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SUMMARY 

This work deals with the application of the specialised 

Matrix Force Theory for the analysis of fuselages to an electronic 

digital computer. The problems associated with the full automation 

of the procedure are described and solutions suggested. A particular 

feature is the generalization of simple matrix equations at particular 

fuselage stations into super—matrix equations involving the whole 

fuselage. The automation of the cut—out and modifications procedure 

is fully realised for this type of structure. 

Computational problems inevitably associated with the solution 

of a large structural system are also discussed. The results of the 

analysis of a fuselage are attached. Suggestions for special functions 

are made as well to facilitate the programming for a large computer. 
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INTRODUCTION 

The present thesis forms a natural part in the evolution of the 

matrix analysis of structure initiated by Argyris in Ref. (1) and 

especially refined with respect to fuselages in that author's textbook 

"Modern Fuselage Analysis and the Elastic Aircraft", Ref. (2). Our own 

contribution to this work involved the important aspects of the 

verification of the theory, which necessitated an enormous amount of 

experimentation with electronic computers and the complete solution 

of many examples including two elaborate fuselage structures both with 

cut-outs and modifications. As a matter of fact, the matrix theory 

of fuselages and the programmes upon which the major part of this thesis 

is based developed inevitably side by side. The results of the programme 

were used as important illustrations and elucidations to the theory 

so that by the time the analysis was completed, the first version of the 

fully automatized programme for the Ferranti-Pegasus Computer was available. 

This code was capable of analysing an arbitrary single-cell fuselage 

following the input of the minimum amount of logical and numerical data. 

The maximum capacity of this programme covered fuselages with up to 

3o flanges and Ito ring stations. A further development was an automatized 

cut-out and modification programme which can handle cut-outs and modifications 

with up to 5o stations, again with a minimum of input data. 

The development of this programme, and that of a further improved 

version suitable for a larger computer is based upon many other developments. 

On the one hand there was progress in the Matrix Force Method, particularly 

in the application to a fuselage type of structure; on the other hand 

advances in the 'software', involving a more ambitious and refined matrix 

code as being developed by the "Rechengruppe der Luftfahrt, Institut fur 

Statik und Dynamik der Luft- und Raumfahrtkonstruktionen" in Stuttgart. 
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In between comes the progress in structural software, which is the domain 

of the "applied programmer", or in this case, the engineer who uses the 

theory, which must be essentially suitable for programming on an electronic 

computer, as well as the available software, (in this case, the advanced 

and refined matrix interpretive scheme), in order to write the actual 

programme used to solve any one, or a class of structures. 

To write a direct programme for solving a particular example using 

a given theory and an available computer library might be quite an intricate 

operation, but it would embrace a certain creativity only when full co-operation 

between theory, applied programmer and pure (or systems) programmer were 

achieved. In order to understand the relation between the three, we might 

state that whereas the theoretical part must be written so as to be suitable 

for programming on a computer, the software programmer prepares a certain 

library which would be useful for the applied programmer. The applied 

programmer then has his first function as a bridge between the two parties. 

Thus he might influence a choice in the theory, or the introduction of new 

facilities in the computer library. There is, however, another important 

aspect to the function of the applied programmer, namely:whereas the systems 

programmer intends his general programmes for the use of another programmer, 

either pure or applied, the applied programmer intends them for the use 

of a direct user, in this case, a structural engineer. The connection between 

the fuselage matrix theory and its automatic programming, as described in 

this work, is elaborated upon presently. In some of the appendices all the 

facilities 	required by the fuselage programme from the software library 

are listed and their functions specified. The final objective has been to make 

the programme fully automatic so that the engineer can "address" the 

machine in the most direct manner and receive back information which can 

be readily interpreted. 

Having outlined the interconnection between the various members 

of the team involved in the development of theories and programmes suitable 



for the numerical analysis of complex structures,- we discuss now the 

development of the Matrix Force Method and the programming connected 

with it. 

In the original work of Argyris (Ref. (1)) giving the Matrix Force 

Method in its basic form, including the cut-out technique - though not yet 

the modification procedure which is described inter alia in Ref. (3) -

we find the basic theory to be of a very general and simple nature; 

a sign of its intrinsic value and extreme flexibility. In a way, it has 

been shown that the real problem in analysing a regularized continuous 

structure can be reduced to the following steps 

(1) The idealization of the structure. 

(2) The formation of the basic matrices bo  9  b1  and f . 
(3) The insertion of these matrices into the very simple equation 

	

bo  b, 	f b,) 	 f bo  
to obtain the stress distribution in the structure and following that, the 

the flexibility matrix 	F from 
F 	- b: f b - b: f b. + 	f 	f 13,)1b,1 bo  

Fo 	- b: f b, 	f bi)1 	f b. 
The second problem, i.e. that of modifying the stresses to represent 

the effect of cut-outs and area changes, can be split into two parts, 

(1) The forming of the basic matrices required, namely 

bik Ithe rows of the b  matrix corresponding to the elements affected, 

bar), b 2r 

	

,the corresponding rows of the 	matrix for secondary redundancies, 

bh ,the corresponding rows of the b matrix, 

tea, ,the matrix of the flexibility difference in the modified elements 
of the structure. 



(2) The insertion of the above matrices into the standard equations 

to obtain the modified stresses 

b, = b + 	b, D-1 	b D-1 b:h + 	D2: b2,:+ 0 	54  [0 fl 11  

rb D21-1 bib 	b,:. + kpz: 	fc,i) is, „ 	"4  

and 

F 	+ 	bi,D) b,:+  box b,,,:+18 	}-tb, 
eh 

As can be seen the set problem is indeed a simple one thanks to 

the suitability of the matrix language, and hence the basic theory, for this 

type of problem. Indeed the whole philosophy of the original work in Ref. (1) 

was centred on the idea that a matrix orientated analysis and the electronic 

computers were an ideal and powerful combination. 

An important point when prcigramming for a large structure has been 

already mentioned in Ref.(1), namely the need to partition large matrices. 

Even with a large computer, such as the UNIVAC 1107, the computing store cannot 

hold more than 614 K words(K=e). The storage space inside a large computer 

is arranged in layers, each of which being larger and taking longer to reach 

than the preceeding one. The fastest of the layers, the computing store, 

is the only part of the computer where one can store two matrices, perform 

an operation on them and write the result. All the other layers serve as a 

"backing store", which is a large memory only used for keeping the information 

but not for computation. A paper by Hunt (Ref. 6 ) followed the first work 

and described some general purpose programmes for the computation of inter- 

mediate matrices such as the 	D 0 	and F ) in a continuous loop 
of instructions. 
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So, whereas the restrictions on the size of the matrices to be 

operated upon is clearly indicated, another great advantage of the 

partitioning technique is not so obvious, namely the presence of zero 

sub-matrices which can be excluded from the computation and, naturally enough, 

not stored. Here again we see one more aspect of the suitability of the 

theory to the computer. A special theory has been developed, from which 

one obtains a partitioning of the basic matrices and all relevent inter-

mediate ones according to natural physical considerations, resulting in a 

pattern of fully populated sub-matrices, the rest being zero. 

This point has been fully exploited in the book on fuselage 

analysis. A special matrix force theory was developed for a certain type 

of structure resulting in very sparsely populated b
1 
and D matrices, 

f being diagonal and treated as such. In this manner the theory is 

excellently suited to the machine and we are now left with the important 

aspect of writing a proper programme to make full use of it. Two possible 

approaches stand before us depending upon the size of the machine. If it is 

small, like the Pegasus, with a reasonably fast addressable store of 8 K words, 
one has to develop a special-purpose programme for the analysis of fuselages 

in which the pattern of the various matrices is embodied. To explain, we must 

bear in mind that in those 8 K words, a fairly elaborate matrix scheme, the 
actual programme as well as the data and results have to be stored. A set of 

addressable magnetic tape units (or in the case of a more modern machine, 

a faster backing store) is naturally enough indispensable for the computation 

and might also be used to hold the programme itself. The programme is divided 

into a large number of independent sub-programmes, each performing one 

particular specialised operation, so that only a small part is contained 

in the computing store at a time. 

This is the basis of the automatic programme which has been 

written for the Pegasus. In order to give an idea of its size, we mention 
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that the part of it concerned with the analysis of single-cell continuous 

fuselages requires about 1500 matrix instructions as well as 10 000 machine 

orders, in all about 13 000 storage places. The computing store cannot retain 

all this at one time, whereas the space required by any one sub-programme 

never exceeds about 800 words. The matrix scheme itself occupies a certain 

part of the drum, the rest being left for some standard programmes and as 

a working space; the intermediate and final results being then transferred 

continuously during the running of the programme to and from tape. 

Whilst this approach is suitable for a small computer, a super 

matrix code is the more recommendable software for a larger one. Thus, as in 

the one being developed in the Stuttgart Institute, the matrix code has 

standard mathematical orders dealing with super-matrices, i.e. matrices 

whose elements are themselves matrices. Such a scheme automatically ignores 

zero sub-matrices. It does not store them, nor carry out any operation 

which involves them. Thus the pattern of the matrix is not used to develop 

the programmes, but the one and same function in the super matrix scheme 

handles all types and patterns. A large fast machine, with a sufficiently fast 

large backing store as well as a suitable computing store can retain the 

super code as well as the programme concerned with the solution of the 

structure. The question comes now as to how the topology of the structure 

is to be utilised to simplify, standardise and automatise the programme. 

The answer to this lies in the fact which has been already 

realised namely that the actual formation of the basic matrices b. 
and 	f constitutes a considerable part of the actual solution. As a matter 

of fact, with the introduction of the super matrix scheme it becomes 

practically the main part of the programme. For any problem of considerable 

size and sufficient generality, the preparation of these matrices by hand 

is a slow, unreliable and almost impossible task. The correct procedure 
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would go even as far as to give the geometry of the structure, if possible, 

in the simplest manner, making use of any special properties it possesses 
and to leave the maximum share of the work to the computer. Although one 

finds already in Ref. ( 1 ) standard forms for the flexibilities f , 

as well as for self-equilibrating systems, the values were given for one 

particular structural unit typical of the structure concerned, without developing 

the expressions to show the pattern of the total matrices, or rather their 

major sub-matrices. This changed with the advent of the book on fuselages, 

where the patterns of the various matrices, including the D and D 0 
were discussed in detail. Thus there was a good example of the general theory 

being developed into a special one for application to a certain structural form. 

The full autcmatization of the formation of the t)0  and the b t  through 
setting up the equilibrium conditions, together with the choice of the A 

P 
matrix which controls the conditioning of the local sets of redundancies, 

and the development of the orthogonalization technique for the further 

automatic improvement of the set of equations is an ideal example of the 

utilization of the topology of the structure in such a special theory. 

By direct inversion at each cross-section one obtains cover stress-

distributions which give a unit loading resultant or a self-equilibrating 

system. The application of these cover stresses to the boundaries of the 

ring, using a standard ring matrix analysis gives the internal ring stresses 

corresponding to these self-equilibrating systems. The supplied geometrical 

data in the form of co-ordinates 	section constants and elastic properties 

are used for the computation of the 	bo  and b1  matrices, as well as for 
the matrix f 	. Data concerned with loading are used to derive a complete 

set of cover stresses in equilibrium with the applied loading fran the cover 

stress systems corresponding to unit loading resultants. The corresponding 

stress distribution in the rings is calculated using the same standard 

ring analysis. Having thus obtained our complete basic system b , as well 0 
as the b, and f , we can set up the equations in the primary redundancies 
and solve them, obtaining thus the final stress distribution in the fuselage 

due to the applied loading. 
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As mentioned before, if only a small computer is available, 

the best method is to write programmes which perform the required 

operations one by one$  proceeding gradually from one end of the fuselage 

to the other. The main part of each sub-programme is a set of matrix 

instructions carrying out a standard operation using the sub-matrices 

of a certain super-matrix, as a rule stored on tape, and placing the 

result again on tape. A loop is then set up around this Part which 

considers the pattern of the matrices involved, as well as such parameters 

as the number of flanges t 	, number of rings p and number of 

loading cases p 	, in modifying the input and output addresses of the 

sub-matrices working from one end of the fuselage to the other, knowing 

that only non-zero sub-matrices are stored. Having a large fast machine, 

equipped with a proper matrix scheme changes the picture from the 

programming point of view considerably, and the resulting programme 

is the actual one given in this work. 

Since the super-code is designed to operate on super-matrices 

directly, it is obvious that such operations as the formation of the 0 

and ()0 	solution of the equations, should be done in a single order 

from one end of the fuselage to the other, without having to construct 

a loop. 

In forming the stress matrices b. , 	b ,  1 	
and the flexibility 

matrix f of the elements one now has also to adopt this new approach. 

As a logical development of the original theory we have to assemble the 

individual equations at each station for one type of structural matrix 

* 	D and D are the matrices of the influence coefficients needed to set 

up the equations for primary unknowns Y 
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into one super-matrix equation to derive the corresponding total matrix 

for the whole fuselage in one operation. As a matter of fact, the actual 

computations have still to be broken down into basic logical standardised 

steps. Whether more than one of these steps can be put together depends 

upon the degree of refinement of the super matrix scheme. The programme 

given in this thesis is, in any case, subdivided into the individual 

operations so that it can be coded immediately into the actual language 

of the super scheme. 

As a result of the co-operation between the systems programmer 

and the applied programmer the available software will develop in order 

to suite the problems in question. Thus, whereas with a simple matrix scheme 

one has to write special purpose loops of varying complexity in contrast to 
the straightforward matrix orders with a super scheme, one has yet 

perfect control over the storage space, having allocated it oneself either 

directly or through a special programme. The super scheme, however, takes this 

part in hand, thus greatly losing flexibility. If, therefore, only functions 

of a purely mathematical nature are allowed, the result places an undue 

restriction on the range of soluble problems. A brief glance at the 

programme developed in this work shows that by far the main part is devoted to 

the formation of the basic matrices. In forming these matrices, one needs 

a considerable amount of freedom. To mention a simple example, one may 

store a column vector and refer to it later as a diagonal matrix. This may 

not always be possible with a highly complicated matrix scheme. A certain 

amount of inflexibility follows invariably as a result of automation. 

Everything has to be standardised. The solution to this dilemma lies, 

in our opinion, in the construction of the super code in such a manner 

that it is always possible to introduce new functions; in this case, 

a function which 'diagonalises' a vector matrix. These functions need 

obviously not only be of mathematical, but can be of purely logical nature. 

In this manner, a user can have a special version of the scheme containing 

a few extra functions particularly suitable for his purpose. A complete 
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list of the suggested functions, as well as all other standard ones, which 

are assumed to be contained in the super code is given. In choosing these 

functions we have to observe that they should be as general and as elementary 

as possible, so as to be also applicable in other spheres. An excellent 

example are the suggested Boolean functions, i.e. special functions to deal 

with Boolean matrices, containing only zeros and ones, which are also 

separately quoted and described in Appendix ( B ). These functions have 

proved to be of enormous value in many problems including ones involving 

plasticity, use of the displacement method, as well as those associated 

with cut-outs and modifications ( Ref;(4) ) and ( Ref. (5) 

Their immediate applicability to such widely different programmes signifies 

that they are a rather fortunate choice, and it is almost certain that they 

will still find further applications in many other problems, not necessarily 

concerned with structures, and might became a standard part of every matrix 

scheme. 

As we have said before, the most essential data are introduced 

in a form understandable to an engineer. This is an important part of 

writing a programme which can be considered as a 'structural software'. 

Extending now the arrangement to the modification and cut-out techniques 

we realize that, just as forming the matrices b. , b and 
	

f 
is the main difficulty in the analysis of the regularized structure, 

here the formation of the basic matrices bfh 9  b2). 	S and  h fAk 

constitutes the real problem. First of all one has to give the structural 

engineer the facility of specifying his cut-outs and modifications in the 

form of simple orders giving the positions of the affected elements. 

These orders have to be comprehensible to an ordinary structural engineer, 

not necessarily closely aquainted with the computer. The machine then 

accepts these orders and uses them to form logical matrices which will 

eventually be used to form the required basic matrices. In general, of 

course, a problem contains a mixture of cut-outs and modifications. 



In the case of the elements to be cut, the machine can prove, from certain 

logical considerations, whether any cut-outs are superfluous. Having checked 

this, the machine investigates whether the required modifications of the 

elements result in changes in the direct flexibility somewhere else. If so, 

the addition of the extra rows to the b 	b 2 	
S
4 

and the 

corresponding extension to 	
f 
	are automatically planned. So, by using 

the chosen form of orders, and translating them by an interpretative 

programme, forming the appropriate Boolean matrices and then using them, 

through direct multiplication to obtain the required basic matrices, the 

whole cut-out and modification procedure is fully automatized, and greatly 

simplified. The usual errors arising due to the manual calculation of the 

addresses and dimensions of the matrices, anyhow an unpractical suggestion 

with a super matrix scheme, disappear. This method has proved to be 

extremely reliable and indeed the only errors encountered were in the 

calculation of the modified cross-section properties of the rings, yet 

another proof of the advantages achieved by automation. 

A chapter devoted to the problems of conditioning is also included. 

It is best said at this stage that the question is far from being a simple 

one. It has already been discussed by many authors, who tried to define it 

and establish criteria to measure it, detect it and try to cure the loss 

of accuracy. None of the suggested measures is really satisfactory, but 

they all help to indicate the nature of the problem. Probably the best 

approach from an engineers point of view is to analyse typical structures 

with varying grid arrangements in order to study the accuracy obtained, 

including the effects of sane special cases, as with some critical relative 

ring stiffness (see Ref. (2) ), and thus establish empirical or semi-empirical 

rules depending upon the type of structure, and any peculiarities present. 

As a typical investigation,- we analyse, using the Displacement Method, 

a one-dimensional chain of flanges fixed at both ends in which all members 
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are of the same length except the first and last elements which have a 

different one. The effect of the size of the problem as well as the relative 

length of the end elements and the intermediate ones on the conditioning 

is then studied, and the various criteria for the detection of ill-conditioning 

applied to test their reliability. Several incidental mathematical results 

evolve leading to a simple method of determining the inverse and the eigen-

vectors of a certain class of super-matrices. In this manner one can extend 

the analysis to sane other types of matrices whose conditioning can be 

predetermined, and this should serve also the purpose of testing inversion as 

well as eigenvalue and eigenvector programmes for large matrices. These 

results are then also applied to the fuselage problem and sane methods are 

suggested for improving the accuracy of a solution. 

In the Appendices ( B ) and ( C ) we discuss the aformentioned 

Boolean orders and other useful functions to be included in the super scheme. 

There follow the results of calculations carried out on a fuselage with 

twenty flanges and ten rings, including three different cut-out and modification 

cases. We conclude with an Appendix connected with the investigations on 

the conditioning in Chapter V . 
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CHAPTER I 

MATHEMATICAL NOTATIONS AND DEFINITIONS  

Throughout our thesis we make full use of the facilities and 

conventions contained in the so-called super matrix code for our 

computers (see Appendix C ) 

In this first chapter we present a listing and definition of the 

main symbols employed in our work. We start by describing in general terms 

some characteristic features of the matrix notation. 

A uniform super-matrix is a super-matrix whose sub-matrices are 

all of the same size. 

A Em ) 4, Pr( x n3 is a general uniform super-matrix of the (super) 

order [mxN] , the MN sub-matrices of which are all of the order (hi xn) 

If M=N  (or ml.n ) only m (or ml ) will be written down. If the matrix 

is a super-diagonal (or has diagonal sub-matrices) this will be denoted by 

a stroke after the dimension e.g. Em/2t71 "3 or 	AelKNI Ind , or even 

The designation scalar matrix or scalar super-matrix stands for 

a diagonal matrix all of whose elements are equal. This is indicated for 

the matrix or sub-matrix in question by a pair of round brackets, ) . 

For example, A [1,4 .N 	is a super-matrix of the order [nlx NJ] 

the elements of which are scalar matrices whose dimensions are determined 

by the other matrices involved in the operations. In the matrix A[c), rrixmj, 

however, the sub-matrix of order (n1 1(n) is repeated as many times along the 

diagonal as is required by other matrices with which it is associated. 
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Since the storage of either matrix is essentially the same, and also 

similar for 	Aci,m, r4 3 	or 	A [ mxN, 1J 	, the same 

stored information could be called upon in all these different ways. 

This facilitates certain operations, especially with Boolean matrices. 

A . is the 	i row of A • 

ik is the ..1 
. rk 

 column of A . 

eln 	OF 	e(rnx 	is a Boolean column-vector of order ( nn ,c 4 ) 

whose elements are all unity. We also call it a summation vector of 

the order rn . 

1 	1 	. • . 	. • 	. . 	....... 	1 	1 	1 	I 	( 	, 1 ) 

or 	e(n1 x 1) i 	is a Boolean column-vector of order (rn x ) 

i rk  

	

whose elements are all zeros except the 	element which is equal 

to unity. We call it a selection-vector of the order m 

O 0 

2 3 

 

O 1 

 

1 	' 	(I,la) 
PM -I 

  

e E P.01 x 1 , ni x 1) is a super-summation vector whose sub-matrices 

are summation vectors of the order (m  x ) . 

If it is necessary to distinguish between a Boolean matrix and its 

equivalent in floating point form we use for the former the suffix B . 
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Before we proceed with further definitions, it is preferable 

to state the most elementary matrix rules arising in the use of 

uniform super-matrices. For example, if two such matrices are equal 

A r Ma  x N , Ma x na  = E3 t  Mb = Nb  , Yn b  x 	 (1,2) 

then we must have 

Mb 	7 	Na. = 	 )71 a 	Ana= nb 	(I,2a) 

all corresponding sub-matrices being then also element by element equal. 

If it happens that each element of one of the two matrices is equal 

to the corresponding one in the other, these relations, however, not 

applying to the sub-matrices themselves, then it is evident that the matrices 

are merely partitioned in a different manner. We describe such super- 

matrices A and B as equivalent and express this as follows 

Air= B 

Naturally the relations 

t`la '1a 

and 

Na  

(1,3) 

Mb er76  

(I,3a) 

Nb nb  

must hold. 

If two super-matrices are to be added, they must be of the same order. 

That is to say, if the operation 
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A C frt a g Na 5  rna  x Y1 a) 	BE Mb x 'b trb' "b) 
	

C 
	

(1,)F) 

is performed, conditions 
	( I,2a ) must again be true. 

If we proceed with the multiplication of the super-matrices 

A [ma xNa ,ma xnal 

it is necessary to have 

B c Mb x Nb, Mb  g n b ] , 5 ) 

N a  

and 
	 (I,5a) 

a 
	m 6 

The uniform super-matrix C resulting from the operation is of the 

order [ma Nb ma  x rib 

We now return to the definitions 

E = EE „m, = e 	et: 	is a square matrix ( mxrn) all elements 

of which are equal to unity. 

t E 6, pyll. ,,j = e  ,,,, 	em . 	is a square matrix (m A 140 all elements 

of which are equal to zero, except the element E 1  • • which is equal to 

unity. 

E a super-matrix of order 	1.43 

all elements of which are equal to 	E rn) 	• 
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Ia  is called the l3oolean rotational or advancing operator 
[1pm] 

of order cm) . If I, is placed as a premultiplying operator to a 

matrix it insures a single rotation of the rows. In particular the 

resulting matrix contains the original second row as a first row whilst 
the original first row becomes last. For example, 

I a 	A 	...-- I a  
[4,mxn] 	[4•m3 

A R 

IMO 	 ii•Mk 

It also follows that 

A2. 
A,. 

(1,6) 

A P. 

A1. 

A,. 
A2.  
A3.  

VA= 

(1,6a) 

A (k+i) . 

A (1,2). 

A (ki.3)• 

Am. 
A1. 

A [I,mxn]  

A k.  

I r,„, )  or I 	is a unit-matrix of the order (m x rn) 

stored best as a scalar, or simply as a title. 
• 
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rmom3 is a unit (Boolean) super-matrix of the super-dimensions 

1,1„A , whose elements are sub-matrices of the order Yll X Y71 , the 

diagonal ones being I rn  and the rest zeros. 

The order of joining two (or more) matrices together will be 

diagrammatically shown in the form 

and 

A = [13 C] 

A - 
[CB] 

or for a diagonal matrix 

   

A= 	CJ (I,7b) 

The order to split a matrix into two (or more) parts is given as 

A 	B (C 	A 
	\11./ (1,$) 

or 	for diagonal matrices 

= 13.1 Ea— 
	

(I,Ra) 

The order 

A (b) 
usually denotes a "scalar multiplication" of a super-matrix with a matrix 

compatible with its sub-matrices. That is, each sub-matrix of A will be 

postmultiplied by b . It is, of course, preferable to write this 
operation as At) 	and consider k) as a diagonal scalar super-matrix 



- 19 - 

of dimensions [ ) > m . For detailed discussion of all necessary 
matrix operations Appendix C should be consulted. 

Definition of Matrices of Structural Interest (see also Fir. 1,1) 

The super-matrix p 	of flange loads at all frame stations before 
and after each frame is described as the column matrix 

 

r.fp, PP 	F3', 2— 2+ 

[2 0-01(1,txt1 

 

(I,9) 

 

where pis the number of frame stations and t the number of flanges. 
The symbols + and - as suffices denote fore and aft croseasections at 
a frame. 

A 

The super-matrix Re  of the resultant normal forces, and bending 

moments before and after each frame station entering in the computation 
of the flange loads is defined as 

A 	 A A A 

A  Re 	= {Reg+  vez,Re,k,,÷  
r2(p_,) „i, 3„p) 

 

A 

Rp Rp R •cp#0, (1,10) 

 

where p is the number of loading cases.The sub-matrices of 	e 

we write as 

M  } 
and 

= { N 

Here, N is the normal force in a bay, say 2,111 
ac 

bending moments; (see Eqn.. ((II, 15a)) 

*Equation numbers in double brackets refer to Ref. (2) 
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Y.111 

Fig. 1,1 

Geometry of Regularized Fuselage (see also Ref. (2) ) 
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The super-matrix of the field forces 

C2 	= 01,2 
I (P-oxi,i- xi3 Q213 Q3,tt  

 

Q  P-1,2 J 	 (1,11) 

 

and the associated loading matrix of shear forces and torques 

 

A 	A 	A 

—.{Rq
V1. 

Re  
• 11,2 

R9 Rq 	RA  
z,3 	2,3 

A 	( 

RI =1 F, 
2 / 2-o-1 

:41 

 

E2 (p-o) k  1, 3x f9 

where 

(1,12) 

(I,12a) 

(see Eqn.(TI,26)) 

and d 
 FTC 

Cp-oi,t) 
d2,3  

 

(I. n) 

 

is the diagonal matrix of the bay lengths. 

The super-matrices for the X and j co-ordinates of the vertices 

of the outer polygon.are 

and 

x= lx, x 2 
x3 	

x 
 

I pXl, t 

Y 	Y, Y, 	 
Epx()Go 

where )(i etc. is the (L-xi) olumn matrix of the co-ordinates of the 

outer polygon at frame station 1: . 
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Similarly the co-ordinates of the inner polygon or neutral axis 

of the rings are given by 

 

El gz E3 	g 
EP",tx 

and 

  

 

(1,15) 

  

•= 1), 112  113  } (I,15a) 

The flange areas, defined at the same stations as the flange loads 

are continued in the column super-matrix 

B 	= B 
cup_ox,,t-x.] 

p _ o_  c  B2- B2+ B3- B3„. 	• B 	B 	Bp  (1
' 
 16) 

The lengths of the side of the outer polygon 

 

= 1 2 1 3 

 

(1,17) 
f 

 

is obtained from the X 
	

y super-matrices in the computer. 

Also, 

rPxAi j 	 A,  A2  A3 

	 (I,17a) 

stands for the super column vector of the lengths of the ring elements 

measured along the centre-line (inner polygon); it is derived from 

the g 	11 vectors. 
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The web thicknesses are reproduced as 

t 	= 	ti 	tl 	t 3     t (p-t) 

[ et, .11x t,tc 

The super column vectors of the cross—sectional areas of the rings 

just before and after the vertices are assembled as 

A_ 	={A,_ A2 _ A,_ ••• 

A + =fAi+  A„ A„ 
EPA' t 	13 

 

AP- }  

	 Apt} 

 

This presentation allows for sudden changes of the ring cross—section . 

of each vertex. 

Similarly 

c: 	 C2 _ C3_.  rpx I, ±„ 

C+ 	= CI+ C2+ C  3+ [pxi,ixt] 

(1,20) 

are the super column vectors of the areas of the ring cross—sections 

effective in shear, just before and after the vertices. 

And 

.) 	= 	3 1.. 32- 3 - 
rpx t,t-xtj 

3 .t. 	= 	I,  32 + gt "7P+ 

(1,21) 

are the corresponding super column vectors of the ring moments of inertia. 



Of importance arelfurthermore,the super column matrices 

 

Sa 	= {S,, S,2  
tPxl, ix') 

   

Sap} (1,22) 

and 

   

c 	I" C 	ccu 	0/3 • • 
	C ap 

	 (1122a) 

Ep)( 1, E xil 

which contain the sines and cosines respectively of the angles made by 

the sides of the inner polygon with the X-axis. 

S is the super-matrix of the final stresses in all elements of the 

fuselage. It contains as many columns as there are loading cases and is 

partitioned in the horizontal direction into cover stresses and ring stresses. 

S Ess (1,23) 

  

where the suffix C always stands for cover and S for rings. 

The cover "stresses" matrix Sc  is again composed of sub-matrices 
for flange loads (suffix e ) and panel field forces (suffix c  ) 

Sc  
Esse, 

(I,23a) 

  

   

see Ref.(2) 
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S, 

511m [ 

If we apply the simplified scheme, whereby SF  is directly derivable 

from S 	the sub-matrix SF may be omitted. The same applies to all other 

super-matrices involving a sub-matrix with a subscript F . 

b0  is the corresponding stress matrix due to the loading in the 
basic system. It is partitioned exactly .n the same manner. 

  

[ b

b 

[ bo y 

ar  

bo 

[

boN 

b  

 

 

b0  (1,24) 

where 

  

 

b 0c (1,24a) 

   

 

b 
aT 

.(I,2hb) 

   

b, is the stress matrix due to the unit primary redundancies. It has as many 
linearly independent columns as there are primary unknowns. The horizontal 

partitioning follows that of S and' 	. 0 

Also the ring stress matrix is divided into sub-matrices for normal 
forces (suffi34 N ) shear forces (suffix P ) and bending moments (suffix M) 

S N 

Sr  (I,23b) 
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We have 

   

 

b, 
[ b1c  r 

(1,25) 

   

Where 

   

 

b1c 
b. 

b1  
(I ,25a) 

and 

   

MED 
IMO 

1r 

 

b,F (1,25b) 

 

b2  is the matrix of stresses due to the secondary redundancies in the 

rings. it is obvious that the latter only affect the rings. Hence 

 

b2  1=11 

b„ 
(1,26) 

where 

    

[ 

b

b2F 

b2

2 

 

,m1 

f is the diagonal superomatrix of the flexibility matrices of all 
independent elements. It follows in its "structure" the same scheme 

as the stress matrices. 

b2 
(1,26a) 



f 

 

    

where again 

     

 

f 

   

(I,27a) 

and 

    

(I,27b) 

R is the column matrix of external applied loads. 

