SEMI-CONDUCTOR THREE-PHASE INVERTERS FOR
 OPERATING INDUCTION MOTORS AT VARIABLE SPEED

Thesis submitted to the University of London for the degree

Ph.D.

by

B. L. Jones.
(Berwyn Lloyd Jones.)

ABSTRACT.

This investigation is concerned with the application of variable frequency SC R inverters supplying soc. motors, particularly induction motors, in variable speed drives.

The inverters dealt with are all based upon the three phase bridge circuit, the main difference between them is the method adopted for turning off the SC Rs and transferring load current from one phase to the next.

The main body of the thesis deals with the inverters used and all aspects of their performance. Methods are developed for predicting the current and voltage waveforms in the circuits, the harmonic content of the load waveforms, and the power losses in the circuits for inductive loads. Wherever possible simplified formulae are devised to assist in the initial design of the inverters.

An elementary examination is made of the effects of the inverter output waveforms upon the performance of the motor. This shows that the motor efficiency is affected only by 1% to 3% by the harmonic content of the inverter waveforms.

A large component of the power loss in each of the inverter circuits studied is caused by the commutation method employed and depends greatly upon operating frequency. Methods of reducing this commutation Loss are discussed.

At the end of the thesis the main results of the investigation are surprised in a typical design calculation for a large system.

ACXIOWLSDGEMENYS

The author wishes to place on record his indebtedness to Dr. B, Adkins, Dr. D. G. O. Morris and, particularly Mr. B. J. Cory whose supervision, expert help and encouragement in the course of the investigation were much appreciated.

Thanks are also due to the late Mr, G. Chilton and his workshop staff for their help in constructing special apparatus; to Mr. D. A. G. Pedder for designing to the author's specification and constructing the pulse generator used in the later stages of the investigation; to Mr. K. G. King and the Westinghouse Brake and Signal Co, Ltd. for technical assistance and for supplying many of the rectifiers used in the inverter circuits.

Finally the author would like to thank the Department of Scientific and Industrial Research for the maintenance grant which he received during the course of the investigation.
Chapter Pege
LIST OP SYMois. 10
IFIRODUOTIOM. 11

1. TIE SILTCON CONYKOLED RECTITIER (S.C.R.). 15
1.1 General Characteristios of the 3 CR. 15
L.2 Blocking (Off) and Conducting (On) States. 15
1.3 Turning on the 5 CR 18
1.4 Turning off the 30 R 20
1.5 Current Ratings of the 5 C 23
1.6 Gate Characteristics. 25
1.7 Proteotion of the S C.R. 25
2. TEEE BASIC THREE PHASE BNIDGE-COMTECTED INVERTER AMD ITS USE WITH A TMRES PIASE SYNCRBONOUS WOTOR. 27
2.1 The Three Phase Bridge-Connected Inverter. 28
2.2 The Ure of the Basic Three Phase Bridge Inverter with a Three Phaee Synchronous Notor. 31
2.3 No-Moad Tests on System. 39
2.4 Load Teste on Syster. 43
2.5 Conclusions. 51
ChapterPege
3. THE THRES PHASE BRIDGS-COMNEOTED IMVERTER WITH
A SIMPLE FOMK OP ARTIFICIAL CODUTATIOA. 54
3.1 Cirouit and Prineiple of Operation into a Resiative Losd. 55
3.2 Tests with Reaistance Load. 57
3.3 Tesis with Induetive Loed. 69
3.4 Teats with Inverter Feeding Induction Notor. 83
3.5 Conclusions. 84
4. A D.C. इNITCH USI ${ }^{2}$ S C Re AND AUXXLIARY SURPLY. 87
4.1 Circuit and Prinoiple of Operation. 87
4.2 Theory of Operation. 91
4.3 Variation of δ with Load $\frac{1}{B}$ Ratio, G, L_{d}, V_{CR} and $\mathrm{I}_{\text {do }}$ 99
4.4 Voltage and Gurrent Waveforms.103
4.5 Comparison between Measured and Predieted Results. 106
4.6 Vaxiation of $I_{\text {do }}$ and δ with Chopping Frequeney. 107
4.7 Switehing Losses. 115
4.8 Conelusions. 117
Chapter. Pege
5. FRLNCIPLE AND THEORY OF OPERATIOH OF A "D C.-
COMOUTATAD THRES PHASS INVERTER" ITH A SERIES
R-I, LOAD.121
5.1 Clrouit and Principle of Operation. 122
5.2 Pulse Generator. 127
5.3 Theory of Operation on Star-Conneeted R-L Load with "Power Factor" >0.5 (approx.). 131
5.4 Theory of Operation on Ster-Connected R-L Load with "Power Paetor ${ }^{11}<0.5$ (epprox.). 174
5.5 Approximate Harmonic Content of Output Line-to- Kine Voltage Waveform for High Power Factor Load. 191
5.6 Hamonic Content of Output Line-toline Voltage Waveform for Low Power Paetor Load. 204
5.7 Comutation and Resulting Power Loss. 206
5.8 Relationship between the Load and the Distri- bution of Inverter Current between the S C R and Reverse Diode Reldges. 220
5.9 Predicted Current and Voltage Waveforms. 222
Chapter. Page
6. TESTS OIF THB "D.C. CONDUTATED THREE FHASB
INVERTER" WITH A SERIES REL LOAD. 228
6.1 Typical Current and Voltage Waveforms. 228
6.2 Comatation. 231
6.3 Sample Celouletions for R-L Load and Comparison with Measured Results. 247
6.4 Variation of Output Voltage Bamonies with Load. 265
6.5 Variation of Output Waveforms with Frequency. 272
7. TESTS OH TRE ND.C. CONNUTATED THRES PHASE
279
7.1 Circuit and Teat Procedure. 279
7.2 Overcurcent Protection Circuit. 282
7.3 Standstill Impedance, Open-Cirouit and No-Lond Testa on Motor. 285
7.4 Torque-Speed Characteriatios of Overall System. 290
7.5 Variation of Inverter Efficiency and Losses with Frequency and Load. 296
7.6 Variation of Motor BEficlency and Losses with Frequency and Load. 307
7.7 Variation with Frequency and Load of Efficiency of Inverter-Vlotor Combination. 313
7.8 Waveforms and Harmonic Content of Motor Voltage and Current. 315

Chapter.

7. Continued.

$$
\text { 7.9 Regenerative Braking Chareeteristica. } 319
$$

7.10 Variation with Losd Power Factor of Supply Current and the Current in the B O \mathbb{R} and Reverge Diode Bridgee.325
7.11 Ratings of Main Cireuit Components. 327
7.12 General Conclusions on the "D.C. Comratated Three Phase Inverter" with Simple $\mathbb{R}-1$ Loed and Induetion Motor Load. 332
8. AN "A.C. CONDTVATED THREE PHASE INVERTER". 336
8.1 Cixcuit and Principle of Operation. 337
8.2 Theory of Opexation on R-L Load. 341
6. 3 Tests with a Simple Series $\mathbb{R}-1$ Load. 354
8.4 Comutation Power Loss and Inverter Rfficieney. 376
8.5 Motor NPficiency and Typioal Motor Waveforms. 381
8.6 Limits of Operstion of the "A.O. Comutated Inverter ${ }^{\text {¹ }}$. 386
8.7 Ratings of Circuit Components. 392
8.3 General Conclusions on the "A.C. Commatated Invertex". 393
Chapter. Page
9. Comelvaions. 395
9.1 General Conclusions. 395
9.2 Basie Control Scheme. 402
9.3 Application to Large System. 405
9.4 Rough Outline of a Design for an Inverter to Feed a 200 H. P. Motor. 408
9.5 Suggestions for Further Work. 417
421
A. 1 Derivation of Current and Voltage Equations
for the $8 \mathbf{x}$ auth of a Cycle between Instants
t_{2} and t_{3}. 421
A. 2 Determination of I_{0}, E_{1}, E_{2} and \mathbb{E}_{3}. 426
RISEREINCSS. 429

LIST OF SYMBOLS

The following is a list of the more important symbols which have been used consistently throughout this thesis. Some other symbols have different definitions in each chapter and are defined as they occur in the text.

INTRODUCTION

For many years the only motors capable of providing high power variable speed drives have been of the commutator type or of the slipring type of induction motor, the latter being rendered inefficient on account of the large amounts of energy dissipated in the zontrolling resistances at speeds much lower than synchronous speed.

The main objections to the commutator motor are the restrictions imposed by the commatator upon the operating voltage and current, the space taken up by the commutator and, perhaps more important, the careful maintenance required to keep the motor in perfect condition. Alternative methods of producing variable speed drives without resorting to the use of mechanical commutators have, therefore, been continually sought after.

To be viable any alternative system should be robust, reliable, efficient, compsct (for many applications), and should require little or no maintenance. Many schemes have been developed over the years but most have been abandoned because they did not satisfy all the above requirements or vere too costly. The advent of the silicon controlled rectifier has focussed attention once more, however, on the possibility of controlling motor speed without resorting to comutators or forms of resistance control.

The silicon controlled rectifier, or Thyristor, as it is beconing known, is a semiconductor device which is capable of switching high powers very rapidly. It is many times smaller than a thyratron or
ignitron of comparable power rating, is entirely metallic with ceramic insulation and, therefore, very robust, can be turned on in about a hundredth and off in about a fortieth of the time taken by a mercury vapour device, and has a much smaller voltage drop when conducting. It is, therefore, far more likely that a device such as the SGR (silicon controlled rectifier) should, unlike the mercury vapnur devices, be suitable for use in circuits employing switching techniques for motor speed control.

Three possible methods of using switching techniques were considered at the outset of the investigation:-
(a) Buploying the principle of the mechanical commutator for maintaining the stator and rotor fields in a fixed relative position, but replacing the comutator and brushgear by an arrangement of SCRs connected to the stator winding. By arranging for the current to enter and leave at opposite ends of the stator winding, and making these points progress by sequentially switching the SCls on and off, the commutator function could be copied almost exactly. Then by connecting the armature winding appropriately any form of d.c. motor charaeteristic could be reproduced.
(b) Mmploying a slipring induction motor together with a rectifier inverter combination in place of the speed controlling resistance used hitherto. By rectifying the slip power and inverting it back into the motor supply it would be possible to arrange for the motor to run efficiently at any desired speed. Speed control could be effected by varying the mount of slip power converted.
(c) Employing a frequency changer or variable frequency inverter to supply an induction motor and thus cause it to run near any desired synchronous speed.

It will be seen that in (a) and (b) an electrical connection must be made with the armature to provide the field excitation or extract the slip power. In (c), however, brushgear and sliprings could be dispensed with entirely by using a squirrel age type of induction motor which is an extremely robust and relatively cheap form of motor. Mainly for this reason it was decided that the method (e) was of greatest merit and it was upon this method that attention was concentrated in the investigation reported in the pages that follow. The objects of the investigation may be stated as follows:(a) to construct a practicable inverter-motor system for a $5 \mathrm{H}, \mathrm{P}$. motor,
(b) to determine what requirements should be fulfilled by the inverter for supplying loads at lagging power factors,
(c) to measure the system efficiency and account for the losses, (d) to measure the torque-speed characteristics of the system and investigate its capacity for regenerative braking, (e) to determine the effect upon the motor of the harmonics inevitably produced by the inverter,
(f) to determine whether any limits should be imposed upon the operation of the system,
(g) to determine the ratings required of the various components of the system,
(h) to analyse the operation of the circuit with a view to predicting the behaviour of a similar, but much larger system.

In the early stage of the investigation it was realised that the transient analysis of the inverter circuit would be incompatible with the harmonic analyses available for induction motors. It was, therePore, decided that the operation of the motor under "continuous transient" conditions warranted a separate full-scale investigation. Accordingly it will be found that this thesis deals primarily with the inversion problem and that observations made upon the behaviour of the motor are, as a result, of a somewhat elementary nature.

It is hoped that the investigations into the circuit arrangements described in the thesis will contribute considerably to the knowledge of and confidence in the design and operation of variable speed motor controllers using SCRs.

CHAPTER 1

THE SILICON CONTROLLED REGTIFIEA (3 CR)

1.1 General Characteristics of the S C. R.

The S CR is a semiconductor device consisting of four layers alternately of p - and n - type silicon as outlined in Fig. 1.1. The anode, cathode and gate connections are made to the points shown. The circuit symbol shown in Fig. 1.2 is used to represent the 8 C R throughout this thesis.

The device possesses characteristics similar to those of the thyratron or ignitron. It is a rectifier and can therefore pass current in one direction only - the forward direction from anode to cathode. It is a controlled rectifier and can therefore block forward voltage until conduction is initiated by a control signal applied to its gate terminal.

The main characteristics of the SC R as they affect the operation of the inverter circuits to be described will now be briefly described. 1.2 Blocking (Off) and Conducting (O_{n}) States-

The normal state of the SC IR ia blocking, or off. In this state the device allows only a very small leakage current to flow whether the voltage on the anode is positive or negative with respect to the cathode, i.e. whether the device is forward or reverse biased. In each direction, however, there is a limit to the voltage which the S of can safely block. In the reverse direction this is the rated peak revers voltage (P \& V) above which the reverse leakage current increases sharply. This reverse voltage should never be exceeded, even for very

Fig. 1.1: Electrical structure of SCR.

Fig. 1.2: Circuit symbol for SCR used in thesis.

Fig. 1. 3: Typical features of the forward and reverse voltage - current characteristics of the SCR.
short periods of the order of 1μ sec, because the resulting high Hover dissipation causes localised heating in the junctions and almost isvorichly damages the S \mathcal{A} permanently, destraylag forever its blecilins properties. In the forward direction the voltage 1 i ate in The Reward braikover voltage (V30) st whish point the forward leakage current Everaasos alapply wad sab of i, by transistor action, on avalanche process id itch cusses the 3 प i to switch rapidly into the conducting state. This conducting state is self sustaining and the dupont. in the device is limited only by the extoronl circuit, the forward voltage across the of C a having fallen to about 1 V . For the If f to resmin in the conducting state the forward current mut bo
 our cent (I_{s}). If the evreent is reduced below this value the 5 . 18 revert a to the blocicing state
$136 \cdot 1.3$ shows the voltage-current characteriathes of the A d R. When ounducting the forward voltage $d r o p\left(V_{f}\right)$ \& low (about 1 to $1.5 v$), but rives a 11 tie with current. P18. 1.3 also shows the reaults of passing current into the gate. Gate currant hos the effect of reducing the forward orenkever voltage, the higher the gate current then in general the lower the breakover voltage. To switch on the SO R it is thus necesangy only to inject sufileient gate current to realuce the breatrover voltage below the Forward voltage being blocked. It is usual, however, because of the widely alerting
 sufficient to reduce the breskover voltage almost to zero as for

When the 3 CR is reverse biased the leakage current is increased if positive gate to cathode voltage is applied. The resulting power dissipation can become so high that it is necessary to specify a maximum gate to cathode voltage of about 0.25 V which may be applied during reverse bias without derating the S C C .

Between the four layers of the S C I are three junctions where the n-type silicon of one layer merges with the p-type silicon of the adjacent layer. These junctions are the regions of the S C R which support any blocked voltages and are very thin. Consequentiy each junction has a certain small amount of capacitance between the layers on either side. Because of this capacitance it is possible for a fast-rising forward voltage to produce sufficient charging current in the $S C R$ to initiate conduction in the same way as an injected gate current. A maximum rate of rise of forward voltage is therefore specified for the 3 C R.

1.3 Turning on the S C R

Turning on the S CR by increasing the anode voltage above the breakover level is not recommended, particularly in the case of high voltage s C Rs. This is because it is possible that the intrinsic breakover voltage is higher than the breakdown voltage at which point the leakage current increases due to surface irregularities in the S C R junctions. Local heating could then cause degradation of the blocking properties or other permanent damage to the junctions.

The recommended turn-on method is to inject gate current at the instant when conduction is required to commence, thereby reducing the
breakover voltage to a low level. The gate current pulse should be maintained long enough for the current in the SC R and its external circuit to rise well above the sustaining current level. After this the gate loses control and the gate current con be discontinued, conduction being self-austaining thereafter.

After the start of the gate current pulse there is a delay before the anode voltage begins to fall appreciably. The delay can be reduced to some extent by increasing the magnitude and/or decreasing the rise time of the gate current pulse but is generally of the order of 1 to 5 secs. Following this delay there is a period which is confusingly called the rise time during which the anode voltage falls and the load voltage rises. The rise time, defined as the time taken for the anode voltage to fall from 90% to 10% of its original value, depends upon the nature of the load and the current being switched on. The anode voltage falls more quickly when the load is inductive than when the load is purely resistive and more slowly when the current is increased. Typical values of the rise time are 1μ sec for inductive loads and 3 or 4μ sees for purely resistive loads.

When conduction is initiated the conducting region of the $S \mathrm{CB}$ expands radially from the gate, the radius increasing at an approximately uniform rate. If current in the $S C R$ is allowed to rise too quickly during turn on, the concentration of current into the expanding but as yet small, conducting region can create very high current densities. Local melting can thus occur in the gate region and destroy the blocking properties of the SC R. This is particularly troubleame
in high current S C Rs since the prospective currents are higher than in low current S C Rs while the conducting region expands at approximately the same rate in both types. A maximun rate of rise of current of about 20 to $30 \mathrm{~A} / \mu \mathrm{sec}$ is therefore recommended for the first 5 to 10 μ secs of conduction to eliminate the possibility of local fuaing in the vicinity of the gate.

1.4 Turning off the S C.R.

The S CR can be made to turn off merely by reducing the curxent below the sustaining value but the resulting turn off time is long, being of the order of 100 to 200μ sees. Before the S C f can recover its blocking properties the holes and electrons near the two outer junctions shown in Fig. 1.1 mast diffuse to the appropriate sides of these junctions. This process ean be speeded up by applying a revaxas voltage to the S C R and allowing a reverse current to flow. The diffusion process then takes a few μ secs instead of a few hundred μ secs. After this process is complete the holes and electrons in the vicinity of the centre junction must pecombine before the $S C R$ becomes capable of blocking forward voltage. The recombination process takes between 10 and 30μ secs normally, depending on the 3 CR , and is virtually independent of the severge voltage.

In a.c. circuits where the $S C R$ is used as a rectifiex the current falls to zero and reverse voltage is applied to the $S C R$ at the end of each conducting period. This also happens when the S C R is used in an oscillatory circuit, e.g. when charging a capacitor from a d.c.
supply through a choke. When the $S C R$ is used as a switch in a d.c. pulsing circuit, such as an inverter, some other means aust be used to cut off the S CR current and apply reverse voltage to the S C R. Thia is most conveniently done by connecting a negatively charged capacitor across the $S C R$ as shom in Fig. 1.4. The eapacitor voltage is applied to the $s \subset R$, reverse biasing it, and the $\delta G R$ current is diverted into the capaeitor charging it towards a positive voltage. Reverse voltage must be maintained long enough for the S C R to recover, after which forward voltage may be reapplied to the $\$ \mathrm{C} R$. The means of connecting the capacitor across the S C R is usually through a second S CR, either an S CR in the circuit which turns on when the first is required to turn off, or an auxiliary \& $C R$ which is used only for turning off the main $S C$ R.

The charge which must be removed from the S C R during the fixet part of turn off increases with the forward current and the rate of fall of forward current immediately before turn off. Apart from the effect of the reverse current upon commutation (the capacitor current beling the sum of the load current previously flowing in the S C R and the S C R reverse current), voltage transients can be set up by the sudiden cessation of reverse current. These can be limited by the inclusion of suitable suppression circuits (see Section 1.7).

(a)

(b)

Fig. 1.4: Usual method of turning off SCR in circuits with die. supplies.
(In (a) the SCR conducts. Turn-off is achieved by connecting the negatively-charged capacitor C across the $S C R$ when switch S is closed, as in (b). The load current I_{L} then flows into C and charges C towards opposite polarity.)

Fig. 1. 5: Essential features of gate and firing characteristics of SCR.

1.5 Current Ratings of the S C R.

At all except very high switching Irequencies, where the power loss during switching (i.e. the product of the falling S © I voltage and rising current) becomes significant, almost all the power dissipated In the S C R is composed of forward conduction losses. The power loss at any instant is therefore the product of the forward current and the Lorward voltage drop.

The current rating assigned to the $S C R$ under any given set of conditions is that which causes the junction temperature to rise to the maximum permitted value. Consequently the current which may aafely be passed through the $S C R$ must be reduced when the ambient temperature is increased. The S C R, together with the heat aink on which it must be mounted, has a steady state thermal resistance from which the mean junction temperature above ambient can be calculated for any given power dissipation. When direct current passes through the device the mean and peak junction temperatures are the same. Because the S 0 R has a relatively short heating time constant the peak junction temperam ture must rise above the mean when the S C R current consists of pulses. Consequently the current rating varies with the conduction sngle, or duty eycle, of the SCR. It is also clear that the current rating must depend upon the capacity of the S CR and its hest sink to dism sipate the power losses due to conduction.

The current rating is uaually expressed as the mean current over a complete switching cycle. An r.m.s. current rating is alao assigned to the S CR. This is intended to indicate the current level at which
the ohmic contacts and leads inside the SC R construction start to become warm and is of interest when the ramos. current is much greater than the mean S $Q R$ current, as when the duty cycle is small.

If the maximum permitted Junction temperature is exceeded, the first things that normally happen are that the breakover voltage starts to fall and the leakage currents increase. However, a margin of safety is allowed in rating the devices and therefore higher termperatures can be tolerated for short tines. The surge rating of the $S C \mathbb{R}$ indicates the magnitude of the surge current which can be allowed to flow for a given length of time. This rating is higher, of course, if the junction temperature is low before the surge and also if the voltage applied to the S CR intermittently during the surge is kept well below the rated values.

The "I $I^{2} t$ " rating of the SC R applies when surges of less than about 10 mses duration are encountered and is an indication of the absolute maximum current which can be allowed to pass through the 3 C a without damaging it by setting up extreme thermal stresses. Its main purpose is to help the circuit designer to choose a fuse, connected in series with the $S \mathrm{CR}$, which will interrupt the current before the S CR is damaged, i.e. a fuse with a smaller I^{2} t rating than the $S C R^{\prime}$ s must be used.

1.6 Gate Characteristics-

The gate characteristics and triggering requirements of S C Re , even of the same type, vary considerably. Fig. 3.5 shows the form of gate characteristic given on S CR data sheets. Some S C Rs require a relatively high gate voltage to drive a relatively mall current into the gate, as shown by characteristic A , whilst for some other SC Rs the reverse is true (characteristic B). Some S C Rs require a relatively high gate current for reducing the breakover voltage almost to zero whilst others fire with much smaller gate currents. It is usual to show a region on the published gate chaxacteristics where firing may or may not occur. Outside this region (shown by hatched lines in Pig . 1.5) firing can be guaranteed for all S C Ra of the same type. It is then necessary only to ensure that the gate is supplied from a source with sufficient voltage and series resistance to ensure that the load line passes only through the guaranteed firing region. It is also necessary to ensure that at no point on the load line is the maximum permitted gate dissipation exceeded. (The gate region is small and hence the gate power rating is also mall.) A suitable load line is show in Fig. 1.5.

1.7 Protection of the SCR.

The S C R should be protected against fault currents either by a fuse of a lower $I^{2} t$ rating than the $S G R$ or by incorporating some special overcurrent protection in the supply feeding the SC R circuit. In either case the current should be interrupted before any
damage is done to the S CR.
Too rapid an increase of current at turn on can be prevented by ensuring that there is sufficient inductance in series with the S CR. This reduces the switching logs during the turn on rise time and provents overheating of the gate region.

Rapid rates of rise of forvard voltage can be reduced by connecting across the $S G R$ a capacitive filter circuit. This should be designed to prevent the forward veltage from rising at a rate greater than the specified limit and so eliminate the possibility of the $3 \mathrm{C} \mathrm{R}^{\prime}$ s firing spuriously due to capacitive action between the layers of the $S G \mathbb{R}$.

Absolute overvoltages can only be prevented by ensuring that under no possible conditions of operation does the circuit voltage exceed the S CR rating or by connecting across each $S \mathrm{C} 8$ some surge suppressing device. Filter circuits can help to iimit transient voltage peaks but care should be taken to ensure if a capacitor is connected directly across an S C R for this purpose that its energy is not sufficient to damage the S CR at turn on.

For a more detailed account of the characteristics of S C R the varlous $S C R$ manuals $s^{1,2,3}$ should be consulted.

CHAPTER 2

THE BASIC THREE PHASE BRIDGE-CONNECITED INVERTER AND

ITS USE WITH A THREE PHASE SYNCHRONOUS MOTOR.

An inverter is a device which converts direct current into alterrating current. The most usual method of conversion is to switch the direct current into and out of each of the load phases in sequence so as to generate what is essentially a stepped form of alternating current. Controlled rectifiers can be used as the switching elements in the inverter circuit.

There is a wide variety of types of inverter circuit but all those dealt with in this thesis are based on the three phase bridgeconnected circuit.

In the early stages of the investigation no SC Re were available maud it nos seat wash a meal antarocuction to the subject would be to study a system in which thyratrons could be used. This system consilted of a three phase bridge-conneeted inverter and a three phase synchronous motor. The a.c. voltages generated by the motor were used for turning off the thyratron at the required instants. This Is a method of inversion often used ${ }^{4.5}$ when it is required to transfer power from a d.e. supply to an existent a.c. system. The circuit was not exhaustively investigated but some conclusions relevant to the main investigation were reached. First, however, follows a brief description of the principle of the three phase bridge-comnected inverter.

2.1 The Three Phase Briage-Connected Inverter.

2.1.1 Principle of operation and basio vaveforms for resistance load.

Fig. 2.1 shows the three phase bridge circuit in which CR1, CR2, CR6 are controlled rectifiers. The a.c. output lines are conneeted as indieated and the polarity of the d.c. supply shown is correct for inversion.

Current flows from the d.c. supply through one of the rectifiers in the upper row and one of the load phases and returns to the supply through another of the load phases and one of the rectifiers in the lower row, The rectifiers are fired in the oxder 1.2.3.4.5.6.1.... and some method (not shown at this stege because methods vary from one inverter to another) is used to turn off a rectifier when the next one in the same fow is fired, i.e. CRI turns off when CR3 is fired, CR2 turns off when CRA is fired, and so on. In this way it is arranged that each rectifier conducts for one third of a firing oyole.

The basio current and voltage waveforms shown in Fig. 2.2 have been drawn for a belaneed resistive star-connected load. It has been assumed that the current and voltage on the d.c. side are perfectly smooth and that transfer, or commatation, ofourrent from one load phase to the next is instantaneous. When CRI conducts the current I_{d} flows from the d.c. supply into phase A and returns firet through B and CR6 and later through phase C and CR2. The current in phase A consists of a rectangular pulse of current I_{d} for one third of a cycle while CRI conducts, zero when neither CRI nor CRA

Fig. 2.1: Basic circuit of three-phase bridge-connected inverter.

Fig. 2.2: Basic inverter out put waveforms (for resistive load.)
conducts, $-I$ for a third of a cycle while CR4 conducts, and then zero again while neither CR4 nor CRI conducts. The other load phase currents are similar to the current in phase A but displaced by one third of a cycle in either direction. On the current waveforms are indicated which rectifiers conduct. Since the load is resistive the Iine-to-neutral load voltage waveforms are identical in form with the current waveforms. The magnitude of these voltage waveforms is $\frac{1}{3} V_{d}$ since the supply current always passes through two load phases, effectively in series, The line-to-line voltages can then be found by taking the difference between the appropriate line-to-neutral voltages.

These basic waveforms are seen to constitute a three phase alternating system in which the fundamental sinusoidal components are displaced between phases by one third of a cycle.

The frequency of the soc. output from the inverter depends only upon the frequency with which the rectifier firing sequence is repeated.

2.1.2 Harmonic content of basic waveforms.

When a Fourier analysis is made of the basic waveform of Fig. 2.2 it is found that both current and voltage waveforms contain only odd harmonics, none of these being a multiple of three. This is an advantage of this type of waveform since it has been found ${ }^{6}$ that it is the third harmonies which have the greatest deteriorating effect upon the performance of a three phase motor.

The mas values of the harmonics in terms of the $d . c$. voltage V_{d} and current I_{d} are given in Table 2.1. The total mas values of the voltages and currents are also given. The harmonic analysis for obtaining these values is given in most books on rectifiers. 4,5 .

Order of Harmonic	Line-to-neutral voltage, V_{n}	Line-to-line voltage, V_{l}	I_{e}
1	$0.39 \mathrm{~V}_{\mathrm{d}}$	$0.67 \mathrm{~V}_{\mathrm{d}}$	$0.78 \mathrm{I}_{\mathrm{d}}$
5	$-0.078 \mathrm{~V}_{\mathrm{d}}$	$-0.13 \mathrm{~V}_{\mathrm{d}}$	$-0.16 \mathrm{I}_{\mathrm{d}}$
7	$0.056 \mathrm{~V}_{\mathrm{d}}$	$-0.10 \mathrm{~V}_{\mathrm{d}}$	$0.11 \mathrm{I}_{\mathrm{d}}$
11	$-0.039 \mathrm{~V}_{\mathrm{d}}$	$0.062 \mathrm{~V}_{\mathrm{d}}$	$-0.08 \mathrm{I}_{\mathrm{d}}$
13	$0.030 \mathrm{~V}_{\mathrm{d}}$	$0.052 \mathrm{~V}_{\mathrm{d}}$	$0.06 \mathrm{I}_{\mathrm{d}}$
Total mas values	$0.41 \mathrm{~V}_{\mathrm{d}}$	$0.71 \mathrm{~V}_{\mathrm{d}}$	$0.82 \mathrm{I}_{\mathrm{d}}$

Table 2.1 : Fms Values of Harmonics contained in Basic Current
and Voltage Waveforms.
It is seen from Table 2.1 that the magnitude of the largest harmonic is 20,0 of that of the fundamental sinusoidal in each ese and that the total mas values are about 5% greater than those of the fundamental components.

2.2 The Use of the Basic Three Phase Bridge Inverter with \& Three

Phase Synchronous Motor.

The technique for transferring power from a dec. supply to an existent ac. system using controlled rectifiers is well known and a fairly comprehensive theoretical analysis has been made of the process. 5

An exeited synchronous machine, when it is rotating, constitutes a three phase a.c. system. A brief description will now be given of an introductory investigation into the use of the basic bridge circuit in conjunction with a synchronous motor to provide a veriable speed drive.

2.2.1 Circuit

Fig. 2.3 shows the circuit which was used for the investigation. The circuit was constructed from apparatus which was readily available and mismatching betwern the ratings of the various components was unavoidable.

The bridge oircuit consisted off six thyratrons, each rated at 1000 V peak reverse voltage and 2.5 A mean forward current, and was therefore capable of converting a maximum of 7.5 A taken from the d.c. supply.

The synchronous motor was rated at $110 \mathrm{~V}, 30$ A, 5.5 H P at 1500 r•p॰m. A step down transformer was comnected between the inverter and the motor so as to make more use of the ample voltage rating of the thyratrons. The transformer had 110 V windings on primary and secondary sides and was used with these star-connected on the inverter side and delta-connected on the motor side. The resulting step down ratio was thus $\sqrt{3}=1$.

A very simple pulse generator, consisting of a three phase peaking transformer, was used for firing the thyratrons. To allow control over the position of the firing signal relative to the a.c. cycle the pulse

Fig. 2.3: Circuit for inverter-fed synchronous motor.

Fig. 2.4: Form of out put voltage waveform from peaking transformer.
generator was connected to the transformer through a phase shifter. The phase shifter was reted at 110 V and was therefore connected to the motor side of the transformer. A typical example of the peaking trangw former output voltage waveform is shown in Fig. 2.4 . An attenuator was connected between the pulse generator and the thyratron grid circuit. To ensure that the thyrstrons were fired at the steepest rising part of the grid voltage weveform the exids were negatively biased individually by batteries.

A choke was connected in series with the d.c. supply to smooth the d.e. current and so to absorb the instantaneous differences between the steady dec. supply voltage and the voltage appearing at the inverter input terminals.

The synchronous motor was coupled to a dec. shunt mohine which was used for loading purposes and for running up the synchronous motor to a speed at which it could be connected to the inverter.

2.2.2. Principle of Operation.

When the excited synchronous motor is rotating it generates a set of three phase ac. voltages. Mig. $2.5(\mathrm{a})$ shows these voltages as they appear at the inverter output terminals. The thyratron are erred in sequence so that in general the dee. supply is connected to the pair of a.c. lines with the greatest voltage difference. The "crossover" points, at which the lineetomentral voltages become equal near the firing points of the thyratron, are marked X. It will be seen that if a thyratron is fired far enough ahead of the appropriate crossover point,

Fig. 2. 5: Voltage and current waveforms for three phase bridge-connected inverter. (A.C. load.)
of
turn off the conducting thyratron in the seme row oan be achieved.
$t_{1}, t_{2}, \ldots t_{6}$ are show in $1 . g .2 .5(a)$ and are instants in the a.c. cycle at whioh $0 R 2$, CR2 ... Can are fixed. Considex comatation between thysatxons CR6 and CR2 which occurs when CR2 is flxed at instant t_{2}. If commutation were instantaneous, cR6 would at once be reverace biased by the difference between $v_{b n}$ and $v_{c n}$, since the aathodes of cR6 and Cn2 sxe comected together, and would tumn off imediately. However, the inductance of the a.c. system prevents the current in car from felling instantly to zero and a periud of time, known as comatation overdap, elapses while i_{b} falla to zero and i_{o} inoreases from sero to the cument on the d.c. side of the inverter. The overlap period is expressed as an electrical angle u. When the overlap period is oomplete cr6 becomes reverse bissed until the crossmover point is reached whexeupon the anode voltage become positive.

The time between the end of overlap and the croess-over point must be long enough to allow deionization of the thyratron with a certain safety maxgin. Hence the period by which the firing point is savanced from the cross-over point rust be anficient to allow for overlap, deionization and a safety margin.
i.e. $\beta>u+\delta+m$ where δ is the deionization time and the safety margin expressed es electrieal angles.

The duration of the overlap period is deternined by the current to be commuteted, the a.c. system inductance, the megnitude and frequency of the a.c. voltege, and the value of β. Duxing overlap the comon voltage between the lines concerned and the neutral point is the mean of
the two line-to-neutral voltages.
In Fig. 2.5(b) the individual line-to-neutral voltages and ine cuxrents are shown. Because the fixing points of the thyratrons must be sdvanced from the cxess-over points a fundamental feature of this type of inverter circuit is that power is delivered to the motor at a leading power factor. Consequently the synchronous motor, to accept the power supplied at a leading power factor and also supply the reactive power consumed by the transformer and phase shifter, etce, must be overexcited.

There is a relationship ${ }^{5}$ between the d.e. supply voltage, the voltage at the motor temingl, the d.c. current, and β which determines the steady state condition of the syatem. This relationship can be dexived by finding by integration the mean voltege appearing at the inverter inpat terainal and gives

$$
\begin{equation*}
V_{d}=2.34 V_{p} 003 \beta+0.956 \omega l_{\mathrm{s}} \tau_{d} \tag{2.1}
\end{equation*}
$$

where $V \mathrm{p}$ is the s.c. line-to-neatral voltage, $\omega=2 \pi f$ (where is the a.e. frequenoy in $\% / \mathrm{s}$) and C_{B} is the effective series inductance per phase of the a.c. system. The last term in equation (2.1) indicates a voltage drop which is proportional to cument but although it sffeets the mean d.c. voltage it is not a resistive voltage drop and does not represent any pover dissipation. The voltage drop is ontively due to the effect of the inductance of the s.c. system in oausing the overlap period during commtation.

Rearranging equation (2.1) to obtain ∇_{p} in terms of V_{d},

$$
\begin{equation*}
v_{p}=\frac{v_{d}-0.956 \omega l_{s} I_{d}}{2.34 \cos \beta} \tag{2.2}
\end{equation*}
$$

This is the equilibrium equation for the system. For any given values of ∇_{d}, β and I_{d} the motor will sun at such a speed that the line-to-neutral voltage at its terminals is given by equation (2.2). Clearly this speed must be affected by the excitation of the motor and the effect of the motor current upon the motor voltage. To obtain the no-load speed, however, the second term in the numerator of equation (2.2) can be neglected in comparison with V_{d} and it can be assumed that on no load $\nabla_{p}=k \cdot I_{f}$ oI where k is a constant, I_{f} is the field current and II the speed of the synchronous motor. The following equation an then be obtained after eliminating V_{p} :-

$$
\mathrm{II}=\frac{\nabla_{d}}{2.34 \mathrm{kI} \mathrm{f}_{f} \cos \beta}
$$

or

$$
N=\frac{K V_{Q}}{I_{P} \cos \beta}
$$

where K , another constant, $=\frac{1}{2.34 \mathrm{k}}$
It is seen that, in principle, the speed of the motor is proportions l to V_{d} and inversely proportional to $I_{\mathcal{F}}$ and $\cos \beta$. In obtaining equation (2.3) it has be en assumed that the current in the system is zero and that the magnetic circuit of the motor does not saturate.

2.3 No-Load Tests on System.

2.3.1 Test Conditions.

It was found in practice that the inverter was capable of supplying little more than the no-load losses of the combined synchronous and d.c. mechines and hence the d.c. machine was used to supply the friotion and windage losses. Consequently the results given are for a fietitious machine but indicate how a properly designed system would operate.

Because of the sensitivity of the peaking transformers to voltage and frequency the speed range over which the syatem could be tested was rather restrioted. Even in the range covered some distortion in the shape and magritude of the voltage applied to the thyratron grids was evident. For the same season the d.c. supply voltage was maintained within a small range.

2.3.2 Open Cirouit Magnetisation Curve of Synchronous Machine.

Mig. 2.6 shows the magnetisation curve of the synchronous machine. This curve is drawn to show phase voltage per r.pol. plotted againat field current and wes obtained by driving the symohronous machine as a genexstor by means of the $\mathrm{d} . \mathrm{c}$. machine. From this curve the speed necessary at no-load to generate the requixed value of ∇_{p} for given values of ∇_{d}, β and I_{f} can be approximately detexained.

It is seen from Fig. 2.6 that the synchronous machine showed a tendency to saturation at field currents greater than 30A.

Fig. 2.6: Open circuit magnetisation curve of synchronous motor.

Fig. 2.7: Variation of no-load speed with V_{d}. ($I_{f}=56 \mathrm{~A}, \beta=35^{\circ}$)

2.3.3 Variation of Speed with V_{d}.

Although the study of the system was made at a constant dec. supply voltage some readings were taken at other supply voltages during the setting up procedure. The readings were taken with the do. machine disconnected from its supply and were not, therefore, no-load readings as defined in section 2.3.1 above.

In 71 g. 2.7 the variation of speed with V_{d} is shown for one pair of values of I_{f} and β. For comparison the predicted variation of speed with V_{d} is shown on the same graph. The prediction has allowed for the thyratron voltage drops and, of course, the transformer ratio, but not the effect of the transformer and motor reactances. The measured speed is lower than predicted in consequence. Fig. 2.7 shows that the motor speed was proportional to V_{d}.

2.3.4 Variation of speed with I_{f} and β.

Using a single value of V_{α} and several values of β in turn the variation of speed with I_{f} was measured. For each reading the speed was adjusted before measurement until the d.e. machine absorbed Just enough power from its supply to account for the two machines' friction and windage losses.

Fig. 2.8 shows how the no-load speed varied with I_{f} and β and for comparison the corresponding predicted curves are also shown. Good agreement between measured and predicted results can be seen, showing that the no-load speed was inversely proportional to $\cos \beta$. The

Fig.2.8: Variation of no-load speed with I_{f} and β. (V_{d} constant at 280V)
non-linearity of the magnetisation curve has been allowed for in the predictions and hence it can also be concluded that with an unseturated machine the no-load speed would be inversely proportional to I_{g}.

2.4 Load Tests on System.

2.4.1 Test Conditions.

The d.c. supply voltage V_{d} wae kept constant at 280 V throughout the load tests. The procedure adopted for the load tests was to adjust the speed until the d.s. machine absoxbed Just enough power from its supply to account for friction and windage losses. For each combination of I_{f} and β the power supplied to the d.c. motor was then reduced, and eventually reversed, until the inverter input ourrent reached its safe 1init. From the measurements made of the power absorbed or generated by the d.cn machine and its speed the sross torque developed by the synchronous motor was caleulated.

2.4.2 Sorque-apeed Characteristics of the Syatem.

The torque-speed charaeteristias obtained from the load tests are shown in Fig. 2.9. For $I_{P}=60 \Lambda$ these characteristice were moh as would be expected, i.e. the speed falling slightly with losd beoause of the voltage drop caused by the a.c. Iine reactance. For $I_{f}=50 \mathrm{~A}$ the speed fell or remained steady as torque was applied except for $\beta=45^{\circ}$ when the speed showed a tendency to rise with inereasing torque. When I_{1} was reduced to 40 A the increase in speed with load was even more marked. In fact the speed began to rise so rapidly at

Fig. 2.9: Torque-speed characteristics of inverter-motor system for constant inverter supply voltage of 280 V .
the higher values of β that the system became almost uncontrollable. The main reason for the rising speed-torque characteristic is that the synchronous motor was, of necessity, operated at a leading power factor. Hot only did it supply the reaetive power demanded by the inverter but also the reactive power absorbed by the transformer and the peaking trangformer eircuit. Fig. 2.10 is a vector diagram for the synehronous motor in a typical condition. V_{p} and I are the motor terminal voltage and current with a phase angle \varnothing leading, between them. g_{0} is the open oircuit voltage which would be produced with the same speed and excitation. ∇_{p} is then the vector sum of E_{0} and $j X . I$ where X is the synchronous reactance of the notor (the motor resistance is neglected here).

If the motor load is increased slightly but the phase angle between terminal voltage and current kept constant (as is approximately the case when β is kept constant), I inereases by a small amount ΔI as shown. The new value for v_{p}, i.e. $v_{p}+\Delta v_{p}$, is obtained by drawing a vector to represent $j X(I+\Delta I)$ parallel to the $j X I$ vector and joining the V_{p} reference line with the eircle which is the locus of the Σ_{0} vector. It can be seen that the value of V_{p} is reduced and the load angle δ is also reduced. However, since β is unchanged, ∇_{p} must return to its original value for equilibrium to be restored and can only do so if the motor speed increases. For a given value of $\Delta I, \Delta \nabla_{p}$ is olearly greater when X is greater or when ϕ is nearer to 90°. X is proportional to frequency and hence speed and therefore the speed shows a greater tendenoy to rise with load at lower values of $I_{f} . \quad \emptyset$ is elmost equal

Fig. 2.10: Vector diagram for the synchronous motor under a Eypical condition of operation.
to β and hence the speed tends to increase more when β is increased. Countering the tendency for the motor speed to rise with load is the voltage drop caused by the reactance of the ac. oircuit. At $I_{f}=60 \mathrm{~A}$ the tendency for the motor speed to fall with load is obviously dominant, while at $I_{f}=50 \mathrm{~A}$ the two effects cancel each other nearly. $A t I_{f}=40 \mathrm{~A}$ the tendency for the speed to rise is much more dominant.

Other factors which could have affected the speed-torque characteristies of the system are the changes in voltage and frequency applied to the pulsing circuit and the phase shift across the step down transformer. The changes in voltage and frequency did cause some distortion of the thyratron grid voltage waveform and so altered the firing point. However, the voltage and speed ranges were restricted so as to minimise this effect and it on be treated as a secondary effect. The phase shift introduced by the step down transformer was very mall and an be neglected.

2.4.3 Power Factor and Efficiency.

Fig. 2.11 shows how the motor power factor varied with load when I_{f} was 50 A . The motor supplied the reactive power absorbed by the transformer and pulsing circuit and at 11 ght load the power factor was, therefore, very low. However, as load was applied the flow of power from the inverter, operating st almost constant power factor, caused. the motor power factor to improve. The inverter power factor depended upon the values of β and u, the fundamental component power factor being approximately $\cos \left(\beta-\frac{u}{2}\right)$. Allowing for an average value of 5°

Fig.2.11: Variation of motor power factor with load for typical condition.

Fig. 2.12 : Variation of overall conversion efficiency with load for a typical condition.
for u the maximum attainable power factors, on this basis, for $\beta=35^{\circ}$, 40° and 45° could have been $0.85,0.79$ and 0.74 respectively. These values are shown on Pig. 2.11 but it is realised that they are approximate because of the harmonic content of the inverter output ourrent waveform.

Fig. 2.12 shows the variation of conversion effioiency with load. The conversion effioiency is defined as the ratio of gross mechanical power developed by the motor (before friction and windage losses exe deducted) to total inverter input power. The curve shown is drawn for $I_{f}=50 \mathrm{~A}$ and $\beta=40^{\circ}$ but is typical of the nine combinations of I_{f} and β stradied.

The electrical power supplied to the inverter was consumed in four ways:-
(a) conversion by the motor into mechenical poves
(b) supplying the almost constant power losses in the transformer and pulsing eirouit
(o) supplying the losses in the thyratrons, these losses being a constant percentage loss of efficiency since the d.c. supply voltage and the are drops were constant
(d) supplying the I^{2} R losses in the oircuit, these losses being approximately proportional to the square of the inverter input current and hence also inverter input power.

It would therefore be expeoted that the efficieney would be low at light load because of the constant losses, rise to a maximum value and
then fall away as the $I^{2} R$ became significant. The maximum recorded efficiency was about 83\%. Of the 17% percentage loss 9% could be attribute to the thyratron losses, each are drop being about 12 V .

2.4.4 Limits of Operation.

Several limits of operation were observed in the course of the investigation. The first concerns the \mathbb{A}.ring angle β. When β was increased above approximately 40° the speed-torque characteristic of the system began to rise, tending to make the system unstable. When, on the other hand, β was reduced below about 35° the thyratron began to mis-fire resulting in a breakdown of inversion. This was because the deionization time of the thyratron represented an electrical angle of about 20° at a speed of 1500 r p. II., and the smaller the value of β the longer the overlap process of commutation. The safety margin, i.e. $(\beta-\delta-u)$, therefore decreased very rapidly when β was reduced below 35°.

Secondly it was found that the field current had to be kept as high as possible to make the system stable under all conditions. . When I_{f} was reduced below about 50 A the speed-torque characteristics began to rise very sharply.

The current which the inverter could commutate and hence the power handling capacity of the inverter was restricted but depended on the value of β. The higher the value of β the longer was the time allowed for overlap and hence the greater was the current that could be commafated safely.

The upper speed limit was not investigated but it is clear that at the higher speeds the deionization time of the thyratrons would occupy a greater proportion of the a.c. cycle and β would have to be increased for safe commatation. The lower speed limit was also not investigeted but it was clear that the system was capable of running at lower speeds than those studied. Redution of the d.c. supply voltage would be necessary at lower speeds. It is very doubtrul whether the inverter could have functioned at very low speeds, and it is almost certain that the notor could not be started from standstill, beaase of the lack of any generated a.c. voltage for turning off the thyratrons.

Finally sutomatic regeneration was not possible with the system. If the motor were to be driven above the set no-load speed, no ourrent would Slaw through the inverter and the motor would free-wheel. It would be possible to arrange for regenerstive braking by advancing the firing pulses by nearly half a cycle and reversing the polasity of the d.c. supply. It would also be possible to arrange for rheostatic braking by connecting a resistor in place of the d.c. supply and advanoing the firing pulses by nearly half a cycle. In each of these two cases the inverter would then operate as a rectifier.

2.5 Conolusions.

The investigation into the inverter-fed synchronous motor was carried out as an introduction to the subject of motor speed control by means of controlled rectifiers. For this reason it was fax from comprehensive. Despite this, several useful conclusions may be drawn
from the tests which were carried out on the system.
It has been demonstrated that even the simplest form of the three phase bridge inverter can be used for producing a variable speed drive. The simplicity and the efficiency of the system were its main virtues.

Although it was found that the motor speed could be controlled by adjusting the motor field current I_{f} and the rectifier firing angle β it is considered that speed control would best be achieved by variation of the die. supply voltage. $\quad \beta$ should then be maintained at the smallest value compatible with safe commutation.

It was found that the system as used possessed characteristics similar to those of a d.c. shunt motor. This could be expected since the rectifiers performed a function similar to that of the commutator of a conventional d.c. machine (in the case studied the commutator would have had three segments) and were, in effect, fired when the rotor passed through six distinct positions in each revolution. By connecting the field winding in series with the inverter et its input terminals it would be possible, in principle, to give the system a series motor type of speed-torque characteristic.

Because of the characteristics of the inverter the motor was forced to operate at a leading power. If 5 C Rs had been used in place of thysatrona, it is clear that the power factor could have been improved because of the S C R's much shorter turn off time. Commutations overlap would still have to be catered for, however, and the system would still possess an inherently rising speed-torque characteristic. In general this would be an undesirable feature but could probably be
corrected to a large extent by compounding the mobor field.
The system proved to be very susceptible to transient load or voltage surges. The current in the inverter depended upon the dipference between the d.c. supply voltege and the counter-voltage generated by the motor. A small increase in the d.c. supply voltage or a reduction in motor speed could result in a large enough current surge for commatation to fail. Cleasly some method of maintaining the gafety margin, e.g. by quickly increasing β when an increase in current is detected, would be required in practioe.

The system could not be sterted from standstill, neither could it run at very low speeds. Unless these obstacles could be overcome the system would have a very 1 inited praotical application.

The field current was fed into the motor by means of sliprings and brushgear. One of the important features of a variable speed motor control using 8 C Ra should be the elimination of all sliding contacts.

The analysis of motor perfomence is usually based upon the fundamental sinusoidsl components, and higher harmonics, of the motor voltage and current, whereas rectifier eircuit analysis is based upon instantaneous values of current and voltage. It is clear, therefore, that conventional machine theory is incompatible with conventional reetifier eircuit theory and that new methods of analysis must be developed.

CHAPTER 3.

TH3 THRES PHABE BRIDGE-CONNECPED INVERTEAR

WITH A STMPLE FOIN OF ARRIFICTAL COMDUPMTION
As a result of the preliminary investigation outlined in Chapter 2 it was decided to coneentrate upon the problems associated with the use of a variabla Prequency inverter to foed an induction motor: Such a scheme would meet many of the objections to the synchronous motor scheme. Por instonce, no sliding contacts would be necessary if a squirrel cage motor were to be used and the system would not be so ausceptible to voltage and speed transieats. A sudden increase in the d.c. supply voltage would produce a proportional increase in current instead of a large current surge as in the synchronous motor scheme.

To produce a torque in the induction motor the frequency of the alternating current generated by the inverter must be such that the motor's synchronous speed, or field $\$ 1 u x$ rotating speed, is greater (for motoring) or less (for braking) than its actual speed. Hence the inverter output frequency would not be tied exactly to the motor speed as in the synchronous motor scheme.

In the simple induction motor scheme the inverter would not be able to use any voltage genarated by the rotating motor for turning off the controlled rectifierg and it would have to employ instead some form of forced x artifical commation. In this chapter some tests on the basic three-phase bridge inverter using S C Rs with a simple form of artificial commtation are described. The inverter circuit
used was adapted from the basic single phase parallel inverter circuit shown in most $3 \subset R$ manuals, ${ }^{1,2,3}$ the three phase bridge being a logical development.

3.1 Gircuit and Erinciple of Operition into a Resistive Load.

The firat circuit adopted for the inverter was as ahown in Fig. 3.1. To the basic three-phase bridge have been added only the three capacitors C, one comnected bstweon each pair of inverter output texminals, and danning circuits (not shown in Pig.3.1) consisting of a suall eapacitor in series with a resistor were connected across each rectifier to suppreas voltage transients. The rectifiers in this circuit were $\$ G \operatorname{Rs}$ and were triggered by pulses from a transistor pulse generator. The pulae generator was driven by a signal at a frequency $6 f$ from a master oscillator and fed a pulse to each $\$ \mathrm{CR}$ in turn at a repetition frequency f. The inverter output frequency was thus deternined by the setting of the master oscillator frequency.

In the circuit shown the function of the capacitor is to turn off each conducting S CR when the next S CR in the same row is triggered. Consider the sixth of a cycle between instants t_{1} and t_{2} in which CRG and CR1 conduct. If by the end of the period all transients have died away, the distribution of voltage around the circuit immediately before instant t_{2} is as shown in Fig. 3.2 . Current flows in CRI, phase A, phase B, and CR6 and the supply voltage is shared equally between phases A and B. The anode-cathode voltage of CR2 is therefore $\frac{1}{2} V_{d}$. At instant t_{2} GR2 is triggered

Fig.3.1: Basic three phase inverter with simple form of artificial commutation.

Fig. 3.2: Voltage distribution around circuit immediately before instant t_{2}.
and its anode-cathode voltage falls instantly almost to zero. The capacitors cannot discharge instantly since all possible discharge paths include resistance or inductance. At instant t_{2}, therefore, the anode-cathode voltage of all the 3 C Rs in the bottom row fall instantly by $\frac{1}{2} \mathrm{~V}_{\mathrm{d}}$. That of CR4 falls from V_{d} to $\frac{1}{2} \mathrm{~V}_{\mathrm{d}}$ but that of CR6, which had been zero previously, now becomes $-\frac{1}{2} V_{d}$ and CR6, therefore turns off. Provided that during the re-charging of the capacitors to their new steady-state voltages the anode-cathode voltage of CR6 remains negative for longer than the turnoff time, CR6 stays off when forward voltage is reapplied.

During the next sixth of a cycle CRI and CR2 conduct until CR3 is triggered, at which instant CRT turns off by a method similar to that described above. Commutation between the other phases and S 0 Re at the other triggering instants is effected in exactly the same way. The commutation process has the effect of distorting the basie current and voltage waveforms shown in Mig. 2.2 , each sudden change in current or voltage becoming an exponential change.

3.2 Pests with Resistance Load.

Some testa were carried out on the inverter with a purely resistive load. The purpose of these tests was to gain a clear understanding of the inverter in its simplest mode of operation and to find a suitable method of analysis for the circuit. A example calculation of the waveforms of current and voltage in the circuit is given below and the predicted results are compared with those
obtained by experiment.

3.2.1. Test Conditions

At frequencies $10 w$ enough for all commutation transients to die away in each sixth of a cycle the current and voltage waveforms were very similar to those given in Fig. 2.2 as the basic bridge circuit waveforms. All the sudden changes in current and voltage, however, had become distorted to exponential of oscillatory changes. For these conditions the current in the choke L_{d} and the voltages on the capacitors C at the beginning of each cycle were easily found, being their steady state values.

At higher frequencies it could not be assumed that the circuits and voltages had reached their steady state values and it was therefore necessary to calculate these values before predicting the waveforms. A sample calculation is given for a high frequency condition and shows how the initial values of current and voltage can be derived. The conditions for the calculation were as follows:-

$$
\begin{aligned}
& V_{d}=36 \mathrm{v}, \mathrm{~L}_{\mathrm{d}}=0.25 \mathrm{H}, \quad \mathrm{C}=8 \mu \mathrm{~F} \\
& \mathrm{R}=18 \Omega, \quad \mathrm{I}=333^{\circ} / \mathrm{s} .
\end{aligned}
$$

A frequency of $333^{\circ} / \mathrm{a}$ was chosen for convenience in dividing the cycle into six equal ports.
3.2.2. Current and Voltage Equations for One Sixth of a Cycle.

In appendix A the equations for the currents and voltages in the circuit are derived for the sixth of a cycle between instants t_{2} and t_{3}.

The initial values, I_{0} of the current in the choke I_{d}, and $\mathbb{E}_{1}, \mathbb{E}_{2}, E_{3}$ of the voltages $V_{a b}, V_{e b}{ }^{\text {a }} V_{a c}$ at the instant t_{2} are obtained from equations (A.18), (A.22) and (A.23). On reducing these equations to linear simultaneous equations in I_{0}, S_{1} and E_{3} by the method described in section $A .2 .2$ of appendix A and solving, the following values are obtained:-

$$
\begin{aligned}
& I_{0}=1.96 \quad \mathrm{~A} \\
& \mathrm{I}_{1}=52.7 \mathrm{~V} \\
& \mathbb{E}_{3}=41.1 \quad \mathrm{~V} \\
& \mathrm{E}_{2}=E_{1}-\mathrm{E}_{3}=11.6 \mathrm{~V}
\end{aligned}
$$

Using these initial values in the equations (A.18) and (A.22) to (A.27) derived in appendix A the following voltage and current equations nay be obtained:-

$$
\begin{equation*}
(1.18) \ldots i_{1}=1-0.123 e^{-2.16 \times 10^{3} t}+1.086 e^{-0.15 \times 10^{3} t} \tag{3.1}
\end{equation*}
$$

$(1.22) \ldots v_{a c}=36-66.25 e^{-2.16 \times 10^{3} t}+41.88 e^{-0.15 \times 10^{3} t}$
(A.23) ... $v_{b c}=18-33.12 e^{-2.16 \times 10^{3} t}+20.94 e^{-0.15 \times 10^{3} t}$ $-46.93 e^{-2.3 \times 10^{3} t}$
(A.24) ... $v_{a b}=18-33.12 e^{-2.16 \times 10^{3} t}+20.94 e^{-0.15 \times 10^{3} t}$

$$
+46.93 e^{-2.31 \times 10^{3} t}
$$

$$
\text { (A.25) ... } \frac{i}{a}=1-1.840 e^{-2.16 \times 10^{3} t}+1.164 e^{-0.15 \times 10^{3} t}
$$

$$
(A .26) \ldots \quad i_{b}=-1.738 e^{-2.3 \times 10^{3} t}
$$

$$
+0.869 e^{-2.31 \times 10^{3} t}
$$

$$
(1.27) \ldots i_{c}=-1+1.840 e^{-2.16 \times 10^{3} t}-1.164 e^{-0.15 \times 10^{3} t}
$$

$$
+0.869 e^{-2.3 \times 10^{3} t}
$$

i_{1} is the current taken from the d.c. supply. In the above equations currents are in amperes, voltages in volta, time in seconds.
3.2.3. Derivation of Waveforms from Equations for One Sixth of a Cycle.

From the equations obtained in section 3.2 .2 the complete inverter input and output waveforms may be derived. This is possible because positive and negative half cycles of the generated ac. are identical and the a.c. cycles for each of the load phases are identical but for a displacement of a third of a cycle. Hence every part of each waveform is described by one of the equations obtained in section 3.2.2.

(a) Inverter input voltage waveform.

Between instants t_{2} and t_{3} CRI and CR2 conduct and the input voltage must vary in the same way as v_{ae}. This variation is repeated in every sixth of a cycle and the input voltage waveform is therefore as shown in Fig. 3.3(a),
(b) Inverter input current waveform.

Between instants t_{2} and t_{3} the value of the inverter input current at any instant is given by the equation for i_{1}. This variation is repeated in every sixth of a cycle and hence the inverter input current waveform is as shown in FIg. 3.3(b).
(c) Inverter output line-to-line voltage waveforms.

Between instants t_{2} and t_{3} the instantaneous values of the line-to-line voltages are given by the equations for $v_{a c}, v_{b c}$ and $v_{a b}$. It is easily seen that the variation in $v_{a c}$ between t_{2} and t_{3} is repeated for $v_{b c}, v_{b a}, v_{c a}, v_{c b}, v_{a b}$ in the sixths of a cycle

commencing at instants $t_{3}, t_{4}, t_{5}, t_{6}, t_{1}$ respectively. It can also be seen that the values of $\nabla_{a c}$ at sun instants in the sixth of a cycle commencing at $t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{1}$ are given by the equations for $v_{a c}, v_{a b},{ }^{-v_{b c}},{ }^{-v_{a c}},-v_{a b}, v_{b c}$ respectively which are valid between t_{2} and t_{3}, provided that t is set equal to zero at the start of each sixth of a cycle. The complete waveform for $v_{a c}$ can therefore be obtained from the equations in section 3.2 .2 and is show in FIg. $3.3(\mathrm{c})$.

The waveforms for the other line-to-line voltagesmay be found in a similar manner.
(d) Inverter output current waveforms.

The values of the output currents in the sixth of a cycle commencing at instant t_{2} are given by the equations for $i_{a}, i_{b}, 1_{c}$. By an argument similar to that in (c) above it con be shown that in the sixths of a cycle commencing at the instants $t_{2}, t_{3}, t_{4}, t_{5}$, t_{6}, t_{1} the values of i_{a} are given by the equations for $i_{a},-i_{c}, i_{b}$ ' $-i_{a}, i_{c},-i_{b}$ respectively which are valid between t_{2} and t_{3}. The complete waveform for i_{a} can therefore be derived from the equations in section 3.2.2 and is shown in Fig. 3.3(d).

The waveforms for the other output currents may be found in a similar manner.
(e) SC. B voltage waveform.

Between the instants t_{6} at which it is fired and t_{2} at which it is timed off CR 6 conducts and hence $\mathrm{v}_{6}=0$.

Between t_{2} and t_{3} CRI and CR2 conduct and hence $v_{6}=v_{b c}$.
Between t_{3} and t_{5} CR3 conducts and hence v_{6} is equal to the inverter input voltage whose waveform is shown in Fig. 3.3(a).

Between t_{5} and t_{6} CR 4 and CRS conduct and consequently $v_{b}=v_{b a}$. However, the variation of $v_{b a}$ between t_{5} and t_{6} is the same as the variation of $v_{a b}$ between t_{2} and t_{3} which is given by the equation for $v_{a b}$ in section 3.2 .2 .

Hence it is possible to derive the complete voltage waveform for CR6 from the equetions in section 3.2 .2 and it is shown in Fig. 3.3(e).

The voltage waveforms for the other SC Rs may be obtained in a similar manner, all being similar to that of CR 6 but delayed by the appropriate number of sixths of a cycle.
(f) SC R current waveform.

CR6 does not conduct between instants t_{2} and t_{6} and hence the current flowing in it is zero. Between t_{6} and t_{2} CR6 conducts and is the only SC R which conducts during this period in the lower row. Hence between t_{6} and t_{2} the current in CR6 is the inverter input current and its waveform is shown in Fig. $3.3(\mathrm{f})$.
3.2.4. Mean and rms Values of Voltage and Current.

It has beer seen that the value of any current or voltage in the circuit at any instant can be found from one of the equations in section 3.2.2. Consequently the mean or rms value of any current or voltage can be found by integrating the appropriate equations or
by applying Simpson's rule to the values obtained for plotting the waveforms.
(a) Mean d.c. current I_{d}.

