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ABSTRACT 

The steady state stability of an alternator connected by a trans-

mission line to an infinite bus and provided with a regulator is 

investigated by the method of small oscillations. Two alternative modes 

of analysis are developed based on the stability of closed loop systems 

having either voltage or torque as feedback and using the Nyquist criterion 

of stability. The transfer function of the alternator to small signals 

for different conditions of operation is presented, taking into account 

the effects of rotor damping and of the armature resistance. 

It is found that typical regulators used in practice, can be 

divided into four types according to the position of the regulator 

frequency response locus on the complex plane. Thus we have, (a) "Simple" 

type with a constant transfer function, (b) "Delay" type with a phase-lag, 

(0) "Derivative" type with a phase-lead and (d) "Integrator" type 

involving one integration. It is established that a simple regulator 

effectively replaces Xd  by X'd  and thus the region of stability is 

considerably increased. Both the delay and the integrator types 

improve stability to a lesser extent. The derivative regulator, however, 

improves the stability further, but an upper limit exists when X
d is 

replaced by the transmission line reactance. 

Since such an improvement of steady state stability is not required 

in a practical system, other aspects of regulator performance, namely 

the speed of response to small changes and the accuracy of regulation 

are considered. 

Experiments were performed using a model machine and a simulated 

regulator. The steady state stability limit as a function of gain for 

the different types of regulator and the frequency response locus of the 

alternator to small signals were determined. ,Also the transient 

response to small steps was recorded and the accuracy of regulation 

measured. All experiments are compared with computed results showing 

reasonable agreement. 
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LIST OF SYMBOLS 

A small case letter denoting voltage or current is the instantaneous 

value. The capital of the same letter denotes the R.M.S. value. 

V 
q 
Iq  

T" 

vd  Vd  

id 1 Id - iq 
vfe' Vfe if 
vt ' Vt 
V 

V 
 

Xd(p) 	X (p) 

Yd(p) 	75(p) 

" 
Tdo ' T do 	d 
T" T" qo 	q 

X x' X" 
d 	d 9  d 

X" Xq  

Xmd 
rf 
ra 
X
c 

Q 

z 

T ., T me 
S
o 

SI 

K
s 

K
d 

K(p) 

K 

Ko  

Direct and quadrature axis voltages. 

Direct and quadrature axis currents. 

Alternator field voltage and current. 

Alternator terminal voltage. 

Infinite bus voltage. 

Induced voltage ( = Xmd  if). 

Direct and quadrature axis operational impedances. 

Direct and quadrature axis operational admittances. 

Direct axis open- and short-circuit time constants. 

Quadrature axis open- and short-circuit time 
constants. 

Direct axis synchronousl transient and subtransient 
reactances. 

Quadrature axis synchronous and subtransient 
reactances. 

Direct axis magnetizing reactance. 

Field resistance. 

Armature resistance. 

Transmission line reactance. 

Reactive power at the infinite bus. 

Power or number of poles with positive real part. 

Number of zeros with positive real part. 

Moment of inertia of machine rotor. 

Turbine, electrical and inertia torques. 

Slope of the power-angle curve. 

Slope of the transient power-angle curve. 

Synchronizing and damping torque coefficients. 

Regulator transfer function. 

Regulator gain. 

Constant ( = -rf/Xmd). 

Ti  
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Kss 
	

: Gain for maximum stability limit. 

Ksr 
	: Gain for optimum speed of response. 

K: Limiting values of K for steady state stability. min 2 
K 
max 

T
1 , 

T
2 	: Delays in K(p), see Eqn. (7.6). 

Ta, Tp 	: Phase-lead terms in K(p), see Eqn. (7.6). 

G 	: Stability ratio ( = Kmax/Kmin). 

H(p) 	: Alternator transfer function. 

L(p) 	: System open loop transfer function. 

T(p) 	: System closed loop transfer function. 

8 	: Generator load angle with respect to infinite bus. 

8g 	Minus the load angle ( = -80). 

8k 	: Stability limit with infinite gain, simple 
regulator. 

8s 	
: Peak of the power-angle curve, 

: Peak of the transient power-angle curve. 

8
1 	

: Stability limit of the transmission line. 

: Angular frequency of small oscillations. 

7'1 	
: Angular frequency at the intersection of the 

H(jX) locus with the negative real axis. 

: Angular frequency at the intersection of the 
L(jT.) locus with the negative real axis. 

c 	: Integral square error for a small change. 

p 	: Regulation of the system. 

O(p) 	: Feedback transfer function in the torque method. 

o 	used as a suffix denotes the original steady 
state condition. 

A 	used as a prefix denotes the differential of the 
following quantity. 

p 	is the differential operator d/dt. 
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1. 	IIURODUCTION 

The voltage regulators used with the alternators supplying a 

power system have the following functions to perform: 

1) Maintenance of the voltage at various points in the system, 

usually at the machine terminals. 

2) Control of the share of the reactive power taken by each generator. 

3) Improvement of the system transient stability. 

4) Increase in the steady state stability limits of the system. 

The earlier, discontinuous types of regulator with mechanical 

contacts performed the first two functions adequately during slow changes, 

but had little effect on stability. Modern continuously-acting 

regulators not only give quicker response but bring about an improvement 

of both steady state and transient stability. An efficient regulator 

must give satisfactory results both as regards stability and regulation. 

The investigation covered by the present thesis consisted of 

experimental work combined with a theoretical study. It relates to the 

steady state stability of a system comprising an alternator connected 

through a reactance to an infinite bus, as indicated by Fig. 1.1. The 

use of such a simplified system may be justified on the following grounds: 

a) Individual power stations are relatively small units compared with the 

whole of the power system. b) In many cases steady state stability is 

a problem concerning a hydroelectric station, connected by a transmission 

line to a large system. c) By keeping the external network as simple 

as possible attention is focused on the effect of the regulator. 	d) This 

arrangement is almost always used in the literature. The regulated 

quantity is the terminal voltage Vt  of the alternator. A signal Vfo  

related to V
t by the transfer function K(p) 	is compared with a 

reference voltage Vfi  and the difference is used to supply the alternator 

excitation. 

A detailed analysis is given of the special condition, in which 

the regulator, including the exciter, is assumed to have no delays, 

i.e. its transfer function K(p) is assumed to be constant. Such a 
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RECTIFIER 

K( p) Infinite bus 

FIG. 1.1 THE SYSTEM 
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regulator is referred to as a "simple regulator". The behaviour of the 

system with any type of regulator can be determined by multiplying 

the system open loop frequency response loci for the simple regulator 

case by the appropriate regulator transfer function. Three typical 

forms of a practical regulator are investigated and the results show 

the main features of each of the three main families of regulator, i.e.  

a) delay, e.g. as produced by a separately-excited exciter. b) dzitegratApr 

or "buck-boost" regulator, and c) derivative, with combination of first 

and second derivative as well as proportional signals. 

Consider first an alternator with constant excitation. The 

steady state stability limit is reached when the load angle 8 of the 

generator, with respect to the bus, reaches a value 88  at the 

maximum point of the steady power-angle curve. For a perfectly round 

rotor machine (X
d 

= X
q
) 8

s 
= 900. Fig. 1.2 is a power chart, for 

which the coordinates P and Q are the values at the infinite bus. 

The machine used in the investigation has a small degree of saliency 

and curve a shows the steady state stability limit with constant 

excitation (K = 0). The corresponding curve for a round rotor 

machine is shown by curve b. 

When there is a simple regulator the stability limit is extended 

and as the gain is increased from zero the limit curve is moved to the 

left as shown by curves d 	e and f , Fig. 1.2. The system is 

then said to be operating in the region of "artificial stability". 

Consider the alternator operating at 0.8 p.u. power, say, while the 

reference voltage V
fi is reduced very slowly, i.e. operation is 

limited to the constant power line, c . At a certain value of gain 

the angle at the stability limit becomes a maximum and for higher 

gains the curve moves back to the right. At high values of gain in-

stability occurs to the right of curve a . Fig. 1.3 shows the 

relation between the angle 8 at the stability limit and the regulator 

gain, with a given power output (P = 0.8 p.u.). This curve provides 

a means of assessing the effectiveness of a given regulator from the 

point of view of stability. 
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Similar results are obtained with the other types of regulator. 

As the gain is increased the stability limit curve, on the power chart, 

moves to the left, reaches a maximum, and then moves back and eventually 

crosses over to the right of curve a . The maximum value of 6 

that can be achieved by varying the gain, depends on the type of 

regulator. 8 can, however, never exceed the value for which the 

phase difference between V
. 

and V is 900. 

The fact that the machine is stable only for a certain region 

on the power chart indicates a non-linear system. This becomes 

apparent when the equations for the alternator, the line and the 

regulator are considered. There are products of two dependent 

variables as well as trigonometrical functions. 

The stability of the system at a given steady condition may be 

determined as follows. It is assumed that a disturbance is introduced 

and that the resulting changes in the variables are calculated. If 

these remain finite with time then the system is stable at the original 

steady state condition. The magnitude of the disturbance is very 

important when the system is non-linear. The condition is referred 

to as "steady state stability" when the system is stable after a 

small disturbance and "transient stability" when a large disturbance 

is concerned. 

If the disturbance is small, the equations relating the changes 

in the variables are linear and the standard methods for analyzing 

linear systems may be used to determine stability. It should be 

noted that the coefficients of the linearized equations are functions 

of the steady state conditions and hence the stability conditions are 

different for each point on the power chart. Sufficient information 

on the action of the regulator is obtained if the investigation is 

limited to points on a straight line of constant power on the power 

chart. For the numerical part of the investigation 0.8 p.u. power 

is considered corresponding to full load of the alternator rated at 

0.8 p.f. Nevertheless it is demonstrated that the regulator does not 
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improve the stability at no load. The determination of stability by 

means of a small disturbance is known as the "method of small osaDlations". 

For large disturbances the equations cannot be linearised and 

other methods must be used. The transient behaviour of the system, 

however, lies outside the scope of this study. 

The linearised equations can be arranged to correspond to either 

of two alternative feedback control systems, using voltage or torque 

feedback and represented respectively by the block diagrams of Figs. 1.4 

and 1.5. 	In theitorque feedback method" the disturbance used for 

testing the stability is introduced at the turbine shaft and the 

output variable is the change in the load angle. The torque method is 

thus associated with mechanical quantities and the loss of synchronism 

is directly related to instability in 8 . The "voltage feedback 

method" corresponds more closely to the actual system as shown in Fig. 1.1. 

The disturbance is introduced at the reference voltage and the output 

is the change in the terminal voltage of the alternator. Loss of 

synchronism is associated with the large changes in the terminal voltage 

during pole slipping. 

In the literature both the voltage and the torque method have 

been used separately and by different authors. The equations for 

each, however, may be derived simultaneously, thus emphasizing the 

electromechanical nature of the system. The voltage method is more 

useful in studying the effects of the regulator whereas the torque 

method forms the link between the small oscillation theory and the 

conventional analysis of steady state stability. The Nyquist criterion 

is used to investigate the stability from the open loop transfer function 

of each system. A typical locus of the alternator transfer function, 

for the voltage case, is shown in Fig. 1.6. 

Although the primary objective of the present investigation is 

the steady state stability performance of the regulated alternator, the 

other functions of the excitation regulator as given above should not be 
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overlooked. As it happens the accuracy of regulation and the behaviour 

of the system under transient conditions may be linked with the 

frequency response loci used in determining the steady state stability. 

The accuracy of regulation may be measured in two ways. a) By 

using the definition of steady state error of the linear control 

system theory on the small oscillation equations or b) By determining 

the change in Vt  for a change in the steady operating point, e.g. 

between no load and full load. 

There is no simple way of measuring the improvement of transient 

stability. The proximity, type and duration of fault in addition to 

the operating condition are independent parameters and for every 

combination of these the effect of the regulator is different. All 

transient disturbances, however, are in effect changes of the terminal 

voltage or current and one should expect no abrupt difference in the 

behaviour of the system as these changes become smaller and smaller. 

Thus the speed of response and the degree of damping for a smart  

disturbance may be used as a measure of the effectiveness of the 

regulator in improving the transient stability. As the system is linear 

to small changes,the determination of the transient response is straight- 

forward. 	It is convenient to use the Fourier Transform to evaluate 

the integral numerically instead of the formal solution by means of 

the Laplace Transform. 

An important result of the present investigation is the 

possibility of optimizing the design of the regulator with respect to 

three performance indices, namely, the steady state stability, the 

accuracy of voltage regulation and the speed of response to small changes. 

The family of Nyquist loci shows clearly the form of the regulator 

frequency response to achieve extension of the steady state stability 

limit. The accuracy of regulation depends on the zero frequency point 

of the open loop transfer function. From the same loci the speed of 

response of the system to small changes may be computed. The speed 

of response may be improved by minimizing one of several quantities. 
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As an example the integral square error is chosen. 

The experimental part of the investigation was carried out on 

one of the micromachines in the College laboratory. This is a small 

machine rated at 2kVA, but which has been designed to have the same 

parameters on a per unit basis, as a typical large machine. A small 

analogue computer was used to simulate the various regulators. Experi-

ments were made to verify all the points discussed. 

The most important new results of the investigation may be 

summarized as follows: 

a) The derivation of the equations in a matrix form is such that 

the controlled variable as well as the regulator transfer function may 

be changed easily. The equations for both the Voltage and the Torque 

method may be derived from one system matrix. 

b) The rotor damper circuits and the armature resistance are taken 

into account. 	In the literature damping is either assumed constant, 

see section 1.1.3, or it is neglected altogether. No reference could 

be found including the effect of ra 	A comparison is given between 

the results obtained when a) damping and r
a 

are neglected, b) ra  

is neglected and c) both damping and ra  are taken into account. 

c) A method is provided for determining the regulator parameters 

in order to achieve extension of the stability limit. 

d) Following a review of literature it is suggested that regulators 

Should be classified according to the position of their frequency 

response loci on the complex plane, for low frequencies approximately 

0 to 2 cfs. Under this classification four main types exist, viz: a) 

a) simple, b) delay, c) integrator, and d) derivative. 

e) It is shown that the ultimate stability limit occurs when the 

phase angle between the infinite bus and the alternator terminal voltage 

is 90°. The possibility of operating at load angles well beyond the 

peak of the transient power-angle curve is also demonstrated experimentally. 
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f) Comparison between theory and experiment is provided by 

measuring (i) the frequency response locus of the alternator and 

(ii) the stability limit as a function of gain for different regulators. 

Only a recent paper, Ref. 65-4, could be found giving a limited 

comparison with theory of measured stability limits. 

g) Since the possible improvement in the steady state stability 

appears to be greater than required,other functions of the excitation 

regulator may be considered. The transient response of the system to 

a small step and the accuracy of regulation are considered theoretically 

and the results were verified by experiment. Little information on 

these performance indices appears to exist in the literature. 

1.1.  Survey of Literature. 

1.1.1 The Controlled Variables. 

One of the functions of the excitation regulator is to control 

a certain quantity in the system. This is achieved by comparing a 

signal proportional to the quantity with another signal proportional to 

the required value. The difference is then used to control the 

excitation. The types can be classified in terms of the controlled 

variable as follows: 

1) Voltage at any point in the system, usually at the machine 

terminals. This is by far the commonest type and is used on all large 

systems. 	A full discussion with references is given in section 1.1.3, 

for the theoretical aspects, and in section 7.2, for the practical 

applications. 

2) Load angle of the alternator with respect to any other point in 

the system. 	See'Refs. 46-1, 46-2, 48-3, 56-1, 59-5, 62-3 and 64-1. 

Experiments in the artificial stability region have been performed 

involving quite elaborate regulators, but for various reasons angle 

regulators are not often used in practice. Sometimes an auxiliary 

control to limit the load angle is used, e.g. Ref. 60-10. 
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3) In phase component of the generator current. 

4) The rate of change of active power. 

5) The reactive power supplied by the generator. 

The last three types have been suggested by Kron
54
-
1 

but do not 

appear to have been used in practice. 	In addition combinations of 

these signals have been considered. 

a) Voltage, and rate of change of load angle, e.g. Refs:56-1, 65-1. 

b) Voltage and alternator current, e.g. Ref. 62-9. 

c) Voltage, 1st and (or) 2nd derivatives of current, e.g. Refs. 62-3 

and 60-12. 

d) Voltage and reactive power. The control of reactive power is 

one of the primary functions of a regulator and this combination of 

signals is invariably used with German, Swiss and Swedish schemes, 

Instead, the regulator may be arranged to operate on the voltage signal 

only, until the stability limit is reached and then a reactive power 

limiter takes over and prevents loss of synchronism, see, e.g. Refs. 48-1, 
54-3, 56-4 and 59-3. 

1.1.2. The Regulators. 

The content of individual papers may be either. 

a) Theoretical, dealing with operation in the artificial stability 

region, or 

b) Practical, purely describing a particular installation including 

sometimes transient response or steady state stability tests. 

The theoretical content of the papers is dealt with below, section 

1.1.3, whereas discussion of the practical aspect is deferred until 

section 7.2. It is important to derive the transfer function of actual 

regulators so that typical examples may be investigated and this need 

arises in Chapter 7. 
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Unfortunately the division between theoretical and practical papers 

is not merely a matter of emphasis. The majority of the theoretical 

papers make use of the Routh criterion and consequently consider 

simplified regulator transfer functions and limit the investigation 

to the improvement of steady state stability. Any complex regulator 

transfer function raises the degree of the characteristic equation, 

and increases the number of conditions that must be satisfied for 

stability. In addition the evaluation of the transient response from 

the characteristic equation is laborious and no attempted investigation 

of this kind could be found in the literature. 

The practical papers on the other hand describe extremely complex 

systems and often no attempt is made to indicate the really significant 

parts of the regulator. The record of complexity is Hedstrom5°-1  

where the regulator has three inner loops with derivative feedbacks and 

where the outer loop gain depends on the operating point. Only one 

paper, Pavesi and Simonetti60-2  gives an experimental frequency response 

of an actual regulator. 

Practical papers are interested in "good" transient response but 

this may mean either a first cross-over in 0.3 to 2 sec. or even an 

overdamped response. The fact that a regulator adjusted to give 

optimum transient response on open circuit will give an overdamped 

response on load is stressed by Bloedt and Waldmann62-4. Nevertheless 

the speed of response is usually shown by a step change on open circuit. 

5 	The importance of high accuracy of regulation is emphasized in 

the practical papers and here a realistic test is often used by measur-

ing the change in the alternator terminal voltage from full load to 

no load. Figures quoted vary down to 1%. With the exception of 

Venikov64-1 theoretical papers do not mention the accuracy of regulation. 

No formulae giving either regulation or a quantitative measure of the 

speed of response could be found. 

The fact that a regulator designed to give food voltage regulation 
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and fast response will normally give poor results in the artificial 

stability region seems to have been missed completely, Venikov64- 1 being 

the only exception. Cooper and Girling60-4 discovered this experimentally, 

apparently to their surprise. Yet Doherty28-1 states that "... the 

excitation systems which are satisfactory for the one (artificial 

stability region) may be altogether unsatisfactory for the other 

(transient stability)." 

As stated earlier the present investigation is concerned with 

the following requirements imposed on the excitation regulator, a) 

extension of the steady state stability limit, b) fast transient response 

and c) good accuracy. With a certain controlled variable, the effect 

of the regulator on these three aspects of operation of the system can 

be determined by considering only the transfer function of the regulator 

rather than the practical details of the components used and their 

interconnection. 	It is appreciated, however, that, in many cases, 

reliability, ease of maintenance and alternative excitation in case of 

failure are more important than the three requirements listed above, 

see e.g. Ref. 65-4. 

An important type of regulator for which it is impossible to 

obtain a transfer function giving the alternator terminal voltage in 

terms of the error is not covered by the present investigation. This 

occurs either when one of the stabilizing feedbacks is proportional to 

some function of the field current, as in Ref. 54-1, or when a series 

exciter is used, see Ref. 50-3. 	It is interesting to note that series 

exciters as means of extending the steady state stability limit were 

considered as early as in 1925. In general the field voltage is a function of 
both the field current and the d-axis current and hence the regulator 

and alternator transfer functions cannot be considered separately. It 

does not appear that such excitation systems are used in practice to a 

great extent. 

All references to electromechanical regulatorshave been ignored 

since no operation in the artificial stability region is possible. There 
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will always be an oscillation. An exception to this is made for the 

Tirrill regulator which, given sufficiently high frequency of vibration 

may be thought of as continuously-acting. 

Table I, p.221 contains results of operation in the artificial 

stability region reported in the literature. • Experiments made with 

large machines or with specially designed models only are included. 

For comparison column 6 gives the maximum value of 8g  that can be 

achieved with a simple regulator in each case, see section 7.1.3. Only 

three of the five voltage regulators, however, give sufficient information 

about the system to allow calculation of this. 

1.1.3. Theoretical Investigations. 

The majority of the theoretical investigations into the steady 

state stability of a regulated machine are concerned with voltage as 

the controlled variable. This is to be expected since all practical 

schemes normally regulate the terminal voltage. Exceptions to this are 

the following papers using, 

I) Load angle, Refs. 46-1, 48-3, 56-2, 62-3 and 64-1. 

2) Generator current,Refs. 56-2 and 64-1. 

3) Combination of voltage and the 2nd derivative of generator 

current, Ref. 62-3. 

A number of different stability criteria have been used as 

follows: 

a) The Nyquist, Refs. 55-1, 56-1, 59-3, 60-3, 60-10, 61-2, and 62-6. 

Of these Refs. 60-3 and 61-2 use the torque feedback method and the rest 

the voltage feedback method. 

b) The Routh, Refs. 44-1, 46-17  48-3, 50-2, 56-1, 56-2, 62-3, 64-1 

and 65-4. A comparison between the results obtained using the Routh 

and the Nyquist criteria is given in Appendix IV. 

c) The Root-locus method, Ref. 64-2. 
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d) The domain separation method (also called "method D" or "stability 

contour diagram"), Refs. 55-1, 56-2, 56-3, 58-2. 

e) A method similar to Routh 	involving the roots of several 

equations derived from the characteristic equations, Ref. 65-3. 

f) The analogue computer by observing instability, Refs. 52-1, 58-3, 

and 60-10. 

g) Determination of the roots of the characteristic equation using 

a digital computer, Ref. 58-5. 

The effect of the rotor damping circuits is taken into account by 

Aldred and Shackshaft61-2 only. In this paper however, a machine without 

a voltage regulator is considered. The following include a constant 

term in the mechanical equation of the motion to "allow for rotor 

damper circuits and turbine damping" : 52-1, 55-1, 56-3, 58-2, 60-3, 

64-2 and 65-4. The inadequacy of this assumption is illustrated in 

Cooper and Girling6o-4. In different experiments they obtained values 

of 300 p.u. and 10-20 p.u. for the damping coefficient. The justifi- 

cation for using a value of 100 p.u. appears to be merely that it lies 

between 10 and 300 and gives a frequency of oscillation as observed in 

the field tests. 

The effect of the armature resistance is always neglected. It 

is well known that r
a 

is important in investigating hunting 
	30-1 

 

In fact the armature resistance has a small stabilizing effect, see 

section 7. Comments on individual papers may be summarized as follows: 

Concordia44-1 although one of the earliest papers, contain some 

remarkable results, namely, a) gain has an optimum value, b) damper 

windings have little effect on the maximum reactive power limit, c) a 

small regulator time constant increases the maximum gain that may be 

used and d) the stabilizing transformer does not affect the maximum 

load angle although it improves the accuracy of regulation. Regulators 

with one or two time lags only were considered. The results are 

presented as plots of the stability limit against the regulator gain. 
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Concordia50-2 considers the "buck-boost" regulator which has an 

integrator transfer function. Although this type of regulator cannot 

by itself, extend the stability limit, it has a very good steady state 

regulation. 	It is shown in Ref. 50-2 that with proper stabilization 

it may be used to extend the stable region of operation considerably. 

The derivative feedback for stabilization is taken either from the 

exciter voltage or from the generator voltage. For both cases plots 

are shown of the stability limit against the regulator gain. 

Heffron and Phillips52-1  derive the small oscillation equation, 

which they then set up on an analogue computer. Stability is established 

by injecting a small disturbance at the reference voltage and observing 

the subsequent behaviour. 

Messerle and Bruck55-1  give a frequency response locus of the 

alternator transfer function for one operating condition. The regulator 

is the same as that used by Concordia50-2. Their results are given as 

plots of the regulator gain against the stabilizer gain for various 

conditions. These plots correspond to the domain separation method 

(see Ref. 64-1) with application limited to two parameters, viz: regulator 

and stabilizer gain. Since two parameters may be optimized at once 

the method is very useful in determining values in a particular problem. 

The overall picture, however seems to be lost. Similar plots are 

used in Messerle56-3, 58-2 to investigate the effect of parameter 

variation. Synchronous reactance, transmission line reactance, regulator 

and exciter time constants are among the parameters considered. 

Frey56-1  in his thesis gives a comprehensive analysis including 

frequency response loci of the alternator transfer function. A regulator 

with an integrator transfer function as well as the simple regulator 

is considered. It is realised that the maximum stability limit with a 

simple regulator occurs at the peak of the transient power-angle curve. 

However, when further extension of the artificial stability region is 

considered, the argument used a necessary but not sufficient condition of 

the Routh criterion. Consequently an incorrect conclusion is reached 
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namely, that the first derivative of voltage, or of angle would extend 

the artificial stability region further, see section 7.3.3. A simplified 

analysis of the stability of a system with a series exciter is also given. 

The coefficients of the characteristic equation in Venikov and 

Litkens56-2 are in the form (a
nn

), where a
n 

is a function of the 

operating point and pn  a function of the regulator gain. A table 

of these coefficients for voltage, angle and current regulation is given. 

At first there is a discussion based on the fact that all the coefficients 

in the characteristic equation should be positive. This seems pointless 

since this condition is not sufficient. The effects of parameter 

variation is studied by means of the domain separation method. The 

pairs of parameters considered are the coeffients of the first and 

second derivatives for the three controlled variables, i.e. voltage, 

current and angle. 	It is stated that with first and second derivatives 

the stability limit for the transmission line may be achieved. Delays 

in the differentiators (even less than 0.01 sec) are said to reduce this 

ultimate stability limit in practice. 	See section 7.3.3., however, 

for the necessity of these delays. 

