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1. 

ABSTRACT 

The work contained in this thesis is clearly divided into two 

distinct parts. 

In Part I the production and decay of arbitrary spin and parity 

resonant states are discussed within the context of a peripheral or one-

meson exchange model. General results are obtained for the production 

angular distribution and the decay angular correlations of the resonant 

states assuming that the overall process is a quasi two body inelastic 

scattering process, mediated by the exchange of either a spin zero or a 

spin one meson, followed by the free decay of the resonant state or states. 

A field theoretic formalism is used to determine the propagators involving 

arbitrary spin particles and the results are expressed in terms of the 

most general possible three-particle couplings involving arbitrary coupling 

constants and their associated form factors. The usefulness of the model 

as a means of calculating coupling constants and form factors and of 

carrying out spin determinations is also discussed. 

In Part II a model to describe the production or:Elparticles in 

p collisions is set up in which the pole contributions of theAand-7:-..1 

particles and the contributions of two-particle intermediate states are 

considered. These latter states are approximated byy resonances in the 

s and u channels and by a D-particle resonance, a boson of strangeness 2, 

in the t channel. The two alternatives of spin 1/2 and spin 3/2 	are 

considered. A comparison with experimental data indicates that the spin 



2. 

of the 	 is not 3/2 and that the production process is mediated by 

fermion exchange. The data can best be fitted by the parity combin- 

ations P4Nn 	P(KRW) odd and P(KA 	oddi 
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PART I 

The peripheral model of the production and subsequent decay of 

resonances having arbitrary spin. 



1. INTRODUCTION 

aperiments in which beams of high energy mesons collide with 

nucleons have resulted in the discovery of a large number of resonant 

states. These resonances are often produced together with other particles 

and their subsequent decays lead to multiparticle final states. However 

in many cases it is possible to describe the overall process as a two 

body inelastic collision followed by the free decay of the unstable states. 

It has been found that the production process favours events with small 

momentum transfer. This has led to the consideration of a peripheral or 

one-meson exchange model involving either pseudoscalAr(1-5) or vector 

meson(6-10) exchanges. In general such a model does not account for the 

extreme peripheralism observed in experiment without the introduction of 

very severe form factors to allow for the off-mass-shell nature of the 

( exchanged particle.11,12) These form factors are ::empirical functions but 

a prediction of the model is that they are functions only of the square of 

the 4-momentum transfer. This must be verified experimentally but until 

any energy dependence is exhibited the model provides a useful phenomeno-

logical basis for the description of the production process. 

If the resonant states decay as free particles of well defined 

spin the decay angular distributions are determined by the spin alignment 

of the resonance and this alignment is itself determined by the production 

mechanism. In general for a resonance of any particular spin the peri-

pheral model provides some restriction in the decay distribution and in 
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certain cases the distribution may be uniquely defined. Examination 

of the decay distributions may therefore be used both to test the 

validity of the peripheral model(13-15) and to determine the spin of 

the resonance. It should be emphasised that such a spin determination 

is model dependent but it may nevertheless be a useful guide in cases 

where more rigorous tests(16-27) are rendered inconclusive by the 

insufficiency of experimental data. 

The purpose of this paper is to present in a systematic manner 

the predictions of the peripheral model for the production and subsequent 

decay of resonances of arbitrary spin produced in quasi-two body col-

lisions of pseudoscalar particles with nucleons. To this end it is 

assumed that the resonances each have a unique spin and a narrow width. 

Cross sections and decay distributions will be presented in terms of 

arbitrary coupling constants and all possible couplings will be 

included. 

Throughout this paper the resonances are assumed to decay 

through strong interactions and a state is said to be stable if it does 

not decay strongly. 

If resonances are classified by their decay products five 

distinct types have been observed to date. These are denoted by F, 

B1,  B2, B3 and B . Their characteristic decay modes are as follows: 



F 	N+ P 

B1 	P + P 

B2  -4,  P+P+ P 

B3 --> P + V1  

V
1 
 -4 P+ P 

B 	P + V2 

V2-4 P+P+ P 

where N denotes a stable spin-half particle, P denotes a stable 

pseudoscalar particle, V1  and V2  denote unstable vector particles 

which decay into two and three stable pseudoscalar particles res-

pectively. In this paper those resonances are discussed whose 

decay mechanisms involve only three point functions and which thus 

have decay widths completely determined by coupling constants. Thus 

only the fermion resonance F, and the boson resonances B1  and B3  are 

discussed. 

The following are the general quasi two body production 

processes considered: 

P 	+ 	N 	-4 	N 	+ 	B1  
(1.6) 

P 	+ N -4 N 	+ B3 
(1.7) 

P+N-4F+P (1.8) 

P 	+ N -4 F 	+ B1  
(1.9) 



10. 

The one-meson exchange diagrams used as the basis of the 

calculation of the production cross-sections and decay distributions 

for the above processes are shown in Fig. 1. The exchange meson E 

may be any one of four spin-parity types; scalar ( 0+), pseudo-

scalar(0  -), vector (1-), or pseudovector (1+). 

The resonances of arbitrary spin are described in terms 

of a field theoretic formalism involving the usual tensor represen-

tation of a field with integral spin j, i.e. the (j/2, j/2) represen-

tation, and the Parita-Schwinger(28'
29) 

spinor-tensor representation 

of a field with half integral spin J, i.e. the [ 	0) 0 (0, 2)  ] 

 

- 1 	2J 4  - 1) 
representation. As the resonances are assumed to 

 

have unique spin certain subsidiary conditions are needed to reduce 

the number of independent field components to (2j + 1) and (2J + 1) 

for integral and half-integral spin respectively. It should be noted 

that when these subsidiary conditions are included the general results 

are independent of the particular representation used even though the 

form of the interactions depends on the choice of representation. 

Choosing different representations merely leads to parametrisation 

in terms of different couplings each with its associated form factors. 

In section 2 the notation for the kenematics is established. 

The phase space factors involved in the calculation of the production 

cross sections and decay distributions for the processes showi in 
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Fig. 1 are evaluated in section 3. In section 4 a summary is given 

of the field theoretic formalism used for dealing with arbitrary 

spin resonances and the propagators for such states are discussed. 

The vertex functions are determined in section 5 for the most 

general possible couplings of arbitrary spin and parity resonances 

with the appropriate incoming and exchange particles and with the 

appropriate decay products. In section 6 the partial widths 

corresponding to the decay modes (1.1), (1.2) and (1.4) for the 

arbitrary spin resonances are calculated in terms of the coupling 

constants defined in section 5. The results for the production 

cross sections and decay correlations of the reactions (1.6), (1.7), 

(1.8) and (1.9) are given in sections 7, 8, 9 and 10 respectively 

and each of these sections has subdivisions in which a particular 

spin and parity combination for the exchange meson is considered. 

In section 11 the analysis of all the previous sections is used to 

tabulate results for the production cross sections and decay 

correlations of resonances having specific spins and specific 

parities. In section 12 the results are discussed in the context 

of testing the peripheral model and of carrying out spin, parity 

and coupling constant determinations. 

The Appendix A, contains a summary of the relationships 

involving the arbitrary spin projection operators which are used to 

perform the calculations of sections 6 - 10. 
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Feynman diagrams for the peripheral production of boson 

and fermion resonances and their subsequent decay. 
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2. KINEMATICS 

For each of the two body reactions (1.6) - (1.9) the 

4-momenta of the incident pseudoscalar particle and the target 

nucleon are denoted by q1  and p1  and the 4-momenta of the outgoing 

boson and fermion are denoted by q2  and p2  respectively. For the 

subsequent decay processes the notation is established by the 

equations: 

B1 (q2) 	P 	P  (q4) 	(2.1) 

B3 
(q2) -- P (q3) + V

1 
(q
4
) 	(2.2) 

V1 	,' (q4) -- P (q5) 	 (2.3) + P (c16)  

F (p2) ---) N (p3) + 
P  (q4) 	(2.4) 

where the 4-momentum of each particle has been inserted in brackets 

immediately following the symbol for that particle. This notation 

is exhibited in the four diagrams of Fig. 1. 

It is necessary to consider several coordinate systems 

and the following notation(30)  is used: pi  = (e i, pi) and qi  

i, 21) stand for the 4-momenta of the particles indicated by the 

subscripts i. When all these particles are on the mass shell the 

4-momenta satisfy the invariant relations 



2 pi = E 2 

2 
qi = w  i 

14. 

2 - TL 	2  m. (2.5a) 

ai
2  = pi (2.5b) 

wheremi andp.are the masses of the appropriate fermion and boson 

respectively. 

The components of any 4-momentum vector in a particular 

coordinate system are designated with upper-case subscripts. The 

subscripts L 	B, V, 11 and X refer to the laboratory system (a1  = 0), 

the overall barycentric system (2.1B 21B = 0), the centre of mass 

system for the outgoing boson (a2V  = 0), the centre of mass system --a 

for the outgoing fermion (22w  = 0) and the centre of mass system for the 

decay product vector meson V1  (a, = 0). For any frame of reference 

K we use the notation p = (e K'  Pic) and q = O'K, 2K) and the 

magnitude of the 3-momenta in the frame K are given by pK  = IEK I 

and qK =  12K I 

For the production process the usual Mandelstam variables 

are given by: 

s 

t 

u 

= 

= 

= 

(p1  + q 

(P1 - P2
)2 

(P (p1 - q2
)2 

= 

= 

= 

(p2 	q2
)2 

(q1 	q2)
2 

2 
(q1 - P2) 

(2.6a)  

(2.6b)  

(2.6c) 
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In addition the following invariants are defined: 

v = ci22 

	

= (q3 q4)2 	 (2.6d) 

	

w = p = (p3  + p4)2 	 (2.6e) 

= (q5 q6)2  (2.6f) 

The total energy of the complete system in the overall 

2 
barycentric system is EB  where s = %. Defining the 4 -Ipmentum 
k = (p1  p2) = (q2  q1), the square of the 4-momentum transfer for 

the production process is given by t = k2. The energies of the 

boson and fermion resonances in their own centre of mass systems are 

V and W respectively where v = V2  and w = W2. 

2 

and w = m2, it is possible to define a number of useful quantities 

as follows. 	In the two body processes (1.6) - (1.9) the 

magnitudes of the 3-momenta of the initial and final state particles 

in the frame of reference B are given by: 

2 	2 	2 	...(m 
-F p 1)

2  [ s - (m PB = P1B = cl1B = s 	(m1 
2 2 2 

-(m2 clB = P2B = cl2B = 	+11  2)2 
	
[ s - ( m

2  

-11 1 ) 2  ] /'4 s (2.7a) 

- p 2)i /4 s (2.7b) 

the corresponding energies are given by: 

If the resonances are on the mass shell, that is v = 2 
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1B = (E: 2 - 2 
+ m1 	111) 	2Ee 	

2 	2 	2 
2B = (EB   m2  - p2) / 2EB  

2 2 2 
01B 	LB  +P 2  mi2  ) / 2EB 	w  2B = 	 /?% 

(2.7c) 

(2.7d) 

In the frames V and W the relevant 3-momenta are given by: 

kV - 2  - q1V  2  = [-t + (P1 	2 +P )2  ] [-t + (111 - p2)2  ] / 4p
2 
2 (2.8a) 

2 2ir 2 	2 	p 	p  2 
ciV = cl3V = - 

,
24v - 

p  2 
2 	(13 	4) 

 li 
2  - (!1.3  - P4)2] /4p22  (2.8b) 

2 
kW = P1

2  
W = E—t 	(mi -F.  m2)2  3 E  —t + (m1 — m2)2 a/ km: 

pw =p2W = P4W = m: - (m3 + m4)2] E m: - (m3 - m4)2]  /44 

(2.9a) 

(2.9b) 

In the frame B the scattering angle 9  B  is defined to 

be the angle between the incoming and outgoing bosons which is 

of course the same as the angle between the incoming and outgoing 

fermions. An azimuthal angle 0 B  may be formally defined but it 

is a feature of the quasi two body reactions that 0 B  is in-

determinate since the reaction is confined to a plane, the 

production plane. It is to be noted that the direction of the 

normal to the production plane is an invariant under all Lorentz 

transformations between the frames of reference II, B, V and W. 
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In terms of 6 

t = m2 	
2 + m2 	

IB 2B - 2 c 	+ 2p1B p2B cos e 1  

=P1
2 
 +/12

2  2 w 	CO 	+ 2q q cos 6 B  1B 2B 	IB 2B 

(2.10a) 

(2.10b) 

The above definitions may be generalised to cover the 

situation in which the resonances are off the mass shell by 

replacing p 2  by V and m2  by W in all the formulae of this section. 

The only off mass shell quantities which arise in this paper are 

those involved in the calculation of phase space factors. These 

quantities are designated in the same way as the corresponding 

on-mass shell quantities but it is understood that the above re-

placements are made in their definitions. 
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3. PHASE SPACE 

Quite apart from the particular mechanism which leads to 

the production of resonances in collisions of pseudoscalar mesons 

with nucleons it is necessary to discuss the variables which are 

appropriate to the complete description of the production process 

and the subsequent decays. The choice of variables is not 

unique but it will be shown that the variables used in the 

following to describe phase space are particularly suited. to the 

peripheral model. 

The differential cross-sections for the processes 

described by the diagrams (a), (b), (c) and (d) of Fig. 1 are 

given by da (a), da (b), da-(c) and da (d) as follows: 

da (a) = 1 	(27 )4 8 4(P1 + 	P2 - q3 q4) 	1  „ 
7773- 	 2(271-)-' ]- 

x 
d3p

2 
d3 d3q4  
•••••••••••Id• 

2 	3 	64 
2 

1< p2g3g4 IT IP2c11 > I AV (3.1) 

d 	(b) = 1(2 
IT  ,4 

8 4(P1 	q1 - p2  - q3 -q5 q6) 	2  
Er-B1-7 jB 	 [2(ar T  

x 
E 

3 
d
3
132  1-21 LI

3
22 d

3
ci6  

2 	413 	(11 5 	106 I‹ P2q3c15q6 I 	I  T p1q1 
>12 

AV 
(3.2) 
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p1 + q1 P3.- P4 - q2) 	 7;;- [2(203]3 

d 	d3P 3 	4 -lo 	A3  
x E3 

E.4 	W2 P3P4q2 1 T 1 Plql >12  AV 
(3.3) 

,, d a(d) = 1 	t2v)4 4 8 kpi  + qi  - 103  - 1)4  - q3  - q4) 17; 
[2(21) ] 

X 
d3p d3D d3 	d3a -4 2:2 	-4 1.c  p3pq3q1+  IT I p1q1  > 1 2  

E 3  E 4  W3 4 	 AV (3.4) 

where I< 	ITI P1cl1 > I 2 represents the average over initial AV 
spin states and the sum over final spin states of the product of the 

appropriate scattering amplitude with its hermition conjugate. The 

factor 4E18pB  is the invariant flux of the incoming particles 

evaluated in the frame B. This quantity is equal to 4m1q1 L  when 

evaluated in the laboratory frame . The remaining factor in 

each expression is called the phase space factor. 

In case (a) the phase space factor reduces, apart from 

numerical factors, to the product of two Lorentz invariant factors 

as follows: 

d a(c) = 1 	(2 04 
84(  



20. 

/d3 ) 	 d3q 
[ 8 (c 	+co 	— F 	til 1 	I 	2 — — 3 — ) 4 € 2 	 1+ 

The first factor evaluated in the frame B gives: 

qB 
2F 	dv d cos ° B d .4) B 

(3.5) 

(3.6) 

where °B  is the scattering angle between 201  and p2  in the frame B 
and B is an azimuthal angle which merely serves to define the 

production plane. The second invariant factor is evaluated in 

the frame V and after integration over dq3v  to remove the delta 

function yields: 

qV d cos 0 	dck V 	3V 3V (3.?) 

where 6311  is the angle between a3  and some polar axis in the frame 

V and 0 3V  is an azimuthal angle. It is convenient to choose the 

direction of the incident meson as the polar axis since this is the 

natural axis of quantisation to use when describing the collision 

of this incident meson and the virtual meson exchanged in the peri-

pheral model. This follows from the fact that the component of 

angular momentum of the resonant state along this axis must be the 

same as the spin component of the exchanged particle in the same 

direction. In particular for spin zero exchange the component of 
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the spin of the resonant state along this polar axis is zero and in 

the distribution of the decay products there is rotational symmetry 

about this axis. This is in accordance with the Trieman -Yang(13) 

test. The quasi two body inelastic collision process defines a 

production plane and the azimuthal angle 45311. may be defined in 

terms of the direction of the normal to this production plane. The 

angle 463V is then the complement of the usual Trieman-Yang angle. 

The notation used is shown in Fig. 2a where 	the polar axis, and 

N, the normal to the production plane, are given by: 

= 	kv 
	 (3.8) 

(211/ A E2V) 	I 21 'V A '22V I 
	 (3.9) 

The angular variables in (3.7) are then uniquely defined 

as follows: 

.1. 23v  = qv  cose 3V  (3.1o) 

11. 23v  = qv  sine 3V  cos ov  (3.11) 

With these definitions substitution of (3.6) and (3.7) 

in (3.1) gives: 

1 2 
d a(a) = 4B 	

2/TV 	
< ciV 	1 P2  q3  94 ITI p1 q1> I AV 

1 

7447 4E2BpB 

x dv d cos 0B 	B d cos '83V d 03V 
	

(3.12) 
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In case (b) the phase space factor reduces as in case (a) 

to the product of two Lorentz invariant factors as follows: 

d3p2  ( 	N\  

e2 ) 

3 A3 [8°(e1 	e2  - (03  _ (05  _ (06) A  - q3 - <15 
(1)(03 (05 (1)6 

(3.13) 

The first factor evaluated in the framer', gives as before (3.6). 

The second invariant factor may be evaluated in the frame V and 

gives: 

q 
8°  (V - 	3V 

dq 	q
2 

3V 	3V 5V 
 dg 

5V 
d0 

 5V  
(3.14) ,V 	w5V -w 6v) 

2 

0  3V 05V0  6v 

where oill2= d cos 0 d.k 	and do 	= d coso 	dO 	and 3V 	3V w 3V 	5V 	5V 5V 	
0 3V 

and 0
5V 

 are the angles 2
3V 

and 2
5V 

make with some polar axis in the 

frame V and 0 3V 	5V and 0 	are the corresponding azimuthal angles. 

All the final state particles are on the mass shell and 

thus w  311  d w 3V  = q3v  dq3v  etc. 

momentum 23v  + 251  apV = 22V = 0 and hence: -o  

By the conservation of 

w. 
26v - p

2
6  q

2
3v  + q

2
5v  + 2q3vq5v  cos 0 

35V 
	(3.15) 

where 0 351 	theangle between 23v  and 25v. This angle is 

completely determined by Q 31r  and n 5v  and for fixed w 3/r  and w  5v 
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it follows that: 

W6v 
d W 

 6v = ci
3v  q5v  d cos 6  35v 	 (3.16) 

thus the invariant (3.14) can be rewritten as: 

da 
3

do
5V 

de
6V 8°(v -4°3v - w5v w 6Ar a  n319-517 / d cos° 35.v) 

Integration over 	then removes the delta function and yields: 

--3V d45V d cos d 1  c v  d costo5v  d45v  / d cos° 3511. 	(3.17) 

It is advantageous to exhibit directly the two stage nature of the 

decay process by using the variables x , cos 
63V 

 and 4,3v  where as 

before the angular variables are defined with respect to the axes 

I and N by equations (3.8) - (3.11). The variable x = q
2
4  is 

related tow 
3V 

 by the expression 

x = V +II
3 

- 2V w 3V 	 (3.18) 

and therefore: 

d W1311. = 	dx / (2V) 	 (3.19) 

To remove the denominator from (3.17) it is necessary to 

transform the differential variable del 
5V 

 into the product of 

d cos 0
35V 

and some other differential variable dependent on the 

direction of 25v  in the frame V. The choice of this phase space 
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variable must be such that the Jacobian of the transformation is 

not a complicated function of the variables x, cos03/1  and 1163/1.. 

This ensures that the behaviour of the scattering amplitude as a 

function of these variables may be readily determined from experi- 

mental data. It should be noted that, in the same way, although 

the variabletd5V is related to the angle 4;35V the transformation 

from one to the other introduces unnecessary complications. 

Moreover it is shown in section 8 that it is the variableW5V which 

appears in the scattering amplitude so that it is convenient to treat 

this as an independent phase space variable. 

In the frame V the resonant state B
3 

decays into three 

particles all moving in the same plane. The normal to this decay 

plane can be defined by: 

= (23V 25V) 	93V " a5V 

	 (3.20) 

and the angle between I and M is denoted bypv  and the corresponding 

azimuthal angle measures with respect to N by is V• Thus: 

I. M = cosA v 	 (3.21) 

N. M= sine, v  cos 54.0, v 	 (3.22) 

With this notation it is easily shown that: 

dgl5V = d cose5V d cose / sine 	costly 35V 	35V 	f" V 	(3.23) 
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where 

(sin(335v  cospv)2  = 1 - cos 2  t:1)3v  - cos29
5v 

cos 5v + 

2 cosi,'3v  C08161 COS35v 	 (3.24) 

the complicated dependence of the denominator on costiiiiv  and cos6 v  

clearly precludes the choice of d coslv  as a differential variable. 

Calculation of the transformation from the variable cosQ
5V to the 

variable costk v  then yields the result: 

d 5V = d cos F, d cose 5V / (sin2e3v  cos v)i.  ..5 (3.25)  

Once again there is a complicated dependence of the denominator on 

cose v. However it is clear from (3.25) that 

dci5v  = d v  d cosE335v 	 (3.26) 

where the angle S is defined by: 

cosev  = - sinE v  cos )113v 	 (3.27a) 

The equation (3.27a) does not furnish a unique definition of 

but it may be defined by noting that successive rotations through 

the Euler angles(31) 	-e v  and 4. v  align two of the initial 

set of axes I and N with the directions of 2
3V and M respectively as 

shown in Fig. 2b. It can then be shown using (3.21) and (3.22) that: 
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Sin/3. V COS,Ittsv  = cos 3V COSe v  cos v sin  hv sin $43V (3.27b) 

sintio v  sing 	= cos V 3v  cos e3v  sin 11  + sin  3v 	'II 3V  cos cp3v (3.27c) 

It may also be shown from the definitions of this section 

that: 

cosel = cosa cos_ + sine 	sine; sin ,V 55V ia
5V 35V 3V *3V (3.28a) 

sin 	cos 55V  = cos (135V sin €: cosd -3v 	3V 4.  sinG35V 

11 (cos 	sin 3v  - sin 4,3v  cose3v  cos16.3v) 
	

(3.28b) 

sin ;5V  sin i 5V = cos4335V sinG3V 81:43V + sin ®35V 

	

(cos*m  cos 3V  - sinjv3v  cose3v  sinS3v) 
	

(3,28c) 

Thus using (3.6), (3.17) and (3.26)it follows that (3.2) 

gives the result(32): 

de.7(b) =  

42V 1°32q3q5c16 (4rOu  4E2gB  
T P1q1)̀

2 

AV 

dv dx 	d coseB  d 	d cos' 3V d963v  d yi3v 	(3.29) 

Case (c) is exactly analogous to case (d). In the frame 

W the natural axis of quantisation to use when describing the 
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collision of the target nucleon and the virtual meson exchanged in 

the peripheral model is the direction of the target nucleon. Once 

again the normal to the production plane is used to define the 

azimuthal angle. 	The notation used is shown in Fig. 2c. 	Where I, 

the polar axisland N,the normal to the production planes are given by: 

/ kW 	 (3.30) 

(3.31) = (21w A 22w)  / 	.2.1wA 22w 

The angular variables used are then defined by: 

I. E4w = Pw "se4w 	 (3.32) 

(3.33) cos <kw  a • 24w = pW 8inEkw 

With the above definitions it follows as before that (3.3) 

gives: 

q 

(7) 4EBpB  2nW Vi‘ P31302 T p1 q1 ) 2 AV 

dw d cose (196B d cosO4w , d4 4w 
	(3.34) 

In case (d) the phase space factor can once again be 

written as the product of two Lorentz invariant factors: 
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3 	

77 
[ 	

3 1 - d3q, 
Lta d 134 I  --- 	(3.35) (ii 4- tol 	-4  4 -(1/4)3 - 	3IA 14 E3 

The first factor may be transformed into 

d3p2  d31)4  E2 

.E2 3 
(3.36) 

and evaluating in the frame B the invariant d3p2  A2  gives the 

factor (3.6) whilst it may be shown that the remaining terms in 

(3.36), when transformed to the frame W give(4): 

P .J.  dw d cos i4  . d 014  
2W 

(3.37) 

where ekw  and #14.w  are &fined by equations (3.30) - (3.33). The 

second factor in (3.35) is evaluated in the frame V and after 

integration over dq3v  to remove the delta function yields the 

expression (3.7). 

Thus substituting (3.6), (3.7) and (3.37) into (3.4) 

(33) gives 	: 

c"(d) = clB 	cIV pW I/  
TAV 2VW 	P3P4q3q4\ 

(4A)° BpB 

T Plql ) 2  AV 

dv dw d cost 1B  d5413  d cose3v  dt v  d cosekw kw  d 	 (3.38) 
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Decay angular distribution variables. 
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4. FIELD THEORETIC FORMALISM AND THE PROPAGATORS FOR 

ARBITRARY SPIN PARTICLES 

Using the usual tensor representation(34,35)  a free boson 

field of spin j, masse and 4-momentum q may be described in 

momentum space by means of a wave function X (9) 
X1 2...n 

j = n. This wave function satisfies the wave equation; 

where 

012 _14,2)X  / A  xxl 
1 2...Xn 

= o 	 (4.1) 

and the subsidiary conditions: 

X 	(q) 	 = X (q) 	 (4.2) 
X1... 	j.. 	 x. Ai A  AI• • • • D• • • L. • . n 

for i, j = 1, 2,... n and 

g'X
X  (a) 0 	 (4.3) 

'e2 	n 

6 	X x  2‘.(q) x  
-Al 	1 2... n 

= 0 (4.4) 

Consider the operator c5 (q,n) 
h1X2...An;11  2..,Pn 

which is 

symmetric and traceless with respect to any pair of the indices 

A 	
A , ... 

A  n so that: 1, 2  
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0A  (go) 	. 0 (q,r0 
	(4.5) 

for i,j = 1,2,...n and 

	

C.3 	46 	(7 1.0 	 = 0 	 (4.6) 
/ 

and which satisfies 

q )k. 	
= 0 	(4.7) 

1 	2... n p a, 	n 

and 

(g,n), 	(q,n) 
P2..Pn °I 

a  1 a2... o n 
(4.8) 

Such an operator is clearly a projection operator for 

the spin n component of any field with n tensor indices. For 

a pure spin state wave function it can be shown that: 

V-' 

L-J 	
)(x(q) A  X +(a) 	= 	(et,n) 	(4.9) 

n 	Pf2...19 n 	12... n "1 

Pol. 



Al P1 	 X1 Al 	Al P 	
q2 (q,n) = 	(q) = g 

34. 

where 	denotes a hermitian conjugate and the summation has 

been carried out over all polarisation states. Furthermore 

(q,n) is uniquely defined by the conditions (4.5) - (4.8). 

In particular for n = 1 it is easy to show that the spin one 

projection operator is given by: 

qx qp 
(4.10) 

In terms of this operator it can be shown that: 

* >'^P‘fl'•'13 (‘ 
fit 	

_ 
1  

' ,----1 

W "  
" (. 5i.z,,) 	T-1-  st(co 	7 if (iv  

r 
.1  t 	 . f)  P 1 	 A  P 

re: a 	hz.-.1 	)4zAft ). 2_)0.4. I l-1 lt. 2 +% tvv:Ar 	nn en 
( 4 .11 ) 

where 
arn 	

(..1)" ri(1/111-r)1 	
71(12°1
21 

	nZ nZ 	(4.12) 

and xi' = n/2 for n even and n' = (n-1)/2 for n odd and where 

the first summation is carried out over all permutations of both 

sets of indices A 11 	... X and p 1 p2...   Pri 
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Similnrly using theItarita-Schwinger forma] ism a treo 

fermion field of spin J, mass m and 4-momentum p may be described 

in momentum space by means of a wave function u (p) 	where 
11 

J ----.11-viandtoeachtensorindecorresponds a Dirac 4-

component spinor. The wave function satisfies the generalised 

Dirac wave equation: 

- m) 
110.. n 

	o 	 (4.14) 

and the subsidiary conditions: 

(p) 
i• • • 	i• • • Ai•..?n 

for i,j = 1,2...n 	and 

gA 	is2 	u 	• • •A n 

u (p) 
AlA2...An 

YA 	u (p) 
X1A2...An 

= 

= 

= 

= 

12 2„.(p) 
l• • • 

0 

0 

0 

A„.  
j•• • 1\i..•• • .1.1 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

Consider the operator e (p,n) 	which is 
X1X2...XnP1P2...Pn 

symmetric and traceless with respect to any pair of the indices 
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A A 	x so that: 
1 2... n 

6  (pin) e (p,n) 	(4.19) 

for i,j = 1,2...n. and 

(4.2o) 

and which satisfies 

13  e RI 

	

'1 	4-2n.)..2kiiPi P2..9 n = 0 
(4.21) 

0 (Pin) 	= 0 	(4.22) 

	

YAI 	Al-A2„.V1P2..f n 

and 

19(3,n) 	e (pin) 
A1X2...AnP1P2...Pn 	P1P2...Pna  1 a2... an 

. 0 (p,n) A N
(4.23) 

1 2... n 	a A. a1 2... an 

Such an operator is clearly a projection operator for 

the spin J (J = n 3) component of any spinor-tensor field with 

n tensor indices to each of which corresponds a 4-spinor. For a 

pure spin state wave function it can be shown that: 
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u (p) 	(p) 
—1  AD 2... An P 1P 2...Pn 

(-1)n  e (Pin) 	(1/ + in) 
.1 ...aci n 

(-1)n  (. 	m) 4MV,n)  A p P "1 2... n 1 2... n 
(4.24) 

where u (p) = u+(p) y 0  and the summation is carried out over all 

polarisation states. 

Once again i9(p,n) is uniquely defined by the conditions 

(4.19) - (4.23) and this operator can be expressed in terms of the 

integral spin projection operatorcj, (p,n + 1) as follows: 

(p,n) 	= (2J+1) y y 	 (p,n+1) 
A1)L2..1\no1 	7=0) 	P 	A 1 ...ALIPP1...Pn 

(4.25) 

where J = n + 3. 

Strictly speaking all the above considerations apply only 

to free, stable particles. However with the assumption that the 

resonances produced peripherally decay freely it is appropriate in the 

description of these resonant states to use the above projection 

operators 16 (q,n) and 0 (p,n) in conjunction with the usual Breit - 

Wigner modification to the stable particle propagators. Thus for 

the spin j boson resonances B1  and B
3 

of massy 2, width r V  and 

4-momentum q
2 
the corresponding propagators are given by: 
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(-1)n  0 	,n) 
PP 	P 	L 

/ r (v -4) + 	r v] 	(4.26) 
n 1 2... n 

where j = n. 

The special case of j = 1 then yields for the spin one 

resonance V
1 

of mass u4, width r and 4-momentum q4 a propagator 

given by: 

	

2 	2 	. 
[ 	c14 a c14 /q4 	(x 	i+)  + 1  t4 rx ]  

For the spin J fermion resonance F of massn12, width 

and 4-momentum p2  the propagator is given by: 

(-1)n 6  (p ,n) 	(26+1112) / [ (w-m22) 	im2  r w  

(4027) 

(4.28) 

where J = n 

In contrast to this the exchanged particles E(k) in the 

diagrams of Fig. 1 are not on the mass shell and even if these 

particles are unstable it is a good approximation to use the un-

modified propagators appropriate to the description of stable 

particles. The propagators for a spin zero particle and a spin 

one particle both of mass/I and with 4-momentum k are given by: 

1/ (k2  - F 2 ) 	 (4.29) 
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and 

(-1) 1 gad  - ka P k / 2 	(k2 .112)  
P 

respectively. By rewriting the latter propagator as: 

(4.30) 

(-1) g
aP  -ka p 	a 

k /k2  / (k2  .12) + k k 
p 
/k2 	2 (4.31) 

it can be seen that the off-mass shell spin one particle corresponds 

to a mixed state of spin zero and spin one since the first term 

contains the spin one projection operator and the second term the 

spin zero projection operator appropriate to a tensor field with just 

one index. It should be noted however that only the spin one term 

has a pole at k2  = 1.12. It is this fact, when generalised to higher 

spin, which permits the above description of the resonant states to 

be used. 