The mean d.c. durrent I ${ }_{d}$ can be obtained by finding the mean value of I_{1} over one sixth of a cycle. $\begin{array}{r}\text { s00x } 100^{-6}\end{array}$

$$
\begin{equation*}
\text { i.e. } I_{d}=\frac{10^{6}}{500} \int_{0}\left(2-0.123 e^{-2.16 \times 10^{3} t}+1.086 e^{-9.25 \times 10^{3} t}\right) d t \tag{0}
\end{equation*}
$$

- 2.97 A
(b) Res output line current I_{ℓ}

The mas value I_{l} of the output line current can be found by squaring all the calculated values of i_{a}, i_{b}, i_{c} over one sixth of a cycle, finding the mean square value by Simpson's Rule, and then taking the root mean square value.

$$
\text { Thus } I_{l}=1.15 \mathrm{~A}
$$

(c) Rms output line-to-line voltage V_{e}

The ms value ∇_{l} of the output linc-to-line voltage can be found by Simpseal's Rule after squaring all the calculated values of v_{ae}, v_{bc}, \mathbf{v}_{ab} as in (b) above)

$$
\text { Then } V_{\ell}=36.0 \mathrm{~V} .
$$

(d) Effect of SC R forward voltage drop.

The voltage and current equations were derived in appendix A on the assumption that the SC Rs had zero voltage drop when conducting. In fact the voltage drop is almost constant at about 1 volt. Since two SC Re are conducting in series at all times the effect of the

S CR voltage drop can be allowed for approximately by multiplying the mean and ms values of current and voltage by a factor
$\frac{V_{d}-2}{V_{d}}$, ie. $\frac{34}{36}$ in the case considered.
Applying this correction factor the values of $I_{d}, \Sigma_{l}, V_{\ell}$ become

$$
\begin{aligned}
& I_{d}=1.86 \mathrm{~A} \\
& I_{\ell}=1.09 \mathrm{~A} \\
& V_{\ell}=34.0 \mathrm{~V}
\end{aligned}
$$

3.2 .5 Comparison between Predicteiand Measured Results.

A comparison between the predicted and the measured results is made on the basis of waveforms, the mean and mas values of current and voltage, and the values of δ.

(a) Wave forme.

In Fig. 3.3 the predicted and measured waveforms are compared by plotting the theoretical waveforms on the same axes and to the same scale as tracings of oscillograms obtained experimentally. It an be seen that agreement between the two sets of weveforms for the current in an SC R (Fig. 3.3 (f)). At turnoff a short peak of reverse current flows in each S CR and this is shown in the measured waveform but not, of course, in the predicted waveform. The same current flows into the $S C \mathbb{R}$ which is tamed on at the same time and is superimposed upon the current which flows into or from the dec. supply.
(b) Means and cis values.

The predicted mean and rms values of voltage and current, after
applying the correction factor to take into account the SC \mathbb{R} forward voltage drop, may be compared directly with instrument readings noted during actual operation. The values given in brackets following axe the predicted results

$$
\begin{aligned}
& I_{\mathrm{a}}=1.97 \mathrm{~A}(1.86 \mathrm{~A}) \\
& I_{l}=1.05 \mathrm{~A}(1.09 \mathrm{~A}) \\
& \nabla_{l}=32.5 \mathrm{~V}(34.0 \mathrm{~A})
\end{aligned}
$$

(c) Values of δ.

The predicted value of δ is obtained from the SC R voltage waveform of Fig. $3.3(\mathrm{e}) . \delta$ is the time for which the $S C R$ is reverse biased at turn off. δ can also be measured experimentally with an oscilloscope. The value of δ given in brackets is the predicted value.

$$
\delta=350 \mu \text { Secs }(330 \mu \text { Secs })
$$

(d) Accuracy of prediction.

From the above results it can be seen that the predictions are accurate to within about 5%. The errors introduced by neglecting minor circuit components, such as transient suppressing capacitors and resistors, and by the assumptions made in formulating the theory in Appendix A would probably account for between 1 and 2 of the dis cxepancy. The remainder can be attributed to experimental exror.

3.2.6 Determination of the Required Value of C.

The function of the capacitors C is to turn off the $S C R$ when they have conducted for a third of a cycle. The capacitors achieve
this by causing the $S C$ Rs to be reverse biased for a time δ which must be greater that $\frac{1}{0}$ the turn off time of the SC Rs.

In Fig. 3.3 (e) an SC R voltage waveform is shown and the time δ is the tire between the end of conduction and the instant at which the anode voltage becomes positive. The variation of voltage over this part Waveform
 this equation $t=\delta$ when $v_{b c}=0$. However, it is impossible to obtain a solution for δ from this equation, except by a numerical method, and so it is not possible to obtain an accurate expression for the required value of C.

If the frequency of operation is low enough for the commutation transients to die sway in one sixth of a cycle, it is possible to simplify the equation for $\mathrm{T}_{\text {be }}$ by inserting be se sway state values of current and voltage for $I_{0}, \mathrm{E}_{2}, \mathrm{E}_{2}, \mathrm{E}_{3}$.

$$
\text { Putting } I_{0}=\frac{V_{d}}{2 R}, E_{2}=V_{d}, E_{2}=\mathbb{E}_{3}=\frac{1}{2} V_{d} \text { we obtain }
$$

$$
\begin{aligned}
\nabla_{b c}=\frac{V_{i}}{2}-\frac{3 V_{d}}{4} e^{-2 \alpha t} & =\frac{V_{d}\left[(\alpha+\beta) \cdot I_{\alpha}-2 R\right]_{e}-(\alpha+\beta) t}{24 R C I_{\alpha} \beta(\alpha+\beta)} \\
& +\frac{V_{d}\left[(\alpha-\beta) I_{d}-2 R\right]-(\alpha-\beta) t}{24 R C I_{d} \beta(\alpha-\beta)} e^{-}(\alpha)
\end{aligned}
$$

If R is small and I_{d} is large so that

$$
\frac{1}{36 R^{2} C^{2}} \gg \frac{2}{3 C L_{\alpha}} \text { then } \beta \Omega \alpha
$$

Thus $(\alpha+\beta) \bumpeq 2 \alpha$ and $(\beta-\alpha) \bumpeq 0$

When $\alpha \bumpeq \beta$, the lat term in equation for $v_{b o}$ hes a small coedficient and can be neglected.

Inserting $\beta=\alpha$ and patting $\alpha=\frac{1}{6 \mathrm{RC}}$ the equation simplifies to

$$
v_{b e} \Omega \frac{v_{d}}{2}-v_{d} e^{-2 \alpha_{t}}
$$

Then, since $t=\delta$ when $\nabla_{b c}=0$

$$
\delta \Omega \frac{1}{2} \log _{\theta} 2
$$

$\Omega \quad$ IRC $\log _{e} 2$
$\bumpeq 2.08$ RC sees
Thus when the magnitude of R is known and the value of δ required is found from the SC R characteristics (allowing for a safety margin) the size of capacitor required is given by

$$
\begin{equation*}
c=\frac{\delta}{2.08 \mathrm{R}} \tag{3.9}
\end{equation*}
$$

This formula for O is valid when R is small and L_{d} is large and when the frequency of operation is low enough for commutation transients to die away in a sixth of a cycle. At higher frequencies it is found that the voltage by which an S CR is reverse biased at turn off becomes greater than $\frac{1}{2} \mathrm{~V}_{\mathrm{d}}$ and the resulting value of δ is larger. Hence if the formula for C is used the value of δ resulting will exr on the safe side. For example, in the case considered above δ was found from the predicted waveform to be 330μ Secs, Inserting $R=18 \Omega$, and $C=8 \mu \bar{F}$ in the formula $\delta=2.08$ RC gives $\delta=302 \mu$ Secs.

3.2.7. Conclusions.

It has bean shown that the basic three phase bridge circuit with capacitors connected between the output texainale is capable of inversion into a resistive load. Because of the short tum off time of the 5 C Ra used the size of capacitors necessary to achieve commutation was mall. From the approximate formula given in equation 3.9 it can be estimated that for a 1000 KW load operating from a 1000 V dec. supply capacitors of only $30 \mu \mathrm{~F}$ would be necessary to provide an S C \mathbb{R} reverse bias time of 30μ Secs for turn off.

It has also been shown that the theory developed in appendix is capable of predicting the performance of the inverter with an accuracy of about 5\%. More important, however, is the fact that the analysis of the circuit was, by necessity, of a piecemeal nature, each sixth of a cycle having to be considered separately. A relatively simple proframe would enable the calculations of waveforms, harmonies, mean values, etc. to be carried out on a digital computer, but it was not found possible to make any accurate generalisations about the effect of varying the circuit parameters upon the operation of the oirouit.

3.3 Tests with Inductive Load.

The inverter was tested with a star-comected inductive load consisting of a series combination of inductance b and resistance \mathbb{R} per phase as shown in Fig. 3.4. It was found that the inverter did not function et all satisfactorily over a range of frequency and an attempt will be made to show why this was so.

Fig. 3.4: Circuit of inverter with inductive load.

Fig. 3.5: Laplace operational form of basic inverter circuit, valid between instants t_{2} and t_{3} while $C R 1$ and $C R 2$ conduct.

3.3.1 Voltage and Current Equations.

The circuit may be analysed by the method employed for the resistive load case. Fig. 3.5 shows the operational cireuit which is valid between instants t_{2} and $t_{3}, I_{0}, I_{1}, E_{2}, E_{3}$ are, as before, the initial values of the current in L_{d} and of the voltages $v_{a b}, v_{e b}, v_{a c}$ and $I_{a 0^{\prime}} I_{b o}, I_{c o}$ are the initial values of the currents in phasa A, B, C respectively.

The circuit equations, after being manipulated in the same way as those for the resistive load case in Appendix A, reduce in their operational form to :-

$$
\begin{align*}
& I_{2}=I_{3}+I_{4}=\frac{C\left\{p^{2} L_{1} \operatorname{Ird}\left(2 I_{0}-I_{a 0}+I_{c o}\right) \div p\left(2 L\left[V_{d}-E_{3}\right]+2 R L_{d} I_{0}-I_{d} E_{3}\right)+2 R\left(V_{d}-E_{3}\right)\right\}}{3 p^{3} C L_{0} \cdot I_{d}+3 P^{2} R C L_{d}+p\left(I_{d}+2 L_{1}\right)+2 R} \tag{3.10}\\
& I_{3}-I_{4}=-\frac{3 \text { pICI }_{b_{0}}+C\left(E_{1}+I_{2}\right)}{3 p^{2} L C+3 p R C+1} \tag{3.11}\\
& I_{1}=\frac{p L\left(I_{20}-I_{c 0}\right)+E_{3}}{2 p^{2} I+2 p R}+I_{2}\left(\frac{3}{2}+\frac{1}{2 p^{2} L C+2 p R C}\right) \tag{3.12}
\end{align*}
$$

The equations for the other voltages and currents can be obtained from the three above.

$$
\begin{align*}
& I_{3}=\frac{1}{2}\left\{\left(I_{3}+I_{4}\right)+\left(I_{3}-I_{4}\right)\right\} \tag{3.13}\\
& I_{4}=\frac{1}{2}\left\{\left(I_{3}+I_{4}\right)-\left(I_{3}-I_{4}\right)\right\} \tag{3.14}\\
& I_{a}=I_{1}-I_{2}-I_{3} \tag{3.15}
\end{align*}
$$

$$
\begin{align*}
& I_{b}=I_{3}-I_{4} \tag{3.16}\\
& I_{c}=-I_{1}+I_{2}+I_{4} \tag{3.17}\\
& V_{a c}=\frac{I_{3}}{p}+I_{2} \quad \frac{I}{p C} \tag{3.18}\\
& V_{b c}=-\frac{I_{2}}{p}+I_{4} \frac{I}{p c} \tag{3.19}\\
& V_{a b}=V_{a c}-V_{b c} \tag{3.20}
\end{align*}
$$

In the equation for $\left(I_{3}-I_{4}\right)$ the denominator is a quadratic in p and it is therefore possible to obtain a general expression for ($i_{3}-i_{4}$) in term s of time t. However, the denominator in the equations for $\left(I_{3}+I_{4}\right)$ is a cubic in P and cannot, in general, be factorised until the numerical values of $\mathrm{R}, \mathrm{L}, \mathrm{L}_{\mathrm{d}}, \mathrm{C}$ have been inserted and only by a numerical method. Consequentiy the voltage and ourrent equations must be derived separately for each set of circuit parameters from their operationsil form.

To obtain the initial velues $I_{0}, I_{80}, I_{b o}, I_{c o}$ of current and E_{1}, E_{2}, B_{3} of woltage, equations (3.12), (3.15), (3.16), (3.18) and (3.19) can be used. When t is put equal to $\frac{T}{6}$ these equations can be reduced to five linear simultaneous equations in $I_{0}, I_{s o}, I_{b o}, E_{1}$ and E_{3} from the solutions of which the values of $I_{c o}$ and \mathbb{E}_{2} can be found directly. It can be seen that the calculation of current and voltage waveforms is an involved preqess At low irequenoles, however, the ealculations axe made easier when the assuaptions that $I_{0}=I_{a 0}=I_{b 0}=\frac{V_{d}}{2 R}$,
$I_{\text {co }}=0, B_{2}=V_{d}$, and $E_{2}=E_{3}=\frac{V_{d}}{2}$ are made. These assumptions are valid if all the commutation transients die away in one sixth of a cycle.

3.3.2 Sample Calculation for S C R Voltage waveform at Low Frequency.

A sample calculation for the voltage wavesoriin of an S R is made below. The calculation is carried out for a low frequency conditions and the waveform is plotted in Fig. 3.6. The condition for the calcuration is as follows:-

$$
\begin{aligned}
& \nabla_{\mathrm{d}}=100 \mathrm{~V}, \mathrm{R}=2.1 \Omega, \quad \mathrm{~L}=0.012 \mathrm{H}, \\
& \mathrm{I}_{\mathrm{d}}=0.019 \mathrm{H}, \mathrm{O}=100 \mu \mathrm{~F}, \mathrm{f}=5^{\circ} / \mathrm{s} .
\end{aligned}
$$

The initial current and voltage values are then

$$
\begin{aligned}
& I_{0}=I_{a 0}=I_{b o}=23.8 \mathrm{~A} \\
& I_{\mathrm{ce}}=0 \\
& E_{2}=100 \mathrm{~V} \\
& E_{2}=E_{3}=50 \mathrm{~V}
\end{aligned}
$$

Inserting these mumerical values, equations (3.10) and (3.11) simplify to :-
$(3.10):-I_{2}=I_{3}+I_{4}=\frac{7.93 p^{2}+31.4 \times 10^{2} p+30.7 \times 10^{4}}{p^{3}+1.75 \times 10^{2} p^{2}+62.9 \times 10^{4} p+61.4 \times 10^{6}}$
$(3.11):-I_{3}-I_{4}=-\frac{23.8 p+41.6 \times 10^{2}}{(p+87.5)^{2}+(520)^{2}}$
The denominator in equation (3.21) can be factorised by a numerical method. Hence

Fig. 3.6: Calculated and measured SCR voltage waveforms for inductive load.

$$
\left(V_{d}=100 \mathrm{v}, \quad C=100 \mu F, L_{d}=19 \mathrm{mH}, L=12 \mathrm{mH}, R=2.1 \Omega, f=54 / \mathrm{s}\right)
$$

$$
\begin{equation*}
I_{2}=I_{3}+I_{4} \Omega \frac{7.23 p^{2}+31.4 \times 10^{2} p+30.7 \times 10^{4}}{(p+99.2)\left([p+37.9]^{2}+[787]^{2}\right)} \tag{3.23}
\end{equation*}
$$

Then $V_{\text {ac }}=\frac{\psi_{d}}{2 p} \div I_{2} \frac{1}{p e}$

$$
\begin{equation*}
\Omega \frac{50}{p}+10^{4} \frac{7.93 p^{2}+32.4 \times 10^{2} p+30.7 \times 10^{4}}{p(p+99.1)\left([p+37.9]^{2}+[787]^{2}\right)} \tag{3.24}
\end{equation*}
$$

Carrying out the inverse transformation to obtain $v_{a c}$ in terns of time t we eventually obtain

$$
\begin{equation*}
v_{a c} \Omega 100-11.22^{-99.1 t}+107 \sin \left(787 t-28^{\circ}\right) e^{-37.9 t} \tag{3.25}
\end{equation*}
$$

Also $V_{b c}=-\frac{v_{d}}{2 p}+I_{4} \frac{1}{p c} \quad$ which gives

$$
\begin{align*}
v_{b c} \simeq 50-5.6 e^{-99.1 t} & +53.5 \sin \left(787 t-28^{\circ}\right) e^{-37.9 t} \\
& +230 \sin \left(520 t-18^{\circ}\right) e^{-87.5 t} \tag{3.26}
\end{align*}
$$

Then $v_{a b}=v_{a c}=v_{b c}$

$$
\begin{align*}
\bumpeq 50-5.6 e^{-99 . \lambda t} & +53.5 \sin \left(787 t-20^{\circ}\right) e^{-37.9 t}- \\
& -230 \sin \left(520 t-18^{\circ}\right) e^{-87.5 t} \tag{3.27}
\end{align*}
$$

The voltage equations (3.25), (3.26) and (3.27) are valid between the instants t_{2} and t_{3} but it has been shown in section 3.2 .3 that in the first, second, third sud fourth sixths of a cyole after turn off the SCR voltages are given by the equations for $v_{b o}, v_{a c}, v_{a c}$ and $v_{a b}$ respectively, putting $t=0$ at the start of each sixth of a cyole. During conduction the $3 . \mathrm{C}$. voltage is assumed to be zero.

In Mig. 3.6 . the S Q R voltage waveform has been plotted using equations (3.25), (3.26) and (3.27). For comparison the waveform obtained by experiment for the sere circuit parameters is dram to the same sole on the same axes. (The predicted and measured frequencies of the osoillations were, in fact, slightly different but have been shown equal in Fig. 3.6 for clarity.) Good agreement between predicted and measured waveromas is seen, except for tho amplitudes of the oscillations in the second and third sixths of s cycle after tum off. The circuit used in practice contained resistance in series with the dee. supply to protest the 5 C Pis against high fault currents. This resistance draped the oscillations in the inverter input voltage more than the oscillations in the inverter output voltage.

The zpedicted and measured values of 6 were both about 250μ Sees.

3.3 .3 The S C R Voltage Waveform.

From Fig. 3.6 it is seen that δ is approximately 250μ sees, which is nearly ten times more than is really necessary to turn off the 8 CR . However, after turn off the S CR voltage sises to over double the dec. supply voltage. This mans that the d.c. supply voltage must be kept well below half the S CR forward voltage rating.

The value of δ and the amplitude of the oscillations in the voltage waveforms are interrelated, both depending on the size of the commutating capacitors C. Fig. 3.7 shows the variation with C of δ and the peak value of the SC \mathbb{R} forward voltage. These values were measured expertmentally under low frequency condiotions so that the initial voltages on

Fig. 3.7: Variation of δ and $\frac{V_{f \text { max }}}{V_{d}}$ with C
under low frequency conditions.
the capacitors were the same in every case. Since the initial current flowing into the commutating capacitors was the same in each case δ would be expected to increase proportionally with C. For low values of C this is seen to be so but for higher values of $C \delta$ tends to increase more slowly. This was because the capacitor current rises from its initial value during commutation, the increase being dependent on the volt-sees applied to the inductance in the circuit. Hence the longer the value of δ, the greater the increase in capacitor charging current, and the greater the divergence from a linear relationship between δ and C. When C is large enough for the oscillatory currents to exceed greatly the initial charging current, δ would be expected to become proportional to the square root of C , i.e. δ would be a fixed proportion of the oscillatory cycle. The tendency for this to happen is seen in Fig. 3.7.

The SC R forward voltage peek, V_{f} max, is reached when the capacitors reach their peak voltage. This voltage is clearly a function of d.c. supply voltage and the stored energy in the load phase from which current is commutated. In the case for which the graph in Fig. 3.7 is drawn the load stored energy is constant for all values of C. In absorbing this energy the capacitor voltage must rise to a value which varies in an inverse manner with C. If the load stored energy is much larger than the initial capacitive stored energy it would be expected that $V_{f} \max$ would vary inversely with the square root of C. This tendency at low values of C is seen in Fig . 3.7 .

It is clear that in choosing a suitable value of C it would not
be sufficient to consider only the required value of δ. In the circult for which the graphs in Fig. 3.7 are drawn the use of a capacitor giving a δ of 30μ Sees resulted in a value of $V_{f} \max$ of just over $3.5 \mathrm{~V}_{\mathrm{d}}$ 。

A fundamental feature of the S C R voltage waveform is that the initial value, $V_{R O}$, of the reverse voltage at turn off should be equal to $\nabla_{F F}$, the forward voltage on the SC R immediately before turn on. This is the effect of the commutating capacitor connected between the S C Rs being fumed on and off at the same instant. When the SCR voltage waveform consists of a series of violent oscillations, as in Fig. 3.6 for example, $V_{F F}$ can vary very considerably when the firing point is moved relative to the oscillations. This happens when the inverter operating frequency is changed and results in a variation of δ with frequency. If the oscillations are particularly severe $\nabla_{F F}$ can become very small and even tend to go negative and this leads to commutation failure.

The effect of the oscillations upon $V_{F F}$ at a number of frequencies is illustrated in Pig. 3.8. In Fig. 3.8 (a) the S CR voltage waveform at a frequency of $5^{\circ} / \mathrm{s}$ is shown. At this low frequency the oscillations have almost died away completely and $V_{\text {PF }}$, and thus $V_{\text {HO }}$, are approximately equal to $\frac{1}{2} \mathrm{~d}_{\mathrm{d}}$. At $9^{\mathrm{c}} / \mathrm{s}$, as shown in Fig. 3.8 (b), the firing points have been moved back along the oscillations, in effect, and $V_{F F}$ is nearly zero. A small increase in frequency would cause $\nabla_{F F}$ to become too small to provide a large mough value of δ and commataction would fail. At $10.5^{\mathrm{c}} / \mathrm{s}$, shown in Fig. 3.8 (c$), \mathrm{V}_{\text {FF }}$ has become sufficiently positive once more and the circuit functions until the

Fig. 3.8 : S.C.R. voltage waveforms over a range of frequencies.

$$
\left(R=2.1 \Omega, L=12 \mathrm{mH}, L_{d}=19 \mathrm{mH}, C=8 \mu F, V_{d}=80 \mathrm{v} .\right)
$$

frequency reaches $13^{\mathrm{c}} / \mathrm{s}$, shown in Fig. 3.8 (d). Here $\mathrm{V}_{\text {FP }}$ tends to go negative once more and between $23 \% / s$ and the next frequency at which $\mathrm{V}_{\text {FF }}$ beoomes positive again, i.e. $20 \mathrm{c} / \mathrm{s}$ as in Fig. 3.8 (e), the circuit cannot function. At $60 \mathrm{~m} / \mathrm{s}$, shown in Fig. $3.8(\mathrm{I})$, the oircuit oeases to function again.

It can be seen, therefore, that if C is chosen on the basis of providing an adequate value of δ at low frequencies it is probable that the S C R voltage waveform will contain osoillations of laxge amplitude. It is then possible that the frequency range of the inverter will contain gaps in which the eircuit will not function.

For the circuit to operate satiafactorily over a wide range of frequencies the value of C must clearly be laxge enough to keep the voltage oscillations to as low an amplitude as possible.

3.3.4 Output Voltage Waveforms.

When the S CR voltage waveforms consist of series of oscillations so, too, do the inverter output voltage waveforms. It is desirable that as far as possible the output voltage waveforms should resemble sinewaves. Fig. 3.9 ghows the output voltage waveform oorresponding to the S CR voltage wavaforms shown in Fig. $3.8(f)$. This waveform contains a high proportion of haxmonies, the largest hamonic having about half the amplitude of the fundamental component. Fig. 3.10 shows how the output voltage waveform would appear if the frequency were raised by five times so that only a small portion of the oscillation would be included in each sixth of a cyole. It is seen that at such a frequency

Fig. 3.9: Output voltage waveform corresponding to SCR voltage waveform shown in Fig. 3.8.(f).

Fig. 3.10: Output voltage waveform which would appear at about five times the frequency of that shown in Fig.3.9.
the output voltage waveform would contain a large fundanental simusoidal component and few harmonies.

It is interesting to note that at this frequency the value of C is such that it would correct the load power factor to wnity if the load were to be fed from a three phase simusoidal supply of the same frequeney.
3.4 Tests with Invexter Feeding Induction Motor.

The circuit was tested with an induction motor as its load. It was found impossible to run up the motor to full speed, even with sufficient comutating capacitance to coxrect the full load power factor to unity at $50^{\mathrm{c}} / \mathrm{s}$, unless a certain amount of resistance was connected in series with each motor phase. This resistance had a demping effect upon the oscillations between the motor inductance and commatating eapacitance after each commatation. Even with the damping resistors it was not possible to run the motor satiafactorily at 50%, especially at light or no load. The value of $V_{\text {PF }}$ under these conditions was small and tended to reverse and this was attributed to rotation voltages generated by the motor.

It was clear that the cixcuit was not suitable, in its simple form, for the supply of induction motors and it was therefore abandoned.

3.5. Conclusions.

It has been demonstrated that the basic three phase bridge circuit with capacitors connected ecross the output lines for artificial comutation is eapable of operation with resistive loads using relatively small commutating capacitors. It was estimated that if S C Rs were used in an inverter for supplying a 1000 KW load from a 1000 V d.c. supply capacitor of only $30 \mu \mathrm{~F}$ would be required. The resistive load condition, however, is of purely scademic interest since the heating effect produced in the load could be achieved equally well by direct ourrent or constant frequency alternating current.

When the load was inductive the laverter could be made to operate satisfactorily at any given frequency by making the comatating capacitances high enough to correct the loeal power factor to unity. The output voltage waveforms were then very good approximations to sinewaves, few harmonics being present, but the time δ was very much greater than the minimum required for turning off the S C Rs. When smaller capacitors were used the output voltage waveform deteriorated and commutation failed over certain ranges of frequency because of the oscillatory nature of the S CR voltage waveform.

In an inverter-motor system operating over a range of load and frequency it would obviously be quite impracticable to vary the commatating eapacitanee to correct the load power factor to unity under all conditions. Even if it were found sufficient to merely provide an adequate velue of δ and disregard the harmonic condent of the output voltage weveform some variation of C with frequency would still be necessary. This is
because the d.c. supply voltage would have to be reduced with frequency to prevent the motor's magnetic circuit from saturating.

Clearly the basic three phase bridge is not suitable for supplying an induction motor over a wide range of loads and frequencies. The tests carried out on the system gave some indication of the modifications that would be necessary, however, and these will now be discussed.

When an inductive three phase load is fed from a normal three phase supply power flows instantaneously both to and from the load. The basic three phase bridge inverter is a unidirectional circuit and the reverse energy flow from the load must be absorbed by the commutating capacitors. This, basically, is why the capacitors should be large. Smaller capacitors would absorb the sane energy but only by charging to higher voltages. The inverter can be made bidirectional by conseating a diode, so that it would not normally conduct, between each output line and each A.c. supply terminal (see Fig. 5.1). These diodes constitute a three phase bridge which can pass power in the opposite direction to that of the S CR bridge. Small capacitors can then be used for commutation, the diodes preventing the capacitor voltages from exceeding the doc. supply voltage, and the load stored energy can flow through the diodes to the d.c. supply.

The problem of maintaining sufficient voltage on the commutating capacitors when changes in the d.c. supply voltage or $g C \mathrm{R}$ voltage wavefor occur can be solved by charging a capacitor, or capacitors, to a voltage which is independent of the dee. supply voltage or S CR voltage waveform.

It will be seen that in the inverters considered in later chapters the pxinciplesstated in the two paregraphs above are used.

CHAPTER 4.

A.D.C. SWITCH USIN 8 C RS AND AUXILIARY SUPPLY.

In the previous chapter it was concluded that for coping with inductive loads the inverter would need to incorporate some mean for disposing of the load stored energy at commutation. It was suggested. that diodes might be suitable for achieving this end and thus avoid large commutating capacitors. At the same time the diodes might be coned ted in such a way that the inverter could be oapeble of allowing power flow both from and to the dec. supply.

It was also concluded that for reliable commutation, particularly with an induction motor load, some method of charging a capacitor to a fixed voltage and then discharging the capacitor into the inverter orcult for turning of r the S C Rs would have to be incorporated.

Because of a delay in the delivery of components for an inverter incorporating the improvements suggested above it was decided to study the problem of using an S C.R. for turning on and off a doC. supply to a. single inductive load. The problem is, of course, very similes to that encountered in inversion. The results of this study proved to be so interesting and relevant to the inversion problem that the whole of this chapter is devoted to this d.c. switch.

4.1. Circuit and Principle of Operation.

The circuit for the die, switch is shown in Fig. 4.1. The main part of the circuit consists of the load, made up of resistance R and

Fig. 4.1: Circuit of D.C. switch.

Fig. 4.2: Laplace operational form of circuit valid only while CR2 conducts.
inductance L in seriea, the $d . c$. supply of voltage V_{d}, and the $S C R$ CR_{1} which is used for turning on and off the supply to the load. In series with CR_{1}, on the supply aide, is a choke L_{d} which possesses a small resistance R_{d}. Diode D_{1} is connected across the load and does not normally conduet.

The auxiliary oircuit consists of the second d.c. supply of voltage
 C to a fixed voltage from the supply V_{a}, and CR_{2} which is used to discharge O so ds to reverse bias and turn off $C R_{1}, R_{c}$ and I_{c} are the resistance and inductance of the auxiliary supply. Diode D_{2} is connected across L_{d} in sueh a way that it is noxmally non-eonducting.
C_{a} is a large capacitor connected across the main d. c. suppiy terminals to reduce the voltage surges due to supply inductance when the supply cuxrent undergoes sudden changes.

Not shown in Hig. 4.1 are the $\mathrm{H}=\mathrm{C}$ seriea filters connected between snode and cathode of each 3 C If to suppress voltage transients, the small choke cowieeted in series with CR_{2} to limit the ragnitude of the current peak occurring when CR_{1} is roverse biased at turn off, and the transistor pulse generator for firing the S C Re in the correct sequence.

Cursent is supplied to the load by firing CR1. If all currents in the oircuit are zero at the instant of Iiring CR_{1}; the current xises towards a steady value $\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{R}}$ with a tine constant $\frac{\mathrm{L}_{\mathrm{i}}+\mathrm{L}_{\mathrm{d}}}{\mathrm{R}}$ (ignoring R_{d}). During this period diodes D_{2} and D_{2} are reversembiased and pass no ourrent. CR_{1} can be turned off by firing CR_{2}. This comects the anode of CR_{1} to the negative potential terminal of capacitor C. The cathode
potential of CP_{1} is prevented from going negative by the action of D_{1} which immediately conducts to allow the load current to decay. Consequently CR_{1} is reverse -biased by the voltage on capacitor C and turns off. The voltage across G now rises as current flows into the capacitor from the die. supply V_{d}, the initial rate of voltage rise depending upon the initial current in the choke L_{a}. Eventually the voltage on C becomes positive but, provided it has remained negative long enough for CR_{1} to regain its forward blocking property, CR_{1} remains off when forward voltage is reapplied.

Daring the oses. nation now taking place between C and $L_{\text {a }}$ the voltage on Q would reach a very high value. Diode D_{2} conducts, however, as soon as the sapecitor voltage becomes equal the the main doc. supply voltage and prevents the capacitor voltage from rising further. The charging current into C ceases and CR_{2} turns off. At this instant the current in I_{d} is at its peak value and is left to decay slowly through diode B_{2} at a rate depending upon the forward voltage drop of D_{2} and upon R_{6}.

In the meantime the load current is decaying through D_{1} at a rate depending upon the load resistance and inductance (neglecting the forward voltage drop of D_{1}).

Before firing CR_{1} again CR_{3} should be fired to recharge C to a negative voltage from the auxiliary supply.

It can be seen that when CR_{1} is turned off the capacitor C is isolated from the load. Hence the size of capacitor required is independent of the load inductance and depends mainly upon the magnitude
of current flowing in the load at the instant of interruption. The load stored energy is not returned to the supply but is dissipated in the load resistance and hence does not cause any large voltage transients.

4.2 Theory of Operation.

Because of the isolation of the commutating capacitor from the load the derivation of the current and voltage equations ia very straightiorward.

Unless stated otherwise it is assumed in the following theory that the SC Rs and diodes can be regarded as short circuits between anode and cathode (i.e. zero voltage drop) when conducting, and open circuits (i.e. zero leakage current) when not conducting.

4.2.1 Turning off CR_{2}.

It is assumed that when CR_{2} fires CR_{1} turns off and D_{1} conducts at once, the currents flowing in L_{d} and $L_{\text {are }} I_{\text {do }}$ and $I_{\text {Lo }}$ (not necessarily equal because of possible current in D_{2}), and that the voltage on C is $V_{C R}$ (not necessarily equal to V_{a} because of auxiliary supply inductance). While CR_{2} conducts the operational circuit shown in Fig. 4.2 is valid, $C R_{2}$ being considered as an open circuit between anode and cathode. The two meshes in the circuit may them be considered quite separately.

Taking the load current first,

$$
I_{L}=\frac{L_{L O}}{p L+R}=\frac{I_{L O}}{p+\frac{R}{L}}
$$

Inverting, to obtain i_{L} in terms of time,

$$
i_{L}=I_{10} e^{-\frac{\text { R }}{L} t}
$$

1.e. the load current decays exponentially from its initial value with time constant $\frac{L}{R^{\prime}} \quad$ This equation for i_{L} is valid until CR_{1} is fixed once more.

Now considering the current in the other mesh,

$$
\begin{array}{rlr}
I_{d} & =\frac{\frac{V_{d}}{p}+\frac{V_{C R}}{p}+I_{d} I_{d o}}{p I_{d}+\frac{1}{p C}} & \text { B }_{d} \text { is neglected since its } \\
\text { effect here is small. }
\end{array}
$$

Inverting, we obtain

$$
i_{a}=I_{d 0} \cos \omega t+\frac{V_{d}+V_{C R}}{\omega I_{d}} \sin \omega t
$$

$$
\begin{equation*}
=\hat{I} \cos (\boldsymbol{\omega} t-\phi) \tag{4.2}
\end{equation*}
$$

where $\omega^{2}=\frac{1}{C L_{d}}, \tan \phi=\frac{V_{d}+V_{C R}}{\omega L_{d} I_{d O}}=\frac{\omega C\left(V_{d}+V_{C R}\right)}{I_{d o}}$,
and $\hat{I}=\sqrt{x_{d_{0}}{ }^{2}+\left[\frac{v_{d}+V_{C R}}{\omega \sum_{d}}\right]}=I_{d o} \sqrt{1+\tan ^{2} \phi}$
Since CR_{2} and D_{1} are conducting the voltage across CR_{1} is equal to the voltage across C and is given by

$$
\begin{aligned}
\nabla_{c} & =-\frac{v_{C R}}{p}+I_{d} \frac{2}{p C} \\
& =-\frac{\nabla_{C R}}{p}+\frac{p I_{d o}+\frac{v_{d}+v_{C R}}{I_{d}}}{p C\left(p^{2}+\omega^{2}\right)}
\end{aligned}
$$

Inverting we obtain

$$
v_{c}=v_{d}+\frac{I}{\omega} \sin (\omega t-\varphi)
$$

From equation (4.3) may be found the time δ for which CR_{2} is reverse biased. For $t=\delta$ when $v_{a}=0$

$$
\therefore \quad 0=V_{d}+\frac{I}{\omega C} \sin (\omega \delta-\phi)
$$

Hence

$$
\begin{equation*}
=\frac{1}{\omega}\left(\phi-\sin ^{-1} \frac{V_{a} \omega C}{\hat{I}}\right) \tag{4,4}
\end{equation*}
$$

Equations (4.2) and (4.3) are valid only until v_{c} reaches the value $+V_{d}$. At this point D_{2} stere to conduct and CR_{2} turns off. When $v_{c}=v_{d}$
(from $(4 \cdot 3)=-\quad v_{d}=v_{d}+\frac{\hat{I}}{\omega \hat{C}}$ ain $(\omega t-\phi)$

$$
\begin{equation*}
\text { Hence } \quad t=\frac{\phi}{\omega} \tag{4.5}
\end{equation*}
$$

1.e. CR_{2} conducts for a time $\frac{\varnothing}{\omega}$.

The value of 1_{d} when $C l_{2}$ turns off and D_{2} starts to conduct may be found from equation (4.2) by putting $t=\frac{\phi}{\omega}$.

Then $i_{d}=\hat{I} \cos \left(\omega \cdot \frac{\phi}{\omega}-\phi\right)$
i.e. $i_{d}=\hat{I}$

This value of i_{d} is left to decay through diode D_{2}.
4.2.2 Effect of D_{2}

If D_{2} were absent from the circuit, $C R{ }_{2}$ would continue to conduct until id became zero

$$
\begin{array}{ll}
\text { i.e. until } & \hat{I} \cos (\boldsymbol{\omega} t-\phi)=0 \\
\text { i.e. until } & t=\frac{1}{\omega}\left(\phi+\frac{\pi}{2}\right)
\end{array}
$$

This would mean that no current would be left to decay through D_{2} but the voltage v_{0} would reach a very high value given by

$$
\begin{equation*}
v_{e}=V_{d}+\frac{\hat{I}}{\omega C} \tag{4.8}
\end{equation*}
$$

The magnitude of this voltage peak would depend largely upon the current being interrupted and the relative values of I_{d} and C and could be as mach ea twenty times greater than $V_{d^{*}}$. The presence of D_{2} is therefore imperative. (This is similar to the problem referred to in section 3.3 .3 . Here the problem is solved by the use of diode D_{2}.)
4.2.3 Decay of \hat{I} through L_{d} and D_{2}.

When CM_{2} turns off the current I flowing in L_{d} is left to decay
through D_{2}. Since the decay is a relatively slow one it is essential to take into account both the resistance R_{d} of the choke and the forward voltage drop V_{f} of D_{2}. $\quad V_{f}$ can be cssumed constant over most of the current range though its value does in fact fall sharply at very low currents.

Fig. 4.3 shows the operational circuit which may be used for calcudating the decay. During the decay the current I_{6} in D_{2} is equal to the current I_{5} in I_{d}.

$$
\begin{aligned}
I_{5}= & \frac{L_{d} \hat{I}-\frac{V_{q}}{p}}{p L_{d}+R_{d}} \\
= & \frac{p \hat{I}-\frac{V_{Q}}{L_{d}}}{p\left(p+\frac{Z_{d}}{L_{d}}\right)}
\end{aligned}
$$

Inverting, we obtain

$$
i_{5}=-\frac{V_{\underline{Q}}}{R_{d}}+\left(\hat{I}+\frac{V_{B}}{R_{d}}\right) e^{-\frac{R_{d}}{L_{d}}} t
$$

1.e. the current in the choke decays with time constant $\frac{L_{i d}}{\mathrm{R}_{\mathrm{d}}}$ towards a steady state value $-\frac{V_{i}}{R_{6}}$. In fact, of course, the current in D_{2} cannot become negative and hence the decay would cease when 1_{5} becomes zero.
$\mathbb{N} . \mathrm{B}$. In equation $(4,9) t=0$ at the instant at which CR_{2} turns off whereas in equations (4.1) to $(4.8) t=0$ when CR_{2} turns on.

Fig. 4.3: Operational circuit for calculating the decay of \hat{I} through L_{d} and D_{2}.

Fig. 4.4: Circuit for calculating the rise of load current after triggering CR1.

Fig. 4.5: Variation of δ with load inductance L.

$$
R=2.5 \Omega, \quad V_{d}=50 \mathrm{~V}, \quad I_{d o}=I_{L 0}=15.0 \mathrm{~A} .
$$

Combinations of L_{d}, C and $V_{C R}$ as shown.
\qquad values of δ measured on oscillograph. calculated values of δ.
4.2.4 Rise of Lond Current when CR_{2} is fired.

Pig. 4.4 shows the circuit which can be used for considering how the load current i_{L} rises when CR_{1} is fired. i_{5} and i_{6} are the currents in the choke L_{Q} and diode \mathbb{D}_{2}.

If the currents in the load and the choke I_{d} have decayed completely after the previous turning off of CR_{2}, then $L_{\text {and }} i_{5}$ are equal during the whole of the time for which CR_{2} conducts. The wise of load current is then given by

$$
\begin{equation*}
i_{L}=\frac{V_{d}}{R}\left(1-e^{-\frac{R}{L+L_{d}}}{ }^{t}\right) \tag{4.20}
\end{equation*}
$$

If, however, the current in h_{d} has not completely decayed when CR_{1} is fired, the situation is changed. During the time when i_{L} is smaller than the current i_{5} still decaying in L_{d} the balance of current Plows in D_{2}

$$
\text { i.e. } i_{6}=i_{5}-i_{L}
$$

During this period the voltage across L_{d} is almost zero and hence I_{d} has no effect upon the load current rise. Therefore, while D_{2} conducts

$$
\begin{equation*}
i_{L}=\frac{V_{a}}{R}\left(1-e^{-\frac{R}{L} t}\right) \tag{4.11}
\end{equation*}
$$

However, the current in D_{2} cemot become negative, so as soon as i_{L} reaches the same value as i_{5}, D_{2} ceases to conduct and becomes reverse biased, enabling L_{d} to impede current rise. Consequently i_{L}
rises thereafter towards its steady value with a time constant $\frac{L+L_{a}}{M}$.

4.2.5 Re-charging of 0 from Auxiliary Supply,

When CR_{3} is fired the voltage on C reverses towards the auxiliary supply voltage V_{a}. Because of the supply inductance the voltage overshoots V_{a} and at the overshoot voltage peak, $V_{C R}$, the capacitor charging current is prevented from reversing by $\mathrm{CR}_{3}, \quad \mathrm{CR}_{3}$ therefore turns off, leaving C with the voltage $V_{C R}$ *

4.2.6 Approximate Depression for δ.

Immediately after Ch_{2} is tamed off the current flowing into 0 through' CR ${ }_{2}$ varies between $I_{\text {do }}$ and \hat{I}. If \hat{I} is not mon swerved wan $I_{\text {do }}$, the voltage on C rises approximately linearly with time from its initial value $-\nabla_{C R}$. δ is, therefore, approximately equal to the time taken for C to charge from a voltage $-V_{C R}$ to zero voltage with a charging current $I_{\text {do }}$

$$
\begin{equation*}
\text { i.e. } \quad \delta \Omega \frac{C V_{\mathrm{CR}}}{I_{\mathrm{do}}} \tag{4.12}
\end{equation*}
$$

Hence the values of C and V_{CR} required to give the required value of δ at a given value of $I_{\text {do }}$ may be found from the following formulas .

$$
\begin{equation*}
C \quad \Omega \quad \frac{\delta^{I}{ }_{\mathrm{do}}}{V_{\mathrm{OR}}} \tag{4.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{\mathrm{CR}} \bumpeq \frac{\delta \cdot I_{\mathrm{do}_{0}}}{0} \tag{4.14}
\end{equation*}
$$

From equation (4.2) it can be seen that \hat{I} is not much greater than $I_{d o}$ if I_{d} or $I_{\text {do }}$ is large and these are the conditions for which the above formulae are most accurate.
4.3 Variation of δ with Load $\frac{L}{R}$ ratio, $C, I_{d}, V_{C R}$ and $I_{\text {do }}{ }^{*}$ Wrap
A series of tests were carried out to investigate the effect upon δ of varying the load $\frac{L}{R}$ ratio and the values of $C, L_{d}, \nabla_{C R}$ and $I_{\text {do }}$ and to check the curacy of the theory in section 4.2 . δ is the parameter which, above all, must be of a suitable value if the circuit is to function properly.

In these tests the circuit was used as a dec. ohopper,i.e. a repetitive on-off switch, at a frequency of $5 \mathrm{c} / \mathrm{s}$. This frequency was low enough for the currents and voltages to reach their steady values, and yet high enough for the voltage and current variations to be observed by means of an oscilloscope. $\delta, V_{C R}$ and $I_{\text {do }}$ were then measured directly from the oscilloscope.

4.3.1 Variation of δ with Load $\frac{\frac{L}{R}}{R}$ Ratio.

The formula for δ given in equation (4.4) made no reference to the load inductance or resistance and δ would, therefore, seem to be Independent of L and R. In fact the value of $I_{\text {do }}$ is very much dependent upon \mathbb{R} and this test was designed to show that δ is independent of the load $\frac{L}{R}$ ratio, which would correspond to the load power factor in an inverter.

Keeping R, and hence $I_{\text {do }}$ constant, I was varied over a range of 3 to 1 for severs combinations of G, L_{A} and $V_{C R}$ and δ was measured for each value of L. The results of this teat are shown in Fig. 4.5 and it can be seen that the variation of it had no effect upon the value of δ. This was as predicted by the theory. The corresponding calculated results are also plotted in Fig .4 .5 to show the close agreement between calculated and experimentally measured results.
4.3.2 Variation of 6 with L_{d}.

In this test and all the remaining testa described in section 4.3 the load inductance was set at a constant value and the value of $I_{\text {do }}$ was varied by adjusting the load resistance R. The graphs in Fig, 4.6 and Fig. 4.7 show δ plotted as a function of $I_{\text {do }}$. The families of curves obtained then show the effect upon δ of varying any of the circuit parameters.

For this test C and $V_{C R}$ were kept constant and L_{d} was varied over a range of about 6 to 1 , the variation of 6 with $I_{\text {do }}$ being measured. for each value of I_{d}. This procedure was repeated for several cambinations of C and V_{CR}.

Fig. 4.6 shows the experimental and calculated results. For the sake of clarity the curves for only the extreme values of L_{a} used have been drawn. The good agreement between calculated and experimental results should again be noted. It was seen that increasing In by a factor of ix had little effect upon the value of δ particularly at

Fig. 4.6: Variation of δ with $I_{d o}$ for various combinations of $C, V_{C R}$ and L_{d}.

Fig. 4.7: Variation of δ with $I_{\text {do }}$ for various combinations of C and $V_{C R}$.
the higher values of $I_{\text {do }}$. This was to be expected since the approximate expression for δ in equation (4.12) made no reference to L_{d}.
4.3 .3 Variation of δ with C.

From Fig. 4.6 the variation of δ with C can also be determined. It can be seen that by doubling the value of C the value of δ was also approximately doubled, again as predicted in equation (4.12).

4.3.4 Variation of δ with $V_{C R}{ }^{*}$

Keeping I_{d} and C constant $\nabla_{C R}$ was varied over a range of about 2 to 1 and δ plotted as a function of $I_{\text {do }}$ for each value of $\nabla_{C R}$. This was repeated for a different value of C. Fig. 4.7 shows the calculated and experimental results. It can be seen that at the higher values of $X_{\text {do }} \delta$ was almost proportional to $V_{C R}$, as predicted by equation (4.12).
4.3.5 Variation of δ with $I_{\text {do }}{ }^{\circ}$

From both Fig. 4.6 and PiE. 4.7 it may be seen that δ was approximately inversely proportional to $I_{\text {do }}$, once more as predicated in equation (4.12).
4.4 Voltage and Current Waveforms.

To obtain the voltage and current waveforms sketched in Figs. 4.8 and 4.9 the circuit was used as a die. chopper at a frequency of $5^{c} / \mathrm{s}$. and the wavefoxns observed by means of an oscilloscope. Fig. 4.8 shows the waveforms for a light load, Fig. 4.9 for a heavy load. The waveforms sketched are as follows-

$$
\begin{aligned}
& V_{a} \text { - the main Ac. supply voltage } \\
& \mathrm{V}_{1} \text { - the enode-cathode voltage of } \mathrm{CR}_{1} \\
& V_{1 d} \text { - the voltage across the choke } L_{d} \text { and diode } D_{2} \\
& \mathrm{~V}_{e_{2}}{ }^{3-} \text { the voltage between the anode of } \mathrm{CR}_{2} \text { and the } \\
& \text { negative d.0. supply terminal }
\end{aligned}
$$

04

4.4.1 Explanation of Waveforms.

At instant $t_{1} V_{d}$ falls because of the regulation of the supply and ∇_{1} falls almost to zero. Currents $I_{d}, I_{5}, I_{1}, I_{L}$ are the same current and build up to their steady state value with time constant $\frac{L+L_{d}}{R}$ and a decaying voltage appears across choke I_{d}. Wo current flows in D_{1} and D_{2}, these diodes being reverse biased. No current flows in $\mathrm{CR}_{2} . \quad V_{a_{1}}$ and ∇_{L} are equal to $\left(V_{d}-\nabla_{L d}\right)$ and V_{c} remains steady at the value to which it has been charged from the auxiliary supply. $\quad V_{2}$ is equal to $\left(V_{d}-\nabla_{c}\right)$.

At instant $t_{2} \quad \mathrm{CR}_{2}$ is fired and V_{2} falls almost to zero. V_{d} rises to its open circuit value with some overshoot caused by the combination of supply inductance and the reservoir capacitor $C_{d} . \quad \mathrm{CR}_{1}$ is reverse biased by the voltage on C and turns off, I_{1} falling at once to zero. I_{L} decays through diode D_{1} and now, therefore, $I_{4}=I_{L}$. V_{L} falls to zero because of the conduction of D_{2}. Capacitor C charges through I_{d} from the main dec. supply and for a short period $V_{L d}$ is equal to $\left(V_{d}-V_{e}\right) . \quad I_{d}=I_{5}=I_{2}$, rising from the value of I_{5} at instant t_{2} to a peak value \hat{I}. When V_{c} reaches the value $+V_{d}$ diode D_{2} starts to conduct and CR_{2} turns off and is reverse biased by a small voltage. I_{2} and I_{d} fall instantly to zero while I_{5} decoys from its peak value \hat{I}^{2} through diode D_{2}. Hence $I_{5}=I_{6}$ during this decay. V_{c} remains at the value to which it had been charged when CR_{2} turned off and $V_{2}=\left(V_{d}-V_{e}\right)$ again.

At instant t_{3} capacitor C is re-charged to a negative voltage
through CR_{3} from the auxiliary supply. $V_{2}=\left(V_{d}-V_{e}\right)$ and hence as $V_{c} f_{2 l l s}, V_{2}$ rises by the same amount.

At instant t_{1} the whole cycle is repeated again.
4.5 Comparison between Measured and Predicted Results.

Tor the sake of clarity the calculated waveforms have not been drawn in Pigs. 4.8 and 4.9. A comparison between calculated and experimentally obtained results will be made on the basis of the peak current value \hat{I} and the time taken for \hat{I} to decay through diode D_{2}. Because of the poor regulation of the doc. supply the values of $I_{\text {do }}$ used have not been calculated but measured experimentally. In each of the two cases considered $\nabla_{d}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{CR}}=65 \mathrm{~V}, \mathrm{~L}_{\mathrm{d}}=4 \mathrm{mH}, \mathrm{R}_{\mathrm{d}}=0.1 \Omega, \mathrm{C}=32 \mu \mathrm{~F}$, $\mathrm{V}_{\mathrm{f}}=1.6 \mathrm{~V}$.
4.5.1 Peak Value $\hat{\mathrm{I}}$.
(a) $I_{\text {do }}=4.6 \mathrm{~A}$

From equation (4.2) $\hat{I}=21.85 \Delta$
(Experimentally obtained value of $\hat{I}=12 \mathrm{~A}$)
(b) $I_{\text {do }}=25 \mathrm{~A}$

From equation (4.2) $I=27.3 \mathrm{~A}$
(Experimentally obtained value of $I=28 \mathrm{~A}$)
4.5.2 Period of Decay of \hat{I} through I_{d} and D_{2}.

When CR_{2} turns off the current in L_{d} has reached the value \hat{I} and this current decays through D_{2}. The equation for the decay is that for I_{5} in section 4.2 .3 , i.e. equation (4.9).
(a) $I_{\text {do }}=4.6 \mathrm{~A}, \hat{I}=11.85 \mathrm{~A}$
$i_{5}=-16+27.85 e^{-25 t}$
$\therefore i_{5}=0$ when $t=\frac{1}{25} \log _{e} \frac{27.85}{16}=22 \mathrm{msecs}$
(By experiment $i_{5}=0$ when $t=26$ mSeca.)
(b) $I_{\text {do }}=25 \mathrm{~A}, \hat{I}=27.3 \mathrm{~A}$
$i_{5}=-16+43.3 e^{-25 t}$
$\therefore i_{y}=0$ when $t=\frac{1}{2 y} l_{0_{e}} \frac{43.4}{16}$

$$
=40 \mathrm{mSecs}
$$

(by experiment $i_{5}=0$ when $t=46$ mSecs.)
It cen be seen that the theory gives very accurate results for the value of \hat{I}. The predicted decay times heriftimes are a little low but this is to be expected since V_{f} is not absolutely constant but falla quite sharply at currents less than about 5 A .
4.6 Variation of $I_{\text {do }}$ and δ with Chopping Frequency.

When the circuit was used as a d.c. chopper it was found that $I_{\text {do }}$, and hence δ, varied with the chopping frequency. This section shows how this variation occurred and gives some theory from which the variation may be predicted.

4.6.1 Effect of Incressein Chopping Frequency upon the Waveforms of I_{5}

 $\underline{\text { and } I_{L}}{ }^{*}$In Fig. 4.10 the waveforms of the current I_{5} in choke I_{d} and the current I_{L} in the load are shown for a typical set of circuit parameters at five different operating frequencies.

In Fig. 4.10 (a) the frequency is $5^{c} / \mathrm{s}$ and I_{5} and I_{L} are both zero when CR ${ }_{1}$ is fired at instant $t_{1}, \quad I_{5}$ and I_{L} then rise together with time constant $\frac{L+L_{d}}{R}$ towards a steady value and are still equal at instant t_{2} when $C R_{2}$ is fired. I_{L} then starts at once to decay through diode D_{1}. I_{5}, however, rises to the peak value \hat{I} in the charging of capacitor C before decaying through diode D_{2}. At this low frequency both I_{5} and I_{L} have ample time to decay to zero before CR_{2} is re-fired.

At the higher frequencies of $25^{\mathrm{c} / s}$ and $50 \mathrm{c} / \mathrm{s}$, illustrated by Figs. $4.10(\mathrm{~b})$ and $4.10(\mathrm{c}), I_{\mathrm{L}}$ still has time to decay to zero between instant t_{2} and t_{1} but I_{5} has not. $I_{L_{1}}$ therefore starts to rise at t_{1} with time constant $\frac{\frac{L}{R}}{R}$ until it becomes equal to I_{5} and thereafter both I_{L} and I_{5} rise together with time constant $\frac{L_{d}+L_{L}}{R}$ towards a steady state value. At $25 \mathrm{c} / \mathrm{s}$ they almost reach their steady value but at $50 \mathrm{c} / \mathrm{s} \quad \mathrm{CR}_{2}$ is fired some time before the steady value is attained and hence $I_{\text {do }}$ and $I_{\text {Lo }}$ are lower than their low frequency values. δ is therefore greater than its low frequency value since it is approximately inversely proportional to $I_{\text {do }}$.

At $100 \mathrm{~m} / \mathrm{s}$, for which Fig. 4.10 (d) is drawn, I_{L} is still zero at t_{1} but the interval between t_{2} and t_{1} is now too short for I_{5} and $I_{L_{1}}$ to

Fig. 4.10: Effect of frequency upon the waveforms

$$
\text { of } i_{5}(\cdots) \text { and } i_{L}(\cdots) \text {. }
$$

become equal. $I_{\text {do }}$ is therefore greater than $I_{\text {Lo }}$, though still smaller than its low frequency value.

At $200 \mathrm{c} / \mathrm{s}$, shown in Fig. $4.10(\mathrm{e})$, I do has become much greater than $I_{L_{0}}$ and is now completely independent of I_{L}. $I_{\text {do }}$ now depends only upon the frequency of firing CR_{2}, the difference between $I_{\text {do }}$ and \hat{I}, and the rate of decay of I_{5}. At even higher frequencies $I_{\text {do }}$ settles down at such a value that I_{5} can rise from $I_{\text {do }}$ to \hat{I} just after CR_{2} is fired and decay from \hat{I} back to $I_{\text {do }}$ before CR_{2} is again fired.
4.6.2 Approximate Analysis of Variation of $I_{\text {do }}$ and δ with Frequency.

By writing ω^{2} as $\frac{I}{C I_{d}}$ the peak value \hat{I} reached by I_{5} after instant t_{2} may be expressed as

$$
\begin{equation*}
\hat{\mathbf{I}}=I_{d o} \sqrt{1+\frac{C\left(V_{d}+V_{C R}\right)^{2}}{L_{d} I_{d o}^{2}}} \tag{4.15}
\end{equation*}
$$

1
If I is not very mach greater than $I_{\text {do, }}$ we obtain on expanding the RHS by the binomial theorem

$$
\begin{align*}
& \hat{I}=I_{d o}\left\{1+\frac{1}{2} \frac{c\left(V_{d}+V_{C R}\right)^{2}}{I_{d} I_{d o}{ }^{2}}+\frac{1}{8}\left[\frac{c\left(V_{d}+V_{C R}\right)^{2}}{L_{d} I_{d o}}\right]^{2}+\ldots\right\} \\
& \Omega I_{d o}+\frac{c\left(V_{d}+V_{C R}\right)^{2}}{2 I_{d} I_{d o}} \\
& \text { i.e. } \hat{I}-I_{d o} \Omega \frac{C\left(V_{d}+V_{C R}\right)^{2}}{2 L_{d} I_{d o}} \tag{4.16}
\end{align*}
$$

It is assumed that I_{5} decays from \hat{I} to $I_{\text {do }}$ lInearly at its initial rate and that the decay lasts for a time $\frac{1}{f}$, where f is the chopping
frequency, (ie. it is assumed that $\frac{\phi}{\omega}$ is small compared with $\frac{l}{f}$). The rate of decay depends upon the values of $L_{d}, \mathbb{R}_{d}, \hat{I}$ and the forward voltage drop of diode D_{2}. From equation (4.9) we obtain

$$
\begin{equation*}
\frac{d I_{5}}{d t}=-\left\{\frac{R_{d} \hat{I}}{I_{d}}+\frac{\nabla_{f}}{I_{d}}\right\} \tag{4.27}
\end{equation*}
$$

If $\hat{I} \bumpeq I_{\text {do }}$, ie. $\left(\hat{I}-I_{\text {do }}\right)$ much less than \hat{I} or $I_{\text {do }}$, and the effect of V_{f} an be represented by adjusting the value of R_{d} to $R^{\prime} d$

$$
\begin{equation*}
\frac{d I_{5}}{d t} \Omega-\frac{R_{d} I_{d o}}{I_{d}} \tag{4.18}
\end{equation*}
$$

Since I_{5} mast decay from \hat{I} to $I_{\text {do }}$ at this decay rate in time $\frac{1}{f}$

$$
\begin{align*}
& \hat{I}-I_{d 0} \Omega+\frac{R_{d}^{\prime} I_{d o}}{L_{d}} \cdot \frac{1}{f} \\
& \text { ide. } \frac{c\left(V_{d}+V_{C R}\right)^{2}}{2 I_{d} I_{d o}} \bumpeq \frac{R_{d}^{\prime} I_{d o}}{L_{d}} \cdot \frac{1}{f} \\
& \therefore I_{d o} \xrightarrow{ } \sqrt{\frac{C\left(V_{d}+V_{C R}\right)^{2}}{2 R_{d}^{\prime}}}, P \tag{4.19}\\
& \text { ide. } I_{\text {do }} \Omega \quad k \sqrt{f} \quad \text { where } k=\sqrt{\frac{C\left(V_{d}+V_{C R}\right)^{\prime}}{2 R^{\prime}}} \tag{4.20}
\end{align*}
$$

It may be seen, therefore, that at the higher frequencies $I_{\text {do }}$ becomes approximately proportional to the square root of frequency. The value of L_{d} would appear to have little or no effect upon the constand of proportionality, k. At these higher frequencies the value of $I_{\text {do }}$ is quite independent of load.

The variation of δ may now be found by using the approximate expression given in equation (4.12) and substituting the value of $I_{\text {do }}$
obtained from equation (4.29)

$$
\begin{aligned}
& \text { ide. } \delta \Omega \frac{\mathrm{CV}_{C R}}{I_{\mathrm{do}_{0}}} \\
& \stackrel{\Omega}{\left.\sqrt{\left\{\frac{C\left(V_{d}+V_{C R}\right.}{2 R_{C R}^{\prime}}\right)^{2}}\right\}} \cdot \frac{1}{\sqrt{f}} \\
& \text { ide. } \delta \Omega \frac{\sqrt{2 \mathrm{CR}^{\prime}}{ }_{\mathrm{a}}}{1+\frac{V_{d}}{V_{C R}}} \cdot \frac{1}{\sqrt{1}}
\end{aligned}
$$

i.e. At the higher frequencies δ is approximately inversely proportional to frequency and is independent of L_{d} and the load. Equations (4.20) and (4.21), it should be emphasized, are valid only when the frequency is high enough for $I_{\text {do }}$ to become independent of the load

4.6.3 Comparison between Observed and Predicted Variations of $I_{\text {do }}$ and δ with Frequency.

The circuit was tested over a range of frequency under four operating conditions with $V_{d}, V_{C R}$ end C kept constant. Two values of L_{d} and load resistance R were used. At each chopping frequency the values of $I_{\text {do }}$ and δ were measured on an oscilloscope and Figs. 4.11 and 4.12 show the observed variations of $I_{\text {do }}$ and δ respectively with frequency.

In Fig. 4.11 it is seen that at the lower frequencies $I_{\text {do }}$ remained

Fig. 4.11: Variation of $I_{\text {do }}$ with frequency.*

Fig. 4.12: Variation of δ with frequency *

* $\left\{\begin{array}{l}V_{d}=50 \mathrm{v}, V_{c R}=70 \mathrm{v}, C=32 \mu F, L=11.6 \mathrm{mH}, R_{d}^{\prime}=0.18 \Omega \\ \text { (a) } R=5 \Omega, L_{d}=4 \mathrm{mH} ; \text { (b) } R=2 \Omega, L_{d}=4 \mathrm{mH} ; \text { (c) } R=5 \Omega, L_{d}=11.6 \mathrm{mH} ; \\ \text { (d) } R=2 \Omega, L_{d}=11.6 \mathrm{mH} ; \text { (e) predicted curve, applicable above approx. } 1004 \mathrm{~s}\end{array}\right\}$
constant but later fell as the frequency was increased, reaching a minimum value at a frequency of about $100 \mathrm{c} / \mathrm{s}$. At these frequencies I $I_{\text {do }}$ was either equal to $I_{L O}$ or a little moe than $I_{L O}$. At higher frequencies $I_{\text {do }}$ rose with frequency and became approximately proportional to $\sqrt{\text { f. }}$

The two curves drawn for each value of L_{d} ere seen almost to merge at the high frequencies. This shows that $I_{\text {do }}$ had become independent of the load.

