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ABSTRACT

The steady state stability of an alternator connected by a trans-
mission line to an infinite bus and provided with a regulator is
investigated by the method of =smzll oscillations., Two alternative modes
of analysis are developed based on the stability of closed loop systems
having either voltage or torque as feedback and using the Nyguist criterion
of stability. The transfer function of the glternator to small signals
for different conditions of operation is presented, taking into account

the effects of rotor damping and of the armature resistance,

It is found that typical regulators used in practice,can be
divided into four types according to the position of the regulator
freguency response locus on the complex plane. Thus we have, (a) "Simple"
type with a constant transfer function, (b) "Delay" type with a phase-lag,
(¢) "Derivative" type with a phase-lead and (d) "Integrator" type
involving one integration. It is established that a simple regulator

effectively replaces X, by Xé and thus the region of stability is

d
considerably increased. Both the delay and the integrator types

improve stability to a lesser extent. The derivative regulator, however,
improves the stability further, but an upper limit exists when Xd is

replaced by the transmission line reactance.

Since such an improvement of steady state stability is not required
in a practical system,other aspects of regulator performance, namely
the speed of response to small changes and the accuracy of regulation

are considered,

Experiments were performed using a model machine and a simulated
regulator. The steady state stability limit as a function of gain foxr
the different types of regulator and the frequency response locus of the
alternator to small signals were determined. .Also the transient
response to small steps was recorded and the accuracy of regulation
measured,  All experiments are compared with computed results showing

reasonable agreement,
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LIST OF SYMBOLS

A small case letter denoting voltage or current is the instantaneous

value. The capital of the same letter denotes the R.M.S. value.
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Direct and quadrature axds voltages.

Direct and quadrature axis currents.

Al ternator field voltage and current.

Alternator terminal voltage.

Infinite bus voltage.

Induced voltage ( = X s if).

Direct and quadrature axis operational impedancese.
Direct and quadrature axis operational admittances.
Direct axis open- and short-circuit time constants.

Quadrature axis open- and short-circuit time
constants.

Direct axis synchronous,transient and subtransient
reactances.

Quadrature axis synchronous and subtransient
reactances,

Direct axis magnetizing reactance,

Field resistance.

Armature resistance,

Transmission line recactance,

Reactive power at the infinite bus.

Power or number of poles with positive real part.
Number of zeros with positive real part.
Moment of inertia of machine rotor,

Turbine, electrical and inertia torgues.

Slope of the power-angle curve,

Slope of the transient power-angle curve.
Synchronizing and damping torque coefficients,
Regulator transfer function,

Regulator gain.

Constant ( = —rf/de).



Kss ! Gain for maximum stability limit.

Ksr : Gain for optimum speed of response.

Kmin ’ Kmax ¢ Limiting values of K for steady state stability.

T, T, : Delays in K(p), see Egn. (7.6).

Tos Tﬁ : Phase-lead terms in X(p), sce Eqn. (7.6).

G : Stability ratio ( =K __/K . ),

m min

H(p) : Alternator transfer function.

L(p) : System open loop transfer function.

T(p) : System closed loop transfer function.

) : Generator load angle with respect to infinite bus.

68 : Minus the load angle ( = —60).

6k : Stability limit with infinite gain, simple
regulator, ‘

SS : Peak of the power-angle curve,

8; : Peak of the transient power-angle curve.

) : Stability limit of the transmission line.

A Angular frequency of small oscillations.

Kl ¢ Angular frequency at the intersection of the
H(j\) locus with the negative real axis,

u ¢ Angular frequency at the intersection of the
L{j\) locus with the negative real axis.

E : Integral square error for a small change.

P ¢ Regulation of the system.

#(p) : TFeedback transfer function in the torque method.

o : used as a suffix denotes the original steady
state condition.

A : used as a prefix denotes the differential of the

following quantity.
P : is the differential operator d/dt.
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1. INTRODUCTION

The voltage regulators used with the alternators supplying =a

power system have the following functions to perform:

1) Maintenance of the voltage at various points in the system,
usually at the machine terminals.
2) Control of the share of the reactive power taken by each generator.
3) Improvement of the system transient stability.
L) TIncrease in the steady state stability limits of the system.

The earlier, discontinuous types of regulator with mechanical
contacts performed the first two functions adequately during slow changes,
but had little effect on stability. Modern continuously-acting
regulators not only give quicker response but bring about an improvement
of both steady state and transient stability. An efficient regulator

nust give satisfactory results both as regards stability and regulation.

The investigation covered by the present thesis consisted of
experimental work combined with a theeoretical study. It relates to the
steady state stability of a system comprising am alternator connected
through a reactance to an infinite bus, as indicated by Fig. 1.1. The
use of such a simplified system may be justified on the following grounds:
a) Individual power stations are relatively small units compared with the
whole of the power system. b) In many cases stecady state stability is
a problem concerning a hydroelectric station, connected by a transmission
line to a large system. ¢) By keeping the external network as simple
as possible attention is focused on the effect of the regulator. d) This
arrangement is almost always used in the literature. The regulated

quantity is the terminal voltage V, of the alternator. A signal Vfo ’

t
related to Vt by the tramsfer function K(p) , is compared with a
reference voltage V.. and the difference is used to supply the alternator

fi
excitation,

A detailed analysis is given of the special condition, in which
the regulator, including the exciter, is assumed to have no delays,

iee. its transfer function K(p) is assumed to be constant. Such a
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regulator is referred to as z "simple regulator'.. The behaviour of the
system with any type of regulator can be determined by multiplying

the system open loop frequency response loci for the simple regulator

case by the appropriate regulator transfer function. Three typical

forms of a practical regulator are investigated and the results show

the main features of each of the three main families of regulator, i.e.

a) delay, e.g. as produced by a separately-excited exciter. b) inbegrator
or 'buck-boost" regulator, and c¢) derivative, with combination of first

and second derivative as well as proportional signals.

Consider first an alternator with constant excitation. The
steady state stability limit is reached when the load angle 68 of the
generator, with respect to the bus, reaches a value 65 at the
maximum point of the steady power-angle curve. For a perfectly round
rotor machine (Xd = Xq) &, = 90°, TFig. 1.2 is a power chart, for
which the coordinates P and § are the values at the infinite bus.
The machine used in the investigation has a small degree of saliency
and curve a shows the steady state stability limit with constant
excitation (K = 0). The corresponding curve for a round rotor

machine is shown by curve b,

When there is a simple regulator the stability limit is extended
and as the gain is increased from zero the limit curve is moved to the
left as shown by curves d , & and f , Fig. le2. The system is
then said to be operating in the region of "artificial stability'.
Consider the alternator opcrating at 0.8 p.u. power, say, while the
reference voltage Vfi is reduced very slowly, i.e,. operatioh is
limited to the constant power line, ¢ . At a certain value of gain
the angle at the stability limit becomes a maximum and for higher
gains the curve moves back to the right. At high values of gain in-
stability occurs to the right of curve a . TFig. 1.3 shows the
relation between the angle 68 at the stability 1imit and the regulator
gain, with a given power output (P = 0.8 p.u.). This curve provides
a means of assessing the effectiveness of a given regulator from the

point of view of stability.
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Similar results are obtained with the other types of regulator,
As the gain is increased the stability limit curve, on the power chart,
moves to the left, reaches a maximum, and then moves back and eventually
crosses over to the right of curve a . The maximum value of 68
that can be achieved by varying the gain,depends on the type of
regulator. 68 can, however, never cxceed the value for which the

phase difference between V, and V is 90°.

t

The fact that the machine is stable only for a certain region
on the power chart indicates a non-lincar system. This becomes
apparent when the equations for the alternator, the line and the
regulator are considered. There are products of two dependent

variables as well as trigonometrical functions.

The stability of the system at a given steady condition may be
determined as follows, It is assumed that a disturbance is introduced
and that the resulting changes in the variables are calculateds If
these remain finite with time then the system is stable at the original
steady state condition. The magnitude of the disturbance is very
important when the system is non-linear. The condition is referred
to as "steady state stability' when the system is stable after a
small disturbance and ''transient stability" when a large disturbance

is concerned.

If the disturbance is small, the equations relating the changes
in the variables are linear and the standard methods for analyzing
linear systems may be used to determine stability. It should be
noted that the coefficients of the linearized equations are functions
of the steady state conditions and hence the stability conditions are
different for each point on the power chart. Sufficient information
on the action of the regulator is obtained if the investigation is
limited to points on a straight line of constant power on the power
chart. For the numerical part of the investigation 0.8 p.u. power
is considered corresponding to full load of the alternator rated at
048 pof. Nevertheless it is demonstrated that the regulator does not
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improve the stability at no load, The determination of stability by

means of a small disturbance is known as the Ymethod of small oscillations'.

For large disturbances the equations cannot be linearised and
other methods must be used. The transient behaviour of the system,

however, lies outside the scope of this study.

The linearised equations can be arranged to correspond to either
of two alternative feedback control systems, using voltage or torque
feedback and represented respectively by the block diagrams of Figs. lo4
and 1.5. In the "torque feedback method" the disturbance used for
testing the stability is introduced at the turbine shaft and the
output wvariable is the change in the load angle. The torque method is
thus associated with mechanical quantities and the loss of synchronism
is directly related to instability in &_ . The 'voltage feedback
method" corresponds more closely to the actual system as shown in Fig. 1.1.
The disturbance is introduced at the reference voltage and the output
is the change in the terminal voltage of the alternator. TLoss of
synchronism is associated with the large changes in the terminal voltage

during pole slipping.

In the literature both the voltage and the torque method have
been used separately and by different authors. The equati ons for
each, however, may be derived simultaneously, thus emphasizing the
electromechanical nature of the system. The voltage method is more
useful in studying the effccts of the regulator whereas the torque
method forms the link between the small oscillation theory and the
conventional analysis of steady state stability. The Nyquist criterion
is used to investigate the stability from the open loop transfer function
of each system., A typical locus of the alternator transfer function,

for the voltage case, is shown in Fig. 1.6.

Although the primary objective of the present investigation is
the steady state stability performance of the regulated alternator, the

other functions of the excitation regulator as given above should not be
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overlooked. As it happens the accuracy of regulation and the behaviour
of the system under transient conditions may be linked with the

frequency response loci used in determining the steady state stability.

The accuracy of regulation may be measured in two ways. a) By
using the definition of steady state error of the linear control
system theory on the small oscillation equations or b) By determining

the change in V_ for a change in the steady operating point, e.g,

t
between no load and full load.

There is no simple way of measuring the improvement of transient
stability., The proximity, type and duration of fault in addition to
the operating condition are independent parameters and for every
combination of these the effect of the regulator is different. All
transient disturbances, however, are in effect changes of the terminal
voltage or current and one should expect no abrupt difference in the
behaviour of the system as these changes become smaller and smaller.
Thus the speed of response and the degree of damping for a small
disturbance may be used as a measure of the effectiveness of the
regulator in improving the transient stability. As the system is linear
to small changes,the determination of the transient response is straight-
forward. It is convenient to use the Fourier Transform to evaluate
the integral numerically instead of the formal solution by means of

the Laplace Transform.

An important result of the present investigation is the
possibility of optimizing the design of the regulator with respect to
three performance indices, namely, the steady state stability, the
accuracy of voltage regulation and the speed of response to small changes.
The family of Nyquist loci shows clearly the form of the regulator
frequency response to achieve extension of the steady state stability
1imit, The accuracy of regulation depends on the zero frequency point
of the open loop transfer function. From the same loci the speed of
response of the system to small changes may be computeds The speed

of response may be improved by minimizing one of several quantities.
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As an example the integral square error is chosen.

The experimental part of the investigation was carried out on
one of the micromachines in the College laboratory. This is a small
machine rated at 2kVA, but which has been designed to have the same
parameters on a per unit basis, as a typical large machine, A small
analogue computer was used to simulate the various regulators. Experi-

ments were made to verify all the points discussed.

The most important new results of the investigation may be

summarized as follows:

a) The derivation of the equations in a matrix form is such that
the controlled variable as well as the regulator transfer function may
be changed casily. The equations for both the Voltage and the Torque

method may be derived from one system matrix.

b) The rotor damper circuits and the armature resistance are taken
into account. In the literature damping is either assumed constant,
see section 1l,1l.3, or it is neglected altogether. No reference could
be found including the effect of ré . A comparison is given between

the results obtained when a) damping and r_ are neglected, b) r,

is neglected and c¢) both damping and r, are taken into account.

¢) A method is provided for determining the regulator parameters

in order to achieve extension of the stability limit.

d) Tollowing a review of literature it is suggested that regulators
should be claséified according to the position of their frequency
response loci on the complex plane, for low freguencies approximately
0 to 2 ¢/s. Under this classification four main types exist, viz: a)

a) simple, b) delay, c¢) integrator, and d) derivative.

e) It is shown that the ultimate stability limit occurs when the
phase angle between the infinite bus and the alternator terminal voltage
is 900. The possibility of operating at load angles well beyond the

peak of the transient power-angle curve is also demonstrated experimentally.
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f) Comparison between theory and experiment is provided by
measuring (i) the frequency response locus of the alternator and
(ii) the stability limit as a function of gain for different regulators.
Only a recent paper, Ref, 65-4, could be found giving = limited

comparison with theory of measured stability limits.

g) Since the possible improvement in the steady state stability
appears to be greater than reguired, other functicns of the excitation
regulator may be considerdd. The transient response of the system to
a small step and the accuracy of regulaotion are considered theoretically
and the results were verified by experiment. Little information on

these performance indices appears to exist in the literature,

l.1l, Survey of Literature.

l.l.1l The Controlled Variables,

One of the functions of the excitation regulator is to control
a certain quantity in the system. This is achieved by comparing a
signal proportional to the quantity with another signal proportional to
the required value, The difference is then used %o control the
excitation. The types cen be classified in terms of the controlled

variable as follows:

1) Voltage at any point in the system, usually at the machine
terminals, This is by far the commonest type and is used on all large
systems, A full discussion with references is given in section 1.1.3,
for the theoretical aspects, and in section 7.2, for the practical

applications,

2) Load angle of the alternator with respect to any other point in
the system. Sec'Refs. 46-1, 46-2, 48~3, 56-1, 59~-5, 62=3 and 6i4-1.
Experiments in the artificial stability region have been performed
involving quite elaborate regulators, but for various reasons angle
regulators are not often used in practice. Sometimes an auxiliary

control to limit the load angle is used, e.g. Ref., 60-10,
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3) In phase component of the generator current.
L) The ratc of change of active power.
5) The reactive power supplied by the generator,

L
o1 but do not

The last three types have been suggested by Kron
appear to have been used in practice. In addition combinations of

these signals have been considered.
a) Voltage, and rate of change of load angle, e.g. Refas: 56-1, 65-1.
b) Voltage and olternator current, e.g. Ref. 62-9.

c) Voltage, lst and (or) 2nd derivatives of currcnt, cege Refs. 62-3
and 60—120

d) Voltage and reactive power. The control of reactive power is
one of the primary functions of a regulator and this combination of
signals is invariably used with Gorman, Swiss and Swedish schemes,
Instead, the regulator may be arranged to operate on the voltage signal
only, until the stability limit is reached and then a reactive power
limiter takes over and prevents loss of synchronism, see, e.g, Refs, 48-1,

S54=3, 56~4 and 59-3.

lele2s The Regulators.

The content of individual papers may be either.
a) Theoretical, dealing with operation in the artificial stability

region, or

b) Practical, purely describing a particular installation including

sometimes transient response or steady state stability tests.

The theoretical content of the papers is dealt with below, section
1.1.3, whereas discussion of the practical aspect is deferred until
section 7.2, It is important to derive the transfer function of actual
regulators so that typical examples may be investigated and this need

arises in Chapter 7,
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Unfortunately the division between theoretical and practical papers
is not merely a matter of emphasis. The majority of the theoretical
papers make use of the Routh criterion and consequently consider
simplified regulator transfer functions and limit the investigation
to the improvement of steady state stability, Any complex regulator
transfer function raiscs the degree of the characteristic equation,
and increases the number of conditions that must be satisfied for
stability. In addition the cvaluation of the transient response from
The characteristic equation is laborious and no attempted investigation

of this kind could be found in the literature.

The practical papers on the other hand describe extremely complex
gystems and often no attempt is made to indicate the really significant
parts of the regulator. The record of complexity is Hedstromso_l,
where the regulator has three inner loops with derivative feedbacks and
where the outer loop gain depends on the operating point. Only one
paper, Pavesi and Simonetti60"2 gives an experimental frequency response

of an actual regulator,

Practical papers are interested in '"good" transient response but
this may mean either a first cross-over in 0,3 to 2 sec. or even an
overdamped response. The fact that a regulator adjusted to give
optimum transient response on open circuit will give an overdamped
response on load is stressed by Bloedt and Waldmannsa"h. Nevertheless

the speed of response is usually shown by a step change on open circuit,

5 The importance of high accuracy of regulation is emphasized in
the practical papers and here a realistic test is often used by measur-
ing the change in the alternator terminal voltage from full load to

no load. Figures quoted vary down to 2%. With the exception of

64-1

Venikov theoretical papers do not mention the accuracy of regulation.

No formulae giving either regulation or a quantitative measure of the

speed of regponse could be found.

The fact that a regulator designed to give food voltage regulation
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and fast response will normally give poor results in the artificial

stability region seems to have been missed completely, Venikov64-1 being

60-4 discovered this experimentally,
o}
apparently to their surprise. Yet Dohertyzo—l states that "... the

the only exception. Cooper and Girling

excitation systems which are satisfactory for the one (artificial
stability region) may be altogether unsatisfactory for the other

(transient stability)."

As stated earlier the present investigation is concerned with
the following requirements imposed on the excitation regulator, a)
extension of the steady state stability limit, b) fast transient response
and ¢) good accuracy. With a certain controlled variable, the effect
of the regulator on these three aspects of operation of the system can
be determined by considering only the transfer function of the regulator
rather than the practical details of the components used and their
interconnection. It is appreciated, however, that, in many cases,
reliability, ease of maintenance and alternative excitation in case of
failure are more important than the three requirements listed above,

see eoga Ref. 63"'}""-

An important type of regulator for which it is impossible to
obtain a transfer function giving the alternator terminal voltage in
terms of the error is not covered by the present investigation. This
occurs either when one of the stabilizing feedbacks is proportional to
some function of the field current, as in Ref., 54=1, or when a secries
exciter is used, see Ref, 50-3. It is interesting to note that series
exciters as means of extending the steady state stability limit were
considered as early as in 1925. In general the ficld voltage is a function of
both the field current and the d-axis current and hence the regulator
and alternator transfer functions cannot be considered separately. It
does not appear that such excitation systems are used in practice to a

great extent.

All references to electromechanical regulatorshave been ignored

since no operation in the artificial stability region is possible. There
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will always be an oscillation., An exception to this is made for the
Tirrill regulator which, given sufficiently high frequency of vibration

may be thought of as continuously-acting.

Table I, p.221 contains results of operation in the artificial
stability region reported in the literature. - Experiments made with
large machines or with specially designed models only are included.
For comparison column 6 gives the maxdmum value of 6@ that can be ‘
achieved with a simple regulator in each case, see section 7.1.3. Only
three of the five voltage regulators, however, give sufficient information

about the system to allow calculation of this.

lel.3. Theoretical Investigations.

The majority of the theoretical investigations into the steady
state stability of a regulated machine are concerned with voltage as
the controlled variable, This is %o be expected since all practical
schemes normally regulate the terminal voltage. Exceptions to this are

the following papers using,
1) Load angle, Refs. 46-1, 48-3, 56-2, 62-3 and 64-1.
2) Generator current,Refs. 56-2 and 64-1.

3) Combination of voltage and the 2nd derivative of generator
current, Ref. 62-3,

A number of different stability criteria have been used as

follows:

a) The Nyquist, Refs. 55-1, 56-1, 59-3, 60-3, 60-10, 61-2, and 62-6.
Of these Refs., 60-3 and 61-2 use the torque feedback method and the rest
the voltage feedback method.

b) The Routh, Refs. 44-1, 46-1, 483, 50-2, 56-1, 56-2, 62-3, 6i4-1
and 65-4. A comparison between the results obtained using the Routh

and the Nyquist criteria is given in Appendix IV,

¢) The Root-locus method, Ref. 64-2,
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d) The domain separation method (also called "method DV or stability
contour diagram™), Refs. 55-1, 56-2, 56-3, 58-2.

e) A method similar to Routh involving the roots of several

equations derived from the characteristic equations, Ref. 65-3.

f) The analogue computer by observing instability, Refs. 52-1, 58-3,
and 60-10,

g) Determination of the roots of the characteristic equation using
a digital computer, Ref. 58-5.

The effect of the rotor damping circuits is taken into account by
Aldred and Shac:kshaf’c&'-2 only. In this paper however, a machine without
a voltage regulator is comsidered, The following include a constant
term in the mechanical equation of the motion to "allow for rotor
damper circuits and turbine damping" : 52-1, 55-1, 56-3, 58-2, 60-3,

64-2 and 65-4. The inadequacy of this assumption is illustrated in
Cooper and Girling6o—4. In different experiments they obtained values
of 300 p.u. and 10-20 p,u. for the damping coefficient. The justifi-
cation for using a value of 100 p.u. appears to be merely that it lies
between 10 and 300 and gives a frequency of oscillation as observed in

the field tests.

The effect of the armature resistance is always ncglected. It
is well known that r is important in investigating huntingll_l’ 30-1.
In fact the armature resistance has a small stabilizing effect, see

section 7. Comments on individual papers may be summarized as follows:

i1

Concordia s @lthough one of the earliest papers, contain some
remarkable results, namely, a) gain has an optimum value, b) damper
windings have little effect on the maximum reactive power limit, c¢) a
small regulator time constant increases the maximum gain that may be
used and d) the stabilizing transformer does not affect the maximum
load angle although it improves the accuracy of rcgulation. Regulators
with one or two time lags only were considered. The results are

presented as plots of the stability limit against the regulator gain.
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50~2

Concordia considers the "buck-boost" regulator which has an
integrator transfer function. Although this type of regulator cannot
by itsclf, extend the stability limit, it has a very good steady state
regulation, It is shown in Ref, 50-2 that with proper stabilization
it may be used to extend the stable region of operation congiderably.
The derivative feedback for stabilization is taken either from the
exciter voltage or from the generator voltage, For both cases plots

are shown of the stability limit against the regulator gain.

Heffron and Phillip852-1 derive the small oscillation equation,
which they then set up on an analogue computer, Stability is established
by injecting a small disturbance at the reference voltage and observing

the subsequent behaviour.

Messerle and Bruck55hl give a frequency response locus of the
alternator transfer function for one operating condition, The regulator
is the same as that used by Concordiaso-a. Their results are given as
plots of the regulator gain against the stabilizer gain for various
conditions, These plots correspond to the domain separation method
(see Ref, 64~1) with application limited to two parameters, viz: regulator
and stabilizer gain. Since two parameters may be optimized at once
the method is very useful in determining values in a particular problem.
The overall pictufe, however seems to be lost. Similar plots are

56"3 9 58"2

used in Messerile to investigate the effect of parameter
variation. Synchronous reactance, transmission line reactance, regulator

and exciter time constants are among the parameters considered.

56-1

Frey in his thesis gives a comprehensive analysis including
frequency response loci of the alternator transfer function, A regulator
with an integrator transfer function as well as the simple regulator

is considered. It is realised that the maximum stability limit with a
simple regulator occurs at the peak of the transient power~angle curve.
However, when further extension of the artificial stability region is
considercd, the argument used a necessary but not sufficient condition of

the Routh criterion. Consequently an incorrect conclusion is reached
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namely, that the first derivative of voltage, or of angle would extend
the artificial stability region further, see section 7.3.3. A simplified

analysis of the stability of a system with a series exciter is also given.

The coefficients of the characteristic equation in Venikov and
Liﬁken556-2 are in the form (an+ Bn)’ where a is a function of the
operating point and Bn a function of the regulator gain. A table
of these coefficients for voltage, angle and current regulation is given,
At first there is a discussion based on the fact thet all the coefficients
in the characteristic equation should be positive. This seems pointless
since this condition is not sufficient, The effects of parameter
variation is studied by means of the domain separation method, The
pairs of parameters considered are the coeffients of the first and
second derivatives for the three controlled variables, i.e. voltage,
current and angle. It is stated that with first and second derivatives
the stability limit for the transmission line may be achieved. Delays
in the differentiators (even less than 0.0l sec) are said to reduce this
ultimate stability limit in practice. See section 7.3.3., however,

for the necessity of these delays.

Aldred and Shackshaft o—>

the system on an analogue computer, The stability limit was reached

represent the non-linear equations of

by increasing the input power. In addition to the usual types of
regulator a stabilizing signal proportional to the rate of change of

the field current was used as first proposed in Ref, 54=l. It is claimed
that considerable improvement in the steady state stability limits is

achieved.

In their second paper the same authors, Ref, 60-3, present a
comprehensive analysis of the torque feedback method. Again a feedback
proportional to the rate of change of if is considered as well as
more conventional regulators. It is found that in the former case the
expressions for Xd(p) and the damping torque coefficient must be
modified but that otherwise the torque method may be useds Most of
the results refer to load angles less than 90o and only one Nyquist
locus for 100° is given. In a third paper the same authors, Ref, 61-2,
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use the torque method to analyze the effect of rotor damper circuits.
Although there is no voltage regulator the paper is useful because it
gives a complete analysis of the effect of damping using the small

oscillation theory.

29-3 ana Easton, Fitzpatrick and Partonﬁo-lo do not give

Johansson
any important theoretical results. They both quote an expression for
the open loop transfer function, in general terms and give the alternator
frequency response locus. In addition in Ref. 60=-10 the small
oscillation equations were solved on an analogue computer and the response
to small step changes is quoted, The progressive reduction of damping

as the load angle is increased is clearly shown.

62-3 was able to study fairly

Using a digital computer Glavitsch
complicated regulators, but the formulae used are not given. The
results are presented as stability limits on a power chart and operation
at load angles greater than the peak of the transient power angle curve
is shown as possible, The block diagram of the system is interesting.
The alternator is represented as having three transfer functions for
voltage, current and load angle. Signals proportional to each of these
are added together with another set of signals formed by taking the
first and second derivatives of the same output variables. The sum is
compared with the reference and the error is passed through a regulator
with constant gain or up to two delays. With one exception results

are quoted for one controlled variable only.

62

Nielsen -6 is a mainly "experimental" paper. It quotes, however,
calculated frequency response sof the open-loop transfer function with

proportional and integrsel regulators.

64-1

Venikov gives by far the most comprehensive treatment of the
exténsion of the steady state stability region using a voltage regulator.
The simple and the one delay regulators are fully analyzed. The
expressions for the conditions of stability are given for either voltage

or current or angle regulation. A very important contribution is the
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treatment of a regulator involving first and second derivatives of the
controlled variables., The expressions are simplified by introducing
symbols for the slopes of the power-angle curves obtained with the
synchronous, the transient and the line reactances. It may be noted
that an unjustified approximation is made by neglecting the g-axis

component of AV In the second Russian edition, however, this has

t L]
been corrected, see Ref. 64~3, A chapter is devoted to the domain

separation method.

The only application of the Root-locus method is given by
Stapleton6q_2. - This powerful technique is very useful when the poles
and zeros of the open loop tramsfer function are known, which is often
the case with linear control systems. For the regulated alternator,
however, these vary with the operating point and a digital computer is
used to calculate them. In such a case it appears that it may be more
profitable to compute the closed loop poles and zeros for a range of

regulator gains as in Ref. 58-5.
653

A particular voltage regulator is used by Battisson and Mullineux
as an example for applying an interesting stability criterion that they
develop. From the charccteristic equation a number of polynomials of
lower degree is derived. The system is stable if the roots of these
have no positive real parts. A check of the method is obtained by
observing the response to a small step function when the small oscillation

equations are set up on an analogue computer,

65-4

Gove presents an interesting geometric construction of the
stability limits on a power chart with constant excitation and with a
gimple regulator with optimum gain. An expression for the alternator
transfer function assuming constant damping is given, Also there is an
expression for the maximum stability limit of a delay regulator.
Reference is made to the same tests as described by Mason Aylett and

Birch59_6.