It is convenient at this stage to simplify the notation by 

writing 

(q,n) 	= 0 (q,n) 
A112...AnPI P2... ph 	Xp 

(4.32) 

and 

(p,n) 
102...AriP1 P2.. P n 

0 (p,n) 
Xp 

(4.33) 

where A andp stand for the two sets of indices A1A2..,A'xi 
and 

f2...lon  respectively. 
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VERTEX FUNCTTONS INVOLVING PARTICLES OF ARBITRARY 

SPIN AND PARITY. 

To evaluate the peripheral diagrams of Fig. 1 it is 

necessary to consider the possible couplings of various combin-

ations of three particles any one of which may have arbitrary spin 

and parity. As baryon number is conserved there are only two 

types of three particle coupling namely the coupling of three 

bosons (boson coupling) and the coupling of two fermions with one 

boson (fermion coupling). Since only strong interactions are con-

sidered, the vertex functions and the associated particle wave 

functions must together form a scalar which is invariant under 

Lorentz transformations and the parity transformation. 

In the coupling of three bosons, as shown in Fig. 3, 

with 4-momenta p, q and r such that p
2 = x, q2 = y and r

2 = z 

the most general Lorentz invariant is an arbitrary function of 

x, y and z only since energy and momentum are conserved at the 

vertex. If any one of the particles is on the mass shell say 

p
2 = constant, then the vertex function is a function of two 

invariants y and z. If any two of the particles are on the mass 

shell say p2 = constant and q
2 = constant then the vertex function 

ie a function of a single invariant z. 
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SimiT.a7- results hold in the case of fermion coupling 

except that there may be an additional dependence of the vertex 

functions on any two of the three linearly dependent Lorentz 

invariant pc r4and x4. It is convenient to choose 73and9/ if p 

and q are the 4-momenta of the two fermions. Sinceps = x and 

= y the vertex function is at most linear in each of the 

matrix quantities /Sand 6 If any one of the fermions is on the 

mass shell say p2 = constant then by virtue of equation (4.4) 

= constant and the vertex function is a function only of the 

three invariants y, z and /. If both fermions are on the mass 

shell then the vertex function is a function of a single in-

variant z. 

The tensor quantities with which the vertex functions 

are constructed consist of the metric tensor g v, the completely 

antisymmetric pseudotensarE 	and any two independent 4 - 

momentum tensors which are linear combinations of pp, grand rt.. In 

Vac 	of fermion couplings the matrices •;(' may also be used. 

In general a tensor with nizidiceshas parity (-1)n. 

Thus for a particle whose wave function has n tensor indices it is 

convenient to say that the intrinsic parity of the particle is 

normal if it has parity (-1)n  and abnormal if it has parity (_1)n+1, 

If all three particles coupled together have normal parity or if one 



(5.1) , = p !Lexie  
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has normal parity and the other two have abnormal r.arity then it 

can be said that the coupling has normal parity since no pseudo-

tensors need to be included in the construction of a scalar vertex 

function. On the other hand if all three particles have abnormal 

parity or if one has abnormal parity and the other two have normal 

parity then the coupling is said to have abnormal parity since a 

pseudotensor must in this case be included if the interaction is 

to be invariant under parity transformations. It should be noted 

that the most general pseudotensor is linear in t, oxpsince the 

product of two antisymmetric pseudotensors can be written as a sum 

of products of the metric tensor graby means of the identity 

In the case of abnormal parity boson coupling no spinors are 

involved in the interaction and the indices of the pseudotensor 

must be contracted with either 4-momentum indices or wave function 



43. 

indices. 	Howeer in the case of abnormal priri'::y f'errl.ton coupling 

spinors are involved and the indices of the pseudotensor may bo 

contracted with x- matrix, 4-momentum or wave function indices. 

A particularly useful pseudotensor quantity is the invariant 

matrix 1r 5  which may be written as: N.7 

= XI> 1.(10.i, ‘610 (5.2) 

All abnormal fermion couplings may be obtained from the most general 

normal fermion couplings by the inclusion of a factor "x" 5'  This v  

factor is, for convenience, always inserted next to the spinor 

wave function of the spin half particle involved in the coupling 

which is on the mass shell. 

To evaluate the diagrams of Fig. 1 for spin zero and 

spin one exchange it is necessary to consider the vertices shown in 

the diagrams (a), (b), (c) and (d) of Fig. 4. 	The subsidiary 

conditions (4,2) - (4.4) and (4.15) - (4.18) greatly restrict the 

allowed couplings involving arbitrary but pure spin states even 

if these states are not on the mass shell. The most general 

possible couplings are given in Table 1 for both normal and ab-

normal parity couplings. The notation used is such that the 

quantities g, 
g1, 

 g2, g3, go, f, fl, f21  f3, f4  and f5  are 

dimensionless coupling constants and the quantities G, G1, G29 
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G3, G
o' 
 F

, 
F
1' F2'  F3, 

F
4 
and F

5 
are the correspondin3 form 

factors which all reduce to unity when all three coupled states 

2 are on the shell, that is when v 1L2 2  1  w m2,h62  = m2  and t .its2. 

where ),A is the mass of the exchanged particle. A mass charac-

teristic of the three interacting particles should be chosen for 

the arbitrary quantities mx  where x is the appropriate coupling 

constant. 

By making full use of the relationships (5.1) and (5.2) 

and of the useful identity 

E 	)( X+  g v g 0).'r 	(5.3) 

it is easy to show that the most general normal fermion coupling 

can be expressed in a form which contans no pseudotensors. Thus 

the terms of the fermion couplings involving f5  are really super-

fluous since they can be written as a sum of terms involving only 

fl, f2, 15  and 14. However the particular form of the couplings 

involving f
5 

is of particular physical significance, as will be 

shown in later sections, so it is included here in Table 1. 

It should be noted that the couplings involving g3  and 14  

contain a factor kt  and this factor removes the pole term in the 

exchange diagrams of Fig. 1 because of the form of the propagator 

for a spin one particle as given in equation (4.31). 
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Using the couplings defined in Table 1 it is possible to 

write down all the vertex functions appearing in the diagrams of 

Fig. 1. In general all particles in these diagrams may be different 

and in this paper the notation used is such that the coupling 

constants e, f, 4 h and i, with subscripts where appropriate, are 

associated with the vertices at which the three coupled particles 

have 4-momenta given by: (p2, p31  p4), (p1,  p2, k), (q1, q2, k), 

(q2, q3. q4) and (:14, q5, q6) respectively. 

At the two vertices involving the fermion resonance F 

the alternative parity cases may be considered simultaneously by 

inserting the factors "d e  and 1ff  at the vertices with associated 

coupling constants e and f respectively. These quantities are both 

defined to be the unit matrix I in the case of normal parity coupling 

and to be the matrix '15 5 in the case of abnormal parity coupling. 

With the assumption that the resonances produced peri-

pherally have propagators containing a Breit-Wigner resonance 

term it is shown in the sections which follow that the only arbitrary 

functional dependence of the form factors appearing in the final 

expression for the various differential cross sections is a 

dependence upon t, the square of the 4-momentum transfer. It is 

thus convenient to introduce the notation: 
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(5.4) 

where n
x = (j -1), (j -2), j, j, j, (J-i), (J-3/2), (J4), (J4), 

(J-4) and (J+ ) for x = g, g1, g2, g3, go, f, fl, f2, f3, f4  and 

f5  respectively and where j is the spin of the boson resonance and 

J is the spin of the fermion resonance. 

It is also convenient to introduce a great simplification 

in the notation for the tensor factors constructed from the 4 - 

momentum kie in the vertex functions of Table 1 by writing: 

kx2 	(k)r 
	

(5.5a) 

k 2 	154  • • • 

15"n 
	(kx)n-1 
	

(5.5b) 

kx k = (kx)n-m 	(5.5c) 
"m+11 '4,m+2 Xn 

This notation is readily generalised so that any product 

of identical 4-momentum tensors with consecutive indices may be 

written in a shortened manner. 
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FIG.3 

Vertex Dieuram  

FIG.4 

Vertex diagrems involving the coupling of one arbitrary 

spin particle. 
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TABU 1  

The general form of the vertex functions for the diagrams 

(a),(b),(c) and (d) of Fig 4. 

(40 Coupling of particles of spin (0,04) where 

Normal parity couplings.: 

If  (t,v) ‘,x  . a. A IN  

Abnormal parity coupling: 

C o 	?LAN 	.V0 9.11, VD 	1%1 

(4b) Coupling of particles of spin (0,14) where jalLn 

Normal parity coupling: 

r 	,(.tIv)0.1  4.,(tx, 
L 	 cs„Axt. 

0A. r 

   

cva.pvt. 	G-,(t,v) 
At (m.tsr 

 

   

-2. *13 

Abnormal parity coupling: 

k x2.111.,x• • •‘tXvi. 
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(40) Couplino.  of particles, of spin (0,1,J) where Jig n4.1 

 

(L,v4 4x) 
Tv‘t)ft 

k 	It 	• • • %% X, X, 	x, 

 

Normal parity coupling: 	15% = 
Abnormal parity coupling: 

(4d) Coupling of particles of spin (1,1,J) there J. nir 

[

%,?,(ti•A4.1)  
(tN„Y"' 

*LF2.(tiwile,) 	+%8Fskt,w;Mi„ 
(inr12.)1% 	

xt 

tg,14(tPwiVx)  
Iskt, xt+ ItJs  

("st‘pr" 	(to  srt 1"pcgia. X, 11.d%p 
Ws st 

%% 	\IL 	. • • la ).t,,  1St X2.  \1  

Normal parity coupling: 

Abnormal parity coupling: 
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6. THE DECAY PARTIAL WIDTHS OF ARBITRARY SPIN AND 

PARITY RESONANCES. 

The differential cross sections for the processes 

described by the diagrams of Fig. 1 are all proportional to the 

decay probability of the arbitrary spin and parity resonances. 

This is explicitly shown in the sections which follow and it is 

useful to determine these decay probalities as functions of the 

coupling constants defined in section 5. The decay processes 

(2.1) - (2.4) are each considered in turn. 

(i) From the discussion of section 5 and the results 

expressed in Table I it is clear that a boson resonance which 

decays into two pseudoscalar particles must necessarily have 

normal parity. The partial width corresponding to the decay 

of such a boson resonance B
I
(q2

) into two pseudoscalar particles 

P (q3) and P (q4) when all these particles are on the mass shell 

is denoted by 	(2-33,4) and is given by: 

dr (2-4-3, 4) = 	1 	
(2n)4 it4 (q2  V 

24/42  
- c13 - c14) 	„ 

(2(24)1-  

d3 	d3  
x  _22 c14 

")3 	4̀4 q3 qi+  

2 

1 c12'>  AV 
(6.1) 

The invariant phase space factor reduces, after 
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integration over d3Ri4.  -and dq3V to remove the delta function, to: 

qv 
I2 

d cos e 3V  dO3v  (6.2) 

and the decay amplitude for the spin j resonance in the notation 

of sections 4 and 5 is given by: 

< q3 c14 / 	q2 ) =(q4))n  (mon-1 
1"2" 	."n 

where j = n. Thus from equation (4.9) it follows that: 

2 h2 	(-1)n  (qkx )n  
“13%  2  I  q2 	AV = 1  713-7-1) mh 2n.;2  

kq20.) (q4e)n  

(6.3) 

(6.0 

Using the result (A.14) of the appendix and integrating 

over the redundant variables cose3V  and0c3V  the partial width can 

be written as: 

2j+1 
r 21  di d..1 	1  h2 V  

VII/ (2-33'4)  '1'1' 	2 	2j -2 	(2D1 	(2j + 1) 
t2" )  

(ii) A boson resonance which decays into a vector 

particle and a pseudoscalar particle may have either normal or 

abnormal parity. In both cases the partial width corresponding 

(6.5) 
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to the decay of the boson resonance B3 - 
(c
2 
 ) into a pseudoscalpr 

particle P (q3) and a vector particle V1  (q4) when all these particles 

are on the mass shell is again denoted by rIv  (2-4314) and is given 

by (6.1). The phase space factor is again given by (6.2) but the 
decay amplitude for the spin j resonance now depends upon the 

parity of the resonance. The alternatives (a) normal parity and 

(b) abnormal parity are considered as follows: 

(a) The decay amplitude for the spin j, parity (-1)j  

resonance is given by: 

h 
< q3  q4  T q2  > 

(mh )u  0 
(c14))11-1E" 	tr q4).*. q3 

)‹ (q ) 	(q ) 4 	X n 

where j = n. Thus from equations (4.9) and (4.10) it follows 

that: 

h2 
2 	1  

1443g4 T 1 q2>  I AV - (2j + 1) 	(mh)2n 0  

(6.6) 

E 	1 
	

q344 flYg  /3  V clif  44' 
9.3A x 

(6,7) 
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Using the result (A.15) and integratilij; over the 

redundant variables cose3V'  the partial width can be written as: 

2j+1 

1  
h2 

0 cIV 	2j 	j4 
"44,v  (2 -)31/-1-) 	 (j+1)  

(
2j 	(2j)1 	2j(2j+1) 

mh 
 (6.8) 

0 

(b) The decay amplitude for the spin j, parity (-1)j+1  

resonance is given by: 

q3q4  IT q2)  - 
h2 

(mh )n  2  

 

(mil )n-2 

1 

 

Nn-1  ""1" (rs- sit+) 	
g2) . 

p ' 
)42 . • 21/4n 

(6.9) 

where j = n. Thus from equations (4.9) and (4.10) it follows that: 

I < q3q4 T  q2> 2 . 
77i777  h1  

AV 	(mh )
n-2 

1 

(1447-q4mc 
(12 orq4A,1 	g6 v".  tb. 2 

4 

q2  q4 —1 

h
1  

( )n-2 gArls1 mhi   

)n+1 (ci4 )n-1 
(42'n) (44 )n-1 	(6.10) 
f Xp 
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Using the result (A.15) and integrating over the 

redundant variables cose3v  and 3V  the partial width can be 

written as: 
2j-1 

2j  il j4  
T1  (2-1314) = 	... 	 1 	x 
V 	Lyn 	2 	(2j)2 	MITT) 

2o 2 

h21  
-7374  (mh 1 

(j +1) 1 	kv 

mh )j-2 	)1' 4  

2 ljr 
h2 0V 

(mh  )i 	744 

(6.11) 

(iii) The partial width corresponding to the decay of 

the vector meson V1(9),into two pseudoscalar particles P(q.5) and 

P(q6) when all these particles are on the mass shell is denoted 

by rx 	-* 56) and is given, by analogy with the special case 

of j = 1 in equation (6.5), by 

( 4.4516) 
3 

2 	3 2o. 
(6.12) 

(iv) A fermion resonance which decays into a spin half 

particle and a pseudoscalar particle may have either normal or 



P3 P4 I T P2 1 2  4E3 	4i4 	 AV 

dp 	d
3
P4 (6.13) 
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abnormal parity. These two cases may be dealt with simultaneously 

by making use of the factor Zr e  defined an section 5. In both 
oases the partial width corresponding to the decay of the fermion 

resonance F(p2) into a spin half particle N(p3) and a pseudo-

scalar particle P(pLi) when all these particles are on the mass 

shell is denoted by 	(2„3,4) and is given by: 

dr (2-43,4) .„A_ (2n)4 1 ".4(P2 - P3 - P4' 2 1112 	[2(211)32  

The invariant phase space factor reduces to: 

Pw  
m
2 	

d cos 94w  djkiw 
(6.14) 

and the decay amplitude for the spin J resonance in the notation 

of sections 4 and 5 is given by: 

< P P4 I T  1 P2 	= 	(P3)4  e 	n-1 	4)1 

	

e 	(p )n-1 ( 1, u 	, 
2) 
	(6.15)  .” 

3 	(me) 	XA.. ?kn. 



e2 
	pw  ria  (2—.0,4) = E74; 

-`" 2m2(m)2n-2 2 e 
 

2n-1 

2 (p2  p3  4. m2 	x 

56. 

where J - 	- -i). In order to deal with both parity cases 

simultaneously it is convenient to define m/3  such that: 

m13  = + m3  if e  = I 
	

(6.16a) 

m13  = .. m3  if 
	

(6.16b) 

Thus from equations (4.24) and (4.25) it follows that: 

2e
2 

< P3 P4P2 >1 AV = k2J41) (m)2n -2 e   
x 

2n 
2(p2  p3  m2  m'3) .T1177 1P1k1 

(..1)n+1 
(134/1-1  9 	(132132) 

	
(114 )n-1 

	
(6.17) 

Using the result (A.15) of the appendix and integrating 

over the redundant variables cos 914.w  and 041.4  the partial width 

may be written as: 

x 

2
n 
 n1 n1  

(2n)I (6.18) 
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where 3 (2 - 4). It should be noted that as the particle 

P (ph) is a pseudoscalar and as the only stable spin half 

particles, N(p
3
), observed to date appear to have positive parity 

the decay width of a spin J resonance into such particles is 

given by (6.18) with m1
3 

= - m
3 

for a normal parity resonance 

and m13  = m3  for an abnormal parity resonance. 
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7. POSai RESONANCES DECAYING INTO TWO PSEUDOSCALAR 

PARTICLES 

As pointed out in section 6 a boson resonance which 

decays into two pseudoscalar particles must necessarily have 

normal parity. In the peripheral production of such a resonance 

the exchanged particle can be a pseudoscalar, a vector or a 

pseudovector particle but not a scalar particle. For each of 

these three allowed possibilities the differential cross section 

is calculated for the process described by Fig. 1 (a) in which 

the resonance B
1 
has spin j and normal parity (-1)j. This is 

done by constructing the appropriate invariant matrix element 

from the vertex functions of Table 1.and the propagators of 

section 4. In particular the propagator for the spin j 

resonance is given by (4.26) where j n. The resulting 

expression for the matrix element is then substituted in the 

formula (3.12) for dcr(a). 

(i) Pseudoscalar particle exchange. 

The invariant matrix element is given by: 

< P2q3c14 T  P1c11 (p2) f F (t)1 f  u (pi) 	
1 x (t_r)   

	

x  (_1)n S.2162
-1 

 1 (k X % 	1  
(q210 	2 

(II-12)  + 	2rIT 
` 	(m )n ) 

g 



h H(v) 
(mh)n-1  

(qtfp )n. 
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(7.1) 

Averaging over the initial spin states and summing over 

final spin states: 

< P2c13% i T  I P1c11) 12AV 
= f F(t) g G(t,v) h H(v)  2  

 

(mg)n-1 (mh)n 

 

(mt1+.12)21 

(ti)2 
1 

 

x 
(v...1.11F2)2 2 4-1 2 

21  V 

where 

(k x )n#A  (q2,n) (c1,40, )1 2 

	
(7.2) 

ml1 = -1411
1 
 if 	f 	I 	 (7.3a) 

ml
1 

= -m1  if Xf = 155 
	 (7.3b) 

Assuming that the resonance has a narrow width i.e. 

VV < 2  then: 

 

ote,-v-r22) 	0.4) 
2, v 2 (vik 2)2  +p;2  21m v2  
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t-th this approximation and the result (A.8) given in 

the appendix, substitution of (7.2) in the expression (3.12) for 

do-  (a) and integration over dv gives the result: 

ct 

	

f
2 	2 	F(t) .G(t) 

2 

d 	(a) = nik 	 7( 	(m 0-1 4E 2B pB 
x 

tl -t + (m,1  + m )2) a 	2j  11 JI  
(2J)1 kvj  

d cose
1B, di4B (t -))2  

ry  (2 - 3,4) 2 
i-11 	 (7.5) 

1t 	P . (cos e 	d cos 3V 	3V 9 dr16 3V 

where (6.5) has been used to separate out the factor rv(2 3,4),/ 

where riV  (2 - 3,4) is the partial width and; is the total width 

of the resonance. This factor is thus the branching ratio of the 

decay process (1.2) relative to all other possible decay modes of B1. 

The first factor in the expression (7.5), made up of all 

terms preceding the branching ratio factor, is in fact the spin 

averaged differential cross section for the production of a spin j,  

parity (-1)J, resonance in the quasi two body process (1.6) either 

assuming that the resonance does not decay or equivalently summing 

over all possible decay modes. 
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ne final factor in (7.5) gives the distribution of the 

decay products and is normalised so that integration over cos y  

an43v  gives unity. It should be noted that the distribution is 

independent of 411 
3V  and there is thus rotational symmetry of the 

decay products about the polar axis I in the frame V.(13) Further-

more the decay distribution as a function of cos3V 
is independent 

of the production process variables. In particular this distribution 

is independent of the arbitrary form factors F(t) and G(t). 

The spin averaged differential cross section for the 

production of a spin j, parity (-1)i  resonance in a process 

mediated by pseudoscalar particle exchange is obtained from (7.5) 

by integrating over cos 
3V 

and3V and putting 1'V(2  - 3,4)  = 
The result obtained, which confirms the statement made above 

concerning the first factor of (7.5) is: 

diT (a) 

2 
f2 	:(t) G(t) B 
47h 	4)1 	(mg)3-1 	4E2B pB 

x 
C-t +00, 

2 
(t -tk ) 2  

m2) j 
	

2j  ji ji  

(2j)1 
kfri  d cos()B 

d4t B (7.6) 

It should be noted that this result is completely 

independent of the decay mode of the boson resonance which might 
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for instance decay into three pseudoscalar mesons or into a 

pseudosca1ir meson and a vector meson rather than into two 

pseudoscalar mesons. Thus (7.6) applies to the general process: 

P + N 	B 	 (7.7) 

where B is any boson having spin j and normal parity provided 

that this production process (7.7) is mediated by the exchange 

of a pseudoscalar meson. 

(ii) Vector particle exchange 

The invariant matrix element is given by: 

< p2  q3 qj T 	= 71 (pa) f2F2(t)Y + 

fF3(t) 	f4F4(t) 	-] 
mf3) 	13216mf 	ktx 4 	f u 

(p1) 
 x 

x 

kia kJ') 	
2 	

o g G (tor) 
x (-11 g 

le2 	(t-r) 	(m
g
) 
o
n  

n-1 (-1)129& (q2,11) 

1 	)n h H(v)  

(377A) 4-  le2i; 	(mh)n-1  

X T Euer A 1 k  
x 

(7.8) 



i- 1 2 
f3I 	+ (501  + m2)2  3 

-t + (mli  - m2 M (t) = 
2 

k? 2  
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14,,king full use of the antisymmetric nature of th-J 

pseudotensor in this expression, substituting (7.8) in (3.12), 

averaging over initial spin states, summing over final spin 

states and integrating over dv gives, with the notation of (7.3) 

and the approximation (7.4), the result: 

d<r(a) = 1 	qB 	1 	h2 	qV 	1 

(411 3  4E2B  pB 	2 Tik 
2r 2  P) 2j-2 Tv  

x  [Hm 	(t) (per) (p r+) - M (t) (r.rld cos() (40 
P2P2 	 f B 

d cos Cs d 3V 3V (7.9) 

where 

= 1.65E,44rr;v1 a,42
" ' 

(-1) j+1  (kA)j-1  16  (q21i) (q4  ) 	(7.10) 
ft 

and 

2 
M 	(t) = 	1721 	4 + 2 Re (173) 2(m'1 +m2) + P2P2 



= 	70 2 

2j J1 
tit 

 

(2i) r.r 

64. 

It follows from (A.9) that: 

jl 	1 
P2F = go 

2'  
(2j)1

j1 
	(EB  pB  qB  sinep 

j-1 kv  qvj  cos# 3V 1 j (cos 3V) -1 	 (7.12) 

where use has been made of the fact that the angle between 22v  

and 	denoted by E v  as shown in Fig. 2(a), satisfies the 

relationship: 

P2 P2V kV sineV 	EB PB qB sin  eB 
	(7.13) 

Similarly it may be shown that: 

2 
(r2  kV) 	(cose v) 

(7.14) 

Substituting (7.12) and (7.14) into the expression (7.9) 

for d6(a) gives: 

d4r(a) = 	2 	go o) 	 (2j)1 
1 	clB 	1 2 

4E2B  pB  (t-)2 

	2j 1 	x 

(J1:1).  41.1j-2 [ M 	(t) 
P2P2 

2 

EBPBcIB 8111  eB COS
2,
7'
04  3V 

M(t) (r2  kV 1  / 2 	d cos e B  d1 B  rv(2  - 3,4)  
rir 



(2j+1)  
2j(j+1) (cose3v)1 

2 
d cos 493V 

3V 
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(7.15) 

where (6.5) has again been used to separate out the factor 

rv(2 - 3,4) //rtr  which, as explained above, is the branching 

ratio for the decay process (1.2) relative to all other possible 

decay modes of the resonance B1. 

The distribution of the decay products as a function of 

cose3v  is clearly independent of the production process 

variables and is given by: 

(2j + 1)  
2jj + 1) (cos e3v)-1 2  d cos e 3V (7.16) 

On the other hand the decay distribution as a function 

of 111/3v  depends not only on the production process variables 

but also on the ratio of the coupling constants f2  and 13  and 

their associated form factors. The distribution is of the 

general form: 

21‘ 
	A(s,t) + B (slt) cosq,3V.1 dO 3V 

	(7.17) 

where A(s,t) and B(s,t) are specific functions of s but 

arbitrary functions of t. For the situation in which sin 4)B = 0, 



(1+1)  
j 	

,2j-2 	f: 
'V 	41k IF2(t)1 	4 + 21  j: jl  

X 	(2j)1 

2 
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that is the case of forward and backward production of the 

resonance in the process (1.6), the decay distribution is of 

course independent of 963V since this angle is then indeterminate. 

It should be noted that the number of events in the forward 

direction gives a measure of the coupling constant f2  independent 

of f3. 

The spin averaged differential cross section for the 

two body production process (1.6), independent of the decay of 

the resonance, is found by putting flv  (2 - 3,4) = fiv  in (7.15) 

and integrating over cos e 3V andV>3V. The result is: 

di(a) 
2 2 

B 	1 x 

  

4E2B pB (t-y)2  

f f 	F2  (t) F3 (t) + F3(t) F2
+ 
 (t) 

41N 	(mf ) 
3 

2 2 i 
f3 1.5121 -t +(m4 + m2)21 

(mf )
2 

3 

2(10 + m2  ) + 1  

2 

pB ciBsineB) 
2
1- 

2 

IL 2-k 
	2 f: IF2(t)1 	-t + (m4 - m2)2 	 '2 10- d coseB B1 

(7.18) 



k k /e 	1  
(t -11. 2) t

g
1  G1  (t,v) 

(m )n-2 
g1 

1.%2 gI,X1 
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- .Once again this result is completely independent of 

the decay mode of the boson resonance. Thus (7.18) applies to 

the general process (7.7) provided that this process is mediated 

by the exchange of a vector meson. 

(iii) Pseudovector particle exchange, 

The invariant matrix element is given by: 

<p2  q3  1̀4 I T 1131 c11 > = 11 (p2) f2F2 (t)11( w.+ 

   

f3  F3  (t) 

(mf
3
) 

fk  P4  (t) 

(mf4) 
kee01.6f  u (p1) x 

g
2 G2 (t,v) 	

g
3  G3 

 (t,v) 
k 41.1  kA I  (m )n 	q

210 
kA 1 	tm Nn 

g2 	
g
3 

x (k)n".1  
(_„
)
n 	(q2,n) 	)n 	 

Ap 	
‘14  

1 	h H(v) (7.19) 

(v42) 3)14; (mh)n-1  + 

Substituting (7.19) in (3.12), averaging over initial spin 

states, summing over final spin states and integrating over dv gives 

with the notation of (7.3) and the approximation (7.4) the result: 



do (a) 

	

(4A)3 	4E2B  pB 	(t 

cIV 
2j 	 .M 	(t) (p2  ix) (p2  .rt 	p ) + M2k (t) (p r)(k.r+)+ 

	

2r 
2 

 2 
(g)2J-2 

 1 r 
	P2P2V 

Mkp  (t) (k.r) (p2.r+) + Mkk(t) (k.r) (k.r+) 	M(t) (r.r+).1 
2 

x d coseB  dik B  d cos() 3v  d4) 3v 	 (7.20) 

where 

B 	 h2 
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x 

r 
k k 

fg 	2 )tgi r y  
+ g2 q2 k + "g3 	kA 	x grXi  

x (-1)3+1  (kA 	
Xi (q

2.* j) ( (7.21) 

and 

M
P2P2

(t) = 
2 	 2 

721 

	

	 1731 4 + 2 Re (.172  7;) 2 (1 + m2) + 

x [-t + 	+ m2)2  1 
	

(7.22a) 

2 
Mp2k(t) = 	172 	2 + cr2  743-) 2m2 + (72  .740 2 (m4 + m2) + 

(F3  n) 1: -t 	m2)21 	(7.22b) 
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MkP (t) 	(t) 	 (7.22c) 
2 p2k 

Mkk(t)  = 2 Re (72n) 2m2  + 1f412 	+ (m. m2)2  1 	(7.22d) 

M (t) = IT212 	-t + (m4 + m2)2  j 	(7.22e) 

Denoting the variable cose v  by CV  it follows from the 

definitions (7.21) and the result (A.8) that: 

k.r 

	

	gk k  
...f2jj1j4  kJ-2  j 

V 	qv 	— V 2  j P° (C
V) 

14. (2j)1 j 

and from (A.8) and (A.9) 

,J" 

	

J4_,ILL  1 j-2 j 	f g kff  j P° (C ) Par = 	kv  qvV  (2j)1 	P2 

sintg pi  (C g1 P2V kV178€  V Pcj (CV) + Sint V 	3V j V 

and 

(7.23) 

(7.24) 

r.r+ = 112j j4j4  1 
(2j): 

22 
4-2 41 	it4IT Ij  

2 
P3  (CV)  

1702 41 j poj (cv)12 	0
1 V 1 

r 2 	(7.25) 

where 

(7.26a) 



2 
+ g

3 (1 - 2A\ 

k.q2  

 

g3 

2 
(1 .-_212) k2  

r
2 
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p k 	.k k. — 	2 	q

2 	— 	k2 -I g
P2 

= 	
--g 7 	

p 
2 (132"12 	 2 	) 	g3 p2.k (1 -- :7) 	

(7c26b) 

7r12  = 1 7212r 
 2  + 2 Re (71  g2 "c12) x 

1 	k.  q2 
1,--4 	g2 2 

t41 1  
Pik
2 52 

and where the angle (E v  is given by (7.13). 

t2 P2V kV sinlEV = EB pB  qB  sin4DB  

(a 	m22 _II 22) (_t  p2V v cos€ V 

2r22 (_t  m2i -m2) 1413 22 

(7.26 

In fact 

(7.27a) 

1,22)  

(7.27b) 

Substitution of (7.23) - (7.25) in (7.20) gives: 

do-  (a) = 1 	clB 	1 	2ii4j1 	ki2ij -4  2 (4)2 4EB  pB  (t-p )
2 (2j)1 

x[T 	
2 cost J Pc). (CV) ) + sin. fIr 	,v Pl. (C..v) p2p2 Y2V "V 	V 	j  



     

'71. 

+ 2 Re p2k
) p2V cos v  j po (CV) + siney sin P. 1 

j P°. (CV) 	Rkic 4 lj EP. o 3 v 	 (CV) 	(c ri .1,11 
211 2 

PV (2- 3'4)  x  (2;1+1),  d c x d coseB  d#B 	 V 2/1  / 3V 	
(7.28) 

rV 	2j2   

where the various 17 depend in a complicated way on the coupling 

constants and their associated form factors. Because of this 

complexity it is unlikely that measurements of the decay distri- 

butions will furnish any information on the couplings involved 

in the production process. 