H 
	

is the matrix of initial strains in the elements due to temperature, 
lack of fit etc. It is assembled in the by now standard form 

H 

	

[H1 
	

(1,28) 

where 

H = H  [H: ,  

[H: H
HM 

 

(I,28e) 

  

 

(I,28b) 

  



If initial strains are applied for the specific purpose of 

simulating cut-outs and/or modifications the matrix H is rearranged as 

H FH4 1 Phl 
LH, 	L j 
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(I,23c) 

where k are the elements subject to the specified physical changes and 

9 are the elements which remain unaltered. 

B is the auxiliary matrix from which the bo  and b  are computed. We obtain 
two distinct matrices  

E3'e
to obtain bfeand b.e (flange stress systems due to unit resultant loads) 

A 

and 	E3
i. 
 to obtain b,4  and bot (shear panel stress systems due to unit 

resultant loads) 

C is the symbol for the special matrix which is inverted to obtain 

automatically B . It is obvious that we will again have two separate matrices 
for the cover, Ce  for the flanges and C for the shear panels. 

Both the self-equilibrating and basic system in the rings are 

directly computed from the corresponding cover systems. 

is the auxiliary trigonometrical matrix used in setting up r-

D4..= b4 f r, 4.is the matrix of the influence coefficients d,1 of a set of 1.0 

redundancies a 

Dao= bQ f ba  is the matrix of the deflections in the 
basic system in the direction of the set of self- 

equilibrating systems due to the loading. 
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)( is the column matrix of primary (cover) redundancies. 

)( is the column vector of secondary ring redundancies. 

For further details about the basic theory as well as the special 

fuselage theory' we refer the reader to Argyris, Refs. (1), (2). 
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CHAPTER II 

PROGRAMMING THE CONTINUOUS SINGLE-CELL FUSELAGE  
USING A SUPER-MATRIX SCHEME  

II-a Overall Equilibrium Conditions at a Frame Station  

We first refer the reader to Argyris_tRef. 2) for the equilibrium 

conditions of flanges and shear flows which serve as basis for our 

further development; see Eqs. (( II,1 to 11,28)) 

In the present case we express all equilibrium relations as the 

super matrix equation 

at P - e- R 
where F)  and Re are defined in Eqs. ( 1,9 ) 

	
( 1,10 ) and 

;a 	is given by 

Ek e  
[2(p-,V, 3x 1' 3 

(11,2) 
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To obtain a the following programme is suggested:- 

a) Build e which is best achieved by forming a Boolean eB  
Since this vector has subsequently to be joined to other matrices 

in floating point it is necessary to multiply by a floating 

point 'one' 

b) Using a) and the definitions(I,14, 14a) we form the matrix 

t ae., 	= [e 
rog,t„,, 

Cp.; t s] 
X 

Cpxl,tx1) 3t, 	(no) 
Lp,o,tru 

c) We next set up the Boolean super-operator E:e  which is a uniform 

super-matrix whose sub-matrices are scalar matrices of arbitrary 

order and contain either zero or unit elements. Naturally we do not 

store such matrices in full, but rather by a special convention 

which is understood by the super.matrix code (see Appendix B 	) 

A'simple order is used to form the operator from 

E: c 	EN 4- E 
cu,o.p.„“) 

p-I 	 p-I 

et 	+ z e 
rp.,,,.), 

1 	2i 

et  
Epx <, (1] (11,4) 

d) By a simple multiplication we obtain 

Ee  - aev= 
t a e v 

2(p-1) XI, t X 3] 

(11,5) 

e) 	The super-matrix code provides for the facility of transposing the 

sub-matrices of this column matrix, without actually transposing 
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the matrix itself,thus 

TRANSPOSE ELEMENTS of 
,,t 

a„ 
[2(p-8)xi 	x 3 

to get 

2(p-i)xi, 3x{] 

f) 	By using again the facility available by the super-matrix scheme 

to re-arrange a column super-matrix as a diagonal one we have 

REARRANGE 
	

=Qv 	 in diagonal form 
t zcp-i)x I, 3 x t 5 

to give 
	at 	 and the desired 

Latp-of , 3°' ti 	 matrix of Eqn.(II,2) 

It is now possible to write the programme in a concise form as 

follows 

Pk 

1 Form Boolean matrix 	
cpx 

2 Multiply e with floating point one to get 
EpAl,ticiJ 

§ 3 Collect 
EpAll  1;f3] [ e x y 

[p KI,t41] 4111,1x1) 	[ pxl,hrli 
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0_1 

§ 	k Form (Boolean) 	Eet  
[2(P-1)icp,1)3 

=MD 
NO e 	e 

[2(p-i)xlp.)3(1,i _ I)  

§ 	5 Form (Boolean) 

§ 	6 Form (Boolean) 

§ 7 Form 

P-I 

Ee_ = E e 
b(p_oxp„,, 

cz(p-)x p, 

	E f-t 	+E f- 

a tv 	E 
2cp-1) .poo) 

tprA 	L131.+1 

acv 
exi y 	3] 

tt 

§ 	8 Transpose Elements of 
	

gl eV 

	 to give 	Poi Cv 
EZ(p-i) 	 A3) 

	
f up-I) 1,3A 

§ 	9 Rearrange 	City 	 as a diagonal to give 
	a te  

r 2(p-i) A I, 3 x  b.) 	 E ?(I.,-1) 1, 3 xi] 

§ lo Stop 

This involves in all 9 matrix orders 



II-a-2 Erauilibrium of Shear Panels  

Following Ref. (2) we derive here the super-matrix transformations 

relating the matrices Q of the field forces (see Eqn‘1,1 ;) )with the A 
corresponding loading matrix R 9 (Eqn. (1,12) ). Due to the general nature 
of the taper, and the idealization of the panels, we can set up distinct 

equilibrium conditions at either end of a bay, obtaining nevertheless the 

same load-resultant -matrix. This may serve as a further check for the 

numerical operations in the computer. 

Applying the standard notation (+) and (-) for the fore and 
aft stations at a frame we have the two super-matrix equations 

	

a,,'s  0 + aT:+' P 	= 	yetR 	(11,6) 

or 

	

Q + a, P 	R, 	(II,6a) 

	

The matrices alci+ 	E19_ 	a T.* I 	a T- 
 are defined below. 

Alternatively, we can join the two expressions in the single 

relation 

t + a 	P] + Ee+  [ 
r‘ 

+ ar_ P ] R 4/1,1) 
Tt  

or better still 

  

  

ts- 

at-r+  coe, 	p— R 1 
(IT,7a) 

 

fie_ 
aqy het 

 



X p 
	(see Ecri.((i,6)) 

(T-1,10) 
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The method of obtaining; the matrices a9{ .1 El 9_ ) a 1_ 

and 	a , will be now described. 

A) The !.!atrix a 9+ 

A-a) 	We form the rotational operator I 	defined in (1,6)  from a  
c(),F3 

which we obtain the operators 

and Cc ), E] 

a 	— 	I a 
	 (11,Q) 

ft), ti 	CO,t }  

A-b) 	We next set up the difference matrix 

by the operation 

Y: A 	= 	X „ , )1C 6 .2  
Cpx.t,txi3 

- at x 
[(), t3 Cpx1 

	t 	1] 

A-c) 	In exactly the same manner we form 

Y, - a.- - 	y 
[0, t 	[pxI, f 

(II,10a) 

A-d) 	As the super-matrix scheme is canable of splitting a matrix 

(see Appendix C ) into two matrices, we can issue an order to have 

X 

[ pxf 



X _ = 
C(p-Oxi,tx13 '2) L X 	 (11,13) 

and 
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A-e) 	In the same manner we split 

YA, 

YO. (11,11a) 
[Pxi , txI] 

Yes.4 
rcp-I) xi ,t-xij 

On the other hand if no super-matrix scheme is available for the 

computer we can always apply for this purpose an operator 

P-1 

[(p-I)Ap,o] 

e 	e Eq_,)„,,L) 32. 	[,„, ")3(f1.0 

which proves also useful in our subsequent developments. We have 

and 

X ts_r  x A  

 

Yat 

Similarly we build up the operator 

Cfp-Ox p 2,)] 

P-I 

7=1 

e 	
et 

(11,12a) 

A-f) 	We rearrange the two super-matrices ):41. and Y o* 
in diagonal 

form, i.e. 

X A7 
[(p-o f,t 

and 
ci Yo t 

L(1.-0/ ,o] 

A-g) 	We form the super-matrices x l- and 
	

(see Eqs. (I,3a)) 



[(1.-oxi,tx33 
[ ‘ ( p -1..xl,ixii [Cp-Oxl,±x1] [<p-r),C1,i- gl 

X a, 
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Y1 - 

r(p-Ox• tx 

(-1) L_
t  

a Y 
CC), t 

(II,13a) 

A-h) 	We form the column super-matrix 

ci 

'•)v,a+ 
Ecp-OKI, t.xt] 

(II0h) 

A-i) 	With an order similar to that described under ( II,a(b) ) we join 

the three resulting column super-matrices into one matrix 

A-j) 	Finally, we transpose the elements of the matrix and rearrange 

them in a diagonal form as described before. 

The programme is now reproduced in the concise arrangement 

F ORMATI ON of 
a, 

1 Form 

§ 	2 Form 

§ 	3 Form 
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§ 4 Form x,, - a 
t]
t  X 

I p,1 

§ 5 Form 
	

Yo 	- a 
c), 	E p x 1 ,C Y .43 

(1,-0 

6 Form 
	

L 
	

e 
	

e t  
Crp-Oxi,ojz. 	ipx l,"36-1-1) 

§ 7 Form L e 	et 
px f 	( )3.e 

§ 	3 Form 
	

X ÷ 

	 L -t- 
	X , 

§ 9 Form 

§ 10 Rearrange 

§ 11 Rearrange 

§ 12 Form 

Y A t 

X -t• 

C (p-i)x , -"13 

YA4 
E,p_ox 

(;) 

L f 	Y 

in a diagonal to give A A .,. 
I t p-s) 	/I 

in a diagonal to give of 
tcp-i)/7t/] 

L 	t x 

(() , t 
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t y  
Ps 13 Form 4_ - - (I) L z 

  

§ 14 Form 	v d x 	X 

§ 15 Form by joining 
x a 9v+ X6.1  

Ltp-OKI,E0] bp-oil,txg p.p-01,tim] 
C(p-,),K ,,tX33 

 

  

§ 	16 Transpose elements of a 
* 	

to give 
	a 9v-i. 

	

Dp-I) 
	

[(p-,),(1 , 3x Li 

§ 17 Rearrange 	al civt 	in a diagonal form to give Elcit 
[(p-i)x.1 	.3x 	 [ ( 12-0 / 2  3A 

.§ 18 Stop 

We notice that the more complex operations can be split up into 

simpler operations, or vice versalthat some steps might be joined together 

to form one step. This is best left to the ingenuity of the coder who is 

best acquainted with the machine he is using and the supermatrix code in 

question. 



a T4 

y12, Ia  y 

X [22 
[pxa,tsiJ 

YL23 
Cpxi, t 

§ 	4 Form 

§ 	5 Rearrange 

§ 	6 Rearrange 

„ 
as a diagonal to get A [2] 

C p/,Ei] 

ol 
as a diagonal to get yi,]  

c  pi, k/7 

— )1(1 — 

B) The Matrix 

Since the programme for a 7+ 	is similar to that used 

for the previous matrices, it is sufficient to confine our presentation 

to the final tabular arrangement. 

FORMATION of a „ 

§ 	1 Form xLD 	= 	ra 
fp ,()] )( 3 IX 

§ 	2 Form YLD [ I a 
LP ," ] 

 

   

§ 	3 Form 	X[27 	:: 	I, 	X 
Lpxl,t )(t) 	[P,L)] 



§ 3 Form by joining aTv = L 	XL° YLD g„ 
[f(p_o.p,()-3 	Cpxl, tx.13 Epxl,txl3 r ()xi,'" 13  

- 1; 1 - 

§ 7 Form 
T r 

y

[]  

a 
x x y 

Cpx 1, t x 1] 

§ 	9 Transpose elements of 	Tv 
	 to give 	GILT v 

[(1)../)xl, t x33 	 r( f,-,),, 1, 3,,,t3 

10 Rearrange 
t 
Tv* 

[(1,-.),(1,3x EJ 
as diagonal to give 

n— 

Ti 

P-1 

§ 11 Form operator 

Ctp-r)Az(p.,),t)) „=, 
e 	e 

r (p_o x i 	(%,( 2.(p-I) 

§ 12 Form 
	a 	T 	T.+ 

p- OA 2( p-O,3g t] 

13 Stop 

Now the equilibrium at the ends of the bays may be checked by the simple 

relation 

ac;
k
, 

Q a, P 



a X 

- 	- 

In order to check the equilibrium at the (-) stations of the frames 

we have to form the remaining two super-matrices Elci _ and a 7  
Again only the summarized progrtmries are given. The readert attention 

is drawn to the fact that some of the intermediate results are common to 

the previously described programmes. This may shorten the setting up of 

Eici_ and a T_ but is best left to the coder. 

C) The Matrix 
	a9_ 

FORMATI 0 	of aci-- 

1 Form 	x — at x 
Ec),t, 

2 Form yt, a' 
c,„ t 3 

§ 	3 Form 	X A _ 

§ 4 Form 	Y. 	L 	Y 

§ 	5 Rearrange 	xo 	as diagonal to give 
	

X a - 
Ecp-oi, t/3 



§ 6 Rearrange 

§ 7 Form 

§ 8 Form 

§ 9 Form 

d 
YA_ 	as diagonal to give Ya- 

C cp-1) / 	ti) 

13'  - ( 1) L t 	x 
r) 	t 

- (1) L t 	P t  [c > > t7 

YE+ 

3 - 

x 1+ 

10 Form by joining 
t 

a 9 v _ 

§ 11 Transpose elements of *t ato give a qv_ 
[(p_i)„,3*ti 

§ 12 Rearrange t 
a v _ 

as diagonal to give aq- 
E (p-o/ 	E 

§ 13 Stop 



E 7— 	 et 
Ecp—i) 	, u] z• 	C 	x ,() J 2L 

+ a t 
-r_ Q P 

A 

R 9 

D) 	The Matrix a T— 

FORMATION of a T— 

The programme is exactly similar to that for a T+ 

operator formed in § 11 and used in § 12. This should be now 

except for the 

The complete equilibrium conditions at the (-) ends are 

II—b 	The Automatic Formation of the Self—Equilibrating 
Stress Systems in the Cover 

Again as in the previous section,the formation of the basic and 

self—equilibrating stress systems is based on the further development 

of the ideas laid down in Ref. (2). The readers attention is particularly 

drawn to Eqs. ((IV,1 to IV,52)) 

II—b 1 Flange Loads  

a) 	The first step in setting up the sequence of operation is the 

choice of the so—called conditioning matrix A? • One nay select 
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for instance the orthogonal matrices for the cylindrical fuselage, 

i.e. the Qe  , which may be generated by the fully automatic 
sub-programme described in Appendix D . As in the original 

publication one may also use any other standard matrix for which 

a special sub-programme has to be written. It is doubtful,however, 

that any simple matrix may yield a better conditioning than ge  

A third possibility is to introduce certain computed matrices, 

based upon the orthogonalisation technique described in Ref. (2). 

The exact manner in which this can be automatised is set out 

further below. We only note here that in the most general case, 

this matrix may vary from one frame station to another. The symbol 

used for the typical conditioning matrix of a station i is 

A e  

If the ends of the fuselage with p frame stations are taken 

to be subjected to known forces, the determination for the self-

equilibrating stress systems is restricted to the (10-2) inter-

mediate stations. Correspondingly the appropriate super-matrix 

of the A ei  matrices is strictly, 

A e  „, 
( ( .-2) , .(t-3)] 

However, for reasons connected with the formation of the basic 

system in the cover, we must also introduce fictitious systems at 

frame stations 1 and p 	T3 ;:his purpose we use two extra 

sub-matrices, which we simply obtain by repeating the first and 

last sub-matrices. Hence, the final A super-matrix takes the form 

A e  FiZe, A ez Ae 
(pi, 	ti-30 

 

Ae
p.„ A 

e,.,, 
(  

 

  

    

 

FA—t, A e3 	A e , 

 

AL, 	(II,17) 4=10 

 



t-S) 

U a 
U A 	

(I1,1)) 

(-tx3)/ 	
(fx(t.-3)) 

b)  We partition a unit matrix I in 
(1,0 

contains 3 columns and the second 

Thus we represent the formation of  

two parts, of which the first 

the last Ct-3) columns. 

these Boolean operators as follows:- 

c) We set up 
	

Cea 	 Ud 	a t 
	

(11,20) 
El*/, t 
	

[ (), t x 3] 

d) We transpose the elements of the super-matrix A t  to obtain 

Ae 
[p/,(t-3),, ti 

e) We similarly form 

Cep 
._ U 4 	A; 

i",t,,u--0] [/0/2t7 
We then add the two matrices(11,20,21) to find the super diagonal 

matrix 

C e 	Cfa + 	C ea 
	 (11,22) 

[ p / 	t 1 

f) Inverting Eqn.(ti,22), we determine the basic matrix from which 

we derive the flange load distribution for the basic and self-

equilibrating systems; (see Eqn. ((ilf,22 ))). 

Be 	C. ' 
	

(11,23) 

[ p/, 



b 1? 
24p-r) xcp-L) t 	t-3)J 

Ee 
C 2cp-oxppt1 	cpx (p-2) f (A -3)1 

(11,27) 

— 47 — 

C) 
	

In order to get the self—equilibrating system we construct 

the operator 

p-2 

rri 
r (p-2).p,c)3 

e 
iii 	[(p-2)x1,C)li  

e 
(11'1) 

(11,24) 

h) 	We now get an extended super—matrix of the self—equilibrating 

stress systems, namely 

bite 
C p/ , t X (t - 3)] 

U A 

C txa-3f1 
( II , 2 5 ) 

Applying next the operator E: ,we find 

b 
	= 	bite 

	 ( 11 ,2 6 ) 

p x (p-s) 2  tx (1--3)3 

Using the originally developed Boolean operator E e  (see Eqn.(II,4)) 
we obtain the desired repeat pattern before and after each station. 

Thus 

5) 

which completes the determination of the self—equilibrating 

flange loads. 

To obtain the basic system, i.e. boe , we proceed as follows 

 

 

boe 	= 	Ei t 	u a  

Cp/ j  tx.5) 	 [c), E s  3 j 

which is rearranged as the super vector 

A 

bofv 
fpx.,tx31 

(11,28) 



t (1)-0 
[ 1 / , 1%(t...)0] 

Aez 
Li/1t i(t-3)3 

A e 
L(0..„„ t.„.3))  

A E 
[pi, t x(t-3)) 	 Eli, tx(t-3)3 

Ar m  
(p-a)/A  E A(6-3)) 

. 111. 
dm. Ae(➢ -,) ,„ t- x (1-3)7 

— 1 "' — 

Hence we form 

bee 
	 E 	oev 

	 ( -1,2 ) 
2(p_ox i l tx33 

This is diagonalized to become 

A. 

b oe 
[2 CF-0/ {t 3i 

	

We now summarize the formation of 	b ,e and 
	

bo p 

FORMATION of b,e and !Doe  

§ 1 Form 	Aetn 
L (p-,)/ , ts(k-3)3 

(see Appendix A ) 

§ 	2 Split 

A em  
t(p-2)1, E .0-3)1 

3 Join 

§ 	4 Form two Boolean operators 	U a and UA 
b(s) 
	[ 1 , E (4-3)] 



§ 11 

§ 12 

§ 13 

b,pe 	Be 	u A 
[ (I  t• 	(t--3)) oi, t.ct-3)) 

ble 
[ p x (13-2 )) t x(2-3)3 

b,e  E t  b* f t  

b ee 

5 
	 C Pa 	 U a 	a1,  

[pi 	k 	 t*5] 

§ 	6 Transpose elements of A e  giving 	Ae 
p, , ( t-3) „ 

§ 7 
	

Cen u A  

[pi/ EJ 	1(), 	(t-3)3 

§ Ce  Cea  + CeA  
f t 

§ 9 
	 Be  = Ce-1  

{pi, t 3  

§ 10 E pr, 
1(p-z)IP,03 

e 
C p" 	113 (1 f- i) 

2( p-i) (p-o )t-x(t-s)) 



C 	11t 
	

b *  
	13, 	u a  

[pi, EL 3] 

A 

§ 15 Rearrange b., 	as column 
	b oev 

pxi, is 

A 

§ 16 
t 

be„ 

 

2(p-0x', t x 33 

A 
§ 17 Rearrange bay 

§ 13 Stop 

II-b 2 Field Forces  

as diagonal bot 
1 2(p 	3] 

     

The formation of the basic and self-equilibrating field forces 

proceeds analogously to that of the flange loads. 

a) 	We initially form the two matrices 

and 

A e+ 
(tp_,)/, h(t-3)] 

1 Arm, 
t.(t-s)3 

Ae(p-i) 
I/ 	t x (t-3)) 	I 

 

 

A e _ 
[(p-i) 	tx(-3)3 

F-At e 
t.(t-1)) 

AP 
(p..2.)1,}$ 0-0] I (II,30a) 
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b) We derive hence by scalar multiplications 

Ac,_,. 
a  t 

tc,,t) 
and 

a. 	A e _ 	 ,31,) 
E ,„i 1 

having been defined in (11,9 ) 

c) As before we form 

C q ,a* 
	U a 
	t 	

(11,32) 

[(p-i) 	t 
	1(,,t,(33 

and 

A  t 
C ,„ _ _ U A 	Mg.'. 

[(1,-1)/ (-3 	
ft), t Ac+-3)l 

d) Adding Eqs. (11,32 and 32a) and inverting 

(11,321) 

qa+ 
(11,33) 

e) Form by joining 

Ecp-o.p, t [
0 	C 9.+1  

[c f.-1)x 1., t3 	C (15-01, t] 

f) Form by a "scalar" multiplication 

and 
Cqa_ 

r(p-I)/yt 

U a  
Ic), t.33 

a t  9- 

 

 

 

tcp-i)/,t 
UA  

[ 	tx(t-3)-1 

(11,35:1) 



f ,) 

g) 
	

Once more adding and inverting 

h 

C:9 1- 
Ccp-oi,t 

Form by joining 

[ccia  Cqn3 (I1, 36) 

E39- 
C [ 	I  q_ 

Eip-oxp,t] 	Ecp-o6t] 
i) 	Form by addition 

0 
(11,37) 

  

(1-.1,3)) 
[(13-1)%13,t1 

j) 
	

We can now form the basic system by two scalar multiplications, 

followed by rearrangements using the operatorsEel  and 	
e-

Thus 

b  09_ " 	13,_ U a 
[ (),t,(3] (11,39) 

and similarly 
	

b09+ 	Applying an assembly order 

A 	 /\ 
IL.  * 	 t 

bog 	... , Eel- + _ 	1.J,  
1(1_0 .2(p-o,tx 33 	[(p-i) x p , tx 51 [tcp-Jo.,t11 

C f- 
1.(r-i)x p, tx 3] (.2(p--Oxp ,k)3 

k) 
	

In order to form the bmatrix, we have to proceed the scalar 

multiplication by a splitting operation of the matrix 
	B, 

B 
[cp_ i )xp t- 

B9a) (I 	Bciry, :] ( 	134/ 	:_i,41) 
[cp-i)t(p-i) ji) [(p-Ox , tl 



1) 	Then we form 	b tq 	- 	13 sm 	U 
r (P-1)  x(p-i),t AU-P3 	Etp-i) x(p-z).2 1-  3 	[ () , t w(t-3)3 

The complete programme may now be reproduced concisely. 

FORMATIONof B1 

1 Form by joining 

A e_,. 
Ecp-i)/ t lt-3)) 

2 Form by joining 

A f(p_i) 

[1/ ,t x (t-3)3 	I t.(13-2) /, t x (t.-3)3 

Ae _ 	App  A t, 
ts(t-3)] 	 [if, t tc(t-3)3 	[(p-z)/,E  x(1-3)) § 	3 Form 

a 
[(L 

I t  a 
7t 

§ 	4 Form A q 	
A 

t+  
t 

§ 	5 Form A 9- AQ 	a. 
IC) ,t 3  

§ 	6 Form Ua C 9a+ 
t a,,  



§ 7 Form 
	

C,A , 	 A 
	 (diagonal) 

§ 	8 Form 
	C 9+ 	 "gat + 	CIA (diagonal) 

§ 	9 Form 
	

C,÷ 	 (diagonal) 

§ 10 Form by joining 

 

E3q4 
i(p_oxp ,t t(p-i) xi,t] 	[(p-ostp-))t3 

§ 	11 Form 
	

C eta_ 
	 Ua 	sa g  ' 

§ 12 Form 	 9A- 
	 uA 	 A  t 

§ 	13 Form 	Cq_ 	C 9a - 
	 (diagonal) 

§ 14 Form C -1 q_ 
( diagonal ) 

§ 15 Form by joining 

   

C 9--1  0 

( p- x i,t 

 

  

  



§ 16 Form B 9- 9+ 

§ 17 Stop 

FORMATI ON of 

§ 19 b fi  o9_ 

Lcp-Oxp,tx33 

B9_ 

(p--1),(p,{.] [(),t A3] 

A 

19 	 bo, B9+  

[(p-1),cp,tx 3] 	[(1,--1)xP 	t 

ua  

c,),t.33 

A 

b09  

§ 20 

A 	A 

be, Pt 
6  t e  _ 

Dr-ox2(p-1)) .1143.3 

§ 21 Stop 

FORMATION of 

§ 22 

9 
p-Oxp, t 3 

Sla  
[(p-,)xl,t3 9  ) 	[(p-Ox(p-7 	 2  ),t] 	C ( p-:)xI,{] 



J 

s, 

a. 82 

§ 23 b 1 CI 69 m A 

§ 24 Stop 

II-c 	Flexibilities  

For the foundations of our present expose of flexibility matrices 

the reader is referred to Argyris (Ref. (1) and (2). 

II-c 1 Flange Flexibilities  

In order to allow for a reasonably wide variation of flange 

flexibility whilst avoiding cumbersome mathematical expressions Ref. (2) 

suggests the application of a linear longitudinal variation to the 

flexibility itself instead of the area. Considering Fig.IT,1 we may then 

write for the flexibility per unit length at the station z 

1 	4 )Bz. 	84 

where 
a
--  and l 

4 

82 
are the values at the two end stations. 

Fig. II,1 

Loading and flexibility 
distributions in a flange element 

Carrying out the integrating procedure of Eqn. ((III,?, )) 

we obtain for a single flange element; 

       

f 

    

B, -t- 3 52  B, 1-  13,2 

      

1 6 E B, B2  

 

6,t Bs 313, -t 62  

       



E e 
[2cp-0 

e 	e t 

1-2(p-ox (1] 	E zcp-.),(1,03z,. 
+ 	e 

[2(p_ox,,012 . 

(p-1) 

2.= 
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For a uniform flange B,  B = 5 and expression (II,113)reduces to the 
standard form 

f t  1 

 

2 	1]1 	2 (I1,1 3a) 

  

E 6 

 

     

In order to set up the complete flexibility super-matrix 
for the whole fuselage, we use the following programme 

a) We first form the operator 

b) Applying this operator we find 

E fp 
rz(p_oxi,t. 13  f 2 9,- s) CO 2 (p-oxi,t xi] 

c) Rearranging the two columns g and g in a diagonal form 
we have 

t3 	and 
t 
	 E 2cp-1)/, t /3 

(11,45 ) 
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d) We now construct the two operators 

E Qr  
E2,,

e
_,) A 1,( )1 	[W—I) X , (2 .-0 

(11,46; 

and 

e_ e L-2,,,,x,„,j e 
[(p—I)xl,()] .„, s: 

(11,46a) 

as well as their sum 

E. 
C 

2(p—s)x(p—i),()] 

(11,)t6b) 

e) We form the extended matrix 
	d e  of the lengths 

of the bays. Although the matrix is diagonal, we may equally 

consider it as a general square matrix since the super-matrix 

scheme does not operate on the zero sub-matrices. 

ci e 	
— —Et 	ci 	Ee  ' 	( I1,. 7) 

C z(F-1),L)] 

f) We can now calculate the first part of the flange flexibility 

matrix according to the simple relation 

  

1-3-j-i 	d  

 

f, 
) 

2(p-i)I,t 
=t1zl (i) dc (11,43) 

   



Bt 
,t-xi) 

(11,49) 

and 

B 
tcp-ox I, 4.0 

B 	 (11,49.) 

-59- 

g) We next set up the two column matrices 

h) Rearranging Eqs. (11,49,49a)in a diagonal we have 

Col t and 
	Bo 
	

each of order 	[ (p-i)/ 	t /] 

i) We construct the matrix 

f e(b)v 
ECr-i) xi;  

= (V F ) d [Bi 1  t 	[B*  (II,50) 

 

j) Expanding the last matrix we find 

f, ,(6)v 
(Up- i)x ►tx 

Ce+ 	 (11,51) 

k) We read(II,51) as a diagonal matrix 

fe(b) 
[up-,)/, t/] 



-Go- 
1) Using the operator of Eqn. ( 1,6 ) we now form the total 

flexibility matrix 

fp f - Ca) + 	I a 	f f(1) + fe(0 I a 	(11,52) 
cup-o,trj 	rup-i),01 	ful„),0] 

We give as usual the full programme 

	

FORMATION of 	-  

/1-1 	 p- 1 

E ft 	 e 	e t  +: e 
2C 	i) 20 	

t',., r2(p-i)%12 1)3 	2(p-s)11,032i, 	f., rup-Og 	()J, r 2cp-thc 	f.) az 	J p-]  

12(p-Ox t, txt] 

§ 	3 Rearrange E3 and B as diagonals to give 

13 4  
E2(p-i) / , t 

d. 

B 
tvj 

and 

§ 



) de L12) ( iE 
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§ 5 

§ 6 

§ 7 

§ 8 

§ 9 

§ 10 

p-, 
E e. 

E2(p-i) x(p-0,4.13 	1." 
[2(p- I) X 1103 	C (p-Oxi C.)] - 

(21'-i) 

e _ = 	e 	e 
a'_1 	r 2Cp-Oxl,03 2z. [ Cr -1) X k (..)3 Z . 

Et, 	+ Le 

E2cp-i) ,c) 

	 d 	Et' 

34 
E (P-Ox 	,(1j 

et B 

and 

§ 11 
	

B 
C 92-1) x ,, t-xt1 
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12 Rearrange B„ as diagonal 

§ 13 Rearrange B_ as diagonal al 
B- 

[(p-o/,t/) 

§ 14 r  fuov = (-1-o(n d 	B1 [B, + 

§ 15 toy 
ratp-14 t.c 	

t":1-1- 	I ilb)v 

16 Rearrange as diagonal fl(.) 
[2(p-o/, t 

§ 
rup_o f2(a) + 	Ia 	ft(b) + 	fi(b)I A  - 

[2(p-1),()) 	 EZ(p-1)2()] 

§ 18 Stop 

 

11-c 2.Shear Panel Flexibility  

   

Since the stress distribution in the panels is defined by field 

forces rather than stress flows or actual stresses, the flexibility is 

calculated in accordance with Eqn. ((III,1 )). 