Aldred and Shackshaft - represent the non-linear equations of 

the system on an analogue computer. The stability limit was reached 

by increasing the input power. In addition to the usual types of 

regulator a stabilizing signal proportional to the rate of change of 

the field current was used as first proposed in Ref. 54-l. 	It is claimed 

that considerable improvement in the steady state stability limits is 

achieved. 

In their second paper the same authors, Ref. 60-3, present a 

comprehensive analysis of the torque feedback method. Again a feedback 

proportional to the rate of change of if is considered as well as 

more conventional regulators. It is found that in the former case the 

expressions for Xd(p) and the damping torque coefficient must be 

modified but that otherwise the torque method may be used. Most of 

the results refer to load angles less than 90°  and only one Nyquist 

locus for 100°  is given. 	In a third paper the same authors, Ref. 61-2, 
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use the torque method to analyze the effect of rotor damper circuits. 

Although there is no voltage regulator the paper is useful because it 

gives a complete analysis of the effect of damping using the small 

oscillation theory. 

Johansson59-3  and Easton, Fitzpatrick and Parton
60-10 do not give 

any important theoretical results. They both quote an expression for 

the open loop transfer function, in general terms and give the alternator 

frequency response locus. 	In addition in Ref. 60-10 the small 

oscillation equations were solved on an analogue computer and the response 

to small step changes is quoted. The progressive reduction of damping 

as the load angle is increased is clearly shown. 

Using a digital computer Glavitsch62-3 was able to study fairly 

complicated regulators, but the formulae used are not given. The 

results are presented as stability limits on a power chart and operation 

at load angles greater than the peak of the transient power angle curve 

is shown as possible. The block diagram of the system is interesting. 

The alternator is represented as having three transfer functions for 

voltage, current and load angle. Signals proportional to each of these 

are added together with another set of signals formed by taking the 

first and second derivatives of the same output variables. The sum is 

compared with the reference and the error is passed through a regulator 

with constant gain or up to two delays. With one exception results 

are quoted for one controlled variable only. 

Nielsen62-6 is a mainly "experimental" paper. It quotes, however, 

calculated frequency response sof the open-loop transfer function with 

proportional and integral regulators. 

Venikov64-1  gives by far the most comprehensive treatment of the 

extension of the steady state stability region using a voltage regulator. 

The simple and the one delay regulators are fully analyzed. The 

expressions for the conditions of stability are given for either voltage 

or current or angle regulation. A very important contribution is the 



30 

treatment of a regulator involving first and second derivatives of the 

controlled variables. The expressions are simplified by introducing 

symbols for the slopes of the power-angle curves obtained with the 

synchronous, the transient and the line reactances. It may be noted 

that an unjustified approximation is made by neglecting the q-axis 

component of wt  . In the second Russian edition, however, this has 

been corrected, see Ref. 64-3. A chapter is devoted to the domain 

separation method. 

The only application of the Root-locus method is given by 

Stapleton64-2. This powerful technique is very useful when the poles 

and zeros of the open loop transfer function are known, which is often 

the case with linear control systems. For the regulated alternator, 

however, these vary with the operating point and a digital computer is 

used to calculate them. In such a case it appears that it may be more 

profitable to compute the closed loop poles and zeros for a range of 

regulator gains as in Ref. 58-5. 

A particular voltage regulator is used by Battisson and Mullineux
65-3 

as an example for applying an interesting stability criterion that they 

develop. From the characteristic equation a number of polynomials of 

lower degree is derived. The system is stable if the roots of these 

have no positive real parts. A check of the method is obtained by 

observing the response to a small step function when the small oscillation 

equations are set up on an analogue computer. 

Gove65-4 presents an interesting geometric construction of the 

stability limits on a power chart with constant excitation and with a 

simple regulator with optimum gain. An expression for the alternator 

transfer function assuming constant damping is given. Also there is an 

expression for the maximum stability limit of a delay regulator. 

Reference is made to the same tests as described by Mason Aylett and 

Birch59-6, 

Frey46-1  and Concordia48-3  investigate the stability of the system 

with an angle regulator. Their contribution is not considered here in 

detail since no angle regulators are considered in the present investigation. 
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2. DERIVATION OF THE ALTERNATOR TRANSFER FUNCTIONS. 

The operation of an alternator is described by the well-known 

Park Equations. They are non-linear differential equations and, as 

indicated in the Introduction, the small oscillations method is used 

to determine the stability of the system. 	It is possible to prove 

that this method gives the necessary and sufficient conditions for 

the steady state stability, but since all references take this for 

granted it is unnecessary to consider this point here, see Refs. 59-2 

and 64-1 for discussion. 

In this section a system matrix is set up for an alternator, 

connected by a transmission line to an infinite bus and provided with 

an excitation regulator. This matrix equation may be applied to either 

of the two alternative closed loop systems using torque and voltage 

as feedback.' The open loop transfer functions of the two systems 

are derived and are briefly discussed. The more detailed investigation 

of each system is deferred until sections 5, 6 and 7. 

For the derivation of the system matrix the armature resistance 

is not neglected and a quadrature axis field winding is assumed. The 

armature resistance contributes to the stabilization of the system 

and the use of a quadrature axis field has been suggested as a 

possibility, Refs. 62-5 and 64-5. In the application of the equations 

the quadrature field is omitted. Also the armature resistance is 

neglected in the main theoretical development in order to show the 

general relations more clearly. However, the full equations, 

including ra  are used in comparing experimental results with the 

theory and in sections 4 and 6 there is a detailed discussion of the 
effects of r

a . 

2.1. The Machine Equations. 

Consider a synchronous machine connected through a reactance to 

an infinite bus, as in Fig. 1.1. This arrangement is almost universally 
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used for assessing the effect of the excitation regulator, although some 

studies have been made where a two machine system is also considered, 

e.g. Refs. 44-1, 56-1 and 64-1. An extension of the theory to include 

shunt loads is given by Heffron54-2. The line reactance is considered 

as part of the leakage reactance of a "modified alternator". The 

reactances and time constants corresponding to this modified machine are 

calculated and the system is reduced to that of a generator connected 

to the infinite bus. The controlled variable, however, is still Vt  , 

the terminal voltage of the actual machine. 

Park's equations for the modified machine are as follows. (For 

an explanation of the sign convention see Ref. 57-6 and section 2.4.) 

The term Gq(p)Vfq is included to allow for the possibility of a 

quadrature axis winding. 

vd = P  °e1 
	v q + raid 

where 

vq  = -u4 d  + p (I) q  + r
a
i
q 

Te = (-4 d  0 iq  - 0q id) 2  

X
d
(p) 	 G(p) 

0 d  w 1d + 
	v 

w fe 

X (p) 	G (p) 
0 	_ -.9-- i + _n__ v  
q 	w 	q 	

c 
	fq 

(2.1) 

These equations are considerably simplified if it is assumed that 

transient changes are slow in relation to the a.c. cycle. This 

implies that the frequency of the small oscillations superposed on 

the variables is much lower than the system frequency, 50 c/s. In 

fact, see sections 6 and 7, the highest frequency of interest is 2 c/s 

and so the assumption is justified. Compare however with section 9.1.4. 
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Neglecting the pcp terms and assuming the v = w = constant, 
the first two equations become: 

vd = w q  + raid 

td + r i a q 

(2.2) 

(2.3) 

Substituting 4)d  and 4) q  from Eqns. (2.2) and (2.3) in the Torque 

equation, 

T
e 	- raiq)iq + (vd- raid)id 	(2.4) 

It is shown in Appendix I that, if Vm  is the amplitude of the 

infinite bus phase voltage, 

vd 
= Vm  sine, 

v = Vm 
cos& 

q 
(2.5) 

When the values of (p d. 	(I) 7  Va and vci  from Eqns. (2.1) and (2.5) 

are substituted into Eqns. ?2.2), (2.3) and (2.4) these become: 

Vm  sine, = X (p) iq
+ r

a
id + Gq(p) vfq 

Vm  cos8 = -Xd(p) id+ raiq  - G(p) vfe 	(2.6) 

Te = -2 (VmCOS8 raiq)iq+ (VmSin8 raid)dia 

The small oscillation equations are relations between the 

differentials of the variables in the last three equations. They are 

obtained from the well known result, viz: 

If 	f (x, y, z, 	) = C a constant then 
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afaf 	of Ax + -- Ay + -- Az + 	 - 0 ax 	ay 	az 

Hence Eqns. (2.6) become: 

Vmcos8 A8 = X (p) AIq 
+ r

a 
AI
d 
+ G

q(p) AVfq 

-Vmsin80A8 = -Xd(p) u  + r Al - G(p) AV
fe  

a q 
(2.7) 

A Te 2 	V sin8 o+ 2 raido)  A Id+ (V.msin8o iqo - m  

- Vmcos8o ido) A8 - (- Vm 
 cos8 + 2 

raicao) 
 AI 

o 

where the suffix o denotes initial conditions. 

In addition to Eqns. (2.7) describing the electrical quantities 

in the alternator there is the mechanical equation of the motion of the 

rotor, i.e. 

Tm 	Te 
 = J p2e = Ti  

T.=LT p2(cot - 6) 

and the corresponding small oscillation equation is, 

AT.  = 	p2 A8 
	 (2.8) 

Since 
	Vmsin8o  = vdo 

Vcos8 = v m o qo 

Eqns. (2.7) and (2.8) may be written in matrix form as follows: 
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where 

G(p) A Vfe  

G (p)A V
fq 

A T
e 

A Ti  

Qr 
0 

X (p) 

r
a 

-.2 	'do. -a-do 

(1 
2 	-do Irqo 

v
do 

v
qo 

-Q1  

2 -J p 

iqo vdo)  

a 

- X (p) 

vqo 	raiqo 

(2.9) 

Aid 

AS 

If rows 3 and 4 are added together a 3 X 3 matrix results. Thus 

the alternator may be regarded as a link in a control system with 

three output variables I
d 1 

I
q and 8 and three input variables Vfe 

V
fq and T

m . Any combination of the output variables, including their 

derivatives, may be used to control any one or more of the input 

variables, thus forming a closed loop control system. Normally the 

turbine governor controls the Tm  from a speed signal, i.e. proportional 
do to 	and the voltage regulator controls the direct axis field voltage dt 

from a signal derived from the terminal voltage, which is a function of 

I
d 	Iq and 8 . Eqn. (2.9) can be used to study the steady state 

stability of any possible control arrangement. 	What is required is 

an additional equation giving the dependence of the controlled variables 

on the output variables, i.e. the equation of the controller. For 

the present investigation only a conventional voltage regulator is 

considered. 

For the rest of this section r
a is neglected and from now on 

V
fq is set to zero as explained on p. 31. 

2.2. The Regulator Equation, 

The voltage supplied to the exciter is the difference between 

the reference voltage Vfi  and the output of the rectifier Vfo, see 
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Fig. 7.1. 	In order to determine Vfo  , Vt  must be expressed in 

terms of the three output variables I
d 2 

I and 8 . The resistance 

of the transmission line is neglected. From the phasor diagram, Fig. 2.1 

(- 

Vt 	(v
do 

- x
c 
I
o
)2 + (V + X

C 
 Id I, 

0 
 )2 

\_ 	
q 	

2 
q0 

 

and hence the instantaneous value is 

- 

I

\ 1  

vt 	
(V

m 
 sin S

o
- 
Xcqo)

2+  (V
m
cos So  Xc

ido)
2 

(2.10) 

The output of the rectifier is proportional to the average peak 

voltage between lines. If balanced operation is assumed the constant 

of proportionality can be absorbed in the regulator transfer function. 

It is convenient to introduce a factor Ko 
so that 

vfo 
= K K(p) 

The corresponding small oscillation equation is: 

	

f-a vt 	a v 
AS + 

a i
t AI + 

a vt 

	

A Vfo = K
o
K(p) ---- 	 AI

d q as 	a i d 

= Ko
K(p) (vq0+ Xoido) AId (vqoiqo+  vdoido) AS 

X 
(vdo-  Xci o) AI 	—4  g 

V  t 

= 	KoK(p) (A1  AId  + A2  Q S + A3  AIci) 	say 	(2.11) 

K
o affects only the units of the regulator transfer function and 

since, in any case, the per unit system is used, any convenient value may 

vt 
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be chosen. 	It is found that if 

rf  
K
o md 

(2.12) 

some equations are simplified and both the regulator and the alternator 

transfer functions have comparable values. The negative sign is 

introduced so that K(0) is positive. 

2.3. System Matrix and Block Diagram. 

Eqns. (2.9) and (2.11) may be combined to form the system matrix 

as follows: 

G(p) AVfe  

G(p) AVfo  

A Te 

A Ti  

	

-X
d
(p) 	v

do 

G(p)K0K(p) Al  G(p)K0K(p) A2  G(p)K0K(p) A3  

	

vdo 	Qo 	vcio 

J p2 

AS 

LI 

go 	
- X (p) 

(2.13) 

where Qt is replaced by Q
o since when r

a is neglected Qt is the 

steady state reactive power at the infinite bus. 

Let Bijk  be a 3rd order determinant whose 1st, 2nd and 3rd 

rows (at: the rows i, j and k of the matrix in Eqn. (2.13). The 
expressions for these determinants, when the armature resistance is 
included are given in Appendix II. It is advantageous to define new 

functions A. 
	related to Bijk  as shown below: 

B
135 	Q V Y 

7- 	 \ 

(p) 	V2  Y (p) 	(2.14) A
135 	Xd(p) X (p) 	o 	qo q 	do d 
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B235 	X (0
o  X c+  V

2)(I
do
+ Vqo Yq(p))  '  

A235 Xd(p)Xq(p)Ko 	to
K(p) 	V F(p) (2.15) 

X
cqo+ XcIdo)  F(p) 

	

\ 	Vto 
A 	

B
245 	

= 245 	Xd  (p)X q 
 (p)K 

0
K(p)(-J p2) 

(2.16) 

Ail+5 

 

B145 

 

Xd(p)Xq(p)(-J p
2
) 

where 	F(p) = G(p) Yd(p) 

It should be noted that Capitals denote the R.M.S. value. 

In the analysis it is found convenient to separate the effects of the 

field and the rotor damper circuits and for this reason the functions 

Y
d(p) and Y (p) are used instead of Xd(p) and X (p). 	C.f. Eqns. (4.1) 

and (4.2). 

In order to assess stability a small disturbance is introduced 

and the subsequent behaviour examined. Eqn. (2.13) is in such a 

form that the disturbance may be introduced at either of two points in 

the system, namely, at the turbine torque or at the regulator reference 

voltage. When a distuibunce ATm is used, AVfi  is zero, and vice 

versa. Assume first that the turbine torque remains constant, 

Te  + L T, = D Tm = 0 

Rows 3 and 4 of Eqn. (2.13) may be added together to give a 4 X 3 matrix. 

From the four equations expressed by this matrix the ratio A Vfe/ A V. 
may be obtained. 

o Vfo 	B
235 

+ B
245 = 

0K(p) (A
235

+ A
245
(-J p2)) 

(2.18) A Vfe 	B
135 

+ 
8145 	A135  + (- J p2) 

 



Eqn. (2.18) may be considered as giving the open loop transfer function 

of a feedback system as shown in Fig. 1.4. 

If the reference voltage is now assumed constant, 

6 Vfo + A Vfe 	A V
fi = 0 

and rows 1 and 2 of Eqn. (2.13) may be added together, The ratio 

A T e/L Ti  is given by: 

(2.19) A Ti 	B
145 + 

B = 
145 	245 	(—J p

2)(1+ KK(p)A
245
) 

Thus another control system may be constructed with an input A Tm  

and an output AS as shown in Fig. 1.5. The open loop transfer function 

is given by Eqn. (2.19). Physically it is obvious that, if, due to 

some small change in Tm  the rotor angle change AS increases with 

time, the alternator will fall out of synchronism. Either A T
e or 

A Ti  could be used as the feedback quantity. Since however, the 

application of the Nyquist Test is simpler when the open loop transfer 

function remains stationary at infinite frequency, A T
e 

shown in Fig. 1.5, where 

n B +B 0(p) = 	pC) 135 235 

B145 B245 

is chosen as 

(2.20) 

Both systems, referred to as "Voltage feedback" and "Torque feedback", 

are linear and the alternator with the regulator is stable when these 

feedback control systems are stable on closed loop. The conditions for 

stability can be determined by the usual methods of control system 

analysis as described in Lppendix III. The stability of the system is 

considered in detail in section 5, using the Torque feedback, and in 

sections 6 and 7, using the Voltage feedback. 

A Te 	B135  + 
B2)5 
	A 35+ KoK(p) 

A235 
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It is worth noting here that when both AT
m 

= AV
fi = 0 and when 

the 2nd row of Eqn. (2.13) is added to the 1st and the 4th to the 3rd 

we have a 3 X 3 matrix. The determinant associated with this matrix is 

B
135 

B
145 

B
235 

+ B
245 
	(2.21) 

Another method for determining the stability of the system is to examine 

the roots of the equation 

A = 0 	 (2.22) 

using the Routh Test. If any roots have positive real parts then the 

system is unstable. Appendix IV shows the application of this method. 

In fact the characteristic equation of the system as obtained by either 

the Voltage feedback method or the Torque method is the same and is 

given by Eqn. (2.22). 

2.4. Note on Sign Convention. 

Before proceeding with the analysis a note on sign conventions is 

required. 

In spite of the fact that we are dealing exclusively with a generator 

a sign convention based on motor operation is used. It is considered that 

having negative quantities in the numerical calculation was not as serious 

a disadvantage as the deviation from the conventions of the General Machine 

Theory applicable to all machines. For explanation purposes the symbol 

8 	is defined ns the steady state generator angle. Hence 8 = -8
o 

so 

that 8g  is positive for generator operation. 

The generator convention is that used by Park, and others, who used 

also a unit of time defined so as to make synchronous speed equal to 

unity. The following table indicates the main differences when the 

machine runs as a generator. 

Motor Convention 	Generator Convention 

1) Load angle negative. 	1) Load angle positive. 

2) Electrical power output negative. 2) Electrical power output positive. 

3) Turbine torque positive. 	3) Turbine torque positive. 

4) Time unit - 1 sec. 	4) Time unit - 1/314 sec. 



Eqns. (2.1) in the Generator convention are 

vd 	= "d - raid - \)(1)  q 

v
q 	-r . p (1) q  .. raiq - v0 d  

(/)d = G(p) vfe  - Xd(p)id  

Gq(p) vfq - Xq(p) iq 

T = 0 - e 	id  coq 
 

Tm 
= T

e 	p2 6 

From the steady state conditions the sign of KoK(p) must be changed 

and this implies that K
o 

is positive. Using these equations the 

resulting system matrix is identical with Eqn. (2.13) with a negative 

sign outside. The stability conditions therefore remain the same. 
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3. 	THE EXPERIMENTAL EQUIPMENT 

The experiments were carried out on a three-phase "micro-alternator" 

in the College laboratory, used in conjunction with a fixed supply and 

an external series reactance as indicated in Fig. 3.1. The micro- 

alternator is designed to have parameters, on a per unit basis, similar 

to those of large synchronous machines. The parameters of the 

alternator were determined using a static impedance test as well as 

the standard sudden short-circuit test. 

A rectifier and filter unit was constructed and a small analogue 

computer was used to simulate the excitation regulator, The comparison 

with the reference voltage was made inside the analogue computer box, 

see Fig. 3.1. 

The frequency response tests, in this section as well as in 

section 9, were performed using a Transfer Function Analyzer. This is 
an electronic instrument consisting of a variable frequency oscillator, 

a phase-sensitive voltmeter and a phase-shifter. The oscillator is 

used to supply the test signal to the system under test and the voltmeter 

gives the in-phase and quadrature components of the output of the 

system with respect to the output of the oscillator. The phase- 

shifter is normally used to give the output of the system in polar 

coordinates, which was considered unnecessary for the experiments 

performed. The phase-shifter was, however, used in a different mode 

as described in section 9.2.1. 

3.1. The Micromachine and its Parameters. 

A number of the micro-alternator parameters can be varied so that 

a range of machines may be simulated. For the present investigation 

a typical large turbo-alternator was considered. 

The unit voltage was chosen to be as low as possible so that 

saturation effects are minimized. In a saturated machine X and X 
q 

vary with the operating point. Also if X
d(p) and X (p) are the 
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incremental values in the small oscillation equations and Xd  and X 
q 

the values obtained from the steady state conditions then for a 

saturated machine X
d(0) / Xd and X (0) #' Xq  . The time constants 

are also affected by saturation. 	In section 2.1, where the generator 

equations are derived the concept of the "modified alternator" is 

introduced with the line reactance included in the leakage reactance. 

Thus X
d 	

X
CI 

X
" 

Xq , X4 T 	T" and T" are modified. The 
q 

unit voltamperes was chosen so that X
d for the unmodified machine is 

2.0 p.u. 

The simulation of a large machine is achieved by the design of 

the micromachine with the exception of rf, which is considerably larger. 

An auxiliary "time constant regulator" is used to increase the effective 

field time constant, see Ref. 63-6. This device, which may be con- 

sidered as an integral part of the machine was set to produce the required 

time constant. The excitation of the alternator is controlled by 

a low power input signal to the time constant regulator which is 

supplied from the analogue computer, see Fig. 3.1. 

Table II, p.222 gives the parameters of the modified alternator 

as used in the calculations. The transient time constants given are 

obtained with the time constant regulator in operation. 

.1.1. Variable frequency static impedance tests. 

Two methods were used to determine the transient and subtransient 

reactances and time constants. 

(i) The standard sudden short-circuit test, which gives the d-axis 

quantities only, See Ref. 45-1 for details. 

(ii) A variable frequency static impedance test using a low frequency 

alternating current as follows. Two phases of the machine were 

connected in series opposition and supplied with low frequency current. 

The voltage across the two phases, V1  as well as the voltage across 

a shunt, V2  , were measured with the Transfer Function Analyzer. Hence 

V
1 

and V
2 are known in magnitude and phase. With the rotor in the 



1+7 

d- or the q-axis position the corresponding operational impedances are 

given by, 

V 

2 V
2
R  = 	cod (A) + r

a 
	for the d-axis position. 

j 2-̀  X (jx) + r 	for the q-axis position. 
w q 	a  

where R is the resistance of the shunt and X/2 7c is the frequency of 

the supplied current. By varying X the loci for the operational 

impedances are obtained (see Refs. 56-6 and 63-7). 

In the q-axis position one set of measurements was taken. The 

time constant regulator was in operation and the field current was zero. 

It is assumed that the q-axis parameters are not affected by saturation. 

It was verified that the results were not affected when the field was 

open circuited. Fig. 3.2a shows the experimental curve, dotted line. 

The parameters for the computed curve were chosen to give good agreement 

with. the measured points, especially at low frequencies. 

In the d-axis position two sets of measurements were taken, both 

with the time constant regulator in operation. 

a) The field current was adjusted to the value that would give 1.0 p.u. 

terminal voltage with the alternator on open-circuit and at normal 

speed. Thus the armature current produced a small oscillating flux 

which was superimposed on the field flux. 

b) The field current was set to zero. 

During the steady state stability tests the air-gap flux is less 

than 1.0 p.u. at some angle between the d- and the i-axes. The direct 

axis parameters therefore lie between the values obtained from tests 

a and b. Fig. 3.2b shows that the saturated values of Yd
(A), test 

	

a are larger than the unsaturated ones, test b 	The scatter of the 

results however, makes the determination of separate saturated and 

unsaturated parameters unreliable. Under these circumstances the five 



a) 0-AXIS 
--0 MEASURED 

• COM PUT E D 	 

frequency cycles 

20 

sec 

48 

6 YA  
ao 

Y 
	

2 

20 	•••••,. 	 50 

40 

Yd  2 
	

4 N(, 1  

D-AX IS 
O 	MEASURED zero field current TE ST a 

X 	MEASURED normal field current TE ST b 

	• 	COMPUTED 	  503 05 
 07010 

frequency cycles/ sec 	it:.? 	0 	g3  

0.6 X 	
II 	15 2 2.5 

0 	• 
- 	

n•d 0 	8412 
O.8  

05 	\-1 .7 	1.2 	  

0.7 °.% 
-50 x0.6 

FIG. 3.2 OPERATIONAL ADMITTANCES 

Modified Alternator 



49 

parameters required to specify Yd(jX) cannot be uniquely determined 

and several alternative combinations were tried. Finally the values 

were chosen so that the computed Yd(jX) locus, full line in Fig. 3.2b 

is an average curve through all experimental points. 

Methods (i) and (ii) yield different values for the machine 

parameters. The discrepancy is partly due to the inadequacy of a 

single circuit to represent the rotor damping phenomena. When the 

alternator transfer function is determined the conditions of operation 

correspond to those of method (ii). The values obtained from this 

method were therefore used in the calculations. It is clear, however, 

from Fig. 3.2 that extrapolation to X = 0 is not reliable and so Xd  

and Xq  were determined from a steady state test as described below, 

section 3.1.2. 	In addition a small error in the measurement of 

either V1 or V2 produces a large error in the transient time constant. 

Tao  is therefore determined from a decay test when the input to the 

time constant regulator is suddenly removed with the alternator running 

at normal speed and on open circuit. This test is effectively the 

same as short-circuiting the exciter in a normal machine, see Ref. 45-1. 

3.1.2. Determination of Xd---- and Xq  . 

The operating conditions of the alternator during the stability 

tests and calculations are restricted to a constant power output, 

0.8 p.u. a constant infinite bus voltage and a range of values of 8 

from 80°  to 165°. The values of Xd and Xq  were determined from 

a steady state test under similar conditions, for a reduced range of 8g  

With a steady load angle and 0.8 p.u. power Vt  I f  I and Q 

were measured. Assuming the value of the alternator leakage reactance 

as given by the design data, the voltage behind leakage, Vi  may be 

calculated, see Fig. 2.1. The induced voltage is then assumed to be 

I
f 

V = V. — o 	Ifi 
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where 
	

If 	is the measured field current and 

is the field current to give Vi  on open circuit, 

(obtained from the open-circuit characteristic.) 

The phasor diagram may then be completed and the values of X
d 

and X obtained. Measurements were taken for several values of 8 

from 70-o 
 
to 120°  and it was found that Xd and X do not show any 

q 
significant variation with 8g  . The average values from this test 

are shown in Table II, p.222. 

