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ABSTRACT

The work contained in this thesis is clearly divided into two
distinct parts.

In Part I the production and decay of arbitrary spin and parity
resonant states are discussed within the context of a peripheral or one-
meson exchange model.  General results are obtained for the production
angular distribution and the decay angular correlations of the resonant
states assuming that the overall process is a quasi two body inelastic
scattering process, mediated by the exchange of either a spin zero or a
spin one meson, followed by the free decay of the resonant state or states.
A field theoretic formalism is used to determine the propagators involving
arbitrary spin particles and the results are expressed in terms of the
most general possible three~particle couplings involving arbitrary coupling
constants and their associated form factors. The usefulness of the model
as a means of calculating coupling constants and form factors and of
carrying out spin determinations is also discussed.

In Part II a model to describe the production of = particles in
‘—p collisions is set up in which the pole contributions of the A and 2.
particles and the contributions of two-particle intermediate states are
considered. These latter states are approximated by“y* resonances in the
s and u channels and by a D-paerticle resonance, a boson of strangeness 2,
in the t channel. The two alternatives of spin 1/2 and spin 3/2 = are

considered, A comparison with experimental data indicates that the spin



of the == is not 3/2 and that the production process is mediated by -
fermion exchange. The data can best be fitted by the parity combin-

ations PAY) wven, P(KAN) odd and P(XKAZ) oddi
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PART I

The peripheral model of the production and subsequent decay of

resonances having arbitrary spin.



1.  INTRODUCTION

Experiments in which beams of high energy mesons collide with
nucleons have resulted in the discovery of a large number of resonant
states. These resonances are often produced together with other particles
and their subsequent decays lead to multiparticle final statess  However
in many cases it is possible to describe the overall process as a two
body inelastic collision followed by the free decay of the unstable states,
It has been found that the pr&duction process favours events with small
monmentum transfer, This has led to the consideration of a peripheral or

(1-5)

one-meson exchange model involving either pseudoscalar or vector

meson(6-1o) exchanges. In general such a model does not account for the
extreme peripheralism observed in experiment without the introduction of
very severe form factors to allow for the off-mass-shell nature of the
exchanged particles11’12) These form factors are cmpirical functions but
a prediction of the model is that they are functions only of the square of
the 4-momentum transfer. This must be verified experimentally but until
any energy dependence is exhibited the model provides a useful phenomeno-
logical basis for the description of the production process.

If the resonant states decay as free particles of well defined
spin the decay angular distributions are determined by the spin alignment
of the resonance and this alignment is itself determined by the production

mechanism., In general for a resonance of any particular spin the peri-

pheral model provides some restriction in the decay distribution and in
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certain cases the distribution may be uniquely defined. Examination
. of the decay distributions may therefore be used both to test the

validity of the peripheral model(13-15)

and to determine the spin of
the resonance. It should be emphasised that such a spin determination
is model dependent but it may nevertheless be a useful guide in cases

(16-27)

where more rigorous tests are rendered inconclusive by the
insufficiency of experimental data.

The purpose of this paper is to present in a systematic manner
the predictions of the peripheral model for the production and subsequent
decay of resonances of arbitrary spin produced in quasi-two body col-
lisions of pseudoscalar particles with nucleons. To this end it is
assumed that the resonances eéach have a unique spin and a narrow width,
Cross sections and decay distributions will be presented in terms of
arbitrary coupling constants and all possible couplings will be
included.

Throughout this paper the resonances are assumed to decay
through strong interactions and a state is said to be stable if it does
not decay strongly.

If resonances are classified by their decay products five
distinct types have been observed to date. These are denoted by F,

B

, B, and Bh' Their characteristic decay modes are as follows:

11 Bz By
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F = N+7P (1.1)
B, = P+P (142)
By=* P+P+P (1.3)
By— P4V, (1448)

V1 -~ P+ P (1.4b)
B, = P+ 1V, (1e5a)

v, - P+P+P (1.50)

where N denotes a stable spin~half particle, P denotes a stable

1 and Vé denote unstable vector particles

which decay into two and three stable pseudoscalar particles res-

pseudoscalar particle, V

pectively. In this paper those resonances are discussed whose
decay mechanisms involve only three point functions and which thus
have decay widths completely determined by coupling constants. Thus
only the fermion resonance F, and the boson resonances B1 and B3 are
discussed.

The following are the general quasi two body production

processes considered:

P+ N = N + B (16)
P + N = N + By (1.7)
P + N = F + P (1.8)
P + N = F + B (1.9)
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The one-meson exchange diagrams used as the basis of the
calculation of the production cross-sections and decay distributions
for the above processes are shown in Fig. 1. The exchange meson E
may be any ome of four spin~parity types: scalar ( O+), pseudo=-
scalar (0 ~), vector (1-), or pseudovector (1+).

The resonances of arbitrary spin are described in terms
of a field theoretic formalism involving the usual tensor represen-
tation of a field with integral spin j, i.e. the (j/2, j/2) represen-

28,29)

tation, and the Rarita-Schwinger( spinor-tensor representation

of a field with half integral spin J, i.e. the [ (%, 0) 9 (0, %) 1a

,EJ;- 1, 2J ; 1> representation. As the rescnances are assumed to

have unique spin certain subsidiary conditions are needed to reduce
the nuber of independent field components to (23 + 1) and (23 + 1)
for integral and half-integral spin respectively. It should be noted
that when these subsidiary conditions are included the general results
are independent of the particular representation used even though the
form of the interactions depends on the choice of representation.
Choosing different representations merely leads to parametrisation
in terms of different couplings each with its associated form factors.
In section 2 the notation for the kenematics is established.
The phase space factors involved in the calculation of the production

cross sections and decay distributions for the processes shown in
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Fig. 1 are evaluated in section 3. In section 4 a summary is given
of the field theoretic formalism used for dealing with arbitrary
gpin resonances and the propagators for such states are discussed.
The vertex functions are determined in section 5 for the most
general possible couplings of arbitrary spin and parity resonances
with the appropriate incoming and exchange particles and with the
appropriate decay products. In section 6 the partial widths
corresponding to the decay modes (1.1), (1.2) and (1.4) for the
arbitrary spin resonances are calculated in terms of the coupling
constants defined in section 5. The results for the production
cross sections and decay correlations of the reactions (1.6), (1.7),
(148) and (1.9) are given in sections 7, 8, 9 and 10 respectively
and each of these sections has subdivisions in which a particular
spin and parity combination for the exchange meson is considered.
In section 11 the analysis of all the previous sections is used to
tabulate results for the production cross sections and decay
correlations of resonances having specific spins and specific
parities. In section 12 the results are discussed in the context
of testing the peripheral model and of carrying out spin, parity
and coupling constant determinations,

The Appendix &, contains a summary of the relationships
involving the arbitrary spin projection operators which are used to

perform the calculations of sections 6 - 10.
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FIG.1 , | |
Feynman disgrams for the peripherai production of boson

and fermion resonsnces and their subsecuent decay
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2. KINEMATICS

For each of the two body reactions (1.6) = (1.9) the
L-momenta of the incident pseudoscalar particle and the target
nucleon are denoted by 9 and P4 and the 4-momenta of the outgoing
boson and fermion are denoted by 4 and P, respectively. TFor the

subsequent decay processes the notation is established by the

equations:
By (@) = P (a5) + P (qy) (2.1)
By (a0 = P ag) v, () (2.2)
v, (@) = Pla) + P (g (2.3)
F(p,) = W (pB) + P (q) - (2.4)

where the 4-momentum of each particle has been inserted in brackets
immediately following the symbol for that particle. This notation
is exhibited in the four diagrams of Fig. 1.

It is necessary to consider several coordinate systems

(30)

and the following notation is used: p; = (e i Ei) and Q; =

(w‘i’ gi) stand for the 4-momenta of the particles indicated by the
subscripts i. When all these particles are on the mass shell the

Lemomenta satisfy the invariant relations
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2 _ 2 2 2
Pl = ¢ i - Ei = ml (2058-)
2 2 2
qi = W i - g._ja_ = M i (2-5b)

where my and yu 4 are the masses of the appropriate fermion and boson
respectively.

The components of any L4-momentum vector in a particular
coordinate system are designated with upper-case subscripts. The

subscripts L , B, V, W and X refer to the laboratory system (311J = 0),

the overall barycentric system (EﬂB + g4 = 0), the centre cf mass
system for the outgoing boson (92V = 0), the centre of mass system

for the outgoing fermion (BEW = 0) and the centre of mass system for the
decay product vector meson V1 (gqx = 0). For any frame of reference

K we use the notation p = @'K, EK) and q = @’K, gK) and the

magnitude of the 3-momenta in the frame K are given by Py = ‘EK l

and qg = |4g |-
For the production process the usual Mandelstam variables

are given by:

5 = (p1 + q1)2 = (p2 + q2)2 (2.62)
t = (p - pa)2 = (q - q2)2 (2.6b)
u = (p1 - q_a)a = (q1 - p2)2 (2.60)
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In addition the following invariants are defined:

v o= qé = (q3+q4)2 (2.64)
w = pg = (p3 + Pq)z (2.6e)
x = qi = (q5 + q6)2 (2.61)

The total energy of the complete system in the overall
barycentric system is EB where s = E;. Defining the 4-gpomentum
k = (p1 - pa) = (q2 - q1), the square of the 4-momentum transfer for
the production process is given by t = k2. The energies of the
boson and fermion resonances in their own centre of mass systems are
V and W respectively where v = V2 and w = WZ.

If the resonances are on the mass shell, that is v = #g
and w = mg, it is possible to define a number of useful quantities
as follows. In the two body processes (1.6) - (1.9) the
magnitudes of the 3-momenta of the initial and final state particles

in the frame of reference B are given by:

pg = pr = q%B =[s -(m1 +p 1)2] [ s - (mq -;11)2 ] /4 s (2.7a)
G =pap =g =[5~y +u )% ] [8-(my-p)] /hs 2

the corresponding energies are given by:
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€ 1B (E§+m§-pf)/2}35 2B (E§+m§-p§)/2EB (2.7¢)
w1B=(E§+#$-m$)/2EB “ o8 m}i*“é

- mg) / 2By (2.73)

In the frames V and W the relevant 3-momenta are given by:

K= agy = [ots a2 Tlt s (-0 )® 1/ 42 (2.8)
q\a,- = qgv = qf;'v =[ u : - g+ uq)al[a g_ - (u3 - ul*)zl /ng (2.8b)
K=p, = b+ +m)® 1ot s () - 02 ]/ b (2.90)
PG = Pay = Py = L o5 - (g # m)?) [ad - (mg - %] il (2.90)

In the frame B the scattering angle ¢ p is defined to
be the angle between the incoming and outgoing bosons which is
of course the same as the angle between the incoming and outgoing
fermions. An azimuthal angle ¢ g MY be formally defined but it
is a feature of the quasi two body reactions that ¢ g is in-
determinate since the reaction is confined to a plane, the
production plane. It is to be noted that the direction of the
normal to the production plane is an invariant under all Lorentz

transformations between the frames of reference L, B, V and W,
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In terms of @

B
t=me +me - 2 € . + 2P.p Pay COs O (24102)
1 2 1B " 2B 1B ~2B B *
2 2 P
SUq *Hp - 2045055 + 2,5 g c0s 8 (2.10b)

The above definitions may be generalised to cover the
situation in which the resonances are off the mass shell by

replacing Ho by V and m, by W in all the formulae of this section.

2
The only off mass shell quantities which arise in this paper are
those involved in the calculation of phase space factors. These
quantities are designated in the same way as the corresponding

on-mass shell quantities but it is understood that the above re-

placements are made in their definitions,.
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3. PHASE SPACE

Quite apart from the particular mechanism which leads to
the production of resonances in collisions of pseudoscalar nesons
with nucleons it is necessary to discuss the variables which are
appropriate to the complete description of the production process
and the subsequent decays. The choice of variables is not
unique but it will be shown that the variables used in the
following to describe phase space are particularly suited.to the
peripheral model,

The differential cross-sections for the processes
described by the diagrams (a), (b), (c) and (d) of Fig. 1 are

given by dg (a), dg (b), do{c) and do (d) as follows:

a0 @) = _1_ (m)t 54(p1+q1-p2-q3-q4> 1

FEgpy [2@2m’ P
3 3 3
a P, a A d 2

o 4 l<ppasq, [T Paay> | 4y .1

b
do() = _1_ (@) s (p, +qy =P, =~ ay =95 = qg) _1

T g 17 " P 93 7 -——-——1;[2(2”>3]
3 3 3 3
p, &g, daq. 4

x 2 2 2 | < paqqqslTlp a, >|2 (3.2)
€2 @3 @5 g 3°5 LU
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a0 = 1 @p* 5t - ppmmy-a) 1

WEgPy [2(20)°]°
3 3 3
a’p; d7p, d7g
3 A 2 2
* e o leEsme T | pya, >l v (3.3)

d o(d) = 1 _(211')484(131+q1'P3'P1+"‘Q3"QL+) 1

bEgpy [2(2m)>
3 > 3 3
d"p, d'p, d7q, d7q, 2
x—3 2 T3 T W lcppag, [Pl pjay> | (3.4)
€3 €y w 3 Wy AV

where | oss [T} p1q1>| ZAV represents the average over initial

spin states and the sum over finsl spin states of the product of the
appropriaté scattering amplitude with its hermition conjugate. The
factor AEBPB is the invariant flux of the incoming particles

evaluated in the frame B. This quantity is equal to 4m,q,j when

1%
evaluated in the laboratory frame o+ The remaining factor in
each expression is called the phase space factor.

In case (a) the phase space factor reduces, apart from

numerical factors, to the product of two Lorentz invariant factors

as follows:
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3 3
7 47py o d7q
(T 1%y #ay =g -y -0y 52! (3.5)

The first factor evaluated in the frame B gives:

dg

o

dv 4 cos? g 4¢p (3.6)

where GB is the scattering angle between B4 and By in the frame B
and ‘PB is- an azimuthal angle which merely serves to define the
production plane. The second invariant factor is evaluated in
the frame V and after integration over dqu to remove the delta

function yields:

F acst, ad (3.7)
where QBV is the angle between 35 and some polar axis in the frame
V and ¢ 3y is an azimuthal angle. It is convenient to choose the
direction of the incident meson as the polar axis since this is the
natural axis of quantisation to use when describing the collision
of this incident meson and the virtual meson exchanged in the peri-
pheral model. This follows from the fact that the component of
angular momentum of the resonant state along this axis must be the
same as the spin component of the exchanged particle in the same

direction, In particular for spin zero exchange the comporemt of
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the spin of the resonant state along this polar axis is zero and in
the distribution of the decay products there is rotational symmetry
about this axis. This is in accordance with the Trieman-Yang(13)
test. The quasi two body inelastic collision process defines a
production plane and the azimuthal angle #)}V may be defined in
terms of the direction of the normal to this production plane. The

angle ¢ is then the complement of the usual Trieman-Yang angle.

3V
The notation used is shown in Fig, 2a where I, the polar axis, and

N, the normal to the production plane, are given by:

I = ay/k (3.8)

N

Ry s2v) 7/ |24y . By | (3.9)

The angular variables in (3.7) are then uniquely defined

as follows:

I, 95y = qy 0080 5y (3.10)

N. g5y qQy 5106 5y €O ¢y (3.11)

With these definitions substitution of (3.6) and (3.7)

in (3.1) gives:

dola) = 1 9B ¥ | @959, |T] pqa I‘2
2939, 14>
(4”)4 4E2BPB 2 AV

x &v dcos 6y & 5 d c0S 05y d b3y (3.12)
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In case (b) the phase space factor reduces as in case (a)

to the product of two Lorentz invariant factors as follows:

3 3 3
a’p o d"q, d7q
€2 ww3 w5w6

The first factor evaluated in the frame P, gives as before (3.6).
The second invariant factor may be evaluated in the frame V and

gives:

2
vy s T o v ey,

W 3V wsyw 6V

, 2
q

(o}
o) (V - wBV - w5v W 6v)

where dQ 3y = d cos er d¢ 3y and 4Q 57 = d cosg 57 do 57 and ¢ 3y

andg 6 are the angles and make with some polar axis in the
5V dzv #¢ sy

frame V and ¢ 3V and ¢ 57 are the corresponding azimuthal angles.

A1l the final state particles are on the mass shell and

thus d w

3y 3y = q3V quV etc. By the conservation of

momentum -9-3V + -9-5V + gy = Yoy = O and hence:

2 2 2 2
0%y = Hg = Oy + Ay + 25ydsy 008 6 55y (3415)

where € 35y i:: the angle between dzy and dey* This angle is

completely determined by Q and ) and for fixed y 3V and g 57

3V 5V
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it follows that:

ey ¥y = A3y Aoy @ cos 935V (3416)

thus the invariant (3.14) can be rewritten as:
. o - 6
&y Woy Wey 8%V —ugy —ugy - g la N,08,, /4 cos 35v1

Integration over w6V then removes the delta function and yields:

Q‘BV d“BV [ 4 cos %V 6"¢5V d cos@5V d¢>5v / d cosg 257 (3.17)

It is advantageous to exhibit directly the two stage nature of the
decay process by using the variables X , cos 83V and 3y where as
before the angular variables are defined with respect to the axes

I and N by equations (3.8) - (3.11). The variable x = q24 is

related tow 3y by the expression
X =V +HE -2V @ (3.18)
5 3V
and therefore:
d wy = - ax/ (aV) (3.19)

To remove the denominator from (3.17) it is necessary to

transform the differential variable 4Q into the product of

5V

d cos 6 and some other differential variable dependent on the

35V

direction of A5y in the frame V. The choice of this phase space
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variable must be such that the Jacobian of the transformation is
not a complicated function of the variables x, cos QBV and # zy°
This ensures that the behaviour of the scattering amplitude as a
function of these variables may be readily determined from experi-
mental data. It should be noted that, in the same way, although

the variablew_ . is related to the angle GBSV the transformation

5V
from one to the other introduces unnecessary complications.
Moreover it is shown in section 8 that it is the variable w5v which
appears in the scattering amplitude so that it is convenient to treat
this as an independent phase space variable.

In the frame V the resonant state B3 decays into three
particles all moving in the same plane. The normal to this decay

plane can be defined by:

and the angle between I and M is denoted by PV and the corresponding

azimuthal angle measures with respect to N by éFV' Thus:

I. M= cosfy (3.21)

N. M

sing .. cos (3.22)
Ev #;v
With this notation it is easily shown that:

dg5v =d 00595V d 0056351/ / Sin935v cos/:’»v (3423)
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where
(Sine35V co.'s/)?,v)2 =1 - COSZGBV - cos%SV - cosza}ﬂ, +
2 cos?}v cosﬁ"gv cosessv (3.24)

the complicated dependence of the denominator on COSG}V and cos%v
clearly precludes the choice of d cos%V as a differential variable.

Calculation of the transformation from the variable cos G5V to the

variable cos F’V then yields the result:
- 2> il *
dQEV =4 cos/év d cos%ﬂ. / (sin ejV cos%v) (3.25)

Once again there is a complicated dependence of the denominator on

CO@VC

dD‘BV = d)%v a 005835‘1 (3.26)

However it is clear from (3.25) that

where the angle Y'BV is defined by:

cosf = - sin cos (34272)
)sv %v }"3\1 ‘
The equation (3.27a) does not furnish a unique definition of 7'4'3‘,

but it may be defined by noting that successive rotations through
(31 N . s

the Euler angles - ¢3V’ . -‘:'BV and + {%V align two of the initial

set of axes I and N with the directions of -9-3V and M respectively as

shown in Fig. 2b. It can then be shown using (3.21) and (3.22) that:
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sinﬁv COS%SV = ¢o8 \’03‘, cos@BV cosﬁjv - sin ‘7L3V sin¢3v (3.27p)

sing siniﬁﬁv

It may also be shown from the definitions of this section

il

cos 5!/3‘, cos @3V sin¢'3v + sin % 3y ©08 ¢3V (3.27¢)

that:

cos%v = COS%BV COSS}V + sin 835V sinE’-Bv sin )LBV (3.282)

sin @Bv COS¢SV = cosE';.\35V sin st c:<:>sc!i-3V + sin6‘35v ,.
% (cos ‘{"3\/‘ sin ;53‘, - Sin\/’3v cos Q}V cos#Bv) (3.,28b)

sin G5V singf) 5v = cos@st sin GSV sin ¢3V + sin QBSV N

» (cos ‘//3V cos¢3V - si.né,bsv cos@BV sin¢3v) (3.28¢)

Thus using (3.6), (3.17) and (3.26}it follows that (3.2)

gives the resul‘t:(3 2):

1 95 1 ' 2
d=a(b) = Po338cq: | T | p.q,>
m® ll»EZBpB by | $P2%3%5% | | 2y ! AV
x dv ax dwy d cos@y ddby d cosig 5y ddbsy avy, (3429

Case (c) is exactly analogous to case (d). In the frame

W the natural axis of quantisation to use when describing the
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collision of the target nucleon and the virtual meson exchanged in

the peripheral model is the direction of the target nucleon. Once

again the normal to the production plane is used to define the

azimuthal angle. The notation used is shown in Fig. 2c. Where I,

the polar axis,and N,the normal to the production planeg are given by:

gives:

dr(e) =

i= By / k-w (3.30)
8=y n gy / |Gy Sy ) (.31

The angular variables used are then defined by:

it

L. pyy = by cos@4w (3.32)

N. py, = py sin@, cos ¢4w (3.33)

With the above definitions it follows as before that (3.3)

1 9 Py { 2
(P09, } TYp e,
ot g BV Wrsppa, VT, oy
dw 4 cos QB d¢B a co:s@l’LW d?g#w (3.34)

In case (d) the phase space factor can once again be

written as the product of two Lorentz invariant factors:
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) 3 i 3
a’p ap, } | d’q
-2 ___".*.1 i. o e — e ) 2
{(:3 < i z\ (é«] +W1 E} & A L\)} W }_}) o )}_‘, i (3'35)

The first factor may be transformed into

d3 P, d3 Py €2
2 b 3
and evaluating in the frame B the invariant d3 P, /€ > gives the

factor (3.6) whilst it may be shown that the remaining terms in

(&),

(3.36), when transformed to the frame W give' '3

% aw d cos@h. dgf)lﬂ‘{ (3.37)

where @,_M and 55411 are &¢fined by equations (3.30) - (3.33). The

second factor in (3.35) is evaluated in the frame V and after
integration over dq}V to remove the delta function yields the
expression (3.7).

Thus substituting (3.6), (3.7) and (3,37) into (3.4)

gives(33):
1 B Iy By ~12
ao(a) = = o 1< Paryasy, | T\ Pyay

Z
(4W) ’+EEBpB AV

dv dw 4 cos@B d¢B d cos@3V d¢3V d cos 94W dféli-w (3.38)
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4, FIELD THEORETIC FORMALISM AND THE PROPAGATORS FCR
ARBITRARY SPIN PARTICLES
(34,35)

Using the usual tensor representation a free boson

field of spin j, mass p and L4-momentum g may be described in

An

LN ]

momentum space by means of a wave function X (33 where

J = ne This wave function satisfies the wave equation:

(q - )X (q) =0 (4a1)
P %EoooAn
and the subsidiary conditions:
X (q) = X(q) (4e2)
A?...%—l.}j.iﬂ)\.n M...H..l&ll?’n
for i’ j = 1’ 2,... n and
=0 (403)
%'%2 ')\%2-.. n
& =0 (Ll-.l-l')
- {\2... n
Consider the operator ¢ which is
M%ZJ . .Ln?‘%o - iPn

symmetric and traceless with respect to any pair of the indices

A A A so that:

9 2’...
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¢, (qyn) = ¢ (q,n)
A ! X
1.»?\'-..)"3'...)\11‘3102...‘)1‘1 A"l..]"j..]"i...]“np'l RP..Pu
fOI‘ i,j = 1'2,".1’1 and
~ €a,n) = 0 (4.6
L] “e? ¢ . ]
Mi2 75 M¥2.. 2P P
and which satisfies
ar, Pl =0 (&7
Ag AL, 2nP1R. P
and
9‘~(‘3§“) ' (q,n) =
’\1 ‘..%p'PZ...& I.) IDZQQPn 01 cél.. %-
9{' (i, (448)
>\1\A‘20-okn. 01 UZ:.-UH
Such an operator is clearly a projection operator for
the spin n component of any field with n tensor indices. For
a pure spin state wave function it can be shown that:
.
;o X () X *(q) = (D" % (g,) (4.9)
L - W - S S DY

Pol.

(4.5)
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+
where denotes a hermitian conjugate and the summation has

been carried out over all polarisation states. Furthermore
¢ (q,n) is uniquely defined by the conditions (4.5) - (4.8).
In particular for n = 1 it is easy to show that the spin one

projection operator is given by:

5 q)\.1qp
(qn) = P( = g - (4.10)
M By M MP o

In terms of this operator it can be shown that:

U

— = r=1 -\ ®
T[S T e Tide 11 4w

R=1\ )mkkz\lu =1 P‘LLP?.H'\ Mmzr Am Pen

Fx) 7 e (4.17)
P
where
n_, . nl (2n-2r)!  nl nl
g =V T Tmemial (Gl (4.12)
and n' = n/2 for n even and n' = (n-1)/2 for n odd and where

the first summation is carried out over all permutations of both

. . A
sets of indices 1,7\2,...?;1 andp , P

1 2...Pn
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Similarly using the R arita-Schwinger farmalism a freo
fermion field of spin J, mass m and L-momentum p may be described

in momentum space by means of a wave function u (ge where

J =n + 4 and to each tensor index Xi corresponds a Dirac L=

component spinor. The wave function satisfies the generalised

Dirac wave equation:

(p -m) u (gé (o)

.l.n

and the subsidiary conditions:

(p) = u.(p) (4.15)
B U VI S U T Y

for i,j = 142.0.n and

u = 0 (4016)
1% qI%... n
u (ﬁ) = 0 (4,17)
A1A2, .M n
Yy u (p) = 0 (4.18)
M 7\1}32...%
Consider the operator € (p,n) which is
AA2,.AnP1P2...Pn

symmetric and traceless with respect to any pair of the indices
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A A », so that:
1 240 1

& (p,n) = 6 (p,n) (4.19)
Merdines MoeodnPP2..Pn 7\1.:2~j...7~i...7h§°1 R..Pj

for i,j = 1,2.001’1' and

8 = 0 (LI'QZO)
}'172..2\11-{:‘1 ‘EooPn
and which satisfies
p, 6 . (pyn) = 0 %.21)
M A1g2...Anp192..f n
8. (pyn) - 0 (4.22)
y}\" A'IRE,,.)\?Ip'lpZ...pn
and
6 (pyn) 6 (p,n)

AA2, . MnP1P2, P P1P2,..Pn% 1 92... %n

= 6, (pyn) (4.23)
A RSN 09 %, %,
Such an operator is clearly a projection operator for
the spin J (J = n + 3) component of any spinor-tensor field with
n tensor indices to each of which corresponds a 4-spinor. For a

pure spin state wave function it can be shown that:



57

} u (p) = (D" ¢ (p,n) (/ + m)
—t )‘Y{)Z... An ‘1’32... )‘Ip welfP1 ... Pn v
n
= (-1)" (@ + m) 9}“{921.13.)\ 6y P (4o2k)

where u (p) = u+(p) Yo and the summation is carried out over all
polarisation states.

Once again & (p,n) is uniquely defined by the conditions
(4.19) - (4,23) and this operator can be expressed in terms of the

integral spin projection operator¢ (p,n + 1) as follows:

6 (P,n) = (2J+1)y Y a (P,n'l‘“]) (’-*-25)
A2, . A1 .. 0 LK@EH) A TP Meoo?nPPl.,.tn

where J = n + %

Strictly speaking all the above considerations apply only
to free, stable particles. However with the assumption that the
resonances produced peripherally decay freely it is appropriate in the
description of these resonant states to use the above projection
operators 75 (q,n) and @ (pyn) in conjunction with the usual Breit-
Wigner modification to the stable particle propagators. Thus for
and B, of massy ,, width T ; and

1 3
L—momentum d the corresponding propagators are given by:

the spin j boson resonances B
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N ¢ 2y ¢ i T ]
(-1) )\,( 2,11))\ o b . / [ (v -pa) + J}LAZ v (L,26)
1 ees 1N 1 20-0 n
where j = n.
The special case of j = 1 then yields for the spin one
resonance V, of mass# , width r % and L-momentum q & propagator

1
given by:

1) [, =~ aga,, /4] / [G=ul) +iyT ] (4027)

For the spin J fermion resonance F of massIi,, width 7 1;\1

and L-momentum Py the propagator is given by:

-1D" 6 (p yn) (B+my) / [ (w—mg) + imarw] (4.28)
M, mP 2l
where J = n + 2.

