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SUMMARY

This work deals with the application of the specialised
Matrix Force Theory for the analysis of fuselases to an electronic
digital computer. The problems associated with the full automation
of the procedure are described and solutions suggested., A particular
feature is the generalization of simple matrix equations at particular
fuselage stations into super-matrix equations involving the whole
fuselage. The automation of the cut-out =and modifications procedure

is fully realised for this type of structure.

Computational problems inevitably associated with the solution
of a large structural system are also discussed., The results of the
analysis of a fuselapge are attached. Suygéstions for special functions

ol

are made as well to facilitate the programming for a large computer,
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INTRODUCTION

The present thesis forms a natural part in the evolution of the
matrix analysis of structure initiated by Argyris in Ref., (1) and
especially refined with respect to fuselages in that author's textbook
"Modern Fuselage Analysis and the Elastic Aircraft", Ref. (2). Our own
contribution to this work involved the important aspects of the
verification of the theory, which necessitated an enormous amount of
experimentation with electronic computers and the complete solution
of many examples including two elaborate fuselage structures both with
cut—outs and modifications. As a matter of fact, the matrix theory
of fuselages and the programmes upon which the major part of this thesis
is based developed inevitably side by side. The results of the programme
were used as important illustrations and elucidations to the theory
8o that by the time the analysis was completed, the first version of the
fully automatized programme for the Farranti-Pegasus Computer was available.
This code was capable of analysing an arbitrary single-cell fuselage
following the input of the minimum amount of logical and numerical data.

The maximum capacity of this programme covered fuselages with up to
30 flanges and 4o ring stations. A further development was an automatized
cut=out and modification programme which can handle cut-outs and modifications

with up to 50 stations, again with a minimum of input data.

The development of this programme, and that of a further improved
version suitable for a larger computer is based upon many other developments.
On the one hand there was progress in the Matrix Force Method, pafficularly
in the application to a fuselage type of structure; on the other hand
advances in the 'software', involving a more ambitious and refined matrix
code as being developed by the "Rechengruppe der Luftfahrt, Institut fiir
Statik und Dynamik der Luft- und Raumfahrtkonst ruktionen" in Stuttgart.
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In between comes the progress in structural software, which is the domain
of the "applied progremmer", or in this case, the engineer who uses the
theory, which must be essentially suitable for programming on an electronic
computer, as well as the available software, (in this case, the advanced
and refined matrix interpretive scheme), in order to write the actual

programme used to solve any one, or a class of structures.

To write a direct programme for solving a particular example using
a given theory and an available camputer library might be quite an intricate
operation, but it would embrace a certain creativity only when full co-operation
between theory, applied programmer and pure (or systems) programmer were
achieved. In order to understand the relation between the three, we might
state that whereas the theoretical ﬁart must be written so as to be suitable
for programming on a computer, the software programmer prepares a certain
library which would be useful for the applied programmer. The applied
programmer then has his first function as a bridge between the two parties.
Thus he might influence a choice in the theory, or the introduction of new
facilities in the computer library. There is, however, another important
aspect to the function of the applied programmer, namely:whereas the systems
programmer intends his general programmes for the use of ancther programmer,
either pure or applied, the applied programmer intends them for the use .
of a direct user, in this case, a stfuctural engineer. The connection between
the fuselage matrix theory and its automatic programming, as described in
this wbrk, is elsborated upon presently. In some of the appendices all the
facilities ‘required by the fuselage programme fram the software library
are listed and their functions specified. The final objective has been to make
the programme fully autcomatic so that the engineer can "address" the
machine in the most direct manner and receive back information which can

be readily interpreted,

Having outlined the interconnection between the various members

of the team involved in the development of theories and programmes suitable



for the numerical analysis of camplex structures, we discuss now the
development of the Matrix Force Method and the programming connected
with it.

In the original work of Argyris (Ref. (1)) giving the Matrix Force
Method in its basic form, including the cut-out technique - though not yet
the modification procedure which is described inter alia in Ref. (3) =
we find the basic theory to be of a very general and simple nature;
a sign of its intrinsic value and extreme flexibility. In & way, it has
been shown that the real problem in analysing a regularized continuous

structure can be reduced to the following steps :-

(1) The ideealization of the structure.

(2) The formation of the basic matrices bo . b1 and f .

(3) The insertion of these matrices into the very simple equation

b = b - b(b' f b) bf b,

to obtain the stress distribution in the structure and following that, the
the flexibility matrix [ from

F -b'fbo=bt b+bfb(bfb)bfb
= FE -b f b(bfb)b't b,

The second problem, i.e. that of modifying the stresses to represent
the effect of cut-outs and area changes, can be split into two parts,

(1) The forming of the basic matrices required, namely

b,h ,the rows of the b, matrix corresponding to the elements affected,
bm. ,bhe corresponding rows of the bzrmatrix for secondary redundancies,

b;, gthe corresponding rows of the b matrix,

fAh ,the matrix of the flexibility difference in the modified elements
of the structure.



(2) The insertion of the above matrices into the standard equations

to obtein the modified stresses .
b, = b + b D'bi{b D't b,0b+|0 2},

O -1 t -1 ¢ -1 gk -1
oo taosinmfp Ji's

L _) r -1 t O O -t
F. = F +b, {BDp+bDbAg ¢} b

As can be seen the set problem is indeed a simple one thanks to
the guitability of the matrix language, and hence the basic theory, for this
type of problem. Indeed the whole philosophy of the original work in Ref. (1)
was centred on the idea that a matrix orientated analysis and the electronic

canputers were an ideal and powerful combination.

An important point when programming for a large structure has been
already mentioned in Ref.(1), namely the need to partition large matrices.
Even with a large computer, such as the UNIVAC 1107, the computing store cannot
hold more than 64 K word(K=2"). The storage space inside a large computer
is arranged in layers, each of which being larger and taking longer to reach
than the preceeding one. The fastest of the layers, the camputing store,
is the only part of the computer where one can store two matrices, perform
an operation on them and write the result. All the octher layers serve as a
"backing store", which is a large memory only used for keeping the information
but not for computation. A paper by lunt (Ref. ¢ ) followed the first work
and described same general purpose programmes for the camputation of inter-
mediate matrices such as the D . Do ( and F) in a continuous loop

of instructions.
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So, whereas the restrictions on the size of the matrices to be
cperated upon is clearly indicated, another great advantage of the
partitioning technique is not so obvious, namely the presence of zero
sub-matrices which can be excluded from the computation and, naturally enough,
not stored. Here again we see one more aspect of the suitability of the
theory to the computer. A special theory has been developed, from which
one obtains a partitioning of the basic matrices and all relevent inter~
mediste ones according to natural physical considerations, resulting in a

pattern of fully populated sub-matrices, the rest being zero.

This point has been fully exploited in the book on fuselage
analysis. A special matrix force theory was developed for a certain type
of structure resulting in very sparsely populated t)1 and [) matrices,

f being diagonal and treated as such. In this manner the theory is
excellently suited to the machine and we are now left with the important
aspect of writing s proper programme to make full use of it. Two possible
approaches stand before us depending upon the size of the machine. If it is
small, like the Pegasus, with a reasonably fast addressable store of 8 K words,
one has to develop a special=-purpose programme for the analysis of fuselages
in which the pattern of the various matrices is embodied. To explain, we must
bear in mind that in those 8 K words, a fairly elsborate matrix scheme, the
actual programme ss well as the data and results have to be stored. A set of
addressable magnetic tape units (or in the case of a more modern machine,

a faster backing store) is naturally enough indispensable for the camputation
and might also be used to hold the programme itself. The programme is divided
into a large number of independent sub-programmes, each performing one
particular specialised operation, so that only a small part is contained

in the computing store at a time.

This is the basis of the automastic programme which has been

written for the Pegasus. In order to give an idea of its size, we mention
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that the part of it concerned with the analysis of single-cell continuous
fuselages requires about 1500 matrix instructions as well as 10 000 machine
orders, in all about 13 000 storage places. The computing store cannot retain
all this at one time, whereas the space required by any one sub-programme
never exceeds about 800 words. The matrix scheme itself occupies a certain
part of the drum, the rest being left for some standard programmes and as

a working space; the intermediate and final results being then transferred

continuously during the running of the programne to and from tape.

Whilst this approach 1s suitable for a small computer, a super
matrix code is the more recommendable software for a larger one. Thus, as in
the one being developed in the Stuttgart Institute, the matrix code has
standard mathematical orders dealing with super-matrices, i.e. matrices
wvhose elements are themselves matrices. Such a scheme automatically ignores
zero sub-matrices. It does not store them, nor carry out any operation
which involves them. Thus the pattern of the matrix is not used to develop
the programmes, but the one and same function in the super matrix scheme
handles all types and patterns. A large fast machine, with a sufficiently fast
large backing store as Well-as a suitable computing store can retain the
super code as well as the programme concerned with the solution of the
structure. The question comes now as to how the topology of the structure

is to be utilised to simplify, standardise and autamatise the programme.

The answer to this lies in the fact which has been already
realised namely that the actual formation of the basic matrices t)o s b1
and f constitutes a considerable part of the actual solution. As a matter
of fact, with the introduction of the super matrix scheme it becomes
practically the main part of the programme. For any problem of considerable
size and sufficientf;enerality, the preparation of these matrices by hand

is a slow, unrelisble and almost impossible task. The correct procedure
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wauld go even as far as to give the geametry of the structure, if possible,
in the simplest manner, making use of any special properties it possesses
and to leave the maximum share of the work to the camputer. Although one

finds already in Ref. ( 1 ) standard forms for the flexibilities f i

as well as for self-equilibrating systems, the values were given for one
particular structural unit typical of the structure concerned, without developing
the expressions to show the pattern of the total matrices, or rather their
major sub-matrices. This changed with the advent of the book on fuselages,
where the patterns of the various matrices, including the [) and [)o
were discussed in detail. Thus there was a good example of the general theory
being developed into a special one for application to a certain structural form.
The full automatization of the formation of the t)o and the bl through
setting up the equilibrium conditions, together with the choice of the [\2
matrix which controls the conditioning of the local sets of redundancies,

and the development of the orthogonalization technique for the further
automatic improvement of the set of equationé is an ideal example of the
utilization of the topology of the structure in such a special theory.

By direct inversion at each cross~section one obtains cover stress-
distributions which give a unit loading resultant or a self-equilibrating
system. The application of these cover stresses to the boundaries of the
ring, using a standard ring matrix analysis gives the internal ring stresses
corresponding to these self~-equilibrating systems. The supplied geometrical
data in the form of co-ordinates , section constants and elastic properties
are used for the computation of the tz,and b1 matrices, as well as for
the matrix f .« Data concerned with loading are used to derive a complete
set of cover stresses in equilibrium with the applied loading from the cover
stress systems corresponding to unit loading resultants. The corresponding
stress distribution in the rings is calculated using the same standard

ring mnalysis. Having thus obtained our complete basic system t)° , &s well
as the t)1 and f y We can set up the equations in the primary redundancies
and solve them, obtaining thus the final stress distribution in the fuselage

due to the applied loading.



As mentioned before, if only a small computer is available,
the best method is to write programmes which perform the required
operations one by one, proceeding gradually from one end of the fuselage
to the other. The main part of each sub=-programme is a set of matrix
instructions carrying out a standard operation using the sub-matrices
of a certain super-matrix, as a rule stored on tape, and placing the

result again on tape., A loop is then set up around this part which
considers the pattern of the matrices involved, as well as such parameters

as the number of flanges t , number of rings p and number of
loading cases ¢ , in modifying the input and output addresses of the
sub~matrices working from one end of the fuselage to the other, knowing
that only non-zero sub-matrices are stored. laving a large fast machine,
equipped with a proper matrix scheme changes the picture from the
progremming point of view considerably, and the resulting programme

is the actual one given in this work.

Since the super-code is designed to operate on super-matrices
directly, it is obvious that such operations as the formation of the [)
and [)o *, solution of the equations, should be done in a single order
from one end of the fuselage to the other, without having to construct

8 loop.

In forming the stress matrices t)o ’ t>1 , and the flexibility
matrix f of the elements one now has also to adopt this new approach.
As a logical development of the original theory we have to assemble the

individual equations at each station for one type of structural matrix

[) and [) are the matrices of the influence coefficients needed to set
[}

up the equations for primary unknowns \( .
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into one super-matrix equation to derive the corresponding total matrix

for the whole fuselage in one operation. As a matter of fact, the actual
computations have still to be broken down into basic logical standardised
steps. Whether more than one of these steps can be put together depends
upon the degree of refinement of the super matrix scheme. The programme
given in this thesis is, in any case, subdivided into the individual
operations so that it can be coded immediately into the actual language

of the super scheme.

As a result of the co-operation between the systems programmer
and the spplied programmer the available software will develop in order
to suite the problems in qpestibn. Thus, whereas with a simple matrix scheme
one has to write special purpose loops of varying camplexity in eontrast to
the straipghtforward matrix orders with a super scheme, one has yet
perfect control over the storage.space, having allocated itboneself either
directly or through a gpecial programme. The super scheme, however, takes this
part in hand, thus greatly losing flexibility. If, therefore, only functions
of a purely mathematical nature are allowed, the result places an undue
restriction on the range of soluble problems. A brief glance at the
programme developed in this work shows that by far the main part is devoted to
the formation of the basic matrices. In forming these matrices, one needs
a considerable smount of freedom. To mention a simple exsmple, one may
store a column vector and refer to it later as a diagonal matrix. This may
not always be possible with a highly complicated matrix scheme. A certain
amount of inflexibility follows invariably as a result of autcamation.
Everything has to be standardised. The solution to this dilemma lies,
in our opinion, in the construction of the super code in such a manner
that it is always possible to introduce new functions; in this case,
a function which 'diagonalises' a vector matrix. These functions need
obviously not only be of mathematical, but can be of purely logical nature.
In this manner, a user can have a special version of the scheme containing

a few extra functions particularly suitable for his purpose. A complete



list of the suggested functions, as well as all other standard ones, which
are assumed to be contained in the super code is given. In choosing these
functions we have to observe that they should be as general and as elementary
as possible, so as to be also applicable in other spheres. An excellent
example are the suggested Boolean functions, i.e. special functions to deal
with Boolean matrices, containing only zeros and ones, which are also
separately quoted and described in Appendix ( B ). These functions have
proved to be of enormous value in many problems including ones involving
plasticity, use of the displacement method, as well as those associated
with cut-outs and modifications Ref./(%) ) and ( Ref. (5) ).

Their immediate applicability to such widely different programmes signifies
that they are a rather fortunate choice, and it is almost certain that they
will still find further applications in many other problems, not necessarily
concerned with structures, and might become a standard part of every matrix

scheme.

As we have said before, the most essential data are introduced
in a form understandable to an engineer. This is an important part of
writing a programme vwhich can be considered as a 'structural software'.
Extending now the arrangement to the modification and cut-out techniques
we realize that, just as forming the matrices t)o . b1 and f
is the main difficulty in the analysis of the repgularized structure,
here the formation of the basic matrices t)m.’ bh/l ’ Esk and fbk .
constitutes the real problem. First of all one has to give the structural
engineer the facility of specifying his cut-outs and modifications in the
form of simple orders giving the positions of the affected elements.
These orders have to be comprehensible to an ordinary structural engineer,
not necessarily closely aquainted with the computer. The machine then
accepts these orders and uses them to form logical matrices which will
eventually be used to form the required basic matrices. In general, of

course, a problem contains a mixture of cut-outs and modifications.
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In the case of the elements to be cut, the machine can prove, fram certain
logical considerations, whether any cut-outs are superfluous. Having checked
this, the machine investigates whether the required modifications of the
elements result in changes in the direct flexibility somewhere else. If so,
the addition of the extra rows to the t’m ’ t)zh ’ Ssh and the
corresponding extension to fbh are automatically planned. So, by using
the chosen form of orders, and translating them by an interpretative
programme, forming the appropriate Boolean matrices and then using them,
through direct multiplication to obtain the required basic matrices, the
whole cut-out and modification procedure is fuily automatized, and greatly
simplified. The usual errors arising due to the manual calculation of the
addresses and dimensions of the matrices, anyhow an unpractical suggestion
with a super matrix scheme, disappear. This method has proved to be
extremely reliable and indeed the only errors encountered were in the
calculation of the modified cross-section properties of the rings; yet

enother proof of the advantages achieved by autamation.

A chapter devoted to the problems of conditioning is also included.
It is best said at this stage that the question is far from being a simple
one., It has already been discussed by many authors, who tried to define it
and establish criteria to measure it, detect it and try to cure the loss
of accuracy. None of the sugrgested measures is really satisfactory, but
they all help to indicate the nature of the problem. Probably the best
approach from an engineers point of view is to analyse typical structures
with varying grid arrangements in order to study the accuracy obtained,
including the effects of some special cases, as with some critical relative
ring stiffness (see Ref. (2) S, and thus establish empirical or semi-empirical
rules depending upon the type of structure, and any peculiarities present.
As a typical investigation, we analyse, using the Displacement Method,

a one-dimensional chain of flanges fixed at both ends in which all members



are of the same length except the first and last elements which have a
different one. The effect of the size of the problem as well as the relative
length of the end elements and the intermediate ones on the conditioning

is then studied, and the various criteria for the detection of ill-conditioning
applied to test their reliability. Several incidental mathematical results
evolve leading to a simple method of determining the inverse and the eigen-
vectors of a certain class of super-matrices. In this manner one can extend
the analysis to scame other types of matrices vhose conditioning can be
predetermined, and this should serve also the purpose of testing inversion as
well as eigenvalue and eigenvector programmes for large matrices. These
results are then also applied to the fuselage problem and same methods are

suggested for improving the accuracy of a solution.,

In the Appendices ( B ) and { C ) we discuss the aformentioned
Boolean orders and other useful functions to be inecluded in the super schene.
There follow the results of calculations carried out on a fuselage with
twenty'f;anges and ten rings,'including three different cut-out and modification
cases. We conclude with an Appendix connected with the investigations on

the conditioning in Chapter V .
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CHAPTER I

MATHEMATICAL NOTATIONS AND DEFINITIONS

Throughout our thesis we make full use of the facilities and
conventions contained in the so-called super matrix code for our

computers (see Appendix C )
In this first chapter we present a listing and definition of the
main symbols employed in our work. We start by describing in general terms

some characteristic features of the matrix notation.

A uniform super-matrix is a super-matrix whose sub-matrices are

all of the same size.

A [MxN, mxn] is a general uniform super-matrix of the (super)
order (M xN] , the MN sub-matrices of which are all of the order (m=xn) |,
If M=N (or m=n ) only M (or m ) will be written down. If the matrix
is a super=-diagonal {or has diagonal sub-matrices) this will be denoted by
a stroke after the dimension, e-.g. LM/, mxn] or [MxN,m/] | or even
fm/m],

The designation scalar matrix or scalar super-matrix stands for

a diagonal matrix all of whose elements are equal. This is indicated for

the matrix or sub-matrix in question by a pair of round brackets, ¢) .

For example, A [M=xN,t1] 1is a super-matrix of the order [(maxnN] ,

the elements of which are scalar matrices whose dimensions are determined

by the other matrices involved in the operations. In the matrix A[ (v, mxn],
hovever, the sub-matrix of order (mMx«n) is repeated as many times along the

diagonal as is required by other matrices with which it is associated,



Since the storage of either matrix

is essentially the same, and also
similar for

At‘)MKN] or A[MxN,i] , the same
stored information could be called upon in all these different ways.

This facilitates certain operations, especially with Boolean matrices,
. B
A{, is the 1 row of A .

A ..

. .ty
j 1s the J - column ofA.

€m or €imu) is a Boolean column-vector of order

(mx1)
whose elements are all unity. We also call it a summation vector of
the order m .,
e = { R I R H AR B | !} (1,1)
(mx¢)
e'",- or e(mu)i is a Boolean column-vector of order (m=x1)

‘ . Fh . .
wvhose elements are all zeros except the 1~ element which 1s equal

to unity. We call it a selection-vector of the order m

(I,1a)

€ LM , mx1] is a super-summation vector whose sub-matrices
are summation vectors of the order (m=x1)

*

If it is necessary to distinguish between a Boolean matrix and its

equivalent in floating point form we use for the former the suffix B .



Before we proceed with further definitions, it is preferable
to state the most elementary matrix rules arising in the use of

uniform super-matrices. For example, if two such matrices are equal
- 2
AEMaKNa)maxna] - B[Mb’Nb > mbxnb] (I’[‘
then we must have

My = My ’ Na = N s Mg =my Mg = My (1,22)
all corresponding sub-matrices being then also element by element equal,

If it happens that each element of one of the two matrices is equal
to the corresponding one in the other, these relations, however, not
applying to the sub-matrices themselves, then it is evident that the matrices
are merely partitioned in a different manner. We describe such super=-

matrices l\ and E3 as equivalent and express this as follows

A = B (1,3)

Naturally the relations

n

<
o

3

Ma '"a
and | (1,3a)
must hold.

IT two super-matrices are to be added, they must be of the same order.

Thet is to say, if the operation
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A[ MaxNa’maxY‘la] t B[Mb"Nb;mb" np ] = C (1,M)
is performed, conditions ( I,2a ) must again be true.

If we proceed with the multiplication of the super-matrices

A[Ma‘Na,ma"“a] BEMb"Nb,"‘b‘hb] -—C (1,5)

it 1s necessary to have

Na = Mb
ad (1,5a)
N, = myg
The uniform super-matrix C resulting from the operation is of the
order [Mga xNy ,myxny] .
We now return to the definitions
E.zEqm = R -
(m = G,m) - e,,, e. is a square matrix (mxm) all elements
of which are equal to unity.
Eom. = '
(""’).;‘- - em“ emJ' is a square matrix (mawm) all elements

of which are equal to zero, except the element E v which is equal to

unity,

t
E[M,m]‘:e[m.,m.] e[M.,,,..,.)is a super-matrix of order [ ™ x ~]

arll elements of which are equal to E (m) .



Ia is called the Boolean rotational or advancing operator

Lism]

of order (m) , If Ia. is placed as a premultiplying operator to a

matrix it insures a single rotation of the rows. In particular the

- 17 -

resulting matrix contains the original second row as a first row whilst

the original first row becomes last. For example,

’Ia

[+,m]

A

[4,111:(!1]

It also follows that

1[1’,“)01' Im is a unit-matrix of the order (mxm)

stored best as a scalar, or simply as a title,

= I,

L4,m]

A,
A.
A

A(k+l). T
AU(-*Z).
A k+3).

A
A

Ak.

A
A,
A.

A
A.

i .

(1,0)

(I,6a)
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¢ I ] is a unit (Boolean) super-matrix of the super=-dimensions
M, m
Mx,%’ , whose elements are sub-matrices of the order wmxm , the

diagonal ones being I,Y, and the rest zeros,

The order of joining two (or more) matrices together will be

diagrammatically shown in the form

A "B C] (1,7)

-

and E3
C

(I,7a)

A

=

or for a diasgonal matrix

A = l_é Cj (1,7D)

The order to split a matrix into two (or more) parts is given as

B

or for diagonal matrices

A = —B__J r_c_- (1,8a)

The order

A (b)

usually denotes a "scalar multiplication" of a super-matrix with a matrix
compatible with its sub-matrices. That is, each sub-matrix of l\ will be
postmultiplied by t) « It is, of course, preferable to write this

operation as l\t) and consider k) as a diagonal scalar super-matrix
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of dimensions [ ¢>,m] . For detailed discussion of all necessary

matrix operations Appendix (¢ should be consulted.

Definition of Matrices of Structural Interest (see also Fig, I,1)

The super-matrix P of flange loads at all frame stations before
and after each fresme is described as the column matrix

P ={RPRRERR AN (1,9

+
[2¢p-tyur, txt]

where p is the number of frame stations and I the number of flanges.
The symbols + and — as suffices denote fore and aft crosgaegections at
a frame,
A
The super-matrix Rf of the resultant normal forces, and bending

moments before and after each frame station entering in the computation
of the flange loads is defined as '

~ ~ A A A A é ﬁ ﬁ ( )
- J hedd o M . %, - I ’ 1 O
Rg B {Rf‘+ R’!-R 2+R£&Rf3+ fy-o5. Bepe, bp. }
L2¢p-i)x1,3xP)
A
where P is the number of loading cases.The sub-matrices of RE

we write as

R,

{ Nl'-’,z’ M_y,l'_ Mx,;'.. }

1,102
and (, )

Reeo = { Nuww My, Mo ]

Here, N is the normal force in a bay, say 1,t+1 , and annd M

b ]
bending moments; (see Eqn.. ((II, 15a)))

% Equation numbers in double brackets refer to Ref, (2)
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Fig. I,1

Geametry of Regularized Fuselage (see also Ref. (2) )



The super-matrix of the field forces

:{sz Qz,s Qs‘y ......... OP—‘,P} (110

[ tp-dx1,tx1]

end the associated loading matrix of shear forces and torques

~ A A A A A ~
Rq :{Rq‘ Rl Rq Rq e e Rq Rq (1,12}
[2 (p-0xt,3¢P] b1 Y2 33 43 Pt p bt p
where N
Rq ={Fx F_y T})’ Z.+1 (1,123.)

Lier .

(see Eqn.(II,26))

and d :ld, o, d, - ... ... d (I.13)
, 2 23 3y P_"P_l s 1

[ (p-d/y00]

is the diagonal matrix of the bay lengths.,

The super-matrices for the X and Y co-ordinates of the vertices

of the outer polygon.are

X :{xf X, xa,“...”...xp} (L)
[ Px‘, txl]

and

y =y ¥y Y, ) (1.1ha)

1 p
[pxtytai]

where X‘- etc, is the (tx1) column matrix of the co-ordinates of the

outer polygon at frame station { .
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Similarly the co=-ordinates of the inner polygon or neutral axis

of the rings are given by

2 ={ EEE o gp} (1,15)

[P"‘)‘t‘x 1]

M :{'Y]' ", T13 ", } . (1,15a)

[PXI, tx1]

The flange areas, defined at the same stations as the flange loads

are continued in the column super-matrix

B ={B, BB, B B B, )6

L 2cp-yxi, txi]

(p-1)_ ‘P-l)_._

The lengths of the side of the outer polygon

| ,_.{ l; Iz |3 [P} (1,17)

[px‘, tx1]

is obtained from the X . y super-matrices in the computer.

Also,

" ={)\‘ )\2 )\3 )‘-r} (1,17a)

fol,tx.]

stands for the super column vector of the lengths of the ring elements

measured along the centre-line (inner polygon); it is derived from

the g , 'n vectors,
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The web thicknesses are reproduced as

t ={t, { ts"""-'-"‘°t<p-«>} (1,19)

[(p-(\xl,tu]

The super column vectors of the cross-sectional areas of the rings

Jjust before and after the vertices are assembled as

A=A AL AL ALY

[P'l;f:u] (1,19)

A+ :{Au- Az., As+"""""" A“}

Coxt , £ 4]

This presentation allows for sudden changes of the ring cross-section

of each vertex.

Similarly
fPX';t:IJ { - 2- 3- (:P‘ }
c. ={C. C,. C C o
.=
[pxiytxi] h 2+ 3 v P+}
are the super column vectors of the areas of the ring cross-sections
effective in shear, just before and after the vertices.
And
3 ={3‘_ NN T N }
Loxt,txt]
(1,21)
Jf‘ ={J|+ 324- 33*-”““””3"*}
[le,txl:’

are the corresponding super column vectors of the ring noments of inertisa.



+

Of importance are,furthermore,the super column matrices

Se ={Sq S Sey+Sa,) (1,22)

[PXI, ‘Lxl)

and

CO‘ :-'{Cq, qu Cc{:CqP} (1,22a)

[px!ts txt]

which contain the sines and cosines respectively of the angles made by

the sides of the inner polygon with the X -axis,

55 is the super-matrix of the final stresses in all elements of the
fuselage., It contains as many columns as there are loading cases and is
partitioned in the horizontal direction into cover stresses and ring stresses,

S.

S = (1,23)

S,

where the suffix C always stands for cover and S for rings.

The cover "stresses" matrix fsc is again composed of sub-matrices

+
for flange loads (suffix P ) and panel field forces (suffix q)

S = (I,23a)

see Ref,(2)



Also the ring stress matrix is divided into sub-matrices for normal

forces (suffix N ) shear forces (suffix F ) and bending moments {suffix ™M)

-

‘ S, - ~ |
S, = S. | : . | (1,23b)
| s..

1f we apply the simplified scheme, vhereby S is directly derlva.ble
from SM s the sub-matrlx S may be omitted. The same applies to all other

super-matrices involving a submatrlx with a subscript r .

I

’b,, ' 18 the correspondlng stress matrix due to the loadlng in the

bas:.c system. It is part.itloned exactly in the same manner,

\

~ [b]
b= v (1,25)
oY ‘

where

b _ b., | :

oe = , (1,2ha)
L boﬂ ‘

and | . -

b = b | - : {1,2hp)

oy oF

L bO".'!.

b is the stress matrix due to the unit primary redundancies, It has as many
linearly independent columns ag there are primary unknowns, The horizontal
partitioning follows that of S and’ b
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We have

(1,25)

vhere

1.9
(I g253~)

o o
< )
l—-’{ . | SNS—

o

19

A | |
\°2

and

b,
b,=1| b, (1,25b)
| b.._ |

b2 is the matrix of stresses due to the secondary redundancies in the

rings. It is obvious that the latter only affect the rings. Hence

0

bz = b | | (1,26)
27

where

p— —

b..
bzf = bz"
L b

f is the diagonal super-matrix of the flexibility matrices of all

_independent elements. It follows in its "structure" the same scheme

(1,263)

as the stress matrices.
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<t (1,27

where again

-
N

h
--hl

and

foo= Tf. £ .

(1,270)

R is the column matrix of external spplied loads.

H is the matrix of initial strains in the elements due to temperature,
lack of fit etc, It is assembled in the by now standard form

| H )
H

- (1,28)
H r :
where
H = H, |
. (1,28%)
H, |
and
H,
(1,28b)

L
"
I




If initial strains are applied for the specific purpose of

simulating cut-outs and/or modifications the matrix H is rearranged as

H.]  [H,
H,| |0

(1,28¢)

I
]

where |, are the elements subject to the specified physical changes and

g are the elements which remain unaltered.