The external series reactance, simulating the transmission line, 

was determined by measuring the voltage drop across its terminals on 

steady operation of the system. 

3.2. The Regulator. 

The regulator used in the experiments consists of two essential 

components: 

a) a rectifier producing a direct voltage proportional to the 

alternating voltage at the machine terminals, and 

b) a device for simulating various excitation system transfer 

functions. 	For this purpose a small analogue computer was used. 

Two more components were added, see Fig. 3.1, for practical 

reasons: 

c) a filter to reduce the harmonic content of the rectified voltage, and 

d) a limiter to protect the time constant regulator from overvoltages. 

These components were designed so that, with the analogue computer 

set to unity, a transfer function with minimum attenuation and phase-

shift was obtained at low frequencies. This is, of course, necessary 

for measurements using the simple regulator. In addition it is very 

convenient if the regulator outside the analogue computer can be 

represented by a constant. 

As stated earlier the time constant regulator may be considered 
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as an integral part of an alternator with reduced field resistance. 

However, the input to the time constant regulator does not correspond 

to the field terminals of the "fictitious" alternator. For reasons that 

need not be discussed here the time constant regulator has a transfer 

function of 0.5. 	This means that the output of the limiter is twice 

fe the "alternator field voltage". Nevertheless for measurement 

purposes the field terminals of this fictitious alternator are 

accessible (shown as "Vim" in Fig. 3.1). 

Fig. 3.3 gives the measured frequency response of the complete 
regulator excluding the rectifier. The loop was broken between the 

rectifier and the filter and a signal was injected from the Transfer 

Function Analyzer oscillator. Point "Vfe"  was considered as the output. 

It should be noted that there is very little phase-shift below 5 c/s. 
Since the highest frequency appearing in the H(j?.) plots, Fig. 6.1, 
is approximately 1.5 c/s the regulator transfer function outside the 

analogue computer may be represented by a constant. 

3.2.1. The rectifier and the filter. 

The rectifier consists of six silicon diodes connected in a 

bridge and supplied from three single-phase transformers connected delta/ 

star. The primary of the transformers is connected to the alternator 

terminals. The output of the rectifier is therefore proportional 

to the average peak voltage of the alternator line voltages. With this 

arrangement the harmonics present in the output are 300 c/s, 600 c/s etc. 
Unbalance in the alternator line voltages was corrected by adjusting 

a variable resistance in series with the primary of the transformers but 

some 150 c/s component was present in the output. Also present is a 

50 c/s signal due to pick-up. All these harmonics must be removed because 

they affect the operation of the amplifiers that follow and for this 

purpose a three section filter is used. Fig. 3.4 shows the circuit 
diagram of the filter together with its frequency response. The first 

section is a parallel T tuned to 300 c/s and the other two are low pass 

filters with cut-off at just over 30 c/s. The attenuation at 50 c/s 
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could not be increased without increasing the attenuation and phase- 

shift at low frequencies. Insufficient attenuation of 50 c/s pick-up 

caused some difficulties with the derivative regulator. 

The transfer function of the rectifier itself could not be 

determined. It may safely be assumed, however, that the rectifier does 

not introduce any time lags. The relation between the A.C. input and 

the D.C. output is shown in Fig. 3.5. The terminal voltage of the 

alternator for operation in the region of a load angle is 1100  Is 

approximately 145V (line) and therefore the characteristic is 

sufficiently linear. Because of loading of the filter the transfer 

function of the unit cannot be taken from Fig. 3.5 and must be determined 
when the system is in operation. Its value is 0.193 (D.C. volts/ peak 

A.C. phase volts.) 

3.2.2. The analogue computer and the limiter. 

A small analogue computer, with the following facilities was 

used to simulate the various regulator transfer functions. 

There are six operational amplifiers (high D.C. gain, low drift), 

four of which may be connected as integrators. There are eight 

coefficient potentiometers and facilities for their accurate setting. 

The input resistors are either 1 NO or 100 kS2 and the feedback ones 

1 MQ thus allowing a gain of up to 10 per amplifier. A very useful 

facility is a removable patch-board which enables one to change the 

type of regulator by plugging-in a different panel. The regulator gain 

is set on a precision decade potentiometer which precedes the last 

amplifier. The frequency response of one of the amplifiers connected 

as an adder shows negligible phase-shift up to 1 ko/s and therefore it 

is not necessary to quote it here. 

The transfer function of a high gain amplifier with an input 

impedance Z
1 and a feedback impedance Z2 is 

V
o 	
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Thus for 

1)  

2)  

3)  

4)  

Constant gain 

One time lag FL 

Integrator = 

Differentiator with 
one time lag 

Zi  = R, 

1 = 	1 

EL Z
11  

1 
1 	p C

1  

Z
2 

= 

Z
2 

Z
2 

Z
2 
- 

R
2 

R
2 

p C
2
R
2
+1 

1 
p C2  

R
2 

p C
2
R
2 
1 

By combining these a large variety of regulator transfer functions may be 

obtained. 

The limiter consists of two pairs of Zener diodes connected back 

to back. When the output of the regulator exceeds the breakdown voltage 

of two Zeners, about 16 V in this case, these conduct and so the input 

to the time constant regulator is limited. Normally Yowever, the 

Zeners are cut-off and the limiter may be considered as having a constant 

attenuation. 	Its transfer function is then 0.385. 

3.2.3. The regulator,R011. 

The regulator gain is equal to the product of the component 

transfer functions (see Fig. 3.1) i.e. 

K Ko  = K1  x 0.193 x 0.385 x 0.5 = 0.0372 K1  

where K1  is the gain in the analogue computer. The units of K Ko  

are volts/volt with V
t being equal to the peak phase value. H(A) 

however, is expressed in per unit quantities and hence the regulator 

gain in p.u. is, 

K K = 0.0372k 186- 
 0.00414 Ki  

/3 965 



where 	186 is the base A.C. voltage and 

965 	is the base field voltage. 

New 

Hence 

rf Ko md 

K = 0.00414 x 	1.89  0.001425 K1 

= 5.49 K, 

5? 
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4. 	THE FUNCTIONS Aijk. 

The quantities A
ijk 

 are defined in Eqns. (2.14) to (2.17) and are 

functions of the operating condition as well as of the machine parameters, 

It is apparent from Eqns. (2.18) and (2.19) that Aiik  are the "building 

blocks" for both the Voltage and the Torque Feedback Methods. Before 

proceeding to consider these two methods in detail it is advantageous 

to investigate in the present section their constituent parts. 

When damping and the effect of the armature resistance are taken 

into account the expressions for A 	are complicated and it is difficult 
ijk 

to draw useful conclusions. Therefore, at first, damping and the arma-

ture resistance are neglected and the simplified expressions are considered 

algebraically. Then computed loci are introduced for the experimental 

system at typical load angles for, 

1) No damping. 

2) Damping but r
a 

neglected. 

3) Damping and ra 
. The expressions for Aijk  in this 

case are given in Appendix II. 

The last two are considered as modifications of the first. Power 

is constant throughout at 0.8 p.u. (see Fig. 1.2). For reasons that will 

become apparent in section 6, four Aijk  loci are considered in detail, 
namely those for 5 at 80°, 110°, 1400  and 165°. These loci are 

shown in Figs. 4.1, 4.2 and 4.3. 

In order to avoid cluttering-up the complex plots with the values 

of frequency the following convention is adopted. The frequency for 

three points only is shown, i.e. for the minimum frequency (usually zero), 

the maximum (usually infinity) and for one intermediate value. The other 

computed points are shown and the frequency values can be determined by 

reference to Table III p.223 . This convention is used for all loci in 

sections 4, 6 and 7 which involve frequencies. 

When dealing with these functions it is useful to have the expressions 
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1 
rf Xd 

F(jX) = 	and  (4.4) 

70 

for the operational admittances in partial fraction form. For the deriva-

tion see Ref. 52-3. 

Yd(A) 	= 

Y (A) 	= 

Also 

F(A) 

Yd + (Y1d  - Yd)  

	

Yq  + (Y" - 	) 
q 	q 

= 	0( A) 

ATI 
+ 

ATa 

(4.1) 

(4.2) 

(4.3) 

1 + 

AT" 

	

(Y" 	d Y1) 

	

d 	1 + AT" 

(1 	ATkd)  

1 + AT" 
q 

X
md 

X
d
(A) rf 

Xd (1 
1  

+ AT') (1 + ATai 

If damping is neglected the last term in each of Eqns. (4.1) and (4.2) is 

zero and F(A) is simplified to 

4.1 	The Locus of  A135. 

Substituting Eqns. (4.1) and (4.2) into Eqns. (2.14) neglecting 

damping, we have, 

A135  = 	Q0 	q 
1/2 

 o 
Y 
q 

Th 
SX,TA 

V2do 
Y
d 	do (Yd I - d 	d 	1 + 

(4.5) 

Thus the locus is a semicircle with diameter Vdo  (Y' - Yd  ) and a time 

constant of TA see Fig. 4.1 full line. Since Vdo = V sin 8o the 

diameter of the locus is reduced as 8g  is increased beyond 900. Also 

Qo 	the reactive power, becomes more negative as 8g  is increased and, 

as shown in Fig. 4.4, A135(0) is rapidly increased at large values of 8 

Define S
o and S' as follows: 
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S
o 

= Q0 	Y 	
V2 Yd q 	do d (4.6) 
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So SI = Q 
-0 	V2o  Y  	Y1  q q dod 

It can easily be verified that, 

(4.7) 

A135 
So + pa,  S,  d o 
1 + AT'a  

a +  jib  
1 + jXTI.  say 	(4,8) 

The functions So and S' are important quantities in synchronous 

machine theory. Substituting for Qo 
„ V

qo and Vdo we have, 

Vo V 2 / v 1 	1 ) So = ---- cos So + V --- 
	cos 2,5o 	(4.9) Xd 	q X • Xd 

V' V 
SI = 	X' cos So + V2  (X  - X) 	28o a 

(4.10) 

where V' is the q-axis component of the voltage behind the transient 

reactance. The right hand sides of Eqns. (4.9) and (4.10) are the well 

known expressions for the slopes of the power-angle curves for the steady 

state and the transient condition respectively, see Ref. 47-1. The peak 

of the steady power angle curve corresponds to the steady state stability 

limit in the conventional theory. Hence, when ra is neglected Ss  is 

calculated from, 

So = 0 
	 (4.11) 

The concept of a transient power-angle curve is used in approximate 

transient stability calculations where the rotor flux linkages are assumed 

constant. 	It is apparent that Eqn. (4.10) is obtained from Eqn. (4.9) 

if Xd  is replaced by Xd . Corresponding to Eqn. (4.11) let the value 

obtained from 

So = 0 	 (4,12) 
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be denoted by 85 . Fig. 4.4 shows the variation of So  and S,:)  with 

8 	at P = 	p.u. Both curves tend to (-) infinity as 8 ---> 180°. 

If the effect of damping is taken into account, with r still a 
and Y (A) should be 

substituted in Eqn. (2.14) to give, 

So ATI S
o  
I 	AT" 	AT" 
	d 	 0  A_ 	+ V2  (Y 	 ') 	 + V2  (Y 	Y -13, 	1 jXTA 	do  (Yd 	d 1 + A'd 	qo q 	q)  1 + AT" 

q 

(4.13) 

Thus the original semicircular locus is modified by the addition of two 

semicircles of diameter go  (Yd  " - Y1 
 ) and V2

qoq  (Y" - Y ) and with time 

constants T" and T" respectively . 	In practice T" and T" are 

of same order and the locus of A135 appears as the sum of two semicircles 

as shown in Fig. 4.1, dotted line. 

Since Vqo 
= V

m 
cos 8

o the effect of the q-axis damper is small at 

8g  = 80°  or 110°. For both these angles then the locus of A,
135 

 is 

approximately a plot of Yd(A) to a different scale and to a different 

origin. At 8g  = 140°  however, Vq0 is larger than V
do and since  

(Y" 	Y 
q 
 ) is larger than (Y1  Yd  ) the effect of damping on the locus 

is very significant. As 8 is further increased the transient semicircle 

is reduced and the effect of the q-axis damper predominates. Clearly, the 

effect of damping is a minimum when 8 = 90o and a maximum when 8 = 180o 

or 0 . One of the significant changes brought about by damping is the 

increase in the imaginary part of the locus at frequencies in the region 

of 1 c/s. 

The contribution of the r
a terms on A135(o) is small and it is 

not obvious why it should change sign between 8g  = 110° and 140o . The 
same applies to A135(cD)  where the change of sign of the effect of ra 
occurs between 1400  and 165° 	For frequencies in the region of 1 C/5 
the imaginary part of 

A,135 
 is consistently increased although by an amount 

neglected, the complete expressions for Yd(A) 



74 

smaller than that of damping alone. The change on the real part of A135 

at 1 c/s, except for 8g  = 165°  is comparable with the change produced 

by damping alone. 

Fig. 4.1 shows that the locus of 
A_135 

 is considerably affected by 

damping and ra 	It should be noted, however, that the critical frequencies 

of the system are low and that the errors involved by neglecting damping 

and ra , although significant, arc not as large as it may appear at first 

sight. 

4,2 The Locus of  A235. 

Neglecting damping and substituting Eqns. (4.1), (4.2) and (4.4) into 

Eqn. (2.15) we have, 

X
md Xc 	(Q X + V2) (Ido + qo )  

A235 	r 	
o c    (4.14) 

f Xd ' 	Vto(1 + ATI) 	1 + SXTA 

where c is defined here. The locus is a semicircle with "time constant" 

T1, Only part of the semicircle is shown in Fig. 4.2 for frequencies higher 

than 0.5 c/s to show the effect of damping and ra  (see below). The rest 

of the locus is a semicircle completely determined by A235(0) , a graph 

for which is shown in Fig. 4.4. 

(Ido + VqoYq)  corresponds to OA in Fig. 2.1 and is therefore approx-

imately proportional to Vo  i.e. proportional to if  . As 8g  is increased 

above 90°  (I + If Y A  do 	qo q) increases tending to + (39 as 8 --- .7,-- 180°. 
g 

(Q X + V2) is positive for small 6 but is continuously reduced as 8 o c 	 g 	 g 
is increased. Thus A235(0)  does not change much until (Q o  Xc  + V2) 

approaches zero, see Fig. 4.4. The value of 8
g 
 when this happens is 

important. From the phasor diagram, Fig. 2.1 

Q o X
c  + V2  = V Vtocos (8o - 8t) 

• 

Thus A235 becomes zero when the angle between the infinite bus and the 

machine terminal voltage becomes 90°. Let the corresponding value of 8g  
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be denoted by 81  . For the experimental machine 8 = 163.2°, see Fig. 4.4. 

When damping is taken into account the terms affected, see Eqn. 

(2.15) are F(A) and (Ido + V oYq(A) ). F(A) is changed by the addi-. 

tion of two terms, see Eqn. (4.3) and for the frequencies in the region of 

1 c/s the effect is mainly an increase of phase-shift with a small atten-

uation. The change of F(A) affects all the loci for the four angles 

in the same way. The effect of damping on (Ido 
+ VqoYq(A)  ) depends on 

the operating condition and again for frequencies in the region of 1 c/s 

the change is mainly phase-shift with a small attenuation. For 8 = 90o 

the change is in the opposite direction from the change in F(A). Thus 

for 5g  = 80°  p see Fig. 4.2a the difference between the full line (no 

damping) and the dotted line (damping is not large). For 8 > 90°  the 

sign of Vqo changes and its value is increased as 8 increases. Hence 

the difference between the two cases, with and without damping is increased, 

see Figs. 4.2b and c. However Ido is also increasing with increasing 

8g  and Fig.. 4.2d shows that the effect of damping for 8g  = 165°  is of 

the same order as for 8 = 140°. 
g 

For the four cases quoted in Fig. 4.2 the effect of resistance is 

to increase the phase-shift but to reduce the attenuation for a given 

frequency. It should be noted that, although the effect of ra  appears 

at first sight to be insignificant, the phasor difference is approximately 

the same as between damping and no damping. 

4.3 The Loci of  A245 and A_ 45' 

Consider A
245 

first. Neglecting damping in Eqn. (2.16) we have 

X
md 

X
c (Vqo  + Xc Ido) A245 rf Xd Vto(1  + ATI) 

 

(4.15) (1 + jXT1(1) 

where d is defined here. The locus, like that for A235  , is a semi-

circle with time constant TI and tends to zero as A = OD. Fig. 4.3 

shows plots of A
245 for the same load angles as before except that 

8g  = 110° is not included. It may be seen from Fig. 4.5, which shows a 
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graph of A
245 

against 8g  , that at 8 = 110o A245(0)  happens to be 

approximately zero.. Again only frequencies from 0.5 c/s are considered. 

It may be deduced from the phasor diagram, Fig. 2.1 that 

V
qo 

+ X
c 
I
do - cos 8 Vt  to 

(4.16) 

Hence A
245(0) is proportional to cos t and Fig. 4.5 shows, in effect, 

how cos 8
t varies with 8 . Apparently 8t 

increases, numerically as 

8 is increased and has a maximum value when 8g  is about 150
o. Then 

it is rapidly reduced and tends to zero as 8 	> 180°. 

The only term affected by damping is F(j1) 	The dotted curves in 

Fig. 4.3 show an increased phase-shift with a small attenuation as before 

with the A
235 locus (section 4.2). It should be noted that the locus of 

A245 , irrespective of the operating point, is the same as the locus of 
F(A) to a different scale, i.e. the effect of damping is independent of 

8g. 

Fig. 4.5 shows that A245(0)  is reduced when the effect of ra is 

included. The additional term containing the armature resistance includes 

(V
do 

- X
c 
I
qo) , see Appendix II. 	Thus, from the phasor diagram, Fig..  

2.1, the effect of the armature resistance is proportional to sin 8t  . 

Considering Figs. 4.3 a and b only it may be seen that the effect of ra  

is approximately the same. Since A245(0)  has a different sign in each 

case the effect of r on the magnitude of A245(j)) is to increase it 
a 

at 8g  = 80°  and to reduce it at 8
g 
 = 140°  , for X in the region of 0.5 

to lc/s. The locus for 8 = 165-  is considerably modified by ra as 

shown in Fig. 4.3 c..  

The locus of A145  is constant and equal to unity if ra  is 

neglected. Although Eqn. (11.4) shows that ra  has some effect, in 

practice unless ra  is very large it may be neglected. For the experi-

mental machine the worst case involves a phasor of magnitude 0.006+j 0.002. 
Thus from now on A145  is assumed to be equal to unity. 
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5, 	ANALYSIS OF STABILITY BASED ON TORQUE FEEDBACK 

The torque feedback method forms the link between the conventional 

approach to the stability of synchronous machines, using the synchronising 

and damping torques, and the method of 	small oscillations using the 

Nyquist test. The unregulated machine is a special case of the complete 

system with the regulator gain sot to zero, and can be analysed by both 

methods. Since this section is intended to link the two approaches the 

effects of rotor damping and of the armature resistance are neglected. 

Also only the simple regulator is considered. 

Expressions for the synchronizing and damping torques for the 

regulated machine are developed. These should be useful when the 

operational characteristics of a synchronous machine with a voltage 

regulator are investigated. 

5.1 	General Considerations. 

For the torque feedback method the system is represented by Fig. 

1.5 and the open loop transfer function has been determined, see Eqn. 

(2.19). 	With the simple type of regulator that is considered in this 

section K(jX) is a constant, 

K(jX) = 	 (5.1) 

Eqn. (2.19) becomes, 

A T
e 	K Ko  A235  

(5.2) T
i 

 
JX2(1 + K K

o A245) 

Fig. 1.5 has been drawn to agree with the equations and the forward and 

feedback branches are not physically separable. The action however, 

may be visualised as follows. The disturbance is introduced at AT
m 

and an error torque ATi  acts on the machine inertia to produce AS 
in the forward branch. 	AS in the alternator produces the 



e  _ 0(A) _ A135 
A Ti t A2 

AT 
(5.4) 

electromagnetic torque ATe  in the feedback branch. The difference 

between the electromagnetic and the turbine torques is 	AT. . 

The function 0(jW) in Fig. 1.5 is given by 
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o(A) = 
ATe A135  + K Ko  A235  

1 + K K
o 

A
245 

(5.3) A8 

It is found convenient to plot the Nyquist locus in two steps 

(i) Plot 0(jX). 

(ii) Divide each point of the 0(A) plot by J12  to obtain 

the Nyquist plot. 	It should be noted that this step introduces a 

double pole at the origin and by section AIII.3 the Nyquist locus 

describes a full clockwise circle, with "infinite radius" as X goes 

through zero. 

,5.2 The System without a Regulator. 

With K = 0 the open loop transfer function becomes, 

It is shown in section 4.1 that, if the armature resistance and damping 

are neglected, the locus of 
A135 

 is a semicircle as shown by the full 

lines of Fig. 4.1. 	It is apparent from the expression for A135  Eqn. 

2.14 that 
A-135 

 does not have any poles with positive real parts and 

thus for the application of the Nyquist test P = 0. 

The locus of 0(A) for 8 = 80°  is drawn, not to scale, in 

Fig. 5.1 a together with the corresponding Nyquist locus. The (-1, 0) 

point is not encircled by the latter and therefore the system is stable 

for 8
g 

 = 80°. 	Figp.5.1 b and c show the 0(A.) loci for 8g  = 110°  

and 140°  respectively, together with the corresponding Nyquist loci. 

In both cases there is one encirclement of the (-1)  0) point and for 
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both these angles the system is unstable. It is not necessary to con-

sider the case 8 =165°  separately since the Nyquist locus has the 

same shape as that for 8 = 140°  and therefore denotes an unstable 
g 

system. 

The change in the Nyquist locus from that of a stable to that of 

an unstable system occurs when A135(0) becomes positive. Thus the 

condition of stability for the system without a voltage regulator is 

A135(0) 	0 

viz: 

Qo 	
V2 Y + V2 Y 	0 qo q 	do d 

The stability limit thus occurs when 

S
o 

= 0 	 (5.5) 

Comparison with Eqn. (4.9) shows that Eqn. (5.5) expresses the well 

known result for the stability limit of an unregulated machine, see 

Eqn. 4.11. Thus the Nyquist method gives the familiar result. The 

critical portion of the A135 locus is at low frequencies. 	The 

presence of rotor damper circuits does not, therefore, affect the steady 

state stability limits of an unregulated machine, as is well known. 

Moreoever, if the armature resistance is also taken into account the 

expression for 0(A) becomes 

93(A 	A135)  - 
	 (5.6) 
-145 

and it may be shown that the real and imaginary parts of 0(A) corres-

pond to the synchronising and damping torques as follows; 

0(A) =
s 	

K
d
) 	(5.7) 

In fact Eqn. (5.6) may be obtained from the expression given by Adkin77-6 
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for K
s and Kd if the rate of change of flux terms are neglected. 

See also Ref. 52-3. 

In the conventional theory for stability Ks  > 0 and this is of 

course the same as 0(0) < 0 which is the result obtained from the 

Nyquist method. 

It may be noted here that K and K
d are used for studying 

hunting of synchronous machines. If both K
s and Kd satisfy certain 

conditions then hunting is not possible. It can be shown that the same 

results may be obtained by the Nyquist method as applied in this section. 

The term hunting is conventionally applied to loss of steady state 

stability when there is no excitation regulator and this usually occurs 

at light loads. In this sense hunting lies outside the scope of the 

present investigation. 

5,3 The System with a Simple Regulator.  

The function 0(A) is given in Eqn. (5.3). If we substitute 

for Aijk  from Eqns. (4.8), (4.14) and (4.15) we have, 

(a 	K Ko c)-1- jXb (5.8 ) (1 + K K d) 

Eqn. (5.8) has the same form as Eqn. (4.8) and the locus of 0(A) is 
a semicircle for X = 0 	OD. Also 

95(j co) = 	TI 	- A135 (i  

i.e. the infinite frequency point of 0(jX) is not affected by the 

presence of a regulator. 

Before applying the Nyquist test to the locus of $(jX) the 

possibility of poles with positive real parts must be investigated. 
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From Eqn. (5.8), if K.K0  d < 1 then there is one such pole, i,e. P =1 

(see Appendix III). With the parameters of the experimental machine 

however this occurs at very high values of K and for the following dis-

cussion it is assumed that P = 0. 

Figs. 5.2 and 5.3 show plots of 0(jX) for 8g  = 80°  and 110°  

respectively for various values of K . 	The effect of increasing'the 

gain is to shift the zero frequency point of the locus to the left. 

Considering Fig. 5.3, as the gain is increased 0(0) is reduced until 

it becomes negative, e.g. at K = 5 . The position of the 0(A) locus 

is then the same as Fig. 5.1a and therefore the Nyquist locus shows ho 

encirclement of the (-1, 0) point. Hence the system is stable for 

this value of K . 	If, however the gain is further increased there 

comes a time when, 

0(0) 	< sh(j co) 

and the locus of o(jx) goes over to the second quadrant, e.g. for 

K = 15 	Fig. 5.1d shows that the Nyquist locus corresponding to this 

case encircles the (-1, 0) point twice and hence the system is unstable. 

Thus, for 8 = 110° the regulator stabilizes the system only for a 

definite range of values of K . Fig. 5.2 shows that for large values 

of gain instability occurs even for 5 = 800  , e.g. for K = 150. 

Although a more detailed study for various load angles is deferred 

until section 7, it is worth pointing out here that as 8g  is increased 

the infinite frequency point of 0(A) moves to the right and eventually 

becomes positive. When this happens it is no longer possible to 

stabilise the system using a simple regulator with constant gain. 

Clearly this occurs at 8g 	s = 8t. 

The concepts of the synchronizing and damping torques may be ex-

tended to include the regulated machine. To avoid confusion with the 

unregulated machine the 2nd suffix r is used. 
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(5.9) 

Thus Fig. 5.2 and 5.3 are plots of 	- (Ksr+  Kdr). The action 

of the regulator may be considered simply as increasing the synchronizing 

torque while at the same time reducing the damping torque. For 8g  = 110 0 

and K = 0 there is a negative synchronizing torque and a large damping 

torque. As the gain is increased the synchronizing torque becomes less 

negative until eventually it becomes positive, and the system is then 

stable. Increasing the gain further, the synchronizing torque is in-

creased, and at the same time the damping torque is reduced. Ultimately 

the damping torque becomes negative, 0(A) locus has a positive 

imaginary part and instability occurs. This argument may be thought 

of as a proof of the following statement by Doherty28-1 
	

"The 

regulator affords increased synchronizing power, but does so at the 

expense of positive damping". 