The expansion of this expression to cover the whole of the fuselage 

proceeds as follows 
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a) Using the operators L and L _ of section (II-a2) we form 

M 
[(p-i)x I, txl] 

- (f) [L + L 	l 	(11,53) 

((p-i)xP ) t)] 	[pr4,tAt] 

b) Rearranging the thickness matrix t of Eqn. (1,13 in a 

diagonal form we have 

t 

	at 

1- ( p-1)/ pt i]  

c) We now derive the flexibility as 

f civ 

and rearrange it in diagonal form to read 

fq 
C(p-i)/ ) t 

The programme follows as 

FORMATION of 
fi  

§ 	1 l„, 	▪ (I) [ L÷ ▪ 	L] 

[(P-OKI 2tx 1 ) 

§ 	2 Rearrange 	 as diagonal 	
[(pl i, ti] 

1 
§ 	3 	fqv - (G) [ t 	 d 

[(p-Ox 11 t.13 
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§ 4 Rearrange f v as diagonal ft! 
[ ( p—i) 	/] 

§ 5 Stop 

If it proves advantageous to scale down the fundamental matrices 

of our programme e.g D , in order to reduce the danger of overflow and 

underflow, then E should be omitted in all the flexibility programmes,and 

Gt  replaced by GI/E . Only when calculating deflections it is subsequently 

necessary to multiply the results by E . 

II—c 3.Ring Flexibilities  

Following Ref. (2 ) the flexibility of the rings is formed as two 

super—matrices. The first one accounts for the deformability due to the 

normal forces N and the second f m+s corresponds to the combined effects 
of bending moments M and shear forces 5.3 in the rings.(seeF111.  

((111,36 ))). The corresponding force pattern is completely described by 
ltat) 

 

and bm. since the shear forces are taken in this procedure to be solely 
cffo 

determined by the bending moments. A criticism of this technique is given 

in Ref.(2) where it is suggested that for large computers it may be 

computationally advantageous not to merge fm  and f . However, in our 
current, work we restrict ourselves to the case of f N

and the combined 

When the transverse stiffening of the fuselage is achieved with 

diaphragms instead of rings the definition of stresses and flexibility is 

best carried out in a completely different manner. This technique is 

described in Chapter IV. 

The programme detailed below is limited to the case of single—cell 

fuselages with singly connected rings. The. flexibility of the ring element 
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may vary linearly between adjacent nodal points. 

In order to set up N the first component super-matrix of the 

flexibilityl we proceed as follows:- 

a) We determine the super vector of the mean areas from 

A M 

Cpx1, t 

(-1)[ A Ia. 	A_ '1 
cc,,t, 

(11,55 

b) We then rearrange the matrices A m and 
	

(see Egn.(I,17a)), 

in diagonal form to yield 

A 
[p/ tij 

and 

"\ 4 

Ep/ 	ti] 

c) We hence obtain the final normal force flexibility from 

f 
C pl, tI] 

We next derive the combined flexibility for bending and shear 

d) We form the three matrices 

and 

"161 2 
IP' 4, -6,13 

tpx 1 , tx 11 

Ia 

T t 
I 

Cc, t ~  
4 



and t 
ipx1)  txtj 

e) We rearrange ;7+ 	2 ' 	, X and ?Lin a diagonal form to give 

and 

t 
[pi ,  t'] 

f) The bending flexibility Li  is then determined from 

f 2.4  = (12)(k) {[1:4 p:(4-3.3.1xi+{x3j [3:1+3 31 X, 
CP,' t] 

-1 _1
[4 	 .3 [4+01+ 

32] X' 1 
4 	4% - 

+ D4: 33 	+ 
t., 

(11,5)) 

To calculate f5, the contribution of the shear, we first form 

the two matrices 

[Oxl, i- x,] 

Cpxift...1) 

Cc, + Ia 
co, tj 

C] 

(II,608) 

.rm• 

C2) 

and 

Ec a C+] 
Cc), t3 



which are then read as the diagonal matrices, 

C 4  hn2 

EP/ , t 

g) The shear flexibility based on the bending moment vector b 
is now 

f s  
r,,, (4-) { [c.1tx1-1+ [4[4' 

- 	ra - 

 

  

   

h) The total bending- cum - shear flexibility super-matrix 

is thus 

M f s, 
(11,62) 

i) We join the two parts of the flexibility diagonally to obtain 

the total 	ring flexibility. 

and 

fr• 
lap/ t 

r 

 

(11,6-3) 

We rewrite the programme in the usual form 



411,  fN 
[pi ,f 

FORMATION of f 

§ 	1 
A M 

(i) 	A, + Ia xi, 	 U,,, t , 

 

  

2 Rearrange 4,, as - diagonal 	A„, 
[pi, t" /1 

3 Rearrange X as diagonal 
	

X °I  

Ch i 

	
t /3 

[plc!, t), 1] 

t 

Lpx4, -txt3 

t 
Cpxi,Exl) 



XG 

(p , t 

5 8 Rearrange as diagonal 

§ 9 Rearrange as diagonal 

§ 10 Rearrange as diagonal 

§ 11 Rearrange 	 as diagonal 

§ 12 Rearrange 
	

X t 
	as diagonal 

§ 13 

(i)  V-1 ti,a+ 3  -321 +[3:(-):] [14+ 3-31 x c(t 
[p1, L3 

a 71 	cl 
3=1 D.+ i2 -I 	I 	I t  Da31 Do( 	43  4 1.  a 	4 +-32.4 Xj 

ro,tj ro,tj  

C_i. § 14 Cm2. 	(i) 2 
[pal 	t g13 

§ 15 
[p,i l tx-fj 

§ 	16 Rearrange 	
C iy1 2 

§ 17 Rearrange 
	 C t  

as diagonal 

as diagonal 

c+  

C 
rpi, ti] 

f, 
ke t 

[ p / 	t 



§ 	18 
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( & ) 1 [c:4,1Txr+ [clE x] " 
.. EC:,]-I M-i 

Id  — la [X]
-1 
 [Cj 

-

, 

	

L 	e1  

C`),] 	Cc),tj 
§ 19 f 114S 

CP/ 1 { ) 

§ 20 	f, 
r 2,,,,, t 3 

1-7, 
[P/,t/i 

f N+5 	1 
[1,1, t]  

§ 21 Stop 



II-d 	Self-Equilibrating Stress Systems in the Rings  

We list below the steps involved in setting up the self-
equilibrating stress systems in the rings due to the primary redundancies 

in the cover . As a preparatory step we have to derive some information 

necessary for the closure of the rings. (see also Eqs. ((V, 43 to V,62)) 

a) We form the zero super-column 
	

0 
tx il 

b) We set 	sel of Eqn. (1,22), negative 

Spin  
_ (-1) S., 

rpki, ,,,, 

c) We construct by joining 

11,64: 

 

[ Epic+ , tx-il [ pxi,t1Pt -lli [ pxl, t x
C 

 .'] 

 

N2y„ 
t pxi 7  tx33 

(II,6) 

  

d) and similarly 

  

   

M2ry 
[pxl, tx3] 

e 	11 
tpx,,,x 1) fpx 1, tp.i) 	[Pxf, tx 1  

(11,66) 

 

e) We rearrange 
	

N 2Y V 
as a diagonal matrix to give 

N2f. 
rp,,t.3]  

f) and similarly 

Mgr 
tp/ 	t A 31 



g) We now join the two diagonal matrices to form 

b2 .r 	= 

[ N2r 
[13/9tx31 

M2.1- 
[p/ ,tx33 

(11,67) 

and thus we have our final matrix for the self-equilibrating stress 

systems due to the secondary redundancies. 

h) We next obtain by a very simple operation 

D2( 
CP, 33 	

fr 	b 21 " 	
( (11,63, 

This matrix is obviously a diagonal one. However, since we assume 

that the super-matrix code does not form or store zero sub-matrices, 

and does not perform any actual computations involving such sub-matrices, 

we may equally consider Der as a full matrix. The loss of time involved 

in this procedure is insignificant. 

i) We form the matrix I described in Appendix (D ). 
tc),t -3 

j) Using the matrices )( z.  and y of Eqs. (II,10, 10a) 

we set up the diagonal matrices 

and Yac` 
up, ,± 

k) We next assemble 

X 

f(p÷2)xp 

(11,69) 

  



x 62.  

((p-r2) x p, 
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1) Also, 

    

 

t-7 A,  
A Al 

(p-t-2)X(p4t),t] 

[ 
•X A , 

C(p.+2)xp,t3 
0 

[(pt2)x I, t
, 

 

  

m) and similarly, 

n) Then we form 

   

— 
X iS2 	••••• 

C(F+2).,(pfi),i4 rr 0  
i.kp-pa)rki,ti] 

X/12 
t(p-s-z).‘ P 

 

 

o) By subtraction we obtain 

X , 
* 	

X LI 	MID 

	

X 
p+z) x( 	ti] 

p) Splitting the matrix of Eqn. (11,73) horizontally 

— 04‘ 

X as 
[Ix(p-r o ,ti]  

• 

X a 	— 	XA 
C(P+4).(p++),tij 	p.o44),  t (7 

	
(11,74, 

••• 
X01 

C Ix( p -+ ) ) F/]  



[p x(p-2),tA(b_3)]  

TJ 	bi g  
Cpx(p-f),t-IJ 	l(p-I)g(p-L)/tY ( t -3)] 

(11,77a'; 

q) We next split the matrix X vertically 

X L 
rpg(p# I)) t/] 

X ail_ 
tpxi t ']  ) 

X„,,,,, 	
X [px(p-1)3 t ii 	( [ p,, 4 ,Ar:„] 

 
(11,75) 

r) Using 	X 6 , we determine the transformation matrix 

T 
px(p-i), t 

X AN 
cpx(p-1), 	[(p-1)/, U3 (TT, 76 

s) Using 	instead of X b  we form the analogous matrix 

T j 	 Y6 ri 
[ 	t 
	 EpA(p_1),t/3 [(p-oi,op 	 (TT,i6a) 

t) We next find the components of the forces due to the field forces 

and 

(), 
rpx (p_ z)  ,t- x(i-3)] 

TG, 	 b1 9. ,77 ) 
px(p-i) 	t I] 	{(p--1)x(p-z) 	tx (t-3)3 

u) The next step is to construct the super vector 

X, 
[px1 ty.11 [a [p ] • LP,"3  

X 
( 
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v) We then assemble by joining 

d *  
rp/ 

( 4 1 ) 
[ 	/3  

  

w) Hence we now form 

d * 
	

V X+ 

	

I a 	V X* V x- 

	

[ p, 4)] 	 [px1 t $43 	 (11,81) 

t x) Putting the two super-vectors in diagonal form ( v, and Vx  )  
and using the operators developed in Section II-a we find the 

transformation matrix 

and 

Tp)t 

Cpx2(p-1), 
c-e+ ut  

. Vx 	 t! 	Vx-(II,31) 

Similarly introducing y instead of X we obtain the 

corresponding matrix for the J direction, 

tP 

Try 
(p-i) j i/3 

ti 
vy+  

kd „ 
E e  _ 	v y  (11,320 

y) We are now in a position to determine the matrices K and  L 
which represent the nodal loads on the rings in the x and j 

directions (see Eqs. ((I1,32,33 )) ) 

and 

K 1  
t.(6-3)) 

2 3 	G 	Tp x 	b, e 

p  [,„ t 	.0.0) EpAr(p-s),tv) [7 (P-f)x (p-ibt'r(").1 



L, .: 	 J, 	.1. Toy 	b,e 
Epx(p-z), tx(t-3).3 	( 12) 	13  

E( ), t 3 

z) Applying a straightforward scalar multiplication we find 

(II, ;1) 

and 

U i  
Cpx(P-11)tx(E-3)) 

V 
rpx(p-2)I tt(t3)j 

K, 
r(),i 

Z 	L, 
[ ci,t) 

0( 	
a• aa) Rearranging 5 e? and C 4 into the diagonal forms 5 ei and Cc,( 

we obtain the normal force distribution in the cut rings 
due to the primary redundancies 

N 10 
px(p-a),t 1(t-3)3 

_(-0  [ Cq  U + s' (11,85) 

 

ab) Using next a "scalar and diagonal super multiplication" we find 

Cpx(p-j), iw(t-4] 

— T 
i] 

to,ti 
Ye' u X a  v] 

  

ac) Rearranging X and (1)  in the diagonal forms 
	 (11,86) 

X and 

ad) we establish the moments on the open or cut rings due to the 
primary redundancies (see Eqs.((II,)13)) 

M„ 	— (1)x" [13 V —  [(),t) 
[ px(p-a), t x(t-3)] 

+ (4' [f3 U — (1)Fc,t3  G] (.3,0 

(T1,87) 
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ae) To determine the final stress distribution in the actual 

rings we apply the usual closure procedure (see Eqs.((7,43 
 

to 62 ) )). 

First we write, 

b lOr 

2p ,clp-2),t+c(t-3)] 

1'410 
pX(p...z)  

Mlo 
Ipx(p-2), x(t-3)) 

af) We then form 

D2r0 
	

b2r 
	 (1109; 

px. ( P-2) 3 w(t-3)] 
and hence 

bir blot- 	bzr D 2r 
tpx (P-2), tx 03)-3 

Thus giving the final stress distribution in the rings. 

FORMATION of 
	bar 

§ 1 Form 
	0 

C px 	t x 1] 

§ 2 
	

San 
	 S, 

t.13 

§ 	3 Form by joining JYV 
rPX1, tX33 

C
0 

Cpy„ tx,, 
Sqr, 

fp.4, t-si] 

CO? 
rp)(4, tX12 

 

 



-73- 

    

§ 4 Form by joining 
M 2f V 

Crx 	xaj 

e 	'1 
Epx , 	 [p.,,t),4] rpgi,t.f) 

 

   

§ 5 Rearrange 

§ 6 Rearrange 

§ 7 Form by joining 

N 2ry 

43,4 

Mzry 
tPx 	3] 

as diagonal 

as diagonal 

N Tr 

[pi, t x 3 ) 

M2 
[ p / 	ti 3] 

12pxp,,fx3] 

Cp/, tx 33 
[N1 

Ep/ ts3.1 

§ 	8 D2r 
fp 	3 3 

b 2r 	f, b zr  

§ 9 Form 

10 Rearrange 

11 Rearrange 

X 

Yo 

as diagonal 

as diagonal yo 
Ip/Itn 

A 

(see Appendix 	) 



[Cp. a)kp 0 
2xp 2 
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12 Form by joining 

0 
r( 	t 

13 Form by joining 

E. 
x11 

rip+2)K2,4/j 

E(P42-) ,e(p+i),til 

14 Join 

X62 

[Cp 

•••• 

0 
[(2x p , 	t 

)(A 
Cf./ 	ti) 

§ 15 Join 

ZT* X A. 
fc p-,2).(p+1),0] [

0 
E (pi-2) x  f,trj 

X A 2 

I(P1-2) x p, 

 

 

§ 	16 
	

X A 
	

X At. 	 Zia 

Ccp42),(q)40,ti] 



X A 

[ px(1)41)7t- f) 

X aro& 

ti" ,) tiJ 

X Am  

l (p.(p-1) 7 ti] J 	 [pxi , i / ] 

Cr z 

y 1 
[(p-x 2)x.p,t-/] 
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17 Split 

* 
A net 

fix(p+i) 	t i) %eft 	  

[(p4x),.(pte), E 

X 
p (p4I) ,t/7 

  

N. 
xt,z 

Ci (p-ri) t 

18 split 

§ 19 

[p.(p-o , /) 
	 PX( p-i), t /7 	[(1) -07, 0] 

20 Join 



§ 21 Join 

— 

Yo ,  Yei 
[(p+ 	,t/] 

0 
[(pt2)x11 E /3 

 

p+ z).(p+ ,t 

 

22 Join 

   

YA2 

10-4- 2)x 12 2 

 

   

23 Join 

0 	 YA2 
JAS. 2 

[(pt2)ef,{-/] 	[(pt2)xp,t t] 

[(p+2)*(pt 

§ Y.*  Y„, Ypi 

r(p4z)z( 

25 Split 

Ac. 

YE:. 4 

* 

[(p i, 2),,(pi),t7] 

Yo 
rpx(p+,),t,3 

YA Z 
( p -I- I) 	t 



§ 27 

§ 28 

§ 29 

T, 
EPX(P-1) 

TJ  J, 
E r .(p_a),tr(t...0] 

fpx(p-z),txti-313 

(4-1) 
[1/ ,()3 

§ 26 Split 

Yo Yif 
rPx 1 2 E- /3 

Y.---."11 N I  ) ( 

) 	tPx( P-1),t- t3 ( 
.Yeer 

CpAi,t-t) 

§ 30 [ a 	 I 

Lp,()3 	 t3 

 

  

d 
I I), , c)) 

T7 
rCp-,)l, 

31 Join 

§ 32 
	

V" 
	 d 

-1 
x 

Epx4 



§ 37 

§ 38 

§ 39 

yp 
p x4 	% 1] 

Vyt  

Cpx+ , 	4] 

VY- 
tpx4 tx1] 

[ Ia. 
tp“)) 	LP,t 3 

d 	Y, 

T  

1a 
EP P 

V 

Yt 

§ 33 Vx- 
tpx1, txl] 

VX  

§ 	314 Rearrange 
	v x, 	as diagonal 

	
Vx td  

[ pi , t ] 

§ 	35 Re arrange 	 as diagonal 	V„_°(  
t /] 

§ 36 
	

Tpx 

	

[ het vx4 
	

4jE e 	v, 
t 

pX 2( p-0,t /) 

Re arrange 	Vy+ 	 as diagonal 
	

V yclt  
p1 ;  U.) 

§ 	141 Re arrange 4  as diagonal 	V. 
Y- 	 IF/ El] 



     t  vr_ § 	142 Tpy 
(prz(p-1) , ti] 

E , Vy  4  — E e _ 

    

§ 143 

	

= (-21) Q 	+ 
cpx(p_2),f„(t_3)] 	[,,,t 

Tex 	bte  

§ 44 
	L 	= (i) 	 Tpy 

Lp.(P-2),tx(t-3)] 
	

ro,t) 

§ 145 U 
t g(t-s)] 

§ 146 
	 Z 	L 

rl"(p- 2) tx(t -3).1 	
Ccr , 

§ 147 Rearrange 
	 S 
	as diagonal 

	
Sd  

t /J  

§ 148 Rearrange 
	 C 	as diagonal 

	
C cod  

p1 , t/J 

§ 149 ,0 
rpr(p..,),t „ 

_1) [c;1 U, + Sd  

 

   

    

II- 
L(?, e 

  

§ 50 M10 
cpx(p_zox(t.3)) 

=lb z 
[O,f3  

yo + 

 

    



as diagonal 
	

X 9(  

P/ 

as diagonal 
	

(1) 
Pi ; tfJ 

§ 	51 Re arrange 

§ 	52 Re arrange 

§ 53 	M 
x (r-3)1 M10 	 D3 V, - ( 21) a Jj 

t 	 f(),t 

4-(1)(p4  [p 	- ( 1-)a 	G1] ro,ti 

    

§ 54 Join b for 

C2pr(p-2),-1x(1-3)3  

Lpx(p-z),tx(t-3), 

 

 

M 
f px(p..2) ,tx(f_3)3_1  

    

§ 55 
	

D2or 
	bz: 

	
f r 	 lOr 

ipg(p-z) , 3 g(1-3)] 

§ 56 
	

b,r 
	bioy. 	D2r 	D20 

Capx(p-z), tx(f-3)] 

§ 	57 St op 



II-e 	The Basic System in the Cover 

A) For the basic theory we refer the reader to Eqs. ((IV,56 to 76 )) 

If the fuselage is only loaded by transverse loads, the flange loads 

and field forces can be immediately derived from 

^ 	AA 

b or bat  
E2(p-oxi,txT3 	 2(p-/)/7  I x33 	

[2C 
p-0)(1130'3 

and 

r(p_ox , tycn  
boci  R 9 

r cp-i)x2 - 	,tg3] [2(p -1) xi, 3g JD ] 
(11,91a) 

B) If, on the other hand prescribed flange loads are applied at either 

or both ends, it is necessary (a) to allow for these distributions in the 

matrices for the basic flange loads and (b) to modify the field force 

distributions in the first and last bays in order to transfer from the 

prescribed flange loads at station 1 and 10  to the automatically calculated 

ones at station z and cp-4) . This is achieved by the use of, and explains 

the 	formation of,the extreme self-equilibrating stress systems that have 

been included in the automatic calculation of the self-equilibrating stress 

systems. 

We denote in accordance with our standard procedure the matrix for the 

basic systems obtained in (11,91, 91a)by bo , the self-equilibrating 

set of flange loads at the frame stations by 

b 121  
(t (i - 3)) 

and the associated self-equilibrating shear flow by 

C  1t).1(%) 

If, in order to transform the sub-matrix 1:0oe*  into the prescribed Pr, i  
matrix we add a set of redundancies ' )( at the first frame station this 

may be expressed by the condition 



P, b 	4- of t  b te, (11,92) 

We now proceed essentially as in Ref. (2) using though, whenever 

possible, the super-matrices relating to the whole structure. 

Premultiplying by A ez  we obtain 

A 	[ Pe, 	MM. 

	

beej 
	

Y, 	 (11,93) 

which determines the values of the required self-equilibrating flange loads. 

The associated field forces can he obtained from 

b b 	 b 	‘111  09.4  

giving immediately the modified field forces. 

Similarly, we may derive at the station io 

Yp 
Pp  - I) oep. (I1,93a) 

and in the bay 

bo g 
(11-0, p 

b *  
o9 

 
(P-0210  

b1c, 
P,(p-i) Yp (II,94a) 

In order to obtain the sub-matrices b 	b b and 

, all required in  as well as 	and

, 	0e, 
the above procedure, 

we introduce the following operations 



- ) - 

b 0 P *  e` 
r2cr-oxi,c)3, 

b e  o 
2(p-1)x , tv.1)] 

(11,95) 

b 0_p e t  D of 

[2(p-i)x t 1)3 (11,95a) 

b e 
[(p-Or ,c)]1  b 09  

(11,95.0 

b  oq(p-i),p b09 [(12-1))(1,o](p_i)  Icr-i),(1,i-  xf7 (II,95c) 

b,  9,.z 

t 

L(p-i)g ip  c>3 
Ccp-oxp, 4 3  

e 

b,q(p-o, P 
e 

[<p-t)x4 '03 (p-I) 
B 9 

C Cp-/)NP, 
e 	VA 

rPx 1  
(IL,95e) 

C) 	The most general case arises, however, when sets of prescribed 
longitudinal forces are applied at each frame station. The complete group 
of these prescribed forces in the direction zT 	is described by the 

super-matrix 	p Cpx 4 , t x f 3 	. If we now consider the equilibrium 

of the flange loads at one particular frame station 2 , 

bop 
11- 

Pe,  



As in the case 13 1  Eqn. 	I1,96 ) isi in general, not satisfied 
ir 

by the boe matrix. The difference may again be expressed by a self-

equilibrating flange load system 

* 
E) 	b f*  z - Pe + 	b le,. Yz  (11,97) 

Proceeding as before we find 

Y. AP,[ boe*.2 ._ b°  Pez. 
(1103) 

     

We may now modify ck,4 b. to read 

b e 0 i+  of24  
L. * 
'Joe 	be, 	-- ApT b 	b 	P.11,99) 

We do not change on the other hand 
	

b , except at the last 

station to  when we write 

ba  
P- 

t(p-1) bbit A Tboe,a ofF- 

_ per  
,100) 

  

In order to achieve this generalized correction we proceed as follows:—

a) We form the operator 

E Po 	E t _ - 	Et, 	 (II,loi) 

C2( 1,_,), p 0 , )3 
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b) We then obtain 

)1( qt 
rpx1 ., (t-3)cp3 [p/ 2  (E-3)g E] 

 

E co 	boe,. 	13 	(11,102) 
fpxi x.19 

c) We write down the modified (and final) super-matrix for the 

basic flange load distribution as 

b0 
up- I) x 1, fig f3 

boe 
12(p- 4)441,txr3 px1,01p 	Pilytte.(  t*-4 Px UO-3)'d 

e 	
:cr

-e: 111 b * Y 

(11,103) 

d) We now derive the corresponding field force modification through 

a similar procedure. Thus 

b.9  E39_ u 
Etp-oxi,txr3 	Ecp-Oxi,t,q3 	t(p-orp,t] Gi,tx0-3)) I px(, ( t--3))413 

- 	E39-1. 	LI A 	 e t  
L(12-0 xt.,t3 [0, tiCt-0 [p.f,,]p  L 	ojp 	[px 4, (t-3)  

(TI,1a) 

Since the super-matrix scheme is assumed not to carry out any 

operations with zero sub-matrices it is recommended that the most general case 

is programmed. Thus 

MODIFICATIONS of BASIC SYSTEM in COVER  

§ 1 EPA 
C2(p-i) r p 

_ 
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2 
[px.1, (*-3),,p] 

    

A EI  boe*  Pt  

 

    

    

3 	b.f  
rzcp_0„1,txn 

i; 	 6 
13 	 - e 0e 	E,  

Cpx 4 ,0] p 
z(p-1) 

Y 

 

§ 4 	b0  b0, 	u, Bcht  U A  e 	e 

	

E 	 r(„k.tt.,01 [PO,t13 pr"1  

§ 	5 Stop 

II-f 	The Basic System in the Rings 

Having obtained the basic system in the cover, we establish the 

corresponding stress distribution in the rings by a programme similar 

to that described under II-a. However, much of the work involved in 
establishing b ir  is of immediate application here and need not be repeated. 

We only summarize below the programme 

FORMATION of bor 

	

§ 1 
	

G0 	 TGI 0 
+xi] 

	

2 	Jo 	J 
	bog 

L 10.1 



Jo 

U - a G.] 

§ 9 M oo 
[px1 t 1] 

M00  V 

§ 3 	K 0 
 = (1) 13 	G0 

	Tpx 

Lo = (n 13 
	

J o  +Tay 'Dot, 

EP" ticf3 	rc),f 

§ 5 	U 
	 z 

Ca x 4, t xf] 
	 [ 

§ 6 	V0 
[p xi,txn 	 cc, , 

K 0 

L 

    

v.] § 7 Noo 

t. 0%4, +rQ] 

Ca Uo Dot 

    

   

01 11E-- Y: 	+ x , vo  

 

8 Moo 
[pxftxr] 

 

  

   

Noo 
fpxl,t )43 

Moo 
CPx 4 ,i- xf] 

1 o Join boor 
C 2 p x 1, I ,,P3 



§ 11 D2,50 r 
Leo a, 3,,r3 

§ 12 t)Oy 

[ 2 pi i, txfJ 

§ 13 Stop 

bzr€ 	f w 	bear 

oor 
	 bZr  2 00 

II—g 	The Final Solution of the Problem 

Having all the necessary basic matrices, we proceed to the final 

solution. The reader is referred to Eqs.((I,16to 39)) of Ref. (2) for the 

basic theory. 

BUILDING UP and SOLUTION of EQUATIONS  

1 D „ 
E(p-2) ,(t-3)] 

f t  b,p  + 	bi: fc, 	b,, 

+ b,,t f 	b4r 

§ 2 	Dfo 	 fp bop b14t  fc, bog  
(p-nr-1,0-3)xf) blr t  f r  b, 



- 9 

D 
	

D10 
r(p-2),(1,(t-3)*Y3 

4 
	

be 	boe 	b,e  

bog 
	 b,, Y 

by- 	boy 	b,, 

§ 	7 
	 b.: 	f e 

	 b 0, 	f, 	9 

bor f r  b, 

§ 8 Stop 
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II-h 	Input of Data and Preparation for the Pruramme  

It is all too apparent from the developments of the present 

	

dissertation and those of the parent-work 	(see Refs. (1) ,(2))that 

the approach to the automatic analysis of a large structure using an 

electronic computer is basically different from the classical ideas 

associated with the analysis of a smaller size problem on a desk machine. 

This new attitude inevitably also influences the way the data is given 

to the computer. As a fundamental premise we should always keep in mind 

that the input of unnecessary data should always be avoided. In other 

words, what can be calculated by the machine, should never be done by hand. 

Data should always be given to the machine using the full accuracy of which 

the machine is capable. Unnecessarily prepared data only increase the 

possibility of error. Here we state the minimum amount of data that 

are initially required 

A) Geometrical Data 
*pp 

No. of flanges t , no. of rings 	, no. of loading cases 

X 
Cpx4 
	

Cpxi 	x 

TI 
Cpx.1,bti3 	[px1 	Exi] 

A+ 
rpxi 	t .13 
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B 
r2(p-oxi, t.,3 Pvoxi“A-0 

d 
rcp—t) / 	C) 

E Modulus of elasticity 

G Shear modulus 

A generalization can easily be made to take care of the case 

when the elements of the fuselage are made of different materials. 

Thus instead of E we have the diagonal matrices 

E. of the E modulii for ring segments.  

[P/,t ']  

EEe of the E modulii for the flange segments. 

E(12-2)6b] 

Similarly 

Gr  of the shear modulii of the ring segments 
Cp/,E/J 

and 

C), of the shear modulii for the shear panels. 
[43-0/20] 



E ]t  t T 
§ 	1 t ev  

[(p-i) 	13 

We must, however, not forget the principle mentioned before, 

namely that no data should be prepared unnecessarily by hand. It is 

possible for instance, when the fuselage panelling is uniform, to prepare 

the matrix t by a single trivial programme, for instance:— 

_ 	(t) 	e 
[(p-Oxi,tx/i 	r(P-Oxl, tx 4 ] 

The formation of the E3 matrix, taking account of the skin 
contributions and adding it to the actual flanges that are present( Bo ) 
can be achieved by using the following simple programme:— 

ADDITION of the SKIN CONTRIBUTIONS to FLANGES  

§ 2 Rearrange 	tev as diagonal 	te 
[2(p_,), , t I] 

§ 3 
	B. + te E (.1-) 0± 

, t 

11 Stop 

Of course, this contribution can still be weighted by a diagonal 
matrix, thus for instance reducing the contribution at the tip or even bringing 

it down to zero. 



The same method could, of course, also be applied to the rings. 

A certain freedom, however, must be left in such a case for the stressman 

to interfere with some parts of this programme. This can be done by a set 

of weighting diagonal matrices which will mostly consist of a scalar, or 

a group of scalars determined by the stressman to control his idealisation. 

The programme is not described in detail here. It is similar in principle 

to that of the flange areas, only more complicated by the fact that the 

co-ordinates of the minor polygon have to be modified too. 

We must not forget also that, if we input a matrix h of the 
[,,..Gtx11 

depths of the rings at the vertices, that the g 11 might also be possibly 

calculated from the properties of the ring cross-section. This is in fact 

to be recommended in order to avoid errors. The same applies to A , 

and .1 

Having obtained either by input or computation, the necessary data, 

we can proceed to the rest of the necessary geometrical matrices. Naturally 

enough we cmn only for instance add the contribution of the skin to the flanges 

after having calculated the operators 

, 	
, E t  and 

In what follows we reproduce various programmes for calculation 

of the various geometrical data still required. 