B is the auxiliary matrix from which the b'J and b’ are computed. We obtain

two distinet matrices

Beto obtain b,eand bac (flange stress systems due to unit resultant loads)
~
and B to obtain b and b (shear panel stress systems due to unit
9 9 o
resultant loads)

C is the symbol for the special matrix which is inverted to obtain
automatically B o It is obvious that we will again have two separate matrices

for the cover, C[’ for the flanges and C? for the shear panels.

Both the self-equilibrating and basic system in the rings are

directly computed from the correspondfng cover systems,
'Q() is the auxiliary trigonmmetrical matrix used in setting up C .

t
Du: baf b&ls the matrix of the influence coefficients d,-J' of a set of
redundancies a .

t - 3
Dao = bq f bo 1s the matrix of the deflections in the
basic system in the direction of the set of self=-

equilibrating systems due to the loading.



\( is the column matrix of primary (cover) redundancies.

)( is the column vector of secondary ring redundancies.

For further details about the basic theory as well as the special

fuselage theory we refer the reader to Argyris, Refs. (1), (2).
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CHAPTER II

PROGRAMMING THE CONTINUOUS SINGLE=CELL FUSELAGE
USING A SUPER-MATRIX SCHEME

IT-a Overall Equilibrium Conditions at a Frame Station

We first refer the reader to Argyris (Ref. 2) for the equilibrium
conditions of flanges and shear flows which serve as basis for our

further development; see Egs. (( II,1 to II,28))

In the present case we express all equilibrium relations as the

super-matriX equation A

a: P = Rc (11,1)

N
wnere P ena Re are defined in Eqs. ( I,9 ) , ( 1,10 ) and
t
A, is given by

et
x"t o . e e s e s 0
y't

0

x0
Pught

<
#N
o

) (11,2)
t . . °. .
ae : . . 'c . L]
[2¢p-n/, 3xt] . . .

o
o
XD




a)

b)

c)

- 31 =

To obtain @ the following programme is suggested:-

Build e which is best achieved by forming a Boolean E?B.
Since this vector has subsequently to be joined to other matrices
in floating point it is necessary to multiply by a floating
point 'one'

Using a) and the definitions(I,14, 1h4a) we form the matrix

3 = [e X ]
Coxrctas]  LFaesd cpoen ot (11,3)

We next set up the Boolean super-operator Eif which is & uniform
super-matrix whose sub-matrices are scalar matrices of arbitrary
order and contain either zero or unit elements. Naturally we do not
store such matrices in full, but rather by a special convention
which is understood by the super-matrix code (see Appendix B )

A simple order is used to form the operator from

€. €+ &

Cap-1xp 1]

p-1 . p-t
> e e’ +) e

PUPRE £ TP PTRY; EP<1,u]£ el [Np_dx“(ﬂzi [pxt, “](a;«) (II,4)

(’l‘—l)

t

By a simple multiplication we obtain

— *» C

€ a, = dgv (11,5)

[acp-2x1, tx3]

The super-matrix code provides for the facility of transposing the

sub-matrices of this column matrix, without actually transposing



the matrix itself,thus

% t
TRANSPOSE ELEMENTS of S,
[2¢p-0x1, t x3 ]

t
to get aev
[2(p-0xt, 3xt]

f) By using again the facility available by the super-matrix scheme

to re-arrange a column super-matrix as a diagonal one we have

t
REARRANGE at’v in diagonal form
Lacp-dn1, 3243

i .
to give =¥ and the desired
tth-l)/ »3xt]

It is now possible to write the programme in a concise form as

follows
pt
§ 1 Form Boolean matrix e, = ewt,,] .
prl,t,“] V=1
§ 2 Multiply @_  with floating point one to get e
B Cpr1,tx1)
= bt
§ 3 Collect d,, =| e X ]
Lpaty bx3) Lexi,bxid [pui,tat) [ pat,bat]
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matrix of Eqn.(1I,2)
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p-i
t
§ 4 Form (Boolean) Ef’+ - Z e e
[2tp-Dxp,0] v Dapede o)y [pxy, 00
p-1
§ 5 Form (Boolean) €, = Z e e
[2¢p-0xp,0) vme Latp-nxci,0],. Tpa b, 034y

§ 6 Form (Boolean)

Et - Ef

[2¢p-03xp0) M

* b
v =
[2¢p-0 xi,tx3]

§ 7 Form

€,

T 2Lp-|)xp,u]

» t
Qv
Lztp-p=i,t 3]

§ 8 Transpose Elements of

t
a(v

Lacpdni, 34E]

§ 9 Rearrange as a diagonal

§ 10 Stop

This involves in all 9 matrix orders

El(v

[le,l—xi]

to give

t
atv

Lacp-n) =1,3xE]

a,

Lzcponn/, 3 x4]

to give



IT~a=2 Eguilibrium of Shear Panels

Following Ref., (2) we derive here the super-matrix transformations
relating the matrices c; of tgf field forces (see Eqn{I,ii) )with the
corresponding loading matrix Feq (Eqn.(I,12) ). Due to the general nature
of the taper, and the idealization of the panels, we can set up distinct
equilibrium cornditions at either end of a bay, obtaining nevertheless the
same load-resultant matrix. This may serve as a further checik for the

nunerical operations in the computer,

Applying the standard notation (4) and (=) for the fore and

aft stations at a frame we have the two super-matrix equations

or

€, R (11,6a)

The matrices &q, » Aq. a. > a, are defined belov.

Alternatively, we can join the two expressions in the single

relation
€.[2.Q +al P] + €, [0 +a P ]= Ry

or better still

[Ef,_ a:,+ E& a:] Q + [ge- aé + ég,aT_] P = F}q(n,m)



The method of obtaining the matrices & a a
q-« ) 9. b} T+

and A . will be now described,
T

A} Tie Motrix a‘h

Ama) e form the rotational operator I a defined in (1’6) fron

. . Lerypt]
which we obtaln the operators

B - I + Iat (11,5)

and Loy t] Lo, ] Lo,t]
t .
a = -] + Ia (11,9)
[a, b [oy, t] La,t]
A=b) We next set up the difference natrix X, (see Eqn.((I,G))
by the operation
Xa :{xm sz""“"'XAP}
fpx\,ttl] .
¢ (17,1
= - QO X 11,10)

Lo, t] [pxrs txt]
A=c) In exactly the same manner we form
b
Y, = - aQy (I1,102)

Lo, t , b
tpxl)tnu] ] Lpx! <13

A=d) As the superenatrix scheme is capable of splitting a matrix

(see Appendix C ) into two matrices, we can issue an order to have

xA| .
- tllﬂ,tlcj
Xy =2 = \
[pxt, tx1] XA+

[tp-0xt, tX1]



A-e) In the same manner we split

YA1 '
y - NCix1,6x10 o . (IT.118)
[aS » aj
[le:fxl:l / ~

F-N
f(p-1):1,t‘x1] )
On the other hand if no super-matrix scheme is available for the

computer we can always apply for this purpose an operator

p-t )

t
L* = [e N (11,12)
L_(PH)AP;(J] 1= (p-’)&i:l)]l. [px1 '()](‘l'fl)
vhich proves also useful in our subsequent developments. We have
Xas =- L+ Xa (IT,110)
and
- II,11c
Yo. = Ly, (11,11¢)
Similarly we build up the operator
P-y
L. =) e e’ (11,12a)
Lp-nxpso] v=i [(P-')“’“]f Lext,0]) v T
A=f) We rearrange the two super-matrices X,H and yA+ in diagonal
form, i.e.
ol d
x D+ and y&-f
Lep-nnvs,ytkid Ltp-ns,tr]
A=g) We form the super-matrices X ;. and Y. (see Egs.(I,3a))
1 t
X:. = (1) L B X (11,13)
Cep-nxt,txi] {),t]

and
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t
v, =)L By (11, 138)
f(p-:)xl){-x:] Lot ]
A=h) We form the column super-matrix
g? = ){d X - X g Y (II,1h)
-+ - Ae 3 A+ .
Lep-xi, bxt]
A=i) With an order similar to that described under ( II,a(b) ) we join

the three resulting column super-matrices into one matrix

a, = | x.. Y. €, (11,15)

v+ Cepmivr 4 11
~Dxj 1 - t -
[(P-:)xl)tx3] e prety Kl][(p LAAER

A=3) Finally, we transpose the elements of the matrix and rearrange

them in a diagonal form as described before.,

The programme is now reproduced in the concise arrangement

a°l
FORMATION of +

§ 1 Form [,
L—()’tJ
b
§ 2 Form a = -1y +1
Lerst] [, b ] [U,’c]

t
§ 3 Form B Ia + I

Lo, t ] [y t] [cry t]



§

§

§

4 Form

5 Form

6 Form

T Form

3 Form

9 Form

10 Rearrange

11 Rearrange

12 Form

X, = -

- 3 -

X

[le , tx1]

y

Lo, t] [px!,f:ﬂj
(p-1)
t
L, =2 e e
C= [fP-OxU(’jf [le’t)](f*")
(p-1)
L =3 e e’

et [fp-l)&\,(l]z- [pr ,()]1.

x
14
"

+ L'f

Y., L.,

Xa+

[ (p-nx1stx1]

Yau

Lip-nxt, 1x1]

Y.

> - . d
in a diagonal to give X,

[ep-n/yt/]

. . . o
in a diagonal to give y‘H
Lep-0n/ s t ’J



[ %]

wh

13

14

15

16

17

18

Form yz_ = (%) L Bt y

Form Q
-

n
~<
a.
>
)
>
>
_’,-Q.
<
it

.. * t
Form by joining Qays = [ ) SN YA+ Q+
L

Lep-yxi,tx3) p-dxt,txd [ip-naiyte] [tp-dsty 1]

t
» t
Transpose elements of a qv+ to give a Qv
[p-yat, £x3] Cep-xt, Bxt]

t . . . E

Rearrange = P in a diagonal form to give Qq,
[p-0xt,3«t] [(p-')/::""k]

Stop

We notice that the more complex operations can be split up into

simpler operations, or vice versa,that some steps might be joined together

to form one step. This is best left to the ingenuity of the coder vho is

best acquainted with the machine he is using and the supermatrix code in

question.
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B) The Matrix aT+

Since the programme for a,r+ is similar to that used
for the previous matrices, it is sufficient to confine our presentation

to the final tsbular arrangement.

a-

FORMATION of +

§ 1 Form Xio :[Ia _I ]X

{p ol [,

§ 2 Form YLD :EIa -I ] y

[p;‘)] [P’()J
§ 3 Form Xy = I. X
Lexty,tx1] {p>0]

§ L4 Fomm ,Ym = Ia. y

[Pl“;t"‘] [p;ﬁ)]
d
§ 5 Rearrange X 23 as a diagonal to get X3
[px1,tx1] fe/skr])
o
§ 6 Rearrange YLH as a diagonal to get yU]

Cpxi, tx1] Cp’> £/



d
§ 7 Form QT* - -yt:: X - Xm y

Cpx1, txa1]

« 2. -kt
§ 8 Form by joining a., = L _ X. o YLD QT+

[ep-Dxp,r0) Cpxt, 2} [pxi,ten) [pri,txt]

—_— t — t
o & * 1
§ 9 Transpose elements of al’, to give A,
[(p—l)*’;t"-ﬂ f(P-Oxl, 3xt]
§ 10 Rearrange 5: x as diagonal to give Q
v T+

Cep-nxt,3x t]

§ 11 Form operator ETT = Z e e

E‘P-')Az(p.u),n:} = [(F’")""U}f C\xz(p-l) -’()]

(21 =1)

~ t
b -
§ 12 Form a.,._' - aT*‘ €T+

[ep-Dn2(p-0;3xt]

§ 13 Stop

Now the equilibrium at the ends of the bays may be checked by the simple

relation

N
a., Q@ +a.P = R,

+
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In order to check the equilibrium at the (-) stations of the frames
we have to form the remaining two super-matrices @q. and @ _ »
Again only the summarized progr:mies are given. The readers attention
is drawn to the fact that some o: the intermediate results are common to
the previously described programmes. This may shorten the setting up of

dq. and A ;. but is best left to the coder.

C) ‘The Matrix Aq

FORMATIOT of aq-

§ 1 Form

p
o4
i
'
Q
pa

§ 2 Form yA = - (xE Y

§ 3 Form XA_ - L_ XA
4 Form =
§ Y. = L. )Y,
. . d
§ 5 Rearrange X,_. as diagonal to give ). N

Lep-n3/y t/3



@

1o

1

12

Rearrange
Ya.
Form X:
+
Form x,“

. . o
as diagonal to give yA_
Lp-n/ s t/)

i
—
N

<

»
Form by joining = = [ XA_ yA_ Q_

Transpose elements of

t
Rearrange a av

Stop

* ¢ . t
a g, to give Q& q,.
[(p-Ixy ,3xt]
as diagonal to give aq_t

Lep-7 532t ]

-);3_
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D) The Matrix ElT—

- ms m @y e e @ en e e

a,

FORMATI ON of

The programme is exactly similar to that for ElT* except for the

operator formed in § 11 and used in § 12. This should be now

P t _
e = e e (11,15)
T- vt [(P-')X|’“]l' EZ(P“)Kl ’()]ZL.
The complete equilibrium conditions at the (-) ends are

T-

a; @ + at p :qu

II-b The Automatic Formation of the Self-Equilibrating
Stress Systems in the Cover

Again as in the previous section,the formation of the basic and
self-equilibrating stress systems is based on the further development
of the ideas 1laid down in Ref. (2). The readers attention is particularly

drawn to Egs. ({IV,1 to IV,52))

II-b 1 Flanpe Loads

a) The first step in setting up the sequence of operation is the

choice of the so~called conditioning matrix l\{ « One may gelect
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t -

for instance the orthogonal matrices for the cylindrical fuselage,
i.e. the Qg , which may be generated by the fully automatic
sub=programme described in Appendix D . As in the original
publication one may also use any other standard matrix for which

a special sub=programme has to be written., It is doubtful,however,
that any simple matrix may yield a better conditioning than QE .
A third possibility is to introduce certain computed matrices,
based upon the orthogonalisation technique described in Ref. (2).
The exact manner in which this can be automatised is set out
further below, . We only note here that in the most general case,
this matrix may vary from one frame station to another. The symbol

used for the typical conditioning matrix of a station 1 1is
A (5

If the ends of the fuselage with p frame stations are taken
to be subjected to known forces, the determination for the self-
equilibrating stress s-ystems is restricted to the (p-2) inter-
mediate stations. Correspondingly the appropriate super-matrix

of the Af' matrices is strictly,
T

Afm = Af, Afa o A?,' A_Je"“ (11,17)
[ep-2)/ s txit-3]
However, for reasons connected with the formation of the basic
system in the cover, we must also introduce fictitious systems at

frame stations 7 and p , 05 this purpose we use two extra

sub-matrices, which we simply obtain by repeating the first and

last sub-matrices. Hence, the final A super-matrix takes the form

£

A, = | A, A, Afs""Ae,.""'A‘ir-nAf""’w

[pry txti-n]
(11,v)



b)

c)

a)

e)

£)

- L -

b
We partition a unit matrix I in two parts, of which the first
. (L)
contains 3 columns and the second the last ({-3) columns,

Thus we represent the formationof these Boolemn operators as follows =

I(s) ()
I, = = U, Un 1z,

O I (4x35) / {ExCE-3))

(t-3)

We set up (:Pa = Lla_ Ele (11,20)

[Lp/st] [“:t‘n3]

We transpose the elements of the super-matrix l\ﬂ to obtain

A,

[p/, ¢t-3)xt]

We similarly form

t
Cm - u, Ae (I1,21)
[pr/ot3 [ 0, tatt-3)]
We then add the two matrices (II,20,21) to find the super diagonal

matrix

Ce

[pr st]

Cga + Coa (I1,22)

Inverting Eqn,(t0,22), we determine the basic matrix from which

we derive the flange load distribution for the basic and self-

equilibrating systems; (see Eqn. ((Lv,22 ))).



£) In order to get the self=equilibrating system we construct
the operator

2 t

P-
£ =) e € (11,2h)

ar [Cp-2dxt, O Lpxt > o)y
Etpeaiep s ot ] var [ep-1as, O, prtos (re 1)

h) We now get an extended super-matrix of the self-equilibrating

stress systems, namely

* -
b - va Ua (11,25)

1ee
(), bxte-3)
Lpsy tx(t-3) [o) bxeesl

Applying next the operator Em,we find

* t

* - ' (11,26)
t)te = t)'te S;'" ’
[ pxtp-2)y tx(t-3)]
i) Using the originally developed Boolean operator Eif (see Eqn.(II,%))
we obtain the desired repeat pattern before and after each station.
Thus
b b,
1P - Er 4 (11,27)
Caepodxep-2) 5t x(t-3] L 2¢p-0xp,t] [pr(p-2)> tatt-3)]
which completes the determination of the self-equilibrating
flange loads.,
3) To obtain the basic system, i.e. t) P we proceed as follows
[-]
A * u
Lpry, tx3] {orstx3]

which is rearranged as the super vector

A *
bOEv

[pxiytx3]



Hence we form

A ~ox
- i1,2G)
b‘ev - Et. boev ( ye=J

t?(?-ﬂ&l,tla]
This 1s diagonalized to become

N

b..

C2tp-n7, tx3]

A
We now summarize the formation of b.g and bot’

A
FORMATIONY of blé’and b°€

1 Form AP,,, (see Appendix A )
[Lop-27, ta(t-32]

2 Split

Lep-syry tothn)d [47, tatt-0]

Aem = Aez

[/t x(t-50]

Lepa) ) b att-))

AE = I At: Afm Aecp-.)
[p7rt att-n) L1/ tx(t-0]) [LP-IV)““'”} [u/,txu-a)ll

L Form two Boolean operators U, eand U,
L4, txs) [1,E~t-D]

3 Join



wn

wn

[o2

5

1o

11

12

13

t
C. = Ua a;
[ps 5 t] [ o,tx8]
4
Transpose elements of Af giving Ag
[prst-nxt]
A t
Cfﬂ = uA ¢
[prss t] [o,tx (-0
- +
C, Cfa CeA
Lprst])
B o
£ - ¢
Lprsr t ]
(p-2) . X
£ = e e
r(Eﬂ.)"P:’:)J ; [(P-z)),“’ ©3y Lext s 0Jeen
*
Do = B, u,
[b/s tete-303 (o, baxte-3)
* % E
bne - bl?e E..‘
[pacp-2), tatra))
A
b1e - Ef b’f

L2Cp-n xtp-) balt-3)]



§ 1 bot* = Br u,

lpr, Ex 3]

Nk N

§ 15 Rearrange t)O? as column t)oev

Cpxi, tx3]
A N~

*

§ 16 boev hand Et b°eV
L2¢p-Dxiytx3]

A N~

§ 17 Rearrange t)oev as dlagonal t)o[
[Zcp-t)/:t‘ﬂ

§ 13 Stop

II-b 2 Field Porces

The formation of the basic and self-equilibrating field forces

proceeds analogously to that of the flange loads.

a) We initially form the two matrices

Ae_, - l Af,,, Aecp-ﬂ (11,30)
[cp-0/, tatt-9] [ep-0/, txtt-n) [/, txlt-3] l

A, = I A, Acn o)
[<p-0 7/, txtt-3)] L1/, tx (F-3Y] [(P-Z)/;fx“-i\] l (II,J 33

and



b) We derive hence by scalar multiplications

= A’ A,

A"\-f

teay,t]
and
t
As. = a A P
fer,2]
a having been defined in (11,9)
Lo, €]
c) As before we form
t
an? = U, a%
Cep-0 75t ] [or, tx3]
and
t
C A+ - uA 3 Aq.;.
-3
[(P’l3/1t’3 oo, teles
a) Adding Bgs. {II,32 and 32a) and inverting
-1 -1
C“-& - [C qa + + C a8+
L(P-I)/;t]
e) Torm by joining
Ba. =1 0
Lep-Dxp, t] [cp-Dx1,t] [ep-0/y )
f) Form by a "scalar" multiplication
C = u a.
qa- a q.
and [ep-0/yt] [, t«3]
- t
CqA_ - UA i Aq _
[(P-l)/’t] [(,;) tx(t-”l

(1i,31a)

(11,322)

(11,33)

(11,34)

(11,35,

(1I1,354)



g) Once more adding and inverting

-1
-1
Cq_ - [an_ + C‘m} (11,36)

Lep-0/5173
h) Form by joining
C. 0
- = 9- (iI,37)
[(P‘l)if"’t] [ep-n75t] Lep-nx, ¢ a3
i) Form by addition

Bq - Bq' * Bq* ([I,35)
Lep-NxP s t]
3) We can nov form the basic system by two scalar multiplications,

followed by rearrangements using the operators E‘f and EC
+ -

Thus
N « .
ba‘l- = B“— ua (II 39)
t] [(),tt;] 'Y
[cp-dnpstn3] [cp-0xps
o . I X '
and similarly b 094 Applying an assembly order
T ~ ¢ x ¢
*
- !
boq - boq_ EC‘F + b°q+ E t- (II, lO)
[(P—I) x2(p-1)rtx 3] [ep-nxp)tx 31 [up-n)x?,t)-] LCp-dxp, tx 3][2(P_,)XP ,03
k) In order to form the b‘qmatrix, we have to proceed the scalar

multiplication by a splitting operation of the matrix Bq

Bq = Bqa. Bql\n B‘l} :..J","H)

[LP-I)XP,tJ Y.‘r-')")t] [(p-.)x(p-.),i) L(P—l)x\, t]



1) Then we form

b‘q = qu U.

[tP") x(p-ﬂ,tx“-D] [Lp-n)x(p-z),l‘_] [o ,t"(“"3)j

The complete programme riay now be reproduced concisely.

FORMATI ON of Bq

§ 1 Form by joining

A?-c-

Lep-nsy txit-0]

§ 2 Form by joining

Ae.

L[ep-117, Ex(t-3)]

§ 3 Form
§ 4 Form
§ 5 Form
§ 6 Form

x

[, ]

A,
A,

C 9a+

l Afm Attp-n

Lep-2) /5 15 (8-30)  [4/ 51 < (E-3)]

A APm

€,
L1/ 5 £ x(t-3)) [(p-2)/ 5t x(£-3] l

1 - I

fo,t] [o,t)

[")t]

]
>
Q

'
c

+



1o

11

13

14

15

Form quH

Form C 3

Form C q

Form by Jjoining

Ba.

Lep-dxp 4t ]

Form C 4a

Form C

94 -

Form Cq

Form

Form by joining

B

y M

!

Ccléh +

= l'_' 0
Lepanxi,t]

Ua

1]
-
»
>

]
O

-1
- |_ C.
Feayp v

t

u A Aq’ (diagonal)

C Ins (diagonal)

(aiagonal)

LCp-xlp) J

t

a

q.

C (diagonal)
9A -

{diagonal)

0

[(p-v)x\.t)_



§ 16 Form B‘] - Bq_ + B‘h-
§ 17 Stop
A
FORMATIODN of Do
N
* -
§ 18 boq_ = B‘i- U,
Lep-tixp,t«3l [ep-Dxp,rt] [(),tx3J
§ 19 b°‘\+ = Bq+ 2
[Cp-nxp,tx3) [cp-oxpst] Lo, tx3]
A~ ~ ~
_ x b * t
§ 20 b,y = b, €+ b, &
f(p—b)xﬂp-u),{‘3j
§ 21 Stop
FORMATION of b‘q
§ 22

B q = Bqa qu B‘H

L Cp-txp, t] (ep-nxiyt] Lep-nxtp-it] Cep-Dxi,t]

-5 -



0

§ 23 b, Ba., U.

§ 24 Stop

IIl-c Flexibilities

For the foundations of our present exposé of flexibility matrices

the reader is referred to Argyris (Ref. (1) and (2).

II-c 1 Flange Flexibilities

In order to allow for a reasonably wide variation of flange
flexibility whilst avoiding cumbersome mathematical expressions Ref. ()
suggests the application of a linear longitudinal variation to the
flexibility itself instead of the area. Considering Fig.1T,1 we may then

write for the flexibility per unit length at the station z

po [t (ha)i]

where L and 'é are the values at the two end stations.

Fig. II,1

Loading and flexibility
distributions in a flange elenent \

Carrying out the integrating procedure of Eqn. ((III,? ))

we obtain for a single flange element;

B,+38; 8, + B,

f - l

l €E BB, 8, + B; 38, + B,




For a uniform flange B, - Bg: R and expression (11,43)reduces to the
standard form

In order to set up the complete flexibility super-matrix

for the whole fuselage, we use the following programme

a) We first form the operator

(p-t)

- t (p-1)
Eff “Z € e +Z e e K (IT,4h)

[2¢p-0 ,00] e r2{P—I)M"”]( . Eu'")“’u]u‘ f= [“P")“’”Jh' [2ep-uxt, 0] -)

U=

b) Applying this operator we find

—

B = E,cp B (I1,b5)

[acp-nxi,txi]) [2¢p-15 0] Cacp-nxistx1]
¢) Rearranging the two columns B and B in a diagonal form
we have

B and B”

Lecp-1/5t7] L2cp-00/5t /]



d) We now construct the two operators

P~

= t
EE+ = Z [Z(Pe-l))\1 O] [(e) 1] : (II LG
[2¢p-03xtp-1d,00] vt 2 gy LR X, 2 >
and
p-i
£ = ¢
£- - € © 46
[C2eponnep-n,0] ver L (F_'J“’“]z,' Lep-wxi; 07, (11,462)
as well as their sum

[ 2¢p-n)x(p-11,00]

e) We form the extended matrix d e of thelengths
of the bays.Although the matrix is diagonal, we may equally
consider it as a general square matrix since the super-matrix

scheme does not operate on the zero sub-matrices.

de = é—f d 15 ' (11.,.;7)

¢
[ zecp-1H0)

f) We can now calculate the first part of the flange flexibility

natrix according to the simple relation

by = (2)(2) 4, [B"‘ Bil -1 [Sga + Bﬂm,m)

L Z(P-l)/,t_]
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g) We next set up the two column matrices

B. B (11,49)

[ep-Ixybx1]

]
M

and

B = g; B (11,49a)

Lep-xt,ta]

h) Rearranging Eqs. (11,49,49a)in a diagonal we have

A

o
B.,_ and B_ each of order [¢p-0d/ 5 t/])

i) We construct the matrix

frwe =) d (B B [B+B] s

Cep-dxiytx1]

j) Expanding the last matrix we find

-

-~

- — *
fP(b)v = Eg* f((b)v (11,51)
L2cp-13x1,1x1]

k) We read(II,51) as a diagonal mabrix

fem
LZ(P-I)/; t/]



©wn
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1) Using the operstor of Eqn. ( I,6 ) we now form the total

flexibility matrix

t
ff = f, + I. fcu,)"' fm) [ (1,52

Lca)
C2¢p-1, k7] [2¢p-1),01 [2¢p-1) ,0]

We give as usual the full programme

FORMATION of fi’

g : p-1

- t
€, =2 e e +) e e
Ly [Z[P-I)XI; (93] [2(,4)“;(’]2", YY) fZ(p-l)qu]ll. [ch'l)Xl)()J(.“'_‘)

L2¢p-1 503 2l

e B = €, B

[Z(P-l)x ] txl]

3 Rearrange B and B as diagonals to give

BJ

[Z‘P-I) /s t/]

and
— d

: B

[Z(p-()/, t‘/J



6

p-1 [

€, = - e e
+ Lp-oxt, 0] -

. 2¢p-1) x | ,00]
Lacp-0) xCp-,0] e L2 g (24-1)

P~ t

Ee_ =) e e

Lacppacp-de)  ¥50 D2p-0x 0,y [Cp-nxt, 0],

[2¢p-,07]

fo = ()0 d, [B'B] [B*+ ]

Ech-.)/,t/]'

B. = €&, B

[(P-n)xl, f:t‘i]

end

B. €’ B

C¢p-yx1y, tx1]

n
m

- 61 =



B.

§ 12 Rearrange

B.

§ 13 Rearrange

x
§ h [tp—u)flz,ltbizj = (7!5) (E') d
§ 15 fl(b)v = .€l+
[2ep.dnt,ted]
§ 16 Rearrange fub)v
§ 17 f. = fl(a)

L2ep-0 , t/7]

§ 18 stop

IT-c 2.Shear Panel Flexibility

as diagonal

as diagonal

as diagonal

+ I,
fz(P-O,U]

f?(b) +

- 02 -

B

[(P—D’)tl]

d

Lep-nrsrti)

| B: 8] [b.+ B]

f'l(b)v

fuu
[a¢p- /,t /]

t

fl(s) I"

[ap-11,00]

Since the stress distribution in the panels is defined by field
forces rather than stress flows or actual stresses, the flexibility is )
calculsted in accordance with Eqn. ({III,1 )). ‘

The expansion of this expression to cover the whole of the fuselage.

proceeds as follows
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a) Using the operators L_+ and l__ of section (II-a2) we form

- :tﬂ[L++l1] | (11,53)

Lip-dx s ted]
((p-dxpy 0] Cprf,tx1]

b) Rearranging the thickness matrix t oor Eqn. (1,13 in a

diagonal form we have

d
t
[(p-l)/ ,t/]

c) We now derive the flexibility as

fo, = (é) [td]-l d—1 l..  (rrom

and rearrange it in diagonal form to read
wd

q
Lp-1d7 5t /1]

The programme follows as

FORMATION of i
- [
5 L, o=@+ ]
[(p-()xl,t’d]
t - d
§ 2 Rearrange as diagonal t

[pi) i, 7]

§ 3 fau =_%J[tﬂi d”" 1,

[(P-I)K 1, txd]



~

§ 4 Rearrange fqv as diagonal fq
[tP'q)/’ f/]

wh
N
w3
t
3

If it proves advantageous to scale down the fundamental matrices
of our programme e.g [) s in order to reduce the danger of overflow and
underflow, then [ should be omitted in all the flexibility programmes,and
G replaced by G/E . Only when calculating deflections it is subsequently
necessary to multiply the results by g .
IT-c 3.Ring Flexibilities

Following Ref. (2 ) the flexibility of the rings is formed as two
super-matrices. The first one accounts for the deformability due to the
normal forces hd and the second fM+scorresponds to the combined effects
of bending moments M and shear forces S in the rings.(see .
{II1,36)) ). The corresponding force patterm is completely described by b Ny
and t)M;since the shear forces are taken in this procedure to be solelf*")
deteé&i%ed by the bending moments. A criticism.of this technique is given
in Ref. p) where it is suggested that for large computers it may be
computationally advantageous not to merge fM and fs . However, in our
current work we restrict ourselves to the case of fjv and the combined

f

M+S .