This process is illustrated very well by experiment, see section 

9.1. If the gain is low the machine goes out of step soon after 8g  = 8s 
when the gain is increased the machine operates stably up to a maximum 

angle about 81  if the gain is further increased the system develops 

large oscillations of stable amplitude at an intermediate value of 8 . 

It should be noted that the only Nyquist locus implying a stable 

system is Fig. 5.1a and it corresponds to both Ksr  and K
dr being  

positive, In general, however Ksr 	0 and K 	0 is not a  dr 
sufficient condition for stability and cannot be used to replace the 

Nyquist test. 

The torque feedback method is an important link with the existing 

theory and an introduction to the more useful voltage feedback method. 

It suffers from one major disadvantage, that the effect of changing the 

regulator parameters is difficult to visualize. A change of gain 

requires a new calculation. Although this may not be so cumbersome 
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when damping is neglected, the task becomes more difficult if the 

effects of damping and armature resistance are taken into account, 

and still more when dealing with regulators, for which K(p) is a 

complicated function. 

Another difficulty with the torque diagram concerns the ex-

perimental verification of the theory. One could conceivably inject 

small oscillations in the torque of the prime mover and measure changes 

in load angle and electrical power output of the alternator. It is 

easier, however, to inject a voltage into the excitation system and to 

measure the voltage fed back by the regulator itself. 
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6. 	THE ALTERNATOR TRANSFER FUNCTION. 

The present section is devoted to the shape and salient features 

of the transfer function of the alternator when the system is analysed by 

the Voltage Feedback Method. For reasons stated at the end of the last 

Chapter the Torque Feedback Method is abandoned and from now on the term 

alternator transfer function refers to that obtained by the Voltage 

Feedback Method. 

The expression for the alternator transfer function is complicated 

and in order to determine the frequency response loci for the complete 

system including the armature resistance and damping recourse must be 

made to graphical and numerical work. All computations and numerical 

results quoted refer to the experimental machine, the parameters of 

which are given in Table II p.222. , 	It should be repeated here that 

the machine is assumed to operate at 0.8 p.u. power and that the 

infinite bus voltage is 1 p.u. 

The expression for the frequency response locus is considerably 

simplified if the rotor damper circuits and the armature resistance are 

neglected. As before the procedure is first to examine the conditions 

algebraically with this simplification and then to consider the re-

lation between the formulae and the shape of the locus. The rotor 

damper circuits and the armature resistance are then considered as 

modifying the simpler frequency response locus obtained when their 

effects are neglected. 	It is required to determine the nature of 

such modifications. In order to do this the functions Aijk  are 

combined together to form the loci for the numerator and for the de-

nominator of the alternator transfer function. These loci are plotted 

for the three cases namely, a) without damping, ra  = 0, 	with damp.- 

ing but with r
a = 0 and c) with damping and including the effect 

of ra. 

It is convenient to define two new symbols. Let L(A) be the 
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open loop transfer function of the system i,e0 

and let 

L(j?) = 

H(j?) = 

A Vt  
Ko K(A) A Vfe 

A Vt 
A Vfe 

Ko  

(6.1) 

(6.2) 

i.e. H(A) is proportional to the alternator transfer function. Since 

Ko is introduced for convenience, see section 2.2, and affects only 

the units, H(j?) may be referred to as the alternator transfer function. 

Hence 

H(jX) - 
rf 	A235 + A245

J X
2 

Xmd 	A135 
 + A145j12 

(6.3) 

6.1 	The Locus of H(jX)  

Figs. 6.1 to 6.3 show several frequency response loci of H(j?). 

The computation would not have been possible except by means of a digital 

computer. 	Details of the programmes need not be considered here. 	It 

is sufficient to say that the first stage of the computation gave the 

functions Aijk  and H(jX) was obtained from them. 

A complete family of H(A) loci for load angles from 60°  to 

165°  is shown in Fig. 6.1. Damping and armature resistance effects 

have been included. These are the main loci used in the subsequent 

calculation of the stability limit with different regulators. Since 

the algebraic analysis can only be made if both the rotor damping and 

the armature resistance are neglected Fig. 6.2 shows a comparison 

between the three cases for selected angles. The region round the 

origin is not clearly shown in either figure and so an enlarged plot is 

given in Fig. 6.3. The importance of this region lies in the fact that, 

for angles less than 70°  the H(A) does not cross the negative real axis. 
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Let the H(j)) locus intersect the negative real axis when 

X = Al  . This is an important quantity and it will be shown later 

that it corresponds to the natural frequency of the system when K(p) 

is constant. 

It is apparent that the following changes take place as the load 

angle 8g  increases. The values of 8g  when some of the changes 

occur correspond to symbols already defined in section 4. These are 

given here, although the connection is not so apparent. Thus at 

a point between: 

a) 70°  and 80°  the locus intersects the negative real axis. 

Define 8k as the value of 8g  in this case. 

b) 80°  and 90°  H(0) becomes negative. The transition occurs 

when 8 = 8 . 
g 	s 

c) 130°  and 140°  H(A) does not intersect the negative real 
axis, except when X = 0 . This occurs when 8g  = 8' . 

d) 160°  and 165°  H(0) becomes positive once again. 8 is 
then equal to 81  . 

The discussion of the significance of these changes on the 

stability of the system is deferred until section 7. 

6.2. Algebraic Analysis. 

Any analytical investigation must be confined to the case where 

damping and the effect of the armature resistance is neglected. When 

this is done substitution of the expressions for Aijk  from Eqns. (4.5), 
(4.14) and (4.15) into Eqn. (6.3) results in 

H(90 = - 
X
c 
 PQo  X c+ V2)(XqIdo+ Vcto) Xq

(V
go
+  X

c
I
do

) JX2.1 

V
to
X
d
X
q 

PX2  - So  ATI (S
o 
 - JX2)1 

(6.1+) 
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From the phasor diagram Fig. 2.1 the following identities can be deduced: 

X I costa 	X P 
V
qo 

+ X
qdo 

= 
sin So V sin S° 

Vqo + Xc Ido = Vto cos t 

Qo  Xc  V
2  = V V

to cos (8o - 8t) 

and when these are substituted in Eqn. (6.4) 

H(A) = 

t- 
X
c  P cos(8 - St) - J X2  sin So

cos St) 

sin  So X 	- j x2 + ATI(St J X20 d o 

(6.8) 

The three most important features of Figs. 6.1 to 6.3 are 

(i) The value of H(A) at X = 0 , i.e. H(0) . 

(ii) The value of H(jX) at the second intersection with 

the real axis i.e. H(jhl). 

(iii) The natural frequency hi  . 

Expressions for these may readily be obtained from Eqn. (6.8). 

6.2.1 The Alternator Transfer Function at h = 0.  

Letting X = 0 in Eqn, (6.8) we have, 

X
c 
 P cos (8

o  - t) H(0) Xd  So  sin 8o 
(6.9) 

(8o - St) is the angle between the infinite bus and the machine terminal 

voltage, For 8 in the range 70°  to 140°  , (80  - St) varies 

from 15.5°  to 26°. Thus cos(S
o 
- St) may be considered as constant 

in this region. 	It is apparent that H(0) changes sign when S
o 
= 0 

i,e, when 8
g 
 = Ss. 	Also as 8 —> 8s H(0) 	oc 
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If saliency is neglected, 

V Vo 	cos 8o 
S
o 

= 5C  
cos 8o = P -d 	sin 80 

(6.1o) 

Hence, very approximately in the region 70°  to 140°  at P = 0.8 p.u. 

H(o) 	
cos 8 	

(6.11) 
0 

where a
1 is a positive constant dependent on the machine parameters 

and on cos(8
o 	8t) . 

As 8g  is increased the only term that changes sign is cos(8o - 8t) 

i.e. H(0) becomes positive again when 

cos(80  8t) = 0 	 (6.12) 

This implies that the angle between the terminal voltage and the infinite 

bus is 90°  and the corresponding value of 8
go 
 is 81 	see section 

4.2. For the experimental machine 81 = 163.2 . 

Since Eqns. (6.9) to (6.12) refer to X = 0 they are valid for 

the case where damping is taken into account. They are approximately 

valid, however, when ra  is included. 

6.2.2 The Natural Frequency  X1. 

The frequency at the second intersection with the real axis is 

obtained when the imaginary part of the denominator of H(jW) in Eqn. 

(6.8) is set to zero i.e. 

J W2 = S' 
	

(6.13) 

i.e. 
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Fig. 6.4 (simple regulator case) shows Ni  as a function 8 when 
damping and ra are included. It is apparent that Wi  does not change 

much for 8 in the region 80°  to 120°. 

When S' < 0 the H(jX) locus does not cross the real axis, 

except when W = 0. The value of 8g  when this occurs is given by 

SoI 	= Q
o  + V2qo  Yq 	d + V2 o  Yd  = 0 	(6.14) 

and comparison with Eqn. (4.7) shows that 8
g  = 6' 	at the peak of 

the transient power angle curve. 

It is interesting to note that Eqn. (6.13) occurs in investigations 
of synchronous machine hunting, see e.g. Adkins57  or Laib1e52-3  

6.2.3 The Alternator Transfer Function when X = Xl. 

Substituting Eqn, (6.13) in Eqn. (6.8) we have, 

X
c ('' cos(80  - 8t 	o ) - S' sin 8o cos 8tI) H(jX1) - 

	

	 (6.15) 
X
d  V

2  (Y1  - Yd  ) sin38 d 	o 

H(jW1) does not "exist" for 8 > 8/
s. For the experimental machine g in the region 8

g 
 from 100o to 8' the second term in the numerator s 

is less than 20% of the first term and so 

H(jX1) 
X
c  P cos(8o  - 8t) 

Xd V2  (Y1 	Yd  )sin38o d  

(6.16) 

since cos(8
o - 8t) is approximately constant, see section 6.2.1, 

H(jX1) 
a2 (6.17) 

sin38o 

where a
2 is a positive constant. For the region 70° to 100

o 
the 

second term in the numerator cannot be neglected. In fact when 
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Sg  < 71.5° H(jhi1) becomes positive, see Fig. 6.3, because 
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A 	J X2  < A235 245 1 0  

   

Combining Eqns. (6.9) and (6.16), 

H(0) V(Yd - Yd) sin28o 

 

(6.18) 

 

 

H(TX1) 	So 

  

From Eqn. (6.10) 

     

H(0)  
H(jX1) 

V2  (Y1d  Yd) sin38o 
P cos 80 

(6.19) 

Hence, for P = constant, the ratio H(0)/H(A1) is rapidly reduced 

as 8g  increases beyond 90° . It should be noted that when this 

ratio becomes unity the H(A) locus no longer crosses the real axis. 

From Eqn. (6.18) this occurs when 

S
o 	

+ V2  (Y1  - Yd  ) sin28o = 0 

i.e. when 

SI = 0 
0 

which is the same condition as Eqn. (6.14). No approximation is involved 

since the second term in the numerator of Eqn. (6.15) is zero. 

6.3 	Application of the Inverse Frequency Response Locus  

The general shape of the H(A) locus may be investigated using 

the inverse frequency response locus. If the J X
2 term in the 

numerator of H(A) in Eqn. (6.8) is neglected then, 

-N 
J "h2 + AT' (SI

o  - J
2) 

d  
(6,20) 
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where C is a 

for 8 = 110°  
g 

BC and CD . 

positive constant. 	Fig. 6.5 shows a plot of 1/11(jX) 

and the curve may be divided into three sections, AB 

Comparison with Fig. 6.1 shows that they correspond to 

the following portions of the H(jX) locus. 

AB is obtained for small values of X when the X
2 

terms are 

small. It is approximately a straight line giving on inversion the large 

semicircle on the H(jX) locus. 	The "time constant" of the semicircle 

is Tfd8Io/So  . 

CD is obtained for lage values of X when the X2 terms predominate. 

It is approximately another straight line further away from the origin 

than AB and thus givosthe small circle in the H(jX) locus. The 

centre of this circle lies on a line at an angle -le with the real axis. 

BC is the transition between the two straight lines, i.e. the 

two circular parts of the H(jX) locus. 

OA and OE are 1/H(0) and 1/H(jX1) respectively. It is 

apparent from Eqn. (6.20) that the 1/H(j)) locus does not intersect 

the real axis when SI ‹: 0. The inverse Nyquist test, as described 

in Appendix III can be applied and a new family of transfer functions 

calculated. 	The inverse plot, however, is not stationary as X ---> OD 

and this results in certain complications making its application un-

profitable as far as the determination of stability is concerned. 

6.4 Geometrical Analysis of the H(jX) Loci.  

When the effects of rotor damping and of the armature resistance 

are taken into account the expressions for H(jX) become very long and 

the algebraic analysis impossible. One way of proceeding would be to 

make several calculations, using the digital computer, of the frequency 

response locus of H(jX) changing the various parameters. It is con-

sidered however)  that by deeper probing into the constituent parts of 

H(jX) it is possible to make more general deductions on the nature of 

the system. 
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The effect of damping and r
a on the loci ofAijk  functions 

has been considered in Chapter 4. These functions are now combined 

together to form the numerator and the denominator of H(j?) . 

6.4.1.Plots of the Numerator and of the  Denominator of H(jW).  

Fig. 6.6 shows the loci obtained with 8g  = 80°  p 110°  „ 140°  

and 165° for the numerator and the denominator of H(j)) . Again 

three cases are considered as indicated on the figures! a) without 

damping, b) with damping, ra  = 0 , and c) with damping and ra  

Since the numerator of H(j?) is (-)(A
235 + J X. A245) 

 and the 

denominator (A135  + J W
2 

A145) 
Fig. 6.6 is derived directly from 

Figs. 4.1 to 4.3. For the numerator plots only points for 'X/2t 

greater than 0.5 c/s are shown, c.f. Figs. 4.2 and 4.3. 	It should be 

noted that the scales for the numerator and the denominator are different 

as shown on each figure. 

It is clear that the H(jX) loci may be obtained from Fig. 6.6. 
If two straight lines are drawn from the origin to the numerator and the 

denominator curves for a given X then IH(iX)I is the ratio of the 

lengths of the two lines and Arg H(jW) is the difference of their 

argument. 

A
245 

changes sign at about 110° and again at 160°  , see Fig. 

4.5. 	Comparison between Figs. 6.6 and 4.2 shows that the effect of the 
A
245 

J X2 is small for 8g  = 80°, 110°  and 165°  but significant for 140°. 
As X —> co 

(-)(A
235 

+ J X2 A
245)  

> jco 8 800 

•> + jco 
	8g  = 110°, 

> 	jco 	8g  = 110°, 

joo 	8g  = 140°  

jap 	8g  = 165°  

r
a 

neglected 

r
a 

included 
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2
<(< 1 then 1 

1 

it was assumed that (X
1  T

1)2 >> 1. If, in addition, 
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The effect of damping on the numerator locus is to increase the 

phase-shift with respect to the zero frequency point and at the same time 

the amplitude is slightly reduced. When ra is included both the phase 

shift and the amplitude are increased, 	It was stated in section 4.3 

that A
145 

 may be taken as unity. Hence the imaginary part of the 

denominator lb the same as the imaginary part of A135  . Thus the 

effects of damping and ra  on the shape of the denominator locus are 

implied in the A
135 
 locus, see section 4.1 and need not be considered 

here. 

Since the denominator locus does not cross the negative imaginary 

axis the phase-shift and attenuation introduced by the denominator are 

progressively reduced as 

H(jX) locus becomes more 

essentially a semicircle. 

8 is increased, Thus for 8g  > 6' s 
and more similar to the numerator locus 

the 

i,e. 

6.4.2 The Effect of Damping on H(jX1)  and Xi  . 

Discussion here is necessarily limited to the angles for which the 

H(jX) locus intersects the negative real axis i.e. for 8 < 8t . 

For both Figs. 6.6a and b the argument of (-)(A235  + J X2g  ) in the region 

of X1 is nearly equal to 90° 
 and does not change much with fre-

quency. Hence 

H(j?1) 

2 A
235 

+ J 	
A245 

Imag. Part of A1350X1) 
(6.21) 

It is shown in Figs. 6.6a and b that the magnitude of the numerator is 

not greatly affected by damping. 	Hence Eqns. (4.14) and (4,15) may be 

used and 

A
234(jX.1) 

2 c+ d J X1 1,2, 	(41  
=1 + j X1 Td d 

c + d J 

j?Td 
 

(6.22) 



T 	(Y a-Yd) + (Y"d 	d 1 - Yt)X. T"d  ,_1 d 1 	d  
V2  - (Y"- Y )X T" V2  do 	q q 1 q qo 

1 

Imaginary Part of 
A135 (A1) 

113 

(6.23) 

Both Figs. 6.6 a and b show the contribution of damping to the 
imaginary part when the denominator locus intersects the negative 

imaginary axis. Since the magnitude of the numerator does not change 

much with damping it is apparent from Eqn.(6.21) that when damping is 

included H(jX1) is re duced. This is shown clearly in Figs. 6.2 a 

and b. 

Eqn. (6.22) shows that part of the denominator is inversely 

proportional to TA and Figs. 6.6 a and b show that this part is about 
-2- of the imaginary part of A135  . Small changes in TA therefore 

have little effect on H(jX1) . 	If TA could be made much larger 

than H(jX1) would be reduced and thus H(0)/H(jX1) would be increased. 

This important ratio (see section 7.1.1) will also be increased if, 

for the same 

and Y" .are 
q 

reducing X, 

8 , damping is made more effective i.e. 

increased or if W1 could be increased. 

is by increasing J. 

T" , T" Y" qd , d 
One way of 

The effect of damping on the critical frequency X, is not very 

significant. Since the argument of (-)(A235  + J 4. A245) is approx-

imately 900  we have from Figs. 6.6 a and b. 

J 
	

Real Part of A135(jX1) 

c.f. Eqn. (6.13) for the case without damping. 	In the 

machine X, is low so that damping does not affect the 

A1  35  to a great extent and,  

Real Part of A135(p1) z S(13  

experimental 

real part of 
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Thus the real part of A13.5(jX1) is dependent on Yd . Hence reduction 

of XI increases X
1 	Since Xf 	however, includes Xc , the line 

reactance, the machine transient reactance must be reduced considerably 

in order to have any effect. Small changes in Td do not affect Al 1 
but if the rotor damping is made more effective then X

1 
will be 

increased. 

6.4.3 The Effect of Damping and  ra  on H(0) , H(jX1)  and  Xi  

H(0) depends only on A235(0) and A135(0) and obviously is not 

affected by damping. As stated in section 4.1 the effect of ra  is 

to reduce A135(0) for 86  = 80°  and 110°  and to increase it for 

g 
= 140°  and 165°. Also A235(0)  is increased when ra is in- 

cluded for 8g  < 81 and reduced for 8g  > 81' 
see section 4.2. 

The net result is that H(0) is numerically increased when ra is 

taken into account, the increase being maximum about 8g  = 120°. 

The effect of ra on H(jX1) and X, is shown in Figs. 6.6 a 

and b. Considering X1  first it is clear that it is increased 

because the real part ofA135  is numerically increased. The imaginary 

part of the denominator is also increased by a small amount. Thus 

one would expeci; a reduction in H(jX) since the numerator is in- 

versely proportional to X 	see Eqn. (6.22). 	The numerator, however, 

is also increased when r
a is included and thus H(jX) is increased 

only by a small amount, see Figs. 6.2 a and b. 

It is not possible to make general comments on the effect of ra  

and damping on the shape of the numerator and the denominator plots for 

8 = 140°  and 165°, since there is no frequency corresponding to Xi  

It should be noted, however, that the effects of both damping on its own 

and together with ra  are more pronounced, especially for 8 = 1400, 
 

see Figs. 6.6 c and d. 

It should be pointed out that some of the transition points 

considered in section 6.1 are affected by r
a , but only to a small 

extent. The only significant change is in the value of 8; which is 
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132°  or 133.8°  depending on whether r
a is neglected or included res-

pectively. 

6.4.4 Analysis of the Components of the Numerator and of the Denominator 
of H(A) Using a Phasor Diagram.  

Fig. 6.7 shows a phasor diagram of the constituent parts of the 
numerator and of the denominator of H(A) for a) no damping b) damping, 

ra = 0 and c) damping and ra , at 8g  = 110
o 
. The value of ?/2n 

chosen, 0.9 c/s is near the critical frequency. Again as in Fig. 6.6 
the scales above and below the real axis are different. It should be 

noted that, since the load angle is kept the same the reactive power is 

slightly changed when the armature resistance is included, but this change 

is not shown on the diagram. 

Consider the numerator first. The increase of phase shift when 

damping is introduced and the increase of amplitude when the effect of 

ra is included are both shown. The contribution of the J X2A
245 

term is negligible. 	As has already been pointed out, however, see 

Fig. 4.5 this is due to a coincidence. 

Turning now to the denominator, phasors oa , ob and oc 

correspond to 
A_135 

 for each of the three cases a, b and c respectively. 

When damping is neglected V2
qo  Yq  is real and the imaginary part of 

V2  do Yd  (A) is smaller than when damping is included. The imaginary 

part of A135 is further increased when the effect of the armature 

resistance is included but only by a small amount. The effect on the 

real part is more significant, see phase cb . 

Since the H(A) locus intersects the negative real axis when the 

numerator and the denominator phasors are 180o apart, it is apparent 

that the effect of damping and ra  is to increase Xi  . Also the 

increase in the magnitude of the denominator, when damping and ra  are 

included, is greater than the corresponding increase in the numerator. 

Hence IH(A1)1 is reduced. 



-( A235+ A24 5J A2)  

FIG. 6.7 PHASOR DIAGRAM 
COMPONENTS OF NUMERATO R 

AND DENOMINATOR AT 0.9 c/s 

235 

NO DAMPING 

---- DAMPING ra  =0 
10 

---- DAMPING AND ra  

I 0 

-I.5 
VtioYd(j1) 

. 	.a• ..M... A 	12 
A135 +A 	A 2  A 

Er. 
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7. 	DETERMINATION OF THE SYSTEM STABILITY LIMIT. 

In the present section H(j?) is combined with K(j?) and the 

stability of the system is investigated by means of the resultant open 

loop transfer function. 	It is considered advantageous to start with 

a regulator having a constant transfer function, i.e. with the simple 

regulator, The H(A) plots may be used directly for determining 

stability and the discussion is considerably simplified. 

The next step is the application of the method to regulators used 

in practice. 	It is difficult, however, to select typical regulators 

because of the enormous variety of different arrangements and secondly 

because of lack of information on the values of the parameters. Thus, 

before proceeding, it is necessary to consider an extensive review of 

practical regulators. 

Strict classification according to the form of the transfer 

function is found impracticable because it leads to too many types 

having similar behaviour. Also as Fig. 6.1 suggests we are mainly 

interested in the phase-shift and attenuation of K(A)for ?/2m up to 

about 2 c/s . Hence regulators are classified according to the position 

of the K(A) locus in the complex plane for this range of frequency. 

A typical example from each class is then chosen for a detailed 

investigation on the stability of the system. 

7.1 The Simple Regulator.  

When K(p) = K the locus of the open loop transfer function, 

L(A) is the same as that of H(j?) to a different scale, determined 

by the value of K . The Nyquist criterion can be applied to the 

H(j?) locus if the (-1, 0) point is thought of as moving on the 

negative real axis depending on K . 

Before applying the Nyquist test, however, P , the number of 

poles with a positive real part of L(A) must be known, see Appendix III. 
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The numerator, K K0 (A235 + A245 
J A2), hasno such poles since it 

contains only teems of the form (1 + pa) in its denominator, Hence 

P is the number of zeros with a positive real part of (A135  + J X
2)  

As described in Appendix III, a plot should be made of A135/J X2  for 

X = - co ---3 0 —> + a). The number of encirciements of the 

(-1, 0) point gives P . 	Such a plot, however is shown in Figs. 

5.1 a, b and c and was used to investigate the stability of the unre-

gulated machine by the torque feedback method, see section 5.2. The 

fact that damping was then neglected does not affect the conclusions 

since the deciding factor is A135(0) 	Also the effect of ra is 

merely to change the value of A135(0) 	but otherwise the following 

conditions are valid. 

P = 0 
	

for 
8g < 8s 

P = 1 
	

for 8
g  > s  

The system is then stable if the L(jX) locus, 

(i) does not encircle the (-1, 0) point for 8 < 8s  and 

(ii) encircles the (-1, 0) point once in a counterclockwise 

direction for 8g  > 8s 

It should be pointed out that this result merely states that the 

system is unstable on open loop, i.e. without a regulator, for 8g  

It is necessary, however, to establish that there is only one unstable 

root so that the correct number of encirciements may be established. 

No proof of this important result could be found in the literature. 

three 	four 
The significance of the four of the five transition points of the 

H(jX) locus discussed in section 6.1 is now apparent. 	The meaning 
of the fifth point viz. 81  is discussed in section 7.3.3. 

a) For 8g  < 6k P = 0 and H(j?.) does not cross the negative 
real axis. 	Hence the L(jX) locus does not encircle the (-1, 0) point 
regardless of the value of regulator gain and so the system is always 



as functions of 8 obtained 

K min is defined for 8g  > 

is clar, however, that K 
min 

Nevertheless the two curves are 

Ss 
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stable. This result is of no practical value since at high frequencies 

the regulator transfer function is bound to have some phase-shift and a 

sufficiently high gain will always cause instability at any value of 8 . 

b) For 8k< 8g < 8s 
P = 0 and if the gain is high enough 

the (-1, 0) point is encircled in a clockwise direction resulting in 

instability at load angles for which the unregulated machine is stable. 

c) For 8
5 
 < 8g 
	5 
< 8' P = 1. The L(jX) locus encircles the 

(-1, 0) point once in a counterclockwise direction if 

 

I
K0 ii(ix1) K0  11(o) 	> 1/K > 

 

  

i.e, if the (-1, 0) point lies between the first, at X = 0 , and the 

second, at X = Al  intersections with the real axis. Thus the system 

may be stabilived with a suitable choice of gain. 

d) and e) For 8 > 8' P = 1. 	Since the H(jX) locus does not 

cross the real axis it is not possible to encircle the '(-1, 0) point 

with any value of gain. The system is thus unstable for all K . 