FORMAT' ON of 

1 	X A 	= 	
" 	

X 
Cpx1,43 	 ro,-E1 

= - a 
r„,f, 



3 	Rearrange 	xo 	as diagonal 	X b,4  
Cpxl,t Ail 	

[PI; tI3 

§ 4 Rearrange as diagonal 	‘id 
J 

, x13 	 [1,/, tv] 

1(2) 
§ 5 Form 

	

X d 	X6 ▪ YA Y 
[ pxi 	x43 	

a  

6 Elements of I. 
Epy„ „.„,3  

= Square Root of Elements of 
(2) 

§ 8 Stop 

X follows immediately in the same manner, thus 

F ORMA T I ON of 

1 
E 

tp • t 13 

§ 2 nA  

[pxi • Lx 43 

at _ - 
r(),t3 



- 1 	- 

3 Rearrange 
	

EA as diagonal 	
A 

Up, 	t /J 

Rearrange as diagonal 

5 Form 
x2) 

Ey' 

6 Elements of X = Square Root of Elements of 
rp,.,t0J 

§ 7 Stop 

The computation of the two column super-matrices Si  an d C follows 
again immediately 

FORMATION of Sac and C«  

1 Rearrange 
	
A as diagonal 

	xa 

C p 

§ 2 

Cpx1, t x , J 

§ 3 
	

C 
cp),4,tvi1 



1)1 

Stop 

B) The Loading on the Fuselage - - - - - - - - - - - -  

Here again we need only input (or form) the matrices 

K ar 
	 and 	

ok 
[px i, txf] 

of the loading at the ring vertices as well as the loading along the fuselage 

PQ  
b.f] 

Assuming that the loading on the fuselage consists only of such concentrated 

forces at the ring vertices in the directions oc , y and 	, we can 

calculate the load-resultant matrices R and R9 • 
The matrices Pc0R, L04 and F3 in themselves mainly consist of 

1) concentrated loads, e.g. freight loads, loads transmitted by other 

aircraft components. 

2) aerodynamic loads (idealised) 

3) inertia loads (idealised) 

These three components are best calculated separately, and then added. 

Part 1) will be normally a sparsely populated matrix and is best 

computed by individual addressing of the force values. 

Part 2) is best calculated by an aerodynamic programme using 

matrix language. Whether a suitable procedure is available is questionable, 

but at any rate this should be the ideal. 



Part 3) is very easily calculated from the matrix of the mass 

distribution as well as the accelerations of the aircraft. These in turn 

might also be calculated from the force distribution on the complete body; 

(see Ref. ( 2) 	). 

Having obtained these three matrices, we proceed to form the 

other matrices 
A 

  

FORMATION of R, 

1 Fx,„ 	- 
rpg4, /X,P3 

e t 

[(), ixtj 

 

§ 2 Join E N 0 
Lc p_oxi,(), 

 

    

§ 3 Fx 
[0)-0)(1, 1 x y] 

	

4 	 e 
LOxi, ixn 	), 	t 

	

§ 5 	Fy 
C(p-i) x 	Ixy] 

L 0 

YA 
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§ 	6 Transpose Elements of 	X to give 
	x 

[pyi,ixt] 

§ 	7 Transpose Elements of 	y to give 
	

YM 
t 3 

§ 	8 Rearrange 	X * in di agonal form 	X 
E p 	I A 

§ 	9 Rearrange 	in diagonal form 	y d 

[p 	, 1 x t 

y" K oR § 10 x 
d 

L — 0 g  
Cpx 1, 1 x i'] 

§ 11 
	 T 	EN 	11 

§ 	12 Transpose Elements of Fx t o give 	Fx *  
ccp-l)1+, p 71i-3 

§ 13 Transpose Elements of 	toFy  	give 
	

F 
to - 1 ) ,( 1 2f f l J 

§ 114 Transpose Elements of 	T to give 	
)rx,3 



§ 	1 NA 
,p„„Ix 9, 

e 
c), 1x{ 3 
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15 Join 

§ 16 Transpose Elements of R,* to give 	R9 
Pp-0x 1,3)(93 

§ 17 Form 
	 R, 	 R9 

2(p-1)x1,3x13 
	

E2(p-/) ,, (p-1),,)3 [cp-1)xi, 3 A 91 

§ 18 Stop 

Then we proceed to 
	R e  

FORMATION of Re  

§ 2 
	N 
	z 	Ce, No 

[2cp-1)x1,1xf3 	 ,c)3 

§ 	3 	Mere 
	X 

*Qt 

rpxi, 1 x 9] 



- 1 05 - 

.5 	4 	M RYA 
	 E 	d 	F 

£ (p_f) 	, 	n 	((p-t),( )] 

§ 	5 	 M y 

2( p-O x i,txrj 

6 	MC.za 
Lpx, 

Mt  + E,_ M RYa 

 

  

§ 7 
	M. 	d 	F 

C(p_i)v12 1xF3 	C(p-i) c 

§ 8 	M x  
C 2(p-f)x t i  is 

E:e4. 
[.?(,,-1) 

ET! M iPxp 

 

  

§ 	9 Transpose Elements of 
	

N to give 
	

N'  

[1(p-Og 1 fx 1 3 

§ 10 Transpose Elements of M y  to give M 

E z cp-og-t )  f 

§ 	11 Transpose Elements of 	M X to give 
	

M x 

2(f3-1) X1, f x 

  

N 
 M 	M:i § 12 Join 

A 

R p 

L7(p-1) xi 	x3] 
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13 Transpose Elements of 	
to give 
	R, 

12(p_ +) 	Yx 	 [Z(p-t)xl ,3X93 

114 stop 

Having obtained this, all preparations are ready and one can 

proceed to solve the problem. 
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CHAPTER III 

MODIFICATIONS AND CUT-OUTS 

III-a 	Summary and Introduction  

The first step in the analysis of a fuselage is, as described 

in Refs. (1) and (2), its regulai'ization so as to yield a topologically 

continuous structure. This leads to the programme set out in some detail 

in Chapter II. Subsequently, when dealing with the cut-outs and modifications 

necessary to simulate the original system one would agree, that extraction 

of the rows of the S and t) matrices, as well as formation of f a ti 

present the main difficulty, due to the great possibility of error. 

In accordance with the main philosophy of this work, this part of the 

programme should therefore be written so as to reduce this danger to a 

minimum by full automatisation of the procedure, reducing the human element's 

contribution to what it should be, viz. the supervision of the programme. 

A set of instructions having a clear physical meaning indicates which elements 

are to be modified and which stresses are to be nullified. These instructions 

will then control the input of new section constants and properties for the 

modified elements. Since this is logically sufficient for the machine to 

solve the problem, it would be wrong to give anything further. The input 

should, as always, be logically sufficient, i.e. should contain all the 

required data in the form of logical instructions and numerical information, 

but should never contain redundant information, unless of course it is meant 

purposely to be a check on the rest. 

The purpose of this chapter is to define a technique suitable for such 

a programme in general terms so as to be applicable to all computers. It should 

be noted, however, that this one has been developed for the Ferranti Pegasus, 

used here for all the relevant calculations. 
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Although the programme has been written for a fuselage, it should 

also be in principle applicable to all other regularized structures analysed 

by the Force Method. The programme uses again Boolean matrices which are 

logical matrices consisting of zeros and ones and which are not always xtpqrd-

in full. This type of matrix is best introduced as a special class of 

matrices in the super code, and all the arithmetical operations associated 

with them(either of pure logical or semi-logical nature)defined specially. 

A preliminary discussion of these matrices may be found in Appendix I. 

The problem of the automatisation of the cut-out and modification 

techniques for any structure in general, and for the fuselage in particular, 

reduces to three parts: The input and storage of the information in the 

computer, the construction of the basic matrices required for performing 

the calculation, and the straightforward matrix programme resulting in the 

modified stresses. It should be noted, however, that the basic matrices 

required for the calculation of the cut and modified structure are no longer 

the 	bh  , b,h  and 	f nti  but rather the logical matrices resulting in 
their formation. 

II-b 	The Input and Storage of Information in the Computer.  

The input to the computer in preparation for a cut-out and 

modifications run consists of two parts: The first comprises the logical 

data specifying the affected elements and whether they are to be cut-out 

or modified. The second contains the numerical data needed for the modifications 

i.e. the new section constants. 

In order to present the first part, we have to introduce a certain 

code, which is clear to the stress analyst as well as acceptable to the 

computer. Again we stress the fact that the code is primarily intended 
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for the use of the structural engineer and not just for simplification 

of the input. 

The code described here is for the Pegasus programme, and should 

be regarded as a guide rather than general for all other computers. 

The following meanings are ascribed to the letters or groups of letters 

below 

CO 	cut-out (s) 

MN 	Modification (s) 

F 	Flange 

S 	Shear panel 

Id 	Normal force in ring 

H 	Bending moment in ring 

A 	Area of ring cross-section 

I 	Moment of inertia of ring cross-section. 

The shear force in the ring is assumed to be coupled to the bending 

moment, and therefore any modifications in the moment of inertia .3 or 

in the cross-sectional area effective in shear C will alter the flexibility, 

due to the fact that the bending flexibility carries also the shear influence. 

However, a change in a ring cross-section will result in the alteration of 

all A , C and .3 simultaneously. 

In view of the explicit criticism of the couple shear and bending 

flexibility put forward in Ref. (2) it is advisable when working with a large 

computer to separate these effects and carry distinct "stress" matrices 

for bending moment and shear force. For the case when the stress matrices 

contain the shear forces explicitly the technique can be extended easily. 
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Using the above symbols, we can now give the form of the orders or 
"macro-instructions", required to define the various operations. It should 
be noted further that the symbols (+)or(-) after a number mean that a 
dimensional change takes place on one side only of the nodal point. The 
explanations follow with each instruction. Thus 

(1) 	CO*F5*1,2,3 	 = Cut-outs at frame station 5 
Flanges no. 1,2 and 3 are affected 

(ii) 111I*F5* 3,7 + , 9,12- = Modifications at frame station 5. 
Flanges 3 and 9 change areas on 
both sides whereas flange 12 is 
affected only at the "-" side of 
the ring, i.e. at the end of bay 
4,5, and flange 7 only on the 
opposite side - i.e. the "+" side. 

(iii) CO*33,4#4,3 	 = Cut-outs at bay 3,4. Panels no. 
4 and 3 are removed. 

( iv) 	MN *33,4 * 3,5,7,9 

(v) c0 * N7 * 2,5 

(vi) CO * M 7 * 6,7,9 

= Modifications at bay 3,4. Panels 
no. 3,5,7 and 9 are affected. 

= Slides introduced in ring 7 
at Polygon sides 2 and 5. 

= Hinges introduced in ring 7 at 
vertices 6,7 and 9. 

(vii) 1 

	

	* A 6 * 1,2,6,3+,9-,10 = Modifications of ring 6. Areas at 
vertices no. 1,2,6 and 10 change, ' 
on both sides. At vertix 3, only 
the value on the side r!,9 is 
affected. At vertix 9, the value 
on the side (3,9) is also altered. 



12 

Fig.III -1 
CO * F5 * 1,2,8 

Fig.III -2 
MN * F5 * 3,7+,9,12- 
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12 

Fig.III -3 
CO * S 3,4 * 4,8 

Fig.III-4 
MN * S 3,4 * 3,5,7,9 



12 

Fig.III -5 
CO * N 7 * 2,5 

Fig.III- 6 
CO * M 7 * 6,7,9 
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12 

Fig.III -7 
MN * A6 *1,2,6,8+19-,10 

Fig.III - 8 
MN * 16 *1,2,6,7+,9- 
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( viii) 	rim* 16 * 1,2,6,7+,9- = Changes of the moment of inertia 
I (as well as area C) in ring 6. 
At vertices 1,2 and 6 the 
changes are on both sides. At 
vertex 7 only on the (7,3) side 
and at vertex 9, only on the 
(3,9) side. 

Sketches of the physical meaning of these orders are shown in Figs.III-1 to P 

These macro instructions result first of all in the formation of 

four word "lists" which we call 

1—c o _ c  
2p-s) 

r2p] 

for the cut-outs in the cover, 

for cut-outs in the rings, 

a preliminary list of dimensional changes 
in the cover, 

a preliminary list of dimensional changes 
in the rings. 

L MN_ C 

[30-03 

and 
	L 

L-  P 

Each of these lists consist of a number of units. Each unit is either 

one word, or a group of words according to the type of computer, and the size 

of problems to be expected. The number of bits in each of these units 

correspondsto the maximum number of stresses along the periphery, i.e. the 
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maximum number of flanges 	th,a.A. to be expected in practice. It should 

be noted that the only case in which all bits of the unit are taken up by 

the word, is when the programme is running to full capacity, i.e. when the 

number of flanges is the maximum allowed. Otherwise, what we call the 

"listword" occupies only a part of the unit. This is important when performing 

"circular listword shifts". 

On the Pegasus, for instance, a full word is allowed for each 

unit so that the maximum number of flanges is 39, a value suitable for the 

size of this computer. For the UNIVAC 1107, on the other hand, such a value 

is too low. It would be desirable to allow two words for each unit, thus 

raising the maximum number of flanges to 72, which is consistent with the 

size and speed of this computer. A still larger unit might be necessary, if 

one has to include more than one circuit at each cross-section, for instance 

in a multi-cell fuselage. However, the choice of the two word units has 

advantage in the ease with which a double circular shift can be performed 

on the 1107, as well as in many other computers. 

As mentioned before, since the number of items in each unit is 

generally less than the maximum, only the corresponding number of bits 

starting from the least significant position is used. Examples are best 

given in Fig.III-9. 

* A circular word shift in computer terminology signifies a shift of the bits 
to the right (down shift), or to the left (up shift) , where the bits to the 
extreme right (respectively to the extreme left) are fed back again at the 
other end. 
Example: A circular right shift of three places on a ten bit computer word. 
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Size of Pegasus unit 

Listword for t = 18 

• • 	  • 
30 	 20 	 (0 

Listword for t = 24 

Size of proposed 1107 unit 
(two words) 

To 	 Co 	 So 	 40 
• • 

3o 	 2o 	 10 

Listword for t = 24 

          

• 

 

• 

           

             

Listword for t = 54 
• 

(Fig. 111-9) Examples of units and list words. 

Now we describe the individual lists, which are all similar in 

nature. 

The list L co-C 
Cap -1 ] 

  

The list, in all (1P-1 ) words long, consists in itself of two parts. 

These can be best expressed as 
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t t-1 4 3 2 1 

LCO-F 

• • . . • • Fp  

F 1  
F 2 

F 3 

• • 	 • • • • 

• • 	 • • • • 

. 	 • • . • 

S 1,2 
S 2,3 

S p_Lp 

• • 

• • 	 • • • • 

• • 	 . • • . 

Lco-s 

Fig. III-10 
A typical Loo_c list 
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1 

6 

Fig.III -11 

Example of l_co_c for a 
fuselage with cover cut-outs 

109 8 7 6 5 4 3 2 1 

• • • • • • • 1 ' • • 

1 1 . 

, 
OOOOO •••.• 

F1  
F2  

F3 

F4 

F5  

S1,2 

S2,3 

53,4 

54,5 
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L 
rep- +]  

Lc0_F 
tp, 

Lco_g  
fe_,1 

 

  

It indicates which flanges or shear panels are cut. That is, if a bit in a 

certain unit is zero, the corresponding stress can take any value. If it is a 

"one" , the corresponding stress is nullified and therefore will have zero value. 

Loo-F contains p listwords. The first represents the group of flange 

stresses at frame station 1 , the next unit those at station 2, 

and so on. 

is composed of f-1  listwords. The first represents the shear 

panels of bay (1,2), and so on. 

We show the string of listwords in Fig.III,10 . An example of an 

actual fuselage is given in Fig.III,11. 

The List  
0414-C is 

This list is similar but refers to the positions where a design 

alteration has taken place. Since we allow a jump, or discontinuity of the 

flange area at a nodal point, we need two listwords instead of one to describe 

the flange station / (except for 2  =I or p ), the listwords are then 
referred to as 	and F-7, . In this manner the list consists of 3(p- 4) 

listwords or 

[ 
r 2(p-1)1 

MN- Cr 

C3(p-03 	I— tam - s 
[ p-1 



t t-1 4 3 2 1 

121 

F2_ 
F2+  

F(p_1) +  
Fp_ 

Sl e  2 

S2,3 

• • 

• • 	 • • • • 

LMN-F* 
[2(p-1)] 

LMN-S* 
[(ID-1)] 

Sp-1.p 

Fig.I11-12 
A typical Lim_c*  list 
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6 
Fig.III-13 
Example of primary 
modifications list Lmwc 

OOOOOO 	1 • • • 
 	1 	1 . 
 	1 	1 . 
...... 	1 . 	1 • 

• • 	OOOOO I 	• • 

I 

 	1 	1 . 

F1+  
F2_ 
F2+  
F3 _ 
F3+  
F4 _ 
F4+  
F5 _ 

S1,2 
S2,3 
53,4 
54,5 



• • • • • • 

  

• • 

   

    

    

    

    

N 1  

N 2 

N 3 

N P 

LCO-N 
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t t-1 4 3 2 1 

M1  

M 2  

 

• • • • 

NCO-m 

Ni P 

Fig. III -14 
A typical NCO-r 
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6 
Fig.III -15 
Example of Lco..r indi-
cating the introduction of 
slides and hinges in the 
rings 

10 9 8 7 6 5 4 3 2 1 

 	1 

i 

I 	  1 1 

...... 	1 . 	. 1 

N1  
N2 

N3 
N 4  

N5 
M1  
M2 
M3  
M4  
M5  



Again the general scheme of the list is illustrated in Fig. 111-12 

and an example fuselage is shown in Fig. 111-13 , the thick lines indicating 

where the modifications have taken place in the flanges, and the hatched panels 

are ones which have undergone a thickness alteration. One should keep in mind 

that the flange flexibilities are always assumed to vary linearly fram one 

frame station to the next. 

The list Limw-c*.  is used only in the control of the input of the 

new flange areas and sheet thicknesses. 

Corresponding to these two lists, we find also two lists for the rings, 

L co -Y" and 	L. MN-f- lic • 

The List  L Co-r 

 

Similar to L 
	, but concerning the rings, this list contains 2p 

"listwords". It is composed of two smaller lists, each of ' words, thus 

L C0-14 
EP] ••• L. 	-1r 

12p3 Lo-  n, 

The first list indicates the presence of slides introduced along the periphery 

of the rings. Thus if a "one" is present, it denotes a slide, and if the bit 

is zero, the ring element is still capable of carrying direct load. The second 

list, 	Lco-r4 records where hinges are introduced at various vertices. 

The presence of a "one" at a certain bit means that the corresponding vertex 

has a hinge, otherwise it is capable of transmitting bending moment. As before 

we give the lay-out of the list in Fig.III,14  and an example in Fig. 111,15 

* Slides is in accordance with Ref.(2) the terminology for a cut-out nullifying 
the normal force. 



Al  _ 

A1+  

• • 	 • • • • 

• • • • 
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LMN-N * 

AP- 
AP+ 

 

• • 

 

 

• • 

 

 

• • 

 

 

• • 

 

LMN-M* 

Fig. III - 1 6 
Typical lay-out of LmN_r*  
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6 5 4 3 2 1 

. 	. 	. 	1 1 	. 

. 	. 	. 	1 1 	. 

. 	. 	. 	1 1 	. 

. 	. 	. 	1 1 	. 

. 	. 	. 	1 . 	. 

. 	. 	. 	. 1 	. Fig.III -17 
Example of LmN_r* 

changes in A 

4 
changes in I and C 

A1  _ 
A1+  
A2  _ 
A2 +  
A3_ 
A3 +  
A4_ 
A4+  

I2 - 
I2+ 2+ 
I3_ 
13 +  

4_ 

I4+ 



The List  L MN — r 

  

This list, again analogous to 
	

L. MN—C * 9 describes where 

modifications are introduced in the rings. Due to our admitting jumps 

in cross-sectional areas, as well as maments of inertia and areas 

effective in shear, we actually need 41,  listwords in all. The list again 

consists of two parts, L „ and L MN—P1, • Thus 

LMN-+Y  
I ire 

LMN—NY 
C 2 pJ 

LmN-MY 
r2p3 

Each pair of words in the list L MN-Nis 
refers to a particular 

ring. The first listword indicates alterations in /1,_ at the various 

vertices, and the second in A-+ . Similarly in the list L „,,r4 —T1 

in each pair the first listword indicates alterations in 	(and C_ 

the second indicates alterations in I (and C+). 

This is shown in Fig. 	(III-16) and (III -17) as a lay-out 

and typical example. 

The Input Programme for the Lists  

The first part of the cut-out and modification programme is 

concerned with reading the orders, or macro-instructions, from perforated 

paper tape punched cards, magnetic tape, core or drum and forming the 

four lists 

L Co _ c  L MN—C L co  _ v  and L 1.4N—*C 

The information needed is contained within the instructions, and writing 

the necessary programme reduces then to a simple exercise. In the case 

of the Pegasus, the programme has been written to feed in the orders one by 



Input 
character 

N • 

C.R.L.F.? 

Input a 	 Reset ff 5 
	 Output Xi 

to (4) 

( Reset ffo 	 a = CO? 

CL E MN? 	 set ffo 
ff5 set ? 

N 

Error 4 	(END OF LIST? 	Prog. 
Next 

Input * 

to. 	 

XE =10XE+ Xi 

set ff 	 a - 

N ? 

Reset ff 3 

• 

N 

Print Out 

a*O*6-XI: 

ff1 set? 

N 

( 6 = 1 

Y W 

Output X2 
to (34 ) 

6 = p? 	fN set? 

Output X2 
	 N 

to (4(+u) 

f f6 set ? 

Input 	(.1( ) 
to Xi 

.4=s4+(6-1)u 	 .4=.14+(26-3)u 

Input * 	 In set ? 

.4=34+2(5-1)u 

Input ( ) 
to Xi 

tJ 

Input (44-u) 
to X2 

Input * 

AIMN-M* 

MN-M* 

4CO-M 

4C0-N 

sCIMN-S* 

fiMN-F* 

4C0-F  

4C0-S 

L MN-F* 
[2(p-1)] 

L MN-5 * 
[(p--.1)] 

L CO-N 

[p] 

L CO-M 

[p] 

L MN-Ma 
[213] 

L CO-F 

[p] 

L co-s 
[( FDA 

— 129 — 

= 	$11; 

set ff 5 

FIG. 111-18 FLOW DIAGRAM FOR 
THE INPUT OF CUT—OUT 

AND MODIFICATION ORDERS 

OPTIONAL 
STOP 

ff5 set ? 

N • 
Rese ff 6 ) 
Reset ffo 

set ff 5 

ff3 set ? 

11= ACO-F 

ff I set ? 

ffo set ?) 	ffo set ? 

V 

MN-F  

ffi set ? )  N  

ffo set ? ) 	ffo set ? 

Print out 
a*I3*6-kl-) 

OPTIONAL 
STOP  

X1 = *Yi 

ffo set ? 

Print out 
a*13*6-XE C+1 

Input, and 
6' 

• 	 

Input 6 

ff I set? 

X2 = 0 

Input one 
character to Xi 

Rese ff 6 
Reset ff 4 

Reset ff 4 
set ff 6 

C.R.L.F.? 
	Error 

N 	 N• 

51 = fi co -s 	A'NIN-S* 
	

4=li  CO -N 	-4= -4MN-N 
	

A=A co_m 	h MN-Ms 

L 
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one from paper tape and obey each one immediately upon its input. We can 

describe here such a programme by a simplified flow diagram (Fig. 

which can easily be extended to apply to other computers. 

We observe first that the form of the order is generally 

(X 96 v 
3N S35,-- * 

	it , 
NZ y3 

 

Yc. 

 

At the beginning of the set of instructions as well as between each two 

consecutive orders there is a certain symbol. It might be simply the fact 

that the next instruction appears on a new punched card card, or in the 

case of punched tape, it takes the form of "carriage turn, line feed". 

In some codes the symbol is punched as two distinct characters, in some 

others as one. The end of the set instructions can be indicated by a 

special card, or in the case of paper tape by the presence of a length 

of free tape - say after a minimum of two blank characters. 

The addresses of a certain list L. is indicated by ,1, . Otherwise 
the flow-diagram is self-explanatory. We have to observe that although the 

flow diagram is directly applicable to paper-tape input, its extension to 

punched cards should not be too difficult. A set of logical yes/no 

mechanisms always gives an indication of the nature of the order, i.e. 

cut-out or modification, cover or ring, etc. Certain controls are provided 

for instance that no stress is mentioned twice. Further checks can be 

incorporated as a separate programme to ensure for example that no excessive 

number of cut-outs has been specified. (see also Chapter IV ). These programmes 

might also have a built-in automatic correction. 
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rm., 3 
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The Secondary Modification Lists L.I. pini-c and 
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Whereas the primary modification lists L 	and L 
are mainly used to control the input of the new values of the areas, 

thicknesses, etc., these two new lists, which are analogous to L. co-c 
and L.coy, are required for choosing the appropriate rows (and columns) 
of  b, , S (and f A  ) to give F% 1... 4,) , .5h  and fAh  . The four lists 

L co- C 9  L co, , L. PIN- C 
and L.  are notdirectly used for this purpose, 

MN-r 

but rather 	Boolean matrices based upon them. In order to illustrate 

the meaning attached to these lists, we now proceed to discuss them, taking 

into account the fact that these two secondary modification lists are in 

themselves divided into sub-lists. So, 

The List L 

Due to the assumption of linear variation of the flexibilities 

between each two stations, as well as the permitted jump in the values 

of the areas at frame stations, it follows that the modification of an area 

for example on the "+" side of the frame station i not only results in an 

alteration of the direct flexibility at that position, but also in the direct 
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flexibility of the same flange at the "-" side of the next station ( 2*+1 ) . 

So, whereas the list L mw-Fsh gives the actual positions of the flange-area 

changes, the list L MN-F gives the position of all stresses in which the 

direct flexibilities are affected by such a modification. 

We can easily see that the two units describing ( 1 4 and (f+-0_ 

are always the same in this new list. Furthermore we see the connection 

immediately between this and the logical addition, represented by the symbol 

According to this, if two computer words are added, the corresponding binary 

bits become added "logically" to one another. The result is a (+1) if one 

or both bits are one, and a zero only if both are zeros. Such a logical function 

exists on all computers either explicitly or implicitly. The new list 

L MN-F may therefore be simply derived from the list L through the 

equations 

( ( L Mn_  F MN-F E  

and 

1-14143 - 	0.4 
	

L rIN-F*)1+ 
	 L N 	 1 _ (III,7a) 

where the expressions in the brackets refer obviously to the unit in the 

appropriate list connected with the frame station and side given by the 

subscript. 

The flow diagram is very simple and need not be given, but the 

following example may be helpful: 
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• 4 L • • • • 1 	• 4 (L 

 

•4•• • l• ..11J ( V MN- - 

 

•LI. • 4 • 4 4 441 (L mm-F ). 	- f )(1'.1)- 

(Fig.III,19) Example of logical addition 

 

The List 	L mw_s 

This is identical with 
	L m 	, thus 

L 
	

L MN-S t  

The List  L MN-T7 

 

Two units corresponding to N.1.. and NI+  are necessary to describe 

the input of the modified ring areas. In the present list, we need only 

one unit, since the normal force is specified as constant along each polygon 

side. 

For that purpose we have to introduce the notation if Lc is a 

unit in a list. u,00 	is the same unit after exercising a round shift 

in the up (left) direction of 3 places. Correspondingly bld(y) 	is the 

same unit after exercising a round shift in the down (right) direction of 

y places. According to this definition we can write 

L MN-N-1 t 
_ L , G [ 	• 

MN -N1. 	 2 .1- ct(i) 
(III,9) 

An example is given in Fig. (III,20)* 



N- - 

N*4. 

M*- 
M*4- 

..1...11 

....1.11 

..1...11 

. 	. 	. 	.1.11 

....1.11 

1 . . 1. . .1 

1..11.11 

. . .1.11. 

..11.111 

M*+ 

0 
M*-d(1) 

M+ 

0 
t 

M 1.111111 

- 

Changes in ring 
	 Affected. N-stresses 

cross-section 

1. .1. . .1 

• • • • 	• 411 

N 1..11.11 

Affected M-stresses 
with jumps 

Affected M-stresses 
no jumps 

Fig.III -20 

Example for the formation of 
the list LmN_r 
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The List L MN -14 

 

In our case where we assume no discontinuities in the bending 

moment, we observe that a change in the cross-section at 

, (/*)--f- or (1;4-0_ will result in a change in the direct 

flexibility at the vertex i . 	We need one listword per ring, 

which we obtain from the relationship 

{ [ L 	 CD L • .N_J2.4 1  
tat,) 

I+ 	 t- 
°( (i) 

It is, of course, obvious that the actual order in which the four words are 

taken is immaterial. 

If on the other hand one allows for a discontinuous bending moment, 

resulting in two rows in the 5 m  matrix at each station, we then derive 

the two required words 	and 	LMN M  11+ from  

( L 	1 . 	= 	1.4N-m*I. 0 	IL I-IN-m*1. mN.-1,1,2- 	[1- 	
.:_ 	/ 2  4 	 (III 11 

(A(0 

[LNN.,1 -1 • 
/ 2+  

r ( L „_ [ (III,11a) 

Counting the Number of Entries  

Now, after all lists have been formed, we have to count the number 

of entries in each list. The basic flow diagram to perform this on a list of 

units, each consisting of t bits stored at address c„91-. , is given in 

Fig.(III,21).. It is straightforward and self-explanatory. 



C = n ? 
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h 0 

= C1 + 1 

C2 	1 

SHIFT Xb UP 

ONE PLACE 

NO 

1 

YES 

Cz = t ? 

YES 

YES 

xb ef,f ><, = 0 

NO 

k 

A NO 

(Fig. 111,21) 

No. of flanges 

rl 	No. of units 

A 	No. of entries 

Flow diagram for counting the number of entries in a list. 
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Using this diagram, we count the number of entries in all the 

lists. We denote them by the symbol h , thus 

No. of entries in 

ft 	If 	 It 	 II 

II 	It 	 II 	 II 

II 	II 	 II 	 II 

II 	It 	 ft 	It 

It 	It 	 II 	It 

It 	II 	 It 	It 

II 	It 	 It 	II 

tt 	II 	 tt 	It 

It 	It 	 It 	It 

It 	It 	 II 	It 

It 	II 	 tt 	It 

LCo -F 

L co -5  

LHN'F 

L CO- 

L MN - 14 X 

L MN- NI* 

L MN — 

L N M 

hco_s 

4,4N -F- 

m F 

MN-S 

4co- 

A istni-N 
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We denote further 

CO-C = lico _ c  + hco-s 

kr-iy-C* = 	hmN-F- 4,  +. A mN-s, 

hMN-C 
	= 	A m  p.4  _ P 	4- 	h fri r../ - S 

(III,12) 
II co- 	 11  Co-N 	1  co- 1.4 

A 	 /1  MN-P-14 
MN- R.,ie 	 MP4-N* 

11 KIN  _ R 	 MN-N 	h 

b  Co 
	= 	hco-c 	+ 	lico-r 

hMN 
	= 	hmu-cle + 

	
k m NI- r* 

hMN 
	= 	11  m r4 - C 4- 	1.1  NIN-r 

h 
	

= 	IICO 	+ 	ilmr4 

also 

and 

(III ,13) 

The Input of the Data  

For this purpose, we have to form a group of Boolean matrices 

corresponding to the various lists governing the input of data. We name these 

matrices corresponding to the lists 

PNIN-F 13niN - 

and discuss now the information. 



T 

1 

1 

1 

z 

( off`' ) 	Xw 
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SHIFT X6 up ONE 
BIT 

>lc  = )(„1 

NO 

( X, = ? 