Frey46—1 and Concordial‘tég—3 investigate the stability of the system
with an angle regulator. Their contribution is not considered here in

detail since no angle regulators arc considered in the present investigation.
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2, DERIVATION OF THE ALTERNATOR TRANSFER FUNCTIONS,.

The operation of an alternator is described by the well-known
Park Equations. They are non-linear differential equations and, as
indicated in the Introduction, the small oscillations method is used
to determine the stability of the system. It is possible to prove
that this method gives the necessary and sufficient conditioms for
the steady state stability, but since all references take this for
granted it is unnecessary to consider this point here, see Refs, 59-2

and 64-1 for discussion.

In this section a system matrix is set up for an alternator,
connected by a transmission line to an infinite bus and provided with
an excitation regulator, This matrix equation may be applied to either
of the two alternative closed loop systems using torque and voltage
as fecdback. The open loop transfer functions of the two systems
arc derived and are briefly discussed. The more detailed investigation

of each system is deferred until sections 5, 6 and 7,

For the derivation of the system matrix the armature resistance
is not neglected and a quadrature axis field winding is assumed, The
armature resistance contributes to the stabilization of the system
and the usc of a quadrature axis field has been suggested as a
possibility, Refs., 62-5 and 64-5. In the application of the equations
the quadrature field is omitted. Also the armature resistance is
neglected in the main theoretical development in order to show the
general relations more clearly. However, the full equations,
including r s arc used in comparing experimental results with the
theory and in scctions 4 and 6 there is a detailed discussion of the

effects of » .
a

2+1. The Machine FEguations.

Consider a synchronous machine connected through a rcactance to

an infinite bus, as in Fig, 1l.1l. This arrangement is almost universally
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uscd for assessing the effect of the excitation regulator, although some
studies have been made where a two machine system is also considered,
e.8s Refs. 441, 56-1 and 64-1. An extension of the theory to include
shunt loads is given by Heffronsq—z. The line reactancec is considered
as part of the lecakage recactance of a "modified alternator'. The
reactances and time constants corresponding to this modificd machine are
calculated and the system is reduced to that of a generator connected

to the infinite bus., The controlled variable, however, is still V% ,
the terminal voltage of the actual machine.

Park's equations for the modified machine are as follows., (For
an explanation of the sign convention sec Ref. 57-6 and section 2.4.)
The term Gq(p)qu is included to allow for the possibility of a

quadrature axis winding.

Ve = P ¢d + wvdo_+r is
vq —-x)(pd+ p(p +I‘aq
- W s s
T, = 5(¢ a i ¢q ld) (2.1)
where Xd(p) G(p)
ba = % q Y T Vg
X (p) G (p)
q ® q w fq

These equations are considerably simplified if it is assumed that
transient changes are slow in relation to the a.c. cycle. This
implies that the frequency of the amall oscillations supcrposed on
the varizbles is much lower than the system frequency, 50 c/s. In
fact, see sections 6 and 7, the highest frequency of interest is 2 ¢/s

and so the assumption is justified. Compare however with scction 9.1..4.
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Neglecting the p¢ terms and assuming the v = w = constant,

the first two equations become:

= mq_)q +r i (2.2)

Va ad

Vo= e by * raiq (2.3)

Substituting ¢, and g from Egns. (2.2) and (2.3) in the Torque

equation,

=]
n

. -3 (qu— raiq)iq + (vd- raid)%;} (2.4)

It is shown in Appendix I that, if Vm is the amplitude of the

infinite bus phase voltage,

<
i

V  sind
m

v

q Vm cosd (205)

When the velues of ¢, 5 & vy and v from Eqns. (2.1) and (2.5)

?
are substituted into Eqns. ?2.2), (2.3) and (2.4) these become:

v, sind Xq(p) P Gq(p) Vg

n

v cosd -Xd(p) igt raiq - G(p) Ve (2.6)

- 1 - - 3 — » -
Te = -7 (zVﬁcosé - ralq)1q+ (VhslnB rald)%%J
\’_ -

The small oscillation equations are relations between the
differentials of the variables in the last three equations. They are
obtained from the well known result, viz:

If f (Xy ¥y Zy +eeeo ) = C a constant then
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of 3f of _
P Ax  + 3y Ay + py Az + se0ese = O

Hence Egns. (2.6) become:

V cosd A8 = Xq(p) AIq +r AT, 4 Gq(p) Aqu

-V sind A = -Xd(p) AT, + x, AIq - G(p) AV (2.7)
AT ‘= = (E- vV sind _+ 2 raido) b I+ (Vmsinao iqo -
- V _cosb ido) AB - (- Vmcosﬁo+ 2 raiqo) AIq:}
where the suffix o denotes initisl conditions,
In addition to Egns., (2.7) describing the electrical quantities

in the alternator there is the mechanical equation of the motion of the

rotor, i,e,

T, = J pz(mt - 8)

and the corresponding small oscillation equation is,

AT, =23 2> AS , (2.8)
Since V sind = v
m o} do
Vcosdh = v
m o Q0

Eqns. (2.7) and (2,8) may be written in matrix form as follows:
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G = -
(p) &V, X,(p) Vo r AT
G (p)a v - v ~ X (p) A®
q®’'% Yeg a g0 q'?
1 . A .
AT, “Z V30" Talde =2 2 qu+ Tatqo AL
2
AT, ~J p
‘ N ) (2.9)
t - a . -3
where Q! 2 (1do Voo = Too Vdo)

If rows 3 and 4 are added together a 3 X 3 matrix results, Thus
the alternator may be regarded as a link in a control system with

three output variables I Iq and & and three input variables, V. ,

:
qu and Tm . Any combgnation of the output variables, including thiir
derivatives, may be used to control any one or more of the input
variables, thus forming a closed loop control system. Normally the
turbine governor controls the Eh from a speed signal, i.e. proportional
to %% and the voltage regulator controls the direct axis field voltage
from a signal derived from the terminal voltage, which is a function of
Id ’ Iq and & . Egn. (2.9) can be used tc study the steady state
stability of any possible control arrangement. What is required is
an additional equation giving the dependence of the controlled variables
on the output variables, i.e. the cquation of the comtroller. For
the present investigation only a conventional voltage regulator is

considered,

For the rest of this section r, is neglected and from now on
qu is set to zero as explained on p. 31,
Ze2+ The Repulator Equation.,

The voltage supplied to the exciter is the difference between

the reference voltage V and the output of the rectifier Vfo’ see

fi
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Fig. 7.1, In order to determine Vfo ’ Vt nust be expressed in

terms of the three output variables Id ' Iq and 6 ., The resistance
of the transmission line is neglected. From the phasor diagram, Fig. 2.1

2

2 2 1<
Vt - [jkvdo - Xc Iqo) + (qu + Xy Ido) :}
and hence the instantaneous value is

4
v = | (V sin § - X 1 )2+ (V. cos & + X i )2 :
t m o "¢ qo m o ¢ do

(2.10)

The output of the rectifier is proportional to the average peak
voltage between lines,. If balanced operation is assumed the constant
of proportionality can be absorbed in the regulator transfer function.

It is convenient to introduce a factor KO so that

Voo = Ko K(p)

Vi

The corresponding small oscillation equation is:

¢ vy 0 vt 0 Vi
Avfo = KOK(p) -SE-AS + -a—-i-; AIq+-a—3.-.—;- AId

H)

KOK(p) [}vqo+ Xcldo) AL, - (qulqo+ Vdoldo) AS -

]

X
L] . J
(vdo Xclqo) AIQJ rvt4

K X(p) (A AT, + A, AD+ A AIq) say (2.11)

3

Ko affects only the units of the regulator transfer function and

since, in any case, the per unit system is used, any convenient value may
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be chosen. It is found that if

(2.12)

some equations are simplified and both the regulator and the alternator
transfer functions have comparable values. The negative sign is

introduced so that K(0) is positive,

2.3, System Matrix and Block Diagram.

Egns. (2.9) and (2.11) may be combined to form the system matrix
as follows:

e v, || ) v e,
G(p) AP G(p)KOK(p) A G(p)KoK(p) Ay G(p)KoK(p) AB A%
A Te - Vdo - QO -% vqo AIq
A Ti - dJ p2 ’
Vg0 - Xq(p)

d(2.13)

where Qé is replaced by Qo since when r, is neglected Qé is the
steady state reactive power at the infinite bus,

Let Bijk be a 3rd order determinant whose 1lst, 2nd and 3rd
rows cre the rows i, j and k of the matrix in Eqn. (2.13). The
expressions for these determinants, when the armature resistance is
included are given in Appendix II. It is advantageous to define new

functions A, ., related to B, . as shown below:
ijk ijk

B
_ 135 ) 2
b5 = X X @ T @, t Vo Yo Vgo Yd<p)] (2.14)
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B XQ X+, +V__ Y (p))
- 235 ¢ o "¢ do qo " q
A - B21+5 = XC(VQO+ XCIdO) F(p) (2 16)
257 % ()X _(p)K K(p) (-3 p°) Vio )
q o
B
145
- = 1 (2.17)
A145 Xd(p)X (p) (=T p2)
q
where F(p) = a(p) Yd(p)

It should be noted that Capitals denote the R.M.S. value,

In the analysis it is found convenient to separate the effects of the
field and the rotor damper circuits and for this reason the functions
Yd(p) and Yq(p) are used instead of Xd(p) and Xq(p). C.f. Egqns. (4.1) .

and (L4e2).

In order to assess stability a small disturbance is introduced
and the subsequent behaviour examined, Dgn. (2,13) is in such a
form that the disturbance may be introduced at cither of two points in
the system, namely, at the turbine torque or at the regulator reference
is zcro, and vice

veltage. When a disturbance ATm is used, AV

fi

versa. Assume first that the turbine torque remains constant,

Rows 3 and 4 of Eqn. (2.13) may be added together to give a 4 X 3 matrix.
From the four equations expressed by this matrix the ratioc A er/ A Vfo
may be obtained.
+ B
245 _
+ B
145

2
BV, B (=7 p9))

_ C235
A er B135

K _K(p) (Azst Aoy

ﬁﬁ+(“Jf)

(2.18)
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Eqn, (2.18) may be considered as giving the open loop traasfer function

of a feedback system as shown in Fig. 1..4.

If the reference voltage is now assumed constant,

A vfo + A er = A Vfi = 0

and rows 1 and 2 of Egn., (2,13) may be added together. The ratio
A Te/A T, 1is given by:

e _ Dass o lpgt KO oy (2.19)
R Pus TRas (0 pA)(r K K(R)A,)

Thus another control system may be constructed with an input A Tm
and an output A8 as shown in Fig. 1.5, The open loop transfer function
is given by Ean. (2,19). Physically it is obvious that, if, due to
some small change in qn s the rotor angle change AS increases with
time, the alternator will fall out of synchronism. Either A Te or
A Ti could be used as the feedback quantity, Since however, the
application of the Nyquist Test is simpler when the open loop transfer
function remains stationary at infinite frequency, A 'I'e is chosen as

shown in Fig. 1.5, where

B + B
Blp) = (-3 p) G222 (2.20)
145 245

Both systems, referred to as "Voltage fecdback'" and "Torque feedback!,
are linear and the alternator with the resulator is stable when these
feedback control systems are stable on closed loop. The conditions for
stability can be determined by the usual methods of control system
analysis as described in .ppendix IIT. The stability of the system is
considered in detail in section 5, using the Torque feedback, and in

sections 6 and 7, using the Voltage feedback.
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It is worth noting here that when both ATm = Avfi = 0 and when

the 2nd row of Egn. (2.13) is added to the 1st and the 4th to the 3rd
we have a 3 X % matrix, The determinant associated with this matrix is

A = B +B. .+ B + B (2.21)

135 145 235 25
Another method for detcrmining the stability of the system is to examine

the roots of the equation

A = 0O (2.22)

using the Routh Test. If any roots have positive real parts then the
system is unstable, Appendix IV shows the application of this method.
In fact the characteristic equation of the system as obtained by either
the Voltage feedback method or the Torque method is the same and is
given by Eqn. (2.22).

2.4, Note on Sign Convention.

Before proceeding with the analysis a note on sign conventions is

required.

In spite of the fact that we are dealing exclusively with a generator
a sign convention based on motor operation is used. It is considered that
having negative quantities in the numerical calculation was not as serious
a disadvantage as the deviation from the conventions of the General Machine
Theory applicable to all machines. For explanation purposcs the symbol
68 is defined as the steady state generator angle. Hence 68 = —60 50

that 6g is positive for generator operation.

The generator convention is that used by Park, and others, who used
also a unit of time defined so as to make synchronous speed equal to
unity. The following table indicates the main differences when the
machine runs as a generator,

Motor Convention Generator Convention

1) Load angle negative. 1) Load angle positive.

2) Electrical power outputnegative. 2) FElectrical power output positive.
3) Turbine torque positive. 3) Turbine torgue positive.

L) Time unit ~ 1 sec. 4) Time unit ~ 1/31h4 sec.
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Fgns. (2.1) in the Generator convention are

Vg = Py - Ty - Vg

vq = p¢)q - raiq f OF)
with o, = G(p) Veo = X3(0)1,

Q>q = Gq(p) Veg " Xq(p) i
also ,

Te =£iqq)d =13 q)q

o= T +Jp26

From the steady state conditions the sign of KOK(p) must be changed
and this implies that Ko is positive. Using these equations the
resulting system matrix is identical with Eqn. (2.13) with a negative

sign outside, The stability conditions thereforc remain the same.
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Se THE EXPERIMENTAL EQUIPMENT

The experiments were carried out on a three-phase '"micro-alternator"
in the College laboratory, used in conjunction with a fixed supply and
an external series recactsnce as indicated in Fig. 3.1. The micro-
alternator is designed to have parameters, on a per unit basis, similar
to those of large synchronous machines. The parameters of the
alternator were determined using a stabic impedancc test as well as

the standard sudden short-circuit test.

A rectifier and filter unit was constructed and a small analogue
computer was used to simulate the excitation regulator.  The comparison
with the reference voltage was made inside the analogue computer box,

see Figo 3-1.

The frequency response tests, in this section as well as in
section 9, were performed using a Transfer Function Analyzer., This is
an electronic instrument consisting of a variable frequency oscillator,
a phase-sensitive voltmeter and a phase-shifter. The oscillator is
used to supply the test signal to the system under test and the voltmeter
gives the in-phase and quadraturc components of the output of the
system with respect to the output of the oscillator, The phase-
shifter is normally used to give the output of the system in polar
coordinates, which was considered unnccessary for the experiments
performed, - The phase-shifter was, however, used in a different mode

as described in section 9.2.1.

%ele The Micromachine and its Paramcters,

A number of the micro-alternator parameters can be varied so that
a range of machines may be simulated. For the present investigation

a typical large turbo-alternator was considered.

The unit voltage was chosen to be as low as possible so that
saturation effects are minimized, In a saturated machine Xd and Xq

vary with the operating point. Also if Xd(p) and Xq(p) are the
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incremental values in the small oscillation equations and Xd and Xq
the values obtained from the steady state confditions then for a
saturated machine Xd(O) £ Xd and Xq(O) ¥ Xq « The time constants
are also affected by saturation, In section 2,1, where the generator
equations are derived the concept of the '"modified alternator' is
introduced with the line reactance included in the leakage reactance.
Thus X, , Xé ’ Xg R Xq ’ Xa ’ Té ’ Tg and Tg are modifieds The
unit voltamperes was chosen so that Xd for the unmodified machine is

2¢0 Ppetts

The simulation of a large machine is achieved by the design of
the micromachine with the exception of rf, which is considerably larger.
An auxiliary "time constant regulator! is used to increase the effective
field time constant, see Ref, 63~6., This device, which may be con-
sidered as an integral part of the machine was set to produce the required
time constant. The excitation of the alternator is controlled by
a low power input signal to the time constant regulator, which is

supplied from the analogue computer, sce Fig. 3.l.

Table ITI, p.222 gives the parameters of the modified alternator
as used in the calculations, The transient time constants given are

obtained with the time constant regulator ir operation.

3,L.l. Variable frequcricy static impcdance tests.

Two methods were used to determine the transient and subtransient

reactances and time constants.

(i) The standard sudden short-circuit test, which gives the d-axis

quantitics only, See Ref, 45-1 for details.

(ii) A variable frequency static impedance test using a low frequency
alternating current as follows. Two phases of the machine were
connected in series opposition and supplied with low frequency current,
The voltage across the two phases, Vl , as well as the voltage across
a shunt, V, , were measured with the Transfer Function Analyzer, Hence

Vl and V2 are known in magnitude and phasc. With the rotor in the
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d~ or the g-axis position the corresponding operational impedances are

given by,
Vi A
§_V; R= j = Xd(gk) + T for the d-axis position.
= 3 = Xq(j?\) o for the g-axis position.

where R is the resistance of the shunt and V2% is the frequency of
the supplied current. By varying » the loci for the operational

impedances are obtained (see Refs. 56-6 and 63-7).

In the g-axis position onec set of measurements was taken. The
time constant regulator was in operation and the field current was zero.
It is assumed that the g-axis parameters are not affected by saturation.
It was verified that the results were not affected when the field was
open circuited. Fig. 3.2a shows the experimental curve, dotted line.
The parameters for the computed curve were chosen to give good agreement

with the measured points, especially at low frequencics.

In the d-axis position two sets of mecasurements were taken, both

with the time constant regulator in operation.

a) The field current was adjusted to the value that would give 1.0 p.u.
terminal voltage with the alternator on open-circuit and at normal
speed. Thus the armature current produced a small oscillating flux

which was superimposed on the field flux.

b) The field current was set to zero.

During the steady state stability tests the air-gap flux is less
than 1,0 p.u. at some angle between the d- and the g-axes. The direct
axis parameters therefore lie between the values obtained from tests
a and b. Fig. 3.2b shows that the saturated values of Yd(jh), test
a are larger then the unsaturated ones, test b . The scatter of the
results however, makes the determination of separate saturated and

unsaturated parameters unreliable, Under these circumstances the five
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parameters required to specify Yd(jl) cannot be uniquely determined
and several alternative combinations were tried. Pinally the values
were chosen so that the computed Yd(jl) locus, full line in Fig. 3.2b

is an average curve through all experimental points.,

Methods (i) and (ii) yield different values for the machine
parameters. The discrepancy is partly due to the inadequacy of a
single circuit to represent the rotor damping phenomensa. When the
alternator transfer function is determined the conditions of operation
correspond to those of method (ii). The values obtained from this
method were therefore used in the calculations. It is clear, however,
from Fig, 3.2 that extrapolation to A =0 is not reliable and so Xd
and Xq were determined from a steady state test as described below,
section 3.1l.2. In addition a small error in the measurcment of
either V. or V

1 2

Téo is therefore determined from a decay test when the input to the

time constant regulator is suddenly removed with the alternator running

produces a large crror in the transient time constant.

at normal speed and on open circuit. This test is effectively the

same as short-circuiting the exciter in a normal machine, sce Ref, 45-1.

3,1.2. Determination of Xd ond Xq .
The operating conditions of the alternator during the stability
tests and calculations are restricted to a constant power output,
0«8 peu. a constant infinitc bus voltage and a range of valucs of Sg
from 80° to 1650. The values of Xd and Xq were determined from
a steady state test under similar conditions, for a reduced range of Sg .
With a steady load angle and 0.8 p.u. power Vo, I, I, and Q
werc measured, Assuming the value of the alternator leakage reactance
as given by the design data, the voltage behind leakage, V:.L may be

calculated, see Fig. 2.1l. The induced voltage is then assumed to be



where I is the measured fieid current and

Ifi is the field current to give Vi on open circuit,

(obtained from the open-circuit characteristic.)
The phasor diagram may then be completed and the values of Xd
and Xq obtained, Measurcments were taken for several wvalues of Gg
from 700 to 120° and it was found that Xd and Xq do not show any
significant variation with & . The average values from this test

are shown in Table IT, p. 222,

The external series reactance, simulating the transmission line,
was determined by measuring the voltage drop across its terminals on

steady operation of the system.

3.2+ The Regulator,

The regulator used in the experiments consists of two cssential

components:

a) a rectifier producing a direct voltage proportional to the

alternating voltage at the machine terminals, and

b) a device for simulating various excitation system transfer

functions. For this purpose a small analogue computer was used.

Two more components were added, see Fig. 3.1, for practical

reasons:

¢) a filter to reduce the harmonic content of the rectified voltage, and
d) a limiter to protect the time constant regulator from overvoltages.

These components were designed so that, with the analogue computer
set to unity, a tramsfer function with minimum attenuation and phase-
shift was obtained at low frequencies. This is, of course, necessary
for measurements using the simple regulator. In addition it is very
convenient if the recgulator outside the analogue computer can be

represented by a constant.,

As stated earlier the time constant regulator may be considered



as an integral part of an alternator with reduced field resistance.
However, the input to the time constant regulator does not correspond

to the field terminals of the "fictitious" alternator. For reasons that
need not be discussed here the time constant regulator has a transfer
funection of 0,5, This means that the output of the limiter is twice

er the "alternator field voltage', Nevertheless for measurement
purposes the field terminals of this fictitious alternator are

accessible (shown as "V, " in Fig. 3.1).

Fig. 3.3 gives the measured frequency response of the complete
regulator excluding the rectifier, The loop was broken between the
rectifier and the filter and a signal was injected from the Transfer
Function Analyzer oscillator. Point ”er" was considered as the output.

t should be noted that there is very little phase-shift below 5 e¢/s.
Since the highest frequency appearing in the H(j\) plots, Fig. 6.1,
is approximately 1.5 ¢/s the regulator transfer function outside the

analogue computer may be represented by a constant.

2.2.1. The rectificr and the filter,

The rectifier consists of six silicon diodes connected in a

bridge and supplied from three single-phase transformers connccted delta/
star, The primary of the transformers is connected to the alternator
terminals. The output of the rectifier is therefore proportional

to the average peak voltage of the alternator line voltages. With this
arrangement the harmonics present in the output are 300 c¢/s, 600 c/s etc.
Unbalance in the alternator line voltages was corrected by adjusting

a variable resistance in series with the primary of the transformers but
some 150 ¢/s component was present in the output. Also present is a

50 ¢/s signal due to pick-up. A1l these harmonics must be removed because
they affect the operation of the amplifiers that follow and for this
purpose a three section filter is used. Fig., 3.4 shows the circuit
diagram of the filter together with its frequency responsec. The first
section is a parallel T tuned to 300 c¢/s and the other two are low pass
filters with cut-off at just over 30 c¢/s. The attenuation at 50 ¢/=
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could not be incrcased without increasing the attenuation and phase-
shift at low frequencies. Insufficient attenuation of 50 ¢/s pick-up

caused some difficulties with the derivative regulator,

The transfer function of the rectifier itself could not be
determined, It may safely be assumed, however, that the rectifier does
not introduce any time lags. The rclation between the A,C, input and
the D.C. output is shown in Fig. 3.5. The terminal voltage of the
alternator for operation in the region of a load angle is 110° is
approximately 145V (line) and thercfore the characteristic is
sufficiently linear, Because of loading of the filter the transfer
function of the unit cannot be taken from Fig. 3.5 and must be determined
when the system is in operationm. Its value is 0,193 (D.C. volts/ peak
A.C, phase volts.)

3.,2.2. The anologue compufor and the limiter.

A small analogue computer, with the following facilities was

used to simulate the various regulator transfer functions.

There are six operational amplifiers (high D.C. gain, low drift),
four of which may be connccted as integrators. There are eight
coefficient potentiometers and facilities for their accurate setting.
The input resistors are either 1 MQ or 100 kQ and the feedback ones
1 M2 thus allowing a gain of up to 10 per amplifier. A very useful
facility is a removable patch-board which cenables onc to change the
type of regulator by plugging-in a differcnt panel. The regulator gain
is sct on a precision decade potentiometer which precedes the last
amplifier, The frequency response of one of the amplifiers connccted
as an adder shows negligible phase-shift up to 1 ke/s and therefore it

is not necessary to quote it here.

The transfer function of a high gain amplifier with an input

impedance Zl and a feedback impedance Z2 is

}.7.9. = (=) Eg
v, ~ 7
1 1
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Thus for
1) Constant gain Z, = Rl Z, = R,
R2
2) One time lag 7. = 7. =
1 Rl 2 P 02R2+].
3) Integrator 7. = 7. = L
1 R1 2 P 02
1 R
4) Differentiator with D, = T = —
one time lag L p Cl 2 P C2R2+ 1

By combining these a large variety of regulator transfer functions may be

obtained.

The limiter consists of two pairs of Zener diodes connected back
to back. When the output of the regulator exceeds the breakdown voltage
of two Zeners, about 16 V in this case, these conduct and so the input
to the time constant regulator is limited. Normally rowever, the
Zeners are cut-off and the limiter may be considered as having a constant

attenuation. Its transfer function is then 0,385.

3.2.3. The rcgulator gain.

-+

The regulator gain is equal to the product of the component

transfer functions (see Fig. 3.1) i.e.
K KO = Ial x 0,193 x 0,385 x 0,5 = 0,0372 K_L

where K1 is the gain in the analogue computer, The units of K Ko

are volts/volt with V., Dbeing equal to the peak phase value. H(3N)

however, is expressed in per unit quantities and hence the regulator

gain in p.u. is,

- K, —286
KK = 0.03721 = 0.00414 Ko

/3 965



where

Ndw

Hence

57

the base A.C., wvoltage and

the base field voltage.

r
= () #F
mad
_ 1,89
= 0.0041% x &S=5TisE K

1

5-49 ¥
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L, THE FUNCTIONS A, ...
iik

The guantities Aijk are defined in Egns. (2.14) to (2.17) and are

functions of the operating condition as well as of the machine parameters,
It is apparent from Egns., (2.18) and (2.19) that Aijk
blocks" for both the Voltage and the Torque Feedback Methods., Before

are the '"building

proceeding to consider these two methods in detail it is advantageous

to investigate in the present section their constituent parts.

When damping and the effect of the armature resistance are taken
into account the expressions for Aijk are complicated and it is difficult
to draw useful conclusions. Therefore, at first, damping and the arma-
ture resistance are neglected and the simplified expressions are considered
algebraically. Then computed loci are introduced for the experimental

system at typical load angles for,

1) No damping.
2)  Damping but r neglected.
3)  Damping and r o The expressions for Aijk in this

case are given in Appendix II.

The last two are considered as modifications of the first. Power
is constant throughout at 0.8 p.u. (sec Fig. 1.2). For reasons that will
become apparent in section 6, four Aijk loci are considered in detail,
namely those for 5 at 80°, 110°, 140° and 165°. These loci are
shown in Figs. 4.1, 4.2 and 4,3,

In order to avoid cluttering-up the complex plots with the values
of frequency the following convention is adopted. The freguency for
three points only is shown, i.e. for the minimum frequency (usually zero),
the maximum (usually infinity) and for one intermediate value. The other
computed points are shown and the frequency values can be determined by
reference to Table IITI p,223 . This convention is used for all loci in

sections 4, 6 and 7 which involve frequencies.

When dealing with thesc functions it is useful to have the expressions
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for the operational admittancesin partial fraction form. For the deriva-

tion see Ref, 52-3,

ATy ATy
i = — mm——————————— 1" . JRST. S,
¥e(n) Yo+ (Y3 - 1) 3% ary ¢ vy - ¥4 13 T
(4.1)
j’}\TH N
i = "o
Yq(gx) Yq + (Yq Yé) 3777?5£%§'" (4e2)
Also
Py = SGA %na A+ T y) (4.3)
Xd(jx) re X, -+ ijé) a+ ijg) .