It is desirable to define K
min 

 and K
max 

 as the limiting values 

of gain and to extend the definition for any type of regulator. Thus 

for the simple regulator, 

K 	1 
min 	7737 (7.1) 

 

1 (7.2) max 	K
oH(j%1) 

7.1.1 The Stability Limit Curve with a Simple Regulator. 

Fig. 7.1 shows Kmin and Km  
from Fig. 6.1. 	From the last section 

and K
max 	s for 5' > 5g  > 6le  It 

has ho significance for 8g 
	s > 8' . 
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min 	K
o  Xc  P cos(6o-  

X
d  So 

 sin  60 
(7.3) 

Kmax 	K
o  Xe  P cos(8o- t) 

X
d 

V2  (Y1 	Yd  ) sin38o (7.4) 

distinct and there is a discontinuity at their intersection, which 

corresponds to 8's  . Kmin  has two asymptotes at 8g = 8s and 61 
and K RX one asymptote at 8k  . M 

Ignoring the part of K
min for 8 > 8' the two curves give g 	s 

the stability limit against the regulator gain. Define K 	as the 
ss 

gain resulting in the maximum extension of the steady state stability 

limit, again applicable to any type of regulator. Clearly for the 

simple regulator 
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K 	=Kmin = Kmax = ss 

 

1 

  

 

K
o 
H(0) 

 

8 = 8' g s 

    

From Eqns. (6.9), (6.11), (6.16) and (6.17) for constant power 

and V we have, 

cos 8 

a, sin3  So 

i.e. in Fig. 7.1 Kmin  is a cosine curve and Kmax  approximately a 

sine cubed curve respectively. 

Let G denote the ratio K /K. It is desirable to have a 
max min 

large G for two reasons: a) The regulator gain may be set between 

min   and  Kmax 
 and if G is large, K will be sufficiently removed 

from the stability limit. Alternatively, referring to Fig. 6.1 the 

further the Nyquist locus lies from the (-1, 0) point the more stable 

the system, see Thaler and Brown60-11 
	

For this reason G is referred 

to as the stability ratio. b) As will be seen in section 8.2 good steady 
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state regulation requires a large value of 
max
K 
	

From Eqn. (6.19), 

for the simple regulator 

V2  (Y'd  Yd) sin38o 
P cos 8o 

i.e. the stability ratio is rapidly reduced as 8 is increased beyond 

The effects of damping and ra  have been discussed in section 6. 
Fig. 7.1 shows that Kmax  is mainly affected by damping and Kmin  by 

ra . 	Of the four angles shown in Fig. 7.1 only 6' is affected to 

any extent when ra 
is included see section 6.4.3. None is affected 

by damping only. The same symbol is used when r
a 

is included although 

the values are slightly different. It should be pointed out that the 

value of G at 8g  = 1100  when damping and ra 
are included is about 

65% greater compared with the no damping case. 

7.1.2 Kinds of Instability and the Natural Frequency of the System.  

As has been stated, when K is less than Kin  the Nyquist locus 

does not encircle the (-1, 0) point. 	Thus if Z and P are the 

zeros and poles with a positive real part, Z P = 0 and since P = 1 

for 8g  > 8s then Z = 1. Thus the system has one unstable root and 

this necessarily must be real. The loss of stability therefore is aper-

iodic eat  corresponding to a term 	where a is a positive real quantity. 

Similarly if K is greater than Kmax  the Nyquist locus encircles 

the (-1, 0) point once in a clockwise direction. Hence Z - P = 1 and 

again for 8
6 
 > 8

s 
 P =-1 and thus Z = 2, The sudden appearance 

of two roots suggests that they are complex conjugates and therefore 

instability for high gain is associated with some form of oscillation 

oorresponding to a term ePt  sin yt with p, y positive real quantities. 

In fact it may be shown that in this case the roots are complex, see 

Ref. 64-2. The two kinds of instability are illustrated by experiment 

see section 9.1. 

G 
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When K = K ax p = 0 and y = Al, i.e. any oscillations set up m 
are not damped out. 	Thus by comparison with a second order system Xi  

may be termed the natural frequency of the system for the simple regulator. 

The expression for Xi  and the effects of damping and ra  on its value 

have been discussed in section 6.2.3, 6.4.2. and 6.4.3. 

7.1.3 The Ultimate Stability Limit with a Simple Regulator. 

The limiting value of 8 for which the system may be stabilized 
g 

with a simple regulator is given by Eqn. (6.14) and as has already been 

pointed out the value is at the peak of the transient power-angle curve 

SI . Thus the following situation exists. An alternator without a 

voltage regulator becomes unstable when the slope of the steady power- 

angle curve is zero. 	If the alternator has a simple regulator with 

the optimum value of gain the stability limit is reached when the slope 

of the transient power-angle curve is zero. Thus the action of the 

regulator may be thought of as maintaining the voltage behind the 

transient reactance constant. 

Although the present investigation is mainly concerned with opera-

tion at a fixed power, the locus of the ultimate stability limit is an 

important result and is shown on the Power Chart, Fig. 1.2. Substitution 

of 
Qo 
	V

do and  Vqo in Eqn. (6.14) yields, 

V2  sin3S 
 

P 	
cos S 

o  (ytti  yq) 

0 
0 	(7.5) 

It should be pointed out that the value of Kss 
 required to achieve this 

stability limit depends on P . 	If saliency is neglected Eqn. (7.5) 

may be obtained from Eqn. (6.19) when H(0)/H(A1) = 1 	As may be seen 

from Eqn. (6.14) for a synchronous capacitor the load angle is zero and 

the stability limit becomes 

Qo 	V2 Yq 

showing that no improvement is obtained at zero power (see Fig. 1.2). 



124 

7.2 Review and Classification of Regulators Used in Practice.  

The literature contains a very large number of papers describing 

practical arrangements of voltage regulators. With only a few ex-

ceptions the regulators can be classified into four main types depending 

on the locus of K(jX) at low frequencies (0 to 2 c/s), as follows: 

(i) Constant transfer function produced by rectifier 

excitation systems. 

(ii) Delay or lagging regulators corresponding to a 

separately excited exciter. 

(iii) Integrator or "buck-boost" regulators for which there 

are several connections)  see Fig. 7.2. 

(iv) Derivative or leading regulators combining 1st, and 2nd 

derivative as well as proportional signals. 

Sections 7.2.1 to 7.2.4. deal respectively with the most important 

contributions for each type. Papers describing regulators not actually 

used on large machines are not considered. In order to avoid writing 

the transfer function each time the following general expressions is used 

K(p) = 
(1 + pTa)(1 + pT0)(1 + kap + kop ) 

(1 + pTi)(1 + pT2)(k0+ kl  p + k2p2) 
(7.6) 

Only the parameters mentioned are present, the others being zero or 

negligible. For example quoting T1  and T
2 implies a two delay 

regulator with no stabilization. 

Details of components and the connections used are considered 

only in order to estimate the magnitude of the time constant involved. 

However, in many cases there is an element of doubt as full details of 

the transfer function are not often given. 

There are several reviews of excitation systems dealing with 
several types but without introducing any variations. The most important 
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FIG. 7.2 INTEGRATOR CIRCUITS 



126 

of these are Gray and Fenwick57-1; Krochmann60-6 • , Achenbach60-7 and 

Hefermann62-7. Practical aspects of design and construction are given 

in Zavalishin and Glebov63-4 and Easton64-4 . The last deals mainly 

with a.c. exciters having rotating or static rectifiers as well as with 

controlled rectifiers. 

7.2.1 Practical Simple Regulators. 

The simple regulator has already been defined as having a constant 

transfer function. For our purposes it is sufficient if, in the region 

of X/2n = 0 to 5 c/s the maximum phase-shift and attenuation are 

45°  and 3 db respectively. 	Referring to Eqn. (7.6) if T1  only is 

present it can be up to 30 msec. 

The only way of achieving this is either by a controlled rectifier 

or a purely magnetic amplifier system. Feedback round a rotating 

amplifier is also a possibility but there is no indication in the 

literature that this degree of compensation is used in practice c.f. 

Bogoslovskii and Sovalov63-5 p.132 . It should be mentioned that with 

a rectifier regulator the field current cannot reverse during transients. 

Rather than introduce a duplicate rectifier with complicated electrical 

changeover the solution adopted is to have a mechanical switch. 

Roth55-2 describes the only system approximating a simple regulator 

without controlled rectifiers. 	There is an inductor alternator on the 

main shaft giving a 420 c/s output which is rectified. The fields of 

the inductor alternator and the main alternator are connected in series 

and control of the voltage is as follows. The output voltage of the 

inductor alternator is very sensitive to the power factor of its load. 

Thus a magnetic amplifier is connected in parallel with the rectifier 

and is used as a variable impedance controlled by the error signal. Since 

the two fields carry the same current there is feedback proportional to 

if  . It is not clear however, if this affects the transfer function 

to a large extent. A similar scheme is described by Zavalishin and 

Glebov63-4  who state that it has been developed for large machines. 
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The last stage of the regulator considered by Ettinger, Gloukh and 

Chaly58-6  consists of two rectifier bridges in parallel, both supplied 

from an auxiliary alternator, one at 460 V and the other at 1385 V. The 

460 V bridge is used for normal operation and the 1385 V one for field 

forcing or quenching. The circuit diagram shows a change-over switch 

so that only one bridge is in operation at a time. No information is 

given on the transfer function of the rest of the regulator. 

A straightforward rectifier regulator is described by Haamann60-9 . 

A transistor regulator controls the firing angle and the rectifier power 

is supplied from the main alternator. A Bode plot is given of the fre-

quency response of the open loop transfer function with the alternator 

on open circuit. 	It is stated that the rectifier has a deadband of 11 

msec and this probably refers to the loss of control once a rectifier 

unit is turned on. Two innovations are introduced on a similar regulator 

described by Gruenberg62-8 
	

Provision is made for varying the firing 

angle of the rectifier in response to digital signals from a distant 

control centre. Also an automatic mechanical changeover is used to 

reverse the alternator field current for rapid de-excitation. The 

ceiling voltage is 5 times the value required for normal voltage on 

open circuit. A similar arrangements for reversing the field current 

is described by Putz, Rieger and Rogowksy63-3. The mechanical change-

over takes 220 msec compared to 80 msec of the Gruenberg regulator. 

This large dead band, however, does not appear to cause any anxiety. 

Hefermann and Menstell62-9 describe an interesting method for 

overcoming the difficulties associated with a rectifier taking its power 

from the main alternator. The field current is supplied from a rectifier 

which is controlled from a regulator having the conventional voltage 

feedback on which a compound signal depending on the alternator current 

has been added. The variation from the conventional set-up is that the 

voltage supplied to the rectifier is itself a combination of alternator 

voltage and current such that the rectifier voltage remains constant with 

changes of the alternator load. Various arrangements for supplying the 

rectifiers are discussed by Barralp  Boulet and Carpentier62-11.  One of 
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possibilities involves two rectifier units, one of which is supplied by 

a current transformer and the other by a voltage transformer. Thus the 

output of the excitation system is a function of both alternator current 

and terminal voltage. 

7.2.2 Practical Delay Regulators. 

This is a very common type and is the result of several amplifying 

stages in cascade, of which the final stage is usually a separately 

excited exciter. Very often there are feedbacks round each stage in 

order to reduce the effective delay. When there is a rotating exciter 

its time constant, being of the order of 0.3 to 2 sec completely swamps 

the time constants of any magnetic amplifiers (2 to 10 msec) or ampli- 

dynes (about 100 msec) that may be used. 	In such cases only the main 

exciter need be considered. 

For the purposes of this study a regulator is considered to be of 

the delay type when the K(j?) locus lies in the 4th or in the 3rd and 

4th quadrants for X/2jt in the region 0 to 2 c/s excluding, of 

course, regulators with a 1/p term in the transfer function. 

Doherty28-1 described the first experimental operation in the 

artificial stability region in 1928. The regulator used was of the 

Tirrill type but since the frequency of operation of the contacts is about 

10 c/s the action is effectively continuous. 	The contacts short-

circuit a resistance in the shunt winding of a self-excited exciter. 

Hence ignoring the delay in the measuring element the transfer function 

is that of one delay equal to the exciter time constant. Tirrill re-

gulators were fairly common in the 1930's but they were replaced because 

of their unreliability. Yttenberg32-1 gives another example of a 

Tirrill regulator with the addition of a) a derivative feedback round 

the exciter using a transformer and b) compounding of the alternator 

voltage and current as the controlled variable. 

Concordia44-1 considers two values of T
1 namely 1.06 and 2.12 
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sec in a mainly theoretical investigation. Results similar to Fig. 7.1 

are quoted and comparison is made with the simple regulator showing an 

improvement in the gain ratio G but reduction in the maximum stable 

angle, see section 7.3.1. This paper has already been discussed in 

section 1.1.3. 

Barkle and Valentine48-1 and Lynn and Valentine 	use a rotating 

amplifier, the Rototrol, either as a main or as a pilot exciter. 

Although the Rototrol time constants are low it is unlikely that the 

transfer function of the simple regulator is achieved. One of the first 

minimum excitation limiters is described which comes into operation when 

the reactive power is a certain function of the active power preventing 

loss of steady state stability. 

ron54-1 sets out various ways of stabilizing a delay regulator, 

one of which involves the use of a phase lead network in cascade with the 

amplifying stages. It is not clear, however, that the phase lead is 

sufficient to convert the regulator to the derivative type, since there 

are three delays in the denominator. It is likely that the purpose of 

the phase advance network is to reduce the phase lag of the delays. 

However the 

function is 

(1 + pTa), 

feedback. 

system, the 

to the rate  

use of a cascade network specifically to change the transfer 

a major contribution although the result achieved, a term 

is similar to that obtained with any derivative stabilizing 

A number of other signals is discussed for stabilizing the 

most important of which is the use of a feedback proportional 

of change of field current. Aldred and Shackshaft58-3 tried 

this with very good results both on transient and on steady state opera-. 

tion. As was stated in the Introduction, such a regulator can be 

analysed by the method used in the present investigation only if some 

of the equations of section 2 are modified. 	Another interesting 

possibility discussed by Kron is the control of the voltage anywhere 

in the system by simulating the system impedances. 

In a regulator described by Achenbach57-2  the terminal voltage 

is controlled by varying the loop gain rather than the reference. The 
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use of a loop gain dependent on the operating condition offers certain 

advantages, which however, are not discussed in the paper. 

Two variations of the standard pattern of cascade amplifying 

stages are given by Frey and Noser58-1. In the first case feedback 

proportional to the field current is used as well as the normal exciter 

voltage feedback for stabilization. The second variation may be con-

sidered as the modern version of a Tirrill regulator. The field of the 

pilot exciter is supplied from a transistor regulator and the current 

is turned on and off. The output of the pilot exciter is proportional 

to the mark-space ratio. The use of a power transistor as a switch 

reduces the power dissipated considerably. 

Pavesi and Simonetti60-2  is one of the few papers giving a measured 

frequency response of the regulator transfer function. Tm - = 1'  T1 
 = 10 

and T2 
= 0.02 sec. 	An a.c. exciter. 400 c/s, with a rectifier 

follows three stages of magnetic amplifiers. Bode diagrams show the 

regulator response with and without stabilization. Operation in the 

artificial stability region is not considered and the aim is good 

voltage regulation and fast response. 

In the regulator considered by Junior60-5 the terminal voltage 

is compounded with the reactive current supplied by the alternator. The 

regulator itself is of the standard type with a magnetic amplifier, and 

amplidyne and a main exciter with derivative feedbacks. When fast 

de-excitation is required there is a negative feedback proportional to 

the field current. 

In Happolt6o-8 several arrangements are discussed, including in-
tegrator types but there are no variations from the standard types. 

There is however an interesting application of a Schmidt trigger con-

trolling a transistor amplifier which is followed by two exciters in 

series. 

Easton, Fitzpatrick and Parton60-10 considers a conventional delay 
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type regulator having an interesting angle limiter. The limiter may be 

set to operate at a low value of 8 and then the regulator becomes 

effectively an angle regulator. 

The regulator described by Ferguson, Herbst and Miller
60-13 and 

by Whitney, Hoover and Bobo60-14 uses an a.c. exciter and rotating 

rectifiers. The field of the exciter is supplied by a magnetic ampli-

fier. Since the alternator field voltage is not available for a 

stabilizing feedback the exciter transfer function is simulated by 

an RC network connected to the output of the magnetic amplifier. The 

output of the RC network is differentiated and fed to the first stage 

of the magnetic amplifier. 	The primary aim is good voltage regulation 

although operation in the underexcited region was studied by simulating 

the system on a differential analyzer; no results are given however. 

The basic circuit of Harvey et a161-1 is similar to that for an 

integrator regulator, Fig. 7.2b, but the field resistance is not adjusted 

to the critical value. 	Thus the effective time constant is increased 

and this partly offsets the advantage of fast response of an amplidyne 

as the main exciter. Since the power for the magnetic amplifiers ex-► 

citing the amplidyne is obtained from the main alternator there is a 

duplicate regulator used during starting to control the amplidyne voltage. 

The main regulator takes over when the generator voltage is sufficient. 

It is stated that this regulator improves the steady state stability 

limit. 

Venikov et al63-1 describe a similar regulator with an artificially 

increased time constant applied to a synchronous condenser. The value 

of the effective time constant is not given but in Venikov64-1 values 

of 10 - 20 sec are mentioned. 

The transfer function of a typical delay type regulator in current 

use in Britain is as follows, Ref. 62-1. 

354 (1 p)(1 + 2 p) 
1 	17.5 p 17.3 p2  + 0.81 p3  + 0.17 p

4 
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The voltage regulator used by Miles62-2 has Ta = 2, ko = 1, 

kl  = 61.2 and k2  = 4.5. 

Nielsen62-6 quotes experiments made on micromachines in France. 

T1 = 0.3 sec. is first considered and then there is another delay 

T
a 
= 20 sec. added. 	Steady state stability was investigated experi-

mentally by increasing the power slowly and a figure similar to Fig. 7.1 

is quoted for a limited range of gains. A combination of voltage and angle 

regulator is also considered. 

Shackshaft63-2 gives full particulars of a regulator using an a.c. 

exciter. T = 2, T = 0.1, Ito  = 1, ki  = 56.7 and k2  = 6,53. 	A frequency 

response of the regulator and alternator together is quoted. The al-

ternator however was on open circuit and so no information on the steady 

state stability is obtained. 

In Bogoslovskii and Sovalov
63-5 the exciter is separately excited 

by a controlled rectifier. The time constant, which is initially 

0.87 sec. is reduced to 0.28 sec by splitting the field into 9 parallel 
branches. Then by using direct feedback the effective time constant is 

reduced to only 0.055 sec. 	It is interesting to note that the tests 

described in the paper were carried out to determine the steady state 

stability of the system with a "relatively large time constant". 

7.2.3 Practical Integrator Regulators. 

This type of regulator is also very popular because of its excellent 

steady state characteristics, see section 8.2. 	A regulator is defined 

to be of this type when there is a 1/p factor in the transfer function. 

An integrator on its own, however, does not enable the system to operate 

in the artificial stability region and often there is some kind of 

stabilization. Rather surprisingly, however, integrator type regulators 

with no stabilization are in use with large machines. Presumably the 

steady state stability limit is not approached. In practice the inte-

grator transfer function is achieved either by electronic means or by 
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using one of the arrangements shown in Fig. 7.2. 

Barkle and Valentine48-1 and Lynn and Valentine48-2 used the 

connection shown in Fig. 7.2a. It may be shown that, when R is 

adjusted so that the total field resistance has the critical value, an 

integrator transfer function results with a "built-in stabilizer" i.e. 

having a Ta  term as well. The presence of this stabilizing term in 

the numerator does not appear to have been noted and there is no mention 

of operation in the artificial stability region. 

The regulator described by Hedstrom50-1  is a good example of the 

theory that the phase-shift introduced by each amplifying stage should be 

corrected by a corresponding feedback. There is a magnetic amplifier in 

cascade with two d.c. machines, the second of which is connected in the 

field of the main exciter, see Fig. 7.2b. Again it may be shown that 

when R is such that the total field resistance has the critical value 

for self-excitation the transfer function has a l/p term. There are 

stabilizing transformers making three inner loops in addition to the main 

feedback from the alternator terminal voltage. The design objective is 

stated as the improvement of the speed of response. One unusual feature 

is the use of a variable feedback gain for controlling the terminal 

voltage. Similar regulators are described by Johansson59-3 and 

Sohlstrom59-4 but the feedback gain is constant. T1 
and T

2 
are only 

0.1 sec each. 	The three feedback circuits are adjusted to provide the 

"fastest possible restoration of generator voltage to its normal value 

after a disturbance". No details are given however, of the method used 

to determine the feedback transfer functions. 

Two alternative methods of stabilization are considered in 

Concordia
30-2 

 . A voltage proportional either to dVt/dt or to dVfe/dt 

is added to the proportional feedback from the terminal voltage. Several 

combinations of parameters are investigated and it is found that for 

practical reasons the exciter voltage stabilizer should be preferred. An 

experimental verification of operation in the region of artificial 

stability on a large machine, 20.8 MVA was made. The reference 
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voltage was reduced and it was observed that the field current showed a 

minimum. 	Instability occurred soon afterwards but the limiting angle 

is not given. 	See section 1.1.3 for the theoretical contents of this 

important paper. 

An unstabilized integrator using the connection of Fig. 7.2 b is 

described by Hunter and Temoshok52-2. There is a VAr limiter similar 

in principle to that of Barkle and Valentine48-1  . Although it is stated 

that the steady state stability is improved, in a figure quoted the VAr 

limiter is set at a load angle of only 63o•   McClymont et al56-5 

referring to a similar unstabilized integrator claim operation just 

inside the artificial stability region. 	The VAr limiter in this case 

was set at 90
o 

and it must be assumed that the combination of limiter 

and regulator produced some small stabilizing effect. Alternatively, it 

is possible that some form of stability feedback was used,which however 

is not mentioned in any of the three papers. 

Cooper and Girling60-4  found that it was necessary to use a direct 

feedback round their unstabilized integrator in order to improve the 

steady state stability. 	In doing so, however, the regulator becomes 

of the delay type with T1  dependent on the amount of feedback. 

Hosemann60-1  is the first paper to describe an electronic stabilized 

integrator. The error signal is taken to a "black box" the output of 

which gives proportional, integral and derivative signals, in our notation 

ka, ko  and ki  . These are used to control the firing angle of a 

rectifier supplying the alternator field. Thus no further delays are 

introduced. However, no details of the black box are given and moreover 

it is stated that the integral and derivative action is not important from 

the practical point of view. 

Bloedt and Waldmann62-4 approach the choice of suitable parameters in 

a very interesting manner. They consider an isolated machine on load 

and assume that the alternator transfer function may be taken as a single 

delay, neglecting damping)  i.e. Vs/(1 + TLy). 	The exciter is another 
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delay Te  and so for optimum transient response a regulator with 

Ta 	AL 
= T1  and T

P 
 = Te is required. Good steady state voltage regulation 

is achieved with an integrator and further conditions determine the gain. 

Having obtained the required transfer function they then proceed to use 

a unit described by Sichling and Rohloff57-3 and Kessler57-4, which 

consists of a high gain amplifier controlling a switching transistor. 

Depending on the type of negative feedback used various transfer functions 

may be obtained. It is appreciated that when the alternator is connected 

to a bus both V and T1 vary with the operating point. Two figures 

show that optimization for open circuit, gives a damped response on load. 

Unfortunately there is no mention of the steady state stability per-

formance of this very interesting regulator. 

Nielsen62-6 in addition to the delay type regulator includes some 

results for an unstabilized integrator. It is argued by means of a 

Nyquist diagram that the maintenance of stability in the region of 90°  

is difficUlt. 

The circuit shown in Fig. 7.2 c was used by Chambers, Rubenstein and 

Temoshok62-10 to obtain an integrator transfer function. It appears that 

no stabilizing feedbacks are used and in figures quoted the VAr limiter 

is set to operate at angles considerably less than 90°. Ewart et al65-2 

•-used the same connection and with artificially high line reactance ob- 

tained an angle of 96°. 	It is not stated whether any stabilization was 

used and no stabilizing feedbacks are shown on the diagrams. 

In the English Electric Regulator64-7 the pilot exciter rather 

than the main exciter is connected as shown in Fig. 7.2a. There are 

two derivative feedbacks one from the exciter voltage and the other from 

the alternator terminal voltage. A rather elaborate limiter circuit is 

used which comes into operation when some function of the following 

quantities exceeds a preset value: a) if, b) ac c) d vfe/dt 

d) dv /dt (pilot exciter voltage) and Vt  . Other facilities include 

sit;mais !rom other machines in the station for reactive power division 

and provision for regulating the voltage at some distant point in the system. 
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7.2.4 Practical Derivative Regulators.  

A derivative regulator is one whose frequency response lies in the 

1st or 1st and 2nd quadrants. This definition is, in a way, arbitrary 

since it excludes some regulators with Ta  and Ti3  terms. 	In fact the 

majority of'regulators on the other three types employ some kind of 

derivative feedback, which results in such terms. These terms, however 

are not sufficient to cancel the delays in the denominator and so the 

effect on stability is the same as that of a delay regulator. 	A 

possible exception to this is Kron54-10  (see Section 7.2.3). 

64-1 Both Venikov and Litken;6-2  and Venikay 	refer to a regulator 

with the following transfer function 

but no particulars are given of the circuits used except that the regulator 

is an electronic one. 	It is claimed that this type of regulator is used 

to extend the steady state stability limit beyond 81 	This this is 

certainly possible is proved below, see section 7.3.3., but no experimental 

results appear in the Russian literature available in English. The 

theoretical aspects of these two references are discussed in section 1.1.3 

and a comparison with the Nyquist method is given in Appendix IV. 

Details of a derivative regulator however are given in Venikov 

et a163-1 	The derivatives are obtained by means of R.0 sections followed 

by a single valve for amplification and impedance matching. 	No 

measures appear to have been taken to eliminate drift in spite of the 

simplicity of the circuit. No values of parameters are indicated. 

7.4 	The Effect of Regulators on the Steady State Stability. 

The open loop transfer function of the system is the product of 



K(jX) and H(jX) i.e. 

I
L(jX)1 	1H(jX) 
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K( ix) I 	 (7.7) 

 

  

and 	Arg L(jX) = Arg H(A) + Arg K(j?) 
	