X6= (+1) 

Xc 

= 4--Xw  = 0  ? 
YES 	

NO 

NO 	_ N P 
	 FORM WORD 

t'= z+1 
	 j 

YES 

SEND END-WORD 
	

8= 8,1 
	

SEND TO 5 
TO B 

Fig. (111,22) 

READY 

The formation of a 13 matrix fran a list of N units. The list is 
stored in  cfl- and the i3 matrix in 



B, 
C2px 10r1] 

OMN-F 
C 2p / 4, tx hmo.F.) 

B + BMN  B , 
[2p. ,txt]  

B 
2p x 4 

RMN_ F BPn, (III,14) I 

— 14 o - 

The Formation of the Matrix  (3 N,„_F 

 

13MN-F 
through the use of the flow diagram 

[ 2pK 1 2  b The Boolean matrix 

is derived from the list 
	L 

in Fig4111-22) 

flange areas as 

has the purpose of selecting the new areas 

positions, ready to replace the old areas. 

introduced are fed in in the correct order 

E3mh , then we can say that 

of the order 

B of 
shown 

the 

and placing them in the right 

Thus if all the new areas 

as the [ k m  ,_F* x t 	matrix 

MN-F s  
followed by repartitioning to suit the matrix 

will be apparent from the following relation. This matrix 

	

The new areas of the flanges should be arranged in the matrix 	Bmh so that 

they all come in the correct order, first of all according to ring stations 

1+ 	to r- and then within one station from t to t . 



RNNtj PAN-5 PAIN - S 
t rn • r" 	1 [.. 

bp-0,66,13 UP-0,t3 
L ,4 	 (III,15) 

[ Ilmw_s, xi] matrix representing the new thicknesses, 

in their occurence in the 

where is the 

in the correct order 

p -N- and The Formation of 

A rnh . The list as two matrices A and 

sub-lists by choosing every second element. Thus starting with the into two 

L and  first element we get if we begin with the second 	MN-N+++ • 

MN-m,3 

in the sub-lists being of course 

consisting of p units, and the flow diagram of 

two Boolean matrices 

and [1,,1 4 	•x h of the dimensions j p x  

0 , 

CI 

Am_ c,„„ ,„ Arr._ 	(II1,16) 

A A + 
fMN -N+ 

13 MN - N-t 
Cpx i txi] 

(III,16a) 
a  -1 

A 4 4- 
N 

- 11;1 - 

f3  

This follows directly from the list L " - * 

through the use of the same flow diagram (Fig.1II,22). 

this new Boolean matrix are [(10-0  t 	f* 

before, the modified thicknesses are calculated from 

The input of the new cross-sectional areas for the normal force 

Using those two lists, each 

Fig.(III,22), we obtain the 

mN-N_ 	and 	h mN-N+ 

sectional areas from 

Tn the same manner we get the new ring cross- 

and 

and 

The Formation of the Matrix  

(or 

The dimensions of 

. Exactly as 

is best divided up in conformance with the super-matrices A _ and A + 
is best split 

respectively. The number of entries 



"th  _ 13M N 

3+  
mN- 

P.1 CIII,Ve:i) 

(III,18a) 
MN-r4+ "3"""i 

fpx17  tx13 

- 1142 - 

where again the changes in area are fed in as the two matrices 

A .,,„ _ 
C olnd_74_ X1 3 

The Formation of 

and 

PMN-m- 

[ 	N t 

and OmN-0+ 

Following the same logic, the list L isj 
	 is split into the 

sub-lists L. MN- Mir_ and L MN- M + in which the numbers of entries are 

given by 

matrices 

4 MN-M4,— 

N- 	— 

and 

and 

respectively. 

0 MN-Mt 	of dimensions 

It is used to form the 

[ 	px1 

and [Px 1  , 
	in accordance with the flow diagram of 

Fig.(III,2. These two Boolean matrices are not only used to replace the 

old moments of inertia I , but also the areas effective in shear C 

by the new values. This we express as 

C 
C Px1,txi] 

IND 13:1 c_ (III,17) 

   

Crn+ 

[px.4 ) -Igt] 

 

MN-M4 1 MN-Mt C 

 

 

(III,17a) 

  

  

and 
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The inserted matrices 
Cmh- s 

and 	0,„÷ have the dimensions 
C * 

1 h 4,4 	x X , -3 MN_M- x 

and [ 	x t _ 
respectively. 

At this stage the new data have been fed in and the new super-

matrices of the geometrical properties stored, ready for the calculation of 

the new flexibilities. 

The Final Solutions of the Problem  

We establish the super-matrix of the stresses 

   

SL 

.s 
SN 

 

 

S 
L Ax 5'3 [ ss 

 

(111,19) 

   

     

and the super diagonal matrix of the flexibility 

f 	= 	fq 	fN 	f m  
(4 X4) 

We also form the new flexibilities 

(I1I,20) 

fLm f, 
(4,4) 

introducing the new data  

fQ,., 	fN, 

EL , t M 	Am- 

(III,26a) 

Am+ 

C" 9 	
and 3 1.” 

Then we form the Boolean matrix  [km], where A is the total number 

of stresses in the fuselage. This matrix can be shown schematically as 
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	 3(p-i) 	 2 P 	 

A 

[ ko.c 

t 
PCC:).-C 

x 3(p-Ot j Lisco-c. 

0 
x 212 t 

1 

0 I 3 co-v- 
[hco-y 	x 3(p-1) t]  hc.-, X 2P 	J 

1 

0/114-C 0 

1 hp*N-c 	x alp-1)i] i bk.-c A 2P 1 ] 

t 

0 OMNI - ( 
I 	/.1,4,4_,, X 3(p-f)ij 

DPIN- e X 11' 1 

Eh AA] 

/Ica- r 

~I MN _ Y  



Then the matrix 

with the "origin" shifted up through 

tt 	tI 	tt 
	

It 

tt 
	

It 

is 

(1  co is MN-C 

FM 4-r 
is 

13 NN—C 

RMN — r  

t3tp-1)t, hco_c ] 

( 	 11  co 

- 5 - 
The formation of the sub-matrices can be accomplished using the flow 

diagram in Fig.(III,22  ), thus 

one forms 

and 

from the list 

from 

from 

from 

2 

L co- ,  
L 	--c- 

L HN-1- 

Then, in order to form I) h  

n  Co 	0)  
4 	♦ 

P-Pco.r 	P-MN-C 

is transposed to give the required matrix. 

Now we obtain 

s, 
and 

13 ht 
	

b1  

two very simple operations. 

po. 	PC*. c 

t 	

S 

(4 m 
MN -Y -f 



Similarly if 

and 

then 

shifted through [ o, 

 

Prh 

b2rii 

13co-V- 

0  t 

(2) 

MN -C 2  

b • 

(3) 
We also form 

and hence the matrix 
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as 	 shifted through [3(e -,) I-, 44, 

PmN 

[A " 11,..a] 
Then we find 

RANI- C 
(111,27) 

[0 

	 0 
Ckio xhcci 	[ k„ . liuft  3 

0  hk 
[ limp/ Y. k„ 3 	11.1" )( 6,,, 3 

[ f, - f (111,2'1) 

(111,29) 

f  nom 

t 

  

13  MN 

and can set up the matrix 

to proceed to the final modified stresses from the basic relations of Ref. ( 2 ) 

[b, DI: bo,'+ b2 D22 b2 ,1 

[b„ 	b,,  + bzh D21 b21t  4 



§ 1 Form 

§ 2 Form 

§ 3 Form 

§ 4 Form 

§ 5 Form 

§ 6 Form 

	

D I--  I 	b ,ht  

b„„ D 	t) 

	

22 	 lrh 

(see previous page) 

sh 

sr 

sII  

6„ 

H 

b H 14 Do, 

or 

S 
b,140bcil Dnioc:  

ikc  0 t 
LO 6, J L Sr..] D -1[0e,' b 22,  

(III,31) 

For the full automatisation, assuming that we have
frh 	

from re-partitioning 

FORM MODIFIED STRESSES 

t).0, ,we recommend the following procedure :— 
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7 Form Yh 
	

D-1  Do), 

8 Form 
SC 
	 R + bic Yh 

§ 9 Form 	)11, — 	D-4  b 22 201 H 

10 Form Srrn = br R + bn, Yh + b, X, 

11 Stop 

In principle one could add the computed 	D, ,  to the original 
D0 	to obtain 	Dam  which could then be used instead of D to 

derive the total new primary redundancies. However, for obvious reasons of 

numerical accuracy, the suggested nrocedure is considered superior. 

We also observe that we could obtain 	Sh directly, without 

having to calculate the whole 5 , by a direct operation of the /3 
matrices on the ID0  to get !Doh  ( t),A  required in any case) and thus 

SA 	, hence directly the Sm . However, for checking purposes, 

it is always recommended to calculate the full 5 and control compatibility. 
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CHAPTER IV  

GENERAL LAY OUT OF THE PROGRAMME  

INTERMEDIATE AND FINAL CHECKS  

Whereas Chapters I and II dealt with the programming of the 

individual operations involved in the analysis of a fuselage, this chapter 

deals first of all with the interrelation between the various sub-divisions of 

the main programme, as well as the necessary checks introduced in the middle, 

either to ensure the correct functioning of the machine or simply to determine 

the accuracy to which the computations have been carried out. The sequence 

of operations is best discussed using the flow diagram (Fig. IV,1 ), 

but first we need a preliminary discussion of the checks. 

Checks on the Calculation  

While running a problem on the computer, one needs to be constantly 

informed of what is being carried out. This becames more and more necessary 

the larger the problem. A programme which runs for several hours must contain 

checks at intervals, say of half an hour, which result in a certain amount 

of output. The best ones to construct are those which require a short 

additional time in comparison with that needed for the main computations. 

These checks can be either of a structural or mathematical nature, although 

physical ones are always to be preferred. 

Since the sizes of the matrices become larger with the size 

of the problem, the amount of output must then be so arranged that it can 

be easily and quickly analysed and understood, so that a certain decision 

may be made at once as to how the programme is to be directed further. This 

is achieved either by printing statistical data about the matrices or by 

extracting the results in a more comprehensible form. e.g. graphically. 
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The Automatic Programme and Intermediate Checks  

The programme starts (1) with the input of the basic data required. 

The first part of this data is used for organisational purposes, to determine 

the size of the different matrices, the necessary storage space etc. as well 

as some data, controlling decisions, which can be made automatically in the 

programme, for instance, the accuracy considered to be sufficient in the solution 

of the system of equations and the number of standard loading cases. Other 

control data are the expected number of modifications and cut-outs(to be 

specified later more precisely)-  and so on. A check (2) is then carried out 

to ensure that the problem is not too large for the machine. One limitation 

is the amount of storage space available, which the computer can check 

automatically, and interrupt the calculation if exceeded, or give a warning 

if the size approaches the critical. The other limitation is the calculation 

time required. A certain amount of manual control is here allowed to enable the 

operator to interrupt or continue as desired. 

The second part are the basic geometrical data which are also 

used to compute all secondary dimensions(3) such as polygon side lengths 

and trigonometrical values of the inclinations. This performed, the machine 

proceeds to calculate the matrix 	of flexibilities of the individual 

elements (4). 

Having established this, one is ready to proceed with the 

automatic generation of the self-equilibrating systems. First of all A 

has to be chosen (5). In view of the excellent results obtained by using 

the Fourier coefficients for a circular fuselage ( Qe ) , it is recommended 
that this should be programmed automatically. A certain manual control must 

be provided, however, to substitute a different A if necessary; either 

by entering another sub-programme, or by direct input. The facility for the 

improvement of A e through orthogonalisation is provided through (16) to (13) 
with an iteration back to (6). 
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Box no. (6) represents the determination of the self-equilibrating 

stress systems in the flanges 

basic systems tkye 
to plot the matrix  

t)1 and the accompanying statically equivalent 

(7) After having obtained this, a means is provided in 

bte through the order described in Appendix (C ). 
This gives an idea of the linear independence of the systems. Similar 

facilities have not been included in the flow diagram for plotting 	and b iy-
as well, however, these can also be included. 

A 

In (8) the resulting b and  b le 	
of  are checked for equilibrium. 

The programme is straightforward, and can be directly given here, using 

the standard order forms assumed in Appendix ( c ). 

CHECK EQUILIBRIUM OF bit  

(SALT, 2 (P-1) /, 3 x t) x (B1L, 2 (p-1) x (p-2), t x (t-3)) 

MKMAX1 (SALT, 2(p-1 /, 3 x t) x B1L, 2 (p-1) x(p-2), t x (t-3)) 

DIVEL (WS2, 2(p-1) x (p-2), 3 x (t-3)) (WS1,2(p -1) x (p -2), 3 x (t-3)) -T- WS3 

COSPEC (WS3,2 (p -1) x (p -2), 3 x (t -3)) (1020, 1) (10+1) 

That is to say, the multiplication 0- 	16,  ie 
is first carried out. The result 

should be zero. Since, however, this zero is a relative one, we must compare 

it with another matrix which we build by the special matrix function "MKMAX" 

described in Appendix ( C ). This effectively multiplies the rows of a
t 

with the columns of blt  9 taking as the result of each such multiplication 

not the sum of the elemental products, but the maximum product encountered. 

This accomplished we divide the elements of this new matrix 

into those of the other one, giving us directly the accuracy of the equilibrium, 
- 20 

by printing out the column spectrum of the result between, say 10 	and 1. 

If we want even less to be printed out, we can use the following order instead 

of the last 

MASPEC (WS3, 2(p-1) x (p-2), 3 x (t-3)) (10-2°,1) (10+1) 

WS1 

WS2' 



t)iq a' T4 

b,q + a T- 

r 
VII 9 + 

or 

ag- t 

b ,e  0 

0 
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A 

Similarly we check the equilibrium of the 	boe  matrix 

CHECK EQUILIBRIUM OF BoLC  

(SALT, 2 (p-1) /, 3 x t) x (BoLC, 2 (p-1) /, t x 3) 	WS1  

CL (UNMAT, 2 (p-1) /, 3) 	 UNMAT 

(UNMAT, 2 (P-1) /, 3) + (ONE) 	 Y UNMAT 

(WS1, 2 (p-1) /, 3) - (UNMAT, 2 (p-1) /, 3) 	WS2 

MKMAX (SALT, 2 (p-1) /, 3 x t)(BoLC, 2 (p-1) /, t x 3) 	WS3 

DIVEL (WS3, 2 (p-1) /, 3) (11S2, 2 (p-1) /, 3) 	WS4 

MASPEC (WES4, 2 (p-1) /, 3) (10 20, 1) (10) 

	

Here our error matrix is [a! 	- I 

	

t 	oe 	[2(1,,h33 	
and this is again 

compared with the maximum elements occuring during the multiplication of the 

first term a 
A 

te  bat, • 

Having checked the above, the computer then procedes to calculate 

bvi and 
	

bog  (9). Afterwards a similar check on equilibrium is 

provided (10). This is done by using one of the two expressions (say for 
	
b19 

However, in trying to obtain the base line with which we compare the zeros, 

we need only to consider the left hand term, since the second one is of 

secondary importance in comparison. 

n 
The same appliei for the 	bog matrix,although we have as before to 

subtract a unit matrix to get the error matrix. Thus we verify the following 

relations 

[— 
C19., too, 	ar4  i),,e (ce,)] E. e _ + 	 _ I 

,.. 

and 	 [(p_i) ,3] 

: 	 (IV,2) 

A 	 1 b09  + ar_ bap (E. e 9  ) ] E et - I 
(p_i) j  33 

(IV,2a) 



where 

C'eci 

[I o 	0 	oil 
1 

0 

The programmes can then be written. 

EcUILIBRIUM OF B1Q and BoQC  

(AQPT, (p-1) 1, 3 x t) x (B1Q, (p-1) x (p-2), t x (t-3)) 
	 WS1 

(ATPT, (p-1) x 2 (p-1), 3 x t) x (B1L, 2 (p-1) x (p-2), t x 	 WS2 

(WS1, (p-1) x (p-2), 3 x (t-3)) + (WS2, (p-1) x (p-2), 3 x (t-3)) 	WS1 

MKMAX (AQPT, (p-1) /, 3 x t) x (B1Q, (p-1) x (P-2), t x (t-3)) 	WS2 

DIVEL (WS2, (p-1) x (P-2), 3 x (t-3)) (WS1, (p-1) x (p-2), 3 x (t-3))-1,-WS3 
MASPEC (WS3,(p-1) x (p-2), 3 x (t-3)) (10 2°, 1) (10) 

(AQMT, (p-1) /, 3 x t) x (B1Q, (p-1) x (p-2), t x (t-3)) 	 WS1 

(ATMT, (p-1) x 2 (p-1), 3 x t) x (B1L,2(p -1) x (p-2), t x (t-3)) 	WS2 

(WS1, (p-1) x (p-2), 3 x (t-3)) + (WS2, (p-1) x (p-2), 3 x (t-3)) 	WS1 

MKMAX (AQPT, (p-1) /, 3 x t) x (B1Q, (p-1) x (p-2), t x (t-3)) 	WS2 

DIVEL(WS2, (p-1) x (p-2), 3 x (t-3))(wS1, (p-1) x (p-2), 3 x (t-3)) -̀ -0- W53 
.  MASPEC (WS3, (p-1)x (p-2), 3 x (t-3)) (10-20,1} (10) 

Gb (2,1) (1,1) (2) 	 ELQ 
(bOQC, (p-1) x 2 (p-1), t x 3) x (bEBLM, 2 (P-1) x (p-1), ( )) 	BoQCP 

(BoLC, 2 (p-1) /, t x 3) x (bELQ, ( ), 3) 	 BoLCC 

(BoLCC, 2 (p-1) /, t x 3) x (bEBLM, 2 (p-1) x p-1), ( )) 	 BoLCCP 

(AQPT, (p-1) 1, 3 x t) x (BoQCP, (p-1), t x 3) 	 WS1 

(ATPT, (p-1) x 2 (p-1), 3 x t) x (BoLCCP, 2 (p-1) x (p-1), t x 3) 	WS2 
(WS1, (p-1), 3) + (WS2, (p-1), 3) 	 T WS1 

(WS1, (p-1), 3) - (ONE) 	 WS1 
MASPEC (WS1,(p-1), 3) (10 20, 1) (10) 



boQCM 

BoLCCM 

WS1 

WS2 

WS1 

WS1 

3) 
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(BogC, (p-1) x 2 (p-1), t x 3) x (bEBLP, 2 (p-1) x (p-1), ()) 

(BoLCC, 2 (p-1) /, t x 	x (bEBLP, 2 (p-1) x (p-1), ( )) 

(AQMT, (p-1) /, 3 x t) x (BoQCM, (p-1), t x 3) 

(ATMT, (p-1) x 2 (p-1), 3 x t) x (BoLCCM, 2 (p-1)x (p-1), t x 

(WS1, (p-1), 3) + (ws2, (p -1), 3) 
(WS1, (p-1), 3) - (ONE) 

MASPEC (WS1, (p-1),, 3) (10-20, 1) (10) 

Having checked that, the computer proceeds to control the 

consistaney of the flange loads and shear flows. This we can do for the 

self-equilibrating stress system using the identity 

a 	b ig 	"' [I EI  "n. 	tfie]L(),t3 
	 0 	(IV,3) 

To compare our zero to a base line, we can take as reference the moduli of the 

elements of 
IC) 	' 

CHECK CONSISTANCY OF B1L, B1Q 

TR (bEBLP, 2 (p-1) x(p-1), ( )) 	 EBLPT 

TR (bEBLM, 2 (p-1) x (p-1), ( )) 	 EBLMT 

(bEBLPT, (p-1) x 2 (p - 1), ( )) - (bEI3LMT, (p-1) x 2 (p-1),( )) 	LQOPER 
(bLQOPER, (p-1) x 2 ( p-1), ( )) x (B1L, 2 (p-1) x (p-2), t x (t-3))--WS2 
(bALFT, ( ), t) x (B1Q, (p-1) x (p -2), t x (t - 3)) 

MODEL (WS1, (p-1) x (p-2), t x (t-3 )) 	-)P-ERMOD 

(WS1, (p -1) x (p-2), t x (t-3)) - (W32, (p-1) x (p-2), t x (t-3)) 

DIVEL (ERMOD, (p-1) x (p-2), t x (t-3)) (LQER, (p-1) x (p-2), t x(t-3))-PRELER 
MASPEC (RELER, (p-1) x (p-2), t x (t-3))(10-20, 1) (10) 
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Following the previous argument, we check the consistency of b., 
and 	boe through 

and 
L„,, 

rat 

b.,- 4) [Etc 	130e (6 ) 	te_ = 0 	(iv,  

boi 	[ 	-e] iDoe  (E,d Eef  = 0 (IV,4a) 

CHECK CONSISTANCY OF BoLC, BoQC 

(bALFT, ( ),t) x (BoQCP, (p-1), t x 3) 

MODEL (WS1, (p-1), t x 3) 

(bOPER, (p-1) x 2 (p - 1), ( )) x (BoLCCP, 

(WS1, (p-1), t x 3) -(WS2, (p-1), t x 3) 

DIVEL (MODER, (p-1), t x 3) (LQoER, (p-1), t 

MASPEG (RELER, (p-1), t x 3) (10
..20

, 1) (10) 

WS1 

2 (p-1) x (p-1), t x 3) -v-WS2 

x 3) 	RELER 

(bALFT, ( ), t) x (BoQCM, (p-1), t x 3) 	 WS1 

MODEL (WS1, (p-1), t x 3) 	 MODER 

(bOPER, (p-1) x 2 (p-1), ( )) x (BoLCCM, 2 (p-1) x (p-1), t x 3) --IN-- WS2 

(WS1, (p-1), t x 3) - (WS2, (p-1), t x 3) 	 LQoER 

DIVEL (MODER, (p-1), t x 3) (LQoER, (p-1), t x 3) 	RELER 

MASPEC (RELER, (p-1), t x 3) (10 20, 1) (10) 

With these controls accomplished, the machine proceeds to 

calculate the self-equlibrating stress systems in the rings (12). This part 

of the calculation can also be checked although it has not been explicitly 

shown in the flow diagram. The equilibrium inside the closed rings, that is 
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the consistancy of )IN 	b,5  and bIN4 , as well as the accuracy to which 

the compatability has been satisfied in their closure, are then examined. 

The formation of D (13) is followed immediately by two checks (14) 

and (15) to analyse the result. The first is on the symmetry of the matrix. 

This can be done in many ways, varying in speed and simplicity. The quickest 

way is to form 

Re' D - D et] = 0 (IV,5) 

and compare it with the matrix composed of the largest elements in the 

summations involved in the matrix multiplication. The programme for this is 

CHECK SYMMETRY OF D  

Gb 	(1,1) (1,0) ((p -2) x (t -3)) 	 BEFD 

(CUE) x (bBEFD, (p-2) x 1, (t -3) x 1) 	 EFD 

(D, 	(p -2), (t -3)) x (EFD, (p -2)x 1, (t -3) x 1) 	DEL 1 

MKMAX (D, (p -2), (t -3)) x (EFD, (p -2) x 1, (t -3) x 1) 	ZERBAS 

TR (EFD, (p-2) x 1, (t -3) x 1) 	 EFDT 

(EFDT, 1 x (p -2), 1 x (t - 3)) x (D, (p-2), (t -3)) 	DEL2T 

TR (DEL2T, 1 x (p -2), 1 x (t -3)) 	 DEL2 

(DEL2, (p -2) x 1, (t -3) x 1) - (DEL1, (p -2) x 1, (t -3) x 1) 	DEL 

DIVEL (ZERBAS, (p -2) x 1, (t -3) x 1) (DEL, (p -2) x 1, (t -3) x 1) 	RELZER 

MASPEC (RELZER, (p -2) x 1, (t -3) (10-20, 1) (10) 

We might also mention here that a vector other than e  can be used 

if desired. 

„t 
Another more "precise" method is to compare directly D and L) 

In other words to form 
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and compare it with the original D • This method, however, shows little 

advantage. 

The conditioning of the D matrix can be checked by various 

methods (see Chapter V, but in our experience a very simple method helps 

enormously to point out trouble at an early stage, i.e. through the use of 

the order for diagonal normalization described in Appendix (C ) followed by 

taking a matrix spectrum between 1.0 and say 0.05. 

RATIO OF ELEMENTS IN D  

DIANOR (D, (p-2), (t-3) 	DNORM 

MASPEC (DNORM, (p-2), (t-3)) (1, 0, 05) (0.9) 

According to the results of this test (manual intervention being 

here also allowed) a decision is made (16) as to whether the conditioning is 

satisfactory, or whether in (17) and (18) the diagonalization technique 

should be used. 

This decision can already be made at an earlier stage. For instance, 

only the diagonal sub-matrices of the D r. need first be calculated and 
examined, and the technique can be used accordingly. 

Whenever this orthogonalization technique is required, however, 

it is to be recommended that it be done right through the fuselage for the 

sake of simplicity and to secure the best results. 

The programme for the steps (17) and (18) can be given as follows 
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ORTHOGONALIZE DR.  

EXDISM (DR, (p-2), (t-3)) 
	

DRDIAG 

EIGV (DRDIAG, (p-2) /, (t-3)) 
	

DRVAL, CHOW 

(ALM, (p-2) /, t x (t - 3)) x (CHOW, (p-2) /, (t-3)) 

SD (ALMB, (p-2) /, t x (t-3)) (1 , (p-3)) 
	

ALB2, ALB2C 

SD (ALB2C, (p-3) /, t x (t-3)) ((p-4), 1) 
	

ALBMME,ALBPMO 

JD (ALB2, 1/, t x (t-3)) (ALMB, (p-2) /, t x (t-3)) 	ALMNB 

JD (AIMMB, (p-1) /, t x (t-3)) (ALBPMO, 1/, t x (t-3)) 	ALB 

(ALB,p/, t x (t-3)) 
	

AL 

If the D matrix is finally considered to be satisfactorily 
conditioned, or if no further improvement can be obtained, the machine proceeds 

to (19), where it decides whether D"'• is explicitely required, or if a direct 

inversion into E)be more advantageous. This decision might be made manually, 0 
or by a criterion set un in the machine, based on the size of the problem, 

the number of loading cases, the number of expected modifications, and the 

number of times this has to be done. Reasons of accuracy may also be involved. 

If the machine decides, or is instructed that the D is to be formed, 

it proceeds to (20), and then to (21) where the inversion is checked. The first 

check is on symmetry. This is done in 

D matrix. The second possible one 

and if it is, to what accuracy. 

exactly the same manner as with the 
r.Ii  is whether U s the true inverse of 

Mathematically, it is said to be best to carry out both multiplications 

D 
	D-' and 	D and compare the results with a unit matrix. This, 

however, is a lengthy operation, and contradicts one of the principle conditions 

of a check, namely that it should take much less time than the main operations. 

A satisfactory and quick control is in our opinion the pre-multiplication of a 

unit vector e with the matrix D and then its inverse D-1> or vice-versa, 

and to compare the results with the unit matrix vector. Thus in effect forming 

the two expressions 

    

e] [D e and [D-I  D e ••• 

   



(Iv,7) 

The programme is simple and can be given immediately         
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QUICK CHECK OA INVERSION  

         

(DMO, (p-2), (t-3)) x (EFD, (p-2) x 1, (t-3) x 1) 

(D, (p-2), (t-3)) x (DMOE, (p-2) x 1, (t-3) x 1 ) 
(EFD, (p-2) x 1, (t-3) x 1) - (DDMOE, (p-2) x 1, (t-3) x 1) 
MASPEC (ERR, (p-2) x 1, (t-3) x 1) (10 20, 1) (10) 

      

DMOE 
DDMOE 
ERR 

      

      

(D, (p-2), (t-3)) x (EFD, (p-2) x 1, (t-3) x 1) 
(DMO, (p-2), (t-3)) x(DE, (p-2) x 1 (t-3) x 1) 
(EFD, (p-2) x 1, (t-3) x 1) - (DMODE, (p-2) x 1,(t-3 x 1) 
MASPEC (ERR, (p-2) x 1, (t-3) x 1)(10 20, 1) (10) 

        

DE 
DMODE 
ERR 

        

        

        

This done, the machine checks (22), possibly under outside control, 
whether the results obtained are satisfactory, or whether the inversion has 

to be repeated with higher precision. 

Having decided that the inversion fulfils the desired accuracy, 

further data describing the standard loading cases are called for and fed in 

(23). Accordingly the basic systems in the cover ( bo e and bog  ) are 
calculated (24) and then the same checks applied to them as on the cover 
stresses before, namely equilibrium and consistancy. The procedure is similar 

to the previous one and is based on the following relations: - 

Equilibrium of flange loads: 

a 
) 3 x 	1 Lc r-i) x 	t-. 