Despite the fact that the higher value of L_{d} used was almost three times greater than the lower value it is seen that the values of $I_{\text {do }}$ for each value of L_{d} are not significantly different. The difference can, in fact, be attributed to the slightly greater value of R_{d} in the case of the higher value of I_{d} which caused the effective resistance R^{\prime}, of the choke and diode D_{2} to be increased slightly. This shows that $I_{\text {do }}$ was independent of the value of L_{d}.

The theoretical variation of $I_{\text {do }}$ with frequency, determined from equation (4.19) is also shown in M. 4.41 . In calculating the slope of this line the characteristics of diode D_{2} were represented by an equivalent resistance which, however, changes with current. At the higher frequencies the values of $I_{\text {do }}$ would be expected to increase at a. faster rate, due partly to the fall of the equivalent resistance of diode D_{2} and partly to the increasing significance of the time $\frac{d}{\omega}$ which would shorten the decay time of I_{5} through diode D_{2}.

Fig. 422 shows the corresponding variations of $\boldsymbol{\delta}$ with frequency. Since δ is approximately inversely proportional to $I_{\text {do }}$ the variation of δ would be expected to be the inverse of that of $I_{\text {do. It is seen }}$
that δ rises to a maximum at about $100^{\circ} / \mathrm{s}$, due to the fall of I do, and theroafter falls with frequency. Again it is seen that the two curves drewn for each value of I_{d} tend to merge at the high frequencies, demonstrating that δ had become independent of the load. It is also soen that δ wae relatively unaffected when J_{d} was inereased by a factor of three, demonstrating that δ waa independent of L_{d}. The curve representing the theoretically predicted variation of δ with frequency is also shown in Fig. 4.12.

Due again to the fall in the equivalent resistance of diude D_{2} at higher values of $I_{d o}$ and to the ineressing significance of the time $\frac{\phi}{\omega}$ resulting in a shortening of the decay time, the values of δ would be expected to fall even moxe rapidly at higher frequeneies.

In both Fig. 4.11 and Fig. 4. 12 the agseement between the observed and predieted variations of $I_{d o}$ and δ with frequency is seen to be good, showing that the theory developed is valid within the conditions imposed.

4.7 Switching Losges.

When CR_{1} is conducting the losses in the circuit are caused by the forward voltage $d r o p$ of CR_{1}, the resistance, $\mathrm{R}_{\mathbb{C}}$ of the choke, and the resistance of leads, etc. CR_{1} had an almost constant voltege drop of about 1.6 V when conducting and its power dissipation can therefore be found by multiplying the mean current flowing in it by 1.6 V .

When CR ${ }_{1}$ is switched off, however, the energy stored in the load inductance and. in the choke I_{d} is left to be dissipated in paths
completed by diodes D_{1} and D_{2}. The load stored energy is mainly dissipated in the load resistance, a small amount being dissipated in D_{1}, but this is not considered as a loss.

The energy stored in the choke L_{a} is dissipated in the diode D_{2} and in the choke resistance R_{d} and this is certainly a loss in the accepted sense. At low frequencies, when the current in the choke decays completely from \hat{I} to zero, the energy loss E_{d} is given by

$$
\begin{align*}
& \mathrm{E}_{\mathrm{d}}=\frac{\lambda_{2}}{} \mathrm{~L}_{\mathrm{d}} \hat{\mathrm{I}}^{2} \\
& =\frac{1}{2} L_{d}\left(I_{d o}^{2}+\frac{c\left(V_{d}+V_{C R}\right)^{2}}{L_{d}}\right) \\
& =\underline{\frac{1}{\frac{2}{2}} \mathrm{~L}_{\mathrm{d}} I_{\mathrm{do}}^{2}+\frac{1}{2} C\left(V_{\mathrm{d}}+V_{\mathrm{CR}}\right)^{2}} \text { joules }
\end{align*}
$$

At a o lopping frequency i^{6} / s this represents a lower $10 s 8 \mathrm{P}_{\mathrm{d}}$ given by

$$
\begin{align*}
P_{d} & =E_{d} \cdot f \\
& =\underline{\frac{1}{2} I_{d} \cdot f . I_{d o}^{2}+\frac{1}{2} C f\left(V_{d}+V_{C R}\right)^{2} \text { Watts }} \tag{4.23}
\end{align*}
$$

At these low frequencies $I_{\text {do }}=I_{L 0}$, ice. the load current being switched off.

At higher frequencies, where $I_{\text {do }}$ is independent of load, the decay time is short enough for the current in I_{d} to rise from ' ${ }_{\text {do }}$ to \hat{I} and decay back to $I_{\text {do }}$ only. The energy dissipated in this case is given by

$$
\begin{align*}
\mathrm{E}_{\mathrm{d}} & =\frac{2}{2} \mathrm{~L}_{\mathrm{d}}\left(\hat{I}^{2}-I_{\mathrm{do}}^{2}\right) \\
& =\frac{2}{2} \mathrm{I}_{\mathrm{d}}\left(I_{\mathrm{do}}^{2}+\frac{\mathrm{c}\left(V_{\mathrm{d}}+V_{\mathrm{CR}}\right)^{2}}{L_{\mathrm{d}}}=I_{\mathrm{do}}^{2}\right) \\
& =\frac{\frac{2}{2} c\left(V_{\mathrm{d}}+V_{\mathrm{CR}}\right)^{2} \quad \text { Joules }}{}
\end{align*}
$$

This then represents a power loss given by

$$
\begin{equation*}
P_{d}=\frac{\frac{1}{2}}{C \cdot f}\left(V_{d}+V_{C R}\right)^{2} \text { Watts } \tag{4.25}
\end{equation*}
$$

i.e. For given values of C, V_{d} and $V_{C R}$ the power loss is proportional to frequency.

In addition, there is a loss in the resistor R_{c} in the auxiliary circuit which can be minimised by making R_{c} as small as possible.

It should be noted that the formae for P_{d} take into account the power taken from the auxiliary apply in reacharging oapacitor C to the negative voltage $-\nabla_{C R}$ and also the power taken from the main supply during the turning off of CR_{1}, i.e. the period in which the current in the choke rises from $I_{\text {do }}$ to \hat{I}.

4.8 Conclusions.

The tests carried out on the dec. switch as described above have shown that the circuit provides a very effective method of turing on and off the doc. supply to an inductive load. By charging the capacitor from a fixed auxiliary voltage supply and isolating it from the load during turn off it was found that the nature of the load had no effect upon the ability of the switch to turn off. Consequently the circuit
wes equally suitable for highly inductive as well as resistive loads. It was possible also to use a relatively small eapoitor since the capacttor was not called upon to absorb any of the load stored energy at turn off.

The other novel feature of the circuit was the use of diodes to provide deaay paths for inductive stored energy. These diodes were found to be very successful and made possible not only the use of a small eapacitor but also the eliaination of severe switching transients.

It hes been shown that the theory developed for the eircuit was valid and capable of predicting the circuit's perfornance to a high degree of accuracy. From the theory, and verified by experiment, it was found that δ was approximately equal to $\frac{\mathrm{CV}_{\mathrm{CR}}}{\mathrm{I}_{\text {do }}}$ and so by adjusting the values of C and V_{CR} it was possible to obtain sny required value of δ for each value of $I_{\text {ao }}$

At Iow chopping frequencies $I_{\text {do }}$ was equal to $I_{\text {LO }}$, the load current at tum off. At higher frequencies, after an initial reduction due to the change in the waveform of the load eurrent, $I_{\text {do }}$ inoreased in proportion to the square root of frequency. This resulted in s corresponding decrease in the value of $\boldsymbol{\delta}$. The inorease in $I_{\text {do }}$ was shown to be due to the effect of D_{2} which $1 i m i t e d$ the rate of decay of the current trapped in the choke I_{a} after each turn off. This resulted in the build up of a circulating current in the $\mathrm{L}_{\mathrm{A}}-\mathrm{D}_{2}$ path to a level, where the energy sbsorbed by L_{d} at each turn off was dissipated in the choke resistance R_{d} and the diode D_{2} in each switohing oyole.

The energy dissipated in R_{d} and D_{2} was the sam of the energy taken
from the auxiliary supply by the capacitor during recharging and the energy taken from the main doc. supply immediately after the turn off of CR_{1}. 有t low chopping frequencies, or when the circuit was used intermittently ss a dee. contactor, the energy lost in this way would be unimportant. At higher frequencies, however, the energy loss, repeated in each switching cycle, could represent a substantial power loss and consequent reduction in operating efficiency.

It was seen that the value of I_{d} had very little effect upon the magnitude of δ and $I_{\text {do. Obviously }} L_{\text {a }}$ could not be made zero, otherwise the capacitor would charge instantly from the main $\mathbb{A} . c$. supply and result in too short a reverse bias time for CR_{2} to turn off correctly. However, provided that L_{d} was sufficiently large to prevent \hat{I} from becoming very much larger than $I_{\text {do }}$, the value of L_{a} was relatively animportent. It was found that the values of $I_{\text {do }}$ at high frequency were reduced by increasing L_{d} but this was attributed not to the increase in L_{a} but to the accompanying small increase in the winding resistance of the choke.

Reduction of the magnitude of $I_{\text {do }}$ at high frequencies, to increase δ without altering $V_{C R}$ and $C_{\text {, }}$, was possible by adding resistance in series with D_{2}. This caused the decay of the current trapped in L_{d} to become more rapid or, in other words, enabled the energy absorbed in L_{d} at each turn off to be dissipated in a higher resistance at a lower current level. Such reduction of $I_{\text {do }}$ would enable a reduction in the value of C or V_{CR} to be made which would result in a smaller energy loss and further reduction in $\mathrm{I}_{\text {do }}$.

Although the study of the A.C. switch was mainly to assess the guitability of the turn of technique for inversion, the oirouit has many uses in its own right. Two examples are the voltage gontrol of a d.c. motor and the cheoking of S C E turn off times. Voltage control. ean be effected by varying the ratio of the on and off pexiods so as to vary the mean output voltage from a very low value to full supply voltage. SOR tum off times ean be meavured by comnecting the SOR to be checked in place of CR_{2} and messuring δ on an oscilloseope. By increasing the load current, or by reducing $V_{C R}$, the value of δ at Which the S CR just feilis to turn off ean be found.

It is clear at this stage that in an inverter using the turn off method described above, the power $20 s s$ due to curantation will prove to be a serious problem. This will be shown in Chapters 5 and 6 . In a d.c. switch other equally effective but more efficient aircuits $1,2,3$ could be used which would avoid the commutation $30 s s$ sltogether.

CHAPLER 5

PRINCIPLI AND THEORY OF OPRRATTION OF A "D.C.-COMMUTATED
THRFE-PBASE INVGRTPER WITH A SERIES R-I IOAD.
In the conelusions on Chapter 3 a comparison was made between an inductive load fed from the besie three phase inverter eircuit and from an oxdinary three phase sinusoidal supply. It was appreciated that in the case of the simusoidal supply it was possible for power to flow Instantaneously both from and to the aupply whereas in the case of the inverter this was not so because of the unidirectional oharecteristies of the rectifiers. To obtain inverter output voltage and ourrent waveforms which were not far distorted from sineweves it was therefore neceseary to use oapacitors on the output side of the inverter to absorb the reverse power flow from the load. It was pointed out that this was tantamount to correoting the load power factor to unity and that it was necessary to vary the eapacitazce with load and frequenoy. Smaller capacitors could be used merely to effect commatation but their use resulted in highly distorted outpat wavefozas and large oscillations initiating at each commatation. Another shorteoming of the basic inverter eircuit was the variation of voltage on the commutating eapacitors. This sometimes resulted in fallure of the comatation process. For reliable commutation it was conoluded that a method should be employed for charging the comutating eapacitors to a fixed voltage before each oommatation. Such a method is known as "forced oommatation", as opposed to "artificial comratation" in which the current and voltage

Waveforms are diatorted to effeet comutation by means of some component which is part of the inverter load.

In the next three chapters is described an inverter circuit which satisfies the requirements statedabove. A severse atode bridge is used to permit a two-way flow of power through the circuit and for commutation a single capacitor, charged to a fixed voltage from an auxiliary supply, is discharged into the d.c. side of the inverter. The auxiliary oircuit is that used for the d.c. switch described in Chapter 4.

This chapter deals with the principle and theory of operation of the inverter circuit with a star-conneeted $\mathrm{H}-\mathrm{L}$ load. Chapters 6 and 7 deal with expeximents carried out on the circuit with an R-L and an induction motor load.

5.1 Circuit and Principle of Operation.

Fig. 5.2 shows the oircuit of the inverter. The $S C R^{\prime}$ e CR 1_{1}, $\mathrm{CR}_{2} \ldots \mathrm{CR}_{6}$ are connected in a three phase bridge, input lines being connected to the bridge at the common anode connection of $\mathrm{CR}_{1}, \mathrm{CR}_{3}$, CR_{5} and the comon cathode comnection of the $\mathrm{CR}_{4}, \mathrm{CR}_{6}, \mathrm{CR}_{2}$, and output lines to the eathodes of $\mathrm{CR}_{2}, \mathrm{CR}_{3}, \mathrm{CR}_{5}$ as in the basic bridge eirouit. For symmetry the choke is split into two halves, L_{d} each, one in each Iine from the main d.c. supply, and to ensure equal voltage sharing the two halves are wound on a single core. Diodes $D_{1}, D_{2} \ldots D_{6}$ are conneoted between each output terminal and each mein d.0. supply terminal In auch a way that they are nomally non-condueting and would only return current from the load to the supply. Diodes D_{7}, D_{8} are connected,

Fig. 5.1: Circuit of "d.c .commutated three phase inverter".

Fig. 5.2: Voltage distribution and current paths in circuit at instant of firing CR7.
(H) \& conducting; $N \& \rightarrow$ non-conducting)
one across each half of the choke in the d.c. lines, so that they, too, are normally non-conducting. C_{d} is a large reservoir eapacitor conneoted aeross the main d.O. supply to suppress the transient effeets of the supply impedance during sudden current changes. \mathbb{R} and L axe the resiatance and inductance of each phase of the star-connected threephase load.

Capestor C is charged from the auxiliary supply through CR_{8}. ${ }_{\mathrm{L}}^{\mathrm{e}}$ is the inductanee of the auxiliary supply. $\quad \mathrm{CR}_{7}$ is used to connect the negatively charged eapacitor C between the input terminale of the bridge so as to turn off the bridge S C Rs for coumutation.

The S O Re are fired in the correot sequence by pulses fed to them from a transistor pulse generator. The frequency of the pulses from the generator is governed by an input signal from a master oscillator, the output frequenoy of which can be varied at will. The pulse generator is briefly desoxibed in seotion 5.2.
v_{d} and V_{a} are the voltages of the main and auxiliary d.c. supplies. \Both supplies were taken from d.c. gensrators and could be varied as required.)

In its prineiple of operation the inverter is a combination of the basic three phase bridge inverter and the d.c. switoh. Bech of the bridge $\mathrm{S} C \mathrm{Cl}$ conduots for one third of a oyele as in the basic eircuit and the inverter therefore gives the same basic output current and voltage wavefoms as the basic oircuit of Chapter 3 . In esch sixth of a cyole espacitor C is charged to a negative voltage from the auxiliary supply by firing $\mathrm{CR}_{8} 8^{\text {. Beceuse of the auxiliary supply }}$
induotance L_{c} the voltage on the oapaeitor overshoots the velue $-\bar{\gamma}$ a and at the peak of the overshoot, at a voltage $-V_{C R}$, the charging current tends to reverse but is prevented from doing so by CR ${ }_{8}$. Capecitor C therefore remains at the voltage $-V_{C R}$ and CR_{8} turns off, being reverse biesad by the difference between $V_{C R}$ and V_{a}.

At the end of aach sixth of a cycle, when commtation is requieed to take place, CR_{7} is Pixed . This connects the negatively-charged. capacitor C between the input teminsls of the bridge, causing all the S C Rs in the bridge to become reverse biased and, therefore; turns off the two S C Re whieh were conducting, The instantaneous difference between the main $d . c$, supply voltage V_{d} and the cepacitor voltage $-V_{C R}$ is sustained by the chokes in the d.c. lines and is shared equally between them. However, the load is induetive and the eurrents in the two phases which had been supplied through the two conducting S C Rs are now forced to flow through two of the diodes in the reverse diode bridge and hence back to the supply.

P4g. 5.2 shows the ditizibution of current and voltage in the circuit at the instant of firing CR_{7} for a esse in which $V_{d}=200 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{CR}}=300 \mathrm{~V} . \quad \mathrm{CR}_{1}$ and CR_{6} had been conducting, immediately before and CR_{2} is about to be fired. $I_{L 0}$ is the current whioh had been flowing in phases A and B of the load (it will be seen later that the current in phase C at this inatant would be zero under most conditions) and $I_{\text {do }}$ the current in the chokes I_{d}.

Since the differance between the supply and eapacitor voltages is shared equally between the two halves of the cholce the voltages on
the plates of the eapacitor must be -150 V and +150 V if the supply terminals are at +100 V and -100 V . The common anode connections of $\mathrm{CR}_{1}, \mathrm{CR}_{3}$ and CR_{5} mast therefore be at a voltage -150 V while the common cathode connections of $\mathrm{CR}_{4}, \mathrm{CR}_{6}$ and CR_{2} must be at +150 V . The ourrent in phase A flows through diode D_{4}, the curxent in phase B through D_{3}, and lines A and B are therefore at voltage -100 V and +100 V respectively. Since the same current flows in phases A and B and none in phase C the load star point and hence line C must be at zero voltage. It can be seen that CR_{1} and CR_{6}, the S C Rs which had been conducting, are reversebiased by only 50 V or half the difference between $\nabla_{C R}$ and V_{d}, and are only reverse-biaged while the capacitor voltage is greater than V_{Q}. CR_{3} and CR_{4} are reverse-biesed by 250 V , i.e. $\frac{1}{2}\left(\mathrm{~V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{CR}}\right)$, and CR_{2} and

The eapacitor eventually charges to the voltage $+V_{d}$, at which point diodes D_{7} and D_{8} conduct to prevent the cepeaitor voltage from rising further. Ca_{7} then turns off and the currents in the two halves of the choke decay through D_{7} and D_{8}. Having tuxned off the $S C$ Re in the bridge it now remains to fire the two S C lis which are required to conduet in the next sixth of a cycle, 1.e. CR_{1} and CR_{2} in the case considered above. CR_{8} must also be fired at some stage to re-charge the eapacitor to $-V_{C R}$ ready for the next comautation. The current in phase B now continues to decay through diode D_{3} towards zero, during which period the star point of the losd is no longer at zero voltage. When the current in phase B reaches zero the currents in the other two phases become equal and rise together thereafter
towards theix steady values.
5.2 Fulse Generator.
5.2.1 Pulse Sohedule.

In Fig. 5.3 the pulse required for controlling each of the $\$ \mathrm{C}$ Re In the eirouit are shown. At the ond of each sixth of a cyele a single pulse of short duration is all that is required to fire $O R$, and so tum off the bridge $S C$ Rs. At some point in the middle of each sixth of a cyole a short pulse is applied to the gate of CR_{8} to re-charge the comutating capacitor from the auxiliary supply. Under some eircumstances it is possible for the current in the bridge S O Fis to fell to zero and for the 3 C Rs to become reverse-biesed temporarily. Gate drive is therefore required over the whole of the conduction period of one third of a oycle. Partly because of the difficulty in pasaing rectangular pulses through saall output transformers at low frequeneies, and partiy because of the zecessiby for keeping the mean gate voltage as simell as possible during reverse-bias of the S C R, the gete drive for each bridge S C A: conalats of a high frequency pulse train, as show in Pig. 5.4. The pulses in the train are 20μ Sees long, 140μ Secs apart, and have a msgnitude of about 2 V . The mean gate voltage is thus kept at the 0.25 V recommended maximum during reverse-bias conditions and the drives for the S C Rs can be 1solated from eech other by using relatively amall output transformers in the pulse genepator. Each pulse train is of one third of a cyele đuration, commencing at ingtant t_{2} for CH_{2}, t_{2} for CR_{2} and so on.

Fig. 5.3: Pulse schedule required from pulse generator.

Fig. 5.4: Form of pulse train applied to the SCRS in bridge during conduction.

The 20μ Secs pulse duration was long enough to s.llow the ourrent in each S CR to rise above the holding current with the inductive inverter loads used.

5.2.2 Principle of Operation.

Fig. 5.5 shows in block diagram form the layout of the components of the pulse generator.

A signal from the master oscillator is fed with a wave shapex and thence into a scale of aix ring counter. For each input cycle a pulse is produced at one of the ring counter output teminsis in sequence, and the ring counter output pulse frequency is therefore one sixth of the oscillator frequency. Six pulse train gating eirouits, one for each bridge S C C , are connected to the ring counter as shown. A pulse at the "N" texminal opens the gate, a pulse at the "p" texminal closes the gate. When the gate is open the pulse train from the pulse train oscillator is passed to the S C R gate. The "p" terminal is the input for the pulse train. The "IN" temminal of the gating circuit for CR ${ }_{1}$ is connected to ring counter output 1 and the "pn teminal to output 3. Consequently the gating eirouit for CR_{1} passes the pulse train to CR_{2} between the appearances of pulses at ring counter outputa 1 and 3, i.e. for one third of a cycle. The other gating oirouits operste similariy, displaced by the appropriate number of sixths of a cyele.

For CR_{7} a pulse is required at the start of each sixth of a cycle. All the ring counter outputs are therefore connected to an or gate and

Fig. 5.5: Block diagram of pulse generator.
a pulse ia then supplied to CR_{7} each time a pulse appears at any of the ring counter output terminals.
CR_{8} requires a pulse each sixth of a cycle but between the pulses fed to CR_{7}. The master oscillator signal is therefore passed through a phase shifter, to allow adjustment of the pulse positioning, and thence to a pulse generator which produces a pulse each sixth of a cycle.

All the output pulses fed to SC Re are electrically isolated from each other by means of small output transformers.

5.3 Theory of Operation on Stax-Connected R-L Load with "Power Factor" >0.5 (approx.).

5.3.1 Basis of Theory and General Assumptions mede.

In the following theory it is assumed, unless otherwise stated, that the $5 C$ Rs and diodes cen be regarded as open circuits between anode and cathode (i.e. zero lealcage current) when non-condueting and as short oircuits (i.e. zero voltage drop) when conducting.

The load for which the circuit is analysed is a star-connected load In which each phase consista of resistance R and inductance I in series. Magnetic coupling between phases is assumed to be absent. Most loads in practice have a power factor greater than 0.5. Since the theory for very low power factor loads is slightly different it is left over until section 5.4. The difference between the two eases is that for high power factor loads current flows in only two phases at the end of each sixth of a cycle whereas in the low power factor case all three phases carry current. The actual value of power factor at which the transition
takes place depends upon the commutation process to some degree but would normally be of the order of 0.5 . In the section heading "power factor" is written between quotation marks because the power factor in the inverter circuit, as will be seen later, cannot be specified in the same way as in a system supplied by sinusoidal voltage and current.

The method of analysis used is to consider one sixth of a cycle only, to begin the analysis at the start of this period when certain SC Res and diodes are known to conduct, and to use known or assumed initial current and voltage values. Voltage and current equations can then be formulated which are valid until the current or voltage associated With any S CR or diode reverses or tends to reverse. The resulting change in the circuit is then taken into account and new equations formlated, using new initial current and voltage values. This procedure is repeated until the end of the sixth of a cycle is reached. From the current and voltage variations in this single sixth of a cycle the complete waveforms etc, can then be determined.

It is assumed throughout that the main dec. supply has no impedance and that the supply voltage therefore suffers no fluctuations under transient conditions. The reservoir capacitor C_{d} is considered as part of the supply and ignored in the theory.

In the practical circuit R-C filters were connected across each S CR to suppress transient voltage packs and a small air-cored choice was connected in series with the commutating capacitor to limit the reverse current peak in the S C Rs being turned off. The effect of these components was small and is neglected in the theory.

The sixth of a cycle chosen for study in the analysis is that occurring between instants t_{2} and t_{3}. At t_{2} CR $_{6}$ is turned off and. CR_{2} turned on instead, commutation therefore taking place between phases B and C of the load.
5.3.2 States of Circuit in the Sixth of a Cycle.

After CR_{7} is fired to turn off the bridge $S C$ Rs at the start of the sixth of a cycle the state of the circuit, i.e. the position of conducting SC Rs and diodes, changes several times. The states of the circuit as they occur are shown in $\mathrm{FH} g \mathrm{ga} .5 .6$ to 5.23 . In these diagrams the arrows indicate current flow, the voltage distribution is indicated by muerical values which give potentials as percentages of half the dec. supply voltage, and the letters \mathbb{R} and F indicate which S C Rs and diodes are reverse-biased and foxward-biased respectively.

State 1 :- CR_{7}, conducting, all bridge S C Rs off; $\mathrm{V}_{\mathrm{C}}<-\mathrm{V}_{\mathrm{d}}$.
The eircuit is arranged se that when CR_{7} is fired the voltage V_{c} on the capacitor C is greater than and opposite to the main dec, supply voltage V_{d}. The state shown in Fig. 5.6 therefore occurs with all the bridge SC Ra reverse-biased and turned off. Since the two halves of the d.e. choke are tightly coupled the voltage drops across each are the same. The current flowing in phases A and B decays at such a rate that D_{3} and D_{4} are forced to conduct. It willie shown later that the current in phase C would be zero at this time for a high power factor

Fig.5.6: Distribution of voltage and current.
State 1: CR7 conducting and $\left(-V_{c}\right)>V_{d}$

Fig. 5.7: Distribution of voltage and current.
Transition from state 1 to state 2: CR7 conducting
and $\left(-V_{c}\right)=V_{d}$.
load. Current flows frou the d.c. supply throagh the d.c. chokes and Into eapacitor C causing its voltage to x ise towerds the d.c. supply voltage.

This state is maintained at least until ∇_{c} reaches the value $\left(-V_{d}\right)$. At this instant it ia seen from Pi.5. 5.7 thet the voltages acroas $C R_{1}$ and CR_{6} ere zero and any further xise of V_{6} would make these two $\$ \mathrm{C}$ Rs beoome forward biased. However, no gate signal is applied to CR_{6} and this 8 CR would romain off though forward biesed. CR_{1}, on the other hend, is required to conduct again and will conduct as soon as the first pulse in the pulse train is applied to its gate. When CR_{1} conduets again the circuit changes to the next state, described below.

State 2 :- $\mathrm{CR}_{7}, \mathrm{CR}_{1}, D_{3}$ condueting, $\left.V_{0}\right\rangle-V_{d}$.
TIE - 5.8 shows the oircuit when V_{d} has risen above $\left(-V_{d}\right)$ and CR_{1} has turned on. It is seen that D_{4} becomes reverse-biased and therefore turns off. This means thei the eurrent which had elowed through D_{4} is suddenly transferred to OR_{2} and hence nust flow through the upper half of the d.c. choke. Because the two halves of the choke are tightly coupled this instantaneous increase of cuxrent in one half is possible and is balanoed by an equal decrease in the other half, the condition to be obeyed being that the sua of the currents in the two halvea must be instantaneously unchanged. However, this means that the current flowing into the aapaoitor is now reduced and the rate of rise of V_{c} is therefore reduced.

It should be noted that because the currents in phases A and B

Fig. 5.8: Distribution of voltage and current.
State 2: $c R_{7}$ conducting and $\left(-v_{c}\right)<V_{d}$. (Shown for $\left.\left(-v_{c}\right)=0.99 v_{d}\right)$

Fig. 5.9: Distribution of voltage and current. Transition from state 2 to state $3: C R 7$ conducting and $\left(-V_{c}\right)=\frac{1}{3} V_{d}$
are the same the voltage at the load star point must be the mean of the voltage of lines A and 8 . The stax point voltage is also the voltage at the anode of CR_{2} since no ourrent flows in phase C .

This state is maintained at least until V_{0} rises to the value $\left(-\frac{1}{3} \mathrm{~V}_{\mathrm{d}}\right)$. $A t$ this instant, if CR_{1} is conducting as shown in Tig. 5.9, the voltege across CR_{2} becomes zero and CR_{2} is therefore liable to conduct. When Cl_{2} conduots the eireuit ohanges to the next state desoribed below.

Pig. 5.10 shows what happens when ∇_{c} xises above the velue $\left(-\frac{1}{3} \nabla_{d}\right)$ and CR_{2} conducts. Mo other change occurs in the eircuit, all diodes apart froa D_{3} being revarse-biased. Current starts to rise in phase C and flows to the d.c. supply through the lower half of the d.c. choke. The current in phase B continues to flow through diode D_{3}, no other path being avallable since CR_{6} has been turned off. Becauae V_{c} is still less than ∇_{a} diodes D_{7} and D_{8} are atill reverse-biased by the equal voltage drops aoross the balves of the d.e. choke.

This state is maintained until the voltage V_{e} becomes equal to the supply voltage V_{d}.

State 4 :- $\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{D}_{3}, \mathrm{D}_{7}, \mathrm{D}_{8}$ conducting, $\mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{d}}$.
When V_{c} becomes equal to V_{d} diodes D_{7} and D_{8} conduct and prevent V_{0} from rising further. The capacitor charging current therefore oesses

Fig. 5. 10: Distribution of voltage and current.
State 3:CR7 conducting and $\left(-v_{c}\right)<\frac{1}{3} V_{d}$. (Shown for $\left(-V_{c}\right)=0.32 v_{d}$)

Fig. 5.11: Distribution of voltage and current.
State 4: $V_{c}=V_{d}$, CR 7 turns off, $D 7$ and $D 8$ conduct.
and CR_{7} turns off leaving the curxents in the two halves of the choke to decay through D_{7} and D_{8}. This is shown in Mig. 5.21 .

Current contimues to flow through CR_{1} and CR_{2} into and from the load and the ourrent in phase B contimues to decay through diode D_{3} (assuming that the capaoitor charging time is vexy short compared with the load time constants).

This atate is maintained until the current in phase B reaches gexo at which point diode D_{3} becomes reverse-biased.

State 5 :- $\mathrm{CR}_{1}, \mathrm{CR}_{2}, \mathrm{D}_{7}, \mathrm{D}_{8}$ conducting, CR_{7} off.
When diode D_{3} becomes reverse-biased currelnt flows into the load through CR_{1} and CR_{2} only and the current in phase B remains zero. The eurrent in phase A is now the same as that in phase C and both rise together towards a steady state vslue. The currents in the two halves of the choke continue to decay through D_{7} and D_{8} (assuming that this decay time constant is greater than the load time constant).

This state shown in Pig. 5.12 is maintained until the currents in D_{7} and D_{8} become zero or until the and of the sixth of a cyele.

State $6 \mathrm{~s}-\mathrm{CR}_{1}, \mathrm{CR}_{2}$ condueting, $\mathrm{D}_{7}, \mathrm{D}_{8}$ off.
The current flowing in each diode D_{7} or D_{8} is equal to the difference between the current in each half of the d.c. choke and the current in CR_{1} and CR_{2}. If the choike current should decay to the value of the current in the load, the currents in D_{7} and D_{8} become zero and the choke

Fig 5.12: Distribution of voltage and current.
State 5: D_{3} has ceased conduction, D_{7} and D_{8} conduct.

(E). Forward biased:
(B) : Reverse biased;
(0): No bias

Fig. 5.13: Distribution of voltage and current.
State 6: D_{7} and D_{8} have ceased conduction.
becomes free to impede current rise again. Such a case is shown in Pig. 5.13. The impedence of the ohoke to ourrent rise eauses a voltage drop et the bridge temanals and D_{7} and D_{8} beoome reverse-biased.

At high frequencies it is common for the choke ourrent always to be greater than the load current and this last state does not then occur.

5.3.3 35mplifieations for Theory.

During the discharge of the capacitor 0 the oircuit has three possible states. The first state occurs imediately when the diseharge of C atarts, the second state can oocur at any instant after Y_{c} reaches the voltage $\sim V_{d}$, and the thixd state oan ocour at any instant after ∇_{c} reaches the value $-\frac{1}{3} \mathrm{~V}_{\mathrm{d}}$. For the enslysie of ench state it is necessary to find the voltages and ouxrents at the end of the previous state in order to obtain the initial volkege and currents. Becsuse the firing aignal applied to the $S \mathrm{C}$ Re consista of a train of pulses 140μ Seos apart the instant at which the oircuit awitches from each state to the next can vary within a range of about 140μ Seos. To analyse each stete soparately would not therefore be worth while and in the theory some simplifieations are mide.

The time occupied by the discharge of apacitor C represents a very small fraction of the sixth of a cyole and in most conditions. would not be very muoh greater than the 140μ Secs possible variation of the firing Instants of CR_{1} and CR_{2}. The assumption is therefore made that the ospsoitor discharge is complete, with $V_{e}=V_{d}$ and diodes D_{7} and D_{e} condueting, when CR_{1} and CR_{2} fixe together. In other words it is assumed.
that the oirouit switches directly from the firgt state described in section 5.3 .2 to the fourth state described in section 5.3.2.

This assumption does not involve any inaccuracy in the calculated velue of 6 , the time for which the bridge S C Rs pre reverse-blesed at turn off, since δ is calculated from the fixst part of the voltage variation in state 1. In state 2 the current in phases A and B would decay, the voltage applied to the two phases in series falling from - 200, to -133 of $\frac{2}{2} V_{d}$ (see Figs. $5.7,5.8$ and 5.9) if CR_{1} and CR_{2} were to conduct at the earliest possible ingtants. Beoause of the sudden reduction in the euxrext flowing into the eapacitor when the oircuit switches inte state 2 the capanitor would take longer to oharge fros - V_{d} to $-\frac{1}{3} V_{d}$ if atate 2 occumred than it would if state 1 persisted. Consequently the assumption that state 2 does not occur should not produce any significant error in the amount by which the load ourrent decaye.

5.3.4 Voltage and Current Equations.

5.3.4.1 Period 1-period of discharge of aapacitor C.

Fig. 5.14 shows the parts of the circuit which are assumed to conduct during the discharge of eapsoitor C. Current i_{d} flows into eapacitor C from the supply through CR_{7} and the two halves of the $\mathrm{d} . \mathrm{c}$. choke. The current which had flowed in pheses A and B before the firing of CR_{7} now flows through D_{3} and D_{4} back to the supply. This current is labelled is and the total current taken from the supply labelled i_{a}.

Fig. 5.14: Conducting paths during discharge of capacitor C.

Fig. 5.15: Operational form of circuit during period of discharge of capacitor C.

The two halves of the choke have self inductance L_{d} and mutual inductance M. The self inductance of each half is measured with the other half open circuited. Since it is assumed that all the flux linking one half also links the other half the coupling coefficient is unity and M is equal to $\sqrt{L_{d}{ }^{2}}$, i.e. $M=L_{d}$.

Fig. 5.25 shows the eirouit in 2 ts operational form with the initial current and voltage values included. $V_{C R}$ is the initial voltage on capacitor $C, I_{L O}$ the current flowing in phases A and B and $I_{\text {do }}$ the current flowing in both halves of the d .0 , choke at the instant of firing CR ${ }^{7}$.

The circuit consists of two eionod loops joined only at the supply terminals. Bach loop can therefore be treated separately. Taking the load current I_{g} fist,

$$
\begin{aligned}
& \frac{V_{d}}{p}-2 I I_{L 0}=-I_{g}(2 p L+2 R) \\
& \because I_{B}=\frac{-\nabla_{d}}{2 p L\left(p+\frac{R}{L}\right)}+\frac{I_{L O}}{p+\frac{R}{L}}
\end{aligned}
$$

Inverting this equation to obtain i_{g} in terms of tine, t, we obtain :

$$
1_{S}=-\frac{\nabla_{d}}{2 R}\left(1-e^{-\frac{R t}{L}}\right)+I_{10} e^{-\frac{R t}{L}}
$$

ie. $i_{a}=-i_{b}=1_{B}=-\frac{V_{d}}{2 R}+\left(\frac{V_{d}}{2 R}+I_{L O}\right)$ e $\frac{-R t}{Z_{2}}$
i.e. if falls exponentially from $I_{\text {do }}$ towards the steady state value $-\frac{V_{d}}{2 R}$ with time constant $\frac{L}{R}$.

Now taking the capacitor current,
$\frac{V_{d}}{p}+\frac{\nabla_{C R}}{p}+2 I_{d} I_{d o}+2 M I_{d o}=I_{d}\left(2 p L_{d}+2 p M+\frac{1}{p c}\right)$

But $\mathrm{M}=\mathrm{I}_{\mathrm{d}}$
$\therefore I_{d}=\frac{\frac{V_{d}+V_{C R}}{4 Z_{d}}+p I_{d o}}{p^{2}+\frac{2}{4 C I_{d}}}$
Inverting to obtain i_{d} in terms of time, t, we obtain s-

$$
\begin{equation*}
I_{d}=\hat{I} \cos (\omega t-\phi) \tag{5.2}
\end{equation*}
$$

where $\omega^{2}=\frac{1}{4 \text { CIa }_{\mathrm{c}}}$
$\tan \phi=\frac{V_{d}+\nabla_{C R}}{4 \omega I_{d} I_{d o}}=\frac{\omega c\left(V_{d}+V_{C R}\right)}{I_{d o}}$
and

$$
\hat{I}=\sqrt{I_{d o}{ }^{2}+\left(\frac{V_{d}+\nabla_{C R}}{4 \omega I_{d}}\right)^{2}}=I_{d o} \sqrt{2+\tan ^{2} \phi}
$$

In equation (5.2) the resistance of the doc. choke is neglected, its effect during rapid current changes being small.

From the equation for i_{d} the voltage v_{e} across the capacitor may be found

$$
\begin{aligned}
\nabla_{c} & =-\nabla_{C R}+\frac{1}{c} \int_{0}^{t} \hat{I} \cos (\omega t-\phi) d t \\
& =-V_{C R}+\frac{\hat{I}}{\omega C} \sin (\omega t-\phi)+\frac{\hat{I}}{\omega C} \sin \phi \\
\text { But } \sin \phi & =\frac{\omega C\left(V_{a}+V_{C R}\right)}{\hat{I}}
\end{aligned}
$$

$$
\therefore v_{c}=\nabla_{d}+\frac{\hat{I}}{\Delta C} \sin (\omega t-\phi \phi
$$

The time \mathcal{S} for which $G R_{1}$ and $C R_{6}$ are reverse-biased may be found from equation $(5 \cdot 3)$. Since the voltage across CR_{1} and. CR_{6} passes through zero when $v_{c}=-v_{d}$, $t=\delta$ when $v_{d}=-v_{d}$.

$$
\begin{align*}
& \therefore-\nabla_{d}=\nabla_{d}+\frac{\hat{I}}{\omega c} \sin (\omega \delta-\phi) \\
& \text { ie. } \delta=\frac{I}{\omega}\left(\phi-\sin ^{-1} \frac{2 V_{d}}{\hat{I}}\right) \tag{5.4}
\end{align*}
$$

This is the exact expression for δ. Since $\boldsymbol{\delta}$ is the time taken for the capacitor to charge from $-V_{C R}$ to $-V_{d}$ with a current, initially Ido, flowing into it an approximate expression for δ may be given as

$$
\begin{equation*}
\delta \Omega \frac{c\left(V_{\mathrm{CR}}-V_{d}\right)}{I_{\mathrm{do}}} \tag{5.5}
\end{equation*}
$$

Since the charging current flowing into 0 rises from $I_{\text {do }}$ towards \hat{I} during the charging period this approximate expression will tend to give slightly optimistic values for $\boldsymbol{\delta}$.

The voltage on capacitor C mas until it reaches the value V_{d} When D_{7} and D_{8} conduct and CR_{7} turns off. The time, T_{1}, taken for C to charge to the voltage V_{d} may be found from equation (5.3). Then

$$
\begin{align*}
& \mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{d}} * \frac{\hat{\Sigma}}{\omega C} \sin \left(\omega T_{2}-\phi\right) \\
& \text { ios. } \sin \left(\omega T_{2}-\phi\right)=0 \\
& \text { or } \quad T_{1}=\frac{\emptyset}{\omega}
\end{align*}
$$

${ }^{T}{ }_{1}$ is the period for which the first state of the circuit, that with $\mathrm{CR}_{7}, \mathrm{D}_{3}$ and D_{4} conducting only, is assumed to persist.

The current flowing in the two halves of the d.c. choke at the end of this first period should be \hat{I}. This an be checked by putting $t=T_{1}$ in equation (5.2). Then

$$
\begin{align*}
\mathbf{1}_{\mathrm{d}} & =\hat{I} \cos \left(\omega \cdot \frac{\emptyset}{\omega}-\emptyset\right) \\
\text { 1.e. } \underline{i}_{d} & =\hat{I} \tag{5.7}
\end{align*}
$$

This peak of current is left to decay through D_{7} and D_{8}.
The current, $I_{L 1}$, flowing in phases A and B at the end of this first period may be found from equation (5.1).

$$
\begin{equation*}
I_{L L}=-\frac{V_{d}}{2 R}+\left(\frac{V_{d}}{2 R}+I_{L O}\right) e^{-\frac{R T_{3}}{L}} \tag{5.8}
\end{equation*}
$$

Frown equations (5.7) and (5.8) the initial currents fox the analysis of the next state of the oirouit may be found.

The current i_{s} taken from the supply during the first period is given by

$$
\begin{align*}
i_{s} & =i_{d}-1_{g} \\
\text { i.e. } i_{s} & =\hat{I} \cos (\boldsymbol{\omega} t-\phi)+\frac{V_{d}}{2 R}-\left(\frac{\nabla_{d}}{2 R}+I_{L O}\right) e^{-\frac{R t}{L_{0}}} \tag{5.9}
\end{align*}
$$

5.3 .4 .2 Period 2 - period of decay of current in phase B.

It is assumed that the circuit switches directly from State 1 described in section 5.3 .2 to State 4 described in section 5.3 .2 . The next state of the circuit to be analysed, therefore, is that in which CR_{7} has turned off and CR_{1} and CR_{2} conduct, with D_{3} carrying the decaying current in phase B. This period ends when the current in phase B and diode D_{3} decays to zero, at which stage D_{3} turns off and becomes reversebiased. It is also assumed that throughout this period diodes D_{7} and D_{8} remain conducting.

Pig. 5.16 shows the paths which carry current during the period of decay of current in phase 3 . The current taken from the supply is i_{g}, currents i_{p} and i_{n} flow in the two halves of the $d_{. c}$. choke, currents i_{q} and i_{r} in the diodes B_{7} and D_{8}. Currents $i_{a}{ }^{*} i_{b}, i_{o}$ in phases A, B, C flow through $\mathrm{CR}_{2}, \mathrm{D}_{3}, \mathrm{CR}_{2}$. The resistance R_{d} of each half of the dec. choke is also included.

Since it is assumed that D_{g} and D_{8} conduct while the current i_{b} decays to zero, the voltage drop across each half of the choke is Limited to the forward voltage drops of D_{7} and D_{8}, 30 obtain the

Fig. 5.16: Conducting paths during decay of current in phase B.
\qquad

Fig. 5.17: Operational circuit, valid during decay of current in phase 8 , for determining load currents.
variations of current in the load during this time the effect of the d.c. choke can be neglected. The variation of current in each half of the choke and in D_{7} and D_{8} an then also be found separately.

Fig. 5.17 shows the operational circuit used for obtaining the load currents. The initial value of i_{a} is $I_{\text {LI }}$, of $i_{b} i s-I_{L 1}$, and of i_{0} is zero and these initial values are allowed for in the operational ciscuit.

Applying Kirchhoff's First Law to the load star point

$$
I_{a}+I_{b}+I_{c}=0
$$

$$
\begin{equation*}
\therefore \quad I_{c}=-\left(I_{a}+I_{b}\right) \tag{5.10}
\end{equation*}
$$

Equations for I_{a} and I_{b} may be obtained es follows:-

$$
\frac{V_{d}}{p}+L I_{L I}=I_{a}(p L+R)-I_{c}(p L+R)
$$

1.e. $\frac{V_{d}}{p}+I I_{L 1}=2 I_{a}(p L+R)+I_{b}(p L+R)$

$$
\begin{equation*}
2 L I_{L I}=I_{a}(p L+R)-I_{b}(p L+R) \tag{5,12}
\end{equation*}
$$

Eliminating I_{b} from equations (5.11) and (5.12),

$$
\begin{equation*}
\therefore I_{a}=\frac{p I_{L I}+\frac{V_{d}}{3 L}}{p\left(p+\frac{R}{L}\right)} \tag{5.13}
\end{equation*}
$$

Inverting to obtain i_{a} in terms of time t, we obtain

$$
\begin{equation*}
i_{a}=\frac{V_{d}}{3 R}+\left(I_{L l}-\frac{V_{d}}{3 R}\right) e^{-\frac{R t}{L}} \tag{5.24}
\end{equation*}
$$

Eliminating $I_{\text {a }}$ from equations (5.21) and (5.22)

$$
\begin{equation*}
\therefore \quad I_{b}=\frac{\frac{V_{d}}{3 L}-p I_{H I}}{p\left(p+\frac{R}{L}\right)} \tag{5.15}
\end{equation*}
$$

Inverting to obtain i_{b} in terms of time t, we obtain

$$
\begin{equation*}
i_{b}=\frac{V_{d}}{3 R}-\left(\frac{V_{a}}{3 R}+I_{L 1}\right) e^{-\frac{R t}{L}} \tag{5.16}
\end{equation*}
$$

Then

$$
\begin{align*}
I_{c} & =-\left(I_{a}+I_{b}\right) \\
& =\frac{\frac{2 V_{a}}{3 L}}{p\left(p+\frac{R}{L}\right)} \tag{5.17}
\end{align*}
$$

and

$$
\begin{equation*}
i_{0}=-\frac{2 V_{d}}{3 R}\left(1-e^{-\frac{k t}{L}}\right) \tag{5.18}
\end{equation*}
$$

It is seen that during the decay of the current in phase B, after the completion of the capacitor discharge, I_{a} changes from $I_{L 1}$ towards a steady state value $\frac{V_{d}}{3 R}, i_{b}$ from $-I_{L L}$ towards $\frac{V_{a}}{3 R}$, and i_{c} from zero towards $-\frac{2 V_{a}}{3 R}$, 2.11 with time constant $\frac{L}{\mathbb{R}}$.

This period ends when 1_{b} reaches zero. The time, T_{2} taken for this is obtained from equation (5.16).

Thus $0=\frac{V_{d}}{3 I}-\frac{V_{d}}{3 i}+I_{h 1} e^{-\frac{R T_{2}}{L}}$
i.e. $T_{2=\frac{L}{R} \log _{e}\left(1+\frac{3 R I_{L I}}{V_{d}}\right)}^{\underline{I}}$
T_{2} is the duration of the second assumed state of the circuit, that with $\mathrm{CR}_{2}, \mathrm{CR}_{2}, \mathrm{D}_{3}, \mathrm{D}_{7}$ and D_{8} conducting.

Fig. 5.18 shows the operational circuit for the two halves of the d.c. ohoke with D_{7} and D_{8} conduoting. The reaistance \mathbb{R}_{2} of each half of the choke was included since the decay of choke current is slow during this period and V_{f} is the assumed constant forward voltage drop of D_{7} and D_{8}. The possibility of difference between the initial values of current in each half of the choke is allowed for. If CR_{1} and CR_{2} had been fired immodiately before D_{7} and D_{8} started to conduct, the initial ourrents would be as shown, $I_{L 1}$ being the initial value of I_{a}, The other currents entering the part of the circuit considered are also shown.

The following two equations may be obtained by considering the two alosed loops separetely :-

$$
\begin{align*}
& I_{\mathrm{C}}\left(\hat{I}+\frac{1}{2} I_{L I}\right)+M\left(\hat{I}-\frac{2}{2} I_{L I}\right)-\frac{V_{Q}}{p} \\
& =I_{p}\left(p L_{d}+R_{d}\right)+I_{R}(p M) \tag{5.20}\\
& L_{d}\left(\hat{I}-\frac{1}{C} I_{L 1}\right)+M\left(\hat{I}+\frac{1}{L} I_{L 1}\right)-\frac{V_{f}}{p} \\
& =I_{p}(\mathrm{pM})+I_{n}\left(p L_{d}+R_{d}\right) \tag{5.21}
\end{align*}
$$

Fig. 5.18: Operational circuit for obtaining choke currents during conduction of diodes $D 7$ and D8.

Fig. 5.19: Conducting paths in circuit during period 3.

But $M=L_{d}$
$\therefore 2 \operatorname{ld}_{\mathrm{d}} \hat{I}-\frac{V_{f}}{p}=I_{p}\left(p L_{d}+R_{d}\right)+I_{n}\left(p_{d}\right)$
and $2 I_{d} \hat{I}-\frac{V_{f}}{p}=I_{p}\left(p L_{d}\right)+I_{n}\left(p L_{d}+R\right)$

Subtracting equation (5.23) from equation (5.22)

$$
\begin{align*}
0 & =I_{p} \cdot\left(R_{d}\right)-I_{n}\left(R_{d}\right) \\
\text { i.e. } I_{p} & =I_{n} \tag{5.24}
\end{align*}
$$

Adding equations (5.22) and (5.25)

$$
I_{p}=I_{n}=\frac{A \hat{p I}-{\frac{V_{f}}{2 I_{a}}}_{p\left(p+\frac{K_{d}}{2 L_{d}}\right.}^{d}}{}
$$

Inverting to obtain i_{p} and i_{n} in terms of time t, we obtain

$$
\begin{equation*}
i_{p}=i_{n}=-\frac{V_{f}}{R_{d}}+\left(\hat{I}+\frac{V_{f}}{R_{d}}\right) e^{-\frac{R_{d}}{2 L_{d}}} \cdot t \tag{5.25}
\end{equation*}
$$

It is seen, therefore, that when D_{7} and D_{8} conduct the currents in the two halves of the dec. choke are equal even if their initial values are not equal. Bach current falls from \hat{I} towards a steady state value $\frac{V_{f}}{R_{d}}$ with time constant $\frac{R_{d}}{2 L_{\mathrm{d}}}$. This is true, of course only if the forward voltage drops of D_{7} and D_{8} are equal and if no resistance is connected in series with D_{7} and D_{8}.

The currents flowing in the diodes are then given by

$$
\begin{equation*}
i_{g}=i_{p}-i_{a} \tag{5.26}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{r}=i_{n}+i_{0} \tag{5.27}
\end{equation*}
$$

During this period the supply current is given by

$$
\begin{equation*}
i_{\frac{3}{}=-i_{c}} \tag{5.28}
\end{equation*}
$$

At the end of this period the cuxrent in phase B becomes zero. The eurrents flowing in phases A and C therefore become equal in magnitude and their velues $I_{a 2}, I_{e 2}$, at the end of the period are obtained by putting $t=T_{2}$ in equations (5.14) and (5.18).

Then $s_{a 2}=\frac{2 V_{d}}{3 R}\left[\frac{1}{1+\frac{V_{d}}{3 R I_{L 1}}}\right]$

$$
\begin{equation*}
\text { and } \quad \underline{I_{e 2}=-\frac{2 V_{\mathrm{a}}}{3 R}\left[\frac{1}{1+\frac{V_{\mathrm{a}}}{3 R I}}\right]} \tag{5.30}
\end{equation*}
$$

If $I_{L 1}$, the value to which the currents in phases A and B fall during the pexiod of discharge of the eapecitor, is nearly equal to $\frac{V \mathrm{~d}}{3 \mathbb{R}}$ It oan be seen that $I_{a 2}$ and $-I_{c 2}$ are even more nearly equal to $\frac{V_{d}}{3 R}$. For, if $I_{L 1}=\frac{V_{d}}{3 R}(1+x)$, where x is small compared with unity,

$$
\begin{align*}
I_{a 2}=-I_{e 2} & =\frac{2 V_{d}}{3 R}\left(\frac{1}{1+\frac{1}{1+x}}\right) \\
& \bumpeq \frac{2 V_{d}}{3 R}\left(\frac{1}{1+1-x}\right) \text { neglecting } x^{2}, x^{3} \text {, etc. } \\
\text { i.e. } I_{a 2}= & -I_{e 2} \bumpeq \frac{V_{d}}{3 R}\left(1+\frac{x}{2}\right) \tag{5,31}
\end{align*}
$$

i.e. The difference between $I_{a 2}$ or $-I_{d 2}$ and $\frac{V_{d}}{3 R}$ is approximately half the difference between $I_{L I}$ and $\frac{d}{3 R}$.

$$
\text { For convenience, let } I_{a 2}=-I_{c 2}=I_{L 2}
$$

5.3 .4 .3 Period 3 - remainder of period of decay of currents in D_{7} and D_{8}.

During this period current continues to flow in diodes D_{7} and D_{8} and hence the d.c. choke hes no effect upon the rise of current in the load. Load current flows only in phases A and C and the current carrying paths are therefore as show in Mg . 5.19. The same current flows through phases A and C and from the supply. Hence $i_{s}=i_{a}=-i_{c}$.

Fig. 5.20 shows the operational circuit used for obtaining the load current variations during this period. The choke is disregarded in this circuit, its effect being limited by the conduction of diodes D_{7} and D_{8}. The initial values of the currents in phases A and C are allowed for in the oirouit. The load and supply currents are therefore given by

Fig.5.20: Operational circuit for obtaining load currents during period 3.

Fig. 5.21: Conducting paths during period 4.

Fig. 5. 22: Operational circuit for obtaining voltage and current equations for the re-charging of capacitor C from the auxiliary supply.

$$
I_{s}=I_{a}=-I_{e}=\frac{\frac{V_{d}}{2 L}+p I_{L 2}}{p\left(p+\frac{R}{L}\right)}
$$

Inverting to obtain the equations in terms of time, t,

$$
i_{s}=i_{a}=-i_{c}=\frac{V_{d}}{2 R}+\left(I_{L / 2}-\frac{V_{d}}{2 R}\right)_{e} \frac{-R t}{L}
$$

i.e. the load and supply current rises from its initial value $I_{\text {Lh }}$ towards a steady state value $\frac{V_{d}}{2 R}$ with time constant $\frac{L}{R}$.

During this time the equations for the choke currents are as for period 2 but modified to take account of the new time origin.

$$
\begin{equation*}
\text { Hence } i_{p}=i_{n}=-\frac{\nabla_{f}}{R_{d}}+\left(\hat{I}+\frac{V_{i}}{R_{d}}\right)=-\frac{R_{d}}{2 I_{d}}\left(t+T_{2}\right) \tag{5.33}
\end{equation*}
$$

The currents flowing in diodes D_{7} and D_{8} are the differences between the choke currents and the supply current. Hence

$$
i_{q}=i_{r}=i_{p}-i_{s}=i_{n}-i_{g}
$$

Period 3 ends either when the sixth of a cycle is complete or when the currents in D_{7} and D_{8} become zero. In the latter ease this happens when the choke current falls to the value to which the supply current has risen. That is when

$$
i_{p}=i_{n}=i_{g}
$$

1.e. when $-\frac{\nabla_{f}}{R_{d}}+\left(\hat{I}+\frac{V_{f}}{R_{d}}\right) e^{-\frac{R_{d}}{2 L_{d}}\left(t+F_{2}\right)}=\frac{V_{d}}{2 R}+\left(I_{L 2}-\frac{\nabla_{d}}{2 R}\right) e^{-\frac{R t}{I}}$

At this instant let the values of $i_{s}, i_{g}, i_{n}, i_{a}$ and $-i_{c}$ be $I_{L 3}$, 5.3.4.4. Period 4-ramainder of the sixth of a cycle.

In period 4 , when it occurs, the diodes D_{7} and D_{8} do not conduct and the d.c. choke is once more able to impede the rise of load current. The effect is a change in the time constant of rise of load current. Fig. 5.21 shows the conducting paths during period 4. Current flows between the supply and the phases A and C through CR_{2} and CR_{2} and the two halves of the dec. ohoize.

It has been shown that the doc. choke may be regarded as two separate chokes, of inductance $2 \mathrm{~L}_{\mathrm{d}}$ each, when the same current flows through both halves. The current in the load phases and in the cooke at the start of period 4 is $I_{L 3}$ and the steady state value to which the current must rise is $\frac{\nabla_{d}}{2 R}$, neglecting the choke resistance \hat{R}_{d}. The total inductance in the conducting path is $2\left(L+2 L_{d}\right)$, the total resisfane is $2 R$. Hence the current in the circuit must now be given by

$$
\begin{equation*}
i_{s}=i_{a}-i_{0}=\frac{V_{d}}{2 R}+\left(I_{L 3}-\frac{V_{d}}{2 R}\right)_{e}-\frac{R t}{L+2 I_{\mathrm{a}}} \tag{5.35}
\end{equation*}
$$

i.e. the load current continues to rise towards the same steady state value but with time constant $\frac{L+2 L_{d}}{R}$ instead of $\frac{L}{B}$. During this period the diodes D_{7} and D_{8} become feverse-biesed by the voltage induced in the two halves of the choke.

At the and of period 4 let the magnitude of $i_{s}, i_{a},-i_{C}$ be $I_{L 4}$,
5.3.4.5 Re-chasging of capacitor C from auxiliary supply.

After CR_{7} has fumed off CR_{8} must be fired to re-charge the capacitor from the auxiliary supply, The instant at which this is done is not critical but must be arranged so that CR_{8} turns off before CR_{7} is fired again. During the recharging period the capacitor is isolated from the main circuit and the process may be considered separately. Pig. 5.22 shows the operational circuit used to obtain the recharging voltage and curcent equations. Capacitor C initially is charged to a voltage $+\mathrm{V}_{\mathrm{d}}$ and the auxiliary supply current is initially zero. The auxiliary supply current after CR_{8} is fired is therefore given by

$$
I_{x}=\frac{\frac{V_{a}}{p}+\frac{V_{d}}{p L_{e}+R_{e}+\frac{1}{p C}}}{}
$$

If \mathbb{R}_{0} can be neglected

$$
I_{x}=\frac{V_{a}+V_{d}}{I_{c}\left(p^{2}+\frac{I}{C G_{e}}\right)}
$$

Inverting to obtain is in terms of time t, we obtain

$$
\begin{equation*}
i_{x}=\frac{V_{a}+V_{d}}{z_{c}} \sin z t \tag{5.36}
\end{equation*}
$$

where

$$
z=\frac{1}{C L_{c}}
$$

CR_{8} continues to conduct and capacitor 0 to charge until i_{x} becomes zero. This occurs when ain $z t$ becomes zero, i.e, when $t=\frac{\pi}{z}$. Then the voltage, - $V_{C R}$, to which capacitor C has charged is given by

$$
\begin{align*}
-V_{C R} & =V_{d}-\frac{1}{c} \int_{0}^{\frac{\pi}{z}} \frac{V_{a}+V_{d}}{z L_{c}} \sin z t . d t \\
& =V_{a}+\frac{V_{a}+V_{d}}{z^{2} L_{c}}[\cos z t]_{0}^{\frac{\pi}{z}} \\
\text { i.e. } \quad+V_{C R} & =+\left(V_{d}+2 V_{a}\right) \ldots \operatorname{since} z^{2}=\frac{1}{C L_{c}}
\end{align*}
$$

In practice, because of the effect of the small supply resistance $V_{C R}$ would be less than the value given by equation (5.37).
5.3.4.6. Note on current and voltage equations.

It should be noted that in the voltage and current equations derived above $t=0$ at the start of each period for which the equations are given, ie. in $5 \cdot 3.4 .1 t=0$ when CR_{7} is fired, in $5 \cdot 3 \cdot 4.2 t=0$ When CR_{7} turns off and CR_{1} and CR_{2} are I fixed, etc.

5.3.5 Typical Outpht Waveforms for Series R-L Load.

Fig. 5.23 shows typieal loed current waveforms for a series R-L star-connected load. It is sasumed that diodes D_{7} and D_{8} remain conducting until the end of each sixth of a cyele and that therefore period 4, discussed in section $5 \cdot 3 \cdot 4 \cdot 4 \cdot$, does not oocur. Period 4 as shown is of exaggerated duration so that the current change in this period onn be seen clearly.

The first sixth of a cyole shown, thet between t_{2} and t_{3}, is the one considered in the preceding theory and is frxther sub-divided into the periods I, 2 and 3 discussed previously. All current changes are exponential and have a comon time constant. The initial rates of change and the steady state valuea towards which the currents change are indicated by means of dotted lines.

In period $1 i_{e}$ is assumed to be zero while i_{a} falls from its initial value $I_{L_{0}}$ towards $-\frac{V_{a}}{2 R}$ with time constant $\frac{L}{R^{2}} \quad i_{b}$ rises from - $I_{L 0}$ towards $+\frac{\mathrm{d}}{2 R}$ with time constant $\frac{\mathrm{L}}{\mathrm{R}}$. Period 1 ends when CR_{7} turns off, diodes D_{7} and D_{8} and $C R_{1}$ and CR_{2} conduct, and i_{a} and $-\mathrm{I}_{\mathrm{b}}$ are then equal to $I_{L 1}$ *

In pexiod $2 i_{a}$ rises from $I_{L I}$ towards $\frac{V_{d}}{3 R_{2}}, i_{b}$ rises from $-I_{L I}$ towards $\frac{V_{d}}{3 R}$, and 1_{e} falls from zero towards $-\frac{2 V_{d}}{3 R}$, all with time con$\operatorname{stant} \frac{L_{R}}{R^{\prime}} \quad$ Period 2 ends wher i_{b} becomes zero and i_{a} and $-i_{c}$ are equal to $I_{L 2}$ *

In period $3 i_{b}$ is zero. i_{a} rises from $I_{L 2}$ towards $\frac{V_{d}}{2 R}$ and i_{G} falls from $-I_{L 2}$ towards $-\frac{V_{d}}{2 R}$, both with time constant $\frac{L}{R}$. It is assumed that period 3 contimues until the end of the sixth of a eycle

Fig. 5.23: Typical waveforms of output line current for series R-L load.
when i_{a} and $-i_{c}$ are equal to $I_{L 3}$. These values of i_{a} and i_{c} at the end of period 3 are clearly the starting values for the next sixth of a cycle and hence $I_{L J}=I_{L 6}$.

From the sixth of a cycle considered in the theory the complete eurrentwaveforms can be built up. The pattern of current changes in each phase is repeated one third of a cycle later in one of the other phases and two thirds of a cycle later in the third phase. Moreover each negative half cycle is a mirror image of the positive half cycle, displaced by half a cycle.

In Fig. 5.24 the corresponding line-to-line output voltage waveforms are shown. Again the first sixth of a cycle shown is subdivided into periods 1, 2 and 3.