If damping is neglected the last term in each of Egqns. (4.1) and (4.2) is

zero and F(jA) is simplified to

X
F(n) = —2d L (4o4)
re Xd (1 + JkTé)

4,1  The Locus of A135.

Substituting Egns. (4.1) and (4.,2) into Eqns. (2.14) neglecting
damping, we have,

jiAT!
A135 = -|Q, + VY o+ VS Y., o+ VO (Y -Y) ———i——g——él

Qo g do "4d do "4 d 1+ jXTé
(4.5)

Thus the locus is a semicircle with diameter Vgo(Yé - Yd) and a time
constant of TY , see Fig, 4,1 full line. Since Vio =V sin 8 the
" diameter of the locus is rcduced as Gg is increased beyond 900. Also
Qo’
as shown in Fig. 4.k, A135(0) is rapidly increased at large values of §

the reactive power, becomes more negative as ég is dncreased and,

g

Define So and Sé as follows:
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s, = q vio T+ vio Y, (4,6)
t = 1 ,
So W * Vio Yq * Vgolyd (he?)
It can easily be verificd that,
3 1 \
oo S T MaS | as g (4.8)
A135 T+ j?\.Té_ = 1T .'p\Té say .

The functions S0 and S; are important gquantities in synchronous

machine theory. Substituting for QO » qu and Vdo we have,
vV v
— 0 2 (.1 !
S, = % cos &+ V° (5~ ~%~) cos 25 (4, 9)
d ] d
Vi v
Y = _.0.—.... .-:.l‘_- - .-.]-‘-.
s! X cos 8, * V@ ( X Xé) cos 28 (4410)

where Vé is the g-~axis component of the voltage behind the transicnt
reactance. The right hand sides of Egns. (4.9) and (4,10) are the well
known expressions for the slopes of the power-—angle curves for the steady
state and the transicnt condition respectively, see Ref, 47-1. The peak
of the steady power angle curve corresponds to the steady state stability
limit in the conventional theory. Hencec, when r, is neglected 65 is

calculated from,
S =0 (4s11)

The concept of a transient power-angle curve is used in approximate
transient stability calculationswhere the rotor flux linkages are assumed
constant, It is apparent that Eqn. (4,10) is obtained from Eqne. (4,9)
if X, dis replaced by X} . Corresponding to Egn. (4,11) let the value

d
obtained from

8Y = 0O (4,+12)
(]
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be denoted by 8! . TFig. L,4 shows the variation of S, and S! with
6g at P = 0,8 p,us Both curves tend to (-) infinity as Bg —> 180°,

If the effect of damping is taken into account, with r_ = still
neglected, the complcte expressions for Yd(jk) and Yq(jh) should be
substituted in Eqn. (2.14) to give,

AT I

d v v2 (yv - ¥

S + AT! 8¢
o d o ) a
1+ jkTa qo q qQ’ 1+ jkTa

Mt T TE T Vo (Ty - 1)

d

(4,13)

Thus the original semicircular locus is modified by the addition of two
semicircles of diameter Vo (YU - Y1) and Vo (¥" = Y ) and with time
do "d d qo g q
constants Tg and Ta respectively, In practice Ta and TH are
of same order and the locus of A135 appears as the sum of two semicircles

as sghown in Fig., 4.1, dotted line.

Since V 0 = Vm cos 60 the effect of the g-axis damper is small at
Bg = 80° or 110°. For both thesc angles then the locus of A135 is
approximately a plot of Yd(jx) to a different scale and to a different
origin, At & = 140° however, qu is larger than VdO and since
(Ya - Yq) is larger than (Y} - Yd) the effect of damping on the locus
is very significant. As 68 is further increased the transient semicircle .
is rcduccd and the effect of the g-axis damper predominates. Clcarly, the
effect of damping is a minimum when 68 = 90o and a maximum when 6g = 180°
or O, One of the significant changes brought about by damping is the
increase in the imaginary part of the locus at frequencies in the region
of 1 ¢/s.

The contribution of the r_ terms on A135(o) is small and it is
not obvious why it should changc sign between Bg = 110° and 140° « The
same applies to AlBS(aa) where the change of sign of the effect of r_
occurs between 1409 and 1650 « For frequencies in the region of 1 ¢/s
the imaginary part of A135 is consistently increased although by an amount
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smaller than that of damping alonc, The change on the real part of Al35
at 1 c¢/s, except for ég = 165O is comparable with the change produced
by damping atonec,

Fig. 4.1 shows thot the locus of A135 is considerably affected by
damping and ra » It should bc noted, however, that the critical frequencies
of the system are low and that the errors involved by neglecting damping
and r, s although significant, arc not as large as it may appear at first

sighte.

4y2 The Locus of A235.

Neglecting damping and substituting Eqns. (4,1), (4.2) and (4.4) into
Egn. (2.15) we have,

A = de Xc (QoXc * Vz) (Ido * quygz - C
[ ] - - '
235 re X4 Vto(l + JxTé) 1+ JATY

(4.14)

where ¢ dis defined here. The locus is a semicircle with '"time constant"

t
Td'
than 0,5 c¢/s to show the effect of damping and r, (see below). The rest
of the locus is a semicircle completely determined by A235(O) » a graph

Only part of the semicircle is shown in Fig. 4.2 for frequencies higher

for which is shown in Fig. 4.4,

(Ido + quYq) corresponds to OA in Fig. 2.1 and is therefore approx-
imately proportional to VO i.e., proportional to if e As ég is increased
above 90° (Ido + V_ Y ) dincrecases tending to + ® as 6g —> 180°
(QOXC + V2) is positive for small & _  but is continuously reduced as &
is increased. Thus A235(O) docs not change much until (QOXc + V2)
approaches zero, see Fig, L.h, The value of 6g when this happens is

important, From the phasor diagram, Fig., 2.1

QX + V2 = VV oCo8 (60 -8,)

o C t t

Thus A235 becomes zero when the angle between the infinite bus and the

machine terminal voltage becomes 900. Let the corresponding value of 6g
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be denoted by 61 . For the experimental machine § = 163.20, see Fig, L.k,

When damping is token into account the terms affected, see Eqne
(2,15) are F(jr) and (Ido +V OYq(jx) ). F(j\) is changed by the addi-
tion of two terms, see Eqn. (4.3? and for the frequencies in the region of
1 ¢/s the effect is mainly an increase of phase-shift with a small atten=~
uation. The change of F(jA) affccts all the loci for the four angles
in the same way, The effect of damping on (Ido + VqOYq(jX) ) depends on
the operating condition and again for frequencies in the region of 1 ¢/s
the change is mainly phase~shift with a small attenuation., For Sg = 90o
the change is in the opposite direction from the change in F(jir). Thus
for &, = 80° , see Fig. h.2n the differcnce between the full line (no
damping) and the dotted linc (damping is not large). For 6g :> 900 the
sign of qu changes and its value is increased as 5g increases. Hence
the difference between the two cases, with and without damping is increased,
see Figs, 4,2b and ¢, However Ido is also incrcasing with increasing
8, and Fig. 4,2d shows that the effect of damping for 6, = 165° is of

the same order as for 68 = 140°,

For the four cases quoted in Fig. 4.2 the effect of resistance is
to increase the phase-shift but to reduce the attenuation for a given
frequency. It should be noted thnt, although the effect of r_ =~ appears
at first sight to be insignificant, the phasor differcnce is approximately

the same as between damping and no damping.

L"QB The LOCi of A21+5 _q_n_?._ A11+5o

Consider A first, Neglecting damping in Eqn. (2,16) we have

245
A = - de Xc (qu * Xc Ido) - d (4.15)
e = TG F .
245 re X4 Vto(l + Jde) 1+ JATY
where d is defined here.  The locus, like that for A235 s is a semi-
circle with time constant T! ond tends to zero as A —> @@, Fig. 4.3

d

shows plots of A for the same load angles as before except that

245
68 = 110° is not included. It may be scen from Fig. 4.5, which shows a
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. _ o
graph of A245 against Sg , that at Sg = 110 AZ#S(O) happens to be

approximately zero.. Again only frequencics from 0,5 ¢/s are considered.
It may be deduced from the phasor diagram, Fig. 2.1 that

v + X T

90 7 ¢ do . s 6t (%.16)
to

Hence A245(0) is proportional to cos 8t and Fig. 4.5 shows, in effect,
how cos St varies with Sg o Apparcntly 6t increases, numerically as
8g is increased and has a moximum value when & is about 1500. Then

it is rapidly reduced and tends to zero as 88 —> 180°,

The only term affected by damping is F(3jr) » The dotted curves in
Fig, 4,3 show an incrcased phase-~shift with a small attenuation as before
with the Aszs locus (section 4.2). It should be noted that the locus of
A245 » irrespcective of the operating point, is the same as the locus of

F(j)\) to a different scale, i.c. the effect of damping is independent of

Sg'

Figs 45 shows that AZ#B(O) is reduced when the effect of r_ = is
included. The additional term containing the armature resistance includes
(Vdo - X, Iqo) , see Appendix II, Thus, from the phasor diagram, Fig,
2.1, the effect of the armaturc resistance is proportional to sin 6t .
Considering Figs. 4.3 a and b only it may be seen that the effect of r,
is approximately the same,. Since A245(O) has a different sign in each
case the effect of r_ ~on the magnitude of A245(jx) is to increase it
at 8 = 80° and to reduce it at 5, = 140° , for A in the region of 0.5
to l¢/s. The locus for Sg = 165° is considerably modified by r, as

shown in Fig. 4.3 c.

The locus of A145 is constont and equal to unity if r, is
neglecteds  Although Eqn. (II.4) shows that r, has some effect, in
practice unless r is very large it may be neglected. For the experi-
mental machine the worst case involves a phasor of magnitude 0.006+j 0.002.
Thus from now on A145 is assumed to be equal to unity.
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D ANALYSIS OF STABILITY BASED ON TORQUE FEEDBACK

The torgue feedback method forms the link between the conventional
approach to the stability of synchronous machines, using the synchronising
and demping torgues, and the method of small oscillations using the
Nyquist test. The unregulated machine is a special case of the complete
system with the regulator gain set to zero and can be analysed by both
methods. Since this section is intcnded to link the two approaches the
cffects of rotor damping and of the armature resistance are neglected.

Also only the simple regulator is considered.

Expressions for the synchronizing and damping torques for the
regulated machine are developed. Thesc should be useful when the
operational characteristics of a synchrenous machine with a voltage

regulator are investigated.

5.1 General Considerations,-

For the torque feedback method the system is represented by Fig.
1.5 and the open loop transfer function has been determined, sece Eqn.
(2.19). With the simple type of rcgulator that is considered in this

section K(j\) is 2 constant,

K(in) = K - (5.1)

Egn. (2.19) becomes,

AT Ayge * KE Ay
ATy e+ K K_ A

(5.2)
)

245
Fig. 1.5 has been drawn to agrec with the cquations and the forward and
feedback branches arc not physically separable, The action however,
may be visualised as follows. The disturbance is introduccd at AI%
and an error torque ATi acts on the machine inertia to produce AS

in the forward branch, AS in the alternator produces the
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celectromagnetic torque AT~ in the feedback branch. The difference

between the electromagnetic and the turbine torques is ZXTi .

The function @{(jA) , in Fig. 1.5 is given by

AT + KK_ A
sh) = g - A}BEKK e (5.3)
o 245

It is found convenient to plot the Nyquist locus in two steps

(i) Plot g(jn).

(ii) Dividc each point of the g(jA) plot by I2° to obtain
the Nyquist plot. It should be noted that this step introduces a
double pole at the origin and by scction AIII,3 the Nyquist locus
describes a full clockwise circle, with "infinite radius" as A goes

through zero.

Sel The System without a Regulator.

With K = O the open loop transfer function becomes,
AT .
R 15V f135 (5.4)
A i J7\2 J.}\2

It is shown in section 4,1 that, if the nrmature resistance and damping
are neglected, the locus of A135 is o scmicircle as shown by the full
lines of Fig. L4.l. It is oapparent from the expression for A135 s Bgn.
2.1L that A135 does not have any poles with positive real parts and
thus for the application of the Nygquist test P = 0O,

The locus of ¢(jr) for 68 = 80° is drawn, not to scale, in
Fig. 5.1 a together with the corresponding Nyguist locus. The (-1, O)
point is not cencircled by the latter and therefore the system is stable
for &, = 80°, TFigs.5.1 b and c show the g(jA) loci for 8, = 119°
and 140° respectively, together with the corresponding Nyquist loci.

In both cases there is one encirclement of the (-1, O) point and for
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both these angles the system is unstable, It is not neccessary to con-
sider the case 68 ==165° separately since the Nyquist locus has the
same shape as that for 6g = 140° and thereforc denotes an unstable

system.

The change in the Nyquist locus from that of a stable to that of
an unstable system occurs when A135(O) becomes positive, Thus the

condition of stability for the system without a voltage regulator is

i) o

viz:

S = 0 (50 5)

Comparison with Eqn, (4.9) shows that Eqn. (5.5) expresses the well
known result for the stability limit of an unregulated machine, see

Eqn. 4,11, Thus the Nyquist mecthod gives the familiar result. The
critical portion of the A135 locus is at low frequencies. The
presence of rotor damper circuits docs not, therefore, affect the steady
state stability limits of an unregulated machine, as is well known.
Moreoever, if the armature resistance is also taken into account the

expression for g(jr) becomes

g(in) = %ﬁé (5.6)
5

and it may be shown that the real and imaginary parts of g(jr) corres-

pond to the synchronising and damping torques as follows;

g(in) = - (KS+ Jn Kd) (5.7)

In fact Eqn. (5.6) may be obtained from the expression given by Adking7-6
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for Ks and Kd if the rate of change of flux terms are neglected,
See 2lso Ref, 52-3,

In the conventional theory for stability KS :) 0 and this is of
course the samc as ¢(0) <i 0 which is the result obtained from the
iyquist method.

It may be noted here thot Ks and Kd are used for studying
hunting of synchronous machines, If both KS and Kd satisfy certain
conditions then hunting is not possiblec. It can be shown that the same
results may be obtained by the Nyquist method as applied in this section,
The term hunting is conventionally applied to loss of steady state
stability when there is no excitation regulator and this usually occurs
at light loads. In this sense hunting lies outside the scope of the

present investigation.

5.3 The System with a Simple Regulator,

The function ¢(jr) is given in Egn. (5.3). If we substitute
for Aijk from Egns. (4.8), (4,14) and (4.15) we have,
(a + K K, c)+ jrb
(1 +K K, d)+ AT

: (5.8)
d

g(3\)

Egn. (5.8) has the same form as Eqn. (4.8) and the locus of g(jr) is

a scmicircle for A =0 —>= o, Also

; = B = -
g(j o) = 77 A135 (j @)

i.e. the infinite frequency point of ¢(jA) is not affected by the

presence of a regulator.

Before applying the Nyquist test to the locus of g(j\) the

possibility of poles with positive real parts must be investigated.
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From Egn. (5.8), if KK d <El then therc is onc such pole, i,ee P =1
(sce Appendix III), With the parameters of the experimental machine
however this occurs at very high values of K and for the following dis-

cussion it is assumed that P = O,

Figs. 5.2 and 5.3 show plots of g(jA) for 5, = 80° and 110°
respcectively for various values of K . The effeect of increasing ‘the
gain is to shift the zero frequency point of the locus to the left,
Considering Fig. 5.3, as thc gain is incrcased @(0) is reduced until
it becomes negative, e,g. 2t K =5, The position of the ¢(jn) locus
is then the same as Fig. 5.1la and therefore the Nygquist locus shows no
cneirclement of the (-1, O) point. Hence the system is stable for
this value of X ., If, however the gain is further increased there

comes a time when,

#0) < 8 o)

and the locus of ¢@(jA) goes over to the second guadrant, e.g. for

K =15, Fig, 5.1d shows that the Nyguist locus corresponding to this
case encircles the (-1, O) point twice and hence the system is unstable.
Thus, for 8g = 110° the rcgulator stabilizes the system only for a
definite range of values of K . PFige. 5.2 shows that for large values

of gain instability occurs even for & = 80° s €.go for K = 150.

g

Although a more detailed study for various load angles is deferred
until scction 7, it is worth pointing out here that as Bg is increased
the infinite frequency point of @(jA) moves to the right and eventually
becomes positive, When this hoppens it is no longer possible to
stabilise the system using a simple regulator with constant gain.

Clearly this occurs at Bg = Bé.

The concepts of the synchronizing and damping torques may be ex-
tended to include the regulated machine. To avoid confusion with the

unrcgulated machine the 2nd suffix r is used,
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A155+ K (3\) K A2§5

K_+ \NK, = - R
sr dr 1+ K (5\) K, A245

= = (i) (5.9)
Thus Fig. 5.2 and 5.3 are plots of - (Ksr'* Kdr)' The action

of the regulator may be considercd aimply as increasing the synchronizing
torque while at the same time reducing the damping torque. For Sg = 110°
and K = 0 there is a negative synchronizing torque and a large damping
torque. As the gain is increased the synchronigzing torque becomes less
negative until eventually it becomes positive, and the system is then
stable, Incrcasing the gain further, the synchronizing torque is in-
creosed, and at the same time the domping torque is reduced. Ultimately
the damping torque becomes negative, @(jA) locus has a positive
imaginary part and instability occurs. This argument may be thought

of as a proof of the following statement by Dohertyes‘l. "The
regulator affords increascd synchronizing power, but does so at the

expense of positive domping'.

This process is illustrated very well by experiment, sec section
S.1. If the gain is low the machine goes out of step soon after Sg = 88,
when the gain is increased the machinc operates stably up to a maximum
angle about Bé s 1f the gain is further increascd the system develops

large oscillations of stable amplitude at an intermediate value of Sg .

It should be noted that the only Nyquist locus implying a stable
system is Fig., 5.1a and it corresponds to both Ksr and K,  being
positive, In general, however KSr :) 0 and Kdr :> 0 1is not a
sufficient condition for stability and cannot be used to replace the

Nyquist test,

The torque feedback method is an important link with the existing
theory and an introduction to the morc useful voltage feedback method.
It suffers from one major disadvantage, that the coffect of changing the
regulator parameters is difficult to visualize. A change of gain

requires a nocw calculation. Although this moy not be so cumbersome
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when damping is neglected, the task becomes more difficult if the
cffects of damping and armature resistance are taken into account,
and still morc when dealing with regulators, for which K(p) is a

complicated function.

Another difficulty with the torque diagram concerns the ex=
perimental verification of the theorye One could conceivably inject
small oscillations in the torque of the prime mover and measure changes
in load angle and electrical power output of the alternator. It is
casier, however, to inject a voltage into the excitation system and to

measure the voltage fed hack by the regulator itself,
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6. THE ALTERNATOR TRANSFER FUNCTION.

The present section is devoted to the shape and salient features
of the transfer function of the alternator when the system is analysed by
the Voltage Feedback Method. For reasons stated at the end of the last
Chapter the Torque Feedback Method is abandoned and from now on the term
alternator transfer function refers to that obtained by the Voltage
Feedback Method.

The expression for the alternator transfer function is complicated
and in order to determine the frequency response loci for the complete
system including the armature resistance and damping recourse must be
made to graphical and numerical work, A1l computations and numerical
results quoted refer to the experimental machine, the parameters of
which are given in Table II p.222. ., It should be repeated here that
the machine is assumed to operate at 0.8 p.u. power and that the

infinite bus voltage is 1 p.u.

The expression for the frequency response locus is considerably
simplified if the rotor damper circuits and the armature resistance are
neglected. As before the procedure is first to examine the conditions
algebraically with this simplification and then to consider the re=
lation between the formulae and the shape of the locus. The rotor
damper circuits and the armature resistance are then considered as
modifying the simpler frequency response locus obtained when their
effects are neglected, It is required to determine the nature of
such modifications., In order to do this the functions Aijk are
combined together to form the loci for the numerator and for the de=
nominator of the alternator transfer function. These loci are plotted
for the three cases namely, a) without damping, r, =0, B) with damp-
ing but with r_ =0 and c) with damping and including the effect

of r_ .
a

It is convenient to define two new symbols. Let L(jA) be the
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open loop transfer function of the system i.e.

AVt
L(5p\) = —— K, K(3n) 6.1)
fe
and let
AV
t
H(jA) = === K (6,2)
AV&e 0

i.e, H(iN) is proportional to the alternator transfer function. Since
K0 is introduced for convenience, see section 2.2, and affects only
the units, H(jA) may be referred to as the alternator transfer function.

Hence

2
re A235 + A245J N

. . (6.3)
Xoa & Azs T A M

H(3\) = =

6.1 The Locus of H(iA)

Figs. 6.1 to 6.3 show several frequency response loci of H(jA).
The computation would not have been possible except by means of a digital
computer. Details of the programmes need not be considered here. It
is sufficient to say that the first stage of the computation gave the
funetions A:.ij and H(jA) was obtained from them.

A complete family of H(jr) loci for load angles from 60° to
165° is shown in Fig. 6.1. Damping and armature resistance effects
have been included, These are the main loci used in the subsequent
calculation of the stability limit with different regulators. Since
the algebraic analysis can only be made if both the rotor damping and
the armature resistance arc neglected Fig. 6.2 shows a comparison
between the three cases for selected angles, The region round the
origin is not clearly shown in either figure and so an enlarged plot is
given in Fig. 6.3, The importance of this region liees in the fact that,
for angles less than 70° the H(j\) does not cross the negative real axis.
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Let the H(jA) locus intersect the negative real axis when
A= Xl . This is an important quantity and it will be shown later
that it corresponds to the natural frequency of the system when K(p)

is constant.

It is apparent that the following changes take place as the load
angle Sg increases. The values of 6g when some of the changes
occur correspond to symbols already defined in section 4.  These are
given here, although the connection is not so spparent. Thus at

a point between:

a) 700 and 80° the locus intersects the negative real axis.

Define 8k

b) 80° and 90° H(O) becomes negative, The tramsition occurs

when & =8 .
g S

as the value of 6g in this case,

¢) 130° and 140° H(jA) does not intersect the negative real

axis, except when A =0 . This occurs when & = §' .,

d) 160° and 165° H(O) becomes positive once again. & is

g
then equal to 81 .

The discussion of the significance of these changes on the

stability of the system is deferred until section 7.

6.2, Algebraic Analysis.

Any analyticel investigation must be confined to the case where
damping and the effect of the armature resistance is neglected.  When
this is done substitution of the expressions for Aijk from Egns. (4.5),

(4.,14) and (4.15) into Egn. (6.3) results in

2 2]
X, [ (QO X+ V )(qu st vqo) - xq(v ~ X I do) I\

(6o1s)
? . 2
Ve X [Jx - S - PTLST - )]

H(j\) = -
£
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From the phasor diagram Fig. 2.1 the following identities can be deduced:

fELI cos @ X P
qu * Xq Teo = sin & = Vsin 5, (6.5)
V@o * X, Iy, = V. cos 8 (6.6)
Q X, +V = VV,_ cos (8 -38,) 6.7)

and when these are substituted in Egn. (6.4)

2 .
XC (% cos(6o - Bt) - J A° sin 60 cos 6%}

(6,8)
24 ATY(S! - 3 xz):)

H(jn) =
sin & X (% -Jd A
o d\_o
The threce most important features of Figs. 6.1 to 6.3 are

(1) The value of H(jr) at A =0, i.e. H(O) .

(1i) The value of H(jA) at the second intersection with

the real axis i.e. H(jkl).
(iii) The natural frequency ll .
Expressions for these may rcadily be obtained from Eqn. (6.8).

6.2.1 The Alternator Transfer Function at A = O,

Letting A = O in Eqn., (6.8) we have,

X Pcos (& =~ 8,)
H(0) = -2 o ¢t (6.9)

Xd SO sin 60

(60 - Bt) is the angle between the infinite bus and the machine terminal
voltage, For Bg in the range 700 to 140° , (60 - Bt) varies
from 15.5° to 26°. Thus cos(&o - st) may be considered as constant

in this region. It is apparent that H(O) changes sign when 5,=0
i.e., when Bg = BS. Also as Bg —_— Bs, H(O)

> @
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If saliency is neglected,

v VO cos 60
SO = _X.E- coSs 50 =P pcyy 60 (6.10)

Hence, very approximately in the region 700 to 140° at P = 0.8 Pela

-~

~ 1
(o) = cos 60 (6.11)

where a, 1s a positive constant dependent on the machine parameters

1
and on cos(éo - 5t) .

As & _ 1is increased the only term that changes sign is cos(&o - St)

i.e. H(0) Dbvecomes positive again when
cos(8_ - 8.) = O (6.12)

This implies that the angle between the terminal voltage and the infinite
bus is 900 and the corresponding value of 68 is 61 , 8sec section

4.2. For the experimental machine 61 = 163.20.

Since Egns. (6.9) to (6.12) refer to A =0 they are valid for
the case where damping is taken into account. They are approximately

valid, however, when T is included.

6.2.2 The Natural Freguency Kl.

The frequency at the second intersection with the real axis is
obtained when the imaginary part of the denominator of H(jA) in Egn.

(6.8) is set to zero i.e.

2 _
JA o= 8! (6.13)
la€e
SI
= 2.
7‘1 a J



102

Fig. 6.4 (simple regulator case) shows A, as a function 8, when
damping and r,  are included. It is apparent that Xl does not change

much for &, in the region 80° to 120°,

When 8! <: 0 the H(jN) locus does not cross the real axis,
except when A = O, The value of 6g when this occurs is given by

Sl = q + Ve Y 4V Y=0 (6.14)

T

o Qo g do "a

and comparison with Eqn. (4,7) shows that 68 =8l , at the pesk of
the transient power angle curve.

It is interesting to note that Eqn. (6.13) occurs in investigations
57~6 52=3

of synchronous machine hunting, see e.g. Adkins or Laible

6.,2.% The Alternator Transfer Function when A\ = Xl.

Substituting Bgn, (6.13) in Eqn. (6.8) we have,

Xc (% cos(&O - St) - 8! sin 80 cos St:)
NP
Xd V2 (Yé Yd) sin 60

(™) = - (6.15)
H(jxl) docs not "exist" for Bg :) 6é. For the experimental machine
in the region 6g from 100° to Bé the second term in the numerator
is less than 20% of the first term and so

X P ces(d - 6t)
< 2 (6,16)

H(in,) =
1 X, Ve vy - Yd)sin36o

since cos(&0 - 6t) is approximately constant, see section 6.2.1,

%2
Bjh) & —— (6.17)
sin”8
o
where a, is a positive constant., For the region 70° to 100° the

second term in the numerator cannot be neglected, In fact when
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6g (: 71.50 H(jli) becomes positive, sec Fig. 6.3, because

2
hass * s Iy O
Combining Eqns. (6.9) and (6.,16),

. 2
H(0) ) V2 (Yé - Yd) sin 60 (6.18)
Hijl) ~ SO *

From Eqn. (6.10)

- .5
o) . v (¥4 - ¥,) sin”8_ .19
HZjllj P cos 80 *

Hence, for P = constant, the ratio H(O)/H(jll) is rapidly reduced
as 68 increases beyond 90° , It should be noted that when this

6]

ratio becomes unity the H(jA) locus no longer crosses the real axis.

From Egn. (6.18) this occurs when

2.
s Ve (¥} - ¥,) sins_ = 0

i.e. when

St = 0
o}

which is the same condition as Eqn. (6.14). No approximation is involved

since the second term in the numerator of Eqn, (6.15) is zero.