Re 
C2 (p - 0A1,3,13 

(iv,6) 

Equilibrium of shear panels: 

E r _ [4. 	b., + a.T ; boe 

[ 	 tr p-of,3x t] Pp 	x(,t 'cf.) 	C (p-,) x 2 (r.-.),33 t) 	Z(p-i)x 1, t of] 

[ a 9_ 	boq 	a„. 	boe r2(p-oA(P-.),"3 	[cp-0/,3,,+] L ,19-0 	b.93 Lep-o 	IxtJ 
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or better still 

[ fie_ a9:.+ a T{+ 
F? (IV,7a) 

and for the consistency of b., and b01  

a 	bog  
[(p-i)xi,tx P3 [E,  te] boe 0 (Tv,8) 

1(r - i) x2(P -'),()] 	[ z(p- t) 	t eri 	 x9] 

The programmes read as follows: 

CHECK EQUILIBRIUM OF BoL 

(SALT,2(p-1)/, 3 x t) x (BoL,2 (p-1) x 1, t x 	) 	 RESTNT 

MKMAX (SALT, 2(p-1)/, 3 x t) x (BoL, 2 (p-1) x 1, t xy) 	> 	BASLIN 

RESTNT, 2(p-1) x 1, 3 xy ) - (RLL, 2 (p-1) x 1, 3 x y ) 	ABZERO 

DIVEL (BASLIN,2 (p-1) x 1, 3 x Q ) (ABZERO, 2 (p-1) x 1, 3 xj3) 	RELZER 

MASPEC (RELZER, 2 (p-1) x 1, 3 x F) (10 20, 1) (10) 

CHECK EQUILIBRIUM OF BoQ  

(bEBLM, 2(p-1) x (p-1), ( )) x AQPT, (p-1)/, 3 x t)   QOP1 

(bEBLP, 2 (p-1) x (p-1), ( )) x AOMT, (p-1)/, 3 x t) 	 QOP2 
(QOP1, 2 (p-1) x (p-1), 3 x t) + ( Q0P2, 2(p-1) x (p-1), 3 x t) 	QOP 

(bEBLM, 2 (p-1) x (p-1), ( )) x (ATPT, (p-1) x 2 (p-1), 3 x t) 	POP1 

(bEBLP, 2(p-1) x (p-1), ( )) x (ATMT, (p-1) x 2 (p-1) x 3x t) 	POP2 

(POP1,2 (p-1), 3 x t) + (POP2, 2(p-1), 3 x t) 	POP 

(QOP, 2(P-1) x (p-1), 3 x t) x (BoQ, (p-1) x 1, t x?) 	 RSTNT1 

(POP, 2 (p-1), 3 x t) x (BoL, 2 (p-1) x 1, t x?) 	 RSTNT2 

(RSTNT1, 2 (p-1) x 1, 3 xS" ) + (RSTNT2, 2 (p-1) x 1, 3 x P) 	RSTNT 

(RSTNT, 2 (p-1) x 1, 3 x ?) - ( RQL, 2 (p-1) x 1, 3 x5') 	ABZERO 

MoDEL (RQL, 2 (p-1) x 1, 3 x5)) 	 T RQLMOD 

DIVEL (RQLMOD, 2 (p-1) x 1, 3 x P) (ABZERO, 2 (p-1) x 1, 3 x ? ) 	RELZER 

MASPEC (RELZER, 2 (p-1) x 1, 3 x f ) (10 20, 1) (10) 
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CHECK CONSISTANCY OF BoL and BoQ 

(bALFT, ( ), t) x (BoQ, (p-1) x 1, t x 5)) 
(bLQOPER, (p-1) x 2 (p-1), ( )) x (BoL, (p-1) x 1, t x ?) 
(RES1, (p-1) x 1, t x9) - (RES2, (p-1) x 1, t x 9) 

MODEL (RES2, (p-1) x 1, t x ?) 
DIVEL (BASLIN, (p-1) x 1, t x P) (RES, (p-1) x 1, t xP ) 
MASPEC (RELZER, (p-1) x 1, t x ?)(10-20, 000) 

     

RES 1 
RES2 
RES 

BASLIN 

RELZER 

     

     

     

     

     

Following the determination of the strains in the basic system, 

the total incompatible strains Do  (♦ bi-') are calculated (26), and then the 
machine checks if the 	has been previously determined, or if a direct 

solution is necessary. Accordingly it chooses either operation (28) (direct 

multiplication) or (29) (direct inversion) to obtain the primary redundancies 

)( . A check is again performed (30) to determine the validity and accuracy 

of the solution. This is best verified using the identity 

D Y 	D. = 	0 
	

(iv,9) 

The zero here is, naturally enough, compared with D0  . The programme for 

that is again straightforward 

CHECK SOLUTION OF EQUATIONS  

(D, (p-2), (t-3)) x (WY, (p-2) x 1, (t-3) x ?) 	NDN 

MODEL (NDN, (p-2) x 1, (t-3) x 9) 	 BASE 
(NDN, (p-2) x 1, (t-3) x ?) 	(WY, (P-2) x 1, (t-3) x ?) 	ABZ 

DIVEL (BASE, (p-2) x 1, (t-3) x5)) (ABZ, (p-2) x 1, (t-3) x 	RELZ 

COSPEC (RELZ, (p-2) x 1, (t-3) x5 ) (1020, 1) (10) 

According to the results of this check a decision is made, perhaps 

by the operator, as to whether a re-calculation is needed using higher 

precision (32). This is only carried out if a direct solution has taken place, 

since if the D-jhas already been computed, measures would already have been 

taken to improve the accuracy (22). 
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A further possible check is to form Dot  Y and then to examine 

its symmetry. This is actually a further proof that the solution of the 

equation is correct as well as that the D matrix has been symmetrically 

formed. The programme for that is as follows 

CHECK ON )( AND 

TR (Do, (p-2) x 1, (t-3) x9) 	 DOT 

(DoT, 1 x (p-2), 4 x (t-3) x (WY, (p-2) x 1, (t-3) x 9) 	MTBCHK 

Gb (1,1) (1,0) (p ) 	 ERO 

(ONE) x (bERO, 1, Q x 1) 	 -----9- EROD 

(MTBCHK, 1, 9) x (EROD, 1, p x 1) 	= CSUM 
TR (EROD, 1,9 x 1) 	 ERODT 

(ERODT, 1, 1 x 4 ) x (MTBCHR, 1,? ) 	 RSUMT 

TR (RSUMT, 1, 1 x 9 ) 	 RSUM 

(RSUM, 1,Q x 1) - (CSUM, 1,Q x 1) 	 = SUMDIF 

MODEL (CSUM, 1, q x 1) 	 BASEL 

DIVEL (BASEL, 1,9 x 1) (SUMDIF, 1, 4  x 1) 	 RELZ 

MASPEC (RELZ, 1,4 x 1) (10 20, 1) (10) 

After this check, the first stress distribution is calculated (34) 

and followed immediately by the compatibility check (35) which is again 

printed out as statistical information on the columns in order to keep the 

different loading cases separate. The machine then decides, (or is instructed, 

(36) ) whether to perform a further iteration, i.e. use the final solution as a 

basic system (37) and repeat steps (25) — (36) (see Chapter V ), or to 

proceed to calculate the flexibility matrix F (33), and follow it by a 
check for symmetry similar to that previously mentioned. 

Block no. (140) contains information on the purpose of the programme. 

If cut-outs or modifications are still required, it proceeds to (46), 

returning again after this has been performed. If a number of specific 

loading cases is to be derived from linear combinations of the previous 
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unit loadings contained in the t) , the computer proceeds to block (41). 
This part of the programme is usually oriented to the final objective, 

whether it is a straightforward computation or whether an iteration is to be 

carried out to achieve an optimum weight, whether the programme is acting 

as a sub-routine to a master programme, e.g. analysing a whole aircraft. 

If a number of specific loading cases is to be dealt with, the 

computer proceeds to (41) where R is fed in, then to (42) for the stresses 

and to (43) for the deflections. Following this, again the external and 

internal equilibria, and campatibility,are checked (44) and (45); then the 

computer returns again to (40) for the next decision. 

If cut-outs and modifications are to follow, they are either 

specified, at least partly, by the machine if the programme contains an 

automatic iteration, or by an input of orders (see Chapter III ). In (47) 

the machine checks whether any cut-outs are redundant, resulting in a singular 

set of equations. This is best done using again logical machine orders 

of the type used in Chapter III , and will not be discussed here in detail. 

The machine might be programmed to exclude automatically any unnecessary 

cut-out, and print out information to that effect. 

In (48) the machine checks further whether it is more economical 

to proceed with the modifications, or if it be not better to modify the 

original input data and start anew. If it is found more advantageous to 

continue, the machine proceeds to (49), (50), (51) to (55). 

At (55), the matrix to he inverted 

      

bib D-1  bih
t 

[ ark 	sr b zrk 
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is calculated, then checked for symmetry (56) and conditioning (57) in the 

already prescribed manner. Then the inversion into b takes place (58) 

followed by checking the identity 

b (6'bh ) 	= 0 

in  (59). A decision is made (60) whether the inversion should be repeated 

with higher precision, or to proceed at once to the calculation of the 

modified stresses 	pn (61). These results are then checked for compatibilitY 

(62) and equilibrium (63). The cut-out stresses bhcar e extracted with the 
aid of the f) matrices (see Chapter III ) and compared with the stresses 

on the remaining structure (64) in order to verify that they have vanished, 

and to determine the accuracy of the elimination. Finally the flexibility 

matrix wt  is obtained and a return is made to block (40) again for further 

decisions. 

The introduction of multi-cell cross-sections as well as the 

associated multiply-connected rings, rigid diaphragms etc. scarcely changes 

the main line of the programme. One of the advantages of the freedom to 

idealize and regularize the fuselage enables first the setting up of the 

basic matrices as described. One can then always extract certain elements 

and add others instead , using either Boolean super-matrices or special 

orders. For instance, to extract a certain sub-matrix A. of a super-matrix 

A and insert another one, A.. of the same dimension in its place, we use 
the following equation 

Aiiew A — En  A EJJ + E 	A • Ej.J. 
[ 

where all the E ft  matrices are Boolean supermatrices whose o and 1 

elements are considered to be sub-matrices for an order such as to be 

compatible with the other matrices involved. 
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One can also split and rejoin matrices, changing their order 

in the meantime, thus allowing the new super-matrix to contain sub-matrices 

of a different dimension. 

The programmes used up till now employ mainly uniform super-

matrices. One would not usually specify the order of a matrix, except 

perhaps during its formation or in some special operation which affects 

the dimensions such as a re-partitioning. The matrix code should then 

store the dimensions and addresses, and organize its own storage space. 

It would be useful, if before the programme is obeyed, even during 

its assembly, that the matrix code effects a simulated run in which all 

logical orders, such as looping, are obeyed, but no actual matrix computations 

carried out. This run could be used to organize the storage space, inserting 

orders to reserve room for results, or to over-write intermediate results 

which will not be used again. 
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CHAPTER 	V 

CONDITIONING OF STRUCTURAL EQUATIONS  

V—a 	Summary and Introduction  

The problems of conditioning matrices have been widely discussed 

by mathematicians, as well as many of those who had to apply matrices to 

the solution of physical problems. Probably many years will elapse before 

one can obtain a satisfactory general theoretical approach for the 

detection and measurement of the loss of accuracy involved in the solution 

of a set of simultaneous equations. However, from the practical point of 

view, it may be useful to study the symptoms which are associated with 

such a phenomenon in one or two cases of particular importance. For this 

purpose the general form of the inverse of a finite difference equation 

of any order has been established with the first and last diagonal elements 

free to assume any value. In this manner we can study the effect of changing 

these elements on the accuracy of the others, particularly when the matrix 

becomes ill—conditioned and finally singular. Although this particular example 

is not in any way claimed to be characteristic of all possible structural 

cases which could occur in practice, it may be nevertheless be illustrative 

to give a generalized exact discussion of such a matrix. The type of matrix 

in question is, for example, encountered in the Da  of a cylindrical fuselage 

(not necessarily circular) or even in the case of fuselages with taper such 

that certain invariants are preserved. If the fuselage violated this 

condition, the resulting system of equations, although not following 

strictly the same pattern, is, however, sufficiently similar to justify 

the discussions being extended at least qualitatively to these cases. 

This inverse of the finite difference equations is subsequently used to 

obtain the inverse of sane related matrices, of which again the most 

important for the purpose of this work is the equation of the second 

difference which can immediately be derived from the original one. After 

the effect of the variation of the two elements is discussed, the inverse 

is used to test various mathematical criteria advanced by various authors 

as being a measure of the "conditioning" of matrices. 
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In the course of this chapter we discuss a new technique which 

might help to overcome problems of accumulation of errors, especially 

in systems which contain a large number of unknowns. Although intended here 

primarily for the fuselage analysis, it might possibly be extended to 

various other types of structure. 

Other incidental results also given turn out to be extremely 

useful,amongst other things,as tests for accuracy in certain computer programmes, 

such as those for the inversion and determination of the eigenvectors 

of matrices. 

V-b 	The Inverse of the Finite Difference Matrix N7 of Order 972  X 7n.  

with Variable End Coefficients  

The general form of the matrix is 

ct -1 o o 	 o o 0 
-1 2 -1 	 0 0 0 

V 
(14 xm) 

0 	-1 	2. 	 0 	0 	0 
IC) 	0 	-1 	 0 	0 	0 

; 	I 	-`., 	 I 	4 	I 
: 	. 	 • • 	: 4 I 	 . 	 I 	 I 

0 	
:
o 	0 	

. 	. 	. 	. 	i 

	

--- --- ------ 2 -1 	0 	0 
o o 	0 	0 - - - - - - -- - - 1 	2 	-1 	0 
0 0 0 	 -1 2 _1 
o 4ot 0 0 0  	0 0 -1 1  

(V,1) 

Using the notation 

El:,. e . ( 

(see also Ref. 7 ), we can write 

-I- a ) 
1,1 

) 

+2 
'M1-1 

1 •= 2 

M-1 

E1,2 
..-Z 

M -1 

- E E. +(1+4)  
/*1 	. 	244, Z•  

E,„„, 

(V,la) 



a CZ+ c2) 

(1-4 - Q.) 

-1 

0 

1 

2 

(1+24) 
(1-r a.) 

0 

-1 
+a) 

(1+4) 	1 

(1÷42) 2 	(1+a) 

(V,3a) 

(z-r-za) 1 ( 1-4- a) 	(4#242) 

i+a) 	-1 0 0 
-i 	2 -1 o 
0 	-1 

[ 

2 -1 (11,3b) 
0 	0 (14.a.) 

V 
( 3 x 3) 

(3x 3) 

V - 

(4 )( 4) 
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In order to obtain the inverse of a general three band matrix 

of this form, we study the inverses of the matrices of order (2)(2) 	( 3, 3) 

and ( 

(v,3) 

V -1  
( 4 X4 ) 

  

(1+34) (1#24) (4+a) 
c1-r-24) (4“)(1.1-24) (1+4)2 
( 1+2) 	(14-4)2  (r..4)0r-2a) a. (2-(-3a) 

( 442-) 	(14-2a) (44- 342 ) 
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We observe first that there is always the common denominator 

a [ 2 4- (n1- r) cLJ  

Since the elements left inside the matrix are easily recognised to be 

the co-factors of the original elements, this denominator is obviously the 

value of the determinant. 

Next we note that the value of the element V11, ril within the square 

brackets of the inverse shown in Eqs.(V,3, 3a, 3b ) is unity and that the 

values increase linearly in both directions towards 71,1 	and V 

From this we deduce that, 

and 

(1 + (171-1  )a1  
a [at 	) 6.3 

I 	4 (2.-1)0-] 

(m x yri ) 	vrt, 	 C( L z 4- 	1)a] 
	

07,4a) 

Examining the general element we find for 	2 

4  
(m Xrn) f  

-1 

(171x1n) 1•,, 

  

1 

 

[ + (1.-0 a] [1t(rn-J )4l  

a[24-(m-+)a) 
X 

(In 01) .1,1*  
X 	betel' rif 	 = 

and for 	2 
	

(1,5) 

V + 7 1,1*  
[1 -4. (v.,' )a] [ (+ 

a [ 2..+ 	_ 4) a] 	 (V,5a) 

Eqs. (V,5 ) and (V,5a ) establish the general inverse of 



(vi) 

V.,-  
it - 

V • 1 
1. [ 1+ (m-2)a] .1 

a. [2 + 	)0.3 	 Ct C 	Ori-i)a-j 
(i) 1+ a) 4. [1+ ori-,)a] 
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We can prove this to be the correct inverse if we establish that 

v-1 
.f 

Di 1  

41 

0 

1 

+ 

+1 

0 
v-1:1  

Proofs 

_ 	(1+ a)-+ ( 	- ) 	(4-4. a) _ 	( n1 ...2 ) ck  

a. [ 2 	On -1) aj 

2a ÷ Cm-f).4.(1-4-a)-(hi-oct 	2a4-021 -Oa?  

ct 	Z ( 	) 	 al [ 2 (>71 al 
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(f.ta 	. /. (14 ("n/ -,f) 	1 (1-ra)[1+(vn-j)cti 

Ct. Li -I. (rit - 1)43 	 Q. [2+(m-1)4] 

= o 

• 

v -1 
Wm. 

4.[It (nt -t)a][1-t(tn-2. )ck  
4 [2+ ( - 1 ) 0.] 

2 [14(2."-1)0.][. 1 +(n1-i)a] 	1.[1+1m-2_i)ez][1*()'-i)4] 

	

cx (24- (m-i)o.3 	 [ 24.(eA-0 A.] 

	

1+(rt-i)ci3  a 	(.2'-1)ct3 
• [2 _, ( -1) a3 

(iv) a) if 	(74 4) 

172.• 	V -1  
- 1. Ci-k(2--2)a] r  

a [2 -t• - oa] 

I.14 (t.:-.04.3L 1+(,1-.1)4J 
[ 2 4- ( 11,-1)ct] 

1.P+ 2...2-3L 	("1-00•3 
[2 -f- On—Oa] 

0 

b) if 	(2'-•1) 

V J.  -1 - 
ri-e• (1.1--i+1)4][1+ (J.-0 a.] 

[ 2 -1. (V4  

2 C1+  (1,1-1)q][ff.(j.-1)ci] 

Ez-f-(m-4)4J 

1. [ I A-(m - t-1 )(1) [1-4•(./-i)a) 
ct r2 
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(v) and (vi) follow in the same manner as (i) and (ii) 

Thus we have shown that Eqs0,5, 5a) 	are correct general expressions 

for any element in the inverse of V 

V-c 	Discussion of the Inverse of the Matrix  

A characteristic feature we observe about the inverse of the 

matrix, is that all elements are proportional to 

1 
a C2+072-003 

Thus the whole matrix is inversely proportional to a . If a be zero, 

the matrix becomes singular, and the inverse infinite. The nearer 	a 
approaches zero, the higher the elements of (-7 -1  became. Now, as we stated in 

the introduction, this does not affect the accuracy of the general solution 

except when one uses a limited number of digits, as when a matrix is inverted 

in the computer. It is obvious that the error in the inverse is at least as 

large as the error in a , and if we consider as an example the following 

of the order (4x4) 

	

1.000 052 3 	-1.000 000 c, 	0 	 0 

	

-1.000 000 0 	2.000 000 0 -1.000 000 0 	0 

0 	-1.000  000 0 	2,000 000 0 	-1.000 000 

0 	-4000 aoo 0 	1.000 523 0 

we can immediately deduce that the inverse will only be accurate to three 

figures. 

In order to draw a more definite picture of what this means 

physically, we discuss the problem of a chain of 5 bars connected together 

in line as in Fig. V, la. The bars are all of the same cross-section and of 

the same length Z  , except the first and last which are of length L . 

V 
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Z 	

•1 

	 L 

	0 	 

a) General case 

b) First limiting case 

	-o-000-6 

c) second limiting case 

   

  

	0 	 

  

    

d) Third limiting case 

Fig. VII. Chain of five bars 



L 	
0 

1 
ER 	En 	ER 
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"1. 	2 

o 	_ E 2 
E 
	 _ ER 
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1- 
EA 

1. 

- 1 75 - 

In analysing this system by the Displacement Method, we obtain for the 

stiffness of a regular element 

k, EA ( ,6) 

and for the first and last elements 

k k EA 
L 

Our stiffness matrix for the complete system is hence, 

.M111•••• 

K 

E A 

1. 

[4.42) 
-1 

0 

-1 
2 

0 

-/ 
2 

-1 (V,7) 

0 
0 

-1 
(14-a) 

1 

where Ct. 
(V,7a) 



2 (it;i) 

[11+1 

+1 

+A 

+1 

+1 

+/ 

+1 
(v,3) 

042 

a. 
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which, but for the factor 	
(gila-i 

 sidentical with the (4 x 1) matrix 

(V, 31, J  ). It is now clear, according to our 

previous argument, that as a diminishes, (which is when Z tends to 

become much smaller than L ), the equation becomes ill-conditioned. 

This corresponds to the structure in Fig. ( Vi lb ), where the first and 

last elements are much larger than the ordinary member in the chain. 

It would also appear by physical reasoning that the second idealisation 

as shown in Fig. (V,1c )will lead to ill-conditioning. Although this is 

discussed later on, the limiting form of 	in the case when 

becomes very small is 

shown in the first of Eqs. 

Although the mathematical significance is discussed further below, 

it is obvious that this limiting matrix for K -t  • is of rank one. 
A further case of interest arises when CL becomes very large.Then the 

first and last diagonal elements will be of a different order of magnitude. 

To examine this case we set 

and write 

b i 
2 

which is a very small quantity, so that 	s 

negligible. 
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Then 

V 
b2  

 

(..6+3)1b 	(b+2) lb 	(1)1'1)4 

(bi.2)/b (bo)(644)  (64-1)242 
62- 

(6.4)/b (64-1)2/b2 
(641)(b4z) 

ba 

(bi-f)/1" 	(b+2)/b 

 

  

(2b-f-3) 

  

        

moo 
ONES 

.41111 

b  

b 

1> 

(6+3) 1, 	
(1)+2) 1, 	(6*4) 

0•10/ 

62  
(2)+3) 

(6+2) 

(26+3) 

(6+1)(b+2) 

(2.$43) 

(b4-1)2 
.6 

16 

6 

(26+3) 

(6+1) 

(26+3) 

(6+4) 

(264-3) 

(6+4)2  

(26+3) 

(6+10(6+2) 

(26+3) 

(b+2) 

(26+3) 

b2  

(2643) 

b 	(6+4) 

(2b+3) 

6 	(b+2) 

(217+3) 

(6+3) 

(26+3) (26+3) (26+3) (26+3) 

(v,9) 

This becomes in the limit, 

	

2b 	b 

	

3 	 3 

2/3 1/3 
1/3 2/3 

	

b 	2b 

	

3 	3 

The two corner elements have not been put to zero since we only 

neglect 0 in comparison with 17. or with unity. 

Obviously, this does not result in the matrix becoming singular. 

Effectively, the matrix is split into two parts, one of which ta (2 x 2) 

matrix, is independent of b . This matrix is nothing but the inverse 

of the corresponding part in the original matrix. 

W I
T

 (4 1
6  

W I
 t Ol -  

C I4
 

b2  
3 
6 
3 
zb 
3 



—1 [2/3 

4  /3 	2/3 

4/3  

km-z) x(m-2))1;. 

9. e. 	. 

('m -1) 
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[2 
It can be proved generally that that part of the inverse obtained 

by striking out the first and last rows and columns, is merely the inverse 
of the corresponding finite displacement matrix of order rnx -2) x (7>t-1) 
with 	a = 1 

If ot=i and (m-.2) be substituted for -yn 	, Eqs. ( V,5 	) becomes 
for 

v- t 
(ht-2)*(69(-2) 2•,j. 

(72t - J+ ) 
( -m-1) 

(v,1 

with a similar expression for 

Taking the original expression, we can rewrite it as follows for 2 

cm-t)-(i-e) 
"- 

	

(2.-1)(1-n-j) + 	 00. 
\IneXt" ) 
	

[ 	071-1)] 

If we take (1- .:•1 and write 1'4 1 instead of 	2.  , and /4-i instead of 
we obtain 
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wherein the first and last rows and columns are roughly proportional to 

Thus the matrix remains theoretically non-singular and probably well-

conditioned, although, in practice, the latter might depend also on the 

method of inversion. 

What we deduce from these examples is that the choice of the grid 

in the idealization of a structure should be made carefully and as 

uniformly as possible. 

Returning to the general expression for the element 

where z < 1 , given in Eqn. ( V,5 ), we split the expression into three 

distinct parts. The argument that follows is, due to symmetry, applicable 

in the same manner to the elements below the diagonal 

[ 	/) a-J 	) a.] 
Q. [2 + (7,1. -1) a] 

AIM= 
1101••• 

I ▪ lo'-i).4-(In-i)} 	▪ (1*--0(,1-f)a2  
a[2+ (m-i) a.] 	a[ 2+ 	- Oa] r2 -,-( 7)1-1 )0.) 

(nt -1) - 1-0 	7 .-1)(7n -J.)  
- a[2 {' (M-1)4J 	1.2.+CM -Oa] 

	2 -I- 	-Oa] 
	

(v,11) 

The relative magnitudes of the elements corresponding to these three 

parts of v are shown schematically in Figs. ( V,1a, b, c ). 

The first term is constant all over the matrix. It is only dependent on 

a and 7,2 . The second term is a maximum on the diagonal, where it is 

constant and equal to 

Ytt - 1 ) 

Q. [ 2 4- C rri - ex] 

The third term is zero on all sides, but with maximum values on the main 
diagonal and the one perpendicular to it (extending from V 

1  to 



(m even ) 

(m odd) 

I  (2+(m-1)a] 
A 	1 

(m-1)  
[2+(m-l)c] 

V-2(b) 

V-2( ) 

V -2 ( c) 

- 1Th - 

FicW-2, Schematic renresentation of the basic components in . 
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The maximum value of the element is 

(-rn -2)Ct for wt even 
4 C2+(m-1)cLI 

and 

—i) 2  a 
for m odd 

 

4[2.-i-(rn-1)4] 

We study now the ratios between the various contributions starting 

at the main diagonal 

1 
: II 

  

Q (7r1 -1) (v 2 12) 

i.e. Q (m-1) <1 

or 	a < (m-I) for large 'net ) 

I: III (in the centre) IT 4 
(v,13) 

GL 2 (77t —1) 2- 

if 	a z (m--O z  <4 

( v , 1 3 fl) 

i•e• 	if 	Ck(yr a-1) < ±2 	or ( a x. < 

Again we show a to be inversely proportional to 7n. . From Eqs. ( v,12 ) 
and ( V,13 ) it follows that the larger the matrix, the more sensitive it is 
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to disturbances in the first and last elements. This follows from the fact 

that it is the dominance of the first pattern in Fig. (7,2 	)which causes 

inaccuracies in the inverse. So when a approaches the order of magnitude of 

i/irt , the accuracy of the diagonal elements in general, and that of the 

elements in the middle of the matrix in particular, is the same as the 

accuracy of a in the original matrix. 

That of a tending to zero is obviously not the only case in which 

the elements of v - I become very large, and thus ill-conditioned. The other 
is when 	[2 	(,n-1)a] tends to zero, i.e. if 

2+ (7r,-1 ) a = o 

or 

m
(V,14) 2 

Q. = - 	2 

This is one of the limiting values of Eqn. (V,13a). 

It would be appropriate before concluding the discussion of this 

particular instructive example to point out that this is a one-dimensional 

problem. In the case of a two-dimensional grid of elements, we expect the 

inaccuracies in the solution to be smaller than in the one-dimensional case, 

since the elements are connected not only in series but also in parallel. 

If we consider the case of a long chain subjected to a load at a nodal point 

somewhere in the middle, we see that the difference in the deflected shape 

due to that and one due to a load applied to the next nodal point is very 

small. Thus the effect of elasticity of the structure to both sides is 

a loss of accuracy. Actually in the K we would always notice that the 
maximum inaccuracy occurs in the middle, and increases with size. If the 

number of the unknowns were distributed in two dimensions, the number of 

elements in the chain between the supports would be fewer, 	and a better 

accuracy be expected, enhanced by the fact that the deflected forms between 

two adjacent points in the cross-wise direction bear again a certain 

cn7 - 
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similarity. Thus we might also say that the condition here is a function 

of the physical problem as well as the size of the matrix. 

V-d 	Related Matrices; Some Incidental Mathematical Results  

V-d 1 Another matrix worthy of consideration , is the similar three band 
matrix, in which the elements are all positive, i.e. 

,•11 

(1+ a) +1 a 0 
+1 +2 +1 o 0 
a +1 4-2 o 

- , (V,15, 
1 ; 7P2 X 1P2 ) 

0 0 0 +2 0 

0 0 0 +1 +2 +1 

--0 0 0 0 *1 t + a) 

Although we can derive the inverse of this matrix from the other 

by inspection, it might be more interesting to proceed via the matrix w<.„0 
which we define according to the conventions introduced at the beginning by 

One obvious property of this matrix is that 

E (-1)' E•) , 2 
2.= 

( 	(-1) )* ) PiP 
P .,  

.771. 	 4,1 

EEO 
MOO 

P=1 

t+p 
( -1) E pp  



but according to Ref. (7) 

E 1.,, 	Er,k 
0 

E 1 ;k 
(`1,1 7 ) 

it follows that 

2 

2,2 
	

I 

	 (v, 11) 

V=1 

i .e. 

W(m) 

(V,13a) 

Applying the notation of Eqn. (v,2 	we find from Eqs. (V,la ) 

and ( V,17 ) 

W f(,+4) + E 2  
27=2 

+ (1+a) E,,,, 7,1 

+ Z (-1) E .. +T  2.,,„.., 
,...., 	 ,....... 

E 	[ E (-1 )P  
71.7/ 

EP p] 

-(1+a) E,1 + (—+)M c,+4) E 

7/1 	 M -1 

E 	+T (-07 "E 2,2 +1 	 1.1-1 
• =.•  

Premultiplying now by 
W(m) 

•Pq 

ZW 	V W ‘ml 	 P  Mi44) E + (-1)?  
(m) pri 2 =2 

(.14-11 	 m -f 
+ (--/)(/-,c1) E 	+E,_,,z.z 	 241 

n1,7{ 	 ) E 
2=1 

1) 1. 22 

E2 :2 



- 135 - 
M-1 

••• 
( 1 ) 2  (ft a) E 	+E 	 2ovi 

E • - + (-" (i+Q) E (_,)2i. 2  
AI 

2 .= 2 

0221-2 

2 .= 

+ 	1)
22+2 

(i+a) • E • • + (1+a) E.„,+E 2, 
1.7.1 	

1,741 

(„,) 

E 

Therefore 

This simply means that each element of the inverse of 	has to be 

multiplied by (- f 	to obtain the inverse of Q . Now we can write 

directly the typical elements in LY1  as follows. 

For 	i 	f 

(-1) 1_14-(2'--1)C6[1-1-Cm-j')C2] 

Cl[2 -t- ( -m-i)4] 

and for 

(-1) 	
[ i 
	( 717 - ) a [ 1 -+ (i-1)a] 

(v,2na) 

 

a[ 2 -/- ( rn - 	Ct] 

The conditioning is thus not affected by this particular pattern of 

changing signs. 



(-I)  
( 	4. 1 ) 

 

 

and 

V -d 2 The V and 4 ' Matrices for cc  =I 

The V matrix with (2.1 corresponds to a chain of the type shown 

in Fig. V,1 	in which all elements are of the same length, and thus, 

in a way, to a regularly idealized structure. The corresponding matrix 

follows through the expressions in Eqs. (V,5 ) and ( V,5a ) simplifying, 

for a=1 , to 

(n,) 
2,J  

(-1)".̀ 	- 

1 3  / 
- 	071 -1 -1-1) 1•  

,7741) 

( 	j) 	(v. ,27) 

( 	 (v,01-) 

and 

Similarly in the matrix 	, Eqs. (V,20 ) and (V,20a ) became, for azi 

(-1)
:+f  (m -z+1) 

-r 1) 
(v,22-.) 

This matrix is also given in Ref. (7) 

V -d 3 The Matrix V a  

This matrix, obtained by merely squaring the matrix 

band matrix given by 

, is a five 



— 1 R 7 — 

V 2  

t4414-c0.1  -(31-a) 	1 	__ - - - 	0 

-(3,q) 	G 	 - 4 	--- 	0 

	

1 -4 6   6 

(v,23) 

G —4 
o  	-4 6 -(34-a) 

0 	0 	- -- 	- 	I 	-(34a) 14 010)1  

Eqn. (V,23 ) may be considered typical for the Dr  of a four-boom 
fuselage in which all rings are similar and all bays except the first and 

last equal in length. (As in Fig. v,3 ). 

Again 

Cl 
D 

The restriction on the number of flanges is later removed. 

Although one can derive an explicit expression for the element 

of 	v it is most elegantly obtained by a direct multiplication of the 
7-I  with itself. 