When the transverse stiffening of the fuselage is achieved with
diaphragms instead of rings the definition of stresses and flexibility is

best carried out in a completely different manner. This technique is

described in Chapter IV,

The programme detailed below is limited to the case of single—cell

fuselages with singly connected rings. The flexibility of the ring element

PRI



meay vary linearly between adjacent nodal points.

In order to set up fN 5 the first component super-matrix of the

flexibility, we proceed as follows .—

a) We determine the super vector of the mean areas from

A. =()| A, + I A (11,55

Lpx1s tx1] t L et
[Pxf,!:{-qj (o, ] [px, x]

b) We then rearrange the matrices Am and X (see Eqn.(:,r(a)),
in diagonal form to yield

and

[p/:t/]

¢) We hence obtain the final normal force flexibility from

t, = (é—) [A‘i] " )\0[ (I;,r;¢:)

Lesy ts]

We next derive the combined flexibility for bending and shear

d) We form the three matrices

J, = 1, J (11,57
Lpx4, 1.4] Loy t]
t
and Jt = Ia J+ (11,57a)

Tpxt,tx1] (o]
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and N, I; A (11,5%)

[Pr|)t1‘|J [(I,t']

e) We rearrange J+ ) J_ ’ Jz ) Ji: , K and )\in a diagonal form to give
t

J! J:

Lr/st,3 [p/str]
14 d
Cors J*
p/5t 7] Lo, k0]
and
d

A

[p/’t/] [P/)t/]

f) The bending flexibility ‘fM is then determined from

fo= o { ) (e 2 N[22 [as B
MEFAN SN PSS RO N e BN

(I1,59)

To calculate fs , the contribution of the shear, we first form

the two matrices

C.. =(i) [C+ + I, C_] (11,60)

Cox1, tx4) (e, t]

C.. =(#[c + 1" c] (600

[le)‘tx"] [();t‘]
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which are then read as the diagonal matrices,

C d
ma
Lprs 5 +/1

and

o
c.:

Cer/,¢ 7]

g) The shear flexibility based on the bending moment vector bM

is now

rp,f,st] = (3) {[Cm“ll[){‘]'l [C:;I"[)\ﬂq
-[c'IXT L - NI

> t] Lo,t]
(I1,01;
h) The total bending- cum ~ shear flexibility super-matrix
is thus
f = fF o+ £,
M+ S ™ S (II,62)
Lets t]

i) We join the two parts of the flexibility diagonally to obtain
the total ring flexibility,

f = f_-¥: I:::fi.J (11,63)

.
[2p/5t]

We rewrite the programme in the usual form



FORMATION of f”'

pury

A. = W[ A+ 1,

[pxt,txq) [, 8]
d
2 Rearrange Am as diagonal Am

ol
3 Rearrange X as diagonal x
L P/ s t /]

-1 .
d ol
h o= (@) [A] X
[ps 5t /7
> Ja - Ia J"
[pristxt] [a,t]

n
e |
Lo
LH
+

6 Jt

Lprt,txt] [o,t]

1]
[—
'Y

o~
>/

1 >\t

[p,4,tx(]



©wn

8 Rearrange

9 Rearrange

1o Rearrange

11 Rearrange

12 Rearrange

13

1h

15

16

17

- 00 -

d
as diagonal J+
Cp/yt/]

oA

as diagonal J-
Lp/ ot ‘]

. o

as diaponal Jz
[ys,t ¢ ]

d

as diagonal J{
[p/ st 7]

d

as diagonal )\t
[P/ > t /]

fo= (2 {[JfJf]_'[\li s J X[ [9+ 33:] A
+[0] Paedd % Lo LBl Bt

Lpsy b))

le

[P"' ’ t x 1]
Cmt

[prijytet]

Rearrange

Rearrange

O, t] [o,t]
H
+ I, C
w,t] -
t_ any
+ I C,
[()3t] ol
. d
as diagonal C ma
[pss t7]
o
as diagonal Cmt

[P/) t/]



§ 18
f,
(p75t)
§ 19 {"+s
fpry t )
§ 20 f(
fzp/,t]

§ 21 stop
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- () { [T DT [T
_ [C:]-‘[?\?_I" 1, - u,,Itﬁ: D\"]-’[C‘;l"}

fM + fs

s
-
Z
r—
-
2
-~
IH_



II-d Self=Equilibrating Stress Systems in the Rings

We list below the steps involved in setting up the self-
equilibrating stress systems in the rings due to the primary redundancies

in the cover ., As a preparatory step ve have to derive some information

necessary for the closure of the rings. (see also Eas. ((v, 43 to v,62))

a) We form the zero super-column

Lextytxd]
b) We set ESq of Ean. (I,22), negative
= (-1) 5
Ssdn d (11,64
[-PX1; t"']

¢) We construct by joining

[ 0 S« Cx (11,65)
Lpxt , tx4] [ pxtytxa)lpxitx1d

NZYV

Lpxt , tx3)

d) and similarly

M., = € g i (1T,60)

1 1,tx1) .
[P’M) t:"i] pets [pxi, tx1] [le,'kxt

e) We rearrange as a diagonal matrix to give
arv

N.-

[P/ )t"3]

f) and similarly

Mﬂf



g) We now join the two diagonal matrices to form

N..

2Y
[2pxp »tr3] h4zr (11,67)
[P/ 3 txsj

and thus we have our final matrix for the self-equilibrating stress

systems due to the secondary redundancies,

h) We next obtain by a very simple operation

DZf' = Zrb f\' bzr ( (II,GS,

This maé?iilis obviously a diagonal one., However, since we assume
that the supere-matrix code does not form or store zero sub-matrices,
and does not perform any actual computations involving such sub-matrices,
Wwe may equally consider [)zr as a full matrix. The loss of time involved

in this procedure is insignifieant.

i) We form the matrix 2: described in Appendix (D ),
Lo,t])

j) Using the matrices X, and YA of Egqs. (II,10, 10a)

we set up the diapgonal matrices

de and ybd
[p/ ,t/] [F/pt/]

k) We next assemble

X2 ]
t
X o bt (11,69)
A& ()
[cpea)xp,t]) L[sz ,» t ]_



1) Also,

— * —
fo - C 'XN O ]
[(P+2)X(P+1),t] (P*Z)XPJt] [(p,z)xi, tJ

m) and similarly,

- 7

[211)) ts3]
xAz. = iy
'[(P'l’z)xP) {/] ?/]
e/ P

n) Then we form

Xs2 = I: 0 xm-_]
Lept)lped) 417 [CPeayat,st/] [(P*‘)"P’tlj

o) By subtraction we obtain

—_— % —_— — %
X, = X" -

1 X s
[cpradxcp+1d,t7)

p) Splitting the matrix of Eqn. (II,73) horizontally

— *
Xoa
N\ Lixtpen €]/
. / — \
X, = Xa
[ep+)etpen, £7) N [pxp+0, b1/
/ — N
Xeoz

Cixcpeadyt/]

(11,77

(I1,71)

(11,705

(11,77

(11,74,



q) We next split the matrix X, vertically

——

X = Xarq Xanm Xsiz (I1,75)

A
Cpxipet), tr] [px1st7] [pxtp-1)st/] \ [prts t/]

r) Using len we determine the transformation matrix

X, d
[pxtpn, t] [p-0750] (11,76

Te

Lpxep-1,ts]

s) Using y instead of X , we form the analogous matrix

T, = Y. d

[px(p-125t/] Lpatp-n,ts] Lp-0/,0) (T1,76a)

t) We next find the components of the forces due to the field forces

TG, b1‘1 (II,??)

[p-1)x¢p-2) 5 ta (£-3)]

C.

[px(p-z),f'x(t—?:)] [P*(P-1) )t/]
and

J. = T—’ b (11,77a)

[PK(P-I)atx((:-S)] Coxtp-1),t/] ‘_(p—i)x(P-L),t’(t-?ﬁ)]

u) The next step is to construct the super vector

- 8
X’ - Ia - I x (-L s 74
Upst 5t e fps0l L (p,0d
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v) We then assemble by joining

d * = I d (+1)
[P/ ,‘J] f‘P"”?"’] [1212—1 (II,'(9)

w) Hence we now form

*
d X, - Vs ( a0
17,80,
[ pristx] Yo~
and
t
I. VvV, = V.
[p,e] [pxd , t=4] (11,81)
. . . d 4
x) Putting the two super-vectors in diagonal form ( xs &nd Vx_ )
and using the operatorsdeveloped in Section TI-a we find the
transformation matrix
b d t d
Tpx = €e+ vx+ - E [- VX- (II,B?.)
[px2tp-1),tr) .
Similarly introducing y instead of X we obtain the
corresponding matrix for the y:direction,
t d 2 d
T, = E,, V. - €. V, (11,822)
Cexzcp-1)rt/]
y) We are now in a position to determine the matrices K and L R
which represent the nodel loads on the rings in the >Cand Y
directions (see Egs. ((I1,32,33)) )
K, =& B G. + T ba
Cpxcp-2), talta) Corst JTprep-ayt achn] [psaacpe 60 [20pon (p-2) stu(t-y)]
and

(11,33)
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Lo s B 4o+ T, b o

Cpxtp-2),tx(t-3] [),t]
’

z) Applying a straightforward scalar multiplication we find

J = ¥ K,

(11,88,
[px(p-2),tx(t-3)] Cor,t3
and
V, = > [_‘ (17,302)
[px(p-2,tctD)] [,t])

aa) Rearranging Se( and qunto the diagonal forms S“ and C
we obtain the normal force distribution in the cut rings

due to the primary redundaacies

N. =(-1)|__C: U + Sj V -:l (11,85

[px(p-z),t.u-a)]

ab) Using next a 'scalar and diagonal super multiplication" we find

Mo =[Z - 1][-wu +xiv]

Cpxtp-23, 'h(l:-i)J [u,t] [o,t]

) X ) (11,86)
ac) Rearranging X and q) in the diagonal forms

ol
X * and q)

ad) we establish the moments on the open or cut rings due to the

primary redundancies (see Eqgs.(( I1,48)) )

M, = 'M.o-(%)x“[B vo-ine ]

[yt
[px(p-z),tx(t-j)] 1»t]

() * [M - W G:]

[,t)

(11,87)
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ae) To determine the final stress distribution in the actual

rings we apply the usual closure procedure (see Egs.((¥,43 t0 62)))

First we write,

N
Lpxep-2) , tx(t-]

b. =
[2pxcp-2), tx(t-3)])
, M.

[Px(P_z) ) t’(t")]

h— —

(11,33)

af) We then form

t e
Do = b, f. b.. (11,49

Lpetp-2),3x(t-n)
and hence

-1
blr - bwr - bzr DZV‘ Dzrg(IIggo)

[2px(p-2), b« Ct-3))

Thus giving the final stress distribution in the ringg,

FORMATION of b'r

§ 1 Form ()
[px1, t =13

§ 2 Sqn = (-1) So(

[pxe, tx1]

§ 3 Form by joining N = O S“’n C"V

2Y Vv
[Pxi) tXS] [qu, txq] [P"i) b 1.3 [qu’ t)d}
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4 Form by joining M = €
20y [pxt 5 tx4] fpxa,tx1]  [pxi, teed
Cpxt s £x3)
5 Rearrange N .-, as diagonal N ..
Lers , 4431 Ep/;t*33
6 Rearrange Mer as diagonal Mzr
r-P"';fo] [p/;tiS]
7 Form by Jjoining
N..
b - Lprstx3]
2¢Y -
L2pxp;te3] vy

Lpry t=3])

8 D" = bzv—t fv- bzr

9 Form Z (see Appendix » )
[“ >t 3

X d

diagonal A
10 Rearran xA as -
e [pr,t7]

: q

11 Rearrange yA as disgonal yb

[P/;t/]



§ 12 Form by Jjoining

— [ps s /]
xAt = 0

[tpearep,tr]

§ 13 Form by joining

X —
X, = ) 9% 0 :]
- Op+2)x2,t/] [cpaz)x1,ts]

Lepea)xtpet)sts]
L2xp > t 3
X =
52 ] 4
) ts A
[epeadeps L[P/ Ra

§ 15 Join
o * <
xAz : O be]
: [(pfi)x‘,t/-_] [(Pf-l)xp) tlj
[ep+2)x(pen), L]
—-_— — % —_ %
§ 16 X, = Xa, = Xz

Cepe2detpanst /]

- 70 -
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§ 17 Split

s ¥

)
N Dirtpen) 5 111 p
—_ i — ~\

X = Xa
[paadutpsi), k7] N Cpxtp+vsts] /
/ — N

az

[ xCpt1) , 7]

§ 18 Split
)_(_A = —X—qu XAM foz
[px(padstr] Tprty 4] [pxtp-nst/] [px1, /]
§ 19 TG. = Xan d

[Px(p-a),t/] [(P—l)/,u]
[pxtp-0 > f/]

§ 20 Join

peo—

[ps,¢/]
yA1 « O
[(P-b Z)KP,t-/]




§ 21 Join

FARN 0

Leprayxz,t7]  Depradxi, b i)
Lepez)xtpe 0,t/] ’ .

§ 22 Join _ -
— [axp, b))
Voo = d
[cped)x potl] a
‘ L-[p/: tr] —l
§ 23 Join
— —
Y. = 0 Yes
[eprader, t1] Leprdxpats]
Lepeadatps ), b))
— X — X — x
§ 24 y. - Yy, - yA,_
Cepsadntprn)t /)
§ 25 Split

—

A a
\ [ixtpedotl S
— S \
Y, = Yy,
[¢pradyutpen,ts] N [pxCpevratsd S/
7 — N\
yaz

Lix<p+1) st /]

-3 =



26 Split

Y. =

[p<tpsid,t,]

27 T,

EPx(p-ﬂ ,t 7]

28 G,

yAfa.

—

y.. Yars

Cpxty 17 Lpxcpan, ] Cex1,t/]

= Yo,

Lexcpoiy,en

I
";-I

[pxtp-1), tx(t.)]

29 J,

Lpxep-2),t x(t-3)]

1]
—
[

d

Lep-07,00)

19

(+1) I
[Cp-13/517] IELE

30 X, = I,
Lpx1, tx4] [prorl
V E
31 Join d = I d
{ps, O]
*r
32 Vis = d X,

[pxt 5 tw1]

- 82 -



33 V,._ =

L- PX1 » t 1 ]
34 Rearrange V.,
35 Rearrange Vx-
36 T =

[pxacp-yt /]

37

2
[px‘(, tn1]

38 Vy,
prl, fg{]

39 v =

v-
[px1,s tx1]

Lo Rearrange Vy

41 Rearrange V),

a v"-r
[p,0]

. d
as diegonal Vi
Lprst/]
) d
as diagonal Vx-
Lp/ot 7]

t
d
[EE+ Vo - €. V,;'

I. - 1

[P;(J] ‘-Ptt]

]y

as diagonal V‘/i
[ p/ t/J
ol
as diagonal \

y-
‘.P/ )t/]



2]

L2

L3

Ly

Ls

L6

Tey

Cpxz(p-n 5 /]

K, =

Cpx(p-2),tx(t-3))

L, =

[prip-2), tact-)]

U,

L px(p-2),t ll“‘")]

Vv

1
[P"(p-z) 9 tx(t-s)]

47 Rearrange

48 Rearrange

L9

50

N,

[pxtp-23,t x(t-3))

M, =

Cpxtp-2), txlt-3)]

(z)

[Et,

Vd - Ee v

T+

(%) B G, + T

[aat]

[o,t)

z

B J + T,

[u,tj

I
™M

t.(),‘:]

[z -

(st ]

as diagonal

as diagonal
d
U + S, V,]

][y

Lo, k]

[P/; ts

C.

[P/:i‘/_]



X as diagonal X

(Y )‘l’.!]

§ 51 Rearrange

d

q) as diagonal

§ 52 Rearrange
[ps 5 t/]

N\_\

‘- l
S 53 M'° la-EX[ ‘ [a.t J]
[pxtp-2) ,tx (t-3)] {o,t] G,t]
l
[ 1 2 CX G]
[0st] [o,t]

N

N'O

[pxtp-2), txlt-3)]

§ 54 Join blor
[zpx(p-2),txtE-3)]

i_[‘pxcp.;),'f:u(l‘—3):\._lL

b ' fr— blor

2r

S 25 D?or
[pxtp-2),3x(t-0)

brr bmr - bzr— Dz;1 Dzor

Lapxtp-2), txlt-3)

§ 56

§ 57 Stop



II-e The Basic System in the Cover

A) For the basic theory we refer the reader to Egs. ((IV,56 to 76 ))
If the fuselage is only loaded by transverse loads, the flange loads

and field forces can be immediately derived from

~ A
bot : boe Re
\
[Hp-u)xl,{xfj [2(P-1)/,t,(3] [2(p-,)xl,5;<?') (11,91/
and
A Fa
bO? - boq Rci
Cep-nxt , txp] (II,QIa)
[ep-x2¢p-05tx3] [2¢p-1) 1, 3xP)
B) If, on the other hand prescribed flange loads are applied at either

or both ends, it is necessary (a) to allow for these distributions in the
matrices for the basic flange loads and (b) to modify the field force
distributions in the first and last bays in order to transfer from the
prescribed flange loads at station 1 and # to the automatically calculated
ones at station 2 and (p-1) . This is achieved by the use of, and explains
the formation of,the extreme self-equilibrating stress systems that have
been included in the automatic calculation of the self-equilibrating stress

systems.

We dencte in accordance with our standard procedure the matrix for the
basic systems obtained in (II,91, 91a) by t)* , the self-equilibrating

=]

set of flange loads at the frame stations by

t)181

(tx (¢-3)
and the associsted self-equilibrating shear flow by b1q
1,2
Ctx(t-1)
. . * .
If, in order to transform the sub-matrix bot into the prescribed PE
7 1 !

matrix we add a set of redundancies ' \c at the first frame station this

may be expressed by the condition



~U
i
O
*
+
o
<
=
=
o
i)

We now proceed essentially as in Ref. (2) using though, whenever
possible, the super-matrices relating to the whole structure.

. . t .
Premaltiplying by Afz we obtain

At I:Fg - bl - Y, (11,93)

"which determines the values of the required self-equilibrating flange loadse

The associated field forces can te obtained from

e

b°14,z

*
b°91,z + bf‘hlz 1 (11,94)

giving immediately the modified field forces.

Similarly, we may derive at the station 4 ,

*

—y— Af‘fr-t)[ Ft)P - boeP (11,932)
p

and in the bay (p-1) 5, p

X

bo‘i - bo + bqq " (11,942)

r-0,p Yep-nop

. . *
In order to obtain the sub-matrices bo?, , bo?: 5 bqqh2 and b°°'(P-:)p

as well as bm'2 and b1q¢p )3 all required in the above procedure,
4 "'P

we introduce the following overations



t)on

t

e

b.;

(11,95)
[ 2¢p-0x1, 07, L2tp-0Ixq, tup]
* 1 x
bO(P = e bot
[2(;-1))(1 ; 0] -
P [2(P—1)x1,txf_] (II,QS&)
X b
b., z e b.:
.2 Lop-nava 5 03, °q
Lepon) x4,1x 9] (11,95b)
* - t
oq(P_”)P - [ e bo:
c - r
Pﬁ)xi:()](P_g L(r-a)X‘%,l"(f] (II,Q)C)
t
= e
Mz [Cp-1Ixn, L>]1 r Bq uA
(p-1)%p, ¢ 7 Ipxt, Oy Lo,tx(e-]
(II,954)
- ¢
a = e B, e U,
p-1), P [cp-1)x4 0]
P x 2 (P-‘l) C(P_.,))rp) t:] [PX{,UJP
(Ii,9%¢)
c) The most general case arises, however, when sets of prescribed

longitudinal forces are applied at each frame station. The complete group

of these prescribed forces in the direction Z

F? Lpxt , t<fP3

super-matrix

of the flange loads at one particular frame station 2°

bo(. -

vt

=

is described by the

. If we now consider the equilibrium

(I1,96)
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As in the case B, Eqn. (11,96 ) is,in general, not satisfied

¥
by the bof matrix. The difference may again be expressed by a self-

equilibrating flange load system

alys 2

* - 7Y
bafz’_ - b N - Pt ¢ + b1PI' Y'l- (II’OZ

Proceeding as before we find

t * * o
AP;[ bof’._ B bogz'-o- - Pl_—_] (II,:)S)

Y.

T

x
We may now modify b"f’ﬁ to read

. ¢ * *
bo = bof“._* + b'ei_ AP: [ bof’.- b’-’f,‘,‘,_ Pf:] (11’99)

2+

We do not change on the other hand bof- , except at the last
1—-

station p when we write

. t * P
bo?,,_ = b - b,,p Au,-o b“r. B tp (11,100)

-] p’,—

In order to achieve this generalized correction we proceed as followsi{—

a) We form the operator

(11,101)

EPA = EE - Eé’

C2¢p.trxp,0])

+



b) We then obtain

Y = Aeb [E{: b,: - R ](11,102)

[px1, (¢-
px1, 3)xp] fP/ 2 (e-3xg k] [sz(p-:),u] Lzep-idnt,buf] [pxt,txp]

c) We write down the modified (and final) super-matrix for the

basic flange load distribution as

b, = bi +[ &, -e e]p. ¥

[z(p-q)“, tep] [2¢p-1) xtytxf] L2tp-nxps ] ['l(p-l“':“} [;x""]p [P/:h‘f‘iﬂ[pleU-l)'ﬂ
L4 A

(11,103)

d) We now derive the corresponding field force modification through

a similar procedure. Thus

boq - ,: + Bq_ uA V

t‘P-l)xi,txf] Lepadxi,txpl  Lep-axp,t] [o,txtrg] [pxt, (t-3)xp]

- B, u, e e Y
Lepnxp,t] [0, te(ey] [pu,.,]P [pu)ojp [px 1, (- np]
(11,10%)
Since the super-matrix scheme is assumed not to carry out any
operations with zero sub=matrices it is recommended that the most general case

is programmed. Thus

MODIFICATIONS of BASIC SYSTEM in COVER

§ 1 EPA - EE- - E

[ZCP-:) x pru3}

£+
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§ 2 V = A: l: EP: b°: - P[ :l

{ px1, (£-3)xP]

* L —_
= + - e e
§ 3 bof bdf [ €f+ [“P")“‘)"] [px{,()]P-] Y
C2cp-nxiytxp] 2Cp-1)

* 3
b by = b, +[Bq_uA - By, u, € € Y

[tp-nxt,txg] Lo, telrp) (o, txtr)] Lpena] L0 ,UJp

§ 5 Stop

II-f The Basic System in the Rings

Having obtained the basic system in the cover, we establish the
corresponding stress distribution in the rings by a programme similar
to that described under II-d, However, much of the work involved in
establishing t),r is of immediate application here and need not be repeated.

We only summarize below the programme

b,

FORMATION of r

s 1 G, = T, b.

Lpet; txp]

°q
Lpx1 ,txp]



3 K, = (1B G * T. b

Lpxa,txP] tu,t]

l L.

Lpxa, txf] Lost]

L]
T
S
w
{ S
+
—
~X
o

Wi

u. = X K,

[px1,t xf] [o,t)

6 VO = Z LO

{-P“){"f] [c),f]

o d
7 N. =(o[Ciu+s] v°]
[.PH){xf]
- o 3
: M. [T - 1] [ wruos xdV]
[pxq’txf] To,t] La,t]
s Mo = M-@XY B V. -wa U,
[.-PX""tif] £(),t] ] —d
+ P B U -Ha 6.
[[cr,t] Lo,t] _j
B ]
Noo
. [pxt,txf]
10 Join boor =
C2px1;, tx
e M.,
L_[Pxf,txf].J




§ 1 Dzoér = 27
Lexs, 3xp)

§ 12 buv- = boor = bz{,
[2pxi, 1x9]

§ 13 Stop

II-g  The Final Solution of the Problem

Having all the necessary basic matrices, we proceed to the final

solution. The reader is referred to Egs.((I,16to 39)) of Ref. (2) for the

basic theory.

BUILDING UP and

SOLUTION of EQUATIONS

I D, =
Lp-2) ,0t-3)]
§ 2 Do =

[ep-2)x4,ct-)xf)

b, f b,+ b, f. b,
+ bt f b,

)
)



3 Y

[penrxy, (=302 9]

i t)f
5 b,
6 b.
7 F

8 Stop



IT~h Input of Data and Preparation for the Programme

It is all too apparent from the developments of the present
dissertation and those of the parent-work (see Refs. (1) ,(2))that
the approach to the automatic analysis of a large structure using an
electronic computer is basically different from the classical ideas
associated with the analysis of a smaller size problem on a desk machine.
This new attitude inevitably also influences the way the data is given
to the computer. As a fundamental premise we should always keep in mind
that the input of unnecessary data should always be avoided. In other
words, what can be calculated by the machine, should never be done by hand.
Data should always be given to the machine using the full accuracy of which
the machine is capable. Unnecessarily prepared data only increase the
possibility of error. Here we state the minimum amount of data that

are initially required

A) Geometrical Data

No. of flanges { , no. of rings # , no. of loading cases f

X

EPX4 »tx1] [/Jx4 g Ex1]

[px1,t*1] [P)(f)E"’]

A A.

[Px‘,{'xi] fpxl,t¥1_]

C- C.

Lpxa,tx1] Lpxt, tx1]

J. J.

[pr,fX‘f] [P1‘1:t"1]



B t

[:(p-l)x1, txt) [ep-x1, tx1]

d

[ip-1375 3]

E  Modulus of elasticity
(3 Shear modulus

A generalization can easily be made to take care of the case
when the elements of the fuselage are made of different materials.

Thus instead of [ we have the diagonal matrices

Er of the £ modulii for ring sepments.
Cps 5 tr3

Et’ of the E modulii for the flange segments.
YRy,

Similarly

Gr of the shear modulii of the ring segments .
[P /s ts]

and

Gq of the shear modulii for the shear panels.
[tp-13/4t/]



We must, however, not forget the principle mentioned before,
namely that no data should be prepared unnecessarily by hand. It is
possible for instance, when the fuselage panelling is uniform, to prepare

the matrix t by a single trivial programme, for instance :—

t = e

[ept)nt,tet) Lep-nxty tx1]
The formation of the E3 matrix, taking account of the skin
contributions and adding it to the actual flanges that are present( E3° )

can be achieved by using the following simple programme$—

ADDITION of the SKIN CONTRIBUTIONS to FLANGES

st o= [E.+ ]

T
[2(p-1)x1,‘fx1J [(F-f))“){”j

§ 2 Rearrange tev as diagonal te
Lzepny 5 t/]

s 3 B = B o+ t.g, (HB

[2ep-pxtytet]
§ L GStop
Of course, this contribution can still be weighted by a diagonal

matrix, thus for instance reducing the contribution at the tip or even bringing

it down to zero.
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The same metflod could, of course, also be applied to the rings.
A certain freedom, however, must be left in such a case for the stressman
to interfere with some parts of this programme. This can be done by a set
of weighting diagonal matrices which will mostly consist of a scalar, or
a group of scalars determined by the stressman to control his idealisation.
The programme is not described in detail here. It is similar in principle
to that of the flange areas, only more complicated by the fact that the

co-ordinates of the minor polygon have to be modified too.

We must not forget also that, if we input a matrix h of the
. . . [yﬂ,txi] .
depths of the rings at the vertices, that the g , n night also be possibly
calculated from the properties of the ring cross-section. This is in fact

to be recommended in order to avoid errors. 'The same applies to A . C

and J.

Having obtained either by input or computation, the necessary data,
we can proceed to the rest of the necessary geometrical matrices. Naturally
enough we cen only for instance add the contribution of the skin to the flanges

after having calculated the operators

ET’ET_J EC and l

-

In what follows we reproduce various programmes for calculation

of the various geometrical data still required.

FORMATION of l

§ 1 X, = - X

[px1, Ex13 [o,t]

§ o2 yA '-'—O(b y

[pxa ,tx4] [r,t]



Rearrange ) N as diagonal X Ad
[pxr, tx1] [p/, tr]
Rearrange as diagonal yJ
Y. s
[px1, t x1] [p/, t7)
(2) d d
Form l = X X + y y
s I N
[pxs, txt]
(2)
Elements of l = Square Root of Elements of l
Cpri, tra)
Stop

}\ follows immediately in the same manner, thus

FORMATTIODN of )\

£, = - o

rp,u,‘t:1j

"
'
Q

.