Integration over 3V  gives the decay distribution as 
)16  

a function of coseSv: 

2j2
1) 	A(s,t)iij Pcs. (cos9.301 

2 + B(s,t)1, Plj  (cose3vi2ld cos4D3v  

(7.29) 

gives the decay distribution as a and integration over cos 

function of 4 : / 3V 

C (slt) + D (s,t) sin2 3vA dIkv  1 
2 

(7.30) 

where A, B, C and D depend on the coupling constants and their 

associated form factors which are in turn arbitrary functions of t. 



72. 

These distributions are the most 6,,,nral distributions 

for the decay of a resonance of spin j produced by a peripheral 

mechanism involving the exchange of a spin one particle. 

The spin averaged differential cross section for the 

quasi two body production process (1.6) independent of the decay 

mode of the resonance is found by putting ry  (2- 3,4) = t7v  in 

(7.28) and integrating over the physical region of Cv  and ID3v. 

The result obtained is: 

deb) 
1 	c113 	1 	2jj1j1 	1 2j-4 

	

= 	 -V 2 (4 ;)2  4E,111  pB  (tic )2 	(2j)!  

sin2L  Sall  cos w P2V kV 	V 	V 2j 

	

P2P2 	 • 

2 Re (7p2k
) p — 	— (2i+1) cos* + M.. k4  v  M 	seB d co V xx 	

B  (7.31) 

This result is again completely independent of the decay 

mode of the boson resonance and thus applies to the general process 

(7.7) provided that this process is mediated by the exchange of a 

pseudovector meson. 
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BOSO'J RESONANCES DECAYING INTO A VECTOR PARTICLE AND A 

PSEUDOSCALAR PARTICLE. 

A boson resonance of spin j which decays into a vector 

particle and a pseudoscalar particle may have either normal or 

abnormal parity, that is parity (-1)j  or (-1)j+1  respectively. 

These cases are considered in turn: 

a) Normal parity  

In the peripheral production of such a resonance the 

exchanged particle may be a pseudoscalar, a vector or a pseudo-

vector particle. The differential cross section for the process 

described by Fig. 1(b) is calculated for each of these three 

possibilities as follows: 

(i) Pseudoscalar particle exchange. 

The invariant matrix element is given by: 

< p q q ,-1 TS 	= 71 (p2) f F(t)15 u(p 2 3 30-0 	 ' 1 (t-t.2) 

x (-1)n  g G (t v) (k)Y (c12'n) 
(m) 	h 

 1 x 
(v—t:) +1,42111" 

h H (vic) 	 q40-c14T o o 	n-1 x 
(mh )n 	

(q)) 	cr cite' q31, 	go-17 	2 	x  
/ 4 

0 

i 1(x) q5it.  
df4rx 

(8.1) 



(v  

k.)(x 

2)  
r 2  

1.2f  ) 

(8.3a) 

(8.3b) 

1 

   

( 	2)2 
+1.  2 

2
1 
 02 

‘v,-121 	V ,P2'V 

    

2 2 	2 2 

	

(x14)  II krx 	11411 
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Averaging over the initial spin state? and summing over 

final spin states gives: 

2 	fF(t) g G(t,v) hollo(v,x) i 1(x) 

< P2q3c15q6 T p1 q1 > I  AV 	(m)n-1 	(mh )n g   

t-t +(m4 + m2)2) 
x 

(t_r2)2 

   

x 
2 2 	2 rt 2 

(v72) 4)4 i  2 V 

 

2 2 	2 2 
(314) 	4 X 

x [ (k,

/‘.)n 

 410 (q2.n) (qh  )1/-14E. 

)15 	"P 

2 

c13.8) q5cr-1 (8.2) 

where the notation of (7.3) has been used. 

Assuming that the resonances B
3 

and V1  both have narrow 

widths i.e. 1-1/14:4:72  andi".<<P,„ then: 

2 

x 

With these approximations and the result (A.10) substitution of 

(8.2) in the expression (3.29) for dG (b) and integration over 

d v and d x yields the result: 
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2 

f2 dcr(b) = B  F(t) G(t)  .11  
fm  0-1 /FEB  pB  

x 
-t + 	+ m2)2  

2j• • Aal  
(2j): 	kv d c°5°B d91B 

x
717.(2- 314) 

x (441)  t,  P1 (cosi)
2 

3V
) 	d 054)  

2j (j+1) 3V x  2.1c fiy3.tr 

f'4,- 5,6) x cos21i, 	x 	.144.  
3v 3v  

`i 5c 93v X 

2 ,2 in2E) 	d5V x ciy/ -1.5V 	35V 

(8.4) 

where (6.8) and (6.12) have been used to separate out the factors 

fly  (2- 3,4) /1-1/7  and \-; (4- 5,6) /cc  . These factors are the 

branching ratios of the decay process (1.4a) relative to all possible 

decay modes of B
3 

and of the decay process (1.4b) relative to all 

possible decay modes of V1  respectively. 

The first factor in the expression (8.4) is identical 
with that appearing in (7.5) and is in fact the spin averaged 

differencial cross section for the production of a spin j, 



76. 

parity (-1)i  resonance in the process (7.7) mediated by pseudo-

scalar particle exchange. 

The remaining factors in (8.4) give the distributions 
of the decay products as functions of the variables cosG V' 

3/14 3v  and4 v.  Each of these distribution terms is 	/ ...  

normalised so that integration over the complete physical region 

appropriate to each variable gives unity. The distribution of the 

decay products as functions of these variables are all independent 

of each other and of the production process variables. In 

particular the distributions are independent of the arbitrary form 

factors r.'(t) and G(t). This makes comparison of the model with 

experimental data relatively easy. 

Despite the fact that the factor sin2E)35V arises in 

thesquare of the matrix element it is not convenient to measure 

the distribution with respect to the variable e35V because of the 
complicated nature of the relationship between G 35V and the 
variableti.15V 

which appeared naturally in the phase space factor 

evaluated in section 3. The relationship is such that: 

civ  4v sin. 2635v [r 120..52 _7,52 9422 la 	32)2 / 722_ ii.124,152.712)2/4  

(8.5) 
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2 	2 	2 where of course q3v  is given by (2.8b) and q5  =w5v  1) 5  4) The 

distribution of the decay products as a function of the usual 

Dalitz plot variable 14.)
5V is thus of the above form. By carrying 

out the integration overt6.3
5V and making use of the fact that the 

limits of the physical region are defined by sin 
35v = o it is 

possible to show that the final term in (8.4) reduces to unity as 

required. 

The spin-averaged differential cross section for the 

production of a spin j, parity (-1)j, resonance and the decay 

of this state into a pseudoscalar meson and a vector meson is 

obtained from (8.4) by integrating over dy105v  and d4"15v  and 

assuming q (4- 5,6) 	. The result thbtained is then: 

f2 2 der(b) = 	F(t) G(t)  2 	qB  — $R,  
LrriT 	(m 	

p g) 	E  

[-t • (m,1 + m2)21 
i,rj 

d coseB  dIB (t 1,2)2 

 

x 	 x (.21+1) P 	cos (core ) 2  d 	e 	d 	(8.6) 23(j+1) 	j 	3V 	3V 271 /43V 
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It should be noted that this result is completely in-

dependent of the decay mode of the vector particle which might 

for instance decay into three pseudoscalar particles rather than 

into two such particles. Thus (8.6) applies to both of the 

following two stage processes: 

P + N 	+ B3 	 (8.7a) 

	

B
3 	

P + V
1 	

(8.7b) 

and 

P + N 	N + 	 (8.8a) 

-), P + V B4 	2 	
(8.8b) 

provided the boson resonances have normal parity and the production 

processes are mediated by pseudoscalar particle exchange. 

(ii) Vector particle exchange. 

The invariant matrix element is given by: 

k 
f 	(P1) x (

-1) 

k)4  ky, 

gr.," )„12 



(v12) 9'2ry 
(q4  )n-1 

P 
€p14i1 cr (mh  )13  

0 

q3  x 
hoHo(v,x) 

79. 

o o(t 
(m_ )ri

) 
 Ewc.tp,X 	k 1213,  (kx )11-1 x 	(q2,n) 

5o 	
Ap 

(44-44t- 
x CrT [g  A . 

4 

 

i (x) q5 	(8.9) 

Substituting(8.9)in (3.2)) making use of the anti-

symmetric nature of the pseudotensors, averaging over initial 

spin states, summing over final spin states and integrating over 

d v and d x gives, with the notation of (7.3) and the approxi-

mations (8.3), the result: 

2 h 1  1 	(1B 	1 dcr(b) = (4-7-40  ' 4E123 pB  (t.r2)2 2f: (mho )2jr7V 
x 

i2 	1 
2174/74.r--x mp2p2(t) (p2r) (p2r+) — M (t) (r.r1).1 
' X 

x d coseB dy B d cos 49 dy 	dko.) 3V 3V 3V 5V (8.10) 

where 
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= 70€1404i, X  1 kto2 
f l)i-e %ZS q3  q5,c (-1)j+.1  

x 	(
k) 

3-1# (q2,j) (14 ) j...1 	

(8.11) 

and M 	(t) and M(t) are given 
P2P2 

by (7.9). 

Denoting cose3V  by CV  and sine3V  by SV  it follows from 

(A.11) and the definitions (3.27) that: 

j • 	• 
p .r = - 2 	o 	(2j)! 

2 3131. 1

2 (EBPOB sineB),J2 4-1  4-1  

q3V cl3V 8111033V 
	

x 
COStfr3v  cos73v  j(j+i) 	(CV) 

S 	j 

Cu 4  
p 	(c •

V) 

 i sinli3V  sing! 3V V 
(8.12) 

where use has been made of the fact that the angle between p2v  and 

cl1V' denoted bye V  as shown in Fig. 2(b), satisfies equation (7.11). 

Similarly it may be shown that: 

r.r+  = - 1g01 2 2j_1.1-11 , 1  7 (r  2  
3 

2 
-1 	-1 r2kv 	qv 	q3v  q5v  sin 493511 	x (2j)1 { 

Cu 4 2 
COS2I13V 

j(j+1) P
j 
 (CV) 	g 	3 - " P! (CV) 

V 
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2 
+ sin2 	pl. (c 3v sv  , v (8.13) 

Substituting (8.12) and (8.13) into the expression (8.10) 

for der(b) gives: 

d6(b) = 	2 
(47)- 	' 

 

x 
(t-r2) 2  

(,i+1)  4j-2 M 	(t) 
P2P2 

 (EBPBc1B sin eB) COS 4P3v  cos ¢3V 

    

1 P. x [j(j+1) P3 (C ) V  P1(C) 	sin 	— P. (C 	
2 

VSJV 	3V YI.3V sinO V 	SV 	V  

+ m(t)(r2  kV) P1. 
	2 

cos 2y.J3v 	j(j+1) 141. (C ) -  	(c ) v 	v s 1  

2 
+ sin2y/311. r v 	d coscost) dc/4B x17; 	( 2- 314)  

L v 

x_ 	(2:1+1) d 
20 	

yi 
.2 . il  .2 

d Cv 	FA  43v  x  X 
(4- 59  6) rn  - A 3V 

(a) 	
X 

2 	4 	2 2 	. 2 44 d 445V 3 	3 	g3v cl5v 8111  4f  35v 
(15 X cl3v 

(8.14) 



cose 1  3v  p •(006 G V )' 4- sine3v  
(2j+1) 
.2 	2 23 (j+1) 

j(j+1) P9 (cos 
3 

 

2 
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where use has been made of (6.8) and (6.12) to separate out the 

branching ratio factors. 

To determine the decay distribution as a function of any 

of the variables cos 3e,V5 3V 	/ 
or W.) 

311 
 it is necessary to integrate 

over the other variables. These decay distributions are of the 

form: 

+ 	. 1 	
(cose3V) 	d cose3V sine3V 

(8.15) 

Fik  ps,t) B(sit) .23.677.5. 1:2j+1) + (j2-j-1) 2 cos214 314143v  

(8.'6) 

. [ 714-717 	(2j+1) + (J
2  j-1) 2 cosa  VO 3V d thy  (8.17) 

where A(sit) and B(s,t) are specific functions of s but arbitrary 

functions of t. The distribution of the decay products as a 

function of cose3V  and as a function of *3V are both independent 

of the production process variables whereas the distribution as a 
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114  
function of 3V  depends not only on the production process 

variables but also on the ratio of the coupling constants f2  and 

f
3 

and their associated form factors. 

The distribution of the decay products as a function of 

blit
5V is independent of all the other variables and is given by (8.5) 

as in the case of pseudoscalar particle exchange. 

Integrating over dli3v  and d4J5v  and assuming 

c(Li.... 5,6) .1"; gives the spin averaged differential cross section 

for the production of a spin j, normal parity resonance and the 

decay of this state into a pseudoscalar meson and a vector meson. 

The result obtained is then: 

 

2 
g o 

Go(t) 

(m )i 
0 

2 

  

acr(b) = 

 

clB 	1 	2ijijI 
2 4E5  p5 	(t 1) 	(2j)!2 

x 

     

f2 	2 	f f 
x (14.1)' 4j-2 x 2 F2(t), 	4 + wit x 

2Ret.F2(t) F;  (t)) 
+ m) + 1 	2 

f2 1F.;(t)\2  
1)1 x x 2(ml 

(mf ) 3 
44(1 

--'------(: -t+(ml +m2) 2  
(m 	)2 

x 	EBPBqB sin eB) 
cos214 / 31T 

2 

) 
j(j+1_s _ 

Fj (•_ UV) 	cr. 
p1. 
 (CV)] 
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f2 , 2 2143v  
(C

V  	tF2(t)i 	11:-t-r(ml 	m2)2  )x S j v  

tit 2 kV  2 1 (C xi D0+1) P°.
j 
 (c ) - 	P. 	11 

V j V S 	V)  

[,1 	P 1 (CV) 2 	d cos 9B  MI411,  Sy  j  

T-(2- 3 4) 
V 	/ 	(2j+1)  

2(j fiV 	2j+1) 	
C 
V 	2/C 	f 3V (8.18) 

As for (8.6) this result is completely independent of the 

decay mode of the vector meson. Thus (8.18) applies to both (8.7) 

and (8.8) provided the boson resonance of spin j has normal parity 

and the production processes are mediated by vector particle exchange. 

The spin averaged differential cross section for the 

general two body production process (7.7) mediated by vector meson 

exchange is found by putting fiV  (2- 3,4) = rV  in (8.18) and 

integrating over Cy  and l>3y. The result is of course given by 

(7.18) 

(iii) Pseudovector particle exchange. 

The invariant matrix element is given by; 

2 
1- 



u (P1) x (-1) 	gia 

f F (t) 4 4 
(mf 	) 	k -1 

4 

85. 
f F2(t) 

‹: P2q3q5q6 T 	= 11 (p2) 	f2F2(t)  14110 	3(4 	) P2 jet 
3 

81G1(t'v)  
(m  0-2 

Si 
 gyxi 

ZG2(t,v) 

(mm  ) 	
c120 k  1 

02  

g
3
G
3
(t,v) 

tm  Nn 
% g
3
/ 

x (k
A
)n-1  (-1)n  y& (q21n) 

>p (v-14)  ir2C1IT 

hoHo(vx) 

(mh )n  

x 

) 	c13‘ 11 gc 	2 c144rc14T  
x 	

1 	(x  '
2) + ir0; r 4 i 16c) q.5.t, 

(8.19) 

Substituting (8.19) in (3.29), averaging over initial spin 

states, summing over final spin states and integrating over dv and dx 

gives, with the notation of (7.3) and the approximations (8.3), the 

result: 

clB 	1 1 
do-(b) 	1.-02

B PB 	(t-p)2 (4 p) " ► 

h2 
0 

 

1 

   

2,14 (91 )2irIT 



86. 

i2 	1 

	

2jr4 	
. 2132(t) (p2..r) (p2.r+) + M ,(t) (p2.r)(ksr+) + 

(t) (k.r).(per4) + Mkk(t) (k.r) (k.r+) 	M(t)tr,r+)1 
Alv2 

d cos° B d cos ,3V d#3V3V 
db.$5V 
	(8.20) 

where 

r 	= 	g 	54 	-671 gp N1 g2 q210 kX1 1-73 S•ic  y  x 

k 	i 	q3 	q54 x (-1)i+.1  (Ic) J-1 (j 	(q2  ,j) (q1  )3-1  (8.21) 13 G  24, /5   

and the various 144.(t) are given by (7.22). 

Denoting the variable cose3v  by CV  it follows from 

(A.10) and (3.27) that, with the notation of (7.26) 

Ic.r =- [ 2jj4j1 	1 	ifj -2 j-1 
(2j)L.2‘'T cIV r 2 ci3V cl5V sin 33  x 

ik COSY/3v j P
1 
i (cv)  (8.22) 



- sin E v  cos* s 

1 sin*  5V cos#1 3V j 

CV 1 j(j+1) P°3  (CV) — P. (CV  )1i + Sy  3  

and from (A.10) and (A.11) it follows that: 

[2jj1j1 1 1 j-2 j-1 
Per-- (2j)1.2 .-v 	qv I-2q3v-a sin  e5v 	351 

3 

7 	cost3v j P  (CV) 
P2 P2vkv cos C  COS*3v  j P (CV) 
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x 

and 

+ 	2jj1j4 1 	1,,j-2 j-1 , r.r = 	i' V (2j)1 .2 - qV 2c13Va sin  5V 	35V 

2 

(8.23) 

- 	 4 gr 	2  kv  cost  9.13v  
j Pi  

V - 1-EiV 4 it  cos21fiv  / 

xiLj P1 (CV  )1 2  + cos2y, 3V 
	j(j+1) P°3  (CV) CV Pi  (cv) . 2 

1 sin2ti, [ L_ p
j  0 

 1 2l 
3v sv  	v (8.24) 



where the angle4Ev  satisfies the relationships (7.27). 

Substitution of (8.22) - (8.25) in (8.20) gives 

d6 (b) = 1  31.11 	k2j-4 
(411)B 	 2 2 4

lB p 
	(t-e) 

2  
(204 kV 

88. 

x 

x [R
p2P2 

2 /p2 
P2V "V cos *v  cos 1  11.5v. j Pi(Cy) x 

C 
(ifcos1 	y P . 1  (C 	sin i _cos 3v. *3v 	)3V 	j(j+1) P9j (CV) 	j V 	+3

v cos 

pl (c )412 

SV j V  5 
+ 	2Re ("g 2k ) P2V 	51 COS j Pj (CV)i  x 

cos €V  coski13v  j P] (CV) sin(v 	costi1311  sir4 v 

j(j+1) 
 

P°. (CV) - S 
	1 (CV) 	+ sin3V * 008 3V -v  P. (CV) '  P 3 	 V 

2 2 	2 4  t_kk 	3v NIA 	 P1. (Cv  ) 	cos211/3v  [J Plj  (CV)1 



+ cos2thy  j(j+1) P°j  (CV) 
2 

(CV)  + sin2 105V 

89. 

Pl. (c 
2 	

d cos 	di 	X 
11 	 v(2-  3,4) 	(2.+1) 

L v 3  v 	
() lL 
BB V  2j3(j+1) 	

X 

r(4- 5,6) 1 
d CV2 R d965v T1 	-41 

dkild3V x 
P4  

q5 f i  5v 

x 

2 22A2 diA .1 q3v  q5v  sin ‘-'35V 	5V (8.25) 

where the various Mare the functions appearing in (7.28) which 

depend in a complicated way on the coupling constants and their 

associated form factors. 

The decay distribution as a function of any one of the 

variables cose3v, 3v. or 3v  is obtained by integration over 4p 

the other two variables. The results are as follows: 

(2j+1) A(sIt) 
2j3(j+1) 

j P. (cos e3  
2 

+ B(set) t.?(j+1) P3(cosqv) 

cos 6417 4 
PI (cos sine3v  

r 1 P1. 
sinQ3V 

(cost313v)-1 COSO 3V 

(8.26) 



do-(b) =-1— 
(41c)

0 
 4EB pB  (t4)2 

clB 1 	2i(j1j4 	1,2j-4 

	

2j)1 	-V 
x 

90. 

27 	C(s t) + D(slt) sin2f3v -1 d+3v 

It 
	

[E(s,t) + F(s,t) sin243v  -1 10.3v  

(8.27) 

(8.28) 

where A, B, C, D, E and F depend on the coupling constants and 

their associated form factors which are of course arbitrary 

functions of t. 

The distribution of the decay products as a function 

of 5V is independent of all other variables and is once again 

given by (8.5). 

spin averaged differential cross section for the The 

production of a spin 

of this state into a 

obtained from (8.25) 

putting r x(i+ - 5,6)  

j, normal parity resonance and the decay 

pseudoscalar meson and a vector meson is 

by integrating over d403v  and dUiv  and 

= citx. The result obtained is then: 

x[.

p2 2 1 r 	1 
P2P2 2VkV 	cos  tV 

. 
Pj (cv) .int v  sq3V 

kj(j+1) Pc). 
4  

(Cv) 	S

u 

- 4  P! (C 	
2 

V 

 
4- sin24i v  cos203v  



(C  V 3  V  
2 Re (M k) p 	/ j P1 (CV) 

2 
x 

91 . 

C  kcosE V j P1  (CV) - sinev  sin#3y[i(j.0) Po.  (CV)..._ p1 
Sy
V  j (CAls 

• rikk 4 is 

2 
P1 	(Cv  ) 	+ 3   P.1  (CV) 

2 

▪ tj(j4.1) P3 (C ) 	V 1  (CV)  

	

V r P.  	j i P1  

	

V 3 	

2 
t 

1,(2- 3,4) 
	 x 7  (2j+1) 

IV 	2j'i(j4-1) d C
y  x 12n  43y  

coseB  d+B  x 

(8.29) 

2 
(Cv)1 

As for (8.6) and (8.18) this result is once again 

independent of the decay mode of the vector meson and thus applies 

to both (8.7) and (8.8) provided the boson resonance of spin j 

has normal parity and the production processes are mediated by 

pseudovector particle exchange. 

The spin averaged differential cross section for the 

general two body production process (7.7) mediated by pseudovector 

meson exchange is found by putting 1.4v(2- 3,4) = ry  in (8.29) 

and integrating over CV  and ( 3v. The result is of course given 

by (7.31). 
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b) Abnormal parity 

In the peripheral production of such a resonance the 

exchanged particle may be a scalar, a vector or a pseudovector 

particle. The differential cross section for the process 

described by Fig. 1(b) is calculated for each of these three 

possibilities as follows: 

(i) Scalar particle exchange. 

The invariant matrix element is given by: 

<132q3c15%6 1 " P1ci1> = 17  (P2) f F(t)151  u (p1) 	1  
(t—y) 

x (-1) g G(t,v)  
(m )n-1 

(it)t)n 
(q2si) (ck 

n-1
i 

t(v—r2) 	71/1 

h1H1(v,x)
h2H2(v9x) 	h3H3(v,x) 

( 
mill)n-2 gerfi1 	(M.h )n 	

q20-q4pil 	(m )n c144rgill 
2 	-113 

i 1(x) q5 
c1417- cli+T 	

2 
1  x (-1)  g

6 "C 	e+ 	I [(x  r4) rx) 
(8.30) 

Substituting (8.30) in the expression (3.29) for dcr(b), 

averaging over initial spin states and summing over final spin 

states and integrating over dv and dx gives, with the notation of 
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(7.3) and the approximations (8.3), the result: 

dor(b) = 
cIB 	f F(t) g G(t)  
2 	(m )j -1  (4710 4E pB  

2 
[-t (ral 

(t4)2  

m 121 

 

1 
x 	2 1,-Ri 

2r21 v 

[ (.4)j+1 

717; 
k 
I.. 4... 21 4.1, (_ Ji 4.

4 
P 	

p 

x (mh 	- 	2 	c14
i 	(m .  )- 

	

S 	h1 	q4"1 

1 	 2 
5111 	rik 

	4- 
h2 	x 

q2"14 q4"15  
x(q29.5  - 	„ 2 	

)c141)112 rk 

d coseB  d4B  d cos 03V 
 x 

 

x 3V 11)3V 
dtu1

5V 

 

(8.31) 

Using the relationships (3.28), (A.8) and 0_00) the 

above result may be written as: 

f2 

d 	
g2  IF(t) G(t)  

cr(b) = gr,1 /4 	(m  j-1 g)   

2 
qB 

4E/3
2  pB  
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2  
m2)  3 2' ill1  

(2j)1 Vj d cosik d 

-1 	T44- 5,6) 
(11.1)2  (j+1) + (h2) 

riv 

t-t + (ml + 

(.1V 	'(2- 3 4) 

x.  (hi) Q.4 (
4
5V ) sin 3V P1 (cose3v) 	(17.2) Q2  (05v) j P°J(cosii3v)1 * 

2 

x (21+1)  d  

4112  j 
cost?) d 3V 03V dkhv  4 

Q33  3Vq5X 

&al5V (8.32) 

(8.33a) 

where 

- 	' 
h„ 

h1 	
(mh )

j-2 
1 

h2  = h1  

(mh )
j -2 

1 

2 
t'2.4Y 	

h2 	r 2 (IV 
(rn) 	rk 2   

(8.33b) 

and 

Q-063  5v)  = q3v cl5v six-1935v 
	 (8.34a) 

Q2 (4'145V) 	52431+V -J  kw 5v) 
	 (8.34b) 

and where (6.11) and (6.12) have been used to separate out the 

branching ratio factors. 
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The first factor in the expression (8.32) is identical 

with that appearing in (7.5) and is in fact the spin averaged 

differential cross section for the production of a spin j, 

abnormal parity resonance in the process (7.7) mediated by 

scalar meson exchange. 

The remaining factors in (8.32) give the distributions 

of the decay products as functions of the variables cose 3v, 	 3,, 

44 311, and tAi5v, normalised so that integration over all these 

variables gives unity. The decay distributions as a functions of 

a single variable are given by: 

(h1)2  (5+1) + (h2)2  J .1 LILL 	6371)2 
2j 

2 
1 ck P. ( os et3v) 

(12)2  
k 

2 
Pc)  (cose3/7)1 ld cos() 3-tr 

1 
271. d+3V 

(8.35) 

(8.36) 

[(111)2 	+ (h2)2 
2 (5+1) sing  

4- 	(h2)2 
 
2 
	d 413v 	 (8.37) 
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1 
I 
L(h1)

2 
 (j+1) + (h2)2 	t(1)2 (j+1) (q3v  q5v  sinIS 5V)2  +.  

+)2  2j (1....) uhl 	-0 w )2 	11  4 5x 4v F 4 5v 
m 3 	5V 
-15v 

n  
-J. 5x 

(8.38) 

Apart from the distribution as a function of #3v'  which 

is isotropic in accordance with the Trieman-Yang test, these 

distributions depend upon the ratio of h1  and h2. This limits to 

a certain extent the use of these distributions as a test of the 

spin and parity of the resonance. However the distributions of the 

decay products as functions of the above variables are all indepen-

dent of the production process variables and of the arbitrary form 

factors. This makes a test of the model comparatively easy. 
Integrating over 	3v  and  dt45V and putting T1 (4- 5,6) = 

flX gives the spin averaged differential cross section for the 

production of a spin j, abnormal parity resonance and the decay 

of this state into a pseudoscalnr particle and a vector particle. 

The result is: 

2 

2 	2 	F(t) G(t)  d 	(b) = f27:11- 	I rm  j-1 
g 

ciB 

4EB  pB 
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+ (134 + m2)2  	2.)4  

x  d co. eB  2 2 	(2j)! (t_r ) 

rtv  (2_ 3,4) 

 

1 

   

ry 
	c,(131)2  (j+1) 

	
(132)2  1 

2 
Pl(cose3V  ) 0  

(112)2 .; p.  
j  3 (cos (3311)1 

2 

(21+1),
2j 	

1, it d cos '3V 27 d 3V  (8.39) 

Once again this result is independent of the decay mode of 

the vector meson and thus applies to both (8.7) and (8.8) provided 

that the boson resonance of spin j has abnormal parity and the 

production processes are mediated by scalar meson exchange. 

The spin averaged differential cross section for the general 

two body production process (7.7) mediated by scalar meson exchange 

is found by puttingl7v(2- 3,4) Xv  in (8.39) and integrating over 

cose3V d43V  . The result is of course given by (7.6). 

(ii) Vector particle exchange. 

The invariant matrix element is given by: 
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P2c13q3c16 II Plql > 7/1 (p2) 	f2F2 (t)  /5
r  

fF(t) 
(mi.

4
) u (p1) x (-1) 	..t 	1L! e ke 	 2  (t _r ) 

4giGi(tiv) 	g2G2(t,v) 	g
3
G
3
(t,v) 

g0.1   q 	Al + (m i 
	

(m )n 	2J.4 	(m )n 
gl 	

132 	
g
3 

k 

x (kA)n-1  (-1)n  (1) (q2111) 
X p 

1 	(q. )n-1 

t(v1422)  if2rvl 4p 

h2H2(vx) 
x  h H ey 

1 1 1  

Om  )n-2 6(31)1 + 
(mh )n 	

c120-q4p1 

2 

h
3
H
3
(vPc) 

(mh )n  3 
c144— chir X (-1)

2112:2!ts 
0 %. 	ri2+  x 

2 1 	
 i I 00 q lc.  

(x-e4)  Irk\ x 
(8.40) 

Substituting (8.4o) in the expression (3.29) for d4r(b), 

averaging over initial spin states, summing over final spin states 
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and integrating over dv and dx gives, with the notation of (7.3) 

and the approximations (8.3) the result: 

qB 	1 	1 	.2 	1 do- (b) = —1—, (49- 	pB (t_e?N2 r 	eek 2,A2 V 

x 1:14,32132(0 (p207) (Per+) 	IA
P2lc 
•
2
( t) (per) (k,r+) 	(t)(k.r)(p2p4) 

Mkk(t) (k.r) (k.r+) - M (t) (r.r+)1 d cose113B d cosG 3V 

d#3V d' 3V 
	 (8.41) 

where 

r = 
r 

k k 

{
~
v 	2 	-g-1 gy)41 +-g-2 cl2Aik)k1 + 73 k-AikX1 r 

) (q4 )j-1 
P 

h1  
( )j-2\g511 

1 

cl4s5 

cikr) 

h2 	q2. q4 
 (q2"15 
	p

q5 
4 2 

(8.42) 
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and the various N(t) are given by (7.22). 

Denoting cose3v  by CV  and sinCtv  by Sv  and with the 

notation of (7.26), (8.33) and (8.34) it follows from (A.8) and 

(A.10) that: 

2ijiji  k.r - 	Z2j)I 	3 
- 	- 2 kV 2  qv  . gk kV x 

x [(ZI) Q1(4,) v) sin9)3v 	(CV) + (h2) Q2  ("15v) j Pc3i  (CV) 
	(8.43) 

and from (A.8) - (A.11) it may be shown that: 

2 Pa" - 
\12(j1j1  1 1,j-2 V 2 

2): 	"V 

Pi  ( ) + h2  Q (44- ) j 	(CV) j  Q1(4.145v) sin1.13v_j 'CV 	2 	 V 

P2V kV1L h144'1 6A V) 
 

ooskv  sin' 3v Pi  (CV) + 

[cos /3v  cos 3V 	) sin 3V  sin3V  Ij(j+1) P° (CV) - 11 	117„. 1 7, - 
;" - V 



sin 	V  sinif 3V  Pl. (CV) )1 j  

and 

r.r+ = 

(8.44) 

2 
kV 1 4-2 

qv  
j-2 2  

101. 

CV 
Pj 

v  j P°. (C 171 2 Q2("1311) 	cos E 	j 	V)  

2  x[171  Qi  (V v) sial3v  Plj(Cv) +2 	 j Q2(kitv) j Pc). (C ) V 

2 	 2 
- 1'5'11 	t V11 Q1 ( V)1 

r  
J
2 

2 
P j  (CV)  + 

2 sin * 3V 
\ 	

j (cV )
2 

j
2 P°. (CV) P2. (CV  4/5 j  

1 
- 2  k 111 Q1 (̀ ‘`'V)1 	r12 Q2(‘'°,5V) 	sin  *3V  Pj (C

V ) 	J  P3 (CV) 

CV P . 1 (CJ
V 	

+ iq2  St 	Q2V 2 tj  P°. (CV) 	v 2 + [Pl  (C„)1 
2 
 11 (8.1+5) j  
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x 

where the angle eV satisfies the relationships (7.27). 

