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ABSTRACT 

It is established that some necessary conditions 

for the realizability of a matrix T as the terminal 

matrix of an oriented communication net are equivalent. 

A general method for the synthesis of a terminal matrix 

of an oriented communication net is introduced. 

Necessary and sufficient conditions are given for 

the synthesis of a matrix T as the terminal matrix of 

an oriented communication net having special topological 

structure, namely: double tree net, double loop net or 

separable net. 	A necessary and sufficient condition 

for the synthesis of a triangular terminal matrix is also 

obtained. 

Some properties of minimum total edge capacity 

realizations of symmetric terminal matrices are found. 

Using these properties, the problem of synthesizing a 

given symmetric terminal matrix with minimum total edge 

capacity and minimum number of edges, having non-zero 

capacities, is solved. 

Two lemmas, which are useful in reducing the work in 

the evaluation of the terminal matrix of a non-oriented 

communication net which has weights on both edges and 

nodes, are given. 	Such a net is termed a radio-wire 



communication net. A necessary and sufficient condition 

for the realizability of a symmetric matrix T as the 

terminal matrix of a radio-wire communication net is 

presented. 

Finally, necessary conditions are obtained for the 

synthesis of a symmetric matrix as the terminal matrix of 

a radio-wire communication net containing a given set of 

edges and nodes which have unlimited capacities. 



ACKNOWLEDGEMENTS 

The author is indebted to his supervisor, 

Dr. A. Talbot, for his generous encouragement and 

valuable discussions. 

The author is also most grateful to the Ministry 

of Education, Iraq, for the scholarship which enabled 

him to pursue a course of study of which the present 

work is the outcome. 



TABLE OF CONTENTS 

Pa,ge  

CHAPTER I: AN ALGORITHM FOR SYNTHESIZING  
AN ORIENTED COMMUNICATION NET 

1.1 Introduction 	  1 

1.2 Some Properties of the Terminal 
Matrix of an Oriented Communication 
Net 	3 

1.3 Synthesis Procedure 	15 

CHAPTER II: REALIZABILITY CONDITIONS OF 
SPECIAL T/PES-  OF bRI-ENTED 
COMMUNICATION VETS 

2.1 Intro duction 	  31 

2.2 Double-Tree Nets 	 32 

2.3 Double-Loop Nets 	 43 

2.4 Separable Oriented Nets 	 62 

2.5 A Necessary and Sufficient Condition 
for the Realizability of a Triangular 

CHAPTER III: ON THE SYNTHESIS OF NON-ORIENTED  
COMMUNICATION  NETS WITH MINIMUM 
TOTAL EDGE-CAPACITY AND MINIMUM 
NUMBER OF EDGES  

3.1 Introduction 	  73 

3.2 A Minimum Realization of a Symmetric 
Terminal Matrix 	  75 

3.3 Properties of the Minimum Realizations 
of a Symmetric Terminal Matrix 	 78 

3.4 Synthesis of Non-oriented Communication 
Nets with Minimum Total-Edge Capacity 

	

and Minimum Number of Edges   88 

Terminal Matrix... 	 67 



CHAPTER IV: SYNTHESIS OF RADIO-WIRE- 
C II V-  UV AT 0 

 

Page  

4.1 Introduction 	  96 

4.2 Analysis of Radio-Wire-Communication 
Nets 	  98 

4.3 Synthesis of Radio-Wire-Communication 
Nets 	  108 

CHAPTER V: NECESSARY CONDITIONS FOR 
0 D 	A SY 	S • RADIO- 

WIRg-dbMgUNICATION  NETS  

5.1 Introduction 	  113 

5.2 Necessary Conditions for (T9 S00 )- 
Realizations 	115 

5.3 Satisfactory Principal Partitioning 	 125 

CONCLUSION 	  138 

REFERENCES 	  140 



CHAPTER I  

An Algorithm For Synthesizing An Oriented 

Communication Net 

1.1 Introduction  

An oriented communication net, N, is an oriented graph 

with weightson edges. 	The weight of an edge is a real 

non-negative number called the "edge capacity"; that is, 

the capacity of transferring information in the direction 

indicated by the orientation of the edge. 	Without loss 

of generality we shall assume that there is at most one 

edge leading from any node to another in N. Also, we 

shall assume, until Chapter IV, that no capacity constraints 

on nodes are admitted. 	Let the net N contain n nodes 

labelled by 1,21 ...,n. 	An edge from node i to node j 

will be denoted by eij  and its capacity by cij. 	The 

maximum allowable information from node i to node j ix N 

is called the "terminal capacity" from node i to node j and 

represented by tij. 	The matrix T = [tij] is called a 

"terminal matrix"m  of a communication net if tij(i 	j) 

Sometimes referred to in the literature as "terminal 

capacity matrix". 



is the terminal capacity from node i to node j and tii  

is the symbol Q) , representing node 1; numerically 

tii  is assumed to be co unless capacity constraints on 

node i are admitted. 

Throughout all the thesis the matrix T = [tii] is 

assumed to be a square matrix of order n, where every 

off-diagonalelement. tl.,i / j, is a real non-negative 

number, and every diagonal element tii  is the node symbol 

- 
An important problem related to oriented communication 

nets is to obtain necessary and sufficient conditions for 

the realizability of terminal matrices. 	Gomaryand Hu,6  

Mayeda,10  and Tang and Chien13  have given necessary con- 

ditions. 	However, these conditions are not sufficient, 

except for 3:@ 3 terminal matrices, as has been shown 

by Tang and Chien.13  

In this chapter we shall present a method for realizing 

a given realizable terminal matrix, T, that is finding 

an oriented net with associated edge capacities such that 

its terminal matrix coincides with the given T. 



1.2 Some Properties of the Terminal Matrix of an 

Oriented Communication Net. 

We shall first present some definitions and results 

which will be required in this chapter and the next 

chapters. 

Definition (1.1). 	A subnet of N consisting of a sequence 

of distinct nodes 	and edges e. . pe. . p...9 
1
1
12 1213 

is called a "directed path from node 	to node ei
m-1m 

im" 	or simply "directed path (illim)" . 	A path 

(ivim)" is a subnet that becomes a directed path (ivim) 

by reversing the orientationsof some of the edges. 

Definition (1.2) 	A "cut (i,j)" of a connected oriented 

net N is a minimal set of edges the removal of which 

destroys all directed paths (i,j). 	If the removal of the 

edges of acct (i,j) partitions the nodes of N into 

V, . = {ii,...,ip/ and Vj  = 	such that 

are i and all nodes reachable from i after 

the removal of all edges of the cut (i,j) and ji,j2,...,jg  

are all other nodes, then this cut (i,j) will be represented 

by Kilo 
	4 4 4 ...4 • 	The capacity of a cut (i,j) is 
'2"—Lp'4142 4q 

the sum of the capacities of all edges of the cut (i,j). 

The capacity of Kili2...ipyhj2..41. is denoted by 

C( . . 

	

K1112...ipthj2...41), 	A "minimum cut (i,j)" is a 



cut (i,j) whose capacity is not more than the capacity of 

any other cut (i,j) in N. 

A fundamental property of communication nets is 

contained in a theorem formulated and proved by Ford and 

Fulkerson,3 and independently by Elias, Feinstein and 

Shannon.2 It is called the "Max-Flow Min-Cut Theorem" 

and it reads: 

Theorem (1.1). 	"For an oriented communication net 

the maximum flow from node i to node j is equal to the 

capacity of a minimum cut (i,j)," 

Definition (1.3).  A matrix T is "semiprincipal partition- 

  

able" if upon rearranging the rows and the corresponding 

columns (if necessary) T is partitionable into 
AP. 

A . T 1 . 1 
(1.1) 

L 
C1 	B1 

such that T1 is a uniform matrix with element value t1 

minimal for T (i.e. smallest among all elements of T), 

Al and BI are square submatrices whose diagonal elements 

are the node symbols and both Al  and B1  are again partition-

able in the same fashion satisfying the same conditions 

until finally each submat4tx becomes a one-by-one matrix. 

The matrices Al  and B1  are called the "resultant main 



submatrices" by the semiprincipal partitioning process. 

Necessary conditions of a realizable terminal matrix 

are contained in the following theorems which are given 

by Tang and Chien:13  

Theorem (1.2). "A realizable terminal matrix of 

an oriented communication net is semiprincipal partition-

able." 

Theorem(1.3)."..Jettij(i,j = 1,2,...,n, i / j) be 

any element of a realizable terminal matrix T. 	Then 

t..ij > min F t 110 kj 9 

for all k = 1,2,...,n." 

Theorem (1.3) is also given by Gomory and Hu.6  

Definition (1.4). An "S-submatrix" of a realizable 

terminal matrix T of an oriented communication net N is 

a submatrix of T consisting of all elements of T which 

are at the intersections of the rows representing the 

nodes in Vr  and the columns representing the nodes in Vel  

where Vr  = tri,r2,...,ral and Vc  = 

a + 3 = n, are the collections of nodes such that every 

node of N is either in Vr or Vc but not in both. 	Such 

an S-submatrix will be denoted by Sr 	 n ° 

It is clear that for every cut K4 4  

of N there corresponds one S-submatrix, s4  
ja-L

4  
2***iplili2.04(11 
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p + q = n, in the terminal matrix T of N. 

Definition (1.5). 	Let Vr  = tri,...prj and 

Ve  = 	be any partitioning of the set of 

nodes of N such that Vr  flvc  'If, the empty set. 	We 

defineH  a "seg(V ,V )", donoted by, r 	c 	
g '1'2'"rm'elc2— 

n  
"3 

asthesetofalledges. eli  of N such that ieVr  and 
jlEVe. 	It must be noticed that seg (Vr1Vc) / seg(V0,Vr) 

The capacity of a seg g 	, denoted by r1r2...rcoolc2...ci3  

C(gr is the sum of the capacities of ,r2...rm,c c 	c ), i2... 3  

all edges in the seg r  ,Vc  ). 

One can easily see that for every S-submatrix, 

Sr r 	 n  of T there corresponds one and 

only one seg g 

	

	, and every seg r1r2...rm,c1c2...cf3  

contains a cut (rx  pcy  ), where gr1r2...reocic2...c  

x = 1,2,...,m and y = 1,2,...,5. 	Therefore by Theorem 

(1.1) we arrive at the following lemma: 

Lemma (1.1). "For every S-submatrix s, " 
'1'2°.*rm'cic2' 

of the terminal matrix T of an oriented communication 

net N, 

C(grir2...rm ,C1C2o.• 

for all if Vr  and j eVc  

This definition of a seg is slightly different from that 

given by Reed.11 
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The following theorem is given by Mayeda:10 

Theorem (1.4). 'Every element in a terminal matrix 

  

T, except the diagonal elements, belongs to at least one 
S-submatrix in which this element is the largest." 

Mayeda10 asserts, without proof, that theorems (1.3) 
and (1.4) are equivalent. 	His assertion is not obvious; 
we shall prove it here. 

Theorem (1.5). 	"The following statements are equi- 
valent: 
(a) For every element tij, i 	j, of T 

tij  min ttim tkj,1 	(1.2) 
for all k = 1,2,...,n. 

(0)ForeverYelernart tij—,1 	 an j, of T there is 	S- 

submatrix containing tij  as a largest element." 
Proof. (1) Assume that matrix T satisfies (a), we 

element of T and let til,i2,...,ia) be all elements in 
shall show that it also satisfies (b). 	Let tij  be any 

t
1,2, ...,n1 such that 

t.. < t.. 	, 	r = if  21  ...2a, 	(1.3) tij 	11r 

f
i1pi2,...9j4 be all elements in 	 1,21 ...In} and let 

such that 

J t..10 < t J  . . r  r = 1,2,...,b. 	(1.4) 



- 8 - 

The sets 	 and th,j2,...,j10 	have no 
elements in common, because otherwise if p is in both of 
them then 

	

t.. 	ti  

	

< 	. 

	

10 	p' t  pj 
contradicting (1.2) 

Now let 
Q = 	1,2,...,n 
[ 

	1'l1'12"'"ia - j"19 j29..°' 13} 5  
and 

	

	nl ,n2,...,na 	be all elements of Q such that .. 
tin  > 	 j ' 

	

ti 	x = 1,2,...,d, 	 (1.5) 
r x 

for at least one it C  fil'i2' ° • "ia 	Finally, let  ' 
Imilm2,...,mci be the complement of n 

I l
n' 2"'"nd/ in 

Q. 	
We shall prove that s..li2*-ianin2'nd'jj1j2—ibm1m2—mc 

is an S-submatrix of T which contains tij  as largest element. 
Suppose, if possible, that 

	

tap 	ij , > t (1.6) 

where a € tip iv • ..,i f n. 	n a 	1' "°1 } and 0 € fi 9 il9 • • • ibtrnit • • PM 

We have three cases: 
(A) If a. 	.f ia } and PElifilP***Pjb 5, then 

from (1.3), (1.4) and (1.6), 
tij  < min t _ 	tctop  

= min tia, min [ tai, t m5,  Po 

min { tict, tctil 



contradicting (1.2) 
(B) If a Eli, 	} and (3 E[m12  ...,mc  } then 

we get contradiction to the definition of n. 	n ' ° d • 
(C) If a Etna, 	t nci 	and 	(3 E 	 pm 

then from (1.2) t  (1.5) and (1.6) we have, for at least one 

> tij 

which has been shown in Cases (A) and (B) above to lead to 
a contradiction. 

Hence in any case 
tap  I tij f 

for all ci, 
	
i t ilt ...t iaIn1t ...t nd 	, and  

mit ...t m:. 
Thus (a) implies (b) . 
( 2) Suppose that T satisfies (b), and let tij  be any 

element of T and s„ 	 , be an S-submatrix of 
'1'2° ' •ra,' cic 2 ° ° • '-' 

T in which tij  is a largest element. 	If kEtl, 2, ... t n. , 1 

Therefore eithertkj  or tik is an element of s 
r1r2" •ra' cic 2 "° 

} 
it eel,  • • - 4a 

tirp  L min { 

k 	 y  i t  j, 'then either k€ trit r ... t rim  I.or k € cit n 2, ... t op  
{ 

Thus 
tij  > min /tile  tki  3. f 
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for all k = 

Hence the theorem. 

Now we shall prove that Theorem (1.4) implies Theorem 

(1.2), that is 

Theorem (1.6). Theveryelementtiv i j, of 

matrix T there is at least one S-submatrix of T in which 

tij  is a largest element, then T is semiprincipal 

partitionable matrix." 

Proof. 	Let ti  be a minimal element of T and let T1 

(1 	
s,1-1-2***ra'01C2.—' 0

) be an S-submatrix of T in which t1 J-   
is a largest element, then T1  is a uniform matrix of 

element value t1 and by rearranging the rows and columns 

(if necessary) T can be partitioned into 

T = 

 

where Al and B1 are square matrices; those are the resul-

tant submatrices of T. Now let t2 be a minimal element 

of A1, and s . . 	be an S-submatrix of T 

in which t2  is a largest. 0.4 pl,p2,...,py} and 

ql,q2,...,q61 , y + o = at  be all the elements of 

t

ri,r2, . . . ,ra  	which are in fri f q, . . . trai t  ) and 
(i.,q,...,c,j , respectively, then s 	P 

P1P2...PYPC11".2".CIO 



(1.--  T2) say, is an S-submatrix of Al. 	Since t2  is a largest 

element of T2 and smallest of Al, and so of T 2,  then T2 
is a uniform matrix of element value t2. Thus Al can be 

partitioned as 

	

A2 	T2 

Al  = 

	

2 	B2 

The above partitioning can be carried out until each 

resultant main submatrix becomes a one-by-one matrix. 

Thus T is semiprincipal partitionable. 

Hence the theorem. 

It must be noticed that the converse of Theorem (1.6) 

is not necessarily true. 	This follows from the matrix in 

(1.7) which is semiprincipal partitionable but does not 

contain an S-submatrix in which element 3 is largest. 

TO) 2 1 

5 0 1 

- 3 	4 a 
Corollary (1.1).  "Ifforeve17-'element tio7 1- / it 

of matrix T, 

t..13 > min {tik' ic t, .3  / 

for all k = 1,2,...,n, 

then T is semiprincipal partitionable." 

(1 . 7 ) 
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This follows directly from Theorems (1.5) and (1.6). 

Mayeda also shows that Theorem (1.4) is not sufficient 

for the realizability of terminal matrices of oriented 

communication nets. 

Let Sij, i 	j, be the set of all S-submatrices of T 

each of which contains tij  as a largest element. 	We 

shall prove the following theorem which will be required in 

the next section. 

Theorem (1.7). "For every element t.., i / j, of a ij 

realizable terminal matrix T of an oriented communbation 

net N, there is at least one S-submatrix in Sij  whose 

corresponding seg is a cut (i,j) of N and its capacity is 

equal 'to" tij. 

Proof. 	By Theorem (1.1), there is a minimum cut 

(i,j), say K. 	
1j 
	4 9 of N such that 
2
...

4q 

C(K4 
11  
. 
2.."'10d  

y4  lt/2..44 
-L

4 

 

Consider the S-submatrix sili2 of T. 	By 

Lemma (1.1) 

t.. > t ij — pq 

where t is a maximal element of s. 
pq 	 1112...ip,j1j2...j1  

But tij  is an element of this S-submatrix. 	Thus tij  = tpq 

tij=   

• 
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and s.. 	 • E S.. 
1112 —ipl i1j2 — Jcl 13  
Hence the theorem. 
One can easily see that if tpq  is a maximal element of 

T, then SPq  consists of 2n-2 S-submatrices; all combina-

tions of rows containing row p but not containing row q. 

The following lemma is useful in obtaining Sij, i#j, 

for some eamemt s.ti  .., of T. 
Lemma (1.2). 'Let M be a submatrix of the terminal 

matrix T whose elements are all those on the intersections 

of rowsi,ii,i21 ...,ia  and columns j,j1,...010  where 

tiyil y • • •,iaj 

t11  > tij  , for all r = 1,...,a, 
r 

and. 

t jr j > tij, for all r = 1,...,b. 

ThenDlisasulanatrixofeverYS-sublnatrixinSii." 
Proof. Suppose, if possible, that si e Sij  does not 

contain 149 then either 

(1) there is at least one it which is a column of 

si, then t44  is an element of si; thus it must not be "r  
more than tij, contradicting the hypothesis; or 

(2) there is at least one jr  which is a row of s1, 
then t. 	is an element of al  and it must not be more than 

3r0 
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tij, contradicting the hypothesis also. 

Hence the lemma. 

Corollary (1.2). 	"If tij  < tik, for all k 	j, then 

Sij  consists of one S-submatrix only which is column j 

without 0 . 	Similarly, if tij  < tkj  for all k / 

then Sij  consists of one S-gubmatrix which is row i with-

out 0 ." 

The proof follows directly from Lemma (1.2). 

Lemma (1.3). "Let tij  and tpq  be any two elements 

of a realizable terminal matrix T, such that tij  tpq, 

then s..13ris 	/.11 pq 
Proof. 	If SijciSpq  is not empty then let s be an 

S-submatrix in both 
Sij 

 andSpq. 	Thus each of tij  and 

tpq  is maximal element of s. 	Hence tij  = tpq, contra- 

dicting the hypothesis. 	Hence the lemma. 
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1.3 Synthesis Procedure. 	14/1W.PiebtiCcfat4A1.4 

Suppose we have a matrix T which satisfiesATheorem 

(1.4),thatisforeveryelementtipi / j, there is at 

least one S-submatrix of T in which this element is largest. 

Then the following method will lead to a realization for 

T if it is realizable as a terminal matrix of an oriented 

communication net. 	The procedure will be described in 

the following steps: 

(1) Obtain Sij  for each element tij, i / j, of T, 

and let [Sij
J 
 be the set whose elements are all Sij, 

i,j = 11 2,...,n, i i  j. 
[ s(1)  

"'" (2) Let (82)/ = 	. 	y Silk 	S
(1) } be the ij 	1 j   1 1 	22 	a, a. 

set of all aiaments of ij1 each of which consists of 

one S-submatrix only; then obtain Si, where 

a 	(1) S1 = U S. r r=1 1 jr  " 

(3) Let [ s.  (2) 42) sc2)• 	s(2) 
ij 	1J1P 

elements ofSii 	such that 

S.  (2)  . 	S.. 1 r r 

and 

Sc2). II s / / , 	9 r r 

be all 
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for all r = 1,2,...,P4 	The set fSC2.ij)/ can be obtained 

easily by applying Lemma (1.3). 	Then obtain S2  and 

, where 

S . Si 	UP (SP)  - 	(2) 
) 2 	r=1 	Si j  

mj m 	rj r 	r r 

fs10 	13 cl fs..1 { (2) 
- 	• 	9 

mom 

= IS(3). 0 r r 
r = 1,2,...,Y, } say, 

in. whichS . . is the set of all S-submatrices each of 
imj m 

which contains t. . as largest element and . . is a j 	 t
im j 

 
m m 	 m 

maximal element of T. 

(4) Let S(1) 	(2) S(Y)  3  2 ,3 )4..1 _3 	be all different sets 

such that each contains exactly one element from every 

S(3) 	r = 1,...,Y and no other elements. 	Now we have 
r r 	() 	(y) y cases, each corresponds to one cf S3  ,...,S3  . 	Let 

us take the first one. 	Obtain E1 and I1 corresponding 

to S(1)'  where 

E1 =USW  1 3 ' 

(1) I1 	SW [4=143jr  - S3 ] 

It can be easily seen that each Si., exceptSi j  has one 
m m 

of its elements in E1 and the others in I1' 	Also, every 

S-submatrix of T is contained in either E1 or I . 
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(5) For each S-submatrix in E1 form an equality by 

setting the capacity of its corresponding seg in N equal 

to the largest element of this S-submatrix, where N is 

the complete oriented communication nets  of n nodes and 

unknown edge 

[A11(1)  A(112)1 

where 

T1  

in which t. j  
r 

- 

ti,  

r 

capacities, 

t
111 

 

Cl 

C2 

aka 

r = 

	

cij, i 	j. 	Thus we get 

(1.8) 1 

t. 	. 	< 	t. 
rj r 	r+1j r+1, 

r 	= 1,2,...,a-1, 

1,2,...,a, 	is a largest element in 

the corresponding S-submatrix in E1' a is the number of 

elements in E1 and C, 

Cl 

C2 
f 

  

  

is a column matrix whose elements are the edge capacities 

of N, which are arranged in an order such that 

Cl  = 

RA complete oriented communication net is an oriented net 

that contains edges eij  and eji  for all i 	j. 
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Matrices A )  and Alt) are the coefficient matrices (0, 11 

+ 1 elements only) of the equations. 	From the ordering 

of the equations and the variableswe can easily see that 

A )  is a lower triangular matrix with +1 along the 11 

diagonal; thus it is non-singular. 