6.3 Application of the Inverse Frequency Respounse Locus

The general shapc of the H(jr) locus may be investigated using
the inverse frequency response locus. If the J lz term in the

numerator of H(jAn) in Egn. (6.8) is negleccted then,

1/H(jA) = C [E; -T2+ AT (sg -J xzi] (6420)
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where C is a positive constant. Fig. 6.5 shows a plot of 1/H(jA)
for -8 = 110° and the curve may be divided into threec scctions, AB ,
BC and CD . Comparison with Fig. 6.1 shows that they correspond to
the following portions of the H(jA) locus.

AB is obtained for small values of A when the XZ terms are
small, It is approximately a straight line giving on inversion the large
semicircle on the H(jA) locus. The "time constant' of the semicircile
3 1Qt

CD is obtained for lage values of A when the KZ terms predominate.
It is approximately another straight line further away from the origin
than AB and thus givesthe small circle in the H(j\) 2locus. The

centre of this circle lies on a linc at an angle =y with the real axis.

BC is the transition betwcen the two straight lines, i.e. the

two circular parts of the H(jA) locus.

OA and OE are 1/H(0) and 1/H(jxl) respectively. It is
apparent from Eqn. (6,20) that the 1/H(jA) locus does not intersect
the real axis when Sé (i 0. The inverse Nyguist test, as described
in Appendix III can be applied and a new family of transfer functions
calculated. The inverse plot, howecver, is not stationary as AN —> ® ,
and this results in certain complications making its application un-

profitable as far as the determination of stability is concerned.

6.4 Geometrical Analysis of the H(jrn) Loci.

When thec effects of rotor damping and of the armature resistance
are taken into account the expressions for H(jA) become very long and
the algebraic analysis impossible. One way of proceeding would be to
meke several calculations, using the digital computer, of the fregueacy
response locus of H(j\) changing thc various parameters. It is con-
sidercd however, that by decper probing into the constituent parts of
H(jn) it is possible to make more general deductions on the nature of

the system.
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The effect of demping and r_  on the loci of Aijk functions
has been considered in Chapter 4. These functions are now combined

together to form the numerator and the denominator of H(jA) .

6.4.1.Plots of the Numerator and of the Denominator of H(3N).

Fig, 6.6 shows the loci obtained with & = 80° , 110°, 140°
and 165° for the numerator and the denominatgr of H(jA) . Again
three cases are considered as indicated on the figures: a) without
damping, b) with domping, r =0, and c) with damping and T e
Since the numerator of g(jx) is (—)(A235 +J xa A245) and the
denominator (A135 + J 2 A145) Fig. 6.6 is derived directly from
Figs. 4.1 to 4.3, TFor the numerator plots only points for A/2=
greater than 0,5 c/s arc shown, c.f. Figs. 4.2 and 4.3, It should be
noted that the scales for the numerator and the denominator are different

as shown on each figure,

It is clear that the H(jA) loci may be obtaincd from Fig., 6.6.
If two straight lines are drawn from the origin to the numerator and the
denominator curves for a given A then IH(jx)‘ is the ratio of the
lengths of the two lines and Arg H(jA) is the difference of their

argument.

A245 changes sign at about 110° and again at 160° , sec Fig.
4,5, Comparison between Figs. 6.6 and 4.2 shows that the effect of the
Aoys I A% is small for 8, = 80°, 110° and 165° but significant for 140°,

As AN —> @

2 = an°
( )(A235 + J A A245) > - jo ag 80
—_— + joO 6g = 1100, r, neglected
— = jo® & =110°, r_ included
g a

—_— 4 jo & = 140°

—_— - jo & = 165°
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The effcct of damping on the numcrator locus is to increase the
phase=shift with respect to the zero frequcncy point and at the same time
the amplitude is slightly reduced, When T is included both the phasec
shift and thc amplitude are increascd, It was stated in section 4¢3
that A145 may be taken as unity. Hencc the imaginary part of the
denominator ié the same as the imaginary part of A135 . Thus the
effects of demping and r on the shape of the denominator locus are
implied in the A135 locus, see section 4.1 and need not be considered

here,

Since the denominator locus does not cross the negative imaginary
axis the phase-shift and attenuation introduccd by the denominator are
progressively reduced as Sg is increased, Thus for 6g >> 6; the
H(jA) locus becomes more and more similar to the numerator locus i.e,

essentially a semicircle.

6.4,2 The Effect of Damping on H(jkl) and xl .

Discussion here is necessarily limited to the angles for which the
H(jn) 1locus intersccts the negative real axis i.e. for 6 <: 6' .
For both Figs. 6.6a and b the argument of (- )(A235 + J A ) in the region

of A is nearly equal to 90 and does not change much with fre-

1
guency. Hence

2
T35 T T 1 fals (6.21)
Imog. Part of A135(jX1) *

H(jxl) =

It is shown in Figs. 6.6a and b that the magnitude of the numerator is

not greatly affected by damping. Hence Eqns. (4,14) and (4,15) may be

used and
c+dd xi c+dd Xi
Aygp (i0) + 0 7‘1 AN = 753 o e (6.22)

where 1t was assumed that (XlT')a :> 1. If, in addition,

(n T") \\ 1 and (0 T") << 1  then,
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Imaginary Part of A135(jk1)

= - 1 - - \1‘2 - fo ! VZ
B lxl T (Yé Yd) v (g Yé)kl Ta l do (YA Yq)kl Ta qo
(6.23)

Both Figs. 6.6 a and b show the contribution of damping to the
imaginary part when the denominator locus intersects the negative
imnginary axis. Since the magnitude of the numerator does not change
much with damping it is apparent from Eqn.(6.21) that when damping is
included H(jkl) is reduced. This is shown clearly in Figs. 6.2 a
and b.

Egn. (6,22) shows that part of the denominator is inversely
proportional to T! ond Figs. 6.6 a and b show that this part is about
1 of the imeginary part of A135 . Small changes in Té therefore
have little effect on H(jkl) . If T}
than H(jxl) would be reduced and thus H(O)/H(jxl) would be increased.

This important ratio (sce section 7.1.1) will also be increascd if,

could be made much larger

for the same Sg , damping is made morc effective i.e. T; s Tg ’ Yg
and Y; .are increased or if Xl could be increased. One way of
reducing kl is by increasing dJ.

The effect of damping on the critical frequency xl is not very
e s . 2
13 . s C - + i -
51gn1f1c1nto ince the argument of ( )(A235 I M A245) is approx
imately 90~ we have from Figs. 6.6 a and b.

J xi ® Real Part of Ay (i)

c.f. Eqn. (6.13) for the casc without domping. In the cxperimental
machine 11 is low so that damping does not affect the real part of

A135 to a great extent and,

Real Part of Abs(j)xl) = S!



114

Thus the real part of A135(jx1) is dependent on Yé » Hence reduction

of Xé increases Xl » Since Xé s however, includes Xc s the line

reactance, the machine transicnt reactance must be reduced considerably
in order to have any effcct. Small changes in Té do not affect Kl )
but if the rotor damping is made morc effective then hl will be

increased,

> E (= i (= j (= L ]
6.4.% The Bffect of Damping and r__on H(0) , H(JJ\._L) and Ay

H(O) depends only on A235(O) and A135(O) and obviously is not
affected by damping. As statcd in section 4.1 the effect of T is
to reduce A, (0) for Sg = 80° and 110° and to increase it for

25
Bg = 140° and 165°.  Also A235(O) is increased when r is in-
cluded for Bg <i 81 and reduced for Bg :> 61, see section L,2.
The net result is that H(0) is numerically increased when r, is

taken into account, the incrcase being maximum about Bg = 120°,

The effect of r_  on H(jll) and %y is shown in Figs. 6,6 a

and b, Considering xl first it is clear that it is increased

because the real part of A135 is numerdcally increased. The imaginary
part of the denominator is also incrcasced by a small amount. Thus

one would expect a reduction in H(jkl) since the numerator is in-
versely proportional to xl , sce Eqn. (6.22). The numerator, however,
is also increased when r, is included and thus H(jkl) is increased

only by a small amount, sece Figs. 6,2 a and b.

It is not possible to make general commcents on the effect of r,
and domping on the shape of the numerantor and the denominator plots for
6g = 140° and 165°, since there is no frequency corresponding to A e
It should be noted, however, that the effects of both damping on its own
and together with r_ =~ are more pronounced, especially for Sg = 1400,

see Figs., 6.6 ¢ and d.

It should be pointed out that some of the transition points
considered in section 6.1 are affected by r o but only to a small

extent, The only significant change is in the value of 6é which is
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132° or 133.8° depending on whether r is neglected or included res—

pectively,

6.4.4 Analysis of the Componcnts of the Numerator and of the Denominator

of H(jA) Using a Phasor Dingram.

Fig. 6.7 shows a phasor diagram of the constituent parts of the
numerator and of the denominator of H(jr) for a) no damping b) damping,
r =0 and c) damping and r , at Bg =110° .  The value of WN/2x:
chosen, 0.9 ¢/s is near the critical frequency. Again as in Fig. 6.6
the scales above and below the real axis are differcnt, It should be
noted that, since the load angle is kept the same the rcactive power is
slightly changed when the armature resistance is included, but this change

is not shown on the diagram,

Consider the numerator first. The increase of phase shift when
damping is introduced and the increase of amplitude when the effect of
T, is included are both shown. The contribution of the J szZQS

term is negligible. As has already been pointed out, however, see

Fig. 4.5 this is due to a coincidence.

Turning now to the denominator, phasors oa , ob and oc
correspond to A135 for eacg of the three cases a, b and ¢ respectively.
Wgen damping is neglected qu Yq is real and the imaginary part of
Vio Yd(jk) is smaller than when damping is included. The imaginary
part of A135 is further increased when the effect of the armature
resistance is included but only by a small amount. The effect on the

real part is more significant, see phase ¢b .

Since the H(jA) locus intersccts the negative real axis when the
numerator and the denominator phasors are 180° apart, it is apparent
that the effect of damping and r, is to increase xl . Also the
increase in the mognitude of the denominoator, when damping and r ~are
included, is greater thaon the corresponding increase in the numerator.

Hence IH(jxl)I is reduced,
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7a DETERMINATION OF THE SY3TEM STABILITY LIMIT,

In the present section H(j\) is combined with K(jA) and the
stability of the system is investigated by means of the resultant open
loop transfer function. It is considered advantageous to start with
a regulator having a constant transfer function, i.e. with the simple
regulator. The H(j\) plots may be used directly for determining

stability and the discussion is considerably simplified.

The next step is the application of the method to regulators used
in practice, It is difficult, however, to select typical regulators
because of the enormcus variety of different arrangements and secondly
because of lack of information on the values of the parameters. Thus,
before proceeding, it is necessary to consider an extensive review of

practical regulators.

Strict classification according to the form of the transfer
function is found impracticable because it leads to too many types
having similar behaviour. Also as Fig. 6.1 suggests we are mainly
interested in the phase-shift and attemuation of K(j\)for A/2n up to
about 2 ¢/s . Hence regulators are classified according to the position

of the K(jA) locus in the complex plane for this range of frequency.

A typical example from each class is then chosen for a detailed

investigation on the stability of the system.

7al The Simple Regulator.

When K(p) = K the locus of the open loop transfer function,
L(j\) is the same as that of H(jA) to a different scale, determined
by the value of K . The Nyguist criterion can be applied to the
H(j\) locus if the (-1, O) point is thought of as moving on the

negative real axis depending on K .,

Before applying the Nyquist test, however, P , the number of
poles with a positive real part of L(j\) must be known, see Appendix III,
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2 . .
The numerator, K K (A235 + A245 J 2°), has no such poles since it

contains only terms of the form (1 + jAT) in its denominator, Hence
P is the number of zeros with a positive real part of (A135 + dJ kz)-
As described in Appendix III, a plot should be made of A135/J Kz for

A== 3> 0 >  + @, The number of encirclements of the

(-1, 0) point gives P . Such a plot, however is shown in Figs.
5.1 a, b and ¢ and was used to investigate the stability of the unre-
gulated machine by the torque feedback method, sec section 5.2. The
fact that damping was then neglected does not affect the conclusions
since the deciding factor is A135(O) . Also the effect of r_ is
merely to change the value of A135(O) » but otherwise the following

conditions are valid.

P

|1
o
Hy
[®]
=
log]
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The system is then stable if the L(jA) locus,
(i) does not encircle the (-1, 0) point for 6g<: 68 and

(ii) encircles the (-1, O) point once in a counterclockwise

direction for & :) S
g s

It should be pointed out that this result merely states that the
system is unstable on open loop, i.e. without a regulator, for 68 :> 65.
It is necessary, however, to establish that there is only one unstable
root so that the correct number of encirclements may be established,

No proof of this important result could be found in the literature.

three four
The significance of the four of the five transition points of the

H(jn) locus discussed in section 6.1 is now apparent. The meaning

of the fifth point viz. 6, is discussed in section 7.3.3.

1

a) For 6g << & P =0 and H(jx) does not cross the negative
real sxis. Hence the L(jA) 1locus does not encircle the (-1, 0) point

regardless of the value of regulator gain and so the system is always
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stable, This result is of no practical value since at high frequencies
the regulator transfer function is bound to have some phase-shift and a

sufficiently high gain will always cause instability at any value of 68 N

b) For 5k< 6g < 5, P =0 and if the gain is high enough
the (-1, 0) point is encircled in a clockwise direction resulting in

instability at load angles for which the unregulated machine is stable.

¢) For & <: B << 8t P = 1. The L(j\) 1loeus cncircles the
5 g IS

(-1, 0) point once in a counterclockwise direction if
‘ K, H(0) l :> 1/K >> l K_ H(Jxl)l

i.e, if the (-1, 0) point lics between the first, at A =0, and the
second, at A = kl intersections with the real axis. Thus the system
may be stabilizred with a suitable choice of gain.

4) and ¢) For &, :> 8! P =1, Since the H(j)) locus does not
cross the real axis it is not possible to encircle the (-1, 0) point

with any value of gain. The system is thus unstable for 211 K .

It is desirable to define Kmin and Kmax as the limiting values
of gain and to extend the definition for any type of regulator, Thus

for the simple regulator,

Knin = K K(0) (7.1)

1
K = ' " (74-2)
max KOH Jkl

7.1.,) The Stability Limit Curve with a Simple Regulator.

Fig. 7.1 shows Kmin and Kmay as functions of 6 obtained
from Fig, 6.1. From the last section Kin 15 defined for 5 :} S
and K for 8! > 5, > 8. It is clear, hovever, that K

has ho slgnlflcance for 5 >> 5' .« Nevertheless the two curves are
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distinct and there is a discontinuity at their intersection, which

' . = a
corresponds to 68 . Kmin has two asymptotes at Sg 6, and ﬁl
and Kmax one asymptote at Gk .

Ignoring the part of Kmin for Gg :) Gé the two curves give
the stability limit against the regulator gain. Define KSS as the
gain resulting in the maximum extension of the steady state stability
limit, again applicable to any type of regulator. Clearly for the

simple regulator

From Equns. (6.9), (6.11), (6.,16) and (6.17) for constant power
and V we have,

Xd SO sin 60
Kmin = KO XC P cos(&o- Gt) (7.3)

J. cos &,

1

) X, Ve ¥y = ¥,) sinBSO

max K X P cosld = 8,) (7.4)
o ¢ o] t

35
Q

0 sin

i.e, in Fig. 7.1 K . is a2 cosine curve and K approximately a
min max

sine cubed curve respectively,

Let G denote the ratio K /K . . It is desirable to have a
mox’  min

large G for two reasons: a) The regulator gain may be set between
K. and K and if G d4is large., K will be sufficiently removed
min max
from the stability limit. Alternatively, referring to Fig. 6.1 the
further the Nyquist locuslies from the (-1, O) point the more stable

O~ . .
the system, see Thaler and Brown6 ll. For this reason G 1is referred

to as the stability ratio. b) As will be scen in section 8.2 good steady
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state regulation requires a large value of Kmax . From Egn. (6.19),
for the simple regulator
. 3
|
v (Yd Yd) sin”8

P cos &
0

G o

i.e. the stability ratio is rapidly reduced as Bg is increased beyond
0
90,
The effects of damping and T have been discusscd in section 6.

Fig, 7.1 shows that Kmay is mainly affected by damping and Km by

rooe Of the four angles shown in Fig., 7.1 only 6é is affecteénto
any extent when r is included see section 6.4.3. None is affected
by damping only, The same symbol is used when r, is included although
the values are slightly differecnt. It should be pointed out that the
value of G at §g= 110°  when damping and r = are included is about

65% greater compared with the no damping case.

71,2 Kinds of Instability and the Natural Frequency of the System.

As has been stated, when K is less than Kmin the Nyquist locus
does not encircle the (-1, O) point. Thus if Z and P arc the
zeros and poles with a positive real part, Z ~P =0 and since P =1
for 8g :) 85 then Z =1, Thus the system has one unstable root and
this necessarily must be real. The loss of stability therefore is aper=

ilodic corresponding to a term eat where a 1s a positive real quantity.

Similarly if K is greater than Kmax the Nyquist locus encircles
the (-1, 0) point once in a clockwise dircction. Hence Z - P = 1 and
again for Bg :> 65 P=-1 and thus 2 = 2, The sudden appearance
of two roots suggests that they are complex conjugates and therefore
instability for high gain is associated with some form of oscillation
corresponding to a term eBt sin ¥yt with B, ¥ positive real gquantities.
In fact it may be shown that in this case the roots are complex, see
Ref, 64-2, The two kinds of instability are illustrated by experiment

see section 9.1,
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When K = Kmax 3 =0 and ¥ = 7\1, i.e. any oscillations set up
are not damped out. Thus by comparison with z second order system Kl
may be termed the natural frequency of the system for the simple regulator.
The expression for Kl and the cffects of damping and r on its value

have been discussed in section 6.2,3, 6.4.2. and 6.4,3,

7+1.3 The Ultimate Stability Limit with a Simple Regulator,

The limiting value of &g for which the system may be stabilized
with a simple rcgulator is given by Eqn, (6.14) and as has already been
pointed out the value is at the peak of the transient power-angle curve
Sé . Thus the following situation oxists. An alternator without a
voltage regulator becomes unstable when the slope of the steady power-
angle curve is zero. If the alternator has a simple regulator with
the optimum value of gain the stability limit is reached when the slope
of the transient power-angle curve is zero, Thus the action of the
regulator may be thought of as maintaining the voltage behind the

transient reactance constant.

Although the present investigation is mainly concerned with opecra-
tion at a fixed power, the locus of the uwltimate stability limit is an
important result and is shown on the Power Chart, Fig. l.2. Substitution

of Q , Vg and vqo in Eqn. (6.14) yields,

Ve sinod

¥y - Yq) =0 (7.5)

cos 80
It should be pointed out that the value of KSS required to achieve this
stability 1limit depends on P . If saliency is neglected Egn. (7.5)
may be obtained from Egn. (6.19) when H(O)/H(jxl) =1, As may be seen
from Eqn. (6.14) for = synchronous capacitor the load angle is zero and

the stability limit becomes

o = -y

showing that no improvement is obtained at zero power (sece Fig. 1.2),
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7+2  Review and Classification of Regulators Used in Practice.

The literature contains a very large number of papcrs describing
practical arrangements of voltage regulators. With only a few ex-~
ceptions the regulators can be classified into four main types depending

on the locus of K(j\) at low frequencies (0 to 2 c¢/s), as follows:

(i) Constant transfer function produced by rectifier

excitation systems,

(ii) Delay or lagging regulators corresponding to a

separately excited exciter.

(iii) Integrator or 'buck-boost" regulators for which there

are several connections, see Fig. 7.2.

(iv) Derivative or leading regulators combining lst, and 2nd

derivative as well as proportional signals,

Sections 7.2.1 to 7.2.4. deal respectively with the most important
contributions for each type. Papers describing rcgulators not actually
used on large machines are not considered. In order to avoid writing

the transfer function each time the following general expressions is used

1+ pTa)(l + pTB)(l tkpt kBpa)
2
)

K(p) = K (7.6)

(1 + pT, ) (1 + PTa)(ko+ kK, P+ kyp

Only the paramcters mentioned are prescnt, the others béing zero or
negligible, For examplec quoting Tl and T2 implics a two delay
regulator with no stabilization.

Details of components and the connections used are considered
only in order to estimate the magnitude of the time constant involved,
However, in many cases there is rm element of doubt as full details of

the transfer function are not often given.

There are several reviews of excitation systems dealing with

several types but without introducing any variations. The most important
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of these are Gray and Fenwick57-l; Krochmann6o_6; Achenbach60-7 and

2=

Hefermann6 . Practical aspects of design and construction are given
in Zavalishin and Glebov63~4 and Easton64-4. The last deals mainly
with a.c. exciters having rotating or static rectifiers as well as with

controlled rectifiers.

7.2.1 Practical Simple Regulators.

The simple regulator has alrcady been defincd as having a constant
transfer function. For our purposes it is sufficient if, in the region
of AM2n =0 to 5 ¢/s the maximum phase-shift and attenuation are
45°  and 3 do respectively, Referring to Eqn. (7.6) if 'I‘1 only is
present it can be up to 30 msec.

The only way of achieving this is either by a controlled rectificr
or a purely magnetic amplifier system, Feedback round a rotating
amplifier is also a possibility but there is no indication in the
literature that this degree of compensation is uscd in practice cef.
Bogoslovskii and Sovalové}'5 Do 132 & It should be mentioned that with
a rectifier regulator the field current cannot reverse during transicnts,
Rather than introduce a duplicate rectifier with complicated electrical

changeover the solution adopted is to have a mechanical switch.

Ro’ch55-2 describes the only systom approximating a simple regulator
without controlled rectifiers. There is an inductor alternator on the
main shaft giving a 420 c¢/s output which is rectified, The fields of
the inductor alternator and the main alternator are connected in secries
and control of the voltage is as follows. The output voltage of the
inductor alternator is very scnsitive to the power factor of its load.
Thus a magnetic amplifier is connected in parallel with the rectifier
and is used as a variable impedance controlled by the error signal. Since
the two fields carry the same current there is feedback proportional to
if . It is not clear however, if this affects the transfer function
to a large extent, A similar scheme is described by Zavalishin and

634

Glebov who state that it has been developcd for large machines.
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The last stagc of the regulator considered by Ettinger, Gloukh and
ChalyBa"6 consists of two rectifier bridges in parallel, both supplied
from an auxiliary alternator, one at 460 V and the other at 1385 V. The
460 V bridge is used for normal operation and the 1385 V one for field
forcing or quenching, The circuit diagram shows a change-over switch
so that only one bridge is in operation at a time, No information is

given on the transfer function of the rest of the regulator.

60-9

A straightforwasrd rectifier regulator is described by Haamann .
A transistor regulator controls the firing angle and the rectifier power
is supplied from the main alternator, A Bode plot is given of the fre-
quency response of the open loop transfer function with the alternator
on open circuit. It is stated that the rectifier has a deadband of 11
msec and this probably refers to the loss of control once a rectifier
unit is turned on, Two innovations are introduced on a similar regulator
described by Gruenberg62—8. Provision is made for varying the firing
angle of the rectifier in response to digital signals from a distant
control centre, Also an automatic mechanical changeover is used to
reverse the alternator field current for rapid de-excitation, The
ceiling voltage is 5 times the value required for ncrmal voltage on
open circuit, A similar arrangements for reversing the field current
is described by Putz, Rieger and ROgowksyéz—B. The mechanical change-
over takes 220 msec compared to 80 msec of the Gruenberg regulator.

This large dead band, however, docs not appear to cause any anxiety.

Hefermann and Menste1162—9 describe an interesting method for
overcoming the difficulties associated with a rectifier toking its power
from the main alternator. The field current is supplicd from a rectifier
which is controlled from a regulator having the conventional voltage
feedback on which a compound signal depending on the alternator current
has been added, The variation from the conventional set-up is that the
voltage supplied to the rcctifier is itself a combination of alternator
voltage and current such that the rectifier voltage remains constant with
changes of the alternator load, Various arrangements for supplying the

rectifiers are discussed by Barral, Boulet and Carpentier62-11. One of
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possibilities involves two rectifier units, one of which is supplied by
a current transformer and the other by a voltage transformer, Thus the
output of the excitation system is a function of both alternator currcnt

and terminal voltage.

7.2¢2 Practical Delay Regulatorse

This is a very common type and is the result of several amplifying
stages in cascade, of which the final stage is usually a separately
excited exciter, Very often there are feedbacks round each stage in
order to reduce the effective delay. When there is a rotating exciter
its time constant, being of the order of 0.3 to 2 sec completely swamps
the time constants of any magnetic amplificrs (2 to 10 msec) or ampli-
dynes (about 100 mscc) that may be used., In such cases only the main

exciter need be considered.

For the purposes of this study a regulator is considered to be of
the delay type when the K(jA) Zlocus lies in the 4th or in the 3rd and
Lth quadrants for A/2n in the region O to 2 ¢/s excluding, of

course, regulators with a 1/p term in the transfer function.

Dohertyag“1 described the first experimental operation in the
artificial stability region in 1928. The regulator used was of the
Tirrill type but since the frequency of operation of the contactsis about
10 ¢/s the action is effectively continuous. The contacts short-
circuit a resistance in the shunt winding of a self-excited excitera
Hence ignoring the delay in the measuring element the transfer function
is that of one delay equal to the exciter time constant. Tirrill re-
gulators mere falrly common in the 1930's but they were replaced because

32-1

of their unreliability. Yttenberg gives another example of a
Tirrill regulator with the addition of a) a derivative feedback round
the exciter using o transformer and b) compounding of the alternator

voltage and current as the controlled variable.

Concord:i.o.br considers two values of T1 namely 1.06 and 2.12
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sec in a mainly theoretical investigation.  Results similar to Fige 7.1
are quoted and comparison is made with the simple regulator showing an
improvement in the gain ratio G but reduction in the maximum stable
angle, see section 7.3.1. This paper has aolready been discussed in

section 1.1.3.

48-1 _ 48-2

Barkle and Valentine nd Lynn and Valentine use a rotating
amplifier, the Rototrol, cither as a main or as o pilot exciter,

Although the Rototrol time constants are low it is unlikely that the
transfer function of the simple regulator is achieved. One of the first
minimum excitation limiters is described which comes into operation when
the reactive power is a certain function of the active power preventing

loss of steady state stability.

Kron54_l sets out various ways of stabilizing a delay regulator,

one of which involves the use of a phasc lead network in cascade with the
amplifying stages., It is not clear, however, that the‘phase lead is
sufficient to convert the regulator to the derivative type, since there
are three delays in the denominator. It is likely that the purpose of
the phase advance nctwork is to reduce the phase lag of the delays.
Howcver the use of a cascade network specifically to chonge the transfer
function is a major contribution although the result achieved, a term
1+ pTa)’ is similar to that obtained with any derivative stabilizing
fecdback. A number of other signals is discussed for stabilizing the
system, thce most important of which is the use of a feedback proportional
to the rate of change of field current. Aldred and »‘Shz:xcksh:»,xf'l:58_3 tried
this with very good results both on transient and on steady state opera=
tion. As was stated in the Introduction, such a regulator can be
analysed by the method used in the present investigation only if some

of the equations of section 2 are modified. Another interesting
possibility discussed by Kron is the control of the voltage anywhere

in the system by simulating the system impedances,

In a regulator described by .llclrxen’bach??“2 the terminal voltage

is controlled by varying the loop gain rather than the reference, The
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use of a loop gain dependent on the operating condition offers certain

advantages, which however, are not discussed in the papcr.

Two variations of the standard pattern of cascade amplifying
stages are given by Frey and Noser58“l. In the first case feedback
proportional to the field current is used as well as the normal exciter
voltage feedback for stabilization, The second variation may be con-
sidered as the modern version of a Tirrill regulator. The field of the
pilot exciter is supplied from a transistor rcgulator and the current
is turned on and off. The output of the pilot exciter is proportional
to the mark-space ratioc. The use of a power transistor as a switch

reduccs the power dissipated considerably.