V-d 14  The Finite Difference, and Double Difference Suer-Matrices  

What has applied before to the matrices with scalar elements, applies 

also to super-matrices with sub-matrices which are related to one another by 



a scalar factor. Thus, defining 

	

0 ,-)A — A 	0 

—A 2A —A 

0 	— A 	2 A ---- 

0 0 
o o 
0 0 

111111,1,  

1 	1 	 I 
i 	

\ 	 I 	 1 
I 1 	I 	 \ 	 1 

1 	 I I 	 I 	 \ 	 I 
I 	I 	 I 	 • 	 I 	 I 

I 	 I 	 I 	 . 
• 

I I 
•  I 

i 	 I 	 i 	 • 
• I 	I 

I 	 I 	 I 	 • 	 I 	 i 
I 	I 	 I 	 \ 	 I 	 I  
i 	 I 	

• 	 I 
I 	I 	 • 	 \ 	 i I 
I 	 1 	 \  

II • 1 I i 	 I I \ 	I 	I 
I 	 1 	 • 	 • 	1 	 • 

• • 

0 	0 	0 	2 A A 

0 0 0 

 

A (+a)A 

 

we can immediately derive the general term in the inverse matrix from 

that of Eqn. ( V,5 ), (V, 5a ) by simply multiplying by 
	

A 1  
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We find or 

 

[, 	R  
[(m-4)a4-2] 

(11,26 

  

and for 

17 -1  
tm,rnj J. 

ti+(rvi-2)a][1 4-(1-1) ctj R ( v , 26a ) 
a [ Cm-Oa -62j 

 

The same argument applies to super-matrices of the form \AVNIVas well as V 

V-d 5 Inversion of General Super-Matrices with Directly  

Proportional Sub-Matrices 

An interesting result follows immediately from the last section, 

when the sub-matrices of a super-matrix are all of the same form, and differ 

only by a scalar factor. Thus we define a matrix ® which consists of 

( Nix M  ) sub-matrices, each of dimensions ( 1'72 xrrt ) 

D 	062 D 

d2 , D d„ D 

 

D 

 

d,M D 

D 

  

 

 

D aft D  D- - ------- 	D 

(v,27) 

D dMz D --- - -- 	am, D 

   

oimmD 

   



9„ 1 f t-1 

921 91.2 91i 91 M 

(v,29) 
9a:1 92.2 92 M  

9M 1 9r42 — — 	9m j • 

g  d... —i 

- 190 - 

	

To obtain the inverse of this matrix, 	it is obvious that we only 

need to invert two matrices, one of the order ()>Ixlvt ) and the other of the 

order ( M r m ). The first is the 	) matrix D and the second is 

the matrix of the coefficients d zy given by 

.1•111 

01

n  

	

0(12 	- - - ' clfj. 	 1m 

	

du, 	oi l/ 	 ---- d 2M 
I 
I 

	

I 	
i 
I 

: 	 I .., 	.  

	

012.1 	C11.2 	 clii ' 	 -- - - d t p.i  

	

, 	I 	 I 

I 1 

	

01 mi 	CI Ail 	- - — - __ 4 mj , 	 cili.4.  m 

We call D the basic sub-matrix and d the pattern matrix. We assume now 

that we know the inverse of this pattern matrix, and that it is 

d 

Thus the following relations hold 

gd 	= d 	g= 	I M 

	 (:,30) 

g, d • = 
	g  

(v, 30a) 

0 	 1 J 



The inverse of 	
-1  can be written irunediately 

Etl opci 

41/11/III 

9"D-1 	 fi D-1  

9z4 D-1 92RD
,  __ 

2f D-1 	92, D-1  

, 	 , 
92/D-1 <3 1.2 D- ' 	af, 

. p-' --- 	51.HD-1  , 	 , 	 , 
! : 	. 
, 1  

99M, 
	

D-' 	
 

/4 I L./ 	9,„2  D -1 	  9A9 	 3,,,4,.,D 1  

(v,31) 

•tk 
This we can easily prove if we consider the product of the 2. super row of 

with the 
tm,m3 

J suner-column of 

1" P=t 
c34  =p D 	ipi 

( '21 2 	3. ) 
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In this manner we have proved the correctness of the inverse. 

The importance of the result appears later when discussing its application 

to improve the accuracy of the solution of a fuselage structure, with 

possible extension to other similar problems, and also as a valuable test 

for an inversion programme. Following our above method one can construct 

very large matrices of arbitrary conditioning, the inverse of which can be 

accurately determined beforehand. 

V-d 6 Eigenvectors of a General Suer-Matrix with Directly 

Proportional Sub- Matrices  

Here another incidental mathematical result is described, which 

surprisingly enough, also has applications in the fuselage, as well as 

in the problems of a similar nature and as a valuable test for eigenvaluc 

programmes. Thus we consider again our matrix 	given in Eqn. (V,27 ) 

and the corresponding pattern matrix d of Eqn. (V.26  ) and assume that the 

eigenvectors of D are given by 

1/ = Ev, V2 v3 ----- vi ----- v] 	 (v,33) 

with the corresponding eigenvalues 

 

q z. 	2.1 	(v,34) 

(v,35) 

(V,35a) 

We know that 

and 

D V, 

D V = V 



We also assume the latent vectors of d to be 

u 	= 	[u, u 2 Li, 	 

- 193 — 

(v,36) 

with corresponding eigenvalues 

r---- W = 	w , W4  W3  

 

cuj• 

   

    

   

(v,37) 

      

      

so that 

d U 3  • = 	U i 
	

(V,33) 

and 

d U =UW 	 (7,33a) 

Writing again the vector U , in more detail 

U 
	

J 
	 (1,39) 

and using it to examine(V, 33a) we obtain by multiplying the ith row of 
d 	with the jth column of U 9 

d i.  U. e'1 	1-4  I 	+ O1-. 	.14 2.1 

 

+ ch i  c<i 	
"mj 

 

= 	CO • U. • • 
1 	1.1 (V, 33b 

We will prove now that the ( CsAx i ) vector 	V(  ) given by 
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V,j1..) = 	uv. 	'42J V2
. 
 - - 	m Vt  • 	 Li  • • I 	 s 3:4 iN4. 

is also an eigenvector of the matrix 	. For this purpose we premultiply 

this matrix with the 0 super-row of the matrix 	and use Eqp.(V,3".1.3 	) 

V ii i dr, D Vi. 	+ dr2 D u2,. V2 + 	 

+ dp  D u Vt. + 

..... + c4 Pr,i D umi. Vt 

co•.Pl  • D 	V,. 	= (63.[Ai)k.ArNi 
	(7,4o) 

proving further that the eigenvalue associated with the eigenvector 

of Eqn. (V,39 ) is 

A ( 	= 	Loi 	 (v,)1) 

The complete matrix of all Mm eigenvectors of the matrix 1) 

can be set up by allotting 2 and mi in Eqn. (7,39 ) the values i to 

and / to m respectively. The corresponding eigenvalues are obtained 

through Eqn. ('v',µ1 ) by again giving 7 and j the same values. 
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V-d 7 The Determination of the Determinant of a Super-Matrix 
with Directly Proportional Sub-Matrices  

Considering again the matrix 	of Eqn. ( V,27 ), we can 
rewrite it as a product of a matrix de  
( ,,, K m ), whose super-element der,,,,.,3,., j- is equal to 	all I m ) and a 
super-diagonal (super-scalar) matrix De  whose elements are all equal 
to D . 

Thus, 

de 	De  

 

where 

C44  lo,„ 	4u I, 

0'2/ I, 	u d  I., 

Otij L. 

(123 L 

   

------ d i4 

- - - - 

    

    

die  I di2j 
Irk 	 M 

( again of order (M x M  ) 7 

de  cri3  1. j 
hi 

!Li 
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and 

De 	= 1137-  D D ----- - - - - - - - - - - - - - - D 1 
(v,44)  

The determinant of De is now obtained as the product of the determinants 
of the two matrices. Thus 

de k. 
CM, *3 

d e   
, j  

e 1-  De  (v,45)  

The determinant of De can be found, once we know the determinant of 

olet. De  = 	D 	 (v,46) 

We can find the determinant of de if we consider the matrix 

0•1=111. 

E m, ,  

E 

E
7,1 	

m41 	E,,, 
1,1,1 

Elva 2,2 	 E „, 

E 
(v,47) 

E _„, E---------. _ E .„ 
Ja 	 Mr 

E E 
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with the properties 

E 4  
cm, vnJ 

and therefore also 

C 

E- 
	

E 
	

(v,430.) 

CM , TMJ 
	 m, m3 

and 

de& E (v,It9 ) 

It is easily seen that 

E 	de 	E 	d d 
CM, rnI 	C m t71 	C m rn.3 

Therefore 

def. 	Cie 	= ( def. d 
CM, MJ 

and from Eqs. ( V,45 ), ( v,46 ) and ( V,51 ) 

det• 	 -- (der. D)" (ow. dr 

— (olet. d 	deED )" 

(1 	i (v,50) 

(V,51)  

(V,52)  

We obtain the value of the determinant of the complete super matrix 

through knowledge of the two basic determinants. This is also of use to us. 
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V-d 3 Generalization of v_d5 and v_a 7  

Although of less importance, it is probably justifiable to point 

out that the operations on the special super-matrices which have been described 

under (v-d 5 ) and (V-d 7 ) can be directly extended to such matrices 

as 

de  De (V,53) 

and 

de 	 (V,53a) 

where 

De 	= FIT D. 	D3  - - - - - - - - - - - 	(v,51) 

i.e. where D, to Dm  are all different square matrices of order (.111-xY,1 ). 

For instance, in obtaining the inverse of T as in Eqn ( V,31  ) and if 

Eqn. ( v,53 ) holds, we get 	
rm,m1 

 

9„ D-1 9„a_ _____ 
i 

921 D:1 ' 22 2 	 D-' 
: 

. 	 ! 

_1 	-1 
90 Di. 92.2 ury2 . 	 9 =J  li t 	 3impsi l  

: 	. . 	 , 
! 

: 
! 	j 	 I 	 1 
I 	:

I 

I 	- I 	- 	 r,_, 
9., DM Lapm

/ 
 — ------- 5mi  Q:1  	 Liu 

(v,55) 

99' D-1  

2J .D2-1  

    

   

92,02  

   



Jet. 	= ( der. d)"(olet- D1)( °lei' D2) - (a,t.D„,) 
T* 
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which follows at once from 

  

De-1 d (V,55a) 

Similarly, if Eqn. ( 1/953a ) holds, the columns are proportional to the 
appropriate E), or 

de 	De  (V,55b) 

In (IV-d 7) Eqn. (V,52 ) becomes for both cases 

We must observe that the two kinds of matrices given by Eqs.(V,53 

and ( V,53a ) are no longer symmetrical as far as the basic sub-matrix is 

concerned, and therefore such a generalization can not be made so simply. 

At the end of this section of rather mathematical nature, it seems 

logical that the best way to handle a super-matrix is such that the properties 

of its sub-matrices are also taken into account. In many iteration procedures, 

such as inversion by iteration or obtaining the eigenvectors and eigenvalues 

of a matrix, an approximation to the results is needed right at the beginning. 

The 'idealization' of the super-matrix into a basic sub-matrix and a pattern 

matrix, if at all feasible, would provide an excellent starting point for such 

a procedure. 

V-e 	Testing for Ill-Conditioning in the Fuselage(and similar Problems)  

V-e 1 The various measures of ill-conditioning 

In Ref. ( 7 	) several criteria are suggested with the aid 

of which the ill-conditioning may be measured. Most of these criteria, to use 
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the words of Bodewig (Ref. (7) ) 'are circumstantial in practice and 

mostly applicable only in theory as they require mostly the knowledge 

of the inverse which is just the difficulty for such matrices'. The various 

measures are given as 

m 

a) If 

	

	N( A) = Y 	fk,.12 	 (V,56) 
(YiEnJ 

the NJ-number of A 

	

Nb (A) 
	

N( 	N(Al 
	

(54a) 

b) If 
(tun) 

7Y 1( A ) 	 A,i1 -max. 

the -Yrt -number of A 

-rit6( 	= 7"2 
 -m(A) -m(A1 	 ('J,5q) 

c) The Goldstine and von Neumann measure  

A 	where 'X and /\ are the dominant eigenvalues of 

A and Xi  respectively. 

d) The 	factor 

Au  Ai, 

 

	 A„, 

 

oet. A 

 

We can also add to these two further criteria. 

e) The sensitivity of the inverse A 1  to a small charge in an 

element of the matrix A represented as j)k is given by the 

total differential. 
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d 	= 	( Al(dA)( A-1) 
f) A rough measure of linear independence of the rows and columns 

in the matrix A is given by the normalised matrix A 
whose typical element is 

11 04 4y Ai; 

with 'ones' along the diagonal. 

In this matrix one should perhaps base the judgement on the 

pattern, just as much as the magnitude of these ratios. 

V-e 2 Estimation of the for a Fuselage 

  

All of the proposed measures of ill-conditioning in matrices 

require knowledge either of the inverse directly, or of the eigenvectors 

and eigenvalues connected with it. However, it is necessary to have a 

measure of such a property before the inversion actually takes place. 

One needs to know, for instance, if one should use single accuracy or double 

accuracy or whether a certain procedure, such as an orthogonalisation of the 

diagonal sub-matrices, should be carried out at more intermediate stations 

(see Ref.(2) Chapter VII). 

A quick guess at the inverse of the matrix before the actual 

inversion operation is therefore of great value. We suggest here a certain 

approximate procedure which may be useful in a typical fuselage and is 

capable of extension to any problem of a similar nature. The first thing we 
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observe is that the fuselage is an actual physical problem which has 

been set up in a physically—consistent manner and of which we can say 

ab initio that an extreme sensitivity of the matrix to changes in a certain 

element is highly unlikely. We would like only to have an approximate 

picture of the shape of the inverse to help us to choose  the inversion 

technique, or decide if we should apply to process of sub—matrix 

orthogonalisation. 

Since we know that the D of a fuselage is highly dominated 

by the Dr , we might assume that an inverse of Dr  would give a rough 
idea of the form of D . If the fuselage is cylindrical and the rings 
are either the same or possess such properties as to satisfy the general 

form of Eqn. ( V,113 ), an estimate of the D" would only require two 
inversions, one of the order (t-3) x ( t - 3 ) and one in order of (p-2) A (p-2) . 

If the fuselage does not satisfy this condition 	exactly 

because some rings, for example, violate slightly the form of the basic 

sub—matrix, it is always possible to replace them by 'Ersatz' rings which 

have a stiffness of the same order of magnitude, but conforming to the 

standard sub—matrix. In this procedure engineering sense plays the main part. 

V —e 3 The 1\1 —Number  

After using the idealization of the matrix described under 

-v-e i , this number is in our case, and for a single cell fuselage 

or 

Nb(D) 	 N(D) 	(Dr ) 
4)-2)u-3) 

D) r\J ( Dr N ( ar-- 1 ) 
p--2-) 	I-- 3) 

(V,59) 

(7,59a) 
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where Dr is the 'Ersatz' Dc  • 
It is probably more sensible to use (IV 59a) since it has a more 

consistent physical meaning, i.e., we find the 	NI-number for a certain 

matrix of which we know the exact inverse, and then say that this number 

would give an idea of the 	NI -number for the actual 

For the 	matrix we find 70„0  

D 

N2( V) 
	

- ( 2) 2 	2. ( r71-1) ( -1)2  

	

6m -2 
	 (V,60) 

and 

NZ ( V -1  ) 

 

a2  [2+ (1,1-1)0L]2  

f 	- /) 	I. 1  4" 	)a3 

2'=1 

	 a2  [2.4-(ni-1)a]2  

[ct 2  ( 171 3  - 2 )7Z 2  4- 11 ')71 2 ) 4-46' Q rn (3rn-r) + 12 ]  
12 a 2  [ 2 	(171-i) ct] 2  

(v,61) 

Thus the number will be 

4 	'»2 a ( hi 3- 2 rn 2.4. 	1+7 +2)+g a yr; ( 3 )11  - ) -1-  1 2 ] ( 6 	-z)  
Nb Vim)) = rn 

(3171 -1) {4 2  (r11 3 -2 • 4 2  +It m 4-2 )-1- 6atrt ( 31-n-4) +123 

6,22(2 -1- (7n -a)4] 2  

(11,62) 

2 4.2  [ 2 + (111-4)Q]z  
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becoming infinite when a is zero, or when a =
".1 

-7--2 	This seems 

to be a measure which can be applied with ease, and which does point to any 

undesirable magnification in the inverse. The programming involved, once 

the approximate inverse is obtained, is trivial. This measure is therefore 

to be recammended. 

V-e 4 Again for a Fuselage we write  

"?E. ( D ) 
	

7726 	b,) 	7)2T3( br) 
(v,63) 

(p-2) (t-3) m( 	Dr-1) 

The programming work necessary to obtain the maximum value in a matrix is 

again standard. 

In order to apply this second measure to the 	matrix, 

we need the value of the maximum element/in v and V.21 

The maximum element of 

--pn odd. 

Thus for -m even 

Vol- 
is for 	even and V 	rt_2_!! for 

( 
1-7 -1 
V4H. ) 

( Z -f) a] [ 1 -4- ("=`)a]   
2 + (rn-f) aj 

(m-2)a] [2 +Ina] 

4 a [ 	tTri- Oa] 

(v,65) 
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and for vn odd 

[ I+ ( 
 m#1 

-1 )airlq- (•?vi 	"14-1 ) / a 
a 2 + Cm-+)a] 

C 2 -04 m 	a) [ 2 4 ( - 1)  a.] 

40. [2 ÷(?n- ) 

[2+ (7n-/)a]  
4a 

From these we obtain the following table for -v ( 

-7n  CV) 
a 	......-, 	i a y 1 

111 	("veil -m. [2+ (7+1-2)c[2-i- -ma] ( 1-t-cd 1421( Prr -2)aj[? -4- ma] 

2ar2 4- bli--0 a] 4a E .2-r( --)-n- f)al7 

In 	odd '1- [2 + (-,-,?..-f)ct7 (i-ra)-7-rt [2+ (m-->) a j 
2a 4a- 

(y,66) 

So whilst we see that when a approaches zero, the lwz -number 

becomes infinite, it is not the case when Q is equal to 	m-2 

but becomes, on the contrary, very small, even equal to zero for m odd. 

Despite the fact that this result is of little use to us physically, 

it shows a weakness of the method, namely that it does not always detect 

a singularity. It is therefore not to be recommended. 

V -e 5 The Goldstine - von Neumann Measure  

This measure is nothing really but the ratio of the highest 
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to lowest eigenvalues of the matrix. As described under (V-d 6) a guess can 

be taken at the dominant eigenvector and eigenvalue of the D of a 

fuselage by considering the actual or Ersatz Dr  . Although this may lead 

to an adequate guess for the eigenvector corresponding to a , 

the reliability of a guess for A is very doubtful and has to be verified. 

It might be, however, reasonable to assume that it will be mainly determined 

bY D 9 , so the application of our procedure to obtain an 
appropriate inverse is not to be recommended here. On the other hand, it is 

perhaps justified to discuss this proposed measure. It is, of course, 

true that this ratio is significant. If the eigenvectors and eigenvalues 

of a matrix A are respectively 

V, V, V, 
and 

'a, 

 

g n, 

 

then the eigenvectors of the inverse ki will be the same, but the 
eigenvalues are, however, the reciprocals of those of the original matrix. 

We know that we can then write 

A l V, V- 1 

- _ 	Vi  V (v,69) 

Vm  

A 
and 
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ti t 

In Eqn. (V,67 ) the term 	A, V, V, is the most dominant and that 

of :(p, V. \Lit the least significant, and probably appears only in the 

last few figures from the right. In the inverse, the situation is reversed, 

and the smaller q m  is in the first place, the more significant its 

reciprocal becomes in AI  

What is more, this eigenvalue and its associated eigenvector 

are the most sensitive to any change in the elements of the matrix. This means 

of course, a greater change in A1  . The uncertainty with this method lies 
in the sensitivity of this last eigenvalue. However, if we assume that we 

have the largest and smallest eigenvalues we can also safely assume that we have 

the corresponding eigenvectors. We can then form 

(A)„, = 'x. V,, V 
	

(V,69) 

and 

(A-')  ft 

If we also have an approximate inverse we can form the matrix 

in which the typical element 

smaller of 

e03
10
q 7.31°  (A),, 

e0510  
(V,71) 

  

where 	y number of figures used in the computation. 
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This matrix gives the maximum accuracy one can obtain in the 

inverse in decimal figures if we consider 	as the only determining 

factor. However, for some elements the determining factor is probably 

some other eigenvalue. This method can be further extended if we know 

a few eigenvalues from each end of the scale and the corresponding 

eigenvectors. 

V-e 6 The Factor /a  

This is,of course,a very accurate measure. Applying it to the V 
7,1 

we find 

( 
rn-2) 

(4 + 0) 2  

 

(V,72) 
a E 2 + ( 1,1 -Oa] 

The expression becomes infinite for the two critical values of a 
However, it is surprising that it gets' bigger also very quickly with 

due to the presence of an exponent of m in the numerator. So while 

the highest element in the determinant is more or less proportional 

to 	2"' ,the determinant itself is only proportional to -7n . 

The increase of value here of the factor 	with with increasing size 

of the matrix is therefore a true indication of the inevitable sensitivity 

to size which is, as it seems, a property of finite difference equations. 

This criterion is undoubtedly very accurate and takes care of all cases. 

The difficulty lies in the time required to compute a determinant, 

which is approximately equal to that required to carry out an inversion 

with one right hand side. It nevertheless is always possible to compute 

an approximate value for the determinant using (V-d 7 ), provided that 
due care is taken in the interpretation of the result. Ill-conditioning 
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results due to the presence of a very small eigenvalue, and this appears 

as a factor in the determinant, and is not accurately determined by an 

approximate method. However, a certain indication of the diminishing 

value of the determinant as well as the influence of size may still 

be present, so that it may still be worth while to compute an approximate 

estimate of the determinant. It may be of interest here to mention that 

none of the other measures detects this sensitivity of the finite difference 

matrix to the inverse of size in quite the same way as this criterion does, 

with the exception of the Goldstine - von Neumann measure which cannot be 

explicitly tested. 

V-e 7 The Improvement of the Basic System in the Fuselage  

The analysis of a simple framework with seven unknowns has been 

worked out as an example to demonstrate the value of the following procedure. 

One starts with an ordinary b and b based on the 

conventional self-equilibrating stress systems. A first solution is obtained, 

and the compatibility checked. Afterwards the b, is successively trans-

formed by the repetitive use of a transformation matrix n  so that 

k(21-1) 	b 
	n 	 (V,73) 

where 	is the ( "7 ,e 7 ) matrix 

0 

0 

0 
o o 	0.9 	t 	0.9 	0 	0 
o 0 	0 	0.9 	1 	0.9 	0 

o 0 	a 	a 	0.9 	1 	0.9 

o a 	0 	0 	a 	0 . 9 	1 

n 

0.9 o 0 0 0 1 

0.9 i 0.9 0 o 0 

o 0.9 1 0.9 a 0 

(V,74) 
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which serves the sole purpose of mixing the self-equilibrating systems so 

much together that they became more and more linearly dependent. At one 

particular stage the process suddenly results in a deterioration of the 

conditioning of the D combined with an inferior compatibility check. 

As soon as this 	appears the inferior results are fed back in again, 

i.e. 	bo  is replaced by the calculated b and the prccess repeated. 
The method works, giving an excellent convergence to the final 

correct results. However, if the ill-conditioning goes beyond a certain 

point, the results can no longer be improved by the procedure. This is due 

perhaps to the fact, that the representation of the physical system becomes 

incorrect. However, from our point of view the procedure is only interesting 

as far as it is a proof that a better ab initio approximation to the solution 

helps greatly in obtaining a more accurate solution. This fact which is by 

no means new, and which has been repeatedly mentioned by various authors 

derives from the insignificance of the modification required to obtain the 

final solution in comparison with the starting value. Thus if in 

b 
	

b, X 

the 	bo  matrix is correct to seven figures, and the bl  X only to three, 

the final results will only be correct to three figures if the second 

term were of the same order of magnitude as the first. If it is 10 times 

smaller, then the original accuracy is maintained. 

The procedure proposed for the fuselage and problems of similar 

nature, rests on the fact that Dr  is the dominant part of the total D 

as well as that 	D or is the dominant part of the total Da . After b. 3 

b 
	

f 
	

Dor and Dr  have been calculated, a certain Dr  e 

a matrix of the type described before, is set up. Its inversion only requires 
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two inversions of the order ( frl xvk ) and ( 'm "71  ) respectively, as well 

1  as N4 2  multiplications of a matrix ( .-rtxm ) with a scalar. This D r 
is used now in order to produce an approximation to the b and hence a 
better guess at the final solution. Hence we calculate 

- - D;" Dor (v,75) 

Note that Dor  and not Do  total is used. The new approximation to b 
which we call b*, is now obtained from 

U 0 

	 bo 	b1 	b 	or 	 (v,76) 

and this is used as a basis for another calculation of D. and then one 

proceeds with the calculation as usual. 

It should be noted that this method is not an iteration method. 

If the results are still not satisfactory, a feeding back of the very 

final results and a complete repetition of the solution is required. 

If that again does not succeed one has probably to operate with double or 

treble accuracy. However, it must be stressed that the mere repetition of 

the inversion using double accuracy is of limited significance. If double 

accuracy is required one should preferably use it right from the beginning, 

i.e. already in the formation of the b0 , band f from initial data, 

which are themselves also represented in double—length numbers. One of the 

main principles of the whole philosophy of the fuselage analysis given in 

Ref. ( 2 ) as well as in matrix analysis in general is that the mere use of the 

machine in order to do the inversion of the matrix is not correct. The machine 

has to set up everything consistently from the beginning to the end. This is 

not only dictated by the desirability of automation for the whole calculation 

but also extends to such questions as the accuracy required in the 

computation. 
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V -e 3 Accumulation of Errors  

In this chapter up till now the 'inherent' conditioning of a matrix, 

that is to say the maximum possible accuracy to be obtained in the inversion 

of a matrix of a certain type using a limited number of figures has been 

discussed. This maximum accuracy is rarely attainable. The accumulation of 

errors is a very important additional factor here, which has to be considered. 

The problem is of a rather statistical nature, and is, therefore, only to be 

touched upon. 	We can here study a standard procedure for improving 

the inverse of a matrix. If instead of A we have a matrix 	such that 

A B 
	

4- A 
	

(v,77) 

and 

A 	+ BA 	 (v,78) 

A is an error matrix. It follows fran Eqn. (V,77 )that 

A ( B + 	I 
and the standard relations for the iterative improvement of the inverse are 

B 
	

B 	 (11,79) 

and 

Kt = B 	- d 
	

(v00) 

Eqn. ( V,80 ) derives fram the simplification that 
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It would be interesting to investigate a limiting case where the iteration 

does not converge, namely when 

A B (I- p )= I + 

Thus 

1612 

	
(v,81) 

If one does not interpret the equation literally it means that 

if the square of the error matrix is a matrix of the same order, then another 

error is created which is equally large. This is again quite logical and 

obvious, and in this case would result if all the elements of A were 

constant and equal to E where 

E 
	

7it 

	 (v,82) 

and M. is the size of the matrix A . Again this discussion is very 
qualitative and serves merely to point out the existence of this side to the 

problem. What Eqn. (v,82 ) says in effect is that the bigger the matrix 

the more accuracy is required, again a well—known fact. 
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APPENDIXA  

RESULTS OF FUSELAGE COMPUTATIONS INCLUDING  

COMPARISONS WITH EXPERIMENTAL RESULTS  

In this apPendix we present the results of the analysis of a 

single-cell fuselage including the effects of cut-outs and modifications 

together with a comparison with experimental results measured on a full scale 

model at. Imperial College of Science and Technology. 

The preliminary Fig. (A-i) and the two tables (A-i) and (A-ii) 
give all necessary geometrical data required for the regularized fuselage. 

Four different cut-out cases, termed A, B, C and D are detailed in Figs.(A-ii) 

to (A-v). Since the removal of a fuselage panel results in the reduction of 
the skin contribution to the neighbouring flanges and rings, the necessary 

modifications are given in tabular form beside each sketch. 

Following that, the actual results (Figs. (A-1) to (A-13) ) are 
plotted and the experimental points introduced. These include normal stresses 

in the flanges, shear stresses in the panels and ring bending stresse. 

The drawings comprise examples of the regularized fuselage as well as of the 

various cut-out cases. Five different loading patterns are considered, and 

sketches are made beside all the drawings giving the nature of the applied 

loads. 

On the whole, we observe excellent agreement between the computed 

and measured results. However, one should perhaps note that the flange normal 

stresses are experimentally determined at the edge of a cut-out at two different 

points which we term "I" and "0" (see sketch on next page). The value at "0" 

always shows remarkable accuracy, while that at "I" is somewhat high. This can 

be explained by the presence of a stress concentration at the corner of the 

cut-out. Another source of slight disagreement is the non-consideration of 
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the effects of the ring lateral bending. 
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1 	2 	3 	4 	5 	6 	7 	8 	9 
III 

III 
11 
11 

16.285' 18.0018.00" 16.75" 16.75" 16.75" 16.75"16.285" 

135.57 " 

Fig.(A-i) Geometry of the analysed fuselage 
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Table A-i 
	Effective Flange Area ( B ) 

tation 

Stringe 
1 2 - 8 9 

1 0,2295 0.2715 0.2295 

2 0.0481 0.0962 0.0481 

3 0.2624 0.3373 0.2624 

4 0.3630 0.3785 0.3630 

5 0.3063 0.4017 0.3063 

6 0.2831 0.3786 0.2831 

7 0.3806 0.4755 0.3806 

8 0.2817 0.3758 0.2817 

9 0.3613 0.3771 0.3613 

10 0.2831 0.3786 0.2831 

11 0.3064 0.4019 0.3064 

- - - - 

20 0.0481 0.0962 0.0481 

wall-thickness constant and equal to 0.0248" 



All Rings Light Rings No. 2, 4, 5, 6, 7 and 3 Heavy Rings at ends No. 1 and 9  Heavy Ring No. 3 
Stringer 
No. x t Y I. A 

. 
I k 
. 

1 CA A C I t 1 C 
, 

I 

1 0 23.320 0 23.331 0.402 0.169 
, 

0.144 0 23.094 1.359 0.454 0.394 0 23.133 1.435 0.484 0.933 

2 -3.343 23.305 -3.196 22.339 it 9 9 -3.125 22.613 1.359 0.434 0.894 -3.137 22.650 1.435 0.484 0.933 

3 -7.231 21.297 -6.961 2r."9 tt n n -5.331 20.691 1.359 0.434 0.894 -6.352 26.724 1.435 0.454 0.933 

4 -13,102 16.362 -12.746 16.026 ,, n ,, -12.574 15.364 1.359 0.434 0.394 -12.602 15.890 1.435 0.484 0.93:3 

5 -17.681 10.203 -17.257 9.963 II It n -17.052 9.345 1.359 0.484 0.894 -17.086 9.364 1.435 0.434 0.933 

6 -20.721 3.166 -20.252 3.025 n n n -20.026 2.957 1.359 0.434 0-894 -20.063 2.968 1.435 0.434 1.502 

7 -22.059 -4.337 -21.571 -4.416 It It " '''. 21.114 -4.360 1.443 0.572 1.439 _21.175 -4.360 1.524 0.572 5.343 

0 -20.628 -11.910 -20.205 -11.665 VI II It -19.196 -10.387 1.793 0.918 5.116 -19.254 -10.929 1.869 0.918 8.128 

9 -14.929 -16.910 -14.610 -16.473 VI II II ...13.965 ...14.934 1.954 1.030 7.788 -13.901 -15.057 2.031 1.079 8.128 

10 -7.619 -19.527 -7.506 -19.052 ft n n -7.123 -17.432 1.954 1.030 7.788 -7.142 -17.510 2.031 1.079 8.123 

11 0 -20.415 0 -19.927 ft ft tt 0 -18.262 1.954 1.030 7.788 0 -18.343 2.031 1.079 8.128 

20 3.3143 23.305 3.196 22.339 0.402 0.169 0.144 3.125 22.613 1.359 0.484 0.394 3.137 22.650 1.435 0.484 0.933 
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Fig. A-ii 	'Cut-out Case A 
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Fig. A-iv 
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APPENDIX B  

SUGGESTIONS FOR A NEW CLASS OF FUNCTIONS  

The following Boolean functions are suggested as a start. 