(6) For each S-submatrix of I1 form an inequality by 

making the capacity of its corresponding seg, in N, more 

than or equal the value of a largest element in this S-

gubmatrix; and let the first 2n-2 of the inequalities 

correspond to those inS . 	Thus we get im.m . 

E
A21
(1) A(

2
1
2
)] 

Cl  

C2 
> T2 	(1.9) 

   

   

Since the edge capacities 

- ell 

are non-negatives then 

> 0. (1.10) 

C2 

From (1.8) we have 

Cl = (A)) 	1T- 	•- (AO- 	
1-1 -12)

4 ( 
•-11 / 	-1 	11)/ 

n -2' (1.11) 

thus (1.9) becomes 

A )[(A ))-1T 	(A ))-1A(1)0  ] 	A(1)0  
21 11 	1 	11 	12 2 	22 2 > T2  . (1.12) 

Therefore from (1.10), (1.11) and (1.12) the set of 



a. 
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constraints in (1.8), (1.9) and (1.10) reduces to 

A21)-A21)(A11
(1.)  

)-141)  

...(
A11
(1))-1

Al2
(1) 

U 
L 

(1.13) 

where U is a unit matrix of order n(n-1)-a. 

If the constraints in (1.13) are consistent then they 

must have a solution. 	Any solution of (1.13) which 

satisfies at least one of the first 2n-2 constraints with 

equality is a realization of T, because: (1) from (1.8), 

for any pair of nodes, say i and j, there is a cut (i,j) 

inAlishosecapacityisequaltotipand (2) every cut 

(i,j) of N is a seg of an S-submatrix and thus it is con-
tained in either I1 or E1 and so its capacity is not less 

than tij  (Lemma (1.1)), where N is the net of the solution. 

If; (1) the constraints in (1.13) are inconsistent 

or (2) they are consistent but become inconsistent if any 

of the first 2n-2 constraints becomes equality, then we 

must go back to Step 4 and take S(2) then obtain I2 and 
E2 and repeat the procedure. 	The method must be repeated 

for the other sets S(3),..my Say )  until we arrive at a 3 



- 2D - 

solution. 	If none of these sets leads to a solution, 

then T is noi' realizable as a terminal matrix of an 

oriented communication net (Theorem (1.7)). 

The method described above is very laborious, but it 

can be simplified by making use of the following lemma: 

Lemma (1.4): "Let X be a square lower triangular 

matrix of order h with nonzero diagonal elements, and let 

X be partitioned as 
MEM 

X11 

X = (1.14) 

X21 hh 

where X11  is a square lower triangular matrix of order 

(h-1), and X2/  is a row matrix, 1 x (h-1). 	Then the 

inverse of X is given by 

X11 
(1 .15 ) 

1 -X21X11 	1 
xhh hh 

Proof. 	The lemma is true, because carrying out the 

multiplication of the right hand sides of (1.14) and 

(1.15) we get a unit matrix of order h. 

Let s1 be an S-submatrix in Si  . which is also in aja 
El' then its corresponding equality occupies the last row 

X-1 = 
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in (1.8). 	If there is s2  E Si 	, s2 	sly such that 

	

wjai-(2) -(3) 	(") (1) S'41  S3 	- slijs2  is a member of 	b3  ,b3 	3  11  
( then take S3
2)  to be 41)  - si tjs2. 	Thus 

E2 	= El S1 US2 9  

I2 = I1 Lisa.  - s2  

If the constraint corresponding to s2  occupies the jth 

	

is [Ail)  A112.)1  with row of (1.9) then [4 A(2)] J 	the ath  12  
row replaced by the jth row of [41)  41)], and [4.)A22)] 
is [41)  141)] with the jth  row replaced by the ath row 

of (Ail)  All)]. 

	

	(1) 	(2) Thus if we partition A11 and A11 as 

in (1.14), 

A(1) . 11 

(A11))11   

0 
(2) 
All 

(4,2,))21 	1 
(All ))-1  by Lemma (1.4), 	is (A ))-1  with the last 11 

row replaced by [-(4T )21(41))2  1], = R say. So 

it is very easy to find (4V)-1  from (41))-1. 
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ig)  is (A11))-1  AP2')  Similarly (14P 	 except the last 
.m is(,(1))-1T  row which must be RA( 2). and also (A(2))-1T 12 	11 , Ail 1 

except the last element which must be RT1. 	Other matrices 

required in (1.13) can be found from those by some simple 

multiplications. 

The entire method of synthesis will be illustrated 

in the following example: 

Example (1.1), Consider the matrix 

OD 	5 	4 	4 

13 0 4 4 

	

9 	8 	CD 	6 

	

25 	13 	9 	Q
. 

The set of all Sij, i 	j, are obtained: 

S13 = S14 = 323 = 324 = 	fs12,34/ 

S12 = 

S21 

S31 = 

S32 = 

S34 = 

S41  =  

s1,234 

2,134' s23,14I 

ts30.24/ 

c713,24 

(3123,4 }  

{s4,123,  s42,13, s43,12 9 s423 ,1} 
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S42  = s149 23' s134, 2 

S43 = 1242 3 } • 

812, 34' 

= 

f 84,123°  

Sir 234'  

842,13' 

x123, 4' 

34342' 

813,24' 

8423,1 

8124,3' 

and 

83,124 

Therefore 

S1  = 

[Sid) 
S2 = 

= { 21' S42 

Thus 

S(1)  3 

S(2)  3 

- 

= 

is 
L 2,134' 

( 2,134'8  

514,23j 

5134,2 3 , 
S3(3) 

3 

S(4)  3 

- 

= 

1 
V- 
, 
2344' 8144 23} 

[-23,14' 8134, 2} 

and 

Therefore we have 4 cases, at most. 

slt  234' 6123,4' 

82,134' 814,23 

849123' 842,13' 

Case 1. 

 

El  = 

II  = 

Cs12734' 
839124, 

(843,12' 

813, 24' S124,3"  

11  

8423,1' 823 214' 8134, 	' 
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The set of constraints in the order mentioned above is 

given by 

1  1 

0 

0 

1 

0 

0 

1 

and 

0 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

1 

A(1)  
11 

1 

1 	1 

0 	0 

1 	1 

0 	0 

0 	0 

A(1)  21 

0 	1 

0 	0 

0 	0 

0 	0 

1 	0 

0 	1 

1 

0 

0 

1 

0 

1 

1 

0 

0 

0 

1 

0 

0 

1 

0 

0 

1 

1 

0 

1 

0 

0 

0 

1 

1 

1 

0 

1 

1 

1 

1 

0 

0 

0 

1 	0 

1:0 

1 	0 

0 	0 

0 	0 

0 	0 

1 	• ' 	0 

A(1)  12 

1 	1 

0 	0 

0 	1 

0 	0 

1 	0 

0 	0 

1 	1 

0 	0 

A(1)  22 

0 	01 

0 	0 

1 	0 

0 	0 

0 	1 

0 	0 

40, 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

0 

_0
1 3 

 

012 
0
34 
C32 
C
43 
031 
021 

042 

014 

023  c23 

024 

C  41 _ 

013 ".  

012 
0
34 

032 

043 
G31 
021 

042  

014 
023 

024 
041 

T1  

- 

5 

6 

8 

9 

9 

13 

13 

T2 
25 

25 

25 

25 

13 

13 

, 	(1.16) 

. 	(1.17) 
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Then we find (41))-1  and all other required matrices)  

1 
-1 1 

0 0 1 

1 -1 -1 1 

-1 0 0 0 	1 
-1 1 0 -1 	0 1 

0 0 0 0 	0 0 1 

1 -1 0 0 	-1 0 0 1 

1 1 1 0 

0 -1 -1 0 

1 0 1 0 

0 1 0 0 

-1 0 -1 0 5 

-1 -1 -1 0 

0 1 1 0 

0 0 1 0 

(4)-1  = (1.18) 
) 

(1.19) 
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(1)/ (1) A21 kA11 ) 
-1 	(1) A12 = 

-1 

-1 

-1 

-1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

(1.20) 

4 

1 

6 

1 

5 
2 

13 

3 

(41))-1Ti  

6 

8 

18 

15 

21 

5 

(1.21) 

(1.22) 

Hence the set of constraints is given by 
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1 0 0 1 19 

1 0 0 1 17 

1 0 0 1 7 

1 0 0 1 10 

0 0 0 0 -8 

0 0 0 0 8 

-1 -1 -1 0 -4 

0 1 1 0 014- -1 

-1 0 -1 0 23 -6 
(1.23) 

0 -1 0 0 024 -1 

1 0 1 0 041 -5 

1 1 1 0 -2 

0 -1 -1 0 -13 

0 0 -1 0 -3 

1 0 

1 0 

1 0 

1 0 

From the sixth row of (1.23) we have contradiction, that 

is 0 > 8, thus no solution for (1.16) and (1.17). 	Hence 

we must consider the next case. 
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Case 2. 

E2 .312,349  s1,234' s123,4" 	s13,24' s124,3 

33,124' 32,134' s134,2)' 

12 = '843,12' 34,123' 342,13' 	3423,1' 823,14/  314,23) 

Using the modification mentioned in the discussions 

following Lemma (1.4), we find that (All))-1  isidentical 

with that in (1.18) except the last row which must be 

[0 0 1 -1 0 0 0 1]. 	Thus the last row of 

W.))-1A1) is [0 0 1 0]; thus it is identical with 

that in (1.19). Also, the last element of (4)-1T1  

is 11. Hence obtaining 14(AiV)-1(Al )) and 

" 
A(2)(A ).-1 ) Ti, we arrive finally at 21 ‘11 
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- 
1 0 0 1 11 
1 0 0 1 9 

1 0 0 1 7 

1 0 0 1 10 
0 0 0 0 -8 

0 0 0 0 -8 
aim, INN 

-1 -1 -1 0 -4 

0 1 1 0 014 4.  -1 

-1 0 -1 0 c23 -6 

.0 -1 0 0 024 -1 

1 0 1 0 -5 041 
1 1 1 0 -2 

0 -1 -1 0 -13 

0 0 -1 0 -11 
1 0 

1 0 
1 0 

1 0 
WI/ 

which is consistent and can be reduced to 

(1.24) 



1 

-1 

0 

1 

0 

-1 

-1 

1 

0 

-1 

0 

1 

1 

0 

0 

- 

C14 

023 

24 
041 

30 - 

11 

-4 

-1 

0 

0 

0 

0 

(1.25) 

The set in (1.24) remains consistent even if the first 

constraint becomes equality. A solution of (1.25) which 

makes the first constraint of (1.24), which is also the 

first of (1.25), equality is given by 

C2 = ) 0 < x < 4 

   

Hence substituting in 

(2) -1 	(2) -1 (2) 
Cl - 	) Tl - (All ) Al2 02 

we get for the transpose of C 

C' = 	1, 6-x, 1, 54-X2 2+x, 13, 11, x, 0, 

0, 11-x], 

which is a family of realizations of T. 
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CHAPTER II  

Realizability Conditions of Special Types  

of Oriented Communication Nets 

2.1 Introduction  

We have mentioned in Chapter I that the necessary 

and sufficient conditions for a matrix T to be realizable 

as a terminal matrix of an oriented communication net have 

not been found yet. We have also seen that the general 

method presented in Chapter I for the realization of a 

matrix T is long and laborious. Thus it is worthwhile 

to present some sufficient conditions for the realizability 

of some types of oriented communication nets. 	Tang and.  

Chien13 showed that a matrix T satisfying some conditions 

(Theorem 2.6 of this Chapter) is realizable. 	Recently, 

1962, Mayedal°  showed that a completely partitionable 

matrix is realizable. 

In this chapter, we shall present necessary and 

sufficient conditions for a matrix T to be realizable as 

a terminal matrix of communication nets having tree or 

loop structures. We shall also show that Tang and Chien,s 

and Mayeda's results are special cases of ours. A method 

for realizing a terminal matrix T which is lower or upper 

triangular will also be given in this chapter. 
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2.2 Double-Tree Nets. 

Definition (2.1). 	A "double-tree nettiis a connected 

oriented communication net containing no loop consisting 

of more than two edges. That is a double tree net may 

contain two parallel edges of opposite orientations (see 

Fig.2.2). 

Definition (2.2). 	A "double linear tree net" (or 

double Hamiltonian path net) is a double tree net which 

contains a path containing all the nodes of the net. 

Definition (2.3). 	In the definition of the semi-

principal partitionable matrix (Definition (1.3) the sub-

matrix C1 in (1.1) will be called a T-submatrix of T" 

In general for each resultant main submatrix of order more 

than one there is one C-submatrix obtained by applying 

the semiprincipal partitioning process to that resultant 

main submatrix. 	Thus a semiprincipal partitionable 

matrix of order n contains exactly (n-1) C-submatrices. 

Definition (2.41. A matrix T is said to be "principal 

partitionable 10  if it is symmetric and semiprincipal 

partitionable, that is, T is semiprincipal partitionable 
1 

with Cr = Tr for each r = 1,2,...,n-1, where Tr is the 

transpose of Tr. 

The following theorem is given by Mayeda9: 
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Theorem  (2.1). 	"A matrix T is realizable as a 

terminal matrix of a non-oriented communication net if 

and only if T is principal partitionable." 

Definition (2.5). 	A matrix T = [tij] is said to be 

"completely partitionable7/10 11  if its rows and columns 

can be rearranged to form a matrix T = [Ti.] with the 
property that matrices T(1)  = [tC1)] and TZ2)  = [tC2)] ij 	ij 
are both (without further rearrangement of their rows and 

columns) principal partitionable, where tij(1)  

for i < j and ti j = t.. ) = T. for i > j. ij 
Lemma 2.1 . 	"The terminal matrix of a double linear 

tree net is completely partitionable." 

Proof. Let N be a given double linear tree net. 

Label the nodes of N by 1,2,....,n such that e121e25'...  

en-1,n is a path (11n) of N. 	Let T = [tij] be the 

terminal matrix of N with the diagonal elements in the 

order 1,2,...pn. 	Any change in the capacity of edge 

elk, 	> k, does not change the terminal capacity tij, 

i < j, of N. 	Thus T(1)  and T(2)  are the terminal matrices 

of N1 and N2, respectively, where T(1)  = [tip ) ], ij 
tC1)  = t

j
)  = tij  for i < j, T(2) 	[tij  j tc2). t(2) 

Ij 	i lj 	Ji 
tij  for i > j, and N1(N2) is N with all edges eij(eji), 

i > j, removed and all other edges replaced by non- 

oriented edges. 	By Theorem (2.1), T(1)  and T(2) are 
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principal partitionable. Hence T is completely parti-

tionable. 

Mayeda shows that a completely partitionable matrix 

is realizable and its realization is a double linear 

treenetwhoseedgecapacitymatrix,C=HL is given cij  

by 

ti 	if i 	j = ± 1, j  

0 	otherwise. 

Hence we arrive at the following theorem: 

Theorem (2.2).  "A matrix T is realizable as the 

terminal matrix of a double linear tree net if and only 

if it is completely partitionable." 

Definition (2.6). 	A matrix T = [tij] is a "tree 

terminal matrix" if T is semiprincipal partitionable with 

each C-submatrix, Cr, r = 1,2,...,n-1, containing at 

least one element, say tip such that for every other 

element in Cr, say tlk, the following relation holds: 

tlk  = min Nil  tij, tjk  ). 	(2.1) 

The element tij  will be called a "connective element of 

Cr". 

Lemma (2.2). 	"In Definition (2.6), the relation 

(2.1) is equivalent to 
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= min ftli, tiki 

= min ttii,I tjk  

Proof. 	Suppose (2.1) holds, then 

= min tik 	Ltii,tij, t. 

= min itij, tjk  

because tii  = co , by definition. 

Similarly, 

tij  = min itsi,tij  ..1 . 

tlk 

} 

(2.2a) 

(2.2b) 

(2.3) 

(2.4) 

Thus substituting (2.3) and (2.4) in (2.1), we obtain 

(2.2a) and (2.2b), respectively. 

Now suppose (2.2) holds, then putting k = j in (2.2a) 

we get relation (2.4). 	Substituting tij  from (2.4) in 

(2.2b) we obtain (2.1). 

Hence the lemma. 

One can easily see that a connective element of Cr 
is not less than any other element in Cr. 	Thus we con-

sider only the maximum elements of Cr  when we look for a 

connective element of Cr. Another remark is that the 

element of a C-submatrix consisting of one element only 

is the connective element of that C-submatrix. 
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Example (2.1). To illustrate Definition (2.6) con- 

sider the matrix 

• 2 	: 	1 	1 	1 
.....-: 

7 : 	1 	1 	1  	• 

T • (2.5) 
7 10 	4 	3 

,---"4,---• 
7 8 	f 	8 	' 	, 	3 ....._:.. 

6 6 	i 
1 	
6 	4 	

: 0  

: 	! 

The element t32 is the only connective element of the 

C-submatrix, Ci, where 

  

1 	2 

7 10 

7 8 

3 
Cl  = 	

4 

5 6 	6 

 

  

    

because for i = 3 and j = 2, eqn (2.1) holds for each of 

t31' t411 t42' t51' t52 which are the elements of C1  other 

than t32. 

where 

Similarly t53  is the connection element of C2, 

	

3 	4 

C2 = 	5 {6 	
4 I 

• 
1 	3 

The connective element of C3  = 2 [7] and 04  = 4 [8] are 

t21 and t43, respectively. 	Thus every C-submatrix of 

the matrix T given in (2.5) has a connective element; 

so T isatree-terminal matrix. 
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Theorem (2.3). 	"A matrix T is realizable as the 

terminal matrix of a double tree net if, and only if, T 

is a tree terminal matrix." 

Proof. Let N be a double tree net and cji  a minimal 

edge capacity in N. 	The removal of edges eij  and eji  

from N will cut it into two disjoint double tree nets, 

Naand Nb, as shown in Pig.(2.1). 	Since there is one and 

only one directed path from any node a to any other node 

b in N, then the terminal capacity tab  is equal to the 

smallest edge capacity in the directed path (a,b). 	Thus 

the terminal matrix T of N is partitionable into 

	

Al 	T1 

	

1 	1 

B1  

where T1  is a uniform submatrix with element value t1  = 

cji = minimal for T, Al is the terminal matrix of Na and 

B1 is the terminal matrix of Nb. If tik is any element 

in Cl  then . is a node in Nb  and k is a node in Na. 

The directed path (i,k) consists of the directed path 

(Li), edge eij, and the directed path (j,k). 	Thus 

tik  = min 
	

tii, tiki 

By similar method, the terminal matrices Al  and B1  of the 
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double tree nets Na and Nb, respectively, can be partitioned 

in the same fashion with the elements of their C-submatrices 

satisfying the corresponding equalities. We can carry on 

this procedure until finally each subnet becomes a single 

node. 	Thus T is a tree terminal matrix (Definition 2.6). 

Now, suppose T is a tree terminal matrix of order n. 

We shall prove by induction on n that T is realizable as 

a terminal matrix of a double tree net. The assertion 

is true for n = 2. 	Suppose that it is true for n < k, 

and consider T of order n = k+1. 	Since T is a tree ter-

minal matrix then it can be partitioned as in (1.1). 

Because Al and B1 are tree terminal matrices of orders 

< k, then by induction hypothesis the realizations of Al  

and B1, say Na  and Nb, respectively, are double tree nets. 

Now consider the net N consists of Na, Nb  and edges eij  

and eji  of capacities cij  = tip  and chi  = tji  in which 

tip  is a connective element of Cl. 	The terminal 

capacity tfk  of N, where I is a node of Nb  and k is a node 

of Na, is given by 

tfk  = min 	tth., t.„  Li itjk 

= tilt  

Thus T is the terminal matrix of N. 

Hence the theorem. 
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Fig.(2.1). 	A double tree net, N, for illustrating 

the proof of Theorem (2.3). 

Fig.(2.2). 	A realization of T in (2.5). 
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The synthesis procedure of a tree terminal matrix of 

order n is summarized in the following steps: 

(1) Partition T by the semiprincipal partitioning 

process. 

(2) Find out a connective element for each C-submatrix 

of T. 	Let ti . be a connective element of Cr r r 

r = 1,2,...,n-1. 

(3) A double tree net of T is determined by the edge 

capacity matrix, C = [oil], where 

c..11 = node symbol (D 	1,2,...,n, 

c 	= 	. i 	. t 
rj 
	i  
r 	r r 

c. . 
Jr 

= t
j  1r  r r 

r = 1,21...,n-1 

and every other element is zero. 

For example, a realization for the matrix given in 

(2.5) is shown in Fig. (2.2). 

Corollary (2.1). 	IA completely partitionable matrix 

is a tree terminal matrix." 

The proof follows from Theorems (2.2) and (2.3). 

Thus Mayeda's result is a special case of ours. 

Corollary (2.2). 	'The number of distinct elements 

in a tree terminal matrix is not morethan 2(n-1)." 
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The proof follows from Theorem (2.3) and the fact that 

the number of edges in a double tree net of n nodes is 

not more than 2(n-1). 

Corollary (2.3). 	"A matrix of real non-negative 

numbers given by 

CD tl  t, t 

t2 CD 	t2 • 	t2 	t2 

3 

to-1 to-1 tn-1*** to-1 

to tn+1 tn+2— t2(n-1)(D 

where t1 < t2 I.... < tn_, < min ftnp tn+1"'"t2(n-1) 

is realizable as a terminal matrix of a double star net, 

that is, double tree net which is star-shaped." 