[p;(1 ] tx4]

90 -



§ 3
§ b
§ 5
§ 6
§ 7
again
§ 1
§ =
§ 3

- 170 =

d
Rearrange g as diagonal g
A A
[—P/ 2 t /J
. d
Rearrange as diagonal
LR n.
[P/ > t /]
() d d
Form 7\ - gi gi
ot N, M,
Elements of K = Square Root of Tlements of Km
[pxy, t41]
Stop
The computation of the two column super-matrices Sqand quollows
immediately
FORMATTION of Szxe.nd Cq
d
Rearrange x as diagonal )\
fp/,‘f’]
al-t
S, = | A 1,
Lpx1, tat]
-1
o
C"‘ = [)\ ] gh

Efu#,t—vf]



§ 4 Stop

B) The Loading on_the_Fuselage

llere again we need only input (or form) the matrices

P(an and l_

or
[pxi ; txf] [P»“) tx¢]
of the loading at the ring vertices as well as the loading along the fuselage

F)

[pxt, tug]
Assuming that the loading on the fuselage consists only of such

forces at the ring vertices in the dlrectlons x s Y end Z

calculate the load-resultant matrices R and R

The matrices Kog, LoR and P in themselves mainly consist of

1) concentrated loads, e.g. freight loads, loads transmitted by

alrcraft components,
2) aerodynamic loads (idealised)

3) inertia loads (idealised)
These three components are best calculated separately, and then

Part 1) will be normally a sparsely populated matrix

computed by individual addressing of the force values.

concentrated

, We can

other

added.

and is best

Part 2) is best calculated by an aerodynamic programme using

matrix language. Whether a suitable procedure is available is questionable,

but at any rate this should be the ideal.



Part 3) is very easily calculated from the matrix of the mass
distribution as well as the accelorations of the aircraft. These in turn
might also be calculated from the force distribution on the complete body;

{see Ref. { 2) ).

Having obtained these three matrices, we proceed to form the

other matrices

A
FORMATION of R‘?

§ 1 FXA = et KoR

[pxts 1xp3 Loy, 1xt]

§ 2 Join €., = Z 0

[lP-])KP,()} [(p-f),u] L(P-i)"'l(’]

§ 3 Fx = €. F;A

[<p-1)x1,4xf]

[A2s]
Py

F. e L,

Lbx1, 15¢] T, txt]

§ 5 F

3 N ya
Cip-1) x4, 1x9]

"
m



T Transpose

8 Rearrange

9 Rearrange

X~
6 Transpose Elements of X to give X
[prt,12t]
Elements of y to give y *
{Px 1, i1x t ]
*
X" in diagonal form X
[P /s 1x t J
* N . * d
y in diagonal form y
[F /51 xt]

n
P
—

I
<
s
=

10 T. » ok
Lpxt,1x£7]
11 T - €N TA
Lep-1) 1497
X
12 Transpose Elements of Fx to give F-x
[‘P"‘)’”) P xt1)
F -
13 E f 1
3 Transpose Elements o F_», to give y
Lep-1x1,px17]
X
14 Transpose Elements of T to give T

[tp-1x14 , Fx1]



§ 15 Join Rq“‘ = Fx* Fy T"

[p-1)x1,Px¢3)

A Ve

§ 16 Transpose Elements of F?q* to give F?q
[ep-12x 1)3’(5)3

~ o
§ 17 Form R, = &, R,
[ 2(p-1)x1,3x§3 [2¢p-1xp=1,0] [cp-1)x1,3xF]

§ 13 Stop

0>

Then we proceed to

R,

FORMATTI OTN of

51 N. e’ R

Lpx1,1x9] [(),1)({]

§ 2 N

L2¢p-1) x1,1x §] [2¢p-n,03]

2: 8:3 PJA

3

xd

§ 3 hAgYA

Lpxiy, 1 x 9]

"
>
~U

- ‘]Oh -



10

11

12

Mﬂva

Lep-ornt, 18]

M,

[2cp-1) x4,tx 9]

ME:rA

Lpxt , 129]

Ml?xb

[‘(qu)M,’;(F]

M.

[ 2¢p-tixy, 1x f]

Transpose Elements of
Transpose Elements of

Transpose Elements of hdx

A

R =[N M) M. ]

Join

2 d F,

[p-11,05]

)3 [ehM

[2¢p-1), 0]

t
+ ET— MR)’A

Lya

'

<
2

~U

= Y d F;

E(P-f))()]

Z [ €f+ MEXA+ ETf MRxA

[Z(P-l) ‘OJ

bd to give Pd *

Ez(p-l)xi’}’)x1j

h4y to give hd,

[2ep-1Ixd; Px1]

to give hdx

[ 2¢p-0x1, fx1]

L2¢p-n) x4, Fx3]

- 105 -



A

x N
€ 13 Transpose Elements of F? . Fe
4 to give 4
L_Z(p-l)(f/ Fx3] [zep-1ryx1,3x8]

§& 14 Stop

Having obtained this, all preparations are ready and one can

proceed to solve the problem,

- 106 -
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CHAPTET

-4
-4
-4

MODIFICATIONS AND CUT-OUTS

I1I-a Summary and Introduction

The first step in the analysis of a fuselage is,‘as described
in Refs. (1) and (2), its regularization so as to yield a topologically
continuous structure. This leads to the programme set out in some detail
in Chapter II. Subsequently, when dealing with the cut-outs and modifications
necessary to simulate the original system one would agree, thdt extraction
of the rows of the S and b1 matrices, as well as formation of fbk
present the main difficulty, due to the great possibility of error.
In accordance with the main philosophy of this work, this part of the
programme should therefore be written so as to reduce this danger to a
minimum by full automatisation of the procedure, reducing the human element's
contribution to what it should be, viz. the supervision of the programnme.
A set of instructions having a clear physical meaning indicates which elements
are to be modified and which stresses are to be nullified. These instructions
will then control the input of nev section constants and properties for the
modified elements. Since this is logically sufficient for the machine to
solve the problem, it would be wrong to give anything further. The input
should, as always, be logically sufficient, i.e. should contain all the
required data in the form of logical instructions and numerical information,
but should never contain redundant information, unless of course it is meant

purposely to be a check on the rest.

The purpose of this chapter is to define a technique suitable for such
a programme in general terms so as to be applicable to all coamputers. It should
be noted, however, that this one has been developed for the Fer?anti Perasus,

used here for all the relevant calculations.
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Although the programme has been written for a fuselapge, it should
also be in principle applicable to all other regularized structures analysed
by the Force Method. The programme uses again Boolean matrices which are
logical matrices consisting of zeros and ones and which are not always stpred.
in full. This type of matrix is best introduced as a gpecial class of
matrices in the super code, and all the arithmetical operations associated
with them(either of pure logical or semi-logical naiure)defined specially.

A preliminary discussion of these matrices may be found in Appendix I.

The problem of the autamatisation of the cut-out and modification
techniques for any structure in general, and for the fuselage in particular,
reduces to three parts: The input and storage of the information in the
computer, the construction of the basic matrices required for performing
the calculation, and the straightforward matrix programme resulting in the
nodified stresses. It should be noted, however, that the basic matrices
required for the calculation of the cut and modified structure are no longer
the t)h . t)"'and fbh but rather the logical matrices resulting in

their formation.,

I1-b The Input and Storage of Infomation in the Computer.

The input to the computer in preparation for a cut-out and
modifications run consists of two parts: The Tirst comprises the logical
data specifying the affected elements and vhether they are to be cut-out
or modified, The second contains the numerical data needed for the modifications

i.e. the nev section constants.

In order to present the first part, we have to introduce a certain
code, which is clear to the stress analyst as well as accepteble to the

canputer. Again we stress the fact that the code is primarily intended
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for the use of the structural engineer and not Jjust for simplification

of the input.

The code described here is for the Pegasus programme, and should
be regarded as a guide rather than general for all other computers.

The following meanings are ascribed to the letters or groups of letters

below
co cut-out (s)
MN Modification (s)
F Flange
S Shear panel
N Wormal force in ring
M Bending moment in ring
A Area of ring cross-section
I Moment of inertia of ring cross-section.

The shear force in the ring is assumed to be coupled to the bending
moment, and therefore any modifications in the moment of inertia 'J or
in the cross-sectional area effective in shear (: will alter the flexibility,
due to the fact that the bending flexibility carries also the shear influence.
However, a change in a ring cross-section will result in the alteration of

all /\ R (: and ;J simultaneously.

In view of the explicit criticism of the couple shear and bending
flexibility put forward in Ref. (2) it is advisable when working with a large
canputer to separate these effects and carry distinct "stress" matrices
for bending moment and shear force. For the case when the stress matrices

contain the shear forces explicitly the technique can be extended easily.
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Using the above symbols, we can nov give the form of the orders or

"macro-instructions", required to define the various operations. It should

be noted further that the symbols(*)or(—) after a number mean that a

dimensional change takes place on one side

explanations follow with each instruction.

(i)

(ii)

(vi)

(vii)

CO*F5 x1,2,8

MIXTS & 3,7 + 5 9,12~

COx 33,4k 1,8

M %33, ¥ 3,5,7,9

CO % NT * 2,5

CO *+ M T k6,7,9

M ox A G % 1,2,6,84,9-,10

only of the nodal point. The
Thus

Cut-outs at frame station 5
Flanges no. 1,2 and 3 are affected

Modifications at frame station S.
Flanges 3 and 9 chanpge azreas on
hoth sides whereas flange 12 is
affected only at the "=" side of
the ring, i.e. at the end of bay
4,5, and flange 7 only on the
opposite side - i.e. the "+" side.

Cut-outs at bay 3,4. Panels no.
I and 3 are removed.

Modifications at bay 3,%. Panels
no. 3,5,7 and 9 are affected.

Glides introduced in ring 7
at polycon sides 2 and 5.

Hinges introduced in ring 7 at
vertices 6,7 and 9.

Modifications of ring 6. Areas at
vertices no. 1,2,6 and 10 changet
on both sides. At vertix 3, only
the value on the side 7,9 is
affected. At vertix 9, the value
on the side ($,9) is also altered.



1
vt
—
R
(TN

Fig.Ill-2




™
I
—
kel
L

Fig.lll-4







N
| o]
=
-
Rl
(T

Fig.Il1-8




(viii) M+ I6 * 1,2,6,T+,9= = Changes of the moment of inertia
I (as well as area C) in ring C.
At vertices 1,2 and 6 the
changes are on both sides. At
vertex T only on the (7,3) side
and at vertex 9, only on the
(8’9) Side.

Sketches of the physical meaning of these orders are shown in Figs JII-1 to £

These macro instructions result first of all in the formation of

four word "lists" which we call

[_CO for the cut-outs in the cover,

~C

[2p-13

LCD-f for cut-outs in the rings,

L2p3

L,MN_C‘ a preliminary list of dimensional changes
L3¢p-n] in the cover,

and L'M~-r* a preliminary list of dimensional changes
[6p] in the rings.

Each of these lists consist of a number of units. Each unit is either
one word, or a group of words according to the type of computer, and the size
of problems to be expected. The number of bits in each of these units

correspondsto the maximum number of stresses along the periphery, i.e. the
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maximum number of flanges Tmax. to be expected in practice. It should
be noted that the only case in which all bits of the unit are taken up by

the word, is when the programme is running to full capacity, i.e. when the
number of flanges is the maximum allovwed. Otherwlise, what we call the
"listword" occupies only a part of the unit. This is important when performing

. > . *
"eircular listword shifts”.

On the Pegasus, for instance, a full word is allowed for each
unit so that the maximum number of flanges is 39, a value sultable for the
size of this camputer. For the UNIVAC 1107, on the other hand, such a value
is too low. It would be desirable to allow two words for each unit, thus
raising the maximum number of flanges to T2, which i3 consistent with the
size and speed of this computer. A still larger unit might be necessary, if
one has to include more than one circuit at each cross-section, for instance
in a multi-cell fuselage. However, the choice of the two word units has
advantage in the ease with which a double circular shift can be performed

on the 1107, as well as in many other computers,

As mentioned before, since the number of items in each unit is
generally less than the maximum, only the corresponding number of bits
starting fram the least significant position is used. Exanples are best

given in Fig. ITI~9,

A circular word shift in computer terminology signifies a shift of the bits
to the right (down shift), or to the left (up shift) , where the bits to the
extreme right (respectively to the extreme left) are fed back again at the
other end.

Example: A circular right shift of three places on a ten bit computer word.

dedobodiilot

—— '

S S
[-.!LEIJ.L.L.J
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......... s;. e e e e e .?;4 Ce e e e e .(;. P Size Of Pegasus unit
......... e [T bistword for t = 18
e L. ......... . . J Listword for t = 2l
o o 50 a0 Size of proposed 1107 unit
S T T T T S (two words)
3.0 .2: l.o
* L;' ) * ° | Listword for t = 2k
@ - - e e e ® . . L P S T e - l Listword for t = 51;

(Fig. III=9) Examples of units and list words.

Now we describe the individual lists, which are all similar in

nature.

The list L.
Tap-1]

The list, in all (2p-*) words long, consists in itself of two parts.

These can be best expressed as
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t t- 4321
F 4 .
Fy ..
F3 e o o o o o }LCO_F
Fp o ¢ o o o P

-
S 1.2 ..
52‘3 ¢ o * o o o

> Lco-s
Sp-1.p | *° e e )

Fig. I11-10
A typical LCO-C list
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10987654321

Fig.III -11

Example of L¢g-¢ for a
fuselage with cover cut-outs
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L.

- Lr]

Co-¢
[2p-11 Lu-s (111,1)
[p-4]

It indicates which flanges or shear panels are cut. That is, if a bit in a
certain unit is zero, the corresponding stress can take any value. If it is a

"one" , the corresponding stress is nullified and therefore will have zero value.

L_ contains p listwords. The first represents the group of flange
co-f
stresses at frame station 1t , the next unit those at station 2,

and SO on.

L_c . is composed of -1 1listwerds. The first represents the shear
0 -

panels of bay (1,2), and so on.

We show the string of listwords in Fig.III,10 . An example of an

actual fuselage is given in Fig.III,11.

The List L .
MN.-.C &

This list 1s similar but refers to the positions where a design
alteration has taken place. Since we allow a jump, or discontinuity of the
flange area at a nodal point, we need two listwords instead of one to describe
the flange station 2 (except for 2 =7 or f ), the listwords are then

referred to as . and F, . In this manner the list consists of 3(p-)

listwords or

L"N-F»

- Lacp-1]

MN-Cw

[3cp-0] l.nu-s:
. (P11

(111,2)




- 121 =

t t-1 4321

F-Z— o o o
Fo. .
2 . LMN-F «
[2(p-1)]
Flp_1)s | ° ce e
Fo- . ]
o ~
51,2 .
S72.3
’ } l-MN—S-u-
[(p-1)]
Sotp | S

Fig.1l-12 |
A typical Lyn-c4 list



1098765432

Fig.II1-13

Example of primary
modifications list Lpyn-C «

V]
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> Lco-N

> Lco-M

Fig. 1 -14
A typical Lco-r
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Fig.III -15
Example of Lco-r indi-
cating the introduction of

slides and hinges in the
rings



Again the general scheme of the list is illustrated in Fig. III-12
and an example fuselage is shown in Fig. III-13 | the thick lines indicating
where the modifications have taken place in the flanges, and the hatched panels
are ones which have undergone a thickness alteration. One should keep in mind
that the flange flexibilities are always assumed to vary linearly from one

frame station to the next.

The list LMN,C*iS'used only in the control of the input of the

new flange areas and sheet thicknesses.

Corresponding to these two lists, we find also two lists for the rings,

Lco-\’ and LMN—ft *

The List Lc
o-r

Similar to Lc o but concerning the rings, this list contains 2p
(- P8 -

"listwords". It is composed of two smaller lists, each of ¢ words, thus

LCo-N
L = Cpl

Co-v

[2p3 L(O—M (III’3)
/S I

The first list indicates the presence of slides* introduced along the periphery
of the rings. Thus if a "one" is present, it denotes a slide, and if the bit
is zero, the ring element is still capsble of carrying direct load. The second
list, L“_M records where hinges are introduced at various vertices.

The presence of a "one" at a certain bit means that the corresponding vertex
has a hinge, otherwise it is capable of transmitting bending moment. As before

we give the lay~out of the list in -Fig- III,14 and an example in Fig. 111,15

* Slides is in accordance with RefJ2) the terminology for a cut-out nullifying
the normal force.
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Fig.I1II-16
Typical lay-out of

LMN-r*
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654321

changes in I and C

Fig.IIl - 17

Example of Lyn-r &
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The List L Nt R

This list, again analogous to L mn-c x 3 describes where
modifications are introduced in the rings. Due to our admitting jumps
in cross-sectional areas, as well as moments of inertia and areas
effective in shear, we actually need 4p listwords in all, The list again

consists of two parts, LMN_N, and an’m- . Thus

L “1
MN-N X ]
_ i (III,h)
MN-Y x
C#p3 LnN-Mx
rZPJ -
Each pair of words in the list Lm refers to a particular
-Nux

ring. The first listword indicates alterations in A_ at the various
vertices, and the second in A+ . Similarly in the list L Mt K
in each pair the first listword indicates alterations in J_ (anda C_ ),'

the second indicates alterations in ;L (a.nd C+) .

This is shown in Figs. (111-16) and (IITI-17) as & lay-out

and typical example.

The Input Programme for the Lists

The first part of the cut-out and modification programme is
concerned with reading the orders, or macro-instructions, from perforated
paper tape punched cards, magnetic tape, core or drum and forming the

four lists

Lco-c ? Lm«-cx ’ LCa_V and L

The information needed is contained within the instructions, and writing

My -C X

the necessary programme reduces then to a simple exercise, In the case

of the Pegasus, the programme has been written to feed in the orders one by



~4

Y

Input
character > 4
N )
V
H=d+6-1)u A=A+(26-3)u t1 set ? H=17
| i i
Input @ - { Reset #t5 ) P Output Xi Input  (A) Input (A |
\ / AR to (A) to Xy o X, ‘Yr
1
y Y
Reset ffo a=co0?
Y * HY
= MN? set ffo N :
fts set ? X2 =0 5 = Input (A+u)
Y to Xa
N Next
Error END OF LIST? iy +
. Prog. Input one
character toX; Y
N ~—p—n1 Input =
M Input * & B v N it Y
Xs =10Xp +X; X Integeﬁ"‘( Xi=,"7 }’-GR L.F 'D
set ff 1 )—4—(}3 F ’7) ) *
(-1
Xi=1. 2 T set ft 5 Input one
¥ character to X;
( set tf 3 —>-<-( Reset ff1 >—<—C ) *
I Y
, - IX|=X|$Y; -Gi&)(1=0'7
( N2 }’-C set ff 2 )——»——ﬂ N *
N 3 L o Print out
N ¥ - -
M ? }»—( Reset ff 2 HResel t3 ) a=Bx0) Xg=10Xg + Xj
— > I Input § - < gese: ;
l . ese
Inpul ’ and ft1 set 2 ) ] A
{ ff1 set? set ? )
(Xg-1
Xi=1
Output Xz
to (#)
¥ Y
f ? Y Y ‘ ;
f3 set ? - f 6 = p? 1 set?) OPTIONAL Print out N
A\ ) ( STOP axBxb-Xgl-)
f12 set? °”'P‘; X2 N} N} 'Y
t
- o (A Xi= X%V
N ¥ N % \
ffo set ? ( fto set ? % ffo set '>) ‘ fto set ? > )
¥ N {
+ * + tts set ?
A=Rco-F A=A MN-F * [’4= #co-s "vﬁﬂMN-st= A=Rco-n A=ﬂMN-Nt A=A co-y A= A uN-Me N
L C , , « Xo= Xo%Y,
A - T - J
> - = » ) L _ OPTIONAL Print out
- STOP

A=A 42(6-1u

FLOW DIAGRAM FOR
THE INPUT OF CUT-0UT
AND MODIFICATION ORDERS

FIG. 111-18

Y N

Resel ft4
) {set ffl.&"5> ( set ff 6 )

Resel ffe

character to Xi

l Input <: Reset fis )

Y; & X Mset?)

a*f*6-Xg(+)

Yy

Aco-F

A MN-S %

Aco-N

-129-

L co-s

[tp-n]

L MN-F
[Z(D—l)]

Lmn-s =

[e-1]

L CO-N

(p]

L co-m

L MN-N »

(2e]

L MN-M %

(2¢]
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one from paper tape and obey each one immediately upon its input. We can
describe here such a programme by a simplified flow diagrem (Fig. I11,18),

vhich can easily be extended to apply to other computers.

We observe first that the form of the order is generallj

R RO N AN AR

N S,S//

At the beginning of the set of instructions as well as between each two
consecutive orders there is a certain symbol. It might be simply the fact
that the next instruction appears on a new punched card card, or in the
case of punched tape, it takes the form of "carriage turn, line feed".

In some codes the symbol is punched as two distinect characters, in some
others as one. The end of the set instructions can be indicated by a
special card, or in the case of paper tape by the presence of a length

of free tape - say after a minimum of two blank characters.

The addresses of a certain list I—i is indicated by oﬁé- . Otherwise
the flow-diagram is self-explanatory. We have to observe that although the
flow diagram is directly applicable to paper-tape input, its extension to
punched cards should not be too difficult. A set of logical yes/no
mechanisms always gives an indication of the nature of the order, i.e.
cut-out or modification, cover or ring, etc. Certain controls are provided
for instance that no stress is mentioned twice., Further checks can be
incorporated as a separate programme to ensure for example that no excessive
number of cute-outs has been specified. (see also Chapter IV )., These programmes

might also have a built-in autamatic correction.
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The Secondary Modification Lists MN-C and M - T

Whereas the primary modification lists LHN_Cka.nd L -

are mainly used to control the input of the new values of the areas,
thicknesses, etc., these two new lists, which are analogous to |_ conc
and l_Cm,, are required for choosing the appropriate rows (and columns)

of b' . S (and fA ) to give b“’ s Sh and fAk « The four lists

L conc ? Lw_r R L e and tha’\_z;e notdirectly used for this purpose,
but rather Boolean matrices based upon them. In order to illustrate
the meaning attached to these lists, we now proceed to discuss them, taking
into account the fact that these two secondary modification lists are in

themselves divided into sub-lists. So,

l-MN—F

L - La(p-V
M- I11,5)
Ufp-n 1 Ln~-5 ( 0
L F-l J
and
L...
L = [e2
MN-v
[2p] L. | (I11,6)
[ J
The List L M-

Due to the assumption of linear variation of the flexibilities
between each two stations, as well as the permitted jump in the values
of the areas at frame stations, it follows that the modification of an area
for example on the "+" side of the frame station { not only results in an

alteration of the direct flexibility at that position, but also in the direct
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flexibility of the same flange at the "-" side of the next station ( 2+t ).
So, whereas the list L_"N_F* gives the actual positions of the flange-area
changes, the list L_MN_F gives the position of all stresses in which the

direct flexibilities are affected by such a modification.

We can easily see that the two units describing ( ¥)+ and (1+1).
are always the same in this new list. Furthermore we see the connection
immediately between this and the logical addition, represented by the symbol (:) .
According to this, if two computer words are added, the corresponding binary
bits become added "logically" to one ancther. The result is a (+1 ) if one
or both bits are one, and a zero only if both are zeros. Such a logical funection
exists on all computers either explicitly or implicitly. The new list

L_MN_F may therefore be simply derived from the list L_MN_F% through the

equations

(L'MN-F)'L-_'. - ( L )’.‘* @ ( b e )(“1)" (111,7)

and

- :u) s
(LNN-F)G'—“), ( L”N—F*>1'+ O (LMN_F RRSR (I11,7a)

where the expressions in the brackets refer obviocusly to the unit in the
appropriate list connected with the frame station and side given by the

subseript.

The flow diagram is very simple and need not be given, but the

following example may be helpful:
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ol‘oo ool‘lol (L‘MN-F*)1',,

®

edoeo o doe oebidld (Limn- Fx )

"

ebloeodobd il = (LM-F)” - (L”N‘F)(1'¢1)_

(Fig.I11I1,19) Example of logical addition

The List Lm,_s

This is identiecal with LMN-S* , thus

LHN-S - Lnn—s" (111,3)

The List. L,

Two units corresponding to N, and N,;, are necessary to describe
the input of the modified ring areas. In the present list, we need only
one unit, since the normal force is specified as constant along each polygon

side.

For that purpose we have to introduce the notation if 1 1is a
unit in a list. '(,(u(n  is the same unit after exercising a round shift
in the up (left) direction of y places. Correspondingly L(ou,) is the
same unit after exercising a round shift in the down (right) direction of

Yy places. According to this definition we can write

[ L NN-N)I. = LLMN-NL} Yo i © [ BV t:k T4 (111,9)

An example is given in Fig. (111,20)-



Nax-
N+
M -
M+

Na-d(1)

N

M+
®

Ms-4(1)

M.
~
¥

Chqnge$ in ring

6

~

Affected N-stresses

cross-section

e & & o 1 [ ] 1 1

l e o 1 ® o o l

ool ol

| S O N O A

(>

Affected M-stresses
with jumps

O

Affected M-stresses
no jumps

Fig.IIl -20
Example for the formation of
| the list LMN"r
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The List I_MN_M

In our case where we assume no discontinuities in the bending

mament, we observe that a change in the cross-section at (e-1) + ’
()= » (2)+ or (1+41)_ will result in a change in the direct
flexibility at the vertex 1 . Yo need one listword per ring,

which we obtain from the relationship

[LMN-M ] - = {(L“"'—M*]z‘- @ [LMN—M*‘]

i .

Jo fimd 0 bemi

W)

(11I,10)

It is, of course, obvious that the actual order in which the four words are

taken is irmaterial.

If on the other hand one allows for a discontinuous bending moment,
resulting in two rows in the S »  matrix at each station, we then derive

the two required words [LMN-M),-_ and [LMN-M] v, Tfrom

-

[L~~—M]u. = [L””‘”fL; © [L””‘”*1f+ (I11,11)

Ve
w1

(11T,118)

[LMN_MJ. = [LNN-M*:’ @ [LMN-Mt]i

Ut )

Counting the Number of Entries

Now, after all lists have been formed, we have to count the number
of entries in each list. The basic flow diagram to perform this on a list of
units, each consisting of { Dbits stored at address 0‘¢ , 1s given in

Fig.(II,21).. It is straightforward and self-explanatory.



C,= C+1

Ano

(Fig. III,21)

J¢'—‘,)(+’L(

Cz :C2+1

SHIFT X, UP
ONE PLACE

gNO

READY

YES \—4-— /‘L:/l+1

No, of flanges

Ho. of units

No. of entries

Flow diagram for counting the number of entries in a list.

- 136'_
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Using this diagram, we count the number of entries in all the

lists. We denote them by the symbol A , thus

No. of entries in

r
il
S~
n
Q
\
m

N
1
m

)
[
~
n
(o)
\
w

co

Mn-F X
" " " ”

o
z
)
w
*

>~
2
z

)
v
x

- -
it
a~
2
Z
n
%

x

2

\
"

o
2
z

1}
=

" 13) 1 "
MN-S MN-S

" 1" " "

a)
[o]
1

z

" " " 1"

S
'
kS
o
°
\
I

1" " " 1"

2
4
1

r-4
*

1" " " "

ky
z
1
X
*
3~
X
z
1
X
*

ES
Z
]
z
Bt
L
z
Ll
<

" " " 1"

o
i
I S

2
Z
1
z
4
Z
f
X



- 139 -
We denote further

Aco_c = L’Co_p + ;’co—s
AMN-C* = hNN-Fa\’ + L’MN—S*
/’MN-C = "'MN_F + hHN—S
(111,12)
L"CQ—R - L’CO—N + L’co—m
hun-rx = HMN_N*"' hipn -
L’MN—R - hMN—N T hMN-M
also v
hco = hto~c + hco-'r
Hounwe Pan-cx T hvin-
(111,13)
hmu - I"MN—C + han-r
and

The Input of the Data

For this purpose, we have to form a group of Boolean matrices
corresponding to the various lists governing the input of data. We name these
matrices corresponding to the lists

BMN-F ? BMN-S ’ BMN—N 2 BMN—M

and discuss now the information.



A = A
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j:‘l
{
ﬂ1:1
7, :7’2,-1-1 \ ]
(A ) > X
]
SHIFT X, UP O
BIT NE Xp= (+1)
XQ =X¢+1 Xc = 1
| NO
( o YES )
X(=t?>—<— J = 31+1 q_G(b“Xw=o?
YES
¢ NO
Y A
NO FORM WORD
2= 2 [« | ¢ |
YES
1
f A |
SEND END-WORD B = R41 SEND TO B
T0 B

Fig. (I11,22)

The formation of a B matrix from a list of N units, The list is
stored ip OQSL and the B matrix in B .
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The Formation of the Matrix B
MN-F

The Boolean matrix B , of the order [ 2px1, btx hyy ¢.)
is derived from the list LMN_::Fthrough the use of the flow diagram shown
in FigJIII-22) followed by repartitioning to suit the matrix B of the
flange areas as will be apparent from 'the following relation. This matrix
has the purpose of selecting the new areas and placing them in the right
positions, ready to replace the 0ld areas. Thus if all the new areas
introduced are fed in in the correct order as the [ h,..rF+ x 11 matrix

Bm. » then we can say that

B.., - B = BMN-F B"“"-: B + BMN-F B"‘h

Czpx1sy tx1] [2pxa,tx1] EQP"’tthJ-rs] (2px4 ,tx1] I""J I’MN-F'x'J

= [I - Bm.-p BM:; B * B.m.; B.. (III,14)

The new areas of the flanges should be arranged in the matrix Bmh so that
they all come in the correct order, first of all according to ring stations

t+ to - @and then within one station from t to t .
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The Pormation of the Matrix ﬁ
MN~-S

This follows directly from the list L MN-S - (or LM~-5 )
through the use of the same flow diagram (Fig.1II,22), The dimensions of
this new Boolean matrix are [ ¢p-0 =1 s £ Auy sy ] « Exactly as

before, the modified thicknesses are calculated from

t, =11 - B»m—s ij]t + B | (1I1,15)

[(P-.)‘l,ln} [tp-1,t ] MN-5

where tmh is the [ h,u.s, %1 ] natrix representing the new thicknesses,

in the correct order in their occureénce in the t .

The Formation of BMN—N— and BMN—N-v-

The input of the new cross-sectional areas for the normal force
is best divided up in conformance with the super-matrices A_ and A+ .
as two matrices Amh_ and Am‘”_ « The list LMN_N,‘is best split

into two sub=lists by choosing every second element. Thus starting with the

first element we get L Mu-Ny - 8nd 1T we begin with the second LM,.._N~+ .
Using those two lists, each consisting of 2  units, and the flow diagram of
Fig.(IIT,22), we obtain the two Boolean matrices B""“ , and B .

