep cal 

Grade 
of steel . 	REMARKS 

.265 .373 .448 .0266 .019 1.2 0.90 1.28 - m.s L=-80 

.279 .528 .615 .0193 .016 1.00 1.02 1.29 - m.s L=80 

.260 .589 .694 .0171 .013 .96 0.95 1.27 - ni.s. L=80 

.355 .970 1.030 .0106 .009 - 1.65 1.03 - m.s L=80 

.115 .990 1.185 .0100 .006 - 0.93 1.00 - m.s drift in n.w. position L=80 

.090 1.065 1.498 .0080 .006 - 0.93 0.96 - m.s drift inn.w. position L=80 

.310 .460 .436 .0272 .019 1.26 1.29 1.88 0.8 cws L=80 

.260 .480 .593 .0200 .013 1.10 1.09 1.25 1.4 cws L=80 

.238 .613 .632 .0130 .012 1.12 1.11 1.45 - cws L=80 

.184 .854 1.010 .0117 .009 .83 1.03 1.06 - cws L=80 

.080 .986 1.165 .0092 .008 - - 1.06 - cws drift inn.w. position L=80 

.095 1.20 1.553 .0077 .006 - - 1.15 - cws drift in n.w. position 

.192 .633 .77 .0143 .006 1.21 1.16 1.22 1.5 m.s L=280 cm 

.272 .710 .72 .0153 .006 1.33 1,35 1.40 2.5 m.s L=280 cm 

.187 .630 .79 .0139 .006 1.04 1.17 1.08 1.5 cws L=280 cm 

.157 .645 .90 .0122 .004 1.18 1.12 1,00 - cws L=280 cm 

.214 .492 .59 .0127 .009 1.07 1.21 1.22 1.4 cws L=280 cm 

.145 .980 1.02 .0109 .004 1.10 1.18 1.30 3.3 cws L=280 cm 

.251 .620 .68 .0162 .007 1.48 1,40 1.29 2.4 cws L=280 cm 

.151 .890 1.00 .0110 .010 1.17 1.17 1.21 0.8 cws L=280 cm 

.22 .527 .63 .0143 .006 - 1.01 1.02 - m.s L=280 cm 

mean 1.14 1.14 1.21 - 

BEAM NO. b 	, h In' 	
f 

 
a 

ht  (it, Cay 73 .'% P..% 

22 C & CA 	Al 10 ins 10 ins 1 ins 11 ins 3840 psi 40.0 ksi 4.08 4.08 .21 

23 C es CA 	A2 10 ins 10 ins 1 ins 11 ins 4200 psi 40.0 ksi 3.74 3.74 .21 

24 C & CA 	Cl 10 ins 10 ins 1 ins 11 ins 3860 psi 70.0 ksi. 8.70 8.70 .21 

25 C & CA 	C2 10 ins 10 ins 1 ins 11 ins 4490 psi 70.0 ksi 7.45 7.45 .21 

26 C & CA 	C3 10 ins 10 ins 1 ins 11 ins 3610 psi 70.0 ksi 9.25 9.25 .21 

27 C & CA 	El 10 ins 10 ins 1 ins 11 ins 4760 psi 70.0 ksi 7.05 7.05 .21 

28 C & CA 	E2 10 ins 10 ins 1 ins 11 ins 2620 psi 70.0 Icsi. 12.42 12.42 .21 

29 C & CA 	E3 10 ins 10 ins 1 ms 11 ins 3060 psi 70.0 ksi 11.00 11.00 .21 

30 C & CA 	O2 10 ins 10 ins 1 ins 11 ms 5610 psi 70.0 ksi 5.96 5.96 - 

31 C & CA 	L2 10 ins 10 ins 1 ins 11 ins 4160 psi 70.0 ksi 8.05 8.05 .94 

32 C & CA 	112 6 ins 10 ins 1 ins 11 ins 4160 psi 70.0 ksi 22.9 22.9 .26 

P 
C 

c 
1X1 

m ,  • k 
. s  • tA X  U 

e 
cal. 1 

2 e 
cal. p 

ml act 
m  1 cal 

m2 act 
m2 cal 

P2 act 
P2 cal 

op act 
e p cal 

Grade 
of steel REMARKS 

.103 .670 1.11 .0108 .0059 .95 .96 1.05 - m.s L=117 ins 

.167 .324 .396 .0133 .0175 1.05 1.20 1.18 - m.s L=117 ins 

.126 .775 1.06 .0113 .0050 .95 .99 1.19 - cws L=117 ins 

.205 .372 .480 .0250 .0140 1.16 1.11 1.16 - cws L=117 ins 
.167 .164 .247 .0200 .028 1.33 1.08 1.05 - cws L=117 ins 
.085 .600 1.180 .0102 .005 .83 .89 0.85 - cws L=117 ins 
.258 .451 .618 .0194 .0095 1.07 1.20 1.33 - cws L=117 ins 
.183 .164 .277 .0193 .026 1.28 1.02 .91 - cws L=117 ins 
.158 .285 .559 .0215 .008 .92 1.02 .96 - cws L=117 ins 
.204 .377 .513 .0239 .0125 .97 1.11 1.38 - cws L=117 ins 

.210  .385 ' .687 .008 .008 - 1.01 .88 - cws L=55 ins 
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