In prod 1 diodes D_{3} and D_{4} conduct and no current flows in phase c. Hence $v_{a b}=v_{d}, v_{b c}=\frac{2}{2} v_{d}$ and $v_{c a}=\frac{1}{n} v_{d}$.

In period $2 \mathrm{CR}_{1}, \mathrm{CR}_{2}$ sind diode D_{3} conduct and hence $\mathrm{v}_{\mathrm{ab}}=0$, $v_{b c}=v_{d}$ and $v_{c a}=-V_{d}$.

In period $3 \mathrm{CR}_{1}$ and CR_{2} conduct and no current flows in phase B. Hence $v_{a b}=\frac{1}{2} \nabla_{d}, v_{b c}=\frac{1}{c} v_{d}$ and $v_{c a}=-V_{d}$.

From the patterns of voltage changes for the first sixth of a cycle the complete voltage waveforms may be built up in the same way as the current waveforms.

It is seen that the current waveforms possess a high fundamental sinusoidal component but that the corresponding voltage waveforms have a very much larger harmonic content. This is to be expected since the harmonic reactance of the load is proportional to the order of the harmonic.

Fig. 5.24: Typical output line-to-line voltage waveforms for series R-L load.

The method used for constructing the current waveforms shown in Fig. 5.23 can bo used to obtain the current waveform eraphically. This will be diseased further in the next section.

5.3.6 Calculation of Onfpout Waveforms for Series R-L. Load.

In section 5.3 .2 it wee shown that in each sixth of a cycle there are six states which the circuit can assume, one by one. Io calculate accurately the output waveforms, or indeed any waveform, it would be necessary to take into account all six of these states. Neh state, however, has its own voltage and current equations and the initial current and voltage values for each state have to be found. The labour involved in calculating the waveform for a single combination of supply voltages, output frequency, and load and circuit parameters would be enormous and would produce little information on the general behaviour of the system.

In obtaining the voltage and current equations in section 5.3 .4 the number of circuit states was reduced to four by combining the first three of the possible six states into one. In the following discussion on methods of calculating the output waveforms it will be further assumed that the last state dose not occur, ice. that diodes D_{7} and D_{8} conduct up to the end of anal sixth of a cycle. In many oses this assumption is perfectly veld. In other cases D_{7} and D_{8} cease to conduct towards the end of the sixth of a cycle when the load current has nearly reached its steady state value and the error introduced by the assumption is therefore quite small. The number of states occurring
in each sixth of a cycle is therefore assumed to be three, which simplifies the calculation considerably.

There still remains the problem of finding the values of the currents in the load phases at the start of each period. The problem is not very severe at low output frequencies, when the load time constant is considerably less than one sixth of a cycle, since the load currents reach steady state values by the end of each sixth of a cycle. At higher frequencies these starting current values must be determined. Suitable methods are discussed below.
5.3.6.1 Low output frequency, i.e. $\frac{1}{6 P} \gg \frac{\frac{L}{R}}{R}$.

At low frequencies where the load time constant is much shorter than one sixth of a cycle the value of $I_{\text {LO }}$ may be taken to be $\frac{V_{d}}{2 \mathbb{R}}$. The period T_{1} of the discharge of capacitor C may also be found quite easily from equation 5.6. The value of $I_{\text {do }}$ required in finding T_{1} may be taken to be $\frac{V_{d}}{2 R}$ or found from equation 5.97 when the frequency is such that this latter course is necessary.

TI would normally be much alex than the load time constant and hence the change of current during this period can be assumed linear. This is shown in Pig. $5.25, i_{a}$ and $-i_{c}$ therefore change linearly from $\frac{V_{d}}{2 R}$ so as to reach $-\frac{V_{d}}{2 R}$ in time $\frac{L}{R}$ and after a time T_{1} reach the value I_{LI} Hence $\mathrm{I}_{\mathrm{L} 1}$ is approximately given by

$$
\begin{equation*}
I_{L 1} \bumpeq \frac{V_{d}}{2 R}-\frac{V_{d}}{L} \cdot T_{1} \tag{5.38}
\end{equation*}
$$

Fig. 5.25: Current changes in the sixth of a cycle between t_{2} and t_{3} at low inverter output frequency.

In the next period, which is of duration $\mathbb{T}_{2}, i_{\text {a }}$ changes from $I_{I 2}$ towards $\frac{V_{d}}{3 \pi},-i_{b}$ from $I_{i L}$ towards $-\frac{V}{3 \pi}$, and $-i_{e}$ from zero towards $\frac{2 \mathrm{~V}}{3 \mathrm{R}}$, all with time constant $\frac{\mathrm{L}}{\mathrm{R}^{\prime}} \quad \mathrm{T}_{2}$ is then the time taken for $-i_{b}$ to reach zero and is given by equation (5.19). The value $I_{\text {Li }}$ of i_{a} and -1_{a} at the end of the second period is given by equation (5.29).

In the third period, which is assumed to continue until the end of the sixth of a cycle, i_{a} and $-i_{c}$ rise from $I_{L 2}$ to $\frac{V_{d}}{2 R}$ with time constnat $\frac{L}{R}$ while i_{b} remains at zero.

It is seen that the derivation of the value $I_{B 2}$ and $I_{I_{2}}$ is simple In this ease of low inverter output frequency because I_{10} can be assumed to be $\frac{V}{2 R}$, The calculations reaolve into simple substitutions in formula which have already been derived in the preceding theory.

The waveforms of output current and voltage may now be drawn and would be similar to those shown as typical waveforms in Figs. 5.23 and 5.24.

5.3.6.2. Higher output frequencies.

At higher inverter/frequencies, where $\frac{I}{\pi}$ is corapaxable with or greater then one sixth of a cycle, I_{10} can no longer be assumed equal to $\frac{V_{a}}{2 k}$ nd must be calculated in some wy. The following is an iterative method of finding $I_{\text {LO }}$. $I_{\text {do }}$ can be taken as equal to I_{10} or found from equation (5.97).

The steps in the iterative method are as follows i-

1) Choose arbitrarily a value for $I_{L 0}$ (must be less than $\frac{V_{a}}{2 R}$).
2) Find T_{1} from equation 5.6 using $I_{\text {do }}=I_{10}$ or the value of $I_{\text {do }}$ found from equation 5.97 , whichever value is greater.
3) Assume linear current changes in period 1 and hence find $I_{L 1}$ from

$$
\begin{equation*}
I_{L 1}=I_{L 0}-\left(I_{L 0}+\frac{V_{d}}{2 R}\right), \frac{R T_{1}}{L^{2}} \tag{5.39}
\end{equation*}
$$

4) Find $I_{L 2}$ from equation 5.29 , ie.

$$
I_{L 2}=\frac{2 V_{d}}{3 R}\left(\frac{1}{I+\frac{V_{d}}{3 R I_{L 2}}}\right)
$$

5) Find T_{2} from equation 5.19 , i.e.

$$
T_{2}=\frac{L}{R} \log _{e}\left(1+\frac{3 R I_{L 1}}{V_{d}}\right)
$$

6) Find T_{3} from $T_{3}=\frac{1}{6 f}-\left(T_{1}+T_{2}\right)$
7) Find $I_{L 3}$ from equation 5.32 , ie.

$$
I_{L 3}=\frac{\nabla_{d}}{2 R}+\left(I_{L 2}-\frac{\nabla_{d}}{2 R}\right) e^{-\frac{R T_{3}}{L}}
$$

If the chosen value of $I_{L O}$ is correct, the value of $I_{L 3}$ thus obtained would be equal to $I_{1 O^{*}}$. If I_{10} and $I_{L 3}$ differ, a new value for $I_{\text {LO }}$ should be chosen and the procedure repented. The new value of $I_{\text {LO }}$ chosen should be between the old value and the value obtained for $I_{23}{ }^{*}$

The procedure may be carried out graphically. Fig. 5.26 shows the procedure when the correct value of I_{10} has been chosen. ia changes from $L_{L 0}$ towards $-\frac{V_{d}}{2 R}$ with time constant $\frac{L}{R}$, the change during T_{1} being almost linear. In T_{2}, I_{b} falls from $I_{L 1}$ towards $\frac{V}{3 R}$ with time constant $\frac{L}{R}, T_{2}$ being the time taken by $\left(-i_{b}\right)$ to reach zero. During period $2, i_{a}$ changes from $I_{L I}$ towards $\frac{V_{d}}{3 R}$ and, after time T_{2}, reaches the value $I_{L 2}$. In period $3, i_{a}$ and ($-i_{c}$) rise together from $I_{L 2}$ towards $\frac{V_{d}}{2 R}$ with time constant $\frac{\mathrm{L}}{\mathrm{R}}$ and reach the value $I_{\mathrm{L} 3}$ after time $T_{3} . I_{L 3}$ is then equal to I_{10}. If the change in ($-i_{c}$) from zero to $I_{\text {Li }}$ in period 2 is also inserted, all the current variations needed to draw the complete current waveromas will be found in the diagram.

RIg. 5.27 shows how the iterative process may be carried out. A value of I_{10} is assumed and all the above steps in the above process carried through to obtain graphically a value of $I_{L 3}$ which is not equal to $I_{L 0}$. A new value of $I_{L O}$, half way between the original value of $I_{I D}$ and the resulting value of $I_{L 3}$, is taken and the procedure repeated. The value of $I_{L 3}$ obtained from the second construction is compared with $I_{\text {LO }}$ and a new value of $I_{\text {LO }}$ chosen, and so on. The iteration can be stopped when $I_{L 3}$ becomes equal to the preceding value of $I_{\text {LO }}$ used. The values of $I_{L 1}$ and $I_{L 2}$ thus obtained are also correct.

It is seen from Fig. 5.27 , and will also be seen from sample calculations given later, that the most rapid method of progressing in this iterative process is to use for the new value of $I_{L 0}$ the value of $I_{L 3}$ obtained from the preceding stage in the calculation.

Fig. 5. 26 : Current changes in the sixth of a cycle between t_{2} and t_{3} at the higher inverter output frequencies.

Fig. 5.27: Graphical determination of current waveforms by iterative method.

5.4 Theory of Operation on Star-Connected R-L Load wi th "Power Factor"

$$
\leqslant 0.5 \text { (approx.). }
$$

In section 5.3 it was assumed that the current in phase C would be zero at the beginning of the sixth of a cycle considered under most conditions. This would be true under most operating conditions if the power factor of the lond were not very low.

The calculation for a highly inductive load is a little simpler than for the higher power factor load because only two periods in each sixth of a cycle are involved (provided that it can be assumed that D_{7} and D_{8} remain conducting throughout the sixth of a cycle after commatation). Period 2 considered in $5 \cdot 3.4 .2$ ended when the current in phase B decayed to zero. In this case we consider the position when the current in phase B still flows at the end of the sixth of a cycle and consequently period 2 extends from the end of the commutation period to the end of the sixth of a cycle.

5.4.1 States of Conduction of Circuit.

As before, the sixth of a cycle considered is th it between t_{2} and t_{3}. $C R_{1}$ conducts for the second half of its third of a cycle, CR_{2} is fired for the beginning of its third of a cycle of conduction, and CR_{6} has turned off et instant t_{2}.

State 2 :- Commutation period.
During the commutation period CR_{7} conducts and all other SC Re are off. The load currents therefore flow as shown in Fig. 5.28 by

Fig. 5.28 : State of conduction of circuit at instant, t_{2}, of firing $C R_{7}$ for highly inductive load.

Fig. 5.29: Operational circuit for obtaining load currents during commutation period.
the long arrows. i_{a} starts at its initial value $I_{a 0}$ and flows through diode D_{4} from the aupply negative terminal. Since CR_{6} has just turned off i_{b} flows in the direction shown, via diode D_{3}, starting at its initial value $I_{b o}$ At instant $t_{2} i_{c}$ was still decaying from the value it had when CR_{5} turn/off and therefore flows in the direction shown via. D_{2} from its initial value $I_{c o}$ at t_{2}.

At the end of the comatation period i_{a}, i_{b} and 1_{c} change to the values $I_{a l}, I_{b 1}$ and $I_{c l}$ respectively.

The current flowing through CR_{7} into C during the comatation period is fully dealt with in section 5.3.4.1.

State 2 - Remainder of aixth of a cyole.

After the commatation period CR_{1} and CR_{2} are free to conduct. Current flows in phase A through CR_{2} as shown in Fig .5 .30 by the long arrow starting at the new initial value $I_{a l}$. Current in phase B contimues to decay through diode D_{3} in the direotion indicated by the long axcow. Unless the ourrent in phase C hed fallen to zero during the comutation period it would still flow in the direotion shown through diode D_{2} and $C R_{2}$ would not, therefore, conduct.

The value of i_{c} would eventually fall to zero and the voltage appearing soross phese C would tend to drive is in the opposite direction. Since CR_{2} is fired i_{c} would imediately flow through it and in this way change diraction during the couxse of the sizth of a cycle. Apart from the difference in the direction of the forward voltage drop of D_{2} and CR_{2} the eircuits for both directions of flow of i_{c} during this

c

Fig. 5.30: Current paths after commutation. I_{c} is still positive and $C R_{2}$, though triggered, cannot conduct yet.

c

Fig. 5.31: Current paths after commutation. I_{C} now negative and flows in $C R_{2}$ instead of D_{2}.
(辛\& F : Non-conducting; 卉\& \boldsymbol{A} : conducting. $\}$
period are identical. (Compare Figs. 5.30 and 5.31.)
At the end of the $s 1 x t h$ of a cycle $i_{a}, 1_{b}, i_{c}$ reach the values $I_{a 2^{\prime}} I_{b 2}, I_{e 2}{ }^{*}$
5.4.2 Current and Voltage Equations.
5.4.2.1 Commutation period.

Pig. 5.29 shows the operational circuit which is valid during the comatention period. The comutation circuit is omitted because it has been dealt with in section 5.3.4.1.

Since $I_{a 0}, I_{b o}, I_{c o}$ are instantaneous values of i_{a}, i_{b}, i_{e}

$$
\begin{equation*}
I_{a o}+I_{b o}+I_{c o}=0 \tag{5.40}
\end{equation*}
$$

also

$$
\begin{equation*}
I_{a}+I_{b}+I_{c}=0 \tag{5.41}
\end{equation*}
$$

Taking the closed loop formed by phases A and C,

$$
\begin{equation*}
I_{a}(p L+R)-I_{0}(p L+R)=L I_{a 0}-L I_{c o} \tag{5.42}
\end{equation*}
$$

Taking the loop formed by the supply and phases B and C and substltoting for I_{b} from equation (5.40) and for $I_{\text {bo }}$ from equation (5.41)

$$
I_{a}(p L+R)+2 I_{o}(p L+R)=L I_{a 0}+2 L I_{c o}-\frac{\nabla_{d}}{p}
$$

Eliminating I from equations (5.42) and (5.43) we obtain

$$
I_{c}=\frac{I_{c o}}{p+\frac{R}{L}}-\frac{V_{d}}{3 L p\left(p+\frac{R}{L}\right)}
$$

Inverting this gives

$$
i_{e}=-\frac{\nabla_{d}}{3 R}+\left(I_{e o}+\frac{V_{d}}{3 R}\right)_{e}-\frac{R t}{\bar{L}}
$$

(5.44)

Eliminating I_{c} from equations (5.42) and (5.43)

$$
I_{a}=\frac{I_{80}}{p+\frac{R}{L}}-\frac{V_{d}}{3 L_{p}\left(p+\frac{\pi}{R}\right)}
$$

Inverting, this gives

$$
\begin{equation*}
i_{a}=-\frac{V_{d}}{3 R}+\left(I_{a 0}+\frac{\nabla_{d}}{3 R}\right) e^{-\frac{R t}{L_{0}}} \tag{5.45}
\end{equation*}
$$

Then, putting $i_{b}=-\left(i_{a}+i_{c}\right)$

$$
\begin{equation*}
i_{b}=\frac{2 V_{d}}{3 R}+\left(I_{b o}-\frac{2 V_{d}}{3 R}\right) e^{-\frac{T t}{Z}} \tag{5.46}
\end{equation*}
$$

At the end of the commutation period $t=I_{1}$ and i_{a}, i_{b}, i_{c} become equal to $I_{a l}, I_{b 1}, I_{o l}$. If I_{1} is small compared with $\frac{\tilde{L}}{R}$, which is a reasonable assumption for a highly inductive load,

$$
e^{-\frac{R T_{1}}{L}} \Omega \quad 1-\frac{R T_{1}}{L}
$$

and then

$$
\begin{equation*}
I_{a 1}=I_{a 0}-\left(I_{a 0}+\frac{V_{a}}{3 R}\right) \frac{R T_{1}}{I_{a}} \tag{5.47}
\end{equation*}
$$

$$
\begin{equation*}
I_{b 1}=I_{b o}-\left(I_{b o}-\frac{2 V_{d}}{3 R}\right) \frac{R T_{2}}{L} \tag{5.48}
\end{equation*}
$$

$$
\begin{equation*}
I_{e 1}=I_{00}-\left(I_{e 0}+\frac{V_{a}}{3 R}\right) \frac{R P_{1}}{L} \tag{5.49}
\end{equation*}
$$

During the commutation period diodes D_{2}, D_{3}, D_{4} conduct and hence

$$
\begin{align*}
& v_{\mathrm{ab}}=-\mathrm{v}_{\mathrm{d}} \tag{5.50}\\
& \mathrm{v}_{\mathrm{bc}}=\mathrm{v}_{\mathrm{d}} \tag{5.51}\\
& \mathrm{v}_{\mathrm{cs}}=0 \tag{5.52}
\end{align*}
$$

i_{g}, the current returned to the supply from the load during the commutation period is given by

$$
\begin{equation*}
i_{g}=-i_{b} \tag{5.53}
\end{equation*}
$$

5.4.2.2 Remainder of sixth of a role.

During the remainder of the sixth of a cycle between t_{2} and t_{3} $G R_{1}$, diode D_{3} and either diode D_{2} or CR_{2} conduct. The operational circuit showa in $\mathbb{F i g}$. 5.32 is therefore valid during this period.

Since $I_{a l}, I_{b 1}, I_{a l}$ axe the values of i_{a}, i_{b}, i_{d} at the same instant

$$
\begin{equation*}
I_{a l}+I_{b l}+I_{a l}=0 \tag{5.54}
\end{equation*}
$$

Taking the closed loop formed by phases A and B,

$$
\begin{equation*}
I_{a}(p L+R)-I_{b}(p L+R)=L I_{a l}-L I_{b l} \tag{5.55}
\end{equation*}
$$

Taking the loop formed by the supply and phases A and C and substituting for I_{e} and $I_{\text {el }}$ from equations (5.41) and (5.54),

Fig. 5.32 : Operational circuit for obtaining load currents after commutation.

$$
\begin{equation*}
2 I_{a}(p \mathrm{~L}+\mathrm{R})+I_{b}(\mathrm{pL}+\vec{R})=\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{p}}+2 \mathrm{~L} I_{a l}+\mathrm{L} I_{b 1} \tag{5.56}
\end{equation*}
$$

Eliminating I_{b} from equations (5.55) and (5.56)

$$
I_{a}=\frac{I_{a l}}{p+\frac{R}{L}}+\frac{\nabla_{d}}{3 \operatorname{Lip}\left(p+\frac{R}{L}\right)}
$$

Inverting, we obtain,

$$
\begin{equation*}
i_{a}=\frac{V_{d}}{3 R}+\left(I_{a x}-\frac{\nabla_{a}}{3 R}\right)_{e}-\frac{R t}{L} \tag{5.57}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
i_{b}=\frac{v_{d}}{3 R}+\left(I_{b 1}-\frac{v_{d}}{3 R}\right)_{e}-\frac{R t}{I} \tag{5.58}
\end{equation*}
$$

and then,

$$
\begin{equation*}
i_{c}=-\frac{2 V_{d}}{3 R}+\left(I_{e l}+\frac{2 V_{d}}{3 R}\right) e^{-\frac{R t}{L}} \tag{5.59}
\end{equation*}
$$

At the end of the sixth of a cycle $t=T_{2}$ where

$$
\begin{equation*}
T_{2}=\frac{T}{6}-T_{1} \tag{5.60}
\end{equation*}
$$

and i_{2}, i_{b}, i_{0} are equal to $I_{82}, I_{b 2^{\prime}} I_{e 2}$.
Hence

$$
\begin{equation*}
I_{\mathrm{a} 2}=\frac{V_{d}}{3 R}+\left(I_{a 1}-\frac{\nabla_{d}}{3 R}\right)_{e}-\frac{R I_{2}}{L} \tag{5.61}
\end{equation*}
$$

$$
\begin{equation*}
\frac{I_{b 2}=\frac{V_{d}}{3 R}+\left(I_{b I}-\frac{V_{d}}{3 R}\right) e^{-\frac{R T_{2}}{L}}}{I_{e 2}=\frac{2 V_{d}}{3 R}+\left(I_{\mathrm{d} 1}+\frac{2 V_{d}}{3 R}\right) e^{-\frac{R T}{L}}} \tag{5.62}
\end{equation*}
$$

Durding the period $\mathrm{CR}_{2}, \mathrm{D}_{3}$ and either D_{2} or CR_{2} conduct. Hence

$$
\begin{align*}
& v_{e b}=6 \tag{5.64}\\
& v_{b c}=v_{a} \tag{5.65}\\
& v_{e s}=-v_{d} \tag{5.66}
\end{align*}
$$

The current is taken from supply is equal to is, independent of whether this current flows in CR_{2} or D_{2}.

The cursent in CR_{2} is equal to i_{a}.
The curcent in the positive line of the reverse diode bridge is equal to $\left(-i_{b}\right)$.

The current in the negative line of the reverge diode bridge ia equal to i_{e} when i_{e} is positive and zero when is is negative.

The current in CR_{2} is equel to $\left(-i_{0}\right)$ when i_{c} is nogative and sero when is is gositive.
5.4.3 Relationship between $I_{a 0}, I_{b o}, I_{c o}$ and $I_{82}, I_{b 2}, I_{e 2}{ }^{*}$

Since the values of i_{a}, i_{b}, i_{e} at the end of the sixth of a cyela are the atarting values for the next sixth of a cyele the velues of I $I_{\text {a }}$ $I_{b 0}, I_{e 0}$ mast be related to $I_{a 2^{\prime}}, I_{b 2^{\prime}}, I_{02^{\circ}}$. In fact it gan be seen that

$$
\begin{align*}
& I_{\mathrm{a} 2}=-I_{\mathrm{b}} \tag{5.67}\\
& I_{\mathrm{b} 2}=-I_{\mathrm{co}} \tag{5.68}\\
& I_{\mathrm{e} 2}=-I_{\mathrm{a0}} \tag{5.69}
\end{align*}
$$

5.4.4. Determination of $I_{\text {an, }}, I_{b o}$ and $I_{c o}$.

During a complete half cycle starting at instant t_{2}, i_{a} starts with a value $I_{e o}$ and changes according to equations (5.45) and (5.57) until it becomes $I_{a 2}$ at instant t_{3}. From t_{3} to $t_{4} i_{a}$ varies in the same manner $\mathrm{as}\left(-\mathrm{I}_{\mathrm{b}}\right)$ did between t_{2} and t_{3} starting with a value $-I_{b o}$ which is equal to $I_{a 2^{*}} \quad$ At $t_{4} I_{a}$ reaches the value $-I_{b 2}$ which is equal to $I_{\text {eq }}$. In the next sixth of a oyole i_{a} starts with the value $I_{\text {co }}$ and varies in the same way as ic did between t_{2} and t_{3} and at t_{5} reaches the value $I_{e 2}$ which is equal to $-I_{a 0^{*}}$

This gives a very convenient method of finding $I_{a 0}, I_{b o}$ and $I_{c o}$. A value of $I_{\text {so }}$ may be assumed and the sequence described in the above paragraph followed using in turn equations $(5.47),(5.61),(5.67),(5.48)$, (5.62), $(5.68),(5.49),(5.63)$. The value of $I_{e 2}$ obtained et the end of this sequence should be equal to the assumed value of $\left(-I_{\text {so }}\right)$. If not, the sequence should be repeated with new assumed values of $I_{a 0}$ until egreanent is obtained. Then $I_{a 0}, I_{e 1}, I_{b o}, I_{b 1}, I_{e 0}, I_{c 1}$ will also have been calculated in the process.
5.4.5. Calculated Waveforms for Zero Power Factor Load with Commutation Effects neglected.

If the commutation period can be assumed to be of negligible duration $I_{a l}, I_{b 1}, I_{o l}$ are equal to $I_{a 0}, I_{b o}, I_{c o}$ respectively.

If R is zero, equations (5.57), (5.58), (5.59) can be modified. by putting $e^{-\frac{R_{t}}{L}}=\left(1-\frac{R_{t}}{L}\right)$ and then putting $R=0$.

Then under these conditions, neglecting commutation,

$$
\begin{align*}
& i_{a}=I_{B o}+\frac{V_{d} t}{3 t} \tag{5.70}\\
& i_{b}=I_{b o}+\frac{V_{d} t}{3 I} \tag{5.71}\\
& i_{c}=I_{c o}-\frac{2 V_{d} t}{3 L} \tag{5.72}
\end{align*}
$$

Then, putting $t=\frac{2}{6}$,

$$
\begin{align*}
& I_{\mathrm{a} 2}=I_{\mathrm{ao}}+\frac{\nabla_{\mathrm{a}^{2}}}{18 \mathrm{~L}} \tag{5.73}\\
& I_{\mathrm{b} 2}=I_{\mathrm{bo}}+\frac{\nabla_{\mathrm{d}}}{18 \mathrm{~L}} \tag{5.74}\\
& I_{\mathrm{e} 2}=I_{\mathrm{co}}-\frac{2 V_{\mathrm{d}^{T}}}{18 \mathrm{~L}} \tag{5.75}
\end{align*}
$$

How from equations (5.67) and (5.73)

$$
I_{b 0}=-I_{a 2}=-I_{a 0}-\frac{\nabla_{d^{2}}}{18 L^{2}}
$$

Fig. 5.33: Waveforms of i_{a}, i_{b}, i_{c} and $i_{i n}{ }^{+}, i_{g e n}{ }^{+}, i_{s}$. Calculated
for zero power factor load $(R=0)$, ignoring commutation period.

Then from equation (5.74)

$$
\begin{aligned}
I_{b 2} & =I_{b 0}+\frac{V_{d^{T}}}{18 L_{\mathrm{L}}} \\
& =-I_{\mathrm{so}}
\end{aligned}
$$

Then from equation (5.68)

$$
I_{c o}=-I_{b 2}=I_{\mathrm{eo}}
$$

Thus fromm equation (5.75)

$$
I_{\mathrm{e} 2}=I_{\mathrm{ao}}-\frac{2 V_{d^{T}}^{T}}{18 \mathrm{~L}}
$$

But $I_{\mathrm{e} 2}$ should be equal to $-I_{\text {ac }}$
$\therefore \quad 2 I_{a 0}=\frac{2 V_{d} T}{18 I_{d}}$
and $\quad \underline{I_{\text {gao }}=\frac{\nabla_{d} T}{18 \mathrm{~L}}}$
Then $\quad I_{b o}=-\frac{V_{d^{2}}}{2 \mathrm{~L}}$
and $\quad \underline{I_{00}}=\frac{\nabla_{d}}{18 L}$
Using these initial values in equations (5.70), (5.71) and (5.72) the variations in i_{a}, i_{b} and i_{c} between instants t_{2} and t_{3} have been calculated and plotted on Fig. 5.33. The complete waveforms of $1_{a}, 1_{b}$ and i_{c} have then been derived from the variations. Also shown in Fig. 5.33 are the waveforms of current in the SC R bridge and reverse diode bridge d.c. lines and of the current taken from the doc. supply. It
should be noted that the currents in the SC R and reverse diode bridge have the same mean value and that there is, therefore, no mean power supplied to the load. This is further emphasized by the supply current waveform which has a mean value of zero.
5.4.6. Tropical Load Current and Voltage Waveforms.

Pig. 5.34 shows typical load current and voltage waveforms for a Low power factor load. In the case shown the load time constant, $\frac{h}{R}$, is equal to one cycle. The dotted lines indicate how the first half cycle of the current waveform has been constructed.

During the commutation period, of duration T ${ }_{1}$, following instant $t_{2} i_{a}$ starts from its initial value $I_{a, 0}$ and changes towards the value $-\frac{d}{3 R}$ with time constant $\frac{L}{R}$. At the end of the commutation period ia attains a value $I_{a l}$. In the remainder of the sixth of a cycle before instant $t_{3} i_{a}$ changes from $I_{a l}$ towards $\div \frac{V_{d}}{3 R}$ with time constant $\frac{L}{R}$ and reaches a value $I_{a 2}$ at $t_{3^{\prime}} \quad I_{a 2}$ is equal to the value $-I_{b_{0}}$, i.e, the value of i_{b} at instant t_{2}, and in the next sixth of a cycle i_{a} changes in the same way as $-i_{b}$ had done between instants t_{2} and t_{3}. $F r a t i_{a}$ changes from $-I_{b o}$ towards $-\frac{2 V_{d}}{3 R}$ and then from $-I_{b 1}$ towards $-\frac{V_{d}}{3 R}$, each time with time constant $\frac{L}{i}$. At instant $t_{4} i_{\mathrm{a}}$ is equal to - I b 2 which is equal to $I_{c o n}$ ie. the value of i_{0} at instant t_{2}. In the next sixth of a cycle i_{a} changes as i_{c} had done between t_{2} and t_{3}, changing first from $I_{c o}$ towards $-\frac{V_{d}}{3 R}$ and then Iron $I_{e l}$ towards $\frac{2 V_{d}}{3 R}$, each time with time constant $\frac{L}{R}$. The next half cycle is identical with the first half cycle except that the direction of i_{a} is reversed.

Fig. 5. 34 : Typical load current and voltage wave forms for low power factor loads.

The waveforme of v_{ab} show i in Fig. 5.34 is very similar to the waveform of ∇_{ab} shown in Pig. 5.24 except that period 2 extends to the end of each sixth of a cycle. It should also be noted that the voltages between output lines during the commutation periods in Fig. 5.34, are zero or $\pm V_{d}$ whereas in Fig. 5.24 they are $\pm \nabla_{d}$ or $\pm \frac{1}{2} V_{d}$. This is because in the low power factor esse three diodes conduct during the commutation periods whereas in the high power factor case only two diodes conduct.

5.5. Approximate Harmonic Content of Output Line-to-Tine Voltage Waveform for High Power Factor Load.

5.5.1 Analysis of Jine-to-Jine Voltage Waveform.

If the typical output line-to-line voltage waveforms shown in Fig. 5.24 are examined closely, it is seen that they consist of the basic three-phage bridge output voltage waveforms together with deviltions caused by the operation of the diodes $D_{2}, D_{2} \ldots D_{6}, F i g$. (5.35(a) shows the basic component of the waveform of v_{ab} and Fig. $5.35(\mathrm{~b})$ shows the deviations which when added to the basic waveform give the waveform in Fig. 5.24.

The deviations consist of positive and negative rectangular pulses, one set of magnitude $\frac{3 \mathrm{~V}_{\mathrm{d}}}{2}$ and duration T_{1}, the other set of magnitude $\frac{V_{d}}{2}$ and duration T_{2}. The duration T_{1} of the first set of pulses is largely independent of load, being the period of discharge of the commutating capacitor, while the darstion T_{2} of the second set is very much dependent upon the load current and the load time constant.

Under normal circumstances the time T_{1} would be very mall compared. with one sixth of a cycle. A typical figure for T_{1} would be 100 to 150μ Sees, ie. T1 would be 3 to 5% of a sixth of a cycle at $50 \mathrm{c} / \mathrm{s}$. T2, on the other hand, may occupy anything from a small fraction to almost the whole of a sixth of a cycle.

In order to obtain a relatively simple approximatiorkor the variation with load of the harmonic content it is proposed to concentrate upon the effects of the pulses of duration T_{2}. To enable
(a)

| v_{d} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(b)

sllowance to be made for the effects of the pulses of duration T_{1}, where this should prove necessacy, eng. at the high frequencies, fommlae for the hamonic contribution of these pulses will also be given.
(4g. $5.35(\mathrm{c})$ shows an approximation for the deviations from the basic waveform, negledting period 1 , plotted against θ, where $\theta=2 \pi \rho t$. The pulses have an angular width u, where $u=2 \pi I^{\prime} \mathrm{I}_{2}$, and are assumed to stost at the beginning of the sixths of a eyole in which they oecur. This introduces a small error in the phase relationship of these puiges to the basic waverorm. Fig. 5.35 (d) shows the deviations from the basic waveform which are of duration T_{2}, i.e. neglecting period 2. The angulas width of these pulses is w, where $w=2 \pi r_{1} \quad \theta$ is taken to be zero at the instant t_{6}.

The haxmonic content of the output voltage v_{ab} may thus be separated into three perts, i.e. the constant basic hamonics, the loaddependent hamonios due to pexiod 2 , and the hamomios due to commatation. Each part's contribution will now be found from a Pourier Analysis.

5.5.2. Harmonic Content of Basic Waveform.

If θ is taken to be zero at instant 46 , the harmonic components of the begic waveform congist of sine terms only, the waveform being made an odd function. Hence the basic wavefore may be expressed as

$$
\left(v_{\text {ab }}\right)_{\text {besic }}=\sum_{n=1}^{n=\infty} a_{n} \sin n \theta \quad \text { where } a_{n} \text { is the peak }
$$

value of the nth hamonic.

Then $\varepsilon_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(v_{a b}\right)_{b a s i o} \sin n \theta d \theta$

$$
\begin{equation*}
=\frac{v_{d}}{\pi}\left\{\int_{0}^{\frac{\pi}{3}} \sin n \theta d \theta+2 \int_{\frac{\pi}{3}}^{\frac{2 \pi}{3}} \sin n \theta d \theta+\int_{\frac{2 \pi}{3}}^{\pi} \sin n \theta d \theta\right. \tag{5.76}
\end{equation*}
$$

i.e. $a_{n}=\frac{4 V}{n \pi} \sin \frac{n \pi}{3} \sin \frac{n \pi}{2} \cos \frac{n \pi}{6}$

When n is even $\sin \frac{n \pi}{2}=0$ and hence the basic waveform contains only odd hamaonias.

When n is any multiple of three $\sin \frac{n \pi}{3}=0$ and hence the basic waveform contains only odd harmonics which are not multiples of three, i.e. $n=1,5,7,11,23,17,19,23$, etc.

Table 5.1 gives the peak and r.ill.s. values of the first five hasmonies in the basic waveform calculated from equation (5.76).

n	Peak value, a_{n}	ReIn. s. value, $\frac{a_{n}}{\sqrt{2}}$
1	$+0.955 \nabla_{d}$	$+0.675 \nabla_{d}$
5	$+0.191 v_{d}$	$+0.135 \nabla_{d}$
7	$+0.136 v_{d}$	$+0.096 \nabla_{d}$
11	$+0.007 \nabla_{d}$	$+0.062 \nabla_{d}$
13	$+0.073 v_{d}$	$+0.052 \nabla_{d}$

Table 5.1 : Harmonic content of basic output voltage waveform.
5.5.3. Harmonic Content of the Period 2 Deviations from the Basic Output Voltage Waveform.

Since $\theta=0$ at instant t_{6} the waveform of these deviations is neither an even nor an odd function and therefore contains sine and cosine terms. Hence the period 2 deviations may be expressed as

$$
\left(v_{a b}\right)_{\text {deviations }}^{2} \text { }=\sum_{n=1}^{n=\infty} b_{n} \sin n \theta+c_{n} \cos n \theta
$$

where
b_{n} and o_{n} are the peak vines of the sine and cosine components of the nth harmonic.

$$
\text { Then } b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(v_{\text {ab }}\right)_{\text {deviations } 2} \sin n \theta d \theta
$$

From Mig. $5.35(\mathrm{c})$ it gey be seen that
$b_{n}=\frac{V_{d}}{2 \pi}\left\{\int_{-\pi}^{-\pi+u}-\operatorname{ain} n \theta d \theta+\int_{-\frac{\pi}{3}}^{-\frac{\pi}{3}+u} \sin n \theta d \theta+\int_{0}^{u} \sin n \theta d \theta\right.$

$$
\left.+\int \begin{array}{c}
\frac{2 \pi}{3}+u \\
-\sin n \theta d \theta
\end{array}\right\}
$$

This expression for b_{n} may be reduced to.
$b_{n}=\frac{2 V}{\pi n}$ sin $\frac{n \pi}{2} \sin \frac{n \pi}{3}\left\{\cos \frac{n \pi}{6}-\cos n\left(u-\frac{\pi}{6}\right)\right\}$
By a similar method an expression for 0_{n} may be obtained. This gives
$c_{n}=\frac{2 V_{a}}{\pi n} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3}\left\{\sin \frac{n \pi}{6}+\sin n\left(u-\frac{\pi}{6}\right)\right\}$
When n is even $\sin \frac{n \pi}{2}=0$ and when n is any multiple of three $\sin \frac{n \pi}{3}=0$. Hence the period 2 deviations contribute only odd harmonics which are not multiples of three, just as the basic waveforms did.

Table 5.2 below gives the r.in.s. values of the sine and cosine components of the first five hamonies contributed by the deviations. The values are given in terms of u and are calculated from equations (5.77) and (5.78).

Table 5.2 : Hamonic content of the period 2 deviations from the basic output voltage waveform.
u may have any value between 0 and 60°. Fig. 5.36 shows how the values of $\frac{b_{n}}{\sqrt{2}}$ and $\frac{c_{n}}{\sqrt{2}}$ vary with u.
5.5.4. Hexmanic Content of the Period Deviations from the Basic Output Voltage Waveforil.

Since $\theta=0$ at instant t_{6} the waveform of the period 1 deviations

Fig. 5. 36 : Variation with u of (a) $\frac{1}{\sqrt{2}} b_{n}$, (b) $\frac{1}{\sqrt{2}} c_{n}$.
is neither an even nor an odd function and consequently contains both sine and cosine terms. The period 1 deviations may therefore be expressed as

$$
\left(v_{a b}\right)_{\text {deviations } 1}=\sum_{n=1}^{n=\infty}\left\{b_{n}^{\prime} \text { ain } n \theta+c_{n}^{\prime} \cos n \theta\right\} \text { where } b_{n}^{\prime} \text { and } o_{n}^{\prime}
$$

are the peaks values of the sine and cosine components of the nth haxmonic.
Then

$$
b_{n}^{\prime}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(v_{a b}\right)_{\text {deviations }} 2 \sin n \theta d \theta
$$

Taking the values of ($\mathrm{vab}_{\mathrm{ab}}$) deviations 1 from Fig. $5.35(\mathrm{~d})$,
$b_{n}^{\prime}=\frac{3 V}{2 \pi}\left\{\int_{-\frac{2 \pi}{3}}^{-\frac{2 \pi}{3}+w} \sin n \theta d \theta+\int_{-\frac{\pi}{3}}^{-\frac{\pi}{3}+w} \sin n \theta d \theta+\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+w}(-\sin n \theta) d \theta\right.$ $\left.+\int_{\frac{2 \pi}{3}}^{+\frac{2 \pi}{3}+w}(-\sin n \theta) d \theta\right\}$
i.e. $\quad b_{n}^{\prime}=-\frac{6 v_{d}}{\pi n} \quad \sin n w \sin \frac{\pi n}{2} \cos \frac{\pi n}{6}$

Similarly,

$$
\left.\begin{array}{rl}
e_{n}^{\prime}=\frac{3 V}{2 \pi}\left\{\int_{-\frac{2 \pi}{3}}^{-\frac{2 \pi}{3}+w} \cos n \theta d \theta+\int_{-\frac{\pi}{3}}^{-\frac{\pi}{3}+w} \cos n \theta d \theta+\int_{\frac{\pi}{3}}^{\frac{\pi}{3}+w}(-\cos n \theta) d \theta\right. \\
& +\int_{\frac{2 \pi}{3}}^{\frac{2 \pi}{3}+w}(-\cos n \theta) d \theta
\end{array}\right\}
$$

$$
\begin{equation*}
\text { i.e. } \quad o_{n}^{\prime}=\frac{6 V}{\pi n}(1-\cos n w) \sin \frac{\pi n}{2} \cos \frac{\pi n}{6} \tag{5.80}
\end{equation*}
$$

When n is an even muber $\sin \frac{\pi}{2}=0$ and when n is any odd multiple of three $\cos \frac{\pi \pi}{6}=0$. Hence the period 1 deviations contribute only odd hamonies which ere not multiples of three.

Table 5.3 gives the zms values of the magnitudes of the aine and cosine components for the firat five harmonies contributed by the period 1 deviations from the basic waveforms. The values are given in teras of w and are ealculated from equations (5.79) and (5.80).

n	$\frac{2}{\sqrt{2}} b_{n}^{\prime}$	$\frac{1}{\sqrt{2}} c_{n}^{\prime}$
1	- $2.27 \mathrm{~V}_{\mathrm{a}}$ sin w	$1.17 \mathrm{~V}_{\mathrm{d}}(1-003 \mathrm{w})$
5	$0.234 \mathrm{~V}_{\mathrm{d}}$ sin 5 w	- $0.234 \mathrm{~V}_{\mathrm{d}}(1-\cos 5 \mathrm{w})$
7	- 0.167 \% ${ }^{\text {ain } 7 \mathrm{w}}$	$0.167 \mathrm{~V}_{d}(1-\cos 7 \mathrm{w})$
11	$0.106 \mathrm{~V}_{\mathrm{d}}$ sin 12 c	- $0.106 \mathrm{~V}_{\mathrm{d}}(1-\cos 21 \mathrm{v})$
13	- $0.090 \mathrm{~V}_{\text {d }}$ ginl2 w	$0.090 \mathrm{~V}_{\mathrm{d}}(1-\cos 13 \mathrm{w})$

Table 5.3: Hamonio content of the period 1 deviations from the basic output voltage waveforn.
5.5.5. Total Harmonic Content of Output Voltage Waveform.

When the values of $b_{n}, b_{n}^{\prime}, c_{n}$ and c_{n}^{\prime} have been found for each value of u and w the total romos, value of each hasmonio can be found. Hormally w would be very small and the b_{n}^{\prime} and o_{n}^{\prime} texms negleoted. In this case the sine and cosine components of the output voltage wevefom
would have rom.s, values $\left(\frac{1}{\sqrt{2}} a_{n}+\frac{1}{\sqrt{2}} b_{n}\right)$ and $\frac{2}{\sqrt{2}} c_{n}$ respectively. The total x.il.s. value, $\frac{1}{\sqrt{2}} d_{n}$, of the nth hamonie would then be obtained by adding vectorially the sine and cosine terms, i.e.

$$
\begin{equation*}
\frac{\frac{1}{\sqrt{2}} a_{n}=\sqrt{\left(\frac{1}{\sqrt{2}} a_{n}+\frac{1}{\sqrt{2}} b_{n}\right)^{2}+\frac{1}{2} a_{n}^{2}}}{} \tag{5.81}
\end{equation*}
$$

$\nabla_{\boldsymbol{l}}$ (x.m.s.), which is the total x.mos. value of the line-to-line output voltage, may then be found for each value of u from

$$
\nabla_{\ell(x . \text { II.s. })}=\sqrt{\sum_{n=1}^{\infty} \frac{d_{n}^{2}}{2}}
$$

i.e.

$$
\begin{equation*}
v_{l(\text { x.m.s. })}=\sqrt{\frac{3\left(a_{1}^{2}+a_{5}^{2}+a_{7}^{2}+a_{11}^{2}+a_{13}^{2}+\cdots\right)}{} .} \tag{5.32}
\end{equation*}
$$

In Fig. 5.37 the total x om.s. values of the first five hamonios are shown as a function of u. The effect of the period I deviations is negleeted. The values of V_{l} (x.m.s.), also whown in Fig. 5.37 have been colculated from the firat five values of $\frac{\sqrt{2}}{\sqrt{2}} d_{n}$ and higher hamonios neglected.

The phase advance, γ_{n} of each hamonic from the corresponding waveforming the basic harmonic may be found from

$$
\begin{equation*}
\gamma_{n}=\tan ^{-1}\left(\frac{c_{n}}{a_{n}+b_{n}}\right) \tag{5.83}
\end{equation*}
$$

Fig. 5.38 shows γ_{n} plotted egainst u for the first five hamonics. γ_{1} is seen to increase almost linearly with u.

Fig. 5.37: Variation with u of the r.m.s. values of the
first five harmonics and the total rims. value of the output line-to-line voltage.

Fig. 5.38: Variation of γ_{n} with u.

When w is not so small that b_{n}^{\prime} and g_{2}^{\prime} can be neglected its effect can be easily allowed for by adding b_{n}^{\prime} to b_{n} and c_{n}^{\prime} to c_{n} before finding $\frac{1}{\sqrt{2}} a_{n}$. Then equations $(5.81$ and (5.83) an be modified to

$$
\begin{equation*}
\frac{1}{\sqrt{2}} a_{n}=\sqrt{\left(\frac{1}{\sqrt{2}} a_{n}+\frac{1}{\sqrt{2}} b_{n}+\frac{1}{\sqrt{2}} b_{n}\right)^{2}+\left(\frac{1}{\sqrt{2}} c_{n}+\frac{1}{\sqrt{2}} c_{n}^{\prime}\right)^{2}} \tag{5.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{n}=\tan ^{-1} \frac{c_{n}+c_{n}^{\prime}}{a_{n}+b_{n}+b_{n}^{\prime}} \tag{5.85}
\end{equation*}
$$

5.5.5. Approximate value of u.

In the approximate analysis of the inverter output voltage waveform the harmonic content and derived quantities are given in terms of the angle u. To obtain the value of u accurately for each load condition It would strictly be necessary to calculate the complete load current waveform as in section 5.3.6.2. However, it is possible to derive an approximate expression for u which can be useful for determining the approximate performance of the inverter.

Referring to the typical current waveform shown in Fig. 5.26 it is seen that T_{2} is defined as the term for $-i_{b}$ to fall from $I_{L 1}$ to zero or for -1_{0} to rise from zero to $I_{L 2^{\circ}}$. In equation (5.31) it was shown that if $I_{L I}=\frac{V_{Q}}{3 R}(I+x)$ then $I_{L 2}$ is approximately $\frac{V_{d}}{3 R}\left(I+\frac{x}{2}\right)$, i.e. whatever value $I_{L L}$ has, $I_{L 2}$ is always closer to $\frac{\nabla_{d}}{3 R}$. If $I_{L 2}$ can be assumed equal to $\frac{V_{d}}{3 R}, T_{2}$, found from equation (5.19), is equal to $\frac{H}{R} \log _{e} 2$, i.e. $0.7 \frac{\mathrm{~L}}{\mathrm{R}}$.

This is a very approximate value, since a small change in the value of I_{12} can produce a mach larger change in the value of T_{2}, but it is a useful guide to the hamonics to be expected. Then u can be found from

$$
\begin{gather*}
u=2 \pi \mathrm{IT}_{2} \\
\text { i.e. } u \neq \frac{0.7 \times 2 \mathrm{fL}}{\mathrm{R}} \tag{5.86}
\end{gather*}
$$

5.6. Bexponic Content of Output Kine-to-Line Voltage Waveform for how Power Factor Load.

The output line-to-line voltage wave rom shown in Fig. 5.34 for a Low power factor load can be broken down into the parts show in Fig. 5.39. These constituent waveforms are very similar to those shown in Fig. 5.35 (a), (c) and (d) but in this ease they add together exactly to give the complete waveform of Pig. 5.34, The period 2 deviations shown in Fig. 5.39 (b) correspond to those of Fig. 5.35 (c). In Fig. 5.39(b), however, period 2 extends over the whole of the sixth of a cycle and u is therefore $\frac{\pi}{3}$, or 60°. The period 1 deviations shown in Fig 5.39(c) correspond to those of Fig 5.35 (d) but ares of two thirds the amplitude of those shown in Pig. 5.35(a).

It is clear, therefore, that the harmonic analyses carried out in section 5.5 for the high power factor load can be used again for the low power factor load. It is necessary only to put $u=\frac{\pi}{3}$ or 60° and to use values of b_{n}^{\prime} and c_{n}^{\prime} which are two thirds of those given in Table 5.3 for each value of w. Table 5.4 gives the values of $\frac{1}{\sqrt{2}} b_{n}^{\prime}$ and $\frac{1}{\sqrt{2}} o_{n}^{\prime}$ to be used for low power factor loads.
(a)

(b)

Fig. 5.39: Analysis of line-to-line output voltage waveform for low power factor load.
(a) Basic waveform of $v_{a b}$
(b) Period 2 deviations from basic waveform
(c) Period 1 deviations from the sum of waveforms (a) and (b)

n	$\frac{2}{\sqrt{2}} \mathrm{~b}_{\mathrm{n}}^{\prime}$	$\frac{2}{\sqrt{2}} \mathrm{c}_{\mathrm{n}}^{\prime}$
2	$-0.78 \mathrm{v}_{\mathrm{d}} \sin w$	$0.78 \mathrm{v}_{\mathrm{d}}(1-\cos \mathrm{w})$
5	$0.26 \mathrm{v}_{\mathrm{d}} \sin 5 \mathrm{w}$	$0.16 \mathrm{v}_{\mathrm{d}}(1-\cos 5 \mathrm{w})$
7	$-0.21 \mathrm{v}_{\mathrm{d}} \sin 7 \mathrm{w}$	$0.11 \mathrm{v}_{\mathrm{a}}(1-\cos 7 \mathrm{w})$
11	$0.07 \mathrm{v}_{\mathrm{d}} \sin 11 \mathrm{w}$	$0.07 \mathrm{v}_{\mathrm{d}}(1-\cos 11 \mathrm{w})$
13	$-0.06 \mathrm{v}_{\mathrm{d}} \sin 13 \mathrm{w}$	$0.06 \mathrm{v}_{\mathrm{a}}(1-\cos 13 \mathrm{w})$

Table 5.4: $\frac{\text { Values of } \frac{1}{\sqrt{2}} b_{n}^{\prime} \text { and } \frac{1}{\sqrt{2}} e_{n}^{\prime} \text { to be used in }}{\text { equations }(5.84) \text { and }(5.85) \text { when the load }}$ power factor is low.

5.7 Commutation and Resulting Power Loss.

The S CR 3 in the main bridge are turned off by introducing the negatively-oharged capacitor O into the d.c. side of the bridge. The capacitor then charges to the main dec. supply voltage and it is arranged that the charging is slow enough for the S C Rs to be reverse-biesed long enough for correct turn off. During the capacitor charging period energy is taken from the main dee. supply and it will be shown that this energy, together with the energy taken from the auxiliary supply, is transferred to the dea. choke and thereafter dissipated in the form of an energy loss. At high frequanoies this energy loss, repeated six times in each oyole, represents a significant power loss.

5.7.1. Recharging Capacitor O from Auxiliary Supply.

The recharging of capacitor C from the auxiliary supply was dealt with in section $5 \cdot 3 \cdot 4 \cdot 5$. It was shown that the capacitor voltage changed from $+V_{d}$ to $-V_{C R}$, where $V_{C R}$ is equal to $\left(V_{d}+2 V_{a}\right)$. The resistance of the auxiliary circuit wa neglected and the current in the current-liniting choke I_{c} was zero at the beginning and and of the recharging process. Hence the energy Es taken from the auxiliary supply during re-chaxging must be equal to the increase in stored energy of capacitor C.

$$
\begin{align*}
& \therefore \quad \dot{\mathbb{Z}}_{\mathrm{a}}==\frac{1}{2} C\left\{\left(-\mathrm{V}_{\mathrm{CR}}\right)^{2}-\mathrm{V}_{\mathrm{d}}^{2}\right\} \\
& =\frac{2}{c} C\left\{\left(v_{d}+2 v_{e}\right)^{2}-v_{d}^{2}\right\} \\
& \text { 1.e. } \quad E_{a}=2 C V_{a}\left(V_{a}+V_{a}\right) \quad \text { Joules } \tag{5.87}
\end{align*}
$$

This energy is not lost at this stage but merely stored in capacitor C.
5.7.2. Discharging Capacitor C for Commutation.

During turnoff of the bridge S G Rs capacitor C is charged from $-\mathrm{V}_{\mathrm{CR}}$ to V_{d}. Any current flowing from the main supply in this time flows only through the dee. choke and sapaed tor C and carnot flow into the load since all S C Rs are off. The current taken from the supply during this period is given by

$$
i_{a}=\hat{I} \cos (\omega t-\phi) \text { and flows for a time }
$$

$$
\left.T_{1}=\frac{\phi}{\omega} \text { (see section } 5 \cdot 3.4 .1 .\right)
$$

Hence the energy E_{d} taken from the main supply during this period is given by

$$
\begin{align*}
\mathbb{E}_{\mathrm{d}} & =\int_{0}^{\frac{\phi}{\omega}} v_{\mathrm{d}} \hat{I} \cos (\omega t-\phi) d t \\
& =\frac{v_{d} \hat{I}}{\omega} \sin \phi \\
& =\frac{v_{d} I_{d o}}{\omega} \tan \phi \\
& =\frac{v_{d} I_{d o}}{\omega} \cdot \frac{\nabla_{c} T_{c R}}{I_{d o}} \cdot \omega \cdot \\
& =0 v_{d}\left(v_{d}+v_{c R}\right) \\
\text { i.e. } \quad \mathbb{E}_{d} & =20 v_{d}\left(v_{d}+v_{d}\right) \text { Joules } \tag{5.88}
\end{align*}
$$

Capacitor C is now back to its original state, charged to voltage $+V_{d}$, and so has no net gain in energy. Energy has been taken from the auxiliary and main supplies in the meantime, however, and hence the d.c. choke, being the only other storage element in the circuit, must have absorbed the sura of $Z_{a}+z_{d}$. The current in the d.e. choke has increased from $I_{\text {do }}$ to \hat{I} and hence $\Delta E_{\text {Ld }}=$ increase in stored energy of the d.c. choke.

$$
=\frac{1}{\mathrm{~B}} \times 4 \mathrm{I}_{\mathrm{a}}\left(\hat{\mathrm{I}}^{2}-I_{\mathrm{do}}^{2}\right)
$$

$$
\Delta E_{L_{d}}=2 I_{d}\left\{I_{d o}^{2}\left(1+\frac{\left(v_{d}+V_{C R}\right)^{2}}{16 \omega^{2} I_{d} I_{d o}^{2}}\right)-I_{d o}^{2}\right\}
$$

$$
\Delta B_{L a}=\frac{1}{\bar{c}} \mathrm{c}\left(v_{\mathrm{d}}+V_{\mathrm{CR}}\right)^{2} \text { since } \omega^{2}=\frac{1}{4 C L_{a}}
$$

ie. $\Delta z_{\mathrm{LA}}=20\left(v_{\mathrm{d}}+V_{\mathrm{e}}\right)^{2}$ Joules

As a oheok, $E_{d}+E_{a}=2 C\left\{V_{d}^{2}+V_{d} V_{a}+V_{a} V_{d}+V_{a}^{2}\right\}$

$$
\begin{equation*}
\text { i.e. } \mathrm{E}_{\mathrm{d}}+\mathrm{E}_{\mathrm{a}}=20\left(\mathrm{~V}_{\mathrm{a}}+\mathrm{V}_{\mathrm{a}}\right)^{2} \text { Joules }=\Delta \bar{F}_{\mathrm{Ld}} \tag{5.90}
\end{equation*}
$$

1.e. all. the energy taken from the main supply during commutation and from the auxiliary supply is stored in the dee. choke.

Between each commutation and the next the current in the d, c. choke decays from \hat{I} back to $I_{\text {do }}$ through the diodes $\overline{3}_{7}$ and \mathbb{D}_{8} end hence the energy $\Delta F_{\text {La }}$ stored in the choke is dissipated as a logs in the eirouit. The elements of the circuit in which the loss is dissipated are the resistance of the choke, the sicdes D_{7} and D_{8}, and any resistance asssoiated with D_{7} and D_{8}.

5.7.3. Power Loss due to Commatation and its Minimisation.

Since oommatation tokes place six times per cycle, the energy $\Delta \mathrm{E}_{\mathrm{Ld}}$ is dissipated at six times the output frequency of the inverter. Hence the mean power loss, $P_{\text {com }}$, due to commutation at an output frequency f^{c} / s is given by

$$
\begin{align*}
& P_{\text {com }}=6 \mathrm{f} \cdot \Delta \mathrm{R}_{\mathrm{Ld}} \\
& \text { i.e. } \quad P_{\text {com }}=12 \mathrm{ff}\left(\mathrm{~V}_{\mathrm{d}}+\nabla_{\mathrm{a}}\right)^{2} \text { Watts } \tag{5.91}
\end{align*}
$$

By choosing suitable values for V_{e} and C it is possible to minimise the power loss $P_{\text {coma }}$ The basic requirement of the commutation circuit is that it should reverse bias the $S C$ Re in the inverter bridge for a long enough time for proper turnoff. If the minimum reverse bias time required is δ_{m}, it can be seen that the values of V_{a} and C necessary to give the minimum time δ_{m} are related to V_{d} and $I_{\text {do }}$ approximately by the formula

$$
\delta_{\text {m }} \Omega \frac{c\left(V_{c R}-V_{d}\right)}{I_{d o}} \quad \text { (from equation } 5.5 \text {) }
$$

Since $\quad \nabla_{C R}=V_{d}+2 V_{a}$

$$
\begin{equation*}
\delta_{\mathrm{I}} \Omega \frac{20 \nabla_{\mathrm{a}}}{I_{\mathrm{do}}} \tag{5.92}
\end{equation*}
$$

Hence the value of C required for given values of δ_{n} and V_{a} is given by

$$
\begin{aligned}
& 0=\frac{\delta_{m^{I}} d \rho}{2 V} \\
& =\text { a }
\end{aligned}
$$

Substituting for C in the expression for $P_{\text {con }}$ in equation (5.91) we obtain

$$
\begin{equation*}
P_{\text {com }}=6\left\{\delta_{m} I_{d o}\left\{\frac{\nabla_{d}^{2}}{V_{a}}+2 \nabla_{d}+V_{a}\right\}\right. \tag{5.94}
\end{equation*}
$$

This formula is valid when C is adjusted for each combination of $V_{\text {a }}$ and $I_{\text {do }}$ to give the required value of δ_{m}. Differentiating ${ }^{3}$ com with respect to V_{a} we obtain

$$
\begin{aligned}
\frac{d P_{\text {con }}}{d \nabla_{a}} & =6 \sum \delta_{m} I_{d o}\left\{-\frac{\nabla^{2}}{V_{a}^{2}}+I\right\} \\
& =0 \text { when } \nabla_{a}=V_{d}
\end{aligned}
$$

ie. $P_{\text {com }}$ is minimum when $V_{a}=V_{d}$
The minimum value $\left(P_{\operatorname{com}}\right)_{m i n}$ of $P_{\cos }$ is then given by

$$
\left(P_{\operatorname{com}}\right)_{\min }=6 \& \delta_{m} I_{\text {do }}\left(4 \nabla_{d}\right)
$$

sse. $\quad\left(I_{\text {com }}\right)_{\min }=24, \sum \delta_{\text {m }} V_{d} I_{\text {do }}$ Watts

Since $V_{d} I_{\text {do }}$ is approximately equal to the power converted by the inverter the minimum power loss may be expressed as a percentage drop in efficiency.

$$
\begin{equation*}
\text { i.e. }\left(\frac{P_{\operatorname{con}}}{P_{\text {converted }}}\right)_{\min }^{\Omega} 2400 £ \delta_{\text {m }} \% \tag{5.96}
\end{equation*}
$$

It is seen that this loss is proportional to frequency and to $\delta_{\text {m }}$ and it is evidently important to select SO Rs with turnoff times as short as possible for inverter duty.

To attain the minimum possible oomatation power loss under s.11 operating conditions would in practice involve keeping V_{a} equal to V_{d} whist varying G continuously with $I_{\text {do }}$ This would be quite impracticable
but the foxmula can be used to find the naximum attalabole efficiency of the inverter at any particulas output frequonoy assuming, of course, that $I_{\text {do }}$ is neaxly equal to I_{d}.

For oxample, with $\delta_{\mathrm{m}}=50 \mu$ Secs and at an outprot frequency of $50 \mathrm{c} / \mathrm{s}$ the minimum possible effieienoy erop is cqual to $2400 \times 50 \times 50 \times 20^{-6}=6 \%$ i.e. the maximum attainable efficiency of the inverter would be 94, negleoting all other losses in the circuit.
5.7.4. Vaxiation of $I_{\text {do }}$ and δ with Frequency.

At low inverter outprit frequencies when the current in diodes D_{7} and D_{8} becomes zero before the end of each sixth of a eyole, the cumrents in the losd and the doc. choke are equal at the start of the commatation process snd herse $I_{\text {do }}=I_{\text {Lo }} \quad I_{\text {do }}$ is therefore completely dependent upon the load at these low frequencies.

When the frequency is increased a stace is reached where the current in D_{7} and D_{8} just decays to zexo et the end of esoh sixth of a eycle. Above this frequency the current in D_{7} and D_{8} cannot decay to zero and I assumes a value which is greater than $I_{\text {Lo }}$. This new value is such that the eurrent in the $d . c$. choke can inerease from $I_{d o}$ to \hat{X} in the capacitos discharge period and deoay fromI back to $I_{\text {do }}$ in the remainder of the sixth of a cycle. Consequently I do would be expested to wise W1 th frequency in some manner thereafter and become independent of the load to a Lrge extent.

In the d.c. switch circuit it was found that the same thing happened
and that $I_{\text {do }}$ becaae proportional to the square root of frequency. An approximate analysis of the increase of $I_{\text {do }}$ with frequency was carried out in section 4.6 .2 and was besed on the rate of decay of the d.c. choke current and the decrease of $\left(\hat{I}-I_{d o}\right)$ with inoreasing $I_{\text {do }}{ }^{\circ}$ Bractly the same result may be obtained by studying the enoxijes involved and it is feit that this method of enelysis may give a clearer picture of the problena.