. “No MN- N4
of the dimensions [px 1 , t x h,w_,.‘_] and [px1 5 t = haan-n,

respectively. The number of entries in the sub-lists being of course

h

sectional areas fronm

A.. [ - BMN_N_ B,,.,:_ A+ Bm_ﬂ_ A...»._ (II1,16)

Cpx1, tx1]

MN-N and /’~~-~+ « In the same manner we get the new ring cross-

and

A, = I - B"N_N BM:_NJA+ + B"N_M Am,,+ (III,16a)

Cpxi, tx1]
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where again the changes in area are fed in as the two matrices

Amh- and Amh-f
[AHM_N..X1} [AHN_fof_‘
The Formation of BMN-M- and BMN-M+

Following the same logic, the list L mn-ms 15 split into the

sub=lists LMN_M*_ and L..N-m*», in which the numbers of entries are

given by A ... &4 Ao, .respectively. It is used to form the
metrices B”""M' and mm_me OF dimensions [ pxt , tx ‘m..._n_]
and [ px1 , tx Ay M,,_] in accordance with the flow diagram of

Fig. (III,ZQ. These tvo Boolean matrices are not only used to replace the

old moments of inertia ) , but also the areas effective in shear C

~

by the new values. This we express as

C.. = |1 -B BMN_i__ C +«+ . C._ (111,17)

[Lpxi,tx1]

C..

I - Bm-m BNN.tm_ C. + B C.. (III,17a)

[P)M,'lxi__] - MN-Me
and
F
€]
Jm_ - —I - BHN-H- BHN—H--J J- + BHN-M- Juh_ (III,1;3\)
[pet, tx1]

I J, o+ .BMN_M N (III,18a)

Lpxt, tx1]

n
Gl
|
Moo
:
X
Y
o
z
k4
l+



The inserted matrices

th_ P

;j have the dimensions
mh +

Cos.

and

2> ["MN—M.‘,"]

x1 ]

[h"N_M_,(“ ]

-

and [ MN- My ‘respectively.

- 7h3 -

2 JW'IM-

l b % 1)

At this stapge the new data have been fed in and the new super-

matrices of the geometrical properties stored, ready for the calculation of

the new flexibilities.,

The Final Solutions of the Problem

We establish the super-matrix of the stresses

S
S

S

LAx 9]

e

S,
c S.
S.
S.

and the super diagonal matrix of the flexibility

f =

(4 Xa)

f, f,

We also form the new flexibilities

f.,

(AxA)

fLm f@».

B. .
;Jm_ and ;JM* .

Then we form the Boolean matrix

introducing the new data

t., -
C’

™

of stresses in the fuselage.

n
(111,19)

f"‘ I (I11,20)
fnm (I11,20a)

A.. A... C..

t
ﬁ;h[hg, where 4 1is the total number

This matrix can be shown schematically as



[# x 4]

B t
co-¢

- 14k -

0]

hco-c
[h,, . x3tp-0t] [heo-c x 2pt]
____{_
i
O Bc‘o-r hca-r
[ heomy x3Lp-0E] [ heo.e x 2¢E]
[
4 .
BMN—C O hMN'C
[ hyyoe * 3p-0t] [huye *2pt]
t
O BMN—" L’MN_T

[y ¥ 3(p-nt ]

|eatt————— 3(p_i) £t ————]

[

[hawoe % 2pt ]

2,;,[- ——

(111,21)
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The formation of the sub-matrices can be accomplished using the flow

diagram in Fig.(111,22 ), thus

one forms B“’“ from the list L“_c ,

Bco-v from Lco_r s
B MN-C from L MN—-C

and Bm‘-r from Lm.-( .

Then, in order to form B“

(1) :
B is Bm_v with the "origin" shifted up through [3e-0t) heo- o |

BU) is B n " " n n n [ o 2 h“’]
MN-L MN-C

m
B is " " " " n " [sp-0 b, b‘oﬂ;‘m_c]
MN.r MN-Y

Then the matrix

(1 d f
B B + B '+ R+ B @ (I11,22)
h Co-¢ Co.r MN- ¢ MN-T

is transposed to give the required matrix,

Now we obtain

S,

S (171,23)

"
w

and

t
blh - B;, bl 5 (III,24)

two very simple operations.
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(2)
Similarly if (3 = E; shifted through {o, h__Js
MN-T MN-Y 0-v
(2)
- B. = B.+ B
vh Cov -2 (II1,25)
then t
b... = B«h b... (I11,26)
(3) .
We also form E; as shifted through [3¢p-iit, 4 },
MN-T MN -y MN-c

and hence the matrix

B.. = B..+ B.. (111,27)
Lo <h,,]

Then we find

f‘“’ = BM:[ f. - f ] Bw (TI11,28)

and can set up the matrix

0 O
Lhexhe] [L\co" i‘m.]
6111 - 0 fm? (111,29)
L[uw» heo ) [ b @ by )

to proceed to the final modified stresses from the basic relations of Ref. ( 2)
. -4 t -1 t
S, = S -|bD, b, +b D, b;l
' -1
3 -1 : ,
[b. Db, + b, Db+ 5] s

(111,30)
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o Scm Sc b, : t t 0‘ t t
S = Sm = [Sr] - [bj D, [b.a. b..] {b‘] D,,: [ch, bl"] *
- .

- =

oot s 3ot o3 B2 8]

b
Sl

For the full automatisation, assuming that we have b“"I from re-partitioning

b”' , ve recommend the following procedure :—

FOR!M MODIFIED STREGSES

blh D”—1 b’ht

§ 1 Tom 61.

- t
§ 2 Fomm 61]: - b;'h Dzz ' bZ\'h

§ 3 Form 6111 (see previous page)
§ L4 Tomm 6 = 61 + Gﬁ + 6—\3

§ 5 Fom H

1]
<
N

§ 6 Fomm Do i

"
d
L
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wn

T Form Y;-, = - D.;’ Doh

§ 8 TFomm S
. cm

b R + b. Y.

- DIb.. H

§ 9 Form X .

§ 10 Fom Srm

b, R + b,Y +b, X

§ 11 Stop

In principle one could add the computed D% to the original
Do to obtain DOM which could then be used instead of Da to
derive the total new primary redundancies. lowever, for obvious reasons of

numerical accuracy, the suggested procedure is considered superior.

We also observe that we could obtain Sh directly, without
having to calculate the whole S , by a direct operation of the
matrices on the bo to get boh ( b,,, required in any case) and thus

Sh , hence directly the Sm . lowever, for checking purposes,

it 1s always recommended to calculate the full S and control compatibility.
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CHAPTERI
GENERAL LAY OUT OF THE PROGRAMME
INTERMEDIATE AND FINAL CHECKS

Whereas Chapters I and II dealt with the programming of the
individual operations involved in the analysis of a fuselage, this chapter
deals first of all with the interrelation between the various sub-divisions of
the main programme, as well as the necessary checks introduced in the middle,
either to ensure the correct functioning of the machine or simply to detemine
the accuracy to which the computations have been carried out. The sequence
of operations is best discussed using the flow diagram (Fig. IV,1 ),

but first we need a preliminary discussion of the checks.

Checks on the Calculatidn

While running a problem on the computer, one needs to be constantly
informed of what is being carried out. This becomes more and more necessary
the larger the problem. A programme which runs for several hours must contain
checks at intervals, say of half an hour, which result in a certain amount
of output. The best ones to construct are those which require a short
additional time in comparison with that needed for the main computations.
These checks can be either of a structural or mathematical nature, although

physical ones are always to be preferred.

Since the sizes of the matrices become larger with the size
of the problem, the amount of output must then be so arranged that it can
be easily and quickly analysed and understood, so that a certain decision
may be made st once as to how the programme is to be directed further. This
is achieved either by printing statistical data about the matrices or by

extracting the results in a more comprehensible form. e.g. graphically.



The Autamatic Programme and Intermediate Checks

The programme starts (1) with the input of the basic data required.
The first part of this data is used for organisational purposes, to determine
the size of the different matrices, the necessary storage space etc., as well
as some data, controlling decisions, vhich can be made automatically in the
programme, for instance, the accuracy considered to be sufficient in the solution
of the system of equations and the number of standard loading cases. Other
control data are the expected number of modifications and cut-outs(to be
specified later more precisely) and so on. A check (2) is then carried out
to ensure that the problem is not too large for the machine. One limitation
is the amount of storage space availsble, which the computer can check
autanatically, and interrupt the calculation if exceeded, or give a warning
if the size approaches the critical. The other limitation is the calculation
time required. A certain amount of manual control is here allowed to enable the

operator to interrupt or continue as desired.

The second part are the basic geanetrical data which are also
used to compute all secondary dimensions(3) such as polygon side lengths
and trigonometrical values of the inclinations. This performed, the machine

proceeds to calculate the matrix § , of flexibilities of the individual
elements (4).

Having established this, one is ready to proceed with the
automatic generation of the selfe-equilibrating systems. TFirst of all l\e
has to be chosen (5). 1In view of the excellent results obtained by using

the Fourier coefficients for a circular fuselage ( gIE‘\ , it is recommended
that this should be programmed automatically. A certain manual control nust

be provided, however, to substitute a different l\t if necessary; either
by entering another sub=programme, or by direct input. The facility for the
improvement of l\z through orthogonalisation is provided through (16) to (13)

with an iteration back to (6).



- 152 -
Box no. (6) represents the determination of the self-equilibrating

stress systems i/r\x the flanges b’P and the accompanying statically equivalent
basic systems bae‘ After having obtained this, & meansis provided in (7)
to plot the matrix l:)1e through the order described in Appendix (C ).
This gives an idea of the linear independence of the systems., Similar
facilities have not been included in the flow diagram for plotting b'q and ‘:)”r
as well, however, these can also be included, ’
A

In (8) the resulting b1t and b.,g are checked for equilibrium.

The programme is straightforward, and can be directly given here, using

the standard order forms assumed in Appendix ( ¢ ).

CHECK EQUILIBRIUM OF b'(

(SALT, 2 (p=-1) /, 3 x t) x (B1L, 2 (p=-1) x (p=2), t x (t=3)) —— W51

MKMAX1 (SALT, 2(p=1 /, 3 xt) x B1L, 2 (p-1) x(p-2), t x (t=3)) —> Ws2

DIVEL (Ws2, 2(p=-1) x'(p-a), 3 x (t=3)) (ws1,2(p-1) x (p=-2), 3 x (t=3)) —>=WS3
COSPEC (WS3,2 (p=1) x (p=2), 3 x (t-3)) (1072, 1) (10"

That is to say, the multiplication a: bﬂ, is first carried out. The result
should be zero. Since, however, this zero is a relative one, we must compare
it with another matrix which we build by the special matrix function "MKMAX"
described in Appendix ( C ). This effectively multiplies the rows of a:
with the columns of b“ , taking as the result of each such multiplication

not the sum of the elemental products, but the maximum product encountered,

This accomplished we divide the elements of this new matrix
into those of the other one, .giving us directly the accuracy of the equilibrium,
. . -20
by printing out the column spectrum of the result between, say 10 2 and 1,
If we want even less to be printed out, we can use the following order instead
of the last
? -20 +1
MASPEC (WS3, 2(p=-1) x (p=2), 3 x (t=3)) (100°7,1) (10" )



~N
Similarly we check the equilibrium of the t)w matrix

CHECK EQUILIBRIUM OF BoLC

(SALT, 2 (p=-1) /, 3 xt) x (BoLC, 2 (p=1) /, t x 3) ——» WS1

CL (UNMAT, 2 (p=1) /, 3) - ———— UNMAT
(unMaT, 2 (P-1) /, 3) + (ONE) - ———— UNMAT
(ws1, 2 (p=1) /, 3) = (UNMAT, 2 (p=1) /, 3) — > 82
MKMAX (SALT, 2 (p=-1) /, 3 x t)(BoLC, 2 (p=~1) /, t x 3) —> WS3
DIVEL (WsS3, 2 (p=1) ‘/, 3) (wsz2, 2 (p=1) /, 3) ———— WSh

MASPEC (WESL, 2 (p=1) /, 3) (10729, 1) (10)

Here our error matrix is a - and this 1is again
t °e II(P ‘)133
compared with the maximum elements occuring during the multiplication of the
~
. 4

first tem &, botp .

Having checked the above, the computer then procedes to calculate
b1q and t)cq (9). Afterwards a similar check on equilibrium is

provided (10). This is done by using one of the two expressions (say for b1q )e

t ’ :
., b, + ~ b, = 0 o (1v,1)

or

a.k b, + af. b, = 0 (IV,12)

However, in trying to obtain the base line with which we compare the zeros,
we need only to consider the left hand term, since the second one is of

secondary importance in comparisone.

N

The same applies for the tlm matrix,although we have as before to
subtract a unit matrix to get the error matrix. Thus we verify the following
relations . ‘

[-au,f_ bo‘] + a':; af E?‘! J I = O (IVQE)

lepo1y, 3]

A t :
[a.,f boq + a. ] I = O \‘\ (1v,2a)

Ltp-4,;3]

and
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vhere 0 0 0
: 1 ']
€44 ¢ (IV,2b)
o i 0

The programmes can then be written.

EQUILIBRIUM OF R1Q and BoQC

(AQPT, (p=1) /, 3 x t) x (B1Q, (p=1) x (p=2), t x (t=3)) — WS1
(ATPT, (p=1) x 2 (p=1), 3 x t) x (BIL, 2 (p=1) x (p=2), t x (t=3))—> Ws2
(ws1, (p=1) x (p-2), 3 x (t=3)) + (Ws2, (p=1) x (p-2), 3 x (t=3)) — Ws1
MKMAX (AQPT, (p-1) /, 3 x t) x (B1Q, (p=1) x (p=2), t x (t=3)) — W52
DIVEL (WS2, (p=1) x (p=2), 3 x (t=3)) (Ws1, (p=1) x (p=2), 3 x (t=3))-»WS3
MASPEC (WS3,(p=1) x (p=2), 3 x (£=3)) (107°°, 1) (10)

(AT, (p=1) /, 3 x t) x (B1Q, (p=1) x (p=2), t x (t-=3)) ——— WS1
(ATMT, (p=-1) x 2 (p-1), 3 x t) x (B1L,2(p=1) x (p-2), t x (t=3)) —>— B2
(W1, (p-1) x (p=2), 3 x (t=3)) + (ws2, (p=1) x (p=2), 3 x (t=3)) ——= W31
MKMAX (AQPT, (p=1) /, 3 x t) x (B1Q, (p=1) x (p=2), t x (t=3)) ——= WS2
DIVEL(WS2, (p=1) x (p=2), 3 x (t=3))}(Ws1, (p=1) x (p-2), 3 x (t=-3))-—> WS3
MASPEC (WS3, (p=1)x (p=2), 3 x (t-3)) (1072C,1) (10) |

cb (2,1) (1,1) (2) ——» ELQ
(b0QCc, (p=1) x 2 (p=1), t x 3) x (bEBLM, 2 (p=1) x (p=1), ( )) — BoQCP
(BoLC, 2 (p-1) /, t x 3) x (bELQ, ( ), 3) ——— BoLCC
(BoLcC, 2 (p=-1) /, t x 3) x (bEBIM, 2 (p=1) x p=1), ( )) — > BOLCCP
(AQPT, (p=1) /, 3 x t) x (BoQCP, (p-1), t x 3) — = WS1
(ATPT, (p-1) x 2 (p-1), 3 x t) x (BoLcCP, 2 (p=1) x (p=1), t x 3) —— WS2
(ws1, (p=1), 3) + (ws2, (p=1), 3) — > S1
(wst, (p-1), 3) - (ONE) — = US1

MASPEC (WS1,(p=1), 3) (10’20, 1) (10)
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(BoC, (p=1) x 2 (p=1), t x 3) x (BEBLP, 2 (p=1) x (p-1), ()) ——s— bohCM

(BoLCC, 2 (p=1) /, t x 3) x (bEBLP, 2 (p-1) x (p-1), ( )) — > BoLCCH
(AqMr, (p=-1) /, 3 x t) x (BoqcM, (p-1), t x 3) Y51
(ATMT, (p=-1) x 2 (p=1}, 3 x t) x (BoLCCM, 2 (p~1)x (p=1), t x 3) — WS2
(w31, (p=1), 3) + (ws2, (p=1), 3) —— S
(ws1, (p=1), 3) - (ONE) —— us1

MASPEC (WS1, (p=1),, 3) (10‘20, 1) (10)

Having checked that, the computer proceeds to control the
consistaney of the flange loads and shear flows. This we can do for the

self-equilibrating stress system using the identity
-— ¢ Y
a b, -[E:- €] b = 0 (1v,3)
To,t]

To compare our zero to a base line, we can take as reference the moduli of the

elements of t)m

CHECK COHCISTANCY OF Bi1L, B1Q

TR (BEBLP, 2 (p-1) x(p=1), ( )) ——— EBLPT
TR (bEBIM, 2 (p=1) x (p~1), ( ) — 5= EBLMT
(bEBLPT, (p=1) x 2 (p = 1), ( )) = (bEBIMP, (p~1) x 2 (p-1),( )) —a IQOPER
(PLQOPER, (p=1) x 2 (p=1), ( )) x (B1L, 2 (p=1) x (p~=2), t x (t=3)) —=—us2
(bALFT, ( ), t) x (B1Q, (p=-1) x (p -2), t x (t = 3)) —=VS51
MODEL (WS1, (p=1) x (p=2), t x (t=3)) —— 3 ERMOD
(ws1, (p=1) x (p=2), t x (t-3)) = (WS2, (p=1) x (p-2), t x (t=3)) —> LQER
DIVEL (ERMOD, (p-1) x (p-2), t x (t=3)) (LQER, (p=-1) x (p=2), t x(t-3))>RELER
MASPEC (RELER, (p-1) x (p-2), t x (t-3))(10—20. 1) (10)
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Following the previous argument, we check the consistency of t)
"

and bo 0 through

— _ - A -
Al — ¢ -t —
a boq = Ef’f - E[’- baf (EPZ) Ef_ - O (Ivsh)

L[;u,f ] nl = —
and -

B 2 [+ ~t] 2 =

o b, -|E- €] b(e €, 0 (e
° £+ £~ op 4] +
L_fll,f] ha— - o
CHECK CONSISTANCY OF BoLC, BoQC
(bALFT, ( ),t) x (BoQCP, (p=1), t x 3) — WS
MODEL (WS1, (p=1), t x 3) —> MODER
(bOPER, (p-1) x 2 (p = 1), ( )) x (BoLcCP, 2 (p-1) x (p-1), t x 3) —»WS2
(ws1, (p=1), t x 3) =(Ws2, (p=1), t x 3) ——> LQoER
DIVEL (MODER, (p-1), t x 3) (LQoER, (p=1), t x 3) ——— RELER
MASPEG (RELER, (p-1), t x 3) (10‘20, 1) (10)
(bALFT, ( ), t) x (BoQCM, (p=1), t x 3) — {S1
MODEL (WS1, (p=1), t x 3) —— MODER
(bOPER, (p-1) x 2 (p=1), ( }) x (BoLCCM, 2 {p-1) x (p=1), t x 3) —= WS2
(ws1, (p=1), t x 3) = (WS2, (p=1), t x 3) ——— LQoER
 DIVEL (MODER, (p=1), t x 3) (LQoER, (p-1), t x 3) ——— RELER

MASPEC (RELER, (p~1), t x 3) (10‘20, 1) (10)

With these controls accomplished, the machine proceeds to
calculate the selfe-equlibrating stress systems in the rings (12). This part
of the calculation can also be checked although it has not been explicitly

shown in the flow diagram., The equilibrium inside the closed rings, that is
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the consistancy of bm' bls and b,M s, as well as the accuracy to which

the compatability has been satisfied in their closure, are then examined.

‘ The formation of D (13) is followed immediately by two checks (1)
and (15) to analyse the result. The first is on the symmetry of the matrix.
This can be done in many ways, varying in speed and simplicity. The quickest

way is to form

[[et D ]t"‘ D e:l =0 | (1v,5)

and compa'i-e it with the matrix composed of the largest elements in the

~

summetions involved in the matrix multiplication. The programme for this is

CHECK SYMMETRY OF D

Gb (1,1) (1,0) ((p=2) x (t=3)) — > BEFD
(ONE) x (BbBEFD, (p=2) x 1, (t=3) x 1) —— EFD
(D, (p-2), (£t=3)) x (EFD, (p-2)x 1, (t=3) x 1) ———> DEL 1
MKMAX (D, (p=2), (t=3)) x (EFD, (p~2) x 1, (t=3) x 1) ———>— ZERBAS
TR (EFD, (p=2) x 1, (t=3) x 1) —— EFIT
(EFDT, 1 x (p~-2), 1 x (t = 3)) x (D, (p-2), (£=3)) ———— DEL2T
TR (DEL2T, 1 x (p=2), 1 x (t=3)) — DEL2

(DEL2, (p~2) x 1, (t=3) x 1) = (DEL1, (p=2) x 1, (t=3) x 1) — s DEL
DIVEL (ZERBAS, (p-2) x 1, (t=3) x 1) (DEL, (p-2) x 1, (t=3) x 1) —— RELZER
MASPEC (RELZER, (p-2) x 1, (t=3) (1072°, 1) (10)

We might also mention here that a vector other than € can be used

if desired.

t
Another more "precise™ method is to compare directly D and D .
In other words to form '

o - 0]



and compare it with the original [) . This method, however, shows little

advant age.

The conditioning of the [) matrix can be checked by various
methods (see Chapter V, but in our experience a very simple method helps
enormously to point out trouble at an early stage, i.e. through the use of
the order for diagonal normalization described in Appendix ( C ) followed by

taking a matrix spectrum between 1.0 and say 0.05.

RATIO OF ELEMENTS IN D -

DIANOR (D, (p=~2), (t=3) ———— > DNORM
MASPEC (DNORM, (p=2), (t=3)) (1, 0, 05) (0.9)

According to the results of this test (manual intervention being
here also allowed) a decision is made (16) as to whether the conditioning is
satisfactory, or whether in (17) and (18) the diagonalization technique
should be used.

This decision can already be made at an earlier stage. For instance,
only the diagonal sub-matrices of the D,, need first be calculated and

examined, and the technique can be used accordingly.
Whenever this orthogonalization technique is required, however,
it is to be recommended that it be done right <through the fuselage for the

sake of simplieity and to secure the best results.

The programme for the steps (17) and (18) can be given as follows
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ORTHOGONALIZE DR,

EXDISM (DR, (p=2), (t=3)) — s DRDIAG

EIGV (DRDIAG, (p=2) /, (t=3)) ————>— DRVAL, CHOW
(AIM, (p=2) /, t x (¢t = 3)) x (cHOW, (p-2) /, (£=3)) ——— AIMB
SD (AIMB, (p=2) /, t x (£=3)) (1, (p=3)) — = ALB2, ALB2C
SD (ALB2C, (p=3) /, t x (t=3)) ((p=4), 1) ——— ALBMME,ALBPMO
Jp (ALB2, 1/, t x (t-3)) (AmMB, (p-2) /, t x (t=3)) —— ALMMB
JD (ALMMB, (p=-1) /, t x (t=3)) (ALBPMO, 1/, t x (t=3)) —— ALB
(ALB,p/, t x (t=3)) — s AL

If the [) matrix is finally considered to be satisfactorily
conditioned, or if no further improvement can be obtained, the machine proceeds
to (19), where it decides whether [)-’is explicitely required, or if a direct
inversion into [)a be more advantageous, This decision might be made manually,
or by a criterion set up in the machine, based on the size of the problem,
the number of loading cases, the number of expected modifications, and the

number of times this has to be done. Reasons of accuracy may also be involved.

If the machine decides, or is instructed that the [yJis to be formed,
it proceeds to (20), and then to (21) where the inversion is checked. The first
check is on symmetry. This is done in exactly the same manner as with the

CJ matrix. The second possible one 1is whethex-[)Jis the true inverse of [)

and if it is, to what accuracy.

Mathematically, it is said to be best to carry out both multiplications
[) [)-land [)-‘ [) and compare the results with a unit matrix., This,
however, is & lengthy operation, and contradicts one of the principle conditions
of a check, namely that it should take muéh less time than the main operations.
A satisfactory and quick control is in our opinion the pre-multiplication of a

unit vector € with the matrix [) and then its inverse [)'u or Vice-versa,
and to compare the results with the unit matrix vector. Thus in effect forming

the two expressions

[DD'e-e] = [D*De - e |
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The programme is simple and can be given irmmediately

QUICK CHECK ON INVERSION

(pMO, (p=2), (t=3)) x (EFD, (p-2) x 1, (t=3) x 1) ~——— DMOE
(p, (p=2), (t=3)) x (DMOE, (p-2) x 1, (£=3) x 1 ) ————— DDMOE
(EFD, (p-2) x 1, (t=3) x 1) - (DDMOE, (p-2) x 1, (t=3) x 1) —— ERR
MASPEC (ERR, (p-2) x 1, (t=3) x 1) (10"20, 1) (10)

(p, (p-2), (t=3)) x (EFD, (p=2) x 1, (t=3) x 1) ———— DE
(oMo, (p=2), (t=3)) x(DE, (p-2) x 1 (t-3) x 1) ———= DMODE .

(EFD, (p=2) x 1, (t=3) x 1) - (DMODE, (p-2) x 1,(t=3 x 1) —— ERR
MASPEC (ERR, (p=2) x 1, (t=3) x 1)(10‘20, 1) (10)

This done, the machine checks (22), possibly under outside control,
whether the results obtained are satisfactory, or whether the inversion has

to be repeated with higher precision.

Having decided that the inversion fulfils the desired accuracy,
further data describing the standard loading cases are called for and fed in
(23). Accordingly the basic systems in the cover ( t)oe and t)oq ) are
calculated (24) and then the same checks applied to them as on the cover
stresses before, namely equilibrium and consistancy. The procedure is similar
to the previous one and is based on the following relations: =

Equilibrium of flange loads:

: - ~
a‘L’ bof - Re (IV,G)

Eup-n/;bdj [acp-Ixi, tx 9] Czp-vxt,3x8)

Equilibrium eof shear panels:

£, [aﬂ b, + a. b,

[?ff-t)xfp-l),()3 rfP-‘)/,SxtJ[(p-lJ;(lltsf] [‘P-')‘l(P-‘>,3’i] [Z(P‘I)KI,QI_P]

~

+ Ee., [ aqt. boq + a: b,g ] = Rq

[?(P'l) J(F-l),\l:l r‘P-O/,il‘l] L‘P""') [Af] [(P_,) ;,(P‘,)';,tj[l(’_,),“(‘ 9] IZ(F'I)*‘)in]

(1Iv,7)
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or better still

A

Pl t t — + — h _ o
[ £, A, + €, Qq :I b,q + [Et_ a.+ &, aT] boc = Rq(IV,(a)
and for the consistency of bof and bq

. = t — ¢
a boﬁ h [€P+ - Ee_] boe - 0 (IV,S)
Loyt ] Lep-nyxn,txp]

[p-nx2(p-1, 0] Catp-nxi, teg) [ep-1v1,t£)

The programmes read as follows:

CHECK EQUILIBRIUM OF Bol

(sALT,2(p=1)/, 3 x t) x (BoL,2 (p=-1) x 1, t x § ) — > RESTNT
MKMAX (SALT, 2(p=1)/, 3 x t) x (BoL, 2 (p-1) x 1, t x¢) ————»— BASLIN
RESTNT, 2(p=1) x 1, 3 x¢) - (RLL, 2 (p~1) x 1, 3 x ¢ ) ———— ABZERO

DIVEL (BASLIN,2 (p=-1) x 1, 3 x £ )(ABZERO, 2 (p-1) x 1, 3 x§) — RELZER
MASPEC (RELZER, 2 (p=1) x 1, 3 x¢) (10‘20, 1) (10)

CHECK EQUILIBRIUM OF BoQ

(bEBIM, 2(p=1) x (p=-1), { )) x AQPT, (v-1)/, 3 x t) ~—— > QOP1
(bEBLP, 2 (p=1) x (p=1), { )) x AQMT, (p=1)/, 3 x t) > QoP2
(qQoP1, 2 (p=1) x (p=1), 3 x t) + (QOP2, 2(p=1) x (p-1), 3 x t) —> QOP
(bEBIM, 2 (p=1) x (p=1), ( )) x (ATPT, (p=1) x 2 (p=1), 3 x t) —=— POP1
(bEBLP, 2(p=1) x (p-1), ( )) x (ATMT, (p=1) x 2 {p=1) x 3x t) ——— POP2

(POP1,2 (p=1), 3 x t) + (POP2, 2(p-1), 3 x t) ——= POP

(qoP, 2(p=1) x (p=1), 3 xt) x (BoQ, (p=1) x 1, t x?) ——s— RSTNT1
(poP, 2 (p-1), 3 x t) x (BoL, 2 (p=1) x 1, t x¢) ——= RSTNT2
(RSTNT1, 2 (p-1) x 1, 3 x¢) + (BRSTNT2, 2 (p-1) x 1, 3 x9) ———> RSTHT
(RSTNT, 2 (p=1) x 1, 3x9) - (RQL, 2 (p=1) x 1, 3 x¢) —> ABZERO
MoDEL (RQL, 2 (p=1) x 1, 3 x¢P) | —— RQLMOD

DIVEL (RQIMOD, 2 (p=1) x 1, 3 x¢) (ABZERO, 2 (p-1) x 1, 3 x9) —> RELZER
MASPEC (RELZER, 2 (p-1) x 1, 3 x§) (10'20, 1) (10)
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CHECK CONSISTANCY OF BoL and BoQ

(bALFT, ( ), t) x (BoQ, {p=1) x 1, t x9) ——— RES1
(bLQOPER, (p=1) x 2 (p=-1), ( )) x (BoL, (p-1) x 1, t x9) —— RES2
(RES1, (p=1) x 1, t x9) = (RES2, (p=1) x 1, t x ¢) ————>— RES
MODEL (RES2, (p=1) x 1, t x¢) ———= BASLIN

DIVEL (BASLIN, (p=1) x 1, t x?) (RES, (p=-1) x 1, t xp) ——> RELZER
MASPEC (RELZER, (p-1) x 1, t x §)(1072°, 1) (t0)

Following the determination of the strains in the basic systen,
the total incompatible strains Do (-l- b‘tH)are calculated (26), and then the
machine checks if the D_ has been previously determined, or if a direct
solution is necessary. Accordingly it chooses either operation (28) (direct
multiplication) or (29) (direct inversion) to obtain the primary redundancies
Y « A check is again performed (30) to determine the validity and accuracy

of the solution. This is best verified using the identity

DY + D, = 0 (1v,9)

The zero here is, naturally enough, campared with De « The programme for

that is again straightforward

CHECK SOLUTION OF EQUATIONS

(D, (p=2), (£=3)) = (WY, (p-2) x 1, (t-3) x¢) ——— DN
MODEL (NDN, (p-2) x 1, (t=3) x ¢) — > BASE
(nDH, (p=2) x 1, (t=3) x?) + (WY, (p=2) x 1, (t=3) x?) — ABZ

DIVEL (BASE, (p=2) x 1, (t=3) x¢ ) (ABZ, (p=2) x 1, (t=3) x§) —— RELZ
COSPEC (RELZ, (p=2) x 1, (t=3) x9) (10‘20, 1) (10)

According to the results of this check a decision is made, perhaps
by the operator, as to whether a re-calculation is needed using higher
precision (32). This is only carried out if a direct solution has taken place,
since if the D-jha.s already been camputed, measures would already have been

taken to improve the accuracy (22).
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. . t .