Praf. 	The 0-submatrix, Cr, obtained in the r th 

(r < n-1) semiprincipal partitioning step is given by 

r 

r+1 r tr+1 
r+2 tr+2 

Cr 

n-1 to-1 
n tn+r-1 

4 
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The element tnr (= tn+r-1)  is a maximal element of Cr, 

and it is a connective element of Cr because for each 

!(n > 	> r), 

mill  I tin' tnr' trr = tin = tir • 

Thus by Theorem (2.3), T is realizable and the edge 

capacity matrix of its realization is given 1037" C1j 
where 

	

c11.. 
	node symbol 0 , i = 1,... tn, 

tij  , for i = n, j = 112,...,n-1; 

	

c1j. . 	 i = 1,2,...,n-1, 	j = n, 

0 , 	otherwise. 

Hence the corollary. 

Since each C-submatrix of a tree terminal matrix may 

have many connective elements, then there may be many 

double tree net realizations for a given tree terminal 

matrix. The number of these nets is determined by the 

following corollary: 

Corollary (2.4). 	"If a tree terminal matrix T of 

order n, has a unique semiprincipal partitioning form, 
n-1 

then it has 11-m, distinct double tree net realizations, 
r=1 

where mr is the number of connective elements of the r
th 

C-submatrix." 
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2.3 Double-Loop Nets. 

Definition 2.7). 	A "double loop net" is a connected 

oriented communication net which becomes a single loop if 

each set of parallel edges (not necessarily of the same 

orientation) is replaced by one edge. 

This section will be divided into two subsections. 

2.3.1. Anal sis of the Terminal matrix of a Double 

Loop Net. 

Consider a double loop net, N, of n nodes labelled by 

1,21...,n, as shown in Fig. 

cln 	ci+1,i 

(2.3),where 

(2.6) 
< c c 	nl c1,1+1 7  

for all i = 1,21 ...,n-1, in which all edge capacities are 

real non-negative numbers. Let Sa be the set of nodes 

1,2,...,m and Sb the set of nodes m+1, m+2,...,n. 	Finally, 

let Na and Nb be the double linear tree nets obtained from 

N by removing edges env  eln, em,m+l,  em_apm. 	The ter-

minal matrices of Na and Nb will be denoted by T
(a) = 

EtW] (i 1 = 1,2,...,m) and T(b)  = EtC/?)], (i,j = m+1, la 	 10 
...1n), respectively. 
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r 	- 

Na 

on 

f 

I N 
b 

     

 

Fig.(2.3). 	A double loop net, N, of n nodes. 
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It is clear that in the double loop net N there are 

exactly two directed paths, which are edge-disjoint, 

leading from any node to another. 	Moreover, (1) one of 

the directed paths from a node in Sa  to a node in St  

contains edge emn  and the other contains edge em,m41, 

(2) one of the directed paths (i,j), where i,j ESa, 

contains eln (em,m+1) if i < j (i > j) and the other con-

tains neither eln nor em m+1' (3) one of the directed 

paths (i,j), where i,j 	St, contains edge eln(emymia) if 

< j (i > j) and the other contains neither elm  nor 

empm+1, and (4) each of the directed paths from a node in 

Sb to a node in Sa contains neither elm nor em,m+1. 	Thus 

using (2.6) we get 

Cm, m+1' 	tl, say), if i E, Sa and 3 6  St, 

+ t(i  a  , ) if it j E Sa  and i < j, j 

tij 	+ t(a) 	if 	and i > I 09 

	

cmpm+1 	ij , 	i,  i E. se. 
cln i + t13) ' 	if 10E: sb  and i < j, 

	

\,. 

cm „m+1 	ij + t(b) , 	if  iv i E 5.b 
721.c171; > j.  

The following lemma follows directly from the fact 

that T(a)  and T(b)  are completely partitionable (Lemma 

(2.1)): 
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Lemma (2.3). 	"The terminal matrix T of a double 

loop net N is partitionable (without rearranging rows and 

columns) into 

m 	n-m 

A 	T1 
-13 

T 
C 	B 

such that T1 is a uniform matrix with element value t1 
minimal for T land A and B are completely partitionable 

matrices." 

From now on we shall write, for shortness, 

min ftm+1,n' tlm } = f p 

n-m 

min 	n,m+l' tmi} = h. 

Lemma (2.4). 	"For the double loop net N, 

min /Ititm+11  tmjj, > h, 	

(2.8) 
min iltin, tlj  I.> f, 

for all i 	Sb  and j 	Sa. 

Proof. 	From Fig. (2.3), one can easily see that 

for i = m+l,...,n and j = 1,...,m, 
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t(b) 	> 	t(b)  i,m+l 	 n,m+l , 

t(a) 	> 	t(a)  mj 	ml ' 

t(b) 	> 	t(b)  in 	m+l,n , 
 

t(a) 	> 	t(a)  lj 	lm • 
Thus 

min ft(b) 	(a) 	(b) 	+(a) ison+1, t(a)  I.?.  min 	tn m+1' t(a) 	' 

f.(b) +(a) 	f t(b) 	tilan')  3-  min '‘T 	j > min c in 1 ti 	m+1,n' 
Hence (2.8) follows by direct substitution from (2.7). 

Now, turning to the case when node i ESb and 

j € Sal  we can easily see that: 

and 

Nlipt13),cm+lym  ij I+ min 
f
+(b) t(a) , 
'in 'lj ""n1 

which becomes, by using (2.7), 

tij  = min ition+1, tray  (cm+101  + cmpm+1) 

+ min ft
i 
 9 t 9 (0 	

cm n)  0n 	lj 	nl 	). - tl' 

where t1  = cm ,m+, + cin. 

Consequently, 

tnl = mill  f h,  (c m+lpm + Cm,m+1) 

} 
(2.9) 

Cn1 - cm,m+1' 

tm+l,m = minff,(cnl + cln) 	+ cm+lpm 	cln 	(2.10) 
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Comparing (cm+,,m  + cm,m+1) and h, and (cnl + cln) and f, 

we have the following four cases: 

cm+1,m ' c m,m+1 > h  

and 	 (2.11) 

Cnl + cln > f.  

Then from (2.10) we obtain 

cnl = tnl + cm,m+1 - h 

c321+1,m = 1m + cln 	f . 

Substituting (2.12) in (2.11) and (2.9) we get 

tm+1 t > f+h-t ,m- n1 	1 

and 

(2.12) 

(2.13) 

t. . = mint.ta4.1„ t tmj, (tm+lon  + ti  - f)-} ij  

+ min tin9tii,  (tn1  + t1  - h) (1.1- t1, 	(2.14)  

for all i 	Sio  and j 	Sa. 

Case (B):3€  

cm+1,m + Cm,m+1 > h, 	
(2.15) 

cnl cln  < f  

This case does not occur if cnl = cm,m+1 and/or cm+1,m= cln 

EEThis case does not occur if cm+1,m = ln • 
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Then from (2.10) we obtain 

cnl = tnl + cmlm+1 - h 

°m+1,m = tm+1*m tnl cmsmia 

From (2.6) we have 

> °nl 	c mo m+1 • 

(2.16) 

(2.17) 

Substituting (2.16) in (2.17), (2.15) and (2.9) and using 

Lemma (2.4) in the latter, we get 

tnl > h, 
(2.18) 

t 	>t 	<f+h- t1 ' 

and 

tii  = min ttitmia,tmj, (tm+1 ,m-tn1+ h)/ 

+ tnl h 

for all i € Sb  and j € Sa  

Case (0).1aai  

(2.19) 

 

cm+1,m °m,m+1 < — h,  

cnl + cln  > f . 
(2.20) 

NKRThis case does not occur if cnl = cm,m+1 • 
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Then from (2.10) we obtain 

cnl = tnl tm+1,m - cln  + f 

cm+lpm = tm+1,m + ln f  

From (2.6) we have 

> cm+lpm c  ln 

(2.21) 

(2.22) 

Substituting (2.21) in (2.22), (2.20) and (2.9) and using 

Lemma (2.4) in the latter we get 

> 	 p tm+1,m — f  
(2.23) 

< f +h-t1, tnl > m+1,m 

and 

= min tin, ft pt, a" (tni  - tm+lom  + f)),  tio  

+ tm+1,m - f 

for all i 	SI)  and j E: Sa. 

Case (D): 

cm+l,m + Cm,m+1 < — h, 	
(2.25) 

cnl + Cln  < f  

Then from (2.9) and using Lemma (2.4), we obtain 

(2.24) 

t..ij = cnl + m+1,111 (= t2, say), 	(2.26) 

for all ieSio  and j 	Sa. 
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Thus constraints (2.25) make submatrit C uniform. Adding 

the inequalities in (2.25) and using (2.6) we get 

t1  < t2  < f h -t1 	(2.27) 

Before summing up the previous results, we shall 

define a loop-terminal matrix. 

Definition (2.8). A square matrix T of order n is 

called a "loop-terminal matrixilif it can be partitioned, 

by rearranging its rows and columns (if necessary), into 

m n-m 

	

T. A 
	T1 

 

}n1  

	

C 	B 	n -m 

(2.28) 

such that 

1) T1  is a uniform matrix with an element value 

t1  minimal for T, 

2) A and B are completely partitionable (without 

further rearrangements of rows and columns), and 

3) one of the following cases holds: 

(A) inequalities (2.13) and equalities (2.14), 

(B) " 	 (2.18) 11 	11 (2119), 

	

(c) 	If 	(2.23) a " (2.24), 

	

or (D) 	11 	(2.27) 	(2.26). 

Summing up the results of this subsection we arrive 
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at the fact that the terminal matrix of a double loop net 

is a loop-terminal matrix. 

2.3.2. Synthesis of a loop-terminal Matrix. 

In this subsection, we shall prove the second part 

of the following theorem 

Theorem (2.4). 	"A matrix T is realizable as the 

terminal matrix of a double loop net if, and only if, T 

is a loop terminal matrix." 

Proof. 	It has been shown in §2.3.1 that the terminal 

matrix of a double loop net isaloop terminal matrix. 

The second part will be proved here. 

Let T = [tio] be a loop-terminal matrix partitioned 

as in (2.28). Assume that x and y be any non-negative 

real numbers such that 

x + y = ti 	(2.29) 

Moreover, let T(a)  = [tip)] and T(b)  = [tb.)] be A and B, ij 

respectively, with x subtracted from each element above 

the diagonal and y subtracted from each element below the 

diagonal; that is 

...9m9 I / j 9 

t(a)  = ij 

and 
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()t..b  = ij 

'.ti  - x j 	, 	if i < j, 

tij  - y , 	if i > j, 	where i,j = m+1, 

i / j. 	(2.30) 

The elements of T(a)  and T(b)  are non-negative real numbers. 

Since A and B are completely partitionable then T(a) and 

T(b)  are completely partitionable without rearranging the 

rows and columns. 	Thus T(a)  and T(b)  are realizable as 

terminal matrices of double linear tree nets with edge 

capacities given by 

ci,i+1 ti,i+1 - X  
(2.31) 

ci+12i = - 
t 
1+1,1 

where i = 1,2,...,m-1 for T(a)  and i = m+1,...,n-1 for T(b). 

It is clear that the order of the nodes of the double 

linear tree nets of T(a) and T(b)  will be as in A and B; 

that is, 1,2,...,m, and m+1,...,n, respectively. 

Connect these two nets by adding edges ein,empm+1, 

enl and em+1,m' 
	The edge capacities of eln  and emtm+, 

are x and y, respectively; the capacities of en1  and 

em+l,m will be determined in each of the four cases corres- 

ponding to Definition (2.8). 	Let this double loop net 

be denoted by Nk. We shall prove for each case that the 

terminal matrix, say K = [kij], of Nk  is identical with 

the given loop-terminal matrix T. 
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Before considering each case we observe from (2.29) 

and (2.31), that 

°1,1+1 > c it i+1 — m,m+1 
(2.32) 

ci+19i > cam  p 

for i = 

Case (A): 	If T satisfies (2.13) and (2.14) 

values of cnl and cm+l,m in Nk be 

- h + cm,m+1 cnl = tnl 

cm+1,m = tm+1,m - f + cln •  

Substituting (2.33) in (2.13) we obtain 

cnl > cm,m+1 ' 

cm+1,m > cln  

then let the 

(2.33) 

(2.34) 

Thus using (2.32) and (2.34) and analysing Nk  as in 

§2.3.1, we get equation (2.7) with kij  in the left hand 

tip)  j 
(a side instead of ti 	which gives by substituting . 

(b) and ti b )  from (2.30): ij 

kij  = tij.. 

for all i and j except i = m+1,...,n and j = 1,2,...,m. 

From (2.33) and using (2.13) we obtain 

cm+l,m Cm,m+1 > h (= min fk n,m+1 kml J  ) 

cnl + cln > f (= min {k m+1, klm))* 
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Thus continuing the analysis of Nk  as in Case (A) of 

§2.3.1, and using (2.14) we arrive at 

kij  = tij  

for all i E Sia  and j E Sa. 
Hence 	K = T. 

Case (B): 	If T satisfies (2.18) and (2.19), then let 

cnl =  tnl - h + cm,m+1 ' 	( 2 .35) 
cm+11m = tm+11m - tnl  + h - cm,m+1' 

Thus substituting (2.35) in (2.18), we obtain 

cnl - m,m+1 ' 

> ln c
121-1-1,M 

and 

cm+11m + Cm,m+1 > h  

cln + cnl  < f 

Hence following the analysis of Case (B) we get, as in the 

synthesis of Case (A), K = T. 

Case (21: 	If T satisfies (2.23) and (2.24), then let 

cnl = tnl - tm+1,m - cln + f 	
(2.36) 

tm+1„m + cln - f . cm+1,m 

Substituting (2.36) in (2.23) we obtain 

cnl > cm,m+1 

cm+1,m C ln 
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and 

cm+1,m + Cmlm+1 — h  

cnl + cln > f . 

Hence following the analysis of Case (C) we get, as in 

the synthesis of Case (A), K = T . 

Case (D): 	If submatrix C of T is a uniform of element 

value t2 and 

t1  <t2  < f + h - t1 ' 
	(2.27) 

then there are always two positive real numbers a and p 

such that 

a + p =t2  , 

pa,M+1 
< m < f - cln (2.37)  

cln 	h - cm,m+1* 

This can be proved by plotting (2.37) (see Fig.2.4) and 

noticing that the point (cm,m+l'cln)  is always inside the 

region bounded by a = 0, 5 = 0 and a + p = t2 (or on the 

boundary a + p = t2) because cm,m+1 + cln = t1 t2' and 

the point (f - cln, h cm ,m+1)  is always outside the 

same region (or on the boundary) because f + h (°1n 

cm m+1) 	t2. 	Thus any point on the line ab in Fig.2.4 

satisfies (2.37). 	Let (a0, po) be any such point. 



h-cm„m+1 

cln 

cmpm+1 2 f-cln 

PA 

c.mlm+I <a<f - cln 

Fig.(2.4). 	Plots of relations (2.37). 
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Now, lei the values of cni  and crvatm  be given by 

cm+1,m = $ o • 

Then usins (2.37) we obtain 
c 	c nl — m,m+1 

m*1,m > c ln 
and 

Cta+1,m < h Cm l m+1 

cn1 	cln < f . 

Thus following the analysis of Case (D) we get, as in the 

synthesis of the previous Cases, K = T . 

Hence the theorem. 
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It should be noticed that a loop terminal matrix 

satisfying Case (D) is not necessarily completely partition- 

able. 	This can be seen by considering the loop terminal 

matrix given in (2.39) ,paje CO s 

Corollary (2.5). 	"If tM  is a maximal element of the 

submatrix C of a loop terminal matrix T, then 

< tm+lm + tnl + t1 	f - h 9 if T satisfies (2.14) — 	, 

tM  = tm+l,m ' 	if T satisfies (2.19), 

= tnl 	 if T satisfies (2.24). 

The proof is obvious. 

The following corollary follows directly from Corollary 

2.5 and Definition 2.8: 

Corollary (2.6). 	"Suppose T has a unique partitioning, 

A • T1  

T 

C 	4  B 

where T1 is a uniform of element value t1 minimal for T 

and A and B are completely partitionable without rearranging 

rows and columns. If tM  is a maximal element of C and 

tM  > max l(tm+1,m + tnl + t1 - f - h), tm+1,m,tnlj 9 

then T is not a loop terminal matrix." 
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The synthesis procedure indicated in the proof of 

Theorem 2.4, of a loop-terminal matrix, will be illustrated 

in the following two examples. 

Example 2.2. 	Consider the matrix 

3 3 3 
3 3 3 

(2.38) 

5 5 

84j 6 
7 7 

-0 4 
9 0 

7 	6 
8 	6 

9 	6 

The resultant main submatrices A and B are completely 

partitionable, but the C-submatrix C is not uniform, so we 

exclude Case (D). 	Since m = 2, n = 5, then 

min ft12,t35 	= 4 

min {t21't  53 }= 7 

It is easy to see that inequalities (2.13) and (2.18) do 

not hold, but the inequalities in (2.23) do hold. 	Thus 

considering (2.24) we find that for i = 3,4,5 and j = 1,2, 

this equality holds in T. 	Hence T is a loop-terminal 

matrix satisfying Case (C). 	Therefore the edge capacities 

c32  and c51  are given by 

c32 =6 + x - 4 = 2 + x, 

c51 	9  - 6  - x + 4 = 7 - x, 
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where x= c13 and c23 = y = 3 - x, in which 0 < x < 3. 

The other edge capacities are given by 

012 = 4 - x c21 = 6 + x2  

c34  = 5 - x c43 = 5 + x, 

c45  = 6 - x c54 = 4  x' 

The double loop net is shown in Fig. 2.5. 
4-x 

Fig.(2.5). A realization of T in (2.38), where 0<x<3. 

Example 2.3. 	Consider the matrix 

5 	2 	2 

8 

8 	8 	7 

6 

8 

CD 

9  

2 	2 

(1) 

As in Example 2.2, 

f = min { -12' -t34 	= 5 

h = min I-t21' 43 
	=6 

ti  = 2 and t2  = 8. 

(2.39) 
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Therefore, inequalities (2.27) hold and T is a loop-terminal 

matrix satisfying Case (D). 	Let 014  = x, 0 < x < 2, then 

c23 = 2 - x, 

012 = 5 - x, 	c21 = 4 + x, 

c34 = 7 - x, 	c43 = 7 + x. 

To determine 041 and c32' let 041 = a, then c32 
where 

2 - x < a < 5 - x, 
WINO 	•••••1 

x < 8 - a < 4 + x. 

8 -a, 

(2.40) 

One can easily combine the inequalities in (2.40) and get 

4 - x < a< 5 - x. 	(2.41) 

The double loop net of (2.39) is shown in pig.2.6. 
5-x 

Fig.(2.6). 	A realization of T in (2.39), where 

0 < x < 2 and 4 - x < a< 5 - x. 
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2.4 Separable Oriented Nets. 

Definition (2.9). 	A net N, oriented or non-oriented, 

is 1°nonseparable145  if every subnet of N, consisting of 

more than one node, has at least two nodes in common with 

its complement. 	All other nets are "separable". 

Definition (2.10). 	A matrix T is called a "separable-

terminal matrix" if it can be partitioned into 

Al 	B1 

R1  

B2 

R2 

A2 

such that 

Al 	1 R2 

and T2 =  

C2 	A2 

T1 = 

are realizable as terminal matrices, and every 

B1 and B2, say tip , satisfies 

tij  = min Nye, tvcj). 

Theorem (2.5). 	"A matrix T is realizable as the 

terminal matrix of a separable oriented net if and only 

if it is a separable terminal matrix." 

Proof. 	Let N be a separable oriented net, and N1  

and N2 be its components (not necessarily non-separable) 

(2.42) 

element of 

(2.43) 
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at the cut-node21  vc9 and also let T be the terminal 

matrix of N. By rearranging the rows and columns (if 

necessary), T can be partitioned as in (2.42). 	Since N 

is separable, then every directed path between two nodes 

of N1(N2) does not contain any edge of N2(Nl). 	Thus T1  
and T2 are the terminal matrices of N1  and N2, respectively. 

Moreover, any directed path (i,j), where ilia NI  and j iri N2, 

consists of a directed path (i, vc) in N1 and a directed 

path (vc, j) in N2. 	Thus every element of Bl  and B2, say 

tij, must satisfy (2.43). 	Therefore T is a separable 

terminal matrix. 

Now, let T be any separable terminal matrix partitioned 

as in (2.42), and let N1  and N2  be the realizationsof T, 

and T2, respectively. 	Form the net NI by identifying node 

vc  of N1  with node vc  of N2. 	If tij  is the terminal 

capacity of N' from node i in N1  to node in N2, then (as 

in the proof of the first part) 

t.
1 
 . = min fttiv 1  tl  v c 	cj  

= min -tiv  f
V j 

C 	C 

= tij  , by Definition (2.10). 

= -A "cut-nodel l  is a single node which is common to a sub- 

graph and its complement. 



- 64- 

Thus N' is a realization of T. 

Hence the theorem. 

Corollary (2.7). 	"A tree-terminal matrix of order 

n,n > 3, is a separable terminal matrix." 

The proof follows from Theorems (2.3) and (2.5). 

The following theorem is given by Tang and Chien13: 

Theorem (2.6). 	"A matrix T is realizable if it can 

be partitioned, by rearranging the nodes in such a fashion 

that the following conditions are satisfied: 

(1) Each submatrix corresponding to a sub-collection 

of nodes lying along the diagonal line is square and 

contains elements with values no smaller than the value of 

any of the elements in an off-diagonal submatrix. 

(2) Each off-diagonal submatrix is a uniform matrix. 

(3) Each submatrix along the diagonal line is realiz-

able. 

(4) Treating these submatrices along the diagonal 

line as nodes, the matrix T is realizable." 

A realization net, N, of matrix T which satisfies the 

conditions of Theorem (2.6) is a separable net containing 

at least mAcut-nodes, where m is the number of submatrices 

along the diagonal line. 	Thus, by Theorem 2.5 we arrive 

at 
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Corollary  i2.8). "Every matrix T satisfying the con-

ditions of Theorem (2.6) is a separable matrix." 