(7.8) 

Having calculated H(j)) the determination of L(j?) is a simple 

matter for any type of regulator, however complicated. Eqns. (7.7) and 

(7.8) are easy enough for a hand calculation but since a large number of 

points is involved a digital computer was again used. One data tape 

contained the values of H(jX) for 8 = 60°  to 165°  and another, 
g 

shorter, tape the sets of parameters of K(A) . In fact the effect 

of a particular regulator on stability may be seen, qualitatively at 

least, by inspection of the K(A) and H(jX) plots. 

The conditions that the L(j?) locus should satisfy for stability 

are the same as those for the simple regulator, see section 7.1, provided.  

that K(p) does not have unstable poles, Although there is no funda-

mental reason why the regulator itself should be stable on open loop, 

in practice this is invariably the case. 

It is desirable to define a function 4 as the value of X at the 

second intersection of the L(jX) locus with the negative real axis. 

When there are two intersections as in the case of the integrator and 

derivative regulator for certain values of 8g  the suffixes 1 and 2 are 

used so that 41  refers to the lower and 42  to the higher value. It 

is apparent that 4 depends on 8g  as well as on the regulator transfer 

function. Clearly 4 is the natural frequency of the system and when 

K(p) is constant µ = Al. 

7.3.1 The Effect of the Delay Regulator.  

By the definition of this type of regulator Arg K(j?) is negative 

and therefore the L(jX) locus is obtained by rotating the H(jX) locus 

in a clockwise direction by an amount depending on X . It is possible 

to make the following general deductions before considering a particular 
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example. 

At some value of 8g  less than 8' the L(j?) locus no longer 

crosses the negative real axis. Hence the maximum value of 8 for 

which the system may be stabilized by a suitable gain is reduced. 

The natural frequency of the system, i  , is reduced. 

IK(A)1 is reduced as W is increased at a rate depending on 

the number and magnitude of the delays. By considering the shape of 

the H(jX) locus it may be deduced that, up to about 110°  - 120°, 

L(j 0 <1\ 	H(A1). Thus Kmax 
 is increased and since Km. remains 

the same the stability ratio is increased. 

The majority of delay type regulators used in practice involve a 

separately excited exciter, the field time constant of which is the pre-

dominant term. Hence a typical transfer function is 

K(p) = 	+Kp T, 

The regulator block diagram is simply made up of one delay as shown in 

Fig. 7.3 a. The frequency response of the regulator for T1 
= 1 sec 

and the corresponding L(A) loci are shown in Figs. 7.4 and 7.5 

respectively. The stability limit as a function of gain for T1  = 0.5, 

1 and 2 sec is shown in Fig. 7.6 together with the corresponding curve 

for the simple regulator. 

The Nyquist locus for 8g  = 130° in Fig. 7.7. does not cross the 

negative real axis and the system cannot be stablized beyond some value of 

8 between 120° and 130
o
. Fig. 7.6 shows that the maximum stability 

limit is reduced as T1 is increased from 126.5°  to 122°  and to 117°  for 

T1 = 0.5, 1, 2 sec respectively. The value of Kss 
, the optimum gain 

for steady state stability, is given by the intersection of the new curves 

for K
max  andthesimpleregulatorcurveforKmu.

..Hence K
SS 
 is 

reduced as T
1 is increased. The frequency at the second intersection 
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p is shown as a function of 8 in Fig. 6.4 for T1  = 1 sec. Thus 
g 

at high values of gain there is oscillatory instability at a much lower 

frequency compared with the simple regulator. The reduction of p 

implies that the effect of damping is less significant than for the 

simple regulator. 	Also the effect of r,1  is produced mainly by the 

change in H(0) and not by the frequency dependent terms. 

The stability ratio G is increased as shown in Fig. 7.6. One 

cannot, however conclude that the system is, in general more stable 

with a delay regulator, From Control Systems Theory, see Ref. 60-11, 

the phase margin as well as the gain margin should be large. Fig. 7.4 

shows clearly that, for 120°, although K can be chosen so that the 

gain margin is large the phase margin is reduced compared with the 

simple regulator. The use of artificially high values for Ti  10 or 

20 sec, has been tried by Nielsen62-6 and was suggested by Venikov64-1 

as a means for increasing the regulator gain when operation for high 

values of 8g  is not required. It is apparent from Figs. 7.5 and 7.6 

that such a regulator will hardly enable the system to operate in the 

artificial stability region. 

Additional terms in Eqn. (7.9) should be considered only if they 

produce significant phase shift and attenuation for frequencies up to p 

Thus for 8 = 110o a delay of 100 msec produces 14o phase-shift at 

= p and this does not affect the situation materially. The effect 

of a (p Tat 1) term in the numerator and an additional delay (pT2  + 1) 

in the denominator of the transfer function may be approximated by 

T
1 

= T1
1 
 + T 	T 

2 	a 

if Ti is the main delay and T2, T
a 
 < 100 msec. 

74!5.2 The Effect of the Integrator Regulator.  

The simplest form of an integrator regulator is 



K(p) K 
ID (7.1o) 
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Since Arg K(j?) = 900  and is independent of X all points in the H(jX) 

locus are shifted, in a clockwise direction by 900 . It is apparent 

from Fig. 6.1 that for 

6g< 8s 
	L(0) 	co 

8g > 85 
	L(0) *'-""C> 	j OD 

In the second case the H(jX) locus does not enter the 4th quadrant and 

therefore the L(jX) locus never crosses the negative real axis. 

Hence a system with a simple integrator regulator as given by Eqn. 7.10. 

cannot operate in the artificial stability region and there seems little 

point in considering this case further. However many cases using 

integrator type regulators have some kind of stabilization, usually 

by derivative feedback e.g. as shown in Fig. 7.3 b. Hence the follow-
ing may be considered as a typical transfer function 

K(p) = 
K(p Ta  + 1) 

Tcc > T1 (7.11) p(p T1  + 1) 

Before proceeding to examine particular examples it is useful to 

consider some general deductions. 

T
a 

and T
1 should be chosen so that the phase shift at the fre-

quencies near the desired value of 11 is small. Since however it is 

not possible to make Arg K(A) positive in the transfer function of 
Eqn. (7.11) the maximum value of stable 8 is less than 8' . 

L(0) 	+ j co for 8 > 8s and therefore if the L(jX) locus 
g 

intersects the negative real axis there are two intersections. This 

implies that when K is chosen so that the (-1, 0) point does not lie 

between the two intersections, then there is a complex conjugate pair of 

roots with positive real parts. Hence instability should be expected to 

be oscillatory both for high and for low values of gain. Ewart et a165-2 
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observed low frequencies of oscillations with periods of oscillation 

2-3 sec and 35 sec. 	See also section 9.1. 

The numerical example chosen was obtained by simplifying the block 

diagram of a particular A.V.R. in current use in Britain, see Fig. 7.3 b. 
Referring to Eqn. (7.11) Ta= 2 and T1  = 0.5 sec. Figs. 7.7 and 7.8 

show the frequency response of K(jX) and the resultant L(jX) locus 

respectively. The corresponding stability limit curve is shown in 

Fig. 7.9 where it should be noted that K cannot be compared with the 

regulator gains for the other types of regulator since the gain of the 

integrator type at 	= 0 is infinite. The fact that the maximum 8 

occurs for values of K of the same order as before is merely due to 
the coincidence that 4 z 1 . Nevertheless there is still a value 

of gain corresponding to K 	and upper and lower limits corresponding ss 
to K 	and K . max 	mmn 

The maximum value of 8g  is now under 1200 and Fig. 7.8 shows 

that the phase margin for 1100 is small. The two values of µ are 

smaller than 7‘. 1 
and are shown on Fig. 6.4. 	Again the effect of 

damping and ra  is important in as far as it changes H(A) for small 
X . 

If the feedback gain in Fig. 7.3b is increased so that Ti = 0.1 sec 
then the stabilization is more effective and the minimum phase shift 

is reduced. Fig. 7.10 shows the stability limit curve for this case and 

the maximum value of 8 is about 1230. 	Further improvement, however, 

is difficult without a 2nd derivative term in the numerator. Comparison 

between Figs. 7.9 and 7.10 shows that the stronger stabilization results 

in a reduction to the values of K
min and Kmax . This affects the 

behaviour of the system to ramp functions but this problem lies outside 

the scope of the present investigation. See section 8.1 for the effect 

of the response to a step function. 

7.3.3 The Effect of the Derivative Regulator.  

Consider a regulator with first derivative and proportional signals 
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only i.e. 

K(p) = K(1 + Kap) 	(7.12) 

Curve a in Fig. 7.11 gives the form of the frequency response locus 

for this case. The H(jX) locus for 8 = 140o is approximately a 

semicircle, with a time constant T
a 

say, as shown by curve b . Hence 

L(p) = 
H(0) Ko  K (1 + kap) 

1 + T
a
p 

Thus the L(SA) locus is also a semicircle as shown by curve c , for 

k
a 
 < T and curve d for k

a
> T

a 	If K is adjusted so that the 

(-1, 0) point lies between the two intersections with the real axis for 

either case then both curves encircle the (-1, 0) point in a clockwise 

direction and hence the system is unstable for any value of ka  . 

In practice a differentiator is not ideal as shown in Eqn. (7.12) 

and a delay is present i.e. 

(1 + k
a
p) 

K(p) = K 
p + 1 (7.13) 

and the form of this locus is shown by curve a' . For small T
1 

the 

resultant L(jX) loci are as indicated by curves c' and d' 	corres-

ponding to c and d . Again there can only be one clockwise en-

circlement of the (-1, 0) point and the system is unstable as before. 

It should be stated, however, that the H(jX) locus for 8g  = 140
o 

is only approximately semicircular. If Ta is small and if ka is 

chosen to be within narrow limits it is theoretically possible to have a 

stable system. Nevertheless the stability ratio for 8
g 
 > 8 is nearly 

unity and the phase margin practically zero and hence it is valid to say 

that first derivative regulator cannot extend the stability limit beyond 

8'. 

In addition the stability ratio for 8
g 
 < 8' is reduced by a first 

s 
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derivative regulator. Thus the performance of such a regulator from the 

stability point of view is not satisfactory. 

It is now apparent that extension of the artificial stability 

region can only be achieved when part of the K(A) locus lies to the 

left of curve a , Fig. 7.11 i.e. when there is a second derivative 

term as well as a first derivative one. As has already been mentioned 

practical differentiators have delays in their denominators. In the 

-case of a synchronous machine regulator these delays are not a "nuisance" 
56-2 to be made as small as possible as implied by Venikov and Litkens 	but 

play an important part in eliminating high frequency oscillations. 

In the example considered below there is an additional delay so that 

the gain at high frequencies is even further reduced. As shown in the 

block diagram Fig. 7.3 c there are three parallel branches giving 
proportional, 1st and 2nd derivative signals. These are added to-

gether and the extra delay is introduced. 

/- 
o.o8 p2 	1 

K(p)  - 1 0.01p 1 + 0.2p 	(1 + 0.1p)(1 + 0.01p)j (7.14) 

Fig. 7.12 shows the frequency response for this regulator. From the 

stability point of view only values of frequency up to about 2 c/s are 

of interest but the rest of the locus is shown as well to indicate the 

very high gain at approximately 17 c/s. The parameters in Eqn. (7.14) 

were chosen so that for frequencies up to 1 c/s Arg K(jX) is large 

and K(A) small consistent with practical limitations on the experi-

mental set-up, see section 9.1. 

Fig. 7.13 shows the L(A) loci obtained with this regulator. 

The curve for 8 = 140o crosses the negative real axis and it is 

possible to stabilise the system. Although the curve for 8g  = 150 

crosses the negative real axis the system cannot be stabilized since the 
(-1, 0) point can be encircled only in a clockwise direction. As 

Fig. 7.14 shows the maximum stable angle is 147°  and Kss  is about 4 
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times as large as with the simple regulator. 

For 8g  > 135 (approximately) the L(j?) locus starts in the 

3rd quadrant and the same type of instability as with the simple regulator 

exists viz. aperiodic for low K and oscillatory for high, see section 

7.1.2. For 147°  \` 8
g /// 

\> 140°  the LOX) locus starts in the second /  
quadrant and then crosses into the third. Hence we have for 

11/L(0)1 > K 

11/L(j 41)1 > K 	11/L(0)I 

1 1/L(j 42)1 > K > 11/1J(j 41)1 

K ;> 11/L(i 42)1 

Aperiodic instability 

Oscillatory instability 

System is stable 

Oscillatory instability 

Fig. 7.14 shows that the stability limit as a function of the 

regulator gain consists of 3 distinct curves, as opposed to two of the 

simple and the delay regulators. 

a) The Kmin curve which is the same as for the simple regulator 

but extending a little beyond 85 . 

b) A curve corresponding to K ax 
 but moved to the right so 

m 
that Kmax  is now 3 - 4 times larger than the simple regulator values. 

c) A transition curve joining a and b . 

The natural frequency 11 for 8 > 8t is considerably increased 
g 	s 

see Fig. 6.4 and thus the effects of damping and ra  are much more 

significant. 

The significance of the angle 81  , defined in section 6,1 now 

becomes apparent. As long as the H(j7) locus lies in the 2nd quadrant 

it is possible to stabilize the system using a derivative regulator. For 

8g1 however, as Fig. 6.1 shows, the H(j?) locus lies in the 4th 

quadrant and stabilization seems impossible. Stability at 6g = 81 is 

an unobtainable limit since a very high gain is required. Stabilization 

at 6g  = 160°  seems feasible although it may be necessary to vary the 
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regulator gain in order to achieve stability at lower values of 8g  

From Eqn. (6.9) H(0) becomes zero when 

cos (80  - 8t) = 0 

or by Eqn. (6.7) when 

Q X + V2 = 0 
o c 

Hence the ultimate stability limit with a derivative regulator is obtained 

when the angle between the alternator terminal voltage and the infinite bus 

becomes 90°. This clearly corresponds to the condition that the alter-

nator reactance is eliminated completely and in fact Eqn. (7.15) is the 

steady state stability limit of the transmission line. 

It is stated in section 7.1.3 that the action of the simple re-

gulator may be visualised as reducing the effective Xd  to Xtd  . Ideally 

the derivative regulator can eliminate XI completely, i.e. the system 

behaves as if Vt 
is absolutely constant. It is apparent however that 

the complete elimination of Xa is a limiting case. Fig. 7.13 indicatee 

that it may be possible to stabilize 8
6 
 = 160° but in practice the 

difficulties in combining the several parameters to form the required 

transfer function are considerable. With the regulator given in Eqn. 

(7.14) high frequency oscillations as well as large signals from 50 c/s 

pick-up were encountered. The practical problems of the derivative 

regulator are considered in section 9.1.4. 

It is interesting to note here that the idea of a voltage regulator 

('cancelling" part of the synchronous reactance was first stated by 
Doherty28-1. It was then thought that the cancellation of part of the 

transient reactance would present special problems. See also Ref. 55-3. 
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8. 	SPEED OP RESPONSE AND ACCURACY OF REGULATION. 

It is shown in the last section that, with the derivative 

regulator the region of artificial stability may be extended up to the 

stability limit of the transmission line. 	It is rarely, however, that 

alternators are required to operate at very large angles and hence there 

is a degree of freedom in choosing the regulator parameters. If the 

degree of stability is the only consideration then linear control system 

theory offers a simple solution. The parameters of K(A) should be 

chosen so that the phase and gain margins of the 1,(A) locus are a 
maximum at the required load angle. The method of domain separation 

offers an efficient method for optimizing the regulator in this case. 

Using this method Messerle56-3 concluded that, for a single delay 

regulator with an exciter stabilize; the regulator gain is approximately 

given by K = K 	+ — (K 	- Km.). min 3 max n 
Optimization of K(p) however, should be given a broader meaning 

since, after all the first three functions of an excitation regulator, 

as given at the beginning of the Introduction, are often more important 

than operation in the artificial stability region. Hence a compromise may 

be necessary so that the regulator meets the requirements, which are 

different for different systems. It is necessary therefore, to be able 

to measure the performance of the system in its several aspects. 

No analysis of the ability of an excitation regulator to maintain 

the terminal voltage constant or of the speed of response of the system 

on load could be found in the literature. The American I.E.E. 

Definitions
61-3 

refer to accuracy "under specified conditions such as 

load changes, drift, temperature etc." In the literature, however, 

when figures are quoted these conditions are rarely given. Practical 

regulators are often supposed to have "fast response" but this seems 

to mean anything from highly oscillatory to overdamped voltage-time 

curves. The lack of accepted standards for the speed of response is 

shown in a paper by Harvey et a161-1  where, in a step change test, 

a series resistance was inserted in the alternator field circuits 
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reducing Tji.  , and thus changing the system response completely. 

In order to optimize the regulator transfer function it is 

necessary to digress from the main theme of steady state stability so 

that suitable performance indices for the speed of response and the 

accuracy of regulation may be defined. Corresponding to Kss  the 

symbol K
sr  is used to denote the value of gain for optimum speed of 

response. Linear theory is used and the speed of response is defined 

for small step changes. It is realised that the effectiveness of a 

regulator depends on its ability to deal with large steps. It is 

reasonable to expect, however, that the response to a step function bears 

a relation to the behaviour of the system under large transient conditions. 

Accuracy is improved as the gain is increased and hence there is no 

optimum value of gain in this case. It is still necessary however to 

be able to calculate the accuracy as a function of gain. 

So far we have been dealing with the open loop transfer function 

of the system and hence it is immaterial whether K(p) is in the 

feedback or in the forward part of the loop. When discussing stability 

it is desirable to separate the alternator and the regulator and thus 

K(p) was assumed to be in the feedback part, c.f. Figs. 1.1 and 1.4. 

In practice, however, the transfer function from the terminal voltage 

to the comparator is constant and K(p) follows the comparator. In 

the present section the closed loop response is required and hence the 

practical arrangement with unityfeedback is considered, see Fig. 8.1. 

8.1. Speed of Response of the System. 

As long as small step changes are considered the small oscillation 

theory, developed in section 2, may be used and the system may be 

analysed by linear control system theory. There are several performance 

indices for measuring the speed of response of a linear system, see 

Newton, Gould and Kaiser57-7  e.g. 

a) The Integral Square Error. 
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f(t) 1 - Fcc-0) 	dt 

1  

1 + H(p) K(p) 
T(p) - 	H(p) K(P) (8.2) 

3.61 

b) The time that the error lies outside an allowable tolerance. 

c) The maximum overshoot. 

d) The integral of the modulus of the error etc. 

Minimization of the integral square error ensures both small 

overshoot and adequate damping of oscillations. Since, in addition, 

there are analytical techniques for minimizing a which are not available 

for b or c the integral square error is the most popular method for 

measuring the speed of response and is adopted for the present investi-

gation. The method of calculation described below can easily be 

modified to give b, c or d if these are required. 

A simplified definition of the integral square errors 	is as 

follows. Consider a linear control system and let its output following 

a unit step function input be f(t) . 	Also let f(t) --a-of(olo) as 

t 	OD • 

(8.1) 

Ref. 57-7 gives an elegant method for minimizing E . Application 

of this method, however, involves, T(p) the closed loop transfer 

function of the system, viz: 

expressed as a ratio of two polynomials. For the most complex case 

that we have to consider, i.e. with the derivative regulator, the 

numerator of T(p) is of the 7th and the denominator of the 8th degree 

in p . The expressions resulting from this method are much too compli-

cated, especially if the minimization is to be performed with respect 

to more than one parameter e.g. K and a time constant. 
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Alternatively T(p) may be split into partial fractions and f(t) 

determined using the Laplace transform. E may then be plotted against 

the parameters with respect to which it should be minimized and the 

optimum values may then be chosen. In view of the degree of the 

denominator of T(p) the splitting into partial fractions must be done 

with a digital computer. The formation of T(p) for different 

regulators as well as the determination of f(t) involves complicated 

programming. 

The third alternative, which is adopted in the present investigation, 

appears at first sight to be very complicated. Indeed it is not 

possible to use this method without a digital computer. When a 

programme for the determination of H(jX) exists, however, the additional 

amount of programming is simple. The method is an application of 

the well known correspondence between the frequency and the transient 

response by means of the Fourier transform. Since H(jX) is known, 

see section 6, the determination of T(jX) from Eqn. (8.2) given 
the parameters of K(A) is straightforward. f(t) and E may be calculated 

using the method described in the following section. 

8.1.1. Method for the Determination of the Integral Square Error. 

Consider a low frequency square wave with unity peak to peak 

value applied at Vref  „ Fig. 8.1. Expressed as a Fourier Series the 

signal is, 

1 sin 	+ —
3 

sin 3 E, -b +. . n-
1
1 sin(2n-1) t +. . (8.3) 

  

If the period, 27./, is sufficiently long steady state conditions 

will be established before the end of the half cycle. In order to 

fulfil the usual condition of a step function that, at t = 0- the 

disturbance is zero a "d.c." signal of magnitude 1/2 is added. If 

An = 1T(jnF., )1 	and On  = Arg T(jn) 	(8.4) 
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then the output of the system to the nth harmonic of the input is 

A
n sin(n t + On) 

If, in addition, Ao  = T(0) then the output of the system to the 

displaced square wave is: 

f(t) = I A o
+ 

2  Alsin( t+01) 3 sin(3 t-1-03) 

    

A
(2n-1) 

sin (2n-1 	+ 0 2n-1 	-(2n-1))  

  

• • • • (8.5) 

   

1 

The integral square error can now be obtained from Eqn. (8.2) by 

numerical integration. The choice of F, and n determines the 

accuracy, as well as the time taken on the computer. It was decided 

to make the positive part of the square wave last 50 sect  which was 

considered to be long enough for any transient to settle down. Hence 

/27t = 0.01 c/s. The value of f(t) for small t is mainly 
determined by the higher harmonics and, by inspection of Fig. 7.13 it was 

decided to extend the calculation to 1.5 c/s. However, even with the 

simple regulator, f(0) had a finite value and eventually frequencies 

up to 2 c/s. were included. The choice of 2 c/s as the upper limit 

results in a large number of terms, n = 99, in the series but this is 

inevitable because of the large frequency range of L(j'N. ). Yet, in 

spite of the number of terms, the maximum value of f(0)/f(oo) found 

was 0.05 for the derivative regulator with a high gain. 

The result expressed by Eqn. (8.5) may be obtained formally, 

using the Fourier transform. The formula given by Lawden59-1 for f(t) 

includes an integral and if this is evaluated numerically Eqn. (8.5) 

results. 

It is clear that it is impossible to obtain f(t) from Eqn. (8.5) 

without a digital computer. Each point on the curve involves the 
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calculation of 99 terms and their summation. If any accuracy in the 
determination of c is required then a large number of points must be 

computed. The digital computer programme to sum the series and to 

obtain e is straightforward and we need not go into details. It 

was found convenient to have two data tapes. One containing the values 

of H(jX) for 0.01 c/s to 2 c/s which may be prepared by the computer 

itself as the output of the programme for H(jX) . The other tape is 

shorter and contains the parameters for K(j1.) . 

8.1.2. The Effect of the Regulator on the Response of the System to a 

Small Step. 

Although the primary aim of the calculation described in the last 

section is the value of 6 , the transient response, f(t) 	is also 

available. An interesting set of curves is obtained illustrating the 

significance of the speed of response and showing the profound effect 

of the regulator on the transient behaviour of an alternator. 

Figs. 8.2 to 8.5 show some typical results for the four regulators 

considered in section 7.3. They refer to 8g  = 1100, which was chosen 

as reference operating condition for all numerical results in this 

section. Excluding the integrator type the same three values of gain 

were used. 	Since higher gains may be used for the delay and the 

derivative types than for the simple regulator these curves cannot be 

used to compare the regulators. The capability of each type is determined 

from the minimum value of the integral square error, see section 8.1.3. 

Increasing the gain results in a less damped response and when K 

approaches Kmax  the frequency of oscillations superimposed on the 

exponential approaches 11/27T. 	When K) ›Kimax an interesting result 

is obtained. The curve goes to unity with no significant increase 

in the magnitude of the superimposed oscillations. If f(t) is plotted 

to a large scale small oscillations of increasing amplitude begin to 

appear after several seconds of steady conditions at unity output. Thus 
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the solution consists of terms 

pt e sin yt 

where a 	p and y are positive and 0:E, >p . 	When K < 
min the 

transient is not completed at t = 50 sec and hence the method is 

not, strictly speaking, valid. The solution indicates the presence 

of a term ePt where p is positive and small. Hence, although it 

is not always obvious if the system is unstable close scrutiny of the 

result gives the correct answer. However, this is an inefficient method 

for determining stability and the regulator parameters should be such 

that the system is stable. 

Referring to the L(jX) loci for 5g= 90°  the value of K is 

chosen so that the (-1,0) point lies between the two intersections with 

the negative real axis. From Eqn. (8.2) the denominator of T(A) 

is equal, in magnitude and in phase, to the line drawn from the point 

(-1,0 to L(jx). Hence if a second line is drawn from the origin to 

L(A) representing the Numerator, IT(p.)I is the ratio of the lengths 

of the two lines and Arg T(j?.) is the difference of their arguments. 

If K is small the point (-1,0) lies near L(0) and T(0) is 

large. With increasing frequency the denominator of T(j)) is 

rapidly increasing and as a result AIKKAo for large n and the higher 

terms in Eqn. (8.5) may be neglected. The transient response therefore 

at low gains does not have any high frequency terms superimposed. Also 

for small T. , L(jX) is approximately the same with either simple, 

delay or derivative regulator. Hence curves c are similar for the 

three cases, Figs. 8.2, 8.3 and 8.5. 	As K is increased the (-1,0) 

point moves nearer L(p.) 	T(0) becomes smaller and T(j4) increases. 

Thus the term in the series of Eqn. (8.5) for which (2n4F, = 11 is 

large and as t varies there is a superimposed oscillation of frequency 

approximately equal to 11/27c . 

The main rise time is determined by the rate of change of An  with 
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n for small values of n . Consider the following simple example. If 

T(p) 	1  
1 + p T1  (8.6) 

then 

and 

A
n
z 1 

A
n T

1
n —1-- 

for 	n 

for n 

Obviously for a small T1  , Al  rz 1 for larger n and the rise time 

is shorter. 