Substitution of (8443) - (8,45) into (8.41) gives: 

d6(b) 1 	qB 	1 	2j,j111 	1,2j-4 = 
(4it)2 	4E2 	(t- 2ri )2 	(2j)1 

B B 

1,2 
p2p2  1"2V cose v  sin+3V  P. (CV) + 

sin E V j k cos 3V L' 
	(CV) _ sin*3V  Sint 3V IT  

C ll 	1 x 	Jo+i) 1, 	
V 

(CV) - 	P. (CV)-1 1+ R2Q2(W5v) 	cos E v j P°i(Cv) 

2 
sin. E v 	,v sin 3V  (CV)] 	 2 Re (171

p2 k
) p2V 4 

Q1(w5v) sin*3V j  Pl(cV  ) R2 2 (AJ5V 	3 ) j Pc). 
(CV)} 

x 	131 Qi (1/4$441  5V) C°8'E  V 	*3V Plj (CV)  + Sin  E 
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cos Is 3V 	COs Cje 3v 1v 
	(CV) - sill3 sin 3v  [ 	(c v 

r
cV 

I)* 
 
(qi V Qa  (vJ ) 	cos E v 3 P°  (cv) 4- sinC v  sin#3v  

x 3  (C V)1  1 Q. 	(u+.)5V  ) sin*31T j Pi  (Cv) 

2 
ha Q2 (")5V) P(j)* (C1/)1 	+ 	Q.. cu.)5v 	t sin2 9/3v  

2 	 2 
x 	 1 	1 	2,, 	1 	I' fr, \-1 P. (C )1 + 	cos y3v L + S1/1 j V 	 Sy  j V 	2.413V 

P°. (C c pi.(aro - 1 VT)  —̀'5V] v 
By 

sin *3v  .3. pj  (CV) 
Cir  

(CV) - 	P3  : (cv) 	+ 2 Q2  (tAi5V)1 2  3 SV 

x 	j P7i  (Cv)12  2  1p1 3 (CV) 111 d cose B B 

2 

x 
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ry (2- 3,4) 	1  1.11±22 
rV 	[(71.1)2 (j+1) 	(n2)2 	2j 	d Cy 	d3V 

fix (4- 5,6) 

rk 
dt,41 3V 3c 3 3 cited5V 

cl3V cl5x 
(8.46) 

where the various R._ are the functions appearing in (7.28) which 

depend in a complicated way on the coupling constants and their 

associated form factors. 

The decay distribution as a function of any one of the 

variables cose3v4 317, +3v orti.) 5v is obtained by integration 

over the other three variables. The results are as follows: 

-1 

‘~(h1
)2 0+1) 	(E2)2 j-1  (22j.1) 	A(s2t) ay2 

  

[Pj 
2 	 2} 

+ B(s,t) (cos e3V)T1 	+ (1 )2 r j 	(cos 
03V)\ 2 L 

2 CV 131. 	) 

i.fR 	J 	
1 (C ) 	+ 	j(j+1) P(3 (Cy) 

2 V 1' 	1. L21 	V P  j V 	 V 2 I  

+ (H2)2 	P1, 0 (COS e3v)1 21, 	d COS G3V 	(8.47) 
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• D (s,t) sin2+ 3V  t d 3V 

▪ F(s,t) sin2q,3v3 dJi 3V 

(8.48) 

(8.49) 

t(h1)2(j+1) 	(372)21 	[(1-11)2(i+1)(q3. cl5VsinE)35V) 
 2 

3  4  
+ (7- 2) 22j /5)t44V -r 4'145V)

2 	
q 3 q3 

3V 5X 
do.) 5V 	(8.50) 

Where A, B, C, D, E, and P depend in a complicated way 
upon the coupling constants and their associated form 
factors which are themselves arbitrary functions of t. 

The distribution of the decay products as a 

function oft.45v  depends only on the ratio of Hi  and E' 
2 

and is once again given by (8.38). 
The spin averaged differential cross section for 

the production of a spin j, abnormal parity resonance 
and the decay of this state into a pseudoscalar meson 
and a vector meson is obtained from (8.46) by integrating 

overdtp3v anddw5v iandputtingr-0--*596) = rx. The A 
result obtained is 

2j -4 
d 6' (1)) = 1 	cip 	1 	r 2iiii  1  kv 	3c.  

(4A) 	4EBpB  (t -ti ) 

VI
p2p2Y ,2V 

k2 
 V ` 
ILE 

1 
 ,A. ) 	k cos E. v 	v Pi  a . (C.  ) - sinE v sin+  3V 



(t,•e) A P I, 	P (1,+ct) ipa(R) + (1,4- P)e(11 )3x 

X 	Af a  Op gesoo p 	 (AD ).ei,ci  

(AD)ea e(ea) te  [(A0).1e/, 	e [(AD)is 

(A0)ga (I,+P)r3 	le(AD)ic,a\ 

+ 	V0).gclle(E) + 	c.(A0)ic,c1 ed'2) 

	

A 	1111 
*731  

i 
irci 	

d 	.) + 	[OEN
Li 
 ) ? IT  A. OuTs  A auTs  + (A0)g -..c,  A S00 l‘ 

X  (AD)gar Ca(zE) + 	tA04.Ca 	- (A0)ga (1,4-PA -E 
A0  

Ac i& tiTs  A it/Ts 	(AD)Pa  A .3 soo (A0 ).21/a  

x 	 A 	-1— licrcs huts t 	 A A AdClecli-A) au E +1E (o)iC  ,a 

A
3  (Ao)g,,A sool 	1(A0)  .CL-ci  c. 	s03 A ")uTs 

 

901. 

 

A 
0 



107. 

As for (8.39) this result is independent of the 
decay mode of the vector meson and thus applies to 
both (8.7) and (8.8) provided the boson resonance of 
spin j has abnormal parity and the production processes 
are mediated by vector particle exchange. 

The spin averaged differential cross section for 
the general two body production process (7.7) mediated 
by vector particle exchange is found by putting 
rv(2 --314.) =Tvin (8.51) and integrating over Cv  
and 416 3V. 	The result is of course given by (7.31) 

(iii) Pseudovector particle exchange. 
The invariant matrix element is given by: 

P2q3q5c16 T  Plql > 	 11(132)  [ f2F2(t)  ?Sr 

f3P3(t)  p2 	f4F4(t) 1c);p5f u(P1) (-1 	150
2  
c.1  

ij 	(124. )  
'4 	 fr1  

goGo(t iv) otpixi  kooll  (kA  )11-1  (-1)n  x 

(mg  )11  

q4i6 	( 21n)  
A P 

hilli(vlx) gcrri 1 	(c2.4.

P  )
n-1  

[(v14)  • n-2 
(m i)  h 



[x (-1) g6..t.- cly.cf-  (14-r 1 	i 1(x) q51: 	(8.52) 

4 fx1;;;) it441-1X1 

(mh1  )j-2  

108. 

Substituting (8.52) in the expression (3.29) for 
dCr (b), averaging over initial spin states, summing 
over final spin states and integrating over dv and dx 
gives, with the notation of (7.3) and the approximations 
(8.3) the result: 

dcr(b) . 	1 	q 
B I 	127 .2 1 
2 	2 	 , 

1 
 ----; 

(4)
5 
 4EBpB  (t_r )2  2 1,1,2 v  kfl: 2,e4  i x  

x [Mp2p2(t) (P2.r)(P2.r+) - M(t) (r.r+).1 

x d cos()B  dOB  d cos4)3v  dO3v  dtp317. duk.15v 	(8.53) 

where 

r 	= go[Etici4X1kt023 (-1)j(kQi-41  (q2'j)((14 )i-11 
)4 	 oN p 

l 	
f 

Ohl  q4"15 (14p1  

„2 

h2 	(12' q5 - q2. (14 q4 • c15)  c14/31  

(mh2)(1 r4
2  (8.54) 

and M,
1'21

'2(t) and M(t) are given by (7.9) 



[ 1 Pl. 

gV 3  

[i(j+1)1)9(c,) - CV Pi v 
V 

x 1 Q1 (4.0..) 

+ sin 21+13  

2 

2 
IMO 

cos 
211  

109. 

Denoting cose3y  by Cy  and sine3y  by Sy  it follows 
from (A.9) and (A 11) that, with the notation of (8.33) 
and (8.34), 

132°I.  = (2j). 
1 (EgBqB sinOB) 47-1  

j-2 x 
qv 

x[ F, 	(„A.) 5v)  k cos q)3V sin+ 3V t7 1 	.(CV  ) 
V 

singe/3V cos(1)3y  tj(j+1)Pa 	v  (C,) - 	(CV ) l + 
°V 

+ H2Q2(uj 5y ) cos 3V  j11( Cy ) 	 (8.55) 

and 

r.r+  = -1g012  [2jj:j:  
(2j): 	7- 

j-2 1 2 
2k1d2k-ri  

- 4 sin+3V  cosi15y  sin#5y  cos+3y. 2 10] (CV) x 
3V 
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1 x jP.(CV 	a sink")3V tj(j+1)Pc?(CV  ) 	CV PI(CV) + z,— 
"V 

1 + cosy V  3v  sinik3v  coscos+, 1 P .(CV 	li2Q2(w 514  2  x g  

x jPI.(C j V (8.56) 

substituting(8.55) and (8.56) into the expression 

(8.53) gives: 

der (b) 	 P (47„2 	o 2 	ci'B 	1 	 2jj!j! (j+1)  

( BPB)  (t- 
)42)2 (2j)! 	j 

x 	kV 
j-2 2j-2 { (t) EBpBqB 	2 	(IA) 50 

x [cos 4ip3V  sin+3V  1 Pl(Cv  ) - 3V cos 3v  rr 	a  
Ir 

y,3v 	/1(cv)  2 M(G )1 ja 2kvl2 { 	(tA)50.11 2 [cos 2  
V 

- 4 sin* !  3V cos 3V sin 3V cos(cos0 3V  1 P.
1  (C,) x , 	v 

'V 

x .1j(j+1) a (CV)  - CV Pl(CV  )1 s-- a  
V 



+ sin l[j(j+1) Ip(?(Cv) - CV P1 (Cv 	
2 

a 
—y 

1 + 2 	IT•IQ,i(tAi 5v) E2Q2(bJ 5v)1 jPi (Cv) t sin 1.J 3V 

O j(j+1)Pcil(Cv) - CV 11 (CV) + cos 01., 3V  sing) 3V  cos 03V 

x 1 	pl(cV  )1 -F[E2Q2(w 501 21Lip (c0121 j by 

• d cos9B 	B 	 
Fv(2-3,4) [(E1)2(j+1)  

(E2)2i1 

x (2j+1) 	d C 1 d V 2A 	 3V I X(4-5'6) 	1 d(i3V 
2j20+1) 	rix 	Tt 

x 3 	/44 
3  -3v -5x 

5V 	 (8.57) 

where use has been made of (6.11) and (6.12) to separate 
out the branching ratio factors. 

To determine the decay distribution as a function of 
any one of the variables cosG3v, () 3v14/3v, ortA) 5v  it is 

necessary to integrate over the other three variables. 
The L'esults are as follows: 
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Pi )2(j-0) • (E2)21-1 {(E1)21[ p](cose3v) 2  
sing 3V 

jj(j+1)P3(cose3v) cc!se3V P](cose3V)21+ 
sin e3v  

• (E2)2i [j11(cose3v  111 (2j+1) 	d cose3V 	(8.58) 
2 2j (j+1) 

1 [A(s,t) + B(s,t){ (E1)2(j+1) 
771 

1 x (111,)2  1 [(2j+1) + (j2-j-1)2cos i 7  

-1 x 

+ (T 2)2 	cos 2 0311 d  311 
	(8.59) 

[(H1)2(J-0) 	(E2)2J . -1  [(111)2 	(2J-0) 
7.71 	 a  

+ (j2-j-1)2 sin 2*34 4- (E2)2 	c/43V 	(8.60) 

pi
1 
)2(j1.1) 

▪ (112)2i] -1 [(11 

1)2 (j+1
)(

430.5v  sine35v)2 

• (E2)22j(  5Xu44V 	4Lh)5V)27.k 	d ukai 5V (8.61) 
3 ,3 "3- 3V "I 5X 

where A(s,t) and B(s,t) are the functions appearing in 
(7.17) and (8.16). 	It is to be noted that these dis-
tributions all depend upon the ratio of El  and E2. 
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The spin averaged differential cross section for 
the production of a spin j, abnormal parity resonance 
and the decay of this state into a pseudoscalar meson 
and a vector meson is obtained from (8.57) by 
integrating over d1 3V 3v  and duJ 5V  and putting 

rl (4_5,6) =rx. The result obtained is: X 

1_01.(b) = g2 	2 G (t) Go  

 

1 	 2j4:d! 
-fit_ 2)2  (2j). 

    

x id-4-11 4-2  [Af2  1 F2(t)12  4 	f2  f3  2 Re&23  &2(t)F3(t)1 x 
41k 	4 A 	(mf  ) 

3 

2 	2 
x 2(m,, + m2) + f 	3(t)t 74 4. (41.m2)21 x 

7:71 (mf3)2 

X 	EBPBc1I3 sinei,} 2 (H.1)2  cos 24)  3V 
I
i(j+1)1(cv) 

7CV 131(CV  1 	3 2  + sin 20 	2 + 
E- 

1 + (H2)2 cos 2+3v  jP] (CV) 2 	+ f2 V2(t)1 2  
77k 



(4,-.2)21 1 )4 2' V 	(h1)2 	j(j+i)P°(cV  ) - 

- CV Pl(C ) 2  + 1 Pl(C) 2  + 03 )21:1p1(c ) 2 "Ix a v 	 a  v , 	2 	- j V S 	 „. 
y 

x d cosE)B 
v(2-3,4)  [,,,,2(j+1)  x 

x (2j+1) 	d C.V  1 
	

3V 
	(8.62) 

2j2(j+1) 	A 

As for (8.39) and (8.51) this result is independent 
of the decay mode of the vector meson and thus applies to 
both (8.7) and (8.8) provided the boson resonance of spin 
j has abnormal parity and the production processes are 
mediated by pseudovector particle exchange. 

The spin averaged differential cross section for 
the general process (7.7) mediated by laseudovectoe particle 
exchange is found by putting inv(2-314) = 1-7,7  in (8.62) 

41 
and intergrating over CV  and 3v. The result is of course 
Given by (7.18). 



x(112-m2)  
(w, -4)+im2  

where J=( n 	-3- ) 

1 

115. 

9. FERMION RESONANCES DECAYING INTO A SPIN-HALF PARTICLE 

AND A PSEUDOSCALAR PARTICLE. 

In the peripheral production of a fermion resonance 

and a pseudoscalar particle the exchanged particle must have 

normal parity as can be seen from the discussion of section 5. 

For each of the two allowed possibilities, that is scalar and 

vector particle exchange the differential cross section is 

calculated for the process described by Fig. 1(c) in which the 

resonance has spin J. The various parity cases for the 

fermion fields are treated simultaneously by making use of the 

factors 	and )1( 
cof 

 defined in section 5. The invariant matrix 

element is in each case constructed from the vertex functions of 

Table 1, and the propagators of section 4. In particular for 

the spin J resonance the propagator used is given by (4.28). The 

resulting expression for the matrix element is then substituted in 

the formula (3.34) for d 	(c) 

(i) Scalar particle exchange. 

The invariant matrix element is given by: 

< P3P4c12 t  T  P1q1 > = 'T;(1)3) 	e eE(wip2)(p4  )n  (-1)ne (p2  f n) 
(m )n p 

e 

x 

(k )n  fF(tINg 452)  4fu(P1' x 
1 

A 	 2 
gG(t)  

(m: )n 	(tist )(Ing)-1  

(9.1) 
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In order to deal with all parity cases simultaneously 
it is convenient to define m1 and m3 

such that 

mi 	+ m1 if 	= I 	(9.2a) 

	

= - m1 if 	f 	5 	(9.2b) 

	

).ce 	I M
3  = 
	M

3 
if 	 (9.2c) 

m3 	m3 if  Ice '155 	(9.2d) 

Assuming that the resonance has a narrow width 

i.e. flW.1C<m2 then 

IT 	(1,1-4) 	(9.3) 
[(14-4)2    	m2 r'In1 

Substituting (9.1) in (3.34),averaging over initial 
spin states,summing over final spin states and integrating 

over dw gives, with the notation of (9.2) and the approx-

imation of (9.3) the result: 

der(c) 	T  2 E  2 	qB 	Izt + 	+ m2) 
)40 	2)2 

1 

4717- 47c 4
E2PB 
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2n-21 -1 
PW 

 

X 

x 17/(2- 5,4) 	2n  n: n1 (2n+1)2  

tIA'r 	
(2n): -75-- 

)n+1(p )n-14)  ( p2,n) (kx)n-11t(....,on+1(kow)  

(Pk t )n-11 

x 1 	d cos9BIB d cos0 
4WD̀  4W 

(9.4) 

 

where now 	= (n-i). Use has been made of the fact that 

y52  commutes withe(p2,n) and (4.25) has been used in order to 

facilitate the evaluation of the trace. In addition (6.18) has 

been used to separate out the factor fl  (2 - 3,4) /r where 
t1 

r (2 -3,4) is the partial width andr is the total width of 
1,11 	 VI 

the resonance. This factor is thus the branding ratio of the 

decay process (1.1) relative to all other possible decay modes of 

F. 

Using (A.21), (A.24) and (A.26) this expression may 

be rewritten as: 
2 

d6(c) = f2 g2 F(t) G(t) B 

x(7t+(m 1  ,+m2  )2  2n  n: n: k2n-2 d coseBB 
(t- 2)2 

 (aa)! 

411 41‘' 	 1 (m: 	
g 

	

)n-1(m, ) 	44gB  
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rw(2-3,4) 	OnP°n(cosia24.4 tic' (cos64w)). 2  dcose4wd400 

TZ T  
(9.5) 

The three factors in the above expression are 

completely analogous to those appearing in (7.5). The first 

factor is independent of B  of course and is in fact the spin 

averaged differential cross section for the production of a 

spin J (J=n-i) resonance in the quasi 2:,-II*0 body process (1.8) 

assuming that the resonance does not decay or equivalently 

summing over all possible decay modes. 

The final factor in (9.5) gives the distribution of 

the decay products and is normalised so that integration over 

cod?' and+1  Rives unity.Ehe distribution is independent 14, 	41- 
of +kw  in agreement with the Trienan-Yank: test(13) and the 

distribution of the decay products as a function of cos 

is independent of the production process variables and of the 

arbitrary form factors F(t) and G(t). This distribution is 

of course the Adair distribution
(36) for the decay of a spin J 

resonance produced in the forward direction of a quasi two body 

production process. The Adair distribution is independent of 

the production mechanism and the distributions obtained in this 

section all reduce to the Adair distribution when events in 

the forward or backward directions are considered. 



x  (k )n-1 
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 ) +im2 PW 
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3 
F3 /  / 
(t w a2) 
(„_)n+1 

k 	k‘ 
1 
 +f-F,(t,w1152) )16   	2  

\n+1 

p
27,i Ai k ‘, +f4F4  (t ,w , 752  ) 

(mf )n+1 
4 

(3.34), averaging over initial 

(2n) 
11

2)2 

(9.7) x T(r)d coseBdtikd cose4vid Poi  

where now J = (n-1/2) and 

119. 
(ii) Vector particle exchange 

The invariant matrix element is given by: 

717(p3)( eENi 2) (p4 )n(-1)n  e (p
2' 

 n) c62402) xe  
(m )n 

e 

< P3P4g2ITIP1ci1> = 

)g)A 	(t, 	x. 
(m:,)n-1 F 

firi( 	r.  2 	00  2-P  2 w 2 IAk 1 

(mfg)  

ti
g2G2(t)gL2A,  

where J = (n + 1/2) 

Substituting (9.6) in 

spin states, summing over final 

+ g3  

spin states and integrating over 

u(p1)  g 

dw gives, with the notation of (9.2) and the approximation (9.3), 

1 

the result: 

d4r(c) = 1 
(1141)3  443pB  (t 

1r (2 - 3,4) 2nnIn: 
	 111  q B 

2 2n-2 -1  
(2n+1) p,, 

x 
n3  
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T(r) = kkk/32 

+ M s+ s 	1 Tr ss 2  x21 4  

+M  irrkA  rx  +M  rkra  k‘ +M  rrri, 	+ 
r2 	2 	 2 "2 	p 2 i"2 

2St!. 1  614p -Xx 1\ 

N k k 	rk ‘ 1 kkis 2  x2 	p 2  A 7 Tr 	(161  X(÷  - X(±141 ) /c3 16 6 115p ,I.Z5  

tk+k 2  ko  kA  N+ r+ 2A 2 	i  k. Tr (nrS - 	
161 

p 	
1 

1 

tkkkp2kA2 4 Tr (1(+ ?14+)  *ip 1  iWei/(xl 

+1Pir  k s 	+ P its+  k, + PrsrsA p2  A2 	P2 A2 	
/32 2 

 

x Tr%5p,iiXpiXxii 

+tksicp2sA2  + Qsksi:2k)4 2  + Qrsrp 2sA2  

x 	1 Tr /. S 5 (Zil  /52 

 - 1527S1) 

p s+ 
'r-lr  P2 

Qsrs;2rA2  

x 

+/

+1
1Z12„k s 2  Is  1 Tr Sr5(751X4+  - X4+  .112  p 1?5,1))5i0S giX/,-;)C 

R4 s+  k 	1 Tri 5(X(16,1 "" 1Y)
/ip )fapilfA11 P2 A2 7 
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iSkski325.1 /4 	Tr 
7 

-1-1q-sis2  s+ kx 2  1 Tr 
7 

x (_1\n+1 ) 	(kilt  

(7cf /2 12Xcf)Ip iff)  

5(/42X1 X4142A3 1W2514p1X 	x  

n-2  cb 	(P2In) (Pylf  )n-11 
i6 4 

(..-)n+1 
 

P4p  ) 	trkfix (p2,n) (k )11-23 
	

(9.8) 

in which 
= (-1) 
	

g 	 k k 
frA 	flu 	Y  

and 
se = Ery er P 2I)  kcr  r  -r 

(124, (9.9) 

(9.10) 

The notation used is such that: 

	

Mkk = f2,2 4 + 2Re (T2T3)2(m,; 	m2) 

• 1r31 2  [ -t + (mi +m2' ) 11 (P2. r) (P2.r+)  

+{ 	2 + ( 	)2m 	( 	) ( 11'2 i 2 	-72r4-3- 2 ÷ 3214-4- 2 	+ m2)  

• (T3rz41:) [ -t + 	+ m2)2 ] 1 (p2.r) (k.r+ ) 

(.• 17212 2 	(T3r+2)2m2 	(T4T+2)2(mli 4- m2)  
• (T47-13- ) 	_t 	(mit 	ra2) 2 	(k .r) (p2.r+) 
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+ 	2 Re (7274)2m2  + 	1702  1--t + (mit  + m2)21 (k.r) (k.r+) 

— 	1721 2  [ —t 4 (nl1i + m2)2] 1 (r.r+) 	(9.11a) 

Mkr =  (7172) 2(mil  + m2) + (71r3)t—t + (mii + m2) 211(P2.1.-1-)  

+ 	(7172) 2 m2 + (T1r4+)[—t + (ni  + m2)21} (k. r+) 
(9.11b) 

rirk Mk+r 	 (9.11c) 

Iv' 	. 	 i' + rr 	117112  [—t + (m 	m2)2  1 	
(9.11d)

} 

Mss = 
or512 	. 	c 

m2)2  (---c + (mi  + 

	

	 (9.11e) 
1} 

1\1 	 (k.r) kk = 	17212  + (737+2)m (P2'19 11(747+2)m  1 
(9.11f) 

Nkr = 	(7/7+2) m2 	 (9.110 

0kk = I,   7212  C-t + 	
, 

(mi  + m2)21 	
(9.11h) 

, 
Pks = 	5 2 	1  (7 7+)2(m + m2) + (7573) [ —t + (ml + m2)21/(P2*r÷) 

1 
+ 	(752  7+)2m2  + (754  F+) r t..  _t + (m, + m2)23 } (Icor+) 

(9.11i) 



t 
(9.12) 

123. 

Psk = 	(72F5)2(-m i  1  + m2) + (T37+5) [ t- (mit  - m2)21I(P2.r) 

+ 	(Y2T5) 2m2  + (T4T5)(t- (mi - m2)21 (k.r) (9.11j) 

Prs = 	(r571-) [-t + (mil  + m2) )2  1 1 (9.11k) 

t 
Fsr =  (Tin) [ t - (m1  + m2)2  A 1 	 (9.111) 

Qks = 	(T511) (p2.r+) + (T5T4) (k.r+)) 	(9.110 

Qsk = - Qii-cs 	 (9.11n) 

Qrs = 	(T5T-IFD 1 	 (9.11o) -  

all = - -sr 	Qs 	 (9.11p) 

R
ks = 1 (72) m21 	 (9.11q) 

Sks = 	(T5 2 	1 T-4- ) ml 	(9.11r) 

Using the definition (9.9) the following functions 
of the 4-momentum rij  which appear in the expression 
T(r) may be readily evaluated: 

k.r = - f g2  (k. q2)E3k2  1(1  

P2'r  -g2  (p2•q2  - p2•k k.q2)4 g3P2'It( 	k2 - 
142 	fr12)1(9.13) 
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r.r E21 2 	q2  

+ [2 Re (g2e3) 

(k.q2)2  (k.q2)2  ( 1 1 
0.14) 

) fr2a. 

- k2  

f2 

(k.q2) 

i2 

2 k2 
;r2 

It is convenient to denote the angle in the frame 

W between 22w  and kw  by E w  as shown in Piz, 2c. This angle 
satisfies the relationships: 

m2 q2W-W   sin E W=FpB  qB  sineB 

and 
q2 wk osE w  (-t+4-11-:22 )+2m(--t+),,, 

4z -i2  2 

(9.15) 

(9.16) 

Using this notation the following relationships 

may be derived: 

= 	ci2WkWe°s€W+ 	?7-;..2(1"c12) 	
(1_42 	, w 2 

	

i2 	(9.17) 

	

(rwhIc_w) (Eivw 	Lw)  = 	_ (104 2wkwsin€ w ) sin 0 4wsin4)24.w  
' (9.18) 

	

(EW /\ kW)  ° 	kW) = T212  ( 	 sin  E 
	

(9.19) 
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24w.(Ew  A ) = -E2(q2wkwsinEw)sine4wcosc64- 
W 	(9.20) 

Pw 

I (rw A l'tw)  (KiAr A  j:/iw)  kw .=. 
	 (q2whsin( w)2cose4w  + 

Pw 

• g2( q2wkwsinE 	—g2  q2wkw's E w 

P• 	2(1" q2)  F' 	1-k21 1 k2  sin() sing) 4W 	4W 	(9.21) 

and 
(Elt  A 41)•(Pil w A kw) kw(P2.r+) +(EV\ Lw).(E1, 	240 x 

Pw 	 PW 

x 	kW - (102  .k) = ‘g212 	(q2WkWsinEE W)2(132°k)c°sE)4W 

(c121.4koinCid(p2.kk.(12-k2p2.ci2)sine 4wsin964.11 (9.22)  

Using the results (A.33)-(A.42) which give the 

various factors appearing in T(r) it follows from (9.7) 

that: 

dj (c) = 1 	qB 	1 	2nn!n1 k n-6  x 
(47i)2  4E123pB  (t 1,02)2  (2n)! 

x [ A  [nP°n(cw/ 2  A. 14 (c )1 

+ B sincbwe (n(-1 1  
/ ' 	

P1n tA(c. i I )  

P
2  

( 

2 

) 	c;iJ Pala 01 
SW 
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▪ C cos#4W  (-1) 1 pin(c W) 	npno(cw) 	(cw)/ 
(n-1) 

+ Di 1 
(n-1 )2  

• • 1, — CIA! -01( c  )1 2 

, 2 
+F 	n , ) 	- nP°(cw)P'il(cw) + 

(n-1) 

+ E 1 1AT P-nt (c`4)1 tnPQn(cw) c 
(n..1 )2 

2 

+ cos251)4w t ,pn.(cw)1 2  - re(n.Wc  )17)n(ci ) 
(n-1) 

F -1 	n41 [nP°(cw) 
(n-1) 

1 - c P i;
sW 

 

   

) 2 ▪ sin2+ 	, 4W -  n 

• C 0 S c_  0414 

nP°( )Pn2(cv7)1 
(n-1) 

- c Pl (c W n W 
sari 



rir r. p2  k; 	r.1)-} 2 A = M, 

p2 

127. 

x d cos 

where 

d c-d 
4 f7 	454 W (9.23) w(2- 3,4) x 	

W  

47Vn 

+ rr (r.132 "PP 
2 

P2 

)), 2 	 (9.24) 

B = - 2Re 	P-  (o 	) 	M _ c"2 	VI 	rr r.p2  k.p2- 
2 

P2 

Qrs 	
° 2 2m2̀kw  (r+.p2  k .p2  r+.k + Sks2m2?(rTp2k,p2  r,Fic 

	

2 	 2 

	

P2 	 P2 

' Rks 
-+ 2(p2.k k.q2 k2  p2q2) g2  (q2wkwsine w)1 	(9.25) 

C - 	2Re 	( 	n.E ) Q  
-2 	-21,1'1-- W si 	ks 2m 2k2 
	(9.26) 

D = 	1 7212 (c127112: sineW ) 
2 „,,21,2 

ilrr + `ors
,
”  2"W 	(9.27) 

E= 1,7 
} 

17212 (q2WkWslnE W 	11 m2  )2 	ss 2 -VI 	 (9.28) 

. 2 	 2 	2,2 F __. ...1 1 (q2wkwsin€ w)2  2Re / Nkr2kw  + (,rs2ra2i:w  (9.29) 

G = q2ww 	/ 2Re 	ks  (-2p2.k) 4,- S. 2m -17212 ( 	ksin€ )2 	 R 	 2 } 
(9.30) 



o 
nPn(cos 4W) - cose4w  411.(cose4w)-1 + 	1 

-(n_f)2  

2 

sine4w  
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The factor 1' (2_ 3,4)/7 is the branching ratio of 
the decay process (1.1) relative to all other possible 
decay modes of. F. 

The decay df 	ibution 	,early a very complicated 
function of tile, 	col, —cr?rts and their associated 

form factors. -1.-J,egration overii',4w  gives the decay 

distribution a 	function -f oTrJ  = cosG 4W° 

t1-n` cos ::,.+)  
2 iv 1pn( cos e w)  

2n 
21 

+ it.Vnl (cose4w1 2  - nPn°(cose401)-112(cose401 d core 

(n-1) 

(9.31) 

and integration over cw  gives the decay distribution as 

a function of 4W: 

2)1 
[ 	:17 sin 	d (sip 2 

4W 	4W (9.32) 

where T, Vii, U and D depena 	the production process_ 

variables s and t in a very complicated way. 
It is to be noted that for the production of the 

resonance F in the forward or backward direction for which 

sin()B = 0, the decay distribution is uniquely defined as: 



dCr(c) = 1 
(41-‘ )2  

qB 	1 

4Ep B B 
(t_ 142)2 (2n): 

2nn:111. k2n-6 

129. 

1 	A 	[nP°  ( cos e4w  
n 

2 ÷ 1 Pn cose4w12  d cose4Wd041x1 

(9.33) 

This distribution is of course the Adair distribution for 
the decay of a spin (n-i) resonance produced in the forward 

direction. 
The spin averaged differential cross section for 

the production of a spin J (J = n - i) resonance in the 
quasi two body process (1.3) assuming that the resonance 
does not decay or equivalently ,summing, over all possible 

decay modes is obtained from (9.23) by putting 
w1'1  (2 - 314) = rl  and integrating over cw  and9,64w. 

Me result is: 

{ 	+ 1 ( IP + G )1. +  n 	1( D E 	d coseEdCkB  
7 	7 (n- 1) 	(9.34) 

where AlD,E, 	and G. are given above. 
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10. SIMULTANEOUS PRODUCTION OF A BOSON RESONANCE AND A 

FERMION RESONANCE. 