A further possible check i1s to form [)o \( and then to examine
its symmetry. This is actually a further proof that the solution of the
equation is correct as well as that the [) matrix has been symmetrically

formed. The programme for that is as follows

CHECK ON Y AND D

TR (Do, (p=2) x 1, (t=3) x¢) — = DOT
(DoT, 1 x (p=2), ¢x (t=3) x (WY, (p-2) x 1, (t-3) x§¢) ———> MIBCHK
Gb (1,1) (1,0) (¢) ——— ERO
(ONE) x (bERO, 1, @ x 1) ~———>» EROD
(MTBCHK, 1, #) x (EROD, 1, ¢ x 1) ———» CSUM
TR (EROD, 1,9 x 1) —— ERODT
(ERODT, 1, 1 x% ) x (MIBCHR, 1,9 ) ——*= RSUMT
TR (RSUMT, 1, 1 x ¢ ) ——— RSUM
(RSUM, 1,9x 1) = (CSUM, 1,0 x 1) ———— SUMDIF
MODEL (CSUM, 1, ¢ x 1) —— BASEL
DIVEL (BASEL, 1,9 x 1) (SUMDIF, 1,9 x 1) ——— RELZ
-20

MASPEC (RELZ, 1,9 x 1) (107°", 1) (10)

After this check, the first stress distribution is calculated (3h)
and followed immediately by the campatibility check (35) which is again
printed out as statistical information on the columns in order to keep the
different loading cases separate. The machine then decides, (or is instructed,
(36) ) whether to perform a further iteration, i.e. use the final solution as a
basic system (37) and repeat steps (25) = (36) (see Chapter V ), or to
proceed to calculate the flexibility matrix F: (38), and follow it by a

check for symmetry similar to that previously mentioned.

Block no. (40) contains information on the purpose of the programme.
If cut-outs or modifications are still required, it proceeds to (46),
returning again after this has been performed. If a number of specific

loading cases is to be derived from linear combinations of the previous
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unit loadings contained in the t) , the computer proceeds to block (l1).
This part of the programme is usually oriented to the final objective,
whether it is a straightforward computation or whether an iteration is to be
carried out to achieve an optimum weight, whether the programme is acting

as a sub=-routine to a master programme, e.g. analysing a whole aircraft.

If a number of specific loading cases is to be dealt with, the
canmputer proceeds to {L1) where Fz is fed in, then to (L42) for the stresses
and to (43) for the deflections. Following this, again the external and
internal equilibria, and compatibility, are checked (LL) and (45); then the

computer returns again to (40) for the next decision.

If cut=outs and modifications are to follow, they are either
specified, at least partly, by the machine if the programme contains an
automatic iteration, or by an input of orders (see Chapter III ). In (LT)
the machine checks whether any cut-outs are redundant, resulting in a singular
set of equations. This is best done using again logical machine orders
of the type used in Chapter III , and will not be discussed here in detail.
The machine might be programmed to exclude autcmatically any unnecessary

cut-out, and print out information to that effect.

In (48) the machine checks further whether it is more economical
to proceed with the modifications, or if it be not better to modify the
original input data and start anew. If it is found more advantageous to

continue, the machine proceeds to (49), (50), (51) to (55).

At (55), the matrix to be inverted

00
0 f.

6 bu, DJ bu.t + ,bzrk D".‘ bu:"'
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is calculated, then checked for symmetry (56) and conditioning (57) in the
already prescribed manner. Then the inversion into bh tekes place (58)

followed by checking the identity
5 (6* b,) - b, = O (1v,10)

in (59). A decision is made (60) whether the inversion should be repeated

with higher precision, or to proceed at once to the calculation of the
modified stresses bm (61). These results are then checked for campatibility

(62) and equilibrium (63). The cut-out stresses b/u: are extracted with the
aid of the B matrices (see Chapter III ) and compared with the stresses

on the remaining structure (64) in order to verify that they have vanished,
and to determine the accuracy of the elimination. Finally the flexibility
matrix Fm is obtained and a return is made to block (40) again for further

decisions,

The introduction of multi~cell cross-sections as well as the
associated multiply-connected rings, rigid diaphragms etc. scarcely changes
the main line of the programme. One of the advantages of the freedom to
idealize and regularize the fuselage enables first the setting up of the
basic matrices as described. One can then always extract certain elements
and add others 1instead , using either Boolean super-matrices or special
orders. For instance, to extract a certain sub-matrix AJ of a super-matrix

A and insert another one, A{J. of the same dimension in its place, we use

the following equation

—

A"ew = A = E._'. A Ejf-" E.‘.‘ A;j' EJJ

[tr,-1]

where all the E” matrices are Boolean super-matrices whose o and |
elements are considered to be sub-matrices for an order such as to be

campatible with the other matrices involved.
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One can also split and rejoin matrices, changing their order
in the meantime, thus allowing the new super-matrix to contain sub-matrices

of a different dimension.

The programmes used up till now employ mainly uniform super-
matrices. One would not usually specify the order of a matrix, except
perhaps during its formation or in some special operation which affects
the dimensions such as a re-partitioning. The matrix code should then

store the dimensions and addresses, and organize its own storage space.

It would be useful, if before the programme is obeyed, even during
its assembly, that the matrix code effects a simulated run in which all
logical orders, such as looping, are obeyed, but no actual matrix computations
carried out., This run could be used to organize the storage space, inserting
orders to reserve room for results, or to over-write intermediote results

which will not be used again.
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CHAPTER )

CONDITIONING OF STRUCTURAL EQUATILONS

V-a Summary and Introduction

The problems of conditioning matrices have been widely discussed
by mathematicians, as well as many of those who had to apply matrices to
the solution of physical problems. Probably many years will elapse before
one can obtain a satisfactory general theoretical approach for the
detection and measurement of the loss of accuracy involved in the solution
of a set of simultaneous equations. However, from the practical point of
view, it may be useful to study the symptoms which are associated with
such a phenocmenon in one or two cases of particular importance. For this
purpose the general form of the inverse of a finite difference equation
of any order has been established with the first and last diagonal elements
free to assume any value. In this manner we can study the effect of changing
these elements on the accuracy of the others, particularly when the matrix
becomes illeconditioned and finally singular. Although this particular example
is not in any way claimed to be characteristic of all possible structural
cases which could occur in practice, it may be nevertheless be illustrative
to give a generalized exact discussion of such a matrix. The type of matrix
in question is, for example, encountered in the Dci of a cylindricel fuselage
(not necessarily circular) or even in the case of fuselages with taper such
that certain invariants are preserved. If the fuselage violated this
condition, the resulting system of equations, although not following
strictly the same pattern, is, however, sufficiently similar to justify
the qiscussions being extended at least qualitatively to these cases.
This‘inverse of the finite difference equations is subsequently used to
obtain the inverse of same related matrices, of which again the most
important for tﬁe purpose of this work is the equation of the second
difference which can immediately be derived from the original one. After
the effect of the variation of the two elements is discussed, the inverse
is used to test various mathematical criteria advanced by various eauthors

as being a measure of the "conditioning"™ of matrices.
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In the course of this chapter we discuss a new technique which
might help to overcome problems of accumulation of errors, especially

in systems which contain a large number of unknowns. Although intended here
primarily for the fuselage analysis, it might possibly be extended to

various other types of structure.

Other incidental results also given turn out to be extremely
useful,amongst other things,as tests for accuracy in certain computer programmes,

such as those for the inversion and determination of the eigenvectors

of matrices.

Vb The Inverse of the Finite Difference Matrix ‘7 of Order mxm

with ¥ariable End Coefficients

The general form of the matrix is

-—hq -1 0 O -~~~ cmcmemcea-g 0 0 o]
-1 2 A+ R I 7, 0 0
o -1 A R I 0 0 0 0
0 (4} -1 2 ——m-_—— - 0 0 0 0
1 . , .~ ) \
: : : : \‘\ : N : ] (V,1)
- .' : : . oo ;
[ 0 o) S o ¢ '
0 0 0 0 ~-------- -1 2 -1 0o
0 0 0 O ~--=---a=-- 0 _4 2 -1
0 0 0 0 -—==----=-==0 0 -1 1+qa
- py
Using the notation
t
E = ei' ef (V,2)

vy

(see also Ref, 7 ), we can write

Lt

-1 m-1 m-{
V =0 E,,, + 2 Z Egz".z, E. -,ZEz;,,z"" Gva) B
=2 1= =/

(mxm)
(v,1a)
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In order to obtain the inverse of a general three band natrix

of this form, we study the inverses of the matrices of order (2x2) , (3,3)
and  (4x4)
- [(-ha) ~1]
= -~ (4+a
(2x2 ) ! e
(v,3)
v—1 - 1 [{1‘1‘Q) +1 ]
~+1 (1+a
(1+a) -1 o
‘7 - -1 2 -1
(3x3) 0 -1 (1+a)
(V,32)
(1+2a) (1+a) 1
-f . -*1— ({+a) (1+)2 (1+4)
(3x3) a(2+20) 1 (1+a)  (4+2a)
(1+a) ~1 0 0
V - -1 2 -1 0
0 -1 2 -1
(4 % 4) (V,3b)
0 0 -4 (1+a)
M+3a) (1+z2a) (1+a) f
-1
v = __'__ (1+2a) Urdd(it22) (14a)? (1+a)
(4x4) a (2+30) (4+4@) (1+9? (eadtir2q) (44 2a)

1 (4+a) (4+2a) (1+3a)
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We observe first that there is always the common denominator

a,[z + (m-:)a.]

Since the elements left inside the matrix are easily recognised to be
the co=factors of the original elements, this denominator is obviously the

value of the determinant.

Next we note that the value of the element V1,m within the square
brackets of the inverse shown in Egs.(v,3, 3a, 3b ) is unity and that the
values increase linearly in both directions towerds V, , and \/, . .

2 /

From this we deduce +that

v-‘ (t +(m-g)a]

(v,4)

]

(mym) 1:1. a2+ (m-1)a}
and
v - _ [ 1+ (2-1)a]]
(mxm) 3 m a (2 +m-na] (V,ha;
Examining the general element we find for 7 & g
-4 » , _+r , _)']
v = v X v X Determinant = L1+ al (14 (my)a
{m xm)-,"]' (‘rmm),',m ‘"’“"’)1,1' S af2+(m-1)a]
and for 7_' } Jl (“‘.-"))

v-1 _ v-d - [1+(’m-z')a][t+fj'~1)a]

1, IR alz+(m-1)a] (Vy5a)

Egs, (V,5 ) and ( V,5a ) establish the general inverse of V .
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We can prove this to be the correct inverse if we establish that

(1)

(ii)

(iii)

(iv)

(v)

(vi)

Proofs

(1)

V.

vV,

<
LA

<
L
] 1
+
Q -

<]

P'.'.
1"
+

<l
"
+
o

A1

(1+a). . [1+ m-na]
al2+tm-11a]

1. C4+(m-2)a] 4
alz2+(m-naj

(1+a)+ (m_a)al1+a)-4- (m-2)a
a[z2+(m-1)a]

2@ ¢ (m-1).q.(1+2)-(Mm_p)a
QR[2+(m-1)a]

2attm-n.a?
af2+(m-Na]

+ 1
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V“' - (1+a) 4. [1+ (myYal 4 (14a)[14C¢m-j)a]
-1 aflz+tm-1)a] afl[2+tm-1)a]
= 0
-1
V~ - 4.{|+(m-z)a][1+(m-1')a]
"t al2+ (m-1)aj
+ 2 1+c2-a]li+m-)al _ 1. [A+(m-1-nall1+0-nal
aflz+(m-1al alz+m-naj
= [1+tm-g)ala +al1+(2-1)al
a [Z—f-("""‘)q:l
= 1
(27+1) £y

V-1 = _ tlte-pa]l1+om-sya]
el al2+(m-naJ

2.01+ (l‘-f)a.][1+(m_1’)QJ

+
afa+(m-1)aj
. [1+7@l[ 44 (m-))a)
af2+(m-1aj
= 0
b) if -0 > ¢
V‘ VA = . L [1+(m-2+1)a][1+ (-0 a) —+ 2 (14 em-1)al[14¢,-)a]
7. - - af2+(m-1)aj af2+(m-1)a]

.01+ m-1=-1)a][1+t/-0)a]
af2 +(m-g)a._]
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(v) and (vi) follow in the same manner as (i) and (ii)
Thus we have shown that Eqs(Vv,5, 5a) are correct general expressions

for any element in the inverse of V .

Vac Discussion of the Inverse of the Mabrix

A characteristic feature we observe sbout the inverse of the

natrix, is that all elements are proportional to

1
a [ 2+(m-1)Q]

Thus the whole matrix is inversely proportio(nal to A& , If o Dbe zero,

the matrix becomes singular, and the inverse infinite. The nearer @
approaches zero, the higher the elements of -1 become. Now, as we stated in
the introduction, this does not affect the accuracy of the general solution
except when one uses a limited number of digits, as when a matrix is inverted
in the computer, It is obvious that the error in the inverse is at least as
large as the error in o , and if we consider as an example the following

v of the order (4x4)

1.000 052 3 -1.000 000 ¢ 0
-1.000 000 0O 2.000 000 o -1.000 000 ¢ 0
v - o -1.000 000 ¢ 2.000 000 © -~4,000 000 ¢
0 0 -{.000 000 0 1.000 523 ©

ve can immediately deduce that the inverse will only be accurate to three

figures.

In order to draw a more definite picture of what this means
physically, we discuss the problem of a chain of 5 bars connected together

in line as in Fig, V, 1a. The bars are all of the same cross-section and of

the same length | , except the first and last which are of length L .
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In analysing this system by the Displacement Method, we obtain for the

stiffness of a regular element

k, . eA (1,6)
1
and for the first and last elements
- - _EA .
k = k = = (v,62)
Our stiffness matrix for the complete system is hence,
EA +EA _EA 0 0 )
L l 1
EA EA EA
- = 2= -== 0
P( - 2 L l
o] -EA 2 EA - EA
1 l 1
0 0 - £A EA _EA
(1+~a) -1 0 0
- EA -1 2 -1 o
1 ° ~t 2 -1 ,
0 o - (f+a) (V,7)
where 1
a =
T_‘ (v,7a)
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which, but for the factor (E%i ) , is identical with the (4 x L) matrix
shown in the first of Egs. (v, 3» ). It is now clear, according to our
previous argument, that as a diminishes, (which is when 1 +tends to
became much smaller than L ), the equation becames ill-conditioned.

This corresponds to the structure in Fig. ( v,1b ), where the first and
last elements are much larger than the ordinary member in the chain.

It would also appear by physical reasoning that the second idealisation

as shown in Fig, (v,1¢c )will lead to ill=conditioning. Although this is
discussed later on, the limiting form of P("' in the case when Q

becomes very small is

+1 +1 +1 +1
+9 +1 +1 +1
K-: . (L 1
- = f— — +1 +1 +1 + 1 (V ,_5)
' 2 l £A +1 +1 +1 +1 ’

Although the mathematical significance is discussed further below,
it is obvious that this limiting matrix for P(—l is of rank one.
A further case of interest arises when @ Dbecomes very large.Then the
first and last diagonal elements will be of a different order of magnitude.

To examine this cagse we set

and write

L -
T Ta

2
wvhich is a very small quantity, so that b is

negligible,



Then

v =
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This becomes in the limit,

e o

wlg wlo b

—

— -
b+3)fp (br2)/p Cort)fp {
B2 (b+2)/p (bu);:u) (b-f')z/bg (be0)/p
(2b+3) (b+1)/p (b+ 12/ 2 (_b_*géiu) (b+2)/b
L_i (b+1)/b lb-l»z)/B (b+5)/b
(b+3) b (b+2) }? (betd B2 ]
(2b+3) (2b+32) . (2b+3) (2b+3)
(b+2) (bi1)(b+2) (b+1? b {(b+1)
(2b+3) (2b+3) (2b+3) (2b+3)
(b+1? (b+1)2 (b+)(bt+2) (b+2)
(2b+3) (26 +3) (2b+3) (2b+3)
b2 (b+1) (b+2) (b+3)
| (2b+3) (2b+3) (2b+3) (1b+3)_
(v,9)
2b b B
=3 3 3
1=
3
2/3 1/3 =
1/3 2/3 22
3
b 2b
£l 2 B

The two corner elements have not been put to zero since we only

B in comparison with b

or with unity.

Obviously, this does not result in the matrix becoming singular.

matrix, is independent of b

of the corresponding part in the original matrix.

Effectively, the matrix is split into two parts, one of which,a (2 x 2)

. This matrix is nothing but the inverse
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> —1 2/3 A/3

1 2 1/3 2/3

It can be proved generally that that part of the inverse obtained
by striking out the first and last rows and columns, is merely the inverse

of the corresponding finite displacement matrix of order (am-2) x(m-2)
with a =1

If a=1 and (m-2) be substituted for m , Bas. (V,5 ) becomes

for ESN
v—f _ A(m-g+1) (7,10
- (m-1)
(m-2)x(m-2) 1"1'
with a similar expression for ¢ =z

Taking the original expression, we can rewrite it as follows for i £ J.

1 (o) - Cv)
- (d-1)Y(m-3) + a + a2

(‘M.xm).“ , [

oJ é + (m-f)]

If we take a>1 and write +1 instead of 1 , and [+7 instead of ; ,

we obtain

v -1 _ 2 (m-3-1) qu

(m-1)

(("'“”‘(""))f,';'
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wherein the first and last rows and columns are roughly proportional to b .
Thus the matrix remains theoreticnlly non-singular and probably well-
conditioned, although, in practice, the latter might depend also on the

method of inversion.

What we deduce from these examples is that the choice of the grid
in the idealization of a structure should be made carefully and as
uniformly as possible,

-1

Returning to the general expression for the element v ‘,‘J-
vhere 2< 37 , given in Eqn. (V,5 ), we split the expression into three
distinct parts. The arpgument that follows is, due to symmetry, applicable

in the same manner to the elements below the diagonal

v—1 - [1+(1'~1)aj[4+ﬁn-j)a]
1

2 a [2+ (m-1a]
— 1 {(:'-1)4.(1*\4')] o} (t-1)(m-j)a?
= Q[z +(m-1>a] QL2+ (m-Na] 0L 2+ (m-10]
- 1 (m-1) - (4-2) (2-1¥(m-1") &
= Tafz2+(m-na] [2+(m-t)a] [2+(m-1a] . (v,11)

The relative magnitudes of the elements corresponding to these three
parts of V—l are shown schematically in Fipgs. ( V,1a, b, ¢ ).
The first term is constant all over the matrix. It is only dependent on
o and m , The second term is a maximum on the diagonal, where it is
constant and equal to

(m-1)
afz2+(m-na)

The third term is zero on all sides, but with maximum values on the main

diagonal and the one perpendicular to it (extending from Vl.:n to v,,-:, )
’ 2
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N\ Y 1
(2+¢(m-1)q]

(m-1)
¢ [2+(m-1)q]

v=2(b)

m(m-2)a y
TT2+(mo17d] (m even)

\ \ 2
\ \ \ \ (m-1) a
NN N N X 4[2+(m-1a]

ANV NN

v=2(c)

(M odd )

-1
FigM-2, Schematic revresentation of the basic ceaponents in v .
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The maximum value of the element is

m (m-2)Q
4[2+tm-n1a]

for m even

and

(m-1)? a
4[2+(m-1Na]

for m odd

We study now the ratiocs Dbetween the various contributions starting

at the main diagonal

L: w2 oy (v,12)

i.e. 1> T ;¢ atm-1) <1
7

or a < T ( = -;;— for large m)

I : III (in the centre) = — 4 (v,13)

az(m-1)2 ’
i.e. I ST
if ailm-1)% < 4
(Vy13n)

i.e. if a(m-1) 2 or (a x <t %)

Again we show @ to be inversely proportional to m . From Egs. (v,m )

and ( V,13 ) it follows that the larger the matrix, the more sensitive it is
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to disturbances in the first and last elements. This follows from the fact
that it is the dominance of the first pattern in Fig. (7,2 Jwhich causes
inaccuracies in the inverse. So when a approaches the order of magnitude of
1/m , the accuracy of the diagonal elements in general, and that of the
elements in the middle of the matrix in particular, is the same as the

accuracy of ¢ in the original matrix.

That of @ tending to zero is obviously not the only case in which
the elements of ‘7’1 became very large, and thus ill-conditioned. The other

is when [2 + (m-1)a] tends to zero, i.e. if

2+ (m-1) Qa - o

or

This is one of the limiting values of Eqn, (V,13a),

It would be appropriate before concluding the discussion of this
particular instructive example to point out that this is a one=-dimensional
problem, In the case of a two=dimensional grid of elements, we expect the
inaccuracies in the solution to be smaller than in the one=dimensional case,
since the elements are connected not only in series but also in parallel.

If we consider the case of a long chain subjected to a load at a nodal point
somewhere in the middle, we see that the difference in the deflected shape
due to that and one due to a load applied to the next nodal point is very
small., Thus the effect of elasticity of the structure to both sides is

a loss of accuracy., Actually in the P(dwe would always notice that the
maximum inaccuracy occurs in the middle, and increases with size., If the
number of the unknowns were distributed in two dimensions, the number of
elements in the chain between the supports woﬁld be fewer, and & better
accuracy be expected, enhanced by the fact that the deflected forms between

two adjacent points in the cross-wise direction bear again a certain
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similarity. Thus we might also say that the condition here is a function

of the physical problem as well as the size of the matrix.

V-d Related Matrices; Some Incidental Mathematical Results

V-d 1 Another matrix worthy of consideration , is the similar three band

matrix, in which the elements are all positive, i.e.

. -
ru.«a) +1 o e 0 0 0
+1 +2 +1 e mem e 0 0 0
o .1 42 eeeiece. B 0 0

Z& - : . Pt | : : (V15

= : : ! el | : :
('7’tx’)’l) ) t t ‘\\\\ : : .
0 0  cmre—ce— - +2 +1 0
4 d ——cecees= 41 +2 +1

|0 0 0 il +t (1+a) |

Although we can derive the inverse of this matrix from the other
by inspection, it might be more interesting to proceed via the matrix \Al“n)

which we define according to the conventions introduced at the beginning by

m

W = 5 o' E

tm) =1

0,7 (V,16)

One obvious property of this matrix is that

th)z ‘ = ( i t-0* E"’f) ( f (—1)P EP:P)

=1 Pt

"
¥
™3
N
m
m
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but according to Ref, (7)
0 J e
P, . (V,17)
‘ E. Ier ’

it follows that

(v,19)

=
4
]
.I'\/I3
m
"

-1 (Vv,18a)
W - W(m) 0

Applying the notation of Eqn, (V,2 ) we find from Egs. (V,1a )
and ( Vv,1%)

m-1
v W = [lwa) E11 + ; 2. E{’l’ 4+ (1+a) E_mlm
m-1 -t w
+ Z (-1 Em‘..,"'z E 1#4;1_']“ [ Z (.'1)" EPP]
Tz =z P .

™-q .
= -~ B+ ; (-n". 2 B, 40" E...
m.f ) m-f
+ (- )'f2 _ T"’
S B E e

Premultiplying now by W
(m)

- m-f
Wlm} V(m) W(m) = l:pz_-: 0" Eff ][(“Q) E” +2§ 2 Ez,‘z'

(m-1)

+ (-1)(1+a) Emm-l-Z(_”nz E”.”_" i’(d)w E ]
LY ! = ':",l'



m-9
= (-1)%(1ra) E” +Z (-3 .2 E“- +(—1)z"’(4+q) E
' o ,

-1

m-1 . m
2142 21+2
(- -
+ IZ’ 1) E!',z'u + Z (-1 E1'+1,1'
= =y

-t mef

m,m

m-1
= (1+a) E‘;' + zz_._:, 2. E,;z‘+(1+a)Em,m+Z Ez',:'u.'-z Ez'n,z'

Tzt t=¢

A('m)

Therefore
N = W_ VW
tm) tmj Yim) (m)
This simply means that each element of the inverse of has to be

e (m)
multiplied by (-1)"" to obtain the inverse of A . Now we can write

- (m)
directly the typical elements in A‘1) as follows.

For T £ 7

A-’ - (-1)1'+J‘[14-(3'-1)0][14-(”1-"')(2]

(n)'.’J. - afz+ (m-1naj

and for 7> 1

A—, (_1)‘“". [1+ (-m-1‘)o.][1+(3'-1)0.]

tm) . = al2 +(m-na]j

The conditioning is thus not affected by this particular pattern of

changing signs.

{v,20;

('v’,‘?ﬁa)
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V=4 2 The v and A Matrices for & =i

The v matrix with 4=/ corresponds to a chain of the type shown
in Fig. V,1 in which all elements are of the same length, and thus,
in a way, to a regularly idealized structure. The corresponding matrix
follows through the expressions in Egs. (V,5 ) and ( v,5a ) simplifying,

for a=1 , to

Vo2 o tlmeden (v<§) (5,00
(m).. (m+4) o
1‘,]
and
v-& - (_1)1+J (’m-'l.+1)1‘ ( i>j') (v 21n)
(m)_. (’W‘l-f'") |

Similarly in the matrix A s Eas. (v,20 ) and ( v,20a ) become, for a=1

.
A= (-1 " 1(m-7+1) (v <& §) (y0m
CM)‘._ (7 + 1) >
J
and
A—i - (_1)1.'J (m—’l.-l-?):] (z' >/]‘)(V,.’?2".\/

("'),,'J' (m +1)

This matrix is also given in Ref. (7)

2
V=d 3 The Matrix V

This matrix, obtained by merely squaring the matrix V , is a five

band matrix given by
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Ix1+a)? _(3+a) 1 . ___.__ o P
~-t3ra) 6 -4 - 0 0 0
1 -4 & meemmm- - 2 0 0

H ' g N ' : : (v,23)

) 1 H N ' ' '
! ' ) N \ \ '
| : 1 N ) \ '
! 1 : N ! i '
' | i \\_ ' ' :
2 o ' ! : RN . 1 1
v - ' | ] N 1 )
: ! ! \\ ' ' :
' i ] \\ : ) .
: ; ! N | ,
0 0 e Y -4 i

0 0 0 ccmmem e m=-- =& é -(3+4)

0 0 J cmmmmmmm e amee 4 @34 a) g4(14a)?

a— —

Eqn. (V,23 ) may be considered typical for the [)r of a four-boom
fuselage in which all rings are similar and all bays except the first and
last equal in length. (As in Fig. v,3 ).

Again
d ]
a = '—5- (V,2h)
The restriction on the number of flanges is later removed.
Although one can derive an explicit expression for the element

of v.zit is most elegantly obtained by a direct multiplication of the
-1 . .
V with 1tself,

V-d L The Finite Difference, and Double Difference Super=-Matrices

What has applied before to the matrices with scalar elements, applies

also to super=-matrices with sub-matrices which are related to one another by
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a scalar factor. Thus, defining

ardf - A O --—-—----- 0 0
-A 2A -A e 0 o0
0 -A 2zA - 0 0

(m,m})

@ T @ I
o
>
>

r
O O

we can immediately derive the general term in the inverse matrix from

. e . -1
that of Eqn. ( V,5 ), (V, 5a ) by simply multiplying by R = A

D
d, d
H\{%}-i%

S Fige V-3,

Q Tour boom fuselage
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We find [or < g

-1 . ’
V (1+(1-1)o.][1+(m-1)aJ R (‘1,2(3)

al(M-11a+2]

and for t 2>
v-: _ Di+m-nal4+4-tlaj R (V,26a)
[m,m] B alm-nasz]

The same argument applies to super-matrices of the form WVWas well as v

Ved 5 Inversion of General Super=Matrices with Directly

Proportional Sub-Matrices

An interesting result follows immediately from the last section,
when the sub-matrices of a super-matrix are all of the same form, and differ
only by a scalar factor. Thus we define a matrix C’) which consists of

( Mmx™M ) subematrices, each of dimensions (7 x m )

4D 4D oo S 1))
D

4D 4D e gD e o

(v,27)

[M,m] dz] D dt'l D """""" d'J D ““““““ dt‘n D

"MyD szD Tttt T dMl'D “““‘""“““’{MMD
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-1
To obtain the inverse of this matrix, @ it is obvious that we only
need to invert two matrices, one of the order (mxam ) and the other of the
order ( Mxm~ )., The first is the ( mrm ) matrix D and the second is

the matrix of the coefficients d,J- given by

_O‘u oz  ----- - dy ceem - diy
du 0(21 ------ ngJ _______ d).M
d =] i | (v,2%,
dat d\'z ----- CJ\'J' S I Y]
! : : g
: ! : !
e g tor_

We call D the basic subematrix and d the pattern matrix, YWe assume now

that we know the inverse of this pattern matrix, and that it is

r-9” g oemmmees Gy e e 9im
911 912 ------ 9,1' -------- o
-1 ) ) ' !
g= d= : : : ; (v,29)
91'1 91'2 -————— 3"J. e m m— 31‘M
L-Snu 9M2 """ gMJ ““““““ amq_
Thus the following relations hold
g d = d g = I . (¢,30]
- - I:J
g;n (j-j - cji. sg.f = !
(V,30a)

]
Q
+
‘_*s
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The inverse of 9" can be written irmediately

Em,m]

gr— ’
—

R Ay S

(v,21)

This we can easily prove if we consider the product of the T

) with the ;™ super-column of ®~1

{M,m] {M,m]

super row of

D 9 =Y WD 5 D

Em,mly, f"";""]-j'

= <§: dop SPJ-> I»1
(dig;) I,= 0 i+

"
L |
-

n
—
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In this manner we have proved the correctness of the inverse.
The importance of the result appears later when discussing its application
to improve the accuracy of the solution of a fuselage structure, with
possible extension to other similar problems, and also as a valuable test
for an inversion programme. Following our above method one can construct
very large matrices of arbitrary conditioning, the inverse of which can be

accurately determined be forehand.