Thus although T(A) is much more complicated than the simple 

delay it is apparent that the higher the gain the less rapidly An  

changes for small n and the shorter the rise time. This qualitative 

and imprecise argument points to the following important result. Since 

L(A) is not affected by the type or regulator for small X the 

initial "average rise time"is determined by K and not by the type of 

regulator. Average rise time in this case refers to the exponential 

curve drawn through the middle of any oscillations. 

These remarks do not apply to the integrator type regulator 

which, as shown in Fig. 8.4 produces a highly oscillatory response. 
K = 4 is near the K

max  for the regulator with T1 = 0.1 sec and for 

this reason curve b shows a superimposed oscillation. 

8.1.3. The Effect of the Regulator on the lategral Square Error. 

Fig. 8.6 shows e as a function of K at 8 = 1100 for the 

regulators considered in section 7. K has values between Kmin  and 

max and hence each curve has different limits. All curves, except et 
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show a minimum indicating the value of K sr 
 in each case. The minimum 

value of s is a direct measurement of the capability of each regulator 

to produce a fast response. Worst of those considered is the weakly 

stabilized integrator (T1  = 0.5 sec) and best the derivative regulator. 

The integrator with strong stabilization (T1  = 0.1 sec) appears to be 

quite reasonable. 

The significance of the absolute value of E may be illustrated 

by considering a step function applied to a simple control system having 

a single delay transfer function, as in Eqn. (8.6). Then 

f(t) = 1 - 
-t/TI 

 

and it may be shown that 

= T1/2 

Hence in terms of the integral square error: the integrator regulator 

gain can be adjusted to give as good a response as a 1+ sec delay, and the 

derivative one as good as a 0.5 sec delay. For comparison the "time 

constant" of the large semicircle in the H(j?.) plot for 8g  = 110° is 

sr depends on the operating condition and in practice a compromise 

must be made so that an acceptable value over the region of operation of 

the alternator is used. Clearly, as Bloedt and Waldmann62-4 have shown 

optimization on the transient response on open circuit is not satisfactory. 

Although the minimization of 6 involves a compromise between 

the requirements of several operating points it offers a systematic 

method for achieving optimum speed of response, at least as far as 

small steps are concerned. The question now arises whether a regulator 

designed for minimum 6 gives optimum response with big changes of 

condition. However, the problem of correlating the results of the small 

approximately 3 sec, see Fig. 6.1. 
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oscillation theory given here and the non-linear method for large changes 

lies outside the scope of the present investigation. 

8.2. Accuracy of Regulation. 

There are several ways of measuring the accuracy of regulation 

for our system. 

a) It is possible to use the same concept of error as in a linear 

system applied to the linearized small oscillation equations. Referring 

to Fig. 8.1 the error is AV
e and it is small if L(0) is large. 

b) Alternatively, but also for the small oscillation equations, if 

V
ref changes by Vref it is desirable that AV

t = Vref , and that 

the equality is not affected by changes in the operating condition. 

Thus T(0) must be equal to unity irrespective of the value of H(0) 

and hence K(0) must be large. 

Both definitions are essentially the same and lead to the obvious 

conclusion that K(0) should be large. 	If K(0) is finite T(0) varies 

from -I- co to 1 as K(0) varies from 0 to oo. 	In such a case 

neither method gives a satisfactory measurement of the degree of accuracy. 

c) The method finally adopted is simple to apply and the result has 

an important practical significance. The change of Vt  is determined 

when the operating condition is altered with Vref  remaining constant. 

Two "basic" operating conditions are required and obvious choice for one 

is when the alternator is on open circuit. The other can be the normal 

operating condition at rated p.f. and power. However, since, through-

out this investigation, operation in the artificial stability region 

is considered the point 8g  = 110° 
 

with P = 0.8 p.u. was chosen for 

the numerical part. 

8.2.1. Regulation as a Change of  Vt  . 

Referring to Fig. 8.1 at any operating point 
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(8.7) V
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md 	
K K

o 

and 
	

Vref 
= V

t 
+ V

6
/K 
	

(8.8) 

Consider now operation on open circuit with ref  the same and denote 

with a prime the quantities that are different. 

VI 	= V 	- VI ref t 

V; = K(Vref  VI) 

substituting from Eqn. (8.8) 

V
o 
+ V

t
K 

VI 
1 + K 

and the regulation is defined as 

Vt  f - Vt 
	

V'o/Vt  1 
P V

t 
	= 	1 + K 

(8.9) 

(8.10) 

when K = 0 the inherent regulation of the alternator is (Vo/Vt  - 1) . 

Fig. 8.7 shows a plot of the regulation against gain. It is 

apparent that, for large K , the curve is a hyperbola approaching zero 

with no minimum value for p . Hence it is not possible to define an 

optimum value of gain corresponding to Ksr  and K
ss 
 . Integrator 

regulators have K(0) a op, and, as expected, the regulation is zero. 
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9, 	EXPERIMENTAL INVESTIGATION 

An important part of the investigation is the experimental 

verification of the results obtained theoretically. It is possible to 

obtain a comparison for most of the calculated curves. Although some 

of the discrepancies cannot be fully explained the overall agreement 

justifies the theory developed. An inherent difficulty with the fre-

quency response and the step function tests is the necessity for limiting 

the input signal to small values so that the validity of the small os-

cillation theory is not affected. Thus the measurement of the output 

produced is affected by drifts in the system and the supply voltages. 

The experimental investigation revealed two important aspects 

of the operation of the system which were not predicted by the analysis. 

One is the sensitivity of the system to random signals producing varia-

tions in the operating point. This occurs with the integrator and the 

derivative regulators when the gain is low. 	The other result is the 

presence of high frequency oscillations with the derivative type 

regulator. Both aspects emphasise the importance of the experimental 

investigation. 

The non-linearity of the system is illustrated by the step function 

tests where the response is different depending on whether the dis-

turbance is applied or removed. However, the response is not materially 

changed with the larger steps and hence the theory developed in section 

8 may be applied to finite changes as an approximation. 

9.1 	Steady State Stability Tests.  

The aim is to determine the stability limit as a function of 

gain for the different types of regulator considered in sections 7.1 

and 7.3. 	The procedure was the same in each case. 	The system was 

connected as shown in Fig. 3.1 with the alternator operating stably, 

at a certain value of regulator gain. The reference voltage Vref  was 

reduced slowly until instability occurred. The system was brought back 
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to stable operation and the process was repeated with a different value 

of K . The components of the analogue computer (see Fig. 3.1) were, 

in turn, connected to give the transfer functions of the different 

regulators. In practice this meant plugging-in a different patch-board. 

A block diagram for each regulator is shown in Fig. 7.3. The circuits 

used are indicated in principle in section 3.2.2 and need not be 

considered in detail. 

Serious thought had to be given to the stability criterion used. 

It was observed that, depending on the value of gain and the type of 

regulator, there are four alternative phenomena associated with the 

beginning of instability. 

1) Low values of gain (simple and delay type regulators). At 

the stability limit the load angle drifts slowly upwards until the 

alternator pulls out of step. 	In practice there are two difficulties. 

The bus voltage, V , and the d.c. voltage supplied to the driving 

motor change due to switching in the mains. Thus a finite sudden 

change is applied which may result in instability before the steady 

state stability limit is reached. Secondly the output of the time 

constant regulator tends to drift producing a general dither on the load 

angle at all times. 

In order to achieve consistency the following procedure was 

adopted for low gains. The reference voltage was adjusted for a definite 

load angle. If the load angle did not change by more than + 2°  in 

the following 1 min., the system was considered to be stable for that 

angle. The reference voltage was then reduced so as to increase 8 by 

approximately 2°  at a time and the process was repeated. If within 

the 1 min. 8 was reduced by more than 2°  , Vref was adjusted to 

bring it back to the set value and the change was attributed to drift. 

If, on the other hand, 6 increased by more than 2o 	and continued 
g 

to drift upwards, during the 1 min. at least twice, then the condition 

was considered unstable. 

2) High values of gain. As Vref is reduced the system enters 
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what is known in control systems analysis as a "limit cycle". That is, 

at the stability limit non-sinusoidal oscillations build-up to a finite 

amplitude although the alternator does not pull out of step, If the 

reference voltage is reduced further the amplitude of the limit cycle is 

increased until, eventually, synchronism is lost. Because of the dither 

in the load angle and the damped oscillations due to changes in the 

supply voltages already mentioned the start of the limit cycle is un-

certain. However, since the frequency of the limit cycle can easily be 

determined by reducing Vref  furthert it was decided that the stability 

limit is reached when definite oscillations of + 1o at the frequency 

of the limit cycle were observed. 

The two kinds of instability observed for high and low values of 

gain correspond to the types of unstable roots discussed in section 7.1,2. 

The fact that for high gains the oscillations do not increase indefinitely 

is a consequence of the non-linear nature of the system. The linearised 

equations are valid only for small changes and during the limit cycle other 

factors come into operation. 

3) Low values of gain (integrator and derivative type regulators), 

It is observed that the load angle drifts over a wide range long before 

the calculated limit is reached, 	When Vref is further reduced the 

drifting remains approximately the same and near the computed limit the 

alternator, if left long enough, pulls out of step. 	The process seems 

to be random and it is possible that, because of the low gain the effect 

of the change in supply voltages is not completely corrected by the 

regulator. 	The error seems to have a cumulative effect since with the 

simple regulator, at the same values of gain, less than + 10  dither 

was observed. Since it is not possible to fix the stability limit the 

test for the two regulators was discontinued when these conditions were 

encountered. 

4) High values of gain (derivative regulator) high frequency 

oscillations were observed, but since these are peculiar to the derivative 

regulator they are discussed below, see section 9.1.4. 
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The stability limit for the high values of gain is a compromise 

between the theoretical and practical requirements. 	A limit cycle 

of amplitude smaller than 1°  could not be determined because of dither. 

It may be argued that small oscillations on the load angle are un-

important and that the system should be considered to be stable until 

synchronism is lost. Nielsen62-6 used this criterion, but it is 

doubtful whether oscillations of up to 	15°  would be acceptable in 

practice. 	It is interesting to note that B.S.S. 649, Ref. 35-1, 

specifies 2i°  as the maximum pulsation of 6g  when the alternator 

is driven by an internal combustion engine. The use of a stability 

criterion based on a 21-0  pulsation in the present case is not justified. 

From the linearised equations the system is unstable at the beginning 

of the limit cycle and any comparison with theory must be made with the 

minimum detectable oscillation. It is not possible to estimate the 

start of the limit cycle by extrapolation because the change in 8 from 

a stable condition to large oscillations depends on the value of gain. 

The existence of the limit cycle is not generally recognised in 

the literature. It is stated in Ref. 65-2 that the oscillation would 

build-up until synchronism is lost. One of the few exceptions is Ref. 

65-4, which describes the process of loss of stability, for high gains, 

correctly . The transition from aperiodic to oscillatory instability 

at the optimum value of gain does not appear to have been noticed. There 

are very few references on the stability criterion used in experiments, 

see Table I p,221 . 	It is thus considered desirable to describe in 

some detail the process of loss of stability. For this purpose three 

typical points are chosen and a summary of the conditions is given as 

the reference voltage is reduced. The process is described for a high 

and a low value of gain for the simple regulator and for K = Kss for the 

derivative regulator. 

9.1.1 Stability with the Simple Regulator.  

The analogue computer (see Fig, 3,1) was connected to give a 

constant gain and the test was carried out as described in the previous 
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section. 	The result is shown in Fig, 1.3. Taking the point with 

K = 19.5 as typical of the high gain points the oscillations developed 

as follows: 

1) 8 . 104°. 	Dither Io. 
g 

2) 8g  = 106°. 	Dither greater than 1°. 

3) 8 = 108°. Dither greater than 1°  but no definite oscillations. 

4) 8g  = 110°. Oscillations of 1° amplitude superimposed on 

approximately 2°  dither. 

5) 8g  = 112°. Oscillations of la°  amplitude on a 3o  dither. 
6) 8g  = 114°. At first oscillations with 2°  amplitude building 

up to non-linear oscillations between 102°  and 122°. 

It is apparent that the beginning of the limit cycle cannot be 

detected. Consistent with the criterion defined in the previous section 

the stability limit in this case was taken as 110°. Considering now a 

typical point with a low value of gain, say at K = 2.5 we have, 

1) 8g  = 109°. 

2) 8 = 112°. 
g 

50 sec it was creeping 

3) 8 = 112°. 
0 
8 back to 112°. 
g 
8g  = 112°. As 3. 
8 = 112°. Remained within + 1o g 	 — 

load angle was 116°  and 

The stability limit was taken as 109°. 

Referring to Fig. 1,3 the measured stability limits are higher than 

the computed curve. This may have been expected for high values of gain 

since, at the stability limit the limit cycle has a finite amplitude. 

On the other hand the opposite was expected for low values of gain since 

any small change in the system would cause the machine to lose synchronism. 

past 114°. 

Drifted back to 109°  and Vref was adjusted 

Remains at + 1o for one minute. 

After 30 sec 8g  was approximately 110°  and after 

to bring 

4)  

5)  for 30 sea but at 60 sec 

was moving upwards. 
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9.1.2 Stability with the Delay Regulator.  

The regulator transfer function is given in Eqn. 7.9 and Figs. 

9.1 and 9.2 show the stability limit as a function of K with T1  = 0.5 

and 1 sec respectively. As with the simple regulator the measured 

values are greater than the calculated limit. The natural frequency 

is reduced compared with the simple regulator and this makes the detection 

of the limit cycle slightly more difficult. The process of loss of 

synchronism is similar to that for the simple regulator and need not be 

described in detail. 

9.1.3 Stability with the Integrator Regulator.  

Before considering the stabilized integrator experiments, it is 

appropriate to mention a test performed with an unstabilized integrator 

regulator, Eqn. (7.10). Depending on the regulator gain a limit cycle 

was observed for 6 in the range 60°  to &D°  . It is interesting 
g 

to note that, when Vref  was further reduced the amplitude of the 

oscillation increased very slowly so that the alternator did not pull 

out of step for about 2 min. after the change in Vref  was made. 

The transfer function of the stabilized integrator used is given 

in Eqn. (7.11) and Figs. 7.9 and 7.10 show a comparison between the 

calculated and the experimental results. T
a 
= 2 and T

1 = 0.5 or 

0.1 sec respectively. 	All measured points showed oscillatory in-

stability. When the gain is reduced it becomes processively more diffi-

cult to determine the stability limit and for reasons discussed above 

the test was discontinued. Fig. 7.10 shows that with the stronger 

stabilization the maximum stable angle is approximately 7o larger than 

with the weaker stabilization, Fig. 7.9. 

In practice it is important to determine the performance of the 

regulator when subject to drifts in the supply voltage etc. 	It appears 

that, with the integrator regulator the system is particularly sensitive 

to such drifts. The amount of drift in the terminal voltage of the 

alternator that can be tolerated in a practical system will have to be 
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decided and the gain may then be fixed to avoid such conditions. 

9.1.4 Stability with the Derivative Regulator.  

The regulator transfer function in this case is given by Eqn. (7.14) 

and Fig. 7.14 shows a comparison between the calculated and the experi-

mental stability limits. The experimental points may be divided into 

3 groups: 

a) Corresponding to max 	The usual limit cycle appears with 

a higher frequency than for the simple regulator. The measured points 

lie above the calculated curve and the discrepancy is not wholly due to 

the fact that the start of the limit cycle cannot be detected. 	At 

K = 26.5 the stability limit was established as follows. Because of 

the higher natural frequency the output voltage of the regulator is a 

sensitive detector of oscillations and for this test it was observed on a 

C.R.O. Nevertheless the same criterion, based on angle, was used as 

with the other regulators. 

1) 8g  = 140°. There is a 2°  dither on the load angle by no 

definite oscillation. 

2) 8g  = 143°. The output of the voltage regulator on the C.R.O. 

wanders about with no definite oscillation. Dither on the load angle 

approximately 3°. 

3) 8g  = 145°. There is a 3°  dither on the load angle and it 

appears that there is an oscillation. However, output of the regulator 

does not show any oscillation. 

4) 8g  = 147°. There is 3°  - 4°  dither on the load angle with 

2 or 3 oscillation of initial amplitude 2°, which are quickly damped out. 

5) 8g  = 149°. Again 3°  - 4°  dither for about 15 sec followed 

by few oscillations and the system then lost synchronism. 

It was decided to take the stability limit at 146°  since both 

145°  and 147°  have reasonable claims to it. 

b)Correspondingtoit..The behaviour is similar to that with mmn 
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the integrator regulator. There are no definite oscillations and the 

alternator does not lose synchronism. 	It appears that there is little 

damping os oscillations caused by disturbances and it is difficult to 

decide when the system becomes unstable. As with the integrator regulator 

the test was discontinued. 

c) High frequency oscillations. As has been pointed out in 

section 7.3.3 the gain of the derivative regulator is high at approx.-. 
imately 17 c/s. Hence some instability may have been expected although 

the Nyquist locus, Fig. 7.13, does not approach the (-1, 0) point at 

high frequencies. It was found that a new kind of instability occurs 

at low values of 8 as shown in Fig. 7.14. It is surprising that 

the frequency of the oscillations is 17 c/s and does not vary with 8g  . 
Since, by Eqn. (8.2) the frequency of the oscillations is given by 

1 + H(jX) K(A) = 0 

and since K(A) at 17 c/s is real H(A) must also be real. However, 

inspection of the numerator and denominator plots of H(A) , Fig. 6.6 
shows that at 17 c/s Arg H(jX) ---> + 90°  . Hence it appears that 

the rate of change of flux terms in Eqn. (2.1) become significant and 

should not be neglected. 

In fact the amplitude of these oscillations at the terminal voltage 

is less than 0.2 % and hence the operation of the alternator is not 

affected. Depending on the regulator gain, however, the oscillation 

is a larger part of Ve  , (see Fig. 8.1). 	At the output of the 

regulator the oscillations are amplified about 55 times, see Fig. 7.11, 
and hence become large enough to saturate the limiter. Thus effective 

control of the excitation is lost. 

Some difficulty was experienced with 50 c/s pick-up especially 

at high regulator gains, which was overcome by careful screening and 

positioning of equipment. 
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9.2 Measurement of H(A)  

A direct check of the theory can be made by measuring the frequency 

response of the alternator, 	It was decided to consider only one of the 

H(jX) loci shown in Fig. 6.1 and as for other experiments 8g  = 1100 

was chosen. The simple regulator was used. Although such a test is 

usually straightforward for a linear system there are three complications 

in the present case. 

a) For 3g  = 1100 the system is unstable without a regulator and 

therefore the open loop transfer function must be determined from a 

closed loop test. 

b) Fig. 6.1 is determined for small oscillations but in order 

to improve the accuracy a large signal is desirable. 

c) Because of the low frequencies involved an inaccurate test 

had to be used to measure H(0) 

9.2.1 Frequency Response Test.  

Fig. 9.3 shows a block diagram of the system during this test. 
The oscillator of the transfer function analyser (T.F.A.) see section 

3.0, was used to inject a small oscillation into the system as shown. 

As a result an oscillating component was superimposed on the voltages 

V
c 

and Vfe  .. 	These voltages were then, in turn, measured by the 

T.F.A. voltmeter, which is not shown in Fig. 9.3. Hence Vc 
and Vfe 

are known in magnitude and phase with respect to the output of the 

oscillator. Since the attenuation of the rectifier and the filter is 

0.193, see section 3.2.3, 

A Vt 
= 	AVc/0.193 

and 
AVc 

WOO 

0.193 A Vfe 
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Below 0,7 c/s the pointers of the T.F.A. voltmeter oscillate about 

a mean position and below 0.4 c/s it was no longer possible to use the 

instrument. 

For low frequencies the arrangement shown in the lower part of 

Fig. 9.3 was used. 	The output of the oscillator went through the phase-

shifter to a moving coil voltmeter and the signal to be measured through 

a buffer amplifier to another moving coil voltmeter. The frequencies 

were low enough so that the oscillation could be observed on the instru-

ments, which were biased from zero so that their reading was always 

positive. The magnitude of the signals was obtained by noting the 

maximum and the minimum readings. The phase-shifter was adjusted so 

that the pointers of the two moving coil instruments moved up and down 

together. The reading on the phase-shifter then gives the phase angle 

of 	AV and 	QVfe with respect to the oscillator output. 

The accuracy of the phase angle measurement is considerably 

reduced when using the two voltmeters as compared with the T.F.A. volt-

meter, especially at the very low frequencies, where the error is 

possibly of the order of 10°. The measurement of the amplitude should 

be reasonably accurate. A source of error is that the peak-to-peak 

voltages were measured and it was assumed that the oscillator output as 

well as the signals measured were sine waves. 

The magnitude of the a.c. signal injected into the system is a 

compromise between a large and a small value. The small value does 

not violate the conditions of the small oscillation theory but produces 

small signals at Vfe  and Vc , which are difficult to measure. A 

large signal gives measurable voltages at Vfe and Vc but the results 

are affected by the non-linear nature of the system. As low frequencies 

the injected voltage was adjusted to give a swing in 8g  of 6°. At 

higher frequencies, however, a large signal is required for such a swing 

and it was decided to limit the injected voltage to approximately 

8% of the reference voltage (a.c. Volts/d.c. Volts). 



189 

Another discrepancy from the assumed conditions is the variation 

of the torque of the d.c. shunt motor driving the alternator. 	The 

torque-speed characteristic of a d.c. shunt motor is such that a small 

change of speed produces a large change in torque, During the load 

angle swings'therefore the mechanical torque does not remain constant. 

This torque oscillation was reduced by inserting a resistance in series 

with the armature of the motor. 

The result of this test is shown in Fig. 1.6 together with the 

calculated curve. Two alternative methods were attempted for the very 

low frequency points and both were found unsatisfactory. 

a) Using a C.R.O. 

b) Subtracting a known fraction of the output voltage of the 

phase-shifter from the output voltage of the buffer amplifier (see 

Fig. 9.3) by means on another operational amplifier. If the two 

inputs to the second amplifier are arranged to be equal in magnitude 

and of opposite phase then its output would be zero. 

9.2.2 Determination of H(0) .  

The value of the alternator transfer function at zero frequency 

is given by the ratio of small steady changes in 	and Vfe  and it 

is measured by introducing a small change in the steady conditions, 

see Fig. 9.3. Normally the value of H(0) would be obtained by 

reducing the frequency of the applied signal in the last test until 

the output is in phase with the input. The lowest frequency obtainable 

from the T.F.A. oscillator is 0.01 c/s and as it may be seen from Fig. 

1.6 there is considerable phase-shift at this frequency. 

The conditions are the same as for the frequency response test, 

section 9.2.1, with K adjusted to give stable operation up to 6 = 1200 . 
A step voltage V

s is introduced as shown in Fig. 9.3, the effect of 
which is the same as increasing the reference by V

s . After the 

transient dies away a new steady state condition is established corres- 

ponding to the increased reference voltage. 	If 	AV
t is the change 
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in V
t after the introduction of V

s 
then 	AV

t
/V
s 

gives the closed 

loop response, from which the open loop response may be calculated. 

Two series of tests were performed, in the first of which AY
t 

was determined by measuring Vt  before and after the introduction on 

V
s . In the second series the change in Vt  was calculated from the 

known bus voltage and power and the measured value of current in the 

line for the two steady conditions. 

As in the frequency response test of the previous section the 

magnitude of the injected signal is a compromise between a small and a 

large value. 	Three values of Vs were used, 0.5, 1 and 1.5 V. 	It 

was hoped that the results obtained would change in one direction as Vs  

was increased, thus giving an indication as to where the value for small 

V
s would lie. 	There was considerable drift in the system probably due 

to changes in the a.c. and d.c. mains and the time constant regulator 

output, see section 9.1.1. The following method was adopted for the 

test in order to achieve some consistency. 

The initial condition was established and the readings were taken 

starting with the load angle. 	If the angle had not changed in the 

meantime the step change Vs  was applied. 	After about 30 sec the 

power was adjusted, if necessary, and the readings were once again taken. 

V
s was then removed and if 8 returned to within + 2° of the original 

g 
setting in approximately 30 sec the values were accepted and it was 

assumed that no serious drift had occurred. 	Otherwise the process was 

repeated. 

The values of H(0) obtained from this test are plotted against 

load angle in Fig. 9.4. 	It was assumed that a change from 8 
a to 8b  

corresponds to a small oscillation value at, 

8a  + 8b  
2 

8
g  

Because of the various drifts the scatter of results is large. However, 
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the calculated curve shows.good agreement with the experimental points. 

The scatter does not diminish with increasing values of Vs 
. The value 

shown on Fig. 1.6 is the average result for 8g  = 1100.  

9,3 Measurement of K(jX).  

The frequency response of the regulator with the analogue computer 

set to unity gain has already been discussed, see section 3.2. The 

use of the analogue computer simplifies considerably the setting-up of 

any type of transfer function for the regulator. Although the actual 

transfer function can be written down by inspection of the patch-board 

it was decided to measure the frequency response for each regulator. 

Hence any mistakes in setting-up the computer could be detected. Figs. 

7.7 and 7.12 shows the measured as well as the calculated points on the 
frequency response locus. The Transfer Function Analyser was used 

and hence there are no measurements below 0.4 c/s. 

As stated in section 3.2.2 a precision decade potentiometer is 

used to vary the gain. It was found that, since the input resistance 

of the amplifier following the potentiometer is finite, a calibration 

is necessary in order to determine the gain in the computer at zero 

frequency with different positions of the potentiometer. 

The Transfer Function Analyser was also used for adjusting the 

derivative regulator naramoters sc that the required frequency response 

was achieved. The oscillator was set to 0.6 c/s, which from Fig, 6.1 

is a suitable frequency, and the computer coefficient potentiometers 

were adjusted so that the in-phase component of the output was zero. 

9.4 Step Function Test.  

The aim is to confirm the results of section 8.1 and the method 

is similar to that used for determining H(0) , see section 9.2.2. A 

step was injected as before but now the transient change in V
t was 
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recorded. 	The circuit used is shown in Fig. 9.3 with the Transfer 
Function Analyser disconnected. The analogue computer was adjusted, 

in turn to give the transfer functions of the regulators described in 

sections 7.1 and 7.3. 	It was found convenient to introduce the 

step function at the input of the summing amplifier (see Fig. 9,3) 

and to measure A Vt  at VC 	Thus with V
c biased using a 

battery the scale of the recorder could be increased to show the 

small change. 