At commutetion the stored energy of the d.c. choke is increased by $\Delta E_{L d}$ where

$$
\Delta z_{L d}=20\left(\bar{V}_{d}+V_{a}\right)^{2} \quad \text { (from equation } 5.89 \text {) }
$$

Before the next comatation takes place this energy must be disaipated in the xesistance \mathbb{R}_{d} of each half of the d.c. choke and in the diodes D_{7} and D_{8}. If \hat{I} is not very much greater that $I_{\text {do }}$, the r.il.s. values of the cursent flowing in the cholke can be taken to be approximately equel to $I_{\text {do }}$. It is also assumed that the current in diodes D_{7} and D_{8} is equal to thet flowing in the choke and that the effect of the diodes can be represented as an effeotive resistance whioh when added to H_{d} gives a total effective resistence $\mathrm{e}_{\mathrm{d}}^{\mathrm{d}}$ per half of the d.c. choke. Then, neglecting the duration T_{1} of the commutation yoocess compared with $\frac{1}{6!}$, the energy dissipeted in one sixth of a oyole in the resistance of both halves of the d.c. choke and in the diodes D_{7} and D_{8} is $2 I_{\text {do }}{ }^{2} \mathrm{R}_{\mathrm{d}} \times \frac{1}{6 I}$, i.e. power multiplied by time. This energy must be equal to $\Delta B_{L a}$ and hence

$$
\begin{align*}
& \Delta B_{L A} _2 I_{d o}^{2} R_{d}^{\prime} \times \frac{1}{6 f}=2 c\left(V_{d}+V_{e}\right)^{2} \\
& \therefore I_{d o}^{2} \bumpeq \frac{6 c f\left(V_{d}+V_{e}\right)^{2}}{R_{d}^{\prime}} \\
& \text { i.s. } I_{d o} \Omega\left(V_{d}+V_{e}\right) \sqrt{\frac{6 C P}{R!}} \tag{5.97}
\end{align*}
$$

or alternatively

$$
\left.I_{d o} \Omega \quad \frac{z}{\left(V_{d}\right.}+V_{C R}\right) \sqrt{\frac{6 C I}{I_{d}}}
$$

since

$$
\left(v_{d}+v_{C R}\right)=2\left(v_{\mathrm{d}}+\nabla_{\mathrm{e}}\right)
$$

It is seen that $I_{\text {do }}$ becomes proportional to the square root of frequency and independent of the inductance of the d.c. choke.

From equation 5.5 the reverae-bias tine δ of the bridge SC R being turned off is given approximately by

$$
\delta \Omega \frac{c\left(v_{\mathrm{CR}}-v_{d}\right)}{I_{\mathrm{do}}}
$$

Substituting for $I_{\text {do }}$ from equation (5.98)

$$
\begin{equation*}
\text { L.e. } \delta \Omega \frac{2\left(\mathrm{~V}_{\mathrm{CR}}-\mathrm{V}_{\mathrm{d}}\right)}{\mathrm{V}_{\mathrm{CR}}+\mathrm{V}_{\mathrm{d}}} \sqrt{\frac{\mathrm{Rd}_{\mathrm{d}}}{6 C \mathcal{L}}} \tag{5.99}
\end{equation*}
$$

or alternatively, since $\left(\nabla_{C R}-\nabla_{d}\right)=2 V_{a}$ and $\left(\nabla_{C R}+\nabla_{d}\right)=2\left(\nabla_{\mathrm{a}}+\nabla_{\mathrm{d}}\right)$

$$
\begin{equation*}
\delta \Omega \frac{2 V_{a}}{V_{a}+\nabla_{d}} \sqrt{\frac{R_{d}}{6 C I}} \tag{5.100}
\end{equation*}
$$

It is seen that δ becomes inversely proportional to the square root of frequency and independent of the inductance of the d.c, choke.
5.7.5. Variation of $I_{\text {do }}$ with Load Current at High Prequeney.

In the previous section where the variation of $I_{\text {do }}$ with frequency was discussed no account was taken of the effect of the load ourrant upon the decay of choke ourrent from I to $I_{\text {do }}$. Gurrent drawn from the supply has the effeet of reduoing the ourrent flowing in diodes D_{7} and D_{8} and consequently reduces the voltage appliad to the ohoke. It is olear, therefore, that the load ourrent muat have some effoot upon the value of $I_{\text {do }}$ at high frequency.

Fig. 5.40 anows the distribution of current and voltage in one half of the d.c. choke and its deeay cireuit. R_{η} is the resiatance in series with D_{7}, i_{d} is the cursent which flows through the conducting bridege S C R into the load, $v_{L d}$ is the voltage across the choke eausing the
 D_{7}. It is assumed that \hat{I} is little greater than $I_{\text {do }}$ and that the mean and r.in.B. values of i_{p} may be taken as $I_{\text {do }}$. The forward voltage drop, V_{f}, of diode D_{7} is assumed constant.

Whatever the value of $I_{\text {do }}$ the decrease in stored energy, $\Delta \mathbb{F}_{\text {LA }}$, of the choke when its current falle from \hat{I} to $I_{\text {do }}$ is constant, depending only upon the supply voltages and the size of the commatating capacitor. This energy decrease is given by

$$
\begin{equation*}
\Delta E_{L A} \bumpeq \int_{0}^{\frac{T}{6}} v_{L d} i_{p} d t \tag{5.101}
\end{equation*}
$$

Fig. 5.40: Distribution of currents and voltages around loop formed by one half of the d.c. choke and diode D_{7} during decay of current in the choke.

Fig. 5.41: Corresponding waveforms of i_{l} and $i_{\text {in }}$ for zero and unity power factor loads.

When no load current flows i_{q} is equal to i_{p} and the no-load value, $I_{\text {dol }}$, of $I_{\text {do }}$ may be found from equations (5.97) or (5.98). In this case $\Delta \mathrm{E}_{\mathrm{Ld}}$ is equal to the energy dissipated in the decay circuit

$$
\begin{equation*}
\text { i.e. } \Delta B_{L a}=\frac{T}{6}\left(I_{\mathrm{dol}}{ }^{2}\left[R_{d}+R_{7}\right]+I_{\mathrm{dol}} V_{f}\right) \tag{5.102}
\end{equation*}
$$

When loed current flows i_{q} is equal to $\left(i_{p}-i_{d}\right)$ and $v_{L d}$ is given by

$$
=\int_{0}^{\frac{T}{6}}\left\{i_{p}^{2}\left(R_{d}+R_{7}\right)-i_{p} i_{d} R_{7}+\nabla_{f} i_{p}\right\} d t
$$

$$
=\frac{T}{6}\left(I_{\mathrm{do2}}{ }^{2}\left[R_{\mathrm{d}}+R_{7}\right]-I_{\mathrm{do2}} I_{\mathrm{d}} R_{7}+V_{f} I_{\mathrm{do2}}\right)(5.104)
$$

where I_{d} is the mean value of I_{d}, and $I_{\mathrm{do} \text { ? }}$ is the new mean and $r_{\text {om.s. }}$ value of i_{p}.

Since $\Delta \mathrm{E}_{\mathrm{La}}$ isthe same in eaoh aase

$$
I_{\mathrm{do2}}^{2}\left(\mathrm{R}_{\mathrm{d}}+\mathbb{R}_{7}\right)-I_{\mathrm{do2}}\left(I_{\mathrm{d}} R_{7}-\nabla_{\mathrm{f}}\right)-I_{\mathrm{dol}}{ }^{2}\left(\mathbb{R}_{\mathrm{d}}+\mathbb{R}_{7}\right)+I_{\mathrm{doI}} \nabla_{\mathrm{f}}=0
$$

ie.
$I_{\mathrm{do2}}{ }^{2}-I_{\mathrm{do2}}\left[\frac{I_{\mathrm{d}} \mathrm{R}_{7}-V_{f}}{R_{\mathrm{d}}+R_{7}}\right]-\left[I_{\mathrm{doL}}{ }^{2}+\frac{I_{\mathrm{doL}} V_{f}}{R_{\mathrm{d}}+R_{7}}\right]=0$

Solving for $I_{d_{o 2}}$ we obtain
$I_{d 02}=\frac{I_{d} R_{7}-V_{f}}{2\left(R_{d}+R_{7}\right)} \pm \sqrt{\left[\frac{I_{d} R_{7}-\nabla_{f}}{2\left(R_{d}+R_{7}\right.}\right]^{2}+I_{d o l}{ }^{2}+\frac{I_{d o l} V_{f}}{R_{d}+R_{7}}}$
Taking the positive sign aince the negative sign is meaningless
$\left.I_{\mathrm{do2}}=\frac{I_{d} R_{7}-\nabla_{f}}{2\left(R_{d}+R_{7}\right)}+I_{d o 1}\left\{1+\frac{V_{f}}{I_{d 01}\left(R_{d}+R_{7}\right)}+\left[\frac{I_{d} R_{7}-V_{f}}{2 I_{d o l}\left(R_{d}\right.}+R_{7}\right)\right]^{2}\right\}^{\frac{1}{E}}$
on expanding,
$I_{d o 2} \Omega \frac{I_{d} R_{q}-\nabla_{f}}{2\left(R_{d}+R_{7}\right)}+I_{d o l}\left\{1+\frac{V_{f}}{2 I_{d o l}\left(R_{d}+R_{7}\right)}+\left[\frac{I_{d} R_{p}-\nabla_{f}}{2 I_{d o l}\left(R_{d}+R_{7}\right)}\right]^{2} \cdots\right\}$
neglecting higher order terms
ie.

$$
\begin{gather*}
I_{d O 2} \Omega \frac{I_{d} R_{7}-V_{f}}{2\left(R_{d}+R_{7}\right)}+I_{d o 1}+\frac{\nabla_{R}}{2\left(R_{d}+R_{7}\right)}+\frac{1}{8 I_{d 01}}\left[\frac{I_{d} R_{7}-V_{f}}{R_{d}+R_{7}}\right]^{2}+\ldots \\
I_{d O 2} \Omega I_{d o 1}+\frac{I_{d} R_{7}}{2\left(R_{d}+R_{7}\right)} \tag{5.105}
\end{gather*}
$$

Equation (5.105) shows that $I_{\text {do }}$ does increase with load but that the rate of increase depends upon the relative magnitude of R_{d} and R_{7}. If the choke possessed no resistance, ie, $\mathbb{R}_{d}=0, I_{\text {do }}$ would increase
approximately by 言 I_{d}. If R_{7} were small compared with R_{d}, I_{do} would increase very little with load.

Choosing a particular value of R_{7} to give minimun power losses is very dirifcult. If R_{7} is mede mmell, $I_{\text {do }}$ can increase rapidly with frequeney. This makes a larger commatang capacitor necessary and results in higher power losses. If, on the other hand, R_{7} is madelarger, the voltage drop across R_{7} and the diode in series with it forces part of the decaying choke current to flow through the conducting bridge S C Rs and the reverse bridge diodes. This leads to a reduction in the effective velue of R_{7} and also increasea the current flowing through the bridge S C Rs and diodes. Wo overcome this it would be necessary to insert some resistance in the d.c. Lines of the reverse diode bxidge but this leads to an increase in the $I^{2} R$ losses due to the curcent flowing along these lines.

It is olear, therefore, that a general expreasion for the optimum value of R_{7} oannot begiven. Esch asse should be treated on its own merits, making sure that the reduction of commatation losses following an inorease in R_{7} is not accompanied by a greater increase in I^{2} R losses in the reverse diode bridge d.c. lines.

5.8 Relationship between the Load and the Distribution of Inverter

 Current between the S C R and Reverge Diode Bridge.When the inverter load is, or can be treated as, a simple R-L series eircuit for each phase the exact current and voltage waveforns ean be calculated for all parts of the oiscuit using the methods developed in seotions 5.3.6 and 5.4. Such calculations, although straightforward, are laborious especially when a range of load conditions is required to be covered.

It was not found possible to derive a general formula which would be simple yet exact for deternining the mean velues of SCR and reverse diode bxidge cuxrents. By making some assumptions about the relative magnitude of V_{d} and V_{2} and of $I_{\text {in }}$ and I_{ℓ}, however, it is possible to obtain some useful approximate formulae which would elso be valid in the case of an induction motor load on the inverter.

Pig. 5.41 shows the waveforms of load cuxrent i_{ℓ} and the corresponding waveforms of the S CR bridge input current $i_{\text {in }}$ for zero and unity load power factors. The waveforms for zero load power factor are taken from Pig. 5.33 and the wawaroms for unity power factor are the besic inverter waveforms. Both pairs of waveromas are drawn with the effects of commatation ignored. \hat{I} is the peak value of the load and S C I currents in each case.

For zero power factor it may be shown that I_{ℓ}, the rom. Be value of $i \ell$, is equal to $0.646 \hat{I}$ whereas $I_{i n}$, the mean value of $i_{i n}$, is equal to 0.437 I . Hence in this ease,

$$
I_{\text {in }}=\frac{0.437}{0.646} I_{l}
$$

$$
\text { sse. } \quad I_{\text {in }}=0.680 I_{\ell}
$$

For unity power factor I_{l} is equal to $\sqrt{\frac{2}{3}} \hat{I}$, i.e. $0.816 \hat{I}$, while $I_{\text {in }}$ is equal to I. Hence in this case

$$
\begin{array}{ll}
& I_{\text {in }}=\frac{1}{0.816} I_{\ell} \\
\text { i.e. } & I_{i n}=1.23 I_{\ell}
\end{array}
$$

How let us assume that between zero and unity power factors the ratio $I_{\text {in }} / I_{\ell}$ Varies linearly with P, the power factor of the load. Then the value of $I_{i n}$ varies with I_{l} and power factor F according tor-

$$
\begin{equation*}
I_{i n}=(0.68+0.55 \mathrm{~F}) I_{l} \tag{5.206}
\end{equation*}
$$

It is seen from Fig. 5.37 that the rom. E, value of load line to line voltage, ∇_{l}, varies with the nature of the load but is always between $0.7 \mathrm{~V}_{\mathrm{d}}$ and $0.8 \mathrm{~V}_{\mathrm{d}}$. Lett us assume that V_{ℓ} has the typical value $0.75 \mathrm{v}_{\mathrm{d}}$ at all power factors.

Wow the power supplied to the load is equal to the power taken from the main dec, supply minus the losses in the inverter circuit (excluding the commutation losses which do not normally cause additional losses in the bridges).

$$
\begin{align*}
& \text { i.e. } V_{d} I_{d}-P_{e x} 2 \sqrt{3} V I F \\
& \therefore \quad I_{d} \bumpeq \frac{\sqrt{3} V_{l} I_{l} F}{1.33 V}+\frac{P_{e x}}{V_{d}} \\
& \text { i.e. } \quad I_{d} \neq 2.3 I_{l} F+\frac{P_{o x}}{V_{d}} \tag{5.107}
\end{align*}
$$

Hence, since $I_{\text {gen }} \bumpeq I_{\text {in }}-I_{a}$

$$
\begin{equation*}
I_{\text {gen }} \bumpeq(0.68-0.75 \mathrm{~F}) I_{\ell}-\frac{P_{c x}}{\nabla_{d}} \tag{5.108}
\end{equation*}
$$

Tig. 5.42 shows these relationehipe between $I_{\text {in }}, I_{d}, I_{\text {gen }}$ and I_{e} and \mathbb{P} in grephical form with $P_{\text {ex }}$ ignoxed. When \mathbb{P} is nearly unity $I_{\text {gen }}$ is shown to be zero, which cannot be quite true except when $\bar{F}=1$. This is because the typical value taken for V_{l} in terms of V_{d} is not the value which V_{l} would heve at unity power factor. Striotly, I_{d} and I gen should start to depart from the lines shown at a power factor of about 0.5 and curve away to reach $1.23 I_{\ell}$ and zeso respeotively at unity power faetor.

5.9 Predioted Current and Voltage Waveforms.

Fig. 5.43 shows a set of typicel predided current and voltage waveforms. Each will be briefly deseribed in turn. The current in in phase A of the loed has been fully deelt with in seotion 5.3.6. This current flows through $C R_{2}$ or CR_{4} and D_{1} or D_{4}.

Fig. 5.42: Approximate variation, in terms of load current I_{e}, of $I_{\text {in }}, I_{g e n}$, and I_{d} with load power factor.


```
*
F|
1\equiv
```



``` \(\begin{array}{llllllllll}t_{2} & t_{3} & t_{4} & t_{5} & t_{6} & t_{1} & t_{2} & t_{3} & t_{4} & t_{5}\end{array}\)
```



```
\begin{tabular}{l}
\(v_{c}^{\prime}\)\begin{tabular}{c}
1 \\
0
\end{tabular} \\
\hline
\end{tabular}
```



```
Fig. 5.43: Typical predicted waveforms for series R-L load.
```

The current $i_{\text {CRI }}$ in CR_{1} is sero for two thirds of a cycle since each S C E in the bridge conducts for only one third of a cyele. Daring the third of a eycle from t_{1} to t_{3} the current $i_{\text {CRI }}$ is the game as $i_{\text {a }}$ except during the oommatation periods when GR_{1} is off and no eurgent flows.

The current $i_{\text {gen }}$ flows in the reverse diode bridge during the commutstion period and. when the loed current in each phase decays to zero. The cursent $i_{\text {gen }}$ - shown in that which Slows into the negative terminal of the main supply. A peak of current flow at each commatation period followed in alternate sixths of a eyele by the decay to zero of the current in a load phase.
$i_{\text {int }}$ is the ourrent flowing into the common anode conneotion of the S CR bridge and thexefore consists in form of the current $i_{\text {CRI }}$ repeated in each thisd of a eyele.
${ }^{1} \mathrm{CR}_{7}$ is the current flowing through CR_{7} into the commutating capacitor at comutation. It consists of a pulee of current whose magnitude starts at $I_{\text {do }}$ and xises to \hat{I} and oocurs six times per cyole.
i_{d} is the current teken from the main supply and is equal to $\left(i_{i n t}+i_{\text {CR }}-i_{\text {gent }}\right)$, Drring the commatation periods i_{d} is equal to ($i_{\mathrm{CR}} \mathrm{Cl}^{-1} \mathrm{igent}$) since no current flows in the S CR bridge, and in the remainder of each sixth of a oyele L_{d} varies in the same manner as i_{a} between t_{2} and t_{2}.
1_{ch} is the current in one half of the d, c. ohoke and rises from $I_{\text {do }}$ to \hat{I} in each conmatation period and decays baek to $I_{\text {do }}$ in the remainder of each sixth of a cyele. The wavefoxm is shown for the case in which
$i_{\text {eh }}$ is always greater than $i_{\text {in }}$.
$i_{D 7}$ is the current flowing in diode D_{7} and is the difference between $i_{\text {eh }}$ and $i_{i_{n+}}$ except duxing the commation periods when D_{7} is reverse biased and hence $i_{D 7}$ is zero.
$v_{a b}$ is the voltage between output lines A and B and has been fully dealt with in seetion 5.3.6.
$v_{\text {in }}$ is the voltage between the common anode and coman cathode connections of the S G R bridge. Since D_{7} conduets in this case for the whole of eaoh sixth of a cycle $v_{i n}$ is equal to the main d.c. supply voltage v_{d} except during commatation when $v_{\text {in }}$ is equal to v_{c}, the voltage across the commutating eapacitor.
$v_{\text {CRI }}$ is the voltage across CR_{1}. During the commutation pexiods after conduction at t_{2} and t_{3} negative peaks of voltage of magni tude $\frac{\lambda}{2}\left(V_{C R}-V_{d}\right)$ appear across $C R_{1}$. The other negative voltage peaks are of magnitude $\frac{1}{8} V_{C R}$ and $\frac{1}{8}\left(V_{C R}+V_{d}\right)$. Between t_{2} and $t_{3} \mathrm{CR}_{2}$ conducta and hence $\nabla_{C R 1}$ is zero. Between t_{4} and $t_{6} \mathrm{CR}_{4}$ conducts and hence $\mathrm{v}_{\mathrm{CRI}}$ is equal to $v_{\text {in }}$. Between t_{3} and $t_{4} \mathrm{CR}_{2}$ and CR_{3} conduet and hence $\mathrm{v}_{\mathrm{CRI}}$ Is equal to $-v_{a b}$. Fromil t_{6} to $t_{2} \mathrm{CR}_{5}$ and CR_{4} conduct and hence $\mathrm{v}_{\mathrm{CRI}}$ is equal to $v_{e a}$ (which varies in this period as $v_{a b}$ between t_{2} and t_{3}).
$\mathrm{v}_{\mathrm{D} 1}$ is the voltage across diode D1. Bxcept during comutation periods $v_{D 1}$ is equal to $-v_{C R 1}$ aince D_{7} conducts until the end of each sixth of a oyele. During the commatation periods starting at t_{5} and t_{6} diode D_{1} conducts and hence $v_{D 1}=0$. In the camutation pexiods beginning at t_{2} and $t_{3} D_{4}$ conducts and hence $V_{D 1}$ in equal to the main supply voltage V_{d}. In the other two commatation periods neither D_{1}
nor D_{4} conduct and hence $v_{D 1}$ and $v_{D 4}$ are equal to $\frac{1}{2} V_{d}$. During commutetion the differenoe between the main d.c. supply voltage and the somutating capseitor voltage is shared equaly betwean the two halves of the d.e. choke. $\mathrm{V}_{\text {ch }}$ is the voltage across one half of the d.c. choke and therefore consists of a voltage peak which starts at $\frac{1}{8}\left(\mathrm{~V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{CR}}\right)$ and falls to zero in oueh comntation period. During the remainder of each sixth of a cyele $\mathrm{v}_{\text {ch }}$ is equal to the voltage across D_{7} or D_{8} which conduct and hence $v_{\text {oh }}$ is nearly zero.
v_{c} is the voltage across the comatating capaeitor and rises from $-V_{\mathrm{CR}}$ to $+\mathrm{V}_{\mathrm{d}}$ during each oomutation period. Approxinately half way through each sixth of a cyole the comutating capacitor is re-charged from the aurdliary supply and F_{c} falle from $+\mathrm{V}_{\mathrm{d}}$ baek to $-\mathrm{V}_{\mathrm{CR}}$.
$\mathrm{v}_{\mathrm{CR} 7}$ is the voltage soross CR_{7} and is the difference between $\mathrm{v}_{\text {in }}$ and v_{c}. When the oommatation appesitor is re-charged $v_{C R 7}$ xises from approximately zero to $\left(V_{d}+V_{C R}\right)$.
$\mathrm{v}_{\text {Crg }}$ is the voltage across $C R_{8}$ and is equal to $\left(\mathrm{V}_{2}+\mathrm{v}_{\mathrm{c}}\right)$ exoept during re-charging when CR_{8} conduots and $\mathrm{v}_{\text {CRS }}=0$. Hence before recharging $\mathrm{v}_{\text {CRB }}$ is $\left(\mathrm{v}_{\mathrm{a}}+\mathrm{V}_{\mathrm{d}}\right)$ and is $\left(-\mathrm{V}_{\mathrm{CR}}+\mathrm{V}_{\mathrm{a}}\right)$ for the remainder of eqeh sixth of a eycle.

TㅐAPTK 6.

The inverter wes tested vith a seriea R-L Losd and with an induotion motor Losd. The tests with the R-L load were earxied out in order to oheck the validity of the theory developed in Chapter 5 while the teats with the induction motor load were for etudying the overs11 pexformance of the speed eontrol syatem. In this chspter attention vill be concentrated upon ocrurutation, eurrent ent voltage waveroxis and hamonies. The effieiency of the inverter and the ratinga of the components of the olreut are left for conalderstion in Chapter 7 whioh Is devoted to the tests with an induction potor load.

6.1 Troigad fustent and Voitage Wavoforgs.

In Tig. 6.1 is set of ourrent and voltage waveforme is shown. They are given at this point so that they any be oompered wi th the predieted veveronis of M . 5.43 . The waveroma have bean treced frou oselllograms and are not to a oommon seale. A load oondition was chosen in which the eurrente in diodes D_{7} and D_{8} wore atill flowing at the ond of each sixth of a eyole and the deeay of load ourrent through the diode britge oeoupied approxtantely the same proportion of a sixth of a oyele as In the waveforms of Fig. 5.43.

The voltage waveforms are very alouler to those prodicted in Fig. 5.43, the only differenees resulting froe the ripple on the sein supply

voltage, v_{d}, and the oscillations between the small capaoitora conneoted across each S C R for voltage aurge protection and the inductance of the phase whose current has decayed to zero. The main supply voltage mpple is caused by the surge of curcent taken from the supply at commutation followed by a sudden drop in the supply ourrent as the current in a load phase rises from zero.

The waveforms of the load current i_{a} and supply ourxent i_{a} are as predioted. The other current waveforms are seen to differ from prediotion and this is due to the decay of current in diodes D_{7} and D_{8} after comultation. In the theory it was assumed that D_{7} and D_{8} possess constant voltage drops while conducting and that thexe was no resistance in series with them. In fact, the voltage drop of these diodes, whilst not increasing Inearly with current, does xise with ourrent and in sexies with esch diode was conneeted a small resistance for current monitoring.

Since the two halves of the d.o. ohoke were tightly coupled magnetieally the induced voltages in eseh half had to be identical and hence the instantaneous diode currents had to be identical. This is why the diode current waveforn, i. ${ }^{2} 7^{\prime}$, is slmost the saue in each sixth of a cycle and not as predioted. However, the balance hetween choke curxent, diode ourrent, end inverter input ourrent had still to be maintained. Because of the tight coupling the curxent in one half could ohange instentaneoualy, provided that it was belanced by an equal and opposite ohange in the other half. Consequently the ohoke current is aeen to rise to a greater value In one sixth of a cyole than in the next and the peaks of the ohole current
should then be $\hat{I} \pm \frac{1}{2} I_{1,1}$.
If the current in D_{7} snd D_{8} is high enough, the voltage across each half of the d.c. choke oan become greater than the sux of the forward voltage drops of a condueting S C \mathbb{R} and the diode connected to it. When this occurs the choke current can also deeay through such a path, e.5. through CR_{1} and D_{1} when CH_{2} is conducting. This is seen to occur in the waveforms of the inverter input cursent $i_{i n}$ and the diode bridge eurrent igen These waveforms conelst of those predicted in Fig. 5.33 with a decaying pulse of curxent supeximposed after commatation in each sixth of a eycle. The edditional pulse only persists until the voltage drop across D_{7} or D_{8} and its series resistance falls below the sum of the voltage drope of an S C R and a diode.

Some small fluetuationg in the waveforme from one oycle to the next were observed. These were caused by variations in the firing points of the bridge S C Res at the end of commtation. The fluctuations were most evident in the value of S C I voltage after commatation and the value, $I_{\text {LL2 }}$, of load cursent at the end of commatation.

6.2. Commutation.

The auxiliary aircuit provided to effect oomutaton in the inverter ia assentially that used in the d.c. switch. The ommatation theory was checked in the same way as in the d.c. switch and the results axe given below.
6.2.2. Dofinition of Symbols used for the Commtation Process.

Pig. 6.2 shows the theoreticel weveforms of $v_{o}, i_{e} V_{C R 1}$ during the comutation period when CR_{1} is turned off. At the instant t_{3} of triggering CR_{3} and CR_{7} the oapacitox voltege v_{c} staxts to rise from $-V_{C R}$ towards $+V_{d}$, following part of a sinewave of angular frequency ω. The time taken to reach $+V_{d}$ is $\frac{\phi}{\omega}$. Meanwhile the eapacitor current is rises from its initial value $I_{\text {do }}$ to a peak value \hat{I}, agein following part of a sinevave. $V_{C R I}$ rises from $\left.-\frac{1}{\left(V_{C R}\right.}-V_{d}\right)$ to $+V_{d}$ in the time $\frac{\phi}{\omega}$ but the time taken for $\nabla_{\text {Onl }}$ to reach zero is δ and it is vitally important that δ should be greater than the S C II turn-off time for reliable oommutation.

The time $\frac{d\left(V_{C R}-V_{g}\right)}{I_{d o}}$ is the approximate value of δ given in equation (5.5) and is seen to be the time which v_{c} would take to charge from $-V_{\text {OR }}$ to $-V_{d}$ if the oharging current were to remain at the initial value $I_{\text {do. }}$ It can be seen that this approximation will always give an optimistic value of δ i.e. one whioh is greater than that obtained in prastice.

6.2.2. Variation of δ with Losd Power Factor.

Some tests wers carcied out to find if δ was affected by the load power factor. These tests were carried out at a low frequency and in each case the supply voltage, load resistance, and henee the value of I do were kept conatant while the load inductance was varied. The tests were carsied out for several cambinations of commtating capaoitance C and $I_{\text {do }}$ and the results of three of these tests are shown in Fig. 6.3.

Fig. 6.2: Waveforms of $v_{c}, i_{C R 7}, v_{C R 1}$ during turn-off of CRI.

Fig. 6.3: Variation of δ with load inductance.
DM Measured values
—— Calculated values
--- Values calculated from "corrected VCR"

It is seen that in each case the measured value of δ is somewhat lower then that predioted. There are several reasons for this. The firat is that all the rectifier forward voltage drops and lead reaistance drops operate against effective comutation by making the effective value of $V_{C R}$ lower and V_{d} higher so that $\left(V_{C R}-V_{d}\right)$ becomes saaller. The rectifier drops ecount for an exror of about 4% under the condition of the teat gince the effective value of $\nabla_{C R}$ would be about 2.5 V low and the effeciive value of V_{d} about 2.5 V high (two reotifiers in series in each case).

The second qause of the discrepancy is the stray inductance of all the loops of the oircuit where current transfer takea plage during commutation. The effect of thia inductance is to delay the Pall of current in the conducting bridge S C Re. after the comutating eapacitor has begun to discharge so that when the S C Rs eventually become reversebiased the commutating capacitor has already lost some of its charge. The exact rasult of this phenomenon is difficult to prediot but the delay in reducing the S C R ourrent to zero is elearly proportional to the inductance of the circuit and the current being ooamutated and inversely proportional to the voltage which forees the current to transfer from the S C I to another path. In the tests discussed here the reduction in δ from this cause probably amounted to no more than four or five microseconds at the highest currents commutated.

A further reason for the diserepenoy is the reverse recovery current which flows in an S C R when it is turned off. The magnitude and duration of this current depend on the current flowing in the S CR
immediately before turnoff and its rete of reduction to zero. This reverse current mast flow in the comateting capacitor in addition to the current from the d.c. chokes and thus charges the capacitor more rapidly in the first few microseconds. Until the reverse current ceases to flow the SC Re do not become reverse-biased and δ can therefore be reduced significantly.

The last, but probably the most significant, reason for the disorepaney has been allowed for in FIg. 6.3 in the lines showing "Corrected values" of δ. During the tests a $1 \mu \mathrm{~F}$ capacitor was connected across each $\mathrm{S}_{\mathrm{C}} \mathrm{R}$ in the bridge to suppress some troublesome voltage transients. At commutation the voltage screes the bridge input terminals is reduced suddenly from $+\nabla_{d}$ to some negative voltage by the action of the commatasting capacitor. Some transfer of charge therefore occurs between the commutating capacitor and the network of $1 \mu \mathrm{~F}$ capacitors. This transfer of charge can be allowed for by assuming that the effective value of the bridge capacitance is $1.5 \mu F$ (made up of three parallel pairs of $1 \mu F$ capacitors in series) and that the effective value of commutating capacitance then becomes $(c+1.5 \mu \mathrm{~F})$, the initial voltage eros this effective capacitor being $-V_{C_{R}^{\prime}}$ where $V_{C}{ }^{\prime}$ is given by

$$
\begin{equation*}
V_{C^{\prime} R}=\frac{C V_{C R}-1.5 \mu F \times V_{d}}{C+1.5 \mu F} \tag{6.1}
\end{equation*}
$$

It is seen in Fig. 6.3 that the accuracy of prediction is much improved when this allowance is made.

The important conclusion to be drawn from these tests, however, is that δ is independent of the load induotence and heme the load power factor, as predicted.
6.2.3. Variation of δ with I ${ }^{\circ}{ }^{\circ}$

To measure the variation of δ with $I_{\text {do }}$ the circuit was again operated at a low frequency with the main and auxiliary supply voltages and the load inductance kept constant. I do vas varied by changing the load resistance and δ and $I_{\text {do }}$ were measured on an oscilloscope for each value of load resistance. Measurements were taken for several values of the commutating capacitance and the results of two of the tests are presented in Fig. 6.4.

Once more it is seen that the eslculated values of δ are greater than the measured values but that the correction applied to the calculated values considerably improves the accuracy of prediction. The form of the measured variation of δ with $I_{\text {do }}$, however, acooxds very favourably with that predicted. The values of δ aaloulated from the approximate expression of equation (5.5) are seen to be grossly inaccurate at low currents (where \hat{I} is much greater than $I_{\text {do }}$) but at the higher values of $I_{\text {do }}$ (where \hat{I} becomes more nearly equal to $I_{\text {do }}$) the approximate expression is seen to give useful predictions. δ, sa predicted, therefore varies inversely with $I_{\text {do }}$.

Fig. 6.4: Variation of δ with $I_{\text {do }}$
$V_{d}=80 \mathrm{v}, V_{a}=100 \mathrm{v}, V_{c R}=220 \mathrm{v}, C=18 \mu \mathrm{~F}$ and $30 \mu \mathrm{~F}, \mathrm{~L}_{d}=0.5 \mathrm{mH}$
(a) Experimentally obtained values
(b) Calculated values.
(d) Values calculated from approximate expression for δ
(d) Calculated values, corrected for effect of R-C filter connected across each main SCR.
6.2.4, Variation of δ with C and $\nabla_{C R}$.

Some tests were carried out to find how δ vasied with C and $\nabla_{C R}$, the two main comutation parameters. The eircuit was operated at low frequency with γ_{d} and $I_{\text {do }}$ kept ecnstant and δ was messured on an oscilloscope for verious combinations of C and $V_{C R}, \nabla_{C R}$ also being measured on an osoilloscope. Tig. 6.5 shows the measured and predioted variations of δ with C for two values of $V_{C R}$, the predicted values being corrected for the effective briage erpacitance.

It is seen that δ does not inerease quite proportionally with C , the ratio $\frac{\delta}{C}$ diminishing as C is inereased. This is because an inorease in C causes an inorease in \hat{I} and hence an inorease in the mean current charging C from $-V_{C R}$ to $-V_{a}$. For the same reason an increase of $\left(\mathrm{V}_{\mathrm{GR}}-\mathrm{V}_{\mathrm{d}}\right.$) from 140 V to 220 V does not cause a proportionel increase in § However, both sets of measured values conpare favourably with the predieted curves within the limits enumerated in section 6.2 .2 and it may therefore be concluded that the theoretical expressions for δ are valid.
6.2.5. Variation of $I_{\text {do }}$ and δ with Frequency.

In section 5.7 .4 it was shown that at high inverter outgut frequencies $I_{\text {do }}$ could become much greater than its low frequeney value and largely independent of losd curxent. In consequence δ would fall as the frequency is inereased. It was in fact predicted that $I_{\text {do }}$ would become approximately proportional to the square root of the inverter output

Fig. 6.5: Variation of δ with C and $V_{C R}$.

$$
V_{d}=80 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, I_{d o}=16.6 \mathrm{~A}, V_{C R} \text { as shown }
$$

Measured values

..... "Corrected" calculated values
frequency. It was also predicted that by inexeasing the effective resiatance of each half of the d.c. choke the rate of inerease of $I_{\text {do }}$ with frequency could be redueed.

To test the validity of this theory the oircuit was opereted over a. range of frequencies with all circuit paxameters and supply voltages kept constant. At each frequency the values of $I_{\text {do, }} \hat{I}$ and δ were measuxed on an oscilloscope. A resiatence of 0.1Ω was then added in series with each haif of the d.c. choke and the messurements repested.

In Fig. 6.6 the two sets of results are plotted. It is seen that with no added reaistance $I_{\text {ao }}$ starts to rise above its low frequeney value at about $12 \% / \mathrm{s}$ causing a corresponding inoresse in \hat{I} and reduetion in δ. With 0.1Ω resistance added, however, the value of $I_{\text {do }}$ aotually falls at first with the peak load current as the frequeney is inereased and does not start to xise until a frequency of $32 \mathrm{~m} / \mathrm{s}$. is raached. Thereafter $I_{\text {do }}$ inereases mach less rapdidy than in the first ease which had no added resistance.

The values of $I_{\text {do }}$ and δ calculated from equations (5.90) and (5.100) are also shown for comparison with the messured values and for verifieation of the theory. The celculations are based on a resistance of 0.032Ω for each half of the d.c. ohoke, a mean resistance of 0.014Ω for the leads to diodes D_{7} and D_{8}, and an eifective sesistance of 0.019Ω for diodes D_{7} and D_{g}. These values were meesured by the ammeter-voltmeter method. The effective resistance in the ohoke current decey circuit was then 0.065Ω in the fixst case and 0.165Ω in the second.

The calculated values of $I_{\text {do }}$ and δ are seen in Hig. 6.6 to vary

Fig. 6.6: Variation of $I_{d o}, \hat{I}$ and δ with inverter output frequency, f.
$V_{d}=100 \mathrm{v}, V_{a}=100 \mathrm{v}, V_{C R}=230 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, C=30 \mu \mathrm{~F}, R=2.0 \Omega, L=1.85 \mathrm{mH}$
—. and ... no added choke resistance $\left(R_{d}^{\prime}=0.065 \Omega\right)$
—— and 0.1Ω added in series with each half of $d \cdot c$. choke $\left(R_{d}^{\prime}=0.165 \Omega\right)$
with frequency in much the same manner as the mesured values once the values of $I_{\text {do }}$ have begun to rise above their low frequency value. Agreement between the meaaured and calculated values of δ is seen to be only alittle worse than in the tests disoussed in the previous sections, showing that the approximate theory gives useful results. The calculated values of $I_{\text {do }}$ lie approximately half way between the measured values of $I_{\text {do }}$ and \hat{I} at each Irequency. This is to be expeoted since the caloulated value of I do really represents the rom.s. value of the current in each half of the d.e, choke. Sinoe this currext rises quickly from $I_{\text {do }}$ to \hat{I} and then decays almont linearly back to $I_{\text {do }}$ in each sixth of a eycle its romos. value aotually lies nearly half way between $I_{\text {do }}$ and \hat{I}.

It may be coneluded from these teats that at high frequencies $I_{\text {do }}$ rises almost proportionsl to the square root of frequency and δ Inversely proportional to the square root of frequenoy. The resistance of the d.c. choke is one of the main facters upon which depends the rate of increase of $I_{\text {do }}$ with frequeney and increasing the resistence has the predioted effect upon the Mse of I do $^{\circ}$.

6.2.6. Variation of I do with Load Current at Figh Frequency.

Some tests were earried out to detemaine how far $I_{\text {do }}$ was independent of load ourrent at high inverter output frequencles. The tests were carried out at a high frequency and all supply voltages and oirouit parameters were kept constant except for the load (and henoe the main
supply current) which was varied. The values of $I_{\text {do }}$ for several values of supply current were meesured and the measurements were repeated with several combinations of circuit parameters.

Fig. 6.7 shows how the values of $I_{\text {do }}$ and I varied with I_{d} in one of these tests. The calenked variation of $I_{\text {do }}$ with I_{d} is also shown and has been obtained by calculating the no-load value of $I_{\text {do }}$ from equation (5.98) and using equation (5.105) afterwards.

It is seen that the measured Io varies in a similar manner to its calculated variation and that one more the calculated values of I do 1 ie approximately half way between the measured values of I do and I. The graph therefore shows that the flow of load current has the effect of increasing the value of $I_{d o}$ and that the increase in $I_{\text {do }}$ can be approximately predicted from equation (5.105).

6.2.7. Conclusions on Computation.

In an inverter circuit the arrangement made for turning off the load current carrying $S C$ Rs forms one of the most important features of the oirouit. The oomutetion circuit must be reliable or the inverter will fail to function, each failure normally being accompanied by a large d.e. fault current.

The tests on the ommutation circuit which have been described above have shown that the theory developed in section 5.3.4.1 and elaborated in section 5.7 is adequate for use in designing a suitable soamatetion aircult for the inverter eirouit under discussion.

Fig. 6.7: Typical variation of $I_{d o}$ with I_{d} at high inverter output frequency

$$
\begin{aligned}
& V_{d}=100 \mathrm{v}, \quad V_{a}=100 \mathrm{v}, \quad V_{C R}=230 \mathrm{v}, \quad f=40 \% \\
& C=30 \mu \mathrm{~F}, \quad L_{d}=0.5 \mathrm{mH}, \quad L=1.85 \mathrm{mH} . \\
& R_{d}=0.06 \Omega, R_{7}=0.084 \Omega, \quad R_{d}^{\prime}=0.16 \Omega
\end{aligned}
$$

The most important comutation cirouit characteristics which must be taken into secount are as follows:-
(a) the S CR reversemias time δ at tum-off is independent of the load power factor and this need not, therefore, be taken into account. (b) δ varies in an inverse mannex with the current $I_{\text {do }}$ flowing in the d.c. choke prior to comatation. Hence it is essential that the highest load suzrents envisaged, even overload currents, should be taken into account,
(o) for a givan value of $I_{d o}, \delta$ is approximately proportional to the comatating eapacitance C,
(d) δ is also approximstely proportional to $\left(V_{\text {CR }}-V_{d}\right)$ where $\nabla_{C R}$ Is the voltrge on the commatating eapacitor prior to oommtation and ∇_{d} is the main supply voltage. Hence $V_{C R}$ must be greater than ∇_{d} for comatation to be at all possible,
(e) when $I_{\text {do }}$ is high, or the d.e. choke inductince is large, δ is approximately equel to $\frac{C\left(V_{C R}-V_{d}\right)}{I_{\text {do }}}$. This formuia san be used with conridence to obtain values for C and $V_{O R}$ at the first stage of designing the commatation oireuit,
(f) when the invertez output frequency is ineressed a point is reached where $I_{\text {do }}$ begins to x se independently of load oursent. Thereafter $I_{\text {do }}$ becomes approwimately proportional to the square root of freguency and δ falle accordingly. The frequency at which $I_{\text {do }}$ starts to rise and the rate at which $I_{\text {do }}$ rises depend upon the values of C and $\nabla_{C R}$ and the nature of the circuit forcing the d.c. choke currest to decay betwean successive comutations. $I_{\text {do becomes approximately proportional to } \sqrt{C}}$
at a given frequency and δ in consequence becomes proportional to $\sqrt{\mathrm{C}}$ at the same frequency,
(g) at high frequencies the value of $I_{\text {do }}$ varies with the lood current, but only to an extent determined by the relative magnitudes of the resistances, $\mathbb{R}_{d}, \mathbb{R}_{7}$ and \mathbb{R}_{8}, concerned with the decay of curxent in the a.c. ahoke.

The results of the tests underine the necessity for keeping to a minimum the inductance distributed around the circuit and the capacitance used for limiting voltage surges. Some circuit inductance is necessary to reduce hole storage reverse recovery currents and to limit the rate of rise of current in each S C R at turnoon to a safe value. Protection against voltage surges, however, would be better carried out by some of the semiconductor devices now designed for this purpose.

6.3. Sample Celculations for Rei Load and Comparison with Measured
 Results.

6.3.1. Condition for the Colculation.

In this section the waveforms and mean values of voltage and current are found by calculation and compared with the corresponding measured results. A load and frequency were chosen so that diodes D_{7} and D_{8} conducted throughout each cyole exoept during the commatation periods.

The load and supply conditions were as follows i-

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{d}}=100 \mathrm{~V} ; \mathrm{V}_{\mathrm{a}}=100 \mathrm{~V} ; \mathrm{V}_{\mathrm{CR}}=230 \mathrm{~V} \\
& \mathrm{~L}_{\mathrm{d}}=0.5 \mathrm{mH} ; \mathrm{C}=30 \mu \mathrm{~F} ; \mathrm{R}=2.065 \Omega \\
& \mathrm{I}_{\mathrm{d}}=3.85 \mathrm{mH} ; \mathrm{R}=2.3 \Omega ; \mathrm{f}=0.00 \mathrm{~s} / \mathrm{s} .
\end{aligned}
$$

6.3.2. Determination of $I_{\mathrm{do}_{0}}, \hat{I_{,}} I_{10}, I_{L 1}, I_{12}, T_{2}, T_{2}, T_{3}$,

The condition of the circuit is much that $I_{\text {do }}$ is higher than I_{10}. I do must therefore be calculated from the given data. From equation (5.98) a value $I_{\text {do }}^{\prime}$ can be obtained which is approximately half way between I and the true value of I do.

Thus $I_{\text {do }}^{\prime} \Omega \frac{1}{}\left(V_{d}+V_{\text {CR }}\right) \sqrt{\frac{6 G_{d}}{R_{d}^{1}}}$
$\Omega 62.5 \mathrm{~A}$
\wedge
From the definition of I (see equation (5.2))

$$
\hat{I}^{2}-I_{d o}^{2}=\frac{c\left(V_{d}+V_{C R}\right)^{2}}{4 L_{d}}
$$

i.e. $\left(\hat{I}-I_{\text {do }}\right)\left(\hat{I}+I_{a 0}\right)=1635 \hat{A}^{2}$

Now $\quad \hat{\mathrm{I}}+\mathrm{I}_{\text {do }} \Omega 2 I_{\text {do }}^{\prime}=223 \mathrm{~A}$
$\therefore \quad \hat{I}-I_{\text {do }}=\frac{1635}{123}$

$$
=14.5 \mathrm{~A}
$$

Hence

$$
\begin{aligned}
I_{d o} & \Omega I_{d o}^{\prime}-\hat{1}\left(\hat{I}-I_{d \theta}\right) \\
& \Omega(54 \Delta
\end{aligned}
$$

Having calculated $I_{\text {do }}$, $_{1}$ may now be found.

$$
\begin{aligned}
\omega & =\sqrt{\frac{1}{4 L_{d} C}} \\
& =\frac{4.09 \times 10^{3}}{\tan ^{\phi}} \\
& =\frac{\omega C\left(V_{d}+V_{C R}\right)}{I_{d o}} \\
& =0.75
\end{aligned}
$$

$$
\therefore \phi=0.644
$$

Then $T_{1}=\frac{\phi}{\omega}$

$$
=158 \mu \text { Seas }
$$

Take T_{1} to be 160μ secs.
$I_{L 0}, I_{L 1}, I_{L 2}{ }^{*} T_{2}, T_{3}$ may now be found by the iterative process described in section 5.3.6.2. For this process the following values are required

$$
\begin{aligned}
& \frac{V_{\mathrm{d}}}{2 R}=\frac{100}{2 \times 2.3}=21.75 \mathrm{~A} \\
& \frac{\nabla_{\mathrm{d}}}{3 R}=\frac{100}{3 \times 2.3}=14.5 \mathrm{~A}
\end{aligned}
$$

$$
\frac{2 v_{d}}{3 R}=\frac{200}{3 \times 2.3}=29.0
$$

First iteration.
I_{10} must lie between $\frac{V_{d}}{3 R}$ and $\frac{V_{d}}{2 R}$. For the first iteration choose $I_{L 0}=18 \mathrm{~A}$.

Then $I_{L 1}=I_{L 0}-\left(I_{L 0}+\frac{V_{d}}{2 R}\right) \cdot \frac{R I_{2}}{L}$

$$
\begin{aligned}
& =\frac{14.2 \mathrm{~A}}{2 V_{\mathrm{a}}} \\
\text { Then } I_{\mathrm{L} 2} & =\frac{1}{3 \mathrm{R}}\left(\frac{1}{1+\frac{V_{\mathrm{a}}}{3 R I_{\mathrm{LI}}}}\right) \\
& =14.35 \mathrm{~A} \\
\text { Also } T_{2} & =\frac{L}{R} \log _{e}\left(1+\frac{3 R I_{L 1}}{V_{\mathrm{a}}}\right) \\
& =1.14 \mathrm{~m} \sec
\end{aligned}
$$

$$
\text { Then } s_{3}=\frac{1}{6 f}-\left(T_{1}+s_{2}\right)
$$

$$
=2.03 \mathrm{~m} \text { Secs }
$$

$$
\text { Then } I_{L 3}=\frac{V_{d}}{2 R}-\left(\frac{V_{a}}{2 R}-I_{L 2}\right) e^{-\frac{R T_{3}}{L}}
$$

$$
=19.54 A
$$

The value of I $L 3$ at the end of the first iteration is not equal to the assumed value of $I_{L 0^{*}}$. Hence the assumed value of $I_{L O}$ was wrong and another value must be assumed for the second iteration.

Second and third iterations.
The results of the first, second and third iterations are amassed in Table 6.2 below. These iterations were carried out in exactly the same manner as the first. In the second iteration a value of $I_{L 0}$ wis taken which was slightly smaller then the $I_{L 3}$ obtained from the fIrst iteration. Because the new value of $I_{L J}$ reaulting was still larger than the I_{10} taken for the second iteration a value of I_{10} for the third iteration was chosen which was slightly greater than the preseding I_{133} *

Table 6.1 Summary of result o of fixate second and third

iterations.

After the third iteration the values of I_{10} and $I_{L 3}$ are seen to be equal. Hence the correct value of I_{10} is 19.66 A .

Then, to three significant figures, the other initial values are

$$
\begin{aligned}
& I_{L 0}=19.7 \mathrm{~A}, I_{L 1}=15.7 \mathrm{~A}, I_{L 2}=15.1 \mathrm{~A} \\
& T_{1}=0.16 \text { mSecs }, T_{2}=1.23 \text { msecs, } T_{3}=1.94 \text { oSes. }
\end{aligned}
$$

6.3.3. Current Equations and Curxent and Voltege Waveforms.

Having obtained the initial values $I_{L 0}, I_{L 1}, I_{L 2}$ and the times T_{2}, T_{2}, T_{3} the current equations can be found for each sixth of a cyele and the voltage and current waveforme constructed. The current equations and output voltage velues will be given only for the sixth of a cycle between instent t_{2} and t_{3} since the equations for other sixths of a cyole can be obtained easily from them.

Period I (of duration x_{2})

$$
\begin{aligned}
i_{a}=-i_{b} & =-\frac{V_{d}}{2 R}+\left(\frac{V_{d}}{2 R}+I_{10}\right) e^{-\frac{R i t}{L}} \quad \text { (from equation (5.1)) } \\
& =-21.7+41.4 e^{-600 \text { t }} \mathrm{A} \quad \text { to } 3 \text { significant figures. } \\
i_{e} & =0
\end{aligned}
$$

$$
\begin{aligned}
& v_{\mathrm{ab}}=-\bar{v}_{\mathrm{a}} \\
& v_{\mathrm{bc}}=\frac{\mathrm{v}_{\mathrm{d}}}{2} \\
& \mathrm{v}_{\text {ea }}=\frac{\mathrm{v}_{\mathrm{d}}}{2}
\end{aligned} \quad\left\{\begin{array}{l}
\text { see section } 5.3 .5 .
\end{array}\right.
$$

Period 2 (of duration 2_{2})

$$
\begin{aligned}
i_{a} & =\frac{\nabla_{d}}{3 R}+\left(I_{L I}-\frac{V_{d}}{3 R}\right)^{-\frac{R t}{L}} \\
& =14.5+1.2 e^{-600 t}
\end{aligned}
$$

$$
\begin{aligned}
& i_{b}=\frac{V_{a}}{3 R}-\left(I_{L L}+\frac{V_{d}}{3 R}\right) e^{-\frac{R t}{L}} \quad \text { (prom equation (5.26)) } \\
& =\underline{\underline{14.5-30.2 e^{-600 t^{2}} \mathrm{~A}}} \\
& i_{c}=-\frac{2 V}{3 R}\left(1-e^{-\frac{R t}{L}}\right) \\
& =-29\left(1-e^{-600 t}\right) A \\
& \begin{array}{l}
v_{a b}=0 \\
v_{b c}=v_{d} \\
v_{c a}=-v_{d}
\end{array}\left\{\begin{array}{l}
\text { See section } 5 \cdot 3.5 .
\end{array}\right.
\end{aligned}
$$

Period 3 (of duration t_{3})

$$
\begin{aligned}
& I_{a}=-I_{c}=\frac{V_{d}}{2 R}+\left(I_{L 2}-\frac{V_{d}}{2 R}\right) e^{-\frac{R t}{L}} \quad \text { (Iron equation (5.32)) } \\
& =21.7-6.7 e^{-600 t} A \\
& \underline{\underline{i}=0}
\end{aligned}
$$

In the sixth of a cycle between t_{2} and $t_{3} i_{a}$ and $v_{a b}$ are as given by the equations above. In the next sixth of a cycle i_{a} and $v_{\text {ab }}$ are
as given by the equations for $-i_{b}$ and $-v_{b c}$, in the next as for i_{c} and $v_{\text {ea }}$, next as for $-i_{a}$ and $-\nabla_{\text {ab }}$, next as $f o r i_{b}$ and $v_{b o}$, next as for -1_{e} and $-v_{\text {ea }}$. Thus the complete load current and voltage waveforms gan be drawn as in Figs. 6.8 and 6.9.
6.3.4. Mean and ramos. Values of Load and Supply Current and Voltage.

The romes. value I_{a} of the current in phase A may be found by integration over half a cycle. Since in the half cycle starting at instant $t_{2} i_{a}$ is defined in tum by the equations given above for i_{a},

- i_{b} and $i_{e} \quad I_{a}$ may be found from

$$
I_{a}=\sqrt{\frac{2}{T} \int_{0}^{\frac{T}{6}}\left(1_{a}^{2}+1_{b}^{2}+1_{c}^{2}\right) d t}
$$

Then, using the current equations obtained in section 6.3.3,

$$
I_{a}=13.5 \mathrm{~A}
$$

The rotas. value $V_{a b}$ of the output line to line voltage V_{ab} may be found in a similar manner.

Hence

$$
\begin{aligned}
& v_{a b}=\sqrt{\frac{2}{T} \int_{0}^{\frac{T}{6}}\left(v_{a b}^{2}+v_{b c}^{2}+v_{a a}^{2}\right) d t} \\
&=\xlongequal{74.8 \mathrm{~V}} \text { using equations for } v_{a b^{0}} v_{a c^{2}}, v_{c a} \text { derived in } \\
& \text { section } 6.3 .2 .
\end{aligned}
$$

Fig. 6.8: Measured (\quad) and predicted (--) inverter output phase currents waveforms. (For circuit conditions see sample calculation in section 6.3.)

Fig. 6.9: Measured (—) and predicted (...) inverter output line-to-line voltage waveforms. (For circuit conditions see section 6.3 . of text)

The waveform of i_{d}, the current taken from the main $d . c$. supply, consists mainly of the waveform for i_{a} between instants t_{1} and t_{2} repeated in every sixth of a cycle, (See Fig. 5.43), and is given by the equations $\left(-i_{e}\right)$ derived in section 6.3 .3 . During the commutation period current is taken from the supply in charging the commutating capacitor from $-V_{C R}$ to $+V_{d}$. The mean value of this contribution to the supply current is $6 \mathrm{CI}\left(\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{CR}}\right)$ but is partially of feet by the current returned to the supply through the reverse diode bridge. The latter current is given by the equation for $i_{a_{k}}$ during period 1.

Hence the mean value I_{d} of the doc. supply current is given by

$$
I_{d}=\frac{6}{T} \int_{0}^{\frac{T}{6}}\left(-i_{e}\right) d t+6 \operatorname{cf}\left(V_{d}+V_{o R}\right)-\frac{6}{T} \int_{0}^{T_{T}} i_{a} d t
$$

Using the equation derived in section 6.3 .3 for i_{a} and i_{c}

$$
I_{\mathrm{a}}=15.6 \mathrm{~A}
$$

The current $1_{\text {gen }}$ returned to the supply through the reverse diode bridge consists of a pulse during each commutation period given by the /equation
for in for period I followed in alternate sixths of a cycle by a decaying current given by the equation for $-i_{b}$ in period 2. The mean value $I_{\text {gen }}$ of this current cen therefore be found by integration over one third of a cycle.

Hence $I_{\text {gen }}=\frac{3}{9}\left[2 \int_{0}^{T_{1}} i_{a} d t+\int_{0}^{T_{2}}\left(-1_{b}\right) d t\right]$
$=2.20 \mathrm{~A}$ using equations for i_{a} and i_{b} from section 6.3 .3.

The power, ${ }^{2}$, taken from the main die, supply may be found by muletiplying together the d.c. supply voltage and the mean supply current

$$
\text { i.e. } \begin{aligned}
W_{\mathrm{d}} & =\nabla_{\mathrm{d}} \cdot I_{\mathrm{d}} \\
& =1560 \mathrm{~W}
\end{aligned}
$$

The power W_{L}, consumed by the load may be found by adding the $I^{2} R$ dissipations in the three load phases.

$$
\text { i.e. } \begin{aligned}
W_{L} & =3 \times I_{a}^{2} \mathrm{R} \\
& =1260 \mathrm{~W}
\end{aligned}
$$

N.B. The difference between W_{d} and W_{L} is equal to the power taken from the main supply for charging the commutating capacitor from $-V_{C R}$ to + V_{d} six times per cycle, ie. 297 W.

It should also be borne in mind that in each sixth of a cycle there are three equations to define each of the currents. Each of the current equations have their time zero at the beginning of the period for which they are valid. This simplifies the calculation of the integrals given above.

The output power factor, defined es P. Fo $=\frac{W_{L}}{\sqrt{3} \nabla_{a b} I_{a}}$, is found from the values of $V_{a b} I_{a}$ and W_{L} calculated above.

Then P.F. $=0.72$
6.3.5. Harmonic Content of Output Voltage and Current Waveforms.

In section 5.5 formula were devised for the several hamonis somponents of the output line-to-line voltage waveform. From the componenta of the total value of each voltage harmonic can be found and from these the current hamonics can be found. Table 6.2. shows the voltage components for the first five harmonies, the harmonic impedences per load phase, and the resulting current harmonics.
$\frac{2}{\sqrt{2}} \hat{a}_{n}$ once found from Table 5.1 , putting $V_{d}=100 \mathrm{~V}$.
To find $\frac{2}{\sqrt{2}} b_{n}$ and $\frac{2}{\sqrt{2}} c_{n}$ the value of u is required.

$$
\begin{aligned}
u & =2 \pi f \Phi_{2} \text { radians } \\
& =22.2^{\circ}
\end{aligned}
$$

$\frac{2}{\sqrt{2}} b_{n}$ and $\frac{2}{\sqrt{2}} c_{n}$ an then be found from M_{g}. 5.36 or from Table 5.2 by putting $u=22.2^{\circ}$.

Since the operating frequency is high enough for F_{2} to form a significant part of each sixth of a cycle account must be taicen of $\frac{1}{\sqrt{2}} \mathrm{~b}_{\mathrm{n}}$ and $\frac{1}{\sqrt{2}} e_{n}^{\prime}$.

$$
\begin{aligned}
w & =2 \pi P T_{1} \text { radians } \\
& =2.88^{\circ}
\end{aligned}
$$

$\frac{1}{\sqrt{2}} b_{n}^{\prime}$ and $\frac{2}{\sqrt{2}} c_{n}^{\prime}$ an then be found from Fable 5.3 by putting $w=2.88^{\circ}$. $V_{n}=\frac{1}{\sqrt{2}} d_{n}$ can then be found from equation (5.34).

The harmonic impedance Z_{n} per phase of the load is found from

$$
Z_{n}=\sqrt{R^{2}+(2 \pi n+L)^{2}}
$$

Then since V_{n} is the nth hamonis component of the load line-tom Iine voltage and Z_{n} is the nth harmonic impedence per phase of a staxconnected load, the nth hamonic component I_{n} of the load current can be found from

$$
I_{n}=\frac{v_{n}}{\sqrt{3 Z_{n}}}
$$

n	1	5	7	11.	13
$\frac{1}{\sqrt{2}} a_{n}$	67.5 V	13.5 V	9.6 V	6.2 V	$5 \cdot 2 \mathrm{~V}$
$\frac{1}{2} \mathrm{~b}_{n}$	- 4.8 V	12.8 V	8.1 V	2.3 V	3.0 V
$\frac{1}{\sqrt{2}} c_{n}$	14.2 V	1.0 V	7.5 V	- 5.3 V	- 2.3 V
$\frac{1}{\sqrt{2}} b_{n}$	- 5.8 V	5.8 V	- 5.7 V	5.6 V	- 5.5 V
$\frac{1}{\sqrt{2}} e_{n}^{\prime}$	0.1 V	- 0.7 V	1.0 V	- 1.6 V	1.8 V
$V_{n}=\frac{1}{\sqrt{2}} a_{n}$	58.6 V	32.1 V	14.7 V	15.7 V	2.7 V
,	2.59Ω	6.48Ω	8.77 요	23.51Ω	15.90 Ω
I_{n}	13.1 A	2.86 A	0.97 A	0.67 A	0.098 A

Table 6.2 Caloulations for harmonio content of load voltage and current woveforms.
Power factor at fundamental frequency $=\frac{R}{Z_{1}}$
$=0.39$

This is considerably higher than the total load power fector of 0.72 because of the hamonics which produce little power but add to the r.m.s. values of voltage and current.
6.3.6 Comparison between Measured and Predicted Results.

Measurements were token from the inverter circuit of all the quantitiea predicted above. Mean and r.m.s. values were measured with meters, wavefoms, time intervals and instantaneous current values on oscilloscopes, and hamonios were measured with a wavaforn analyserg. The measured and predicted values are given together in the following table and discrepenoies between values are expressed as percenteges of the measured values.

Table 6.31 Comparison between measured results and results preaioted
in semple ogloulation.

Quantity	Neasured Value	Predieted Value	Disorepancy
${ }_{1} 10$	19.8 A	19.7 A	0.5
$\mathrm{I}_{\text {L2 }}$	27.4 A	25.7 A	10.6
${ }_{12}$	15.0 A	15.1 A	0.71
T 1	0.16 표ec	0.16 msec	0
T_{2}	1.35 asee	1.23 milsee	8.9515
${ }_{3}$	1.82 msec	1.94 wSee	6.6%
$\mathrm{I}_{\text {a }}$	17.2 A	25.6 A	$9.3 / 1$
${ }_{\text {W }}$	1720 W	1560 w	9.36
$I_{\text {gen }}$	2.0 A	2.2 A	10,4
${ }^{1}{ }^{\prime}$	13.2 A	13.5 A	2.3\%
V_{l}	72.0 V	74.8 V	3.8\%
W_{L}	1200 W	1260 w	5.
Total Power Faotor	0.73	0.72	1.4\%
∇_{1}	60.0 V	58.6 v	2.3is
∇_{5}	32.4 V	32.1 v	2.2\%
∇_{7}	35.7 V	14.7 V	6.45
∇_{11}	9.5 V	15.7.V	65.
v_{23}	6.2 V	2.7 V	56\%
I_{1}	12.8 A	13.1 A	2.31
I_{5}	2.71 A	2.86 A	5.5.6
${ }^{1} 7$	0.98 A	0.97 A	1\%
${ }_{11}$	0.39 A	0.67 A	72.
${ }_{13}$	0.22 A	0.10 A	55.

Tigs. 6.8 and 6.9 show how the measured inverter output current and voltage wavefoms compare with those predieted. The oscillations visible on the measured waveforms are eaused by interaction between the load inductance and the eapscitors comnected across the S C Ris in the inverter bridge.