In this Emotion a boson resonance decaying into two 

pseudoscalar particles and a fermion resonance decaying into a 

ls, eudoscalar particle and a spin half particle are considered. 

The boson resonance must necessarily have normal rarity and in 

the peripheral production process the exchanged particle may be 

a pseudoscalar, a vector or a pseudovector particle but not a 

scalar particle. 	For each of the three allowed possibilities 

the differential cross section is calculated for the process des- 

cribed by Fig. 1 (d) in which the boson resonance has spin j, and 

the fermion resonance has spin J. AB in section 9 the various 

parity cases for the fermion fields are treated by making use of 

the factors 5
e 

and )( %if  defined in section 5. The invariant 

matrix element in each case is constructed from the vertex functions 

of Table 1. and the propagators of section 1+. The resulting expres- 

sion is then substituted in the formula (3.38) for ddr(d). 

(i) Pseudoscalar particle exchange. 

The invariant matrix element is gi'ven by: 

leeE  "2) 	
n < P3P4q3c14 I T p1c11>  = 7/. (p3) 	11 	(Pk ) (-1)  

(me) 	
n 
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e (p21n) (i2 + m2) 	2 1 
	(k

A  )
n  

Px 	 (w-m2) i m2rIVI 

f F(t,w,i5 ) 2  
(m 
f'  
Nn 

f  
n(Pl) 
	1 
 2 (t-e ) 

p G(t,v)  
(mg)j-1 x 

1 

(v122)  + 172 PIT  

h H(v) 

mh)  
(c11.1) j 	

(j-1 

(10.1) 

where J = (n i). 

The matrix element clearly consists of two separate 

parts: one involving the boson resonance and one involving the 

fermion resonance. Thus using the results of sections 7 and 9 

substituting (10.1) in (3.38), averaging over initial spin states, 

summing over final spin states and integrating over dv and dw gives, 

with the notation of (9.2) and the approximations (7.4) and (9.3), 

the result: 

2 

f
2 2 

d4r(d) = 	bk 
F(t) G(t)  

(m f) 
   
Nn-1 (mg)j-1 

qB 7t+(m4 

(t-te)2  

 

2 4EB pB  

 

2n ni ni 	„.2n -2 	2j  jl j1 	 2jr  
(2n)1 	(2j)1 

d cosi)'33 d#13 
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ria(2- 3,4) 	2 	2 
tAn P201.  (cose414)1 	1 + n (cos-(34A 

x d cos 
f;(2- 3,4) 

d44W 	 P. 
12 

(cost.0SV) x 

d cos() 3V (151)31/ 
	 (10.2) 

where now J = (n 2)and where (6.5) and (6.18) have been used to 

separate out the two branching ratio factors! V(2- 314)47; and 

r(2 31/0/1-1/4  respectively. The first factor gives the spin 

averaged differential cross section for the two body production 

process (1.9) since the decay distribution factors are normalised 

so that integration over the distribution variables gives unity. 

The distribution of the decay products of the boson and fermion 

resonances are independent of each other and of the production 

process variables and the form factors F(t) and G(t). As expected 

there is no dependence on either03v  or #4W  in accordance with the 

Triqtan-Yang test. 

(ii) Vector particle exchange. 

The invariant matrix element is given by: 



klc (m 	)n+1 	0 A iCr'r (TF21-: 
f
2  

f5  F5(t,w1162) 
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e E(wti,) 

< P3P4 1̀3 1̀4- k T 	Pi `Li > 	(132) 	e 	(m  )fl7 	(104 )n  (-1)n  

e 

(P21n) (Z62 4-  m2)  

[f1 Fl (t1/1/2 2)  
(m 1n-1 
f1/ 

(w-m2) + i m 2 	2 W 

f2 F2(t'w42)  
n 	tit, kA 

(mf )  2 

x 

f3 F3(tw'16'2) 	
k 	+ 

f4  F4(tw 142) kk 	+ 
(mf )n+1 	

p 2101, 
(mf4)12+1  3 

(-1) x u P ) (t- 2) 

ga 	
kk 	G (tIv) ck 	 0   k 	q 	(k )j-1  r2 (m pt 6 /4  t r) 

go 

1 	)j 	H  

(v1:) +  i02T v 	c v lk 	j-1 
(mh)  

(10.3) 

where J = Oa + 
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Substituting (10.3) in (3.38), averaging over initial spin 

states, summing over final spin states and integrating over dv and 

dw gives, with the notation of (9.2) and the approximations (7.4) 

and (9.3), the result: 

11(2- 3,4) q 	1 	1-11/(2- 314)  der(d) 7;;7 
4E31 pB  (t7.6 	raw2 

-1 
[ 2j  14 j1 	1 	2j1 [2n  n4 n4  x 	

(2j)4 	(2j+1) 	gV 	(2n) I, 
(2n+1)2  

n3  

-1 
2n-2 
pw 

x T (r) d cosA8B d cos( v  43v  d cosew  dk+w 	(10.4) 

where now J = (n 2) and T(r) is given by (9.8) with rlo given by 

(7.10) ands 	by (9.10). The various coefficients Mb, Mb,....  
14  

etc. appearing in (9.8) are given by (9.11) and the factors multi-

plying each of these coefficients are given by (A.33) - (A.34). 

Using the definition (7.10) it follows that k.r is zero and 

p2.r and r.r
+ are given by (7.12) and (7.14) respectively. Using 

the notation CV  = cose3v, Sv  = sine3v, C w  = cosekw  and 

Sw  = sineLw  the following relationships may be derived: 
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Eld* 	= 	t 2j 	j4  1 
° 	(2j); 	j 1 	1 	k.p2 

kV 	qV 	P j (CV) 	2 
p2 

x 

x2 p2V kV 	V sin k ) COs+3V 
	 (10.5) 

(rya A /Q . (241 A  M  
PW kW 

[2j  jd j1  1 kV  j-1  qvi  Pli  (CV) 
- o 	(2j)I 	j 

(k.p2  k.q2 - k
2 

9j2 kV kW)  si143v S cosS 4w + 	m2 	
c12°P2)  x 

cos 	 SWSG 	sin(1) 3V 	kw (10.6) 

2 4 	 2 
ji id 	1 	j-1 (rw 	lEw). (4 l_Sw) =  J 	[ o  t 	(2j): 	kv 	qv x 

2 	 (k.p 
P1.(CV 	x 	(r2 kV kw)2  sin

21  
r3v 	

2  
j  

x cos2cia 
3V 

k.q2 k2 p2.q2)2 
2 

112 

(10.7) 



cos2Cv 	cw k.p2  
2 	(f2 P2V kV S V)  P2 

x 
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214.11-(r:w 	-sw)  
Pw  - go 	

2j  j1 	1 , 	q 	Pj  (C
j-1 	j 	1 

(2j)4 	j "V 	V 	V)  

x 	( 2 kv w) 	v  
(k.p2  k.q2 k2 q2.p2) 

 

m2 

cos 	 cos) s(:3V S  W  co  T  kw (10.8) 

(Ew 	hw)  • (Elfi Pow) kw 
Pw 

2 
—got {2j  j) j)  1 1,j-1 

(2j)I 	j "V 

2 
x 

(k.p2  k.q2  - 

m2 
x [P. (CV) 	(112 kV k1 4)2 sin4 3V + j 

2 

 

2)2  x 

 

(k.p2  k.q2 k
2 p2.q2) [ 942  kv  kw) cos+3v  sin13v  Sw  cos 4w  + m2 

x 

X COS 
	 (10.9) 
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and 

(Ew  A)• (pkw  A 4) 
hUJ 

(Ew  Ahw).(4itkpled 
(p2.rc) 	" 

P 	
k(p2.k) 

W :P  

2 

[ 2j  :1 	1 4-1 j1 	 1
2 

(2D1 	j 	j qV 	(Cu) I x 

x 	 .k) 

x 	cos 13v 

(k.p 

[ 	
k*q  

9.12 kV kw)2  sin24 3v 4: 	2  

m2  2 

k2 (4 2 p2V kv  sinE V 	/ ) 	4.12  kv k)  1  

- k2 q2aP2)2  
x 

x cos40 sinO S 3V 	3V W 
(k.p2  k.q2  - k

2 q2.p2) 
m2 

x 

x cos2 9P3v SW sin  4w 

Using these results it may be shown that: 

 

(10.10) 

22 	qB 	1  dO (d) = 	-Jo t It 	2 	2,2 4Es ps 	(-b.))  
x 

 



138 . 

• • 2 	31 	(j+1) 	2j-2 	2n  ni nd 	2n 6- k. (2j)41 	j 	 (2n) 1 x 

2 
x 	A 	[nPn°  (Cw) 1 1 

+ { Pn (CW)1 2  

2# i 	o 
+ B (EB PB qB SineB)

2 cos 3v 	[npn  

 

2 
n 

 

• C 	(EB  pB  qB  sineB) cos 3V a sin 51)3v  cos kw  + 

+ b cossin 3V 	()4W X  

(C ) 

77-7 n W nPn°  (ce 
CW 1 
S Pn

YY 

• D [a2  sin2
3V + b2  cos2(1)313 

+ a sin 

	

	 2 	 2 f 3v.  
cos LIW  ▪ b cosi3V 	L+W sinp, 	Pn1  (cw) #  

11Pn° (Cif)  Pn2 (CW)  
(n-1)  
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• E 	[ a2  sin 	+ 	cos 3V 	- 2 	nP n w 	n  ° 	(C) SW  P (C w).1 

	

3V (n-1) 	

CW 	2 1  

2 1 + [a sin 3v sin 4w  - b cos 3v cos 4>4w"1 	I Pn (CW)1 

npo (C ) P2 
W 	n (C111)  

(n-1) 

+ F [a2  • 2  ,li 	4)3V + b2  cost 	nPn°  sin 24)3V 	 (CW)  
(n-1) 

x 

_o w 
nen (Cu) - 	P1  (Cw) 	(-1) 	sinT3V cost:kw  + 

+ b cos1)3v sinittkw n  2 Pl  (CW  2  
nP°  (C ) P2 

n W n  

(n-1) 

(Cw) 

 

nP°  (C,,) t 
+ 	a2 	

. sin24,
3V b

2 24)31  n  [ cos 	 nPn (Cv) 
(n-1) 

CW  1 - 	P SW  n + 	a s inSb3V sil)kW - b cos 	cos cosi:11/44z 



d4,„ x d cos() B  
2 2 	11Pn (C41)  Pn  (CFA)1 

(n-1) 

a (42 kV kw) 

b 
(k.p2  k.q2  - k2 p2.q2) 

(10.110 

m2 

A = IT 2  :21 	-t (ml m2)2 	(12 kV
)2 

2 
=11721 4 + 2 Re (72  743-) 2 (ml + 2) + f3 x 

x 	-t + m2)2  
k 

x + t2 Re 2(mt + m2) + 2 Re (f1  3) 
1 
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1*v  V 

(2- 3,4) 	(2,j+1)._  (C ) 2 d C V d V kiCj(i+1) C 

x[-t + (ml 1 + m2)2  11 IcW 
k.p2  

2 
p2 

and 

1 	d 	CFI 	d  #4111 lin 

where 

c.1  (2- 3,4) 
rw 



1 L1_1 

71 I 2ra2)2  1 k 
k.p2) 2 

2 P2  
C = 	2 Re (7+2) 2 (ml + m2) + 2 Re (71713-) C + (m1 + ni2)1 kw 

k.p2  
2 2 

p2 

2 	2 + 	Re (7 7+)1  + / 2 Re (7 FE) . 2m2 
2m2 2 

5 3 	 5 1 	2 

k.p2  2 2 Re (.15 2  7+) 	2 k2rri 2 + 2 Re (7 5 2 T+) • 2  m2 mit 2 
p2 
(10.16) 

D =117112  pe + (no + .2)2 ]_ t 4 2 Re (175 1 7+  2 m2  ) 	2 kw  2 (10.17) 1 
1  

2 
E = 	if 5 	-t + (m4 - m2)21 	m21. 2 	 (10.18) 

- 	2 Re (71n)  } 2 m2 	
2 +2 Re (1-  7) 2 m2  kw  k2

1 	5 	 (10.19) 

(1 0 . 15 ) 

2 

k.p2  

p2 
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G 	= 	+ 2 Re (f5 2  7+)} 2 m2  (p2  .k) - / 2 Re (75 2 	1 
V.)1 2 mi r 	(10.20) 

The factors 'V(2- 3,4) /rV  and 174x(2- 3,4) A-I  are the 
branching ratios of the decay processes (1.2) and (1.1) relative to 

all other possible decay modes of DI  and F respectively. 

The decay distribution of the boson resonance as a function 

of cose3V  is independent of all the other variables including the 

production process variables. This distribution is given by: 

(2,1+1) 	
I 
pi (.0.0 

) 2j (j+1) 	3V 
2 

d cos() 
3V (10.21) 

As is to be expected the decay distributions as a function oft 
V 

and(kw  are both of the same form 

and 

27‘ 	[ A + B s in24)3 	d#3V 

± 
2 n 	s1112(A4w 	d  #4W 

(10.22) 

(10.23) 

The decay distribution of the fermion resonance as a function of 

cosew  is obtained from (10.11) by integrating over CV003V and 

4
,41,1* 	The result is: 
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("se 4w)  + P1  (cos (9414).1 
2  

    

cask pl  

sinaw  n (cosekw)1 
2 1 

 

nPo  (cos (94.1,J) 
(n-1)2  

  

    

 

2 	nP°  (cose4w  n  ) P2  (cos94w  ) 	11 

(n-1) 

 

P1  (cos e 2 	n 	41,1)  x 

  

d cos& 4w 
	 (10.24) 

where A, B, 	 F depend in a complicated way on the various 

coupling constants and their associated form factors. They thus 

depend on the production process variables and are, in particular, 

arbitrary functions of t. 

It should be noted that the distributions (10.21) and 

(10.22) are independent of the decay mode of the fermion resonance 

and the distributions (10.23) and (10.24) are independent of the 

decay mode of the boson resonance. Thus the first two results apply 

to the general two stage process: 

P + N 	F + B1 
	 (10,25a) 

B
1 
 P + P 	 (10.25b) 
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where F is an arbitrary spin fermion state, Bi  is a spin j 

boson resonance of normal parity and the production process is 

mediated by the exchange of a vector meson. 

Similarly the last two results apply to the general two 

stage process: 

P + N -4 F + B 	 (10.26a) 

F 	N + P 	 (10.26b) 

where B is an arbitrary spin boson state of normal parity, F is 

a spin J, 	= n - 	fermion state of arbitrary parity and the 

production process is mediated by the exchange of a vector meson. 

The state B could be a stable particle or a resonance which might 

for instance decay into two or three pseudoscalar particles or into 

a vector particle and one pseudoscalar particle. 

(iii) Pseudovector particle exchange. 

The invariant matrix element is given by: 

eE(w)113,) 

< P3P4 q3c14 T P1c11 > 	17 (P3) e 	n 
	
(p )n (-1)n  (me) 	r  

x 

e (p2,11) 42  m2) x 
AP 

1 

(w-m2) + im2
r 

dJ 
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+ 
f F (t w ) 	f F (t w ) 11 " 2_ 	2 2 " 2  Ni  

2-1 	ge0.1 (m  02. 	of 
‘w.f 11 	f 

f3 F3 " (t w 2)  

(m )n+1 
f
3 

x 

x p2Ct   k 

Cot Xier 1~ kcr 

f4F4(t'w' 2) 
')n+1 

‘'f4' 

fF5(tw' ) 
kcK  k 	 + 

(m  n+1 
f  . 
5 

1 5 	u(pi) 3c 	2 	(...1)1 	k022ist 

(t-op 	c:4 	r 2 

g1C41(tIv) 	g2G2(t,v) 

) j-2 )44 1 ÷ 	)j 
Cl 	g2 

q2p,kr, 
g G (t v) 
33 	 k 
On )3 	p ri 
g3  

x 

x (k.)j-1  (-1 (q20)  
1 

(q4 )
j hH(v) 

(mh)j-1  
(10.27) 

where J = (n + 

Substituting (10.27) in (3.38), averaging over initial spin 

states, summing over final spin states and integrating over dv and dw 

gives, with the notation of (9.2) and the approximations (7.4) and 

(9.3) the result: 

dcr(d) 1 B 	1 	rv  (2- 3,4) 	(2- 3,4) w ---r  2 -
(4)-r 4EB  pB  (t-p)2 n/ 	131 



r .k. —id d 
= r 

I kid 

(rig IN  ILO)  • (124W t" hW)  
P ,14 J 
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2j  j  11 	1 	2j 
(2j)l (2j+1) cIV 

2n  nl n4 (2n+1)2 2n-2 
(2n)4 	7 

n 	
P 

-1 
x 

x T(r) d coseB  d B  d cose3V 163V d cosew  1404w 
	(10.28) 

where now J = (n-ii) and T(r) is given by (9.8) with r
/ 
 givea by 

(7.21) and sp  by (9.10). The various coefficients M,, Kam.... etc. 

appearing in (9.8) are given by (9.11) and the factors multiplying 

each of these coefficients are given by (A.33) - (A.34). 

Using the definition (7.21) it follows that k.r, p2r and 

r.r4. are given by (7.23), (7.24) and (7.25) respectively. 	Using 

the notation CV  = cose.3v, Sv  = sine3v, Cw  = cos 	and Sw  = sinew  

the following relationships raay be derived: 

(10.29) 

costhw 	sinCkw 	kw  Sw 	(10.30) 

+ 11,1).12 itv2i  (10.31) 

P4w• (Ew " 1-sd)  
pW  

r„ sin 4 (1),.. d  - 	cosp wl kw  Sw 	(10.32) 
iq  



147. 

V.Lr+  24w) kw  

 

( sr- 12  + ) 4  ow  

+ 2 cosi)kw  + rT)  sinCkw, ri  kw SW  (10.33) 

and 

(r A ht  ).(p A k) 	(p .r+) 	(r 	kw)(r+ 	) 	(p W 	4 	kW 	pW (p2 .r+) 	--W 	W pw  2 

[ (p2ek) (Irri2  • 	i2) k12  C W 

▪ (rN  cos 	+ rp  sin4)4w) (p2.k r+.k - k2  p2.r+) kwSw  

(10.34) 

where 
[2j 	;11  r = I 	(2j)I 

x  k— 2 — k.p2 gk 
kV - gp2 	p2 

2 

i- 
kV 2 
	

x kW 

k.p2  
4 	-4- 71 	2 	P2Vicv cos   E vl 	(CV)  

p2 

71  
k.p2  

2 	P2V kV sin€  V 
p2 

} sin03V PJ (CV)] 
(10.35) 

r = 
L (2j)1 
	

{71 kV cos#3V J  Pl. (cv)3 (10.36) 



(-1) T  1 + B cos 	-1  -777 - n (C ) 

+ C sin134if -("n4 Pn (C) 

n 
P°n (Cu) 

Po n (Cw) 

P1n  (cW ) 

P:12 (CW 

SW 

SW  
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r 	- 
ti

2j(
21)1

jl 	j.-2 	j 	
-I kV qv kw 

k.q2  

„2  
+ g2  k2 	qwkw  sinEw  j P°. (CV) ) V  

(k. p2 k.  q2 k2 P2"12) sinl) Pi  (CV) 3V j  - g1 	ra 	
)42 

(10.37) 

Using these results it may be shown that: 

dar(d) = 1 	2 	clB 2 
	( 

2j 
 2j  
jl j 	

V 
i k2j -4 2n

a 
 n1 n1  kw  2n-6 )1 	u)I 	x 

CA) 	4EB  pB  (t-p )2 

  

21 
n (c 

   

+ D 
0VI 1 	2 

a  1 	
n P°  (C ) - — Pn (CW ) 

3  (n-1)
1 2 	n W 	SW  

+ r Ncos41/4w  + r-,, sin 	12  k kw, 
n P°  (CW n w ) P2  (C..)1 n  

(n-1) 
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E 	ri2 	121 [.n P° 	) n W 
CW 	

)1

2  

- SW 'n 

1 	 n  2 	n PC)  (CW n  )  P2  (CW  ) + r 1\T(kid  sin 	- rp  cos 9Lw 	n (cw) 
(n-1) 

nP°  (Cw  r) 
• FS [1r 12  +‘r p 	 n‘2 	

P0 
1\T (Cw) 	S

„ 
=•= Pn (C ) 	(-1) 
W  

+ r cos  
2 k + r kT 	kW 	p 	kW [ iPn (C  W )  

2 n Po (Cw) Pn2  (Cw) 

(n-1) 

 

    

    

n P° W 1 n 	n W) 	 C t _o (C) 	 -1) Pn w 12  + 4;1)123 	 - 	Pn (C' (n-1) 

+ 	 t2 	1 	n 	(C11) Pfl  (Cw)1 
+ sin Lfw  - r.„, cos tibkw 	[kPn (CU)} 2 - 	  

(n-1) 

x 2i  j1 ji  1 
(2j)I j 4 2  qv 

-2 
 d cos e d B TB 

(2_ 3,4)  
x ry 	(2j+1) 	ri,,(2- 314) 

d C 
ry 	kiv jc-

, 	v 	3v x  - rw  

 

d Cw  d r  kw (10.38) 

 

4 	 . A = 	kit k. + 2 Re (M, rI  ) 	+ M rr /rT2 k2 W 	ic.r  (10,39) 



	

+ 	2 	2 	4 B = + 2 Re d‘  Mkr  r,7 4+ Mrr rN 1'1 kW + 	r  N 21112 kW 

Q,. 	r, r+  2m2 kw + Rks  r 	kw  (p2.k) (p2.k r+.k 	k2 r+spa) 
" 

+ S. 	r 	r+ 	fr2 N 	I 	2 -V 

2 C = + 2 Re 	14 	r 	4+14 	r,,r+ 	1'3? -̀1112 kw rr 	I 

+ 	2 	4 2m2  kw  + Rks  rr,kw (p2.k) (p2.k r+.1c - k2  r+.p2) 

+ S 	
rP 	2 r+ 2m2  k,2  

ks  	
} 

2 	2 D = M 	+ 	0 	2m rr 	W 	s 	2 	W 

E = M 	m2 k4 s 2k1 

F = - 2 Re Nkr  2kw4  + Qrs  24 4 } 

i 

G = - 2 Re 	R 	(-2) (p2.k) k4J 	+ 	1,2 
Sks ""-2 -W 

1 50. 

(10.40) 

(10.41) 

(10.42) 

(10.43) 

(10.44) 

(10.45) 

The factorsi;(2- 	and171(2- 3,4),/rw  are the 

branching ratios of the decay processes (1.2) and (1.1) relative to all 

other possible decay modes of B1  and F respectively. 
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The decay distribution as a function of any one of 
the variables CV, j 3v., Cw  7and 44W is obtained from(10.38) 
by integrating over the other three variables.These 
distributions are of the form.: 

(2j+1)  

2.2 VP3(cos 3v1 2  + q p](.0,e30}2 d cose3v  
(10.46) 

1 	 C + 15 sin 24)3V d 	3V 
	(10.47) 

1 	 7 p1(31(cos()401 2  + 
7n 1Pnl(cose44 

21 

+ 	1 	1:nP°  (cose4w) - cose4w  41(cose.4041 2  4- 
ine4w  

1 [1111(costa401 2  - nP°(cose4w) Pn2  (cose4/6) 1 x 
	 rn-1) 

x d cos()4W 
	 (10.48) 

I CU 4 FT sir, 2 	 d # 4w  
77i 

(10.49) 
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where W.97,....7 depend in a very complicated way on the 

various coupling constants and their associated form factors. 

They thus depend on the Production process variables and 
aret i_n particular,arbitrary functions of t. 

As before the distributions (10.46) and 

(10,'-7) apply to the general process (10.25) provided 

that the production process is mediated by the exchanEe 

of a pseudovoctor meson.Similarly (10.48) and (10.49) 

apply to the general processes (10.26) provided once again 

that the production process is mediated by the exchange 

of a pseudovector meson. 
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11. RESULTS FOR SPECIFIC SPIN AND PARITY RESONANCES. 

In this section the General results of the previous 
sections are applied to processes in which resonances of 

specific spin and parity are produced by a peripheral 

mechanism and subsequently decay freely. The results are 

tabulated as follows. 



TABLE 2  

The decay angular distribution of a normal parity boson,  

resonance Bi  produced by pseudoscalar particle exchange 

in the process. (1.6) or (1.9). , 

SPIN PARITY DECAY DISTRIBUTION_ Sr", 114rr 

2. A. 
2.-cc a. 

	

1 	% 3I CV 
2.Tr 2. 

	

2. 	41. 	% 	E 0 c't; - 01* a.yr il 

	

a 	. 	t .1. 1 	cv  ( 5' c2'v  -*SY.  
an II 

cQ„yr 
2.NT 
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TABLE 3  

The decey angular distribution of a normal parity boson 

resonance B1 produced by vector particle exchange. in 

the process (1.6) or (1.9). 

SPIN PARITY DECAY DISTRIBUTION 8t--1) V*? 

0 	 VolobVI)V0Elk• 

2.. 	+ 	• (A cos'56 .4, NI 	as  c? •S ctr  W 
1.'ir 	 4 

3 	— 	t ( A co s, 91 .4 IA -2.% Sr ( C c't, —%)2.  
Iv ---, 

a.AT 	32. 

(Pkco cZ  9-04-10 (2.j-L221 	(CO 
2.tt 2i,(4.Je 

2. 
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TABLE 4  , 

The decay angular distribution' of a normal parity boson 

resonance B1  produced by pseudoveetor particle exchange 

in the process (1.6) or (1.9): . 

SPIN% PARITY DECAY DISTRIBUTION. ib,-2) 	'9 

G.1;1  44. It) 	svc.v  
OM 2. 

yo '0 ) S4  sv 

+(c.s1.41/4s• idw.4.-0 s2.„ 

••• St,  Pk Qt., Cs c.;, 

 

   

4.21  s'" cl/sv svcv (Cev's)  (c -•) 

4. (c. c......%4„, Jr-0 s: cs-ct, _,).a. 
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TABLE 4 (Contd.) 	. 

C.-.%) 	% (2the..._, q \ A 11, 1. (Qv )11.  
1.-ic 	a.V- 

4.'a sk" ivi  1.0, Vic.c.S1Vn(cvil 

.. (C %L..: i„ 4 ") 1 V .(c..f)I 
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TABLE 5(a) 

The decay angular distribution of a normal parity boson 

resonance B3 produced by pseudoscalar particle exchange 

in the process (1.7). 

SPIN PARITY DECAY DISTRIBUTION se,.---4‘1%-v? 

0 	 *VolEcoot 19.OG% SS CoitPAIDIDEI4 

%s 
"cc 4 

MN* 	 1.• 	g 	%)1.  
2.NT 31 

-2.XX si(41-0 
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TABLE 5(b) 

The decay distribution with respect to the variable's qJw  

and asvof a normal parity boson resonance B3  produ.ced • by 

pseudoscalar particle exchange in the process (1.7). 

SPIN PARITY" DECAY DISTRIBUTION 	v.kfitario 

0 	Via.c.e.4 V0.* c.sss Tos.wes s 

C4r  111' 44- 
Ir 4.„ 

1.wg 

0;3:  0-5-V 	35v 
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TABLE 6(e.) 

The decay angular distribution of a 'normal parity boson 

resonance B3 produced by vector particle exchange in the 

process (1.7). 

SPIN PARITY DECAY DISTRIBUTION lb --IP Nif• i) -Pe  

0 	i 	9 cli.oNow.c-c 014 VockAwbo.s 

4. 	5 	A Lcaw: fikv (.4 	s1. 4 Cv 

'1:CC S 

Is

-14- 2, I it- c.4.v —3 c.I'v -4. tl 

~,,,, q 1. cosh' cicg c24 (%S ev 
yst VLS 

it tp.•.4. 	e'v 	 Y . 1•1 

c-v —2,0S C v 	•‘‘ C v 	%.1 
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TABLE 6(a) (Contd.).  

''IrIck C04: Ci„*IbbcVer %) sc(CO '' Si: 

• 
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TABLE 6(b) 

The decay distribution with respect to the variables Ap.w .. 

andOsvof a normal parity boson resonance B3  produced by 

vector particIe.e3cchange in the process (1.7). . 

SPIN PARITY DECAY DISTRIBUTION N-40 2.4.,-*V.. 

0 	 Wt. V•CM • ON V%) 9.1",nosti 

t(Wsvil 1 C3-2. (.44 i sv) 
w 	4  4 41::, 1c  ei"1„ 

Q AsOsgil 1 IS 	cos:43v) 

tq,s4s%1 

  

If • W5'012. 	-16.  ‘0  Goat: )10%,) 

(t  . s% ̀ ‘Ii At 

'1)k 4.  IQ, Wsv)12.  
G X 41-,101 

%) 	tS'—• — 3. te3t *.e..11 • 

4{  

s v) 	cVw ‘\.5%, 	essv. 
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TABLE 7(e).  

The decay angular distribution of a normal parity boson 

resonance B3 produced by pseudovector particle exchange 

in the process (1.7). 

SPIN PARITY DECAY DISTRIBUTION ISI,--43‘444 

0 	 .1P ECM9...0 CS. SS oilibV1St* E V4 

A stv  ••••• 	sLft 	s_ vcv  
44- 

* C. is', wqw  ct .4 coelkeal -4 "Ittc:14 A. 1 

11. 	15* 	A st 4, 	st," #4, sv Icy Cx --%) 
23‘ 

C.IsLitO.C f H 4,  co' ' 	.:$1 ckv C 	 ylv C  



164-. 

TABLE 7(e.) (Contd.) 

s 	( s-  - 

a.1% 

4.1) sA.vk 	s 	c.v  C 	cs4 — 
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*I) 	17.5 c"/  34:15 t v 	C.2Y 
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2.31 wis 4.v%) 
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*1c c.i's‘„v4-1)11 # 



165. 

TABLE 7(b) 

The decay distribution with respect to the variables '11/w  

and tau  of a normal partty boson resonance B3 produced 

by pseudovector particle exchange in the process (1.7). 

SPIN PARITY DECAY DISTRIBUTION s 	4,49 
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TABLE 8(e) 

The decay angular distribution of an abnormal parity boson 

resonance B3 produced by scalar particle exchange in the 

process (1.7). 
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•. 	TABLE 8(b) 

The decay distribution with respect to the variables "INg  

and Osv  of an abnormal ',parity boson resonance B3  produced 

by scr.,)lar particle exchange in the process (1.7). 
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TABLE 9(a) 

The decay angular distribution of an abnormal parity boson 

resonance B3  produced by vector patticle exchange in the 

process (1.7) . 
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TABLE 9(p) (Contd.) 
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TABLE 9 (1)1 

The decay distribution with respect to.the variableelhv 

and tasv  of an abnormal parity boson B3  produced.by vector. 

particle exchenge.in the proceep (1.7). 
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TABLE 9(b) (Contd.) 
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TABLES 10 (a) 

The decay angular distribution of an abnormal parity boson 

resonance B3 produced by pseudovector particle exchange in 

the process (1.7). 
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TABLE 10(b) 

The decay distribution with respect to the variables 1,3v  

and tOry of an abnormal parity boson resonance 33  produced 

by pseudovector particle exchange in 1,1),,  rocess (1.7) 
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TABLE 10(b) (Contd.) 
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TABLE.  11. 

The decay anzular distribution of s. fermion resonance F 

produced by spin zero exchange in the process (1.8)or(1.9).. 
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TABLE 12  

The decay angular distribution of a fermion resonance F 

produced by spin one exchange in the process (1.8)or(l.9). 
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TABLE 12 (Contd.  
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With regard to the above tables Riving the distribution 

of the decay products of resonances produced peripherally 

it should be noted that the results in each table are ob— 

tained by inteP7rrting over all decay prOcess variables • 

except those explicitly given in that table.The quantities 

A,B 4 O....G depend only on the coupling constants invol.vedd 

in the production process,their associated form factors 

and the variables s and t. 