Excluding the trivial case when every submatrix along 

the diagonal line consists of a single node, the converse 

of Corollary (2.8) is not necessarily true; that is, not 

every separable matrix satisfies the conditions of Theorem 

(2.6). 	This follows from the following example. 

Example (2.4). Consider the matrix T given in (2.44) 

   

which is partitioned corresponding to Definition (2.10), 

with node 3 as the cut-node, v , and submatrices T1 and 

T2 are given in (2.45). 

Cl 

T1  = 4 

9 

10 

4 

9 

8 

2 	1 

CD 	1 

7 	0 

2 1 	1 
4 

1 	1 
(2.44) 

7 
	 r 

4 

7 8 	0 

CD 4 
T2 = (2.45) 

8 Q) 

One can easily see that T is separable matrix; its realiza- 

tion is shown in Fig.2.7 

It can be easily seen that there is no partitioning 

of the matrix in (2.44), except the trivial one, that 

satisfies condition (1) of Theorem (2.6). 	Hence our 

Theorem (2.5) is more general than Theorem (2.6). 



-66 - 

N1: A realization of Tl' 

N2°. The realization of T2.  

6 

8 

N: A realization of T in (2.44). 

Fig.(2.7). 
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2.5 A necessary and sufficient Condition for the  

Realizability of a Triangular Terminal Matrix. 

Definition i2.11). 	"A descending net", N, is an 

oriented communication net of n nodes labelled 1,2,...,n 

and edges eij  (i 	j) of capacities c..ij  such that 

cij  = 0 , if i < j, 

cij  L 0 , if i > j. 

Lemma (2.5). "The terminal matrix, T = [tij], of a 

descending net, N, is a lower or upper triangular matrix 

if the node order along the diagonal line is 1,2,...,n, 

or ntn-1,...,1, respectively." 

Proof. 	Since there is no directed path (i,j) if 

< j in N, then there is no flow from i to j; that is, 

tij  

Hence the lonma. 

It is always possible to transform an upper triangular 

terminal matrix to a lower triangular terminal matrix by 

rearranging the rows and columns such that the node order 

along the diagonal line is reversed. 	Thus all the 

following results are applicable to upper triangular 

terminal matrices as well, after appropriate transformations. 

2211.14.11.21).LL121. An "h-subnet", N(h) , of a 

descending net N is the net obtained from N by deleting 

every edge eij, i - j > h, where h is a positive integer 

not more than n-l. 
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Lemma  (2.6).  "Let N(h) y where h isupositive integer 

   

< n-11  be an h-subnet of a descending net N, then 

ij 	ti(jh) 	
> if 

if 

i - j < h, 
where 1,3?.) is the terminal capacity from i to j in N(h)  ." 

Proof. Let elk be any edge of N which is not in 
N(h) y that is, t k > h, then 

- k > i - j. 

Therefore, if / < i, then k < j. 	Thus elk  has one or 

both of its nodes in the subset of nodes 	1,2,...,j-1, 
i+ly... 2 n 	Therefore, by Definition (2.11), elk  is 
not contained in any directed path (i,j) in N; that is 

the removal of elk does not change the terminal capacity 

(ipj). 
Hence the lemma. 

Let C = [cii ] be the edge capacity matrix of a 

descending net N whose terminal matrix is T = [tij], then 

one can easily see that 

	

c j+l,j = t j+1,j 
	j = 

and 	 (2.46) 

c j+2, 0 . = t j+2, 3 . - min 	3+2, 0 .+10 yt.+1,3j y 
for all j = 



obtain N(3) N(4) 

(2.6), N(n-1) 
..., N(n-1) successively. 

is the realization net N of T. 

By Lemma 
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Theorem (2.71. 	"A lower triangular matrix, T = [tii], 

is realizable as a terminal matrix of an oriented communi- 

cation net, N, if and only if, 

 

 

t.. > t0:-j-1) lj 	10 (2.47) 

i and j such that i > j + 1, where tTj-1)  is the 

capacity (i,j) in the (i-j-1)-subnet, N(1-j-1), 

for all 

terminal 

of N." 

Proof. It must be noticed that any realization of 

a lower triangular terminal matrix is a descending net. 

Thus N is a descending net. Since N(i-j-1)  is a subnet 

of N, then condition (2.47) is necessary for the realiza- 

bility of T. 	Now, suppose T satisfies (2.47) and assume 

that we have found N(r)  for some r, 1 < r < n-2, then we 

canconstructN(r+1) byaddingtoN(r) alledgeseij such 

that i - j = r + 1, whose capacities are given by 

c.. = t.. - tcr)  ij 	ij 	ij 

> 0 	by 	(2.47) 

But using (2.46),we can easily find N(2). 	Thus we can 

Hence the theorem. 

The procedure of the synthesis of a lower triangular 

matrix T will be illustrated in the following example. 



By 	(2.46), we get 

021 = 3, 032 

031 = 3, c42 = 4, '053 = 2' 064 = 5  • 

The 2-subnet, N(2), is shown in Fig.(2.8a), from which we 

find t(2)41  = - 6/ 52 t(2)  = 4 and t63
(2)  = 5. 	Therefore, c41 	= 9, 

052  = 8 and 063  = 3. 	The 3-subnet, N(3)  is shown in 

Fig.(2.8b). 	Similarly from N(3) we find t51(3)  = 7 and 

t(62 = ) 	9, thus 051  = 7 and 0 2  = 2; and the 4-subnet, 

N(4), is shown in Fig.(2.80). 	Finally, from N(4) we 

obtain tL4'.)  = 11; thus 061  = 6 and the realization of T 

is shown in Fig.(2.8d). 

6, 043 = 	c54 	c65 
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EItalla111. Consider the following lower trian-

gular matrix, 

-CD 

3 	CD 

6 6 0 

15 8 4 aN 

14 12 4 2 CD 
17 11 8 6 1 © 

L 

(2.48) 
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Fig.(2.8a). 	N(2). 

Fig. (2.8b).N (3) . 
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Fig.(2.8d). N(5) = N. 
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CHAPTER III  

On the Synthesis of NON-Oriented Communication  

Nets with Minimum Total Edge-Capacity and Minimum 
Number of Edges. 

3.1 Introduction. 
A non-oriented communication net is an undirected 

graph with capacities as weights. We shall assume that 
no capacity constraints on nodes are admitted. The flow 

in any edge may go in either (but not both) direction as 

long as its magnitude does not exceed the edge capacity. 

The edge matrix, E = (eij], edge capacity matrix, C = (cis], 

and the terminal matrix, T = (tij  31 for a nonoriented 

communication net, N, are defined in the same way as in 

the oriented case. It must be noticed that in the non-

oriented case E, C and T are symmetrical matrices. Wo 

shall assume, as before, that N is connected and contains 

exactly n nodes labelled by 1,2,...,n. 

It is easy to see that a cut (i,j) of a nonoriented 

communication net N is a cut-set (i,j) of N, that is, a 

minimal set of edges whose removal separates N into two 

disconnected nets, each being connected and one containing 

node i and the other node j. For nonoriented nets, we 
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shall use the term cut-set instead of cut. The capacity 

of a cut-set (i,j) is the sum of the capacities of its 

edges; and a minimum cut-set (i,j) of N is a cut-set 

(i,j) whose capacity is not more than the capacity of any 

other cut-set (i,j) of N. 	A minimum cut-set (i,j) of N 

will be denoted by Sv.pirj  if the removal of all its edges 
Y 

separatesNintotgosubnets- NI  and N,, where V.and V. 

arethesetsofailliodesinand N.
3  

NiI 	respectively. 

It has been shown9  that a symmetric matrix T is 

realizable as the terminal matrix of a nonoriented net if, 

and only if, T is principal partitionable (Definition 2.4). 

Gomoy and Hu6 have shown that a necessary and sufficient 

condition for a matrix T to be realizable as the terminal 

matrix of a nonoriented communication net is that for all 

i,j,k = 1,2,...fn, 

tij  = tji  > min ,ttik,tkj), 

The total sum of edge capacities of a nonoriented 

communication net is called the "total edge capacity". 

Several methods for the synthesis of nonoriented nets with 

minimum total edge capacity are known; those are listed 

below: 

(1) Method of equal distribution,8  

(2) Method of decomposition of matrices,6 
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(3) Method of elementary matrices,14  

(4) Method of successive expansion.14  

The last method will be discussed in detail in the next 

section. 

In this chapter, we shall add some properties of the 

minimum total edge capacity realization (in short, minimum 

realization) of nonoriented communication nets. Some 

results on the minimum realization with minimum number 

of edges, having nonzero capacities,will also be given. 

3.2 A minimum Realization of a Symmetric Terminal Matrix. 

A symmetric terminal matrix T, i.e. a terminal matrix 

of a nonoriented communication net, is principal partition-

able. Wing and Chien14  show that T can also be partitioned 

uniquely into the form: 

MO. 

12 	Tlk Al 	T 	000 

t 
T12 A2. 000 T2k 

(3.1) 

Tlk T2k 000 Ak 

for some k < n, such that: 

1) 	A1,A2,...,Ak  are square submatrices, 

T = 
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2) Every Tij  is a uniform matrix with element value 

t1,  ij T 	ij is the transpose of T, 

3) Every element in Al,A2,...,Ak  is greater than ti, 

4) Every submatrix Al,A2,...,Ak  can be partitioned in 

the same way and satisfies the same conditions. 

This partitioning will be called "Wing-Chien partitioning". 

Definition (3.1). 	The "index of partitioning", Ip f 

of a symmetric terminal matrix T is the number of operations 

necessary to partition T, by Wing-Chien partitioning, into 

a form in which every diagonal submatrix is either of 

order 2 x 2 or 1 x 1, with the provision that each operation 

is to be applied to one diagonal submatrix at a time. 

It is well-known that the set of all edges incident 

at any node i of a nonoriented net N contains a cut-set 

(itz.), for all r / i. 	Thus if N is any realization of a 

symmetric terminal matrix 

n 

T, then 

= 	1, 2, . • •,n, 

r = 1,...,n, 	i 	r} 

Et, of N must satisfy 

(3.2) 

(3.3) 

*:› 	'ci 	> 	t. j 	lo 
j =1 
j/i 

where 	t. 	= max io 	tir 

Thus the total edge capacity, 

Et  = 
' 1 =1 	io 

iyj = 1p2polpeyne 
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Hence any realization of T that satisfies (3.3) as an 

equality, and so (3.2), is a minimum realization, Nm, of 

T. We have mentioned in §3.1, four such realizations. 

The one which is of interest here is the Method of 

Successive Expansion which may be summarized in the 

following steps: 

1) Partition T by Wing-Chien partitioning (eqn 3.1), 

2) Treating each diagonal submatrix Al,...,Ak, as a node 

construct a loop with each edge capacity equal to 

t1/2, i.e. half the capacity of the first partitioning 

step. 

3)Threalizeeachof. AI  (1 = 1,...,k) which is of order 

more than 1, a new loop is formed, by repeating steps 

1) and 2) on Ai, to take the place of the corresponding 

node and each edge in the new loop will have a 

capacity of t2/2  (where t2  is a minimal element of 

Ai) except for one edge, which has a capacity of 

(t2-t1)/2 and is the one and only one edge which the 

new loop shares with the original loop. 

4) 	Each submatrix is carried out.  in the same way until 

each node in the net obtained represents one node 

in T and not a diagonal submatrix of order more than 1. 

The net obtained by the above method of realization satis-

fies (3.3) as an equality; and if every set of parallel 
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edges replaced by one edge then this net, Nm, will contain 

exactly (I + n - 1) edges, where I is the i dex of 
-DIAL 	-1714-004-/r 	creth,  N1r) 

partitioning of T. 

planar15 net consisting of I meshes. 

The following theorem follows from (3.2) and the 

above discussions: 

Theorem (3.1). "A realization Nm  of a symmetric 

terminal matrix T is minimum if, and only if, for every 

node i of Nm 

Qi(Nm) = 	. 	= 1,41keepn, 
	 ( 3 . 4) 

where Qi(Nm) is the sum of the capacities of all edges 

incident at node i in Nm, that is 

44 

M 

Qi(Nm ) 111 

3.3 Properties of the Minimum Realizations of a Symmetric 

Terminal Matrix. 

Without loss of generality, we may assume that T con- 

tains no zero elements, that is, 

Theorem (3.2). 	N. minimum 

aymmetric terminal matrix T is a  

ti  . ), 0 for all i / j.  

realization Nm of a 

non-separable net." 

Proof. Suppose, if possible, that Nm  is a separable 
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net, then it must contain at least one cut-node (°, say 

node i. 	Let Ni,N2,...,Nm  (m > 2) be all the maximally 

connected subnets()  of the net obtained from Nm by 

removing node i and all edges incident at it. There is 

at least one edge in Nm  connecting node i with a node in 

Nr for each r = 11...,m. 	Thus for every j = 1,2,...,n, 

j 	i, there is a cut-set (i,j) in Nm  which is a proper 

subset of the set of all edges incident at node i. 

Therefore 

do < Q.(Nm  ) i  

contradicting Theorem (3.1). Thus Nm  is a nonseparable 

net. 	Hence the theorem. 

Corollary (3.1). "Pi minimum realization of a symmetric 

terminal matrix T contains no cut-set consisting of one 

edge only if the order of T is more than 2." 

Proof. Any net which consists of more than 2 nodes 

and contains a cut-set consisting of a single edge is 

separable. 	Hence the assertion (Theorem (3.2)). 

()Theorem (3.1), Ref.12. 

(NN)Let S be a non-empty set of nodes of an unconnected 

net, N, and S the complement of S in N such that there 

exists a path between any two nodes in S and no path 

between any node of S and any node of n. The subnet of N 

which consists of all nodes in S and all edges having their 

nodes in S is called a "maximally connected subnet" of N. 
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Definition (3.2). 	Let Vt be a set of nodes of a 

nonoriented communication net N. Ail(VA)-condensed 

net, denoted by NOT',  , of N is a net obtained from N 

by identifying (H)  all the nodes in VI; the new node will 

be denoted by v.t. 

The following lemma is given by Gomoy and Hu6 

(Lemma 1): 

Lemma (3.1)(HH) 	"Let S 	be a minimum aut- ITVk  
set (Ilk) of a nonoriented net N, then the terminal 

capacity-  (i,j), it jEVk, i / j, is the same in both N 

and NN), where N(V4) is the (V1)-condensed net of N." 

Theorem (3.3) 	"Let aci. —17. be a minimum cut-set 
VI V  k 

(/,k) of a minimum realization Nm  of a symmetric terminal 

matrix T, then the (VT)-condensed net, Nm(V1), is a 

minimum realization of T = [Tij  ] if tik  is a minimal 

element of row 4, where T is T with: (1) all rows and 

columns corresponding to the nodes in Vi deleted and (2) 

row and column corresponding to node vi added, with element 

value 

(H)If the nodes of an edge are identified (shorted), the 

edge is removed from the net, that is, no self-loop edges 

are allowed. 

(HN)A rigorous proof of this assertion is given by Ford 

and Fulkerson5  (Lemma 3.1, page 179). 
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Proof. 	By Lemma (3.1), the terminal capacity (i,j), 

ipj EVk, in Nm(V1) is equal to tio. 	Shorting an edge 

is equivalent to making its capacity a), thus it does 

not decrease the terminal capacity between any pair of 

nodes. Since t k  is a minimal element of row lin T and 

the set of all edges incident at node 1g in Nm(Vi) is a 

cut-set (1,r), r Crk, and its capacity is equal to 

then the terminal capacity (Ipe pr) in Nm  (V ) is equal to 

tpk. Thus T is the terminal matrix of Nm(/). 

Because Nm is a minimum realization of T, then by 

Theorem (3.1), eqn (3.4) holds for every node iEVk  in 

both Nm and Nm  (V ). Thus Nm  (Vf  ) is a minimum realization 1  
of T. 	Hence the theorem. 

Theorem (3.4). Let Nm  be a minimum realization of 

a symmetric terminal matrix T, and let Nm  contain a node, 

say /bp of second degree, that is only two-edges, say 

erp and e , are incident at r, where Cr > Cr > 0. 

	

a 	 ia — 
Then Nil)r  is a minimum realization of T(1), in

p 
 which N11)  

is gm with edge erg.  short-circuited (see Fig.3.1) and 

T(1)  is T with row and column r deleted." 
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Nm 

Fig.(3.1). 	Illustration of Theorem (3.4). 

Proof. 	It is obvious that the terminal capacity 
. (i,j), i i  j / r, in Ni 	ij N(m1)  is equal to t; thus Nm

(1)  1s 

a realization of T(1). 

Let t()  = max ft 1Y = 1,21...,n, y / x /rj, xo 	xy 
then (

o
)  txo = max ftx  , txr  1 , for all x = 1,2,...,n, 

x / r. 	Suppose i (L q,r) is any node of Nm and S 	is S. 
i; q 

a minimum cut-set (i,q) in Nm. 	Since crp  < ore  then 

aVijVci is a cut-set (i,r). 	Thus 

tic; 	tir  , for all i / r,q. 

Therefore 

t(
1)  = do for all i r, q. 

10 

Since Nm is a minimum realization of T and 

Qi(Nm ) = Qi(N11) ) , 	r,q, 
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then by Theorem (3.1) 

Q (N(1)) = tC1)  for all i / r,q. i m 	lo (3.5) 

To complete the proof of the theorem we must prove that 

qm 	qo 
(Na-)) = t(1) • ( 3 .6 ) 

If 

tqr < Qq(Nm) 

then 

t )  = tqo  = Qq  (Nm  ) > Qq  (N(1)) , qo 	—m 
and by (3.2) 

t )  = Qq  (N(1)). qo 	m 

If 
tqr = Q

q 
 (N
m 

 ) 

then 

Q
q  (N(°)) = min 4.qt(°P'  

) crP 	, m 	L  

where T(°)  = 	
m 

[tip)] is the terminal matrix of N(°)  (see 

Fig. 3.1). 

Thus 

Qq  (N(1)
) = c 	+ min ft(q°) ' c rp 

< tqp 

and by (3.2), 

Qq  (Nm(1)) = tqp = tqo . 
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Therefore node q in N(1)  satisfies (3.6) in any case. 

Hence the theorem. 

Let N1 and N2 be nonoriented nets which have the 

same nodes, and let 01  and 02  be the edge capacity matrices 

of N1  and N2, respectively, with the same node ordering; 

then the net obtained by superimposing N1  and N2, 

N =N1 +N2 ' 

is the net whose edge capacity matrix 0 is given by 

C = C1 + C2' 
and its nodes are those of N1 or N2. 

Theorem (3.5). "Suppose N(1)  and 

ij 	ij 

Lively, where both have the same nodes in the same order. 

Let 

T = T(1) + T(2), 
 

and 

N N(1) N(2) 
m m m 

then Nm is a minimum realization of T if, and only if: 

(1) for each node pair (i,j), there exists a cut-set 

(i,j) whbh is minimum for both N11)  and N(m2), and 

(2) for each row i there exists a column, say r, such 

that the entry (i,r) is a maximal element of row i 

(excluding the node symbol)in both T(1)  and T(2), 

realizations of T(1) and T(2)  

N(2)  are minimum 

= [t(2)] respec- 
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that is 

tC1)  = tC1) 	and 	t(2)  = t( 2)  lo 	ir 	lo 	ir 

	

Proof. 	(a) Suppose conditions (1) and (2) are satis- 

fied. Let ;i  be the capacity of a minimum cut-set 

(i,j), say Svpvi, of Nm. 	Then the set of all edges 

v
,(1)(e ) 
ik 	ik )' A; eVe  and kEVi, contains a cut-set (i,j) of 

11.(
m
1) (N(2)) 	Therefore 

ij .. > tC1)  t(2)  ij 	ij • 

By condition (1), there is a cut-set (i,j), say SI7.1;vtj  

which is a minimum cut-set (i,j) for both N(I) and N(2). 

But Sv.,0.! is also a cut-set (i,j) of Nm  with capacity 
j 

+(1) 	4,(2) uji 	, thus 

T..
ij < 

t(1) 	t(2) 

	

ij 	ij • 

Hence 
	

Tii = t..
lj 2 

that is, T is the terminal matrix of Nm. 

From condition (2), for each row i 

t. = 	 t(2)t(1)  

	

lo io 	 io • 

But by Theorem (3.1), 

t(1)  = Qi(N11)) 
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and 

Since 

then 

÷(2) _ 
ni

( wr(
m
2) t

i 
o) 

 

Qi(Nm) = Qi(N11)) + Qi(Ni2)) 

do = 	o Qi(Nm} t  

and Nm is a minimum realization of T. 

(b) Suppose that Nm  is a minimum realization of T. 

Any minimum cut-set (i,j), say Svi;vi, 

(i,j) for both N11)  and N(2). 	Since 

	

tij = tOa 	tij(2) + ..) P l  

then S
v1 
.07.

3 
 is a minimum cut-set (i,j) for both N(1)  and 

N(2). 	Hence condition (1). m 
Now, let 

tir = Qi(Nm) 

	

where i is any node of Nm. 	Since 

. = tC1)  + t(2)  • tar ir it 

and 

t(1) < it 

t(2) < it 

of Nm is a cut-set 



then 
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Qi(Nm ) = Qi(N11) ) 	Qi(N12) ) 

= Qi(r11))5*  

t(2)  ir 
Qi(N12)) 

and condition (2) follows. 

Hence the theorem. 

Theorem (4.1) of Reference 5, page 190, that is the 

fact that the " Method of Decomposition of Matrices" 

gives a minimum realization, follows from our theorem 

above. 
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3.4 Synthesis of Non-Oriented Communication Nets With  

Minimum Total-Ed2_ga.pacity and Minimum Number of  

Edges. 

In this section we shall present some results on a 

minimum realization, with minimum number of edges, of a 

terminal matrix of a nonoriented communication net. The 

edges counted are those having non-zero capacities. We 

shall assume that the minimal element t1 of T is not .zero. 