From Table 6.2 and Figs. 6.8 and. 6.9 it mey be concluded that the theory developed in section 5.3 is capable of predieting the performance of the inverter to within 10%. The forward voltage drops of the rectifiexs would account for about 2 i $\%$ of the discrepancy between predieted and measured results and circuit resistance for a further 3\%.

The measured value of $I_{L l}$ is a mean value. In practice the instant in the cyole at which the bxidge 8 C Res resumed conduction after comuratation fluctuated because of the pulsed control signal. Hence the value of $I_{L I}$ given is higher than its loweat observed value which would compare better with the predicted value. For the same reason the measured value given for I_{2} is higher than the predicted value.

The difference between W_{d} and W_{L} represents the power loss due to commatation and in the rectifier and circuit resiatance. In the oalculation only the commatation loss was taken into acoount and hence the measured power loss is larger than predicted.

There is seen to be a large discrepaney between the measured and predicted values for the 11 th and 13 th hamonics. The measured values are mean values since the reading of the wave anelyser fluctuated. This again can be attributed mainly to the irregulaxity in the reaumption
of conduction by the S C lis after commutation.
The voltage waveforms shown in Fig. 5.9 are line-to-line voltage waveforms and it is geen that oscillations take plece where the voltage is nominally half of the supply voltage. This is when one of the output lines concerned is conneoted to the supply through an S C R and the other is effectively connected only to the S C R filter capacitors. The potential on the second line is therefore free to oscillate, interaotions between the load inductence and the rilter capacitance taking place where a ateep voltage fall would theoretically have occurred. During commtation, however, the filter capacitor voltage changes so rapidly that the charging currents effectively swarap any load curxent whioh might flow. Hence no voltage oscillation is observed duxing commutation.

It is also seen thet when the voltage between lines is nominally 100 V , i.e. when both lines axe connected to the supply via 3 C fis or diodes, the voltage waveforn is in fect curved. This is because the main supply reservoir capacitor voltage fluetuates about its mean value as the current taken by the inverter varies duxing each sixth of a eycle. Hence the capacitor voltage falls during commutation pexiods and towards the end of eech sixth of a cycle when the cursent drawn from it is greates than the sean current, and rises during the remainder of each sixth of a ayele.

6.4 Variation of Output Voltase Hamenies with Load.

Tests were carried out to determine how the inverter output voltage harmonic content changed with load. In this way the validity of the theory developed in section $5.5 .$, which gave fommla for the approximate hamonic content of the output voltage waveroms, wes checked.

The procedure carried out in these tests was to iseep constant the main d.0. supply voltage and to vary the load reaistance and induotance to give a wide range of fundemental powev fector. For each combination of load resiatance and inductance the rom.s. values of the fixat five hamonies in the output voltages were then measured with a vavefoma analyser. The total rom_{0}. value of the output voltege was measured With a voltmeter and the duration of the various pexiods within each sixth of a oycle measured with an oscilloscope.

Besults are given in Pigs. $6.10,6.11,6.12$ for a test oarried out under the following conditionss-

$$
\begin{aligned}
& \nabla_{\mathrm{d}}=80 \mathrm{~V} ; \mathrm{V}_{\mathrm{a}}=100 \mathrm{~V} ; \mathrm{V}_{\mathrm{CR}}=210 \mathrm{~V} \\
& \mathrm{~L}_{\mathrm{d}}=0.5 \mathrm{mH}: \mathrm{C}=30 \mu \mathrm{~F} ; \quad \mathrm{I}=50 \mathrm{c} / \mathrm{s}
\end{aligned}
$$

The duration T_{1} of the commatation period was found to change little during the teat, remaining almost constant at about 200μ Secs. This corresponds to a value for w of 3.6° which is the value used in the calculation of predicted results.

Fig. 6.10 shows the variation of the time T_{2} with the load L / R ratio. This messured velue of T_{2} is compered with the epproximete velue of $0.7 \mathrm{~L} / \mathrm{R}$ for T_{2} suggested in section 5.5 .6 . It is seen thet

Fig. 6.10: Variation of time T_{2} with load $\frac{L}{R}$ ratio.
$0.7 \mathrm{~L} / \mathbb{R}$ is in fact a reason bile approximation for T_{2}, being within 10 /f of T_{2} over most of the range covered in the test. At both ends of the range, however, the approximation is invalid for the following reasons:-
(a) when $\frac{1}{R}$ is smaller than, or comparable with, the time T_{1} it is possible for the current in the load to be forced to zero in the commatation period. When this happens T_{2} must be ser because the phase current being turned off is already zero. For this reason ${ }_{2}$ was seen to be zero until $\frac{\pi}{R}$ had been increased above about 250μ Seas. (b) The approximate expression for T_{2} is most socuxate when $I_{I 2}$ is equal to $\frac{V_{d}}{3 R}$. For a low power factor load, in which $\frac{L}{R}$ is long compared with a sixth of a cycle, the value of $I_{L 2}$ depends more upon the load inductance's contribution to the load impedance. Hence the greater the $\frac{L}{R}$ ratio the smaller $I_{L 2}$ and, consequently, T_{2} become. A stage is reached eventually when the power factor is so low that period 2 extends from the end of the commutation period to the end of the sizth of a cycle. When $\frac{L}{R}$ is increased further T_{2} remains constant at $\left(\frac{T}{6}-T_{1}\right)$. This is not shown in Fig. 6.10 because the $\frac{L}{R}$ was never made high enough.

Hence it may be concluded that $0.7 \frac{\mathrm{~L}}{\mathrm{R}}$ is a good approximation for the value of T_{2} provided that this time is at least three or four times greater than T_{2} and less than about two thirds of $\frac{T}{E}$ (i.e. u less than about 40°). These are arbitrary conditions based on the results show in Fig. 6.10.

Pig. 6.21 shows the variation of the first five harmonics and the total r.m.s. line-to-line voltage with u, where u is found from the

Fig. 6. 11: Variation of harmonic content of output line-to-line voltage with u.
$V_{d}=80 \mathrm{v}, \quad \omega=3.6^{\circ}, \quad f=50 \% \mathrm{~s}$
Measured
.-. Predicted, neglecting commutation
Predicted, including commutation

Fig. 6.12: Variation of harmonic content of output line-to-line voltage with load $1 / R$ ratio.
$V_{d}=80 \mathrm{v}, \quad \omega \simeq 3.6^{\circ}, \quad f=50 \% \mathrm{~s}$

- Measured.
\ldots Predicted, neglecting commutation.
Predicted, including commubation
measured values of T_{2} " Fig. 6.12 shows the same variation plotted againet $\frac{L}{h}$ but in this esse the predietions sare besed upon values of u found from $u \Omega 2 \pi f \times 0.7 \frac{\mathrm{~L}}{\mathrm{R}}$.

It is seen that in most csses better agreement between measured and predicted resulta is obtained by taking the commutation period into account. Good agreement between measured and predicted results is thon observed for the totel r.m.e. voltage and for the fundamental, Pifth and seventh hammonios. For the eleventh and thirteenth hamonies, however, the predicted resulta are leas reliable. In arriving at the predicted results five sine and cosine terms are edded. An error in u or w is magnified by the hamonic number and would therefore result in a greater discrepaney at the higher hamonics than at the lower haxmonics. The same applies to the assumption made to obtain the period 2. components, i.e, that the period starts the begining of each eycle. This would also account for the apparent horizontal shift between measured and predieted results which seems to increase for the higher hamonios.

The difference between the two sets of predicted results is due mainly to the b_{n}^{\prime} oomponent. Now $b_{n}^{\prime} \alpha \frac{\sin n w}{n}$ and hence when w is small b_{n} is almost constant for the firet few harmonics. In this oase b_{n} has numoricel values falling from 5.9 V for the fundemental component to only 5.3 V for the thirteenth hamonic, being altemately negative and positive. For the Iirst, fifth and eleventh hamonies the sum of the sine components is considerably greater than the sum of the cosine terms and hence the difference between the two sets of prediated results
is alzost constant. Far the other hamonics, however, the cosine terms are of the seme order as the sine teras and the difference ia no longer constant.

This discrepancy between the two sets of predicted. results would. be less at lower frequencies where W and hence b_{n}^{\prime} and o_{n}^{\prime} would be smaller. Conversely at higher frequencies it would be even more necessary to take into account the hemonic content due to the comutation period.

Agreement between moasured and predicted results is $11 t t l e$ worse in Fig. 5.45 than in Fig. 5.44 showing again that $0.7 \mathrm{I} / \mathrm{R}$ was a reasonable approximation for T_{2} under the teat oonditions.

The final concluaion to be drawn from the results of this test is that although the eleventh and thirteenth hamonies have not been predicted to the same acouracy as the lower harmonies the predictions give a good indication of the oxder of magnitude of the hamonics likely to be encountered, 1.e. the maximun predioted and measured harnonica are similar though occurring at differing values of u or L / \mathbb{R}. The discrepaney between measured and predioted results is probebly due to the resistance of the inverter circuit which has not been taken into account in the calculations.

6.5. Vaxiation of Output Weveforms with Frequeney

To detemine whether the output voltage and current wavefoms were significently affected by frequency a series of tests were oarried out on the circuit using several combinitions of circuit parameters. Fig. 6.13 and 6.14 inelude osoillograms of the output voltage and eurrent taken at $10^{\circ} / \mathrm{s}$, and 50%. for a single set of eircuit parameters. The changes in the wavefoms between the two frequencies ior this set of parametexs was found to be typical of all the waveforms encountered. The opportunity was taken onoe mose for checking the validity of the theory of section 5.3 by comparing the messured resulta with predieted results.

6.5.1. Teat Conditions.

For these teste the following aircuit paxemeters were used so $\nabla_{a}=36 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=96 \mathrm{~V}, \mathrm{~V}_{\mathrm{CR}}=180 \mathrm{~V}, \mathrm{~L}_{\mathrm{a}}=0.5 \mathrm{mili}, \mathrm{C}=30 \mu \mathrm{~F}$, $\mathrm{R}=0.8 \Omega, \mathrm{~L}=1.85 \mathrm{mH}$,

Oscillograms of the output current and voltage were taken at frequencies of $10^{\mathrm{c}} / \mathrm{s}$. and $50^{\mathrm{o}} / \mathrm{s}$.

The value of I used is virtually the same as the leakage induetence of the induction motor tested later. The value of k was so chosen that at $10 \% / \mathrm{s}$, and a d.c. voltage of 36 V the load current had the sane r.m.s. value as the motor ourxent at about three quarters full load torque.

(a)

(b)

Fig. 6.13: Output current and voltage waveforms at 1045 $V_{d}=36 \mathrm{~V}, \quad R=0.8 \Omega, L=1.85 \mathrm{mH}$
(a) Oscillogram of output current waveform (b) "
" ". voltage
(c) Predicted output current wave form $\}$ for a half-cycle
(a) " " voltage

(a)

Fig. 6.14: Output current and voltage waveforms at 504s. $V_{d}=36 \mathrm{v}, \quad R=0.8 \Omega, \quad L=1.85 \mathrm{mH}$
(a) Oscillogram of output curvent waveform
(b)
" " voltage "
(c)

Predicted
output
curvent wave form

6.5.2. Obtaining the Predicted Waveforms.

In Figs. 6.13 and 6.14 predicted current and voltage waveforms, calculated for the parameters used, are shown. They have been construtted by the graphical method of section 5.3 .6 .2 and 71 g . 5.26 . The construction lines are shown. To construct the waveforms the value of T_{1} must first be calculated. When $f=10^{\circ} / \mathrm{s}$. it may be safely assumed that diodes D_{7} and D_{8} have ceased to conduct at the end of each sixth of a cycle. Since also the load time constant is much less than the duration of one sixth of a cycle it can be assumed that $I_{10}=\frac{\nabla_{d}}{2 R}=I_{d o}$.

Hence $\quad I_{\text {do }}=\frac{36}{2.6}=22.5 \mathrm{~A}$

$$
\omega=\frac{1}{\sqrt{4 C I_{d}}}=4.00 \times 10^{3} \mathrm{rad} / \mathrm{sec}
$$

Hence $\quad T_{1}=\frac{1}{\omega} \tan ^{-1} \frac{\operatorname{coc}\left(V_{d}+V_{C R}\right)}{I_{d o}}$

$$
=0.213 \mathrm{in} \text { Sees. }
$$

At $50 \% / \mathrm{s}$. I_{10} is lower than at $10 \% / \mathrm{s}$. but $I_{\text {do }}$ is probably greater than $I_{10^{\circ}}$ However T_{1} would not be much smaller than at 10%. so assume that at 50%. $\underline{T}_{1}=0.20$ - Sees.

These valuesof T_{2} have been used to obtain the constructed prodieted waveforms. Only the correct waveforms are shown, i.e, the results of several iterations.

6.5.3. Comparison between Waveforms at $10^{\mathrm{K}} / \mathrm{s}$. and $50^{\mathrm{c} / \mathrm{s} \text {. and }}$ between Measured and Predicted Results.

In PIg. 6.13(a) only the negative half cycles of current axe shown but the positive and negative cycles are symmetrical. The waveforms of current and voltage do not at first sight appear to resemble those predicted. The main renown for the difference is the fluctuation of the main supply reservoir capacitor voltage. This voltage must fluctuate because of the ripple content of the current draw from the supply. The fluctuations are most maxine when the inverter switching frequency Is low and the supply voltage is low. The result et 10%. is a certain amount of overshoot in the load current waveform caused by the reservoir capacitor's oscillating with the load. It is also seen from the voltage wave? om that when diodes D_{7} and D_{8} cease to conduct the d.c. choke causes a small voltage drop at the inverter dec. terminals, This is observed on that part of the voltage waveform where the voltage should be $\pm V_{d}$ after the current has decayed to zero in one of the load phases. Apart from these differences the waveforms are in principle identical.

In PIg. 6.14 the capacitor voltage is much more smooth and diodes D_{7} and D_{8} appear to conduct continuously, except during commutation. As a result the measured and predicted waveforms agree very well, apart from the oscillation seen in the voltage oscillogram caused by ringing between the \$ C If filter circuit and the lose inductance.

The increase in frequency did not appear to have any significant effect upon the load waveforms, the only real difference being that the
exponentially riaing and falling portions ocupied a greatex proportion of the waveform. In both cases the wavefoxna were essentially as predioted. It was shown in section 5.4 that it would be possible for the positive and negative helf eyoles of ourront to merge into a oontinuous ourrent variation without a dvell at sero ir the frequenoy were reised far enough for the load power factor to become very low.

Table 6.3,below, matve日 a comparison between the mean and ralles. values of voltage and current as measured and as predioted by a full analysis as in seetion 6. 6 . It is seen that the predicted and mensured resulta agree to within 10 , despite the obvioue erfect upon the wsveforms at $10^{\mathrm{c}} / \mathrm{s}$ of the fluctaation of the reservoir aspaeitor voltage. It Is also seen that in generel better results would be obtained if the S C in voltage drop were alloved for by reducing the aupply voltage by 2 to 3 volts for the ealculations.

Quantity	$s=100 / 3$		$f=50^{\circ} / 8$	
	Heagazed	Predieted	Measured	Predioted
$\mathrm{I}_{\text {d }}$	27.7 A	19.3 A	23.2 A	13.1 A
$\mathrm{I}_{\text {gen }}$	0.5 A	0.7 A	2.25 A	2.7 A
V_{l}	23.5 v	25.9 V	25.4 V	27.4 V
I_{ℓ}	15.0 A	17.1 A	12.1 A	12.5 A

Table 6.3 e Comparison between mossured and prediated values of curgent and voltage.

The Increase in the romos, output roltage at the highor frequency should be noted. This is due to the shange in shape of the output
voltage waveform. The reduction in load ourrent at the higher frequency was expeoted since the load impedance at $50^{\mathrm{c}} / \mathrm{s}$. was somewhat higher than at $10^{\mathrm{o}} / \mathrm{s}$.

CIAAPTER 7.

TESTS ON THE "D.C. COMMUWATSD THPRE PHASE INVERTER"

WITR IIDUCTION MOTOR YOAD.

In this chapter a general study is made of the perfomance of the inverter-induction motor combination with special emphasis laid upon inverter efficiency and rectifier ratings. In the same laboratory a parallel study was being carried out into the effects of feeding the motor from a veriable frequency inverter of a similar type. Hence a detailed study of the motor characteristics has not been attempted, this being a major task in itself.

7.1. Cirouit and Test Procedure.

When the simple $\mathbb{R}-\mathrm{L}$ load wes replaced by an induction motor some modifications to the method of overcurrent protection were soon found to be necessary. Until this stage the $S C$ Rs had been protected sgainst current overloads by fuses in series with each of thea. This was found to be unsatisfactory because of the rapiaity with which the motor would stall when overlosded. The resulting high current dxawn through the inverter from the d, c esupply oftem resulted in commatation fallure which almost invaxiably caused one ox more fuees to blow. Consequently a circuit breaker in conjunction with an eleetronic ahort-circuiting switch, described in section 7.2., was installed in the eixcuit as shown in Fig. 7.1 and relied upon for overcurrent protection, leaving a fuse in the d.c. supply line for ultimate protection and a fuse in series

Fig. 7.1: Diagram of circuit used for tests on inverter with induction motor load.
with CR7 to cater for the raxe faults in the auxiliaxy circuit.
The motor stalling problem was remedied to some extent by redueing the load regulation of the main d.c. supply as far as possible. This was done by adjusting the series field to the optimum value in the $\mathrm{d} \cdot \mathrm{c}$. generator providing the main d.c. supply. Until this ohange was made the supply voltage fell considexably when the motor was loaded giving an unstable condition in which the motor stalling torque could fall to meet the applied torque. The even higher currents resultigg caused very rapid stalling.

Apart from these changes the eleotrical cirouit, as shown in Fig. 7.1 was much as described in sections 5.1 and 5.2 .

The motor speed was meesured by a hand tachometer and the motor was loeded by means of a friotion belt on a pulley which was driven by the motor. The load wes measured by means of spring balences which read the tensions in the two ends of the belt, the difference between the tensions giving the force exerted by the motor at the rim of the pulley. The pulley was so designed that the meesured force in 16 when multiplied by the motor speed in revs./winute and divided by 10^{4} geve the motor output horse-power. The pulley diameter was 12.6 inches and the motor torque in Ib-It, wes therefore given by $T=0.525 x$ measured force in 1 b at rim. Tension was applied to the friction belt by a fom of screwjack and the pulley was cooled by pouring water inside its xim occasionally.

The motor was a three-phase induction wound fotor slipring peotor
made by B.T.H. Details of the motor are as followsi-
Type:- 晧 3519
Retingas- $\quad 110 \mathrm{~V}, 28 \mathrm{~A} ; \quad 50 \%$.
5 H.P. at 1420 r .p.m.
Reficiencys - 84% at 0.83 power factor.
Rull loadt- $\quad 35.2 \mathrm{lb}$ at rim of pulley (Torque $=18.5 \mathrm{lb}=\mathrm{ft}$ 。)
The motor was operated with its secondary (stator) windings ehortcircuited to simulate the characteristica of a squirrel cage induction motor.

The S C Ra used were Westinghouse Type CS 31 "Trinistors". These had a mean current rating of 24 A for 120° conduction and a voltege rating of 300 V . The S C Rs were mounted on the appropriate Weatinghouse heat sinks.

7.2. Overcurrent Protection Circuit.

The oircuit for the oircuit breaker and short-circuiting switoh is shown in Fig. 7.2. The requirements for this protection circuit were that it should detect an overload or fault curxent, quickly reduce the voltage at the inverter temainals to a safe value and trip the circuit breaker, and that it should be easily re-set. The philosophy behind the design of this circuit was that the d.c. supply would withstand an overload for the short operating time of the cirouit breaker whereas the S C Rs in the inverter would not.

The circuit breaker used was a magnetically operated device which could beeasily re-set by hand. It was modified to allow its contects

Fig. 7.2: Circuit diagram for the overload and fault protection circuit used with inverter.
to be connected in the positive d.c. Line between the supply and the inverter while its operating coil was connected in series with the short-direuiting switch across the dec. supply lines. In this way the circuit breaker could be set to its most sensitive tripping value, making it act more rapidly and at lower supply voltages than norma.

For the electronic short oircuiting switch three $\$$ O Ra, labelled 1, 2, 3 in the diagram, were used in parallel. In series with each a 0.5Ω resistor R_{p} was connected to $l i m i t$ the current in the SC Rs and to provide sufficient voltage for the slowest 50 Re to fire when one or two had elreedy fired. The S C lis were fired by a pulse generated by the transistor circuit when the current in resistor $\mathbb{R}_{\text {in }}$ exceeded a preset value. The transistor circuit consisted of three stages i(a) an amplifying stage, using transistor ${ }_{2}$, to amplify the voltage change across R_{m},
(b) a monostable circuit, using transistors T_{2} and T_{3}, which changed state vary rapidly when the voltage saros R_{m} reached a preset value, (c) a pulse-forming circuit, using transistor ${ }_{4}$, which applied a pulse of voltage and current to the gates of S C. Rs $1,2,3$ via transformer T_{1} when the monostable ofrouit changed from its normal state. The triggering level of the circuit could be adjusted by means of the rheostat R_{2} which determined the quiescent voltage on the base of T_{1}. Capacitor C_{1} prevented the circuit from operating spuriously. Capacitors $\mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{5} speeded up the transition of the monostable circuit from one state to the other. Transistor T_{4} was turned on by the negative going voltage transmitted by oppacitor C_{4} from T_{2} when T_{2} tamed off.

The monostable oirouit automatically returned to ita nomal state When the current in $\mathbb{R}_{\text {lil }}$ fell after the S C Rs had fired and tripped out the circuit breaker. The circuit breaker could then be re-set by hand.

The operating time of the oircuit was Pound to be about 10μ Sees from the moment when the monostable cirouit switohed over to the instant when S C Ris 1,2 and 3 fired and reduced the inverter input voltage and current. The circuit breaker tripped out after a further delay of from 30 mSecs, depending upon the main d.c. supply voltage and the resulting short-circuit current in the operating coil.

The eursent-monitoring resiator R_{m} was connected between the supply and the reservoir eapacitor C_{d} so that the large periks of eurrent taken from the eapacitor C_{d} during commutation did not pass through R_{m}.

7.3. Standstill Impedance, Open-Circuit and No-Load Tests on Motor.

These tests were carried out on the motor to estimete the losses in the windings and iron, the friction and the windage losses, and to obtain an approxinate equivalent circuit.

The standstill impedanee tests were enrried out at $50^{\mathrm{c} / \mathrm{s}}$, and $10^{\mathrm{c}} / \mathrm{B}$. using a three-phase simusoidal supply from the mains and from a. motor-alternator set, The rotor was locked and a low voltage supply applied to the motor; measuraments of voltage and total power being taken at values of current up to and slightly above noxmal full-load current. From these measurements the values, referred to the primary side, of the total resistanee of the motor and the leakage inductanes were found. The results of the standstill impedance tests are given

Fig. 7.3: Standstill impedance tests - variation of line-to-line voltage, V_{l}, power consumption, W_{S}, resistance, R_{S}, per motor phase, leakage inductance, L_{l}, per phase, with motor phase current.

—_ results at 50%
......-. results at 10%

in Fig. 7.3. It is seen that the value of the winding resistance referred to the primary side was practically the same at $10 \mathrm{~m} / \mathrm{s}$, as at $50^{\circ} / \mathrm{s}$. The initial high value in each ease may be attributed to the change in brush resistance with current. The effective value of the total leakage inductance, L_{ℓ}, was also virtually the same at $10 \mathrm{c} / \mathrm{s}$. as at $50 \% / \mathrm{s}$. The variations of the total power loss, W_{s}, with current were also nearly identical at $10 \mathrm{~m} / \mathrm{s}$, and $50 \mathrm{~m} / \mathrm{s}$. The voltage required at $10 \mathrm{~m} / \mathrm{s}$. to produce a given current is seen to be rather more than a fifth of that required at $50 \% / \mathrm{s}$. for the same current. This is due, of course, to the resistance's contributing more to the standstill impedance at $10 \mathrm{~m} / \mathrm{s}$. than at $50 \mathrm{c} / \mathrm{s}$.

The open-circuit test was carried out by open-circuiting the secondary winding of the machine, applying a voltage to the primary winding, and measuring the power consumed and current taken by the motor. The results of these tests are shown in Fig. 7.4. The variation in current with supply voltage was found to be typical of induction motors, the current rising sharply just before rated voltage. The effective value of the coremloss resistance R_{c} rose with voltage until the iron began to saturate, the hysteresis loss varying with voltage according to some law between a linear and a square law. When the iron saturated, however, the value of R_{c} is shown to fall but this does not properly indicate the core loss in the saturation region since much of the power loss measured then consisted of copper loss in the primary winding, The peak value of R_{c} has therefore been taken as representing the core loss at voltages producing maximum flux in the iron.

$$
\begin{aligned}
& 3 \\
& 5 \\
& 0
\end{aligned}
$$

$$
6 \infty 0
$$

$$
28
$$

$$
26
$$

$$
24
$$

$$
10
$$

$$
\text { 200 } 20
$$

Fig.7.4: Open-circuit Tests, - variation with line voltage of motor phase current, I_{m}, open circuit power loss, W_{0}, core loss resistance R_{c}, and magnetising inductance, L_{m}.

The magnetising inductance $\mathcal{I}_{\text {in }}$ is seen to reach a maximum value corresponding to the point at which the iron has maximum permeability and to fall off at higher voltages as the fron saturated.

The magnetising induetances are seen to be very similar for voltages at $10 \mathrm{c} / \mathrm{s}$, and $50 \mathrm{~m} / \mathrm{s}$. having the sane voltage to frequeney ratios. The power loss, W_{0}, and core loss resistance, H_{c}, were much amaller at 10 m . than at $50 \mathrm{c} / \mathrm{s}$. The major portion of the core loss consists of hysteresis loss and for corresponding flux densities at 10%, and 50%, the hysteresis loss at 50 m , would be five times greater than at $10 \% / \mathrm{s}$. Hence the wilue of R_{c} at 50 m , would be expected to be five times as great as at $10 \mathrm{c} / \mathrm{s}$. since the supply voltage would itself be five times greater to produce the same flux density.

From d.c. messurements the primary winding resiatance was found to be 0.095Ω per phase. A figure of 0.21Ω per phase for the combined primary and secondary resistance has been taken from the results of the standstill impedence test along with a figuxe of 2 mll for the combined leakage inductance per phase. From the open-cireuit teats a figure of 30 ml per phase has been taken for the magnetising inductance per phase. The iron losses measured from the open-cirouit tests included the secondary iron losses. Under normal running condi.tions the slip frequency and the resulting secondary iron losses would be very smell. Hence the primary iron losses have been assumed to be one half of those measured from the open-circuit tests and a value of 2Ω per phace per cyele per second has been taken for the core-loss resistance.

From a no-load test the friction and windage losses were found
to be 280 W at $50 \mathrm{~m} / \mathrm{s}$. By cheoking thia value at several voltagea at $50 \mathrm{c} / \mathrm{s}$. it was also possible to cheok that the core-loss resistance assumed. wes a good approximation.
$\bar{F} \dot{5}$. 7.5 shows the equivalent oixcuit obtained from the sbove tests.

7.4. Torgue-Speed Characteristios of Overa. 11 System.

Fig. 7.6 shows the torque-speed characteristics of the motor over a range of inverter output frequencies. At each frequency the characteristic of the motor wes measured for a number of different constant inverter supply voltages. Instesd of giving the actual supply voltage a number is given which indicates for each charactexistic the ratio of the inverter d.e. supply voltage per output eycle per secend to that Which would produce on inverter romes. output voltage of 110 V at $50 \mathrm{c} / \mathrm{s}$, on a sesistive load.

For each frequency and supply voltage the characteristic of the motor was measured from no-load to stalling. This was done by increasing the tension in the friction belt whilst maintaining the d.c. supply voltage constant and observing the speed of the motor. When the motor speed began to fall very rapidly with en increase in load this was taken to be the stalling point. The torque and speed were extremely difficult to measure accurately at this point using the simple loading method described above and this accounts for the differences between the shapes of the charecterlsties near the stalling points.

The characteristics were measured for supply voltages which produced stalling torques only slightly greater than the fall-load torque of the motor. When the supply voltage was inoreased beyond these values it

Fig.7.5: Simple equivalent circuit of induction motor per phase

$$
\text { (} s=\text { per unit slip frequency) }
$$

Fig. 7.6: Torque - speed characteristics of inverter-motor combination
for several inverter output frequencies and supply voltages.
was found that the motor drew very high peaky currents from the supply and sufficient commatating capaeitance to cope with these currents hed not been installed.

Although the motor was run lightly losded on many occasions at speeds up to 2250 r.p.m, it was not found possible to take measurements up to full load torque at speeds higher than about $1500 \mathrm{x} \cdot \mathrm{pom}$. This was because the high supply voltages required would have caused voltage transients high enough to ceuse damage to the SC Rs and also beoause the rated voltage of the main supply reservoix capacitor C_{d} was insufficient. At $50^{\mathrm{c}} / \mathrm{s}$, the supply voltage, ∇_{d}, required for full load torque was 150 V and the eapacitor was rated at 175 V . Reverse voltage transients on the S C Rs at this stage had already reached 350 V .

From Fig. 7.6 it may be seen that to produce the same maximum torque for each speed the inverter supply voltage must be varied almost proportional to frequency except at the lowest frequencies. This is to be expected aince the maximum torque obtainable from an induction motor is proportional to the square of the air gap flux. At the higher frequencies the motor winding resistance is much smaller than the magnetising reactance and hence the supply voltage required for constant flux is proportional to frequency. As the frequency is lowered, however, the motor resistance becomes more significant and a higher supply voltage, proportionally, is required to produce the same flux.

It may also be seen that at the lower frequenoies the measured motor slip speed for a given torque was rathar less then at the higher
frequencies. If the inverter output voltase had been sinusoidal, this phenomenon would be suxprising since it may be shown, using the simple equivalent oirouit of the induction motor, that at any frequency the maximum torque is obtained when $s \omega=\frac{I_{s}}{L_{\boldsymbol{l}}}$. It was found from the standstill impodance tests that \mathbb{R}_{s} and L_{l} were virtually the sane at $10 \% / \mathrm{s}$, as at 50%, and hence 3ω, i.e. the slip frequency which is proportional to the actual slip speed, should be the same at dil frequencies. It is possible that at the higher frequencies the harmonics present in the inverter waveforms would cause the effective value of \mathbb{R}_{B} to inerease due to eddy currents in the conductors and reduce the effective value of t_{l} due to eddy eurrents in the iron. This explanation would seem to be most unlikely in a motor so small. If eddy currente were the eause of the higher slip at the higher frequencies, it would be expected that the motor would ran slower at $50 \% / \mathrm{s}$, when fed from the inverter than when fed from a sinusoidal supply. However, at $1420 \mathrm{r} . \mathrm{p}_{\mathrm{om}}$, the rated full-load speed of the motor, the toxque when the inverter supply voltage was 150 V was $15.2 \mathrm{lb}-\mathrm{ft}$. The supply voltage corresponded to 105 V r.m.s. motor voltage and 101 V fundamental $50^{\mathrm{c}} / \mathrm{s}$. component (assuming basic square inverter output weveforn). If the fundmental. $50^{\circ} / \mathrm{s}$, component had been 110 V the motor would have produced a torque equivalent to $15.2 \times\left(\frac{110}{101}\right)^{2}$, i.e. $18.01 \mathrm{~b}=\mathrm{ft}$. This is marginally less than the rated full-load torque of $18.0 \mathrm{lb-ft}$. at 1420 r.p.il. Consequently it must be concluded that at the higher frequencies the motor slip was nomal but at lower frequencies the slip was smaller than would be expected. It sust also be ooncluded
that this reduced slip is due to the voltage waveform of the invertermotor combination or due to the characteristics of the braking system used.

Zine brake, as previously described, was simply a belt running over a pulley driven by the motor. Tension was applied to the belt by screwing up one end and extending it. At low frequencies, especially at $1 \mathrm{~m} / \mathrm{sc}$, the motor torque was seen and felt to pulsate severely. On increasing the frequency, however, the pulsations decreased because of the effect of the motor's inertia and at the higher frequencies the motor inertia was sufficient to absorb practically all the pulsations, giving a smooth output torque. At the low frequencies it is possible that the belt might have stretched during the torque peaks and, because of its ow inertia, remained relatively slack between these torque peaks. If this were the ease, the rotor would have been allowed to accelerate more freely immediately after a torque peak than if a constant belt tension bsd been maintained. The measured mean motor speed and the measured mean torque would give unreliable results under these of rcumstanceg. The investigation was not carried far enough to confirm or disprove any of these theories but it did raise the question of whether the mean slip as measured with a tachometer has much meaning under conditions of pulsating motor speed and nonounifom rotation of aix-gap flux.

The torque pulsations were undoubtedly caused by the uneven rotation of the air-gap flux. In each sixth of a cycle the flux rotated through sixty electrical degrees. Under ideal conditions
with a three-phase simusoidal supply the magnitude of the flux would be constant and its rotation unflom. However, in the inverter-fed. motor s.t the lower frequencies the ourrent in one phase fells to zero before the end of each aixth of a cycle and all the rotation of the flux would therefore take place in this time. During this part of the cyele the motor would operate as a three-phase induction motor with a high relative apeed (the slip speed) between $f 1 u x$ and the secondary eireuit conductors. In the latter part of each sixth of a aycle the flux does not change position but does inerease in magnitude. During this period the motor would behave as akind of single phase induction motor. At low frequenoies, where the winding resistance of the motor becomes significant compared with the the magnetieing reactance, it is possible for the flux to reach a steady value in the last part of esch sixth of a cycle. In this case the motor would behave as an induction brake with reversed torque.
7.5. Variation of Inverter Efficiency and Losses with Prequency and Load.

In the course of measuring the torque-speed charsoteristies of the inverter-motor combination readings were taken of the current, voltage and power in various parts of the syatem. This enebled the inverter efficiency, motor efficiency, and overall system efficiency to be determined in order to find as far as possible where the power lossen were dissipeted.

In this section the inverter efficiency is considered.

7.5.1. Sest Conditions.

Throughout the tests the comautating capacitance was constant at $32 \mu \mathrm{~F}$ and the total inductance of the d.c. choke,i.e. $4 \mathrm{~L}_{\mathrm{d}}$, was constant at 2 nit. In series with diodes D_{f} and D_{8} resistances R_{7} and R_{8}, each of 0.15Ω, were connected to reduce the rate of xise of $I_{\text {do }}$ with frequency. It was decided to connect this resistance in series with diodes D_{7} and D_{8} rather than in sexies with the two halves of the d.ce cholse in order not to increase the losses due to the current flowing into the S C R bridge, particularly at low frequencies. To overcome the tendency for the choke current to decay after commatation through the conducting bridge $S C R s$ and the reverse bridge diodes a resistance \mathbb{R}_{g} of 0.3Ω was connected in eaeh d.c. line from the reverse diode bridge. These values were ohosen arbitrarily to give a good sompromise between low $I_{\text {do }}$ and low \mathbb{R}_{g} at the higher frequencies.

Fig. 7.7 shows how the supply volvages V_{d} and V_{a} were increased. with frequency. At each frequency a value of V_{d} was used which was sufficient for the motor to develop its rated full-load torque though not so great that the motor iron was driven into hard saturation. V_{a} was maintained at 100 V up to $15^{\mathrm{c}} / \mathrm{s}$, but it was found necessary to increase V_{a} as the main supply voltage was further inereased.

In theory (see section 5.3 .4 .5. , equation (5.37)) $V_{\text {OR }}$ should have been equal to $\left(\nabla_{d}+2 V_{e}\right)$. Hed this been the case $\left(V_{C R}-V_{d}\right)$, i.e. the voltage through which the comutating capacitor oan oharge whilst reverse-biasing the bridge S CRs, would have been equal to $2 \mathrm{~V}_{\mathrm{Q}}$. Then for a constant maximum $I_{\text {do }}$ a single value of V_{e} would have been

Fig. 7.7: Variation with frequency of inverter supply voltages, V_{d} and V_{a}, converted current, $I_{i n}$, current I gen in reverse diode bridge, and commutation current $I_{\text {com }}$.
adequate throughout the entire frequency range. In practice the inductance of the auxiliary d.c. supply was relied upon to provide the desired capacitor voltage overshoot beyond V_{a} when re-charging. Unfortunately the resistance in this recharging eiroutt reduced the value of $V_{G R}$ from the maximum attainable and it was found that during the tests the value of $V_{C R}$ was given approximately by

$$
\begin{aligned}
v_{\mathrm{CR}} & =v_{a}+9.65\left(v_{a}+v_{d}\right) \\
& =1.65 v_{a}+0.65 v_{d}
\end{aligned}
$$

$\left(V_{C R}-V_{d}\right)$ wee thus approximately equal to $\left(1.65 \mathrm{~V}_{\mathrm{a}}-0.35 \mathrm{~V}_{\mathrm{d}}\right)$ and hence fell as V_{d} was increased, necessitating an increase in V_{a} to make up the deficit.

Fig. 7.7 also shows the variation with frequency of $I_{i n}$, the current flowing into the S IR bridge, $I_{\text {gen }}$, the current returned to the supply through the reverse diode bridge, and I com , the current flowing into the commatatingeapacitor from the main and auxiliary dee. supplies. These are the mean values of these currents. The mean value I_{d} of the current taken from the main doc. supply is equal to $\left(I_{i n}+I_{\text {com }}-I_{\text {gen }}\right)$ and is shown in Fig. 7.8. Both measured and calculated values of $I_{\text {com }}$ are shown, the calculations being based on $\mathrm{V}_{\mathrm{CR}}=1.65 \mathrm{~V}_{\mathrm{a}}+0.65 \mathrm{~V}_{\mathrm{d}}$. The measured and calculated values are seen to be almost identical. Comment upon the other current variations will be made in section 7.7 .

A typical value for the forward voltage drops for SC Rs was found to be 1.5 V and for diodes 1.0 V . The total effective value of

Fig 7.8: Variation with frequency of the current I_{d} and power W_{d} taken from the main die. supply
for four motor load conditions,

Figures in brackets give approximate motor torque in lb-ft for each curve drawn.
lead resistance in the inverter circuit, not including the doc. choke, was measured as 0.1Ω. Bach half of the choke had a resistance of 0.03Ω.

7.5.2. Inverter Power Losses and Efficiency.

Fig. 7.8 shows how the power taken by the inverter from the main dec. supply changed with frequency for the four motor loads used. Pig. 7.9 shows the power lost in the inverter as the difference between main dec. supply power and inverter output power. No account is taken in this diagram of the power taken from the auxiliary supply which may be assumed to be an additional power loss in the circuit. Fig. 7.9 also shows the estimated major components of the inverter power loss together with their sum.

The components of the power loss have been estimated uaing the measured values of current and voltage as follows i-
(a) Commutation power loss, P_{d} com ${ }^{\text {, found }} I^{\text {rom }} P_{d}$ com $=V_{d} \cdot I_{\text {com }}$ (b) Bridge S. C. Rs conduction losses. Since two s C Re conduct, effectively in series, at all times (except the commutation periods), the total S C I voltage drop is 3 V and the conduction losses ane then given by $I_{i n} \times 3 \mathrm{~V}$.
(c) Losses in the power leads. These have been calculated as $I_{\text {in }}{ }^{2} \times 0.1 \Omega$ (d) Reverse bride e diode conduction losses. These have been calculated. as $I_{\text {gen }} x 2 \mathrm{~V}$ since two diodes are involved which are effectively in series.

(a) Motor torque $=$ zero

(b) Motor torque $\Omega 6 \mathrm{lb}-\mathrm{ft}$.
(d) Motor torque $\perp 1816 \mathrm{ft}$.

Fig. 7.9 : Variation with frequency of inverter power loss and its components for several motor load conditions.
(a) Measured $P_{c x}$; (b) Estimated $P_{c x}$; (c) $P_{\text {dcom }}$; (d) $3 I_{\text {in }}$;
(e) $0.1 \mathrm{I}_{\mathrm{in}}^{2}$; (f) $2 I_{g \mathrm{en}}$; (g) $0.6 \mathrm{I}_{\mathrm{gen}}^{2}$; (h) Total $P_{\text {com }}$.
(e) Losses in $R_{g^{2}}$, calculated as $I_{\operatorname{gen}}{ }^{2} \times 0.6 \Omega$.

The I^{2} R losses calculated as in (c) and (e) are approximate since the measured values used for $I_{i n}$ and $I_{\text {gen }}$ were mean and not romes. values. The true values of these losses would be s/ijttle higher, depending upon the form factor of the current waveforms, but the values given are sufficiently accurate to indicate the relative magnitudes of the several losses. At low frequencies where the doc. choke current decays to the value of S C F current after each commutation the choke resistance would contribute to the losses in power leads and this component of loss would thus be greater than indicated. A further source of error is that despite the presence of R_{E} in the circuit some of the d.c. choke current decays through the S C R and reverse bridge diodes. Thus the measured values of $I_{\text {in }}$ and $I_{\text {gen }}$ Were higher than their true values and this results in part of $P_{\text {com }}$ being allowed for twice. This is most significant at high frequencies when the voltage across R_{7} and R_{8} is highest, due to the high $P_{\text {cam }}$ to be dissipated, and at low values of I gen when the motor is loaded. Referring to Fig. 7.9 once more it is seen that the estimated total power loss comperes quite favourably with the measured power loss, agreement to within 15% being obtained in general. The errors in estimating the losses described in the previous paragraph seoount for some of the discrepancy and some random discrepancies can be attributed to drift in motor torque during the course of taking measurements, caused by changes in the brake belt coefficient of friction and tension under prolonged running conditions.

Of all the losses in the circuit it is seen that the commutation loss was by far the greatest single item above approximately 20%. If the total power required for commutation, taken from both main and auxiliary supplies, as shown by the dotted lines in Pig. 7.9., is compared with the other losses, it is seen that this became greater than any other single loss at about 15%. At very low frequencies the total commutation power loss was small but increased with frequency socording to some law between a square and cubic lav. (This is the reason why readings were taken only up to 45%. To obtain measurements at 50%, and above would have necessitated making several alterations to the circuit which would have changed the pattern of some of the readings.)

The losses due to the currents $I_{\text {gen }}$ and $I_{\text {in }}$ varied with the motor load as a direct result of the variation of the currents themselves with load. This will be discussed further in section 7.7.

Pig. 7.10 shows the variation of inverter efficiency with frequency for the four motor loads. Two types are indicated, the first being the main d.c. supply to inverter output efficiency ignoring the auxiliary power supplied, the second being the overall efficiency of the inverter with the auxiliary power taken into account. At low frequencies the efficiency was low because of the power losses in the rectifier and circuit resistance at the abnormally high currents flowing. The efficiency then increased as the power losses decreased and the converted power increased, but later decreased when the commutation power absorbed by the circuit began to beoome more and more significant compared with

Fig. 7.10: Variation of inverter efficiency with frequency for several motor load conditions. - auxiliary supply power ignored .---- auxiliary supply power taken into account.
the converted power. Maximum officiencies of 88% were recoxded between $25^{\mathrm{c}} / \mathrm{s}$. and $35^{\mathrm{o}} / \mathrm{s}$, ignoring the auciliary supply power, or an overall efficienoy of $82 ; 6$ at $15^{\mathrm{c}} / \mathrm{s}$.

The efficiency was naturally lower at the Lighter than at the heavier loads since the comutation loss and, to soine extent, the converted aursent at low frequencies were indopendent of load.

At a motor toxque of $18 \mathrm{lb}-\mathrm{ft}$. the overall efficiancy of the inverter was nearly constant at approximately 80 between $25^{\%} / \mathrm{s}$. and $35 \mathrm{~m} / \mathrm{s}$. If it is assumed that the only circuit losses which could be raduced are the powex luad resistance losses and the losses in N_{g} and that when these resistancea were made zeso a corresponding inorease in output power would result, the overall sfficlency vould be 88% at $15^{\circ} / \mathrm{s}$. and would fall to 79% at $45^{\mathrm{c} / \mathrm{s}}$. It would seen, therefore, that the maximuan officiency attainable at $50 \% / \mathrm{s}$. Wula be of the order of $80, \mathrm{f}$. This fisure ia still fur shert of the 94% suggested in section $5 \cdot 7 \cdot 3$. Sor seversi reasons. Mirstly the S C \mathbb{R} and diode loases would acoount for a loss of afficiency of about 3\%. Secondly the forrnala siven in equation (5.96) ssames that the re-charging eirouit is 100% efficient and that $V_{\&}$ is kept equal to V_{d} while C is varied. This was not the case in praotice and some deviation from optimue mast be expacted for this reason. Thixdiy equation (5.96) is based on the asauption that $I_{\text {do }}$ is neariy equal to the mean vaiue of I_{d}. Using oquations (5.93) and (5.105) for the conditions of the tapt it would be found that $I_{\text {do would be naarly twice }}$ the measured value of I_{d} at $45^{\mathrm{c}} / \mathrm{s}$. Consequently the lose in efficieney due to oonmutation power would be at least twice as great as that suggestad by equation (5.96).
7.6. Variation of Motor Bffioieney and Losses with Frequency and Load. 7.6.1. Test Conditions. The test conditions were as desoribed in section 7.4 for the torque-speed measurements. It should be emphasised onoe more that the d.c. supply voltage, not the motor terminal voltage, was kept constant at each frequency.

Fig. 7.11 shows how the motor terainal line-to-line voltage, V_{ℓ}, the motor line current, I_{l}, and the motor input power, W_{i}, varied with frequency for the four motor loads between no-load and rated full-load output torque. The values of curxent and voltage are their roll.s. values. The change in motor voltage with load was eaused by the effective resistance drop in the inverter and by the change in voltage waveform with load. Some waveforms of motor current and voltage are shown and discussed in section 7.8.

7.6.2. Motor Power Losses and Bfficiency.

Fig. 7.12 shows how the measured motor power loss, $\mathbb{P}_{\mathrm{mx}^{2}}$ varied with frequency for three loaded conditions of the motor. This power loss was the difference between the power supplied by the inverter to the motor and the power dissipated in the friction belt brake used for loading the motor. Also shown in Fig. 7.12 are the estimated values of the four main components of the motor losses together with their sum. The estimated loss components were calculated as follows:(a) Primary copper losses. These have been calculated as $3 \times \mathrm{I}_{\ell}{ }^{2} \times 0.1 \Omega$ since the primary resistance was measured as 0.1Ω per phase.

Fig.7.11: Variation with frequency of rms line-to-line motor voltage, $V_{e,}$ motor line current, I_{ℓ}, and motor input power, Wi.
$\binom{$ Figures in brackets indicate approximate }{ motor torque in $1 b-f t$. For each curve. }

(c) Motor torque $\Omega 18 \mathrm{lb}-\mathrm{ft}$.
(b) Primary iron losses. These have been calculated as $\frac{V_{l}{ }^{2}}{2 f}$ sinoe the core loss resistance in the motor equivalent cirouit was found to be approximately 2Ω per phase per cycle per afcond.
(c) Friction and windage losses. These have been assumed proportional to srequency and were measured as 280 Wat $50 \mathrm{c} / \mathrm{s}$.
(d) Secondary copper losses. These have been sasumed to be equal to the per-unit slip multiplied by the total mechanical output power, i.e. the sum of the estimated friction and windage losses and the power dissipated in the brake.

Losses in the leads to the motor have been negleeted. In calculating the primary iron losses it has been assumed that the components due to the hamonica present in the voltage waveform can be allowed for by using the Fomes. value of voltage instead of the frandamental component of the voltage. Secondary iron losses have been ignored since the per upit slip was small at all except very low frequencies with full-load torque. The effeotive slip would not be small for any hazmonic components of air gap flux, however, and some harmonic components of secondary iron loss have, therefore, slso been ignored. Similarly, in calculating only the fundamental component of secondaxy copper loss the effect of harmonics upon the secondary current has also been ignored.

The measured and estimated values of pover loss, $P_{\text {mx }}$, in the motor are seen to agree to within about 15 , in general. With suah a large discrepancy between messured and estimated total power loss it is difficult to egtimate the magnitudes of the losses which have been ignored. In the diagram drawn for full-load torque, however, it is seen that the
total of the estimsted power losses is mostly greater than the measured powes loss. This would suggest that the ignored losses would not be substantial.

Pig. 7.13 shows how the motor efficiency varied with frequency. At low frequencies the motor was very inefficient, delivering little output power compared with the power lost in the motor. As the frequency was inoreased the efficiency improved and in general the higher the output power the higher the motor efficiency. Above $35 \mathrm{c} / \mathrm{s}$. , hovever, it was found that the motor efficiency at full-load torque was less than that at two thixds of full-losd torque. This was due to the doubling of the primary and aecondary oopper losses resulting frow the expected 50% increases in primary current and slip above two thirds full load. The efficiency of the notor at full-load torque was found to be of the oxder of 75% from $30 \mathrm{c} / \mathrm{s}$. upwards. It was found that to produee full-ioad torque notor curxents of approximately 34 A and slip speeds of about $110 x_{0},{ }^{\circ}$. were required. The equivalent ratings given for the motor were 23 A and $80 \mathrm{r} p \mathrm{p}$. m . The reasons for the increase in current and slip are that the fundementel component of the motor voltage was lower than rated and that the motor current contained hamonics. The larger current would eccount for a 50% increase in prinary copper lossea above the rated value and the larger slip would socount for a 40\% Inorease in secondsyy copper losses above the rated value. Together, these increased copper losses account for most of the difference between the 84% rated efficiency and 75% measured efficiency.

Fig. 7.13: Variation of motor efficiency with frequency for several load conditions.

Fig. 7.14: Variation of overall inverter-motor efficiency with
frequency for several motor load conditions.

7.7. Variation with Erequenay and Load of Efficienoy of Inverter-Motor Combination.

Pig. 7.14 shows how the overall effiesiency of the inverter-motor combination varied with frequency. One set of ourves shows the efficiency when the auxiliary supply power is ignoxed, the other the true efficiency which takes into scoount all the pouer supplied to the oisouit, The efficienoy of the overall system is simply the product of the individual efficiencies of the inverter and motor and is seen to vary accordingly. The efficiency was very low at very low frequencies beeause of the low motor efficienoy. On increasing the frequenoy the efficiency improved until a peak of ebout 61% was reached whereupon it began to fall off. The motor efficiency displayed a tendeney to continue rising with frequeney but this tendency was countered by the falling-off of inverter efficiency when the commutation power loss beeame serious above spproximately 30%.

Both motor and inverter efficiencies suffered at frequencies lower than ebout 25%. from the high motor current, and henee inverter current, required to produce a siven motor torque. Surprisingly, this current fell as the motor load was inoreased. It wes suggested in section 7.4 thet in each gixth of a cyele the motor would produce torque in three different ways. Pirstly, at the beginning of each sixth of a cycle, immediately after comatation the air gap flux would rotate while the current in one phase decayed to zero. This would produce a positive torque in the rotor by virtue of relative speed between flux and rotor windings. Secondy, when the current in the one phase had
fallen to zero the current in the other two phases would inorease exponentially towards some final value which depends upon the resistance of the primary windings. This would produce an inereasing but stationary air gap flux which would induce current in the secondary and produce another positive torque by the prineiple of the single phase induction motor. Then for the remainder of the sixth of a cycle the rotor would be turning relative to a atationary and constant or slowly increasing flux and a braking torque would be developed. The magnitudes of the first two torgues would depend upon the rate at which flux could be inoreased in the air gap, the third would be constant for a given rotor speed. Hence to overoome the braking torque it would be possible to increase the first two torques by increacing the voltage applied to the motor and hence the rate of change of ir gap flux. This would also result in a large aotor current drawn from the supply.

The length of the flirst two periods would be a function of the notor's electrieal time constant which would be lower than normsl because of the additional resistance in the inverter cirouit. The longer the time constant, compared with the duration of a sixth of a eyole, the shorter the time during which braking torque is developed. Hence as the frequency is increased the necessity for quickly saturating the motor iron eventually ceasss and the resulting motor current falla. A similar effect can be obteined by increasing the motor time constant which ocours in offect when the slip increases on load and the effective secondary resistance is decreased. This is suggested as the reason for the fall in motor ourrent with increase in load at low frequencies.
7.8. Waveforms and Hermonic Content of Motor Voltage and Current, Pigs. 7.15 and 7.16 are oscillograms of the motor voltage and current corresponding to no-load and approximately three quarters of fall-load torque. The osolllograms were taken at an inverter output frequenoy of $25^{\mathrm{c}} / \mathrm{s}$, and a main d.c. supply voltage of 80 V but are typical of the weveforms obsexved at all except very low frequencies.

Table 7.1 gives the r.m.s. values of the harmonic components and total wavefoms of current and voltage for both load conditions together with the harmonic impedance per phase.

Motor Torque	Harmonic	1	5	7	11	13	17	Total R.M.S. values
Zero	Voltage (V)	61	16.8	4.6	7.2	1.9	4.7	64
	Curment (A)	17.9	8.95	2.69	2.5	0.81	0.98	20.4
	Impedance (Ω)	1.97	2.08	0.99	1.69	1.36	2.77	--
$141 \mathrm{~b}-\mathrm{ft}$ Torque	Voltage (V)	53.8	13.2	7.95	9.3	4.5	5.6	57.3
	Cuxsent (A)	21.5	6.72	2.91	2.24	0.94	0.94	23.0
	Impedence (Ω)	2.45	1.13	1.57	2.4	2.76	3.44	--

Table 7.1: Hamonic oomponents of motor voltare and curront and
harmonic impedances for no-10ed and three quartezs
full-10ad torque

$$
I=25^{\mathrm{c}} / \mathrm{s} . \quad \mathrm{F}_{\mathrm{a}}=80 \mathrm{~V}
$$

Fig. 7. 15: Waveforms of motor current and line voltage at no-load.

$$
V_{d}=80 \mathrm{v} ; \quad f=25 \mathrm{c} / \mathrm{s}
$$

Fig. 7.16: Waveforms of motor current and line voitage at approximately $3 / 4$ of full load torque.

$$
V_{d}=80 \mathrm{v} ; \quad f=25 \mathrm{c} / \mathrm{s}
$$

It is seen from Pig. 7.15 that the motor ourrent at no-load was quite unlike anything predioted or measured with a simple R-I load with passive elements. The peaky nature of the waveform is an indication that the motor iron wassaturated and the concave outwards shape of the current weveform indicates mutual coupling between the motor phases and/ or the effect of rotational voltages generated by the motor. It is also seen that the current reversea direction in the course of a sixth of a gycle at the end of each half cyele. It was shown in section 5.4 that this is quite nomal when the load power factor is very low. From this wavefom it must be concluded that it is not possible to predict the waveform of motor current and voltage by regarding the motor simply as a combination of resistance and induotance with no mutual coupling between the inductances in the three phases, and with no account being taken of the effeot of the rotation of the machine or aaturation of the iron.

The voltage wavefoma appears in Fig. 215 to be very similar to that which would be obtained with a highly induetive series R-I load. With such a load, as was shown in section $5.4 . \%$ the voltage soross the load must always be $\# V_{d}$ or zero, even during the commitation periods, because the diode carrying the current in the phase not being fed from an $S C R$ conduets throughout the whole of the sixth of a cyele. The sinall changes from ${ }^{ \pm} V_{\mathrm{a}}$ or zero towards the end of the sixth of a cycle are caused by the cessation of conduction of diodes D_{7} and D_{8} and the resulting voltage drop across the d.c. choke.

When the motor was loaded the voltage and current waveforms changed
considerably. The current waveform became rather more like that observed for a simple R-L load but the voltage waveform beeame less 30. In this case, after the reverse diode bridge had ceased condution, the voltage waveforil approximated to a sine-wave due tothe presence of a rotational voltage in each phase of the motor.

Froa Teble 7.1 it is seen that the voltage hamonics were of the order that would be expeoted in an R-L load with a value of u of about 60° (see Fig. 5.37) when the motor was unloaded. The harmonic impedance per phase did not change with hamonie number in a uniform manner and neither, therefore, did the current hamonics. This wes perhaps due to saturation of the motor iron. On load the magnitudes of the harmonics were quite different from their equivelents for no-load but in this case the hamonic impedances, apart from the fundamental, were nearly proportional to the hamonie number. Por all the hamonies ezcept the fundemental the slip was high and the effective value of secondary reaistance in the motox equivelent eixeuit would therefore be nearly constant. The harmonic impedance would then depend mainly upon the reactive component which would be proportional to frequency. For the fundemental component of voltage and current the slip would be small and the impedance dependent mainiy upon the effective value of secondary resistance and the magnetising induetance and core-10ss resiatanoe.

It should also be noted from Table 7.2 that the r.mes. values of voltage and oursent were higher than the fundamental components because of the presence of hamonics. On no lood the r.m.s. voltage
was 5\% and the romes. current 14% higher than the fundamental components. With a motor torque of 14 lb -ft. the increases were 7, in each case. On load this would mean that the primary copper losses and iron losses would each be increased by 14%. Taken together, with the other losses in the motor these increased losses would cause a drop in motor efficiency of about $2 /$. This would mean, however, that the motor needs to dissipate nearly 10,0 more thermal energy than that for which it was designed and would therefore run hotter than normal.

It an be assumed that almost all the power produced by the motor is due to the fundamental components of voltage and current, the higher harmonics merely increasing the total romes. values. Taking 7% as a typical ratio of roll es. to fundamental component, this would mean a fall of about 14\% in power factor from simasoidal supply condition.

7.9. Regenerative Braking Characteristics.

A three-phase induction motor is capable of acting as an induction generator if it is driven at supersynchronous speeds and the air gap flux is rotated at synchronous speed. Provision must be made in the supply system for accepting power from the motor. Any normal threephase sinusoidal supply system meets these requirements but a three-phase inverter using rectifiers is a different proposition. However, one of the characteristics of the inverter under discussion here is that it is capable of passing power in both directions.

To find whether the inverter was capable of maintaining the motor air gap flux and also accept power generated by the motor some tests were carried out and are briefly described.

7.9.1. Method of Testing.

The induction motor and test $x i g$ of a fellow-postgrhduate student were used for the tests. This motor was alightly larger than the one on which sil the other testa described were carried out and had the following pxincipal ratings s-

In its test rig the lotor was coupled to a separately-excited d.c. generator whose armature was fed from a variable voltage d.c. supply. In this way the motor-enarator combination could be made to run at any desixed speed. the toxque was measured by the dynsmometer principle. To reduce the current drawn by the motor the tests wert carrled out at a much reduced voltage. A frequency of $25^{\mathrm{o}} / \mathrm{s}$. was used, giving a. synchronous speed of 750 ropem. Fos the first test the inverter supply voltage was kept constant at 50 V and measurements were made of motor torque, ourrent, voltage, end power in various parts of the oirouit for motor speeds from 200 rop. ime up to a little beyond synehronous speed. The results of this test are show in Pige 7.17. The txansition from motoring to braicins was made smoothly without any speoial measures being taken but it was found that in the braking region the motor torque increased rapidly with speed and showed little sign of reaching a maximuan value. The motor cuxrent also increased rapidly, together with the current flowing in the reverse diode bridge, and the test was stopped

Fig. 7.17: Variation with speed of motor torque T, and the currents, voltages and power in inverter and motor. V_{d} constant at 50v; $f=25 \%$.
when the speed had been taken to 890 r.p.lis.
The fact that the braking torque was much greater than the motoring peak torque was attributed to the higher valuas of motor voltage when braking and to the losses in the motor which at such low voltages were comparable with the mechanical power developed. A second test was therefore oarried out in which the 工.I.s. motor voltage was constant at 36 V . The results of this test ase shown in Fig. 7.18. In this case the torque still increased rapidly with speed in the braking region but not as rapialy as when the motor voltage had been allowed to rise. However, the fundamental component of motor voltage still increased when the transition from motoring to braking was made and a third test was therefore carried out in which the flundamental component of motor line voltage was kept constant at 26 V . Fig. 7.29 shows the results of this test. The braking torque now showed a derinite tendency to reach a maximua value but the test was stopped at a speed of 1100 xpolil. because the motor current had become excessive.

In ell three teats the power, " ${ }_{m}$, supplied to the motor during motoring was less than the power, W_{d}, taken from the d .0 . supply, whilst in braking $W_{\text {hi }}$ was groater than W_{d}. This, of course, was because of the power loss incumred in the inverter. Dusing motoring the S C R eurrent, $I_{\text {in }}$, was greater than the reverse diode bridge ourrent $I_{\text {gen }}$ winist in motoring $I_{\text {gen }}$ was greater than $I_{i n}$. This was because the total power passing through the inverter had reverged direction. It was, however, found that the vilue of $I_{i n}$ increased rapidiy with speed. in the braking region. This was attributed to the falling power factor and the

Fig. 7.18: Variation with speed of motor torque, T, and the currents, voltages and powers in the inverter and motor.

Inverter output line voltage's r.m.s. value kept constant at $36 \mathrm{v} ; f=25 \% / \mathrm{s}$.

Fig: 7.19: Variation with speed of motor torque, $T_{\text {, }}$ and the currents, voltages, and powers in the inverter and motor.

Fundamental component, $V_{\text {fund, }}$ of inverter output line voltage kept constant at $26 \mathrm{v} ; \quad f=25 \%$
resulting increase in the magnitude of power flowing in the direction opposite to that of the total power flow.

7.10. Variation with Load Powar Pactor of Supply Current and the Cumpent

In the S C R and Reverse Diode Bridges.

In section 5.8.1 epproximete formule vere derived for estimeting the current taken from the moin d.c. supply and the mean current in the S. CR and reverse diode bxidges for a given load ourrent and pover factor. In Fig. 7.20 the accuracy of these foxmulae is ohecked by plotting adjusted messured values of $I_{d}, I_{\text {in }}$, and $I_{\text {gen }}$ against losd pover fector. By "adjusted" is meant adding to the measured value of $I_{\text {gen }}$ and subtracting from the neasured velues of I_{d} an amownt equal to $\frac{\mathrm{ex}}{\mathrm{V}_{\mathrm{d}}}$ for each set of values. The valies were messured under widely varying load and frequency conditions with the induction motor as the inverter Ioad.

It is seen in Fige 7.20 that the general forns of the viations in $I_{d}, I_{\text {in }}$ and $I_{\text {gen }}$ confom quite well with those predicted shown by the dotted lines. Hence it may be assumed that the formulae given in equations $(5.106),(5.107)$ and (5.108) give reasonable estinates of the distribution of current in the inverter oireuit for any given load.