.The cross section for the production of resonances• 

of specific spin and parity are easy to write down from 

the results of section 7-10.These cross sectio4s are 

tabulated as follows in a way which stresses the spin 

dependent factors. 
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TABLE 13. 

The production cross—section for the Processes (1.6)and(1.7) 

mediated by pseudoscalar or scalar particle exchange for 

the cse of a normal or abnormal Parity boson resonance 

respectively. 

SPIN PROMOTION MOSS SECTION 
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TABLE 14  

The production cross—section for the processes-(1.6)and11.7) 

mediated by vector or pseudovector particle exchange for • 

the case of a normal or abnormal parity boson resonance 

respectively. 

SPIN PRODUCTION CROSS SECTION 
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TABLE 15  

The production cross section for the processes (1.8)and(.7) 

mediated by pseudovector or vector particle exchange for ,  

the case of a. normal or abnormal parity boson resonance' 

respectively. 

SPIN PRODUCTION CROSS SECTION 
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TABLE- 16  

The production cross section for the process (1.8) mediated 

by the exchange of a scalar particle. 

SPIN PRODUCTION CROSS SECTION 
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TABLE 17 

The production cross section for the process (1.8) mediated 

by the exchange of a vector particle. 
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12. DISCUSSION AND CONCLUSIONS 	 185. 

One of the most striking discoveries in the realm of strong 

interaction physics has been that of the existence of a large number 

of resonant states. Quite apart from the problem of determining the 

dynamical origin of these states it isof great interest to solve the 

semi-phenomenological problems of determining the precise quantum numbers 

of these states, the nature and strength of their interactions with 

other states and the dynamics of their production processes. 

The facts that the quantum numbers of the resonant states 

most copiously produced in quasi two body processes are those which 

are consistent with the exchange of a single particle or a known resonance 

and that the production of these resonant states is considerably 

enhanced for events with small 4-momentum transfer both suggest that a 

peripheral model might be a good approximation to the real mechanism 

of the production process. In the previous sections of this paper 

the full consequences of adopting such a single particle exchange model 

have been determined for the exchange of a spin zero or a spin one 

particle. It is clear from the results obtained that it is possible 

both to test the validity of the model and to gain some information 

relevant to the problems mentioned above. 

A test of the spin of the exchanged particles is provided 

by the observation of the distribution of the decay products of resonances 

with respect to the 	nalangle associated with a polar axis in 
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the direction of the appropriate incoming particle as measured in the 

centre of mass system of the decaying resonance. For spin zero and 

spin one exchange these distributions are given by: 

SO 	 (1 2.1) 

arid 
	

ao 4- as 005215 	 (12.2) 

respectively. The former test distribution is just the well known 

Trieman-Yang(")  isotropic distribution and the latter is a rather 

obvious generalisation of this result. In fact it is easy to see 

that the most general decay distribution with respect to the 

az:_iTiuthalingle 0 corresponding to the exchange of a spin 

particle is of the form 

\2._] ancos2nO 	(12.3) 

n = o 

for arbitrary spin and parity boson and fermion resonances. 

From the results of section 5 as given in Table 1 it follows 

that if any of the processes (1•6) - (1'9) are mediated by the exchange 

of a spin zero particle then the parity of the outgoing boson state 

is normal or abnormal according as the exchanged particle is 

pseudoscalar or scalar respectively, The corresponding decay 

correlations of the final state particles are then given by the results 

expressed in Tables 2,5,8 and 11. These decay distributions are all 

independent of the production process variables and of the mass and 
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coupling strengths of the exchanged pertioleglhus the same decay 

distributions are obtained even if any number of such spin zero 

particle exchanges contribute to the scattering amplitude or if 

indeed there is an s-wave contribution to the exchange amplitude 

involving an integration over a cut in the variable t. Furthermore 

it is to be noted that there is no correlation between the boson 

resonance decay and the fermion resonance decay in the reaction (1'9) 

in the case of the exchange of a spin zero particle or apy number of 

such exchanges(2•13)  

If any of the production processes (1.6) - (1.9) are mediated 

by spin zero exchange it is straightforward to determine the spin of 

the resonant states by a comparison of the experimental data with the 

results of Tables 2,5,8 and 11. In the case of the resonance P3  any 

evidence in the decay distribution with respect to w r,,,y  of a term in 

Qua  (k/r) indicates of course that the resonance has abnormal parity, 

but if the distribution is consistent with a pure Q0 (w,v) distribution 

then the parity of the state may best be found by examining the 

distribution with respect to *wv  which is necessarily pure coi203v  

for a normal parity resonance. 

It should be stressed that these spin and parity tests also 

form a series of necessary tests of the validity of the hypothesised 

spin zero exchange model. 
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The production process (1'6) may be mediated by both vector 

and pseudovector particle exchange. In the case of vector particle 

exchange the decay distribution with respect to the variable 

cos 0
3- 

is a unique function of the resonance spin as given in Table 3. 

Thus the vector particle model maybe readily tested and a resonance 

spin determination carried out. 

Unfortunately the corresponding distributions for a 

pseudovector particle exchange model as given in Table 14. depend upon 

the production process variables. Moreover they include terms of the 

form corresponding to vector particle exchange and there is not even 

any special value of 8 which gives a distribution independent of the 

relative magnitude of the various production process coupling constants. 

This means that the model may not be tested as rigorously as the 

pseudoscalar and vector particle exchange models and it may prove 

difficult to distinguish between vector and pseudovector particle 

exchange. In addition a spin determination may not be straightforward 

in as much as it is possible for a decay distribution to be obtained 

which corresponds to the resonance having either spin j or spin (j - 1). 

This possibility may arise for an arbitrary spin resonance because of 

the existence of the identity: 

( gip.;  0 )2 + 	1)2 = 	ipiO4.1 	+ (pi ) 
	

(12.4) 
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The decay distributions of Tabled 3 and 4 are also 

obtained if the production mechanism is generalised to include the 

exchange of any number of spin one particles all of the same parity 

but of differing masses and coupling strengths. 

The possibility of interference between spin zero and spin 

one exchanges giving contributions to the scattering amplitude of 

opposite parity has in a sense been included in the calculations of 

section 7 by the admissions of the couplings associated with g3  and 

f4 which only couple to the spin zero part of the propagator. From 

these results it follows that there can be no scalar particle exchange 

and that the interference between pseudoscalar and pseudovector particle 

exchanges gives a decay distribution of the general farm: 

(2j + 1)  [ A [jPe(c7)]2  + B sincA57  De (07)11:P1M] 
2ff 	2 j2  

(12'5) 

This form is already contained in Table 4. 

It is easy to see that in the case of spin zero and spin one 

exchanges of the same parity contributing to the scattering amplitude 

no interference term arises(!°) 	This is because the fermion couplings 

of the pseudoscalar and veotor exchange particles are of opposite 

parity and evaluation of the trace resulting from summation over the 

spin states of the fermions gives zero for the interference term since 

this term contains an overall factor of y
5 

which forms a product 

with no more than three y matrices. Thus the pseudoscalar and 
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vector exchange contributions to the process (1.6) add incoherently. 

The remaining possibility of an interference term arising 

occurs when both vector and pseudovector particle exchanges contribute 

to the scattering amplitude. Such an interference term is only 

present if in each case the couplings associated with f2 are present. 

A calculation then shows that the decay distribution associated with 

this term is of the form 

1 	(2j +,1 

[ B sin (P3V  [je  (s1)] [Pje1)] D  [ (sVI2] 

 

2j2  

(12.6) 

This form is also contained in Table 4 so that it is difficult to 

distinguish between pure pseudovector particle exchange and a 

combination of pseudovector and pseudoscalar and/or vector particle 

exchanges. 

The production process (1°7) may be mediated by both vector 

and pseudovector particle exchanges and the corresponding decay 

distributions are given for a normal parity resonance in Tables 6 and 7, 

and for an abnormal parity resonance in Tables 9 and 10. As for spin 

zero exchange any evidence in the decay distribution with respect to 

5V of a term in Qe(w
5V 

 ) indicates that the resonance has abnormal 

parity but if the distribution is pure Qta  (w5v) then the parity of 

the resonance may only be found by examining the decay distribution 

with respect to 03w. 



1 91 . 

The decay distributions with respect to cos 83v  and 03,E  
are only independent of the production process variables if the boson 

coupling in the production process has abnormal parity. In such 

cases the spin one exchange model is therefore relatively easy to test 

and spin determinations may be carried out with some confidence. 

However if the boson coupling has normal parity as in the case of vector 

particle exchange leading to the production of an abnormal parity 

boson resonance these diStributions depend on the production process 

variables in a way which makes spin and parity determinations rather.  

difficult. The decay distributions with respect to cos 8
3V 
 and 

S53v  are of the same general form for vector and pseudovector particle 

exchange production of an abnormal and a normal resonance respectively. 

Moreover a decay distribution may be obtained which corresponds to the 

resonance having either spin 1 or 2 since: 

(44 - 34 + 1) + 4.s2
11317  

2 = 4 + 1. 	(12.7) 

The remarks made concerning possible interference effect 

in the production process (1.6) apply equally - ell to the Dzo'cess(1.7). 

In particular there is no interference between pseudosoalar and 

vector particle exchanges or between scalar and pseudovector particle 

exchanges. 

If the production process (1.8) is mediated by the exchange 

of a spin one particle such a particle must necessarily be a vector 
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particle. The corresponding decay 	correlations 

are given in Table 12. In the special case of events in the forward 

direction the decay distribution reduces to the Adair distributioh"): 

;71  EL rirh°  (c/1)12  L Pni cV) 

  

 

(12.8) 

  

  

In the past it has proved difficult to determine the spins of fermion 

resonances by means of the Adair test. This maybe because the production 

mechanism is such that the cross section falls off quite rapidly in 

the immediate neighbourhood of the forward direction. However if the 

vector particle exchange model is valid the decay distribution as a 

function of cos 04w  is the sum of only two independent terms so that 

it should prove possible to test the model and carry out spin determinations. 

Since the production process (1.8) can only be mediated by 

the exchange of normal parity particles no difficulties are introduced 

by including in the scattering amplitude the contributions of any 

number of scalar and vector particle exchanges. In fact by the 

admission of the couplings associated with g3  and f4 the scalar 

particle exchange and interference terms have effectively been included 

in the vector particle exchange calculations. 

The production process (1.9) may be mediated by vector or 

pseudoveotor particle exchanges. The decay distributions are given 

for the boson resonance in Tables 3 and 4 and for the fermion resonance 

in Table 12. In the case of vector particle exchange the model may 

be relatively easily tested since the boson decay distribution with 
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respect to cos 0 3.7 is independent of all the other variables in 

the problem. 

It should be noted that for fermon resonances of spin greater 

than one half the interference between pseudoscalar and vector particle 

exchanges is non zero. The contribution of such a term to the decay 

distribution is of the form: 

[ A sin cP3.v  sin c1/47  + B cos 03v  cos <h t].  [iPJ°  (0v)P.liev)l- 

(n 1) 

	
[nPn°(c.) Pni  )] 
	

(1289) 

Clearly such a term makes no contribution to the decay distribution of 

Tables 3 and 12. 

In order to gain the maximum confidence in any test of the 

peripheral model and in any spin determinations carried out on the basis 

of that model it is necessary to examine the decay distribution with 

respect to the variables cos a, cos /9, cos y and the corresponding 

azifil.utlialangle variables 0a, Opp 95
Y• 
 These variables are, for 

boson and fermion resonances the direction cosines of .s3v  and pw  

with respect to the systems of axes L, N and I A N in the frames 

V and W respectively. Thegzimuthai angles are defined in the usual 

way so that the relationships between these variables and those 

variables used in this paper are for boson resonances 

008 a = cos e 0  0. = 3V 	 3v (12.10) 
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and. for fermion resonances: 

008 a = 00S 0 
147 	Oa  = 0147  

There are only two independent variables and the 

relationships between the three pairs of variables are given by: 

cos a = sift p sin ¢. 
P 	

= sin y cos ¢y 
	

(12°12a) 

sin a cos Oa = 	cos P 	= sin y sin 9!)
Y 	

(12•12b) 

sin a sin Oa = sin 9 cos sti 
P 	

= 	cos y 	(12.120 

For any particular event all these variables are well 

defined but in measuring a decay distribution with respect to one 

variable in each pair an integration is effectively carried out over 

the other variable. In general this results in a loss of information 

which can only be made up by examining the decay distributions with 

respect to each of the variable defined above. If this is done it 

ma-. be  possible to distinguish in a quantitative manner between the 

contributions of individual couplings to a production cross sections; 's?)  

To date the peripheral model has only been examined in detail 

for processes in which spin one and/or spin 3/2 resonances are produced. 

In the case of spin one production(7,10,37°8)it has been possible to 

fit the decay distributions by assuming some combination of pseudoscalar 

and vector particle exchanges. The model used rrith considerable success 

to describe the production of spin 3/2 resonances in a number of 



195. 

processes( 39 ..42) has been that of Stodolsky andSalura16P8)  which 

uses a p-photon analogy to predict a decay distribution of the form 

3 sing  84w 00820
4w
) 
	

(12.13) 

As can be seen from Table 12 this suggests that the dominant coupling 

of the exchanged vector particle with the isobar is that associated 

withtheccuplingocnstantt_Since such a coupling gives rise to 

a production cross section which goes to zero in the forward direction, 

this provides a natural explanation for the failure of the Adair test. 

Processes in which simultaneous production of spin 1 and 

spin 3/2 resonances takes place have also been considered and the 

decay distributions have been found to be consistent with pseudoscalar 

particle exchange.(43)  

If the spin of resonant state can be established from the 

decay distribution together with a knowledge of the dominant production 

mechanism then the model may be compared with experiment iii a 

quantitative manner to obtain some information on the coupling strengths 

of the resonant state. It should be pointed out that before carrying 

out such an investigation the isotopic spin factors which have been 
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omitted from the results of this paper should be inserted. The 

total width of a resonance, as measured experimentally, will, on 

comparison with the results of section 6, yield information on the 

decay process coupling constants and the produotion process cross 

section will give information on the production process coupling 

constants and their associated form faotors. The production 

cross sections corresponding to the single particle exchange model 

are given in Tables 13-17. The main feature of these results are 

the factors (k; )3  and NIn-i  which appear in the cross sections 

for the production of bosons of spin j and fermions of spin 

(11 - 0 respectively. These factors are the generalisations of the 

off-mass-shell correction of Selleri(")  which are necessary when 

determining the partial wave amplitudes of wr -scattering from a one 

pion exchange model. In fact his results correspond exactly to the 

results of section 7 for pseudoscalar particle exchange since Pjc)(c ) 
V 

is the projection operator for the j-th partial wave. 

These factors work in apposition to the pole term in the 

scattering amplitude in that with constant form factors,the single 

particle exchange model results in production cross sections which are 

not peripheral in appearance. That is to say there is no pronounced 

forward peaking of the cross section. This becomes more apparent the 

higher the spin of the resonant state and the only means of compensating 
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for this effect is to assume that the form factors have a very strong 

dependence on the variable t. Various attempts have been made to 

fit the production cross section behaviour using one parameter fo:D1 

factors. At present this has reduced a dynamical analysis of such 

production processes to a purely phenomenological level since no 

really satisfactory explanation has as yet been given as to why these 

form factors are so strongly dependent on t. However the peripheral 

model may still prove useful as long as the form factors exhibit no 

energy dependence and there is no violation of the decay distribution 

predictions of the model. It would be particularly interesting to 

confront the experimental data on the production and decay properties 

of the B3 , (pseudoscalar-vector) resonances and the higher mass 

isobars with the predictions of the model. 

Although as has been pointed out the decay distributions 

provide a 	test of the validity of the peripheral model some of 

these decay distributions can be associated with other models. That 

they are not all exclusive to the spin z ero and spin one exchange models 

has been pointed out by Gottfried and Jackson(44)  in an analysis of 

vectorm•eson production. It can also be shown that the results for 

the boson resonance production processes (166) and (ie7) contain terms 

which correspond to a coherent, no-spin-flip model of the production 

process. Some of the results of Berman and Drell(45)  for coherent 

production are generalised to the production of arbitrary spin resonances 

as follows. 
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A no-spin-flip amplitude for the production of boson 

resonances maybe obtainee by con.sidc2ing scalar particle 

exchange or the f 3 
coupling in vector particle exchange 

for the situations in which the boson coupling allows scalar or 

vector particle exchanges to take place. Thus the decay angular 

distribution of a normal parity boson resonance, produced by coherent 

scattering of pseudoscalarr.esons on nucleons, decaying into two spin 

zero particles of the same parity is obtained from Table 3 by putting 

B = 0. The distribution is of the form: 

. 1 	(2j+1)  COS203v [PJ10 	2 
21; 2j0+1) 

(1 2 • 111.) 

The corresponding result for an abnormal parity resonance decaying into 

two spin zero particles of opposite parity is given in Table 2. The 

distribution is of the form: 

27
(2J 

 2 

(2j + 	[
Fr  
n ( A2 

V 
(1 2 -1,5) 

Similarly the result for a normal parity resonance decaying into a 

spin zero and a spin one particle of the same parity is obtained from 

Table 6 by putting B = 0. The distribution is of the form: 

(2,i +1)  [cosa g557  [i(j+i)pf(c,) — 	(cv)12  
22r 2j2  (j+1 	 v 	s V 

 

Pr Pe (0-0]2 

 

+ sir? 03v  (12.16) 
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The result for an abnormal parity resonance decaying into a spin zero 

and a spin one particle of the same parity is given in Table 8(a). 

The distribution is of the form: 

1 	1 (2j+1) 	2 A 	a 
[ 	[Pj  (eV)] + Cl3)2  [iPj°  (C )ia] air cab.r(J+1)+ (1-02,1] 	2j  

(12.17) 

Clearly none of the above distributions may be associated 

exclusively with the peripheral model. 

Although there has been some success in comparing the angular 

correlations of the decay products of resonances with the predictions 

of the peripheral model it may be possible that a completely different 

production mechanism is responsible for these distributions. The 

peripheral model can only be an approximation to the production 

mechanism since it does not incorporateukit'3:ri%; irapy way and leads 

to production cross sections which increase with the incident particle 

energy unless once again very drastic form factors are incorporated in 

the model. One attempt to insert unitarity into the model has been to 

make use of the distorted-wave Born approximation (46-48).  This 

approach to the problem may be more realistic. 
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A. APPENDIX 

To evaluate the differential cross sections for the 

production and subsequent decay of arbitrary spin resonances it is 

necessary to consider in some detail the quantities constructed by 

contraction of some of the indices of the projection operator (4.11) 

with various 4-momentum indices. One set of indices is contracted 

with the indices of the 4-momentum k and the other set with the 

indices of the 4—momentum q4  or pit  for boson or fermion resonances 

respectively. 

For boson resonances the following expressions evaluated in 

the frame V are useful: 

k 	st) SO = —k1 At k 
142 AX2(  

2 

1)P1 02 (qg 	-C1V 

kkoAl (q2 )q4p1 = -kv qv ems 

(A.1)  

(A.2)  

93V 	(P3) 

and for fermion eesonances the corresponding terms evaluated in the frame 

W are: 

Pi.A.P4p.opip. (Pa ) = - IA; 
	

(A.4) 

oxtA. (P2 )ick icA2 
	 (A.5) 

pc1) AI  (pm )kxj.  = — pwkwcos 61 	(A.6) 
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It should be notad that the coefficients aril  given by 

(4.12) are such that the Legendre polynomial Pn (cos 0) may be 

written as:- 

(cos 0) r 2n 
L 2" &al: -I 

arn  (cos 0)n-2" 	(A•7) 

where n' = n/2 for n even and. n' = (n - 1)/2 for n odd. 

Making use of (Aal), (As2) and (A.3) it follows from (4•11) 

and (A*7) that: 

ocxyl oxp(92 tr )(qpr = 
(2n)", 

c41  Pn (cos
3V

) (A.8) 

 

Summing over all terms in (4.611) and using both (A•7) and. 

its first derivative which defines the associated Legendre polynomial 

Pn (cos 0) it can be shown that: 

(IcA)n -1Sbxp(q2 szl)(g/fdn  = [2n(n2nien);.  ni  Ix 

x  1-6(42)Q41  AI 	gnu (01i) 	[10(42/1 At 

L 	 kv 

 

ec-Y Pni  (0v) 
sV 

 

(ov) 

 

  

  

(A•9) 

and. 

(-1 )n +1. (kA.)n 1/4p(cle  'n)(q4P )"1-1  

x )9agw— Pei (0 ) + 	Pi 
1# kV 	aV 	V 	q V 

[n Pn°  (0v) 

[2nntnt ,r2  
(2n)! n 
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where c = 008 03V and sV  = sin 0
iii   . 

Similarly using (A*7) and its first and second derivatives it 

can be shown that: 

(-1 )n+1 ocitrioxp(ga  sn)(q14.p )n«i = C 4 

IC:t 
I 	

°' ]x 

x [ 	(q2 	P av  
1(45(ga)(141 	Cktg92>]  

L qv 	kv 

110(92)]  Al  (4112)24]  pi  ] Pr12(°19  

v 

[ [4(42)] Ai Liggq2)1 	 Ai  
rit(ctakai 	6P(qa)q4] 	1 	 Pi + 	

Pi  J 
kv 	ktr 	qV 	(IV 

	

Ali  (0 ) 	0 V - I) 	V 
am WWI. 

Pr12  (av) 2 a 	8 V V 

(ct) - 
{ 

[10(q2) 	 tot% )94  

kV qV 

Pt] [ere (cid - (2n - ) f2r. prt av  
Pna ( 

(A•11) 

(A*12) 

The notation used is such that 

[10(qm)31, = Vv0(q2) 

and. 
Eo(qa )q4 ]„= ck,p(g2 )q4 	 (A'13) 
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In section 6 it is necessary to consider the special cases 

of (A08) and (1011) in which a single 4-momentum is used to contract 

both sets of indices of the projection operator. It is easy to show 

that: 

[Ph (cos M oos  8 
	- 1 

[ 1 77T Pni  (cos 8)] 	 n(n + 1)  

[71Fis 	Pn2  (cos 0) 
cos 0 = 

3(n + 2)t  

4:(n - 2)! 

Using these relationships it follows from (to8) that: 

(_1)n(q4x)n cti
A.p(112 

 ,n)(q)+Pr = [ 2" ntn: no  2n 
(2n): 	

,v (A-14) 

and if follows from (to9) that: 

(..1)n(q4A)n-a. oxp(912,n)(q4p)n-J. [ 2n !grit 1  q 2n-2 .1 x  
(2n)! e v  

z  [ 	"
„
2 wAd.  pi   2 

 

1 0140(qm )1 	1405(42)] 	n Ps. 	(.A..15) 

V v 	2 

 

In sections 9 and 10 in which fermion resonances are discessed 

it is necessary to evaluate four traces. it is possible to write 

these as follows: 

cos 0 = 1 	2 
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[ Ys Y131. 	yPi YAg. J = ei3$. Yi p1 k 
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11: Tr  [ YPi YY1 //Pi YAI] = Pi Y1.gPi 	[ gPi as gYi Ps gAi pl gYik 
(A•16) 

 

— Tr [ (A$ - 	YYi  Y Y 	= 2131.yi(am bpi - b api 

2gpi  (ayi  beet  - byi  aol ) -.Tg,  Tr 	- 	(Y02.  Yy1  — Yy1  Ypi) 

Tr [ Vs (AS - 	YA4  Y Y 	= - 2g0 	, a Yi Y Xi 	Ptyl. 	v 

1 a 2gilikPvPlYi P bv  + 	5  -7 fir [y (4( - 	N  (Ya. 
1 

Y111. - Y Y 10  

where each expression has been written as a sum of terms which are 

or antisymmetric under the interchange either proportional to R.0 Ya. 
of R1  and yi  and are also either proportional to gp 	or antisymmetrio 

under the interchange of pi  and xj. . These forms are particularly useful 

in the following calculations. 

The expression analogous to (A.•11) which is of use when dealing 
with fermion resonances may be written as: 

kn_i  , 	prnIn:LL/1-121' 	rirk tikalyi+ 1140,0 ) ocio 	9/30p2  $ 	kla4 
(2n)! iP 

(A0,200 
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where 
APiYi 

 is symmetric under the interchange of pi and A . 

It may easily be shown that, with the notation cos 807  = eff  and 

sin 0 	= siff  

+ B 	) Val 	Cow  n Fh° (of ) + avi  Pnt (ow)] (A.21) 

and 

B 	[10(P0 )]firi.  [t (P0  )r 	Y1]1 	En Pn°  (el) - 	Till  ( )) 
sW AA 	kw  

pw 
(A•22) 

Similarly: 

(„1 )n+4. )(pit.p  )n-1 0 (Pt 01)(1cd"i  
r. 

L.
2!1 nl t 121t11 	n7l] 

"ff r17 (2n) 	r? 

(
APiAl

+ C
Pi 	

) 	(A623) 

where as before 	A
Pint  

is symmetric under the interchange of 	pl. and Al, 

As before 

gpixi  (Apik  Cpi At )= [ow  n 	(ow) + aw  Pni  (ow) (A• 24) 

and 

_[T40(Pt)]  pi  r956110k)  Ai] LI Pn°  (017) - °VI  A,1 (ow) CPL) 

ff 	kW 	
sw 

(A'25) 

The terms in B,Yi and C
10 

are the only parts of (A'20) 
pl 01 

and (A623) which give any contribution when contracted with the 

antisymmetric parts of (A616). It is clear that: 

[801141 gYa P1 	1 Pi gYi 	CP3.14. = [ Y1 n  Pn° (cw)  elY 
Pni 

(air) r  
(A626) 
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Summing over all the terms in (44.•11) and using (A*7) and 

its derivatives it may be shown that: 

(-i)n.leo.oion-200,(pa,n)(pw)n-L [ 11.2.13.12.11 
(2n)1 	n2  ewkwn  Pwn  

  

(e) [Dn  
Pl. Ys. 	+ Ei31ys e)] 

(A-27) 

where D (e) is symmetric under the interchange of pi and 	and PlYi 

gplyi  [DolySe) Eis1ysce).1 = [cos oekly  Fcen°  (ow) + %Ai  (cdi 

E08 (leg - C17.  " s  eekW] 
n 	[npno 	_ (0v )] 

(n — 1) 	 sw 

and. 

 

(A•29) 

 

E (e) [10(412U  p, [cos 19e1dr 1-11:-.31  [rail° (0W' 	/1"1.
() (n-1) 	 aw 

  

+ 117os 0 	- isms ()wall 

  

W (c)  
alff 

pn2 sw) 

sVP 

  

  

eC6 	(PP  ) Pa. 	1 Co
o (ow) ow p_O 	

]1 

 igpop4 3  yi  

ew 	
n".1 L 	sW 	 W 	PlAr 	. 

(A•29) 
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where eu  is an arbitrary 4-momentum such that eat, and 8epW are 

the angle in the frame W between Al  and kw  and. between AT  and 

.24.w respectively. 

Similarly: 

(.4  )n +1. p42)n-i. opx(132  n) ocA)n-a ft  = [41;171 ( 22:121-1 )  rwkwn....2 pvir..11 

[Dpi Ay) + Ft1/4 24f) 	(A•30) 

where once again DpLA(f)  is symmetric under the interchange of 

pi and Ad, and 

spixi [Dpol(r) F pi)4.(f)1=[cos orkw 	(cw) + awPni  (001 

[cos Ofiff  - Qwpos efiffll [nrbo (ai ) 
(n-1) 

(A•31) 

and. 

Pw 	 (n-1 
-(cmr] I. 

r
P1 X 

(f)  _41206)2)3 
 Pi 	

10611)1c3  x [cos ofkwiT2i 
L. rnho (0) 

L 	 - 81ff 
 

+ [cos Ofpw  - eiv. cos e m± (5) _ar ph2 (av )i 
atr 	SW 

104, )ri  
f
W 	1̀ (n-1) 

 
8W 

  

 

(A•32) 
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where f is an arbitrary L.-momentum such that 8 	and 0 fps  are 

the angles in the frame W between Sw  and 	and. between 11'N' . and. 

Aiw  respectively. 

The term in Eisigy(e) is the only part of (A°27) which gives 

a non-zero contribution when contracted with the terms in (A-16) - 

(A-19) which are antisymmetric under the interchange of Pi and. A . 

Similarly the term in Foil(f) is the only part of (A•30)' which "gives a 

non-zero contribution when contracted with the terms in (A816) - 

(A•19) which are antisymmetric under the interchange of Pi and. Ad.. 

Thus the expression T(r) given by (9.8) may be evaluated using the 

results (A*16) - (A-19), (A•28), (A'29), (A*31) and. (A•32). 

It is convenient to separate out from each term in the 

expression T(r) the factor: 

(2n + 1) 	-s. 2  
'i;73  1417 L (2n): 	n2  

(A•33) 

The remaining factors in each term are as follows: 

Mick  Is; [LnFno  (cv )]2  + [w  (ci) 	 (A.34.) 

Mkr  kv; E lUvr4r) [ Ln Pr
o 

(aff).12  + LW' (avdla  

(44 •Oh ) 	twaw)  (n 	
[npno (,) 

kew 	 - 1) sw 	w 	sw 

(A•35) 



(S.WAV 42 /704.4) 1 2  

I  

[ [Phi (5r) 
 2

n Pn°  (Ow) P22  ( C) 

I 	PWICW SW (n - 1) 

 1 	
(A.38) 
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The term in !irk is the hermitian conjugate of that in Mkr  

m[1(.4.4) Ja  [ Ln Ph° (Ow)]2  + 

- 2 Re [(Ews..4) [(1:14"1).(211ricdj 	.1- Pill  (ow) [n 	(ow) - 3  
kwPw 	(n-1) 

(4,1c.w.).(24w,4) 	{ [pni(ew) ]. n Pn°  (Ow) Pn2  (ow) 

ko. 	 sW 	(n - 1) sw2 

(4,41).(-444)[n Pn°  (cw) 
	Phi(ce) 

Ti 
(n - 1)2 	 sW 

(A•36) 

Mss  re q. 	.(14 Ad -47a[n (sd 	(od 
2(ow) 2 n rho '(nw) Pn°  ow) BW 

PW 	

I {. [ 2W 

	(n - 1) 	]] 	(A.37) 
The terms in Nkk  and N +  are both zero. Idc 

2 Nice14 REvir,%.1rw).(*Ad n Pr(' (ow) (n 	[n I 
 
- 1) 

The term in XL, is the hermitian conjugate of that in Nkr 
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The term in 0 14c ±8 zero. 

The terms in Pks' Psk P'rs and P sr  are all zero, 

2 Qks Th22 kir; 
[ 444-57)  • (24w''-kw)  1 	Pni (eld 	pno (ovi) 	Phi' (0,4 

(n-1) 	s9P 	 ff Pff 

(A°39) 

The term in Qsk is the hermitian conjugate of that in Qks  

2 
••• 2 Qrs  1022  kv; krai ) 	 (ow) - 	hi  (ow) 

[(4) 	(4.4) 	 l (ow) [n 	avo pni (ow)  

I\AN 	 (11-1) sw  

(44)-(R4P4)12 	(cw) 

Pwkw 	(n-ir sw  [n  
Pn° (ow) - L77  Pni (ow) } 

 

+ I 

24w. 1(44..vr) 2  

pvir (n-1 )2 	 2 
Pn2 °W)  [n Pn°  ( ed 

I 

- -°-17 	(cw) 	(A-40) 

The term in Qsr  is the hermitian conjugate of that in Qrs. 
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2  

". 2  Rks  [(Pa .k)(4,4) •(4,4) 	In 	(ow) - Phi  (ow) 
(n-i)  

(144W) (214741W) k 	or 	1 [n Pno  (ow) 	W (ow) 	(ed  
PW 	(n-1) 	aw 	sW 

	

Cx4• r1cW)*(442W) (ow)  - 	ow 

	

kw(Pa .k) 	(ld [n Pn o 	sW Pal  ( )  
Pw 	(n-1) sw 	 Biw 

	

n Pe (slid rh13 (°1W)  I] 	(tim41) 

	

(P2 .k) V/47.(4Ad2  [ 	(cW)12  
Pw 	Byr 	- 1) owS 

The term in Rks  is the hermitian conjugate of that in Rite  

• 2 Sks mgt  1 (PWABW)*(444) (n-1 1  
[n Pris  (off) 2-17  Pni  (ow) sis,  

(44)441m214W)  1 	0 + kw 	MilMMIMMENIMO 01•1•10,010•1••••••/•• [n 	(ow) - 
Piff 	) 	aw  

IVY Ali (e)  

2/04.11411)  12 1 r P12152.12  n 11112 (cW) Pn2 (clid  
I pw 	1 LL 	 n -1td 	

; 	J 

The term in S+ks  is the hermitian conjugate of that in S. 
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Production of Cascade Particles. 
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Production of Cascade Particles. 