60-2

Pavesi and Simonetti is one of the few papcers giving a measured

frequency rcesponse of the regulator transfer function. T,= 1, Tl = 10
and T2 = 0,02 sec. An a.c. exciter, 400 c/s, with a rectifier
follows three stages of magnetic amplificrs, Bode diagrams show the
regulator response with and without stabilization, Operation in the
artificial stability region is not considered and the aim is good

voltage regulation and fast response,

60-5

In the regulator considered by Junior the terminal voltage

is compounded with the reactive currcnt supplied by the alternator. The
regulator itgelf is of the standard type with a magnetic amplifier, and
amplidyne and a main exciter with derivative feedbacks. When fast
de—excitation is required there is a negative feedback proportional to

the field current.

In Happolt6o-8 several arrangemcnts arc discussed, including in=-
tegrator types but there are no voriations from the standard typces.
There is however an interesting application of a Schmidt trigger con-
trolling a transistor amplifier which is followed by two exciters in

series.

60-10

Easton, Fitgpatrick and Parton considers a conventional delay
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type regulator having an interesting angle limiter, The limiter may be
set to operate at a low value of 6g and then the regulator becomes

effectively an angle rcgulator.

The regulator described by Ferguson, Herbst and Miller6o_13 and

by Whitney, Hoover and Bobo60~l4 uscs an a.c. exciter and rotating
rectifiers, The field of the exciter is supplied by a magnetic ampli-
fier. Since the alternator field voltage is not available for a
atabilizing feedback the exciter transfer function is simulated by

an RC network connected to the output of the magnetic amplifier. The
output of the RC network is diffcrenticted and fed to the first stage

of the magnetic amplifier. The primary aim is good voltage regulation
although operation in the underexcited region was studied by simulating

the system on a differential analyzer; no results are given howcver.

The basic circuit of Harvey et a16l_1

issimilar to that for an
integrator regulator, Fig. 7.2b, but the field resistance is not adjusted
to the critical value, Thus the effective time constant is increased
and this partly offsets the advantage of fast recsponse of an amplidyne

as the main exciter. Since the power for the magnetic amplifiers ex-
citing the amplidyne is obtained from the main alternator there is a
duplicate regulator used during starting to control the amplidyne voltage.
The main regulator takes over when the generator voltage is sufficient,

It is stated that this regulator improves the steady state stability

limit,

Venikov et al63—l describe a similar regulator with an artificially
increased time constant applied to a synchronous condenser., The value

64~1

of the effective time constant is not given but in Venikov valucs

of 10 - 20 sec are mentioned.

The transfer function of a typical delay type regulator in current

use in Britain is as follows, Ref, 62-1.

354 (1 + p)(1 + 2 p)
1+ 17,5 p + 17.3 p° + 0.81 p° + 0.17 p

N
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The voltage regulator used by Miles62—2 has T =2,k =1,

= 61.2 and k2 = 4.5,

g

. 62-6 . . .
Nielsen quotes experiments made on micromachines in France,
T

T
a

mentally by increasing the power slowly and a figure similar to Fig. 7.1

1= 0.3 sec., 1is first considercd and then therce is another delay

n

20 sec, added, Steady state stability was investigated experi-

is quoted for a limited range of gains. A combination of voltage and angle

regulator is also considered.

Shackshaft63"2 gives full particulars of a regulator using an a.ce
exciter, T =2, T = 0.1, ko =1, kl = 56,7 and k2 = 6,53, A frequency
response of the regulator and alternator together is quoted. The al-
ternator however was on open circuit and so no information on the steady

state stability is obtained,

In Bogoslovskii and Stpvalov63m5 the exciter is separately excited
by a controlled rectifier, The time constont, which is initially
0.87 sec. is reduced to 0.28 sec by splitting the field into 9 parallel
branches. Then by using direct feedback the effective time constant is
reduced to only 0.055 sec. It is intcresting to note that the tests
described in the paper were carried out to determine the steady state

stability of the system with a "relatively large time constant',

7.2.3 Practical Integrator Regulators.

This type of regulator is also very popular because of its excellent
steady state characteristics, sec scction 8,2, A regulator is defined
to be of this type when there is a 1/p faoctor in the transfer function.
An integrator on its own, however, does not enable the system to operate
in the artificial stability region and often there is some kind of
stabilization. Rather surprisingly, however, integrator type regulators
with no stabilization are in use with large machines. Presumably the
steady state stability 1limit is not approached. In practice the inte-

grator transfer function is achieved either by electronic means or by
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using one of the arrangements shown in Fig. 7.2.

48-1 and Lynn and Valontine48~2 used the

Barkle and Valentine
conncetion shown in Fig. 7.2a. It may be shown that, when R is
adjusted so that the total field resistance has the critical value, an
integrator transfer function results with a "built-in atabilizer! i,e.
having a Ta term as well. The presence of this stabilizing term in
the numerator does not appear to have been noted and there is no mention

of operation in the artificial stability region.

The regulator described by Heds’c:romso-'1 is a good example of the
theory that the phase-shift introduced by each amplifying stage should be
corrected by o corresponding feedback. There is a magnetic amplifier in
cascade with two d.c. maéhines, the second of which is connceted in the
field of the main exciter, see Fig. 7,2b. Again it may be shown that
when R is such that the total field resistance has the critical value
for self-excitation the transfer function has a 1/p term. There are
stabilizing transformers making three inner loops in addition to the main
feedback from the alternator terminal voltage. The design objective is
stated as the improvement of the speed of responsc. One unusual feature
is the use of a variable feedback gain for controlling the terminal
voltage, Similar regulators are described by Johanssonsg-'3 and
Sohlstrom59_4 but the feedback gain is constant, Tl and T2 arc only
0.1 sec each. The three feedback circults arc adjusted to provide the
"fastest possible restoration of generator voltage to its normal value
after a disturbance'". No details are given however, of the method used

to determine the feedback transfer functions.

Two alternative methods of stabilization are considered in
Concordia® 2, A voltage proportional either to av,/dt or to av, /at
is added to the proportional feedback from the terminal voltage. Several
combinations of paramecters are investigoted and it is found that for
practical reasons the exciter voltage stabilizer should be preferred. An
experimental verification of operation in the region of artificial

stability on a large machinc, 20,8 MVA , was made. The reference
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voltage was reduced and it was observed that the field current showed a
minimum, Instability occurred soon afterwards but the limiting angle
is not given. See section l.1,3 for the theoreticol contents of this

important paper.

An unstabilized integrator using the connection of Fig., 7.2 b is
52-‘2. There is a VAr limiter similar
in principle to that of Barkle and Valentinqu_l. Although it is stated

described by Hunter and Temoshok

that the stecady state stability is improved, in a figure quoted the VAr
limiter is set at a load angle of only 63°, McClymont et a156_5
referring to a similar unstabilized integrator claim operation just
inside the artificial stability region. The VAr limiter in this case
was set at 90o and it must be assumed that the combination of limiter
and regulator produced some smaoll stebilizing c¢ffect. Alternatively, it
is possible that some form of stability fcedback was used,which however

is not mentioned in any of the three papers,

60-14

Cooper and Girling found that it was necessary to usc a direct
feedback round their unstabilized integrator in order to improve the
steady state stability, In doing so, however, the regulator becomes

of the delay type with T1 dependent on the amount of feedback,

Hosemann6o—l

is the first paper to describe an electronic stabilized
integrator. The error signal is taken to a "black box" the output of

which gives proportional, integral and derivative signals, in our notation
ka’ kB

rectifier supplying the alternator field. Thus no further delays are

and kl . These nore used to control the firing angle of a

introduced. Howcever, no details of the black box are given and moreover
it is stated that the integral and derivative action is not important from

the practical point of view,

Bloedt and Waldmann6 approach the choice of suitable paramcters in
a very intercsting manner, They consider an isolated machine on load
and assume that the alternator transfer function may be taken as a single

delay, ncglecting damping, isCe Vs/(l + TéLp). The exciter is another
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delay Te and so for optimum transient response a regulator with

Ta = TéL and - TB = Te is required. Good steady state voltage regulation
is achicved with an integrator and further conditions determine the gain.
Having obtained the required transfer function they then proceed to use

a unit described by Sichling and Rohl_of:f‘sr?-'3 and Kessler57-4, which
consists of a high gain amplifier controlling a switching transistor.
Depending on the type of negative fcedback used various transfer functions
may be obtained. It is appreciated that when the alternator is connected
to a bus both Vs and TéL vary with the operating point. Two figures
show that optimization for open circuit, gives a damped response on load,
Unfortunately there is no mention of the steady state stability per-

formance of this very interesting regulator.

2-6

Nielsen6 in addition to the delay type regulator includes some
results for an unstabilized integrator. It is argued by means of a
Nyquist diagram that the maintenance of sfability in the region of 90O
is éiffiqﬁlt.

The circuit shown in Fig. 7.2 ¢ was used by Chambers, Rubenstcin and
Temoshok62—lo to obtain an integrator transfer function, It appears that
no stabilizing feedbacks are used :nd in figures quoted the VAr limiter
is set to operatc at angles considerably less than 900. Ewart et al65-2
-used the same connection and with artificially high line reactance ob-

tained an angle of 960. It is not stated whether any stabilization was

used and no stabilizing feedbacks arc shown on the diagroms.

In the English Electric Regulator64-7 the pilot exciter rather
than the main exciter is connected as shown in Fig. 7.2a. There are
two derivative feedbacks one from the exciter voltage and the other from
the alternator terminal voltage. A rather elaborate limiter circuit is
used which comes into operation when some function of the following
quantities exceeds a preset value: a) 1es b) 1. e) d vfe/dt
a) dvb/ﬁt {pilot exciter voltage) and V. » Other facilities include
signals from other machines in the station for reactive power division

and provision for regulating the voltage at some distant point in the system.
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7.2¢4 Practical Derivative Regulators,

A derivative regulator is onc whosc frequency response lies in the
1st or 1st and 2nd quadrants. This definition is, in a way, arbitrary
since it excludes some recgulators with Ta and TB terms., In fact the
mzjority of ‘regulators on the other three types employ some kind of
derivative fecdback, which results in such terms. These terms, however
are not sufficient to cancel the delays in the denominator and so the
effect on stability is the same as that of a delay regulator. A

possible exception to this is Kron54-l, (see Section 7.2.3).

Both Vemikov and LitkenZ 2 and Venixol 't

with the following transfer function

2
p kop K
K(p) = P TE o T o TF oy

refer to a regulator

but no.particulars are given of the circuits used except tﬁat the regulotor
is an celectronic one. It is claimed that this type of regulator is used
to extend the steady state stability limit beyond Gé » This this is
certainly possible is proved below, sce scction 7.3.3., but no cxperimental
resulte appear in the Russian literaturc available in Englishe The
theoretical aspects of these two refercnces arc discussed in section 1:1.3

and a comparison with the Nyquist method is given in Appendix IV,

Details of a derivative regulator however are given in Venikov
et al63—1. The derivatives are cbtained by means of R.C sections followed
by a singlc valve for amplification and impedance matching. No
measures appear to have been taken to eliminate drift in spite of the

simplicity of the circuit. No valucs of paramecters are indicated,

7ol The Effect of Regulators on the Steady State Stability.

The open loop transfer function of the system is the product of
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K(jx) and H(jA) i.e.

‘L(jx)} ‘H(jx)]-) K(jh)' (7.7)

and Arg L(in)

Arg H(5\) + Arg K(G\) (7.8)

Hoving calculated H(jA) the determination of L(jr) is a simple
matter for any type of regulator, however complicated, Eqns. (7.7) and
(7.8) are casy cnough for a hand calculation but since a large number of
points is involved a digital computer was again used, One data tape
contained the values of H(jA) for 68 = 60° to 165° and another,
shorter, tape the sets of parameters of K(jr) . In fact the effect
of a particular regulator on stability may be seen, qualitatively at
least, by inspection of the K(j\) and H(j\) plots.

The conditions that the L(ja) locus should satisfy for stability
are the same as those for the simple regulator, see scction 7.1, provided.
that K(p) docs not have unstable poles, Although there is no funda-
mental reason why the regulator itself should be stable on open loop,

in practice this is invarizbly the case.

It is desirable to define a function p as the value of N at the
second intersection of the L(jA) locus with the negative real axis.
When there are two intersections as in the case of the integrator and
derivative regulator for certain values of Sg the suffixes 1 and 2 are
used so that B refers to the lower and Uy to the higher value. It
is apparent that p depends on Sg as well zs on the regulator transfer
function. Clearly p is the natural frequency of the system and when

K(p) is constant u = Ao

7+%,1 The Effect of the Delay Regulator.

By the definition of this type of regulator Arg K(jn) is negative
and therefore the L(jA) locus is obtained by rotating the H(jr) locus
in a clockwise direction by an amount depending on A , It is possible

to make the following general deductions before considering a particular
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example.

At some value of 6g less thon &! the L{j») 1locus no longer
crosses the negotive real axis. Hence the maximum value of & for

g
which the system may be stabiligzed by o suitable gain is reduced.

The natural frequency of the system, p , is reduced,

tK(jX)’ is reduced as n is incrcased at a rate depending on
the number and magnitude of the delays. By considering the shape of
the H(jA) locus it may be deduced that, up to about 110° - 120°,
L(3 <: o ), . 7 . . ) .
(G ) H(Jkl) Thus K 5 18 increased and since Kmln remains

the same the stability ratio is increased.

The majority of delay type regulators used in practice involve a
separately excited exciter, the field time constant of which is the pre-

dominant term. Hence a typical transfer function is

K

K(p) = [P, L A—
1+ Tl

The regulator block diagram is simply made up of one delay as shown in
Fig, 7.3 a. The frequency responsc of the regulator for T1 =1 sec
end the corresponding L(jr) loci arc shown in Figs. 7.4 and 7.5
respcctively. The stability limit as a function of gain for Tl = 0.5,
1 and 2 sec is shown in Fig. 7.6 together with the corresponding curve

for the simple regulator,

The Nyquist locus for 6g = 1300 in Fig. 7.7. does not cross the
negative real axis and the system cannot be stabliged beyond some value of
6g between 120° and 1300. Fig. 7.6 shows that the moximum stability

limit is reduced as Tl is increcascd from 126.50 to 122O and to ll?o for

Tl = 0.5, 1, 2 sec respectively. The value of KSS ,» the optimum gain

for steady state stability, is given by the intersection of the new curves
for K and the simple regulator curve for K . , Hence K is
mox min 88

reduced as T1 is increased. The frequency at the second intersection
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p is shown as a function of 68 in Fig. 6.4 for T, = 1 sec, Thus
at high valucs of gain there is oscillatory instability at a much lower
frequency compared with the simple rcgulator. The reduction of u
implies that the effect of damping is less significant than for the
simple regulator. Also the effect of r, is producced mainly by the

change in H(O) and not by the frequency dependent terms.

The stability ratio G is increased as shown in Fig., 7.6, Onc
cannot, however conclude that the system is, in general more stable
with a delay regulator, From Control Systems Theory, sce Ref, 60-11,
the phase margin as well as the gain margin should be large. Fig. 7.4
shows clearly that, for 1200, although K can be chosen so that the
gain margin is large the phase margin is reduced compared with the
simple rcgulator. The use of artificially high values for T1 s 10 or
20 sec, has been tried by Nielsen62—6 and was suggested by Venikov64-1
as a means for increasing the regulator gain when operation for high
values of Gg is not reguired, It is opparcnt from Figs. 7.5 and 7.6
that such a regulator will hardly enable the system to operate in the

artificial stability region.

Additional terms in Eqn. (7.9) should be considered only if they
produce significant phase shift and attemuation for frequencies up te u .
Thus for 68 = 110° a delay of 100 msec produces 14° phase-shift at
A= ond this does not affect the situation materially, The cffect
of a (p Tt 1) term in the numerator and an additional delay (pT2 +1)

in the denominator of the transfer function may be approximated by

= 1 -
T1 T1 + T2 Ta

if Ti is the main delay and T Ta << 100 msec.

2’

7+%e2 The Effect of the Integrator Regulator.

The simplest form of an integrator regulator is
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= K
K(p) - (7.10)

Since Arg K(jA) = 90° ond is independent of A all points in the H(j\)
locus are shifted, in a clockwise direction by %° . It is apparent

from Fige 6.1 that for
5g< 5 L(0) —= = j
55>55 L(0) —> + j o

In the second case the H(jk) locus does not enter the 4th quadrant and
therefore the L(jA) locus never crosses the negative real axis.

Hence a system with a simple integrator regulator as given by Egn, 7.10.
cannot operate in the artificial stability region and there seems little
point in considering this case further, However many cases using
integrator type regulators have some kind of stabilization, usually

by derivative feedback e.g. as shown in Fig. 7.3 b. Hence the follow-

ing may be considered as a typical transfer function

K(p TO(. + 1)

K(P) = m TG\'. > Tl (7.11)

Before proceeding to cxamine particular examples it is useful to

consider some gencral deductions.

Ta and Tl should be choscn so that the phase shift at the fre-
quencies near the desired value of p  is small.  Since however it is
not possible to make Arg K(jr) positive in the transfer function of

Eqn. (7.11) the moximum value of stoble 8g is less than 3! .

L(O) ~> + j @ for 68 :> SS and therefore if the L{(jA) locus
intersects the negative real axis there are two intersections. This
implies that when K is chosen so that the (-1, 0) point does not lie
between the two interscctions, then there is a complex conjugate pair of
roots with positive real parts. Hence instability should be expected to

be oscillatory both for high and for low values of gain. Ewart et al65~2
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observed low frequencies of oscillations with periods of oscillation

2=3 se¢ and 35 sec, See also section 9.1.

The numcrical example chosen was obtained by simplifying the block
dicgram of a particular A.V,R. in current use in Britain, see Fig. 7.3 b.
Referring to Egn. (7.11) T=2 and T, = 0.5 sec.  Figs. 7.7 and 7.8
show the frequency response of K(jA) and the resultant L(jr) locus
respectively, The corresponding stability limit curve is shown in
Fig., 7,9 wherc it should be noted that K cannot be compared with the
regulator gains for the other types of regulator since the gain of the
0 is infinite. The fact that the maximum Gg

1

integrator type at A
occurs for values of K of the same order as before is merely due to
the coincidence that p = 1, Nevertheless there is still a value
of gain corresponding to K and upper and lower limits corresponding

S8

to K and K .
max min

The meximum value of &  is now under 120° and Fig, 7.8 shows
that the phase margin for 1100 is small. The two values of p are
smaller than X\, and are shown on Fig. 6.4, Again the effect of
damping and r, is important in as far as it changes H(j}) for small
A,

If the feedback gain in Fig. 7.3b is incrcased so that Tl = 0,1 sec

then the stabilization is more effective and the minimum phase shift

is reduced. Tig. 7.10 shows the stability limit curve for this case and
the maximum value of 8g is about 1230. Further improvement, however,
is difficult without a 2nd derivative term in the numerator. Comparison
between Figs. 7.9 and 7.10 shows that the stronger stabilization results
in a reduction to the valucs of Kmin and Kmax o« This affects the
behaviour of the system to ramp functions but this problem lies outside
the scope of the present investigation. See section 8,1 for the effect

of the response to a step function.

7.3.3 The Effect of the Derivative Regulator.

Consider a regulator with first derivative and proportional signals
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ocnly i.e.
K(p) = KQ +K p) (7.12)
Curve a in Fig. 7.11 gives the form of the frequency response locus

for this cases, The H(j\) locus for 68 = 140° is approximately a

semicircle, with a time constant Ta say, as shown by curve b . Hence

H(0) K_ K (1 + k_p)
Lp) = - 1O+Tp -
2}

Thus the L(jr) locus is also a semicircle as shown by curve ¢ , for
k (T, end curve & for k, T, + If K is adjusted so that the
(=1, 0) point lies between the two interscctions with the real axis for
cither case then both curves encircle the (~1, 0) point in a slockwise

direction and hence the system is unstable for any value of ka .

In practice a differentiator is not ideal as shown in Eqn. (7.12)

and a delay is present i.e.

1+ k p)
K(p) = K ————F—r (7.13)

pT1+ 1
and the form of this locus is shown by curve a' . For small Tl the
resultant L(jA) loci are as indicatcd by curves c¢' and d' , corres-
ponding to ¢ and d . Again there can only be cne clockwise en=-
circlement of the (-1, O) point and the system is unstable as before.

It should be stated, however, that the H(jA) locus for Bg = 140°

is only approximately semicircular., If Ta is small and if ka is
chosen to be within narrow limits it is theoretically possible to have a
stable system. Nevertheless the stability ratio for Bg :) Bé is nearly
unity and the phase margin practically zero and hence it is valid to say
that first derivative rcgulator cannot extend the stability limit beyond

5,
8

In addition the stability ratio for Sg (: Bé is reduced by a first
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derivative regulator. Thus the performance of such a regulator from the

stability point of view is not satisfactory.

It is now apparent that cxtension of the artificial stabdility
region can only be achieved when part of the K(jA) locus lies to the
left of curve a , TFig. 7.11 i.e, when there is a second derivative
term as well as a first derivative one. As has already been mentioned
practical differentiators have delays in their dencminatorse. In the

- case of a synchronous machine regulator these delays are not a "nuisance"
to be made as small as possible as implied by Venikov and Litkeng6—2 but
play an important part in eliminating high frequency oscillations.

In the example considered below there is an additional delay so that
the gain at high frequencies is even further reduced. As shown in the
block diagram Fig. 7.3 ¢ there are three parallel branches giving
proportional, 1st and 2nd derivative signals. These are added to=

gether and the extra delay is introduced.

1 (. ‘ 0.08 2 h
I S 08 p
K(p) = 1 + 0,01p l\} *0e2p * (777 0.1p) (1 + 0.O1lp) (7.14)

Fig. 7.12 shows the frequency response for this regulator. From the
stability point of view only values of frequency up to about 2 ¢/s are
of intercest but the rest of the locus is shown as well te indicate the
very high gain at approximately 17 c¢/s. The paramcters in Egn. (7.14)
were chosen so that for frequencies up to 1 ¢/s Arg K(jr) is large
and K(jn) small consistent with practical limitations on the experi-

mental set-up, see section 9.1,

Fig. 7.13 shows the L(jA) 1loci obtained with this regulator.
The curve for Bg = 140° crosses the negative real axis and it is
possible to stabilise the system. Although the curve for 68 = 150o
crosses the negative real axis the system cannot be stabilized since the
(-1, 0) point can be encircled only in a clockwise direction. As

Fig. 7.14 shows the moximum stablc angle is 147° and K . is about 4
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times as large as with the simple regulator.

For 68 > 135°  (approximately) the L(jA) locus starts in the
3rd quadrant and the same type of instability as with the simple regulator
exists viz. aperiodic for low K and oscillatory for high, sec section
7,1.2, For 147° j> 68 ;2,1400 the L(jr) 1locus starts in the second

gquadrant and then crosses into the third, Hence we have for

|1/L0)] >k Aperiodic instability
|1aGe)] > x> |1/40) Oscillatory instability
|18 )] >k > 1/aG w)|  System is stable
K> |1/8(3 )| Oscillatory instability

Fige 7.14 shows that the stability limit as a function of the
regulator gain consists of 3 distinct curves, as cpposed to two of the

simple and the delay regulators.

a) The Kmin curve which is the same as for the simple regulator

but extending a little beyond Sé .

b) A curve corresponding to K .x but moved to the right so

that Kma? is now 3 = L times larger than the simple regulator values.
c) . A transition curve joining a and b .

The natural frequency p for Sg :} 8! 1is considerably incrcased
see Fig., 6.4 and thus the effccts of damping and r_ are much more

significant,

The significance of the angle 61 , defined in scction 6,1 now
becomes apparent. As long as the H(j\) locus lies in the 2nd quadrant
it is possible to stabilize the systom using a derivative regulator. For
Gg :> 8, however, as Fig. 6.1 shows, the H(jr) locus lies in the 4th
quadrant and stabilization seems impossible. Stability at 68 = 61 is
an unobtainable limit since a very high gain is required. Stabilization

at Bg = 160° seems feasible although it may be necessary to vary the
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regulator gain in order to achieve stebility at lower values of 68 .

From Egn, (6.9) H(0) becomes zerc when

cos (60 -8,) = 0

t

or by Eqn. (6,7) when

2
+ Vo =
QO XC ©

Hence the ultimate stability limit with a derivative regulator is obtained
when the angle between the alternator terminal voltage and the infinite bus
becomes 900. This clearly corresponds to the condition that the alter-
nator reactance is eliminoted completely and in fact Eqn. (7.15) is the

steady state stability limit of the tronsmission line.

It is stated in section 7.1.3 that the action of the simple re-
gulator may be visualised as reducing the cffective Xd to Xa . Ideally

the derivative regulator can eliminate Xé completely, i.e. the system

behaves as if V., is absolutely constant. It is apparent however that

the complete eli;ination of Xé is a limiting case. Fig, 7.13 indicates
that it may be possible to stabilize 5g = 160° but in practice the
difficulties in combining the several parameters to form the required
transfer function are considerable, With the regulator given in Egn.
(7.14) high frequency oscillations as well as large signals from 50 c¢/s
pick-up were encountered., The practical problems of the derivative

regulator are considered in section 9.1.4.

It is interecsting to note here that the icdea of a voltage rcgulator
"cancelling" part of the synchronous reactance was first stated by
DohertyaS_l. It was then thought that the cancellation of part of the

transient reactance would present special problems. See also Ref, 55~3.
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8. SPEED OF RESPONSE AND ACCURACY OF REGULATION,.

It is shown in the last section that, with the derivative
regulator the region of artificial stability may be mxtended up to the
stability limit of the transmission line. t is rarely, howecver, that
alternators are required to operate at very large angles and hence there
is a degree of freedom in choosing the regulator parameters. If the
degree of stability is the only comnsideration then linear control system
theory offers a simple solution. The parameters of K(jA) should be
chosen so that the phase and gain margins of the L(jA) locus are a
maximum at the required load angle. The method of domain separation
offers an efficient method for optimizing the regulator in this case,

56-3 concluded that, for a single delay

Using this method Messerle
regulator with an exciter stabilizerx the rcgulator gain is approximately

i ve - i
given by K=K . + 3 (Kmax - Kmin)'

min
Optimization of K(p) however, should be given a broader meaning
since, after all the first three functions of an excitation regulator,
as given at the beginning of the Introduction, are often more important
than operation in the artificial stability region. Hence a compromise may
be necessary so that the regulator meets the requirements, which are
different for different systems. It is necessary therefore, to be able

to measure the performance of the system in its several aspects.

No analysis of the ability of an excitation regulator to maintain
the terminal voltage constant or of thc speed of response of the system
on load could be found in the literature, The American I1.E.E.
Def:‘Ln:‘L’cions6l'"3 refer to accuracy 'under specified conditions such as
load changes, drift, temperature etc." In the literature, however,
when figures are gquoted these conditions are rarely given. Practical \
regulators are often suppoéed to have "fast response'" but this seems
to mean anything from highly oscillatory to overdamped voltage-time
curvess The lack of accepted standards for the speed of response is
shown in a paper by Harvey et a161-1, where, in a step change test,

a series resistance was inserted in the alternator field circuit,



reducing Té , and thus changing the system response completely,

In order to optimize the regulator transfer function it is
necessary to digress from the main theme of steady state stability so
that suitable performeance indices for the specd of response and the
accuracy of regulation may be defined. Corresponding to Kss the
symbol KSr is used to denote the velue of gain for cptimum speed of
response, Linear theory is used and the speed of responsc is defined
for small step changes. It is realised that the effectiveness of a
regulator depends on its ability to deal with large steps. It is
reasonable to expect, however, that the response to asggzp function bears
a relation to the behaviour of the system under large transient conditions.
Accuracy is improved as the gain is increased and hence there is no
optimum value of gain in this case. It is still nccessary however to

be a@ble to calculate the accuracy as a function of gain.