In contrast to this the exchanged particles E(k) in the
diagrams of Fig. 1 are not on the mass shell and even if these
particles are unstable it is a good approximation to use the un-
modified propagators appropriate to the description of stable
particles. The propagators for a spin zero particle and a spin
one particle both of mass ¥ and with 4-momentum k are given by:

1 68 -p?) (4.29)
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and

_ _ 2 ] 2 _ 2 .
(1)[gaﬁ kakp/’u /& -p®) (4430)

respectivelye. By rewriting the latter propagator as:

D le s w a2l/a? 4Pl x a2l /p? (4.37)
of a B a B

it can be seen that the off-mass shell spin one particle corresponds

to a mixed state of spin zero and spin one since the first term

contains the spin one projection operator and the second term the

spin zero projection operator appropriate to a tensor field with just

one index. It should be noted however that only the spin one term

has a pole at k2 = ﬂz. It is this fact, when generalised to higher

spin, which permits the above description of the resonant states to

be used.
It is convenient at this stage to simplify the notation by
writing
¢ (q,n) = ¢ (qn) (4.32)
MAR2.,. P12, P Ap
and
0 (P,n) = 6 (P,n) (4033)
MA2...MPP2,.0 n Ap

where ) andp stand for the two sets of indices A1A2 Ah and
LX)

P F2u..fa respectively.
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5. VERTEX FUNC?TONS INVOLVING PARTICLES OF ARBITRARY
SPIN AND PARITY.

To evaluate the peripheral diagrams of Fig. 1 it is
necessary to consider the possible couplings of various combin-
ations of three particles any one of which may have arbitrary spin
and parity. As baryon number is conserved there are only two
types of three particle coupling namely the coupling of three
bosons (boson coupling) and the coupling of two fermions with one
boson (fermion coupling). Since only strong interactions are con-
sidered, the vertex functions and the associated particle wave
functions must together form a scalar which is invariant under
Lorentz transformations and the parity transformation.

In the coupling of three bosons, as shown in Fig. 3,
with 4-momenta p, q and r such that p2 = X, q2 = y and =z
the most general lorentz invariant is an arbitrary function of
X, ¥ and z only since energy and momentum are conserved at the
vertex. If any one of the particles is on the mass shell say
p2 = constant, then the vertex function is a function of two
invariants y and z. If any two of the particles are on the mass
shell say p2 = constant and q2 = constant then the vertex function

ies a fonction of a single invariant z.



nA.

Simil.x» results hold in the case of fermiog,coupling

except that there may be an additional dependence of the vertox
functions on any two of the three linearly dependent Lorentz
invariant ¥, g and X It is convenient to choose fﬁand;z_( if p
and q are the L-momenta of the two fermions. Since¥ ¥ = x and
# d =y the vertex function ie at most linear in each of the
matrix quantities g and ¢. If any one of the fermions is on the
mass shell say pa = constant then by virtue of equation (4.4)
P = constant and the vertex function is a function only of the
three invariants y, z and ¢, If both fermions are on the mass
shell then the vertex function is a function of a single in-
variant z.

The tensor quantities with which the vertex functions

’A))

and any two independent b-

are constructed consist of the metric tensor g , the completely

antisymmetric pseudotensoré&

PUNP

momentum tensors which are linear combinations of %P’ qf.and ﬁuoIIl

te case. of fermion couplings the matrices K’ﬁ may also be used.
In general a tensor with nindiceshas parity (-1

Thus for a particle whose wave function has n tensor indices it is

convenient to say that the intrinsic parity of the particle is

normal if it has parity (-1)" and abnormal if it has parity (-1)n+1.

If all three particles coupled together have normal parity or if one
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has normal parity and the other two have abnormal prarity then it
can be said that the coupling has normal parity since no pseuds-
tensors need to be included in the construction of a scalar vertex
function. On the other hand if all three particles have abnormal
parity or if one has abnormal parity and the other two have normal
parity then the coupling is said to have abnormal parity since a
pseudotensor must in this case be included if the interaction is
to be invariant under parity transformations. It should be noted

that the most general pseudotensor is linear in € since the

/J)J)\/D

product of two antisymmetric pseudotensors can be written as a sum

of products of the metric tensor & by means of the identity

PV

é/““'.}‘Pe/"”'xID’ g#}," gj_‘w: gr N’ g)"‘P

g»}lf guyt g))}., gyf,l
gz'\;-\’ 5 BW Ap

nglgkzgr

PR P

In the case of abnormal parity boson coupling no spinors are

involved in the interaction and the indices of the pseudotensor

must be contracted with either 4-momentum indices or wave function

p (5.1)
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indices. Hovever in the case of abnormal parity ferrion coupling
spinors are inveolved and the indices of the pseudotensor may bo
contracted with ¥ - matrix, Lh-momentum or wave function indices.

A particularly useful pseudotensor quantity is the invariant

matrix 1;5 which may be written as:

¥s5 ~ JL:': e/‘u MAp Kr&‘éuX)gKP (542)

A1l abnormal fermion couplings may be obtained from the most general
normal fermion couplings by the inclusion of a factor‘§'5. This
factor is, for convenience, always inserted next to the spinor
wave function of the spin half particle involved in the coupling
which is on the mass shell.

To evaluate the diagrams of Fig. 1 for spin zero and
spin one exchange it is necessary to consider the vertices shown in
the diagrams (a), (b), (¢) and (d) of Fig. 4. The subsidiary
conditions (4e2) - (4.4) and (4.15) - (4e18) greatly restrict the
allowed couplings involving arbitrary but pure spin states even
if these states are not on the mass shell. The most general
possible couplings are given in Table 1 for both normal and ab-
normal parity couplings, The notation used is such that the
quantities g, 8q1 B0 g3, 8, £, f1, f2, f3, f4 and f5 are

dimensionless coupling constants and the quantities G, G1, GZ’
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G3, GO, F, F1, Fg, F3, Fl+ and F5 are the correspondirz form
factors which all reduce to unity when all three coupled states
are on the shell, that is when v =p g, W= mg, ,ﬁa = m, and t =f¢2.
where )A is the mass of the exchanged particle. A mass charac-
teristic of the three interacting pemrticles should be chosen for
the arbitrary quantities m where x is the appropriate coupling
constant.

By making full use of the relationships (5.1) and (5.2)
and of the useful identity
Qﬁv'}\PXPK5 = ‘[X),K”Xx - %XA* g)&\\éu- gy),‘zr.:\. (5.3)
it is easy to show that the most general normal fermion coupling
can be expressed in a form which contans no pseudotensors. Thus

the terms of the fermion couplings involving f_ are really super-

5

fluous since they can be written as a sum of terms involving only
fq, fg, f3 and fh' However the particular form of the couplings

involving f_ is of particular physical significance, as will be

5
shown in later sections, so it is included here in Table 1.

It should be noted that the couplings involving g3 and fh
contain a factor k)‘ and this factor removes the pole term in the

exchange diagrams of Fig. 1 because of the form of the propagator

for a spin one particle as given in equation (4.31).
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Using the couplings defined in Table 1 it is possible to
write down all the vertex functions appearing in the diagrams of
Figs 1. In general all particles in these diagrams may be different
and in this paper the notation used is such that the coupling
constants e, f, g h and i, with subscripts where appropriate, are
associated with the vertices at which the three coupled particles
have h-momenta given by: (py Pss By)y (045 Py k)y (aqs G50 Ky
(qzs Ao q#) and (qk, ds» q6) respectively.

At the two vertices involving the fermion resonance F
the alternative parity cases may be considered simultaneously by
inserting the factors Xe and ‘S £ at the vertices with associated
coupling constants e and f respectively. These quantities are both
defined to be the unit matrix I in the case of normal parity coupling
and to be the matrix ¥ 5 in the case of abnormal parity couplinge

With the assumption that the resonances produced peri=-
pherally have propagators containing a Breit-Wigner resonance
term it is shown in the sections which follow that the only arbitrary
functional dependence of the form factors appearing in the final
expression for the various differential cross sections is a
dependence upon t, the square of the 4-momentum transfer. It is

thus convenient to introduce the notation:
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i—{': - XX(tz

nX
(mx)

(St)

where n_ = (3=1)y (3-2)s 3y 3+ 3. 3=1), (3-3/2), (J-3), (3+F),
(3+2) and (J+)) for x = g, 81 By1 B3y Bgs 1 £y Ty T3y ) and
f5 respectively and where J is the spin of the boson resonance and
J is the spin of the fermion resonance.

It is also convenient to introduce a great simplification
in the notation for the tensor factors constructed from the k-

momentum k . in the vertex functions of Table 1 by writings

P
n
k>7 k}kz ...k)\n = (k) (5+52)
k}‘z kK, ees kxn = (1«:’),‘)’:“1 (545b)
~3

® ©® & & ¢ s @ &6 2 e » 5 P* e s @

® ® & o & o & 8 5 & » =& s &6 s

k ces k = (k)™ (5.5¢)
k."m+'l >'m+2 An X

This notation is readily generalised so that any product
of identical 4-momentum tensors with consecutive indices may be

written in a2 shortened mannere.
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FI1G.3

Vertex Disgram

FIG.4

Vertex disgrems involving theAcoupling of one erbitrary

spin particle.
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TABIE 1
The general form of the vertex functions for the diagrems -
(a),(v),(c) ana (d) of Fig 4. |

(4a) Coupling of particlee of spin (0,0,3) where j= n
Normal parity couplings.:

Gl Wy \\
’ (m Q“."'

Abnormal parity coupling:

N L

1Y

CouriineG Toam\vddEN
(4b) Coupling of particles of spin (0,1,j) where j=n
Normal parity coupling: ’

[%\ ¢, ) e GO X
("‘"3‘) : (m%z)“' . _a'/“ \

Abnormal psrity coupling:

% S, &)
(‘“3“) . ,




AIS%_\Q)\J"M,' ° \"X

49.

(4c) OCoupline of particles of spin (0,%,J) where J= n+ 3

} Fl,w,5,) el e
- ¥ Ry R Ry
('“%)
Normal parity coupling: ‘6,“ =1

Abnormal 'parity coupling: x‘ = ¥s

(44) Coupling of particles of spin (1,%,J) where J= n+ %

RACEE R RATAN R AACHA

P Y 2 x + -?—3—-——:- £ k +
S AT ""
RALTHN Wy + 3 F (k) .c‘eapxs- )

e N\, € pu
CIW oy V7 pA

“

Normai parity coupling: x%s 1
Abnormal pa.rity coupling: x% = ¥s

\

\

;‘
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6. THE DECAY PARTIAL WIDTHS OF ARBITRARY SPIN AND
PARITY RESONANCES.

The differential cross sections for the processes
described by the diagirams of Figs 1 are all proportional to the
decay probability of the arbitrary spiﬁ and parity resonances,
This is explicitly shown in the sections which follow and it is
useful to determine these decay probalities as functions of the
coupling constants defined in section 5. The decay processes
(241) - (2.4) are each considered in turn.

(i) From the discussion of section 5 and the results
expressed in Table I it is clear that a boson resonance which
decays into two pseudoscalar particles must necessarily have
normal parity. The partial width corresponding to the decay
of such a boson resonance B1(q2) into two pseudoscalar particles
P (q3) and P (qq) when all these particles are on the mass shell

is denoted by “V (2 =3,4) and is given by:

af 23, 0= 1 @ot 8% (g, - ax - q) __1
v Soo 2 o) L RE
P2 [ 2@w*
3 3
4 qé d q4 . {2
< o2 2 lepatrias|, @

The invariant phase space factor reduces, after
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integration over d3 q, and dq}V to remove the delta function, to:

g
L §dcos® 3y d¢3v (6.2)

e
and the decay amplitude for the spin j resonance in the notation

of sections 4 and 5 is given by:

h n
<8z % Y2 Ylas = —— (q) K (g) (6.3)
3 2 (m )® 1 L3N ‘\1%22""\n

where j = n. Thus from equation (4.9) it follows that:

1 e D7 gy )"

| <o | 2093 iv e 202
| I (m, )

gé ;qz,n) (%f (6.4)

Using the result (A.14) of the appendix and integrating
over the redundant variables COSQBV and’éBV the partial width can

be written as:

2 q r J s, 2
h v 23 41 44 1
Ty @=3.0 = 35 2w )22 [ Hr } 23 + 1 (6.5)

(ii) A boson resonance which decays into a vector
particle and a pseudoscalar particle may have either normal or

abnormal parity. In both cases the partial width corresponding
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to the decay of the buson resonance B (qZ) intc a pseudoscalar

3 .
particle P (q5) and a vector particle v, (qﬂ) when all these particles
are on the mass shell is again denoted by Y‘V (2 «¢3,4) and is given
by (6.1). The phase space factor is again given by (6,2) but the
decay amplitude for the spin J resonance now depends upon the
parity of the resonance. The alternatives (a) normal parity and
(b) abnormal parity are considered as follows:

(a) The decay amplitude for the spin j, parity (--'l)‘-j

resonance is given by:

h

qQ Tq>=—-9—( )n-‘l
<az 1T 1a, - Uy

€ Aqpye q’-f).s %3y

+
( (646)
LN

where j = n. Thus from equations (4.9) and (4.10) it follows

that:

h2

1 )
(m, Y
[o]

2
“%%‘T\' qz’} w @ E M

€ napve p Bubomprba g

[ 2 P

v qh‘rq4 n+1 n-1 n-1
- €T - ( ' ( (60 )
ls = ] O™ (g éA 32 (ayp) 7
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Using the result (A.15) and integratiiis over the

redundant variables coséBBv, the partial width can be written as:

f‘ h2 a 23+1 3
- .9 v 2-_Jj& gt (j+1)
O

(b) The decay amplitude for the spin j, parity (—1)J+1

resonance is given by:

h1 ha b
(Q3q1|_lTl qa'; =[?m_h——ﬁ:é. 6_%1 q G‘qll')‘q +‘(—Z'mh Yy e qLI-Aq]

(m )"
1 th 3
(@ ™ X (@) X ()
e o= *1’*22..."11 6.9)

where j = n. Thus from equations (4.9) and (4.10) it follows that:

h
2 1 1 +
“%‘M‘T \qa>x = @3 [ B2 =
AV mh1
h h
2 qlm-qlm: 1 +
1
h

2 n+1 n-1 n-1
CXP (q,,) (g,4n) (g, ) (6,10)

2



54—-

Using the result (A.15) and integrating over the

redundant variables cosiasv andjb the partial width can be

3V
written as:
23-1
q =
v 29 31 38 1 <
2 (23)1 323 + 1)
2,’ 2

1y a3 = 1o

2
h h w3
[_1_23_:5 G+ 1) +i 1 by o+

(m, ) Lom, 232 po
1
h 2 2
2 P2l v} j (6.11)
(m, LA o |

(iii) The partial width corresponding to the decay of
the vector meson V1(q+),into two pseudoscalar particles P(q5) and
P(qEQ when all these particles are on the mass shell is denoted
by r\X & —» 55) and is given, by analogy with the special case

of j = 1 in equation (6.5), by

© 12 s 1
v ( 4-%5,6) = E—_‘-‘, : > 5 3‘ (6.12)
#y

(iv) A fermion resonance which decays into a spin half

particle and a pseudoscalar particle may have either normal or
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abnormal vparity. These two cases may be dealt with simultaneously
by making use of the factor E o defined in section 5. In both
cases the partial width corresponding to the decay of the fermion
resonance F(PE) into a spin half particle N(p3) and a pseudo-~
scalar particle P(pq_) when all these particles are on the mass

shell is denoted by m (2~ 3,4) and is given by:

‘ L ¢4 1
al’ (2%34):-.-1-(21'!) &(p - Py = P),) m——

W ’ 2'm, 27737 T [2(2?!)3]2

3 3
d“p d’p
k] 4 2
P .
* & o {< psm 1) p2>t - (6.13)

The invariant phase space factor reduces to:

Py

and the decay amplitude for the spin J resonance in the notation

of sections &4 and 5 is given by:

n-1

cp, o (T o> = 0(p)¥, — o () ulpy) (6a15)
3 FL 2 3 e n-1 L 2
(me) i AZ%...\H
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where J = (n - 3). In order to deal with both parity cases

simultaneously it is convenient to define m'3 such that:

m'3 =+ oy if Ke =1 (6416a)
m'3 ==~ my if Xe = 55 (6.16b)
Thus from equations (4.24) and (4.25) it follows that:
2
: 2 1 e
&Pz P Tl p,> = x
’ 2z Y VT 2 ; AV (29+1) (me)zn-a
2(p, p, + 0, m',) 2n g x
2°3 2 "3 (en+1) P'l‘k‘l
n+1 n-1 ne1 .
(-1) (Ph)\) ¢AP(p2,n) (pL}P) (6.17)

Using the result (A.15) of the appendix and integrating
over the redundant variables cos 9 Ly and % Ly the partial width

may be written as:

2 pWZn-'l
) - e
Pw (2~23,4) = IT . - )211-2 2 (p2 Py + M, m'3) X
27 e
-z—-y—--Zn o 1 (6.18)
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where J - (n - 3). Tt should be noted that as the particle

P (p4) is a pseudoscalar and as the only stable spin half
particles, N(pB), observed to date appear to have positive parity
the decay width of a spin J resonance into such particles is
given by (6.18) with m', = - m, for a normal parity resonance

3 3

and m'3 = + m3 for an abnormal parity resonance.
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7« EOSOI" RESONANCES DECAYING INTO TWO PSEUDOSCALAR
PARTICLES

As pointed out in section 6 a boson resonance which
decays into two pseudoscalar particles must necessarily have
normal parity. In the peripheral production of such a resonance
the exchanged particle can be a pseudoscalar, a vector or a
pseudovector particle but not a scalar particle. For each of
these three allowed possibilities the differential cross section
is calculated for the process described by Fig. 1 (a) in which
the resonance B, has spin j and normal parity (—1)j. This is
done by constructing the appropriate invariant matrix element
from the vertex functions of Table 1.and the propagators of
section 4, In particular the propagator for the spin jJ
resonance is given by (4.26) where j = n. The resulting
expression for the matrix element is then substituted in the
formula (3.12) for dor(a).

(i) Pseudoscalar particle exchange.

The invariant matrix element is given by:

< p2q3q4\ Tip,q,> = u (p,) £ F () § s u (o) (t-r?) x
x (-1)* & G(t,v) (x )n"' ) 1 x
-1 -\ 2! 2 . o
(mg)n ,\P (v-)a 2) + 1)3- Sy
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h H(v) n
“E;h")-;_:l' (q4P ) (7.1)

Averaging over the initial spin states and summing over

final spin states:

2 2
{ersa59,1T) Py | o =lf F(t) i-g;(t'ﬂ B H(v) x
(mg) (m, )

. 2
{-t + (m 1+m2) ] 1 .
( t_ra)a (v_’_\aa)a +)’22FV2
(x )’“75 (gosm) ( >n] ° (7+2)
A AP 22 q‘+P
where
m', = +m, if F.= I (7.3a)
m',l = -m,‘ if Xf = K5 (7.30)
Assuming that the resonance has a narrow width i.e.
PV £ <& P‘Z then:
il
! a S (v-p2y (7.4)

Py IEX
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Jith this approximation and the result (A.8) given in
the appendix, substitution of (7.2) in the expression (3.12) for

do~ (a) and integration over dv gives the result:

2
2
£ F(t) G(t) dg
oo - & &R 2o
B P8

' 2 .
' : )'} b
2 2- j& gt .23
x s T 9 a0, ag,

- 3,4) i 2
v ' (2 1) (7.5)
x ﬁ x ﬂ; Pj (cos 63‘,)_} d cos 65V #BV

where (6.5) has been used to separate out the factor Yﬁv(z - 3,4)/ r;
where PV (2 ~ 3,4) is the partial width and FV is the total width
of the resonance. This factor is thus the branching ratio of the
decay process (1.2) relative to all other possible decay modes of B1.
The first factor in the expression (7.5), made up of all
terms preceding the branching ratio factor, is in fact the spin
averaged differential cross section for the production of a spin jJ,
parity (-1)3, resonance in the quasi two body process (1.6) either
assuming that the resonance does not decay or equivalently summing

over all possible decay modess
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“ae final factor in (7,5) gives the distribution of the
decay products and is normalised so that integration over cosé'}3V
andCﬁBv gives unity. It should be noted that the distribution is
independent of é and there is thus rotational symmetry of the
decay products about the polar axis I in the frame V. (13) Further-

more the decay distribution as a function of cos @ is independent

3V
of the production process variables. In particular this distribution
is independent of the arbitrary form factors F(t) and G(t).

The spin averaged differential cross section for the
production of a spin j, parity (-’I):i resonance in a process
mediated by pseudoscalar particle exchange is obtained from (7.5)
by integrating over COSQBV and?é:sv and putting r'v(a - 3,4) = PV’
The result obtained, which confirms the statement made above

concerning the first factor of (7.5) is:

2

2 - q.
2(t) G(t) B
a6 (a) = {-.?‘ E—i‘ ‘ ‘
J-1 2
) 4E7S Py
-t 1 )‘2 i .y .
x [ o 172 } 2] 41 4 k$3 d cos© dé (7.6)
(t -);2)2 (254 B r B

It should be noted that this result is completely

independent of the decay mode of the boson resonance which might
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for instance decay into three pseudoscalar mesons or into a
pseudoscalar meson and a vector meson rather than into two

pseudoscalar mesons. Thus (7.6) applies to the general process:

P+N-»N+B (7.7)

where B is any boson having spin j and normal parity provided
that this production process (7.7) is mediated by the exchange
of a pseudoscalar meson.

(ii) Vector particle exchange

The invariant matrix element is given by:

€ P 4 |l TP > = u (pa)[ faFa(t)KP +

£ F_ (t) flth(t)
%m§35 Paf. * Tmr) k)u] ¥ g 2Py x
k, k g G (t,v)
x(_»])[gy__%_’f} 12 oon0 x
f" (t-r\ ) (mgo)
n-1 n
xeua"ri,] k'qa_r (k}‘) (-1) é\ (qa,n) x
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Miking full use of the antisymmetric nature of the
pseudotensor in this expression, substituting (7.8) in (3.12),
averaging over initial spin states, summing over final spin
states and integrating over dv gives, with the notation of (7.3)
and the approximation (7.4), the result:

2

q qQ
46 (@) = =l B 1 h v__ (-
3 2 22 IR 2 232
G I (I 2p 5 (m,) Ty

x [Mpzpa(t) (pr) (P2r+) - M (t) (r.r+)]d coseB dﬁé B

d cose3V d% 37 (7.9

where

- Kk T 3'"175 (a,,3) 3 (7.10)
I): goe,m'txl o-qz'r.;( ) )\) ;.ana (q"'P
and

Mpapz(t) - { ‘?2] : 4 + 2 Re (?2?;) 2(m*,| +m,) +
+ ‘53“2 {-t + (@', + m2)2 ] \ (7.11a)

2 .
M(t) = { \-fax [—t + (m', - ma)a-_l} (7.11b)
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% follows from (A.9) that:

i s
- 2 .
pF = 8, [, iajgx : 7 (Bp Pp op sin€p)  x

=

k3-1 q‘J;_ cos¢3v P} (cos@BV) ] (7.12)

where use has been made of the fact that the angle between Boy
and g,y denoted by & y 2s shown in Fig. 2(a), satisfies the

relationship:
’la Poy kv sinev = EB Py 9 sineB (7.13)
Similarly it may be shown that:
2 J R . 2
2 j1 i 2 J=1 3
\ 21 T (k) KT ay By (cos @)
(7.14)

vt = - \E,

Substituting (7.12) and (7.14) into the expression (7.9)
for d& (a) gives:
2

1 - % 1 29 41 g1
if(a) = ——s \ g i 7—‘]—1— x
wm? Col kgt p (e (B

2
Sl"%’l_). k\alj_a [ Mpzpz(t) ( E Ppap Sin @B) 00529‘ sy ¥

2 (2 - 3,4)
M(t) (ra k-V) -}d coseB d¢ B r‘v = x
v
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%%1—,)]7 L P'Jl. (cos@BV)] ° a cos@zv %ﬁ d?{BV (7.15)
where (6.5) has again been used to separate out the factor

(‘V(Z - 3,4) ‘/{Ta which, as explained above, is the branching
ratio for the decay process (1.2) relative to all other possible
decay modes of the resonance B1.
The distribution of the decay products as a function of

cosé?Bv is clearly independent of the production process

variables and is given by:

% [ P;' (cos 63V)]2 d cos 93V (7.16)

On the other hand the decay distribution as a function
of 7‘3V depends not only on the production process variables
but also on the ratio of the coupling constants f2 and f3 and

their associated form factors. The distribution is of the

general form:

-;-i { A(s,t) + B (s,t) °052¢3V‘5 d?‘BV (7.17)

where A(s,t) and B(s,t) are specific functions of s but

arbitrary functions of t. For the situation in which sin@ = 0,
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that is the case of forward and backward production of the
resonance in the process (1.6), the decay distribution is of
course independent of 9$3V since this angle is then indeterminate.
It should be noted that the number of events in the forward
direction gives a measure of the coupling constant f2 independent
of f3.

The spin averaged differential cross section for the
two body production process (1.6), independent of the decay of
the resonance, is found by putting f‘v (2 - 3,4) = f"v in (7.15)

and integrating over cos e}V and ?SBV. The result is:

2 2
ddt(a) = f{% \Go ) \ e 1 5 x
= 3 P) >
(mgo) LE B Pp (t-r )

2 a
3 . . . {\ 1
2 ji it (j+1) 2j-2 2
x SEhrt R W f {F’n\Fa(ﬂ‘ b

£.f F_(t) FX (£) + FL(8) F. ()
2.3 2 3 3 2 1
TR Cop 2(mg + my)
3
2
2 : 2
5 {5 5 '
E%i . )2 ['t +mg + m,) ] } ( Ey Pg 9 smeB) %
£

3

£2 2 -
+ { LR ‘Fa(ﬂ‘ -t + (@ - m) 1}().;2 kv).ld caseB dséB

(7.18)
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*Once again this result is completely independent of
the decay mode of the boson resonance. Thus (7.18) applies to
the general process (7.7) provided that this process is mediated
by the exchange of a vector meson,
(iii) Pseudovector particle exchange.

The invariant matrix element is given by:
<Py a3 q|T ip, 0, > = u (p) [ £F, (t)‘ﬁf» +

£, F, (t) £, T, (t)
TR s LT ]Kf “ k) x
(mf ) . (m£),) »

k, k g, G, (t,v)
y iig 1 1 79
(~1) - { g +
€4
g, G, (t,v) . k)‘ . g2 GE (t,v) €y 1 1
(m_ )™ 2y Ay (m_ " 1
g5 83
x k)% (cDP D (q,,m) (g, O 1 BEW) (5,40)
2 9, 2 - e
A Ap P fo-pD - ’faﬂf ] (my )™

Substituting (7.19) in (3.12), averaging over initial spin
states, summing over final spin states and integrating over dv gives

with the notation of (7.3) and the approximation (7.4) the result:



g
da(a) = 1 EB 1 Eﬁh X

GO (¢ ~p3?

Gy
2 2j~2
2’y (m)2T

+ +
[Mpzpz(t) (parr) Spa.r»') + Mpzk(t) (pa,r) (ker )+

Moo (8) G0r) (0er®) 4+ 1, (8) Gar) (ear®) - MCH) (r.r+)} x
2

x d cos@B d(# g ¢ cos 8 37 d% 3y (7.20)

where

k,k :
r'p={gru~ }?2_-‘:}"51 gl’}.1 *+ EZ quk’\l +E3 k&'kA,l] x

_ay 3+ 3-1 . J

x DI aIlg P<q2.3) (ay,) (7.21)

and
oy 2 T _ 2
Mpzpz(t) = t fa‘ b+ 2Re (£, f3) 2 (mf +m,) + \f3\ x
x [-t + (mf + m2)2] (7.22a)

M, () = \'f'\za (T, T &, ) 2 (! )

p k'™ = 2 Tl Iy 2my + U, 5y 2 (mpamy) 4

(3"3 ?Z) t -t + (m% + mz)a-; (7.22b)
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Mkpa(t> = M (8) (7.22¢c)
2

M, (t) = 2Re (?2?;) 2m, + ‘fﬂa [ -t+ (m} + m2)2 3 (7.224)

M (L) = \?2\2 [ -t+ (m! + ma)a] (7.22e)

Denoting the variable cose3V by CV it follows from the

definitions (7.21) and the result (A.8) that:

CoT2datgr 1 52 3} = 2. oo
k.r---?;-:-j-g—l- ; ky qv-} gkkaPj (cv) (7.23)

and from (A.8) and (4.9)

3—2 J - 2 . 0
q g Jj P, (c,)
[(23)1 j V][pakv v
oy . . 1] )
- By Py kv{cosiv 3 Pg (CV) + s:x.nﬁv sinﬁﬁBV P;j (CV)'&] (7.24)

and

H

L4

H
+

]

M
n
[N

t
G

(2'3.).3 i l [&g\ kV{JP (c )}
\g,\® k‘a,{ ERCHE L b (cv)'32} .\ (7.25)

where

- 2
g = @ ,,2) E 8, + By Kay + E5 K ] (7.262)
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— e pak — 'k k’q
B, -5 55 + By (peq, - ---;—-—-) + B pyek (1 -;> (7426b)
2 — - -
‘g‘ g2 r2+2Re{(g1+ng.q2) x

kcq 2
R . e K
[-81 z-83 +8 (- )"2> }

2
- keg - 2
2 (1-%5571 } K2 (7.26 9

* ‘{’§1 '1'2"'32 2t 83
R r

and where the angle € y is given by (7.13). In fact
Po Py ky sin€y = Epy g sinf (7.a7a$
Poy Ky cos€y = ‘{ (s - m ’)'a) (-t +r*1 "f'a
+ 2)»\; (-t + m? - mg) ] l’-%fg (7.270)
Substitution of (7.,23) - (7.25) in (7.20) gives:

Jaiy

Q . .
de (a) = 1 B 1 2 ] il 254
T s L

- 2
::c{Mp2p2 Poy kV { coseV 3 P (Cy) + sin € Sm#BV P, (C );
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v { . po f e 1 i
+ 2 Re (.:Pak) Poy I%'XCOS{’,V hi Pj (CV) + sméﬁv s:x.n?%v Pj (CV)}

2 2
. -0 - L . 0 b s 0 2 1
x J P;j (CV) + Mo ky {3 Pj (Cv)k + M‘Tg Pj (CV).)-l-{PJ (Cv)l }

(2- 3.4) .
x & cos@ ¢ ‘1 ! x (2j+1) d C,, w= dfé

1
5 v 3R (7.28)

23 3V

where the various ﬁ“depend in a complicated way on the coupling
constants and their associated form factors. Because of this
complexity it is unlikely that measurements of the decay distri-
butions will furnish any information on the couplings involved
in the production process.