Fig. 7. 20: Measured and predicted variations of $I_{\text {in }}, I_{\text {gen }}$, and I_{d} with the load power factor.
Measured values:-
Predicted values:-
(The measured values have been adjusted to take)
account of the circuit losses Mex.

7.11. Ratings of Main Circuit Components.

One of the objects of the investigation was to dexive a basis on which to assess the rating neceasary for the system corpponents to insure continuous reliable operation. The ratings susgested in the following sub-seotion have been based upon the various results obtained during the investigation.

7.11.2. The Induction Motos.

It was found that the hermonic content of the inverter output voltage and current waveforns inareased the rollos. values of the motor voltage and current requirad to produce rated motor output. It was estimated that at full load the I.lis. 3 . voltage and current would be about 5% to $7 \% \mathrm{higher}$ than rated. The motor efficiency wonld therefore fall by some 2% or 3% but the elotrical losses in the conductors and iron of the motor would increase by 10% to 14%. It is imperative thet the motor should be capable of dissipating these addtional loses. The motor power factor woula be reduced by about $10, \%$ to 14% below that obtained using a sinusoidal supply.

7.11.2. S C Rs for Inverter Bridre.

To obtain a suitable oursent raing for the bridge S C Rs some knowledge of the worst operating oonditions would be necessary. When the maximun load current likely to flow for any prolonged period, i.e. more than a few aeconds, has been determined the S 0 Rs should be ohosen so that they can handle this ourxent without overheating. Unless the
motor overload is known to occur with a very low power factor the ratio of $I_{\text {in }}$ to I_{ℓ} should be taken as 1.2 . If the worat operating conditions are detemined assuaing a sinusoidel supply, about 7% should be added to the motor euxrent value so obtained to allow for the inevitable haxomies caused by the inverter.

The mean current floving in asoh bridge $S C \mathbb{E}$ is $\frac{I_{\text {in }}}{3}$ and this should be the basis for the S C R rating, i.e. an S C R mean current of $0.4 \times$ maximum expected I_{ℓ}.

The voltege rating of the S o Rs depends upon the main and auxiliary d.c. supply voltages which in tum depend upon the required motor voltage. The r.ill. 3. motor voltage should be taken as Tow higher than that required when the supply is sinusoidal. Then the main d.c. supply voltage would be about 1.4 times the full load r.illos. motor vultage. The maximum forward voltage on the S C Rs would then be little greater than the main a.c. supply voltage. During comutation the reverse voltage on the S CRI is in theory a maximum of $\overline{3}\left(V_{a}+V_{C R}\right)$ but in practice the voltage would be about 50,6 greater, depending upon the measures taken (e.g. the use of selonium or other surge absorbing devices) to limit the voltage overshoots. $V_{C R}$ would nomully be at least twice ns large as V_{d} and hence the voltage rating of the S C Rs would be at least $2.25 \mathrm{~V}_{\text {d }}$ sllowing for 50% overshoot on reverse voltage.

7.11.3. Reverse Bridje Diodes.

The current I gen has been shown to vary with the load power factor. On motoring, however, the maximum value of I gen that was found to flow was about $0.6 I_{l}$. Unless the maximum value of I_{ℓ} expected can be guaranteed at a high power factor the diodes should be rated on this basis. The mean current in each diode is one third of I gen and henoe for motoring only the diodes should be rated for $0.2 \times$ maximum I_{l} expected.

If the motor is required to regenerate, the roles of the S C R bridge and diode bridge are to a large extent reversed, the diode bridge now carrying the bulk of the regenerated power. In this ease the diodes should be rated as the S C Ris were, i.e. $0.4 \times$ maximum I_{l} expected in regeneration.

The maximum voltage which should appear across the xeverse bridge diodes is V_{d} but allowence must be made for some voltage overshoot.

7.21.4. Commatating Cgpsaitox.

The value of C required depends upon $V_{d}, V_{C R}$, $I_{\text {do }}$ and δ. For each value of V_{d} there would probably be a fixed value of V_{CR} and δ would remain almost constant. I $I_{\text {do }}$ however, ean itself vary with ∇_{d}, $V_{C R}, C$ and f at the higher frequencies and hence a oertain amount of trial and exror is required using equations (5.98), (5.99) and (5.105). It should be remembered thet these equations are aimplified approximations and cannd be guaranteed accurate to better than about 10%.

Allowance should be made for the deviation in capacitor ourrent Irom $I_{d o}$ during commatation (this depends on $I_{\text {do }}, L_{d}, C, V_{d}$ and $V_{C R}$),
for the effects of inductance in the circuits concerned in commutation, for the effects of hole storage in diodes (especially D_{7} and D_{8}) and S C Rs, and for the dependence of the S C I turn off time on the current to be turned off, and on the reverse voltage applied to the S CB for turn off.

Care should be taken to ensure that the commatating eapacitor is large enough to cope with the highest losd currents anticipated. It is also important that the capacitor be designed to cope with the r.ans. value of the current flowing into it during comutation and re-charging.

At low frequencies $I_{\text {do }}$ may be assumed equal to the peak value of a. sineweve having the same $x_{0} \mathrm{~m}_{0}$. value as I_{l}.

The voltege rating of the capacitor should be at least equal to the highest value of V_{CR} expected.

7.11.5. Choke Current Deeay Diodes D_{7} and D_{8}.

Equation (5.98) gives the current which can be expected to flow in these diodes at high frequency. The ourrent depends upon $\gamma_{d}, V_{C R}, 0$ and f and upon the effective resistance of the decay oircuit. When load is taken from the inverter the current in the deeay diodes falls but if no load operation at full oircuit voltage is required, the diodes should be rated for the maximum current expeeted.

In theory the maximum reverse voltage which should appear across the decay diodes during commatation is $\frac{1}{(}\left(V_{\mathrm{d}}+V_{C R}\right)$ but voltage spikes must be allowed for and hence their voltage rating should be the same as the bridge of C rating.

7.11.6. D.C. Series Choke.

The curerent rating of each half of the d.c. ohoke should be adequate for the highest expected $I_{\text {do }}$. The induetance of the ohoke is not aritiaal provided that \hat{I} is no more than 2.1 I do to $1.2 I_{\text {do }}$ at the highest value of $I_{\text {do }}$ to be eatered for. If the inductance were too small, the capacitor current would increase signifieantly during the turn off period making necessary a laxger commtating oepacitor and inoreasing the commutation power loss.

7.11 .7 .8 CRI.

S.C R 7 should be capable of passing the current which flows into the comutating oapacitor during oomatation. The mean value of this eurrent is equal to $6 \mathrm{f} C\left(\mathrm{~V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{CR}}\right)$ but it should be ensured that the S C R is copable of withstanding the $\mathrm{F} \cdot \mathrm{moB}$, value of this eurrent.

SCB 7 should be rated for a voltage of $\left(V_{d}+V_{C R}\right)$ plus overshoot. 7.21.8. S. 8 R 8.

9 CR 8 carries the same mean current as S CR 7 but the r.m.s. value of the current is different since S CR 7 passes reetangularipulses of current whereas S C IR 8 passea a series of half sinewaves of axrrent.

S CR 8 should be rated for a voltage of $\left(V_{d}+V_{n}\right)$ plus overshoot.

7.11.9. Induetance in Auxiliary Supply.

The commatating eapacitor is re-charged between commutation periods. A definite time mat be allowed after commtation for 8 o F 7 to recover its blocking properties, about 100μ Secs if the reverse voltage on S C B 7 is very small, before S CR 8 can be fired. The re-charging process must be complete and S CR 8 allowed time to recover before the next commatation can be allowed. Hence the re-charging half-sinewave should take no longer than about a twelfth of a cyele at the highest frequency of operation required. Thus $L_{e}<\frac{1}{144 f^{2} \pi^{2} C}$ for the maximum frequency f.
7.12. General Conclusions on the "D.C. Commtated Three Phase Inverter" With Simple $\mathrm{R}-\mathrm{I}$ Load and Induction Motor Iose.

Having studied theoretically and experimentally the three-phase inverter using auxiliary 50 Rs and an auxiliary comutation supply pome major conclusions may be reached.

The use of a diode bridge connected in opposite direotion to the S OR bridge enebled the power supplied to the motor to flow in both drections through the inverter. The inductive stored energy was thus sile to pass bsck to the main A.c. supply instead of being absorbed by the commating capacitor as in the inverter oirouit of Chaptar 3. This also made it possible to use a single, selatively small, capacitor for computation which could be oharged to a Iixed voltage prior to comutation and did not have to change for each new output frequency, The comatation eircuit was sound to be very effective in turning
off the bridge S C Ra and was independent of load power factor in its operation. It did, however, possess several vexy serious disadvantages. The energy absorbed by the capacitor during re-charging from the auxiliary supply was transferred during commutation, together with additional energy taken from the main supply, to the choke in the main d.c. lines. This energy had to be dissipated in the decay cixcuit onnnected to the choke between commutation periods. The resultant power loss inoreased with the supply voltage and with frequeney and became very serious at frequencies above $25^{\mathrm{c}} / \mathrm{s}$, or so when it became greater than a.11 the other oircuit losses. A secondary effect was that as the frequency was increased the current circulating in the choke end decay oircuit inoreased, and henoe the cuxrent flowing into the comautating aspacitor at comar tetion was increased, reducing the time for which the S 0 Re were reverse biased. It was found possible to reduce the rate of inerease of $I_{\text {do }}$ with frequency by inareasing the choke resistanee or adding resistance in the decay eirout but this was also found to introduce undesirable secondary effects. Some method of extreoting the energy from the choke between commutetion periods and returning it to one of the two d.e. supplies instead of dissipating it in the oircuit would be a great step forwaxd, and would inorease the frequency up to which the circuit could be efficiently used. Some suggestions will be found in Chapter 9.

The methods developed for calculating the performance of the oircuit on an $\mathrm{H}-\mathrm{L}$ series load were found to give sccurate results. The caloulations were quite straightforward but laborious when many had to be
carried out and would be better programmed on to a digital computer for which the calculation teohniques were eminently suitable. The output voltage was found to change substantially with load but in a predictable manner and apart from resistance drops in the inverter oircuit the change in output voltage was due entirely to change in waveforn with load power factor.

The inverter was tested with an induction motor load but ealculatione of rotor waveform were not attempted. It was found, however, that the bermonio content of the motor ourrent and voltage wavefoms increased the r.m. B. values by about 6 above the fundamental sinusoidal components on load. This caused the power faotor to be about 12% lower than it would have been on a sinusoidel supply and reduced the motor effielency by about 2\%. The resulting 10, increase in the motor's electrical losses, however, meant that the motor would mun hotter than normal unleas specially designed for operation from the inverter or derated by about 10.

At low frequencies the motor torque was found to pulsate severely but above $5 \% / \mathrm{s}$. the motor inertia camped out most of the torque pulsations.

Regenerative braking was found to take place automatically when the motor speed was made supersynchronous and power was then transferred from the motor to the supply through the reverse diode bridge, the $S C R$ bridge merely maintaining the eir gap flux and slso coping with reverse power flow at low power factors.

Although no tests were earried out with any supply other than a
pure d.e. supply taken from a generator there would appear to be no reason why the circuit would not function perfectly well from a reotified a.c. supply. Even a single phasofwoulied supply suitale proviaed that a reservoir eapaeltor were uned to sccept negative supply eusrent for low power factors. $\nabla_{\text {CR }}$ would heve to be large enough to ceter for the fluctuation in V_{d} eince $\left(V_{C R}-\nabla_{d}\right)$ ie the aritieal voltage for oomatation. The harmonics introduced by the supply might have undesirable effects upon the motor but if the supply were taken through an Lol filter before the inverter input, such effects could no doubt be minimised. Regeneration would not be possible if the inverter were to be supplied by a rectifier unless provision could be made for inversion into the a.c. supply whenevor necessery.

CHAPMER 8.

AN "A. O. COMMUTATED TARSE RHASB INVEREMR".

It was concluded that the "d.o. commbated inverter" had low efficiency at high frequency mainly as a result of the power losses caused by the commutation circuit used. All the energy taken by the oomutating apacitor from the auxiliexy supply and the energy taken from the main supply during commutation were transferred to the d.c. eircuit choke and dissipated in the form of heat. These energies were high beause it was necessary to charge the commutating eapecitor to a voltage higher than that of the main d. © supply to effect comutition. Another feature of the comatation circuit whe that in the comutation period all s C Rs in the inverter bridge were reverse biased, not only the one S CR required to be turned off. As well as being unnecessary this forced the load current to fall when it should have been at its peak and resulted in an increased hammonie content of load current.

In an attempt to improve the performance of the inverter another form of cumatation cirouit was developed and is described in this chapter, attention being concentrated upon the comatation process and the resulting power loss. It will be seen that the new comutation oirouit is selactive in that it turns off only the one 5 o f required and hence improves slightly the waveform and harmonic content of load current. Moxe important, it will be seen that no auxiliary supply is requixed in this "a.c. commtated" inverter.

8.1. Circuit and Principle of Operation.

Pig. 8.1 shows the circuit of the inverter and the comneotions of the capacitors and $\$ 6$ ha used for comutation. Each of the three identical oapacitors is comnected between a pair of output lines through a pair of S C Jis comnected in inverse parallel. CR1, CR2,... CR6 form the inverter S © R bridge and $D_{1}, D_{2}, \ldots D_{6}$ the reverse diode bridge as before. CRIa, CR2a,...CR6a are so numbered because they are triggered by the same sate pulses as CR1, CR2,... CR6 respectively (though fed through separate isolating transformers). For this purpose the output oircuits of the pulse genexator were duplicated. The d.c. choke and diodes D_{7} and D_{8} are reteined from the previous inverter eircuit. During operation each capacitor is charged to supply voltage in one direction or the other and this voltage is retained until one of the auxiliary S C Re connected to it is Pired. Fig. 3.2 shows the state of conduction of the oixcuit immediately after CH2 and CR2a have been fired at instant t_{2}. The eapsoitor connected between CR2 and CR6 was charged to supply voltage with the indicated polarity half a oycle earlier when CR5 and CR5a were fired. This time CR2 and CF2a are fixed with the object of turning off CR6.

The I.H.S. of C cannot be at a lower potential than the negative supply terminal because diode D_{6} conducts. Hence the distribution of potential around the oircuit ia as shown, with the positive and negative supply terminals taken to have potentials of +100 and -100 respectively. If a current $I_{\text {do }}$ had been flowing in each half of the d.c. choke prior to instant t_{2}, a current, initially $I_{\text {ao }}$, now flows in the positive

Fig. 8.1: Circuit for "a.c. commutated" three-phase inverter.

Fig. 8.2: State of conduction of circuit immediately after the initiation of commutation at instant t_{2}.

Fig. 8.3: state of conduction of circuit immediately after the capacitor voltage reaches zero in the commutation period following instant t_{2}.
half and the remainder $2 I_{\text {do }} \sim_{\text {ao }}$ in the negative half. Since the supply ourcent is $I_{\text {ao }}$ initisily a current $2 I_{d_{0}}-2 I_{\text {ao }}$ mast flow in diode D_{6} and the current floving into the espacitor aust therefore be $2 I_{d o}-2 I_{a 0}+I_{b o}$. The eapeeitor therefore charges with its L.H.S. becoming more positive with respect to its R.H.S. Daxing the initial charging period it should be noted that the eapacitor voltage appeara aeross CR6, thus turningioff, and aoross the negative hale of the d.c. choke, thus increasing the current and energy stored in the choke. By transformex action the same voltage appears saross the positive half of the d.c. ohoke and this resulta in the voltage v eb Falling ingtantaneousiy to zero. However, the voltage $\nabla_{\text {ob }}$ is positive and eauses an inoreese in i_{d} and $\left(-i_{b}\right)$ and hence the ourrent flowing into the oapaeitor, both from the load and from the ohoke, inereeses during its indtial charging.

When the capseitor voltage reaches zero the ohoke voltage also beeomes zero and diodes D_{7} and D_{8} start to conduat. From this point the R.H.5, of the capacitor is held by CR2 at a potentisl of -100 and hence D_{6} must sease conduction. Thia ondition is shown in 718.8 .3. The additional onergy absorbed by the ohoke is now diasipated in diodea D_{7} and D_{8} and the ohoice playa no further part in the oharging of the eapacitor. The only current now flowing in the eapseitor is that from phase I and hance the eapacitor now cherges at a slightly lower rate towards +100 on its L. $\mathrm{L} . \mathrm{S}$. CR6 now becomes forvard biaged but remsins off provided that the time for which it was roverse biased by the oapacitor was longer than its turn-off sime.

Diode D_{3} conduets when the eapscitor voltege reaches supply voltage and thus prevents the capaoitor from charging further. The capacitor current becones zero, CR2a therefore turns off, and the current in phase B flows via D_{3} to the supply. From this point to the end of the sixth of a cyele at instent t_{3}, the cireuit behaves exactly as the d.c. commteted inverter, i.e, once comutation is complete both circuits are exactly the same. This is shown in Tig. 8.4. It should be noted that CR2 and D_{2} have been shown as possibly conducting. Which of these two devices conducts depends upon the direction of ourrent in phese of the end of commatation. If i_{c} is $+v e$, scourding to the convention used, D_{2} conducts. However, at some stage during the sixth of a eycle i_{c} must become negative, whereupon CR2 conducts for the reminder of the sixth of a oyole.

It should also be noted that the capacitor is now charged with the correct polarity for eomatation at instant t_{5} when CR5 and CR5a are Iised to tum off CR3. Commtation takes place in exactly the same way at the beginning of every sixth of a cycle, one of the three capacitors being disoharged through the appropriate auxiliary $\$$ o R and reversing its voltage roady for the commtation taking place half a eyole later.

8.2. Theory of Operation on R-工 Loed.

Tnlike the d.c. commatated inverter the new inverter sircuit is not very amenable to simple and acourate oaloulation during the period of discharge of the commtating eapsoitor. This is because the airouit cannot be split up into two distinct parts as before aince the load is

Fig. 8.4: State of conduction of circuit after capacitor voltage has reached supply voltage in commutation period following instant t_{2}.

Fig. 8.5: Operational circuit valid during period 1.

Fig. 8.6: Operational circuit used for obtaining the current and voltage equations for period 2.

Involved in the charging of the capacitor. An accurate calculation can certainly be carried out but this involves the solution of cubic equations in obtaining the solution of the differential equations and is therefore suitable only for mamexieal analysis and gives little indication of the general behaviour of the circuit. It is therefore proposed that some simplifying assumptions should be made in order to obtain relatively simple formulae for the reverse-bias time δ for the turn off of SC Rs and for the increase in stored energy of the dec. choke. These formula will in general give reasonably accurate results and it will be indicated how the assumptions made affect the accuracy.
8.2.1. Period 1 - Reverse Bias Time of S OR 6.
8.2.1.2. Assumptions made to simplify theory.
(a) S C Res and diodes are considered ideal, ie. zero forward voltage drop when conducting and Infinite resistance when not conducting.
(b) All components inserted to limit voltage peaks, etc. are ignored.
(c) I_{b} remains constant at $I_{b o}$, ie. its initial value at instant t_{2} 。 (d) i_{a} is also assumed constant at I_{20} and hence I_{c} at $I_{c o}$.
(e) and (d) are valid assumptions provided that the changes in ib and i_{a} are small compared with the actual values of $I_{\text {bo }}$ and $I_{\text {ac }}$. The changes in i_{a} and i_{b} are small if the duration of period 1 is short compared with the load time constant. In fact, during period $1{ }^{1}$ a falls at first and then rises as the capacitor charges and the load voltage changes. i_{e} increases and then falls in a similar manner. The change in i_{b} is the sum of the changes in i_{a} and i_{o} and clearly
these changes belance each other to some extent. -
When is falls the cument in the negative half of the ohoke must inorease by the same amount. The effect of assuming i a to remain constant, therefore, is that the calculated value of δ will be a little greater than it should be, the exror dopending upon the relative magnitudes of the shange in i_{a} and the total ourrent flowing into the capacitor. This error could be counteraeted or enlarged by the assumption (c). However, the larger the values of $I_{\text {ao }}$ and $I_{\text {bo }}$ the more insignificant beoome the errors and it is when I_{30} and $I_{\text {bo }}$ are laxgest that an accurate celculation of δ becomes most important.
8.2.1.2. Curment and voltare equations.

Fig. 8.5 shows the operational eircuit which cen be used to obtain the ourrent and voltage equations during period 1 . The values of i a, i_{b}, i_{e} are shown as constants $\frac{I_{a 0}}{p}, \frac{I_{b o}}{p}, \frac{I_{c o}}{p}$. The initial values of current in the two halves of the d .0 . choke are shown as $I_{\text {do, }}$. If the load power faetor is low, the currents in the two halves of the choke would probably not be equal at the end of each sixth of a sycle but if the mean is taken to be equal to $I_{\text {do }}$ the same result will be obtained. I_{1} is the eurrent flowing into the eapacitor, I_{2} the current flowing in the negative half of the $d . e$. choke and I_{3} the ourrent in diode D_{6}. The initial voltage on the cepacitor is V_{d} in the direction shown.

$$
\begin{align*}
& \frac{\nabla_{d}}{p}+I_{d} I_{d o}+M I_{d o}=I_{1} \cdot p C+I_{2} \cdot p L_{d}+p M I_{a} \tag{8.1}\\
& \text { Now } M=I_{d}, I_{a} \text { is assumed constant at } \frac{I_{\mathrm{eo}}}{p} \text {, and } I_{2}=I_{1}-\frac{I_{c o}}{p} \\
& \therefore \frac{V_{d}}{p}+L_{d} I_{d o}+I_{d} I_{d o}=I_{1} \cdot \frac{I}{p 0}+\left(I_{1}-\frac{I_{c o}}{p}\right) p I_{d}+p M \cdot \frac{I_{c o}}{p} \\
& \text { ide. } I_{1}=\frac{\frac{V_{d}}{I_{a}}+p\left(2 I_{d o}-2 I_{00}-I_{b o}\right)}{p^{2}+\frac{I}{C I_{a}}} \text { since } I_{c o}=-\left(I_{a 0}+I_{b o}\right) \\
& \text { Inverting to obtain } i_{1} \text { in terms of time, } t_{\text {, }} \\
& \text { where } \omega^{2}=\frac{1}{\mathrm{CL}_{\mathrm{C}}} \text {, } \\
& I_{1}=\hat{I} \cos (\omega t-\phi) \\
& \hat{I}=\sqrt{\left(2 I_{d o}-2 I_{a 0}-I_{b o}\right)^{2}+\left(\frac{V_{d}}{\omega_{I_{d}}}\right)^{2}} \\
& \text { and } \tan \phi= \\
& \frac{V_{\mathrm{d}}}{\omega \mathrm{I}_{\mathrm{d}}\left(2 \mathrm{I}_{\mathrm{do}}-2 \mathrm{I}_{\mathrm{Bo}}-\mathrm{I}_{\mathrm{bo}}\right)} \tag{8.2}
\end{align*}
$$

Hence $\mathbf{v}_{e}=$ voltage across capacitor

$$
\begin{align*}
& =-V_{d}+\frac{1}{c} \int_{0}^{t} \hat{I} \cos (\omega t-\phi) d t \\
& =\frac{\hat{I}}{\omega c} \sin (\omega t-\phi) \tag{8.3}
\end{align*}
$$

(is the time for which the capacitor voltage is negative and hence

$$
0=\frac{\hat{I}}{c} \sin (\omega \delta-\varnothing)
$$

$$
\begin{equation*}
\text { i.e. } \delta=\frac{1}{\omega} \tan ^{-1} \frac{\nabla_{d}}{\omega I_{d}\left(2 I_{d o}-2 I_{a 0}-I_{b o}\right)} \tag{8.4}
\end{equation*}
$$

During period 1 the L.E.S. side of the capacitor is held by diode D_{6} at a potential of $\frac{V_{d}}{2}$. Across each half of the dec. choke appears the capacitor voltage.

Hence potential on output line $A=\frac{v_{d}}{2}+v_{c}$

$$
\begin{array}{rl}
n & " \quad n \quad " \quad B=-\frac{v_{d}}{2} \\
" & " \quad n \quad n \quad c=-\frac{v_{d}}{2}-v_{c}
\end{array}\left[\begin{array}{c}
v_{c} \text { being initially } \\
-v_{d} \cdot
\end{array}\right]
$$

8.2.1.3. Approximate value of δ.

When $I_{\text {do }}, I_{\text {ac }}, I_{\text {bo }}$ are large, $\tan \phi$ is small and ϕ is nearly equal to $\tan \phi$.

Then $\delta \Omega \frac{1}{w} \cdot \frac{\nabla_{d}}{\omega_{\mathrm{I}_{\mathrm{d}}}\left(2 I_{\mathrm{do}_{0}}-2 I_{a 0}-I_{b o}\right)}$
i.e. $\delta \Omega \underline{\underline{\frac{C V_{a}}{}}} \frac{\underline{d o}-2 I_{a 0}-I_{b o}}{}$ since $\omega^{2}=\frac{1}{C L_{a}}$

This expression is most accurate when the currents are high, which is the condition which must be allowed for in selecting the capacitor required.

Recept at high frequencies, when the choke current becomes greater than the load current, the current in one half of the choke is I ac and in the other half ($-I_{b_{0}}$) immediately before commutation.

Hence $2 I_{\text {do }}=I_{a 0}-I_{b o}$ and then δ is given by

$$
\delta \Omega \quad \frac{c V_{a}}{-2 I_{b o}-I_{a 0}}
$$

$$
\begin{equation*}
\Omega \quad \frac{c V_{\mathrm{d}}}{-I_{b o}+I_{c o}} \text { since } I_{c o}=I_{a 0}-I_{b o} \tag{8.9}
\end{equation*}
$$

At load power factors greater than about $0.5 I_{00}$ is zero. Then δ may be further simplified to

$$
\begin{equation*}
\delta \Omega \quad \frac{c V_{a}}{-I_{b_{0}}} \tag{8.10}
\end{equation*}
$$

All the above approximate formulas give values for δ which are higher than they should be. This is because it is assumed that the Increase in current in the negative half of the doe. choke is insigniincant compared with the initial current flowing into the appeitor. When the currents are low the apparitor takes longer to charge, the volt-seconds applied to the choke are greater and the increase in choke current is therefore greater and more significant compared with the initial capacitor current.
8.2.1.4. Increase in stored energy of d.0. choke duxing period 1.

During period 1 the totel cusrent in the d.c.choke increases. At the end of period 1 diodes D_{7} and D_{8} conduct and the additional energy absorbed by the choke is then dissipated in the decay aircuit formed by the ohoke and diodes. The additional energy absorbed by the choke is therefore lost.

An expression for the increase in choke stored energy oan be obtained from the initial and final values of total ohoke eurrent in period 1. The initial total current is $2 I$, and the final total ourrent is $\left(\hat{I}+I_{e 0}-I_{c o}\right)$. The inerease $\Delta E L_{\mathrm{d}}$ in ohoke stored energy is therefore given by

$$
\begin{equation*}
\Delta \mathrm{EL}_{\mathrm{a}}=\frac{2}{\mathrm{C}} \mathrm{~L}_{\mathrm{a}}\left(\left[\hat{I}+I_{\mathrm{eo}}-I_{\mathrm{co}}\right]^{2}-4 I_{\mathrm{do}}^{2}\right) \tag{8.11}
\end{equation*}
$$

This expression can be aimplified no further. An alternative expression for \triangle ELA, offering more scope for aimplification, may be obtained by finding the ingrease in stored energy from the instantaneous viues of current in the ohoke and the voltage scross it. During period 1 the total instantaneous current in the choke is ($\hat{I} \cos (\omega t-\phi)+I_{00}-I_{c o}$) and the voltage seross the choke is $\frac{\hat{Y}}{\omega C} \sin (\omega t-\phi)$. Then $\Delta \mathrm{EL}_{\mathrm{d}}$ is given by

$$
\Delta E L_{d}=-\int_{0}^{\phi / \omega}\left[\hat{1} \cos (\omega t-\phi)+I_{s o}-I_{\operatorname{coc}}\right]\left[\frac{\hat{I}}{\omega \hat{C}} \sin (\omega t-\phi)\right] d t
$$

This reduces to
$\Delta E L_{\mathrm{d}}=\frac{\frac{1}{\mathrm{i}} C V_{\mathrm{d}}^{2}+L_{d}\left(I_{a 0}-I_{c o}\right)\left(2 I_{d o}-2 I_{a 0}-I_{b o}\right)\left(\sqrt{1+\tan ^{2} \phi}-1\right)}{\ldots(8.22)}$
If the currents in the circuit are large, $\tan \phi$ is small and then

$$
\sqrt{1+\tan ^{2} \phi} \quad \Omega \quad 1+\frac{2}{2} \tan ^{2} \phi-\frac{1}{8} \tan ^{4} \phi
$$

Taking the first two terms only,
$\Delta B I_{\mathrm{a}} \Omega=\frac{10 v_{d}^{2}+L_{\mathrm{d}}\left(I_{\mathrm{aO}}-I_{\mathrm{oo}}\right)\left(2 I_{\mathrm{do}}-2 I_{a 0}-I_{\mathrm{bo}}\right)\left(\frac{1}{2} \tan ^{2} \phi\right)}{}$

This simplifies to
$\left.\Delta E I_{d} \Omega{\frac{1}{2} O V_{d}^{2}}_{{ }^{2}\left(\frac{2 I_{d o}}{}{ }^{-2 I_{a o_{0}} I_{b o}}\right.}\right)$

At zero power factor $\left(-I_{b o}\right)$ is equal to $2 I_{\text {ac }}$ (see section 5.4.5). Then $\Delta \mathrm{EL}_{\mathrm{d}} \Omega \frac{\mathrm{zV}_{\mathrm{d}}^{2}}{2} \cdot \frac{\mathrm{CI}_{\text {do }}}{2 I_{\text {do }}}$
1.e. $\Delta B L_{\mathrm{d}} \Omega \frac{1}{2} C V_{d}^{2}$

At high power factors ($-I_{b o}$) is equal to I_{80}.
Then $\Delta E L_{\mathrm{d}} \Omega$ 言 $\mathrm{CV}_{\mathrm{d}}^{2} \cdot \frac{2 I_{\text {do }}}{2 I_{\mathrm{do}}-I_{\text {ac }}}$

In this ease $2 I_{d o}=2 I_{\text {eeo }}$ unless the commutation power loss is high enough to make $I_{\text {do }}$ greater than $I_{\text {so }}$

Then $\Delta \mathrm{SL}_{\mathrm{d}} \Omega \frac{1}{2} \mathrm{cV}_{\mathrm{d}}^{2} \cdot \frac{2 I_{\mathrm{ao}}}{I_{\mathrm{ao}}}$
1.e. $\underline{\underline{\Delta K L_{d} \Omega} \mathrm{cV}_{\mathrm{d}}^{2}}$

Hence the increase in stored energy of the choke depends upon the load and upon the frequency (if $2 I_{\text {do }}$ is greater than the sum of $I_{\text {ac }}$ and ($-I_{\text {bo }}$)). The stored energy increase, however, varies only between $\frac{1}{2} \mathrm{CV}_{\mathrm{d}}{ }^{2}$ and $\mathrm{CV}_{\mathrm{d}}{ }^{2}$ and under most operating conditions would be nearer $\mathrm{CV}_{\mathrm{d}}{ }^{2}$ then 言 $\mathrm{Cv}_{\mathrm{d}}{ }^{2}$.

8.2.1.5. Commutation power loss.

$\Delta E L_{\mathrm{d}}$ is dissipated six times per cycle in the form of heat. The commutation power loss, $P_{\text {com }}$, is therefore given by

$$
P_{\mathrm{com}}=6 \mathrm{f} \Delta \mathrm{EL}_{\mathrm{d}}
$$

In worst ease

$$
\begin{equation*}
P_{\mathrm{com}} \Omega \quad 6 \Omega \mathrm{cv}_{\mathrm{d}}^{2} \tag{8.17}
\end{equation*}
$$

8.2.2. Period $2-C$ charging from Zero Voltage to V_{d}.

During period 2 capacitor C charges from zero voltage with current flowing into it from phase B only. If the load inductance is small it is possible that the oscillatory charging of the eapeottor reaches a peak voltage below the supply voltage. At this point the capacitor and phase 3 curmentswould become zero and Cha would turn off. The
eapacitor would then remain at this voltage until the end of the sixth of a cycle when CR3 is fired. Sinee CR2e is triggered, like CR2, from instant t_{2} to t_{4}, CR2a would conduct agein at t_{3} and the eapacitox would complete its chaxging to supply voltage.

In general, provided that phase B has sufficient inductive energy for the aapacitor to be charged to supply voltage in the first part of the prospective oscillation, the capacitor voltage would follow part of a damped oscillation, It would not be possible to find the duration of period 2 from the capacitor voltage equation except by muerical methods. It is proposed, therefore, that the capacitor voltage rise shall be assumed innear, which implies that i_{b} mast be sssumed constant at $I_{\text {bo }}$ during period 2. However, by assuaing that phase B is in effect connected to a potential mid-way between the potentials of the d.c. supply teminals the change in 1_{b} during period 2 may be estimated.

These assumptions are only valid if the load inductive stored energy is high enough for 0 to charge to V_{d} during period 2 almost linearly. If the load is mainly resistive, the assumptions are not valid.
8.2.2.1. Cumeent and voltage equations.

The duration, T_{2}, of period 2 is the time taken by capacitor C to charge from zero to supply voltage V_{d} with a current of $I_{\text {bo }}$ flowing into it.

$$
\begin{equation*}
\text { Hence } \quad T_{2} \Omega \frac{c V_{\mathrm{a}}}{\mathrm{I}_{\mathrm{bo}}} \tag{8.18}
\end{equation*}
$$

Fig. 8.6 shows the operations circuit which it is assumed can be used to obtain the current and voltage equations during period 2 . Phase B is shown connected to the mid-point of the supply so as to simalate the mean voltage across the capacitor during period 2 .

From the closed loop including phases A and B,

$$
\begin{equation*}
\frac{V_{d}}{2 p}+L_{a 0}-L_{b o}=I_{a}(\mathbb{R}+p L)-I_{b}(R+p L) \tag{8.19}
\end{equation*}
$$

From the closed loop including phases A and C

$$
\begin{equation*}
\frac{V_{d}}{p}+L I_{a 0}-L I_{00}=I_{s}(R+p L)-I_{e}(R+p L) \tag{0.20}
\end{equation*}
$$

Putting $\left.I_{c}=-I_{a}+I_{b}\right)$ and $I_{c o}=-\left(I_{a 0}+I_{b o}\right)$ in (8.20)

$$
\begin{equation*}
\frac{V_{d}}{p}+2 L I_{a 0}+L I_{b o}=2 I_{a}(R+p L)+I_{b}(R+p L) \tag{8.21}
\end{equation*}
$$

Eliminating $I_{\text {a }}$ from (8.19) and (8.21)

$$
I_{b}=\frac{I_{b o}}{p+\frac{R}{L}}
$$

Hence

$$
\begin{equation*}
i_{b}=I_{b_{0}} e^{-\frac{R t}{L_{0}}} \tag{8.2.2}
\end{equation*}
$$

Eliminating I_{b} from (8.19) and (8.21)

$$
I_{a}=\frac{V_{d}}{2 p L_{\left(p+\frac{R}{L}\right.}^{L}}+\frac{I_{a o}}{p+\frac{R}{L}}
$$

Hence

$$
\begin{equation*}
i_{a}=\frac{V_{d}}{2 R}-\left(\frac{V_{a}}{2 R}-I_{a 0}\right) e^{-\frac{R t}{L}} \tag{8.23}
\end{equation*}
$$

Hence

$$
\begin{align*}
& i_{e}=-\left(i_{a}+i_{b}\right) \\
& i_{e}=-\frac{\nabla_{d}}{2 R}+\left(I_{e o}+\frac{V_{d}}{2 R}\right)_{e}^{-\frac{R t}{L}} \tag{8.24}
\end{align*}
$$

ie.

The values $I_{a 2}, I_{b 2}, I_{02}$ of i_{s}, i_{b}, i_{c} at the end of period 2 may be found by putting $t=\frac{T_{2}}{2}$ in equations $(8.23),(8.22)$ and (8.24) respectively.

A batter approximation for T_{2} may be obtained by equating the charges flowing into the capacitor and out of phase 3 during period 2, using equation (3.22) for i_{b}.

$$
\begin{align*}
& \text { ide. } \quad c V_{a}=-\int_{0}^{2} i_{b} d t \\
& \left.=\frac{L}{R} I_{b o} l e^{-\frac{R T}{L}}-1\right) \\
& \text { Hence } \quad T_{2}=-\frac{h}{R} \log _{c}\left(1+\frac{C V_{e^{R}}}{I_{b o} L}\right) \tag{3.25}
\end{align*}
$$

During period 2 phase A is connected by CR2 to the positive temainal of the dec. supply and phase C by CR2 or D_{2} to the negative terminal of the dee. supply (D_{7} and D_{8} would be conducting during the period). Phase B is connected to the end of the capacitor which starts at the potential of the negative terminal and rises to the potential of the positive supply terminal in time F_{2}.

Bence

$$
\begin{align*}
& v_{a b} \Omega v_{d}\left(1-\frac{t}{T_{2}}\right) \tag{8.26}\\
& v_{b c} \Omega v_{d} \cdot \frac{t}{T_{2}} \tag{8.27}\\
& v_{\text {ea }}=-v_{d} \tag{8.28}
\end{align*}
$$

8.2.3. Remainder of the Sixth of a Cycle.

At the end of period 2 the current in phase B decays through diode D_{6} and the oapacitor ceases to oharge flurther, CR2 ${ }_{a}$ turning off. For the remainder of the sixth of a cyole ending at instant ${ }_{3}$, therefore, the curxents and voltages vary in exactly the same way as in the d.c. comutated inverter, after the commtetion period. The equations for eurrent, voltage, etc, are therafore given in seetions $5.3 .4 .2,5.3 .4 .3$ and $5 \cdot 3 \cdot 4 \cdot 4$. if $I_{e 2}$ is zero or seotion $5 \cdot 4 \cdot 2 \cdot 2$. if $I_{e 2}$ is not zero.

8.3. Rests with a Simple Series R-L Load.

3.3.2. Commutation.

Tests were oarried out to find how the reversembias time δ of the turned off S, C R was dependent upon the supply voltage, size of commutating capacifor, the current being commutated, and the load.
8.3.1.1 Veriation of δ with C and $I_{b o}{ }^{*}$

For this test the supply voltsge was kept constant at 80 V and the load phase induotance constant at 2.85 m. H. The operating frequency was $25^{\mathrm{c}} / \mathrm{s}$. and the inductance of the d.c. choke was constant at $0.5 \mathrm{~m} . \mathrm{H}$. per coil (self and mutual) throughout. Three values of commutating eapacitor, C, were used and for each the current in the circuit was incressed in steps by changing the load resiatance. δ and $I_{b o}$ were measured on an osetiloscope.

Fig. 8.7 shows the results of these tests, For each velue of conmtating eapacitance two peirs of calculated curves are also ghown. One pair is ealeuleted using 80 V for the eapaeitor voltage at the start of commatation, the other pair is asleulated for a "corrected" eapaeitor voltage. The "correction" takes account of the transfex of charge from the comatating capacitor at the start of commutation to $1 \mu F$ eapaitor connected across each S C R (to suppress troublesome voltage peaks) when the S C R voltages change abruptly.

At the operating frequenoy used it wes found that the excess choke current had died away before commtation took place and that therefore $2 I_{\text {do }}$ wss equal to $I_{a 0}+\left(-I_{b o}\right)$. At the end of each sixth of a cyole curxent flowed in two phases only and it was also possible to take $I_{\text {ao }}$ and ($-I_{\text {bo }}$) as being equal. The expressions for δ used in the calculation thexefore simplified to

Fig. 8.7: Variation of δ with $I_{b o}$ for several values of C.

$$
V_{d}=80 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, R \text { varied, } L=1.85 \mathrm{mH}, f=25 \% / \mathrm{s}
$$

$$
\delta=\frac{1}{\omega} \tan ^{-1} \frac{\nabla_{d}}{\omega L_{d}\left(-I_{b_{0}}\right)}
$$

and

$$
\delta \Omega \frac{C V_{\mathrm{d}}}{-I_{\mathrm{bo}}}
$$

The former equation has been used to obtain the results described as "calculated" in Pig.8.7, the latter used for the "approximate" results. The "corrected" voltage V_{R} appearing on the capacitor at the start of commutation is used by substituting it for V_{d} in the two equations.

It is seen that considerably better agreeinent between measured and calculated results was obtained when the "corrected" voltage was used. These results, however, would be expected to be still a little higher than measured because of S CR forward voltage drops, reverse current draw frown the turned-off S C R , etc.

The "approximate" results are seen to give useful predictions for δ at higher values of current, which is the condition for which the commutation circuit is designed. At lower currents, however, the approximate results are very far from accurate. This is because according to the approximate formula δ would vary inversely with $I_{\text {bo }}$ whereas in practice even if $I_{\text {bo }}$ were zero δ could be no greater than $\frac{\pi}{2 \omega}$, ie. $\frac{\pi}{2} \sqrt{c L_{d}}$.

It may be concluded from Pig. B.7 that δ varies as predicted, approximately proportional to C at high currents and approximately proportional to \sqrt{C} at low currents. It can also be concluded that δ becomes almost inversely proportional to $I_{b o}$ when $I_{b o}$ is large.

8.3.1.2. Effeot upon δ of $10 a d$ inductance L.

To find what effeet the load inductance had upon δ the inverter was operated with constant supply voltage and commutating capacitance at a frequency of $25 \mathrm{c} / \mathrm{s}$. For several different values of $I_{\text {bo }}$ the $10 a d$ inductanee was varied between 0.95 mfl and 3.85 mH , adjusting the load resistance when necessary to keep $I_{b o}$ constant.

Fig. 8.8 shows the results of this test. It is seen that L has virtually no effect upon δ which is to be expected as shown by the calculated results for each value of $I_{b o}$.
3.3.1.3. Variation of δ with supply voltage V_{d}.

For this test $I_{\text {bo }}$ was kept constant at 20A by adjusting the load resistance with supply voltage. The load inductance, commutating espacitance and frequency were kept constant at $3.85 \mathrm{mH}, 50 \mu \mathrm{~F}$, and 25% s. respectively.

Fig. 8.9 shows the results of this test. At low voltages the eurves showing the calculated variation of δ with ∇_{d} tend towards becoming asymptotic with the lines showing the approximate variation of δ. This is because when ∇_{d} is small the capacitor energy is small and the increase in current flowing into the oapacitor is small during the reverse voltage period. At large supply voltages, however, δ seems to tend towards a steady value. In this asse the steady value should be $\frac{\pi}{2} \sqrt{L_{\mathrm{a}}{ }^{C}}$ i.e. $24^{8} \mu$ Secs since δ oan never be greater than $\frac{1}{\omega} \tan ^{-1} \infty$. The pedioted values agree favourably with the measured values of δ

Fig. 8.8: Variation of δ with load inductance for several values of $I_{b o}$.
$V_{d}=80 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, C=30 \mu \mathrm{~F}, R$ varied, $f=25 \%$

Measured values of δ
-------Calculated, using $V_{d}=80 \mathrm{~V}$

- Calculated, using $V_{R}=65 v$ ("corrected" value)

Fig. 8.9: Variation of δ with V_{d}.
$L_{d}=0.5 \mathrm{mH}, C=50 \mu \mathrm{~F}, L=3.85 \mathrm{mH}, \quad I_{b_{0}}=20 \mathrm{~A}, f=25 \% \mathrm{~s}$
Measured values of δ
$\ldots . .-$ Calculated, using $V_{d}=$ value indicated

- Calculated, using "corrected" value V_{R}

-.-. Approximate, using "corrected" value V_{R}
especially those based on the "corrected" capacitor voltage. The remaining discrepanoy between prediction and measurement can be attributed to the S C R reverse current at turn-off, eircuit resistance, leakage of eapacitor voltage through the auxiliary S C Rs during the half cyoles between comautations, and/the assumptiona made in deriving the expreasions for δ.
8.3.2. Period 2 - oharging of Capacitor to Supply Voltage.

For the reasons given in section 8.2 .2 the duration of period 2 is difficult to predict with a high degree of preaision. The tests to be described below were carried out to detexmine the validity of the rather limited theory developed in section 8.2 .2 .

8.3.2.1. Vexiation of T_{2} with C and $I_{b_{0}} *$

The test conditions vere as described in section 8.3.1.1 and the resul.ts are shown in Fig. 8.10 .

In general it is seen that the predioted values of T_{2}-are lover than those measured. This indicates that the fall in $\left(-i_{b}\right)$ during period 2 is, in genersl, greater than is allowed for in equationa (8.18) and (8.25). It was obsexved, however, that the comutating capacitor did in fact charge to a voltage slightly higher than supply voltage, this being attributed to the induotance of the d.c. eirouit of the reverse diode bridge. This would also account in part for the higher measured values of T_{2}.

Fig. 8.10: Variation of T_{2} with $I_{\text {bo }}$ for several values of C. $V_{d}=80 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, L=1.85 \mathrm{mH}, R$ varied, $f=25 \mathrm{c} / \mathrm{s}$

The results predieted from equation (B.25) are seen to agree more elosely with the measured results than with those based on equation (6.28). This is because the former partly take into account the fell in $\left(-i_{b}\right)$ whereas the latter are based on the assumption that i_{b} remains constant et $I_{\text {bo }}$ throughout pexiod. 2. The difference between the two methods of prediction is most marked at low values of $I_{\text {bo }}$ where i_{b} would be expeeted to change most severely.

With $C=50 \mu F$ and $I_{b o}=10 \mathrm{~A}$ it was found that the oapacitor would not charge to supply voltage at the first attempt but completed the process one sixth of a cycle later. This was bscause the inductive stored energy of phase B was so low that the natural peak of the oscillation between C and the load was lower than the supply voltage. In all other cases encountered during this sexies of tests the load stored energy was greater or the required increase in oapacitive stoxed energy less so that the eapacitor charged to V_{a} in one step.

8.3.2.2. Variation of I_{2} with I and $I_{b o} *$

The test procedure was as described in seetion 6.3 .2 .2 and the results are displayed in Fig. 8.11.

Once again it is seen that T_{2} varied in an inverse manner with $I_{b o}$. The predieted results ere again seen to be lower than the measured values of T_{2}, the discrepancy being nearly 30% in the worst cases. At all values of $I_{b o} T_{2}$ increased when the load inductance was decreased. This was beoause the fall in i_{b} from $I_{b o}$ was greater when the inductance was

Fig. 8.11: Variation of T_{2} with $I_{b 0}$ for several values of L.

$$
V_{d}=80 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, C=30 \mu \mathrm{~F}, R \text { varied, } f=25 \% / \mathrm{s}
$$

sraller and henee less current flowed into the eapacitor which then took longer to charge through the same voltage range.

The results predicted from equation (8.25) gave more accurate predictions than those predicted from equation (8.18), particularly at the lower values of $I_{b o}$, because the fall in in was partly allowed for in this former equation.
8.3.2.3. Variation of T_{2} with V_{d}.

This test was carried out as deacribed in section 8.3.2.3 and the results are shown in Fig. 8.12.
T_{2} was found to inerease linearly with ∇_{d}, as predicted by equation (8.18). However, the results given by equetion (8.18) were in general about 20% lower than those measured on the oscilloscope. The results given by equation (8.25) were also low, the discrepaney between measurement and preaiction in this case being about 15% of the 25% discrepancy, 5% can be attributed to the capecitor's peak voltages being about $5 \% \mathrm{higher}$ than supply voltage due to the inductance of the leads connecting the reverse diode bridge with the supply.

The linearity of the measured variation of T_{2} with V_{d} indicates that i_{b} aid not fall during period 2 or that the rall in i_{b} was constant st all values of ∇_{d}. Under the oonaitions of the teat, with $\mathrm{L}=3.85 \mathrm{mll}$, $I_{b o}=20 A$, and $C=50 \mu F$ it can be seen that the induetive stored energy of phase B, even with V_{d} at 110 V was mach greater than the increase in energy of C during period 2. If L or $I_{\text {bo }}$ had been smaller, the curve

Fig. 8.12 : Variation of T_{2} with V_{d}.
$L_{d}=0.5 \mathrm{mH}, C=50 \mu \mathrm{~F}, L=3.85 \mathrm{mH}, I_{b o}=20 \mathrm{~A}, f=25 \%$
showing the variation of T_{2} with V_{d} would be expected to be concave upwards, T_{2} increasing more rapidly at higher values of V_{d}.

3.3.3. Approximate Calculation of Sample Load Waveforms.
 8.3.3.1. Conditions for calculation.

Apart from the difference in commutation circuits the inverter and load were exactly as calculated for in section 6.3. The load and supply were :-

$$
\begin{aligned}
& V_{d}=100 \mathrm{~V}, \mathrm{~L}_{\mathrm{d}}=0.5 \mathrm{mH}, \quad \mathrm{C}=30 \mu \mathrm{~F}, \mathrm{~L}=3.85 \mathrm{mil} \\
& \mathrm{R}=2.3 \Omega, \mathrm{I}=50^{\circ} / \mathrm{s} .
\end{aligned}
$$

In this case the current in one phase was zero at the end of each sixth of a cycle and hence for the calculations $I_{\text {ac }}=\left(-I_{b o}\right)$ and $I_{\text {co }}=0$. $2 I_{\text {do, }}$ the total current in the d.c. choice is assumed to be equal at $I_{a o}+\left(-I_{b o}\right)$, 1.e. $-2 I_{b o}$.

8.3.3.2. Determination of boundary values of currents and the times

$$
T_{1}, T_{2}, T_{3}, T_{4}
$$

The iterative process which mast be followed in determining the period durations and the current boundary values is not shown, only the final set of calculations being given.

$$
\begin{aligned}
& \frac{V_{a}}{3 R}=14.5 \mathrm{~A}, \frac{V_{d}}{2 R}=21.75 \mathrm{~A}, \frac{2 V_{d}}{3 R}=29.0 \mathrm{~A} . \\
& \text { assume } I_{\mathrm{a}_{0}}=-I_{\mathrm{bo}}=20.05 \mathrm{~A} \text { and } I_{\mathrm{co}}=0
\end{aligned}
$$

Then $\delta=T_{2} \Omega \frac{C V_{d}}{-I_{\text {do }}}=\frac{30 \times 100 \times 10^{-6}}{20.05}=150 \mu$ Sees.
i_{e}, i_{b}, i_{e} are assumed constant at $20.05 \mathrm{~A},-20.05 \mathrm{~A}$ and 0 during period 1.

$$
\therefore T_{2} \Omega \frac{d V}{-I_{b o}}=150 \mu \text { secs. }
$$

The values of i_{a}, i_{b}, i_{c} at the end of period 2 are found from equations $(8.23),(8.22),(8.24)$.

Hence

$$
\begin{aligned}
I_{a 2} & =21.75-(21.75-20.05) e^{-\frac{2.3}{3.85} \times .15} \\
& =\frac{20.2 \mathrm{~A}}{} \\
I_{\mathrm{b} 2} & =-20.05 e^{-\frac{2.3 \times .15}{3.85}} \\
& =-28.33 \mathrm{~A} \\
& =-\left(I_{\mathrm{a} 2}+I_{\mathrm{b} 2}\right) \\
I_{\mathrm{a} 2} & =-1.89 \mathrm{~A}
\end{aligned}
$$

$I_{e 2}$ is not zero and hence the time T_{3} taken for i_{b} to decay to $z e r o$ and the values of i_{a} and i_{c} at the end of this period must be found from equations $(5.58),(5.57)$ and (5.59).

$$
\begin{aligned}
\text { Putting } i_{b} & =0 \text { and } t=T_{3} \text { in equation }(5.58) \\
0 & =14.5+(-18.33-14.5) e^{-\frac{2.3 \times 10^{3_{T}}}{3.85}}
\end{aligned}
$$

Hence $T_{3}=1.367 \mathrm{~m}$ Seas.
Putting $t=2.367 \mathrm{~m}$ Sees in equation (5.57)

$$
i_{\mathrm{a3}}=\underline{17.1 \mathrm{~A}}
$$

Hence $I_{03}=-I_{83}=-27.1 \mathrm{~A}$
The remainder of the sixth of a cycle, 4_{4}, is given by

$$
\begin{aligned}
T_{4} & =\frac{T}{6}-\left(T_{1}+T_{2}+T_{3}\right) \\
& =1.666 \mathrm{~m} \text { Secs } .
\end{aligned}
$$

Then $I_{\text {gA }}$ and $\left(-I_{c 4}\right)$ can be found by putting $t=2.666 \mathrm{~m}$ Secs in equation (5.32)

$$
\text { i.e. } \begin{aligned}
I_{e 4}=-I_{e 4} & =21.75-(21.75-17.1) e^{-\frac{2.3 \times 1.666}{3.85}} \\
& =20.04 \mathrm{~A}
\end{aligned}
$$

This value is practically identical with the value assumed for I_{80} and $\left(-I_{b o}\right)$. Hence it an be assumed that the initial values chosen were correct. It has been assumed that diodes D_{7} and D_{8} conduct for the whole of the cycle apery from the periods of duration T_{2} and that, therefore, the d.c. choke plays no part in the circuit except during commutation.

8.3.3.3. Current and voltaire equations.

Having obtained the duration of the four periods in each sixth of a cycle and the boundary values of current, the current and voltage equations for each of the four periods may now be set out-

Period 1 (of duration T_{1} or $\delta=150 \mu$ Sees.)

$$
\begin{aligned}
& i_{a}=-i_{b}=20.05 \AA \quad \text { (assumed constant) } \\
& i_{c}=0 \\
& v_{a b}=100 \frac{t}{T_{1}} \mathrm{~V} \\
& v_{b c}=200\left(1-\frac{t}{T_{1}}\right) v \\
& v_{c a}=100\left(1-\frac{2 t}{T_{1}}\right) V
\end{aligned}\left\{\begin{array}{l}
\text { Derived from equations }(8.5), \\
(8.6) \text { and }(8.7) \text { but assumed } \\
\text { linear. }
\end{array}\right.
$$

Period 2 (of duration $T_{2}=150 \mu$ Sees.)

$$
\begin{array}{lll}
i_{a}=21.75-1.7 e^{-0.598 \times 10^{+3 t}} A & \text { from equation (8.23) } \\
i_{b}=-20.05 e^{-0.598 \times 10^{-3 t}} \mathrm{~A} & n & n \\
i_{c}=-21.75\left(1-e^{-0.598 \times 10^{+3 t}}\right) A & n & n \\
v_{a b}=100\left(1-\frac{t}{T_{2}}\right) v & \text { (8.24) } \tag{8.26}\\
v_{b c}=100 \frac{t}{T_{2}} v & \text { from equation (8.26) } \\
v_{c a}=-100 \mathrm{~V} & n & n \\
\text { (8.27) }
\end{array}
$$

Period 3 (of duration $\Phi_{3}=1.367$ 프 Secs.

$$
\begin{align*}
& i_{a}=14.5+5.7 e^{-0.598 \times 10^{+3 t}} A \\
& A \tag{5.58}\\
& i_{b}=14.5-32.8 e^{-0.598 \times 10^{+3 t}} A \tag{5,60}\\
& i_{e}=-29.0+27.1 e^{-0.598 \times 10^{+3 t}} \quad \text { Ar om equation }(5.5 t)
\end{align*}
$$

$$
\begin{array}{ll}
\mathrm{v}_{\mathrm{ab}}=0 & \text { from equal } \\
\mathrm{v}_{\mathrm{bo}}=100 \mathrm{~V} & n \\
\mathrm{v}=-100 \mathrm{~V} & n
\end{array}
$$

Period 4 (remainder of sixth of a cycle, of duration ${ }_{4}=2.666$ m Sees.)

$$
\begin{aligned}
& i_{a}=-i_{c}=21.75-4.65 e^{-0.598 \times 10^{3 t}} \text { from equation }(5.32) \\
& i_{b}=0 \\
& v_{a b}=50 \mathrm{~V} \\
& v_{b c}=50 \mathrm{~V} \\
& v_{c a}=-100 \mathrm{~V}
\end{aligned}
$$

8.3.3.4. Load current and voltage waveforms.

Using the equations set out in the previous sub-seetion the load current and voltage waveforms have been drawn in Fig. 8.13. For comparison the measured waveforms have been lixawn on the same axes and to the same scale. Agreement is to within about 10\% in general.

There are several ofscrepancles between the calculated and measured waveform which are worthy of note. During the commutation periods it is seen that the load currents did not remain constant but nevertheless the changes were very small. In fact, the only significant change not predicted was the negative current which began to flow in the phase just about to be connected by an S OI to the supply. This is shown at 6.7 and 16.7 mines on thetime scale. The oscillations on the current

Fig. 8.13: Measured (-) and predicted (--)) waveforms of load current ia and line-to-line voltage $v_{a b}$.

$$
V_{d}=100 \mathrm{v}, L_{d}=0.5 \mathrm{mH}, C=30 \mu \mathrm{~F}, R=2.3 \Omega, L=3.85 \mathrm{mH}, f=504 \mathrm{~s} .
$$

and voltage waveform were caused by the filter capacitors connected aeross the load and have not, therefore, been predioted. The voltage excuarisions during commutation were not as large as predieted. This was because the commatating capacitors lost some of their charge to the filter oapseitors during the initistion of commutation. A degree of overshoot beyond supply voltage was observed during the oharging of the comutating espacitor after comutation and is shown at 3.33 and 13.33 m Secs. This wes attributed to the inductance of the lines connecting the reverse diode bridge to the supply. At a nominal voltage of $\pm 100 \mathrm{~V}$ the loed voltage waveform was seen to be curved. This was due to the ripple on the voitage of the supply reservoir capacitor ceused by the fluctuation in the current drawn by the inverter.

8.3.4. Comparison betwaen Performances of d.c. Commutated and a.c. Commateted Inverters on Identical R-L Loads.

The supply voltage, load and frequency were identical for the wavefoms calculated in sections 6.3 and 8.3 .3 . and the measurements made under the same conditions for both circuits form a good basis for comparing their fundemental differences.

When the wavaforas shown in Tigs. 6.8 and 6.9 are compared with those of Fig. 8.13 it is seen that although the cursent waveforms are basically aimilar the distortion near the peaks is rather less in Fig. 8.13 than in 6.8 . It would therefore be expected that the rem.s. value of current would be higher and the hamonic content smaller in the current waveform of Fig. 8.13. In the voltage waveformia the effect of
commtation is to add a large rectangular pulse to the basic wavefom in Fig. 6.9 but a triangular pulee in Fig. 8.13 and the total excursions during commatation in the former waveform are rather greater than in the latter waveform. Hence although the r.w.s. voltages would be nearly equal it would be expected that the homonic content would be smaller in the latter waveform.

Table 8.2 below shows the most important quantities compared side by side for the two oircuits.

Table 8.1s Comparison between performances of d.c. commutated

The remarks made above about $x . m . S$. values and hamonic content are seen to be borne out in Table 6.1. The mosit significant difference between the two inverters, however, is seen to be the mach improved efficiency of the a.c. commtated inverter. The higher power factor 1: the result of the lower harmonic content of voltage and current.
8.4. Computation Power Loss and Inverter Efficiency.

A number of testa were carried out, using the motor as a load, to determine the efficiency of the inverter and to check the validity of the expression given for the commatation power loss.
8.4.1. Commutation Pover Logs.

At an operating frequency of $50 \% / \mathrm{s}$. the inverter was loaded by the motor to varying degrees and the input and output powers meagured for the inverter. This was done for $C=30 \mu \mathrm{~F}$ and $0=50 \mu \mathrm{P}$ and for several different supply volteges. The losses in the S C Rs and diodes and the $I^{2} R$ lossas in the circuit were estimated from the measured. currents and the known forwerd voltage drops and circuit resistances and these losses were subtracted from the total power loss. The remaining losses should then have been the somutation losses.

Piga. 8.14 and 8.25 show the reaults of these tests. The Lossea have been plotted against $I_{\text {in }}$, the mean ourrent flowing into the S C R bridge. In detemining the ractifier losses 1.5 V and 1.0 F heve been taken to be the S CR and diode forward voltage drops. For the resistive losses 0.1Ω has been taken as the effective resistance of

(a) $V_{d}=100 \mathrm{v}$.

520 M U1
sassol 2 MmO

(b) $V_{d}=120 \mathrm{~V}$.

Fig. 8.14: Variation of inverter power losses with Im. $C=30 \mu \mathrm{~F}, f=50 \mathrm{f} / \mathrm{s}, L_{d}=0.5 \mathrm{mH}$
(a): Total power losses
(b) : Estimated rectifier and $\Gamma^{2} R$ losses
(c): Remainder, altributed to commutation
(d) : Predicted commutation loss $=6 \mathrm{CfV}{ }_{d}{ }^{2}$

(a) $V_{d}=100 \mathrm{~V}$

(d) $V_{d}=150 \mathrm{~V}$

Power Losses
(b) $V_{d}=120 \mathrm{~V}$

Fig. 8.15: Variation of inverter power loss with Iin for several supply valtages $c=50 \mu \mathrm{~F}, \quad L_{d}=0.5 \mathrm{mH}, \quad f=50 / \mathrm{s}$
(a) : Total power loss;
(b): Estimated rectifier and $I^{2} R$ losses;
(c) : Remainder ;
(d) : Predicted commutation loss $=6 C f V_{d}^{2}$.
the d.c. eircuits of both S CR and diode bridges.
In each graph in both Fig. B. 14 and 8.15 the predioted commutation loss is shown as $6 \mathrm{CIV}_{d}^{2}$. For $V_{d}=100 \mathrm{~V}$ in both cases the losses attributed to comutation are seen to be far lass than predioted. Some of this discrepaney can be attributed to the exrors involved in resding the wattmeters at low powers and some to the faet that a component of the commutation power loss is dissipated in the S C Ra and reverse bridge diodea. At higher voltages the losses attributed to commutation are nearer to prediction but, in general, are no more than about two thirds of the predioted vilues. In sections B.2.1.4 and 8.2.1.5 it was predioted that the commatation loss would lie between $3 \mathrm{CfV}_{\mathrm{d}}{ }^{2}$ and $6 \mathrm{CfV}_{\mathrm{d}}{ }^{2}$ and so in general the commatation loss did fall between these limits.