S0 far we have been dealing with the open loop transfer function
of the system and hence it is immaterial whether K(p) is in the
feedback or in the forward part of the loop. When discussing stability
it is desirable to scparate the alternator and the regulator and thus
K(p) was assumed to be in the feedback part, c.f, Figs. l.1 and 1.4.

In practice, however, the transfer function from the terminal voltage
to the comparator is constant and K(p) follows the comparator. In
the present section the closed loop response is required and hence the

practical arrangement with unityfecdback is considercd, see Fig. 8.1,

8.1, Speed of Response of the Systeme

As long as small step changes are considered the small oscillation
theory, developed in section 2, may be used and the system may be
analysed by linear control system theory. There are several performance
indices for measuring the speed of response of a lincar system, see

Newton, Gould and Kaiser” !~/ €eZe

a) The Integral Square Error.
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b) The time that the error lies outside an allowable tolerance.
¢) The meximum overshoot.

d) The integral of the modulus of the error etc.

Minimization of the integral square error ensures both small
overshoot and adequate damping of oscillations. Since, in addition,
there are analytical techniques for minimizing a which are not available
for b or ¢ the integral square error is the most popular method for
measuring the speed of response and is adopted for the present investi-
gation. The meﬁhod of calculation described below can easily be

modified to give b, ¢ or d if these are required.

A simplified definition of the integral square error, € , is as
follows. Consider a linear control system and let its output following

a unit step function input be f£(t) . Also let f(t) —» f(w) as

@ 2
e = 11 - %‘%} at (8.1)
0

Ref, 57-7 gives an elegant method for minimizing € . Application

t——:OO.

of this method, however, involves, T(p) the closed loop transfer

function of the system, viz:

_ __H(p) K(p)
™p) =15 ey ﬁ(p) (8.2)

expressed as a ratio of two polynomials' For the most complex case

that we have to consider, i.e. with the derivative regulator, the
numerator of T(p) is of the 7th and the denominator of the 8th degree
in P . The expressions resulting from this method are much too compli-
cated, especially if the minimization is to be performed with respect

to more than one parameter e.,g. K and a time constant,
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Mternatively T(p) may be split into partial fractions amnd f£(t)
determined using the Laplace transform. &£ may then be plotted against
the parameters with respect to which it should be minimized and the
optimum values may then be chosen., In view of the degree of the
denominator of T(p) the splitting into partial fractions must be done
with a digital computer, The formation of T(p) for different
regulators as well as the determination of f£(t) involves complicated

programming.

The third alternative, which is adopted in the present investigation,
appears at first sight to be very complicateds Indeed it is not
possible to use this method without a digital computer. When a
programme for the determination of H(jA) exists, however, the additional
amount of programming is simple. The methoed is an application of
the well known correspondence between the frequency and the transient
response by means of the Fourier transform. Since H(j\) is known,
see section 6, the determination of T(jr) from Egn. (8.2) given
the parameters of X(jA) is straightforward. f£(t) and £ may be calculated

using the method described in the following section,

8+1.1s Method for the Determination of the Integral Square Error.

Consider a low frequency square wave with unity peak to peak

velue applied at V_ Fig. 8.1. Expressed as a Fourier Series the

ef ?
signal is,

;-Eé (s:.n Et + % sin 3Et +. . .+2ﬁ sin(2n-1)E t +. . j (8.3)

If the period, 2%/, is sufficiently long steady state conditions
will be estzblished before the end of the half cycle. In order to
fulfil the usual condition of a step function that, at t = 0- , the
disturbance is zero a "d.c." signal of magnitude 1/2 is added. If

= ink
An ‘T(Jnﬁ )

and ﬁn = Arg T(jnk) (8.4)
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then the output of the system to the nth harmonic of the input is

A sin(nZ t + Qin)

If, in addition, A = T(0) then the output of the system to the

displaced square wave is:

A
£(t) = -]2; A+ ;-at [Alsin(i t+¢1) + —32 sin(3€t+¢3) coas

A
+—-—-—-;n21:11) sin (2n-1Et + ¢(2n_1)) ¢ .. '] (8.5)

The integral square error can now be obtained from Egn. (8,2) by
numerical integration. The choice of & and n determines the
accuracy, as well as the time taken on the computer. It was decided
to make the positive part of the square wave last 50 sec, which was
considered to be long enough for any transient to settle down. Hence
E/2n = 0,01 ¢/s. The value of £(t) for small t is mainly
determined by the higher harmonics and, by inspection of Fig. 7.13 it was
decided to extend the calculation to 1.5 ¢/s. However, even with the
simple regulator, f(0) had a finite value and eventually frequencies
up to 2 ¢/s. were included. The choice of 2 ¢/s as the upper limit
results in a large number of terms, n = 99, in the series but this is
inevitable because of the large frequency range of L(jAr). Yet, in
spite of the number of terms, the maximum value of £(0)/f(0) found

was 0,05 for the derivative regulator with a high gain.

The result expressed by Eqn. (8.5) may be obtained formally,
using the Fourier transform. The formula given by Lawden59"1 for £(t)
includes an integral and if this is evaluated numerically Egn. (8.5)

resultse.

Tt is clear that it is impossible to obtain £(t) from Egn. (8.5)

without a digital computer. Each point on the curve involves the
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calculation of 99 terms and their summation. If any accuracy in the
determination of € is required then a large number of points must be
computed. The digital computer programme to sum the series and to
obtain € is straightforward and we need not go into details. It

was found convenient to have two data tapes. One containing the values
of H(jA) for 0,01l ¢/s to 2 ¢/s which may be prepared by the computer
itself as the output of the programme for H(jN) . The other tape is

shorter and contains the paremeters for K(jA) .

8.1e2. The Effect of the Regulator on the Response of the System to a
Small Steg.
Although the primary aim of the calculation described in the last

section is the value of & , the transient response, f£(t) , is also
available. An interesting set of curves is obtained illustrating the
significance of the speecd of response and showing the profound effeeot

of the regulator on the transient behaviour of an alternator.

Figs. 8.2 to 8.5 show some typical results for the four regulators
considered in section 7.3. They refer to & = llOo, which was chosen
as reference operating condition for 211 numerical results in this
section. Excluding the integrator type the same three values of gain
were used. Since higher gains may be used for the delay and the
derivative types than for the simple regulator these curves cannot be
used to compare the regulators. The capability of each type is determined

from the minimum value of the integral square error, see section 8.1.3.

Increasing the gain results in a less damped response and when K
approaches Kmax the frequency of oscillations superimposed on the
exponential approaches /2x . VWhen K;>Kﬁax an interesting result
is obtained. The curve goes to unity with no significant increase
in the magnitude of the superimposed oscillations. If £(t) is plotted
to a large scale small oscillations of increasing amplitude begin to

appear after several seconds of steady conditions at unity output. Thus
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the solution consists of terms

et 4 PP i vt

where o , B and y are positive and cu>>ﬁ . Vhen KK . the
transient is not completed at t = 50 sec and hence the method is

not, strictly spealking, valid. The solution indicates the presence

of a term ePt \here B 1is positive and small. Hence, although it

is not always obvious if the system is unstable close scrutiny of the
result gives the correct answer, However, this is an inefficient method
for determining stability and the regulator parameters should be such

that the system is stable,

Referring to the L{jA) 1loci for 6g= 90° the value of K is
chosen so that the (~1,0) point lies between the two intersections with
the negative real axis. From Egqn. (8.2) the denominator of T(jA)
is equal, in magnitude and in phase, to the line drawn from the point
(-1,0) to L(j\). Hence if a second line is drawn from the origin to
L(jA) representing the Numerator, !T(jk)l is the ratio of the lengths
of the two lines and Arg T(jA) is the difference of their arguments.

If K is small the point (~1,0) lies near L{0) and T(0) is
large. With increasing frequency the denominator of T(jA) is
rapidly increasing and as a result Aﬁ<3<Ao for large n and the higher
terms in Eqn, (8.5) may be neglected. The transient response therefore
at low gains does not have any high frequency terms superimposed. Also
for small A, L(jA) is approximately the same with either simple,
delay or derivative regulator, Hence curves ¢ are similar for the
three cases, Figs. 8.2, 8.3 and 8.5. As K is increased the (-1,0)
point moves nearer L(ju) , T(0) becomes smaller and T(ju) increases.
Thus the term in the series of Eqn. (8.5) for which (2n-DE = p is
large and as t varies there is a superimposed oscillation of frequency

approximately equal to /2w .

The main rise time is determined by the rate of change of Ah with
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n for small values of n , Consider the following simple example. If

5 ——
16 = pe (8.6)
1
then
" > x
An~ 1 for nZ < 7
1
1 N 1
N — F -
and An Tln for nf /) Tl

Obviously for a small Tl ’ A1 % 1 for larger n and the rise time

is shorter,

Thus although T(jA\) is much more complicated than the simple
delay it is apparent that the higher the gain the less rapidly A,n
changes for smzll n and the shorter the rise time, This qualitative
and imprecise argument points to the following important result. Since
L(j\) dis not affected by the type or regulator for small A\ the
initial "average rise time'is determined by K and not by the type of
regulator. Average rise time in this case refers to the exponential

curve drawn through the middle of any oscillations.

These remarks do not apply to the integrator type regulator
which, as shown in Fig., 8.4 produces a highly oscillatory response.
K =4 is near the Kmax for the regulator with Tl = 0,1 sec and for
this reason curve b shows a superimposed oscillation,

8.1.3. The Effect of the Regulator on the Integral Square Error.

Fig., 8.6 shows g as a function of K at 58 = 110° for the
regulators considered in section 7, K has values between Kmin and

Kmax and hence each curve has different limits. A1l curves, except e,



« |00

171

| i
dOud3d IVYNOS

WUOILNI

T == B
1 —_
T .
-
- 7
| pupali
<=
, : T
— 6
S o
== 183
= : a) : s
o + T
[ =~ = = =
o g} Ll - [ g Y H
. — L S
N T T T~ - 4
r?\ T T .(// -
Y - . - :
._IH‘ T~ A// i
) 1 S =N
(2 ! i e T /1,1]
[ N - i T 2
‘-H—m.un = = s s A e
| § " I ) T T ,’Af - | P—
— L i R " ; e
T /NM Fyg - I
P et - ) = X I —
1Y Qo T =N — 8
2 N =
oy e (©) [ —
—— ¥ /iin,‘ 1 2
o _ i st e == AN
< == \ e =
— t]K;P /B, (g T P
: : : i
| T : : —  p—
btmist? 1 T Lﬂ T - N
o~ T : N
[ , N+ —f——
(=) D N~ 2
A . =
ray. |
[ INALT 7 . y S|
Ny fr . ] A
N \ i
f/ A ﬁ V
/ /o
. = A le\\ - | — )
<l 7 T
S = °
- T ! —
a = F/SEESp/ e
71 .1-._ \ \\, O
= . . 7
1714 t —
s s <C
1 ] -
™ e 1 3
2 T s )
) s
. ~ - . v
I@ : \ : —h -
o R : y - I 4
= SE=S - ! o
O u, - : —
{ 1 : [l
It ! 1 T
ﬂl* r— + T 3
AL -
Q|
[y R e
- TN
rmat Y — Py
(=) N
N/ T i
i T I3
by U 7
i AT S +
1] N TQ s 1 —
T : —1 2
T 3 —+ —
— i
T T
: —
}
i i
[
T 1 T
[
f i [
|4 o~ . - I
: . . . ——



172

show a minimum indicating the value of Ksr in each case, The minimum
value of € dis a direct measurement of the capability of each regulator
to produce a fast response, Worst of those considered is the weakly
stabilized integrator (Tl = 0.5 sec) and best the derivative regulator.
The integrator with strong stabilization (Tl = 0,1 sec) appears to be

quite reasonable,

The significance of the sbsolute value of & may be illustrated
by considering a step function applied to a simple control system having

a single delay transfer function, as in Eqn, (8.6). Then

.t/tﬂ1

£(t) 10

and it may be shown that

£ = TI/Z

Hence in terms of the integral square error: the integrator regulator
gain can be adjusted to give as good a response as a 4 sec delay, and the
derivative one as good as a 0.5 sec delay. For comparison the "time

constant" of the large semicircle in the H(jA) plot for 68 = 110° is
approximately 3 sec, see Fig., 6.1,

Ksr depends on the operating condition and in practice a compromise
must be made so that an acceptable value over the region of operation of
the alternator is used. Clearly, as Bloedt and Wald111ann62""+ have shown

optimization on the transient response on open circuit is not satisfactory.

Although the minimigation of €& involves a compromise between
the requirements of several operating points it offers a systematic
method for achieving optimum speed of response, at least as far as
small steps are concerned. The question now arises whether a regulator
designed for minimum g gives optimum response with big changes of
condition. However, the problem of correlating the results of the small
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oscillation theory given here and the non~linear method for large changes

lies outside the scope of the present investigation.

842, Accuracy of Regulation.

There are several ways of measuring the accuracy of regulation

for our system,

a) It is possible to use the same concept of error as in a linear
system applied to the linearized small oscillation equations. Referring

to Fig. 8.1 the error is AV and it is small if 1.(0) is large.

b) Alternatively, but also for the small oscillation equations, if
V.of Chenges by AV ¢ it is desirable that AVt =4V . and that
the equality is not affected by changes in the operating condition.,
Thus T(O) must be equal to unity irrespective of the value of H(0)

and hence K(0) must be large.

Both definitions are essentially the same and lead to the obvious
conclusion that K(O) should be large. If K(0) is finite T(0) varies
from + @ to 1 as K(0) wvaries from O to oo. In such a case

neither method gives a satisfactory measurement of the degree of accuracy.

¢) The method finally adopted is simple to apply and the result has
an important practical significance. The change of Vt is determined

when the operating condition is altered with Vre remaining constant.

Two "basic" operating conditions are required andfobvious choice for ome
is when the alternator is on open circuit. The other can be the normal
operating condition at rated p.f. and power, However; since, through-
out this investigation, operation in the artificial stability region

is considered the point & = 110° with P = 0.8 p.u. was chosen for

the numerical part.

8.2.1. Regulation as a Change of Vt .

Referring to Fig. 8.1 at any operating point
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V » v
T 4 1 _ 0
Ve = X T K X (8.7)
md o}
and Viep = Uy + VO/K (8.8)

Consider now operation on open circuit with Vref the same and denote

with a prime the guantities that are different.

1 = -
Ve vref Vt

1 = ~
Vt K(Vref vt)

substituting from Eqn. (8.8)

vV + VK
o

. ot
V% T 1+ K (8.9)

and the regulation is defined as

| -
I el YoV - (8.10)
P A 1 +K .

when K = O the inherent regulation of the alternator is (Vo/vt -1) .

Fig. 8,7 shows a plot of the regulation against gain. It is
apparent that, for large K , the curve is a hyperbola approaching. zero
with no minimum value for p . Hence it is not possible to define an
optimum value of gain corresponding to Ksr and Kss « Integrator

regulators have K(0) —> oo, and, as expected, the regulation is zero.
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94 EXPERTMENTAL INVESTIGATION

An important part of the investigation is the experimental
verifiecation of the results obtained theoretically, It is possible to
obtain a comparison for most of the calculated curves. Although some
of the discrepancies cannot be fully explained the overall agreement
Justifies the theory developed. An inherent difficulty with the fre-
quency response and the step function tests is the necessity for limiting
the input signal to small values so that the validity of the small os-
cillation theory is not affected. Thus the measurement of the output

produced is affected by drifts in the system and the supply voltages.

The experimental investigation revealed two important aspects
of the operation of the system which were not predicted by the analysis,
One is the sensitivity of the system to random signals producing varia-
tions in the operating point. This occurs with the integrator and the
derivative regulators when the gain is low. The other result is the
presence of high frequency oscillations with the derivative type
regulator. Both aspects emphasise the importance of the experimental

investigation.

The non-linearity of the system is illustrated by the step function
tests where the response is different depending on whether the dis-~
turbance is applied or removed. However, the response is not materially
changed with the larger steps and hence the theory developed in section

8 may be applied to finite changes as an approximation.

9,1 Steady State Stgbility Tests.

The aim is to determine the stability limit as a function of
gain for the different types of regulator considered in sections 7.1
and 7.3. The procedure was the same in each case. The system was
connected as shown in Fig. 3.1 with the alternator operating stably,
at a certain value of regulator gain. The reference voltage vref was

reduced slowly until instability occurred. The system was brought back
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to stable operation and the process was repeated with a different value
of K, The components of the analogue computer (see Fig. 3.1) were,

in turn, connected to give the transfer functions of the different
regulators. In practice this meant plugging-in a different patch-board,
A block diagram for cecach regulator is shown in Fig. 7.3. The circuits
used arc indicated in principle in section 3.2.2 and need not be

considered in detail.

Serious thought had to be given to the stability criterion used.
It was observed that, depending on the value of gain and the type of
regulator, there are four alternative phenomena associated with the

beginning of instability.

1) Low values of gain (simple and delay type regulators). At
the stability limit the load angle drifts slowly upwards until the
alternator pulls out of step, In practice there are two difficulties,
The bus voltage, V , and the dsc, voltage supplied to the driving
motor change due to switching in the mains. Thus a finite sudden
change is applied which may result in instability before the steady
state stability limit is reached., Secondly the output of the time
constant regulator tends to drift producing a generzl dither on the load

angle at all times,

In order to achieve consistency the following procedure was
adopted for low gains. The reference voltage was adjusted for a definite
load angle. If the load angle did not change by more than + 2° in
the following 1 min., the system was considered to be stable for that
angle, The reference voltage was then reduced so as to increase 58 by
approximately 2° at a time and the process was repeateds If within
the 1 min Sg was reduced by more than 2° s Vref was adjusted %o
bring it back to the set value and the change was attributed to drift.
If, on the other hand, §g increased by more than 2° » and continued
to drift upwards, during the 1 min. at least twice, then the condition

was considered unstable,

2) High values of gain. As er is reduced the system enters

f
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what is known in control systems analysis as a "limit cycle', That is,
at the stability limit non-sinusoidal oscillations build-up to a finite
amplitude although the alternator docs not pull out of step. If the
reference voltage is reduced further the amplitude of the limit cycle is
increased until, eventually, synchronism is lost. Because of the dither
in the load angle and the damped oscillations due to changes in the
supply voltages already mentioned the start of the limit cycle is un-
certain. However, since the frequency of the limit cycle can easily be
determined by reducing Vref further, it was decided that the stability
limit is reached when definite oscillations of + 1° at the frequency

of the limit cycle were obscrved.

The two kinds of instability observed for high and low values of
gain correspond to the types of unstable roots discussed in section 7.1,2.
The fact that for high gains the oscillations do not increase indefinitely
is a consequence of the non-linear nature of the system. The linearised
equations are valid only for small changes and during the limit cycle other

factor s come into operation.

3) Low values of gain (integrator and derivative type regulators),
It is observed that the load angle drifts over a wide range long before
the calculated limit is reached, When Vref is further reduced the
drifting remains approximately the same and near the computed limit the
alternator, if left long enough, pulls out of step. The process seems
to be random and it is possible that, because of the low gain the effect
of the change in supply voltages is not completely correcected by the
regulator. The error seems to have a cumulative effect since with the
simple regulator, at the same values of gain, less than + 1°  dither
was observed, Since it is not possible to fix the stability limit the
test for the two regulators was discontinued when these conditions were

encountered.

4) High values of gain (derivative regulator) high frequency
oscillations were observed, but since these are poeuliar to the derivative

regulator they are discussed below, see section 9.1.4,
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The stability limit for the high values of gain is a compromise
between the theoretical and practical requirements. A limit cycle
of amplitude smaller than 1°  could not be detcermined because of dither.
It may be argued that small oscillations on the load angle are un-
important and that the system should be considered to be stable until
synchronism is lost. Niolsen62—6 uscd this criterion, but it is
doubtful whether oscillations of up to f’150 would be acceptable in
practice. It is interesting to note that B.S.S. 649, Ref. 35-1,
specifies 2%0 as the maximum pulsation of Sg when the alternator
is driven by an internal combustion engine. The use of a stability
criterion based on a 2%0 pulsation in the present case is not justified.
From the linearised equations the system is unstable at the beginning
of the limit cycle and any comparison with theory must be made with the
minimum detectable oscillation. It is not possible to estimate the
start of the limit cycle by extrapolation because the change in Sg from

a stable condition to large oscillations depends on the value of gain.

The existence of the limit cycle is not generally recognised in
the literature. It is stated in Ref. 65~2 that the oscillation would
build~up until synchronism is lost. One of the few exceptions is Ref,
65-4, which describes the process of loss of stability, for high gains,
correctly . The transition from aperiodic to oscillatory instability
at the optimum value of gain does not appear to have been noticed. There
are very few references on the stability critcerion used in experiments,
see Table I p,221 . It is thus considered desirable to describe in
some detail the process of loss of stability. For this purpose three
typical points are chosen and a summary of the conditions is given as
the reference voltage is reduced. The process is described for a high
and 2 low value of gain for the simple regulator and for K = KSS for the

derivative regulator.

9.1,1 Stability with the Simple Regulator,

The analogue computer (sce Fige 3.1) was connected to give a

constant gain and the test was carried out as described in the previous
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section. The result is shown in Fig, 1.3. Taking the point with
K =19.5 as typical of the high gain points the oscillations developed

as follows:

1) 5, = 104°,  Ditner 1°.

2) 8 = 106°,  Dither greater than 1°,

3) 68 = 108°, Dither greater than 1° but no definite oscillations.
L) 6g = 120°, Oscillations of 1° amplitude superimposed on

approximately 2° dither.
5) &_=112°, Oscillations of 13° amplitude on a 3° dither.
6) 6g = 114°, At first oscillations with 2° amplitude building

up to non-lincar oscillations between 102° and 122°,

It is apparent that the beginning of the limit cycle cannot be
detected. Consistent with the criterion defined in the previous section
the stability limit in this case was taken as 110°, Considering now a

typical point with a low value of gain, say at K = 2,5 we have,

1) & =109°., Remains at + 1° for one minute.

2) 8y
50 sec it was creeping pest 114°.

3) 8, = 112°.  Drifted back to 109° and v
to bring & back to 112°.

4) 8 = 112°,  as 3.

5) Sg = 112°,  Remained within + 1°  for 30 senp but at 60 sec

112°, After 30 sec 68 was approximately 110° and after

g Wwas adjusted

load angle was 116° and was moving upwards.
The stability limit was taken as 109°,

Referring to Fig. 1,3 the mcasured stability limits are higher than
the computed curve. This may have been expected for high values of gain
since, at the stability limit the limit cycle has a finite amplitude,

On the other hand the opposite was expected for low values of gain since

any small change in the system would cause the machine to lose synchronism,
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9.,1,2 Stability with the Delay Regulator.

The regulator transfer function is given in Eqn. 7.9 and Figs.
9.1 and 9.2 show the stobility limit as a function of K with Tl = 0.5
and 1 scc respectively, As with the simple regulator the measured
values are greater than the calculated limit.  The natural frequency
is reduced compared with the simple regulator and this makes the detection
of the limit cycle slightly more difficult. The process of loss of
synchronism is similar to that for the simple regulator and need not be

described in detail.

9.1.3 Stability with the Intcgrator Regulator.

Before considering the stabilized integrator expcriments, it is
appropriate to mention a test performed with an unstabilized integrator
regulator, Egn. (7.10). Depending on the regulator gain a limit cycle
was observed for Sg in the range 60° to 80° . It is interesting
to notec that, when Vref was further reduced the amplitude of the
oscillation increased very slowly so that the alternator did not pull

out of step for about 2 min. after the change in Vref was made,

The transfer function of the stabilimed integrator used is given
in Egn. (7.11) and Figs. 7.9 and 7.10 show a comparison between the
calculated and the experimental results., Ta = 2 and Tl = 0.5 or
0.1 sec respectively. A1l meaosurced points showed oscillatory in=
stability. When the gain is rcduced it becomes processively more diffi-
cult to determinc the stability limit and for reasons discussed above
the test was discontinued. Fig. 7.10 shows that with the stronger
stabilization the maximum stable angle is approximately 7° larger than

with the weaker stabilization, Fig. 7.9.

In practice it is important to determine the performance of the
regulator when subject to drifts in the supply voltage etc. It appears
that, with the integrator regulator the system is particularly sensitive
to such drifts, The amount of drift in the terminal voltage of the

alternator that can be tolerated in a practical system will have to be
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decided and the gain may then be fixed to avoid such conditions.

9,1.4 Stability with the Derivative Regulator,

The regulator transfer function in this case is given by Eqn. (7.14)
and Fig, 7.14 shows a comparison betwecen the calculated and the experi-
mental stability limits. The experimental points may be divided into

3 groups:

a) Corresponding to Kmax . The usual limit cycle appears with
a higher frequency than for the simple regulator. The measured points
lie above the calculated curve and the discrepancy is not wholly due to
the fact that the start of the limit cycle cannot be detected. At

K = 26,5 the stability limit was cstablished as follows. Because of
the higher natural frequency the output voltage of the regulator is a
sensitive detector of oscillations and for this test it was observed on a
C.R.O, Nevertheless the same criterion, based on angle, was used as

with the other regulators.

1) 6g = 140°,  There is a 2° dither on the load angle by no
definite oscillation.

2) 6g = 1430. The output of the voltage regulator on the C,R.O,
wanders about with no definite oscillation. Dither on the load angle
approximately 30.

z) Gg = 1450, There is a 3° dither on the load angle and it
appears that there is an oscillation. However, output of the regulator
does not show any oscillation,

4) Gg = 147°.  There is 3° - 4° dither on the load angle with
2 or % oscillation of initial amplitude 20, which are quickly damped out,

5) & =149°,  Again 3° - 4° dither for about 15 sec followed

g
by few oscillations and the system then lost synchronism.

It was decided to take the stability limit at 146° since both

145O and 14?0 have reasonable claims to it.

b) Corresponding to Kmin . The bchaviour is similar to that with
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the integrator regulator, There are no definite oscillations and the
alternator does not lose synchronism. It appecars that there is little
domping os oscillations caused by disturbances and it is difficult to
decide when the system becomes unstable. As with the integrator regulator

the test was discontinucd.

c) High frequency oscillations. As hns been pointed out in
section 7.3.3 the gain of the derivative regulator is high at approx-~
imately 17 c/s. Hence some instability may have been expected although
the Nyquist locus, Fig, 7.13, does not approach the (-1, 0) point at
high frequencies. It was found that a new kind of instability occurs
at low values of 68 as shown in Fig, 7.14, It is surprising that
the frequency of the oscillations is 17 c/s and does not vary with 68 .

Since, by Eqn. (8.2) the frequency of the oscillations is given by
1+ HGA) K(GGAN) = 0

and since K(jr) at 17 ¢/s is real H(jA) must also be real. However,
inspection of the numerator and denominator plots of H(jA) , Fig. 6.6
shows that at 17 ¢/s Arg H(jA) —> + 90° ,  Hence it appears that
the rate of change of flux terms in Eqn. (2.1) become significant and

should not be neglected.

In fact the amplitude of these oscillations at the terminal voltage
is less than 0.2 % and hence the operation of the alternator is not
affected. Depending on the regulator gain, however, the oscillation
is a larger part of V_, (scc Fig. 8.1). At the output of the
regulator the oscillations are amplified about 55 times, sce Fig. 7.11,
and hence become lorge enough to saturate the limiter, Thus effective

control of the excitation is lost.

Some difficulty was experienced with 50 ¢/s pick-up especially
at high regulator gains, which was overcome by careful screening and

positioning of equipment.
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9.2 Measurement of H(j)\) .