Integration over% 3y gives the decay distribution as

a function of .cosejvz

.(.2;1"21).[ A(s,t)\j P° (cos© } + B(s t){P (cosa ))‘ ‘Xd coase3V
23 J
(7.29)

and integration over cos 63V gives the decay distribution as a

function of é}V

[ C (s4t) + D (s,t) sin2¢3v-k d#BV (7.30)

where A, B, C and D depend on the coupling constants and their

associated form factors which are in turn arbitrary functions of t.
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These distributions are the most g-nsral distribuiions
for the decay of a resonance of spin j produced by a peripheral
mechanism involving the exchange of a spin one particle.

The spin averaged differential cross section for the
quasi two body production process (1.6) independent of the decay
mode of the resonance is found by putting FV (2- 3,4) = TV in
(7428) and integratirg over the physical region of Cy and #3\/"
The result obtained is:

3

1 % 1 2949144 2 =4
do(d) = TJTL
wn? ES py eph? B v

- 2 .2 2, . 2 (J+1)
x[ Mpapa pavkvicosiv-rsmév _g_:l—-} +

- - L = (2441) .
2 Re (Mpzk) pZVkWBI cosf v ¥ Mkk kv + M —-g———‘l d cos@B d?‘)B (7.31)

This result is again completely independent of the decay
mode of the boson resonance and thus applies to the general process
(7.7) provided that this process is mediated by the exchange of a

pseudovector meson,
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8,  BOSOM RESONANCES DECAYING INTO A VECTOR PARTICLE AND A
PSEUDOSCALAR PARTICLE.

A boson resonance of spin j which decéys into a wvector
particle and a pseudoscalar particle may have either normal or
abnormal parity, that is parity (--‘l)‘-j or (—1)j+1 respectively.
These cases are considered in turn:

2) Normal parity

In the peripheral production of such a resonance the
exchanged particle may be a pseudoscalar, a vector or a pseudo-
vector particle. The differential cross section for the process
described by Fig. 1(b) is calculated for each of these three
possibilities as follows:

(i) Pseudoscalar particle exchange.

The invariant matrix element is given by:

x (1) g S0 ()7 (gm) 1
e R/ VA O
h H (vx)
x O O Y’x

(q )1’1‘1
)n l“F

q#arth',
eﬁyvr %p%y %f'fi }x

1

(ijﬁ) * %P4rjx

i I(x) q5ﬂr : (8.1)
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Averaging over the initial spin statcs and summing over

final spin states gives:

| ‘ ,2 £P(t) g G(t,v) b H (vyx) 1 I(x) | 2
<Pyu59595 § T | pqa,> = ' - x
AV % -1 n
(mg)n (mho)

7+ m 1 | 1 B
2.2 2.2 . 2[(12 NN x
(6-p®) p)® +p3 S Gp® 4Ty
x [ (k )n?I) (g, en) (qlr e Sy Qz.,4 12 (8.2)
3
N\ xf’a o ﬁrma“y’ 3¥°50

where the notation of (7.3) has been used.

Assuming that the resonances B, and V, both have narrow

3 1
widths i.e. r\/({./d ,and§" << g then:

1
(v7.:§)2 9 gré

L 2
o, /‘E 8 (v -}l 2) (8.32)

L o (x —ri) (8,3b)

1 ) -
2\2 2m2 ~~ J

With these approximations and the result (A.10) substitution of
(842) in the expression (3.29) for 4@~ (b) and integration over

d v and 4 x ylields the result:
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2 2 Y rmaw | 8
do~<b)=ﬁ§%t_z_§_‘ B .

J=~1 2
(mg) YE; pp
[-‘b + (m! + m.) ‘j 3 .
1 2 288 23
x (tjf?)a 338 kv d cosé}B d B
by 3.8 . . 2
v ! (23+1) 1 1
x . X 330G1) Py (cosBBV)\. d cosejv X 5R% d?;BV

3 3
r}’( Ty Gy
2 2 -
X gy dgy sin 635V sy (8.4)

where (6.8) and (6.12) have been used to separate out the factors
PV (2~ 3,4) /\—'V and.r;C (4= 5,6) / 5;( » These factors are the
branching ratios of the decay process (1.,4a) relative to all possible
decay modes of 33 and of the decay process (1.4b) relative to all
possible decay modes of V’l respectively,

The first factor in the expression (8.4) is identical

with that appearing in (7.5) and is in fact the spin averaged

differencial cross section for the production of a spin j,
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parity (-1)j resonance in the process (7.7) mediated by pseudo-
scaler particle exchange.

The remaining factors in (8.4) give the distributions
of the decay products as functions of the variables cos£33v,
¢3V’ %«3‘, andeSV. Each of these distribution terms is
normalised S0 that integration over the complete physical region
appropriate to each variable gives unity. The distribufion of the
decay products as functions of these variables are all independent
of each other and of the production process variables. In
particular the distributions are independent of the arbitrary form
factors F(t) and G(t). This mokes comparison of the model with
experimental data relatively easy.

Despite the fact that the factor sin2€935v arises in
thesquare of the matmix element it 1s not convenient to measure

the distribution with respect to the variableéa because of the

35V
complicated nature of the relationship between e 25V and the
variablekn)5v which appeared naturally in the phase space factor

evaluated in section 3. The relationship is such that:
2, doy s 0202 002 (02 102 D)2 / 12 2,2 022
by [y 4 3 A

2 2 2 2 2 2 2 2
te Py Py Phps PPy /3 Py (8.5)
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where of course q;v is given by (2.8b) and qgv =w;v -r\g N The
distribution of the decay products as a function of the usual

Dalitz plot variable W is thus of the above form. By carrying

5v

out the integration over ) and making use of the fact that the

5V
limits of the physical region are defined by sﬁa€§35v =0 it is
possible to show that the final term in (8.4) reduces to unity as
required,

The spin-averaged differential cross section for the
production of a spin j, parity (-1)j, resonance and the decay
of this state into a pseudoscalar meson and a vector meson is
obtained from (8.4) by integrating over d?’BV and dLJsv and
assuming ‘T; (4= 5,6) =‘7% « The result dbtained is then:

26-(b) = 2 E; 1) G) 2 g
T (m )j—1 4E§ Py
g

[-t + (m'+m)2] Fugs .
- 1 2 273441 23
e ZUL 8 a ol ag,

[ (e- 3,8
v ’ (24+1) 1 2 1
o X 53051 [Pj (COSQBV)] a 00593v R d¢3v (8.6)

X
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It should be noted that this result is completely in-
dependent of the decay mode of the vector particle which might
for instance decay into three pseudoscalar particles rather than
into two such particles. Thus (8.6) applies to both of the
following two stage processes:

P+N-<N+ B3

B, »P +V,

and

P+ N3N +3B

34 ~» P + V2

(8073)

(847b)

(8482)

(8.8b)

provided the boson resonances have normal parity and the production

processes are mediated by pseudoscalar particle exchangea
(ii) Vector particle exchange.

The invariant matrix element is given by:

- £.F,(t)
< Pod395% kTt Pa, > =u (Pa) [sza(t)gr + —%;i;— p2r+

quq(t)
m

k, k,,
K (p,) x (=1) - £ )
f1+ P] x £ Pq x [g,iu 2
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1 8,0, (8:v) o n-1 x (-D*@ (q,,m)
k. (ky ) 42
(8-p) kS T YSPA Fetzp T ¢
1 . (qq. )n—‘l hoH (V,x) Sd‘ q -
D gy PR Ty e

o]

4 -9 .
< {ge-? Lur Ut '} 5 1, - P iIx) q5‘€ (8.9)
P G-py) + Py
Substituting(8,9)in (%,.29), making use of the anti-
symmetric nature of the pseudotensors, averaging over initial
spin states, summing over final spin states and integrating over

d v and d x gives, with the notation of (7.3) and the approxi-

mations (8.3), the result:

2
1 ag 1 b, 1

(lm)2+ l}Eg Py (1:—}-A2)2 R 2,*2 (mho)a‘.’.r‘V

do(b) =

.2
i 1
* IR 2}‘4:; x[Mpzpa(t) (p r) (pa )y - M (&) (r.r )] x

x d cosGB d?g d cose ¢3V d%BV (8.10)

where
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- _ayd+
x () )3 94 (qa,;n g 31 8.11)

and M (t) and M(t) are given by (7.9).
PaPa

Denoting cos@®,.. by C. and sin®, by S, it follows from
3y v 3y v

(As11) and the definitions (3.27) that:
- T 255 1 . 31 3=
o [ ERY) 2 (Bgppag sin@p)p, K™ oy x

. - . e}
LGy 5y Sme}sv] x[ costpry °°S?53vi 3(3+1) By (Cy) -

v .1 . . 1 1
-5-\; Pj (cv)} - s:.n‘}*3v sm¢3vi -S—-V Pj (cv)l‘i (8.12)

where use has been made of the fact that the angle between Poy and
qqy» denoted byEV as shown in Fig. 2(b), satisfies equation (7,11).

Similarly it may be shown that:

2
rex’ = -‘8 | {_T]._g_ l. (,,2 kV)rakv J-1 31 9y 4sy sinQBSV]

. c y 2
x[ cosa‘f’z’v {j(jﬂ) I'g (Cv) - -S-z- P:_} (CV)}
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ROV SRR (8.13)
+ sin" oy 5y 3 v .

Substituting (8.12) and (8413) into the expression (8.10)

for dar(b) gives:

.2 qQ ‘y
4o (b) = =t {5 } B 1 2 31.9; .
2
(3+1) 2j-2
...l’g_... kV { Mpzpa(t) (EBquB sinBB) g cosk}JBV cos¢3V x
~. . ) 0((.,) CV P1(C) . . :l'—P1 (C) 2
x tJ(J'ﬂ Pj Cy) - g-\; j V} - S:Ln\f/.sv Sm¢3V[ SV 3 V)

2 C 2
+ (X Py Ky) \ cos Yo, [ 3(3+1) B (0 - -S-‘-‘: P, (cv)l

2 5 (@ 3.4
2 1 1 . v
+ sin 7’3v{§; P, (cv)} S d cosOp dfﬁB x ™ x
I - 5,6)
(23+1) 4 C . d% x X2 x 1 d pd
X
My 2 2 .2
S5 Y3y Gy Siv e 357 de (8.14)

95y 93y
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where use has been made of (6.8) and (6.12) to separate out the
branching ratio factors.

To determine the decay distribution as a function of any
of the variables cose__ﬁv,$£ 3y OF #JBV it is necessary to integrate
over the other variables. These decay distributions are of the

form:

: cosl> 2
(2j+1) [ 1) £O _ o8y a, }
2j2(j+1)2 3(3+1) 3 <COBQBV) mG}V (cos

2
1 1 }
+ {si.nQBV Pj (COSSBV)} d COBQBV (8415)

1 1 . 2 . 2 '
FT [A(s,t) + B(s,t) 506G i(Z;H'I) + (35=3~1) 2 cos ¢3V)}dé3v
(8.76)

%—i{ TG % (25+1) + (3 —3-1) 2 cos ?3‘]} ‘X d%v (8417)

where A(s,t) and B(s,t) are specific functions of s but arbitrary
functions of t. The distribution of the decay products as a
function of cos QBV and as a function of *fIEV are both independent

of the production process variables whereas the distribution as a
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function of ‘#’BV depends not only on the production process
variables but also on the ratio of the coupling constants f2 and
f3 and their associated form factors.

The distribution of the decay products as a function of
W5V is independent of all the other variables and is given by (8.5)
as in the case of pseudoscalar particle exchange.

Integrating over d’”}'\f and d4J... and assuming

5V
'f;{ (- 5,6) =rX gives the spin averaged differential cross section
for the production of a spin j, normal parity resonance and the

decay of this state into a pseudoscalar meson and a vector meson,.

The result obtained is then:

2 @ |
g G (t J.
a0 = P | = (215 = BB+
(mgo) 1 HEZ Py (’c-r )
£ 2 £.f
(j+1) 2j=2 2 2
x—ﬂg—- Ky x[{ﬁ‘le(t)l b + _Tﬁ% x
2Re {Fa(t) 7 (t)‘} f23 \Fg,(t)\a 2
% 3 2(m}I + ma) IR 5 {-t+(m,1+m2) ]}x
(m,, ) (mp )
3 3
2

2 C
. \ 2 e o V.1
x (EBPBqB sin B’) { cos ?§3V { 3G+ P, (cy) - 5\7 B, (CV)] +
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f2

2 2
e L B R = R T
v

Sy

2 C 2
()*2 ky ) x{[j(jm) B] (o) - = P?i (cv)] +

I 9 () ° d cosB, a
+ SV 3 V} cos B X

fjb(a- 33 (2441)

1
x f% 2j2(j+1) d Gy >R d7L3V (8418)

As for (8.6) this result is completely independent of the
decay mode of the vector meson. Thus (8.18) applies to both (8.7)
and (8.8) provided the boson resonance of spin j has normal parity
and the production processes are mediated by vector particle exchange.

The spin averagsd differential cross section for the
general two body production process (7.7) mediated by vector meson
exchange is found by putting r; (2- 3,4) = i—; in (8.18) and
integrating over CV and ?$3V' The result is of course given by
(7.18)

(iii) Pseudovector particle exchange.

The invariant matrix element is given by:
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£.F_(t)

< PyuzA59g | Thpia, > =¥ (pa)( £.F,(t) Kf' + -%n;i—r P2 +
3

£, F) () K,
4Ty KKy 1
G k,.l\df w (o) x 1) | Sy P )

£y

848, (t,v) 8,8, (t,v) 820, (t,V)
BN\1 * By Ear ? k»km}

ne2 n n
(ms.,) (mga) (mgz’)
h H (v,x)
x (kA)n—1 (~1)" (qa,n) s 1 22 = (q4 )n-1 x
N o (v-p5) + i}"arv (mh ) P
o]

e ¥ 1 i
x¥€ sa q q g - iI&)
% Ly %3 E 2 } 2y - ap I o
P ¥ s [ 4 )34 C“Tm) + 1’L N

(8.19)
Substituting (8,19) in (3.29), averaging over initial spin
states, summing over final spin states and integrating over dv and dx
gives, with the notation of (7.3) and the approximations (8.3), the

result:

2
1 g 1 b7 1

de(b) = q
w0t S py D T g2 @ )3
[e]
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i 1

2%

x [ sz(t) (pz.r) (pa.r )+ M (t) (pz.r)(k.r )+

M (8) (k) (Do) + M (8) (kor) (kar®) - M(t)(r.r““)-! x
2

a cos@B d¢ a cose 9')3\7 d+3v 5y (8,20)

where

r)s=[g)w "%?}[51 WY + 8By dp, kg +E5k»k)s1l x

v DI oI D (o) (g )T B2
éP“"Po qzctqya Ib5%* X ‘é\P 42 4,,.

and the various M, (t) are given by (7.22).
Denoting the variable cose3v by Cy it follows from

(A.10) and (3.27) that, with the notation of (7.26)

2 J=-1
Ker = - [ Ta'gﬂ" Yy P2 By by 51“335\!1 x

ngk_“?]t cos‘leV j P; (cv)l (8.22)
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and from (A4,10) and (A.11) it follows that:

IR T T T R T - .
Pper = "[_7'%'597 2 5y Gy P 9zydsy Sin e35v‘} *
- 2 1 - o7
x [ 8p2 ky cos\r}V 3 Pj (CV) -84 pavkv&cos EV °°s‘P3V 3 Pj (CV) -

C
- sinevt cos\}taal. sinésv { J(3+1 Pg (Cv) - 'é—:: P; <CV)} +

: 1
+ Sm*}V cos¢3vsl -év- Pj (CV)S‘)))‘} (8.23)

and

. 2
+ [ 2% 1. -2 _3-1 :
Tor = [ G N W Pelvisy s1"935\11

- 2.4 2 1 2 - 2.2
[\gr\ kv cos \”BV{J Pj (CV)} _‘31\ kv icosz*BV x
C
.1 2 oy o v 1 2
50! (c )] + cosa\i}/ 5(3+1) P2 (C.) ~ — B} (¢))
X[ J v 3V \_ J v v 3 V-l

+ sma‘f;BV[ éx-/ P:;. (CV)-}E %wl (8.24)



88.

where the angle €V satisfies the relationships (7.27).

Substitution of (8.22) - (8.25) in €8.20) gives

Japs "
a5 (b) = ] Al B x
(m) lmg by (b=p® e

vl 2 ;2 \ - \
X[MPEPE I icasév cos V/BV 3 Pj(Cv) - sin€ x
‘ 0 CV 1
ECOS\PBV Sin?!’BV {j(jﬂ) Pj (Cv) -S-‘; P:i (CV)} + sin%’ﬂsvcos¢5v
Uy (C.0} 12 + 2Re (M_,) 1% cos ; P )y x
Sy 3V J pk’ Pav WYy 3 By (O
icos EV cos\}‘sv j P; (cy) - sinGV { cos\‘%v sin?%v x
oy |
{J(JH) P° (¢ ) - §—V P (¢ )3 + sm‘{gv cos¢3v§ P (C )\)s

2 2
+ ﬁkk kl; {cosﬂ}’sv i P:;. (CV)} w1 zcosal}gv [ 3 P; (CV)]



89.

C 2
2 of s o -V . 2
+ cos \IJBV [ J(5+1) Pj (CV) '§; PJ (Cv)l + sin ‘{JBV x

2 i (2- 3,4) )
1 1 Vi ! (23+1)
NG )} 4 cosB d?‘
[SV itvv }} 5% °7TB * [ 2P+

1 fx-56 Py
v T Py x Y=t @5y ”

2 2 .2
dzy gy 5in 835\1 v, (8.25)

where the various F/I'"are the functions appearing in (7.28) which
depend in a complicated way on the coupling constants and their
associated form factors.

The decay distribution as a function of any one of the
variables cos@z'v, 4’3\[ or‘*/ 3y is obtained by integration over

the other two variables. The results are as follows:

N <2,'i 1) .1 2 . .
23-3(:4_1){ A(Sg‘ﬁ) ‘i J Pj (COSQZ'V)} + B(S:t)‘L](;H’I) Pj<COS%V) -

2] 2
_So8Y3y 4 4 1 2}
ey e3v Pj (°0563V)] + ,[——--—-——sin 93\;’ Pj (cose3v)] | d cc>s93V

(8.26)
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1 | . 2

R {‘C(s,t) + D(s,t) sin %3"1 d¢3v (8.27)
i [E(s,t) + F(s,t) sinaly V—l d* (8,28)
T , 3 3V

where A, B, C, D, E and F depend on the coupling constants and
their associated form factors which are of course arbitrary
functions of t.

The distributicm of the decay products as a function
of\A*5V is independent of all other variables ond is once again
given by (8.5).

The spin averaged differential cross section for the
production of a spin j, normal parity resonance and the decay
of this state into a pseudoscalar meson and a vector meson is
obtained from (8.25) by integrating over diPBV and dudgv and

putting Px(l#- 5,6) = ?X. The result obtained is then:

1 %g 1 2di1qs 23k
ac(v) = -(-3—9— x
@m? 4 py (b2 B A

= 2,2 - . .
x[ Mp‘?_pa pavkvi{cos €V B Pj (Cy) - s:.név sméjv x

C 2
of s (o} vV .1 . 2 2
{J(J-l-'l) Pj (CV) - -é---V Pj (Cvas] + sin GV cos ¢3V x



2
1 1 - 1
{-é-‘; P (cv)] iﬂu 2 Re (Mpak) pavk%,{ i P (Cv)] x

c
R . . . o vV .1
{cosEV 3 Py (cy) - s:u.n€v s:.nésv [J(j+1) Py o -S-‘-,- P, (CV)])_S
_ 2 _ 2
+Mkkk$ gjpg (Cvﬂ) + 1 \(ap; (cv)]

C 2 2
 f s o v 1 1 1
+ {J(JH) Py ¢y - ’s"; P (cv)] J{;v- Py (Cv)] E a cosBB d+B x

‘ (2~ 3,4) .
v ’ (24+1) 1 %
x x ==Xl 43¢ x 2 4 (8.29)
W 257 (3+1) vooER sy

As for (8.6) and (8,18) this result is once again
independent of the decay mode of the vector meson and thus applies
to both (8,7) and (8.8) provided the boson resonance of spin j
has normal parity and the production processes are mediated by
pseudovector particle exchange.

The spin averaged differential cross section for the
general two body production process (7.7) mediated by pseudovector
meson exchange is found by putting ‘qv(2- 3,4) = f‘v in (8.29)
and integrating over CV and éBV' The result is of course given
by (7.31).
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b) Abnormal parity

In the peripheral production of such a resonance the
exchanged particle may be a scalar, a vector or a pseudovector
particle. The differential cross section for the process
described by Fig. 1(b) is calculated for each of these three
possibilities as follows:

(i) Scalar particle exchange.

The invariant matrix element is given by:

1

<p2q3q5q6\ T\ P> = ) (p2) £ F(t)xf u (p1) -(-t—-é; x
e
(-1) BEGT) (o <}; (a,em) (g, )P 1
X (m )n_1 kx )\ q2 n q[_'.P 3 :
g r [CV-ré) + ip, V}.}
h H, (vyx) h.H,(vex) h_ H,(v,x)
174\ 2o\ Ve 303V
x{_‘?:i Bep1 * . 0 Jeolp, * e U
(m, ) & P, n &
(mh1) h2 (mha)
U g W 1 ;
x (=1) {'g . e -l i I(x) g (8.30)
S > I 5
©oopy e - n Ty T

Substituting (8.30) in the expression (3.29) for deg (b),
averaging over initial spin states and summing over final spin

states and integrating over dv and dx gives, with the notation of
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(7.3) and the approximations (8.3), the result:

2 P 2
a0 (b) = —t B \f F(t) g 6(t) 4 L=t + @ +m)"Y
(4n)6 AEE Pp (mg)3'1 (t-y?)a
] 1 3+1 i _ 5-1
x (-1) (k) a‘ (a.e3) (@ )
27'3“; 28, Ty [ )\ 'XP 2 up
h qy+9 h
1 i 2
X R A———— q - + x
1 2
qao(h‘_ q“-q 2 d COSGB déB d CQSQBV %
x(qaﬂs - “""""“5'2 )q4
Py P1
. d%‘f d+3v Wlsv (8.31)

Using the relationships (3.28), (4.8) and £.,10) the

above result may be written as:

2
\F(t) a(t) \ p

31 >
(mg) L"EB pB

n

do(b)

I
™%

N
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[~t + (m 4+ m ) ]

x %9-—9—1!- k‘zl‘j d coseB d#}B

(t'f )
(-3 o _ o4 Vzéu- 5,6)
x —-——ﬁ[-—-——- ( (1)" (3+1) + (hy) Jl X X

b

i 2
- . 1 o : pO
XL(h,l) Q (W) sinWy, Py (cosBy) + (By) @, Gy 3 Pj(00593v>]

(23+1) sg
—-3—4“2 a cosa - d&}IBV E Wy (8432)
q5X
where
e —1 (8.33a)
h, = . 332
1
h,o= M WLy by, P2 q\2r
2 s ; (8.33b)
CRPEI S CHD LR &'
1 2
and
Q,l(&dsv) = dzy sy sin 835V (8.3ha)

and where (6.11) and (6.12) have been used to separate out the

branching ratic factors,
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The first factor in the expression (8.32) is identical
with that appearing in (7.5) and is in fact the spin averaged
differential cross section for the production of a spin J,
abnormal parity resonance in the process (7.7) mediated by
scalar meson exchange.

The remaining factors in (8.32) give the distributions
of the decay products as functions of the variables cos 37 433\/"
'\41 3y and udsv, normalised so that integration over all these
variables gives unity. The decay distributions as a functions of

a single variable are given by:

(@2 e+ B2 5] —lﬂ- | &p? {P <cosazv>)§

R,)° ° 0.0 " o (8.35)
+ (h,) \ jP  (cos 3V) d cos Oyy 35
1
-1 -
Cw)? G+ m® 5] X L2 o) sin’ty,

> 2 1 .
+ (112) 3 3] d?BV (8.37)
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-1
(02 G+ 2 5} TEp? e (agy 0y s 07

~ 2 .. 21 3 ]
+ ()" 23 (“’5}(‘“4\7 =P 1 sy) } 13? ; 43 4w, (8.38)
Gy T sx

Apart from the distribution as a function of 4‘3V’ which
is isotropic in accordence with the Trieman-Yang test, these
distributions depend upon the ratio of h1 and h2. This limits to
a certain extent the use of these distributions as a test of the
spin and parity of the resonance. However the distributions of the
decay products as functions of the above variables are all indepen=~
dent of the production process variables and of the arbitrary form
factors. This makes a test of the model comparatively easy.

Integrating over dqﬂsv and dW.,, and putting Y‘X<4— 546) =

5V
f1x gives the spin averaged differential cross section for the
production of a spin Jj, abnormal parity resonance and the decay

of this state into a pseudoscalar particle and a vector particle.

The result is:

2
2 2 q
Lo @) o B £ \F(t) a(t) \ B
L 4R J=1 2
' (m) YES Py
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L=t + (af + mz)al

J oxea .
2¢ 3844 2j ¢
7?%5‘3" 5 d°°SBBdB

(t-rz)a
Ty LEp? o)+ G 1Y

2 2
x { (&,)° S( p;.(c0593v>} s (@)° i 3 ¥ (COSQBV)‘; }

(2j+1) y A é

Once again this result is independent of the decay mode of
the vector meson and thus applies to both (8.7) and (8.8) provided
that the boson resonance of spin j has abnormal parity and the
production processes are mediated by scalar meson exchange.

The spin averaged differential cross section for the general
two body production process (7.7) mediated by scalar meson exchange
is found by putting .Pvca.. 3,.4) =FV in (8.39) and integrating over
00563V andéjv. The result is of course given by (7.6).

(ii) Vector particle exchange.

The invariant matrix element is given by:
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- £.F,(t)
3
£,F,(+) " l kk,, 1
u (p.) x (=1 -
Ca qu PE Pa % { rv 2 } (t-‘r.a)
g1e,l(t,v) g5 2(t,v) éeé(t sV)
x‘ )Pz gyt ¥ @ )" A, K m )P Ky k4
x (kg (4)“3{; (q,4n) (g, 1
A A 2? [(v—pz) + 1}»2 V} 4

(v 4“) h. H (VY)
1 1 3 220
. l G P2 TP T T B eatpr T
1 2
h_H,(v,x) .
330" Uy Uy
q x (-1} g x
(w )P Ug e { & p2
mh3 I
x 1 LT 6) 4 (8.40)

2 O
() + i\ y
Substituting (8,40) in the expression (3.29) for d&(b),

averaging over initial spin states, summing over final spin states
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and integrating over dv and dx gives, with the notation of (7.3)

and the approximations (8.3) the result:

1 g 1 1 52 1
o I Y - L e Pu

do"(b) =

X [ papa(t) (Paer) (Pz.r ) + Mp (t) (paar) (kar?) + IVIkpa(t)(k.r)(pa,r'*")

22

+ M'ld((t) (kor) (kor®) - M (%) (r.r+)] d coseB d¢B d COS@BV X

dc,%v d\%v awy (8.41)

- kE My = = - —
Tp {g),,,' ),2 }L €1 Byz\1 ¥ B2 %K1 * &3 kykM]

x (03 @I (a5 ¢ >5'1[ —1_( q‘*'q5
X 2 %, -2 \ Y501 = %91
éfo P (mh )a f , )
h Qe
- (a 005 - qe'i‘*_q_‘at_qé ) . (8.42)
() Py |
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and the various M(t) are given by (7.22).