The exact form of the order is left open, the idea, however, should be 

the same. For some preliminary applications of the functions the reader 

may consult Refs. ( 4 ) and ( 5 ). 

Function 1 

Gb 
	• ) 	 j * Lc) 	 A 

This function forms a matrix of (+1 )'s and zeros whose first 

element has the co-ordinates (i,j). The matrix contains n non-zero elements 

whose co-ordinates derive from those of the first by addition of the 

increments (/A , 	). This is repeated (-n-f) times in all. 

Example: 
1 2 3 4 5 6 

0 0 0 0 0 o 0 0 

1 0 0 0 0 o 0 0 

0 o   1 0 0 0 0 0 

0 0 0 0 1 0 0 0 

o 0 0 o o 0 1 0 

The order 
Gb( 2, / ) (1, 2 )(4)  	A 

results in the following matrix being stored in A 

(2,1) (3,3) (14,5) (5,7) (End) 

The exact form of the end word is left free, although the word 

(777 777 777 777) has already been used for similar purposes. 

2 

3 

5 
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Function 2 

Repeat 

Rb (A) (7...41,N, 	AA) (n) 	5 

This order causes a certain Boolean matrix stored at A to be used 

to form another matrix at the address B by repeating the matrix A 

.-rt times, each time increasing all co—ordinates by ( 2."i ,1 AA )  

ExaMple: 
At A (2,1) (3,3) (4,5) (5,7) 	(END) 

Order 60)(5,2) (3) 

results in the following Boolean matrix being stored at 8 . 

At 8 	(2,1) (3,3) (4,5) (5,7) (7,3) (8,5) (9,7) (10,9) 

(12,5) (13,7) (14,9) (15,11) (END) 

Although the result of this particular operation is accidentally sorted, 

an automatic sorting is recommended after such a formation order. This yields 

a simplification of programming for subsequent functions. 

Dimensions and Numbers of Entries  

We observe at this stage that the dimensions of the Boolean matrices 

have not been mentioned in the orders. On the other hand we may state the 

dimensions of any formed matrix, which are then stored in a heading preceeding 

the matrix. This heading may also include the number of 'ones'. This would, 

of course, be calculated automatically by the code as it forms the Boolean 

matrices and be used to allocate storage space. 

These preliminary ideas on Boolean matrices are to be expanded in a 

subsequent report. 
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APPENDIX C 

STANDARDISED FORMS FOR ORDERS  

AND SOME FURTHER REQUIRED NEW FUNCTIONS  

Introduction  

As a basis this work assumes the existence of a super-matrix scheme 

which operates with super-matrices. Such a matrix scheme is being developed 

at present by the "Rechengruppe of the Institut far Statik and Dynamik 

der Luft-und Raumfahrtkonstruktionen" in Stuttgart. 

However, since this work should be presented in a general logical 

form, which can always be easily translated into such a scheme, whatever 

final shape the orders assume, certain standard forms for matrix instructions 

are given in which the programmes may be written. (See Chapter IV ). 

On the other hand, since a successful computer language is the 

result of close co-operation between the systems and applied programmers 

of whom the latter will eventually use the library for the solution of his 

special problems, it is always one of the results of programming a task 

using the computer, that certain suggestions are made which result in 

alterations to the computer language so as to render it more powerful for 

dealing with the problems in hand. So, in the last chapter, we find some 

suggestions for new functions dealing with Boolean matrices. This type of 

matrix first arose during the analysis of a wing by the displacement method 

(see Refs. 4,5 ). However, at that time, the function of these matrices andthei: 

use to 	perform certain operations was not handled in a sufficiently 

elegant manner, due to the still experimental nature of the programmes. 

These matrices proved further to be of great help in a variety of problems 

hardly related to one another, for example, for modifications and cut-outs 
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in a fuselage, and in plasticity problems. This type of matrices is also 

used as identification matrices for example in the displacement method. 

The suggested functions simplify greatly the formation and handling of 

such matrices, and reduce the operations to their basic mathematical 

equivalents. The description of regular patterns is easily and logically accam_ 

plished, the number of orders required to form a pattern depending upon 

its'dimension'. Thus a one-dimensional pattern is formed in one order, 

a two-dimensional one in two orders and an 71 -dimensional one in 1,2 orders. 

Different patterns can be superimposed through a simple addition. 

Apart from those standard Boolean operations, some new functions 

which have been found necessary during the calculation, are introduced and 

described where suitable , although their effect is obvious from their use 

in the various programmes.' Some of them do have a definite mathematical 

significance, others have none and are only there in order to overcome the 

unavoidable inflexibility accompanying the automatic nature of the super code. 

We do believe it possible to extend such a scheme to include functions which 

enable us to deal with special classes of problems. It is, of course, also 

obvious that these functions do not occur in the part of the programme where 

purely mathematical computations are being carried out, but rather in parts 

where the basic matrices are being formed. In the case of a problem like 

the fuselage analysis we must repeat that this part is complicated to 

programme and requires more subtlety than the straightforward computations 

once the basic matrices are there. This can easily be verified by inspection 

of the programme described in the main part of this work. 

It must be mentioned also that the suggested form of the orders 

is mainly based on a generalization of those of the Pegasus matrix scheme, 

since they are in our opinion clear and unambigious. 
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Representation of the Matrices  

The most general way of presenting a matrix of the order mA x nA 

stored at address A is 

(A, mA x nA). 

A uniform super-matrix of the super order MA x NA composed of sub-matrices 

all of the size mA x nA is represented by 

(A, MA x NA, mA x nA). 

A special case occurs when a matrix is square. Then only one of the 

dimensions need be mentioned, e.g. 

(A, mA) 

(A, MA, mA x nA) 

(A,MA x NA, mA) 

(A,MA, mA) 

is of order mA x mA. 

is a uniform square super-matrix 
with rectangular sub-matrices. 

is a uniform rectangular supermatrix with 
square sub-matrices. 

is a square supei -matrix with square 
sub-matrices. 

A diagonal matrix will be denoted by an inclined stroke after a 

single dimension. Thus the following matrices or uniform super-matrices 

are fully or partly diagonal 

(A, mA/) 

(A, MA/, mA x nA) 

(A, MA x NA, mA/) 

(A, MA/, mA/). 

With a diagonal matrix it is usual to store only the diagonal elements. 

However, this is a matter of internal organisation of the code. 
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Another special case is the scalar matrix. Here only one element 

is stored, let us say, in address A. The matrix is then denoted by 

(A). or (A,( ) ) 

The exact dimensions are always interpreted according to the 

operation and the other matrices involved. 

Applying the same for super matrices, the uniform super-matrix 

(A, MA x NA, ( )) 

is a rectangular super-matrix whose elements are scalar matrices. 

So, whereas the super-dimensions are fixed, the dimensions of the sub- 

matrices are interpreted so as to suit the operation and other matrices involved 

in it. 

The matrix 

(A, ( ), mA x nA) 

is a scalar super-matrix with an ordinary rectangular matrix as an element. 

The last special type of matrices are the Boolean matrices. 

In this work they are always denoted by placing a " b " before the 

address, e.g. 

(bA, mA x nA) 

or 
	

(bA, MA x NA, mA x nA) 

or 
	

(bA, MA x NA, ( )) 

or 
	

(bA, ( ), mA x nA) 
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The Functions  

We now represent a complete list of the functions assumed to be 

present in the matrix scheme. The general form of the order is always given 

and details of operation only when necessary. Special classes of matrices, 

e.g. diagonal,scalar, will only be used whereever it is necessary to indicate 

a special use. As stated before, some of these functions derive from the 

Pegasus scheme, sane are based on the idea of a super-matrix code as being 

developed in the Rechengruppe and a few of these are again a result of a 

co-operation with systems programmers. Other functions derive, however, 

mainly fran the fuselage problem, but can possibly be used for other problems 

as well. 

1) Transfer matrix to another place 

(A, MA x NA, mA x nA)-4.-C 

2) Add and Subtract 

(A, MA x NA, mA x nA) + (B, MB x NB, mB x nB) 

3) Multiply 

(A, MA x NA, mA x nA) x (B, MB x NB, mB x nB)-0-C 

4) Divide 

(A, MA x NA, mA x nA) -1  ( B,MB x NB, mB x nB)-4N- C 

5) Transpose 

TR (A,MA x NA, mA x nA) —=C 

6) Clear a matrix (form a zero matrix) 

CL (A, MA x NA, mA x nA) --0-C 
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Conditions which must be satisfied in the various operations are 

obvious and need only to be mentioned when necessary. For example, we give 

operations in Which an actual matrix is used as a "scalar" 

(A, ( ), mA x nA) x (B, MB x NB, mB x nB) --C 

where nA = mB, and the matrix A is interpreted as (A, MB x MB, mA x mB), 

and so on. 

We need still the following functions in order to facilitate the 

handling of individual elements. 

7) Extract Element 

EXEL (i,j) (B, MB x TB, mB x 	C 

This will cause the sub-matrix (B.., mB x nB) to be extracted and stored ij 
at C. Also 

EXEL (i,j) (B,mB x nB)—•-C 

will cause the element B.. to be stored at C. ij 

8) Extract Diagonal Sub-matrices 

EXDISM (A,MA x NA, mA x nA) 

where MA = NA. 

A diagonal super matrix composed of the diagonal elements of A will be 

stored at C. 

9) Extract Diagonal Elements 

EXDIEL (A,MA x NA, mA x nA) 

where MA = NA, mA = nA. 
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A diagonal super-matrix (with diagonal sub-matrices) will be formed from the 

diagonal elements of the matrix A. 

10) Decompose into Elements 

DEC (A, MA x NA, mA x nA) 	C 

The matrix will be decomposed into its sub-matrices which will be stores at 

C in a prescribed manner. The super-code might note their addresses, 

and give them names e.g. A1,1 , A1,2 	AMA,NA if they are to be 

stored by rows. 

11) Recompose from Elements 

REC (A, MA x NA, mA x nA) 

This is the opposite of(8). According to the specified dimensions of the 

uniform super.matrix, the computer will extract the sub-matrices A.. starting 

from the address A, and store them as a uniform super-matrix in address C. 

Then there are functions to be carried out only on the sub-matrices, 
as for instance 

12) Transpose Elements 

TREL (A, MA x NA, mA x nA) 

This will result in a matrix 

(C, MA x NA, nA x mA) 

i.e. the elements of which are those of A, but transposed. 

13) Sine of Elements 

The order SEL (A, mA x nA) 

will result in a matrix of the order (mA x nA) stored at C, whose elements 

are the sines of the elements of A. 
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The order SEL (A, MA x NA, mA x nA) 

can be interpreted in different ways. Either the sines of the individual 

elements are calculated, or the sines of the sub-matrices. In the latter case, 

it would also be logical to have the order 

13a) Sine of Matrix 

SIN (A, MA x NA, mA x nA) 

which opens the door to a completely new class of functions which can be 

used in the solution of more complicated problems than linear systems of 

equations. 

Similarly we have 

14) Cosine of Elements 

CEL (A, mA x nA) 

and CEL (A, MA x NA, mA x nA) 	C 

also 

14a) Cosine of Matrix 

COS (A,MA x NA, mA x nA) 

15) Square Root of Elements 

SQL (A, mA x nA) 

and SUL (A, MA x NA, mA x nA) 

These are to be interpreted as (13) and (14). Correspondingly, 
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15a) Square Root of Matrix 

sow (A, MA x NA, nA x nA) 

Naturally in(13a), (14a) and (15a) the matrices must satisfy certain 

mathematical conditions, e.g. be square. In (15a) they must also be positive 

definite. 

After this set of functions comes another one which aims at 

facilitating the manipulation of matrices as well. 

16) Modulus of Elements 

MODEL (A,MA x NA, mA x nA) 

The matrix C will have as elements the moduli of the elements of A . 

17) Divide Elements 

DIVEL (A,MA x NA, mA x nA) 

where MA = MB 

NA = NB 

mA = mB 

nA = nB 

(B,MB x NB, mB x nB) 

 

C 

 

This is an element by element division of the matrix A into B 

18) Divide Non—Zero Elements 

DINZEL (A,MA x NA, mA x nA) (B,MB x NB, mB x nB) 

Similar to (17), only that zero elements are not divided, instead the 

resulting element is made zero. 
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19) Join Horizontally 

JH (A, MA x NA, mA x nA)(B, MB x NB, mB x nB) 

This can be represented by 

A E3] 
Naturally we must have that MA = MB and mA = mB (also nA = nB for a uniform 

super-matrix). 

20) Join Vertically 

JV (A,MA x NA, mA x nA) (B, MB x NB, mB x nB) 

i.e. 	

C. 	2 
[A 

Again we must have NA = NB and nA = nB (also mA = mB) 

21) Join Diagonally 

JD (A,MA x NA, mA x nA) (B, MB x NB, mB x nB) 

viz. 	 C =FT-  131 
The only conditions necessary, if we want a uniform super-matrix 

again, are that mA = mB and nA = nB. 

The last three functions serve to merge two matrices together and 

the opposite to these are functions which split a uniform super-matrix into 

two separate (super)- matrices. 

22) Split Horizontally 

SH (A,MA x NA, mA x nA) (NA1, NA2) 	C1, C2 
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Diagrammatically 

A = C, )(CZ  

where naturally enough NA1 + NA2 = NA. 

23) Split Vertically 

SV (A, MA xNA, mA x nA) (MA1, MA2) 

where 

MA1 + MA2 = MA 

i.e. 

 

C1, C2 - 

 

  

24) Split Diagonally - only applicable for diagonal matrices 

SD (A, NIA], mA x nA) (MA1, MA2) 	C1, C2 

where 

MA1 + MA2 = MA. 

viz. 

A 

Then we need a few orders to re-partition a matrix so as to render 

an operation involving another matrix possible. 
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25) Re-partition A as B 

REP (A,MA x NA, mA x nA) (B, 	x NB, mB x nB) 
	

C 

we need to have 

MA x mA = MB x mB 

and 

NA x nA = NB x nB 

The matrix in A will then be re-partitioned in the same manner as B. 

26) Re-partition Columnwise 

REPCW (A,MA x NA, mA x nA) (B,M3 x NB, mB x nB) 	C 

If(NA) (nA) = (MB) (mB), the matrix in A will be re-partitioned columnwise 

so that one can pre-multiply the matrix in B by it. Matrix B need not 

actually exist. 

27) Re-partition Row-wise 

REPRW (A, MA x NA, mA x nA) (B, MB x NB, mB x nB) —,41.-C 

Again if (NA)(nA) = (MB) (mB), the matrix B will be re-partitioned row-wise 

so that it can be pre-multiplied by the matrix in A. 

Then we have same orders to convert super-vectors into diagonal 

super-matrices and vice-versa, thus 

28) Diagonalize 

DZ (A, MA x 1, mA x nA) 

or DZ (A, 1 x NA, mA x nA) 
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result in the matrices 

( C, MA/, mA x nA) or (C, NA/, mA x nA) respectively 

29) Diagonal to Column Vector 

DCV (A, MA /, mA x nA) 

gives 

( C, MA x 1, mA x nA) 

30) Diagonal to Row Vector 

DRV (A,NA /, mA x nA) 

yields 

( C, 1 x NA, mA x nA) 

And then similar functions to diagonalize the elements of a super-matrix, 

or vice versa if these element sub-matrices are vectors. 

31) Diagonalize Elements of Row or Column super-matrix 

DZEL (A,MA x NA, mA x 1) 

or DZEL (A,MA x NA, 1 x nA) 

result in the matrices 

( C, MA x NA, mA/) or ( C, MA x NA, nA/) 

respectively. 

32) Diagonal Elements to Column Vectors 

DELCV (A,MA x NA, mA/) 

gives 

( C, MA x NA, mA x 1) 

C 
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33) Diagonal Elements to Row Vectors 

DELRV (A, MA x NA, nA/ ) 

i.e. ( C, MA x NA, 1 x nA) 

34) Obtain Eigenvalues and Eigenvectors 

EIG (A,/lA x NA, mA x nA) 

where 

(MA) (mA) = (NA) (nA) 

 

VAL, VEC 

 

The full matrix of the eigenvectors is formed and stored at VEC. It is of the 

order, say (MA x NA, mA x nA). The corresponding matrix of eigenvalues of 

order, say (MA/,mA/) is placed at VAL. 

35) Multiply and Keep Maximum 

MKMAX (A,MA x NA, mA x nA) (B, MB x NB, mB x nB) 

This is similar to an ordinary matrix multiplication. However, not the sum of 

the products of the elements of the rows of A with those of the columns of B 

is stored in C, but rather only the numerically largest element occuring in 

each summation. 

36) Diagonal Normalisation 

DIANOR (A, MA x NA, mA.x nA) 

where 

MA= NA and mA = nA 

This is best described by giving the typical element in C, viz. 

A 

A ,•,. Aj•j- 

where 
	C4- 1 

C 
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Referring to Appendix ( B ), which includes the two typical orders 

for the formation of Boolean matrices, we now define the corresponding 

orders in form. Any other operation involving them - say multiplication 

with an ordinary matrix or of two Boolean matrices - is written in the 

normal way. To distinguish, however, between a Boolean matrix and an 

ordinary one, we preceed the address of the former always by a "b". 

The orders for the formation of the Boolean matrices are 

37) Generate Boolean Matrix 

Gb (i,j) (IA 	jA ) (n) 

33) Repeat Boolean 

Rb (bA) (i,j) (n) 

39) Shift Origin of Boolean Matrix 

SOb (bA) (i,j) 

In addition to these we have a group of orders aiming at facilitating 

the inspection of a matrix through a minimum of output. 

40) Matrix Spectrum 

MASPEC (A,MA x NA, mA x nA) (A,B) ( A +) 

or MASPEC (A,MA x NA, mA x nA) (A,B) ( A x) 

In both cases the machine prints out statistical information about the order 

of magnitude of the elements of the matrix between the limits A and B at 

intervals A . To demonstrate this, we give the expected output in both cases. 
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In the first case 

MASPEC (A) + 

Limits 	 No. of elements 

A <AU 4.  A + 	 al 

A +A < Aij 4  A + 2 	 a2 

A + 2A < Aij $ A + 3 	 a3 

B -A <AU B 	 ap 

Total number of elements examined = a 

In the second case 

MASPEC (A) x 

Limits No. of elements 

A 	< Aij 4 A A al 

AP < Aij A AL  a2 

A /j1" < Aij < AAl  

136, 	< Aij B ap 

Total number of elements examined = a 

1411) Column Spectrum of Matrix 

This is the same as before, only that the information is given in detail 

for each column. Thus 

COSPEC (A,MA x NA, mA x nA) (A,13) ( A +) 

results in the output 



- 254 - 

No. of 
2 	3 	4 	 (NA  rl 

A <A;j.( A-Pis 

Atz.b. 

A + 2A <A6' A+34. 

a, 	b, 	c1 	c11 	 z, 

az 	b2 	C2 	d 2 	 Z2 

a3 b3  C3 013 	 Z3  

••• 8 b 
P 

 

• z 

   

The output of the order 

COSPEC (A,MA x NA, mA x nA) (A,B) ( 	t, x) 

can be written down correspondingly. 

42) Row Spectrum of a Matrix 

ROSPEC (A,MA x NA,mA x nA) (A,B) ( A 4.) 

or ROSPEC (A,MA x NA, mA x nA) (A,B,) ( A x) 

Exactly as in 41), only information about rows is printed out. 

43) Plot Columns of Matrix 

PLOCOL (A,MA x NA, mA x nA) (D,MA x 1, mA x 1) 
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The element of the matrix of A will be plotted as co—ordinates measured 

from bases lying at distances specified by the vector matrix D. The scale 

can be chosen by the machine itself, and always given beside the plots. 

For example 

2 
	

3 	
........... 	• 	(NA)(nA) 

2 

3 

4 

1=10-4  
• 

/ x 10— 	 I X 40-5  i c 10-7 
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APPENDIXD  

THE FORMATION OF SPECIAL MATRICES  

In this appendix various methods will be discussed by which some 

of the important standard matrices can be generated on the computer. 

In the described algorithms, the standard form of instructions described 

in Appendix ( C ) will be used. Thus we proceed to the formation of the 

various matrices. 

The Format ion of 
	

E:el  / Ce_ 	and Ce 

Gb 	( 1,1) (2,1) (p -1) 	ELP 

Gb ( 2,2) (2,1) (p-1) 	ELM 

(bEL+ , 2 (p-1) x p) + (bEL- , 2 (p-1) x p) 	EL 

It will be assumed that Boolean matrices can either be used 

as simple matrices, or as super-matrices with sub-matrices which are either 

0 or 	I , and have a size automatically adaptable to the sub- 

matrices of the other matrix involved in the operation. 



Cb (1,2) (1,2) (p-1) ETM 

Gb (1,1) (1,2) (p-1)  ETP 

Gb ('1,2) (1,1) (p-2)  EM 

and 

The Formation of E m  
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The Formation of 
	and L_ 

In an exactly similar fashion, the formation of 

out by a single order 

L is carried 

Gb 	(1,2) (1,1) (p -1) 	LP 

similarly for 

Gb 	(1,1) (1,1) (p -1) 	Ild 

The Formation of the Matrices I a( no) and 

Gb (1,2) (1,1) (n-1) 	IA * 

Gb (n, 1 ) 	(1) 	IA itt 

(bIA* , n x n, ( )) + (bIA** , n x n, ( ))--v-IA(n,1) 

It must be mentioned that the matrix I acne  is exactly the same, since 
the elements of the resulting matrix are assumed to be scalar matrices adaptable 

to the size of the matrices otherwise involved. 

The Formation of E -T- and 

Each is formed as a result of a single order. Thus 

The Formation of C(I)  and Ptt) 

These again are straightforward 
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Gb 	(1,2) (1,1) (t -1) 	c (t) 

Gb 	(t,1) (-,-) (1) 	C (t) * * 

(bC (t) 	, t, ( )) + (bC (t) 	,t, ( 	)) 	c (t) 

TR (bC (t), t, ( 	)) 	C (t) t 

(t) 	I (t) 

)) - (bC (t) t, t, ( 	)) 	ALF (t) 

)) + (bC (t) t, t, ( )) TBET (t) 

The Formation of 
E:ft  

Gb (1,2) (2,2) (p-1) 	Efli 

Gb (2,1) (2,2) (p-1) 	Ef12 

(bEf11, 2 (p-1), ( )) + ( bEfla ,2 (p-1),( ))--0-Efl 

The Formation of ez_ 
2 	 and e, 

Gb (2,1) (2,1) (p-1) 	EBIN 

Gb (1,1) (2,1) (p-1) 	EBLP 

(bEB1N, 2(p-1) x (p-1), ( )) + (bEB1P , 2 (p-1) x (p-1), ( ))-4'-EB1 

The Formation of 
	(t) 

It is evident here that the matrix can only be formed by a 

standard loop. Thus we have to use symbolic orders for counting which can be 

easily translated with any other machine. 

Gb (1,1) 	(1,1) 

(bI (t), 	t, ( 

(bI (t), t, ( 

	

4 2 3 4 	 

	

...I -12i  0 0 	 0 

	

2 1 1 0 0 	 0 

	

3 1 C11(2 	 0 

j 	• 	• • 1 III  0  0 
1 	• 	 41 / 

• t i 1 - 
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CL (b SIG, t, ( )) 
	SIG 

Al = 1 

n1 = t 

Gb (A1,1) (1,0) (n1) 	SIGDEL 

(bSIG, t, ( )) + (bSIGDEL, t, ( )) 	SIG 

n1 = ni - 1 

Al = Ai + 1 

Jump to (a) if n1 	0 

Stop 	 ( Z ready) 

The 	Z Matrix 

In order to form this matrix automatically we have to revert to a 
certain stratagem.,which we can best understand after considering the previous 
steps in detail. 

First of all we observe that the matrix 	c21  of order [t x(t 	3)] 
can be split horizontally in two separate sub-matrices 	Q25 and c? 1c 
(see Ref. ( 2 )) of order {t x (s-1)] and {t x (c-1)} respectively. 

S and C are given by 

t even t odd 

C t/2 ( L - 1) /2 

S (t-2) /2 ( 1) /2 

( 
	a) 

	A 	 



• • • 41 L • t =14 • • 4 4 4 4 

t -1 	= 13 

-Lost bit 

• • • 1 • 4 • • 4 1 1 4 • 

AFTER 
r 

SHIFT ip; • 	• • 4 4 	• • • • 1 4 11 • 

t =31 

t -1 = 3 0 
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when a flange lies on the y-axis. There is an alternative case when no flange 

lies on the y-axis, but apart from being different only in detail, it is 

recommended always to place the first flange on the y-axis, since this can 

always be done, for the sake of simplicity of the programme. 

In order to avoid having two alternatives in the calculation of 

c , the register containing the flange number t as a binary integer 

is simply shifted logically one place to the right. If -t is odd, the 

least significant bit simply disappears and the result is the same as 

subtracting one and then dividing by two. This is best seen in the following 

example 

t=14 (even) 

• • • 1 11 II • 

t= 31 ( odd ) 

• • 1 4 	4 4 

• I• • • 	4 £  • gb• • 441 1  
, L Lost bit 

14-0- 
2 

31-1  _ 15 
2 

In the case of s , we subtract one first from the register to obtain lt-f) , 

and then shift it once to the right; thus, for the same number of flanges 

14-1-1 = 6 31-1-0 
	 = 15 

2_ 2 
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Having established c and s for this case, we give it also briefly 

for the case when no flange lies on the y-axis. Thus 

t 	evekt t 	odd 

c J-2)/2  (t_1)/  

S t/2 ( t -1) /z 

So c is formed as s in the previous case and vice versa. And now, 

in order to establish C?, 

R [ c 25 Qlc 

 

   

we have to form the two component sub-matrices. 

The procedure is similar for the two matrices, and therefore 

it is enough to describe the formation of 
	

C22.5 in detail. 

The matrix can be written as 

Q25 [Sa 	S3 	• S°]  

where 

Sr 	/5frr,  (k-f) 2-n-r) — 	 k = I-) t 

The typical element of 

Q25  

§424 	will then be 

 

211 	(1.-fr1) 

 

t 

 

In order to form the .th column therefore, and considering the diagram 

showing a cyclicly symmetrical fuselage with the circumference divided into t 
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intervals, we find that we have to take the 'sines' of every (1.4-1) 

angle going around the fuselage in a continuous cyclic manner. For example 

a S J 
a 1-7 (1+17 	 1.7  2(f_fr I) 

_ 	AL- 1-1( t 	1) 

As we see, we have to go around the circle many times. Since 

it is obvious, however, that all the values that could possibly be chosen 

must coincide with one of the basic values 

o n (---- 
27  271-  

we have only to form these and simulate the cyclic symmetry by repeating 

them as many times as necessary to cover the "swept region" and then 

choosing every 	ci/-1) element i.e. t elements in all. 

Having thus stated our procedure in general, we describe it now 

in the form of precise logical instructions. 
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(a) We form the matrix 

p - _ 	{ 	0 	_,_, 	.2 	r3 	 (t - /)i 

L -  .,1 ) 

Since we have already described the formation of the(Boolean) matrix 

E ,t, we immediately find that 

p 	= 1: - 
[ (t) 

b) Multiplying p with the scalar 2 "Tly- t 	which has to be stored 
beforehand, and then taking the sines of the elements we obtain the column 
matrix 

rt = SINEL1 ( 1,N-1 1)I-1) 

c) In order to obtain the column j-  of the matrix 	Qls  we first repeat the 
column 	S1  (j-f-i) times by a simple post-multiplication through a unit 
row of the order 	(i 	 j.-4- 1)) 

s,, = S, eE 
(ix(f.,)) 	(t.,) 	(1 x (j.+1)) 

d) Choosing every ( ..i.4. 1)1-4  value is done as follows:- First of all the 
inflexibility of the representation of a matrix by the automatic matrix scheme 
has to be overcome by using the special function mentioned before to decompose 
the matrix in its individual elements, that is to re-consider it as a string 
of numbers 	K (f4-1) long. Assuming that the matrix is stored column-wise, 
it is then 're-composed' again, without changing the order of the numbers, 
into a (j ,-/)x t . In effect this means the string of numbers representing 
the sines of the angles taken around the circular cross-section csj- + 4) times, 

is divided into t groups each (j'-f-1) long. In other words, the first word 
in each group is one of the sought values and the first row of the new matrix 



- 264 - 

is our required column. To obtain it explicitly, we have then to transpose 

the new matrix, and then extract the first column of the transpose. Moreover 

we have to add the column in the proper place in the 	. This is best 

done by post-multiplying by a Boolean matrix of the order [(J.,i) 

whose elements are all zero except for the element (1, ) 

e) Starting by clearing the matrix Qls and then repeating the 

operation described under(d) s times in all, adding the result each time 

to 
	

C225 , we finally obtain our matrix. 

f) For Q 	exactly the same procedure is used, only using lc 9 c 

instead of s and taking cosines of the elements instead of sines in step (6). 

The programme can now be written symbolically as 

Formation of Qts 

Input (+1) 

(211-it) 	0- P 

SIG 

I Ze&) 	 t ) 

Programme 	Gb (1,1) (1,o) (t) 	Be 

(N) x (bBe, t x 1) 

(bSIG, t) 	(bI,t) 

(bD,t) x (e,t x 1) 	SP 

(P) x (sF, t x 1) 

SEL (Q,t x 1) 	 si 
j = 1 

CL (OMLS, t x(s - 1)) 	OMLS 
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	 a) 	Gb (1,1) (0,1) (j+1) 	ejt 

(S1, t x 1) x (bejt, 1 x (j+ 	sle 

DEC (sle, tx(j+1) 	sled 

REC (sled,(j+1) xt) 	sled 

TR (sled* , (j+1) xt) 	st 

Gb (1,j) (-,-) (1) 

(st, t x (j+1))x (bC, j+1 x (s-1)) OMSDEL 

(0MLS, txs - 1) + (OMSDEL, t x s 	1) 	OMIS 

j = j + 1 

Jump to a) if j #s 

n d 

This is then also performed for 	Qi c , and the two sub-matrices are 

joined to give Q . 
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APPENDIX E  

APPROXIMATION TO THE INVERSE OF 

In this appendix we represent the results of a simplified computation 

to establish the accuracy of the statement that the inverse of a dominant Dr 
gives a reasonable approximation to the inverse of the total 

	D 
For this purpose we consider a uniform cylindrical four boom fuselage with 

twelve equally spaced uniform rings. The total 	
( f0) 

is given by: 

D total 
	

Dr + D, + Di  

x)o) 	UoxiO 

If we, just for the sake of obtaining a qualitative answer, 

neglect the Di 	, and vary the Ai 	, comparing the values of the 

diagonal elements in the inverse of 	2Y and of A + A, p 	, we obtain 

the following table: 

Ratio 

lq 

Dr-1„ Dr.5, 

D"1- 	+ D 1  1 1 	qit Dr5-15 -1-D' .55 

0.90 1.11 1.25 

0.081 1.012 1 	. 0 29 

0.0073 1.0011 1 	.0 027 

0.00066 1.00010 1 . 0 00 24 

We observe that when the ratio of the elements of the D r 	to 

those of the 	Dr + D, is about 100:1, the error becomes very small. This is 

usually the case in a fuselage. The argument can also be extended to include DI.  . 
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