A direct check of the theory can be made by measuring the frequency
respouse of the alternator, It was decided to counsider only one of the
H(j\) loci shown in Fig, 6.1 and as for other expcriments Sg = 110°
was chosen. The simple regulator was used. Although such a test is
usually straightforward for a linecar system there are three complications

in the present case.

a) For Sg = llOo the system is unstable without a regulator and
therefore the open loop transfer function must be determined from a

closed loop test.

b) Fig., 6.1 is determined for small oscillations but in order

to improve the accuracy a large signal is desirablec.

¢) Because of the low frequencies involved an inaccurate test

had to be uscd to measure H(O) .

9.2.1 Frequency Response Test,

Fig, 9.3 shows a block diagram of the system during this test,
The oscillator of the transfer function analyser (T.F.A.) see section
3.0, was used to inject o small oscillation into the system as shown.
As a result an oscillating componcnt was superimposed on the voltoges
VC and er . These voltages were then, in turn, measured by the
T,F.A. voltmeter, which is not shown in Fig. 9.3. Hence Vc and er
are known in magnitude and phose with respect to the output of the
oscillator., Since the attenuation of the rectifier and the filter is

0,193, sce scction 3.2.3,

n

AV£ AVC/O.193

and

AV
c

0.193 A er

H(jn)
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Below 0,7 c¢/s the pointers of the T.F,A. voltmeter oscillate about
a mean position and below O.4 ¢/s it was no longer possible to use the

instrument.

For low frequencies the arrangement shown in the lower part of
Fig, 9.3 was used. The output of the oscillator went through the phase=
shifter to a moving coil voltmeter and the signal to be measured through
a buffer amplificr to another moving coil voltmeter. The frequencies
were low cnough so that the oscillation could be observed on the instru-
ments, which were biased from zcro so that their reading was always
positive. The magnitude of the signals was obtained by noting the
maximum and the minimum readings, The phase-shifter was adjusted so
that the pointcrs of the two moving coil instruments moved up and down
together, The recading on the phase=-shifter then gives the phase angle
of AV£ and AV&e with respect to the oscillator output.

The accuraey of the phase angle measurement is considerably
reduced when using the two voltmeters as compared with the T.F.A. volt-
meter, especially at the very low frequencies, where the error is
possibly of the order of 10°. The measurcment of the amplitude should
be reasonably accurate. A source of error is that the peak-to=-peak
voltages were measured and it was assumed that the oscillator output as

well as the signals measured were sine wnves.

The magnitude of the a.c. signal injected into the system is a
compromise between a large and a small value, The small value does
not violate the conditions of the small oscillation theory but produces
small signals at V and Vé » which are difficult to measure, A
fo and VC but the results

are affected by the non-linear nature of the system. As low frequencies

fe
loarge signal gives measurable voltages at V

the injected voltage was adjusted to give a swing in 6g of 6°. At
higher frequencies, however, a large signal is required for such a swing
and it was decided to limit the injected voltage to approximately

8% of the reference voltage (a.c. Volts/d.c. Volts).
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Another discrepancy from the assumcd conditions is the variation
of the torque of the d.c. shunt motor driving the altcrnator. The
torque-~speed characteristic of a d.c. shunt motor is such that a small
changc of speed produces a large change in torgue. During the load
angle swings thereforc the mechanical torque does not remain constant,
This torque oscillation was reduced by inserting a resistance in series

with the armature of the motor.

The result of this test is shown in Fig. 1.6 together with the
calculated curve. Two clternative methods were attempted for the very

low frequency points and both were found unsatisfactory.

a) Using a C.R.O,

b) Subtracting a known fraction of the output voltage of the
phase-shifter from the output voltage of the buffer amplifier (see
Fig. 9.3) by means on another operational amplifier, If the two
inputs to the sccond amplifier are arranged to be cqual in magnitude

and of opposite phose then its output would be zero.

9,2,2 Determination of H(0) .

The value of the alternator transfer function at zero frequency
is given by the ratio of small steady changes in Vc and er and it
is mcasured by introducing a small change in the steady conditions,
see Fig. 9.3. Normally the value of H(0O) would be obtained by
reducing thce frequency of the applicd signal in the last test until
the output is in phase with the input. The lowest frequency obtainable
from the T.F.A. oscillator is 0.0l ¢/s and as it may be seen from Fig.

1.6 there is considerable phase-shift at this frequency.

The conditions are the samc as for the frequency responsc test,
section 9.2.1, with K adjusted to give stable operation up to 8, = 120°,
A step voltage Vs is introduced as shown in Fig. 9.3, the effect of
which is the some as increasing the reference by V . After the
transient leS away a new steady statc condition is established corres-

ponding to the incrcased reference voltage. irf AVt is the change
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in Vt after the introduction of VS then AVt/VS gives the closed

loop response, from which the open loop response may be calculated.

Two serics of tests were performed, in the first of which AY£
was determined by measuring Vt before and after the dintroduction on
VS . In the second series the change in Vt was calculated from the
known bus voltage and powcr and the measured value of current in the

line for the two steady conditions.

As in the fregquency response test of the previous section the
magnitude of the injected signal is a compromise between a smzll and a
large value, Three values of VS were used, 0,5, 1 and 1.5 V, It
was hoped that the results obtained would change in one direcction as VS
was increased, thus giving an indicotion as to where the value for small
Vs would lie, There was considerablc deift in the system probably due
to changes in the a.c. and d,c. mains and the time constant regulator
output, see section 9,1.1. The following method was adopted for the

test in order to achieve some consistency.

The initial condition was estoblished and the rcadings were taken
starting with the load angle, If the angle had not changed in the
meantime the step change VS was applied. After about 30 sec the
power was adjusted, if necessary, and the readings were cnce again taken,
Vg was then removed and if Bg returned to within + 2° of the original
setting in cpproximately 30 sec the values were accepted and it was
assumed that no serious drift had occurred. Otherwise the process was

repeated,

The values of H(0) obtained from this test are plotted against
load angle in Fig. 9.4. It was assumed that a change from Ba to 8
corresponds to a small oscillation value at,
+
Ba Bb
g 2

&

I

Because of the various drifts the scatter of results is large. However,



0.6

0.4

02

191

T

0] Vs STEP=0.5V
X VS STEP= 1OV
x

\ o
N o
\ N\
® \@
© \@\&) ° VALUE USED IN
X FIG. 1.6 ‘
\%SE
N8
‘&
N
~

\'\'\

H o)

Vs STEP=1.5V

i

90 100° no° 120° 140 Sq
FIG. 94
Ho FROM STEP CHANGE TESTS

Calculated rg=0

— Calculated Trjincluded



192

the calculated curve shows good agrecment with the experimental points.
The scatter does not diminish with inercasing values of VS . The value

shown on Fig, 1.6 is the average result for 68 = 110°,

9,3 Measurement of K(iA\).

The frequency responsc of the regulator with the analogue computer
set to unity gain has already been discusscd, see section 3.2.  The
use of the analoguc computer simplifies considerably the setting-up of
any type of transfer function for the regulator. Although the actual
transfer function can be written down by inspection of the patch-board
it was decided to measure the frequency response for each regulator.
Hence any mistakes in setting-up the computer could be detected. Figs.
7«7 ond 7.12 shows thc measurcd as well as the caleculated points on the
frequency response locus, The Transfer Function Analyser was used

and hence there are no measurements below 0.4 ¢/s.

As stated in section 3.2.2 a precision decade potentiometer is
used to vary the gain. It was found that, since the input resistance
of the amplifier following the potentiometer is finite, a calibration
is necessary in order to determine the gain in the computer at zero

frequency with different positions of the potentiometer.

The Transfer Function Analyscr was also uscd for adjusting the
derivative regulator parameters sc that the required frequency response
was achieved. The oscillator was set to 0.6 c¢/s, which from Fig, fel
is a suitcble frequency, and the computer coefficient potentiometers

were adjusted sc that the in-phose component of the output was zero.

9.4  Step Function Test,

The aim is to confirm the results of section 8.1 and the method
is similar to that used for determining H(O) , sce section 9.2.2. 4

step was injected as before but now the transient change in Vt was
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recorded. The circuit used is shown in Fig. 9,3 with thc Transfer
Function Analyser disconnccted. The analogue computcr was adjusted,
in turn to give the transfer functions of the regulators described in
sections 7.1 and 7.3. It was found convenient to introduce the

step function at the input of the summing amplificr (see Fig. 9.3)
and to measure A Vt at Vc « Thus with Vc biased using a
battery the scale of the recorder could be incrcased to show the

small change.

The same difficulties as in section 9.2.2 were encountered and
several measurements were made, A number of the recordings had to be
discarded either because of an obvious disturbance during the test or
because the initial steady state conditions were not established after

the removal of the step, sec section 9.2.2.

Typical results are shown in Figs. 9.5 to 9.8. The transient
response is shown both when the step is applied and it is removed
plotted with the same time origin and showing zﬁVt positive, The
scale of the figures is arbitrary so that the change in Vt is equal
to unity, The difference between the two curves illustrates the non=-
linearity of the system. For the simple and the delay regulators two
values of step were used for cach regulator gain producing a change
from 120° to 100° and from 116°-117° to 104°-103° . As in
section 9.2.2 it was hoped to establish some relationship between the
size of the step and the departurc from the calculated curve. One can
only say, however, that the discrcpancy between the curves obtained
when the disturbance is applicd and when it is removed, is increased

with the larger step.

Since the system is unstable at Sg = 120° with the integrator

regulator it is not possible to use the larger step in this case.

The result quoted for the derivative rcgulator is affected by
the limiter and cannot be compared with the calculated curve. Clearly

the output of a differentiator to a step function is large and as a



194

AV,

O
U

K=132

4 b 8 t secio

FIG.9.50
RESPONSE TO STEP FUNCTION
SIMPLE  REGULATOR

CALCULATED ——-—— MEASURED FOR  §g
A) FROM |00° TO [20°
B) FROM 120° TO |10OC




195

1.0 ’#,A__d
=" PP il
<] 2= -7
0.5 B et
ST —
8,/ K =524
z/ _1/
Pl
//,/A
2 4 6 8 t sec 10
—k B
LN A\l AT —_—
l.o IN 2N Y X =N TN O XN
Y/ ’;\3{/\‘ N NV~X TN R
> /\1, / e N4
) z VII—\//
/
o5 ™ / =
7 K =132
4 b 8" sec 1O

FI1G. 9.5b
RESPONSE TO STEP FUNCTION
SIMPLE REGULATOR

CALCULATED ————~— MEASURED FOR &g
A) FROM 104° TO 116

B) FROM 116° TO 104°




196

—h————“
I.O e B ::’
//’ //;/ A
. /’ —",
) /// /,— -
<] / //
0.5 =
/ R K = 524
e _z
B// ‘//’
L e=TA
2 4 6 8tsec!©
I-5
>“" //>\‘:\\\
/ \ .
< /////‘*"-\:\ ”.——-\\
[.O 4 N - -l A=
//“ \\/ /’>‘é-—
/ / T -7
y
//
/
05—+
8/// K =132
/ /'
Zz
2 4 6 8 tsec!O

FIG. 9.6a
RESPONSE TO STEP FUNCTION

DELAY REGULATOR T =1 sec

CALCULATED ———— MEASURED FOR 6q

A)FROM 100° TO 120
B)FROM 120 TO 100

(-]



197

0 B
- A
=1 Rl
e
< [ K=5.24
.5 .,
© // s
s s
) A
7/
A, /A"/
il B
2 4 b 8 tsec 10
B
‘~’¢€’:—'—\\ \-
\\ —'/,/ A\\
K =132
1,0
Va
4 6 8 I sec [®)]

FIG.9.6 b
RESPONSE TO STEP FUNCTION
DELAY REGULATOR TI =| sec

CALCULATED - — —- MEASURED FOR &

q
A) FROM 0% TO 117°

B) FROM 117° 10 103°



198

/,"\‘
A/ \
2.0 S \
v \
- /’ X "\;\ K = 524
> 7 /1 x =
< /’ SN N N A
/ I'd \ \\ -
1.0 L 47 X AN N AT >
,/ ’ o~ - _\__.—l—/’ -
’/ // ~dh o ——— B
A
/4
2 4 6 8 tsecio
A :
B"gr\ K =13
~ /_,:, \"‘%\ N\
) A AN
= /'f N / AV
10 |—1{if L N A W 9l v o N D
b\ AT
,A A V4 "Pg—a-—”
/ \ /
/ \J
4 6 8+t sec 10

FIG. 9.7

RESPONSE TO STEP FUNCTION
INTEGRATOR REGULATOR T|=| Tstec

CALCULATED ———— MEASURED FOR §

9

A) FROM 104° TO 1I&

8) FROM 116

10 104°



199

I4Y
I\
I-O N ! b _1/\\/;'\\\,:‘_.6_
/\/ VJ \-#‘-~ r”_____/ -7 \B_
‘~’/"ﬁ-,"""« \\.(.{-/
N W I A N/
<] l\]/,/ l’ \lj -
0.5 / r‘L }
A
{ 1
{ ]
s v
o= [
‘n 2 4 6 8 tsec 10
1A 1’
| 7
| r
-0.5H——
]
| ]
P!
I /
L/
/
~1.0 !l,'
\/
J

FIG. 9.8

RESPONSE TO STEP FUNCTION
DERIVATIVE REGULATOR K=185

CALCULATED - -—--—MEASURED FOR 8q

A) FROM 100° TO 120°
B) FROM [20° TO 100°




200

result the limitcr comes into operation., It is interesting to note
that when the step is applicd at Bg = 100° the alternator swings in
the opposite dircction and & _  is less than 100° for approximately

2 sec., On the other hand when the step is removed at § = 120° the
load anglec goes directly to 1000. ®

9.5 Reguwlation Test,

The result of this simple test is shown in Fig. 8.6, The method
used is as follows: The value of Vref (Fig. 9.,3) was noted when
Bg =110° and P = 0.8 p.u, for different regulator gains. The
alternator was removed from the infinite bus and the speed adjusted
to its normal value, The open circuit voltage was then measured when

the gain was varied and Vre adjusted to the corresponding values as

f
before. The value of p is cbtained from the first part of Eqn. (8.10).

Since the regulation is 2o function of K(0) and does not depend
on the type of regulator this test was carried out only for the simple
and the integrator regulators, In the latter case it was confirmed

that p = 0 for any value of K .
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10.  CONCLUSIONS.

Meny of the conclusions derived in the present investigation are
a direct result of deeper application of a well known method. The
first important contribution to the solution of the problem using the

Lh-1

small oscillation theory was made by Concordia and the first use

of the Nyquist criterion by Messerle and Bruck55_1. The system matrix
is derived so that either the voltage or the torque feedback methods

may be used, It is considered that the voltage method is more suitable
for analyzing the effect of the excitation regulator. The torque
method, however, links the conventional approach to steady stability with
that of the small oscillation theory when there is no regulator. In
addition the torque method may be used for studying the effects of
governor on stability especially when the excitation regulator must also

be taken into account.

+

When damping and the armature resistance are neglected formulae
are derived for the salient features of H(jA). Many of these results
are already known. However, by plotting the constituent parts of the
H(j\) and by comparing the loci with those obtained when demping and
r, are included the effects of individual parameters are determined,
It is shown that both damping on its own and r, have a significant
stabilizing effect. The contribution of rotor damping is particularly
important since a higher value of gain may be used and as a result

the accuracy of regulation is improved.

The following results arc obtained for typical regulators used
in practice. The simple regulator extends the region of artificial
stability up to the peak of the transient power-angle curve, . The
maximum value of gain, Kmax , that may be used for & <i6 <<6' is
small so that the accuracy of regulation is poor. With the delay regulator
the maximum stable value of 6g is less than 6; and Kmax is increased
as the delay Tl is increased, Thus if a large load angle is not re-

quired it is possible to use an artificially high Qlto improve the accuracy
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of regulation. When T1 is large the regulator approaches the
integrator type. This does not enable the system to operate in the
artificial stability region without a stabilizer, but if suitable
stabilization is provided, considerable extension of the stability region
may be achieved, When a 2nd derivative regulator is used the stability
region is extended beyond éé and Kmax is increased compared with the
simple regulator, It is proved that the ultimate stability limit with
a derivative regulator occurs when the angle between the infinite bus
and the altornatogqterminal voltage is 900. Although this result is

-1

stated in Venikov it has not been possible to find a proof in the

literature.

The majority of the theoretical papers use the Routh test., For
the following reasons, however, it is considered that the Nyquist test

is the most useful method:

1) The alternator and the regulator transfer functions are calculated
separately and the number of the stability conditions is not affected
by the degree of either H(p) or X(p)., Hence an accurate repres-
entation of the alternator and consideration of complicated regulators
are possible, The effects of rotor damping and of the armature
resistance are included both of which appear to have been neglected in
the literature, see section 1l.l.3, Also it was possible to consider
the 2nd derivative regulator, for which no analysis could be found in
the literature, The amount of computation involved is considerable,
but this is taken care of by using o digital computer. The computation

is repetitive and can easily be programmed.

2) It is possible to verify intermediate results experimentally by
measuring the frequency response of the system to small signals. The
alternator transfer function, H(jA) , need be measurcd only once since
combination with the measured regulator transfer function gives the

frequency response of the system for any regulator.

%) The effect of the regulator gain is apparent since only the scale

of the frequency response locus is changed.
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L) The overall effect of the various types of wvegulator may be

obtained without computation, since multiplication of the H(jA) and

the K(jA) loci may be visualized easily. It is apparent from Fig. 6.1
for example, that an unstabilized integrator regulator does not enable
the alternator to operate in the artificigl stability region, It is
also obvious that only a regulator with a second derivative signal can
extend the stability limit beyond the peak of the transient power-angle
curve, A proof of either of these results could not be found in the

literature,

5) Information about the degree of stability is obtained by using

the phase and gain margins for each locus.

6) The most important advantage, however, of the Nyquist criterion
is the possibility of synthesizing a regulator. In a2 particular case
the H(j\A) 2locus may be drawn from knowledge of the alternator and the
system parameters. A suitable regulator transfer function may then be
determined so that the system may operate up to the required stability
limit. Finally the regulator components may be chosen so that the

required transfer function is obtained,

The experiments described in section 9 approximately confirm the
theoretical results, The ability of the derivative regulator to
stobilize the system for b > 8 is established, The stebility limit
achieved, & = 146° , is larger than the maximum value reported in the
literature with a comparable systom, see Table I p. 221« The system
seems to be particularly susceptible to drift when the integrator or the
derivative regulators arc used at low gains. This, however, does not )
appear to be important in a practical system, where normally high gains
ghould be used, Nevertheless, an additional performance index to
measure drift may have to be defined, The American I.E.E. Definitions,
Ref, 61-3, give drift as "a sepcified change for a specified period
of time, for specified conditions"., The calculation of a "drift index"
and its measurement except on an actual system appear to be very difficult.

A further investigation should be made into the high frequency oscillations
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with the derivative regulator and the rate of change of flux terms
should be included, It is probable that by careful choice of the
delays in the regulator the high gains at high frequencies may be
reduced without affecting the low frequency response and so this form

of instability may be eliminated.

In determining the optimum transfer function of the regulator
other factors may be considered in addition to the steady state stability.
It is not often that a system is required to operate at extreme angles
and hence it becomes necessary to determine suitable values of gain
between Kmin and Kmax' Also several regulators may meet the
stability requirements and the choice of the most suitable type should
depend on other factors. It was decided to use two additional performance
indices, namely, speed of response and accuracy of regulation. It
appears that there are no accepted methods for determining either
quantity and two methods of measurement and calculation are suggested

in section 8,

The speed of response is defined for small changes but experiments
show that for changes in load angle from 120° to 100° the linear theory
is approximately valid amd may be uscd as a guide. However, further
investigation is necessary to establish the relation betwcen the
responses to large and to small changes. The importance of choosing
the right value of gain to obtain a satisfactory rcsponsc is demonstrated.
The derivative regulator is shown to have the minimum integral square
error and the integrator regulator to have a highly oscillatory response.
The response with the derivative recgulator, however, is affected by
the limiter and it appears that high exciter ceiling voltages are

necessary.

The accuracy of regulation is defined in terms of the change in
Vt for two steady operating conditioms. As expected the accuracy
improves with increased gain and the regulation with an integrator

regulator is zero.
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A variable pprameter regulator appears to offer the best
compromisc between the three performance indices. The regulator gain
may be made a function of the operating condition so that, e.g. the
integral square crror is a minimum in the artificial stability region.
For 6g :) 68 some compromise between the accuracy and speed of
regponse may be used to determine K. Al ternatively an integrator
regulator moay be used for small 6 and a derivative regulator for

€;>>8 with a change~over at 8 = 6 . Other parameters may be
varied in a fully automated system. Further improvements may be

achieved by using combinations of different controlled variables and their
derivatives. However, there is a limit to the complexity of the
regulator and the reliability of the excitation system is of paramount

importance,

It was shown in the thesis that the performance of the alternator
is greatly influenced by the excitation regulator. The extension of
the steady state stability region that can be achieved appears to be
greater than that required for practical systems. Thus the regulator
transfer function should be chosen so that the system performance is
optimum for a) steady state stability, b) speed of response, and

¢) accuracy of voltage regulation,
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APPENDIX I

Expression of vd . v({l in Terms of the Bus Voltage and the Load Angle.

Let the infinite bus voltage be

[Vabé] = Vm sin wt )
sin(wt - ?")

sin(wt - 5——;‘)

[Vabc] referred to the d- and the ¢~ axes of the alternator is

[quo:l - [P:l ] abc]

where ’:P] is the Park transformation matrix, see Ref. 57-6

[P] = % cos 0 cos(6 - -23?5) cos(6 - 14_3_«1:)
sin 6 sin(e - 25) sin(o ~ =5
3 3
a 4 1
2 = 2
where 8 = wt -5
Hence [V dqo] = Vs = Vm sin &
v cos &
aq
v 0
o]




207

APPENDIX 1IT

Evaluation of Ai‘ Including T .

jk
i35 = - X3P Vo T
-3 v, + > i - Qt -k v 4+ r i
do "a “do o 2 'go "a "qo
= Ta vqo - Xq(P)

Hence
= Qi+ vy (p) + v Y (p) =2 r (% I Y()+V I Y (pi)
A135 o qo g do ~d a\ go qo g “doTdo"d
2
-r (quIdo - VdOIqO)Yd(p)Yq(p{J ..(I;.l)
B
235 = K, K(p) G(p) Al K K(p) G(p) A, K K(p) G(p) A3
- i - 0O i
2 V4o T Ta 4o % 2 Y90 T T Tao
~r, Vo - Xq(p)
Hence
- — L ] t
X (T Y () - x ¥ ()T ) (V2 2r P! + X_Q!)F(p)
A = (11.2)
235 v
to
where

' =
PU o= Vg Tao * Voo Tgo
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. Hence
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K K(p) G(p) Ay

- Xd(p)

OEVQQ + X, Ido) ~T, Yq(p) (vdo - X Iqo)] (11.3)

- Xd(P) vdo
‘2

- Jp

- v
Ta 4o

A145 = 1 + ri Yd(p) Yq(p)

- Xq(p)

(II.4)
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APPENDIX ITI

The Nyquist and Routh Stability Criteria

The block diagram of a single loop feedback system is shown in
Pig, ITT,1. Fach of the four functions C, D, E and F 1is a
polynomial in p. From it the following equations may be written

down:

[er]
n
[e>]
1
@

(I11.1)

@ <
- Q
" i
=l -G
~ ~—
3 o]
N St
I
oy @ o
[t

Eliminating 0! and 6_ from Eqns. (IIT.1) the differential equation

of the system on closed loop is obtained,

(:ﬁ(p) F(p) + C(p) E(p) j) 8, = F(p) c(p) 05 (111.2)

and the Characteristic Equation is:
D(p) F(p) + C(p) E(p) = © (I11.3)

The system is stable if all the roots of this equation have negative

real parts. There are several methods available for determining the
position of the roots of an equation without solving it. In this
investigation the Nyquist criterion is used and is described in some
detail in this Appendix. For many operating conditions the forward

loop of the system is inherently unstable and this requires special
considerations. The Routh criterion is an alternative method and because
it is used in Appendix IV it is necessary to give a brief statement

of it.

IIT,1 The Nyqguist Test Applied to a Feedback Control System.

The Nyquist test is based on the Open Loop Transfer Function
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defined as follows; sce Fig, IIT.1.

el
_ o _ C(p) E(p) _ A(p)
2(p) = 5. D FG T B
wvhere A(p) and B(p) are polynomisls in p . In a physical system
the degree of B(p) is higher than the degree of A(p) and the open
>~ . Eqn, (TIT.3)

loop transfer function tends te zero as »

may be written as
A(p) + B(p) = 0 (IIT.4)

In order to introduce the open loop transfer function divide both terms
by B(p)

%%ﬁ% + 1 = 0 = (111.5)

Egn. (III.5) has the same roots, with positive real parts, as Eqgn.
(II1,4) provided that A(p) and B(p) do not have a common zero which has

a positive real part. This is most unlikely to happen in practice.

Consider the transformation from the p- to a w!'=plane in two

steps as follows:

w = %%% (1IL1.6)
and w''= w+ 1l (111.7)

(p - pl)(p - pz) ee s
(p -p,/)(p - pﬁ) ceeen

Let w' =y (111,8)
The zeros of w! are P s Po etc., and the poles are Py? pB ete.,
but their values are not known. It should be noted that the zeros of
w! are the same as the zeros of the characteristic equation and that the

poles of w'! are the same as the zeros of B(p) .
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Fig. I1I.2 shows some typical poles and zeros on the p-plane .
For stability Py s Ppoy eees should all lie to the left of the imaginary
axis., Any closed contour C followed by a point @ in the p-plane is
transformed by Egns. (III,6) and (III.7) into a closed contour C!
followed by a point Q' in the w'-plane. Let Q pass round the
contour C in a clockwise direction. If C encloses a zero at Py » Q!
encircles the origin in a clockwise direction, and if C encloses a pole
Py » Q' encircles the origin once in a counterclockwise direction.
Hence if C encloses P poles and Z zeros, Q' encircles the origin
clockwise (Z = P) times, Curves (i), (ii) and (iii) of Fig, IIIL.2
are obtained for Z - P =1 (onc excess zero), Z ~ P = =1 (one excess

pole) and Z - P = 0 respectively, :

Now choose for the contour C +the path shown in Fig., III.3 con-
sisting of the imaginary axis, a semicircle at infinity to the right-
hand side and another semicircle of infinitesimal radius excluding the
origin from C , If therc are Z =zeros and P poles of w' enclosed
in this contour the origin of the w'-plane is encircled Z - P times
in a clockwise direction. The transformation from the w- to the
w'-plane is a simple change of origin. Hence when 2 zeros and P
poles of Ign. (I11.5) are enclosed in the contour of Fig. III.3 the
w-plane contour encircles the (-1, O) point Z - P times in a clock-

wise direction,

Thus the Nyquist test consists of plotting the open loop transfer
function w = A(p)/B(p) for values of p from = j o to + j o and
along the semicircular parts of the p~plane contour and counting the
number of clockwise encirclements of the (-1, O) point. Since how-
ever, the requirement for stability is that 2 shall be zero it is
necessary to know the value of P . This is considered in the following

section,

It should be noted that since w is the ratio of two polynomials
the parts of C' corresponding to the positive and negative halves of

the contour C are symmetrical about the real axis in the w-plane. Thus
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only the positive half of the imaginary oxis need be considered when

determining the w-plane contour.

IT7,2 Determination of P,

P is the number of polcs of the open loop transfer function with
positive real parts, and is equal to the number of zeros with positive
real parts of B(p) . If the open loop system is stable P = 0, and
the condition of stability as derived above is that the Nyquist locus
shall not encircle the (-1, O) point. However the alternator with
its voltage regulator loop open is unstable for load angles greater than

68 » In order to use the Nyquist test it is essential to determine P .