Denoting cose by C and sm@ by S and with the
notation of (7.26), (8.33) and (8.34) it follows from (A.8) and

(A.10) that:

- N s 1 - . 10
x | @) oy singy, 7 (0 ¢ () 6y ) 55 (CV)K (8,43)

and from (A.8) - (A.11) it may be shown that:

- -{2 1 )

C.J o—
[ 23
LJ'-\

z 2T ; 1 - . o0
%gpa iy | By sy sinygy B5 (©) + By Gty 5 5 (CV)]
- By Pyy v[ 19 ) iGOSE sm%v P} (C,) + sin €& -'3‘-

: 1 1 . . el o)
(COS?BV cos%BVS-‘—’ Pj(CV) - sm‘*‘BV Sm#}VSJ(JH) Pj (CV) -
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C

vV 41 - : s 0
= ¥ (cv)}]} + By gyl Slcos €57 ©) +

sin€ sm?BV (¢ >]S } (8.44)

and

, 2digit 1 w2 3212 4 (=% 4
Fer” = - [@:—}ﬂ_ ;o % 1 %\gr‘ ky
x[ﬁ1 Q,](\.'%V) sin\’f}V pl (Cy) + h Q,a(hév) j P (¢ )]

- 1 1
- \g,\ ‘ { . Qﬁ‘%v’} {-—5 5 P (c )] +
sin §*'BV 2 XPj Cv\’ -Gy 5 Oy By Oy

- - . 1 51 . o0
- 2{ h, Q1(~%V)} % h, Qa(vdsv)} smi}gv 3 PJ(CV) % 3 Pj(CV) -

c 2 2 2
v L1y LSE . 1
5, Pj(cv)z +ih2 Qa“%v)* {{3 ey +r ©p] Hi(&%)
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where the angle € y satisfies the relationships (7.27).

Substitution of (8:43) - (8.45) into (8.41) gives:

1 dg 1 294141 2354
d& (b) = —Zj_g_ kV X
O (t-ﬁ)z 231

- 2 2 (= . 1
x[Mpapa Poy Ky { h, Q'I(“‘BV) [ cos€ s:.n\}J}V Pj (CV) +
sin€ 1 cos\§ cos 1 P1 (C,,) - sinl sin¢

v *3\/ v S, T§v 3V 3V

C
x [ i(3+1) Pg (CV) - 'S-}; P; (CV)]}]+ HaQa(wsv) [ cosEV J P?(CV) +

2
sin€ sinfaBV P;‘.(CV)]} + 2Re (1) pyy 1% %

2

= . 1 - : 20
x { h, Q1(w5V) sm’lBV Pj(cv) + b, Qa(bdsv) 3 Pj (cv)} x

- .y 1 . 1
X {h,‘ Q,l(wsv)[ coséV s:.n\ksv Pj(CV) + s:meV 3 x
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\cos*BV cos(%3v -g—‘-{ Pg. (CV) - sin’»‘3V sin('*BV [ 3(3+1) Pg (CV) -
CV 1 - o
5, %5 Y} § + 5y 0y (wigy) [ cos€y § By (Cy) + sin€y Sin?%v *
1 - 4 =~ . 1
x P (cﬁ]% « Ky { hy Q (g) s:.n\}%v Py (Cp) +
e 2
. 0 - - 2
h, Q, (“"’sv) 3 B (Cv)} + M{[h,] Q (UJSV)]_ {sin 9;3‘, x
x P1 (c..) ° + = cosz\!l L p! . 2 + sin2 x
i jz _3v\_sv j "v] ?’3v

[vj(.']'i"]) Po (C )— C P (Cv)} l:l - pE’E/IQq (“-’ L)TJT)EQQ2<W51])] X

sin%v% P (C)[JP (C)-—— (C)} [hg%(‘“wlz

x [ {j P (cv)}2 + ip“j (cv)} 2]}} a cos €y d#JB
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Pv & ‘ 1 (23}1) ic. L d?l)
v L2 gen) + 52 5] & v 7 Pav

T - 5,6 p

X ? 1 5

where the various M, are the functions appearing in (7.28) which
depend in a complicated way on the coupling constants and their
associated form factors.

The decay distribution as a function of any one of the

variables cosGBV, 4’,\ AL \PBV or W 57 is obtained by integration

over the other three variables. The results are as follows:
U y2 -2 .17 (23+1) )
\(h,l) (3+1) + (b)) j] 53 Y_ A(s,t) { (h,) x

{P:_}. (cos %V)] =, (1'12)2[ 3 % <cO593V>') 2} + B(s,t)  x

. 2 C 2
2 1 1 1 o o VvV 1
{cﬁq) ?HEG 2 (Cv)} : {a(am % ) - 5 ] ‘%’} }

+ (By)2 L= (coseav)] 2}} d cosOzy (8.47)
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%ﬁEC(S’t) + D (s,%) Sin24’3v] d.éBV (8.48)

_’]ﬁ_ [E(s,t) + F(s,t) sinEt{}/W} d‘,/ Al (8.49)

{(h YE(G+1) + (E5) 31.;1E(hﬂ> (3+1) (a5, q5-s1n£955v)2

2o, 2 3 &
+ (By) "2y P sy)” v 3 Wy (8.50)
22,92y

Where A, B, C, D, E, and F depend in a complicated way
upon the coupling constants and their associated form
factors which are themselves arbitrary functions of t©.

The distribution of the decay products as a
function ofuu5v depends only on the ratio of Eq and Eé
and is once again given by (8.38).

The spin averaged differential cross section for
the production of a spin j, abnormal parity resonance
and the decay of this state into a pseudoscaler meson
and a vector meson is obtained from (8.46) by integrating
over d 3y and duu5v and putting [“X(4->5,6) = Y‘X. The
result obtained is

. 25wk
a6 (b) =1 9g 1 {237‘.3! kg %
(¢ﬁ) 4£§pB (t —rsé—z (237.

i\ﬁ gpgngv 2V {(E ) i§cos€v P’]j(C’v') - sin€ sin(%SBv X
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+ v Worbar ] G+ {oria] } Aost Ty +
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+

+

C
x (Boygae_(3my + "{(Ao)fa ?{S - (*o)ka (L+C)E}'C

0
X Ag¢uzs A yurs - (AO)E& A3S°°](AO)E& E(LH)E

-G :
X é}{Aad(}l d;*_,g) oy ¢ +{8 {(AO)E& Ag ¢u'§s Aau'gs +

A

g £
(AO)E&CA-BSOQ]Z(EH) + (\,8 {(AO) .Ed T 1 Ag(}soo ABU?S '§+

= {;i(%)i,& E, - Codga (L+C).£’1I £

‘0L
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As for (8.39) this result is independent of the
decay mode of the vector meson and thus applies to
both (8.7) and (8.8) provided the boson resonance of
spin J has abnormal parity and the production processes
are mediated by vector particle exchange.

The spin averaged differential cross section for
the general twe body production process (7.7) mediated
by vector particle exchange is found by putting
‘1 (2 -=3,4.) —‘“Vin (8.51) and integrating over CV
apd 4’5V The result is of course given by (7.31)

(iii) ©Pseudovector particle exchange.
The invariant matrix element is given by:

< Podzd596 V T\ Pqaq> = E(Pg)(fZFg(t) 5/“ +

, £575(%) P2y £,8, (5 }J]zsf u(pg) (- )[ B~ 13,1{”}

'('}_T" o '("‘T )_.?
1 B80T €, o an Fetzg 2 ()P
t-p2) e )"
¢ (Q2on) 7 ______ (Q.q_ )n—1 hqﬂq(vax) 50-P1 +
Ap [ + i17y] P {?m;;ﬁrz“

h B, (v,x) g q + hoH.(v,x) q q
272 V%) Qp 9y 3z (VaX) qy _qy -
i} m
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x ("‘3[%{ Uy Uy 1 1I(x) a5  (8.52)
Bepi> + apa Ty )

Substituting (8.52) in the expression (%3.29) for
d o (b)), averaging over initial spin states, summing
over final spin states and integrating over -dv and dx
gives, with the notation of (7.3) and the approximations
(8.3) the result:

q

dag(v) = _ B 1 1 2 1
3 2 72 T 7h

(4m) 4‘EBPB (t“)") 2}"2 v 4T qu. X

x [Mp2p2<t) (p,-)(pper™) = M) (r.r+)]

x d coseB df,’SB d 00895v d¢5v d‘/’av AW oy (8.53)

where
r ='g'o[€ of B NK o 9o (“""j(kx)‘j_% (a,3)(ay >3"‘]
o M P’ P -\f: [ A
x h, [95,, 7 Wds dp,
[a A" 5

)J —2 \ }‘4
+ P2 (qz'% - 9.9 q4‘q5) q4p } (8.54)
(mha)J )“'4

and M t } i
p2p2( ) and M(t) are given by (7.9)



109.

Denoting cosEBBV by Cy and sinE;Bv by Sy it follows
from (4.9) and (A 11) that, with the notation of (8.33)
and (8.34),

- j-: s 1 3 J"'/‘ -2 X
Dy.T = go{2 JJ; 12 (EBquB s:LneB) ki qV l
’ J

1

v
- sinllyy cos¢av{j(j+’l)P§ (Cy) - gg P (CV)}} ¥
+ Eng(w 5V) COS(;)BV ng( CV)] (8.55)

and

= —\go\ (233'3‘ 32 (}.‘ Sy) ka =1 q%'zl‘? %
X {{E,IQq W 5Vj}2{ cos 2’?’5V[ %V P/I '(CV)} 2

+ sin El%JBV{j(j#l)Pg(CV) - fS’_y P (CV)] e
v .

.t

-4 Sin\i”BV cos?)av sinéav c:os¢BV %V Pg (Cy) x

;_Y P?j (Cv)l} + 2 {E»“Qq (N 5v) Eng(u 5v)}x

x[d(jM)P‘g (Cy) - ¢
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.1 . . C 1,
X JPj(CV){ s.1nq/-5v {J(J+’I)P§(CV) - E'% Pj\GV).l +
+ COS\va SinS{)BV cos4)5V % Pg(cv)}+§E2Q2(w BV)} 2 y
v

. 2
x{apg(ov)} l (8.56)

gubstituting (8.55) and (8.56) into the expression
(8:55) %ives:

d@ (b) = _1 \&, | 2 qB Jq'g' £1+’12
(4TV)2 (4ESpp) (t-y

2j-2
X kVJ { p2p (t) {EBquB s:Ln@ } XE Q,‘(u) 5V) X
p's cos\P sin(f) 1 PIO.) - sin\,J cos ¢
3V 3V g, T30V 3V 3y x

x {j(jM)Pg (Cy) - g“:f, chcv)}] + ByQoM o) cos¢5v ng(Cv)y
+ M(t) R [H 2 2 1 2
Py QW) | < eos TYsyd 1 PGy}
v

- 4 SinLPBV cosL}JEV sin.¢5V cos¢-§V % Pg (Cy) x
v

sl C 1
x{;(;m) P (Cy) - g_:rf PJ.(CV)} +
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+ sin 2505V{j(j+1) Pg(CV) - ;_V Pg (CV)} 2
v
v 2 (B0, 5p) By | sFlop [singp sy x

x4 3(5+1)PY(C,,) ~ Cy Pq(C o+ cos+ sin ' cos§6
JLIFIEg iy 55 37 sy S zy 3V

x 1 P}(Cv)l +[52Q2(w 5V>} 2{313’3 (q,)]g} x

v

x 4 cos@}3 dC")B FV(E_B’LL) [(E,l)g(j+’l) + (52)2314

Iy
x _(22;.+1) d Oy %n d¢5v PX(4—5,6) 1 d‘f’av <
255(3+1) | R
x 3 Pr aw - (8.57)
I ETTE .
QBV q5X

where use has been made of (6.11) and (6.12) to separate
out the branching ratio factors.

To determine the decay distribution as a function of
any one of the variables COSE;BV’ 5V’WP5V’ OrLu15V it is

necessary to integrate over the other three variables.
The ~esults are as follows:
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2, . 2,71 [ (g 12 1 2
(B3 + 3] [(5,,) {[Sm - PJCCOSGBV)] .

/s ’ 2
+[J(J+’I)P§(Cos@5v) - ;zzg;g Pg(coseav)] }+

+ (H2)2{[ng(cos@5v )}2}} (2i+1) dcoseav (8.58)
232(5+1)

1 [A(s,t> v B(s,t>{<54>2<3+4> + <52>2;j} o
2R

X{(Eq)g %_j[(&jﬂ) + (§%-3-1)2¢c0s 2(#3\7] +

+ (52)2 ‘(j cos 2¢5V]}}d¢ 5y (8.59)

. 2.%Y-1 = \e .
N [CARCRINNCSEY [chp _3,{(2a+’l) :

+ (§8-3=~1)2 sin 24’5\,} + (52)2 'J.] d—‘yb;V (8.60)

(Ep2aen + G2 [cﬁpg (3+1) (agyagy sin@y )2 +

2n 2
+ ()72 gy yy — P MWey) ]?; Fu AWy (8.61)
3 3
q 1 q 5X
where A(s,t) and B(s,t) are the functions appearing in

(7.17) and (8.16), It is to be noted that these dis-
tributions all depend upon the ratio of E,] and 352
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The spin averaged differential cross section for
the production of a spin j, abnormal parity resonance
and the decay of this state into a pseudoscalar meson
and a vector meson is obtained from (8.57) by
integrating over d\{/ 3y and duw) 57 and putting

(TX(4-5’6) =‘ﬂX. The result obtained is:

4™ (b) = gi \Go(t) 2 ap
R (m_ DI HES
gO

s By
-(-t_ra)a JdJ)e X

BPR

x  (§+1) k%—g{ fg | Fo(0)4° & + £,05 2 Re(Fe(t)F;(t)] x
J IR N (me)

14 2 '

x 2(m‘,] + m2) + fi \FB(t)\ [—t + (m1+m2)2]} x
N (n. )°

I3

X {EBquB sineB} 2 {(E'q)g{cos 2¢5V {,j(jﬂ)]?g(cv) -
- g% P?j(cv)}e + sin 255”1;% P:_’](CV)} 2} "

+ (He)e{cos 2(}{’5v§3P§<Cv>} 2} + £5 \F(0)|° x

X

-~
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x (-t + (mjmy)? ) ‘ I 21’%/-}2{ (H;,)EH:M:M)P‘;(OV) -
Cyy o1 2 N . 2
-g_\_rpjccv)} +{%ng(%)} 2\+ G FIICSY| }}x

v

x a cosOy d(# . 3,0 LEp2G) + EZ3 )T x
'

x (2§#+1) 4 Oy 1_@9& 3y (8.62)
2, 2R
237(3+1)

As for (8.39) and (8.51) this result is independent

of the decay mode of the vector meson and thus applies to
both (8.7) and (8.8) provided the boson resonance of spin

J has abnormal parity and the production processes are
mediated by pseudovector particle exchange.

The spin averaged differential cross section for

the general process (7.7) mediated by pseudovector particle
exchange is found by putting V(2—5,4) = fjv in (8.62)
and intergrating over CV and 435V' The result is of course
given by (7.418).
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o FERMION RESONANCES DECAYING INTO A SPIN-HALF PARTICLE
AND A PSEUDOSCALAR PARTICLE,

In the peripheral production of a fermion resonance
and a pseudoscalar particle the exchanged particle must have
normzl parity as can be seen from the discussion of section 5.
For each of the two allowed possibilities, that is scalar and
vector particle exchange the differential cross section is
calculated for the process described by Fig. 1(c) in which the
resonance has spin J. The various parity cases for the
fermion fields are treated simultaneously by making use of the
factors ge and Xf defined in section 5. The invariant matrix
element is in each case constructed from the vertex functions of
Table 1, and the propagators of section 4., In particular for
the spin J resonance the propagator used is given by (4.28). The
resulting expression for the matrix element is then substituted in
the formula (3,34) for 4 (¢)

(1) Scalar particle exchange.

The invariant matrix element is given by:

< P3Pya, f ) P> = E(pj) E o eE(w,,p'Z)(p4P ™ (=1 )ngﬁpa,n) x

(me)n

x(pé+m2)

12 Ge )" G thy) 52y ! , 80
{ G -ndetm, ] () (6= p*)(m )™

where J=( n + % ) . (9.1)
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In order to deal with all parity cases simultaneously
- » = ‘ '
it is convenient to define m, and m5 such that

my = +m, if ¥, =1 (9.2a)
my = - my i % = ¥s (9.2b)
m; = + my if Ce = I (9.2¢)
my = - m; if ¥ =¥s (9.24)

Assuming that the resonance has a narrow width
i.e. r‘w(( m, then

_— o T Swad (9.3
| (w-m2)® + (n3 P%})] ~ T T

Substituting (9.1) in (3.34),averaging over initial
spin states,summing over final spin states and integrating
over dw givew, with the notation of (9.2) and the approx-
imation of (9.3) the result:

! 2
der(c) = T2 g2 9p [zt + (g + mp) } x
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x ﬂ..,(a- 3:4) [2“ ! n!  C2nr)? pwEn—Z -1

i Wi . (2n)! n>

. {(-1)“*1 @ )n-1¢f3}§(p‘2’n) <k>\)n"1“_’<-1 il <kp>”““<é (pyom)

)
1 e : (23] (9.4)
a d a T & .
b4 1}—1( cos\Y¥ g ?B cos " Is 9

W 4W
where now J = (n-%). Use has been made of the fact that
P, commutes withe(pz,n) and (4.25) has been used in order to
facilitate the evaluation of the trace. In addition (6.18) has

been used to separate out the factor P (2 = 3,4) /r\ where
W W
rw(z ~3,4) is the partial width and r‘: j is the total width of

the resonance. This factor is thus the branding ratio of the
decay process (1.1) relative to all other possible decay modes of
F,

Using (A.21), (A.24) and (A4.26) this expression may

be rewritten as:

> 2 2
aG(e) = £ ¢ ‘F(t) G(t) “ ap
= =17 o1, =
AT AN @)™ (@ g? 4E§pB
x (—t+(m,}+m2)2] 2% nt n! kin-Z 4 cos'eB d#B

(4= ,.;2)2 (@)
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r ~
rw(2—3,4). Z;%_ t%nPg(cosele)}z - %P;(cose4w)} d]dcose4wd¢4w
n\f n

(9:5)

The three factors in the above expression are
completely analogous to those appearing in (7.5). The first

factor is independent ofgb of course and is in fact the spin

B
averaged differential cross section for the production of a
spin J (J=n-}) resonance in the quasi 5yp body process (1.8)
assuming that the resonance does not decay or equivalently
summing over all possible decay modes.

The final factor in (9.5) gives the distribution of
the decay products and is normalised so that integration over
cosé%l, anddgzqqgives unity, T he distribution is independent

(13)

and the

of in agreement with the Trieman-Yarns test

b
distribution of the decay products as a function of cosé%w
is independent of the production process variables and of the
arbitrary form factors F(t) and G(t). This distribution is

(36) for the decay of a spin J

of course the Adair distribution
resonance produced in the forward direction of a quasi two body
production process. The Adair distribution is independent of

the production mechanism and the distributions obtained in this

section all reduce to the Adair distribution when events in

the forward or backward directions are considered.
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(i1) Vector particle exchange
The invariant matrix element is given by:

< p3p,+q2}Tip1q1) = E(pB)Xe eEWQ# 2) (p4P y(=1)P ?J)‘(pa,n) (éa+m2)

n
(me)

1

x[(w_mg) +J’.m2 PW]

(k)\)n—'] [f F, (t,w,ga)g)‘>1+f2_1?_2(t,w,gz)‘drk A1
(m:f/)ln"" (mfe)n

+ fEFé(t,w,;;Z) P, kA1+f4F4(t,w,}ﬁ2) kfk)1+f§]?§(t,w,,p2)
n+1 r n+1 PR <& %

E./" >\’l¢‘t kd§92 @st}gf .U.(p,i? (-‘l){ g,\y— 1_{‘ u!k 2"] _ (tj/‘ )

/
* [ge@a(t)qzu * 83(35("“')1{»} 5.6)
where J = (n + 1/2)
Substituting (9.6) in (3.34), averaging over initial

spin states, summing over final spin states and integrating over

dw gives, with the notation of (3.2) and the approximation (9.3),

the result: -1
n 2 2n-2
dg(c) = 1 q g 1 ‘W 2 - 3,4)"2 nin! (2n+1) L }

U'J\)I’ 1+E€pB (t _Pz)a r‘; L(an)x n’ *

i
xT (r)d coseBdéBd cosaq_wd T (9.7)

where now J = (n=-1/2) and
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(r) = [{M BN, T e e, Tl‘kﬁzk)\z " Mrrﬁa "

+ Msssl;gs)Q} 1 Tr% LJ3 By 8p B ,,k '

+§Nkkkﬁ2k)‘2 R Nleﬁsgr)\gg 1 Tr§ B, - z‘*zfq)ﬁﬁ By 8p S

+%okkkpgk>\2} 7} r{ Gt - )%y ¥ X/,,lXxk ‘

+{P 58,5 * Pokh 5, ¢ Frota, g ¢ Psrsggr)\2§ x
{ksk‘gg Ao " S‘C,Bg Qrs?;gs)\g + ersfggr)\gg x
x %Tr{&qusg - B8, B 8p ,,X,\,,\

eparndy 2 {0 - 08 By Xp o

+1R;ssﬁgk)‘2} 7 Tr§55(1<?z| B ZS”;Z‘)?S)B 4X84KP4XM}
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+{Skskpgs)‘2} » Tr%x 5(£' By - B 5558 ,o,,3>~,,}
+{s§ss’;‘2k>\2} d Tr{zs 5(BF - xxsg)zsﬁ By % P«XM}] %

x [(—4)1rl+q (k, Y72 (pyom) (p )n""} X
P ‘?Sﬁx oY

1 - -2
x {(-4)“ (p4P ) “d;fA (ppen) (ky )" }
in which
Ty = W) [g/w ‘lﬁakyl{gz Gy * B3 5y )
o2
,&
and
s, = & Po. k_T
» PPOT 2N o T

The notation used is such that:

My, = i IT,0° 4 + 2Re (T,T3)2(m; + my)
+ T2t + (g mg)al} (pper) (ppe-r™)
+ {‘E‘EF 2 + (T,T73)2m, + (T,%,)2(n; + ny)
s (EIO[-6 + (g + m2>2]} (pper) (kur®)
+{}f2\2 2 + (T;T702my + (f4f+2)2(m; + my)

+ (qug) [-t + (m,'I + m2)2]} (k.r) (p2.r+)
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+ € 2 Re (TETZ)EmE + \7T4\2 [ -t + (m:] + ma)zl}(k.r) (x.xh)

- { ‘fz‘z {_-—t + (m,'I + ma)z}} (r.r+) (9.11a)
M = { ('f/]fz) 2(m,'] +my) + (T,l'f;)[-t + (m,'t + mz)zll(pz.r“‘)

+{(’f1fz) 2 my + ("f,li"Z)[—t + (m,'] + m2)2]} (k.x7)

(9.110)
Ve = Mo, (9.116)
M. = { VT2 0t + () + my)° ]} (9.114)
Mg = {\TB\E (-t + (m,'] + m2)2 }} (9.11e)
Mg = {51‘2\2 + (f5f+2)m2} (py-T) +;(T4T+2)m2} (k.T)

(9.11%)
Ny = {(?Qf+2) ma}' (9.118)
Oy = i]lez[-t + (m,'] + m2)21} (9.11h)
Pprg = %(f;fg)a(mll +my) + EID [t + () + me)z]}(pz.r'*)

+ %(T5fz)2m2 + (BTN [ -6+ (mg + mg)zji} (k.x)

(9.111)
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(féfg)E(-m% + m2) + (TBTE)[Th-(m; - m2)2jl(p2.r)

%(f2fg) 2m, + (fﬁg) tt-— (m,'I - mg)a]}(k.r) (9.113)

(FT) [-t + (m; + m2)2 }} (9.11k)
(F,12) [ t - (m, + mg)a ]‘} (9.111)
%(Tsfg) (pper™) + (T5T) (k.r+)} (9.11m)
- Qg (9.111)
{(f;;)} (9.110)
- Q;S (9-,]1:9)

{ (TsT3) mZ} (9.119)

- «{('1"53”2*) m,l} (9.111)

Using the definition (9.9) the following functions

of the 4-momentum r which appear in the expression
T(r) may be readily evaluated:

cor = = [By (eap) + B 16 -

2
2

(9.12)

i

— - 2
Do.T = —[gg(pe.q2 - p2.k k.qg)-f g5p2.k(’l - 52)](9 15)

).I
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r.rt o= ‘52\2[ QE - (k‘!qZ>2 - (kOQ2)2(1 - E;)}
Sz RN p

+ [2 Re (ég'é;) (k.q2) + \?;5\2 1{2}(’1 - x°

;
“}'2 (9.14)

It is convenicnt to denote the angle in the frame
W between g5, and k by E;W as shown in Tig 2c. This angle
satisfies the relationshipa:

myagyfeysin €y = Egppapsiny (9.15)
and »
oy 2
opiyeos€y = [(oBpd) (besbud)eaub(-tup 5-pD) ]
4m§ (9.16)

Using this notation the following relabtionships

may be derived:

- = , _— — a2 >

Tyky = ~Bp Yoykycos €yt [ Bp(k.ap) B3 (7 = )] Ky
/55“ P (9.17)

(_I'_WA’L_‘—;W)a(p_LHﬁI Ay T 8, gy kySin€ ) sineuwsinqslbw

(9.18)

Py

(EW N k\:\l>°<£§ N Ew> = t—é';g‘z (qgwkwsinéw)e (9.49)
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Ry (Ty A Ky) = -8x(apykysin€ w>Sin@4wC°S¢4w (9.20)
Py '

2
[4

- . 2
1 (zy Ay (rvﬂ; rolagg) By = 1Bl (agkysin€ ) cosew +
Py

-+
+ Bylagylysin€ 1«13{ ~Bp agyycosCy +

-+
+ [Eg(koqg) - ?"' ( ’i—kg\}-l k\%} sinemﬁsind)q_w (9.21)

and
+ +
(zyy A Eyyde (uyy A yg) By(0pe ) +(Ey A By« (2 A Byyy)
Py Pu

— 2 i 2
x ky (pp.k) = |\ &) { (dpyltysin€ ) (p2'k>cose4w
- (aoykysin€ ) (p,.k k.qg—kgpg.qg)sineqwsillélmj (9.22)

Using the results (A.33)-(A.42) which give the

various factors appearing in T(xr) it follows from (9.7)

that:
ag (c) = 1 s 1 2Mninl R
T2 TP 22 T W
(47%) 4JLBpB (t - Y™ (2n)!

\

X [A { [nPg(c‘,ﬂ} 2 4 [P;]l (cw):\ 2 3’

+ B Sin?bw (——g—(':} P;(CV,J % nFp(ey) - oy le(c,‘,])}
o id “n T

———
[

0 “C‘!
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p
C cos#)mn, (-1) Pn(cw)g nPg(cW) W P <CW)}
n-1 S'\FJ
D% - P [u?‘%}i:'a‘u‘“‘-’) - Cy P;l.(c‘rf>] °
(n-1) Sy
; | >
Sln2¢’+‘d[ % ‘(CIJ)} nPg(cw)Pn(cw)l
(n-1)
o) 1 2
E { 1 {n]?n(cw) - fﬂ Pn(cw)l
(n-1)° Sy
cos2¢ (e, O(C )P (cy)
4w n "W W W
(n-1)
0 0 q!
i) -1 nP, [n]?n(cw) - EEPH(CW)]
(n-1) By
.2
S 43%1[ % P;(CW} ¢ - nPg(cw)Prgl(cw) ‘l ){
(n-1)

- O ¢ 0 N
G { 1 nP_ {nPn(cw) - ml"n(cw)]
£n<4) S

2 1 2 "»2
COS(¢4WL %Pn(c‘!!)} - nPg(c'\,rJ)kn(CW)] *

(n=1)
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X d COSeBd B x F’U\I(giﬁﬁ X ..:]..... d de ¢4—W (9. 25)
; 17 47\ n
where
- T . L 2
A =MD+ 2D§ o (I‘.pz 1;;,4_,32 : r.k)} ki +
' pé
+ D‘irr (I'-PB }f:c?? - :‘:’al‘:) \ 2 <9.24)
2T :
P2
B = - 2Re Eg(qngwulnﬁﬂ) { M Ky * M fTeps Kupo- Tk
e
Po
2.2 4+ + +
+ Qrs Emgkw TP k.p2 -~ Tk \ + S 2m (r pgk.pd - r.k)
2T 2
Ps P>
+ Ry g 2(p2.k Keqy ~ kepeqz) E;; (qgwkwsiné W)] (9.25)
1 * C 2
Tooe { Bo(apyeysin€ ) Qg 2u5ky } (9.26)
- .2 - S . 2 2
D = ‘gg\ (qg,ﬁ]luz_.stnéw) { Fop + Qpng 21112LW } (9.2’7)
—_ 2 . 2 \ 2,2
E = \gg\ (Q_EWKWSJ_DEW> { Mgy Wk } (9.28)
— . 2 - 2 2,.2
F o= -\ &) e (qgwkwsanﬁw) 2Re % Ny 2k + Lgr52m2;.,w} (9.29)
G = -\g \ ( sin€ )2 2Re I R,._(~2p~.k) # S 2m2
2 Lowty W @S gl TPt Prs 2

(9.30)
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The factor Yﬂw(E— 5,4)/Y3N is the branching ratio of
the decay process (1.1) relative to all other possiblie
decay modes of F.