The same difficulties as in section 9.2.2 were encountered and 

several measurements were made. A number of the recordings had to be 

discarded either because of an obvious disturbance during the test or 

because the initial steady state conditions were not established after 

the removal of the step, see section 9.2.2. 

Typical results are shown in Figs. 9.5 to 9.8. The transient 
response is shown both when the step is applied and it is removed 

plotted with the same time origin and showing AVt  positive. The 

scale of the figures is arbitrary so that the change in V
t is equal 

to unity. 	The difference between the two curves illustrates the non-

linearity of the system. For the simple and the delay regulators two 

values of step were used for each regulator gain producing a change 

from 120°  to 100°  and from 116°-117°  to 104°-103°  . As in 

section 9.2.2 it was hoped to establish some relationship between the 

size of the step and the departure from the calculated curve. One can 

only say, however, that the discrepancy between the curves obtained 

when the disturbance is applied and when it is removed, is increased 

with the larger step. 

Since the system is unstable at 8 = 120°  with the integrator 

regulator it is not possible to use the larger step in this case. 

The result quoted for the derivative regulator is affected by 

the limiter and cannot be compared with the calculated curve. Clearly 

the output of a differentiator to a step function is large and as a 
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result the limiter comes into operation. It is interesting to note 

that when the step is applied at 8g  = 100° the alternator swings in 

the opposite direction and 8 is less than 100°  for approximately 

2 sec. On the other hand when the step is removed at S = 120o the 
load angle goes directly to 100°. 

9.5 Regulation Test.  

The result of this simple test is shown in Fig. 8.6. The method 

used is as follows: The value of V
ref (Fig. 9.3) was noted when 

8 = 110° and P = 0.8 p.u. for different regulator gains. The 
alternator was removed from the infinite bus and the speed adjusted 

to its normal value. The open circuit voltage was then measured when 

the gain was varied and Vref  adjusted to the corresponding values as 

before. 	The value of p is obtained from the first part of Eqn. (8.10). 

Since the regulation is a function of K(0) and does not depend 

on the type of regulator this test was carried out only for the simple 

and the integrator regulators. In the latter case it was confirmed 

that p = 0 for any value of K . 
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10. CONCLUSIONS.  

Many of the conclusions derived in the present investigation are 

a direct result of deeper application of a well known method. The 

first important contribution to the solution of the problem using the 

small oscillation theory was made by Concordia4  and the first use 

of the Nyquist criterion by Messerle and Bruck55-1  . The system matrix 

is derived so that either the voltage or the torque feedback methods 

may be used. It is considered that the voltage method is more suitable 

for analyzing the effect of the excitation regulator. The torque 

method, however, links the conventional approach to steady stability with 

that of the small oscillation theory when there is no regulator. In 

addition the torque method may be used for studying the effects of 

governor on stability especially when the excitation regulator must also 

be taken into account. 

When damping and the armature resistance are neglected formulae 

are derived for the salient features of H(jT.). Many of these results 

are already known. However, by plotting the constituent parts of the 

H(A) and by comparing the loci with those obtained when damping and 

r
a are included the effects of individual parameters are determined. 

It is shown that both damping on its own and ra  have a significant 

stabilizing effect. The contribution of rotor damping is particularly 

important since a higher value of gain may be used and as a result 

the accuracy of regulation is improved. 

The following results are obtained for typical regulators used 

in practice. The simple regulator extends the region of artificial 

stability up to the peak of the transient power-angle curve, 8; . The 

maximum value of gain, max  , that may be used 	for 8 
s  <8g  <8' is a 

small so that the accuracy of regulation is poor. With the delay regulator 

the maximum stable value of 8 is less than 8' and K 	is increased max 
as the delay T1  is increased. Thus if a large load angle is not re-

quired it is possible to use an artificially high T1  to improve the accuracy 
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of regulation. When T
1 
 is large the regulator approaches the 

integrator type. This does not enable the system to operate in the 

artificial stability region without a stabilizer, but if suitable 

stabilization is provided, considerable extension of the stability region 
may be achieved. When a 2nd derivative regulator is used the stability 

region is extended beyond 5' and K
max 

 is increased compared with the 

simple regulator. It is proved that the ultimate stability limit with 

a derivative regulator occurs when the angle between the infinite bus 

and the alternator terminal voltage is 90°. Although this result is 

stated in Venikov64-1 it has not been possible to find a proof in the 

literature. 

The majority of the theoretical papers use the Routh test. For 

the following reasons, however, it is considered that the Nyquist test 

is the most useful method: 

I) The alternator and the regulator transfer functions are calculated 

separately and the number of the stability conditions is not affected 

by the degree of either H(p) or K(p). Hence an accurate repres-

entation of the alternator and consideration of complicated regulators 

are possible. The effects of rotor damping and of the armature 

resistance are included both of which appear to have been neglected in 

the literature, see section 1.1.3. Also it was possible to consider 

the 2nd derivative regulator, for which no analysis could be found in 
the literature. The amount of computation involved is considerable, 

but this is taken care of by using a digital computer. The computation 

is repetitive and can easily be programmed. 

2) It is possible to verify intermediate results experimentally by 

measuring the frequency response of the system to small signals. The 

alternator transfer function, H(jX) need be measured only once since 

combination with the measured regulator transfer function gives the 

frequency response of the system for any regulator. 

3) The effect of the regulator gain is apparent since only the scale 

of the frequency response locus is changed. 



203 

4) The overall effect of the various types of regulator may be 

obtained without computation, since multiplication of the H(jX) and 

the K(jX) loci may be visualized easily. It is apparent from Fig. 6.1 

for example, that an unstabilized integrator regulator does not enable 

the alternator to operate in the artificial stability region. It is 

also obvious that only a regulator with a second derivative signal can 

extend the stability limit beyond the peak of the transient power-angle 

curve. A proof of either of these results could not be found in the 

literature. 

5) Information about the degree of stability is obtained by using 

the phase and gain margins for each locus. 

6) The most important advantage, however, of the Nyquist criterion 

is the possibility of synthesizing a regulator. In a particular case 

the H(j>) locus may be drawn from knowledge of the alternator and the 

system parameters. A suitable regulator transfer function may then be 

determined so that the system may operate up to the required stability 

limit. Finally the regulator components may be chosen so that the 

required transfer function is obtained, 

The experiments described in section 9 approximately confirm the 
theoretical results. The ability of the derivative regulator to 

stabilize the system for 8g  > 8' is established. The stability limit s 
achieved, 8g  = 146°  , is larger than the maximum value reported in the 

literature with a comparable system, see Table I p.221. The system 

seems to be particularly susceptible to drift when the integrator or the 

derivative regulators are used at low gains. This, however, does not 

appear to be important in a practical system, where normally high gains 

Should be used. Nevertheless, an additional performance index to 

measure drift may have to be defined. The American I.E.E. Definitions, 

Ref. 61-3, give drift as "a sepcified change for a specified period 

of time, for specified conditions". The calculation of a "drift index" 

and its measurement except on an actual system appear to be very difficult. 

A further investigation should be made into the high frequency oscillations 
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with the derivative regulator and the rate of change of flux terms 

should be included. It is probable that by careful choice of the 

delays in the regulator the high gains at high frequencies may be 

reduced without affecting the low frequency response and so this form 

of instability may be eliminated. 

In determining the optimum transfer function of the regulator 

other factors may be considered in addition to the steady state stability. 

It is not often that a system is required to operate at extreme angles 

and hence it becomes necessary to determine suitable values of gain 

between Km. and K
max 

 . Also several regulators may meet the 

stability requirements and the choice of the most suitable type should 

depend on other factors. It was decided to use two additional performance 

indices, namely, speed of response and accuracy of regulation. It 

appears that there are no accepted methods for determining either 

quantity and two methods of measurement and calculation are suggested 

in section 8. 

The speed of response is defined for small changes but experiments 

show that for changes in load angle from 120°  to 100°  the linear theory 

is approximately valid and may be used as a guide. However, further 

investigation is necessary to establish the relation between the 

responses to large and to small changes. The importance of choosing 

the right value of gain to obtain a satisfactory response is demonstrated. 

The derivative regulator is shown to have the minimum integral square 

error and the integrator regulator to have a highly oscillatory response. 

The response with the derivative regulator, however, is affected by 

the limiter and it appears that high exciter ceiling voltages are 

necessary. 

The accuracy of regulation is defined in terms of the change in 

V
t 

for two steady operating conditions. As expected the accuracy 

improves with increased gain and the regulation with an integrator 

regulator is zero. 
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A variable parameter regulator appears to offer the best 

compromise between the three performance indices. The regulator gain 

may be made a function of the operating condition so that, e.g. the 

integral square error is a minimum in the artificial stability region. 
For 8

g 
> 8

s some compromise between the accuracy and speed of 

response may be used to determine K. Alternatively an integrator 

regulator may be used for small 8 and a derivative regulator for 

8 
g 
 >8

5 
 with a change-over at 8g  = 8

s 
. Other parameters may be 

varied in a fully automated system. Further improvements may be 

achieved by using combinations of different controlled variables and their 

derivatives. However, there is a limit to the complexity of the 

regulator and the reliability of the excitation system is of paramount 

importance. 

It was shown in the thesis that the performance of the alternator 

is greatly influenced by the excitation regulator. The extension of 

the steady state stability region that can be achieved appears to be 

greater than that required for practical systems. Thus the regulator 

transfer function should be chosen so that the system performance is 

optimum for a) steady state stability, b) speed of response, and 

c) accuracy of voltage regulation. 



APPENDIX I 

Expression of  vd, vq  in Terms of the Bus Voltage and the Load Angle. 

Let the infinite bus voltage be 

 

[V 	= 	Vm abc 

 

sin wt 

sin(wt-122) 3 
sin(wt .14Z) 

3 

   

[Vatic] referred to the d- and the q- axes of the alternator is 

r  
Pacipl 	P  LVabci 
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where LP i is the Park transformation matrix, 

cos e 	cos(e - 

sin e 	sin(e 

1 
2 	 2 

see Ref. 57-6 
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1 
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3 

where 0 = wt - 8 

Hence 	[V 	= 
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APPENDIX II 

Evaluation of  Aiik  Including  ra  . 

- Xd(p) 	vdo 	ra 

- -2-+ r vdo 	a ido - 4:)  - 	vq,o+ ra iqo 

ra 	vqo 	- X (p) 
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Hence 

A135 	Qo  t+  qo  Y q 	d (p) + V2o  Yd  (p) - 2 ra(1.qoIqoYq(p)+ VdoIdoYd(p) 

r2 (VqoIdo - VdoIqo)yd(p)Yq(p)i) ..(II.1) 

Ko K(p) G(p) Al 	Ko  K(p) G(p) A2 KO K(p) G(p) A3  

-i vdo + ra ido 	- Q(') 	Y i v 	+ r i  
qo a qo 

- ra 	vqo 	- X 
q
(p) 

Hence 

Xc(Ido+VooYq(p) 	raYq(p)Icro) . (V- 2raPI 	Xc(4))F(p) 
A235 - Vto 

where 
P' = Vdo Ido Vqo Iqo 

B235 
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Ko  K(p) G(p) Al 	K
o 
K(p) G(p) A2 	K

o 
K(p) G(p) A

3 

- Jp 2 

	

- ra 
	 vqo 
	 - X

d
(p) 

. Hence 
X /- 

(V 	+ Xc  Id()) 	a q go r Y(p) (Vdo Xc I) 	(11.3) A
245 	

= V  to \- q°  

- X
d
(p) 	vdo 
	 ra 

- Jp 2 

	

ra 
	 vqo 	 - X (p) 

Hence 
2 

A145 
 = 1 + r

a (p) Y (10) (1'4,4) 

B
245 

B
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APPENDIX III 

The Nyquist and Routh Stability Criteria 

The block diagram of a single loop feedback system is shown in 

Fig. III.1. Each of the four functions C , D , E and F is a 

polynomial in p. 	From it the following equations may be written 

down: 

e. - ev o 

C(p)  
o = D(p) ve 

el = E(p)  
o F(p) 

(ma) 

Eliminating (3(1)  and Ae  from Eqns. (III.1) the differential equation 

of the system on closed loop is obtained, 

D(p) F(p) + C(p) E(p)
o 
= F(p) C(p) e. (III.2) 

and the Characteristic Equation is: 

D(p) F(p) 	C(p) E(p) = 0 

The system is stable if all the roots of this equation have negative 

real parts. There are several methods available for determining the 

position of the roots of an equation without solving it. In this 

investigation the Nyquist criterion is used and is described in some 

detail in this Appendix. For many operating conditions the forward 

loop of the system is inherently unstable and this requires special 

considerations. The Routh criterion is an alternative method and because 

it is used in Appendix IV it is necessary to give a brief statement 

of it. 

III.1 The Nyquist Test Applied to a Feedback Control System. 

The Nyquist test is based on the Open Loop Transfer Function 



FIG III G ENERAL CLOSED LOOP SYSTEM 



w 
A(p)  
B(p) 

and 	= w + 1 

	

(p 	P1)(P  - p2) 

(p — pc )(p — 100) Let 	w/  

defined as follows; see Fig. III.1. 
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H(p) = 
el 

	

o 	C(p) E(p)  

	

ee 	D(p) F(p) BA() 
 

d3) 

where A(p) and B(p) are polynomials in p . In a physical system 

the degree of B(p) is higher than the degree of A(p) and the open 

loop transfer function tends to zero as 

may be written as 

p 

 

CO Eqn. (111.3) 

 

A(p) + B(p) = 0 	(III.4) 

In order to introduce the open loop transfer function divide both terms 

by B(p) 

A(p) 
B(p) 1 = 0 

Eqn. (III.5) has the same roots, with positive real parts, as Eqn. 

(III.4) provided that A(p) and B(p) do not have a common zero which has 

a positive real part. This is most unlikely to happen in practice. 

Consider the transformation from the p- to a w'-plane in two 

steps as follows: 

The zeros of w' are p1  , p2  etc., and the poles are pa, pri  etc., 

but their values are not known. It should be noted that the zeros of 

w' are the same as the zeros of the characteristic equation and that the 

poles of w' are the same as the zeros of B(p) . 
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Fig. 111.2 shows some typical poles and zeros on the p-plane . 

For stability pl  , p2  , .... should all lie to the left of the imaginary 

axis. Any closed contour C followed by a point Q in the p-plane is 

transformed by Eqns. (III.6) and (III.?) into a closed contour C' 

followed by a point Q' in the w'-plane. Let Q pass round the 

contour C in a clockwise direction. 	If C encloses a zero at p1 	QI 

encircles the origin in a clockwise direction, and if C encloses a pole 

pa Q' encircles the origin once in a counterclockwise direction. 

Hence if C encloses P poles and Z zeros, Q' encircles the origin 

clockwise (Z P) times. 	Curves (i), (ii) and (iii) of Fig. 111.2 

are obtained for Z P = 1 (one excess zero), Z P = -1 (one excess 

pole) and Z - P = 0 respectively. 

Now choose for the contour C the path shown in Fig. 111.3 con-

sisting of the imaginary axis, a semicircle at infinity to the right-

hand side and another semicircle of infinitesimal radius excluding the 

origin from C . 	If there are Z zeros and P poles of w' enclosed 

in this contour the origin of the w'-plane is encircled Z - P times 

in a clockwise direction. The transformation from the w- to the 

w'-plane is a simple change of origin. Hence when Z zeros and P 

poles of Eqn. (111.5) are enclosed in the contour of Fig. 111.3 the 

w-plane contour encircles the (-1, 0) point Z - P times in a clock-

wise direction. 

Thus the Nyquist test consists of plotting the open loop transfer 

function w = A(p)/B(p) for values of p from - j co to + j oo and 

along the semicircular parts of the p-plane contour and counting the 

number of clockwise encirclements of the (-1, 0) point. 	Since how- 

ever, the requirement for stability is that Z shall be zero it is 

necessary to know the value of P . This is considered in the following 

section. 

It should be noted that since w is the ratio of two polynomials 

the parts of C' corresponding to the positive and negative halves of 

the contour C are symmetrical about the real axis in the w-plane. Thus 
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only the positive half of the imaginary axis need be considered when 

determining the w-plane contour. 

111.2 Determination of P .  

P is the number of poles of the open loop transfer function with 

positive real parts, and is equal to the number of zeros with positive 

real parts of B(p) . If the open loop system is stable P = 0, and 

the condition of stability as derived above is that the Nyquist locus 

shall not encircle the (-1, 0) point. However the alternator with 

its voltage regulator loop open is unstable for load angles greater than 

8s . In order to use the Nyquist test it is essential to determine P 

The same method as in section III.1 may be used. The trans-

formation from the p-plane to the w'-plane is now, 

w' = B(p) 	 (III.9) 

B(p) is a polynomial and has no poles. The number of zeros with 

positive real part is P and therefore the number of clockwise en-

circlements of the origin in the w'-plane when p describes the contour 

C of Fig. 111.3 is equal to P . 	If B(p) is an nth order polynomial 

in p the w'-plane contour corresponding to the infinite semicircle of 

Fig, 111.3 is given by Eqn. (III.9) describes n clockwise semicircles. 

If n is large this is cumbersome, and so an alternative method is used. 

Let B(p) be expressed as: 

B(p) = B1(p) + B2(p) 

where B2(p) contains the highest power of p . A plot is made of 

B1  (p) 
w 773 
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and the encirclements of the (-1, 0) point counted. 	It can be 

arranged that the zeros of B2(p) are easily determined. 

111.3 Poles at the Origin.  

When H(p) is the open loop transfer function of a physical 

system H(p) --> 0 as p -> co. The semicircle at infinity 

of contour C Fig. 111.3 is transformed into a point in the w-plane 

and there is no need to consider poles at infinity. It was shown in 

section 111.2 however that the need arises to obtain Nyquist plots of 

functions which are not open loop transfer functions of a system. 

For this section only H(p) is considered to be a ratio of two general 

polynomials. 

Assume first that H(p) has an nth order pole at infinity, i.e. 
the degree of the numerator A(p) exceeds that of the denominator B(p) 

by n , When p = R eicx  it can be shown that, for R 	> oo : 

H(p) = D1  Fel  eina  

where D1 is a constant. As point Q describes a b in a clockwise 

direction a changes from n/2 to 	. 	In Fig. 111.3 the magnitude.  

of H(p) remains constant and its argument changes through n clockwise 

semicircles. Since H(p) is an analytic function of p (ratio of 

two polynomials) angles are preserved in the transformation from the 

p- to the w-plane. Thus at both points a and b the argument of 

Q1  on C' changes by -n/2, i.e. the locus turns to the right. 

If H(p) has an nth order pole at the origin the situation is 

very similar. Again for p = r e" where r 	> 0 

- H(p) = D2 e jmp  
rm 

where D
2 is another constant. Point Q describes c d in a 
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counterclockwise direction and hence point Q' describes m clockwise 

semicircles. Contour C' turns through 90° to the right at both 

points corresponding to c and d. 

111.4 The Inverse Nyquist Locus.  

In the analysis of the alternator-regulator system it is found 

that the denominator of the open loop transfer function is the quantity 

that requires close examination. The effect of the various parameters 

is visualised better if the inverse Nyquist locus is used. The 

reciprocal of H(p) is plotted and corresponding to Eqn. (III.5) 

we have, 

1 J B(p) 	+ 1 = 0 
	(Iii.lo) 

The roots of Eqn. (III.10) are the same as those of Eqn. (II1.5). 

Hence if a plot is made of B(p)/A(p) the number of clockwise en- 

circlements of the (-1, 0) point gives (Z - 	PI is the number 

of zeros with positive real parts of A(p) 

111.5 The  Routh Criterion.  

The most direct method for determining whether the roots of a 

polynomial lie in the right half-plane is furnished by the Routh test. 

Let the characteristic equation, Eqn. 	be arranged as: 

a pn  + a1 p
n-1 

+ a2p
n-2 + 	 + an = 0 (III.11)  

where a
o is positive, 

Write down the coefficients as follows in two rows and then cross- 

multiply to form further rows 



217 

ao 	a2 	a4 etc 

a1 	a
3 	

a
5 	

etc 

(ala2-a0a3) (alak-a0a5) (ala6  -a0a7) 	etc 

=b1 
	= b2 	= b

3 

a3-alb2) (bla5  -alb3) (bia7-alb4) 	etc 

= Cl 
	c2 	c3  

etc 

The number of columns is reduced by one each time and the process 

is repeated until only the first column is left. The Routh criterion 

states that there are as many roots of the characteristic equation with 

positive real parts as the number of changes of sign in the first 

column. It should be noted that there are n+1 terms in the first 

column and hence n conditions must be satisfied for stability. See 

Ref. 60-11 for details and further references. 
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APPENDIX IV 

The Stability of the System Using the Routh Criterion 

In this Appendix the stability of the system is analyzed using 

the Routh criterion and a comparison is made with the results given in 

Ref. 64-3. Armature resistance and damping are neglected and saliency 

is assumed to be zero. 

From Eqn. (2.21) the characteristic equation of the system is 

X
d
(p) X 	A135  (p) 	- p2 + Ka  K(p) (A235  - 

J p2 A245

)-\ 

 = 
..(IV.1) 

From Eqns. (4.8), (4.15) and (4.16) 

S
o 

+ p Tt
d 
 St 
o 

A135 = 	1 + p T(13.  

Xc Xmd cos 8t  A
245 rf Xd(1+ p T

1) 

and it may be shown from Eqn. (4.14) that 

A
235 	

X
c 
X
md 

 V Vo  cos(8o  8t) 

rf  Xd  (1+ p Ttd) 

(IV.2) 

(Iv.3) 

(Iv. 4) 

Thus with the simple regulator the characteristic equation may be 

written as, 

CL0 p
3  
▪ (a1.4-  132.) p2 	m2p • (413+ 133) = 0 	(iv.5) 

where 

Go = j Tvd 	Gl = j , G2 = SO 	' G5 = So 



1  
K
o 
H(0) 

\z>  min 

K  > 
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K J Xc 	K 

X 	cos 8t 	
(33  = 	2' V U0  cos(80- St) 

Xd 

It may be shown that Eqn. (IV.5) agrees with the characteristic 

equation as given in Ref. 64-3 but not with that of Ref. 64-1. As it 

has already been pointed out in section 1.1.3 an unjustified assumption 

is made in the latter case. 

Since- m
o 0 the Routh conditions for stability are, see 

action 111,5. 

a) al  + pi> 0 . This corresponds to (1 K K
o 
d) > 0 . in 

Eqn. (5.8) and is always satisfied for the parameters of the experimental 

system. 

b) (ai+ pi) a2- mo(a3+ p3) > 0 . It may be shown that this leads to 

w< 1  
K
o  H(jX 

with damping and the armature 

resistance neglected. 

  

\ max 
c) a3  p3;› 0 . Again it may be shown that this condition leads to 

with the armature resistance 

neglected. 

Hence the significant conditions for stability are the same as 

those derived in section 7. The two curves making up the stability 

limit in Fig. 1.3 correspond to conditions b and c. 	Condition a 

results in another curve which lies well above the stable region. 

It is apparent from Eqn. (IV.1) that the conditions of stability 

are different for every type of regulator. Also with more complex 

regulators the degree of the characteristic equation is increased and 

the number of quantities that must be positive is increased, see 
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Section 111.5, Moreover, the expressions become long and complicated 

and little useful information may be derived from them. The single 

delay regulator discussed in Ref. 64-1 illustrates this point. One 

is then reduced to numerical calculation and the chief advantage of 

Routh over the Nyquist Test is lost. 



TABLE I 

Operation in the Artificial Stability Region 

Ref Machine rating 
MVA 

Xc 
p.u. Power at Stab. 

Limit 
Max. 
angle 

Sr ;Condition at 
'Stab. Limit 

Remarks 

59-6 75 MVA 	! 0.125 0.8 	; 131°  142°  Beginning of 

the limit 

cycle. 

62-6 0.425 o,8 127°  126°  Loss of Model system, simple regulator. 

!synchronism. 

63-5 6go mw •••• Delay type T1  = 0.055 sec. 

with current compounding. 
. 

64-6 39 MVA 0.2 0.25 loo°  oper- Voltage regulator. 	No details. 

:ation limited 

by 120% over- 

current 

65-2 640 MVA 1..85 0.83? 96°  Low frequency; 

oscillations 

Integrator type. 

o 
57-5 i 	30 kVA - -. 	1 110 	= - - Model of 1480 MVA system, angle 

regulator. 

60-10 75 MVA - 0.8 	; 109.51 - Settled to Effectively angle regulator. 

i 109.5°  after 

. 	 i  0.5 p.u. step 

i 

	

	 in MVAr. . 
Note 5/

s 
 is calculated from Eqn. (7.5) where the parameters are given. 
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TABLE II 

Machine and System Parameters 

Machine rating 	 2 	kVA 

Unit voltamperes 
	 1825 VA 

Unit voltage 
	 186 v 

Unit current 
	 5.66 A. 

Parameter Per Unit Value 	 Test 
1••••immimmilik••• 

X
d 	2.321 	Steady state operation at 0,8 p.u. power and 

8g  from 70°  to 120°. Includes line 

reactance X . 

X 
q 

TI do 

XI 

X" 

X" 
q 

T" do 

T" qo 

TI 

T" 

T" 
q 

x  

r
a 

r
f 
J 

Xc 

1.91 

4.75 sec 

0.544 

0.482 

0.572 

0.06 sec 

0.0816 sec 

1.11 sec 

0.0533 sec 

0.0244 sec 

0.431 

0.0384 

0.001425 

0.0318 

0.321 

tt 

Sudden short-circuit of "field winding", 

alternator on open-circuit, measure decay 

time constant. 

Variable frequency static impedance test. 

tt 

tt 

It 

11 

Calculated from Tt
do  Xd  and 

Xt 
/  

Calculated from T"do 2  d X! and X" • 
Calculated from T" o 	

X
q 

and X" . 
q / 

Design value, includes line reactance Xc 

D.C. measurement, includes line resistance 

D.C. measurement 

Deceleration test. 

A.C. measurement. 



TABLE III 

Frequencies Used for the Nyquist Loci Calculations (c/s) 

0 

0.01 
0.03 

0.05 

0.07 

0.1 

0.2 

0.3 

0.4 
0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

1.2 

1.5 

2.0 

5.0  
10.0 

100.0 

223 
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