R. C. KING (*) 
Imperial College - London 

(ricevuto it 19 Giugno 1963) 

Summary. — A model to describe the production of cascade particles 
in Kp collisions is set up in which the pole contribution of the A and 
particles and the contributions •of two-particle intermediate states are 
considered. These latter states are approximated .by Y" resonances in 
the s and u, channels and by a D-particle or resonance, a boson of stran-
geness 2, in the t channel. The two alternatives of spin ft and 
spin 2  E are considered. A field-theoretical technique is used in which 
all spin I states are described by the Rarita-Schwinger' formalism. 'The 
differential and total cross-sections for the production process are calcu-
lated at ,various energies for all possible parity combinations. A- -com-
parison with the experimental ,data indicates that the spin,  of the -cascade 
particle is not L. The production process is anti-peripheral in the sense 
that - the dominant mechanism is fermion exchange in the n •channel. 
'The,  data -can best be fitted •by •the parity combinations P(AE)--even, 
P(KAX)-odd and P(KAZ-1) odd. In this ease •it is also , required that 
gKAxgKA.gjitxgKE:.-, .•There-is also some evidence•for a peripheralprocess 
mediated by a D-particle -or KK resonance. The 'analysis indicates that 
such a state, with isospin 1, should have spin '0 and even parity. 'The 
mass cannot be-establishedAut a mass,of 1000'1VIeV•and a widthof 130 MeV 
is consistent with ,cascade production in both Kp •and Fp collisions. 

1. — Introduction. 

Recently a large number of 'cascade particles have -been produced in Kp 
collisions and both the total cross-section and angular distribution for this 

(*) 'Me research reported in this document has been .sponsored in part by the Air 
Force Office of Scientific Research, OAR, through the European Office, Aerospace 
Research, United States Air Force. 
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production process have been measured at several energies (15). The threshold 
lies at P,--= 1.06 Wale (PL  is the laboratory momentum of the incident K--
meson). The total cross-section for the process 

(1) 
	 K-  p 	Ict 

rises from a value of 18 IA at PL =1.17 GeV/c to a value of 200 1.1.13 at PL= 
=1.6 GeV/c. Above this energy the cross-section decreases to about 100 [Lb 
at PL  = 2.2 GeV/c. The main feature of the observed angular distribution is 
that the cascade particles are produced predominantly in the forward direction 
with respect to the incident K--meson in the centre-of-mass system of the 
initial particles. However, production outside this forward peak is not neg-
ligible and indeed at PL  = 1.81 GeV/c there is evidence of an additional small 
backward peak. 

We set up a model to describe the production process (1) in which we 
consider the pole contributions of the A and E particles in the direct and one 
of the crossed channels. In addition we calculate the contributions of two-
particle intermediate states in the direct and both crossed channels. In order 
to do this we make the simplifying assumptions that the 7rA, 7cE and ITCJV' 
intermediate states can be approximated by the Y* resonances and the KK 
intermediate states by a boson of strangeness 2 which we shall denote by D (6). 

(1) W. B. FOWLER, R. W. BIRGE, P, EBERHARD, R. ELY, M. L. Goon, W. M. POWELL 
and H. K. Tromp: Phys. Rev. Lett., 6, 134 (1961). 

(2) W. A. COOPER, H. COURANT, H. FILTHUTII, E. I. MALAMUD, A. MINGUZZI-
RANZI, H. SCHNEIDER, A. M. SEGAR, G. A. SNOW, W. WILLIS, E. S. GELSEMA, J. C. 
KLUYVER, A. G. TENNER, K. BROWNING, I. S. HUGHES and R. TURNBULL: Proceedings 
of the 1962 International Conference on High-Energy Physics at CERN p. 198. 

(3) G. M. PJERROU, D. J. PROWSE, P. SCHLEIN, W. E. SLATER, D. H. STORK and 
H. K. Ticno: Phys. Rev. Lett., 9, 114 (1962) and H. K. Ticino: Proceedings of the 1962 
International Conference on High Energy Physics at CERN, p. 436. 

(4) L. W. ALVAREZ, J. P. BURGE, R. KALBFLEISCH, J. BUTTON-SHAFER, F. T. 
SOLMITZ and M. L. STEVENSON: Proceedings of the 1962 International Conference on 
High Energy Physics at CERN, p. 433. 

(5) L. BERTANZA, V. BRISSON, P. L. CONNOLY, E. C. HART, I. S. MITTRA, G. C. 
NIONETI, R. R. RAU, N. P. SAMIOS, I. 0. SKILLICORN, S. S. YAMAMOTO, M. GOLDBERG, 
L. GRAY, J. LEITNER, S. LICHTMAN and J. WESTGARD: Proceedings of the 1962 Inter-
national Conference on High Energy Physics at CERN, p. 284, 437. 

(6) The existence of such a particle has been proposed by a number of theorists 
and T. YAMANOUCHI (Phys. Rev. Lett., 3, 480 (1959)) presented experimental evidence 
for a D-particle of mass 720 MeV. Further search by Y. EISENBERG, M. FRIEDMANN, 
G. ALEXANDER and D. KESSLER: Phys. Rev., 120, 1021 (1960); V. COOK, D KEEFE, 
L. T. KERTII, P. G. MURPHY, W. A. WENZEL and T. F. ZIPF: Phys. Rev., 123, 655 (1961) 
and B. A. NIKOL'SKII, V. L. SURKOVA, A. A. VARFOLOMEEV and M. M. SULKOVSKAYA: 
Soviet Physics JEPT, 15, 631 (1962) has produced no evidence in support of such a 
particle. However, these experiments could only detect a D-particle of mass less 
than 780 MeV and any KK resonance would have been undetected. 
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The necessity of introducing such a particle must stand or fall by the requi-
rement that our model should fit the experimental data. 

In Section 2 the notation for the kinematics is established. 
Since the spin of the-  E--particle is'not well determined we consider the two 

alternatives of spin 2  and .spin 4 in Sections 3 and 4, respectively. We use a 
field-theoretical technique to describe the interactions of the particles and re-
sonances with which we •are concerned, making use of the. Rarita-Schwinger 
formalism (1.8) to describe particles of spin 	We consider all possible parity 
combinations. We calculate both the differential and the total cross-sections 
for process (1) at various energies and make a comparison with experimental 
data in Section 6 after inserting isotopic spin factors which are discussed in 
Section 5. 

In Section 7 we discuss the consequence of our analysis as applied to the 
production of cascade particles in high-energy pion-proton and anti-proton-
proton collisions. 

In Section 8 a summary of our conclusions is given. 

2. — Kinematics. 

Consider the production process 

	

+ Js11  -->- 8 + 	. 

Let g, and pi  denote the 4-momenta of the incident S and ..3\P and q2  and p, 
those of the outgoing K and E, respectively. We -define the invariants 

8  = (PI qi)2  = (P2 ± q2)2  I 

t = (Pi —  Par = (qi q2)2  

= 	q2)2  = (1)2 —  ql) 2  

Instht centre-of-Mass%'systern of the w-channel, that is-the -channel in which 
represents-theletal energy isqUared, we shall define-our 4-momenta-as-follows 

(si?P) 	Ps 	,(8s, q) 

ItiRitAriiit-j..135-1*ARIftirhys:11-Bev:;;;00;7  -6 1,44941). 
(s) H. UMEZAWA : Quantum Field Theory (Amsterdam, 1956). 

C 
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thus 

s = (ei coi)2  = -E2  

t = Vex In!", — 261E2 — 2pq cos , 
u= mx  + 4 — 2610)2+ 2pq cosi, , 

where we have defined the scattering angle 79,  to be the angle between the 
incident .11 and the outgoing 1-1 in the centre-of-mass system. 

The centre-of-mass momenta and energies are given in terms of the in-
variants by 

p2  = — (mx ± 7)1109 	
1

[s — (mx — mK)2] / 

1 
q2  = [8  (ME + MK )1[8  — (ME — mK)2] Ts.  ; 

8  +(mx— M:C) 	s (14 — mfK ) 
ei — 	 7 	82 = 	  

s 	(Tri,2s,  mg) 	 s — 	— pric)  = 
2Nrs. 	 2V-s- 

The quantum numbers associated with single-particle exchange in each of the 
channels are for the s channel B =1, S = —1, • for the n channel B 
AS =--- —1, and for the t channel B = 0, S = —2, where B and S are-  baryon 
number and strangeness respectively. 

3. — Formalism for E spin 2. 

Assuming that the cascade-particle, like the nucleon, has spin 2  and the 
K-meson has spin zero we can write an effective Lagrangian describing our 
system of particles as follows: 

-= + . 

2, is the free Lagrangian of each particle and if the form factors at,  all vertices 
are approximated by constants we have an effective-interaction Lagrangian (9), 

(9) The form of the interaction Lagrangian we have adopted for coupling a spin 1 
field to a spin and a boson field is not the most general. This is because the subsi- 
diary conditions on spin 	741p, = 0, 	=0 do not apply to an interme- 
diate state. For a discussion of this see Y. Fan': Prog. Theor. Phys., 24, 1013 (1960). 
Our Lagrangian corresponds to the case when the spin 1 state may be an external 
particle field. 
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.22,, given by 

or,=[gxyx iPxropY 99K+ gEt K 	VY 99.x +;-g".teED Pik? POPE' Q9D+ mK 9DICK TD TIC Q9K+ 

gjeEp 	yi4r4 TD.,..+..9D*10 no* (99.1i 	ai.,(p1199K)+ 

g( 	 ropaa,n] h.c. 
Mie 	 TA= 

The fields vy, 	97 and - 97,„*ii.'correspond-  to any particles haying -the 
following quantum numbers: Y: B =1, S =1, J=1; Y*: B 1, S --= — 1, 
D : B=O, = — 2, J=O; D*: B=O, S = — 2, J=1, where B, S, J are baryon 
number, strangeness and spin, respectively..' 

The Pi  (j =1, 2, ..., 6) are I or y5  according to the parity of the particles 
involved. ' 	• 

With this interaction Lagrangian we have six pole terms to evaluate cor- 
responding to Y exchange in the s and u channels, D and D* exchange in the 
t channel and Y* exchange in the s and u channels. 

In general we may write our S-matrix as 

(3.1) 	 S = I — i(2704  6(pi+ qi —  P2 —  q2)T 

Using this definition of the T-matrix, the differential cross-section in the 
centre-of-ma'ss system for the production of E in RN' collisions is given by 

(3.2) c1.12 	(4702  4E2 p 
da 	1 q 

117,2,12 

where the T-matrix element may quite generally be written in the form 

(3.3) 	TaD = ftE(P2) PEI— A + 1('Y *q1+ y' q2)B]rx u.N4p.) 

Our normalization is such that 
f 

(3.44) 	 2/x(PiYilx(Pi) = 	+ Misr)" 
.Din 

(3.4b) 	 21E(p2) u,=(P2) = (y'p2 -1- n1/4 ) . 
a Dirt 

Averaging over initial spin states of nucleon and summing over the final spin 
states of the cascade we have ' 

(3.5) 	
d.12 	(4702  4E2p 
da 	1 q  .F 
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where 

F = 	 Tqp12  • 
spin 	, BDia 

Writing -T0  = -fz,"(p2 ) Tii-jf (pi ) we can' split T vp into contributions from each 

of ,the six„..-pole_terms.. we are -  considering :T 	Now F is a sum of 

6 terms corresponding to the pole terms taken separately and 15 terms cor-
responding to interference -between different pole: terms., In an obvious • nota- 
tion 	1141, where- 

1.1, 

(3.6) 	F15 --- 	.v(POTts.(1905ua(P2) • 

Assuming Ir;I:r = I we can express 11,5  in terms of our invariants s, t and :it-  .as 
fellows: 

(3.7) Fps --= A 	[— t +(m,  ±ni) 2] + B 	ft (s — u) 2 	t + (nrk„,7 — lita )2] • 

• [— t 4m2,]} — (A + APB ,) — u) (mar  + mE ) . 

The six terms F11  can be readily evaluated for all parity combinations by 
making use of the following observations (10 ). The general form of .11,n, as given 
by eq. (3.3) is arrived_ at by making use of the fact that the nucleon and 
cascade particle wave-functions satisfy the Dirac equations (y•h— m j )• 

x(P 1) = 0, (y • p2 — 771„) u.s(p2 ) = O. In evaluating.  A, and B, between spinors 

we make the identifications 	 ±-mom , y • I), 	m,, according as f x = 
/ 

respectively. Writing F.;=—Ai-I-1(y7 qi  7,  • q,),B , and... Fi 	+ 
75  

+ (y• q,_+y• Off,'” we have 

(3.8) 	Fii  = 2 Tr{Firr(y•pi -i- mx.)Pr kelny • p + mE ) 	. 

Since mx  and 	only enter the expressions for A, and B, through the above 
identifications, it is clear from eq. (3.8)' that, changing rr2  from I to y, is ,equi- 
valent to replacing m Jr., by —mx,„ throughout 	We make use of this in 
evaluating the various contributions to the differential cross-section of ,each 
of the pole terms taken separately for all possible parity combinations of the 
particles involved. For the interference terms no such simple rule, is,. 

For the pole terms 1, 2, ..., 6 the propagator functions .T ;(k), i = 1, 2, .,., 6 

(10 ) A. SALAM : Nucl. Phys., 5, 687 (1656).‘ 
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apart from coupling constants are given by 

• (3.9a) T,(k) = y k+my  k 2  — mY 

(3.9b) T 2(k) = T1(k) 

(3.9c) T3(k) = MK 
 k2  — InD  

where k 	q,), k2 = 8, 

where k = (p1 — q2) , k2  = u, 

where h = (Th.  — 732 ), k2  = t, 

	

)(3.9d) T4(k) vp(gp, 
k 
 2 

k 
 (qg + q2v) 	2 

1 
mt. / where k = (Pa —  P2), k2  = t, 

1 (3.90 17 5(k) = (71  I"- 9nY*  a or 	Iv a 	a k2  _ _2 	[ .L2 . a.1 	0 , . A.2 k ' _.1 — my. 	 MY* 
3 	 (V 'q2k 'qi — k • q2 y • qi ) — 

— 	2 ult.  k q2k • qd ,,  °My  2 
 . 

[(y • q2k • q, k • q2 y • qi ) + (y • k + my.)y • q2 y • q,]) ( 	 , 
injear.,) 

where k = (pi+ q,), k 2  = 8. 

(3.9f) T2(k). = T 5(k) 	 where. k = (P1-P2), k2  = It• 

It ,is interesting to note that we have a crossing symmetry (11) whereby, 

(3.10a) 	 A,,,(s, t, u) = 	A2.6(u, t, s) , 

(3.10b) 	 131.5 (s, t, u) -=•-• — B26( 211 t, s) • 

In terms of invariants 

, 1 
(3.11a) Ai= —gxvicq-Evidi(m.s—F-mE)+my.1s — 	gJVYKgEYK 8 	 

2 
B4=—  gXED gpKW' t  _,_ mt. / 

et,(s, t, u) 	1  
A5  = gj.py*K gaEY*K 	mxnizE  ( 8 	 t 7  

B5 = gxy.ic gara  b,m(s x, tm, :)  (II: —1  into  , 

(3,11e) A4= 0 , 

(3.11d) 

' (11) A. RAMAKRISHNAN, R. THUNGA, T. V. RADHA, G. BHANATHI and S. INDU-
MATHI : NfuGl. Phys., 37c 585 (1962), 
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where 

(3.11e) 	a5(s, t,  u) — Ems — lux) • 
7

* 
 

	

2 	 n7 n)my.
( M

t
y*

Es+ 	Rn7 	4')] 3m1.1 	( 	 ] • 

• (1(— t+ 2m1) 3m1* 4  (s 	ma) (s — ut2.nr• m2K)) — [s — El% + 

• {  1   Es 712,1 mt)  s(ms 	_L  ME nt2g 1 
	 ( S  Mj 	2  Sr 	MK) 7 

3my. 	 3mt* 	3144. 2 

and 

2  1 
(3.14) 	b5(s, t, = 4(—  t 2m2K) — 3/4* 4 (s — 	+ int) (s — vx e ± nit) — 

snzl 
On!, — m!,,r) 	

1 
3m1r* 

(s mr.mys) 	 
3m1* 

— 4--(m 	1 
mx) 

3my* (s — m214) — (msut.isr)(ms UtY.) 3m.Tr. • 

Making use of eqs. (3.5), (3.7) and the above expressions for Ai  and Bi, we 
can calculate the differential cross-section for cascade particle production. 

4. — Formalism for ar spin 1. 

We make use of the Rarita-Schwinger formalism for a particle of spin 
and represent such a particle by a wave function y, (x) which satisfies the wave 
equations 

(— i r  a ± m)18,(x) = 0 	 yo,(x) = 0 

and the subsidiary condition apyp(x) = 0. 
The wave function y, (x) is a 4-vector each component of which is a spinor 

with 4 components. 
The effective Lagrangian is given by 

Y, ---- [ 	 M1 m. gJNYIC fiX F. VY c9K + g2EYK  fli=g112 VS' aP (PK + gjSrED  iiir.tor3VX ap(p. + 
7, .--, 

+ Mg gDICK (PK 7713991i + gIVED* ft., 1-14 vxTD.p + gp*KKIPD•p(cOg  a,91C — a,.,T K T.) + 
gm*K _ 
	VY*µF5VX aµ998gE.Y*K fEpreVY*(ATK1 + h. c. 

x 
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As before ri  (j =1, ..., 6) are I or y5  according to the parity of the particles 
involved. We use this Lagrangian to evaluate the six pole terms. 

Once again we have 

(4.1)
da 1 q ,T, 
dS2 	(4n) 2  4E2p I  —" 2  

where we can now write the T matrix element in the general form 

(4.2) 	T„= q1,(7.,,(P2) {— A ± 	+ q2)13]Prux(p.) 

	

+ q2i1 u 	-PE[—  C + i(Y* g1 + y • q2)331 -rx'ax(Pi) 

Our normalization is such that 

ux(131) 7.7  t APi ) = 	+ x) 

u ,4(pOU 	=( vsY'h+ mE) = (y.p2+ 

where (12.13) 

1 
0„,„ = 	iyisyv — 3--/p  (Y • P271  Pr2P 	P4,147,  • P2) • 

Writing T = t ,p(p2 )Tm ux(pi ) we can split,T up into contributions from each 
6 

of the six pole terms we are considering To  = T.,. 
As in Section 3 we have 

(4.4) 

where 
F=2 	 =IF„ 

epin.N' aping 	 . I 
and 

(4.5) 	Fie = 	{U Ep(P 2)T i„'it x(Pi) iix(POT E,,(p2 )} • 

Assuming riN/2  = I we can express F „ as follows 

(4.6) 	Fis= Tr ((— 	+ y • Q b, p )(y • pi  m j,? )(— al; y • Qiiit)(y • p, 	, 

where Q = Eqi+ q2), ai = q1A-i+ q2C,, and b = q113  i+ q2D 

(12 ) R. BEILRENDS and C. FaoNsDAL: Phys. Rev., 106, 345 (1957). 
(1s) C. FRONSDAL: Suppl. Nuovo Oimento, 9, 416 (1958). 

(4.3a) 
spin 

(4.3b) 
spin 

cla 	1 q  p 
dS2 	(47)2  4E2p 
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For the pole terms taken Separately we have the same rule as in Section 3 
by which we relate the sign of the mass of the external spinor particle in the 
expression for F ii  to the relative parity of the particles coupled at the ver-
tices of the corresponding Feynman diagram. 

If we now consider the case i = j, ff e• -2  = I it can be shown that 

4 4 (4.7) 	F ei = (Pi P2 ± MX ME) ai
2 
 — 3mz(ai•P2)21 

14 	3  ▪ [2p1  *QP2*Q — Q 2  (h.P2 	ME )] [3  14 4m2  (ba 'P2)1 — 

2 	2 
— [mEM. + nky .13,2 •Q] [g aibi 3m2  ai • P2b P2] + 

1 	 1 
▪ 3m.,  P2 .P2(ai'pl bi • Q ai •Qbi 'Pi) + 3m 	 P P1(a .Qb2 •p2 — ai - P2bi*Q) 

1 
+ 3-m„.. 192 Q(cti '732bi • 	— ai p1bi •P2) • 

Apart from coupling constants the propagator functions 11,0  (i 	2, ..., 6) 
for each of our pole terms are given by 

q2 A  Y ' k + my (4.8a) Tit , 
• ME k2 - m2  

(4.8b) 	12 	qlg y • k my 

where k = (pi + , k2  = s, 

my k — 
m  

(4.8c) T3p m
K

= k2 int 

(4.8d) 	T4ts =-- 	
klc,  

(qi,v mL.
) 	q2v  
(k2 min) 

where k = (pi — q2 ) , 

where k = (p,— p2) , k2  = t, 

where k = (p,— 232 ), k 2  t, 

(4.8e) 
T5 i t  = {(k2k +mil kiP  - )11 4 1. q1  nty*2 	 3MY* 

1 	 (y„k • q, 	k„y • qi) 	2, k,k • q,. 
3my.  

3ml 22.  ku k • q; — ko • qi ) + (y • k ± my.)yp y • qi1)-11-17-4,1  , 

where k = (Pi+ qi) , , k 2,= 8  2 
where k = (pi — q2 ), k 2  = u . 

We now have' the following crossing symmetry relations 

(4.9a) 
	

4,4,5.6( 8 , t, It) = J  02,1.8.5(4f t, s) 

(4.9b) 
	 B1,„(s, t, u) 	D2.1„„(u, t, s) . 

(4.8,f) 	T6,(k, q1, q2) = rfig(k? — q2, 	 qi) 
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= 	g.NeIrKgEYK [ i (141.u• .7nE) -1- 'WIT.] 	1  2  
( 8  — MY) 

(4.10b) 	B3 =D3  = 0 , 

(4.10c) 	B4  = D4  = 0 , 

1 	1 
-01 = g.MYKg.I•EYK 	(s my) 

MK  1 
A3 = OrFiD YMCA ma (t — mt) '  

1 
A4 = gArZEDUDKK (t 	14.) 

0, = — A„ 

04  =, A4  , 

2  1 , 

— —2 (mom  mx) 	3m2r. 	 [s — EMLIV + MD]) 	 
1 , 	s  (.3 — My* 'MA 	1 	 1 	1 

3my• 	 ins, (8 — 

A5 = — gs,y.Kga.y.x[1(MX  + nt.z.,)  +  My.] 	1 

M.he 	' (8  — MI*)

s  (4.10d) 	05 = gXY*KgEY*K {— 374. 2  — in2jf  + mL) (mE,, + mjf ) + 2Myd — 

1 	1 
B5 = DCY*KgEY*K 	 ' 

D5  =D44i'llgEY*K 	(8+3mmx2mY*)  3m22• 1(s  m2x+714))vitne ( 8  — Int*) • 
1 

In terms of the above 'variables 

(4.11) F 	[— t + 	mE ) 2 ] • 

C ,)2n4,+ A ,C ,(— t + 4m1) — -7;7--1;1 	ni0(Ati ei) — (A — CA] 2 ) + 

( s 	t 494)[— t (nix  — ni2)2g{ 

R 	

(B, —D i ) 2m1+ B,D,(—t+ 

+ 	— Di ) —1 Au _D is)] 2} — 

- (mx  + mx) (s — 	((A, — ,) (B, Di ) mg + 	B 	(— t 4m1) 

- R (14+74) (As— 	(A 	is)1[(14+mf K )(Bi —Di)— (Rot —DA]) — 

— (Biu i  — A iDi ) {-i-61  (s — u)2t + -i-6-1  (— t + '4/4). 

• [— t + (mx  + ,inE,) 2 ][— t + (mx — 	. 

Using this expression and' eq. (4.6) we can calculate the diftei.ential GTOU-
section due to the 'pole terms taken separately. 
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5. - Isotopic spin analysis. 

To complete our analysis of the single-particle-exchange terms that we have 
discussed in Sections 3 and 4 we must insert the appropriate isotopic-spin factors 
at each vertex. 

For the process 

p K+ 

the minimum values of isospin for particles exchanged in the s, u and t channels 
are 0, 0 and 1, respectively. Hence our comparison with experimental data 
for the reaction (1) will only yield information about a boson of strangeness 2 
and isospin 1. We can make no inferences about a possible D-boson with zero 
isospin until experimental data for the processes 

K- p  Ko 

become available. 
The definition of the coupling constants is to a certain extent arbitrary 

but we have taken them so that in isospin space we can write our rotationally 
invariant Lagrangian in the following form 

-29  = {gxvi).(13,E°14 T TS-  D(;) 

g ji ,D jA/12i5E-DiF+  + A/ 297,E°  V, + 	 + 

+ gk„.(IPK± + K K°  Do) + 

+ 	V2 PK°  + V2 If -K+ + 	K-K0D-  + 

gxy0K(P-K+  YO 	11) + 

▪ g jvyiK(V2 	 ji,K+ + pK+1,7i nie 

▪ yoK  (17°K°  Y: 	11) + 

+ g, y 	ET°  If - 	-K°  + L".K°  — 	Y:)} + h. c. 

where Do , D1  (Y„ Y1 ) denote bosons (fermions) of strangeness —2 (-1) and 
isotopic spin 0, 1 (0, 1), respectively. 

The fermion particles and resonances having the appropriate quantum 
numbers can be listed as 

0 A (mass 1.115 GeV) 	Y: (1.405, 1.520, 1.815), 

I = 1 E (mass 1.189 GeV) Yi (1.385, 1.685). 
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If we invoke group theory and assume that the strong interactions are 
invariant under S U then the Do  meson belongs to the representation 10 and 
the D, meson to the representation 27. In the octet (14-16, ) model of SU3  the 
pseudoscalar K-meson can be coupled to the baryons by D or F type coup-
lings or an arbitrary mixing of the two. 

For D type couplings 

1 	 1 gxAx  = ppEic  — 	gEAK 	g2EK •  
1/3  

For F type couplings 

	

— Vrggxmi =— g.N•Ex = V3 gEAK 	gEEK • 

The Sakata model gives no relations similar to the above since the 11,E and 
particles belong to different representations of the unitary group. 

Without any group-theoretic model all the coupling constants are inde-
pendent of each other. 

6. — Results and comparison with experiment.' 

Using the formalism of Sections 3 and 4 we have calculated the contri-
bution to both the total and differential cross-sections of each of our 6 pole 
terms taken separately. We have used the mass values mx  =0.938, m2=1.320, 
mK  = 0.494 GeV and considered the case mr, = mr)„, = 0.720, 1.000, 1.440; 
my =1.115, 1.189; my. =1.385 GeV. Calculations have been carried out for 
FL -1.2, 1.4, L6, ..., 3.0 GeVic for all possible parity combinations. 

We consider the two cases of E having a) spin 1, b) spin z  and in the latter 
case we discuss an interference effect between A and E pole terms. 

a) Our results indicate that the data cannot be fitted in any way under 
the assumption of spin 2  for the cascade particle since none of the terms we 
have calculated gives a large forward peak. Typical angular distributions are 

(14) Y. NE'EMAN : Nucl. Phys., 26, 222 (1961). 
(15) M. Cgrnrx-MANN: The eight-fold way: a theory of strong interaction symmetry, 

California Institute of Technology Synchroton Laboratory Report CSTL-20 (1961) 
and Phys. Rev., 125, 1067 (1962). 

(16) J. J. SAKURAI : New mesons and resonances in strong interaction physics-
theoretical. To be published in the Proceedings of the International School of Physics 
e Enrico Fermi » (Villa Monastero, Varenna, Como). 
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Shown in Fig. 1' for exchange Of a A particle in the u 'channel at Pi, 	GeV/c. 
`The rather obvious fact thatlinematic factors in our spin' projection Operator 
give'total cross-sections' which increase rapidly and continuously 'with energy 
is additional evidence for the conclusion that the cascade 'partiole' is not a 

-10. -0:8 -0.6 -0f4 -0.2 	0 	0,2 0:4 0:6 0.8 1.0 
cos 60„,_, 

Fig. 1. — Contribution to the differential cross-section for process (1) due to exchange 
of aIC-particle (mass 1115 MeV, spin I) in the u channel at PL----:1.8 GeV/c, assuming 

'the 'El' Tarticle 'has spin 1. Curves a), b), c) and d) correspond to the parity combi-
nations even even, odd even, even odd and odd odd for P(KYJY') and P(KY!), 
respectively. The normalization is arbitrary. The histogram gives the experimental 

data of ref. (3). 

spin particle 'satisfying the liarita-Schwinger formalism. The total ,  cross-
'section .for ,  eascade ;particle .production is found experimentally to decrease 
with energy above 13, =1.6 GeV/c' as shown in -Pig. 2. 
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.10 1.2 1.4 	1.6 	1.0 	2.0 	2.2 
(G eV/c) 

2.13 2.4 	2.5 

9) 

15 

Fig. 2. — Variation of the total cross-section for process (1) with PL  due to exchange of 
a D-particle (mass 1000 MeV) in the t channel and of a Y-particle (mass 1115 MeV) 
in the x channel assuming the E-particle has spin 1. Curves a), b), c) and d) cor-
respond to the similarly labelled curves of Fig. 5 and 6. Curves e) and f) correspond 
to the cases of D spin 0, P(XED) even and D spin 1, P(XED) odd, respectively. 
Curve g) gives the result of combining the curves d) and e). The experimental :data 

are that given in ref. (1-5 ). 

b) Since we define the scattering angle to be the angle between the in-
cident 1C--meson and the outgoing E--particle we can make the general com-
ment that poles in the u and t channels lead to forward and backward peaking, 
respectively. We find that exchange of a spin 1 D-particle in the t channel 
gives a very sharp backward peak for both parity cases whilst exchange of 
a 'spin 0 D-particle gives a smaller backward peak for even P(DNE) and a 
fairly uniform. angular distribution for odd P(DNE). Decreasing the mass of 

41.1 a 
SO 



b) 
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the exchanged particle gives sharper peaking in all cases. Typical angular 
distributions are 'shown in Figs. 3 and 4 for mU  =1.000 at 13,=--1.8 GeV /c 
and 2.2 GeV/c, respectively. 

d) 
-1 0 -0.8 -0.6 -0.4 -0.2 	0 	0.2 0.4 	0.6 0.8 	1.0 

cos 

Fig. 3. — Contribution to the differential cross-section for process (1) due to exchange 
of a D-particle (mass 1000 MeV) in the t channel at P,=1.8 GeV/c assuming the E-par-
tick has spin +. Curves a) and b) correspond to 1) spin 0 with P(N'ED) even and odd, 
curves c) and d) correspond to D spin 1 with P(J',PED) even and odd. The normali-
zation is such that gs,,Dgmod4n = 0.37, 0.94, 0.074 and 0.086 for the curves a), b), c) 

and d), respectively. The histogram gives the experimental data of ref. (3). 

This mechanism might be responsible for the backward production of 
cascades observed at PL  =1.8 GeV/c and at lower energies. The fact that 
this backward peak is not observed at Pi, = 2.2 GeV/c suggests that the D-
particle has spin zero for only in this case does the cross-section due to the 
exchange of such a particle decrease with energy. For a spin 1 D-particle the 
peak increases with energy. We have normalized the theoretical cross-section 



(gKKD  0.37 . 4gr 

- 6) 	 
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to the data at PL  = 1 .8 GeV/c assuming that this exchange process provides 
the mechanism for all the backward scattering. In this way we can set an 
upper limit to the coupling strength of the D-particle. For a D-particle of 
mass 1 000 MeV, spin 0 and for P(DNE) even we find 

-1 0 -0 8 -0.6 -0.4 -0.2 	0 	0,2 0.4 0.6 0.8 	1.0 
cos 49( „,... )  

Pig. 4. — As in Fig. 3 except that PL=2.2 GeV/c. The histogram gives the experimental 
data of ref. (5 ). 