The decay 47 *ibution iz - .carly a very complicatecd
function of the .oupling cor vanbts and their assoclated
form factors., I togration ovsu§§4w gives the decay
distribution as ¢ functlion «f Cyy = cos .

A tlgﬁﬂj cos€§ i [? ( cosfiuﬂj ‘}

2n 1

o}

+ ﬁ{- 1 .2[ nP_(cos @LHN) - 2216___‘_@’ n(cose4w)]

=Ty sin@yy

+ %( {Pg(coseqw)}2 - nPg(cosebrw)Pﬁ(coseuw)} la cOse4w

(n-1) 3
(9.31)
ané¢ integration over c,, gives the decay distribution as
a function of £ 4y «
-2 S TR

27 -

where A,B, T and D depend¢ ... the production process.
variables s and t in a very complicated way.
It is to be noted that for the production of the
resonance F in the forward or backward directlon for which
sin@y = 0, the decay distribubion is uniquely defined as:
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1 A%(nﬁ??{(cos euw)‘r +{P:1(00894W)]2} a coselmd Ll

(9.33)

This distribution is of course the Adair distribution for

the decay of a
direction.

The spin
the production
quasi two body
does not decay
decay modcs is

W

spin (n-%) resonance produced in the forward

averaged differential cross section for
of a spin J (J = n - %) rcsonance in the
process (1.3) assuming that the rcsonance
or equivalently ,summing over all possible
obtained from (9.23) by putting

" (2 - 3,4) = Y‘w and integrating over cy and9$4w.

The result is:

ag(c) = 1 dp 1 2%nini- k2P0
(#TOZ azSpy  (5-p©T (20

{{A+%(F+G)}+n )%(D+E)‘XdcoseBd¢B

where A,D,E, &

(n- 1 (9.34)

and ¢ are given above,.
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10, SIMULTANEOUS PRODUCTION OF A BOSCON RESONANCE AND A
FERMION RESONANCE,

In this seotion a boson resonance decaying into two
pseudoscalar particles and a fermion resonance decaying into a
T'“eudoscalar particle and a spin half particle are considered.
The tceon resonance must necessarily have normal parity and in
the peripheral production process the exchanged particle may be
a pseudoscalar, a vector or a pseudovector particle but not a
scalar particle. For each of the three allowed possibilities
the differential cross section is calculated for the process des-
cribed by Fig. 1 (d) in which the boson resonance has spin j, and
the fermion resonance has spin J. As in section 9 the various
parity cases for the fermion fields are treated by making use of
the factors Ee and Kf defined in section 5. The invariant
matrix element in each case is constructed from the vertex functions
of Table 1. and the propagators of section k4. The resulting expres-
sion is then substituted in the formula (3.38) for d& (d).

(i) Pseudoscalar particle exchange.

The invariant matrix element is given by:

eE (W,8,)
et P, PP x

(me) P

< PoPyazay, 1T Rgay> = U (pg)
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O (p,n) B, +m) x ] () x
pX g S (w-mg) + 1 mar‘w A
f F(t,W,zSZ) ) . .
—= ¥, uk) — B8 ()3 o33
. T 1 .2 3=-1
() (6 (m) £
¢ () ! (q)0 o (1041)

v ) +ip, 0 Y @3]

where J = (n + 3).

The matrix element clearly consists of two separate
parts: one involving the boson resonance and one involving the
fermion resonance. Thus using the results of sections 7 and 9
substituting (10.1) in (3.38), averaging over initial spin states,
summing over final spin states and integrating over dv and dw gives,
with the notation of (9.2) and the approximations (7.4) and (9.3),

the results

2
2
de (d) = £2 E_?Z x F(t) G(t) ag {T-t+(m}| + 1) ]
i kR (mf)n—‘l (mg)‘j""1 ’-FES P (t_r2)2

n J sq s .
2 n} ni on-2 2° j& i 23
N E T kw 7-2—:]_]%-1- kV d coseB d%B



a c0583v dt}é}v (10.2)

where now J = (n-3) and where (6.5) and (6.18) have been used to
separate out the two branching ratio factorsfj;(z- 3,41/‘7; and
(ﬂ (2= 3 4)/‘—& respectively. The first factor gives the spinm
averaged differential cross section for the two body production
process (1.9) since the decay distribution factors are normalised
so that integration over the distribution variables gives unity.
The distribution of the decay products of the boson and fermion
resonagnces are independent of each other and of the production
process variables and the form factors ¥(t) and G(t). As expected
there is no dependence on eitherﬁSBV ori#4w in accordance with the
Trignan-Yang test,

(ii) Vector particle exchange.

The invariant matrix element 1s given by:
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- e Elw,8..)
<]
6 (p,en) (F., + m.) 1 (k )n-’l x
A 2! 2 2 (w—mg) + i m,, rtw. A
f F (t,w,z‘ ) f F (t’wiﬁ )
171 2 22 2
{ n-1 %{ * n S X k)\ N
(my ) X (g ) 1
1 2
| 55 Bltand) b ke £), B, (tywa2,) . .
(mg )™ 200 A (ng )2 LN
3 4

f Fs(t,w,lﬁz)

2 (1
' (mg ) eo{Aqa—rkcrpz’c&.} Ue wor (t-rz) oo
5
- k .k g G (t,v) :
= - o o ! € J=1
12 - : k. q,, (k) X
l“,ﬁ P° ] @, ! PESP X EEY
N . 1 i h¥HEg)
x (~1) ¢ (q293) R (q4v) 2———)%‘_—_'.7 (10.3)
PV V) + 1”2» v m,

where J = (n + 3).
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Substituting (10.3) in (3.38), averaging over initial spin
states, summing over final spin states and integrating over dv and
dw gives, with the notation of (9.2) and the approximations (7.4)

and (9.3), the result:

e a ; e 3n e-3n
Q) = ——5 —3 52
" by By (o) Tv B

. - -1
29 41 41 1 23 2" nl n} (2n+’l)‘2 2n-2
x s G P
(23)4 (23+1) v (2n) ¥ i W

x T (r)d coseE dqu a cose3V dé’}v a cose,_m d{ﬁqw (10.4)

where now J = (n-%}) and T(r) is given by (9.8) with r given by
(7.10) ands by (9.10). The various coefficients M , , caae
P Ik.k Mkr

etc. appearing in (9.8) are given by (9.11) and the factors multi-
plying each of these coefficients are given by (A.33) ~ (A.34).

Using the definition (7.10) it follows that ker is zero and
Poer and r.r' are given by (7.12) and (7.14) respectively. Using
the notation CV = COSGBV’ SV = SmQBV’ C W= cose,_p . and

S‘d = .ss:’.na_}w the following relationships may be derived:



] k
o=t 2la g i g 1 Po
Iy By go{ GHT - 3 B w | By Y 2 x
2
x (Ipa Poy Ky sinﬁ'v) COSCFBV (10.5)

(2, Ak e (pu m k) _ 3oay s i1
W p;wkw By A &y - & {223;‘;1 1 K q‘,‘\Pj (cp) x

2
(k.p2 keq, - k qa.pa)

x { ()12 ky kw) sin(li)BV Sy cosj&) by * n, x

cos#}Bv Sy Sin%hw& (10.,6)

2 . 2
+ 4= 244t o1 i1
(A ) Eya k) = | & [ Gl 7 B qv] *

2 2
(knpa k.q2 -k Panqa)

e x4« )2 sinh,,
PV P By Xy T3V 2

2

x c:o.sa¢3V } (10.7)




By (1 A K - { 29
o= - go

Py
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ORI Lo B ) R
3 ky qvl Pj (CV) x

2
(k.pa koqa - k q2-p2)
x {()’2 ky k) Smc;%v W S - m, X
',
cosfll)BV SW cos,?JLPW (10.8)
iy )« (g A By By - 2d 4148 01 3 )
Dy = | gol [ GCHT 3 Gy x

1 A 2 .2 2 2 272
x {Pj (CV) 1 {Vﬁa ky kw) sin ¢3V + 5

x
M2
24> kap
cos C. - 2 .
r3v ] WT T pyy by sin€y) x
Pa
_ (k.p2 keq, - K2 pZ.qa)
(}»-\2 ky, lgd) cos¢BV sm¢ 3y Sy Cos%%f + o b'd
x cosaéml. Sy sinéqw-—l } (10.9)



+
v oy Al A my
Py

kw(pa.k)

J

S 2 o3 ey s P N 2
el ] el

(k.p kcq - ka Q~eP )2
x { (pyek) { Gy Xy k)° sin2¢3v i —ex el x

oy

2 .
* °°52¢5v } Cy = K poy Ky sin€y) [()"2kvkw) x

) 9b (k.p2 Keq, - e qZ‘PZ)
X cosﬁbBV sin 3V Sw cos Ly + mZ X

{
x c°sa<P3V 8, sin¢4wl} (10.10)

Using these results it may be shown that:

1Y | =2 9p 1
@ - () 15l e )
B
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J o . . o
2Y 38 3 (j+1) 23=2 2" n} n} 2n-6
N CT) ¥ 3 ky EDF Ky x

E

-2 2
[ & {{nPZ c)l + [P;ll )} }
2 2
B (B pg g sineB)2 cosa¢3v% [nPfl (Cw)} +[P:1 (Cw)] }

+

+

|
c (EB Py dg sineB) cos%svia sin v cos@uw +

+ b c:os%3V sin(%)uw x 11(1%% P; (Cw){ (Cw)— P (c, )}

+ D%\ (a sin ¢7V + b2 ?SBV] )E Inl? ©,) - . P (CW)-)

{ 2 2
. ‘ )
+ [a s:LIl%3V °°S¢Lm +D °°S¢3V sm@uwl [ { P, (Cw)k -

0 2
- nPn (Cw) Pn(cw) }
(n~-1)
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c 2
2 2 1 : o W 1
E % {a 51n24)3v +b 0052¢3V] -(:1:':‘—)—2- [ Ian (GW) - g‘; Pn (CW‘)X
) . 2 1 2
[a s:Lné}V s:.n(i)q_w - b cos#)Bv cos¢,+w‘! [{ P, (CW)}

0 2
nP® (C,) PL (Cw)l
(n-1)

0
a sin + b 4) ] nPn (Cw) b4
¢3V 3V o ee

n~-1

+

+

+

W
( nP; (Cw) - T (C )—X (-1) + a Sm?}V cos(ﬁw
> 2 ar° (c,) P° (C)
+b cos(ﬁ sin¢ .} [{P1 (C\)‘ - n_ W _n W ] F +
2V Ly n W (n-1)
{ ¢ nP (G ) [ o)
+ G a  sin + b nP C -
2V ¢3V] (n-1) W

GW 1 ( ) ( ) r . . b ¢ ¢l‘ 2
- .-S'; Pn Cw ~1 + {a sindP sm(f)‘m_i = b cosld;, cosipy



140.

2 ar° () FZ (c)
x{ilP; (CW)} - B W n N 1% x d coseB d% x

(n-1)

- 3,0 . 2
v ) (2§+1) [ 21 G )l 1 c d(#}
Ty iRy &Y v
Y‘ (2~ 31}4‘) j
x - 1 d ¢ d¢ (10.11)
™ Trn W Y .
where a = (,Pz kV kw) (10412)
(k.p2 k.q2 - ko pz.qz)
b = (10413)
)
and
-2 2 2
A= V5N [tem-m)® Y o (10, 14)
_ .2 - 2
B ={‘f2‘ b+2Re (T,T) 2@ +n)+ I, x

X {-t + (m,'l +n12)2 ]} k,l:,
+{2 Re (?1 -f;) 2(m’; + mz) + 2 Re (?{f;) X
k.p2

X {-—t + (m,'1 + nr12)2 ]k k‘i —

P
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kep 2
{ \f,l\ —t + (mf + m2)2 ]} (-—-33) (10.15)

Pa
= %2 Re (f ) 2 (m_; + mz) + 2 Re (qu;)[—t + (m,'l + m2)2]}

- 2 kop
+{‘f1\ {—t+(m}]+m2)2]\ 2 -——2-2

Po

kop
2 -—— 2 ' 2
{2 Re (f )} 2K, + %2 Re (f5f2)}-2 m, mp ==

2 -
{\f’l‘ [-—t + (m,} + m2)2 :‘}_ {2 Re ('f5f:) 2 mg 21} (10.17)

2
{ el [ -t + () - mz)z'}} mg kfl (10.18)

]

- i 2 Re (f ))2 m k2J+{2 Re (f5 1)} mg ks (10.,19)

°f
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- b = =+ 2
G = +{2 Re (foZ)} 2 m, (pa,k) - {2 Re (foZ)} 2 m,'I . (10,20)

The factors FV(E' 3,4) /PV and r‘w(2- 3,4) /FW are the
branching ratios of the decay processes (1.2) and (1.1) relative to

all other possible decay modes of B, and T respectively.

1
The decay distribution of the boson resonance as a function
of 00593V ie independent of all the other variables including the

production process variables. This distribution is given by:

(23+1) 1 2
Ej_%jT'ly [Pj (COSQBV)] a cos@BV (10.21)

4
Ads is to be expected the decay distributions as a function of?il:,'V

and Ly 3are both of the eare form

1 - - .2

TR [A + B sin 4)3\,1 d¢3v (10.22)
and

-2-"-“ ['c‘ + D sin2¢4w ] dé,m (10423)

The decay distribution of the fermion resonance as a function of
cosT),, 1s obtained from (10.711) by integrating over CV’SﬁBV and

Wy The result is:
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12.1:1. [ E { [nPZ (cosemd)]z- + [P;Il (cossu_w)} i }

- 1. 1 .0 cosLy 1 2
T P - ——tip e
+ K(n_'])a [ nP (cos elkw) SET= ' (cos 4‘[1)}

nPIol (cos@w) Pﬁ (cos@w)].

(n~1)

_ .5
1 1
+ El_{Pn (cosewl)} -

d cos i (10.24)

where E, §, ceees F depend in a complicated way on the various
coupling constants and their associated form factors. They thus
depend on the production process variables and are, in particular,
arbitrary functions of t.

It should be noted that the distributions (10.21) and
(10.22) are independent of the decay mode of the fermion resonance
and the distributions (10,23) and (10.24) are independent of the
decay mode of the boson rescnance. Thus the first two results apply
to the general two stage process:

P + N -=F + B (104252)

1
By —» P + P (10.25b)
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where F 1is an arbitrary spin fermion state, Bg is a spin J
boson resonance of normal parity and the producfgon process is
mediated by the exchange of a vector meson,

Similarly the last two results apply to the general two
stage process:

P + N —»F + B (10.26a)

F - N + P (10426b)

where B 1s an arbltrary spin boson state of normal parity, F is
aspin J, (J =n -31), fermion state of arbitrary parity and the
production process is mediated by the exchange of a vector mescn.
The state B could be a stable particle or a resonance which might
for instance decay into two or three pseudoscalar particles or into
a vector particle and one pseudoscalar particle,

(iii) Pseudovector particle exchange.

The invariant matrix element is given by:
eE(w,ﬁa)

2,8, azal Tp.a.> = U (p) ¥ ——=— (p, )" (-D* x
< 4 73 4‘ J 1 3 “e (me)n 4P

e .0 & +n) L (e )P
Appan 2 2’ * (w-mg) +i1112r‘.W A
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£,F (tyu,4,) L, (t,w,8,) £F (8w, 2))
n-1 gﬂ)\'] * n Ko( k)\’l + n+1 x
(mg ) mg ) (mg )
1 2 3
£, F (taw,6.) £ F_(tyw,6.)
Ly "2 55 172 )
X Poet k)’l + \n+1 ko( kk‘] + n+1 *
(mf ) (mf )
4 5
ko k
€ ko, % ulp,) x —b=— (= 1)1 S
A Ne T o Par8s5 | ¥r WP (t_ya) °‘}3 }.,2
1 848, (t47) g.G., (t,v) 8.6 (t,v) ‘
x\' — 3 r1+-2'—%——j—- a5 k,]+-i§-—-j——kkml X
(a ) P (s, ) pr (a ) P
x (k)31 (--1)"j 95 (qy93) 1 ( )j -—IEI—(—‘L)-— (10.27)
I o 2 v-‘ug) +i !’2‘—‘\! U (mh)""'1

where J = (n + 3).

Substituting (10.27) in (3.38), averaging over initial spin
states, summing over final spin states and integrating over dv and dw
gives, with the notation of (9.2) and the approximations (7.4) and

(9.3) the result:
% . Be-3m U e 3

do(d) = b 4
ot owl o e Y P
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j -1 n > -

x {2 i3 34 1 23 2° ny ny (2n+1) 2n-2 *
EHT - G+ W (2n)1 3 Py

n

x T(r) 4 cosOy dc#B a cos@BV d(!)BV a cosl),, d¢w (10,28)

where now J = (n}) and T(r) is given by (9.8) with r, givem by

/.i

(7.21) and S by (9.10). The various coefficients M,, K .... etc.
appearing in (9.8) are given by (9.11) aud the factors multiplying
each of these coefficients are given by (4.33) - (A.34).

Using the definition (7.21) it follows that k.r, p,r and
ror’ are given by (7.23), (7.24) and (7.25) respectively. Using
the notation Cy = cos@BV, Sy = sin@y, O, = cos@®,, and 5, = sin€)
the following relationships nay be derived:

Ipky = T ky (10.29)
=0 — 2Ly ] 1 ‘

¥y = [IE COSL;}W Bl sm(;)lrw ‘! K, Sy (10430)

@, nk)eeiak) = | 2 242 (10.31)

By n e a k) = | RN pl7 &k o3

Ry (Ey ~ k) [ (;3 ‘ w
- r .sin®, . » cosQ ., [ (10.32)
P, b Pua | ' S
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+
Ry nlg)elzy Ay Ky

Py

2 2., .2
{ (lﬁ:_._\ +\r?\. ) kg C,

. + .2
-y °°59"4w + 5 smqshw) rp ky S, (10.33)

and

Ky y S
(z, A &)« oy A k) = Py (pa.r ) + (A kw)( n B’-}W o (pek)
- [ (P e imi® g

. 2
+ (rN °°s¢l+w + 1 Sm¢4w) (pa.k rf.k - k pa.r+) kwsw]

(10.34)

_f2aus 1 32
rz'[Ta'%TTL R 01v}’“‘w

kep kep
- 2 = 2 2 - 2 . 0
X [ {gk kV - gp 3 kV + 8, p2 pEVkV coséV}J Pj (CV)

2 2 5
- kep, . . 1
+ §g1 '—*—-pz Poy kv sm€v} ::;:Ln¢3V Pj (CV)] (10.35)
2
o2 g a1 52
&7 ‘[‘(—a'i;‘l‘ 7 K T ] [g,, ky, coscf)BV (¢ )] (10.36)
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2
_ (k.p2 Keq, - K pa.qa) 1 1
- { ; LN sln('!)BV Py (CV)_E (10.37)

Using these results it may be shown that:

1 %y 1 23 51 43 254 22 nlal  2n6
R S L A S

% [A %[n p° (cw)l2 + [P; (cw)]a}

W

B (<1 11y $np0 - B )
COSNUW -1y " n W 3" fn Vw "5, nowW

+

C
. (=1) 1 o W1
+ C sm4>,_w = ‘n (Cw) %n p, () - ‘S-v; P (Cw)}

+

C 2
2 1 0 W
D ‘ [\1‘1\3‘2 + tl}t\ \ 1 'E-I::;a[n Pn (Cw) - .-S; Pn (Cw)l

- 0 2 ()
2 =nP (C) P (C
) 21 ¢ . W W
+ \rNcos by T TP s:m#)uw‘ l} P, (Cw)} - n — n ]




/I /'l'g .

c 2
2 2 1 o WA
E { [irN\ + | 1‘1.~,‘ 1 Y {n Py (©p) - 5, Fa (Cw)]
2| §p n B} (C) Pi €,
+ ‘r s:.n¢lw - °°S(}Sl+w‘ \_{ (Cw)% _— }

np° (C) C

F { [ \ rN\E N \rP\Zl —-(—n-ﬂ-—}‘n 2 (G) - o P:l (c,) l (=1)

W

2 nP°(c) F° (C)
. 2¥ §.1 n Oyt By Gy
+zy °°S%4w T sm‘;’w‘ Upn (Cw)} T e .}}
2 2y B By (G Sy 1 ‘
+ G (llﬁl l ) [ Pn (e, - g, P (Cw)} (~1)

(n-1)

2 n?P° () E° ()
_ 2 {1 W W
+ ‘ Ty sm#’,_*w - COS%W‘ {an (Cw)} ) Il(n_'l) - ]}
. . -2
" {]l J-2 q%_ ] d cos QB d%B

\—‘ (2- 3,4) (2_ 5.) /
v (23+1) ;

A= klv; +2Re (i v) IS+ Mr_rtrzla K (10439)
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-y Ty 205 ke + Ry Ty Ky (5p00) (ppek Tk - K2 rhip)

+ S:ker r; 2m§ kﬁ }‘ | (10.40)
C=+28Re % M ToI0 + M v.rh k2 4 Qv 2 k)

- q&s rE)r; 2m§ kg + R z- K, (PZ’k) (pz.k rhuk - e r+.p2)

+ 1§:s o r; E.mg k,le } (10.41)
D=l K + Q. 2n k:; (10.42)
=M m; k_f; (10.43)
F=-2ReiNkr2kw4 v Q. mgkwg) (10444)
G=-2 Re{ R (-2) (p,o) ¥ + 8 o200 i } (10.45)

The factors rv(a- 3,1)/ VV and\ (2~ 3,4)/&, are the
branching ratios of the decay processes (1.2) and (1.1) relative to all

other possible decay modes of B, and F respectively.

1
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The decay distribution as a function of any one of
3y Cyoand @, is obtained from(10.38)
by integrating over the other three variables.These
distributions are of the forme

the variables OV,

(234:’12 { E j\ng(COSQBV)} 2.8 in(COSGBV)} 2.} d COSQBV

; (10.46)
f}ﬁ [a "D sin 2¢5V] dqssv (10.47)
%n {E {[nPg(cos @41'9)1 2 . [PQ(COSGLLW)X 2} .

+ Fi 1 [nPff1 (cos@4w) - cos@4w Pg(cose.mh,)] 2 4
:n_-'])2 SInGQ .y

+ %{{PQ(COSGLLW)} ° - HPE“"S%L«) Pi(cose_@w)}} X
-1)

x d cosebrw (10.48)

., 2 ~
%K[E + H sin 4)4WJ d¢ W (10.49)
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where £,B,....9 depend in a very complicated way on %the
various coupling constants and their associated form facltors.
They thus depend on the wvroduction process variables and
are,in particular,arbitrary functions of T.
As before the distribubtions (10.46) and

(10.47) apply to the general process (10.25) provided
that the production process is medlated by the exchange

of a pseudovector meson,Similarly (10.48) and (10.49)

apply to the general prccesses (10.26) provided once again
that the production process is mediated by the exchanse

of a pseudovector meson.
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11. RESULTS FOR SPLCIFIC SPIN AND PARITY RESCKRaNCES.

In this section the general results of the previous
scetions are apnlied to processes in which resonances of
specific spin and varity are produced by a peripheral
mechanism and subsequently decay frecely. The resulits are

tabulated as follows.,
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TABLE 2

The decay anguler distribution of & normasl parity boson

resonance Bl produced by pseudoscalar particle exchange
in the process. (1.6) or (1.9). ~

SPIN PARITY DECAY DISTRIBUTION.. - o B £ 2 4

o .« Ao
axt A
vt 2
) R N
2 “~ A s (35-Y)
axw R .
3 . = a1 & (s
_ 5 o

SR GO U C e [ %
. ' - 8.1 ¥ r : '
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TABLE 3

o

The decey angular distribution of a normal parity boson

resonance B produced by vector ?article exchangegiﬁ

the process (1.6) or (1.9).

SPIN PARITY DECAY DISTRIBUTION ®—>Px®

(o] -+ faopuction FoowmiDDEN

S _\_— (R m$‘¢3vr~$\.?_ SV
v . &

Py + T € c.os"s‘w «8) \S§ sh<y
ek &

3 - (A codd +® 2 (ch-\)
‘I.“ '5’).

.} . (_\)'b' _\_ U\ co 9‘.“ %) (’Lk—"\ [? (Cv\}
o 24 (4 V)
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TABLE 4

The decey angular distribution of a normal parity boson

~resonance By produced by pseudovector particle exchange

in the process (1.8) or (1.9). .
SPIN. PARITY . DECAY DISTRIBUTION. ﬁ‘—% NP

o

/

A L
av 2.

v o2 § A rBing sec,
A 2

~(Csitd  +DYSHT

A S i 9\C‘5¢’Q-\)"#~$s‘-\9§,,,$v3“-v(%G%-\)
avw 8 | |

*(csid aD) sy ﬁléb}. \
L1 a < (5 & -)

awn 8 .

+Dgin ¢3v SvSy (8- (S -\)

+(c g, +D) st (s =)
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TABLE 4 (Contd.)

ey s (249 S\G\ I_ '}'\;; (c,,\Y'
ax q_'b_‘-
+D snd ‘_), ?i@‘v}]\?; (Cv\\

i (" s %sv ""-»)A ‘_V;'L‘,"‘Yk ' .
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“ ’ TABLE 5(a)
The decay angulser distribution of a normal parlty boson

resonance Bz produced by pseudoscalar particle exchange
in the process (1.7).

‘ SPIN PARITY DECAY DISTRIBUTION ®,—3V +®

o “* DPecat TROCESS FormoOLEW

\ - L2 sy
aw o

2 ~+ L \§ sycy
ax® &

i, . L 2 .

3 - A s(Sa-Y)

axt 232 :

y ) \‘.* A (a3 ‘. ?;'((v)-)a
. | W 2y (5

0

C [
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| TABLE 5 b)
The decay distrib.ution with reépeot to the variablé's \;(J.,.,
end &, 0f a normal parity boson resonsnce Bg produc':ed;by'
p‘seudoscalar particle exchange in the process (1.7).

SPIN PARITY DECAY DISTRIBUTION ®,~> R+%«®

(=] “* DecAt Paocess Toewwodew

. ¥ Ca anty
g =) Y 3"&3 . Yav 1\:’“ sin 93 sy “O% Yo
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TABLE 8(s.)

The decsv anguler distribution of s normal parity boson
Tesonance Bz produced by vector particie exchange in the
process (1.7). A
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TABLE 6(a) (Contd. )
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TABLE 6(b)

The decay distribution with respect to the variables ‘\Pw.

.~ andWg,0f a normel parity boson resonance Bz produced by ‘

vector particle -exchange in the process (1.7).
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» " TABLE 7(a).
The decay angular distribution of‘a normal parity boson 4
resonance Bz produced by pseudovector particle exchange

in the process (1.7). |
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TABLE 7(e) (Contd.)
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TABLE _7(b)

The decay distribution with respect to the varisbles Way

and Wg, of a normal paruty boson resonance Bz produced

by pseudovector particle exchange in the process. (1.7).
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TABLE 8(=)
The decay angular distritution of en abnormal parity boson

resonance B3 produced by scalar psrticle exchange in the °

process (1.7).
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TABLE 8(b)
The decsy éiatribution with respect to the variables “}Jw
and st of an abnormal marity bvoson reéonance B3 produced
by soslar varticle exchenge in the process (1.7).
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TABLE 9(a)

.The decay angular distribution of an sknormsl parity boson '
resonance B3 produced by vector pqrticle exchange in the
‘process (1.7). .
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TABIE 9(a) (Contd.)
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TARLE 9 (b)

The decay distribution with respect to.the varisbles ¥,y

and Wgy of an abnormal parity boson B3 produced by vector '

particle exchange in the process (1.7).
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TARLE 9(b) (Contd.)
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TABLE: 10 (a)

The decsy sngular distribution of an sktnormsl périty boson

resonance Bz produced by pseudovector particle exchange in
the process (1.7).
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TABLE 10 (a) (Contd:)
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TABLE 10{b) B

The decay distribution with respect to the variables ‘yb“

and Wey of an sbnormasl parity boson resonance B

3 produced
: by pseudovector pasrticle exchange in the rocess (1.7)
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TABLE 10(b) (Contd.)
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TABLE 11
The decsy angular distriﬁution of a fermion resonance F
produced by spin zero exchange in the process (1.8)or(1.9).’
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TABLE 123

- The decay éngular distribution of a fermion resonance F

produced by spin one exchange in the process (1.8)or(1.9).°
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TABLE 12 (Contd.)
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With rerard to the sbove tables giving the distributim
of the drcay Qroducts of’resénahdeé broduced peripherally
it should be noted that the results in each table are ob-
tzined by intesrrting over all decay pfbcess varisblés .
except those explicitly given in that teble.The quantifies
A,B,C....G depend only on the cbupling constants ?nvqlvedd
in the productioh process,their assoéiated form factors
and the varisbles s and t. _ oo .