Lemma (3.2). 	"The minimum number of edges, m, of a 

minimum realization, Nm, of a symmetric terminal matrix, 

T, of order 4 is given by 

m = Ip  + 3 , 	(3.7)  

where I (= 1,2) is the index of partitioning of T.“ 

Proof. 	If I = 1, then by Theorem (3.2), eqn (3.7) 

is true. Now, let I = 2, then T must have the following 

form: 

r  t 
, 	1 

t
3 , t2 , , t1 

t
3 0 t i 	2 	1 Itl , 

T =  

t2 t2 10 i ' t1 
	4 	i 

f- 	ii, 
1 tl 	t1 	t1 I 0- i 

-- 	 i 

5 (3.8) 
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where t1  < t2  < t3  . —  

By Theorem (3.1), the minimum total edge capacity, Et, is 

given by 

Et 	2 = -7-( 1  + t2  + 2t3) 
	

(3.9) 

Suppose, if possible that Nm  of (3.8) consists of 4 edges, 

that is Nm is a loop (Theorem 3.2), then 

Et  = Q4(Nm) + Qx(Nm) 	(3.10) 

where x is the node opposite to node 4 in the loop; that 

is, x = 1,2 or 3. 	Thus (3.10) gives 

Et = tl + t2 (or t3) . 	(3.11) 

From (3.9) and (3.11) we get t1  > t2, which contradicts 

the assumption in (3.8). 	Thus Nm  must consist .of at 

least 5 edges if I = 2. 

Hence the lemma. 

Theorem  (3.6). 	"If T is a symmetric terminal matrix 

of order n, then there is no minimum realization of T 

consisting of n edges only if the index of partitioning, 

Ip, of T is more than 1." 

Proof. 	Since I > 1, then n > 4. 	The case for 

n = 4 has been shown to be true in Lemma (3.2). 	The 

proof will be completed by induction on n. Let the theorem 

be true for any symmetrical terminal matrix of order 
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h > 4 and I > 1, and consider a matrix T of order (h+1) 

and partitioning index Ip  > 1. 	Suppose, if possible, 

that its minimum realization, Nm, consists of (h+1) 

edges; then by Theorem (3.2), Nm is a loop. 	If I > 2, 

then by Theorem (3.4), N(1)  is a minimum realization of 
( T(1), where Nm1)  is Nm  with the edge of greatest capacity 

at node r, any node in Nm, short-circuited, and T(I) is 

T with row and column r deleted. 	This contradicts the 

induction hypothesis, because N(I) is a loop, T(1)  is of 

order h and the index of partitioning of T(1)  is more than 

1. 	Now, suppose I = 2. 	Let the first step of the 

Wing-Chien partitioning of T be as given in (3.1). One 

submatrix only, say Al, along the diagonal line is of 

partitioning index 1, the others are of orders 1 or 2. 

Since (h+1) > 4, then either Al  is of order more than 3 

and/or the total order of A 	Ak  is more than 1. Thus 

there is at least one node, say r, whose deletion from T 

gives T(I) having partitioning index equal 2 also. A 

loop minimum realization, N(1), of T(1)  is obtained from 

Nm by shorting the edge of greatest capacity incident at 

node r (Theorem 3.4). 	This also contradicts the induction 

hypothesis. 	Thus Nm  cannot be a loop. 

Hence the theorem. 
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The following.corollaries follow directly from the 

above theorem. 

Corollary (3.2). 	14A minimum realization with 

minimum number of edges of a symmetric terminal matrix 

is a loop if, and only if, its index of partitioning is 

1." 

Corollary (3.3). "The minimum number of edges of a 

minimum realization of a symmetric terminal matrix, whose 

order is n and index of partitioning is 2, is (n+1)." 

The converse of the above assertion is not necessarily 

true; this can be seen by examining Example (3.1), 

(page 94). 	That is because some of the edge capacities 

become zero if certain relationships between some edge 

capacities exist. 	Thus in order to consider the minimum 

realization with minimum number of edges for any symmetric 

terminal matrix whose index of partitioning is more than 

2, the following definition is needed. 

Definition (3.3). A "variable terminal matrix", T, 

is a terminal matrix of a nonoriented communication net 

whose elements 0 < tilt2,...,ta(Ip<m<n-1 , Ip  is the index 

of partitioning of T) which are obtained by Wing-Chien 

partitioning of T, are arbitrary variables taking any set 

of real positive values that do not change the partitioning 
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structure of T. No particular relationships between 

some of the -Vs are assumed. 

Let Nm be any minimum realization of a variable 

terminal matrix T of order n, then one can easily observe 

that every edge capacity of Nm  is a function of some -Os, 

and every edge not in Nm  has identically zero capacity. 

Let Al,A2,...,Ak  be the submatrices along the diagonal 

line of T corresponding to the first step of Wing—Chien 

partitioning (eqn 3.1), and let To  be T with t1  = 0. 

Then Nm is a realization of To, where Nm is Nm with t1 0 	 0  

set equal to zero in each edge capacity function. 

Matrix To is a symmetric terminal matrix of an unconnected 

communication net, that is,is unconnected. 	Each 
"0 

Ai  (i = 1,...,k) is a symmetric terminal matrix of one 

maximally connected subnet of N„, , say Nm(i)  . 	Moreover, 
'o 

N(i) 
mo 

is a minimum realization of Ai. 	Since tl,t2,...,ta  

are arbitrary variables and no 

hold between some of them then 

all i = 1,2,...,k, is an edge 

particular relationships 

every edge in N(i)  , for 
mo 

in Nm, possibly with 

different capacity value. Now, we can prove the following 

reault: 

Theorem  (3.71. 	"The minimum number of edges, m9  

of a minimum realization, Nm, of a
u
variable terminal 
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matrix; T, of a nonoriented communication net is given 

by 

m = n + I - 1 1 	(3.12) 

where n is the order of T and Ip  is its index of partitioning 
4S441,ct 3-12kzabisr 

Proof. 	.;Faigg the method of Successive Expansion, 

we need only to prove that the number of edges of any 

minimum realization satisfies 

m > n + I - 1 . 	(3.13) 

This is true for n = 3 or 4. 	The proof will be completed 

by induction on n. 	Let (3.13) be true for any T of order 

h < n - 1 and consider T of order n. 	Suppose Nm I  To, 
o 

N(i) and 
Ai, 	= 1,21...,k, are defined as in the previous mo 

discussions.Floreover,letniand I(i) be the order and 

the partitioning index, respectively, of Ai. 	Since n. < — 

11.--landNii) isaminimumrealizationofAvthen by the 0   

(i) induction hypothesis, the number of edges, mit of N mo 
satisfies 

m. > n. + I(i)  - 1, for all i = 1,2,...,k. 

Since Nm contains no cut-set consisting of one edge only 

(Corollary 3.1) and every edge of Nm  is an edge of Nm, 
o 

then 
k 

m > k +. MI  , 
1=1 

> > 	(n. + 1(i) ) . 
1=1 1 p 
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But 

k 
'57  n4  = 

1=1 

and 

k 	. 
	 (1) 	Ip  — 1 
1=1 P 

thus (3.13) is true, which completes the proof of the 
theorem. 

Theorem (3.7) may not be true if there are some 
relationships between some of the -Os. 	This will be 

illustrated in the following example: 

Example (3.1). 

0 

t4 

t
4 	

t
4 

Consider the terminal matrix 
•••••••.. 

t2 	tl 	tl 

t
4 t

4 
t2 1 1 

t
4 	

t2 	1 	1 

(3.14) T = 
5 

t2 	t2 	t2 	t 	t 1 	1 

t 1 	t 1 	t 1 	t 	0 1 	t3 

t 1 	t 1 	t l 	t 14  t3 	0) 

where 0 < t1 < t2't3' 
t2 < t4, 

and 	t4 = t1 + t2 
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The relation (3.12) gives m = 8, but the net shown in 

Fig. (3.2) consists of 7 edges only and it is a minimum 
realization of T. 	Considering the sum  of the capacities 

of the edges incident at node 1 or 3, we observe that this 
net cannot be minimum if t4 / t1 + t2. 

Fig.(3.2) A minimum realization of the matrix 

given in (3.14). 
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CHAPTER IV  

"SYNTHESIS OF RADIO-WIRE-COMMUNICATION NETS" 

4.1 Introduction. 

In the previous chapters we have considered the syn-

thesis of communication nets which are assumed to have 

weights on edges only; the nodes are assumed to have 

sufficient capacities to handle all information flowing 

into them. 

In a recent paper, 1962, Yau16 considered the synthesis 

of a radio-communication net, that is, a net which has 

weights on nodes only; the edges have unlimited capacities. 

In this chapter and the next one, we shall investigate the 

synthesis of more general communication models which virlrY0.4( 

cal]S radio-wire-communication nets. 	In these nets 

the nodes and the edges are assumed to have weights which 

are real non-negative numbers, called capacities. 	The 

capacity of an element may be very large (co). We mean 

by an element of a radio-wire communication net, N, either 

an edge or a node. 

It is assumed that for every node the maximum amount 

of information which can be transmitted and the maximum 

amount which can be received are the same, and each not 
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exceeding the capacity of the node. 	It is also assumed 

that the edges are nonoriented, that is, the flow in any 

edge may go in either direction (but not both) as long 

as its magnitude does not exceed the edge capacity. 

The nodes of a radio-wire-communication net, N, will 

be denoted by vl,v2,...,vn, and the edge between nodes 

vi  and vj  is denoted by eij  = eji. 	The capacity of a 

node vi  will be represented by ci, and the capacity of eij  

by cij  = cji. 

The maximum amount of information flow between a pair 

of nodes (vi,vj) of N is called the 'terminal capacity 

(v-,v-)" . 	When we find the terminal capacity between 

two nodes, all other nodes may be considered as relay 

stations without changing their capacities. 	Therefore, in 

the analysis, a multiterminal communication net is 

essentially treated in the same way as a two-terminal 

communication net. 

The terminal matrix, T = [tij], of N is a symmetric 

matrix with entry tij, i 	j, being the terminal capacity 

(vi,vj), and tii  being the node vi, represented by symbol 

, for all i,j = 1,...,n. 

The purpose of this chapter is to present a necessary 

and sufficient condition for a symmetric matrix T to be 

realizable as the terminal matrix of a radio-wire communi-

cation net. 



4.2 Analysis of Radio-Wire-Communication Nets. 

In radio-wire-communication nets the concept of 

cut-set must be generalized to include nodes as well as 

edges. 	This has been done by Yau.17 

Definition (4.1). A "generalized cut-set (vi,vj)11  

of a radio-wire-communication net, N, is a minimal set of 

elements whose removal()  destroys all paths (v.,v.) in N. 

A generalized cut-set (vi,vj) will be denoted by Sid. 

It must be noticed that Sid  contains neither vi  nor vj. 

Yau used the term "cut-set" to mean generalized cut- 

set. 	Since the term "cut-set" is widely used in the 

literature to represent an edge-cut-set(H), then we prefer 

to use the term "generalizedcut-set". 	Some properties 

of generalized cut-sets (vi,vj) together with a method 

for obtaining all of them are given by Yau.17  The capacity 

of a generalized cut-set, Sid, denoted by C(Sii), is the 

(t) If a node is removed from N then every edge incident 

at that node must be deleted. 

()Edge-, node- and mixed-cut-sets17 are generalized cut-

sets consisting of edges, nodes and edges and nodes, 

respectively. 

A cut-set (v.,v.) is called, by Yau, basic cut-set (v.fvj.) 
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sum of the capacities of all elements in Sij. A "minimum 

generalized cut-set (vi,vj) of N is a generalized cut-

set (vi,vj) whose capacity is not larger than the capacity 

of any other generalized cut-set (vi,vj) of N. 

Dantzig and Fulkerson,1 and Ford and Fulkerson4 proved 

that the Max-Flow Min-Cut Theorem is also valid for a 

communication net with weights on both edges and nodes. 

In our notations, this theorem states: 

Theorem (4.1). 	"The maximum flow, tij, between a 

pair of nodes (vi,vj) in a radio-wire communication net N 

is given by 

tij  =min fciyoj,C(413))) 

where ci  and cj  are the capacities of nodes vi  and vj, 

respectively, and C(SC112))is the capacity of a minimum ij 
generalized cut-set (vi,vj  ) of N." 

Now, we shall present some results which simplify the 

work for finding the terminal matrix for a given radio-

wire-communication net. 

Lemma (4.1). "In any radio-wire communication net, 

  

N, there exists a minimum generalized cut-set (v.,v.), 

for all i / j, which does not contain node vr if 

2Qr(N) < cr  ( 4 .1) 

  

(at 	 e_g,chdat 	 f .-e* E-e-Z‘&1/-  at 	1E64 
c„„7,12- saiC4., 	cat- itt: 
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where Qr(N) is the sum of the capacities of all edges 

incident at node vr in N. 

Proof. 	Let Sim)  be any minimum 

(r.J j 	Nib  r.) and be N with all the 

vrI  then each of the sets (S. 
(m)tj

Er. -vr ) ij  

is a generalized cut-set (vi,vj), where 

of all edges each of which is incident 

and(i)  

C(SCI2.1)1',Er  -vr  ) > C(SCT)) (Si 	.  

then 

C(I. )1  C(Er  ) > cr  . 

But 

Erin Er 
	

gC 3 

and from (4.1) 

C(E, 	' ) < 2cr  
j 

(t)0( 	) = sum of the capacities of all elements in the 

set ( 
	

) • 

generalized cut-set 

elements of Sim )  removed. 

nor Er• 

Sc12.)  contains node ij 

and (SIIj)Ur • E -v  ) 1 r  

Er  (Er  ) is the set • . 1 j 
at node 

Moreover, letNi  . and N, be maximal connected subnets of 

Nib  which contain nodes 

	

vr  and at a node in Ni(Nj). 	Since 

ij 

0(4.3)1 lEr.-v,) 	C(43) ) 

Li 	 4-  

has 	with Sid), a common element 

vi  and v., respectively. 	If 
0 

neither Er. 1 

1 
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then 

C(E,) = C(Er ) = cr  

Thus each of(SCInqj E
r  -vr 	ij ) and (SCI21)1 t Er  -vr  ) is a ij 	. 	. i  

minimum generalized cut-set (vi,vi ) of N. 

Hence the lemma. 

By the above lemma, if 

(N) < c 

	

r 	r 
for all r = 1,2,...,n, then we can obtain all Sid), for ij 
i,j = 1,2,...,n, i 	j, by treating N as an ordinary non-

oriented communication net with weights on edges only. 

In this case T can be found by evaluating (n-1) flow 

problems only, by using the Gomory and Hu6 technique which 

depends on Lemma (3.1). 

The following assertion is similar to Lemma (3.1) 

for radio-wire communication nets. 	Indeed, one can 

easily see that Lemma (3.1) follows directly from our 
Lemma (4.2). 

Let Vr be any set of nodes of a radio-wire communi- 

cation net, N. 	We extend Definition (3.2) as follows: 

A "(Vr)-condensed net", denoted by N(Vr), of N is a net 

obtained from N by identifying all nodes in Vri the new 

node is denoted by vr  and given infinite capacity. 
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Let Sid)  
i v be any minimum generalized cut-set (v, j)  

i 	9 	ff 	If 	 fi 
of N, and let Ni.,N,N1,N2,...,N m be the maximal j  

connected subnets of the net Ni  . obtained from N by 

removing all the elements of SCm), where N. and N
1  
, contain ij   

nodesvi  . and v.
0
, respectively. 

ft 	it 
and some or all of N1,N 	N N2,.., ,Na  

19 	IV 	 ft 
the remainder of N N 	N 1,  2"'" a' 

Moreover, let Ni  be Ni  

, and let N, be N and 

We shall caalNi  . and N. 

the parts of Nil. Now, we can state our lemma. 

Lemma (4.2). "If 

C(Sla 	< ci 
	 (4.2) 

terminal capacity (vit yvk) in N is equal to the 

capacity (1 pvk)in the (V1)-condensed net, where 

andvk areinN.,and Vi  is the set of all nodes 

then the 

terminal 

nodes ye  
inNi  .." 

Proof. It is sufficient to prove that there exists 

a minimum generalized cut-set (ye  Ivk) in N which does not 

contain any element of Ni. 

Let S(m).be a minimum 

N. Suppose contains 

N and Nk denote the parts 

generalized cut-set (v, ),vk) of 

some elements of Ni. 	Let: 

m of NIk corresponding to Sik
)  

Vii, V k, Vi, Vj, V1 and Vk  denote the sets of all nodes 

in 43), 411,V, Ni, Nj, Ng and Nk, respectively, 
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0 
V1  = Vi  n ye  9 

V2 = v n v 1 	lit p 

V3 	= Vi  n Vk  9 

V4 = Vi  11 ye 9 

V5 = Vi  n  Vek  y 

V6 	= V j n Vk 9 

V7 = Vii  n  vf 9 

V8 = vij  n v, ,,,k f 

V9 = V 

	

. ii  n Vk  p 	and 

Epq = the set of all edges each of which has 
f 	 9 one node in VP  and the other in V

q  , p / q, p, q = 1,2,...,9. 

Fig.4.1 illustrates the connection between S(111)  and S4IIIP ij 
in N, where each EPc1 is represented by one edge, for 
simplicity. 	In the above notations, the sets 4.3)  and 
S(m)..ek are given by 

214 U El5 E16 E24 U E25 U E2e 

UE34 U E35 U 236 U V7 U V81  U Vg 

S(m)  = E13  U E16  U E19  U E34 U 246 t--) E49 

E371,j E67 U E79  V29  UV; U Vise  . 
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I 

410. ••••• .0.• 

Fig .4.1 . An. .illustration for the proof of Lemma (4.2) . 

We have to consider two cases only: 
Case (1 )  . Node vi  E V1. 	Then it can easily be 

seen that the set Sid contains a generalized cut-set 
(v. 	• ) of N, where 
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= E13U E14U E15 U El6 J El9 
uv2' uv-,7 u4 

Since 

0(43)) < c(slj.) 

then 

C(E240E20E2WE34LJE35tJE36LIV;) 

< C(E OE UV ) 13 19 2 

The set of elements sek  given by 

S)k 	SPc  H ( 	fE25 UE261-i E34LJE35 	 Vg )  

- (Ei3UEig U4) 

	

t 	1 	t = ( 	IE HE I I 	 UV5  tiVa ) -36 -̀F,1-46L"-67'-' i 	• 9 

U(E24UE25UE34UE350E49U E37°E79 )9  

(4.3) 

contains a generalized cut-set (vi Ivk ) . 	This set Sik 
contains no elements of Ni,  and  from (4.3) 

c(s.i°k) < c(s71)t). 
Thus Spc  must be a minimum generalized cut-set (vyvk ) . 

Case (2)  . 	Node vi  E V2  . 
59 The set of elements Sik  given by 

S k  = SkLI 43)  - (E13U4) 
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contains a generalized cut-set (v,vk). 	Since 

C(S(11:1)) < ci  ij 

then 

0(10 < c(sin • 
Thus Sik  is a minimum generalized cut-set (ve ,vk). 

The case, nodevi  . E' V3  ,  is exactly similar to Case 

Hence the lemma. 

It must be mentioned that Lemma (4.2) may not be true 

if COPP) > ci, as illustrated in the net given in Fig.4.2, 

from which we observe that 

S(m)  - 14 	- 	e23, e561 

0(e) = 6 > cl  = 1 . 

The set 

S35
=  

35 	L e45' e26,  v4 ' 

is the only minimum generalized cut-set (v3,v5), and it 
contains two elements, namely, e25  and vl, from N1. 



- 107 - 

kN4  12 

wp. 

Fig. 4.2 

• 
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4.3 Synthesis  of Radio-Wire-Communication  Nets. 

Lemma (4.3). "Asymmetricmatrix,T=[tij], is 

principal partitionable if, and only if, for every tip 

/ j, 

t..Ij > min { t. tkj 	2 	 (4.4) 

for all k / i,j.w 

The proof follows directly from Theorem (2.1) and 

the fact that T is realizable as a terminal matrix of a 

nonoriented communication net if, and only if, T satisfies 

(4.4) for every i / j / k(6). 

Lemma (4.4) 	The terminal matrix, T = [tii], of a 

radio-wire-communication net, N, satisfies (4.4) for every 

I / j / k.w 

Proof. Let SCm)  be a minimum generalized cut-set ij 
(vi,vj), then we have two cases: 

Caseill. 

tij .. 	c(sC )) . ij 

If vk Sid )  then 

C(SW) > ck  > t.k, tkj   . ij 	— 1 

If vk Sid )  , then S W contains a generalized cut--set 3_0 
(ViyVk) and/or (vk,vi). 

Thus inequality (4.4) holds in both cases. 
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tip 
= ci  (or cj) < C(43)) . 

  

Since 

tik < c. 	and 
	

tkj  < co  p 

then (4.4) holds in this case as well. 

Hence the lemma. 

Theorem (4.2). "A symmetric matrix T is realizable 

as the terminal matrix of a nonoriented radio-wire communi- 

cation net if, and only if, T is a principal partitionable 

matrix." 

Proof. From Lemmas (4.3) and (4.4), the terminal 

matrix of a nonoriented radio-wire communication net is 

principal partitionable. 

Now, suppose T is principal partitionable, then by 

Theorem (2.1) it is realizable as the erminal matrix of 
ittAzkor,  et 4.449- bsim- t • Mitt, 24- 

a nonoriented communication netIA ]Let N' be any such 

realization. 	Each node of N' has infinite capacity. 

Now, obtain a nonoriented radio-wire communication net N 

from N' by giving each node, say vi, finite capacity ci  

determined by 

ci  = 

where Qi(N') is the sum of the capacities of all edges 

incident at node vi  in W. By Theorem (4.1) and using 

Lemma (4.1), it follows that N is a radio-wire realization 

o f T Lai* KLi...;i:AF 
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1.141440 the theorem . 

Corollary (4.1). "A symmetric matrix T = [tii] is 

realizable as the terminal matrix of a nonoriented radio-

wire-communication net if, and only if, for every element 

tij, i j, of T, 

t..ij > min f tikptkj1 9 

for all k ? i,j." 

The proof follows directly from Lemmas (4.3) and 

(4.4) and Theorem (4.2). 