V=d 6 Eigenvectors of a General Super=Matrix with Directly

Proportional Sub- !atrices

Here another incidental mathematical result is described, which
surprisin‘gly enough, also has applications in the fuselage, as well as
in the problems of a similar nature and as a valuable test for eigenvaluec
programmes. Thus we consider again our matrix 9 given in Egn. (V,27 )
and the corresponding pattern matrix d of Eqn. (V,23 ) and assume that the

eigenvectors of D are given by

V. - [V, V, V, V. V»ZI | (v,33)

with the corresponding eigenvalues

A = A, A Ay - A, ﬂn.l (v,34)

We know that

D Vi = Ai Vz’ (v,35)

and

O
<
"

<
>

(V,352)
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We also assume the latent vectors of d to be

U = I:U1 U, U U U"’], (v,36)

with corresponding eigenvalues

________ oW
w = I w, W, Wy W, _MI sy

so that

d U,‘ = W U,‘ (v,3%)

d U = UWw {7,3%)

Writing again the vector UJ' in more detail

- 1 )
U . : { u'J. L{,J' —- == o= ut:“ sttt MNJ' ( ,’39/
]

and using it to examine(V, 30a) we obtain by multiplying the ith row of

d with the jth column of U ’
d-,,', Uf = drs L(,J- + oly; Uz ook dyy Ui+ oo + diy umj'

- W, W, (v,33b)

We will prove now that the ( Mm x1 ) vector V(J.“) given by
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V(,-,-) = { Uy V, “ZJ'Vf T “-'/V,~ uu,-Vl-} (V5349

is also an eigenvector of the matrix @ . For this purpcse we premultiply

this matrix with the p% super-row of the matrix 9 and use Eqn.(V,3b )

D Vv, = 4D V. +dee D wy Ve + o

[Mm3y,

+ oy DV,
Wi Upj D Vz' = (wﬂiWnVi (v,ho0)

-
-

proving further that the eigenvalue associated with the eigenvector

of Eqn. (V,39 ) is

A (J:l') = ( wj l1) Vs

The complete matrix of all Mm eigenvectors of the matrix ,_i)

can be set up by allotting 1 and my in Eqn. (/7,39 ) the values t to

and 1 to ™M respectively. The corresponding eigenvalues are obtained
the same values,

through Eqn. ( V,41 ) by again giving , and |



V-d T The Determination of the Determinant of a Super-Matrix

with Directly Proportional Sub-Matrices

Considering again the matrix @ of Eqn. ( v,27 ), we can
rewrite it as a product of a matrix de (again of order (Mam ) ,
( mxm ), whose super-element defn,n].',J' is equal to oy I».) and a

super-diagonal (super=scalar) matrix De whose elements are all equal

toD.

Thus ,
@ bt de De (v,42)
[rm,m] [r,mj [m,m]
where
r— Sy
d, [ do IM oy [ e o{,JIM ______ din]
wl, el a D o, e ],
o | s
: : i ; :
do = | #L #L el e T
[nm,m] i : i : :
i o ; E
| 3 | : :
| : l ! :
E | i 5 ;
| : ! ; .
dm I”‘ d“z In dﬂj Im STT s dnJ'In """"" ‘J"HI,,,

(V,h3)
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and

D. = [D D DD | -

The determinant of De is now obtained as the product of the determinants

of the two matrices. Thus

det.  13) u d, At D, (V,h5)
[M,MJ [H,mj )

The determinant of De can be found, once we know the determinant of D

det. D, = (o&t-D )M (V,10)

We can find the determinant of de if we consider the matrix

E"’l:z E"'\z,z ------- EmJ;z TTTTTTTTTt E’""Jz

! ' " )

! ] 1} )

i ! : : (V. 47)
E = : ' ; - ’
LM, m] " i 5




with the properties

E° I

v, m] fM,m]

and therefore also

E-1

Cm,m] Lm,m]

"
m

and

det E - 1

Em,m]

It is easily seen that

= | - d
E d. E d dd 9

m,m] [M,m] Lm,m]

Therefore

det. de = (Jeé. C”M

f”:""]

and from Egs. ( v,u5 ), ( v 46 ) and ( y 59 )

olet- :s) B (olet'. D)M (olei- dy“’

[M,m]

(wt.d 4D )"
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(v,h)

(v,43a)

(v,h9)

(v,50)

(v,52)

We obtain the value of the determinant of the complete super-matrix

through knowledge of the two basic determinants. This is also of use to us.
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V=d 8 Generalization of y_gg and y_4 1

Although of less importance, it is probably Jjustifiable to point
out that the operations on the special super-matrices which have been described

under (V-4 5 ) and (v-@ 7 ) can be directly extended to such matrices .

as
O = d. D, (v,53;
Cr,m] (M,m] [ray,m]
and
9 = D d
A e (v,53a)
[M,m] cha"“] [M,M]
where

Be I_D:- D, D,------- D"'I (V,5h)

i.e. where D‘ to D”are all different square matrices of order (wmxm),
For instance, in obtaining the inverse of 9 as in Eqn ( vy 31 ) and if

™, mm
Eqn. ( v,53 ) holds, we get o3

9y D;A 942D:1"" TTssTT 9"1’ D:1 TTToTTmTTTmes 31MD1_1
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which follows at once from

] fomeng -1

o) = D, d, (V,55a)

r"’ m)

Similarly, if Eqn. ( V»532 ) holds, the columns are proportional to the
appropriate D; or

o7 = d; D. (V,555)

(r,m]

In (IV=d 7) Egn. (V,52 ) becomes for both cases

st g = (aet d)" (det D,)( et D,)--orveooe-ooo (6t D,)

We must observe that the two kinds of matrices given by Egs.(V,53 )
and ( v,53a ) are no longer symmetrical as far as the basic sub-matrix is

concerned, and therefore such a generalization can not be made so simply.

At the end of this section of rather mathematical nature, it seems
logical that the best way to handle a super-matrix is such that the properties
of its sub-matrices are also taken into account. In many iteration procedures,
such as inversion by iteration or obtaining the eigenvectors and eigenvalues
of a matrix, an approximation to the results is needed right at the beginning.
The 'idealization' of the super-matrix into a basic sub-matrix and a pattern

matrix, if at all feasible, would provide an excellent starting point for such

a procedure,

V-e Testing for Ill-Conditioning in the Fuselage(end similar Problems)

Ve 1 The various measures of ill-conditioning

In Ref. ( 7 ) several criteria are suggested with the aid

of which the ill-conditioning may be measured, Most of these criteria, to use
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the words of Bodewig (Ref. (7) ) 'are circumstantial in practice and
mostly applicable only in theory as they require mostly the knowledge

of the inverse which is just the difficulty for such matrices'. The various

measures are given as

o N(A) = V35 Ime (1,56)

[n'n] vat 1

the N =number of A

= Nb(A) = 5 N(A) N(A;’) (,5%a)

b) if m(A) = ‘max. iAJJ'I | RAL Y

{(nen)

the m <number of A

mp( A) = n m(A) m(A”) (7,5%4)

¢) The Goldstine end von Neumann measure

b a A , where A and A are the dominant eigenvalues of
A and A" respectively.

d) The /A factor

olet. A

We can also add to these two further criteria.

- - - - -1
e) The sensitivity of the inverse A to a small charge 1n an
element of the matrix A represented as o(A is riven by the
total differential,



d(A7) = - (A")(dA)NAT)

f) A rough measure of linear independence of the rows and columns

in the matrix [\ is given by the normalised matrix /\

whose typical element is
Ay

A ) A,-,' Aj .

with 'ones' along the diagonal.

In this matrix one should perhaps base the judgement on the

pattern, just as much as the magnitude of these ratios.

-1
Vee 2 Estimation of the [) for a Fuselage

All of the proposed measures of ill=conditioning in matrices
require knowledge either of the inverse directly, or of the eigenvectors
and eigenvalues connected with it. However, it is necessary to have a
messure of such a property before the inversion actually takes place.
One needs to know, for instance, if one should use single accuracy or double
accuracy or whether a certain procedure, such as an orthogonalisation of the
diagonal sub-matrices, should be carried out at more intermediate stations
(see Ref.(2) Chapter VII),

A quick guess at the inverse of the matrix before the actual
inversion operation is therefore of great value, We suggest here a certain

approximate procedure which may be useful in a typical fuselage and ig

capable of extension to any problem of a similar nature. The first thing we
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observe is that the fuselage is an actual physical problem which has
been set up in a physically-consistent manner and of which we can say
ab initio that an extreme sensitivity of the matrix to changes in a certain
element is highly unlikely. We would like only to have an approximate ’
picture of the shape of the inverse to help us t0 choose the inversion

technique, or decide if we should apply to process of sub-matrix

orthogonalisation,

Since we know that the [) of a fuselage is highly daminated
by the Dr ,» We might assume that an inverse of D,,. would give a rough
idea of the form of D « If the fuselage is cylindrical and the rings
are either the same or possess such properties as to satisfy the general
form of Eqn. ( V,43 ), an estimate of the Dr‘ would only require two

inversions, one of the order (t-7) x (t-3) and one in order of (p-2) x( p-2).

If the fuselage does not satisfy this condition exactly
because some rings, for example, violate slightly the form of the basic
sub-matrix, it is always possible to replace them by 'Ersatz' rings which
have a stiffness of the same order of magnitude, but conforming to the

standard sub-matrix. In this procedure engineering sense plays the main part.

V-e 3 The N =Number

After using the idealization of the matrix described under

Y-€1 , this number is in our case, and for a single cell fuselage

Ne (D)= —1—— ~(D) ~n(D.) (v,59)

(p-2)(¢t-3)

or

N (D) = ———— N (D, ) N D) (7,59a)

(p-2)( t-3)
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where D‘r is the 'Ersatz’ D¢ .

It is probably more sensible to use (IV 59a) since it has a more
consistent physical meaning, i.e., we find the N -number for a certain
matrix of which we know the exact inverse, and then say that this number
would give an idea of the N «number for the actual D .

For the )matrix we find
{m

2 2
Nz( Vm)) = m.(2) + 2 (m-0(-1)
em-2 (V,60)

and

NV, )

y

2 f: Z [1+(2-Da] [1+(m-j)a]

- =1 v at [2+ (m-1)al?
) .
L fecmaete e
& a? [z+(m-1na]?
- _om [_'a’('m~’-2rn’+11’m+2)+€am(3n'1-1)+f2] (v,61)

122 [ 24 (m-1Ha]?

Thus the number will be

Nb ( V ) 1 m [az(m"—zmz-c-nm.,z)—&éam(3rn—f)-,-12:](6m-z)
tm) m 12a2 (2 + (m-nal?

{3m-1) [Qz (m3 . am?ettmae2) 4 6am[3m-1)+12]

602[2-;-(771-4)&]2

(v,62)
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becoming infinite when o is zero, or when q = - .(.._7"27 . This seems

to be a measure which can be applied with ease, and which does point to any
undesirable magnification in the inverse. The programming involved, once
the approximate inverse is obtained, is trivial. This measure is therefore

to be recammended.

Vme L4  Again for a Fuselage we write

mb (D) ‘:‘mé(DT)‘-"mB(D,-)

(v,63)

= (p-2) (t-3) on ( 5,,—) 'm( Dr—!)

The programming work necessary to obtain the maximum value in a matrix is

again standard,

In order to apply this second measure to the Vm matrix,
we need the value of the maximum elementsin v and V“'
m

»”

m (V) = 2 « <
, (v,6k4)
= (1+a) a > ’
-1 -1
The meximum element of -1 is Vn« - for wm even and v \ wa foOr
m 3’2 5T

m odd.

Thus for -n even

-1 s (T -a][ 1+ (m- F)a]
e (Vm) ! Nell

al2 +(m-1)a]

[2+ (m-2)a][2+ma]

4al2+rstm-14a)

(v,65)



and for ™ odd

o (1) 2 L (F el (- %) ]

al2+ (m-1)a]

C2+(m-1)a] [2+4(m-1)a]
4af[z2+(m-1)aj

4 a

From these we obtein the following table for -~m ( V)

So whilst we see that when @ approaches zero, the 7?7 —number

2

becomes infinite, it is not the case wvhen @ is equal to - 77

but becomes, on the contrary, very small, even equal to zero for  odd.
ﬁespite the fact that this result is of little use to us physically,
it shows a weakness of the method, namely that it does not always detect

a singularity. It is therefore not to be recommended.

Vee S The Goldstine « von Neumann Measure

This measure is nothing really but the ratio of the highest

[2+(m-1)a] (v,65n)

m & Vm) a 1 a > |
m even m[2+(m-2)aj[2+ma] (1+a)m[2+(m~z)a][2+n_1a]
20[2+(”1")Q] 44[2+('m-1)a_]
(v,66)
m  odd m[2+(m-a)a] (14a)m[2+ (m-1)a]
24 40
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to lowest eigenvalues of the matrix. As described under (V-d 6) & guess can
be taken at the dominant eigenvector and eigenvalue of the D of a
fuselage by considering the actual or Ersatz Dv_ « Although this may lead
to an adequate guess for the eigenvector corresponding to A

the reliability of a guess for |\ is very doubtful and has to be verified.
It might be, however, reasonable to assume that it will be mainly determined
by DL.|. D‘7 , S0 the application of our procedure to obtain an
appropriate inverse is not to be recommended here. On the other hand, it is
perhaps Jjustified to discuss this proposed measure, It is, of course,

true that this ratio is significant. If the eigenvectors and eigenvalues

of a matrix A are respectively

VooV, Ve Vo VL

and

2 S

then the eigenvectors of the inverse A" will be the same, but the
eigenvalues are, however, the reciprocals of those of the original matrix.

We know that we can then write

A

]
M3
pol
§
<

-

-~
n
a

and

>
] ]
.Mi

¢
V; V (v,63)

~,
“
-
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t
In Eqn. (V,67 ) the term A, V1 V1 is the most dominant and that
of A, Vm th the least significant, and probably appears only in the
last few figures from the right. In the inverse, the situation is reversed,
and the smaller A, is in the first place, the more significant its

. . ‘A1
reciprocal becomes in A .

What is more, this eigenvalue and its associated eigenvector
are the most sensitive to any change in the elements of the matrix. This means
of course, a greater change in A-‘. The uncertainty with this method lies
in the sensitivity of this last eigenvalue. However, if we assume that we
have the largest and smallest eigenvalues we can also safely assume that we have

the corresponding eigenvectors. We can then form

(A), = 2%V, V.. (V,69)

m

and

i

(A",

™

t
Vm Vm (7\{,70)

If we also have an approximate inverse we can form the matrix

in which the typical element
- poj A':’J' —+ 70310 (A)"‘{J‘
1"
G = smaller of -
l,J Ly a .
f - &j{o (A )‘-+ p051° (A )"‘I'J

vhere ]c number of figures used in the computation.
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This matrix gives the maximum accuracy one can obtain in the
inverse in decimal figures if we consider A, as the only determining
factor. However, for same elements the determining factor is probably
some other eigenvalue. This method can be further extended if we know
a few eigenvalues from each end of the scale and the corresponding

eigenvectors.

V-e 6 'The Factor /'

This is,of course,a very accurate measure. Applying it to the v
m

we find
(m-2) 2
(1+a
w(V,) = 2 +2) (v,72)
i ol 2+(m-10a]
The expression becomes infinite for the two critical values of o R

However, it is surprising that it gets’ bigger also very quickly with o,
due to the presence of an exponent of »» 1in the numerator. So while

the highest element in the determinant is more or less proportional

to 2™ ,the determinant itself is only proportional to m .

The increase of value here of the factor pr with increasing size

of the matrix is therefore a true indication of the inevitable sensitivity
to size which is, as it seems, a property of finite difference equations.
This criterion is undoubtedly very accurate and takes care of all cases,
The difficulty lies in the time required to compute a determinant,

which is approximately equal to that required to carry out an inversion
with one right hand side. It nevertheless is always possible to compute
an approximate value for the determinant using (/-d 7 ), provided that

due care 1is taken in the interpretation of the result. Ill-conditioning
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results due to the presence of a very small eigenvalue, and this appears

as a factor in the determinant, and is not accurately determined by an
approximate method. However, a certain indication of the diminishing

value of the determinant as well as the influence of size may still

be present, so that it may still be worth while to compute an approximate
estimate of the determinant. It may be of interest here to mention that

none of the other measures detects this sensitivity of the finite difference
matrix to the inverse of size in quite the same way as this criterion does,

with the exception of the Goldstine - von Neumann measure which cannot be

explicitly tested.

Ve T The Improvement of the Basic System in the Fuselage

The analysis of a simple framework with seven unknowns has been
worked out as an example to demonstrate the value of the following procedure,

One starts with an ordinary t)° and t>1 based on the

conventional self-equilibrating stress systems. A first solution is obtained,
and the compatibility cheeked. Afterwards the b1 is successively transe-

formed by the repetitive use of a transformation matrix r1 so that

b = b Tl (v,73)

where r1 is the ( #rF ) matrix

B 1 0.9 0 0 0 o o
0.9 { 0.9 o 0 0 0
0 0.9 1 0.9 v 0 0
ﬂ = 0 0 0.9 0.9 0 0 ‘
(v,7h)

( #x%) 0 0 o 0.9 i 0.9 0

0 0 ¢ ¢ 0.9 1 0.9

0 0 o 0 0 0.9 {
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which serves the éole purpose of mixing the self-equilibrating systems so
much together that they become more and more linearly dependent. At one
particular stage the process suddenly results in a deterioration of the
conditioning of the [) combined with an inferior compatibility check.

As soon as this appears the inferior results are fed back in again,
i.e. t)o is replaced by the calculated t) and the prccess repeated.

The method works, giving an excellent convergence to the final
correct results, However, if the ill-conditioning goes beyond a certain
point, the results can no longer be improved by the procedure. This is due
perhaps to the fact, that the representation of the physical system becomes
incorrect. However, from our point of view the procedure is only interesting
as far as it is a proof that a better ab initio approximation to the solution
helps greatly in obtaining a more accurate solution. This fact which is by
no means new, and which has been repeatedly mentioned by various authers
derives from the insignificance of the modification required to obtain the

final solution in comparison with the starting value. Thus if in
b = b, + b, X

the bo matrix is correct to seven figures, and the b1 X only to three,

the final results will only be correct to three figures if the second
T

term were of the same order of magnitude as the first., If it is /0  times

smaller, then the original accuracy is maintained.

The procedure proposed for the fuselage and problems of similar
nature, rests on the fact that [)r is the dominant part of the total E) ,
as well as that [)o(is the dominant part of the total [)o . After t)o s

b ’ f ) Do'_ and Dy_ have been calculated, a certain Dr s
1

a matrix of the type described before, is set up. Its inversion only requires
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two inversions of the order ( ™ x™M ) and ( »m x7 ) respectively, as vell

= -1
as ™2 multiplications of a matrix ( »txm ) with a scalar. This Dr
is used now in order to produce an approximation to the b and hence a

better guess at the final solution. Hence we calculate

Y = - —Dﬂ;‘ Dor (v,75)

Note that Dof and not D0 total is used. The new approximation to b R

which we call b: , 15 now obtained from
= -1
b: - ba - b1 Df’ Dof‘ (V’T6)

and this is used as a basis for another calculation of Da and then one

proceeds with the calculation as usual,

It should be noted that this method is not an iteration method.
If the results are still not satisfactory, a feeding back of the very
final results and a complete repetition of the solution is required.
If that again does not succeed one has probably to operate with double or
treble accuracy. However, it must be stressed that the nere repétition of
the inversion using double accuracy is of limited significance. If double
accuracy is required one should preferably use it right from the beginning,
i.e. already in the formation of the bo , b1and f from initial data,
which are themselves elso represented in double-length numbers. One of the
main principles of the whole philosophy of the fuselage analysis given in
Ref. { 2 ) as well as in matrix analysis in general is that the mere use of the
machine in order to do the inversion of the matrix is not correct. The machine
has to set up everything consistently from the beginning to the end. This is
not only dictated by the desirability of autamation for the whole calculation
but also extends to such questions as the accuracy required in the

computation.
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Vee 8 Accumulation of Errors

In this chapter up till now the 'inherent' conditioning of a matrix,
that is to say the maximum possible accuracy to be obtained in the inversion
of a matrix of a certain type using a limited number of figures has been
discussed. This maximum accuracy is rarély attainable, The accumulation of
errors is a very important additional factor here, which has to be considered.
The problem is of a rather statistical nature, and is, therefore, only to be
touched upon, We can here study & standard procedure for improving

-
the inverse of a matrix., If instead of A we have a matrix B such that

A B I + A (V,77)

and

A = B + B,

(v,78)

A is an error matrix, It follows fram Eqn. (v,77 )that

A(B"'BA): I

and the standard relations for the iterative improvement of the inverse are

B, = - B A

and

A-1 = B( I = A) (V,20)

Eqn. ( v,80 ) derives from the simplification that

A B

it
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It would be interesting to investigate a limiting case where the itersation

does not converge, namely when

A B (I-A)=1+ A

Thus

Az - A (v,81)

If one does not interpret the equation literally it means that
if the square of the error matrix is a matrix of the same order, then another
error is created which is equally large. This is again quite logical and
obvious, and in this case would result if all the elements of Z& were

constant and equal to £ where

€ = i% (v,82)

and »2 1s the size of the matrix [\ . Again this discussion is very
qualitative and serves merely to point out the existence of this side to the
problem. What Eqn. (v, 82 ) says in effect is that the bigger the matrix

the more accuracy is required, again a well-known fact,
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APPENDIX A

RESULTS OF FUSELAGE COMPUTATIONS INCLUDING

" COMPARISONS WITH EXPERIMENTAL RESULTS

In this appendix we present the results of the mnalysis of a
single-cell fuselage including the effects of cut-outs and modifications
together with a comparison with experimental results measured on a full scale

model at Imperial College of Science and Technology.

The preliminary Fig. (A=-i) and the two tables (A-i) and (A-ii)
give all necessary geometrical data required for the regularized fuselage.
Four different cut-out cases, termed A, B, C and D are detailed in Figs.(A-ii)
to (A-v). Since the removal of a fuselage panel results in the reduction of
the skin contribution to the neighbouring flanges and rings, the necessary

modifications are given in tabular form beside each sketch.

Following that, the actual results (Figs. (A-1) to (A-13) ) are
plotted and the experimental points introduced. These include nonna;wétresses
in the flanges, shear stresses in the panels and ring bending stressegf'*

The drawings comprise examples of the regularized fuselage as well £s~of the
various cut-out cases. Five different loading patterns are considered, and
sketches are made beside all the drawings giving the nature of the applied
loads.

On the whole, we observe excellent agreement between the camputed
and measured results. However, one éhould perhapé note that the flange normal
stresses are experimentally determined at the edge of a cut-out at two different
points which we term "I" and  "0" (see sketch on next page). The value at "O"
always shows remarkable accuracy, while that at "I" is somewhat high. This can
be explained by the presence of a stress concentration at the corner of the

cut=out. Another source of slight disagreement is the non~-consideration of



the effects of the ring lateral bending.
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135.57 "

Fig.(A=1) Geometry of the analysed fuselage




Table A-i Effective Flange Area ( B )
tation
_ 1 2 -8 9
Stringe
1 0,2295 0.2715 0.2295
2 0.0L81 0. 0962 0,081
3 0.262} 0.3373 0.2624
4 0.3630 0. 3785 0.3630
5 0.3063 0.4017 0.3063
6 0.2831 0. 3786 0.2831
( 0.3806 0.4755 0.3806
8 0.2817 0.3758 0.2817
9 0.3613 0.3771 0.3613
10 0.2831 0. 3786 0.2831
11 0.3064 0.4019 0. 3064
20 0.0L81 0.0962 0.0481

wall-thickness constant and equal to 0.0248"
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All Rings Light Rings No. 2, 4, 5, 6, 7 and 3 lleavy Rings at ends lo. 1 and 9 Heavy Ring No. 3

nginger x y § 1 A C T £ 1 A C I 3 K A o 1
1 0 23.%20 0 23.331 | 0.Lho2 0.169 O.1hh 0 23.094 | 1.359 0.484 0.394 0 23.133 | 1.435 | 0.484(0.933
2 -3.343 | 23.305 ~3.196| 22.339 " " " ~3.125( 22.613 | 1.359 0,43 0.894 || =3.137| 22.650 [ 1.435 | 0.484[0.933
3 -7.231 | 21.297 =6.961} 20,779 " " " ~5.831] 20.691 1.359 0.43L4 C.09L|| =6.352 26.72h 1.435 [ 0.484]0.933
U -13,102 16.362 =12.746| 16.026 " " " =12.57h| 15.364 | 1.359 0.L484 0.99k|| -12.602| 15.890 | 1.435 | 0.484]0.933
5 -17.681 10.208 -17.257| 9.963 " " u -17.052| 9.3hs5 ? 17359 0.L484 0.89L1l =17.0861 9.364 | 1.435 | 0.434 5.933
f ~20.721 3. 166 ~-20.252| 3.025 " " " -20.026 2.957 | 1.359 o.ﬁBh 0.89h |l =20.063 é.968 1.435 | 04841 1.502
7 =22.059 | =k.337 ~21.571| =h.h16 " " " =21.11h | =4.360 | 1.h48 0.572 1.439 (21,175 | =h.360 | 1.524 | 0.572]5.343
£ -20.628 | =11.910 -20.205[=11.665 " " " -12.196|=10.387 | 1.793 0.918 5.116}| =19.254|-10.929 [ 1.869 | 0.913|8.128
9 F1h.829 | =10.910 -1L.610|=16.4773 " " " ~-13.865{=-14.984 | 1.95L 1.030 7.788| =13.901{=15.057 | 2.031 | 1.079(8.128
10 -7.619 | =19.527 =7.506|=19.052 | " " " =T.123|=17.432 | 1.954 1.030 7.7838( -7.142{=17.510|2.031 | 1.079([8.123
11 0 ~20.h15 0 -19.927 " " " 0 ~13.262 | 1.954 1.030 7.788 0 -18.343]2.031 | 1.079{8.128
20 3.343 22.305 3.196| 22.339 | 0.ho2 0. 169 0.1k} 3.125 2é.613 1.359 0.L43L 0.894 3.137| 22.650 | 1.435| 0.484]0.933




Flange:

Fig. A-ii ‘Cut-out Case A
Station: L
|
i
I
i
S
I
—_——__—_._l
‘l T
I
Ring Stations
b 5 ‘
6 1= 0,4023 | 0.4023
A + | 0.3552 0. 3552
= 0.3552 0. 3552
+ | 0.4023 | 0.,4023
¢ = 0.1692 | 0.1692
. +]0.1692 | 0.1692
€& 7 [=To.1692 | 0.1602
g +10.,1692 | 0.1692
g ¢ [-=J okt [ o.1kb1
‘I o +]0.1308 | 0.1308
%",{ -] 0.1308 | 0.1308
= +] 0.14h1 | 0,14k
[ 6 - 003786 0030h1
B +| 0.3041 | 0,3786
7= 0.4755 | 0.4010
+| o.b010 | 0.4755
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Fig., A-iii Cut-out Case B

’4 — a—
5
6
7 e co—
Ring Stations
L 5
+ 0.3552 0.3552
- 11 1"
+ " 11
- " "
+ " [T}
- " "
+ 0.4023 0.4023
- 0,1692 0,1692
+ 1] 1"
- (1] "
._+ " 11]
- 11 "
+ " "
'é’ - " " "
o + 0.1692 0,1692
3 - | o.1hu1 0.1441
m, + 0.1308 0.1308
g’:) - " "
8 + " "
—~t
R - " 1"
+ 1" "
- ] 11)
+ 0. 1hh1 0. 1441
- 0. 3785 0.30k2
+ 0. 3042 0.3785
- 0. 4755 0.4010
+ 0,4010 0.4755




Fige A-iv Zut-out Case C
L
5
6
7
T
0,4023
" "
5 [1] 1"
A
. n 1"
b 1" ”
1" "
T 0.5023 0.54023
! 0.1692 0.10692
[1] "
1" "
5 1" n
C " "
) 6 1" "
o
2 " "
§ T 0.1692 0.1692
< y 0« 1h41 0. 1441
e, 0.1308 0.1303
g 1" 7"
E 5 " "
I 1" "
6 i "
1" 1"
T 0. 15451 0. 1501
) 0.3785 0.30L2 0.30k42 0.3042
0, 3042 0. 3042 0.3042 0.3782
B . 04755 0.4010 0.4010 0.4010
0.4010 0.4010 0.4010 0.4755




Fig. A=v Cut-out Case D
Y 5 6
3 _~J1L N N
( !
5 =
I
6 —_
, I
'-( —_ = i:: —_—
L
Ring Otations
i 5 6 7
) 0.,4023 0.4023 0.4023 0.4023
0.3552 0, 30831 C. 3031 0.3552
n " [}] 11}
5 " [1] " Lid
A " 1" " [}]
6 it i} Li] Lii
" " " 1"
7 0. h023 Cc. k023 0.4h023 0.1023
) 0. 1692 0,1692 0.1692 0, 1692
i T W w W
1] 1" 1" n
5 7 " 7" 1
C g . 1] " 1" "
o 0 W i " "
B
g,-; 1 1t " "
o T 0, 1692 0, 1692 0.10692 0, 1692
gl 0. 1441 Oc U1 0.1441 | 0.1hL1
a 0, 1308 C.1136 C.1130 0. 1300
" n 1] "
5 . " 1" 11" 17
I L] ] [1] "
' 6 _ " 1 W i
1" ”" 7" 11
7 0. 1hIn 0. 141 0. 15h1 0. 1411
1 0.3785 . 3042 0.3042 0.3042
B 0. 30h2 0.3042 0.30h2 0.3762
7 0.4755 0.h010 0.4010 G ho10
0.4010 0.h010 0.hk010 0.4755
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APPENDIX B

SUGGESTIONS FOR A NEW CLA3S OF FUNCTIONS

The following Boolean functions are suggested as a start.
The exact form of the order is left open, the idea, however, should be
the same. For some preliminary applications of the functions the reader

may consult Refs. ( L4 ) and ( 5 ).