‘The cross section for the production of resonances’
of specific spin and parity are easy to write down from
”the results of section 7—10.These cross sections are-

tebulated as follows in a way which stresses the spin

dependent factors. ™
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TABLE 13
The production cross-section for the processes (1.é)and(1.7)
mediated by pssudoscalar or scalar barticle exchance for
the crse of s normal or asbnormal parity boson resonance
respectively.

SPIN  PRODUCTION CROSS SECTION _
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TABLE 14 |
The production cross- section for the processes- (1. G)andll 7)
mediated by vpctor or pqeudovactor particle exchange for'

the case of a normal or abnormal parity boson resonance

respectively.
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TABLE 15

The production cross .section for the processes (1.8)and(1.7)
mediated by pseudovector or vectoe particle exchahge for

the case of a normal or atnormal parity boson resonance
respectively.

"SPIN PRODUCTION CROSS SECTION
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TABLE- 18 _
The production cross section for the process (1.8) mediated

by the exchange of a scslar particie.

SPIN PRODUCTION CROSS SECTION
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TABLE 17

The nroduction cross section for the process (1.8) medisted

ty the exchangze of s vector narticle
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12, DISCUSSION AMD CONGCLUSIONS 185.

One of the most striking discoveries in the realm of strong
interaction physies has been that of the existence of a large number
of resonant states. Quite apart from the problem of determining the
dynemical origin of these states it isol great interest to solve the
semi~phenomenological problems of determining the precise gquantum numbers
of these states, the nature and strength of their interactions with
other states and the dynamics of their production processes,

The facts that the quantum rnumbers of the resonant states
most copiously produced in quasi two body processes are those which
are consistent with the exchange of a single particle or & known resonance
and that the production of these resonsnt states is considerably
enhanced for events with small 4-momentum transfer both suggest that a
peripheral model might be a good approximation to the real mechanism
of the production process. In the previous sections of this paper
the full consequences of adopting such a single particle exchange model
have been determined for the exchange of & spin zero or a spin one
particle. It is clear from the results obtained that it is possible
both to test the validity of the model and to gain some information
relevant to the problems mentioned above,

A test of the spin of the exchanged particles is provided
by the observation of the distribution of the decay products of resonances

with respect to the 27iruthalangle associated with a polar axis in
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the direction of the appropriate incoming particle as measured in the
centre of mess system of the decaying resonance. For spin zero and

spin one exchange these distributions are given by:

80 (12+1)
end g+ 2 00S°¢ (12+2)
respectively, The former test distfibﬁtion is just the well known
Trieman-Yang(*®) isotropic distribution end the letter is & rather
obvious generélisation of this result. In fact it is easy to see
that the most general decay distribution with respect to the
azimuthalkngle ¢ oorresponding to the exchange of a spin j

particle is of the form

J
Z apcos® "¢ (12-3)
n=o

for arbitrary spin and parity boson and fermion resonances,

From the results of section 5 es given in Table 1 it follows
thet if any of the processes (1°6) - (1°9) are mediated by the exchenge
of a spin zerc particle then the parity of the outgoing boson state
is normel or abnormal according as the exchanged particle is
pseudoscalar or scalar respectively. The corresponding decay
correlations of the final state particles are then given by the results
expressed in Tables 2,5,8 and 11, These decay distributions are all

independent of the production process variasbles and of the mass and
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coupling strengths of the exchanged particlegt hus the same decay
distributions are obtained even if any number of such spin zero
particle exchanges contribute o the scattering amplitude or if
indeed there is an s-wave contribution to the exchange amplitude
involving an integration over a cut in the variable +., Furthermore
it is to be noted thet there is no correlation between the boson
resonance decay and the fermion resonance decay in the reaction (1+9)
in the case of the exchange of a spin zero particle or any number of
such exchanges(*5)

If any of the production processes (1°6) - (1°9) are mediated
by spin zero exchange it is straightforward to determine the spin of
the resonant states by a comparison of the experimental data with the
results of Tables 2,5,8 and 41. In the case of the resonance st any
evidence in the decay distribution with respect to ”5?‘ of a term in
Q4 (qnv) indicates of course that the re=zonance has abnormal parity,
but if the distribution is consistent with a pure QhQ(QSVJ distribution
then the parity of the state may best be found by examining the
distribution with respect to ¢3V which is necessarily pure cos® ¢3‘V
for a normal parity resonance,

It should be stressed that these spin and parity tests also
form a series of necessary tests of the validity of the hypothesised

spin zerc exchange model,
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The production process (1+6) may be mediated by both vector
and pseudovector particle exchange, In the case of vector particle
exchange the decay distribution with respect to the variable
cos 93_: is a2 unique function of the resonance spin as given in Table 3.
Thus the vector particle model may be readily tested and a resonance
spin d etermination carried out.

Unfortunately the corresponding distributions for a
pseudovector particle exchange model as given in Table 4 depend upon
the production process varisbles, Moreover they include terms of the
form corresponding to vector particle exchange and there is not even

any special value of 6_ which gives a distribution independent of the

B
relative magnitude of the various production process coupling constants. .
This means that the model may not be tested as rigorously as the
pseudoscalar and vector particle exchenge models and it may prove
difficult to distinguish between vector and pseudovector particle
exchange. In addition & spin determination may not be straightforward
in as much as it is possible for a decay distribution to be obtained
which corresponds to the resonance having either spin j or spin {(j -1).

This possibility may arise for an arbitrary spin resonance because of

the existence of the identity:

(PP + BE) = (BL.) + (Bfy) (12°4)
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The decay distributions of Tables 3 and 4 are also

obtained if the production mechenism is generalised to include the
exchange of any number of spin one particles all of the same parity
but of differing masses and coupling strengths,

The possibility of interference between spin zero and spin
one exchanges giving contributions to the scattering amplitude of
opposite parity has in a sense been included in the calculations of
gection 7 by the admissions of the couplings associated with g end
fs which only coﬁple to the spin zero part of the propagator, From
these results it follows that there can be no scalar particle exchange
and that the interference between pseudoscalar and pseudovector particle

exchanges gives a decay distribution of the general form:

Len (s [jpj«:(%)]a enoimog [ (cv NEICH

| (12°5)

This form is already contained in Table 4.

It is easy to see that in the case of spin zero and spin one
exchanges of the same parity contributing to the scattering amplitude
no interference term arises(:°) This is becsuse the fermion couplings
of the pseudoscalar and vector exchange particles are of opposite
parity end evaluation of the trace resulting from summation over the
spin states of the fermions gives zero for the interference term since

this term contains an overall factor of ¥_ which forms a product

5

with no more than three y matrices, Thus the pseudoscalar and
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vector exchange contributions to the process (1°6) add incoherently.

The remaining possibility of an interference term arising
occurs when both vector and pseudovecto.f particle exchanges contribute
to the scattering amplitude. Such an interference term is only
present if in each case the couplings associated with fs are present,
A calculation then shows that the decay distribution associated with

this term is of the form

& S oo Lo (o] [0og) + [ (s

(12+6)

This form is also contained in Table L4 so that it is difficult to
distirguish between pure pseudovector particle exchange and a
combinatién of pseudovector and pseudoscalar end/or vector particle
exchanges,

The production process (1+7) may be mediated by both vector
and pseudovector particle exchanges and the corresponding decay
distributions are given for a normal parity resonance in Tables 6 end 7,
and for an abnormal parity resonance in Tables 9 and 10, As for spin
zero exchange any evidence in the decay distribution with reapect to
Wgy of a term in W° (wSV) indicetes that the resonance has ebnormal
parity but if the distribution is pure Q° (wsv) then the parity of
the resonance may only be found by examining the decay distribution

with respect to ¢'3V7"
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The decay distributions with respect to cos 93V and ¢ 37
are only independent of the production process variables if the boson
coupling in the production process has gbnormal parity. In such
cases the spin one exchange model is therefore relatively easy to test
and spindeteminations may be carried ouf with some confidence,
However if the boson coupling hes normal parity as in the case of vector-
particle exchange leading to the production of an abnormal parity
hoson resonance these distri'butions depend on the production process
varisbles in a way which makes spin and parity determinations rather. |
difficult. The decay distributions with respect to cos 03v and

O3y

exchange production of an abnormzl and & normal resonance respectively.

are of the same general form for vector and pseudovector particle

Moreover & decay distribution may be obtained which corresponds to the

resonance having either spin 1 or 2 since:
4 _ 2 22 = 2 ¢
(l..r.:V L 1) + ASVCV o + 1. (12+7)

The remarks made concerning possible interference effect
in the production process (1+6) apply equelly ;ell to the process(1.7).
In particular there is no interference between pseudoscalar and
vector particle exchanges or between scalar and pseudovector particle
exchanges,

If the production process (41+8) is meé.iated by the exchange

of a spin one particle such a particle must necessarily be a vector
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particle. The corresponding decay e correlationa
are given in Table 12, In the special case of events in the forward

direction the decay distribution reduces to the Adair distributiolf ®;

RO BRI S

In the past it has proved difficult to determine the spins of fermion
resonances by means of the Adair test. This may be because the production
mechanism is such that the cross section falls off quite rapidly in
the immediate neighbourhood of the forward direction., However if the
vector particle exchange model is valid the deoay distribution as a
function of cos GAW is the sum of only two independent terms so that
it should prove possible to test the model and carry out spin determinations,
Since the production process (1°:8) can only be mediated by
the exchange of normal parity particles no difficulties are introduced
by including in the scaftering emplitude the contributions of any
number of scalar and vector particle exchanges., 1In fact by the
admission of the couplings associated with gy and f; +the scalar
particle exchange and interference terms have effectively been included
in the vector particle exchange calculations,
The production process (4 '9) may be medisted by vector or
pseudovector particle exchanges, The decay distributions are given
for the boson resonance in Tables 3 and 4 and for the fermion resonance
in Table 12, In the case of vector particle exchange the model may

be relatively easily tested since the boson decay distribution with
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respect to cos 6 3V is independent of all the other variasbles in

the problem,

It should be noted that for fermon resonances of spin greater
than one half the interf'erence between pseudoscalar and vector particle
exchanges is non zero. The contribution of such a term to the decay

distribution is of the form:
[A sin ¢3V sin ¢24»W + B cos ¢3V cos d’ln-'ﬁ’] [jpf’ <cv>PJ%<Cv)].

(o) [me(e) - §7(3)]

Clearly such & term makes no contribution to the decay distribution of
Tables 3 and 12.

In order to gain the maximum confidence in any test of the
peripheral model and in any spin determinations carried out on the basis
of that model it is necessary to examine the decay distribution with
respect to the variables cos @, cos f, cos ¥ and the corresponding
azimuthalangle variables ¢a’ qﬁﬂ, q’:y. These varisbles are, for
boson and fermion resonances the direction cosines of 33V and EAW
with respect to the systems of axes 7, Neand I . N in the frames
V and W respectively. Theazirmuthal angles are defined in the usual

way S0 that the relationships between these variasbles and those

variables used in this paper are for boson resonances

cos @ = cos O, ¢, =6y (12+10)
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and for fermion resonances:

co8 & = cos GW o, = qbw (12-11)

There are only two independent verisbles and the

relationships between the three pairs of variables are given by:

cos @ = sinf sin qbp = siny cos qby (12+12a)
sina cos §, = cos B = siny sin.¢y (12+12b)
sin @ sin "ba = sin f cos qbﬁ = cos Y (12+12¢)

For any pa.z“ticular event all these variables are well
defined but in measuring a decay distribution with respect to one
varieble in each pair an integration is effectively carried out over
the other variable. In general this results in a loss of information
which can only be maede up by examining the decay distributions with
respect to each of the varieble defined above, If this is done it
ma:: be possible to distinguish in a quantitative manmer between the

contributions of individuel couplings to & prodmotion cross section{7?27)

To date the peripheral model has only been examined in detail
for processes in which spin one and/or spin 3/2 resonances are produced,
In the case of spin one production{?71%127538) it Kas been possible to
fit the decay distributions by assuming some combination of pseudoscalar
and vector particle exchanges. The model used with considerable success

to describe the production of spin 3/2 resonances in a number of
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processes{3®742) nas been that of Stodolsky andSaliurai®’®) which

uses a p-photon analogy to predict a decay distribution of the form
. Q 2 .
(1 + 3 sid 8,4 c08 ?EW) (12-13)

As can be seen from Table 12 this suggests that the dominant coupling
of the exchanged vector particle with the isobar is that associated
with the coupling constant f5, Since such a cgupling gives rise to
a production cross section which goes to zero in the forward direction,
this provides a natural explanation for the failure of the Adair test.

Processes in which simultaneous production of spin 1 and
8pin 3/2 resonances takes place have alsc been considered and the
- decay distributions have been found to be consistent with pseudoscalar
particle exchange.(4?)

If the spin of resonant state can be established from the
decay distribution together with e knowledge of the dominant production
mechanism then the model may be compared with experimentin a
quantitative manner to obtain some information on the coupling strengths
of the resonant state, It should be pointed out that before carrying

out such an investigation the isotopic spin factors which have been
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omitted from the results of this paper should be inserted, The
total width of & resonance, as measured experimentally, will, on
comperison with the results of section 6, yield information on the
decay process coupling constants and the production process cross

section will give information on the production process coupling
constants and their associasted form factors. The productlon

cross sections corresponding to the single particle exchange model
are given in Tables 13=17. The main feature of these résults are
the factors (ky Y and (&7 "% which appear in the oross sections
for the production of bosons of spin J and fermions of spin

(n - 17) respectively. These factors are the generalisations of the
off-mass-shell correction of Selleri**) which are necessary when
determining the partiel wave amplitudes of #7T-scattering from a one
plon exchange model, In fact his results correspond exactly to the
results of section 7 for pseudoscalar particle exchange since Pj° (cv)
is the projection operator for the j-th partial wave,

These factors work in opposition to the pole term in the
scattering amplitude in that,with constant form factors,the single
particle exchange model results in production cross sections which are
not peripheral in appearance., That is to say there is no pronounced
forward peaking of the cross section, This becomes more apparent the

higher the spin of the resonant state and the only means of compensating
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for this effect is to assume that the form factors have a very strong
dependence on the varisble t; Various attempts have been mads fo
fit the production cross section behaviour using one parameter fu-
factors. At present this has reduced a dynemical analysis of such
production processes to a purely phenomenologicel level since no
really satisfactory explanation has as yet been given as to why these
form factors are so strongly dependent on t. However the peripheral
model may still prove useful as long as the form factors exhibit no
energy dependence and there is no violation of the decay distribution
predictions of the model., It would be particularly interesting to
confront the experimental data on the production and decay properties
of the Bs, (pseudoscalar-vector) resonences and the higher mass
isobars with the predictions of the model,

Although as has been pointed out the decay distributions
provide a * test. o the validity of the peripheral model some of
these decay distributions oan be associated with other models, That
they are not 81l exclusive to the spinzero and spin one exchange models
hes been pointed out by Gottfried and Jackson(®*?) in an analysis of
vector -eson production. It can also be shown theat the results for
the boson resonance production processes (1°6) and (1°7) contain terms
which correspond to a coherent, no-spin-flip model of the production
process. Some of the results of Bermen and Drellf*®) for coherent
production are generalised to the production of arbitrary spin resonances

as follows,
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A no-spin-flip amplitude for the production of boson

resonances may be chbtained by considering scalar particle
exchange or the f5 coupling in vector napticle exchange
for the situations in which the boson coupling allows scalar or
vector particle exchanges to take place, Thus the decay angular
distribution of a normal parity boson resonance, produced by coherent
scattering of pseudoscalar; esons on nucleons, decaying into two spin
zero‘particles of the same parity is obteined from Table 3 by putting

B =0, The distribution is of the form:

=m0 < [P()] (e

The corresponding result for an abnormel parity resonance decaying into
two spin zero particles of opposite parity is given in Table 2, The

distribution is of the form:

i 122..;_1.2 [pf <°V)]a (12+15)

2

Similarly the result for a normal parity resonance decaying into &
spin zero and a spin one particle of the same parity is obtained from

Table 6 by putting B = 0. The distribution is of the form:

+ sinz¢3v B‘—rpﬁ (cv>]” } (12+16)
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The result for an ebnormel parity resonance decaying into a spin zero
and a spin one particle of the same parity is given in Table 8(a).

The distribution is of the form:

J{ﬂ [@)2(3+1; . () 3] (2;1) {G" y [P"i<°">]a P [jp"°<°">:la}

(12+17)

Clearly none of the above distributions may be associated
exclusively with the peripheral model.

Although there has been some success in comparing the angular
correlations of the decay products of resonances with the predictions
of the peripheral model it may be possible that a completely different
production mechanism is responsible for these distributions, The
preripheral model can only be an approximation to the production
mechanism since it does not incorporatem’}i’t‘?-:{ritj"imrw way and leads
to production cross sections which increase with the incident particle
energy unless once again very drastic form factors are incorporated in
the model, One attempt to insert unitarity into the model has been to
meke use of the distorted-wave Born approximation({4®™48) |  This

approach to the problem may be more realistic,
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A. APPENDIX

To evaluate the differential cross sections for the
production and subsequent decay of arbitrary spin resonances it is
necessary to consider in some detail the quantities construéted by
contraction of some of the indices of the projection operator (4°11)
with various L4-momentum indices. One set of indices is contracted
with the indices of the L-momentum k and the other set with the
indices of the 4~momentum ¢4 or p for boson or fermion resonances
respectively.

For boson resonances the following expressions evaluated in

the frame V are useful:

g, B (®) = K (a-1)

P 2 3
5y ()0, 4, = =0y (A-2)

Ky P 0, (B)Y, = Ky gy 08 O (A°3)

and for fermion Pesonances the corresponding terms evaluated in the frame

W are:

Pyon Plop Py p, (2) = = By (A1)

Pag 2 (P2 )5y T

- k7 (2+5)
=~ Pylgcos Gm (2+6)
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It should be noted that the coefficients &" given by

(4+12) are such that the Legendre polynomial Bnr(cos ) may be

written as:~

B (cos ) = ['EE)';'J Zn' ar" (cos 6)07% (A-7)
r=o

2'nin!

where n' = 1n/2 for n evenand n' = (n - 1)/2 for n odd.
Making use of (A*1), (A<2) end (A*3) it follows from (4°11)
and (A*7) thet:

() ¢, (2% ,n)(g, N 2;’2‘;;] ky 9y Fn(cos 0.0) (4-8)

Summing over all terms in (4°11) and using both (4°7) and
its first derivative which defines the associated Legendre polynomial

Pit (cos ) it cen be shown that:

(P (5740, (a m)(a, ' = [ 228 2 geqn T

(2n)!
x [M A LB (o) + Ll {n B (o) - =Y Bt (oy) }]
aq. By 1% ) Sy
(2-9)
and
n+s - nes _ [ 2nint 1.0 -
(AP0 (e (g, = [F22 i g

x [ﬂ%‘vﬂh %";Pni O +M':;MP:. {nPn°(°v) --Z-:”Pni(%)}]

(4+10)
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where Cy = co8 63V and sv = gin 95'V . |
Similarly using (A*7) and its first and second derivatives it

can be shown that:

(=1)0*2 (k)t)ndq’)\p(q” ,n)(th)"“" - é’n'n‘ d in-s n—ﬁ.]

(2n)! o
x [0, @) L oy - [ [2alul,, Do),

oL, (eGual , ) RCY

q. 3
v Sy

-{Mh-ﬂiﬁv&upi+mi)&-lkmm}

Gy

v

B (c)

gn-‘l) v _fy; Pnz(cv)}
' Sy

-{I%Sal A M;!avl%_] p‘._} {z?P,P (cq) = (2n - 1) ;—Em‘ (cy) -an"' (o) }]

(A11)
The notation used is such that

[kp(a )]y = kvqbv”(q:) | (a+12)

and
[6(e)a] = ¢, (@), (4+13)



203 L ]

In section 6 it is necessary to consider the special cases
of (A*8) and (A*11) in which & single L-momentum is used to contract
both sets of indices of the projection operator. It is easy to show

that:

i
-

[Pn (cos G)Jcos 8 = 1

-8-]3_.5-3 Pni (cos 6) =M

2

1}
-

-icos &

1
vy P (cos 8)

_3(n+ 2)

1 4i(n - 2)!

- cos 8

Using these relationships it follows from (A*8) that:

() by m)l,, ) = [ ZHET g (a-11)

and if follows from (A°*9) that:

O O A

x[¢ (%)M_M}&WAM] (A+15)
M Py 2 q q . 2

v v

In sections 9 and 10 in which fermion resonances are discessed
it is necessary to evaluate four traces, It is possible to write

these as follows:
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1 = - L]
T'-Tr { yﬁ1YY1ypiyA4} i gpiyi-gpiai+ [gﬁ:.)\o. gY:.P:. gﬁ:.ﬂ:.%&h._] (a 16)

1o [w - ¥4) vﬁlv,,ivpivh} = 2%y1<%"p1' "Mam}
* ngi}‘i(ayibﬁi- b‘/i aﬁi> ¥ .}g = {(ﬂ; .‘ #) (yﬁl yy"; yy"ym)

( Yol T vam)} (a17)

1
—-— - Ao18
7 Ir { Ys¥s Yr, Vo Var }a PR (2.18)

1
37 { vs (£% - ¥A) yﬁiyy,,ymyh} =T 2gp1y1 Euvpiha#bv

1 -
= 28, h vy v Py * 76 T {_Vs (A8 - ¥4) <yﬁiyy1' UM YRR VMYPJ }

(4+19)

where each expression has been written as a sum of terms which are
either proportional to %91 Y or antisymmetric under the interchange
of Pf.and ¥» and are also either proportional to gp1 A or antisymmetric
under the intercl'_tange of Py a.nd A . These forms: are particularly useful
in the following calculations, : .

The expression ana;ogous to (A°11) w_hiqh is of use when dealing

with fermion resonances may be written as:

n+a ne n=t _ | Pnin! (2nt1) | n=1_ nes
(1) (kﬁ) : ¢ﬂy(p2 »n) (p4Y) "= (2n)t o kW pW ]@1313’14’ Bﬁ:LY:L)

(A"ZO&)



205,

where Aﬁz Y is symmetrie under the interchange of f. end y, .

It may easily be shown that, with the notation cos &

hw=cw'and
sin 6,y = 8y »

8.y, 8y, * By, ) = [og nB° (o) + gy Bl ()] (as21)

and

B
Biys

- fata,, talad,

S
" } a2 (e -5 B (o]

(A-22)

Similarly:

n+a ned N P nint (2n41) | nes_ nes
R N R L e vl ne~]

(Ap1 at Co Ai) (a-23)

where as before A.p1 M is symmetric under the interchange of p; and A,

As before

ng."—:. (Apa.)\:. * CP:.M) = [}W n B’ (OW) * BW R (OW)] (A.ZI")

(a-25)

i c th arts of (A*20
The terms in By . and A, OFe the only parts ( )
and (A+*23) which give any contribution when contracted with the

antisymmetric parts of (A+16)., It is clear that:

[__gﬁmyip; 8, o0 B M ]Bpiyﬁm = [ay 0 B (og) - o R0 “‘{”;)
. A-
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Summing over all the terms in (4°11) and using (A°7) and

its derivatives it may be shown that:

n+a n=2 nes _ Pnint (2n41) nea n-
(40" o, (g 6y m m) oy, ™ = [ 2 2] e ]
[Dpiyi (e) + I«:I31 yi(e)]

(;A.-27)

where Dﬁiy(e) is symmetric under the interchange of B3 andy; amd

gﬁiyi[ ﬁiv(e) * Bg, V(e):l {°°3 ® cxar E‘“WP" (o) + s’ ("W)J

-E:ose - o cos eem] (n_” [nfh (cw)-g-c:Ph (ow)]}
(4+29)
and
Eg, y{e) = Elﬂ’i}%ﬂ Ba [cos 6 —i—:—f-% [nm° (o) -%‘: Bt (ew)]‘

l:(n’l) B‘S;"W) —-:-% B? (“w)] :}

= e - ] J] M”

(A~29)

- 6
+ [cos eepW cwoos ekw:l

n-1

et p,
*w A
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s s - e e
where eli is an srbitrary 4-momentum such that Sl and opW are

the angle in the frame W between = a.nd_lgw and between &y and
'EW respectively.
Similarly:

O (P80 (e om0V 8y, = | Zotnt (o) ¢y o 1

D, M(f) + Fp’.]éf) (A-30)
[>. ]

where once again D oy A:.(f) is symmetri¢ under the interchange of
p and Ay end

g[8+ 2o =0 O [ o) 3t o]

- E':os Opu = 08 eka:[ (2-1) [nPh° (e --a-c:'; Pyt (ow)] }

(a+31)
and
p A(f) ..B..(E.)l [ &SE.L.M {cos ] %% [nﬂq°(ow) -:—-‘: Pnf‘ cwﬂ

AT 1 = (W) %W 7]
e cos @ - B2 (e,)
Eos e~ % % Ml (1) . ay ' ]

-Mfz’.ﬁ;“ {-(-;:—)— nFy’ (o) -%Pn (cw)] } (4-32)

w
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where fu is an arbitrary 4-momentum such that 6 I and € oo are
the angles in the frame W between _i:w ta.ndsﬂr and between £W and
'EA.W respectively.

The term in Eﬂiyi(e) is the only part of (A*27) which gives
a non~zero contribution when contracted with the terms in (A'16) -
(A*19) which are antisymmetric under the interchange of fi and vi.
Similarly the term in Fp,,hsf) is the only part of (A*30) which gives a
non-zero contribution when contracted with the terms in (A*16) -
(A*19) which are antisymmetric under the interchange of py and A4,
Thus the expression T(r) given by (9°8) may be evaluated using the
results (4°16) - (A-19), (A-28), (A+29), (A-31) and (A*32).

It is convenient to separate out frrom each term in the

expression T(r) +the factor:

PMntnt! (2n + 1) -3 n-1]2 (A+37)
(2n)! £ l% Hw . 0

The remaining factors in each term are as follows:
My K :{n P’ (cW)}‘3 + {Pn‘ (o) }’ J (A+34)

M. k7 :(gw.sw) { [n Bn’ (cw)]"’ + [Pn‘ (ew)]"'}

e () () —— B (o) [ (o) - T B ()
- k) Cel) oy 1 o) [ o) - o ]

(A+35)
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The term in M is the hermitian conjugate of that in Mlcr

rk
Mrr[l@_-w.sw)l” { E‘ano (cW)__]a + [Ph‘ (°w)—_]2 }
- 2 Re {(gw._lgw) ) - By } AL 5t (o) {n P’ (cg) - ¥ g (cw)]

Py (n-1) 5y Sw

@)@ glsy) * (1 B (e 7 n B () B (o)
kwpw.w l{[ EWGW]-(R-?;S;GW}

+

+ (k) - (2 ulgy) -(-;—E—;—i-; {n Pn’ (o) -:-0: P (o) }a] (2-36)

to 2 [l tept) Lo (o) - X w ey |
. 2 (Epnlsy) I” {‘ [Pn‘ (c) ]"’ 0 B° (o) B’ (o) }]
I Py sy (n-1) 87 (a+37)

The terms in N and NP;( are both zero.

5 [t 2 o) T [ ) e |

(A+38)

(i) @diy) (2 ¢ [ B (o) 1° 0 B () B2 (o)
el R Cred B ]

The term in NI;- is the hermitisn conjugate of thst in N_, .
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The term in Okk is zero,

The terms in P, , P, , P and P are all zero,
ks sk” "rs sr

2., w2 [_-@W"I"W)'@W“I"W’ 1 P“"W){nnu ) =X 8t (o)
ks kW pw‘ (n__1) sw OW % QW

(2-39)
The term in § ok is the hermitian conjugate of that in ka .

2

-2Q, m'k? [(;-W&W).%) -(-;1—1;; {n B (o) —;—‘g R (cw)]

[ X )c )] I'l1 C.
. (—W'&N (-EW"]—{!T__ (I-;r_]sw) 1 F (°w) {n B ('OW) - Bt (GW) }
P (1) 5y *w

gl - @yl P (o) (. ..
”l = p;kww&” (n:,)z Pns;w {nl’n C —-3?.‘- (cw)}

+

Baw;w@w*-kw) la 1 il (:W) {n R (o) _..::i B (o) }] (A<40)

(1) sy

The term in er is the hermitian conjugate of that in Qrs‘
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-2R L(pz k) (Bl - (k) T;J:S n Bn® (cp) —;l; Bwf (o) }

Fn* (o)

+y 1 ) __G_W 1
kﬂ(Pa.r)(-” {nPn (cg) sWPn (cw)}

%
[ 3° (o) --}:pnf (e |

i Con 10 ; Pt (ep)
Py (n1) oy

o | ([T ] e

The term in R;cs is the hermitian conjugate of that in Rks'

2

+ 2 r r A inw . !
28y m” | (mpalty) - (padsy) o) { P’ (o) SWB‘ (‘*w)}

r k_).(z" ) Bt ()
+kwtw*l‘w (ErBiw 1 w {

(+] W 4
- Sen— Pn
(n.” n Py (cw) (c.w) i

SW .

a { [_P%:ﬁ]“_ n Bn® (o) Bn® (o) }]

(n -1) a7

_ l By (_!_‘M)
By

The term in s;:s is the hermitian conjugate of that in sks'
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Production of Cascade Particles.