Corollary (1.11. "The terminal matrix of a radio- 

wire communication net of n nodes contains at most (n-1) 

distinct elements." 

The proof is obvious. 

Let CT(N) denote the total element capacity of a 

radio-wire communication net N, that is CT(N) is the sum 

of the capacities of all edges and nodes of N. 	A radio-

wire realization of a principal partitionable matrix T 

with minimum total element capacity is described in the 

next theorem. 

Theorem (4.3). "A radio-wire-communication net, N, 

is a realization, with minimum CT(N), of a symmetric 

terminal matrix T if, and only if, for every node vi  of N, 

Qi(N) = ci  = do 9 	(4.5) 



where 

do = max tir Jr = 

Proof. From Theorem (4.1), for every node vi  of any 

radio-wire communication net, N, whose terminal matrix is 

T, the following relations hold 

ci, Qi(N) > tio 	(4.6) 

Thus 
n  

C T (N) 	(c. + 
1=1 

	

c 	do 1=1 

Therefore, if ( 4.5 ) holds for every node vi  of N, then 

n  

	

CT(N) = 	t 2 7"--' do 1=1 

and so N has minimum CT(N). 

In the proof of Theorem (4.2), we can choose a non- 

oriented communication net N' to be a minimum realization 

of T, that is, every node of N' satisfies (3.4), Theorem 

(3.1). 	Thus it is possible to obtain a radio-wire 

realization for T satisfying (4.5). 	Thus by (4.6), every 

node. vi  of a radio-wire realization. with minimum total 

element capacity of T must satisfy (4.5). 

Hence the theorem. 
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It is worthwhile to mention that if NI is obtained 

by using the Method of Successive Expansion (§3.2), then 

N will contain a minimum number of edges, corresponding 

to the results of §3.4, as well as minimum total element 

capacity. 
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CHAPTER V 

Necessary Conditions For Conditional Synthesis  

of Radio-Wire-Communication Nets  

5.1 Introduction  

An interesting problem concerning the synthesis of 

radio-wire-communication nets is the following: What are 

the necessary and sufficient conditions for the realiza-

bility of a given symmetric matrix T such that a given set 

of elements, of the realization net, have unlimited 

capacities. 	It can easily be verified that the synthesis 

problems of ordinary nonoriented communication nets, 

radio-communication nets16 and radio-wire communication 

nets presented in Chapter IV are included in this general 

synthesis problem. 

Let Sco  be the set of the given elements which must 

have unlimited capacities. A realization of a symmetric 

principal partitionable matrix T of order n which contains 

Sco will be called a (T,Soo  )-realization and denoted by 

N. 	The co-subnet of N, denoted by N(o)), is defined as 

a radio-wire-communication net consisting of all nodes 

vi, i = 1,...,n, of N whose capacities ci  are given by 
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Ci = CO 	 if vi  E sco  y 

= tio 9  if vi 	Soo  y 

where 

do tir = max f 	r = 19  ...11-1,i+1, ...,n j, i  

and who se edges are all those in Soo  , each having co 

capacity. 
From the results of Chapter IV, matrix T must be 

principal partitionable. Another necessary condition for 
the ( T, Soo  ) -realization will be obtained from NC' ) in 

this chapter. 
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5.2 Necessary conditions For (T,Sco )-Realizations. 

Suppose that (T,S00 ) is realizable and N is its 

realization. 	Then T can be partitioned by Wing-Chien 

partitioning. We shall assume, without loss of generality, 

that the order of the nodes along the diagonal of T in 

its Wing-Chien partitioning is vilv2,...,vn. 

A square submatrix of T whose diagonal elements are 

node symbols valvm+1,...,v3, 1 < a < 3 < n, will be 

denoted by Dala+1,...0, and the value of a minimal 

element of Dm,a+19...0  will be represented by t 

Finally, the set of nodes va,vm+1,...,v5  will be represented 

by Valmi1,...0. 	For example, T 741 D1,22...,n' Dr 

r = 1,2,...,n. 	If Dapm+1,...0  is of order more than one, 

i.e. 0—M > 1, then its resultant main submatrices by Wing-

Chien partitioning process, denoted by Dm,a+11...0,19 

D„
lc ui.
, 
 peot P 

a, are the subtatrioea obtained Dal+1,...1a2 	..a  

by applying the first operation of Wing-Chien partitioning 

on Da,a+1,...,$'  where k+1 is the number of these sub- 

matrices. 	It must be noticed that each element of any 

of these submatrices is greater than t 	For 

illustration, consider the terminal matrix given in (5.1), 

which is in Wing-Chien partitioning form. 
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2 	2 	2 	2 	2 

3 	3 	2 	2 

	

5 	2 	2 

2 

2 3 

4 

T = 

2 

2 	0 3 	5 
1. - I. 

2 2 2 

2 2 2 I 

-- -t 

1 
o 	1 
1 	o 	2 	2 

4 
4 

4 

The resultant main submatrices of Di 0 	by Wing- , ,...,6 

Chien partitioning process, are 

3 	3 

3 5 and 

  

D1  = D2,3,4 

D5,6 

The minimal element of D2,3,4 has value t2,3,4 
= 3, and 

its resultant main submatrices are 

D2 and D3,4 
 = 
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Lemma (2:11. "'In Wing-Chien partitioning of T, let 

D, 	, and D, 	, be any two resultant main sub- b  

 matrices, each of order more than oneof DmIa+11...01  

where a 1 as  < ab  < ac  < ad  < p. 	If (T,S00) is realiz- 

able then Sop  contains no edge eij  such that vi 	.. a  
a' 	b 

and v (EV, 	." 

Proof. Suppose, if possible, that eijfE Sa)  and 

V.E 'V, 	and v4  E 	, then 	= OD . I 	
Wat.o.,M10 	 cij 

Thus 

t.. = min tcirci  

Let v 	Vm ,...,mb  and v k  4:  V 	' m a 	ac.. ..,ad  
then 

(5.2) 

t. 	tjk  > t a,m+1,. • • 713  • 

But 

therefore 

t.it < c. and 	tjk < c. — j 

min 	 j fc.,c.j 	> ti. 

contradicting (5.2). 

Hence the lemma. 

The phrase (*identifying the nodes of D 

in N" will mean: if Va,a+l, 	 consists of one node 

only no change is made in N, otherwise the nodes 

Vm mul 	a  are identified in N and the new node, called 
Wfw-1-4-poeop,-, 
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a combined node and denoted by va,
-r—L w
„,

yeeop 3, is given 

unlimited capacity. 	If the nodes of an edge are identified 

that edge must be deleted. Any set of parallel edges 

resulting from this process is replaced by one having 

capacity equal to the sum of capacities of all these 

parallel edges. 

Definition (5.1). 	The "signature of D apm+1,...,5 

in N with respect to Wing-Chien partitioning of T, p > 

denoted by 	is a radio-wire-communication net 

obtained from N by identifying the nodes of each of (1) 

resultant main submatrices of Dalm+1,...,p, and (2) 

largest resultant main submatrices each of which does 

not contain 	
looet,—/ 

D, 
uomu. 	

a. 	To illustrate this definition, 
sl 

Da   
consider the matrix given in (5.1) which is the terminal 

matrix of the net N shown in Fig.(5.1). 	The signature 

of D2,3,4 in N with respect to Wing-Chien partitioning 

is shown in Fig.5.2. 
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Fig.5.1 

2 

co 

Fig.5.2 
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Lemma (5.2). TJet T be the terminal matrix of N 

and D, a,-,  a_L,..i ,...",13 and  Dac,a0+1,...,ad  any two resultant ...  

main submatrices of Da,m+1,...0  by Wing-Chien partitioning. 

The terminal capacity (v ,V ), V n v, 
P q P wa"'"ab' 

s v, 	(H)  in N(wc)  vq 	 , 	 denoted by 
-c"'"-

m 
 d 	a,m+11...0' 

t (N(wc) pq mf...0), is equal to t If 

Proof. 	If there is at least one resultant main 

submatrix of T not containing Dm,m+1,...0  and of order 

more than one, then there must be a minimum generalized 

cutset, say Si, of N such that 

C(Si) = ti129...,n 

If t, 0 	< tm m+1,...0, then the removal of S1 does 1,Gpooss.11 	2 

not separate any two nodes of V_ 
wywl—.1.9.•.spy 

Let Ni  be 

the maximal connected subnet of N-S1() which contains 

1011•0111.10•1•MIMir 	 

(H)This means that nodes v, 	and v, 	are 
'c'"'"

,
d 

given, for simplicity, labels vp  and vg, respectively. 

(HH)mhe net N-S1  is the net obtained from N by removing 

every element in Si. 	If a node is removed then every 

edge incident at it must be deleted. 
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the set of nodes Vmpm+1,...0, and let N1  be the comple- 

ment of Ni  in N-S1. Moreover, let N1  be N with each 

set of nodes of a resultant main submatrix of T in Rt  1 
identified. 	Then by Lemma (4.2), if vx and v are any 

two nodes in N1, then 

txy(N1) = t ( ) = try 

If N1 contains the nodes of a resultant main sub- 

matrix of T which is of order more than 1 and not contain- 

ing D
Mya+1,...0 

then there must be another minimum 

generalized cut-set, say S2, of N1  such that 

C(S2) = t1,2,...pn  

The removal of S2 from N1 will not separate any two nodes 

of Dm,a+1,...0. 	As in the case of Sl' let N2 be the 

maximal connected subnet of N1  - S2  which contains the 

nodes of Vatmia,...13, and let N2  be the complement of 

N2 in N1 - S2° 	Then 

txy(N2) = txy,  

where N2 is N1 with each set of nodes of a resultant 

main submatrix of T in N2 identified, and vx and vy are 
1 

any two nodes in N2  which are also in N1' 

We repeat the above process until we arrive at the 

net Ni  such that 
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t (N.) = t xy 	txy 

whereNi . is N with the set of nodes of each resultant 

main submatrix of T, except the one containing 

say D(1), identified and vx and v are any two nodes of 

D(1). 

We repeat the above process on the resultant main 

submatrices of D(1), and so on until we arrive at the 

netNo . such that 

t (N.) = t 
xY 	xy 

where Nj is N with the set of nodes of each largest resul- 

tant main submatrix not containing Da 	, identified, 
pwer-LposalPH 

and vx,vy E V 	The net 4c,v,g )+,,...10 can be 

obtained from NJ by identifying the nodes of each resultant 

main submatrix of D —,0 	' * 	Thus if V ala+1, 	, , 
a"a"'"ab 

or V 	consists of one node whose capacity, a pa d c c 

in N (and so in Ni), is equal to t 	0 , then apa+1,...  

t (N(We) 	 ) = t pq 	 M9M+1,...0 (5.3) 

If neither Vaa~aa+l,..e,ab,  nor V, , 	consists 
matma+1"—"Th 	m̀c''c""'"u

, 
d 

of one node whose capacity in N is equal to tatmap...0, 

then there must be a minimum generalized cut-set (vx,vy), 

V 	c- V
a
a, • e•pwe .,, b and vy e Va 	say 5a+1, in Ni such 

that 
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c(s j+1) 	t 
* 

The removal of Si+1  does not separate any two nodes 

belonging to the same resultant main submatrix, by Wing- 

Chien partitioning process, of D 	Thus Sj+1 is 

also a generalized cut-set (v v v.  ) in N(wc) and 
P q 

hence (5.3) follows. 

Hence the lemma. 

Corollary (5:.1). 	"If ( T, Soo  ) 

N(a3)  is its a)-subnet, then 

t (N(°))(wc) 	) < t pq ala+1,...,p 

is realizable and 

(5.4) 

in Wing- for every resultant main submatrix D apm+1,...0 
Chien partitioning of T, where N(m)(wc) 	is the 

signature of Da, a+1,  
Chien partitioning of T, and v and v are as defined 

in Lemma (5.2)." 

The proof follows directly from Lemma (5.2) and the 

fact that N(aD)  is a subnet of N. 

Definition (5.2). 	Given (T, S00 ) where T is principal 

partitionable, the net N(o))  will be called "satisfactory 

with respect to Wing-Chien partitioning" if, and only if, 

in Wing-Chien partitioning of T, for every pair of 

resultant main submatrices of T and of every resultant 

alap+1,0*.f3 

in N(°°  with respect to Wing- 
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main submatrix of order more than one, inequality (5.4) 

holds. 
Corollary (5.1) provides us with another necessary 

condition for the realizability of ( T, Sop  ) namely, N(' ) 

must be satisfactory with respect to Wing-Chien partition-

ing. 
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5.3 Satisfactory Princi al Partitionin'. 

All definitions and notations mentioned previously 

in §5.2 are based on Wing-Chien partitioning of T. We 

extend them to any principal partitioning of T. To avoid 

confusion, if DY,Y+1,...,6 is any resultant main submatrix 

in a principal partitioning of T then its signatures with 

respect to this partitioning in N and N(aD)  will be 

represented by N,N+1,...0  and N,(1,i1L,(5, respectively, 

where 6 > y. 	Other notations will be used as before. 

It must be noticed that T and every resultant main sub-

matrix of order more than one, in a principal partitioning 

of T, has exactly two resultant main submatrices, and a 

minimal element of a resultant main submatrix of D Y,Y+1,...,6' 

by a principal partitioning process, may be equal to the 

minimal element of D, 
1,17-1,0•• A'  

that is, tY,Y+1,...,6' 
Thus Lemma (5.2) may not be true for any principal par- 

titioning of T. But it is true for at least one principal 

partitioning as we shall show in the next statement. 

Lemma (5.3). "Let T be the terminal matrix of N, 

then there exists at least one principal partitioning of 

T (called satisfactory) such that for every resultant main 

submatrix D, „„„ 	A  of order more than one whose 

resultant main submatrices, by this satisfactory principal 

partitioning, are D,
7--1- 	

and D 
Y  1 	e ,1f000fl 

, 
e 	+1,...,6' 
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t s  i(N(sP) = tY,Y+1,...„OP 

where, 

v m v 
Pv e 	

vq, m vye+1,Ye+2,...,o 

1 < Y < Ye  < o < n and 4:1 19...0  is the 

signature of D Y,Y+1,...26 in N with respect to this satis-

factory principal partitioning of T.Ig  

Proof. 	We shall obtain a satisfactory principal 

partitioning of T by the following steps: 

(1) Partition T by Wing-Chien partitioning. 

(2) If there are only 2 resultant main submatrices, by 

Wing-Chien partitioning, in T then these are also 

the resultant main submatrices of T in the satis-

factory principal partitioning. If there are more 

than 2 resultant main submatrices in T, find 

N11 2,(we)...,n 	
(1) 1  = N 	say. 	Then consider the following 

two cases: 

(a) N(I) contains a node, say vr, such that 

= t 	In this case, T is partitioned r 1,2,...In.  
as Dr and D, 

(b) N(I) contains no such node, then there is a 

generalized cut-set (vx  ,vy  ), say S1, such that 

C(Si) = 
	Let N1 be the maximal 
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connected subnet of N(1)  - SI  which contains vx. 

In this case T is partitioned as D„ 
'1"2"'"ra 

and D 	, where v ,v
ra 

are ra+1tra+2n 	r1 r2 

all nodes of the resultant main submatrices of T, 

in its Wing-Chien partitioning, whose corres-
combined 

pondingAnodes are in N1, and v 	Ivr 	poop, Vr  
ra+1 a+2 

are all other nodes of N. 

(3) To partition any of the submatrices just obtained in 

Step (2) which is of order more than 2, we partition 

it first by Wing-Chien partitioning and obtain its 

signature corresponding to this partitioning, then 

repeat Step (2). 

(4) Continue this procedure successively. 	In general, 

suppose we have arrived at the aubmatrix D which is 

of order more than 2. 	To partition it into two 

submatrices, first partition it by Wing-Chien process 

and within the partitioning, already reached, of T 

find its signature in N, say N(D), and with respect 

to it repeat Step (2) replacing t, 0 	by the 

value of a minimal element of D and N(I) by N(D). 

By Lemma (4.2), the terminal capacity in N(D) 

between any pair of nodes corresponding to the resul-

tant main submatrices of D, by Wing-Chien partitioning 
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process, is equal to the terminal capacity between 

the same pair of nodes in the signature of D in N 

with respect to Wing-Chien partitioning of T, and 

hence equal to the minimal element of D, by Lemma 

(5.2), where D is the largest resultant main sub-

matrix of T, in Wing-Chien partitioning, such that 

D contains D and the value of a minimal element of 

D is equal to that of D. Thus the partitioning 

obtained by this method is satisfactory. 

Hence the lemma. 

The procedure will be illustrated later (in page 130) 
by an example. 

Corollary (5.2). wIf (T, S00) is realizable and N(m)  

is its oo-subnet, then 

ti(N(°D)(813) 	) < 
	

(5.5) 

for every resultant main submatrix D 	y < (3 Y,Y+1,...26' 	9  

in a satisfactory principal partitioning of T, where 

N(00)(sP) 	is the signature of Dy2y4.1,..,0  in N(°°)  .,6 Y1 Y+1,..  

with respect to the satisfactory principal partitioning 

of T, and v and v are as defined in Lemma (5.3)P 

The proof follows directly from Lemma (5.3) and the 

fact that N(m)  is a subnet of N. 
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Delja-Li.92.11:21. 	Given (T,Sco  ), where T is 

principal partitionable, N(w)  will be called "satisfactory 

with respect to a principal partitioning", if, and only 

if, there is at least one principal partitioning of T such 

that for T and for every resultant main submatrix of order 

more than one, inequality (5.5) holds. 

Theorem (5.1). "Given (T,S00), where T is principal 

partitionable, then N(c" is satisfactory with respect to 

a principal partitioning if, and only if, it is satis-

factory with respect to Wing-Chien partitioning." 

Proof. 	If N(w)  is satisfactory with respect to 

Wing-Chian partitioning of T, then by replacing N by N(w)  

and " =" sign in Steps (2b) by " 0,  sign in the procedure 

described in the proof of Lemma (5.3) we get a procedure 

for obtaining a satisfactory principal partitioning of T 

from a given (T,Sco ). 

If N(°)  is satisfactory with respect to a principal 

partitioning of T, then let D be any resultant main sub-

matrix, of order more than one, in Wing-Chien partitioning 

of T. 	Since the signature of D in N(03)  with respect to 

a principal partitioning of T is the signature of D in 

N(c" with respect to Wing-Chien partitioning with the 

capacities of some elements increased to co, then by Lemma 

(5.3) N(°())  is satisfactory with respect to Wing-Chien 
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partitioning as well. 

Hence the theorem. 

The following example illustrates the procedure of 

obtaining a satisfactory principal partitioning of T 

from its Wing-Chien partitioning if (TI Sco ) is given and 

N(m)  is known to be satisfactory with respect to Wing-

Chien partitioning. 

Example (5.1). 	Consider the matrix T which has 

been partitioned by Wing-Chien partitioning. 

14 	 411 

2 	2 	2 	2 	2 	2 1 

1 

1 

T = 

1 

1 

4 r 2 	2 	2 	2 I 

1 
t• 	

t 2 
	2 	2 	2 I 

t 	t 	 (5.6a) 

3.5 	3.5 
WI .0, 	111. •••• 	•••• .1. 11 

3 	3.5 : 	3.5 

	

1 	t 
2 	2 	2 ' 3 

	

. 	. 

	

I 	. 

2 	2 	2 1 t 

ti 	I 
1 	2 	2 	2 I 

, 3 	3.5 3.5 
!I 	I I  

The set Sm is given by 

Sa)= eeeeeeevv31 6'vvl 13' 16' 18' 27' 34' 56' 57' 	7' 8 (5.6b) 



is shown in Fig.5.3. 	By 

y N2)(WC)8 9 

can easily see 

N(co)(wc) 
3,4 	9 

that N(00)  is 
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The net N(m)  of this (T,Sco ) 

obtaining each of N(co )(we) 1,2,...,8 
(coN 	)(wc)  and N(a) )(wc)  one 5,6,7,8 	6,7,8 	' 
satisfactory with respect to Wing-Chien partitioning. 

Thus N(co)  is satisfactory with respect to a principal 

partitioning. We shall obtain a satisfactory principal 

partitioning of T. 

The submatrices D1 and D2 3,..,8  are the resultant ,.  

main submatrices of T in the required satisfactory principal 

partitioning. 	To partition D223,...98, we partition it 

first by Wing-Chien partitioning, as in (5.6a), and then 

obtain its signature in N(m)  with respect to this 

partitioning, as shown in Fig.5.4. 

Fig.5.3 The oo-subnet of (T,Sco ) of Bx.5.1. 
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Fig.5.4 

Since v2  is a node corresponding to a resultant main sub-

matrix, by Wing-Chien partitioning, of D2,3,...,8 then 

it is partitioned as D2  and D7 A 	Since D3,4,••.,8 

consists of D
3,4 

and D5,6,7,8 only, by Wing-Chien par-

titioning, then these are its resultant main submatrices 

in the satisfactory principal partitioning. 	Similarly, 

D3I4  is partitioned into D3  and D4; and D 	is 5,...,8 

partitioned into D5 and D6,7,8. 	To partition D6,70, 

we partition it by Wing-Chien partitioning and then obtain 

its signature in N(m)  with respect to this and the satis-

factory partitioning obtained up to this step. This 

signature, say N, is shown in Fig. (5.5). 	The minimum 

generalized cut-set (v6,v8) in N is v1  whose removal 



2 
T 

1 2 	2 

1 	2 

i 	. 1 	2 i 4 t 
I 	;  r -- 

1 	2 	2 

1 	2 # 2 	2 

1 	2 	2 	2 

1 	2 F 2 	2 

T = 

2 

2 

3 

3 

3 

2 

1 

2 

2 

2 

(5.7) 
3 

3.5 

3.5 
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does not separate v6  from v77  thus D6,7,8  can be partitioned 

as D6,7  and D8. 	If we consider the minimum generalized 

cut-set (v61v7)  in N 2  which is v
5

y then D6,718  can also 

be partitioned into D6,8  and D7. But we cannot partition 

it into D6 and D7289  because for every generalized cut- 

set (v 7v.y  )7  x7y. E  .67778} 	x / y, the nodes v7  and v8 

are separated by its removal. One can see the reason for 

that by noticing that if D6  and D7,8  are taken as the 

resultant main submatrices of D62728 then its signature in 

N(c )  with respect to this partitioning will be as in 

Fig.5.6. 	From which we find that the terminal capacity 

(v67v7,8) is equal to 4, which is greater than t697,8  

(= 3.5), contradicting the definition of the satisfactory 

principal partitioning. 	The final satisfactory principal 

partitioning of T is shaven in (5.7). 
411.141•1 

1 1 

2 2 
+MP •••• •••• 

2 2 

2 2 

.1 3 3 

3.5 i  

: 3.5 

' 3.5 3.5 



Fig.5.5 	N' 

Fig. 5.6 
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The matrix T, in (5.7), can in fact be realized by 

the following procedure: 

Starting from the combined node vl 0 	(s N,...,n 	oy 

say), obtain nets N1, N2, 	Ni., successively, such 

that Nf contains no combined nodes and every N1, 0 < j < f, 

contains at least one combined node. 	Suppose that Ni-1' 

1 < i < f, which contains the combined node v 

hasbeemobtained.Toobtain.NiI  apply the following 

steps: 

(1) Delete fromNi_1  node v mya+1 	p ,...y n  together with 

all edges incident at it. 