Increasing the mass of the D-particle merely makes the backward peak somewhat 
broader and the decrease with energy of the cross-section becomes slower. 
For m,, = 720 MeV and 1 440 MeV we find that the upper limits on the coup-
ling constant are 0.25 and 0.62, respectively. 

The angular distributions given by poles in the s channel do not exhibit 
any forward peaking for fermions of spin z  or spin 2. The distribution is fairly 
uniform for most spin and parity cases although for a fermion of spin a 
small backward peak is given if P(KY*X) and P(KY*E) are either even and 
odd respectively or both odd. Clearly therefore, the poles in the s channel 
do not provide the dominant mechanism for the production process although 
they may be responsible for a roughly uniform background term in the angular 
distribution upon which the peaks are super-posed. It is possible that the Y* 
pole term is responsible for the observed small backward peak but we find that 
kinematic factors in the propagator of such a pole term result in the backward 
peak increasing rapidly with energy in contrast to the experimental data. 
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As is to be expected the exchange of a fermion in the u channel gives rise 
to a forward peak in the production of cascade particles. The size arid 'shape 
of this peak depends on the spin of the exchanged particle and on the relative 
parity of the particles involved. The angular distribution for exchange 'of 
spin and spin z  particles are shown in Fig. 5 and 6 for my  =1.115 and 

A 

1.0 

d 

11 1 1  

0 -0.8 -0.6 -0.4 -0.2 	0 	0.2 0 4 0.6 0.8 
c'o 6), K _ __ 

Fig. 5. — Contribution to the differential cross-section forprocess (1) due to exchange 
of a Y particle (mass 1115 MeV spin -I) in the u 'channel at PL=1.8 GeV/c assuming 
the E particle has spin 1. Curves (a), (b), (c) and (d) correspdfid to the-'parity cordbi-
nations even even, odd even, even odd, and odd odd for P(KYX') and P(KYE), 
respectively. The normalization is such that g icys.guy7.147r= 0.40, 0.72, 0.49 and 0.54 
for the curves- (a), (b), (c) and (d), respectively. The histogram gives the data of ref. (3 ). 

=1.385 GeV at 13, =1.8 GeV/c. Once again kinematic factors in the pro-
pagator of a spin 2  particle give rise to cross-sections which increase rapidly 
with energy, a result which is incompatible with the experimental data. For 
the exchange of spin z  particles there is no such effect and the total cross-
section varies with energy as shown in Fig. 2. The angular distribution for 
exchange of spin particles at PL  =2.2 GeV/c is shown in Fig. 7. Norniali-
zing our results to the data we find (gK ys,gi,y)/47r-=0.40 and 0.54 for P(RYX) 
and P(KYE) both even and both odd, respectively. Our results indiCate that 
the best fit to the data is given by exchange of a particle such that P(ICYX) 



a) 
b) 

-1.0 -0.8 -0.6 -0.4 -0.2 	0 	0.2 0.4 0.6 0.8 
	

1.0 
cos 0,,..„;  

Fig. 6. — Contribution to the differential cross-section for process (1) due to exchange 
of a Y*-particle (mass 1385 MeV, spin -a) in the u channel at PL=1.8 GeV/c assuming 
the E-particle has spin 	Curves a), b), c) and d) correspond to the parity combi- 
nations even even, odd even, even odd and odd odd for P(KY*.V) and P(KY*E), 
respectively. The normalization is such that gity.NgKy.,-_-/4n = 0.47, 0.38, 2.16 and 
1.49 for the curves a), b), c) and d), respectively. This histogram gives the experi-

mental data of ref. (3). 

-b 
b 

-1 0 -0 8 -0.6 -0.4 -0.2 	0 	0.2 0.4 0.6 0.8 	1.0 
cos 

Fig. 7. — As in Fig. 5 except that PL =2.2 GeV/c. The histogram gives  the experimental 
data of ref. (s). 
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and P(KY.E.) are both even. For all other parity combinations the forward 
peak given by our theory is insufficiently large and narrow. This parity fit 
also gives the best fit to the energy-dependence of the production cross-section 
as shown in Fig. 2. However it is well established that P(KAX) is odd (17 ) 
and if we just consider the A pole we clearly obtain a forward peak 
which is too broad to fit the data. If we also assume P(IKZ,V) is odd (18.19 ) 
and calculate the s-pole term we obtain a similar angular distribution but 

-13 
b 

-1 0 -0.8 -0.6 -0.4 -0.2 	0 	0.2 0.4 0.6 0.8 	1.0 
cos 13(K _ z _ )  

Fig. 8. — Contribution to the differential cross-section for process (1) due to 
exchange of A (mass 1115 MeV) and E (mass 1189 MeV) particles in the u 
channel at PL--1.8 GeV/0 assuming the4-7-particle has spin 4. P(AE) is even and 
curves a), b), c), d) correspond to the parity combinations even even, odd even, 
even odd, odd odd for P(KA.N') and P(KAE), respectively. The normalization is such 
that gKA.pegiKA.,147‘ --= gitEsIKEE/4n = 5.3, 10.6, 8.2 and 16.8 for the curves a), b), c), 

and d), respectively. The histogram gives the experimental data of ref. (8). 

(17) M. M. BLOCK, C. LENDINARA and L. MONARI: Proceedings of the 1962 Inter-
national Conference on High Energy Physics at CERN, p. 371. 

(18) R. D. TRIPP, M. B. WATSON and M. FERRO-Luzzi: Phys. Rev. Lett., 8, 175 (1962). 
(19) H. D. D. WATSON: Hyperon Pair Production,. Preprint. 
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because of the slightly larger mass of the exchanged particle the peak is smaller 
and broader. From the isotopic spin analysis of Section 5 we see that the 
contribution to the scattering amplitudes of the A- and E-pole terms taken 
together depends upon the relative signs and magnitudes of the four coupling 
constants gKAN gKErr,  gicEx, gKE,-. In the octet model of SU3  the A and 
amplitudes have the, same sign and their relative magnitude varies from 3:1 
to 1: 3 depending upon the mixing of F and D type couplings. Whatever this 
relative magnitude might be, the inclusion of both pole terms does not lead 
to any narrowing of the forward peak. However, provided P(AE) is even, we can 
obtain a narrowing of the forward peak, for instance (gicAsIKA=)=-(glizAIKE.r.). 
In this case the isotopic spin factors lead to a cancellation of the A and E 
contributions to the scattering amplitude which is most complete in the non-
forward direction leaving a sharp forward peak. This interference effect is 
such that at higher energies the cancellation is even more complete and the 
theoretical cross-section decreases with increasing energy in agreement with 
the experimental data. We have calculated this effect for all the parity corn- 

-1.0 -0 8 -0.6 -0.4 -0.2 	0 	0.2 0.4 0.6 0.8 	1,0 
cos ,t3„_ : _ )  

Fig. 9. — As' in Fig. 8 except that PL=2.2 GeV/c. The histogram gives the experimental 
data of ref. (5). 

A 
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binations at PL  =1.8 and 2.2 GeV/c and the angular distributions we, obtain 
are given in Fig. 8 and 9, respectively. Normalizing the results at PL -=1.8 GeV/c 
in the case of P(AE) even, P(KAY) odd and P(KA a") odd we find (9, A  

(gKE AIKE,,)/47r —17. The only other parity combination which will fit the data 
is P(AE), P(KAX), P(KAE) all even. 

If we now turn our attention to the s channel and examine the consequence 
of inserting both the A and E poles in the amplitude we again obtain some 
cancellation. For P(KAIT) even the angular distribution is roughly uniform 
and the contribution to the cross-section is of the same magnitude as that due 
to poles in the u channel. However, for P(KAE) odd the s channel contribu-
tion is an order of magnitude smaller than that of the u channel and moreover 
in the ease of P(KAX) and P(KAE) both ,odd the s channel terms give rise 
to a. large forward peak. This indicates that although interference between 
the s and , u channels pole terms might give a significant contribution to the 
differential cross-section in most parity cases it is unlikely to alter the angular 
distribution given by the dominant u channel poles in the case of P(AE) even 
and P(KAX), P(KAE) both odd. 

7. — Alternative production processes. 

We now turn our attention to the production of cascade particles in Tcp 
and pp collisions and examine the consequences of our analysis as applied to 
the reactions 

(2) p 	E— 
(3) p --> 	K+ Ko . 

The total cross-section ( 20) for process (2) is found to be 4 (+ 2.5) 

PL  = 3.0 GeV/c. This is an order of magnitude smaller than the cross-section• 
for the production of baryons of strangeness one in pp collisions. No conclu-
sions can be drawn about the angular distribution from the four events re-
ported at FL = 3.0 GeV/e but at higher energies there is some evidence that 
the process is peripheral ("). We set up a model to describe process (2) in 
which we consider only the peripheral diagram involving exchange of a D- 

(20) R. ARMENTEROS, E. FETT, B. FRENCH, C. MONTANET, V. NIKUTIN, M. SZEP-
TYCKA, CH. PEYROU, R. BOCK, A. SHIPIRA, J. BODIER, L. BLASKOVICZ, B. BEQUER, 
B. GREGORY, F. MULLER, S. J. GOLDSACK, D. H. MILLER, C. C. BUTLER, B. TALLINI, 
J. KINSON, L. RIDDIFORD, A. LEVEQUE, J. MEYER, A. VERGLAS and S. ZYLBERACH: 
Proceedings of the 1962 International Conference on High Energy Physics at CERN, 
p.. 23,6. 

(21) H. GOLDBERG, S. NUSSINOV and, G. YEKuTIELI: Nuovo Cimento, 28, 446 (1963). 



K 	
alternative mechanism might be ;the 
exchange of a K*-meson. 

The appropriate Feynman dia7, 
grams are shown in Fig. 10. To dif-
ferentiate between these two models 
it will be, necessary to, observe the 
correlation of the associatecl 

Fig. 10. - Feynman -diagrams appropriate. sons. It should also be stressed ,that  
to tlie,prodnction process (3) corresponding the observation of these K7mesons 

to K* and. D exchange. 	offers the best possibility of examin- 
ing the KK interaction for at suf-

ficiently high energies the correlation in kinetic energies of the, K-7mesons 
would give direct evidence for or against the existence of a D « particle #. 

Using this relationship and the above value, for gE,K, we find /1,, =130,MeV. 
Clearly more experimental -data at high energies are needed to examine the,  
validity, of , a :peripheral ,model describing process (2). 

The total, cross7seetion 4)-for process (3) rises with energy to a value '22-2 

of 10.4(11) µbat PL  = 8.0.GeV/c, and at this energy. 7 of the total of 8 events 
observed are such: that. cos 07,>137° in the centre-of-mass system., This 
indicates. that, ,the ,prncess is ,peripheral and suggests that the mechanism for 

the reaction might involve thp,,ex- 
ehange of, a D-meson. However,,, an, Tt 	K 

a) 

K 

Y 

K•*- 

b) 

[12421 	 R. C. KING 
	

23 

meson. From the value of the total cross-section we can determine 	for 
a given spin and parity case. For a D-particle of mass 1000 MeV, spin 0 with 
P(.1\i'ELD) even we find (g1,,,,D/4n) = 0.04. Using the results of Section 6 we 
then find (g,K,447c)-- 3.4. This large value of the coupling of the D-meson 
with two K-mesons indicates that the D-meson has a large width. With our 
definition of the coupling constant gi„,, the width of the D resonance as ob-
served ,in KK scattering is given, by 

MrE I'D= 	(mt — 41161)1  47E mD  

(22) W. B. FOWLER, W. M. POWELL and J. I. SHANLE: Nuovo Cimento, 11, 428 (1959). 
(23) WANG KANG-CH'ANG, WANG TSU-TSENG, N. M. VIRYASOV, TING TA-TS'AO 

KIN Hi ht, E. N. KLADNITSKA.YA, A. A. KUZNETSOV, A. MIKHUL, NGUYEN. DINH TU, 
A. V. NIKITIN and M. I. SoLovixv: Ziirn. Eksp. Teor. Fiz., 40, 734 (1961); Soviet 
Physics JEPT, 13, 512 (1961). 

(24) A. BIGI, S. BRANDT, R. CARRERA, W. A. COOPER, A. DE MARCO, G. R. MACLEOD, 
CH. PEYROU, R. SOSNOWSKI and. A. WROBLEWSKI: Proceedings of the 1962 Interna-
tional Conference on. High Energy Physics at CERN, p. 247. 
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8. - Conclusions. 

Within the limitations of our model our calculations strongly suggest that 
the cascade particle is not a spin 2  particle satisfying the Rarita-Schwinger 
formalism. This supports the tentative conclusion of ref. (6 ) in favour of spin 
for the cascade particle. 

From our results it is clear that the mechanism dominating the production 
of cascade particles in Kp collisions is anti-peripheral in the sense that the 
exchange process involves fermions. The experimental fact that the produc-
tion cross-section exhibits such a large forward peak can be accounted for by 
assuming some cancellation between the A- and E-pole contributions to the 
scattering amplitude. "In the ease of P(AE) odd the interference effect is 
complicated and we do not have any obvious cancellation mechanism". For 
P(AE) even and P(KAX) odd all the available data can be fitted provided 
P(KAE) is also odd. It should be pointed out that the values of the coupling 
constants we obtain are very sensitive to the degree of cancellation we assume 
in order to fit the shape of the angular distribution. Thus the quantitative 
results are not to be taken too seriously. 

The influence of the Y* resonances as approximations to two particle states 
appears to be masked by the A- and E-pole terms. However we have used an 
unrenormalizable field theory to describe the interactions of the spin par-
ticles and an alternative theory such as that of a Regge pole model would 
alleviate the difficulties our model meets at high energies. 

In addition to the anti-peripheral process there is some evidence for a peri-
pheral process mediated by a D-particle or KK resonance. Our analysis indi-
cates that 'such a particle with isotopic spin 1 should be a spin-zero state of 
even parity. The mass cannot be established but a mass of 1 GeV 'with a 
width of 130 MeV is,  consistent with all the data for cascade particle production. 
Further evidence for this 'particle should be sought in high-energy production 
of cascade particle's 	n-p collisionS. 

The author wishes to express his gratitude to Professor P. T. MATTHEWS 
for the suggestion of this work and for helpful discussions. 
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RIASSUNTO (') 

Per descrivere la produzione di particelle in cascata nelle collisioni Kp si costrui-
see un modello in cui si prendono in considerazione i contributi del polo delle parti-
celle A e E ed i contributi degli stati intermedi di due particelle. Questi ultimi stati 
sono approssimati con risonanze Y* nei canali s ed u e con una particella o risonanza D, 
un boson di stranezza 2, nel canale t. Si prendono in considerazione le due alternative 
di un E di spin o di spin 2. Si usa una tecnica di teoria dei campi in cui tutti gli 
stati di spin sono deseritti dal formalismo di Rarita-Schwinger. Si calcolano le sezioni 
di urto totali e differenziali per it processo di produzione a varie energie per tutte le 
possibili combinazioni di parita. Un confronto con i dati sperimentali indica che lo 
spin della particella della cascata non 6 k. Il processo di produzione e anti-periferico 
nel senso che it meecanismo predominante 6 uno scambio di fermioni nel canale u. 
Si possono approssimare meglio i dati con le combinazioni di parita P(AE) pafi, 
P(KAX) dispari e P(KAE) dispari. In questo caso si richiede anche che ggAxggA...; 

g g E Jr g E . Si ha anche qualche prova di un processo mediato da una particella D 
ossia risonanza KK. L'analisi indica che tale stato, di isospin 1, deve avere spin zero 
e parita pari. Non se ne pith stabilire la massa ma una massa di 1000 MeV ed una 
ampiezza di 130 MeV concordano con la produzione in cascata nelle collisioni Kp e pp. 

(*) Traduzione a aura della Redazione. 
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Yours faithfully, 

Academic Registrar 

UNIVERSITY OF LONDON 
SENATE HOUSE, WC1 

TELEPHONE: MUSEUM 8000 
MAW 

888 Physics 

TELEGRAMS: UNIVERSITY, LONDON 

20 May 1965 

Dear Sir, 

I am directed to inform you that you have been appointed as Examiner in conjunc- 
tion with 	J. C. Polkinghorne, Esq., M.A., Ph.D., 

Trinity College, 
Cambridge. 

for the thesis, a copy of which is enclosed, submitted by the following candidate for 
the Ph.D. Degree in the Faculty of 

	Science 	as an Internal Student: 

Name: R. C. King (I.C.) 

Thesis: 'Particle production in strong interactions'. 

I enclose the Instructions to Examiners for the Ph.D. Degree and would draw your 
attention to Sections 12 to 14, from which you will see that an oral examination should 
be held, unless the candidate is rejected without further test. I shall be glad if the 
Examiners will suggest a suitable time and place for the oral examination so that I 
may summon the candidate to attend. 

The joint report of the Examiners should be written on the candidate's entry form 
which has been sent to your co-examiner. 

Will you please return the thesis with the Examiners' report. I regret that I am no 
longer in a position to give permission to any Examiner to retain a copy of the thesis, 
in view of a scheme approved by the Senate with regard to the disposal of copies of 
theses after examination. This scheme makes no provision for the retention of theses 
by Examiners. Fewer copies are now submitted by candidates for the examination, and 
two of these copies must be bound, in accordance with the approved specification, be-
fore the conferment of the degree. 

I enclose a copy of the Scheme of Payment to Examiners for Internal Students. 

Prof. P. T. Matthews, M.A., Ph.D., 
Imperial College, 
Prince Consort Road, 
South Kensington, 
S.W.7. 



Ph.D. 

UNIVERSITY OF LONDON 

INSTRUCTIONS TO EXAMINERS FOR PH.D. DEGREE FOR INTERNAL STUDENTS IN THE FACULTIES OF 
THEOLOGY, ARTS, LAWS, MUSIC, MEDICINE, SCIENCE, ENGINEERING AND ECONOMICS 

1. Boards of Studies shall recommend the names of two Examiners for each candidate but in the 
case of the Ph.D. Degree in the Faculties of Arts and Economics Boards of Studies are empowered 
whenever they consider it desirable to recommend the appointment of three Examiners, such Examiners 
to take equal parts in the examination. 

2. At least one of the Examiners shall, whenever practicable, have had experience in examining 
for the Ph.D. Degree of the University, and one Examiner shall, if possible, be the Teacher, or one 
of the Teachers, under whose supervision the research of which the results are embodied in the thesis 
has been carried out. 

3. Boards of Studies may, if they so desire, recommend the names of two of the candidate's 
Teachers instead of the one Teacher mentioned above. 

4. In cases where only two Examiners are recommended to act in the first instance, Boards of 
Studies shall also recommend the name of an additional Examiner to act only if called upon by the 
Principal after the Examiners who have acted in the first instance shall have reported to him formally 
that they are unable to arrive at an agreement; and the additional Examiner shall act jointly with 
the other Examiners and not as a Referee. Whenever practicable this additional Examiner shall have 
had experience in examining for the Ph.D. of the University. 

5. When theses are sent to the Examiners, the Academic Registrar shall request them to acquaint 
themselves with the standard of the University, and inform them that copies of the theses submitted 
by candidates who have presented themselves for the examination previously are available for this 
purpose. 

6. The standard of the Ph.D. Degree is definitely higher than that of the M.A. and M.Sc. 
Degrees in the same subject. 

7. The thesis must form a distinct contribution to the knowledge of the subject and afford 
evidence of originality, shown either by the discovery of new facts or by the exercise of independent 
critical power. 

8. The thesis must be satisfactory as regards literary presentation, and if not already published 
in an approved form, must be suitable for publication, either as submitted or in an abridged form. 

9. The candidate must indicate how far the thesis embodies the result of his own research or 
observation, and in what respects his investigations appear to him to advance the study of his subject. 

10. The Degree of Ph.D. will not be conferred upon a candidate unless the Examiners certify 
that the thesis is worthy of publication as a 'Work approved for the Degree of Doctor of Philosophy 
in the University of London'. 

11. A candidate will not be permitted to submit as his thesis a thesis for which a Degree has 
been conferred on him in this or in any other University, but a candidate shall not be precluded from 
incorporating work which he has already submitted for a Degree in this or in any other University in 
a thesis covering a wider field, provided that he shall indicate on his entry form and also on his thesis 
any work which has been so incorporated. 

12. After the Examiners have read the thesis, they may, if they think fit, and without further 
test, recommend that the candidate be rejected. 

13. Except as provided in paragraph 12 the Examiners after reading the thesis shall examine 
the candidate orally and at their discretion by printed papers or practical examinations or by both 
methods on the subject of the thesis, and, if they see fit, on subjects relevant thereto; provided that a 
candidate for the Ph.D. Degree in the Faculty of Arts who has obtained the Degree of M.A. in the 
same subject in this University shall in any case be exempted from a written examination. 

14. If the thesis is adequate but the candidate fails to satisfy the Examiners at the oral, practical 
or written examination held in connection therewith, the Examiners may recommend the Senate to 
permit the candidate to re-present the same thesis and submit to a further oral, practical or written 
examination within a period not exceeding 18 months specified by them, and the fee on re-entry, if the 
Senate adopt such recommendation, shall be half the normal fee. 

15. If the thesis though inadequate, shall seem of sufficient merit to justify such action the 
Examiners may recommend the Senate to permit the candidate to re-present his thesis in a revised 
form within 18 months from the decision of the Senate with regard thereto; and the fee on re-
entry, if the Senate adopt such recommendation, shall be half the normal fee. Examiners shall not, 
however, refer any thesis without submitting the candidate to an oral examinaiton. 

16. When a candidate for Ph.D. Degree in the field of Statistics has not a preliminary Degree in 
Statistics the Examiners are recommended to test the candidate's general knowledge of statistical 
method and theory outside the special field covered by his thesis. 

17. Examiners are informed that it is not within their power to recommend the conferment of 
a Degree other than that for which the candidate has entered. 

18. Copies of all successful theses, whether published or not, will be deposited for reference in 
the University Library. 
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UNIVERSITY OF LONDON 

PAYMENTS TO EXAMINERS 
8.—HIGHER DEGREE EXAMINATIONS 

(1) Masters' Degrees (excluding M.S. and M.D.S.), Ph.D., D.Mus. 
[Note:—Payments to Examiners for the 'one-year' M.Sc. (Econ.) Examination by written papers 

(under new Regulations) have not yet been prescribed, and the following fees are not at 
present applicable] 

Setting Papers £ s. 	d' 
For each paper set (fee divisible between the Examiners taking part) 10 0 0 

[M.Sc. History and Philosophy of Science—Part I: A fixed fee of £45 is divisible 
between the External Examiners for their work in setting papers] 

Mathematics (including Mathematical Statistics) and Statistics papers, each 	.. 12 0 0 
For transcribing the whole or the major part of a paper into an Oriental script for 

reproduction by photography 1 10 0 
For modification of a paper for Overseas 15 0 
Papers in connection with Practical Examinations : see Practical Examinations below. 

Marking Scripts 
For each of two markings or readings, for each script 	. . 	• • 7 6 

At the D.Mus. Examination payment for three markings is allowed. 

Oral Examinations (and Practical Tests at M.A.)t 
Masters' Degree Examinations: 
Per candidate (fee payable for up to four orals on any one day) to each of two 

Examiners if required 3 10 0 
If more than one Internal Examiner acts in addition to the External Examiner, 

£3 10s. Od. per candidate is divisible among the Internal Examiners. 
The above fees are not payable in respect of orals given during practical examinations, 

if the Examiner(s) concerned receives fees for attendance at the practical 
examination. 

Ph.D. Degree Examinations: 
To each of two Examiners and to a third if called upon by the Principal, or to each 

of three Examiners appointed from more than one Faculty, per candidate 
(fee payable for up to four orals on any one day) 3 10 0 

If three Examiners are appointed from the same Faculty to act in the first instance, 
the following fees will be payable:— 
Internal Examinations.—A fee of £7 per candidate shared equally between 

three teachers, or a fee of £3 10s. Od. per candidate to the Examiner external to the 
University and a fee of £3 10s. Od. per candidate shared equally between two teachers. 

External Examinations.—A fee of £3 10s. Od. per candidate to each Examiner, 
provided that the appointment of the three Examiners has been specifically 
approved by the External Council after consideration of a special report of the 
appropriate Board of Studies. 

Practical Examinations (and Oral Examinations at D.Mus.) 
For each practical paper set (fee divisible between the Examiners taking part) 	.. 10 0 0 
For a practical paper set to cover more than one day's practical at M.Sc. Examina- 

tions in Biochemistry (fee divisible between the Examiners taking part) 	.. 20 0 0 
For attendance (including marking of candidates' work):— 

Whole day 	• • 	 • • 	• • 	• • 7 0 0 
Half-day .. 	 .. 4 0 0 

If oral examinations for the Intermediate Examination in Music, B.Mus. and D.Mus. 
Examinations are held consecutively on the same day, payment will be made 
for the whole time for which Examiners are present, and not for separate 
periods for each examination. 

If an External or Staff Examiner resides outside the University radius of 30 miles 
his attendance, if required for a single examination period only on any day, 
is to be reckoned as attendance for a day. 

t For conducting oral examinations at Part I of the M.Sc. Examination in Agriculture 
(selected subject Poultry Science) for candidates registering in and after October 
1961, a fee of 10s. per candidate (minimum fee £4 per day) will be payable to each 
of two Examiners for each subject. 
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2 
Theses and Dissertations, etc., 	 £ s. d. 

Masters' Degree Examinations:  
For assessing material* submitted by a candidate, to each of two Examiners 

and to a third if called upon by the Principal . . 	 7 0 0 
except in the following cases:— 
The fee for reading a thesis at the following examinations is £5 to each of 

two Examiners:— 
Internal M.A. Philosophy 
Internal M.A. and M.Sc. Psychology (if candidate is examined by thesis, 

oral, three papers and a practical) 
The fee for reading a dissertation at the following examinations is £5 to each 

of two Examiners:— 
M.A. Education examinations consisting of four papers, dissertation 

and oral 
M.Vet.Med. [the fee for a thesis is £7 to each of two Examiners] 

The fee for reading a Report at the Internal M.Sc. (Eng.) Examination, for 
candidates proceeding to the Degree by method of written papers and 
submission of Report, is £4 to each of two Examiners. 

At the M.Sc. Examination in Geophysics, without thesis, a fee of £5 per 
candidate is payable to each of two Examiners to cover reading the 
dissertation, examination of course-work and attendance at oral exami-
nation. 

If three Examiners read a thesis or dissertation, etc., in the first instance, the fee 
for two Examiners is divisible between them if they are all teachers of the 
University, or the full fee is payable to the Examiner external to the Uni-
versity and half the prescribed fee to each of the two teachers. 

Ph.D.  Degree Examinations:  
For examination of a thesis, to each of two Examiners and to a third if called 

upon by the Principal, or to each of three Examiners appointed from 
more than one Faculty.. 	 • • 	 10 0 0 

If Examiner is candidate's Supervisor 	.. 	 7 0 0 
If three Examiners are appointed from the same Faculty to act in the first 

instance, the following fees will be payable:— 
Internal Examinations.—A fee of £6 13s. 4d. to each of three teachers, 

including the Supervisor, or a fee of £10 to the Examiner external to the 
University and half the prescribed fee to each of two teachers [£3 10s. Od. 
to the Supervisor and £5 to the other teacher]. 

External Examinations.—A fee of £10 to each Examiner, provided that 
the appointment of the three Examiners has been specifically approved by the 
External Council after consideration of a special report of the appropriate 
Board of Studies. 

No fee shall be payable to a Teacher of the University for reading and reporting 
on a Thesis or Dissertation submitted in the joint names of the candidate and 
himself. 

For re-reading a thesis or dissertation submitted for a Ph.D. Examination and re-
submitted for a Master's Examination or for re-reading a thesis or dissertation 
re-presented in connection with further tests in oral, written or practical 
examinations, the fees payable are half the fees prescribed for the first reading. 

For re-reading a thesis or dissertation submitted in a revised form, the fees payable 
are as for the first reading. 

Design at M.A. (Architecture) under old Regulations—For assessing material submitted 
by a candidate, to each of two Examiners and to a third if called upon by the 
Principal 	.. 	 . . 	 . . 7 0 0 
If three Examiners act in the first instance, the fee for two Examiners is divisible 

between them. 
Portfolio of Drawings at Internal M.A. or M.Sc. Architecture under new Regulations, 

per candidate, to each of two Examiners 5 0 0 
Problem (at Mathematics) (fee divisible between the Examiners taking part) 	.. 12 0 0 
Musical Exercise (D.Mus.) (fee divisible between the Examiners taking part) 	.. 21 0 0 
Special ad hoc Qualifying Examination—fee per candidate (fee divisible between the 

Examiners taking part) 	.. 	. • 	 • • 	• • 10 0 0 
For a qualifying examination, for the M.Sc. Examination in Botany, consisting of an 

oral examination only or of an oral examination together with one or more 
papers of an existing examination, fee divisible among the Examiners taking 
part in the oral examination 5 0 0 

*To include 'an approved piece of textual and editorial work' at M.A. Examination in 
English and Education. 
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£ 	s. 	d. 
M.Th. (old Regulations) (Common) 	 . 15 	0 	0 
M.A. 

Classics (Internal and External) 	.. 	.. 15 0 0 
Classical Chinese (Internal and External) 12 0 0 
English—December (Common) 9 0 0 

May (Common) 	.. 15 0 0 
French (Internal and External) 18 0 0 
Indo-Aryan (External) 	.. 	 • • 15 0 0 

LL.M. (Common) .. 25 0 0 
M.Sc.: 

Agriculture (Poultry Science) (Internal)* 	.. 	. • 	.. 	• • 	.. 9 0 0 
Biochemistry, to the Chairman of a Board of more than two Examiners* 9 0 0 
Crystallography (Internal)* .. 	.. 	.. 	.. 	.. 9 0 0 
Geophysics (Internal)* 	.. 	.. 	.. 	.. 12 0 0 
History and Philosophy of Science (Common) 	.. 15 0 0 
Microbiology (Internal)* 	.. 	.. 	.. 	.. 9 0 0 
Radiation Biology and Radiation Physics (Internal) 	.. 12 0 0 

Meetings 
To each External or Staff Examiner, for attendance at each Meeting if summoned 

by the University (maximum fee £7 10s. Od. per day).. 	• • 	.. 2 10 0 
No fee if held concurrently with a Practical Examination 

Minimum Fee to ad hoc, Staff or External Examiner 	. 	. 8 0 0 

(2) D.D., D.Lit., LL.D., D.Sc., D.Sc.(Eng.), D.Sc.(Econ.) 
To each Examiner who acts, inclusive fee, per candidate 	.. 15 15 0 

Travelling Expenses 
For each occasion on which an Examiner is required by the University to travel a distance of 

more than 30 miles from his usual residence he may claim in connection with attendance at Practical 
Examinations, Oral Examinations, or Examiners' Meetings, first-class return railway fare and the cost 
of travel by underground and/or public road transport (bus or coach) for all necessary journeys 
actually performed from his usual residence, and for any other necessary journeys performed while 
engaged on examination work, together with the following allowances:— 

For necessary absence from home not involving a night: 
For a period of 5-10 consecutive hours, 15s. Od. 
For a period of more than 10 consecutive hours, £1 10s. Od. 

For each necessary period of absence up to 24 hours involving a night away from home, 
£3. 

For journeys to or from Berwick or Carlisle or stations in Scotland or Northern Ireland, an 
allowance of £1 per journey, in addition to the subsistence allowance of £3. 
An Examiner external to the University may claim fares and allowances as set out above for all 

necessary journeys actually performed from his usual residence (irrespective of the 30-mile limit), 
and for any other necessary journeys performed while engaged on examination work. 

In the event of travel from a vacation address, travelling expenses claimed may not exceed those 
from usual residence unless the University's request for attendance is made at short notice. 

J. HOOD PHILLIPS 
July 1964 	 Secretary to the Senate 

* Fees cover any External candidates examined by the Board. 
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