R. C. King (")
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(ricevuto il 19 Giugno 1963)

Summary. — A model to describe the production of cascade particles
in Kp collisions is set up in which the pole contribution of the A and X
particles .and the contributions -of two-particle intermediate- states -are
.considered. These latter states are approximated by Y* resenameces in
the s and » channels and by a D-particle or resenance, a boson of stran-
geness 2, in the ¢ channel. The two alternatives of spin$ and
spin 3 E are considered. A field-theoretical technique is used in which
all gpin £ states are described by the Rarita-Schwinger:formalism. The
differential and total cross-sections for the production process are calcu-
Jated at .various -energies for all pessible parity combinations. - A.-com-
parison with the experimental idata indicates that the. spin of the cascafle
particle is not §. The production. process is anti-peripheral in the sense
that-the dominant mechanism is fermion -exchange.in the u«:-echannel.
The. data can best be fitted by the parity cembinatiens P(AX)-even,
PREAN)0dd and P(KAE) 0dd. In this case it is. also reguired that
JRAN JRA=RIRENJrEE - There is also seme-evidence for a peripheralprocess
mediated by a D-particle.or KK resonance. The -analysis indicates that
such a state, with isospin 1, should have spin-0 and even parity. 'The
mass cannot be.established but a mass.of 1000 MeV-and a width of 130 MeV
is consistent with -cascade production in both Kp and Pp-colisions.

1. — Introduction.

‘Recently a large number. of -caseade particles have been: preduced in Kp
collisions and both the total cross-section and angular distribution for this

(") "'The research reported in this document has. been sponsored in. part. by the Air
Force Office of Scientific Research, OAR, through the Eurepean ‘Office, ‘Aerospace
Resgearch, United States Air Force.



2 PRODUCTION OF CASCADE PARTICLES [1221)]

production process have been measured at several energiés (**). The threshold -
lies at P, =1.06 GéV/e (P is the laboratory momentum of the incident K~-
meson). The total cross-section for the process

(1) K +p—E +K*

rises from a value of 18 pb at P, =117 GeV/e to a value of 200 pb at P, =
'=1.6 GeV/e. Above this energy the cross-section decreases to about 100 ub
at P, =2.2 GeV/e. The main feature of the observed angular distribution is
that the cascade particles are produced predominantly in the forward direction
with respect to the incident K~ -meson in the centre-of-mass system of the
initial particles. However, production outside this forward peak is not neg-
ligible and indeed at P, =1.81 GeV/c there is evidence of an additional small
backward peak.

We set up a model to describe the production process (1) in which we
consider the pole contributions of the A and X particles.in the direct and one
of the crossed channels. Tn addition we caleulate the contributions of two-
particle intermediate states in the direct and both crossed channels. In order
to do this we make the simplifying assumptions that the mA, X and KN
intermediate states can be approximated by the Y* resonances and the KK
intermediate statés by a boson of strangeness 2 which we shall denote by D (5).

() W. B. FowLER, R. W. BIRGE, P, EBERUARD, R. ELY, M. L. Goop, W. M. POWELL
and H. K. TicHo: Phys. Rev. Lett., 6, 134 (1961).

(3) W. A. CO?PER, H. Courant, H. Friraurh, E. I. Marnamup, A. Mincuzzi-
Rawzi, H. ScHNEIDER, A. M. SEGAR, G. A. Swow, W. WiLLis, E. 8. GELSEM4, J. C.
KLUYVER, A. G. TEXNER, K. BROWNING, I. 8. HuGues and R. TURNBULL: Proceedings
of the 1962 International Conference on High-Energy Physics at CERN p. 198.

(3} G. M. PsERROU, D. J. Prowss, P. Scuremw, W. E. SLATER, D. H. Storx and
H. K. Ticuo: Phys. Rev. Lett., 9, 114 (1962) and H. K. Ticmo: Proceed'i‘ngs of the 1962
International Conference on High BEnergy Physics at CERN, p. 436,

(*) L. W. Auvarez, J. P. BureE, R. KALBFLEISCH, J. BUTTON-SHA¥FER, F. T.
Sormitz and M. L. STEVENSON: Proceedings of the 1962 International Conference on
High Energy Physics at CERN, p. 433. _

(°) L. BERTANZA, V. BrissoN, P. L. Conwory, E. C. Harr, I. 8. MrrTra, G. C.
Moxetri, R. R. Ravu, N. P. 8am1o0s, I. O, SKiLLICORN, S. S. YamMamoro, M. GOLDBERG,
L. GraY, J. LEITNER, S. LicHTMAN and J. WESTGARD: Proceedings of the 1962 Inter-
national Conference on High Energy Physics at CERN, p. 284, 437.

(°) The existence of such a particle has been proposed by a number of theorists
and T. YamanoucHt (Phys. Rev. Leit., 3, 480 (1959)) presented experimental evidence
for a D-particle of mass 720 MeV. Further search by Y. EISENBERG, M. FRIEDMANN,
G. ALEXANDER and D. KESSLER: Phys. Rev., 120, 1021 (1960); V. Coox, D, KEEFE,
L. T. Kertm, P. G. Murpuy, W. A. WeNZEL and T. I'. Zipr: Phys. Rev., 128, 655 (1961)
and B. A. Nixor'ski1, V. L. SURRovA, A. A. VARFOLOMEEV and M. M. SULEOVSKAYA:
Soviet Physics JEPT, 15, 631 (1962) has produced no evidence in support of such a
_particle. However, these experiments could only detect a D-particle of mass less
than 780 MeV and any KK resonance would have been undetected.
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- The necessity of introducing such a particle must stand or fall by the requi-
rement that our model should fit the experimental data.

In Section 2 the notation for the kinematics is established.

' Since the spin of the =: partlcle is'not well- determmed we consider the two
alternatives of spin 4 dnd spin § in Sections 3 and 4, respectively. We use a
field-theoretical technique to describe the interactions of the particles and re-
sonances with- which we -are concerned, making use of the.Rarita-Schwinger
formalism (") to describe particles of spin 3. We consider all possible parity
combinations. We caleulate both the differential and the total cross-sections
for process (1) at various energies and make a comparison with experimental
data in Section 6 after inserting 1sotop1e spin faetors which are discussed in
Section 5.

In Section 7 we discuss the consequence of our analysis as applied to the
production of cascade particles in hlgh -energy pion-proton and a,ntx-proton-
proton collisions. ,

In Section 8 a summary of our conclusions is given.

2. — Kinematies.

Consider: the iﬁroduction process
K+N—>E+K.

Let ¢, and p, denote the 4-momenta of the incident K and N’ and ¢, and p,
those of the outgoing K and E, respectively. We define the invariants

8 =P )2 "_"* (P:+4)%,
t=(p— P == Qz)z
w=(p1— @) = (P2— @)*.

~ In~the dentre-of-mass system of the s-channel, that is-the -channel'in which
8 represents-the total energy-fsquared, we shall define our 4-mementa-as follows

2:p7 = (&5 P) » s Pe == (899.G) »
ey ="{ewy; —'P) y ="':"(5923”‘_---bq-) 1

)W E RARITATahd-J. BEHWINGER + Phys Rev.; 60 612-'{4941}.
(®) H. UMezawa: Quantum Field Theory (Amsterdam, 1956).
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thus

8= _(81 + o) = B2,

t = m%, + mE — 28,e,— 2pg cos

% = My + mk — 26,05 + 2pg cos P,
where we have defined the scattering angle ? to be the angle between the
incident K and the outgoing E in the centre-of-mass system.

The centre-of-mass momenta and energies are glven in terms of the in-
vamants by : !

1

PP =18 — (mye + mg)*][s — (my — me)?] 7,
. 1
¢ = [s— (mz + mw)*)[s — (mz — me)*] £,
. é_t(mir—mfz) 3 _ 8+ (mE—mg)
1 243 ’ b= 2/3 ’
. — 8= (M — mi) o, = 8 (M — mi)
1= 2\/5 ’ 2= _—‘“—“2\/&-

The quantum numbers associated with single-particle exchange in each of the
channels are for the s channel B=1, 8= —1, for - the # channel B=1,
§=—1, and for the ¢ channel B=0, 8 =—2, where B and § are baryon
number and strangeness respectively.

S - . i
Loaad N A

3. — Formalism for = spin 1.

Assuming that the cascade-particle, like the nucleon, has spin 4 and the
K-meson has spin zero we can write an effective Lagrangian deseribing our
system of particles as follows:

P=F+ Z,.

Z . is the free Lagrangian of each particle and if the form factors at>all vertices
are approximated by constants we have an effective-interaction Lagrangian (?),

(°) The form of the interaction Lagrangian we have adopted for coupling a spin §
field to a spin § and a boson field is not the most general. This is because the subsi-
diary conditions on spin § fieldi.e., y9,= 0, 9,9,=0 do not apply to an interme-
diate state. Tor a discussion of this see Y. Fuyir: Prog. Theor. Phys., 24, 1013 (1960).
Our Lagrangian corresponds to the case when the spin % state may be an external
partmle field. :
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Zr, given by ‘ L

Lr=[gnrr Py prt+gzvx Tﬁsr 2Py (pﬁﬁg&'; P lsp=9p+ Mx gorK P0 PR PR+
 +gxep Poeyul s ¥z oot IorE 9o (P B px — Fupr) +

- g.N’Y‘K @Y. pszaﬂ¢K+g:—Y—'5wy- Tep=0,px] +h.e.

- The. ﬁelds Yyr PYyrs Pp and Pr” correspond to any partmles hawmg the
following quantum numbers: Y: B=1, S=1,J=1; Y*: ' B=1, S=—1, J=§;
D: B=0, §=—2,J=0; D*: B=0, S=—2 J=1, WhereB S, Jarebaryon
number, strangeness and spin, respectively. . ' _

The I'; (j=1,2,...,6) are T or y, accordmg to the pa,rlty of the particles
involved. = . : S

With this interaction Lagranglan we have §ix pole terms to evaluate €Qr-
responding to Y exchange in the s and # channels, D and D* exchange in the
¢t channel and Y* exchange in the s and w channels. :

In general we may write our S-matrix as

{3.1) ) ) 8 =1I—i(2m)*d(p,+ 9 _“pz‘," )T .

Using ;this definition of the I-Iﬁatrix,_ the _diffé'réntial ‘cross-section in’ the
centre-of-mass system for the production of E in KN collisions is given by
N N a1 g

G 0= a )'_Eﬁﬁlwl).

where the T-matrix element may quite generally be written in' the form

(3.3) : T, = u=(ps) F_[—A + Hy-q.+ ')"!Zz)B]FNuN(Pl) .

Our normalization ig such that
N ( \ ’ )
(3.4a) : Z Upo( D) pe{ 1) = (P M)y

spin

(3'45) : : 2 Uz pz Ug(ps) = (y P+ mg)-

apin

Averagmg over initial spin states of nucleon and sumnnng over the final spin
states of the cascade we have ‘

(3.5) A ¥,
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where

F=33 3|T,p.

spla N, epin 2 |

Writing -T',, = %= (p.) T (p;) we ean” split- 7' up into - contributions from each

of . the six_-pole terms we are-considering T= 2 T;, Now F is a sum of
J=1

6 terms corresponding to the _pole terms taken separately and 15 terms cor-
responding to interference -between different pole:termg.. In .an obvious nota-
tion - Fiz==> F';, where- :

. [ %

_(3-6) Fy=1 Z z Uz (Pa VL po(py) u.N’(Pl Uz (Ds)

Assuming I3} =1 we can exXpress F,; in terms of our invariants s, ¢ and- ‘w as
follows:

(8.7) Fy= AAf[— i+ (my+ ma)?] + BB {}{s —u)2—3}[— 1t + (my—mg)?]*
[t 4 dm ]} — (4,Bf + A B) s —w)(my + mz) .

The six terms F,; can be readily evaluated for all parity combinations by
making use of the following observations (°). The general form of 7,, as given
by eq. (3.3) is arrived at by making use of the fact that the nucleon: and
cascade particle wave-functions satisfy the Dirac equations (y-p,—my)-
“Upe(P1) =0, (- ps—mz) uz(p,) = 0. In evaluating A, and B, between spinors
we make the identifications y; Pr= My, ¥ Py= + mz according as I =

Vs

TE = I respectively. Writing . P; =— A+ 047 9B, and  P,=— A} +

Vs

3y @47 ¢)BF we have

(3.8) Fy=4%Tr {P Iy P+ Mp) ¥ P IE(y p,+ mz) [} .
¥

Since m - and mgz only enter the expressions for A, and B, through the above
identifications, it is clear from.eq. (3.8) that.changing "= from I to y; is equi-
valent to replacing m,,z by —m, - throughout ¥;;. We make use of this in
evaluating the various contributions to the-differential cross-section of.each
of the pole terms taken separately for all possible parity combinations of the
particles involved. Tor the interference terms no such simple rule is. valid.

For the pole terms 1, 2, ..., 6 the propagator functions 7(k), i=1,2,...,8

(3% A. Savam: Nucl. Phys., b,” 687 (1958).
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apart from ‘coupling constants are given by

k-4 m
(3.90) Ty = LT where k= (p; + .), k*=s,
(3.96) Ty(k) = T (k) | where k = (py— gs), k"= 1,
(3:90) Ty(k) = #m—%, where & — (py— pa), k2 —1,

Il 1 |
R i [ qw)_m , whero b= (p,—py), k=1,

Va -k -+— 17Zyw

(3.9¢) Ty(k) = ‘ e

[% G~ 5V kg, — ('}’ kg, — k- gy -q,)—

L2
T 3miL ] 3Imee [('}’ ok gy — K@y )+ (v -k mx)y gy ql]} (m_m
‘ where k= (p,-+q,), ki=s.
(3.90) Tegk.). = Ty(k) where . k = (p,— p,), k*=u.

It is interesting to note that we have a crossing symmetry (*') whereby.

(3.10a) Ag(sytyu) = Ay (u,t,s),

(3.10b) By s(s, 8, ) = — Bz_s(uy t, ) .

In terms of invariants

' 1 ¢

(3.11a) A,=—gyyrfd=yr[+ (my—l—m )—l-my] s B,= gyyrd=yE m; .
‘ M.

(3.11b A3=— gx=D JDEK r_K-E y B3: 0 ’
— myp
: 2
(8.11e) A,=0, B4=“9-N‘ED9DKK-m:
as(s, t, u) 1

A. B - = (] E
5 = JNY*E J=Y*K Mz (S_m%”)’

by(syt,u).. 1
mymz (14— me)’

(3.11d)

| Bs = gxv*rfzvx.

© (1) A. RamakrisaNaN, R. Taunga, T. V. RapHa, G. BHANATHI and 8. .IxpU-
MATHI: Nucl. Phys., 37;. 585 (1962).
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where
(3.11e) as(s, 1, u) = — L(mzg — my)-
s+ MMy sm2
{_Sm_%;i [s + mik — $(mz + mie)] — 3—m§: — [L(mz -+ my) + mye]”

T m + m)(s — miy + mfz)} —[s — L(mlo + mE)]-

i 2y_ _Z
:2( b+ 2me) -

S(’Ina +m'y#} Mms ng 1

Sm%. Sm%t 5 (8 o m?N, + mfZ) !

1
: =3mw%(s — mE 4 mi) —

and

(A1) Dals by 20) = B b+ 2mb) — g (5 — b - k) (s — b+ k) —

1 smk
— 3(mE — M) == (s + M=mp) — —5-
3(mz .N’)Sm%_*( + Mmzmys) 3mb

— 3(mz 4 my) 2 -

(s — mE 4+ mg) — (mz + my)(mz + Mxs) ﬁ;

1
3mY*
Making use of eqs. (3.5), (3.7) and the above expressions for 4, and B,, we
can calculate the differential cross-section for cascade particle production.

4. - Formalism for = spin 3.

 'We make use of the Rarita-Schwinger formalism for a particle of spin §
and represent such a particle by a wave function y,(z) which satisfies the wave
equations : '

(—ip-0+myy,@) =0 P (@) =0

and the subsidiary condition g,y (z)=0.

. The wave function y,() is a 4-vector each component of which is a spinor
with 4 components.

The effective Lagrangian is given by

/A5
m

L, = [g.N’YK Pl 1y e+ %E Papl 2 px QP + _D Peul sy Qupo +

+ Mxgorr Pr PoPx + gwzn* Poul 1P Pory + IorxxPoeu(Pe O — aM(PK ox) +

+ %ﬁl{ @Y*ups'P.N’ aﬂtpx + g=1*x @EstWY*"(PK] + h. c.
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As before I'; (j =1,..,,6) are I or yp; according to the parity of the particles
involved. We use this Lagrangian to evaluate the six pole terms.
Once again we have

de 1 q

(4.1) E=W@|T@lgs\

where we can now write the 7 matrix element in the general form

(4.2) T, = 1y (75”(}72) FE[“‘A + 4y a1+ ¢)B] FN“.N‘(?l) +
+ €0, Uz, (0:) TE[— C+ Hy g1+ y- ) D1 T¥upo(p,) -

Our normalization is such that

(4.3a) D Up(D) Upe(py) = (pe D1+ My,

spin

(4.3b) z U= (pz) U oAD2) = 6 oY Dy +mz) = (yrp, + ma)e,,vs

spin
-Where (12.13)

1
By = G FVuPYr — 3p3 23 (V PV uPav + Pauyvy Do) -

Writing 7,,= U, £.(P2) T, % )o(p1) we can split.T up into contributions from each
p ‘

of the six pole terms we are considering 7, =3 7,;:

As in Section 3 we have iz
de 1 ¢
(4.4) A2 T (4n)2 4E%p 7,
where
F:%Z ITWIZ-:ZF”
spin N> spin= .4

and
(4.5) Foy=1 2 SO0 Ti, v nop) Tne(p,) T, Uz, (p,)] -

Assuming I'N'® =1 we can express F,; as follows
(4.6)  Fy=3Tr{(—a,+p @b,y b, + my)— i+ v QL) (ypo + mz)0,,}
where ¢ ?%(er‘%), a; = @ 4,+¢C,, and b;= ¢,B;+¢D B

(12) R. BEHRENDS and C. FroNsDAL: Phys. Rev., 106, 345 (1957).
(*3) C. FrONSDAL: Suppl. Nuovo Cimento, 9, 416 (1958).
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For the pole terms taken éepamtely we have the game rule as in Section 8
by which we relate the sign of the mass of the external spinor particle in the
expression for #,; to the relative parity of the particles coupled .at the ver-
tices of the corresponding Feynman diagram.

If we now consider the ease i =4, I’V =1 it can be shown that

Z

' 4 4
(4.7) By = (pypo + My mz) [’5 ai— é‘—z_ (“i'pz)z] +

3

+ 02010030~ @ 02— mem)] 58— s Gup]

a; Pob; 'pz:l +

2
—[mzp, Q@ + myp,- Q] ['3' ab; — 3m

1 ‘
+ g‘m_a Do Pala; D1 by Q@ — a;-Qb.-p,) 4 3_7’75 y2 'T)l(af'Qbf'pz —a; P b0 Q)+

1
+ 3 P2 Q@ Pabs D1 — @i pibip2) -

3mz

Apart from coupling constants the propagator functions T, (i =1,' 2, .y 6)
for each of our pole terms are given by

‘k+m
(4.8a) Ty — %ﬁ , where k = (p; + qu), k=3,
k+ m
(4.85)  Tan= f,:flk“:t,ﬁf’ where & = (p,— qu), k*=u,
. m k 4
(4.80)  Tou= _ =g where k = (p,— p,), k*=t,
‘ kuby\ Qo+ Qo
(4'8d) T4I—': Gur — mD‘) kzl_ m;) Whgre k= (pl_p2)7 k%‘:‘h
(4.8e) = {(’,}GQ_ m:) [qx,‘ 3 TNy G~ (wk G— Ky @) — —m—;lf,.k-ql] -
: 1
~ 3k | WeF G By )+ ok b medpy @ [
where k= (p1+ ¢.), k*=s,
(4.8f)  Tou(k, 417 %) = Tou(ky — @2y — @) © where k= (p,— @), F2=u.

'We now have the following crossing symmetry relations

(4.9a) Al.g.s.s(sy ty u)= - 03,1.6,5(”7 4 8) ,
(4.95) B as.e(sy by ) =+ Dy, 45(4, 2, 5)
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In terms of invariants

[3imy +'mzg) +my] 1

(4.10a) A4,=B, =0, 0= guerxgevs o e
1
D, = gxyrJ=yE o m ’
m 1
(4100) By;=D, =0, - Ay = gX=DYDEE m_: C—mh’ Oy = — 4y,
1
(4.100) B, = DG-: 0, 4, = — gxyEpYDEK t—md)’ Ci=A4,, \
4. — [my+me) +mee] 1
As = — N TeRJET'E p_— = m)
i ’ 1 1
B, = . . —
= gNT*RISTR — T (5—mie) ]
C_. 2 1(8— +m)—1-(m +m)+2m.]—
(4.104) 5 = JNT*RYEY*K T 3mi.2 miy k) |5 (M= N ¥
1 (8 — my.mg) 1 1 fom 2 2 ——1_ 1
~5 (mg—mx) Smi +3mw [s— g(mN-i—mE)] e T
(stmymy) 2 1 } 11
D, =gNTEJ=Y*'K [ ———37”3(* —-————3m%‘ 3 (s— N-}—mg) o -—~—————(s i

In terms of the above variables
(411)  Fu=[—t+ (my+ ma)]-

2
% {(Aif C,yPmik+ A,C(—1t-+-4mk) — T—nl—z_v[%(m%-i— mE)(d— C)— 2 (du— Cis)] } +

+ [Fo— gt a1+ Onay— me) Y| o= Dot Bt i)~

——1?[ (m& + mi) (B — D) — 1(Bm Dis)]z}_’

mz
— (mz+ my) (s — u) g,{(Ai — C.)(B.— Diymk+ (A.D;+ B:C) % (—t+ 4mk) —

1
T mk

[1 (me-4md) (4~ 0)— 3 (A Gis)][ (nE-t m) (B D) — 5 (Bas—D.) |-
1 R

— g (B0, AD) |5 (5= W)t + Gyl 4 md)

[tk e e T £ (e 24}

Using this expression and'eq. (4.6) we can calculate the differential cross-
section due to the'pole terms taken séparately.
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5. — Isotopie spin analysis.

To complete our analysis of the single-particle-exchange terms that we have
discussed in Sections 8 and 4 we must insert the appropriate isotopic-spin factors
at each vertex.

For the process

K +p—-K"+ &~
the minimum values of isospin for particles exchanged in the s, % and ¢ channels
are 0, 0 and 1, respectively. Hente our comparison with experimental data
for the reaction (1) will only yield information about a boson of strangeness 2

and isospin 1. We can make no inferences about a possible D-boson with zero
isospin until experimental data for the processes

K- +p—-K°+ Br,
K +n—-K4+ &5,

become available.

The definition of the coupling constants is to a certain extent arbitrary
but we have taken them so that in isospin space we can write our rotationally
invariant Lagrangian in the following form

& = {gxzp,DED] +RE"D]) +

+ 9wz (V2BE DI + V2RE D) + PE'Df — 7E-D]) +

+ Jixo (K°K* D5 + K~K°Dy) + o

+ frun (VEK'E° D) + V2K K* D™+ K- E+*D—EK-K°D~) +

+ Yoy x(PE Y] + 2K Xg) +

+ Goey x(VZPE Y] +VIRE* Yy + PET Y —aK°Y?) +

+ gEY.,K(F:oKOY: +E5"KY) +

+ 9=y x(VEE R Y+ V25 K°Y; + B°R° Y —E-K~Y%)} +h.c.
where Dy, D, (Y,, Y,) denote bosons (fermions) of strangeness —2 (—1) and
isofopic spin 0, 1 (0, 1), respectively.

The fermion particles and resonances having the appropriate quantum
numbers can be listed as

I=0 A (mass 1.115GeV) Y, (1.405, 1.520, 1.815),
I=1 X (mass 1.189 GeV) Y, (1.385, 1.685).
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If we invoke group theory and assume that the strong interactions are
invariant under S§U; then the D, meson belongs to the representation 10 and
the D, meson to the representation 27. In the octet (141%) model of SU, the
pseudoscalar K-meson can be eoupled to the baryons by D or F type coup-
lings or an arbitrary mixing of the two. \ '

Tor D type couplings

1
- \7§ INAR = NzE = — 3 J=AK = - J=zK .

For F type couplings

— V3gyax = — Iysx = \/ggEAK =—f=¢x -

The Sakata model gives.no relations similar to the above sinee the A, £ and E
particles belong to different representations of the unitary group.

Without any group-theoretic model all the coupling constants are inde-
pendent of each other.

6. — Results and comparison with experiment.’

Using the formalism of Sections 3 and 4 we have calculated the contri-
bution to both the total and differential cross-sections of each of our 6 pole
terms taken separately. We have used the mass values my.=0.938, m<==1.320,
mg =0.494 GeV and considered the case m,=mp, =0.720, 1.000, 1.440;
My =1.115, 1.189; my. =1.385 GeV. Calculations have been carried out for
P, =12, 14, 1.6,..., 3.0 GeV]e for all possible parity combinations.

We consider the two cases of B having ¢) spin 3, b) spin % and in the latter
case we discuss an interference effect between A and 2 pole terms,

a) Our results indicate that the data cannot be fitted in any way under
the assumption of spin 3 for the cascade particle since none of the terms we
have calculated gives a large forward peak. Typical angular distributions are

() Y. Ne'sMAN: Nucl. Phys., 26, 222 (1961).

(3%) M. GELL-MANN: The eighi-fold way: a theory of strong interaction symmelry,
California Institute of Technology Synchroton Laboratory Report CSTL-20 (1961}
and Phys. Rev., 125, 1067 (1962).

(1¢) J. J. SAKURAL: New mesons and resonances in strong inleraction physics-
theoretical. To be published in the Proceedings of the International School of Physics
« Bnrico Fermt» (Villa Monastero, Varenna, Como).
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Shown in Fig. 1 for exchange of a A particle in the « channel at' P, =1.8 GeV/e. ’
"The rather obvious fact that kinematic factors in our spin'} projection operator
‘oive total cross-sections’ which increase rapidly -and- continucusly ‘with ‘energy
is- additional evidence for:the conclusion- that the cascade -particle' is not a

do/d 2

i LI

L 1 1 1 i | I ) S R Ly
-10. 0.8 “06--04 -0.2 © 02 04 06 08 10
: - cos @

(K= =7)
Fig. 1. — Contribution to the differential cross-section for process (1) due to exchange
of a’Y-particle (mass 1115 MeV, spin }) in the % channel at P, =1.8 GeV/c, assuming
“the ‘E-particle 'has spin 3. Curves a),'d), ¢) and d) correspond to the parity combi-
nations even even, odd even, even odd and odd odd for P(KYN) and P(KYE),'
respectively. The normalization is arbitrary. The histogram gives the experimental
data- of ref. (3).

gpin § particle satisfying the .Rarita-Schwinger formalism. The -tobal: cross-
~section -for-cascade :particle .production -is found - experimentally to decrease
with energy above P, =1.6 GeV/c as shown in Fig. 2.
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2001

[ S,

160

401

1.0 12 14 1.6 1.8 2 2.4 2.6 2.8 5.0

2.0 2.
R (Gev/c)
Fig. 2. — Variation of the total cross-section for process (1) with Py due to exchange of
a D-particle (mass 1000 MeV) in the ¢ channel and of a Y-particle (mass 1115 MeV)
in the % channel assuming the Z-particle has spin 4. Curves a), b), ¢) and d) cor-
respond to the similarly labelled curves of Iig. 5 and 6. Curves ¢) and f) correspond
to the cases of D spin 0, P(NED) even and D spin 1, P(N'ED) odd, respectively.
"Curve g) gives the result of combining the curves d) and e).. The experimental ‘data
are that given in ref. ('8).

b) Since we define the scattering angle to be the angle between the in-
cident K~-meson and the outgoing .E‘-particle we can make the general com-
ment that poles in the # and ¢ channels lead to forward and backward peaking,
Tespectively. We find that exchange of a spin 1 D-particle in the # channel
‘gives a very sharp backward peak for both parity cases whilst exchange of
a 'spin 0 D-particle gives a smaller backward peak for even P(DN'E) and a
fairly uniform angular distribution for odd P(DNE). Decreasing the mass of
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16 .PRODUCTION OF CASCADE PARTICLES [1235]

the exchanged particle gives sharper peaking in all cases. Typical angular
distributions are ‘shown in Figs. 3 and 4 for mD——l 000 at P, =1.8 GeV/e
and 2.2 GeV/e¢, respectively.