The same method as in section III,1 may be used. The trans—

formation from the p-plane to the w!'-plane is now,

w' = B(p) (111.9)

B(p) is a polynomial and has no poles. The number of zeros with
positive real part is P and therefore the number of clockwise en-
circlements of the origin in the w'-plane when p describes the contour
C of Fig. TIT.% is equal to P . If B(p) is an nth order polynomial
in p the w'-plane contour corrcsponding to the infinite semicircle of
Fig. III,3 is given by Eqn. (III.9) describes n clockwise semicircles.

If n is large this is cumbersome, and so an alternative method is used,
Let B(p) be expressed as:

B(p) = Bl(p) + Bz(p)

where Bz(p) contains the highest power of p . A plot is made of

) Bl(p)

L N )

2
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and the encirclements of the (-1, 0) point counteds It can be

arranged that the zeros of BZ(p) are easily determined,

III,3 Poles at the Origin.

When H(p) is the open loop transfer function of a physical

system H(p) > 0 as p > o, The semicircle at infinity
of contour C Fig. III,3 is transformed into a point in the w-plane
and there is no need to consider poles at infinity. It was shown in
section III.2 however that the need arises to obtain Nyquist plots of
functions which are not open loop transfer functions of a system.

For this section only H(p) is considered to be a ratio of two general

polynomials.

Assume first that H(p) has an nth order pole at infinity, i.e.
the degree of the numerator A(p) excecds that of the denominator B(p)

by n ., When p =R e9® it can be shown that, for R

> oo 3

H(p) = D, B 3™

where Dl is a constant. As point @ describes a b in a clockwise
direction « changes from mn/2 to =n/2 . In Fig. III.3 the magnitude
of H(p) remains constant and its argument changes through n clockwise
semicircles. Since H(p) is an analytic function of p (ratio of

two polynomials) angles arc preserved in the transformation from the

p= to the w-plane, Thus at both points a and b the argument of

Q' on C!' changes by =mn/2, i.e. the locus turns to the right.

If H(p) has an mth order pole at the origin the situation is

very similar. Again for p =1 eJB where r > 0
D
- 2 ~Jmp
H(p) = o ©
r

where D2 is another constant, Point Q describes ¢ d in a
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counterclockwise direction and hence point Q' describes m clockwise
semicircles., Contour €' +turns through 90O to the right at both

points corrcsponding to ¢ and d.

ITI. 4 The Inverse Nygquist Locus.

In the analysis of the alternator-regulator system it is found
that the denominator of the open loop transfer function is the quantity
that requires close cxamination. The effect of the various parameters
is visualised better if the inverse Nyguist locus is uscd. The
reciprocal of H(p) is plotted and corresponding to Eqn. (II1.5)

we have,

1/%%’}—% + 1 = 0 (II1.10)

The roots of Egn. (III.10) are the same as those of Eqn. (III.5).
Hence if a plot is made of B(p)/A(p) the number of clockwise en=
circlements of the (-1, O) point gives (Z - P'), P' is the number

of zeros with positive real parts of A(p) .

II1.5 The Routh Criterion.

The most direct method for detcrmining whether the roots of a
polynomial lie in the right half-plane is furnished by the Routh test.

Let the characteristic equation, Eqn. (III.32), be arranged as:
+ + toevaie ta = .
ap 24P a,p a_ 0 (111.11)

where a, 1s positive.

Write down the coefficients as follows in two rows and then cross=—

multiply to form further rows
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2 3y 2y, etc
aq a3 a5 ete
(alaa—aoaj) (a1a4~aoa5) (ala6—aoa7) ete
= b, = b, = b,
(b, 5=a1b,) (byag-aby) (byaj-arb,) ote
= ¢y = ¢, = o5

ete

The number of columns is reduced by one each time and the process
is repeated until only the first column is left, The Routh criterion
states that there are as many roots of the characteristic equation with
positive real parts as the number of changes of sign in the first
column., It should be noted that there are nt+l terms in the first
column and hence n conditions must be satisfied for stability, See

Ref., 60~11 for details and further references.



APPENDIX IV

The Stability of the System Using the Routh Criterion

In this Appendix the stobility of the system is analyzed using
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the Routh criterion and a comparison is made with the results given in

Ref, 643, Armature rcsistance and damping are ncglected and saliency

is assumcd to be zero,

From Eqn. (2.21) the characteristic equation of the system is

Xd(p) Xq(p) (:5135 - p o+ K K(p) (A235 -d p2 A245):] =0

.. (IV.1)
From Eqns. (4.8), (4.15) and (4.16)
§ +p Tt S
) d o
M =" T3 i) (1Iv.2)
X X . cos d
A = ¢ md t (IV.B)
245 N xd(1+ P Té)
and it may be shown from Egn. (L4.14) that
. ) X XLV cos(ao~ St) (v
235 Tp Xy I+ p Té) ‘

Thus with the simple regulator the characteristic equation may be

written as,

a p3 + (m1+ Bl) p2 +ap * (a3+ ﬁa) = 0 (IV.5)

where
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XJ XC K Xc
Bl = - Xd cos St ’ BB E - X2 Vv VO cos(ﬁo— St)
d

It may be shown that Eqn. (IV.5) agrees with the characteristic
equation as given in Ref., €4-3 but not with that of Ref. 64<1l. As it
has already bcen pointed out in section 1l.l.3 an unjustified assumption

is made in the latter case.

Since- aO:> 0 the Routh conditions for stability are, sce

section ITILS.

a) g * g1:> 0 . This corresponds to (1 +KK_ a) :) 0. idin
Eqn. (5.8) and is always satisficd for the parameters of the experimental

system.

b) (a1+ Bl) Qe ao(a3+ pB) :} 0 . It may be shown that this leads to

1 . .
e <: Ko T jll with damping and the armature
resistance neglected,

K
max

c) az + 53:> 0 . Again it may be shown that this condition leads to

1 . .
I(:) KO G with the armature resistance

Sk
min

Hence the significant conditions for stability are the same as

neglected.

those derived in section 7. The two curves mcking up the stability
limit in Fig. 1.3 corrcspond to conditions b and c. Condition a

results in another curve which lies well above the stable region.

It is apparent from Egqn. (IV.1) that the conditions of stability
are different for every type of regulator. Also with more complex
regulators the degree of the characteristic equation is increased and

the number of quantities that must be positive is increased, see
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Section ITT.5, Moreover, the cxpressions become long and complicated
and little useful information may be derived from them. The single
delay regulator discussed in Ref, 64-1 illustrates this point. One
is then reduced to numerical calculation and the chief advantage of

Routh over the Nyquist Test is lost.



Ref !Machine rating! X  p.u.!

MVA

Operation in

TABLE I

the Artificial Stability Region

Power at Stab, .

Limit

i

Mox, | 8L

: angle

ECondition at g

§sum.LMﬁt

Remarks

59-6 i 75 MVA 5 0.125

62-6 - oues
655 . 690 -

646 | 39 MVA L 0.2

0.8

0.8

0.25

121° | 142°
127° 1 126°
me -

1 100° § 1%8°

65-2 | 6O MVA | 1.85 0.837 |
5757 30 WA i - - |
60-10: 75 MVA oL 0.8 2

E Note 6; is caiculated from Eqn;

i
9%6° | =

o i
1100 ¢ -
109.5% -

H
]

gBeginning of
%the 1imit
gcycle.

;Loss of
;synchronism.
;Stable oper-
ation limited |
' by 120% over- |
%current i
?Low frequency§
goscillations :

—

| Settled to

1109.5° after
50.5 Pl step%
' in MVAr. 2

% Delay type T

gModcl system, simple regulator.

1 = 0.055 S€C.

g with current compounding.
" Voltage regulator, No details,

Integrator type.

Model of 1480 MVA system, angle
regulator.

. Effectively angle regulator.

(7.5) where the parameters are given,

R

Tee
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TABLE II

Machine and System Parameters

Machine rating
Unit voltamperes
Unit voltage

Unit current

Parameter Per Unit Value

XH
xn
1
Tdo
TH

2.321

1,91
L,75 sec

04544
0.482
0.572
0,06 sec
0,0816 sec
1,11 sec
0.0533 sec
0.024L sec
0,431
0.0384
0.001425

0,0318
0.321

2 kVA
1825 VA
186 vV
5.66 A,
Test

Steady state operation at 0,8 p.u. power amd
ég from 70° to 120°,  Includes line

reactance XC o
11

Sudden short-circuit of "field winding',
alternator on open~circuit, measure decay
time constant,

Variable frequency static impedance test.

1
11

1"

Calculated from Téo y X, ond X!

d d
1" t n
Calculated from Tdo ’ Xd and Xd .
Calculated from T , X and X" .,
qo a q

Design value, includes line reactance Xc
D.C. measurement, includes line resistance
D.C. measurement

Deceleration test.

AC. measurement.



TABLE IIT

Frequencies Used for the Nyquist Loci Calculations (c¢/s)

0,01
0.03
0.05
0.07
0.l
0.2
0.3
Ok
0.5
0.6
0.7
0.8
0.9
1.0
1.2
1.5
2.0
5.0

10.0

100.0

223



11~1

28-1

30-1

32-1

35~1

hh-1

L6-2

DREYFUS, L.

DOHERTY, R.E.

WAGNER, C.F.

YTTERBERG, A.

CONCORDIA, C,

FREY, W,

LAVANCY, C.

224

REFERENCES

Einfuehrung in die Theorie der selbserregten
Schwingungen synchroner Machinen. ZElektrotechnik
und Maschinenbau., Heft 16 , 323-29 (1911)

Heft 17 , 345-54 (1911),

Excitation systems. Their influence on short
circuits and meximum power. Trans. A.I.E.E.

47 , pt. 3, 94L~56 (July 1928),

Effect of armature resistance upon hunting of
synchronous machines. Trans. A.I.E.E, 49 ,
No. 3 , 1011-24 (July 1930).

The Asea high-speed voltage regulator for
alternating-current generatorse A.S.E.A.
Journal 9 , 174-189 (1932).

British Standard Specification. Internal
combustion engines. No. 649 (1935).

Steady-state stability of synchronous machines
as affected by voltage regulator characteristics.,
Trans. A.I.E,E. 63 , 215-220 (1944).

A.I.E.E. Test code for synchronous machines.
A.I.E.E. publication No. 503 (June 1945).

The stabilization of synchronous generators
by high-speed regulation of the excitation in
connection with power transmission over long
distances. Brown Baveri Rev, 33 , No. 11,

335-47 (1946).

Experiments in stabilizing synchronous generators
by high speed control of the excitation in 7
connection with power transmission over long
distances. Brown Boveri Rev. 3% 5 No. 11,

348-54 (1946),



71

48-1

48-2

4.8~3

50-1

50-2

50-3

52-1

52-2

52=3

CRARY, S.B.
BARKLE, J.E. &
VALENTINE, C.E.
LYNN, C. &

VALENTINE, C.E.

CONCORDIA, C.

HEDSTROM, S.E,

CONCORDIA, C.

HEDSTROM, S.E. &

JOHANSSON, K.E.

HEFFRON, W.G. &
PHILLIPS, R.A.

HUNTER, W.A. &
TEMOSHOK, M.

LATBLE, Th.

225

Power system stability. Vol. II Transient
stability., Wiley (1947).

Rototrol excitation systems. Trans. A.I.E.E.

67 , pt. I, 529-34 (1948).

Main exciter rototrol excitation for turbine
generators. Trans, A.I.E.E., 67 , pt. I,

535~39 (1948).

Steady-state stability of synchronous machines
as affected by angle-regulator characteristics.

Trans. A.I.E.E. 67 , 687-690 (1948),

The use of transductor regulators with booster
exciters. A.S.E.A. Journal 2%, No. 2,
23=31 (1950).

Effect of buck~boost voltage regulator on
steady-state power limit. Trans. A.I.E.B.

69 , 380-385 (1950).

Exciter series winding in conjunction with
high speed regulator. A.S.E.A. Journal.
23 , 157-8 (1950),

Effect of a modern amplidyne voltage regulator
on underexcited operation of large turbine
generators. Trans. A.I.E.E. 71 , pt. III,
692-~7 (1952) = Power Apparatus Syst.

No. 1 (August 1952).

Development of a modern amplidyne voltage
regulator for large turbine generators.

Trans. A.I.E.E. 71 , pt. III, 894-901 (1952) =
Power Apparatus Syst. No. 2 (October 1952),

Die Theorie der Synchronmaschine im nicht
stationaeren Betrieb. Berlin, Springer
Verlag (1952).



54-1

Sh-2

543

25=1

55-2

55-3

56-1

56=2

56-3

KRON, G.

HEFFRON, W.G. Jr.

RUBENSTEIN, A.S. &
TEMOSHOK, M.

MESSERLE, H.K, &
BRUCK, R.W.

ROTH, H.H,

KRON, G,

FREY, W,

VENIKOV, V.A. &
LITKENS, I.V.

MESSERLE, H.K.

226

Regulating system for dynamoelectric machines.
U.S. Patent Office. Patent 2, 692, 967
(October 26 1954),

A simplified approach to steady state stability
limits. Trans. A.I.E.E. 73 , pt. IIIA , 39
(1954) = Power Apparatus Syst. No, 10

(February 1954).

Underexcited reactive ampere limit for modern
amplidyne voltage regulator. Trans. A.L.E.E.
73 , pt. III, 1433-8 (1954) = Power Apparatus
Syst. No. 15 (December 1954).

Steady state stability of synchronous generators
as affected by regulator and governors. Proc.
I.E.E. 103 , pt. C, 24-34 (1956)

(Monograph 134 S June 1955).

Selecting excitation systems for hydro-
generators. Allis-Chalmers Elect. Revw.

4th quarter 4=8 (1955)

2nd quarter 10-15 (1956),

A super-regulator cancelling the transient
reactance of synchronous machines. The Matrix
and Tensor Quarterly, 5 , No. 3, 71-75 (1955),

Die Stabilitaetsprobleme des Parallelbetriebes.
Dissert, No 2477, FEidgenoessischen Technischen
Hochschule, Zurich, 181 pp (1956),

Experimental and analytical investigation of
power system stability with automatically regule
ated generator excitation. C.I.G.R.E. No, 324,
26 pp (1956).

The relative dynamic stability of large
synchronous generators. Proc. I.E.E. 103 , pt. C,
234=42 (1956) (Monograph 159 S 1956).



56-4

56-5

56~6

57-1

57-2

57-3

57-4

57-5

576

PHILLIPS, R.A. &
RUBENSTEIN, A.S.

McCLYMONT, K.R.
et al.

SEN, S.K. &
ADKINS, B.

GRAY, A.H, &
FENWICK, D.R.

ACHENBACH, H,
SICHLING, G &
ROHLOFF, E,

KESSLER, C.

KOSTENKO, M.P.

ADKINS, B.

227

Operation of large synchronous generators in the
dynamic stability region with a modern amplidyne
voltage regulator. Part T Recommendations for
setting the underexcited reactive-ampere limit.
Trans. A.I.E.E. 75 , pt. III, 762-6 (1956) =
Power Apparatus Syst. No., 25 (August 1956).

Operation of large synchronous generators in the
dynamic stability region with a modernm amplidyne
voltage regulator. Part II Operating tests

and analytical studies. Trans, A.L.E.E, 75,
pt. III, 766=71 (1956) = Power Apparatus Syst.
No. 25 (August 1956).

The application of the frequency response method
to electrical machines. Proc. I.E.E. 103 ,
pt. C, 378-91 (1956) (Monograph 178 S 1956),

Modern methods of excitation for large generators,
Metropolitan-Vickers Gazette (August 1957)
Reprinted as Publ., 2353 -~ 2 A.E.I. Instrument-

ation Division.,

Voltage regulator for large generators.
Siemens Review 24 , No. 5/6 , 179~-87 (1957)

The switching transistor. Siemens Review

2k , No. 5/6 , 162-6 (1957).

A transistor two-step controlier, Siemens

Review 24 , No. 5/6 , 169-73 (1957).

Investigation of the automatic control of
power systems using electrodynamic models.
Izdat. Akad. Nauk. S.S.S.R., 60-91 Moscow
(1957). C.E.G.B. Translation C.E. 1691.

The general theory of electrical machines.
London, Chapman & Hall (1957).



57-7

58~1

58-2

58-3

58-L

58-5

59-1

59-2

59-3

NEWTON, G.C.,
GOULD, L.A. &
KATSER, J.F.

FREY, W. &
NOSER, R.

MESSERLE, H.K.,

ALDRED, 4.S. &
SHACKSHAFT, G.

ETTINGER, E.L.,
GLOUKH, E.M. &
CHALY, G.V.

MATTUKHIN, V.M,

LAWDEN, D.F,

TSUKTRNIK, L.V.

JOHANSSON, K.E.

228

Analytical design of linear feedback controls.
New York, Wiley (1957).

Recent developments in the excitation and
control of synchronous machines. C.I.G.R.E.
paper 127 , 23 pp (1958),

Dynamic stability of alternators as affected
by machine reactances and transmission links.
C.I.G.R.E., paper 315 , 23 pp (1958).

The effect of the voltage regulator on the
steady state and transient stability of a
synchronous generator. Proc. I.E.E. 105 ,
pt. A, 420-427 (1958)  (Paper No. 2662 S 1958),

Electronic exciters for hydrogenerators of the
Kuibyshev hydroelectric power plant.
C.I.G.R.E. (1958) Paper submitted after the
beginning of the Conference and not included

in the bound volumes.

The influence of the law of the excitation
control on the damping of oscillation of a
synchronous machine.  Elektrichestvo No. 5,
27-31 (1958), Translation in Electric
Technology U.S.S.R., 230 (1959).

Mathematics of engineering systems. London,
Methuen 2nd Ed. (1959),

Lyapunov's general theory of stability and
questions of power stability. Flektrichestvo
No. 1, 13-17 (January 1959) A.E.I.
Translation No. 2882 .

The voltage regulation of synchronous machines.
A.8.B.A. Journal 32 , No. 9, 124-132 (1959).



59-L

59-5

59-6

60~-1

€0~-2

60~3

60-L

60-5

SOHLSTROM, A,

KINITSKY, V.A.

MASON, T.H.,
AYLETT, P.D. &
BIRCH, F.H.

HOSEMANN, G.

PAVESI, P. &
SIMONETTI, S.

ALDRED, A.S. &
SHACKSHAFT, G,

COOPER, C.B. &
GIRLING, L.R.

JUNIOR, H.

229

Regulators and regulating systems for syn-
chronous machines. A.S.E.A. Journal 32 ,
No. 9, 133-140 (1959).

Automatic control of internal angle of syn=-
chronous machines. Trans. A.I.E.E. 28 ,
pt. ITIA, 225-31 (1959) = Power Apparatus
Syste No. 42 (June 1959).

Turbogenerator performance under exceptional
operating conditions. Proc. I.E.E. 106 ,

pt. 4, 357-380 (1959) (Paper No. 2846 S 1959).

Large synchronous machine with rectifier
excitation for sudden load changes at minimum
dynamic voltage drops. C.I.G.R.E, paper 124 ,
17 pp (1960).

Excitation with semiconductor rectifiers and
voltage regulation in a 28 MVA set for
auxiliary services of a large thermal power
plant station. C.I.G.R.E. pt. II, paper 128,
28 pp (1960).

A frequency responsc method for the predeter-
mination of synchronous machine stabilitye.
Proc. I.E.E. 107 , pt. C, 2-10 (1960)
(Monograph 340 S) .

Ixcitation control systems for large A.C.
generators, A.E.I. Engng. Rev, 1 , No. 2,
75-82 (1960). Reprinted as Publ. 2353 - 3

AE.I. Instrumentation Division.

The voltage regulation of large synchronous
generators with amplidyne rotary amplifiers
and transductor regulators. A.E.G., Progress

No. 1, 39=49 (1960).



60-6

60~7

60-8

60-9

60-10

60-11

60-12

60-13

60~1L

KROCHMANN, E.

ACHENBACH, H.

HAPPOLDT, H,

HAAMANN, K,P.

EASTON, V.,
FITZPATRICK, J.A.&
PARTON, X.C.

THALER, G.J. &
BROWN, R.G.

GRUZDEV, I.A. &
LEVINSHTEIN, M.L.

FERGUSON, R.W.,
HERBST, R., &
MILLER, R.W.

WHITNEY, E.C.,
HOOVER, D.B., &
BOBO, P.O.

230

Grundlegende Fragen der Spannungs - und
Blindleistungsregelung., FElektrotechnische
Zeitschrift - A, 81 , No., 7, 221-7 (1960).

Regelung grosser Wasserkraftgeneratoren,
Elektrotechnische Zeitschrift - 4, 81 ,
No. 7, 227-40 (1960).

Regelung grosser Turbogenefatoren.
Elektrotechnische Zeitschrift - 4, 81 ,
No, 7, 2L40-46 (1960),

Erregung und Regelung grosser Synchron-
maschinen mit Stromrichter, Elektrotechnische
Zeitschrift - A, 81 , No, 9, 317-23 (1960).

The performance of continuously acting voltage
regulators with additional rotor angle control.
C.I.G.R.E. Paper 309 pp (1960).

Analysis and design of fecdback control systems.
2nd edition MceGraw-Hill (1960),

The usc of analogue computers for studying
transients in electrical systems.
Elektrichestvo No. 3, 1-13 (1960).

A.E.I. Translation No. 2897.

Analytical studies of the brushless excitation
system.  Trans. A.I.E.E. 78 , pt. III,
1815-21 (1960) = Power Apparatus Syst.

No. 46 (February 1960),

An electric utility brushless excitation
system. Trans. A.I.E.E. 78 , pt. III,
1821-8 (1960) = Power Apparatus Syst.
No. 46 (February 1960).



231

61~1  HARVEY, L.M. Amplidyne main exciter excitation system.
et al. Trans. A.I.E.E. 80 , pt. III, 17-23% (1961) =
Power Apparatus Syst. No. 53 (April 1961).

61-2  ALDRED, A.S. & Frequency response analysis of the stabilizing
SHACKSHAFT, G. effect of a synchronous machine damper.
Proc. I.E.E. 108 , pt. C, 58-63 (1961)
Monograph 393 S (July 1960).

61-3 Proposed excitation system definitions for
synchronous machines. A.I.E.E. Committee
Report. Trans. A.I.E.E. 80 , pt. III,
173-8 (1961) = Power Apparatus Syst. No. 54
(June 1961).

62-1 Equations used for analogue computer study of
turbo~alternator stability. Analogue
Computation Centre. C.E.G.B. (1962).

62-2 MILES, J.G. Analysis of overall stability of multi~
machine power systems. Proc. I.E.E. 109 ,
pt. A, 203=11 (1962)(Paper No. 3715 S.).

62-3  GLAVITSCH, J. Theoretical investigations into the steady=~
state stability of synchronous machines.
Brown Boveri Rev., 49 , No. 3-4, 95-104 (1962).

62-4 BLOEDT, K., & Spannungsregelung mit Transistor-Zweipunktregler
WALDMANN, H, und Transduktorstufe fuer Synchrongeneratoren,
Siemens Zeitschrift 36 , No. 3, 148-53 (1962),

62-5 HAMDI-SEPEN, C. Process for increasing the transient stability
power limits on A.C. transmission systems.
C.I.G.R.E. Paper 305, 10 pp (1962).

62~6  NIELSEN, B. Contribution a l'etude de la stabilite
statique des turboalternateurs, Rev, Gen,
Elect. (France). 71, No., 5, 239=43
(May 1962).



232

62~7  HEFERMANN, F. Spannungsregelung von Synchrongeneratoren.
B.B.C. = Nachrichten 44 , No. 8/9, 320-323
(1962),

62-8  GRUENBERG, D. Stromrichter zur Feldspeisung grosser Gleich=

und Drehstrommaschinen. B.B.C. = Nachrichten

L4, No. 8/9, 32hk-34 (1962).

62-~9  HEFERMANN, F, & Kompounderregung fuer Synchrongeneratoren,
MENSTELL, L., B.B.C, - Nachrichten 44 , No., 8/9, 334-9 (1962).

62-10 CHAMBERS, G.S., Recent developments in amplidyne regulator
RUBENSTEIN, A.S. & excitation systems for large generators,
TEMOSHOK, M. Trans. A.I.E.E. 80 , pt. III, 1066~72 (1962)

Power Apparatus Syst. No, 58 (February 1962).

i

62~11 BARRAL, A., Recent progress and new possibilities for the
BOULET, R., & excitation and the regulation of large syn=-
CARPENTIER, L, chronous machines., C.I.G.R.E. Paper No. 157,
33 pp (1962),
63-1  VENIKOV, V,A. Forced regulation of alternator excitation.
et al. Gosenergoizdat, Moscow = Leningrad (1963)

In Russian.

63-2  SHACKSHAFT, G. A general~-purpose turbo—altcrnator model. .
Proc. I.E.E, 110 , 703-13 (1963),

63-3  PUTZ, W., Excitation and voltage regulation of A.E.G.
RTEGER, F., & turbogenerators. A.E.G. Progress, 196-204
ROGOWSKY, Y. (1963).

63-4 ZAVALISHIN, D.A. & Excitation systems for high-power synchronous
GLEBOV, I.A. machines. Izv. Akad. Nauk S.S.S.R., Otd., Tekh.
‘ Nauk, Energ. i Transport No. 2, 165-75 (1963)
In Russian. A.E.I. Translation No. 3417.



63~5

636

63~7

64-1

El=2

64-3

6li=ly

6l=5

64~6

e33

BOGOSLOVSKII, A.V. Stability test on the "V. I. LENIN" Volga

& S0vALOV, S.A.

ALFORD, R.J.

BHARALI, P.

VENIKOV, V.A.,

STAPLETON, C.A.

VENIKOV, V.A,

BASTON, V.

HAMDI~SEPEN, C,

HANO, I.
et al.

hydroelectric power station to Urals trans-
mission. Elcktrichstvo No. 8, 1-9 (1962)
In Russian, Translation in Electric
Technology U.S.S.R., p. 397 (1962).

The micromachine exciter system and time
constant regulator. Power Systems Report
No. 49, Imperial College of Science and
Technology (1963),

Damping e¢ffects in a synchronous machine with
a solid iron rotor. Ph.D. thesis, University
of London (1963).

Transient phenomena in electrical power
systems. Trans. by B, Adkins and D. Rutenberg.
Pergamon Press (1964).

Root~locus study of synchronous-machine
regulation. Proc. I.E.E. 111 , 761-68
(196L).

Transieint phenomena in electrical power
systems. 2nd Edition, Moscow Gosenergoizdat
(1964). In Russian.

Excitation of large turbogenerators,
Proc. I.E.E. 111 , 1040-48 (1964),

Process for increasing the transient stability
power limits on A.C. transmission systems
(Part IT). C.I.G.R.E. Paper 304 , 1L pp (1964).

Underexcitation tests of hydraulic-turbine
generators connected to 275 kV transmission
systems. C.I.G.R.E. Paper 307, 20 pp (A96L4),



6Ly

65-1

65-2

653

65-1

STEEDE, J.H.,
CROFT, P.J. &
ELLIS, H.M,
EWART, D.N,
et al.

BATTISSON, M.J. &
MULLINEUX, N,

GOVE, R.M.

234

Automatic voltage regulator, type ZVX (for
steam turbo-alternator). ZEnglish Electric
Leo Computers Limited, Kidsgrove, -(February
1964),

Peace river B.H.V. transmission system,
Trans. I.E.E.E., Paper No. 31, CP 65=55 (1965).

Stability studies and tests on a 532 MW cross—
compound turbine-generator set. Trans.
I.E.E.E., Paper No., 31, TP 65-186 (1965),

Stability criteria for linear control systems.
Proc. IL.E.E., 112 , 549-56 (1965).

Geometric construction of the stability

limits of synchronous machines. Proc. T.E.E.

112 , 977-85 (1965),



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234