(2) Add nodes valm+19...9y  and vi+ity+2,...0  whose 

capacities are given in NZt,).1.i:P.)..0, where Da9m4.1,...,y  

and Dy+1,y+29...,  are the resultant main submatrices of 

Dm,a+11...0  in the satisfactory principal partitioning 

of T. 

(3) Connect node v mtm4.12...,Y(vY+lty+2,...0) with 

node v'
4 1/ -1-  2/°°"' m 	Ni-1 of 	by an co-capacity edge if 

exy ESco yx6iasya+11  ...,y 	( iri-1,Y+2,...0)) and 

....  
. vpi m vaya+1,...2V vqi  77.  vi+1,Y+2,...Ip'in NI. 	Denote 

N1 
t 

this cut-set by S. . 	Let N1  and N2 be the maximal 

Y 	fi19i2m 	Denote the net obtained by Ni. 

(4) Find a minimum generalized cut-set (v Iv ), Pi 
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connectedsubnetsofk.-Si1  which contain nodes vpi and 

v 	respectively. 
qi 

(5) Obtain Ni  from Ni  by (a) connecting an edge of 

capacity [tMfal-1  ,, 9...1  3  - tp.q.i  (R.)] between nodes vp. and i i  

v , and (b) reconnecting all finite-capacity edges which 
qi 

were incident at va,a+1,...0 	N. in 	by using the follow- 

ing technique: 	Let e 9 v 	a v , be any 
xPi-1Pi-1 	

mym+1,...10 
 

finite-capacity edge incident at v 	in Nirl. 	If 1-1' P-I 
c(si) < t 	then reconnect e 	between nodes mta+1,...,i5 	xPi-1 

9 
vx  and vPi (vqi ) if vx  in Ni  (N2). 	If v, is in neither 

p 	p 
N1 nor N2 then e 	can be reconnected with either v xpi_i 	 Pi 

or v
qi 
 unless one of them is combined, say v

Pi 
 , and the 

other is not combined; in this case e 	is reconnected xpi_i  

between vx  and v . 	If C(Si) > t 	= c 	then 
Pi 	 qi 

is reconnected between vx and v . Pi 

A realization of (T,S00 ), which is given in (5.6), 

is shown in Pig.5.7. 

Consideration of a number of examples seems to suggest 

that the above procedure of the synthesis for (T, Ste )is 

always valid, and so the conditions (1) T is principal 
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partitionable and (2) N(m)  is satisfactory with respect 
to Wing-Chien partitioning are sufficient for the 

realization of (T,S0,0 ), but no proof of this has yet 
been found. 

Fig.5.7 	A realization of (T,Sa)) given in (5.6). 
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CONCLUSION 

Several problems on the synthesis of communication 

nets have been solved in this thesis. We hope that the 

ideas and techniques presented here will prove to be use-

ful in tackling other problems which have not yet been 

solved. 	Some of these unsolved problems in this field 

are: 

(1) To obtain necessary and sufficient conditions for 

realizability of a matrix T as the terminal matrix 

of an oriented communication net which are general 

and easy to chedk on the given T. 

(2) To find an optimal synthesis for each of the special 

terminal matrices introduced in Chapter II, i.e. a 

tree-terminal matrix, a loop-terminal matrix, a 

separable terminal matrix and a triangular terminal 

matrix. 

(3) To find a sufficient condition for realizability of 

a terminal matrix in which there are k different 

entries for a fixed k. 

(4) To obtain, depending on Lemma 4.2, a systematic 

method for evaluating the terminal matrix of a non-

oriented radio-wire-communication net by solving 

(n-1) flow problems. 
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(5) To find necessary and sufficient conditions for 

realizability of a given (T,Sco). 
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ON TWO-TREE TRANSFORMATIONS AND THE 
SEPARATION OF TWO-TREE SETS 

BY 

A. A. ALF 

ABSTRACT 

. 	The present paper presents a necessary and sufficient condition for a two-tree (ij,1k) 
to be obtained from another two-tree (ij,lk) of a connected graph, by a finite number of 
elementary two-tree (ij,1k) transformations. A procedure for separating the common terms 
between 7-  jk  and Thi  into two groups, one of them 	and the other Tikik , is given in this 
paper. 

I. INTRODUCTION 

In 1959, Fujisawa (1)2  introduced the concept of the distance between 
any two trees of a connected graph G. And he had introduced, in the same 
paper, the concept of an elementary operation (or elementary transforma-
tion) on a tree of G. He used this operation to list all the trees of G. 

In 1960, Watanabe (7) and more recently Hakimi (2) have used the 
concept of distance to find other procedures for listing all the trees of G. 
Watanabe's definition of the distance differs from that given by Fujisawa 
and Hakimi, and a slightly modified version of it is used in the present 
paper. 

Hakimi and Mayeda (3) introduced the concept of an elementary two-
tree (12,0) transformation, and they showed that it is possible to obtain 
any term of 7,20  from another term in 7-120  by a finite number of elemen-
tary two-tree (12,0) transformations. 

In this paper, we shall give a definition for the distance between any 
two subgraphs of G which have the same number of edges (branches). 
And we shall introduce the concept of an elementary two-tree (ij, lk) trans-
formation, and find a necessary and sufficient condition for two terms of 

1  Department of Mathematics, Imperial College of Science and Technology, London, England. 
2  The boldface numbers in parentheses refer to the references appended to this paper. 

(Note—The Franklin Institute is not responsible for the statements and opinions advanced by contributors in the JOURNAL) 
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7 ./k to be derivable one from the other by a finite number of elementary 
two-tree (ij, lk) transformations. 

Next, we shall use the concept of distance to separate the common 
terms between T; k 	T. into two groups, one of them T, and the other 
T 	This result is useful in the synthesis of four-terminal networks with- 
out mutual inductance by topological considerations (4). 

II. ELEMENTARY TWO-TREE (ij,lk) TRANSFORMATIONS 

We assume a connected graph G containing e edges and v vertices. A 
complete discussion of the properties of linear graphs may be found in the 
references cited in this paper. Only those definitions which are needed in 
the paper are given here. 

A subgraph g of G may be represented by the product of its edges. If 
b is an edge of G, then g, • b = g 2 , where g2 is a subgraph of G containing 
all the edges of g, and edge b; if b is an edge of g„ g2 contains two edges 
b in parallel. 

The union of g, and g2 is represented by g, U g2 = g,, where g 3  con-
tains all edges and vertices ofg, and g 2. (The same notation is used for the 
union of subgraphs as well as for the union of sets.) 

The intersection of two sets S, and S, is represented by S, 	S2  = 53i  
where S3  is a set containing only those elements of S, and S2  which are in 
both. 

A two-tree (ij, lk) of G is a pair of unconnected, circuitless subgraphs, 
each subgraph being connected, and one of them containing vertices i 
and j, the other containing vertices 1 and k, and together including all the 
vertices of G. Hence the two-tree contains (v-2) edges. 

Let 	be the set of all two-trees (ij, lk) of the graph G, and let t f be 
any member of Tu 	It will be represented by 

= bii  • b12  • • • 

in which bey  (1 < y < v — 2) is an edge of / J. 

If g contains an edge b, then b — is g with edge b removed (open-cir- 

cuited). 

Definition 1. Let b., be any edge of G; the operation 

tx  = i f  • bibb , 	 (1) 

where 1 < y < v — 2, is called an elementary two-tree (ij, lk) transformation on t1  
if t , is a two-tree (ij, lk) of G. bh, does not always exist such that t , is in 
To;ik ; that is, this transformation is not necessarily always possible. We 
shall see that the existence of such a transformation depends on b.,. 

Let 
P(1.) = b(k) • b(A1 • • • b( f::I 
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consist of edges of 11  which form a path between i and j; and suppose that 
bo )  is connected to vertex i and b(°) is connected to vertex j, and in general 
by? is connected to b(7-0'  where 2 < y < a. Let similar assumptions be 
made for 

P'ik) 	b121 )k" b5VA• 

Furthermore, let VV )  and 17(/,)  be the sets of all vertices of G which are con-
tained in Py )  and P( , respectively. 

Definition 2.3  We shall call an edge b a bridged-edge with respect to I f , 
G Ti,,k), if If • b is a tree of G. (The edge b cannot be in t f.) 

Definition 3. The unique path which passes through a bridged-edge b, 
has one of its terminals on Py )  and the other on PT, and contains no 
other vertices of IN. 	a)  and V11)  is called a bridged-path (b) with respect to i f  and ‘1  
denoted by B(t f , b). In t f  • b, the paths P,P, PV), Py )  and PY )  contain 
B(11 , b) in common. 

Definition 4. b is called a direct bridged-edge with respect to t f  if B(ti ,b) 
rontains no efigec other than I) that ic h -a• R(/1., A) That ie,  A bac ono of 

its vertices on PV)  and the other on P( ,/,‘ ). 

Let b„ be an edge of G not in t f . 
If b x  is not a bridged-edge with respect to t f , then t f  • b x  contains a circuit 

in one of the connected subgraphs of i f  and any edge of this circuit other 
than b x  may be taken as bfy  such that tx , (see Eq. 1) is a two-tree (ij, lk) 
of G. 

If bx.is a bridged-edged with respect to t f  but is not a direct bridged-
edge, then ti.• b„ is a tree and B(i p b x ) contains at least one edge (say 
b ) other than b x ; and because B(t f ,b x ) has no vertices other than its 
terminals in common with P( I )  and PV„ ), then b fy  is not an edge of PC1)  or 
P(4 ). Thus 1, is a two-tree (ij, lk) of G. 

If b x  is a direct bridged-edge with respect to I f , then i f  • b x  is a tree of G 
and contains paths Pe, P,P, Py )  and PA )  all passing through b x . Thus 
on removing any b.&  (other than b x ) there must remain one path via b x  be-
tween i or j and k or 1. Hence there is no lib  such that t x  is a two-tree 
(ij, lk) of G. 

Now, we are able to prove the following statement. 

Lemma 1. Given a two-tree, say t f , in Tii 15 , every two-tree, say t h , in 
can be obtained by a finite number of elementary two-tree (ij, lk) 

transformations, if 
vci) n V>5> = 

where 4:15 is a null set. 

The proof of Lemma 1 is in the Appendix. 

3  The definition of bridged-edge given here is equivalent to Wing & Kim's (7) definition. 
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Let tjand th  be in 	If we can obtain t, from t f  by a finite number of 
elementary two-tree (ij, k) transformations, then w 61-1a1 represent this 
relation between t f  and t, by 

lh = ce(y,1k) ( if ). 

But if we cannot obtain t from i f  by a finite number of elementary two-tree 
• (ij, lk) transformations, we write 

th 	( u'" )  (//). 
It is easy to see that, if 

th = ()..c(u ")(1,), 
then 

if = () ce(1-'10  (1k). 
Lemma 2 of Hakimi and Mayeda (3) which states: "Given a two-tree 

in 7-120 , every two-tree in T120  can be obtained by a finite number of ele-
mentary two-tree (12,0) transformations," is a special case of Lemma 1 
given here. 

Lemma 2. Let 11  and 1,, be in To,. If i f  U t, contains a path P ,C; )  such that 
la() n l'  (r) =__ 

and 
= 

then 
t 	= 	ce(!) I k) (I f ) 

Lemma 1 is a special case of this lemma when /1;)  = Py )  or /1 a-  PC ).4  

Proof: Let 
pt;) = bc,' )  . b -" )  • • • bc' ), 

taking the edges in order starting at vertex i. 
By the first condition of the lemma, b$) is not a direct bridged edge with 

respect to ty-o, where 

ty) = t(.-t) - b;')/1)5'), 	(1 < r < u), 

in which by) is an edge of 1.. Each 17) is in 7 k . Thus starting with I f  and 
using the edges of /li.) in order, we get a two-tree (i j, lk), ty), by u elemen-
tary two-tree (ij, lk) transformations. That is, 

17 )  = 	1k) (If). 

By the second condition and using Lemma 1, 

Hence 

th 	(ij,110 t7)).  

lh 	(ti ), 

4  Two subgraphs of C identically equal if they have the same edges. 
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which proves the lemma. 

The next statement is the general case of this transformation. 

Theorem 1. If tjand 1, are in 	and 1 f  U 15  contains a set of (u + 2) paths 

p(t)  1)(2) •• •
p(.)  P (`` ) 	(if u is even) IA 	 15» 	 u  

or 
p(1k)3 	p(122, 	p(;),  p(t2 	(if u is odd), 

such that no two successive members have common vertices, then 

th = oC (''' )̀ (//). 

Proof: Starting.  with t f  and applying the technique used in the first 
part of the proof of Lemma 2, we can obtain t„ containing PT, 

ti = 
In general we can obtain 1,+ , from t ,, (1 < r < u), 

tr-fi = 

where t, contains P,(; )  and 1,.+ , contains Pi" if r is odd; or t , contains 
and i r+ , contains Prnf r is even. t,, contains P,(_;')  (or Pc j/D . 

• By Lemma 1, 
th = oe 	lk) (1 u+i ) .  

Thus 
th = 

Hence the theorem. 	
oL 

Corollary 7. If PV )  = 11, ), where i f  and 15 c T ij „, then 
th  = 

oL 	
(ti). 

The proof is obvious. 

Definition 5. Let g, and g, be any subgraphs of C which have the same num-
ber of edges. The distance' between g, and g2  is denoted by d(g„ g,) = 
number of edges in g, (or g 2 ) which are not in ,g, (or g,). d(g„ g,) could be 
written in the alternative form 

d(g„ g,) = 37:2  number of edges of g, O g 2 .6  

We call g, and g 2  neighboring if d (g„ g 2 ) = 1. 

Lemma 3. If d(t .1 , 15 ) = 1, where 11  and t, e Tij15 , then 
n  = 

vv5 ) n 	(h) 	(1). 
	 (3) 

Several authors (1,2) have given definitions for the distance between two trees. This definition is 
a general definition for distance; and it differs from Watanabe's definition which is as follows: The dis-
tance between two subgraphs is the total number of edges in them, diminished by the number of com-
mon edges. 

6 The ring sum, g / 	g2 , of g i  and g 2  consists of edges of g / and g2  which are not in both. 
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Proof: Let b/ be the edge of '/ which is not In 'h' and let bh be the 
edge of 'h which is not in 'I' Then 

'h = 'I' bh/b/. 

If 'I' bh contains a circuit, then Eg. 3 follows. If '/' bh is a tree of C, 
then b/ must be contained in 13(t/, bh). Thus '/ and th will have the 
same paths between i and j and between land k; and Eg. 3 follows. 
Hence the lemma, 

The following theorem is the converse of Theorem 1. 

Theorem 2. If t/ and 'h are in Tij, Ik' and 'j U 'h does not contain a set of 
(V + 2) paths (where Vis any finite number): 

p(f) p(1) p(2) P(u) P(h) 
/I, ) l)' II;' .•. ) Ik} l) (if V is even) 

or 
p(f) P(I) p(2) P(u) PCh) 

'" ) IJ ' II.-' ••• , l) } IIr. (if Vis odd), 

such that no two successive members have common vertices, then 

'I, ~ £ (ij,Ik) ('/)' 

Proof: Suppose, if possible, 

th = £(&,1<) (tj); 

then there is a set of two-trees (zj, Ik) of C 

t t\l) t (2)... t(I-.), t, 
I' , " I~ 

in which A is finite, such that 

d(tCI), 'I) = deter), thl ») 

where 1 ::; r < A. Moreover, 

t/ U 'h U[~ t(T)] = '/ U 'h' 

Thus, by Lemma 3, t/ U th contains a set of paths 

1 , 

(if A is even) 
or 

pCIl P(I) P('~)"'" Pil-.) p(h) 
IIr. , lJ '11. l} } Ik (if A is odd), 

such that no two successive members have common vertices. This contra­
dicts the hypothesis of the theorem. Hence the theorem. 

Thus we have found a necessary and sufficient condition such that 

'h = £(ij,lk) (t/): 

There are many special cases of Theorem 2, but they are long and 
tedious to state and to prove. We omit these cases since they are not of 
great interest. 
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III. THE SEPARATION OF Tikn To  INTO TWO GROUPS 

We denote by Tar b  the set of all two-trees (a, I)) of a graph G. 
Given T, k  and T Jr, only, it is easy to see that 

r) Ti.! = T ,,U T 11, jA. • 

Our present problem is to find how to separate T from T jk  (4,5,6,9). 
It is necessary to notice that it is impossible to say which set of two-trees 
belongs to 	a  and which to T1, j,‘ ; it is required only to separate the set 

F = T.U T T , 1k 	11,1A 

into two groups, one of them T,„ „ and the other T, jk . 
To find a procedure for separating the set F, we need to prove a num- 

ber of preliminary results. 

Definition 6. A maximal connected set (ij, lk), denoted by 54, , is a non-empty 
set of two-trees (ij, lk) of G, such that 

(1) if th  = 	(ij;  1k)  (t)  f , where t f  C 	a., then th  C Sy, ik; 
(2) if i,, 	2 	(ti.), where tjE 	1k , then th <it'S ij  1,. 

Definition 7. Let S, and S2  be any two sets of two-trees of G. We say S, and 
S2  are m-joined sets (or S, is m-joined with S2 ), if there exist t,(-) 	S, and 

S2  such that 

d(t,(.), 	= m, 

and for all other elements t,(x) C  S, and tlY) 	S2  
d(ii(x),  ti'>) > m. 

Now, let 

	

D = 	 d 

be the set of all edges of t ioo which are not in t2vn); and let 

D2  = { d1(2), 

be the set of all edges of tP) which are not in t i(m). Furthermore, let 

	

C = 	{6.1, c2, " " 	C - m-21 

be the set of all edges which are in both t,(.) and tp). 
Let dp, 1 < s < m, be any element of D1 . If t2") • dso) contains a cir-

cuit, then this circuit must contain at least one element of D2, say dp. 
Then tp) • c1,9)/ci.,(2) is a member of S2, and 

	

t .4" ) • 	,(2)) = m 	1.  

This is impossible, by Definition 7. Thus tp) • di'> is a tree. Hence each 
edge of DI  is a bridged-edge with respect to tP); and each edge of D2  is a 
bridged-edge with respect to t,(.). 
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m, where 

t (m) E .S'(I) and l (m) E S(2) , 
i I). II. 2 l), IA.· 

Let PO) and p(l) be the paths of t (m) between i and}' and between I and ~", y lk ] 
respectively. Similarly, let P~) and P(l~)be the paths of ttl. 

From Definition 7, we can see that B(tim), dP», 1 ::::: s ::::: m, contains 
no edges of D], since otherwise St~)lk and S'~:)ll; will not be m-joincd sets. 
Thus BUlm), d}2» consists of d}Z) and edges of C only. Similarly, B(t§m), d?» 
contains n~ edges of D 2 , and consists of d,(I) and edges of C only. Moreover, 
in tim) U t§m), B(tim

), dP) is unique for each s; and similarly for B (ttn
), d'p). 

Lemma 4. No two bridged paths B(tfm), d,f2» and H(tim ), dJZ), s,e q and 
1 ::::: s, q ::::: m, have any vertices in common except possibly one only of 
their terminals. 

Proof: t/,,!)' dP) . d,?) is a connected subgraph of G containing all the 
vertices and one circuit only which contains d,'2), d,?) and at least one edge 
of D say d(l) which is either an edae of P(I) or of pO) Thus this circuit l' r , "b lJ Ik" , 

does not consist of n(t (m) d(2» and B(t (m) d(Z» only' that is the terminals of I , .I 1 , q , , 

B(t (m) d(Z» can not be terminals of B(t (m) d(2» 1 , s 1 , 'I . 

If B(t/m), dP» and B(t/m), d?» have common vertices other than their 
terminals, then they have at least one edge of C, say CI~ in common, other­
wise tim) . dP) • d?) would contain two (or more) circuits. Thus 

t (",) . d(2) • d (2) 
t lrll) ==] s q 

d,(I) . C] 

is a two-tree (ij, lk). If d,(I) is an edge of, say P~l, then tim) contains p~~, and 
by Corollary 1, t/,;,) belongs to S'~~)/k" But 

d(ti,;,), dz(m» = m - 1, 

which contradicts the hypothesis. Hence the lemma. 
The next statement follows directly from Lemma 4. 

Lemma 5. In tim) U tr), there is no path which contains more than one 
edge of D (or D) has its terminals on P(2) and P(Z) (or PO) and Pi!)~ and I 2 , Y lk U lk , 

contains no other vertices of V(2) and VIZ) (or V (I) and VOl). u lA. y lk 

We are now in a position to prove the following important theorem. 

Theorem 3. All the edges of DI are contained in P~) U P(/]. 