Function 1
Gb (v,5) (va,5a)(n) —» A

This function forms a matrix of (+1)'s and zeros whose first
element has the co-ordinates (i,j). The msatrix contains »n non-zero elements
whose co=ordinates derive from those of the first by addition of the
increments (24 , Ja )e This is repeated (m-7) times in all.

Example: i
. { 1 2 3 4 5 ¢ % g

The order - s
Gb(2,1) (1,2) (4) —= A

results in the following matrix being stored in A

(2,1) (3,3) (4,5) (5,7) (Ena)

The exact form of the end word is left free, although the word
(777 777 T77 T77) has already been used for similar purposes.
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Function 2

Repeat
Rb (A) (vas, yas)(n) — B

This order causes a certain Boolean matrix stored at A to be used
to form another matrix at the address B by repeating the matrix A
~m  times, each time increasing all co-ordinates by (2as, J'_bb)
Example:

At A (2,1) (3,3) (b4,5) (5,7) (END)
Order GhA)5,2) (3) —=B

results in the following Boolean matrix being stored at 8 .,

At B (2,1) (3,3) (b,5) (5,7) (7,3) (8,5) (9,7) (10,9)
(12,5) (13,7) (14,9) (15,11) (END)
Although the result of this particular operation is accidentally sorted,
an automatic sorting is recommended after such a formation order. This yields

a simplification of programming for subsequent functions.

Dimensions and Numbers of Entries

We observe at this stage that the dimensions of the Boolean matrices
have not heen mentioned in the orders. On the other hand we may state the
dimensions of any formed matrix, which are then stored in a heading preceeding
the matrix. This heading may also include the number of 'ones'. This would,
of course, be calculated automatically by the code as it forms the Boolean

matrices and be used to allocate storage space.

These preliminary ideas on Boolean matrices are to be expanded in & -

subsequent report.
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APPENDIX C

STANDARDISED FORMS FOR ORDERS
AND SOME FURTHER REQUIRED WEW FUNCTIONS

\

Introduction

As a basis this work assumes the existence of a super-matrix scheme
which operates with sﬁper-matrices. Such a matrix scheme is being developed
at present by the "Rechengruppe of the Institut fiir Statik und Dynamik
der Luft-und Raumfahrtkonstruktionen" in Stuttgart.

However, since this work should be presented in a general logical
form, which can always be easily translated into such a scheme, whatever
final shape the orders assume, certain standard forms for matrix instructionms

are given in which the programmes may be written. (See Chapter IV ).

On the cther hand, since a successful compufer language is the
result of close co-operation between the systems and applied programmers
of whom the latter will eventually use the library for the solution of his
special problems, it is always one of the results of programming a task
using the camputer, that certain suggestions are made which result in
alterations to the computer language so as to render it more powerful for
dealing with the problems in hand. So, in the last chapter, we find some
suggestions for new functions dealing with Boolean matrices. This type of
matrix first arose during the analysis of a wing by the displacement method
(see Refs 4,5 ). However, at that time, the function of these matrices and thei:
use to perform certain operations was not handled in a sufficiently
elegant manner; due to the still experimental nature of the programmes.
These matrices proved further to be of great help in a variety of problems

hardly related to one another, for example, for modifications and cut-outs
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in a fuselage, and in plasticity problems. This type of matrices is also

used as identification matrices for example in the displacement method.

The suggested functions simplify greatly the formation and handling of

such matrices, and reduce the operations to their basic mathematical
equivalents, The description of regular patterns is easily and logically accom-
plished, the number of orders required to form a pattern depending upon
its'dimension'. Thus a one-dimensional pattern is formed in one order,

a two~dimensional one in two orders and an 7 -dimensional one in = orders,

Different patterns can be superimposed through a simple addition.

Apart from those standard Boolean operations, scme new functions
which have been found necessary during the calculation, are introduced and
described where suitable , although their effect is obvious from their use
in the various programmes.'Scme of them do have a definite mathematical
significance, others have none and are only there in order to overcome the
unavoidable inflexibility accompanying the autamatic nature of the super code.
We do believe it possible to extend such a scheme to include functions which
enable us to deal with speéial classes of problems. It is, of course, also
obvious that these functions do not occur in the part of the programme where
purely mathematical computations are being carried out, but rather in parts
where the basic matrices are being formed. In the case of a problem like
the fuselage analysis we must repeat that this part is complicated to
programme and requires more subtlety than the straightforward computations
once the basic matrices are there. This can easily be verified by inspection

of the programme described in the main part of this work.

It must be mentioned also that the suggested form of the orders
is mainly based on a generalization of those of the Pegasus matrix scheme,

since they are in our opinion clear and unambigious.
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Representation of the Matrices

The most general way of presenting a matrix of the order mA x nA
stored at address A is
(A, mA x nA).

A uniform super-matrix of the super order MA x NA composed of sub-matrices
all of the size mA x nA is represented by
(A, MA x NA, mA x nA).

A special case occurs when a matrix is square., Then only one of the

dimensions need be mentioned, e.g.

(A, mA) is of order mA x mA.

(A, MA, mA x nA) is a uniform square super-matrix
with rectangular sub-matrices.

(A,MA x NA, mA) is a uniform rectangular super-matrix with
square sub~matrices.

(A,MA, mA) is a square super-matrix with square
sub-matrices.

A diagonal matrix will be denoted by an inclined stroke after a
single dimension. Thus the following matrices or uniform super-matrices

are fully or partly diagonal

(A, mA/)

(A, MA/, mA x nA)
(A, MA x NA, mA/)
(A, MA/, mA/).

With a diagonal matrix it is usual to store only the diagonal elements.

However, this is a matter of internal organisation of the code.
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Another special case is the scalar matrix. Here only one element

is stored, let us say, in address A. The matrix is then denoted by
(A). or (A,( ) )

The exact dimensions are always interpreted according to the

operation and the other matrices involved.

Applying the same for super-matrices, the uniform super-matrix
(A, MA x WA, ( )

is a rectangular super-matrix whose elements are scalar matrices.
So, whereas the super-dimensions are fixed, the dimensions of the sub-
matrices are interpreted so as to suit the operation and other matrices involved

in 1it.

The matrix
(A, (), mA x nA)

is a scalar super-matrix with an ordinary rectangular matrix as an element.

The last special type of matrices are the Boolean matrices.

In this work they are always denoted by placing a " b " before the
address, €.ge.
(bA, mA x nA)
or : (bA, MA x NA, mA x nA)
or (bA, MA x NA, ( ))

or (bA, ( ), mA x nA)



The Functions

We now represent a complete list of the functions assumed to be
present in the matrix scheme. The general form of the order is always given
and details of operation only when necessary. Opecial classes of matrices,
e.g. diagonal,scalar, will only be used whereever it is necessary to indicate
a special use. As stated before, some of these functions derive from the
Pegasus scheme, sane are based on the idea of a super-matrix code as being
developed in the Rechengruppe and a few of these are again a result of a
co=operation with systems programmers. Other functions derive, however,
mainly fram the fuselage problem, but can possibly be used for other problems

as well.
1) Transfer matrix to another place

(A, MA x NA, mA x nA)—C

2) Add and Subtract

(A, MA x NA, mA x nA) + (B, MB x NB, mB x nB)—=C

3) Multiply

(A, MA x NA, mA x nA) x (B, MB x NB, mB x nB) =

4) Divide

(A, MA x NA, mA x nA) ~' ( B,MB x NB, mB x nB) —=C

5) Transpose

TR (A,MA x NA, mA x nA) —=C

6) Clear a matrix (form a zero matrix)

CL (A, MA x NA, mA x nA) —e ¢
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Conditions which must be satisfied in the various operations are
obvious and need only to be mentioned when necessary. For example, we give

operations in which an actual matrix is used as a "scalar"

(A, (), mA x nA) x (B, MB x NB, mB x nB) —»C

where nA = mB, and the matrix A 1is interpreted as (A, MB x MB, mA x mB),

and so one.

We need still the following functions in order to facilitate the

handling of individual elements.

7) Extract Element

EXEL (i,j) (B, MB x NB, mB x nB) —= C
This will cause the sub-matrix (Bij’ mB x nB) to be extracted and stored

at C, Also
EXEL (i,j) (B,mB x nB) —C

will cause the element Bij to be stored at C.

8) Extract Diagonal Sub-matrices

EXDISM (A,MA x NA, mA x nA) —C
where MA = WA,

A diagonal super matrix composed of the diagonal elements of A will be

stored at C.

9) Extract Diagonal Elements

EXDIEL (A,MA x NA, mA x hA) —e=
where MA = NA, mA = nA.
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A diagonal super-matrix (with diagonal sub-matrices) will be formed from the

diagonal elements of the matrix A.

10) Decompose into Elements
DEC (A, MA x NA, mA x nA) —= C

The matrix will be decomposed into its sub-matrices which will be stores at
C in a prescribed manner. The super-code might note their addresses,
and give them names e.ge Al,1 , A1,2  ceeesessasAMA,NA if they are to be

stored by rows.

11) Recompose from Elements
REC (A, MA x NA, mA X nA) —=C

This is the opposite of(8). According to the specified dimensions of the
uniform super.matrix, the computer will extract the sub-matrices Aij starting

from the address A, and store them as a uniform super-matrix in address C.

Then there are functions to be carried out only on the sub-matrices,

as for instance

12) Transpose Elements

TREL (A, MA x NA, mA x nA) —= C
This will result in a matrix

(Cy, MA x NA, nA x mA)

i.e. the elements of which are those of A, but transposed.

13) Sine of Elements
The order SEL (A, mA x nA) —e C

will result in a matrix of the order (mA x nA) stored at C, whose elements

are the sines of the elements of A.
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The order SEL (A, MA x NA, mA x nA) —— C
can be interpreted in different ways. Either the sines of the individual
elements are calculated, or the sines of the sub-matrices. In the latter case,

it would also be logical to have the order

13a) Sine of Matrix

SIN (A, MA x NA, mA x nA) C

which opens the door to a completely new class of functions which can be
used in the solution of more complicated problemé than linear systems of

equations,
Similarly we have
14) Cosine of Elements
CEL (A, mA x nA) —=—C
and CEL (A, MA x NA, mA x nA) —=— C
also

1ha) Cosine of Matrix

COS (AMA x NA, mA x nA) —= C

15) Square Root of Elements
SQEL (A, mA x nA) — C

and SQEL (A, MA x NA, mA x nA) —=C

These are to be interpreted as (13) and (14). Correspondingly,
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158) Square Root of Matrix

SQRT (A, MA x NA, mA x nA) —=C

Naturally in(13a), (14a) and (15a) the matrices must satisfy certain
mathematical conditions, e.g. be square. In (15a) they must also be positive

definite.

After this set of functions cames another one which aims at

facilitating the manipulation of matrices as well.

16) Modulus of Elements
MODEL (A,MA x NA, mA x nA) —=C

The matrix C will have as elements the moduli of the elements of A .

17) Divide Elements
DIVEL (A,MA x NA, mA x nA) (B,MB x NB, mB x nB) — C

where MA = MB
NA = NB
mA = mB
nA = nB

This is an element by element division of the matrix A into B

18) Divide Non-Zero Elements

DINZEL (A,MA x NA, mA x nA) (B,MB x NB, mB x nB) —*C

Similar to (17), only that zero elements are not divided, instead the

resulting element is made zero.
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19) Join Horizontally

JH (A, MA x NA, mA x nA)(B, MB x NB, mB x nB) —= C
This can be represented by

Naturally we must have that MA = B and mA = mB (also nA = nB for a uniform

super-matrix).

20) Join Vertically

JV (A,MA x NA, mA x nA) (B, MB x NB, mB x nB) — C

i.e. C _ A
= B .

Again we must have NA = NB and nA = nB (also mA = mB)

21) Join Diagonally

JD (A,MA x NA, mA x nA) (B, MB x NB, mB x nB) c

viz. C - l—r ‘l,

The only conditions necessary, if we want a uniform super-matrix

again, are that mA = mB and nA = nB.

The last three functions serve to merge two matrices together and
the opposite to these are functions which split a uniform super-matrix into

two separate ( super)- matrices.

22) Split Horizontally

SH (A,MA x NA, mA x nA) (NA1, NA2) —= C1, C2
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Diagrammatically

A

SIC

where naturally enough NA! + NA2 = NA,

23) Split Vertically
SV (A, MA xNA, mA x nA) (MA1, MA2) —— C1, C2-
where

MA1 + MA2 = MA

A L

24) Split Diagonally - only applicable for diagonal matrices
SD (A, MA/, mA x nA) (MA1, MA2) — = C1, C2

where

MA1 + MA2 = MA,

viz.

Then we need a few orders to re-partition a matrix so as to render

an operation involving another matrix possible.
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25) Re-partition A as B
REP (A,MA x NIA, mA x nA) (B, '3 x NB, mB x nB) —» C
we need to have

MA x mA = MB x mB

and

NA x nA NB x nB

The matrix in A will then be re-partitioned in the same manner as I.

26) Re-partition Columnwise
REPCW (A,MA x WA, mA x nA) (B,MB x NB, mB x nB) — C

If(NA) (nA) = (MB) (mB), the matrix in A will be re-partitioned columnvise
so that one can pre-multiply the matrix in B by it. Matrix B need not

actually exist,

27) Re-partition Row=wise

REPRW (A, MA x NA, mA x nA) (B, MB x W3, mB x nB) —»C

Again if (NA)(nA) = (MB) (mB), the matrix B will be re-partitioned row-wise

so that it can be pre-multiplied by the matrix in A.

Then we have scme orders to convert super-vectors into diagonal

super-matrices and vice-versa, thus

28) Diagonalize
DZ (A, MA x 1, mA x nA) —=C

or DZ (A, 1 x NA, mA x nA) —=C



result in the matrices

( Cy MA/, mA x nA) or (C, NA/, mA x nA) respectively

29) Diagonal to Column Vector
DCV (A, MA /, mA X nA) —=C
gives

( C, MA x 1, mA x nA)

30) Diagonal to Row Vector
DRV (A,NA /, mA x nA) — C
yields

( ¢, 1 x NA, mA x nA)

And then similar functions to diagonalize the elements of a super-matrix,

or vice versa if these element sub-matrices are vectors,

31) Diagonalize Elements of Row or Column super-matrix
DZEL (A,MA x NA, mA x 1) —=C

or DZEL (A,MA x NA, 1 x nA) —— C

result in the matrices .
( ¢, MA x TIA, mA/) or ( C, MA x WA, nA/)

respectively.

32) Dieagonal Elements to Column Vectors
DELCY (A,MA x NA, mA/)—= C
gives

( C, MA x HA, mA x 1)
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33) Diagonal Elements to Row Vectors

DELRV (A, MA x NA, nA/ ) —C
i.e. ( C, MA x NA, 1 x nA)

34) Obtain Eigenvalues and Eigenvectors
EIG (A,MA x NA, mA x nA) —— VAL, VEC
where

(MA) (mA) = (NA) (nA)

The full matrix of the eigenvectors is formed and stored at VEC. It is of the
order, say (MA x NA, mA x nA). The corresponding matrix of eigenvalues of

order, say (MA/,mA/) is placed at VAL.

35) Multiply and Keep Maximum

MKMAX (A,MA x NA, mA x nA) {B, MB x liB, mB x nB) —— C
This is similar to an ordinary matrix multiplication. However, not the sum of
the products of the elements of the rows of A with those of the columns of B

is stored in C, but rather only the numerically largest element occuring in

each summation.

36) Diagonal Normalisation
DIANOR (A, MA x NA, mA.x nA) ——= C
where

MA = NA and mA = nA

This is best described by giving the typical element in C, viz.

C I-—A -
! i Ai Ay
C:r = +1

where

t
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Referring to Appendix ( B ), which includes the two typical orders
for the formation of Boolean matrices, we now define the corresponding
orders in form. Any other operation involving them - say multiplication
with an ordinary matrix or of two Boolean matrices - is written in the
normal way. To distinguish, however, between a Boolean matrix and an
ordinary one, we preceed the address of the former always by a "b".

The orders for the formation of the Boolean matrices are

37) Generate Boolean Matrix

Gb (1,3) (ia 4 ja ) (n) —— ¢

38) Repeat Boolean

Rb (bA) (i,3) (n) —= ¢
39) Shift Origin of Boolean Matrix
SOb (bA) (i,] — C

In addition to these we have a group of orders aiming at facilitating

the inspection of a matrix through a minimum of output.

L0) Matrix Spectrum

MASPEC (A,MA x NA, mA x nA) (A,B) ( A +)

or MASPEC (A,MA x NA, mA x nA) (A,B) ( A x)

In both cases the machine prints out statistical information about the order

of magnitude of the elements of the matrix between the limits A and B at

intervals O . To demonstrate this, we give the expected output in both cases.
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In the first case

MASPEC (A) +

Limits No. of elements
ALALy] L A+ al
A+A<Aij</\+2 a2
A+2A<Aij\<A+3 ' a3
B-n <aij B ap

Tot al number of elements examined = a

In the second case

MASPEC (A) x

Limits No. of elements
A < Al £ ADQ al
AN < AL L AN a2
A8< aj g Al a3
pa'< Ay < B p

Tot al number of elements examined = a

lu1) Column Spectrum of Matrix

This is the same as before, only that the information is given in detail

for each column. Thus

COSPEC (A,MA x NA, mA x nA) (A,B) (A& +)

results in the output



NO. DF Col.
N {2 3 4 (Na7,)
A<A‘J<A*A a1 b1 C-/ 0(1 21
A+a <A Avan Qs b, c, ) 2,
A +2s <Ay A aj b, C, o <3
B-0<A;< B o, T:P c, ol LB,

The output of the order

COSPEC (A,MA x NA, mA x nA) (A,B) ( A x)

can be written down correspondingly.

42) Row Spectrum of a Matrix
ROSPEC (A,MA x NA,mA x nA) (A,B) ( A +)
or ROSPEC (A,MA x NA, mA x nA) (A,B,) ( A x)

Exactly as in 41), only information about rows is printed out.

43) Plot Columns of Matrix

PLOCOL (A,MA x NA, mA x nA) (D,MA x 1, mA x 1)
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The element of the matrix of A will be plotted as co-ordinates measured

from bases lying at distances specified by the vector matrix D.

The scale

can be chcsen by the machine itself, and always given beside the plots.
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APPENDIX D
THE FORMATION OF SPECIAL MATRICES

In this appendix various methods will be discussed by which some
of the important standard matrices can be generated on the camputer.
In the described al orithms, the standard form of instructions described
in Appendix ( ¢ ) will be used. Thus we proceed to the formation of the

various matrices.

Ep ’ 88_ EC

The Formation of

+ agld
Gb ( 1,1) (2,1) (p=1) —— ELP
Gb ( 2,2) (2,1) (p=1) —— EIM

(bEL+ , 2 (p=1) x p) + (bEL- s 2 (p=1) x p) — EL

It will be assumed that Boolean matrices can either be used
as simple matrices, or as super-matrices with sub-matrices which are either
O or 1 , and have a size automatically adaptable to the sub-

matrices of the other matrix involved in the operation.



The Formation of L+ and L—

In an exactly similar fashion, the formation of L + 1s carried
out by a single order
Gb (1,2) (1,1) (p=1) — P

similarly for

Gb (1,1) (1,1) (p=1) M

Ia.(n,1) Ia<n,t)

The Formation of the Matrices and

cb (1,2) (1,1) (n=1) —— IA %

Gb (ny,1) (=y=) (1) ——= IA=*=

(bIAx ,nxn, ( )) + (bIAxx , nxn, ( ))——TIA(n,1)
It must be mentioned that the matrix Ia("t) is exactly the same, since

the elements of the resulting matrix are assumed to be scalar matrices adaptable

to the size of the matrices otherwise involved.

The Formation of €. and S,

Each is formed as a result of & single order. Thus
Gb (1,2) (1,2) (p=1) — = ETM

and Gb (1,1) (1,2) (p=1) —— ETP

The Formation of E'"

Gb (1,2) (1,1) (p=2) ——» EM

The Formetion of aﬁ" and Bct)

These again are straightforwvard



The Formation of

€,

l

The Formation of (-
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Gh  (1,2) (1,1) (t=1) —= C (t) *

Gb  (t,1) (=y=) (1) —— C (t) *=*

(bC (t) % , t, ( )) + (bC () x» ,t, ( )) —=C (t)
TR (bC (t), t, ( )) —cCc (t) t

Cb (1,1) (1,1) (t) —=1 (t)

(bI (t), t, ( )) - (bC (t) t, t, ( )) —> ALF (t)

(b (t), t, ( )) + (bC () t, t, { )) — BET (t)

¢ (1,2) (2,2) (p=1) —= Efl1
Gb (2,1) (2,2) (p=1) — Ef12

(bEf11, 2 (p-1), ( )) + ( bEf12 ,2 (p=1),( ))——Efl

€,

..

and

Gb (2,1) (2,1) (p=1) —— EBIN

b (1,1) (2,1) (p=1) — EBLP

(LEBIN, 2(p=1) x (p-1), ( )) + (bEB1IP , 2 (p-1) x (p=1), ( )) ——EBl

The Formation of Z‘t)

It is evident here that the matrix can only be formed by a

standard loop. Thus we have to use symbolic orders for counting which can be

easily translated with any other machine.

tt)

tw




Al =1
nl =t
(-——-a) Gb (A1,1) (1,0) (n1) —— SIGDEL

(bSIG, t, ( )) + (bSIGDEL, t, ( )) — SIG

A nt . =ni =1
At = AL + 1
L . Jump to (a) if n1 # 0
Stop ( Z ready)

2,

The Mat rix

In order to form this matrix automatically we have to revert to a
certain stratapgem,which we can best understand after considering the previous

steps in detail,

First of all we observe that the matrix Q of order [t x(t - 3)]
can be split horizontally in two separate sub-matrices QZ and Qlc
(see Ref, ( 2 )) of order [t x (s-1)) ana [t x (c-1)] respectively.

S and C are given by

t even t odd

C t/z (£~1)/2 !

S (t-2) /2 (t—=1)/2
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when a flange lies on the y-axis. There is an alternative case when no flange
lies on the y-axis, but apart from being different only in detail, it is
recommended always to place the first flange on the y-axis, since this can

always be done, for the sake of simplicity of the programme.

In order to avoid having two alternatives in the calculation of
¢ , the register containing the flange number t as a binary integer
is simply shifted logically one place to the right. If ¢+ is odd, the
least significant bit simply disappears and the result is the same as

subtracting one and then dividing by two. This is best seen in the following

example
t=14 (even) t=31 (odd)
ee o bid o EEEREEEX)
oiooo&“o_': oéooll‘lﬂLostbit
. — — - ~ -
14-0
—2—_= 7 —-—'—3]2-1 = 15

In the case of s , we subtract one first from the register to obtain (t-1) |

and then shift it once to the right; thus, for the same number of flanges

oo o d b b o] t-14 eo bbbl ] =n
oo o bdboed] t-1:=13 oo dd b b ta1 =30
- Lost bit
AFTER . '(,_ -
SHIFT ojoo o“o‘_jl oioo“‘l_o_‘:
P ~— ——————
Mi-_—s 3-1;]-—0-:15



- 261 -
Having established ¢ and s for this case, we give it also briefly

for the case when no flange lies on the y-axis. Thus

t evenu t oold
c (t-2)/2 (t-1)/
s t/2 (t-0/2

So ¢ 1is formed as s 1in the previous case and vice versa. And now,
in order to establish Q
l

Q:[Q Q.

we have to form the two camponent sub-matrices.

The procedure is similar for the two matrices, and therefore
it 1s enough to describe the formation of le in detail.
The matrix Q can be written as

15
st = [sz S, ... S. Ss]

where
S - { /5(,“ (](_1) (?_T'T_(“) } k :1—>t
Y - t
The typical element of Qz will then be
S

lel'J' = o 2T (2_;)(1+1)

.th . . .
In order to form the j— column therefore, and considering the diagram

showing a cyclicly symmetrical fuselage with the circumference divided into t



intervals, we find that we have to take the 'sines' of every (j+1)“

angle going around the fuselage in a continuous cyclic manner. For example

,le.. = S

. o= " o C2T (. . 2T oo,

Aggu.«)u;,)g
<
As we gsee, we have to go around the circle many times. Since

it is obvious, however, that all the values that could possibly be chosen

must coincide with one of the basic values

S~ 0 , /Ol« (%g_’.-) ) pm 2,((35’) - A""‘ (i"'),(;-z_z_zr ,

we have only to form these and simulate the cyclic symmetry by repeating
them as many times as necessary to cover the "swept region" and then

choosing every LJ¥1)ﬁ'element i.es t elements in all.

Having thus stated our procedure in general, we describe it now

in the form of precise logical instructions.
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(a) We form the matrix

p - { o +~1 -2 3 ~-------+(t-1)}

Ktﬂﬂ)

Since we have already described the formation of the(Boolean) matrix

Z ) Ve immediately find that

P = [Zm- I,| e.

b) Multiplying p with the scalar 2n/t which has to be stored

beforehand, and then taking the sines of the elements we obtain the column

matrix
a i |
S, = S'NELi (t)pj
c) In order to obtain the column ; of the matrix Q?s we first repeat the
column S, (+1) times by a simple post-multiplication through a unit

row of the order (1 x(3+1)

k

S = s, €

1€
(talfe1)) (tx1)  (4x() 1))

d) Choosing every ()+ UH‘ value 1s done as followse- First of all the
inflexibility of the representation of & matrix by the automatic matrix scheme
has to be overcome by using the special function mentioned before to &ecompose
the matrix in its individual elements, that is to re-consider it as a string
of numbers 1« () +«1) long. Assuming that the matrix is stored column-wise,

it is then 're-composed' again, without changing the order of the numbers,
into a (y+1)xt . In effect this means the string of numbers representing
the sines of the angles taken around the circular cross-section (J'+7) times,
is divided into t groups each (y+1) long. In other words, the first word

in each group is one of the sought valuesand the first row of the new matrix



- 264 -

is our required column. To obtain it explicitly, we have then to transpose
the new matrix, and then extract the first column of the transpose. Moreover
we have to add the column in the proper place in the le . This is best
done by post-multiplying by a Boolean matrix of the order (Je) x 4]

vhose elements are all zero except for the element (1,4 ) .

e) Starting by clearing the matrix le and then repeating the
operation described under{d) S times in all, adding the result each time

to le » We finally obtaln our matrix.

f) For Qlc » exactly the same procedure is used, only using C

instead of s and taking cosines of the elements instead of sines in step (}) .

The progromme can now be written symbolically as

Formation of le

Input (+1) —_— N

(ewp) —=F
-~ 8IG

I (¢)

) T I
Programme Gb (1,1) (1,0) (t) —« 3Be
(N) x (bBe, t x 1
(bSIG, t) - (bI,t
(bDyt) x (e,t x 1
(P) x (sP, t x 1) ——= q
SEL (Q,t x 1) —— 81

)
)
)
)

Jj =1
CL (OMIS, t x(s = 1))——~ OMIS
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—— a) Gb (1,1) (0,1) (j+1) — ejit

(S1, t x 1) x (vejt, 1 x (j+ 1))— sle

DEC (sle, tx(j+1) — sled

REC (sled,(j+1) xt) —= sled x

| TR (sled * , (j+1) x t) —= st

Gb (1,§) (-,=) (1) ———C

(st, t x (j+1))x (bC, j+1 x (s=1)) —>— OMSDEL
(OMLS, txs — 1) + (OMSDEL, t x s = 1) — OMLS

j=3+1
L—"— Jump to a) if jJ # s
End
This is then also performed for Qw , and the two sub-nmatrices are

jJoined to give Ql .
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In this appendix we represent the results of a simplified computation

to establish the accuracy of the statement that the inverse of a dominant DY_

gives a reasonable approximation to the inverse of the total D

For this purpose we consider a uniform cylindrical four boam fuselage with

twelve equally spaced uniform rings.

D total

The total

D, + D, + D,
A 2 A<D,

Goxio)

(10 x10)

(1o x10)

is given by:

If we, just for the sake of obtaining a qualitative answer,

neglect the Dz

» and vary the

diagonal elements in the inverse of

the following table:

Qg , comparing the values of the

K waor A+LA

, We obtain

Ratio D, D%,
/Xq D:'n + Dq:: D;;s +D‘;;5
0.90 1.11 1.25
0.081 1.012 1.029
0.0073 1.0011 1.0027
0.00066 1.00010 1.00024

We observe that when the

those of the

D. +D,

ratio of the elements of the

D, o

is about 100:1, the error becomes very small. This is

usually the case in a fuselage. The argument can also be extended to include Dz .
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