8.4.2. Inverter Bfficiency.

In Fig. 8.16 the inverter input power required to produce a given output power and the invorter efficiency is shown. The velues given are those which were measured in the course of the tests for comatation power loas. It is seen that athow output power the input power increased. with suppiy voltage and commatating eapacitenoe. This was due to the increase in cowntation power loss and resulted in a corresponding decrease in inverter efficiency, The efficiency inoressed to a maximum velue and then deoressed as the output power was inoreesed. Maximum efficiency corresponds to the point where the increasing $I^{2} R$ and reatifier losses become equal to the virtually constant opmutation

Fig. 8.16: Variation of input power required and inverter efficiency with inverter output power for several combinations of C and V_{d}.

$$
L_{d}=0.5 \mathrm{mH}, \quad f=504 \mathrm{~s} .
$$

lossen. Since the comutation losses increase with voltage aud capacitance the power at whioh peak efficiency is obtained also inoreases with voltage and capacitance.

The peak inverter efficiency sttainad at $50 \mathrm{~m} / \mathrm{s}$. was seen to be 93% and the afficiency wes generally about 89% at powers above about 3 KW . This compares very fevmurably with the efficiency of the 6.c. commateted inverter, which wes about 80, under similar load conditione. It wes sean in Pigs. 8.14 and 8.15 that at high powers the reotifier and resistence losses constituted at least a hslf of the invexter losses. If the resistence losses could be reduced almost to zero, it would be expected thet the efficiency of the circuit could be improved to a minimum of 95% at $50^{\circ} / \mathrm{s}$, when giving a high power output.

8.5. Motor Bfifieionoy and Mpieal Motor Weveforms.

B.5.1. Motor Effielenoy.

Fig. 8.17 shows how the notor input power and efficiency varied with motor output power for the seversl combinations of supply voltage and commutating eapacitance used in the testa of section 8.4. It is seen that the change of comoutating oapeoitance made virtually no dicference to the motor input power or effisiency. When the supply voltage was inoreased, however, the input power required was increased, and efficiency therefore deoreased at low powers because of the higher iron losses. At higher powers, however, the input power was smaller and efficiency greater when the voltage was inoreased, partly boeause of the smallex currents required at higher voltages and partly because

Fig. 8.17: Variation of motor input power and motor efficiency With motor output power for several combinations of commutating capacitance and inverter supply voltage.

$$
L_{d}=0.5 \mathrm{mH}, \quad f=50 \% \mathrm{~s} .
$$

of higher air gap flux and the resulting smaller rotor slip losses. The motor efficiency wss seen to be about 78% at about 3 KW output power. This efficiency was attained with a motor line r.m.s. voltage of about 109 V but the fundementel component of the motor line voltage was only about 104 V . Increasing the fundanentel component to 110 V , the rated voltage of the motor would probally have improved the efficiency to about 80%. Thus the motor efficiency was marginally higher than When the motor was fed from the d.e. commuteted inverter.
8.5.2. Sypical Motor Voltape and Curnent Waveforms and Haxmonio Content.

Figs. 8.18, 8.19 and 8.20 are osoillograms of the motor Iine-to-1ine volitage and line eurrent for no-load, one third, and two thirds of fullload torque. The oscillograns were photographed st a d.a. supply voltage of 115 V , using commating capacitors of $50 \mu \mathrm{~F}$, and with a frequency of $40 \mathrm{c} / \mathrm{B}$. The wavefoms were, however, typical of the wavefoms observed at all frequeneies, except low Irequencies, under aimilar conditions.

Table 8.2 shows how the $x . \mathrm{m}_{\mathrm{m}}$. . values of cument and voltage and thoir hamonie content changed with losd.

Fig. 8.18: Motor current and voltage waveforms at no-load.

$$
V_{d}=115 v, \quad f=40 \% / \mathrm{s}
$$

Fig.8.19: Motor current and voltage waveforms for $1 / 3$ full load torque. $V_{d}=115 \mathrm{v}, \quad f=40 \%$

Fig. 8.20: Motor current and voltage waveforms for $2 / 3$ full load torque.

$$
V_{d}=115 \mathrm{v}, \quad f=40 \mathrm{~s} / \mathrm{s}
$$

Motoz Torque	Haxmonic	1	5	7	12	13	17	Total x.lles.
Zaxd	Voltage (V)	89.5	20.5	9.5	9.5	4.2	6.0	92.0
	Ourxent (1)	11.4	6.4	2.34	2.67	0.72	0.72	13.4
	Impedence (Ω)	4.54	1.87	2.45	3.31	3.41	4.86	-
$7 \mathrm{lb-1t}$	Voltage (V)	84.0	17.9	11.2	12.5	6.1	5.2	87.8
	Cusrent (A)	14.8	5.4	2.46	1.84	0.72	0.58	16.2
	Ingedance (Ω)	3.28	2.92	2.63	3.92	4.94	5.24	
$13 \mathrm{lb}-\mathrm{ft}$	Voltage (V)	73.5	20.1	14.0	13.4	9.2	6.05	83.5
	Current (A)	22.4	5.91	2.82	2.84	0.98	0.63	23.4
	Impedance (Ω)	2.02	1.96	2.87	4.20	5.42	5.55	

Teble 8.21 Haxmonie corponents of motor voltage and ouxrent and
hamponio invedances for no-loed, one thisd and two
thirds of full-lond torque. $V_{d}=115 \mathrm{~V}, f=40 \mathrm{~g} / \mathrm{s}$.

The osoillograms are very similar to those of Figs. 7.15 and 7.16 apart from the voltage exvasions duxing conmutation, the smaller distortion at the peak of the curren bwavefora, and the reverse muxent peak juet prior to a foxward ourrent half eyele. These differenees heve been discussed alroedy in section 8.3.4. The general remewks about the motor waveform in section 7.8 apply here with equal foroe, as do the remarks made ebout harmonic content and harmonic impedance.

Aa the load wes inoreesed the motor voltage waveform ohanged shapt. On no load it consisted alnost of a rectangular pulse, one third of a oyole long, in each half oyele such as vould be obtained by putting
$u=60^{\circ}$ (see Pig. 5.37 and section 5.5.) At highes speeds u became smeller. It was because of the change in weveform with load thet the r.mos, value and the fundamental components of voltage decreased with load.
on no-loed the total r.m.s. values of voltage and current were about 4% and 17% higher respeotively than the fundamentel components. For two thixts of full-iosd torque the corresponding increases were sbout 6.5\% and 5\% respeotively. These inereases on load were smeller than those encountered in soction 7.8 but this is partly attmibuteble to the increase in frequeney from $25^{\mathrm{c} / \mathrm{s}}$, to $40 \mathrm{c} / \mathrm{s}$. It may be concluded, however, that the a.c. commatated inverter produces a slightly smailer harmonic content in the motor voltage sind current than the d.e. comutated inverter but suffieient tests were not oarried out to deterrine the procise improvenent.
8.6. Inits of Operation of the "A.C. Conmatated Invertex",

Because δ was approxinately proportionsl to $0 V_{Q}$ for a given load ourrent the range of frequency over which the s.e. commatated inverter could function satiafectorily was somerhat restrioted. Por a given value of O the supply voltage hadto be greates than a certain minimum value to produee an adequate reverse biae time δ for reliable sommatation. This miniaum required value of V_{d} depended, of course, upon the size of the commutating oapacitor.

When the motos formed the inverter load the supply voltage had ts be varied proportional with the output frequency, and hence motor speed,
to prevent saturation of the motor. Consequently the inverter could not be opereted unaided below a certain invexter output frequanoy, this minimuan frequency depending upon the value of C used.

Por a given value of C and load euxrent the time taken by the conmutating capacitor to charge from $-\nabla_{d}$ to $+\nabla_{d}$ during the momutation process is almost proportionsl to V_{a}. Hence when the supply voltege and frequenoy increase, the commatation process takes up an inereasing pexiod in a decreasing sixth of a eyele. It is undeairable that comatetion should take up a large proportion of the output cyele because of the distortion of the voltage and current waveforms that results. Hence if 0 is made lnrge enough to provide an adequate value of δ at low frequenoy and supply voltage, it would be found that the outgut wavefomms would not be satisfactory at high frecuencies.

Because the a.g. comutated circuit had no suxiliary supply for comutation special measures were necessary to set it into operation and charge the eapacitors with the correct polarity. For starting, the comatation eirouit of the d.c. commutated cixcuit was used in addition to that of the a.c. comertated ajxcuit. The a.c. commtation efrouit could operate unsided only when the aupgly voltage had become high enough, in sonjunetion with the comasteting eapaciters used, to provide adequate reverse bias time for the $\$ 0$ Rs. To turn off the d.c. commutation eircuit it was sufficient then to renove the gate pul.ees from CR7.

Another posaible method of gtarting the cireuit would heve been to turn on all the auxiliary S CRs (CRla, CR2a, etc.) for tha firist fev
eyeles of switching. the circuit would then have operated in the same Way as that employing artificial comutation on the a.c. aide (see Chapter 3), charging the eapacitors in the correct directions. This method was not tried and it is cleaz that it would have been successful only if the supply voltage and the commatating eapaoitors had been high enough and the load ourrent low enough in the first few eycles for artificial commatation to be sufficient.

Some success in improving commatation and extending the range of operation of the oircuit wes achieved by connecting a small choke of Inductance I_{x} in each d.c. Inne of the reverae diode bridge as show in Pig. 8.21. One effeet of L_{x} was to increase the amount by which the capaoitor voltage overghot the supply voltage after commutation. Fig. 0.22 shows the opmational oircuit valid for the overshoot period. When the voltage on the capsoitor reaches supply voltage after instant t_{2} diode D_{3} conducts. If I_{x} were zero, the current in D_{3} would immediately become equal to the current flowing in phase B and the capacitor would stop charging, CR2 a thereupon turning off. Because of the presence of I_{x} the ourrent in D_{3} takes time to become equal to i_{b} and the eapacitor contlzues to charge until the equality oecurs. If i_{b} were to remain constant at $I_{\text {bo }}$ duxing the overshoot pexiod, it could be found from the oircuit shown in Fig. 8.22 that the peak voltage on the capaoitor when it sinally ceases charging would bẹ given by

$$
\begin{equation*}
\underline{\hat{\nabla}_{c}=\nabla_{d}+I_{b o} \sqrt{\frac{I_{x}}{c}}} \tag{8.29}
\end{equation*}
$$

Fig.8.21: A.C. commutated inverter with improved commutation and an extended range of operation.

Fig. 8.22: Operational circuit valid during the period when the capacitor voltage overshoots supply voltage after commutation at instant t_{2}.

Equation (8.29) is of considerable significence because it shows that it is possible to charge the comutating eapacitor to a voltage which is dependent upon the current to be commatated. It then becomes possible to make δ less dependent upon the current to be turned off than has been the case hitherto.

Fig. 8.23 shows the results of some tests for the effect of I_{x} upon cormutation. It was found that when I_{x} was zero the eirouit behaved in the manner described in section $8.3, \hat{\mathrm{v}}_{\mathrm{c}}$ inereasing slightly with current due to stray inductance and δ falling slmost inversely proportional to current. When I_{x} was $170 \mu H$ and $360 \mu H$ in turn \hat{v}_{e} was found to inorease substantislly with current. The increase in $\hat{\mathrm{v}}_{\mathrm{c}}$ was not as great as predicted from equation $(8,29)$ probably because i_{b} did not remain constant during the overshoot period and because is had already fallen from $I_{b o}$ before the overshoot period began. However, the effect of I_{x} upon δ was quite marked especielly at the higher currents where δ showed a tendeney to level off and become independent of current. Unfortunately this effect of L_{X} was not appreciated until the end of the investigation and it wes therefore not possible to carry the study very far. It is clear, however, that if the capacitor voltage can be made dependent upon load ourrent, then the supply vol tage becomes less important. It was found that if C was made large enough for the cirouit to operate without L_{x} from $25 \% / \mathrm{s}$. upwaxds, it was possible to operate down to about $10^{\mathrm{c}} / \mathrm{s}$. with an L_{x} of about $170 \mu \mathrm{H}$.

Some disadvantages of this method of improving commatation became evident. It was more difficult to use the d.c. commatation method to

Fig. 8.23: Variation of \hat{v}_{c} and δ with $I_{b o}$ for several values of L.
$V_{d}=80 \mathrm{v}, C=30 \mu F, L_{d}=0.5 \mathrm{mH}, L=1.85 \mathrm{mH}, \quad R$ varied, $f=25 \mathrm{c} / \mathrm{s}$

Measured values
$\ldots .-.-$ Predicted values of \hat{v}_{c}
start the inverter because of the presence of L_{x}. The inclusion of L_{x} made the already difficult analyais of the a.c, commutated inverter even more complexs. It was also found that the overshoot did not oceur with purely resiative loads or with low load currents when the load induotance was low. It should also be noted that the ospacitor voltage overshoot depends upon the current being commtated half a cycle before the capacitor is used again for commutation. The eapaeitor voltage is therefore adequate for the current to be comutated only if the current does not ohange greatly in half a cyole.

The effect of L_{g} upon the commtation power loss was not determined. During commatation, however, the capacitor voltage is shared between I_{x} and the d.c. ohoike and the increase in energy of the d.c. ohoke would clearly not be as great as if V_{d} were equal to \hat{v}_{e} in the absence of L_{X}.

8.7. Ratings of Cireuit Components.

The current ratings required for the bridge S C Re and diodes are the same as those given for the d.o. commatated inverter. The maximum voltage which can appear on these devices is $\pm \nabla_{d}$ pius transient overshoots, unless the induotance L_{x} is included. In this oase the maximum voltage would be $\pm \hat{v}_{e}$ (which can be found from equation (8.29)) plua transient overshoota.

The sane voltage rating applies to the auxiliaxy S C Rs. The mean current in each auxiliaxy $S \subset \mathbb{R}$ is equal to 20 I V_{d}, i.e. the current required to charge the capaeitor through a voltage 2 V onee per cycle. If f_{x} is included, the mean current becomes 2 of \hat{v}_{c}.

For this application the peak current is probably more important and this is approximately equal to the peak value of the load current. At high frequencies the pesk current may be greater because of the builaing up of a efroulating current in the d.c. choke and diodes D_{7} and D_{8}. The capacitor current conaists of the same peaks as in the auxiliary S C Rs but twice per cycle. The aspacitors should be rated fox the r. 표.s. value of this current.

8.8. General Conclueions on tho "A.C. Conmutated Inverter".

The a.0. commutated inverter was found to be considerably more efficient than the d.c. comutated inverter. The power Ioss due to comrutation was found in general to be about $4 \mathrm{Cf} \mathrm{V}_{\mathrm{d}}{ }^{2}$ instead of $12 \mathrm{Cf}\left(\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{a}}\right)^{2}$. To give the same value of δ in both inverters with the same value of C, V_{a} would be about $0.5 \mathrm{~V}_{\mathrm{d}}$ and the commetation powor loss would then be about 4.5 times less in the a.e. then in the d.c. commutated inverter.

It was also found that the harmonie content of the load waveforms wes a inttle smaller in the a.c. than in the d.c. commutated inverter and that the motor efflaienoy, in consequence, was marginaliy higher.

Although no detailed tests were carried out regenerative bralcing of the motor was found to be posaible. This could be demonstrated by reducing the inverter frequency when the motor was running, whereupon the motor speed quickly followed the setting of the frequenoymefining oscillator.

The eirouit was only tested on a d.c. supply but it is clear that if a rectified supply were to be used the ripple would need to be suall. Because the comatating capacitora charge to supply voltage a single phase reetified supply could not be used without a great deal of amoothing being provided. A three phsse reotified supply could be used aince the minimum value of this supply voltage would be 0.9 of the mean value but only a limited amount of voltage control by means of delayed firing in the supply rectifiex could be tolerated. The supply problea vould, perhaps, be made a little easiex by the use of the I_{x} ahokes described ebove.

Despite its advantages over the d.c. commbated inverter the a.c. commatated inverter possessed some serious shortoomings. Its inability to start unaided and its linited range of opexation have been discussed before but another feature was that should an S C If fail to turn off, the commutating capaitor would not charge to mupply voltage and commtation would fail. In the d.c. comutated inverter, however, there would be a good chance that the fault could be correoted one sixth of a cyole later, since all S C Rsvould be reverse biased, provided that the fault curxent had not sisen tou far in the meantime.

CHAPPTR 2.

CONCLUSIONS.

9.1. General Conclusions.

In this thesis attention has been focussed upon the three-phmse bridge inverter circuit, the basic circuit and three variations of it having been studied. The aim in each case was to determine the suitability of each eircuit for controlling a thro-phase motor, speed control being affected by changing the switching frequeney of the inverter. The ultimate ain was to detexuine whether a scheme incorporating a variable frequency inverter and a conventional three-phase motor would be a Peasible proposition.

The first scheme atudied utilised thyratrons as the switching elements in the basic three-phase bxidge oircuit in its synchronous inverter form. For conumatation a three-phase a.c. supply was required and so a synchronous motor was used with the inverter. The pulses which were made to fire the thyratrons at the appropriate instants were derived from the a.c. voltage generated by the motor and therefore coineided with eertain rotor positions. Consequently the owerall charaeteristics of this system were similar to those of a d.c. separately exelted motor. The motor speed could be controlled by variation of the d.c. aupply voltage, of the motor field eurrent, and by varying the fixing points of the thyxatrons relative to the B.c. voltage waveforms. Thie wes analogous to varying the supply voltage and ifeld current and to changing the brush positions in a d.o. motor. The development of this soheme was abandoned becanse the motor could not
be started from standstill and beasuse the degree of advance of the firing pulses necessaxy to cope with commutstion and with the thyratron turn off time introduced instability problems which could not be solved. with the inverter oircuit in its unsophisticated form.

The next scheme was embarised upon when S C Rs eventually became available and these were used in a three-phase bridge circuit with capacitors oonneoted across the output lines to provide artifioial commatation. When an inductive load was connected to the inverter it was found that the capacitor voltages oscillated severely with the load inductance and satiafactoxy waveforms were obtained only when capacitoxs large enouch to correct the load power factor to unity were used. Since the inverter is a device which in its basic form oan only transmit power in one direction this was to be expected. When smaller eapecitors were used comsutation could be achieved under some oircumstances but it could never be guaranteed that the capacitor voltage would be in the corseet direction and with sufficient magnitude to effect commutation at all free quencies. With an induction motor load, whose power factor changed with the load, the problem became more difficult. When a motor is operated with canstant output torque and constant aix gap flux over a range of speeds the motor current must stay constant. Since the tum-off capacity of the inverter (approximately the product of commatating oapaeitance and aapacitor voltage just before commutation) fell with voltage, unless the eapacitance was increased as the inverse of voltage, the motor could not be run at very low voltages and frequenciea. Por these reasons it was concluded that this form of inverter was of no uee
for induction motor control.
The efficiency of conversion in both eireuits above wes high aince the only power losses occurred in the S C Rs (or thyratrons) during conduetion and in the circuit wising.

The studies into the first two inverter circuits indicated the basic requirements which would need to be satisfied by any inverter intended for supplying an inductive load over a range of frequency and voltage. Fixstly provision mast be made for power to flow in the reverse direction through the inverter. This simulates the sinusoidal condition in which power flows to and from the supply in different parts of each cycle. Such provision mast be made unless porex factor correction can be installed as part of the load so that no reverse power flow ever occurs. Secondly, if capacitors are to be used for turning off S C Rs for comatation, they should be charged by some means to a voltage which is independent of the main supply voltage or which inoreases in proportion to the cursent flowing in the S C R when it is turned off.

A study of the d.c. switching cirouit of Chapter 4 formed a good introduction to the technique of using an euxiliary supply for charging the commutating capacitor and a diode to cope with the load stored energy.

The "d.c. comuntated three-phese inverter" was then built using the conmutation oireuit of the d, c. switch and diodes connected from each load phase to the main supply texminals. These enabled power to flow in both directions between supply and load and, in effect, isolated the load from the comutating circuit. This oircuit was proved capable of supplying a load of any power factor with a single value of commatating
eapacitor, the only provision being that the current was not greeter than a certain amount. To cater for changing main supply voltage and Irequency it was necessary only to vary the auxiliary supply voltage. Tris inverter was used to supply an induction motor and it was found that speed control from very low speeds could be sohieved simply by verying the inverter switching frequeney. The motor torque could be controlled by changing the supply voltage. The ability of the inverter to allow power flow in either direction enabled regenerative braking of the motor to be achieved.

The diodes used to provide a path for reverse power also prevented the voltage across the d.c. choke from reversing after commutation and ss a result the energy absorbed by the chore during commatation had to be disaipated as a power loss, a decay oircuit being provided to dissipate this power. At high frequencies this pover loss became significant compared with the converted power and this reuulted in low inverter efficiency. A secondary effect was that the curxent in the d.c. choke increased with frequency and supply voltages and this reduced the S C R reversembies time for turn-ofi.

Another inverter, the "a.c. commutated three-phase inverter ${ }^{10}$ was then studied. In thia eirouit the comutation power loss was far smaller and, as a result, the conversion efficiency wuch higher than in the d.c. commutated inverter. This eirouit coulohot, however, be used at low supply voltages and was not self-starting and could not therefore be used to drive the induetion motor at low speeds. A small modification, consisting of a small choke comnected in the d.ce
lines of the reverse diode bridge, extended the operating range and improved comutation in this circuit. This was achieved by giving to the comutating eapacitor voltage the very desirable characteristic of increasing with load current.

The a.c. output waveforms from an inverter circuit which switches d.c. must inevitably have a high hamonic content. In the d.c. and a.c. commatated inverter circuit it wes found that the r.m.s. values of motor current and voltage were about 5% or 6% higher than their fundamentel frequency components under typical load conditions. The copper and iron losses in the motor were therefore about 10% or 12 , higher than nornal which meant that the total motor losses were about 7\% or 8% higher then nomal. This not only meant that the motor efficiency would be between 1% and 2% lower than normal at rated load and speed but that extra cooling facilities would be needed for the motor.

Harmonic suppression in the inverter output was not considered to be necessary because the drop in motor efficiency due to harmonios was small. It is also difficult to visuleke a harmonic suppression oircuit which could function over a range of fequencies extending from nearly doce to above $50^{\mathrm{c}} / \mathrm{s}$.

The change in output voltage waveforms with load power factor caused the r.m.s. voltage and its fundemental component to fall with load. Because induetion motors are normally designed to operate juat over the knee of the magnetisation curve this voltage change proved to be an embarrasment since the d.c. supply voltage which would protuce
enough a.c. voltage for fill-load torque would also produce at light load sufficient voltage to saturate the motor iron. The resulting motor current peaks drawn from the inverter were high enough in many cases to cause difficulty with commatation.

At low speed the motor torque pulsated severely and it was concluded that this was probably caused by the air gap flux's reaching a steady value in a stationary position in each one aixth of a cycle. It was suggested that to overcome the pulsetions a motor with very long time constants would be required.

The torque speed curves became steeper, i.e. smaller silp for a given torque, as the motor speed was redused. It was suggested that this also might be due to the nature of tha flux changes in the air gap.

A theoretical analysis developed for each of the three inverters employing either artificial or foreed commatation was based on an inductive stax-connected Ioad consisting of resistance and inductance in sexies in esch phase. When used on such a loed the analyses proved eapable of prediuting the voltages currents etc. In the circuit to an sccuracy of 10% in general, though the approximate fommula for the higher harmonics proved to be rather less accurate. Formalse were derived for detemining the ratings of the oirouit components and for predicting the efficiency of the inverter for any load at any frequency. When the inverter was used to aupply an induction motor the voltage and current equations given for the R-L load were no longer valid and some aspects of the load voltage and current waveforms could not be explained by treating the motor as as R-L load. However, the
comatation oiroults, being effeotively iaolated from the load in the d.e. and s.0, oomutated 1averters, st111 obeyed the theory dealved for an R-L loed and the fommlee for S C \mathbb{R} and diode ratings were still valid. Since the invertersfanotion in excatiy the same wiy whether the load consiate of a siaple flic conflguration or an induetion motor there swems no reason why it should not be possible to calculate the perfomanee of the complete systen with an induetion motor load. To do this the appropriate equivalent oircuit of the motor, valid for such trensient conditions as apply in such a oase, would have to replaee the simple $R-L$ eircuit and there is little doubt that a algital computar could be programed for the purpose.

It can be concluded that a arushleas variable speed motor syatem, using a veriable fraquenoy inverter with an inductive motor, is a feasible proposition. An inverter of a type similar to the dece commutated inverter would be the most versetile, apable of operating arer a very wide apeed range andfrom almost any form of d.e. supply. This inverter, in the foxi used for the investigations deseribed above, would become inefficient at high frequenoles waless some means were Pound for recovering the power lost as a result of the commatation process. It Is doubtful whether an inverter efficiency higher than about 95% could be obtained and this, coupled with the 2% (spproximate) dxop in motor efficienoy from normal, would make it alffleult to justify the replecement of a single d.c. machine on economic grounds. When the cholee is between a Werd leonard type of control syatem, Involving several machines for preeise speed control of only one of then, and an inverteromotor system it is possible that the inverter-motor
syatem would be cheaper and moxe efficient. Another case in which the inverter-motor systen would be preferable to a d.c. mechine system is where maintenance of the comnutator and control gear might present a problem. Some systan would still be needed for controlling the voltage applied to the motor through the inverter and for elosely matching the invertes frequency to the motor speed.

9.2. Basie Control Soheme.

PG. 9.1 ghows in black diagran foxin the basic elementa of a control scheme which would be suitable for the control of a squirrel eage induetion motor by the d.c. commatated three-phase invertex. The primery supply is convertedinto suitable $d . c$. voltages, V_{d} and V_{a}, for the main and auxiliary supplies to the inverter. D.C. is converted into three phase a.e. at the required frequeney by the inverter and supplied to the motor. The motor rotates at a certain speed and produces torque to drive its load. The wontrol scheme as shown in $\operatorname{Hig} \cdot 9.1$ is intended for a traction applleation, ur any other application where oonstant torque is required over a wide speed range.

The motor forque depenis principally upon the aix gap flux and the slip spesd. To maintain the aix gap Slux constant at a.ll speeds the motor voltege should be increased spproximatoly proportionally with frequency. Hence the main d.c. supply voltage is shown to be controlled by a signal representing frequency. When the main d.c. supply voltage Is increased the auxiliary supply voltage shouk also be increased to keep the S C R reverse bias time constant. Hence the auxiliary supgly

voltage is shown to be controlled by a signal representing V_{d}. An overload protection circuit is also included which cauces V_{d} to reduce when the inverter input eurrent becomes excesaive for any reason.

If sonstant torque ia requirad, the inverter frequency mast be closely controlled according to the sotusl motor speed. This can be done by measuring the motor speed, adding to it the appropriate requirdd slip speed. The slip speed required for a given torque was found to vary with speed and should threfore be computed from the required torque and actusl motor speed. The required inverter a.c. frequency is then prom portional to the required aynchronous speed. The frequency signal is then fed to the pulse generator which produces pulses to fire the inverter S C Rs at this frequenoy. An alternstive method would be to compare the actual motor torque with that required and adjusting the slip spead until the discrepancy became zero. A signal representing setual torque could be derived from a torque measuring ooupling or othar suitable means. If this method were to be adopted, the control systom would possess slosed loop feedback and very close control of toxque could be achieved.

When maximum supply voltage ia attained it would be necessary to limit the slip speed to a certain value. At higher speeds the motor voltage to frequency satio would fall and the air gap flux and hence the motor torque would Pall away inversely proportional to speed and the square of speed respectively. This overall characteristiש, i.e. constant torque up to a certain speed and torque varying inversely with speed thereafter, is that which is nomally used for traction purposes. To
obtain a further characteristic analogous with field weakening of doc. series traction motors it would probably be necessary to tap the stator winding of the induction motor and operate with a smaller number of stator turns per phase.

If close speed control were required, as in rolling ad il, paper ail drives, etc. it would be necessary to compere the motor speed, instead of torque, with that required and adjust the slip speed accordingly. The rest of the control system would still be required in the same fox.

9.3. Application to Large System.

In a large system involving the conversion of many tens or hundreds of kilowatts several problems become severe wheres in the small scale system studied above they were hardly significant.

First there is the problem of electrical and magnetic interference between the power circuit and the electronic control oirouit. The various types of interaction between the two circuits increase in severity as the auzxents being switched and the power circuit voltages increase. Careful layout of the power circuits, paying special attention to the avoidance of loops carrying rapidly changing ourxents and to the position of cables carrying rapdily changing voltages, and effective screening of the control circuits and control leads in the power oiscuitg became absolutely essential.

Next comes the problem of improving the efficiency of the inverter by reducing the power loss caused by commutation (see section 9.5). Unless some method can bo Pound for reducing or recovering this power
loss the inverter efficiency will be prohibitively low at high freequencies and the dissipation of the power will present a cooling problew.

In a large inverter the dissipation of the conduction power losses in SC Rs and diodes can also introduce difficulties. Natural convection cooling would probably be insufficient if there were many S C Rs and diodes and it would probably be necessary to resort to fan cooling or water cooling, using appropriate forms of heat sink.

The higher the inverter voltage and current the higher, in general, becomes the rate of change of current in SC Rs and diodes. This introduces problems both at the start of conduction for the SC Me and at the and of conduction for S C Rs and diodes. Some means of limiting the rate of increase of current in the SC Re at turn on becomes necessary, especially with the larger S C Rs. The rate of fall of current in S C Rs and diodes at turn off determines, to a large extent, the quantity of effective charge which must be removed. from the junctions as a reverse current. The sudden cessation of this reverse current can cause transient voltages which are very dipficult to suppress. A method which can be used for limiting the rate of change of currents for the crucial 10μ Sees or so after turn on and before turn off is to connect a saturating choke in a strategic part of the circuit. Great care should te exercised, of course, in choosing the location for such a choke and ensuring that the sudden cessations of current in the circuit axe routed away from it.

At some stage it would be necessary to use SC Reg and diodes in
series and in parallel. The problems associated with series operation are concerned with ensuring that all \$ C Rs and diodes share both steady and transient voltages equally. At tum non It must be ensured that the slowest $S C \mathbb{R}$ to fire is not celled upon to support full circuit voltages When all others in series with it have turned ont. At turnoff it must be ensured that the first S C R on diode to cease passing reverse recovery current is not called upon to support full reverse voltege pius, in come cases, voltage transients caused by the sudden cessation of reverse current. Capacitors an be of great assistance for such transient voltage sharing in a chain of series diodes. In the case of series 8 C Rs, however, capacitors, except for very small ones, should not be used directly between anode and cathode because of the damage that can result at tum on. In the pase of both SC Rs and diodes some reliable form of surge suppression device (eng. selenium devices on non-lineer resistors) can be made use of to assist in series shaming and. voltage limiting, When SC Ma are used in parallel it must be ensured that the S © Ra share the current equally under all conditions. It must also be ensured that when one SCR fixes first the voltage saros the others does not Pall to such a low level that they cannot atert to conduct. Centre tapped chokes an be used to ensure reliable firing, and to share the current equally between SC Rs except at Low frequencies. Finally there remains the problem of ensuring that the failure of one device in the circuit does not ouse a cascade failure of several others, that the circuit is protected against any possible overload or fault, and that the commutation oirouit is thoroughly reliable.
9.4. Rough Outline of a Design for an Inverter to Feed a 200 H.P. Motor.

The following is a rough outline of a preliminary deraign fox on inverter to supply a 200 H.P. three-phase induction motor. The intention is to show how to srive at suitable rating for the $\$ 0$ Rs, diodes, commutation circuit and $d . a$, supplies on the basis of the motor characteristics and the requirements demanded by the application for the system.

The application considered is for traction in which ag much torque as possible is obtained from the motor during the acceleration of the train up to a certain speed, after which the torque is allowed to fall as the speed rises further.

9.4.1. Motor Characteristics.

The motor considered is an A.E.I. three-phase squirrel cage induction motor Type NC 7144 having the following characteristics (quoted for a sinusoidal supply):-

```
Output power :- 200 E.P.
Line voltage :- 440 V at 50 %/s.
Line current :- 230 A at full load
Rated full load speed s- 1460 r.p.ll.
Full load power factor :- 0.91
Tull load efficiency s- 92.5%
Stalling toxque s- 2.3 x full load torque
Current at stalling torque :- 3.5 x Iull load ourrent
                                    (appzox*)
Power factor at atalling torque i- 0.62 (approk.)
```


Mull Iond logses in motos.

9.4.2. Conditions to be catered for in Inverter Dosifen.

Assume that the notor is opersted just below stalling torque where the torque is twice full load torque and the lise current is about $2.8 \times$ Pull $10 a d$ current, 2.8 , curxent is about 650 A. Let this condition be gastained up to $50 \mathrm{~m} / \mathrm{s}$. and afterward let the slip be maintained at the same velue so that the torque and current fall as the speed increases farthar.

The worst condition for the invertex is then at the point when the frequenoy reaches $50^{\circ} / \mathrm{s}$. where the meximus voltage and current coincide.
9.4.3. Celoulation of Ratings for Bridge S C lls and Diodes,

Motor power fectur under above conditions at $50 \% / 3 . \Omega 0.57$ for a sinusoidel supply. Hence for inverter supgly the power faetor would be approzimately 10 jower at 0.6.

From Nig. 5.42 the values of $I_{\text {in }}$ and $I_{\text {gen }}$ for a motor ourrent of 650 A and powex factor of 0.6 axe

$$
\begin{aligned}
& I_{i n}=1.02 \times 650=664 \mathrm{~A} \\
& I_{\text {gen }}=0.24 \times 650=156 \mathrm{~A}
\end{aligned}
$$

At low speeds $I_{\text {in }}$ can show an increase of about 50% to produce the same torque. Hence the maximum value of I in should be taken an 664×1.5 ie. 1000 A .

Hence asch bridge SC If should be capable of passing a mean current of 330 A. Two 200 A 8 C Rs is parallel would suffice, allowing fox a certain amount of dereting for parallel operation.

If no regeneration is required, the maximum $I_{\text {gen }}$ to be slowed for is 156 A. Each bridge diode would therefore require a mean current rating of 52 A . A 70 A diode should be sufficient, allowing for the peaky nature of the current flowing in it.

If regenerative braking is required, the bridge diodes should have the same current rating as the SC Rs and two 200 A diodes in parallel would then be required.

To produce a motor voltage fundamental component of 440 V at $50 \mathrm{c} / \mathrm{s}$. at a power factor of about 0.6 the main dec. supply voltage required would be given by

$$
v_{\mathrm{d}}=\frac{440 \mathrm{~V}}{0.65}=675 \mathrm{~V} \text { (see Fig. 5.37) }
$$

If the dee. commutated inverter were used, V_{a} would be made equal to V_{d} to obtain optimum efficiency. Then the maximum reverse voltage applied to the $S \mathrm{C}$ his would in theory be $2 \mathrm{~V} \mathrm{~d}^{\text {. Allowing for jog }}$ overshoot this maximum reverse voltage would be 2030 . To give an additional safety margin the SC C Re should be rated fur at least 2400 V . Hence three 800 V S 0 is in series would be required.

The diode ratings should cater for the rain supply voltage plus about 50% overshoot plus a safety margin．single 2500 V diodes should suffice for this purpose．

If the arc．commutated inverter were used，the S CR voltage ratings could be reduced by about a half unless choke assisted commutation were employed，in which oise the I C 侕 voltage rating would be about the same as for the doc．sowinuisted lavertes．the diode voltage rating would be the same in the asa．commutated inverter as in the da．commutated inverter unless ohote assisted oosuatation vase to be employed in which arse the diode voltage rating would nosed to be epproxicately doubled． This is based on the assumption that in the choke assisted commutation circuit the commutating capacitor voltage overshoot would be made equal to main doe．supply voltage at $50^{\%} / \mathrm{s}$ ，at maximum current．

9．4．4．Commutation Circus．
（a）D．C．commutation：
To determine the size of commutating capacitor required the maximum d．c．currentis required．The peak value of the dee．current into the inverter is approximately equal to the peak load current，i．e． $650 \sqrt{2}$ or 920 A ．To allow for the increase in $I_{\text {do }}$ with frequency $I_{\text {do }}$ should be taken to be 50% leger then this in the first instance．Hence $I_{\text {do }}$ should be assumed equal to about 1400 A ．

The turnoff time of the SC Rs would probably be about 25μ Secs but to allow for hole storage，the effects of inductance to be inserted In the circuit，and other contingencies δ should be mace at least twice
this figure. Hence sane δ to be 50μ Secs. δ is the time taken for the commutating capacitor to charge through $2 V_{a}$ with a current of 2400 A flowing. The required value of C is therefore given by

$$
c \Omega \frac{50 \times 2400}{1350}=52 \mu F . \quad \text { (see equation (5.5)) }
$$

For \hat{I} to be so more than 10% ereater then $I_{d o}$ at its maximum value $\tan ^{2} \phi$ should be greater then 0.2 (see equation (5.2)). Hence the minimum value of L_{a} can be found from

$$
\left(\frac{v_{d}+v_{c R}}{I_{d o}}\right)^{2} \times \frac{c}{4 I_{d}}>0.2
$$

This gives $I_{d}=250 \mu H$ approximately.
The mean current in both auxiliary 3 C Rs depends upon the inverter frequency. At sa assumed maximum frequency of $80^{\circ} / \mathrm{s}$, the wean current in these 3 CRs is given by $12 \mathrm{C}_{\mathrm{g}}\left(\mathrm{V}_{\mathrm{d}}+\mathrm{V}_{\mathrm{e}}\right)$ i.e. 67.5 A . Allowing for the pulsed nature of this current SC Ra of 100 A rating should be used.

The voltage rating of CR 7 should be $4 \mathrm{~V}_{\mathrm{d}}$ plus overshoot and a safety
 The voltage rating of CR8 should be $2 \mathrm{~V}_{d}$ plus overshoot and a safety margin; ie, at least 2300 V . Three 800 V \& 9 Rs should be used in series.

The voltage ratings of D_{7} and D_{8} should alpo be at least 2300 V and their current rating would need further investigation since this depends upon frequency, the resistance of the dec. choice decay circuit and the commutation power loss.

The comantation power loss at $50 \% / \mathrm{s}$. as eiven by $12 \mathrm{c}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{d}}+\mathrm{F}_{\mathrm{a}}\right)^{2}$ would be 57 Kw . At a converted power of $400 \mathrm{H} . \mathrm{P}$. this would make the inverter effieiency 84 discounting other losses. At higher frequencies the commutation power lose would be higher and the converted power smaller and the efficiency of the inverter would become even lower.

The capacitor should be rated for a voltage of $3 \mathrm{~V}_{\mathrm{d}}$, i.e. 2000 V and for a current consisting of 1400 A pulses of duration 100μ Sees twelve times per cyole at the mexinum frequency assumed above to be 80%., i.e. a ourrent of 350 A .

The induetance of the auxiliary supply should be such that the re-oharging time of the commutating eapasitor is substantially less then a twelrth of a oycle at naximum frequeney. Hence at $80 \% / \mathrm{s} . \pi \sqrt{C L_{0}}$ should be less than about 0.8 ill Seos. giving a maxisuak L_{c} of about 1.2 mH . (b) A.C. commatation.

When a.c, comatation is used the frequenoy range to be covered must be decided upon and the comutating capacitor designed for the lower frequenoy and voltage.

Let the lowest frequency be $20 \mathrm{c} / \mathrm{s}$. In this case the lowest supply voltage for this comautation eireust to function at is $0.4 \times 675 \mathrm{~V}$, i.e. 270 V.

The current to be oommatated at $20 \% / \mathrm{s}$. can be taken to be 920 A . The reverse bias time, δ, is the time taken for the comatating capacitor to charge through 270 V with approximately 920 A flowing in it, Henee the value of 0 required at 20% to give $\delta=50 \mu$ Secs. is given approximately by

$$
c=\frac{50 \times 920}{270}=170 \mu \mathrm{~F} . \quad \text { (see equation (8.20)) }
$$

At $50 \mathrm{c} / \mathrm{s}$, the commutation power loss would be approximately given by $4 C_{f} V_{d}^{2}=15.5 \mathrm{KW}$. At a converted power of $400 \mathrm{Kl} \cdot \mathrm{P}$ this would give a conversion efficiency of 95, discounting all other losses. At higher frequencies the efficiency would be even leas.

The voltage rating of the auxiliary 8 C He should be V_{d} plus overshoot and safety margin. The curront rating should permit 920 A pulses of duration 250μ Sees. (at $\mathrm{V}_{\mathrm{d}}=675 \mathrm{~V}$ at $50^{\circ} / \mathrm{s}$, and above) once per cycle at the highest Frequency. two $30 \mathrm{~A}, 600 \mathrm{~V}$ S C Re in series should suffice.

The ospacitor should be rated for supply voltage, i.0. 675 V , and for a current consisting of 920 A jules of duration 250μ Secs. twice per oyole at the highest frequency, ie. an rolls. current of about 180 A.

It should be noted that the total VA rating of the auxiliary SC Rs in the doc. commutated circuit is $9 \times 800 \mathrm{~V} \times 100 \mathrm{~A}$, i.e. 720 KVA , whereas in the acc. commutated circuit the auxiliary s of oi VA rating is $12 \times 600 \mathrm{~V} \times 30 \mathrm{~A}$, ie. 216 kVA . The commutating capacitor VA rating in the d.c. commutated oireuth is $2000 \mathrm{~V} \times 350 \mathrm{~A}$, i.e. 700 KVA , whereas in the ac. commutated circuit its total VA rating ia $3 \times 675 \vee \times 100 \mathrm{~A}_{9}$ iss. 365 kVA . This shows that the ac. commutated circuit, apart from being more efficient, is more economies in its use of auxiliary 30 Rs and commutating ospacitence.
9.4.5. Motor Effioioncy at 50%.

In obtaining twice full-losd torque from the motor the losses must be greater than at full-load torque. In addition to these losses the harmonic content of the motor current and voltage must be allowed for.

The friction and vintage losses would be the same as at full load for a sinusoidal supply.

The stator iron lesses would be about 10% higher than for a sinusoidal supply.

The stator copper loss, because the motor current at twice foll-load torque would be about 2.8 times full lose current, would be $(2.8)^{2}$ times that at full load. An additional 20% should be added because of the current harmonic content.

The slip would be about twice full-load motor slip and hence the rotor lose would be approximately four times that at full $10 a d$.

Hence the motor lesses would be as follows-

Friction and windage s-	1.0 KW
Stator iron losses :-	2.1 KV
Stator copper losses :-	35.5 KV
Rotor losses s-	$\underline{35.2 \mathrm{KW}}$
Total	

Hence for a motor output power of approximately $400 \mathrm{H} . \mathrm{P}$. the motor efficiency would be 85%.
9.4.6. Overall System Efficiency.

At $50 \mathrm{c} / \mathrm{s}$. ac. frequency and twice fall-load torque the motor efficiency would be about 85%, the efficiency of the $d . c$, commutated inverter would be 34%, and of the ac. commutated inverter would be 95\%. The overall system efficiency would therefore be 71% and 81% for the d.c. and for the ac. commutated inverter respectively, taking into account only commutation power losses in aesessing inverter efficiency.

9.4.7. Comparison between Inverter-motor Combination and a conventional d. . Motor Control System of similar Power Rating-

The inverter-motor combination would perform the same function in a variable speed drive as the doc. motor alone in a conventional system. Under similar load and speed conditions at twice full-load torque a dec. series motor of similar horse power(the A.E.I. Type 253 traction motor has been taken for comparison) would have an efficiency of about 91/, as opposed to 81% for the induction motor fed from the ac. commutated inverter. At corresponding full load conditions the induction motor itself would have an efficiency of about 91% while the dec. motor efficiency would be about 90,6 but while the induction motor would be more efficient than the dea. motor the inverter combination would be less efficient.

The calculation of motor efficiency showed that the induction motor is not amenable to running at more then full-load torque because the motor current increase and slip increase are proportionally greater than
the increase in torque. This results in substantially greater motor losses and lower motor efficiency.

A comparison between the weight of the induction and the dec. motor would be hardly fair since the Type 253 motor: is a self ventilated traction motor whereas the Type VC 7144 motor is an industrial motor designed for fan cooling. It is nevertheless interesting to note that the weights are 1750 lb for the induction motor and 3720 lb for the dec. motor. Both motors have similar overall dimensions.
9.5. Suggestions for Further Work.

The analyses carried out on the inverter described in this thesis were based on a simple R-L load. For the analysis of the operation of an induction motor with the inverter it would be necessary to determine the motor's equivalent circuit which would be vail under the transient conditions met in this method of operation. Having established some such equivalent circuit or set of equations to represent the motor faithfully it should then be possible to apply methods of analysis similar to those developed above to the complete system. It would undoubtedly be necessary to use a computer in this analysis.

A particularly worthwhile subject for study would be the improvement of the computation process in the inverter. Some method of reducing the power loss due to commutation will need to be found before the inverterinduction motor scheme can be seriously considered as a viable proposition. A method, suggested to the author by a colleague, for recovering part of the power loss due to commutation in the doc. commutated inverter is
shown in $\mathrm{Fig}_{\mathrm{g}}$ 9.2.
T. Fig. 9.2. should be noted the rearrangement of the doc, choke decay oircuit, to make excess choke current and reverse bridge diode current flow through resistor R_{x}, and the inclusion of another coil on the same core ass the doc. choke but with IN times a s many turns as each half of the 8.0 . choke. The additional coil is connected through diodes D_{x} between the main supply terminals in such a sense that when comatation takes place D_{x} is reverse biased. Many diodes in series would be required for D_{x} since the turns ratio N is large. After commutation the excess choke current and reverse diode bridge current flow in R_{x}. If the voltage drop in R_{x} repehes $\frac{1}{N} V_{d}$ diodes D_{x} conduct and eument is returned to the supply. The turns ratio N should be so chosen that at the highest voltage and frequency the mean voltage apple to the choke by virtue of the conduction of π_{x} should equal the mean voltage applied during commutation, both mean values being taken over a sixth of a cycle. A sulbsitantial recovery of commutation power Loss has been claimed for this circuit.

It would still be preferable, however, that a reliable but loss-free commutation circuit with some means incorporated to increase the turn off capacity in proportion to current should be developed. A possible method was indicated by the choke assisted ac. commutation circuit of section 8.6.

For high power drives many more than six S C Rs and diodes would be required in the inverter bridge circuits. It would be useful if a study could be made of the various ways in which the multiplicity of

rectifiers could be employed. It is possible that instead of one large inverter bridge it would be desirable to use several smeller bridges. If the smaller bridges were opereted out of phase with esch other, it might be found that the slternsting current produced would contain a smaller harmonic content than would be the case if a single bridge were to be used.

APPGMDIX A.

THMORY OF OPERAMION OP RHRES PMASE INVERTER OP CHAPEEE 3

OII RESISTAYOB LOAD.

A.1. Derivation of Gurrent and Voltsere Equations for the Sixth of a Oycle between Instents t_{2} and t_{3}.

PLg. A. 1 shows the state of the circuit, in its Laplace operational form, between ingtants t_{2} and t_{3}. Curreat is being commatated from phase B to phase C. CRI and CR2 are conducting and hence phases A and 0 are conneoted directly to the inverter imput teminals while phase B is connected via two commtating capacitors.
E_{1}, B_{2} and E_{3} are the values of $V_{a b}, V_{\text {ob }}$ and $V_{a c}$ inmediately before and sfter instant t_{2} and I_{0} is the initial value of the ourgent I_{1} in the d.c. oircuit. $p l_{d}$ and $\frac{1}{p c}$ are the operational impedances of the choke I_{d} and each commutating capacitor. The small resistors and eapacitors used for transient voltage suppression have been omitted from Fig. A.I and their effect neglected.

It is assumed that when CR2 is triggered it at once becomes a short circuit batween anode and eathode, at the same time aausing CR6 to turn off and become an open oircuit between snode and asthode. Consequently all the $\mathrm{S} O$ Rs in the inverter eircuit have been omitted from Fig. A. 1. , being replaced by solid comnections or open circuits.
I_{a}, I_{b}, I_{c} are the currents in load pheses A_{0}, B and G, I_{1}, I_{2}, I_{3} and I_{4} are as indicated in Fig. A.I.

The circuit may now be analysed by the metnod shoin below.

Fig. A. 1: Operational form of inverter circuit valid between instants t_{2} and t_{3}.

Fig. A.2: State of circuit immediately before instant t_{2} in low frequency case.
non ducting SCR non-conducting SCR

Since E_{1}, E_{2} and E_{3} are the initial values of $V_{a b}, V_{c b}$ and $V_{a c}$,

$$
\begin{equation*}
E_{1}-B_{2}-E_{3}=0 \tag{AB}
\end{equation*}
$$

Applying Kirchhoff's Law to the nodes and meshes of the circuit,

$$
\begin{gather*}
I_{a}=I_{1}-I_{2}-I_{3} \tag{A.2}\\
I_{b}=I_{3}-I_{a} \tag{A,3}\\
I_{c}=-I_{1}+I_{2}+I_{4} \tag{A.4}\\
\left(I_{2}-I_{3}-I_{4}\right) \cdot \frac{1}{p C}=\frac{1}{p}\left(I_{1}-\mathbb{E}_{2}-E_{3}\right) \\
\text { ie. } I_{2}-I_{3}-I_{4}=0 \tag{A.5}\\
\left(I_{a}-I_{b}\right) R-I_{3} \cdot \frac{1}{p C}=\frac{\mathbb{I}_{1}}{p} \tag{AD}\\
I_{4} \cdot \frac{1}{p C}+\left(I_{a}-I_{b}\right) R=\frac{E_{2}}{p} \tag{A.7}\\
I_{1} \cdot p I_{d}+\left(I_{a}-I_{e}\right) R=\frac{V_{d}}{p}+I_{d} I_{0} \tag{A,B}\\
I_{2} \cdot \frac{1}{p C}+\left(I_{e}-I_{a}\right) R=-\frac{\mathbb{E}_{3}}{p} \tag{A.9}
\end{gather*}
$$

Substituting for I_{a}, I_{b}, I_{e}, dividing by $A_{\text {, }}$ and rearranging, equations (A.6), (A.7), (A.8), (A.9) become

$$
\begin{align*}
& I_{1}-I_{2}-I_{3}\left(\frac{1}{\mathrm{pRC}}+2\right)+I_{4}=\frac{\mathrm{E}_{1}}{\mathrm{pR}} \tag{A.6}\\
& I_{1}-I_{2}+I_{3}-I_{4}\left(\frac{1}{\mathrm{pRC}}+2\right)=-\frac{\mathbb{E}_{3}}{\mathrm{pR}} \tag{A.7}\\
& I_{1}\left(\frac{\mathrm{PL}}{\mathrm{R}}+2\right)-2 I_{2}-I_{3}-I_{4}=\frac{\mathrm{V}_{\mathrm{d}}}{\mathrm{pR}}+\frac{I_{d} I_{0}}{\mathrm{R}} \tag{A,B}\\
& 2 I_{1}-I_{2}\left(\frac{1}{\mathrm{pRC}}+2\right)-I_{3}-I_{4}=\frac{E_{3}}{\mathrm{pR}} \tag{A.9}
\end{align*}
$$

Subtracting equation (A.6) from equation (A.7),

$$
\begin{equation*}
I_{3}-I_{4}=-\frac{c\left(I_{1}+E_{2}\right)}{3 p R C+I} \tag{A.10}
\end{equation*}
$$

Eliminating I_{1} from equations (A.B) and (A.9) and substituting $I_{2}=I_{3}+I_{4}$ from squation (A.5),

$$
\begin{equation*}
I_{2}=I_{3}+I_{4}=\frac{p C I_{d}\left(2 R I_{0}-\Sigma_{3}\right)+2 R C\left(V_{d}-I_{3}\right)}{3 p^{2} R C I_{d}+p L_{d}+2 R} \tag{A.11}
\end{equation*}
$$

Then from equation (A.9),

$$
\begin{equation*}
I_{1}=\frac{s_{3}}{2 p R}+\frac{(3 \mathrm{pRC}+1)\left(\mathrm{pI}_{\mathrm{c}}\left[2 R I_{0}-\mathbb{E}_{3}\right]+2 \mathrm{R}\left[\mathrm{v}_{\mathrm{d}}-\mathrm{E}_{3}\right]\right)}{2 \mathrm{pR}\left(3 \mathrm{p}^{2} \mathrm{RCL}_{\mathrm{d}}+\mathrm{pI}_{\mathrm{a}}+2 \mathrm{R}\right)} \tag{A.12}
\end{equation*}
$$

From equatione (A.20) and (A.12)

$$
\begin{align*}
& I_{3}=\frac{p C L_{d}\left(2 R I_{d}-B_{3}\right)+2 R C\left(V_{d}-E_{3}\right)}{2\left(3 p^{2} R C L_{d}+p L_{d}+2 R\right)}-\frac{C\left(B_{2}+B_{2}\right)}{2(3 p R C+1)} \tag{A.23}\\
& I_{4}=\frac{p C L_{d}\left(2 R I_{0}-B_{3}\right)+2 R C\left(V_{d}-B_{3}\right)}{2\left(3 p^{2} R C L_{d}+p L_{d}+2 R\right)}+\frac{C\left(B_{2}+E_{2}\right)}{2(3 p R C+2)} \tag{A.24}
\end{align*}
$$

Then,

$$
\begin{align*}
V_{a} b & =\frac{E_{1}}{p}+I_{3} \cdot \frac{1}{p C} \\
& =\frac{E_{1}}{p}+\frac{p L_{d}\left(2 R I_{0}-E_{3}\right)+2 R\left(V_{d}-B_{3}\right)}{2 p\left(3 p{ }^{2} R C L_{d}+p L_{d}+2 R\right)}-\frac{B_{1}+B_{2}}{2 p(3 p R C+1)} \tag{A.25}\\
V_{a c} & =\frac{E_{3}}{p}+I_{2} \cdot \frac{1}{p C} \\
& =\frac{E_{3}}{p}+\frac{p L_{d}\left(2 R I_{0}-\mathbb{E}_{3}\right)+2 R\left(V_{d}-E_{3}\right)}{2 p\left(3 p^{2} R C L_{d}+p L_{d}+2 R\right)} \tag{A.16}
\end{align*}
$$

$$
\text { and } \begin{aligned}
V_{b c} & =-\frac{\mathbb{B}_{2}}{p}+I_{4} \cdot \frac{I}{p C} \\
& =-\frac{E_{2}}{p}+\frac{p L_{d}\left(2 R I_{0}-E_{3}\right)+2 R\left(V_{d}-E_{3}\right)}{2 p\left(3 p R_{0}^{2} R L_{d}+\rho I_{d}+2 R\right)}+\frac{E_{2}+E_{2}}{2 p(3 p R C+1)}
\end{aligned}
$$

Inverting these operational equations to obtain the instantaneous time dependent values of current and voltage, the following equations may be obtained:-

$$
\begin{align*}
& i_{1}=\frac{V_{d}}{2 k}-\frac{(\alpha-\beta)\left[(\alpha+\beta) k_{2}-k_{1}\right]}{k_{3} \beta(\alpha+\beta)} e^{-(\alpha+\beta) \epsilon}+\frac{(\alpha+\beta)\left[(\alpha-\beta) k_{2}-k_{1}\right]}{k_{3}(\beta(\alpha-\beta)} e^{-(\alpha-\beta) t} \tag{4.18}\\
& i_{2}=\frac{(\alpha+\beta) k_{2}-k_{1}}{k_{5} \beta} e^{-(\alpha+\beta) t}-\frac{(\alpha-\beta) k_{2}-k_{1}}{k_{s} \beta} e^{-(\alpha-\beta) t} \tag{A.19}\\
& i_{3}=\frac{(\alpha+\beta) k_{2}-k_{1}}{2 k_{s}-\beta} e^{-(\alpha+\beta) t}-\frac{(\alpha-\beta) k_{2}-k_{1}}{2 k_{s} \beta} e^{-(\alpha-\beta) G}-\frac{E_{1}+E_{2}}{k_{6}} e^{-2 \alpha t} \tag{A.20}\\
& i_{4}=\frac{(\alpha+\beta) k_{2}-k_{1}}{2 k_{5} \beta} e^{-(\alpha+\beta) t}-\frac{(\alpha-\beta) k_{2}-k_{1}}{2 k_{5} \beta} e^{-(\alpha-\beta) t}+\frac{E_{1}+E_{2}}{k_{6}} e^{-2 \alpha G} \tag{A.21}\\
& v_{a c}=V_{d}-\frac{(\alpha+\beta) k_{2}-k_{1}}{k_{4} \beta(\alpha+\beta)} e^{-(\alpha+\beta) t}+\frac{(\alpha-\beta) k_{2}-k_{1}}{k_{4} \beta(\alpha-\beta)} e^{-(\alpha-\beta) t} \\
& v_{b c}=\frac{V_{\alpha}}{2}-\frac{2 E_{1}-E_{3}}{2} e^{-2 \alpha t}-\frac{(\alpha+\beta) k_{2}-k_{1}}{2 k_{4} \beta(\alpha+\beta)} e^{-(\alpha+\beta) t}-\frac{(\alpha-\beta) k_{2}-k_{1}}{2 k_{4} \beta(\alpha-\beta)} e^{-(\alpha-\beta) t} \\
& \text { and } \\
& v_{a b}=v_{a c}-v_{b c} \tag{A.24}
\end{align*}
$$

$$
(A .23)
$$

$$
\text { where } \begin{aligned}
K_{1} & =2 R\left(V_{d}-B_{3}\right) \\
K_{2} & =I_{d}\left(2 R I_{0}-\mathbb{E}_{3}\right) \\
K_{3} & =4 R L_{d} \\
K_{4} & =6 R C L_{a} \\
K_{5} & =6 R L_{d} \\
K_{6} & =6 R \\
\alpha & =\frac{1}{6 R C} \\
\beta & =\sqrt{\frac{1}{36 R^{2} C^{2}}-\frac{2}{3 C I_{d}}}
\end{aligned}
$$

i_{a}, i_{b}, i_{e} may then be found by substituting for $i_{1}, i_{2}, i_{3}, i_{4}$ in

$$
\begin{align*}
& i_{a}=i_{1}-i_{2}-i_{3} \tag{A.25}\\
& i_{b}=i_{3}-i_{4} \tag{4.26}\\
& i_{c}=-i_{1}+i_{2}+i_{4} \tag{A.27}
\end{align*}
$$

A.2. Determination of I_{0}, E_{2}, E_{2} and \mathbb{E}_{3}.

Before the equations for the currents and voltages in the circuit can be obtained the values of $I_{0}, E_{1}, \mathbb{E}_{2}$ and \mathbb{E}_{3} must be found. When the inverter frequency is low these values cen be readily obtained but at higher frequencies their determination is a little more involved.
A.2.1. Low Inverter Output Frequencies.

At low inverter output frequencies the state of the circuit just before instant t_{2} is as shown in $\mathrm{Fig}_{\mathrm{E}}$ A.2. The capacitor currents have become negligible and the other circuit currents have reached steady
values. The current in the choke and the capacitor voltages shown in Fig. A. 2 are therefore the required values of $I_{0}, \mathbb{E}_{1}, \mathbb{E}_{2}$ and \mathbb{E}_{3} "
i.e. $I_{0}=\frac{V_{d}}{2 R}, E_{2}=V_{d}, I_{2}=\frac{V_{d}}{2}, S_{3}=\frac{V_{d}}{2}$.

Hence

$$
\mathrm{K}_{1}=\mathrm{R} \mathrm{~V}_{2} \text { and } \mathrm{K}_{2}=\frac{1}{2} \mathrm{~L}_{\mathrm{a}} \mathrm{~V}_{\mathrm{d}}
$$

The current and voltage equations may now be found for the sixth of a cycle between t_{2} and t_{3} by straightforward substitution of the circuit parameters in equations (A.18) to (A.27).

A.2.2. Higher Inverter Output Frequencies.

At higher inverter output frequencies the state of the circuit just before instant t_{2} is not as show in Pis. A.2. It oamot be assumed that any current or voltage has attained a steady value and it is therefore necessary to calculate the initial values $I_{0}, E_{1}, \mathbb{E}_{2}$ and E_{3}. This calculation can be based on equations (A.28), (A.22) and (A.23).

In equations $(4.18),(A .22)$ and $(A .23) K_{1}$ and K_{2} are functions of I_{0} and E_{3}. The equations may therefore be written as

$$
\begin{align*}
i_{2} & =F_{1}\left(I_{0}, E_{3}, t\right) \tag{1.28}\\
v_{\text {ac }} & =F_{2}\left(I_{0}, E_{3}, t\right) \tag{8.29}\\
v_{b c} & =F_{3}\left(I_{0}, E_{1}, E_{3}, t\right)
\end{align*}
$$

The dec. choke has the same initial current I_{0} at the end of every sixth of a cycle. The initial capacitor voltages E_{1}, E_{2} and E_{3} are also the same at the end of every sixth of a cycle, though appearing across the individual capacitors in a set sequence. If t is put equal
to $\frac{T}{6}$, where I is the duration of a whole cycle, the value of i_{1} given Given by equation (A.28) mut be equal to I_{0} and the values of $v_{\text {ec }}$ and $\mathbf{v}_{\text {bo }}$ given by equations $(\mathrm{A}, 29)$ and $(\mathrm{A}, 30)$ mut be equal to \mathbb{S}_{1} and \mathbb{E}_{3} respectively.

Hence

$$
\begin{align*}
& I_{0}=F_{1}\left(I_{0}, E_{3}, \frac{T}{6}\right) \tag{A,32}\\
& E_{1}=F_{2}\left(I_{0}, E_{3}, \frac{2}{6}\right)
\end{align*}
$$

$$
\begin{equation*}
\text { and } \quad \mathbb{E}_{3}=F_{5}\left(I_{0}, \mathbb{E}_{2}, \mathbb{E}_{3}, \frac{g}{6}\right) \tag{A.33}
\end{equation*}
$$

Equations (A.31), (A.32), (A.33) reduce to linear simultaneous equations from which $I_{0}, E_{1}, \mathbb{E}_{3}$ and hence E_{2} can be readily obs ind. The current and voltage equations may then be found for the sixth of a cycle between instants t_{2} and t_{3} by substitution of these initial current and voltage values and the circuit parameters in equations (A.18) to (A.27).

References

1. G.E. S.C.R. Manuel.
2. Westinghouse S.C.R. Momael.
3. International Rectifier Thyristor Mamal.
4. Rissik, H., MParcury Aro Current Convertors", Firet Ed. 1941. 2nd BA. 1962.
5. Adamson, Colin and Mingoxani, N. Go, "High Voltage Direct Guxrent Power Transmission". First Ed. 1960.
6. Bradley, D. A., Olarke, C. D., Davis, R. M. and Jones, D. A., "Adjustable frequency inverters and their application to vaciable-speed drives", Proc. I.E.E., Vol. III, No, 11, Mov. 1964.
7. Ward, E. E., "Inverter auitable for operation over a range of frequency ${ }^{\text {i月 }}$. Proc. I.E.E., Vol. 111, No. 8, Aug. 1964.