>

dd/d s

b)
e
= - k
N <)
1 I L I 1 I d)l 1 i >
-1.0 -0.8 -06 -04 -02 0 02 04 06 08 10

cos G(KEE-)

Fig. 3. — Contribution to the differential cross-section for process (1) due to exchange
ofaD partwle (mass 1000 MeV) in the ¢ channel at P, =1.8 GeV/c assuming the E-par-
ticle has spin . Curves a) and b) correspond to D spin 0 with P(N'ED) even and odd,
curves ¢) and d) correspond to D spin 1 with P(N'ED) even and odd. The normali-
zation is such that ¢ zpgprr/im= 0.37, 0.94, 0.074 and 0.086 for the curves a),bd), ¢)
and d), respectively. The histogram gives the experimental data of ref. (3).

This mechanism might be responsible for the backward production of
cascades observed at P, —=1.8 GeV/ec and at lower energies. The fact that
this backward peak is not observed at P, =2.2 GeV/c suggests that the D-
particle has spin zero for only in this case does the cross-section due to the
exchange of such a particle decrease with energy. For a spin 1 D-particle the
peak increases with energy. We have normalized the theoretical cross-section
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to the data at P, =1.8 GeV/c assuming that this exchange process provides
the mechanism for all the backward scattering. In this way we can set an
upper limit to the coupling strength of the D-particle. For a D-particle of
mass 1000 MeV, spin 0 and for P(IDN'E)} even we find

(gKKDgD.N’..) <0.37 .

47z
A-
L —_—
[
3
©
=]
{ I ( - ) T‘--l\l
-1.0 -08 -06 -04 -0.2 0 02 04 06 08 10

cos 9

Fig. 4. — As in Fig. 3 except that P =2.2 GeV/e. The histogram gives the experlmental
data of ref. (°).

Tncreasing the mass of the D-particle merely makes the backward peak somewhat
broader and the decrease with energy of the cross-section becomes slower.
For m;, =720 MeV and 1440 MeV we find that the upper limits on the coup-
ling constant are 0.25 and 0.62, respectively.

The angular distributions given by poles in the s channel do not exhibit
any forward peaking for fermions of spin } or spin 2. The distribution is fairly
uniform for most spin and parity cases although for a fermion of spin § a
small backward peak is given if P(KY*N’) and P(KY*E) are either even and
odd respectively or both odd. Clearly therefore, the poles in the s channel
do not provide the dominant mechanism for the production process although
they may be responsible for a roughly uniform background term in the angular
distribution upon which the peaks are super-posed. It is possible that the Y*
pole term is responsible for the observed small backward peak but we find that
kinematic factors in the propagator of such a pole term result in the backward
peak increasing rapidly with energy in contrast to the experimental data.
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18 PRODUCTION OF CASCADE PARTICLES : [1337]

~As is to be expected the exchange of a fermion in the u channel gives rise
to a forward peak in the production of cascade particles, The size and shapée
of this peak depends on the spin of the exchanged particle and on the relative
parity of the particles involved. The angular distribution for extchange ‘of
spin ¢ and spin § particles are shown in Fig. 5 and 6 for m,=1.115 and

a)

do/a R

A

10 oe -06 04 02z 0 02 04 06 08 10
8

cos 6, ..,

Fig. 5. — Contribution to the differential cross-section forJprocess (1) due to excha,nge
of a Y particle (mass 1115 MeV spin }) in the u channel at P, =18 GeV/c assuming
‘the Z particle has spin . Cwrves (a), (b), (¢) and (d) correspond to the-parity comibi-
nations even even, odd even, even odd, and odd odd for P(KYN') and P(KYE),
respectively. The normalization is such that ggyygrve/4m =040, 0.72, 0.49 and 0.54
for the curves (@), (b), (¢) and (d), respectively. The histogram gives the data of ref. (3).

‘my. =1.385 GeV at P, =1.8 GeV/c. Once again kinematic factors in the pro-
‘\'pagator ‘of a spin & particle give rise to cross-sections which increase rapidly
with energy, a result Whmh is incompatible with the experimental data. For
‘the exchange of spin 1 particles there is no such -effeet and the total cross-
section varies with energy as shown in Fig. 2. The angular distribution for
‘exchange of spin } particles at P, =2.2 GeV/c is shown in Fig. 7. Normali-
zing our results to the data we find (9gypgr=y)/47=0.40 and 0.54 for P(KYN)
and P(KYZE) both even and both odd, respectively. Our results indicate that
the best fit-to the data is given by exchange of a Y:particle such that P{KYN)
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cos em_)

- Fig. 6. — Contribution to the differential cross-section for process (1) due to exchange

of a Y*-particle (mass 1385 MeV, spin £) in the » channel at P,=1.8 GeV/c assuming

the E-particle has spin 3. Curves a), b), ¢) and d) correspond to the parity combi-

nations even even, odd even, even odd and odd odd for P(KY*N) and P(KY*E),

respectively. The normalization is such that ggysygxyss/in= 047, 0.38, 2.16 and

1.49 for the curves a), b), ¢) and d), respectively. This histogram gives the experi-
mental data of ref. (3).

a)

da/d®

-10 -0.8 -06 -04 -02 ©0 02 04 06 08 10

: cos em‘s‘) ’
Pig. 7. - As in Fig. 5 except that Pr.=2.2 GeV/e. The histogram gives the experimental
) data of ref. (%). ' '
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20 - PRODUCTION OF CASCADE PARTICLES [1239]

and P(KYZE) are both even. For all other parity combinations the forward
peak given by our theory is insufficiently large and narrow. This parity fit
also gives the best fit to the energy-dependence of the production cross-section
as shown in Fig. 2. However it is well established that P(KAN) is odd (*7)
and if we just consider the A pole we clearly obtain a forward peak
which is too broad to fit the data. If we also assume P(KXZN) is odd (219)
and calculate the X-pole term we obtain a similar angular distribution but

A

d)

do/d R

A~

-0 -0.8 -06 -04 -02 O 02 04 06 08 10
cose( ’

[

K= ET)

Fig. 8. — Contribution to the differential cross-section for process (1) due to
exchange of A (mass 1115 MeV) and X (mass 1189 MeV) particles in the w«
channel at P;=1.8 GeV/e assuming the E-particle has spin 4. P(AX) is even and
curves a), b), ¢), d) correspond to the parity combinations even even, odd even,
even odd, odd odd for P(KAN’) and P(KAE), respectively. The normalization is such
that ggaxgra=/4n = grzNgEET/47= 5.3, 10.6, 8.2 and 16.8 for the curves a), b), ¢),

and d), respectively. The histogram gives the experimental data of ref. (3).

(*) M. M: Brocg, C. LENDINARA and L. MONARI: Proceedings of the 1962 Inter-
national Conference on High Energy Physics at CERN, p. 371.

(18) R.D. Trirp, M. B, WaTsoN and M. FERRO-Luzz1: Phys. Rev. Lett., 8, 175 (1962).

(**) H. D. D. Warson: Hyperon Pair Production. Preprint.
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because of the slightly larger mass of the exchanged particle the peak is smaller
and broader. From the isotopic spin analysis of Section 5 we see that the
contribution to the scattering amplitudes of the A- and Z-pole terms taken
together depends upon the relative signs and magnitudes of the four coupling
constants ggay, Jxznr Ixsyr Jxzs- In the octet model of SU, the A and =
amplitudes have the same sign and their relative magnitude varies from 3:1.
to 1:3 depending upon the mixing of ¥ and D type couplings. Whatever this
relative magnitude might be, the inclusion of both pole terms does not lead
to any narrowing of the forward peak. However, provided P(AX) is even, we can
obtain a narrowing of the forward peak, for instance (gxp y9xasz)=(FxzrIxzs)
In this case the isotopic spin factors lead to a cancellation of the A and X
contributions to the scattering amplitude which is most complete in the non-
forward direction leaving a sharp forward peak. This interference effect is
such that at higher energies the canccllation is even more complete and the
theoretical cross-section decreases with increasing energy in agreement with
the experimental data. We have calculated this effect for all the parity com-

I 1 : i 4.4____,.._1_>
10 -08 -06 -04 -0.2 0 02 04 GCB 8 10
cos 0.

7

Tig. 9. — As-in Fig. 8 except that Pr,—2.2 GeV/c. The histogram gives the experimental
‘ data of ref. (%).
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binations at P =1.8 and 2.2.GeV/c and the angular distributions. we, obtain
are given in Fig. 8 and 9, respectively. Normalizing the results at P, =1.8 GeV/c
in the case of P(AX) even, P(KAN) odd and P(KAE) odd we find (ggp yfxaz)/ 47—
=(JrnnFxzs)/4t =17. The only other parity combination which will fit the data
i P(AX), P(KAN), P(KAE) all even.

If we now turn our attention to.the s channel and cxamine the consequence
of inserting both the A and X poles in the amplitude we again obtain some
cancellation. For P(KAZ) even the angular distribution is roughly. uniform
and the contribution to the cross-section is of the same magnitude as that due
to poles in the « channel. However, for P(KAE) odd the s channel contribu-
tion is an order of magnitude smaller than that of the « channel and moreover
in the case of P(KAN’) and P(KAE) both odd the s channel terms give rise
to a.large forward 'p\eak. This indicates that although interference between
the s and # channels pole terms might give a significant contribution to the
diﬁ"erenti‘aly cross-section in most parity cases it is unlikely to alter the angular
distribution given by the dominant % channel poles in the case of P(AX) even
and P(XKAN), P(KAE) both odd.

7. — Alternative production processes.

We now turn our attention to the production of cascade particles in np
and Pp collisions and examine the consequences of our analysis as applied to
the reactions

(2) P+p—>E +E,
(3) 4 p—=> E L+ KV Ko.

[x]

The total cross-section (*°) for process (2) is found to be 4 (£ 2.5) pb at
P, =3.0 GeV/c. This is an order of magnitude smaller than the cross-section-
for the production of baryons of strangeness one in pp collisions. No conclu-
sions can be drawn about the angular distribution from the four events re-
ported at P, =3.0 GeV/c but at higher energies there is some evidenee that
the process is peripheral (3!). We set up a model to describe process (2) in
which we consider only the peripheral diagram involving exchange of a D-

(2" R. AnmeNTEROS, E. FErT, B. FRENCH, C. MONTANET, V. NIKUTIN, M. SZEP-
TYCKA, CH. PEYROU, R. BOCK, A. SHIPIRA, J. BODIER, L. BrAasKoVICz, B. EEQUER,
B. GrEGORY, F. MULLER, 8. J. Gorpsack, D. H. MiLLEr, C. C. BuTtLER, B. TALLINI,
J. Kixsox, L. Rippirorp, A. LEVEQUE, J. MEYER, A. VERGLAS and S. ZYLBERACH:
Proceedings of the 1962 International Conference on High Energy Physics at CERN,

. 236,
? (*') H. GOLDBERG, 8. NussiNov and G, YERUTIELI: Nuovo Cimento, 28, 446 (1963).
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meson. From the value of the total cross-section we can determine gy, for
& given spin and parity case. For a D-particle of mass 1000 MeV, spin 0 with
P(NED) even we find (g3psp/dw) =0.04. Using the results of Section 6 we
then find (ggxp/47m)=3.4. This large value of the coupling of the D-meson
with two K-mesons indicates that the D-meson has a large width. ‘With our
definition. of the coupling constant g, the width of the D resonance as ob-
- served in KK scattering is given. by

[1)3:4% mg
dn md

I's= ( mp — dmg)t ..

Using- this relationship and the above value, for gn.. we find I'y =130 MeV.
Clearly more experimental -data at. high energies are needed to examine the
. validity of, a.peripheral model describing process (2). '

The .total. cross-section (22-24)..for. process (3) rises with energy to.a value
of 10.4(53) wh-at P, =8.0 GeV/c.and at this energy.7 of the total of 8 events
observed are. such: ’oha’c cos 0 z>137° in. the cen’ore of -mass system., Thig
indicates. that..the process is peripheral and suggests that the mechanigm.for,
the reaction might.involve the. ex-
change. of a D-meson. However, an,

/
A
\

. \\ e
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/
I X X

o

| ]
| |
_:K,'.' :
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a) . b).

i
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1

Fig. -10. — Feynman -diagrams appropriate.
to the,production process (3) corresponding .

to K* and D exchange..

alternative mechanism might be,.the
exchange of a K*-meson.

The appropriate Feynman  dia-
grams are shown in Fig. 10. To dif-
ferentiate between these two models
it will be necessary to. observe the
correlation of the associated K.me-
sons. It should also be stressed that
the observation of these K-megons
offers the best possibility of examin-
ing the KK interaction for at suf-

ficiently high energies the correla’olon in kinetic energies of the K-.mesons
would give direct evidence for or against the existence of a D « particle ».

. (**) W. B. FowLER, W. M. PowELL and J. L. SBHANLE: Nuovo Cimento, 11, 428 (1959).
(2%)- WaNG KaNG-cH'ANG, WaNG Tsu-18ENG, N. M. Virvasov, Ting Ta- T840
Kixn Hi Im, E. N. K1.ADNITSKAYA, A. A, KpvzNETSOV, A, MikanvL, Neuyex Dixg To,
A. V. NigkrriNy and M. I. Sonov'ev: Zurn, Bksp. Teor. Fiz., 40, 734 (1961); Soviet

Physics JEPT, 18, 512 (1961).

(#) A. Bror, 8. BRanDT, R. CARRERA, W, A. COOPER, A. DE Marco, G. R. MACLEOD,

Cu. PEYrOU, R. SosNOwski and A. WROBLEWSKI:

Proceedings of the 1962 Interna-

tional Conference on High Energy Physics at CERN, p. 247.
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8. - Coneclusions.

Within the limitations of our model our calculations strongly suggest that
the cascade particle is not a spin § particle satisfying the Rarita- Schwmger
formalism. This supports the tentative conclusion of ref. (5)'in favour of spin }
for the cascade particle.

From our results it is clear that the mechanisin dominating the produetion
of cascade particles in Kp collisions is anti-peripheral in the sense that the
exchange process involves fermions. The experimental fact that the produec-
tion cross-section exhibits such a large forward peak can be accounted for by
assuming some cancellation between the A- and Z-pole contributions to the
scattering amplitude. "In the case of P(AX) odd the interference effect is
complicated and we do not have any obvious cancéllation mechanism. For
P(AX) even and P(KAN) odd all the available data can be fitted provided

P(KAE) is also odd. It should be pointed out that the values of the coupling
constants we obtain are very sensitive to the degree of cancéllation we assume
in order to fit the shape of the angular distribution. Thus the quantltatlve
results are not to be taken too seriously.

The influence of the Y* résonances as apprommatlons to two partlcle states
appears to be masked by the A- and X-pole terms. However we have used an
unrenormalizable field theory to describe the interactions of the spin § par-
ticles and an alternative theory such as that of a Regge pole model would
alleviate the difficulties our model meets at high energies.

In addition to the anti-peripheral process there is some evidence for a peri-
pheral process mediated by a D-particle or KK resonance. Our analysis indi-
cates that such'a particie with isotopic spin 1 should be a spin-zero state of
even parity. The mass caniot be established but a mass of 1 GeV ‘with a
width of 130 MeV is: cons1stent With all the data for cascade particle production.
Further evidence for” th1s pai ticle ‘should be sought in high- energy productlon
of cascade partwles in’ rcp colhsmns

The author wishes to express his gr@titﬁde to Pi*ofessor P. T. MATTEEWS
for the suggestion of this work and for.helpful discussions.
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RIASSUNTO ()

-

Per descrivere la produzione di particelle in cascata nelle collisioni Kp si costrui-
sce un modello in cui si prendono in considerazione i contributi del polo delle parti-
celle A e X ed i contributi degli stati intermedi di due particelle. Questi ultimi stati
sono approssimati con risonanze Y* nei canali s ed w e con una particella o risonanza D,
un bosone di stranezza 2, nel canale ¢. Si prendono in considerazione le due alternative
di un Z di spin 4 o di spin §. Si usa una tecnica di teoria dei campi in cui tutti gli
stati di spin § sono descritti dal formalismo di Rarita-Schwinger. Si calcolano le sezioni
di urto totali e differenziali per il processo di produzione a varie energie per tutte le

_ possibili combinazioni di paritd. Un confronto con i dati sperimentali indica che lo
spin della particella della cascata non & §. Il processo di produzione & anti-periferico
nel senso che il meccanismo predominante & uno scambio di fermioni nel canale .
Si possono approssimare meglio i dati con le combinazioni di parith P(AX) pari,
P(KAN) dispari e P(KAE) dispari. In questo caso si richiede anche che ggaygras™
~grTy 9rE=- Si ha anche qualche prova di un processo mediato da una particella D
ossia risonanza KK. L’analisi indica che ‘tale stato, di isospin 1, deve avere spin zero
¢ paritd pari. Non se ne pud stabilire la massa ma una massa di 1000 MeV ed una
ampiezza di 130 MeV concordano con la produzione in cascata nelle collisioni Kp e pp.

(*) Traduzione a cura della Redazione.
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evidence of originality, shown either by the discovery of new facts or by the exercise of independent
critical power.

8. The thesis must be satisfactory as regards literary presentation, and if not already published
in an approved form, must be suitable for publication, either as submitted or in an abridged form.

9. The candidate must indicate how far the thesis embodies the result of his own research or
observation, and in what respects his investigations appear to him to advance the study of his subject.

10. The Degree of Ph.D. will not be conferred upon a candidate unless the Examiners certify
that the thesis is worthy of publication as a ‘Work approved for the Degree of Doctor of Philosophy
in the University of London’.

11. A candidate will not be permitted to submit as his thesis a thesis for which a Degree has
been conferred on him in this or in any other University, but a candidate shall not be precluded from
incorporating work which he has already submitted for a Degree in this or in any other University in
a thesis covering a wider field, provided that he shall indicate on his entry form and also on his thesis
any work which has been so incorporated.

12. After the Examiners have read the thesis, they may, if they think fit, and without further
test, recommend that the candidate be rejected.

13. Except as provided in paragraph 12 the Examiners after reading the thesis shall examine
the candidate orally and at their discretion by printed papers or practical examinations or by both
methods on the subject of the thesis, and, if they see fit, on subjects relevant thereto; provided that a
candidate for the Ph.D. Degree in the Faculty of Arts who has obtained the Degree of M.A. in the
same subject in this University shall in any case be exempted from a written examination.

14, If the thesis is adequate but the candidate fails to satisfy the Examiners at the oral, practical
or written examination held in connection therewith, the Examiners may recommend the Senate to
permit the candidate to re-present the same thesis and submit to a further oral, practical or written
examination within a period not exceeding 18 months specified by them, and the fee on re-entry, if the
Senate adopt such recommendation, shall be half the normal fee.

15, If the thesis though inadequate, shall seem of sufficient merit to justify such action the
Examiners may recommend the Senate to permit the candidate to re-present his thesis in a revised
form within 18 months from the decision of the Senate with regard thereto; and the fee on re-
entry, if the Senate adopt such recommendation, shall be half the normal fee. Examiners shall not,
however, refer any thesis without submitting the candidate to an oral examinaiton.

16. When a candidate for Ph.D. Degree in the field of Statistics has not a preliminary Degree in
Statistics the Examiners are recommended to test the candidate’s general knowledge of statistical
method and theory outside the special field covered by his thesis.

17. Examiners are informed that it is not within their power to recommend the conferment of
a Degree other than that for which the candidate has entered.

18. Copies of all successful theses, whether published or not, will be deposited for reference in
the University Library.
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UNIVERSITY OF LONDON

PAYMENTS TO EXAMINERS
8.—HIGHER DEGREE EXAMINATIONS
(1) Masters’ Degrees (excluding M.S. and M.D.S.), Ph.D., D.Mus.

[Note:—Payments to Examiners for the ‘one-year’ M.Sc. (Econ.) Examination by written papers
(under new Regulations) have not yet been prescribed, and the following fees are not at
present applicable]

Setting Papers £ s &

For each paper set (fee divisible between the Examiners taking part) . .. 10 0 0

[M.Sc. History and Philosophy of Science—Part I: A fixed fee of £45 is divisible
between the External Examiners for their work in setting papers]

Mathematics (including Mathematical Statistics) and Statistics papers, each .. 12 0 O
For transcribing the whole or the major part of a paper into an Oriental script for

reproduction by photography . . 110 O
For modification of a paper for Overseas .. .. .. . . .. 15 0
Papers in connection with Practical Examinations: see Practical Examinations below.
Marking Scripts
For each of two markings or readings, for each script . . . 7 6
At the D.Mus. Examination payment for three markings is allowed.
Oral Examinations (and Practical Tests at M.A.)}
Masters® Degree Examinations:
Per candidate (fee payable for up to four orals on any one day) to each of two
Examiners if required .. .. .. . .. . .. . 310 0
If more than one Internal Examiner acts in addition to the External Examiner,
£3 10s. 0d. per candidate is divisible among the Internal Examiners.
The above fees are not payable in respect of orals given during practical examinations,
if the Examiner(s) concerned receives fees for attendance at the practical
examination.
Ph.D. Degree Examinations:
To each of two Examiners and to a third if called upon by the Principal, or to each
of three Examiners appointed from more than one Faculty, per candidate
(fee payable for up to four orals on any one day) . .. .. 310 0
If three Examiners are appointed from the same Faculty to act in the first instance,
the following fees will be payable:—
Internal Examinations—A fee of £7 per candidate shared equally between
three teachers, or a fee of £3 10s. 0d. per candidate to the Examiner external to the
University and a fee of £3 10s. 0d. per candidate shared equally between two teachers.
External Examinations.—A fee of £3 10s. 0d. per candidate to each Examiner,
provided that the appointment of the three Examiners has been specifically
approved by the External Council after consideration of a special report of the
appropriate Board of Studies.
Practical Examinations (and Oral Examinations at D.Mus.)
For each practical paper set (fee divisible between the Examiners taking part) .. 10 0 O

For a practical paper set to cover more than one day’s practical at M.Sc. Examina-
tions in Biochemistry (fee divisible between the Examiners taking part) .. 20 00
For attendance (including marking of candidates’ work):—
Whole day . .. . . .. . . . ..
Half-day .. . .o . . o .. . .. ‘e 4 00

If oral examinations for the Intermediate Examination in Music, B.Mus. and D.Mus.
Examinations are held consecutively on the same day, payment will be made
for the whole time for which Examiners are present, and not for separate
periods for each examination.

~3
(=}
o

If an External or Staff Examiner resides outside the University radius of 30 miles
his attendance, if required for a single examination period only on any day,
is to be reckoned as attendance for a day.

+ For conducting oral examinations at Part I of the M.Sc. Examination in Agriculture
(selected subject Poultry Science) for candidates registering in and after October
1961, a fee of 10s. per candidate (minimum fee £4 per day) will be payable to each
of two Examiners for each subject.
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Theses and Dissertations, etc.,
Masters’ Degree Examinations:

For assessing material* submitted by a candidate, to each of two Examiners
and to a third if called upon by the Principal ..

except in the following cases:—

The fee for reading a thesis at the following examinations is £5 to each of
two Examiners:—

Internal M.A. Philosophy
Internal M.A. and M.Sc. Psychology (if candidate is examined by thesis,
oral, three papers and a practical)

The fee for reading a dissertation at the following examinations is £5 to each
of two Examiners:—

M.A. Education examinations consisting of four papers, dissertation
and oral
M.Vet.Med. [the fee for a thesis is £7 to each of two Examiners]

The fee for reading a Report at the Internal M.Sc. (Eng.) Examination, for
candidates proceeding to the Degree by method of written papers "and
submission of Report, is £4 to each of two Examiners.

At the M.Sc. Examination in Geophysics, without thesis, a fee of £5 per
candidate is payable to each of two Examiners to cover reading the
dissertation, examination of course-work and attendance at oral exami-
nation.

If three Examiners read a thesis or dissertation, etc., in the first instance, the fee
for two Examiners is divisible between them if they are all teachers of the
University, or the full fee is payable to the Examiner external to the Uni-
versity and half the prescribed fee to each of the two teachers.

Ph.D. Degree Examinations:

For examination of a thesis, to each of two Examiners and to a third if called
upon by the Principal, or to each of three Examiners appomted from
more than one Facuity. . .. . . . .

If Examiner is candidate’s Supervisor

If three Examiners are appointed from the same Faculty to act in the ﬁrst
instance, the following fees will be payable:—

Internal Examinations.—A fee of £6 13s. 4d. to each of three teachers,
including the Supervisor, or a fee of £10 to the Examiner external to the
University and half the prescribed fee to each of two teachers [£3 10s. Od.
to the Supervisor and £5 to the other teacher].

External Examinations—A fee of £10 to each Examiner, provided that
the appointment of the three Examiners has been specifically approved by the
External Council after consideration of a special report of the appropriate
Board of Studies.

No fee shall be payable to a Teacher of the University for reading and reporting

on a Thesis or Dissertation submitted in the joint names of the candidate and
himself.

For re-reading a thesis or dissertation submitted for a Ph.D. Examination and re-
submitted for a Master’s Examination or for re-reading a thesis or dissertation
re-presented in connection with further tests in oral, written or practical
examinations, the fees payable are half the fees prescribed for the first reading.

For re-reading a thesis or dissertation submitted in a revised form, the fees payable
are as for the first reading.

Design at M.A. (Architecture) under old Regulations—For assessing material submitted
by a candidate, to each of two Examiners and to a third if called upon by the
Principal
If three Examiners act in the ﬁrst mstance the fee for two Exammers is d1v151ble

between them,

Portfolio of Drawings at Internal M.A. or M.Sc. Architecture under new Regulatlons
per candidate, to each of two Examiners .

Problem (at Mathematics) (fee divisible between the Exammers takmg part)
Musical Exercise (D.Mus.) (fee divisible between the Examiners taking part)

Special ad hoc Qualifying Examination—fee per candidate (fee divisible between the

Examiners taking part) . .

Fora quahfymg examination, for the M. Sc Exammatlon in Botany, cons:stmg of an
oral examination only or of an oral examination together with one or more
papers of an existing examination, fee divisible among the Examiners taking
part in the oral examination .. ..

~]

12
21

10

5

oo

o

o o

o

*To include ‘an approved piece of textual and editorial work’ at M.A. Examination in

English and Education.



8
INT. or EXT.

Higher
Degrees
3
Chairmen’s Fees £ s d.
M.Th. (old Regulations) (Common) .. .. . .. . . .. 15 0 0
M.A.:
Classics (Internal and External) .. . .. .. .. .. .. 15 0 O
Classical Chinese (Internal and External) .. .. . .. . 12 0 O
English—December (Common) .. .. .. .. . . . 9 0 0
May (Common) .. . .. .. .. .. .. .. 15 0 0
French (Internal and External) .. .. . .. .. .. .. 18 0 0
Indo-Aryan (External) .. .. .. e e .. .. .. 15 0 0
LL.M. (Common) .. .. o .. .. .. .. .. .. .. 25 0 0
M.Sc.: .
Agriculture (Poultry Science) (Internal)* .. . .. . .. .. 9 00
Biochemistry, to the Chairman of a Board of more than two Examiners* .. 9 0 0
Crystallography (Internal)* .. .. .. .. .. .. .. .. 9 0 0
Geophysics (Internal)* .. .. .. . .. .. .. . 12 0 0
History and Philosophy of Science (Common) .. .. .. .- . 15 0 0
Microbiology (Interna)* .. .. .. .. .- .. .. .. 9 0O
Radiation Biology and Radiation Physics (Internal) .. .. .. .. 12 0 0
Meetings
To each External or Staff Examiner, for attendance at each Meeting if summoned
by the University (maximum fee £7 10s. 0d. per day) .. .- . .. 210 0
No fee if held concurrently with a Practical Examination
Minimum Fee to ad hoc, Staff or External Examiner .. .. .. .. .. 8§ 0O
(2) D.D., D.Lit., LL.D., D.Sc., D.Sc.(Eng.), D.Sc.(Econ.)
To each Examiner who acts, inclusive fee, per candidate .. .. .. .. 1515 0

Travelling Expenses

For each occasion on which an Examiner is required by the University to travel a distance of
more than 30 miles from his usual residence he may claim in connection with attendance at Practical
Examinations, Oral Examinations, or Examiners’ Meetings, first-class return railway fare and the cost
of travel by underground and/or public road transport (bus or coach) for all necessary journeys
actually performed from his usual residence, and for any other necessary journeys performed while
engaged on examination work, together with the following allowances:—

For necessary absence from home not involving a night:

For a period of 5-10 consecutive hours, 15s. Od.
For a period of more than 10 consecutive hours, £1 10s. 0d.

For each necessary period of absence up to 24 hours involving a night away from home,
£3.

For journeys to or from Berwick or Carlisle or stations in Scotland or Northern Ireland, an
allowance of £1 per journey, in addition to the subsistence allowance of £3,

An Examiner external to the University may claim fares and allowances as set out above for all
necessary journeys actually performed from his usual residence (irrespective of the 30-mile limit),
and for any other necessary journeys performed while engaged on examination work.

In the event of travel from a vacation address, travelling expenses claimed may not exceed those
from usual residence unless the University’s request for attendance is made at short notice,

J. HOOD PHILLIPS
July 1964 Secretary to the Senate

* Fees cover any External candidates examined by the Board.
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