Proo]: Let d,o) be in D j and suppose if possible that djI) is neither in 
p(l) nor in p(l) Let v and v be the terminals of B(t (m) d(l» where v E V(~) !! Ik' I 2 2 , r , 1 I) 

and V 2 E V(~. Furthermore, let d,'l) be in g~), the part of tim) which con­
tains vertices i and j. Then VI and Vz are in g~y, since B(tJml, dr(I)) consists 
of dI I ) and edges of C, that is all the edges of B(tdm), d,<'» are in g~). Now VI 

and V 2 cannot both be in V~), since g~) contains no circuits and d?) is not 
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an edge of PT by our assumption. If13(t.r, (1,(1) ) and P(J )  have no common 
vertex, then it is easy to see that there is a path in g( ,)'.), say P,, which con-
tains (1,(1)  and has only one vertex in common with PT, which must be a 
terminal of /'„ the other terminal being either v, or v2 . 

Let v, be the common vertex of P, and FY)  or of 13(tz"' ) , cl' ) ) and PT. 
Now we have to consider two cases: (1) the path between v, and v1  in 

g (i.11 )  contains (1(1) ; or (2) the path between v, and v, in g,1 )  contains d,.(1) . 
Case 1: On P(ii2), there is at least one edge of D2  between v, and j, since 
otherwise g (,j1)  will contain circuits. Let d,(21  be the first edge of D2  after v, 
between v, and j on P. Let v3  and v, be the vertices of d,(2), v, being the one 
nearer to v,. Then v, must be in 4 ). Also v, cannot be in gT, that is, v, 
must be in g ( ),) , since otherwise 1,(-)  • cl(2)  would contain a circuit, and this 
leads to a new term of S( ),,, having distance (m — 1) from IP ). Thus t"'> • 
cl,(2)  is a tree of G. The path between v, and yr  in t i( m)  • cl(2)  contains no ver-
tices of 1/ (,)? except v„ since otherwise gT contains a circuit or else 61,(1)  is an 
edge of PT. Hence /3(t,( m) , (1;2) ) contains the path between v, and v, in i(')  • 
(1,(2) , which is impossible since B(tr, a',9 cannot contain an edge of D„ as 
we have shown in the previous discussion. Thus d;') must be an edge 
of P. 
Case 2: Between v, and 1 on It, there is at least one edge of D2 , since 
otherwise there will be a path in t i("' )  between 1 and a vertex of PT which 
is impossible. Thus by the same technique that was applied to Case 1, we 
can show that d,!' )  must be an edge of P. 

If we had assumed initially that c/;0  was in e;,„), then it would follow 
similarly that cl,Y )  must be an edge of P(,12. Hence the theorem. 

Thus any path between a vertex of r-c,i) and a vertex of 1/T2 which con-
tains no other vertices of either, is a bridged-path with respect to t"' ) , and 
is contained in either PT or 13( ,',;). 

Moreover, from Lemmas 4 and 5, and Theorem 3, between any two 
successive edges of Di  on PT (or 11?) there is at least one vertex of either 
17(i,2) or J7( k• 	 • 

Now, to simplify the discussion in the following subsection, we short- 
circuit all the edges of C in tr U t;" and we denote the new graph by 
gr  If t (r,)  and 	respectively, represent tr and tP )  with the edges of C 
short-circuitedi, then 

g 

	
t a m) 

U 

I rr,Z) 

Each bridged-path with respect to If") (or q")) in tr U 	becomes a di- 
rect bridged-edge with respect to t (i7 )  (or 47 ) ), respectively. Not... that t,":,)  
and t (2"; )  are two-trees (i' j' , I' k'), but not two-trees (ij, 1k) of G unless C is 
empty; where vertices i', j', l' and k' of g, correspond to i, j, 1, and k, re-
spectively. 
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F {ml {ll (ml r S{2l 
IG. 1. g, for I] ~ Sij', 110 and 12 = ij,lk 

The number of edges in g, is 2m: 
Hence, from Lemmas 4 and 5, and Theorem 3, g, will be as in Fig. 1, 

where thick lines denote edges of t ~~l, thin lines denote edges of t ~~l. 
Thus the number of edges of Dz is 

m ='2(2;\ - 1) + 2 4;\ .. 

Thus, we have the following theorem: 

Theorem 4. If S{]l/k and S(Zl/k are m-J' oined sets, then 
'J, y. 

m = 4;\, 

where ;\ is a positive integer. 

It is easy to see that all previous discussion (from Definition 7 onwards) 
except Theorem 4 and Fig. 1 hold if S~)lk is replaced by Sifljlo while SV,lt< 
remains. In this case g, will be as in Fig. 2 where thick Eiles denote edges. 
of t l~l, thin lines denote edges of t ~~). 

Thus the number of edges of Dz is 

m = 2 (2;\) + 2 = 2(2;\ + 1). 

Thus we have the following theorem: 

Theorem 5: If SV,l/k and S~7.~ are m-joined sets, then 

m = 2(2;\ + 1), 

where ;\ is zero or a positive integer . 

Corollary 2. Each set Sij, Ik is two-joined with Ti/,jlo' and each set Si/,)k is 
two-joined with Ti), Ik' 

The proof of this statement follows from Fig. 2. 

".~~\ Y._I ~ Yo I. 

t . -----:zzJ 
I . / k ------ l 

F 2 ~ (m) E S(I) 1m ) E S{Z) 
!G. . g, or I] ij, 110 and /2 i/,)k' 

.-, 
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Next, we shall prove a simple lemma which will be needed in explain-
ing the separation procedure. 

Lemma 6. There is no two-tree (y, 1k) which has a neighboring two-
tree (il, jk). 

0 Proof: Suppose, if possible, t, 	and 12  G 	are neighboring, 
that is 

d d( 11, 12) = 	; 
then there is one and only one edge of t, which is not in t2 . Let this edge 
be in the part which contains vertices i and j. Then the edges of the path 
between 1 and k in 1, are also in t2 ; that is, there is a path between / and k 
in 12, which is impossible. Hence the lemma. 

We are now able to solve the problem posed at the beginning of this 
section: given the sets T k  and Tim  of two-trees of a graph G, and hence 
the set 

F T 11T —T 

find a procedure for separating F into two groups f, and f2 , one of them 
T.and the other T , 

 

	

1k 	 • 

W. SUMMARY OF PROCEDURE 

Our procedure is summarized in the following steps: 
(a) Find, from F, all the maximal connected sets, Sw, where r --

1, 2, ... , n, n being finite. This can be done by the following steps: 
1. Choose any member (term) of F, say to ; and let {t,} be the set of all 

the neighbors of to. 
2. Find the neighbors of the members of {t,} which are not to  or in 

{t i }. Let the set of all these new members be { t2}. 
3. Repeat this procedure until a set ftq l, 1 < q, is found such that the 

neighbors of all its members are either in 	or in itq l; that is }t,,_,} = 4. 
4. The union of all these sets will form a maximal connected set, say 

S('), that is 
So )  = U",_0  

where {to} 	t0 . All the members of SO) are either in Ty, or in T , ;k ,  by 
Lemma 6. 

5. Apply steps 1, 2, 3, and 4 to the complement in F of (..);_, S(y), where 
1 < z < n, to find Su-0). Since F contains a finite number of terms, then 

F = U' S(y). y=1 
We denote by {Sol the set of all sets S(0. 
(b) Choose a member of IS(01, say So), and find from iS( 0 ) all the max-

imal connected sets which are 4A-joined with 50). The union of so) and 
those sets is the first group, f p  The union of the remaining sets of {S(')} 
will be the second group, f2 . 

..1.1.0••• 	  — - 
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We can check the resuh by: 
1. Using Theorems 4 and 5; that is, each maximal set of 12  should be 

4X-joined with each other such set, and each maximal set of f, should be 
2(2X + 1 )-joined with each maximal set off,: 

2. Using Corollary 2 for a further check. 

We now give a simple method for finding the value of en for two maxi-
mal connected sets. When v is large and the number of terms of each of 
these sets is large, a quick method for finding m is very desirable. Let S(1 ) 
and S (2)  be m-joined sets, and let 

	

s(,) = 	/11)3 	tp)) 

and 

	

S(2) = 	t?),  

Construct a matrix Al = [m,i ] of order a x b, with rows corresponding to 
the members of S(') and columns corresponding to the members of 5(2), 
and elements 

me  = d(tP), /12)). 

Then m is the minimum element in Al. 
It is worthwhile to illustrate the whole procedure by an example. 

Example 

We shall not set down To  and T. / since they contain a large number 
of terms; but we enumerate their common terms, which arc 

	

F = I.YLY2Y3Y4Y5Y6Y13.Y1s, 	Y3.Y6Y7Y8Y9Y12.Y13Y15, 	Y2Y5.Y7Y1()YoY12.Y14Y1s) 

Y7Y8.Y9YIGYIIY12Y13Y15,  Y2Y3Y5.W7Y)2.Y13Y14,  YiY4Y8Y9YloYli.Y13.Y15, 

	

YIY3Y4Y6Y8Y9.YDY14 , 	Y2Y5Y7YloYi tYnYi3Yis, YiY3Y4YoYsY9Y13Yt5, 

YiY2Y4YsYloYoYi3Y15,  Y2Y3Y5Y6Y7Y12Y13Y15,  Y3Y6Y7Y8Y9Y12Y13Y14, 

YiY4Y8Y9Y10Y1IY13Y14,  Y2Y3Y5Y6Y7Y12Y14Y15, YiY2Y3Y4Y5Y6YHY15, 

YO2Y4Y5YloYilYi3Y14, Y3Y6Y7Y8Y9Y12,Y14,Y15, YIY2Y3Y4Y5Y6Y13Y14,  

YIY2Y4Y5YloYILY14Y15,  Y7Y8Y9YloY1lY12Y13Y14,  Y2Y5Y7YloYilY12Y13Y14, 

YiY4Y8Y9YloYilYi4Y15,  YIY3Y4Y6Y8Y9Y015,  Y7Y8Y9YloYilYI2Y14Y15)• 

Pick up any member of F, say ;I11 I.,v 2,v 3,v 4:5:6,1) 13:15' There are two neigh- 
bors of this member, namely 

	

YIY2Y3Y4Y5Y6.Y14Yis 	and vvv't :1,v 2, 3, 4, 5:6:13:14 

these are the members of t1 ). We find that (t2} = 0; thus the first maximal 
connected set is 

fYiY2Y3Y4Y5Y0,3Y,; YiY2Y3Y4Y5Y6YHY,5; YiY2Y3Y4Y5Y6Y13Y14 1. 
Similarly finding the other maximal connected sets, we get the follow- 

ing complete set of the maximal connected scts: 
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S(I) 	LYIY2Y3Y4Y5.Y6.Y13Y15) 	YI.Y2Y3Y4Y5.Y6Y14.YI5, 	YI.Y2.Y3Y4Y5Y6Y13.Y141 

S (2)  — 1Y3Y6Y7Y8Y9Y12Y13Y155 	Y3Y 6Y7Y 0'01 123'10'14, Y3Y6Y7Y8Y9Y12Y14.Yisi 

SP )  — {Y2Y5Y7Y10Y11..Y12Y14Y is, Y2Y5Y7YloYliY12,Y14Y13, Y2Y5Y7Y 10Y 012. YBY is} 

5(4)  = y7y8y9y,onyoi3y,5, 	 y7y8y9y,y,,y,2yoid 

S(5) = I hY3Y5Y07Y12Y0Y., y2y3Y5YoY7Y,2Y,3Yi5, Y2Y3Y5Y07.Y12.Y.Yi5} 

S>6>  = IYLY4Y8Y9Yioii.Y13Yi5, YiY4Y8Y9YtoliThYm, Y,Y4Y,Y9Y,Y,Y.Y151 

S(7) — yo3Y4Y009Y,Y,4, YIY3Y4Y6Y8Y9YuYis, YiY3Y0009Y0,1 

S(8) = yo2Y4Y5Y,o,,Y,Y,, YiY2.Y4Y5YwYnY14.Yi5, YIY2Y4.Y5Yin.YIYBY1.5}• 

Consider S(') and S(2): 

S'0) 
 

S(2)  YiY2.Y3Y4.Ys.YoY13Y15 YIY2Y3Y4Y5Y6Y14.Y15 .Y1Y2Y3Y4Y5Y013Y14 

Y3Y6.Y7Y8Y9Y12Y13Yi5 4 5 5 

.Y3Y6Y7Y8Y9Y12Y13Y14 5 5 4 

Y3Y6Y7Y8Y9Y12.Y14Yi5 5 4 5 

Thus S('> and S(2)  are 4-joined sets. In a similar way or by direct computa-
tion we ,find that SO) is 4-joined with S(3) and S(6). But SO) is 6-joined 
with Seo, and 2-joined with S( 5 ), S( 7 ) and 5(8). Thus 

= ISO3, S (2), S m, 5(6) ) 

12  = 	S(5),  S(7 ),  S(8)}.  

It is easy to check this result. 

V. CONCLUSION 

In the present paper, we have found two main results, namely : 
1. A necessary and sufficient condition for a two-tree (ij, 1k) to be ob-

tained from another two-tree (ij, lk) of G, by a finite number of elementary 
two-tree 	1k) transformations: 

2. A procedure for separating the common terms between 7., k  and Tj , 
into two groups, one of them Tu  and the other T 

In synthesizing two terminal-pair networks without mutual inductance 
from the open circuit impedance matrix, 	using topological methods, 
the given functions z„ , z12  and z22 , where 

Z11 .;12 

= 
Z12 Z22 

are expressed in i.erms of elements admittance functions y„ y2, 	, y,; 

and 



1 
	

(r) 
v(Y) w 	(7) - w12,,1.2 (r) 

W12,1'2' (1) - w12', 1'2 (r) 
W2,2,  (Y) 

z,, = 

350 
	 A. A. ALl 	 [ J.F.I. 

(see Mayeda and Seshu (4)). The problem of selecting a number of ele- 
mentary positive real functions' y, 	y, such that the given positive 
real functions z11  z,2 , z22  are expressible in terms of them, remains un-
solved (4,5,6). 

However, assuming z„, is given by 

where 
V(Y) 	(tree-admittance products), 
W,,, (r) 	E (two-tree (1,1')-admittance products), 
W22, (r) = 	(two-tree (2,2`)-admittance products), 
W121.2' (1) = 	(two-tree (12,1'2')-admittance products), and 
W12.. 1'2  (Y) 	(two-tree (12', 1'2)-admittance products), 
in which 1,1' are the input vertices and 2,2' are the output vertices, 
Seshu (4,5) gave a procedure for determining the network, (to within a 
2-isomorphism), starting with V(Y), W22,(Y), 	,.,,(r), and W12,1,2,(r) — 
14/12,v2(Y)]. It is to be noted that the same network realizes also the nega-
tive of the given W121'2' — W12, 1.2}  if the labels of output vertices arc 
interchanged. 

It is clear that, using the procedure given in Section III, we can carry 
out Seshu's synthesis when only V (r), W,,,(T) and W22,(r) are given. 
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APPENDIX 

Proof e  of Lemma 1 

Add bh t
lk to tf .  . Since /Tik  is not a direct-bridged edge with respect to I f , then there exists an edge, 

say bi(1), in t f  such that 

111) = 	bp?k/ q2) 

is a two-tree (ij, 1k) of G. 
Repeat the operation by adding b1,11)„ to 1/1), and so on. 
In general we use the recursion formula 

t(,) 	Cr t) b(r) (r) 
1 	

_ 1 	
h Ik lb f' 1 < r < d, 

where tf(°)  = t f, and d is the number of edges in P. 
In each 11r) , the path between vertices i and j is P" )'  since 

V 	n(0 VA) = 

hence all t}' )  are in Tg 1k . 
Thus we obtain a two-tree (tj, 1k), 17), by a finite number of elementary two-tree (ij, 1k) trans- 

formations; and 57)  contains p(( . 
Now, we repeat the operation on ii(d)  by adding in order 

b (I) h (2) . . 	b(c) 

which are the edges of Pi.,fh)  in order (that is, bhp is connected to i and bhp)  is connected to j, and in 
general 6/(:) is connected to b (r-1) 2 < r < c). h ti 	— 

Since 

v() n V,h2 
then in each step, 	j? (1 < y < c) is not a direct bridged-edge with respect to tid+y-1). Thus all of 

(41) (42) 	(d 

are in T.), 1k  and contain P(Ili ; 1.  ?I+')  contains bothP(9  and P(N. 
To complete the transformation we make use of those edges of th  which have common vertices with 

V. After that we make use of the edges of th  which have common vertices with the previous set of 
edges; and so on until we use (in order) all the edges of 1h  which arc in the part that contains vertices 
1 and k. 

Then we turn to the edges of t h  which have common vertices with VT, then those which have com-
mon vertices with them, and so on until we use (in order) all the edges of th  which are in the part that 
contains vertices i and j. In each of the above steps, the two-tree (2j, 1k) transformation is possible, 
since on adding one of the previous edges in the order mentioned above, we get either a circuit which 
contains an edge of t f  which is not in th  or a tree which contains paths between the pairs of vertices 
(i, 1), (1,k), (j, 1) and (j,k) that have at least one edge of t f  in common which is not in the paths be-
tween (i,j) and (1, k). 

Thus the lemma is proved. 

8  The technique used here is similar to that used by Hakimi and Mayeda (3). 
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and quicker results. The use of the above discussions lies .n obtain- 
ing the zero distribution of any real polynomial in the u 	circle and 
in simplifying the procedures for obtaining the zeros o' any form of 
F(z). Such a general form of F(z) could represent th characteristic 
equation of a linear discrete feedback system or a wised :lei work. 
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(e) 	 (c') 
Fig. 1—(a) A triode. (a') Triode graph. (b) A transistor. (b') Transistor graph. 

	

(e) A transformer. (c') Transformer graph, where mi = ram 	-Mu/pd. 

On the Sign of a Tree Pair 

Several methods for determining the sign of a tree pair' (complete 
tree2.3) have been described by several authors. The method of 
interest here is that of Frisch and Kim.' For completeness, we shall 
outline briefly the terminology used by Frisch and Kim. 

The graph g of a general linear network consists of two kinds of 
edges: ordinary edges and active edge pairs. Each ordinary edge is 
weighted by its self-admittance and each active edge pair by its 
mutual admittance. An active edge, pair consists of two edges: 
current edge and voltage edge; they occur in pairs and between 
different node pairs. The current edge is indicated by double arrows 
and the voltage edge by a triangular-shaped arrow. 

A triode of Fig. 1(a) is characterized as a linear active device by 

	

.I„ = 0„,-Voir 	gpVitur 

where g,,, is the transconductance and g,, is the plate conductance. 
The graph of this triode is shown in Fig. 1(a'). 

A tray • or, shown in Fig. 1(b), is characterized by the following.  
set of eq..ations: 

I. =. 	— V n ) 
= ag.if — V„)± g,(V4 — V„) 

Ib = gb(Vb -- Vn) 

received July 8, 1963; revised December 16, 1963. 
• I. '1'. Frisch and W. 11. Kim, "Properties of 2-semi-isomorphic graphs and 

their applications; active network analysis," J. Math. Phys., vol. 2, pp. 627-635; 
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C. L. Coates, "General Topological Formulas for Linear Network Functions," 
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W. Mayeda, "Topological Formulas for Active Networks." 'University of 
Illinois, Urbana, Interim Tech, Rept. No. 8, E. S. Army Contract No. DA-11.-
022-011 D-1983; 1958. 

and 

I. + I, ± lb  — 0 

where g, is the emittor conductance, g b  is the base conductance, g , is 
the collector conductance and a is the current amplification factor. 
The graph of this transistor is shown in Fig. 1(b'). 

The graph of the transformer [Fig. 1(c)], which is determined by 

I, = —L, 	
pd V, — 	V, pd  

I, = M 	+ —1  V2 pd 	pd 
where 

d = L,L, — 	X 0 

and pis the complex frequency variable, is shown in Fig. 1(c'). 
The graph g can be decomposed into two subgraphs: current 

graph gr, which consists of all the current edges and the ordinary 
edges, and voltage graph sv, which consists of all the voltage edges 
and the ordinary edges. 

Fig. 2 shows a network with its graph g, in which 

193 = PCs) 

„ = in, = — M., m 

and 

d = 	— 211:5 	0. 

pd ' 



Fig. 2-(a) A network. (b) Its graph. 

(1,4) 
9 

Fig. 3-Tree pair guiamon, of Fig. 2 (b). (a) Current tree. OA Voltage tree. 

(1;2', 3 ) 
	

(1-, 2', 3) 
(a) 
	

(b) 

,1,04) 

Fig. 4-Reduced tree pair of the tree pair 011/37716m7. (a) Reduced current tree. 
(b) Reduced voltage tree. 

A pair of trees of gr  and gv  that contain the same edges are 
called a tree pair of 9. Fig. 3 shows the voltage and current trees of 
the tree pair glyam6m7  of the graph in Fig. 2(b). 

The principal node of an edge of a given tree is a node of the edge 
such that the tree path between it and the reference node contains 
the edge. 

The reduced tree pair of a tree pair is a pair of subgraphs derived 
from the current and voltage trees by short circuiting all ordinary 
edges in the tree pair. 

Let A r  and A v  be the reduced incidence matrices of gr  and 9,, 
respectively, with respect to the same reference node. Let Ai , and 
..11.„ respectively, be square submatrices of Ai  and A v  whose 
columns correspond to the edges of a tree pair rj of 9. Then the 
sign of ri is given by lAri • 	where AV, is the transpose of Avi• 

The following lemma is that of Frisch and Kim.' 
',canna 1: The sign of a tree pair is given by ( -1) ',Irk (sign of 

active edge pairs of the reduced tree pair of a tree pair), where y is the 
number of interchanges of edges in the current graph or in the 
voltage graph needed to give the current and voltage edges of each 
active pair in the reduced tree pair the same principal nodes, and k 
is the number of active edge pairs in the reduced.  tree pair. 

Example 1: In order to find the sign of the tree pair glyam6n7 by 
the formula of Lemma 1, the ordinary edges gi  and y3  are reduced 
and the reduced tree pair is shown in Fig. 4. Taking node (1', 2', 3) as 
a reference node we find that the principal nodes of the edge pairs 
in and in7  in the reduced current tree [Fig. 4(a)] are 2 and (1, 4), 
and in the reduced voltage tree [Fig. 4(b)] are. (1, 4) and 2, respec-
tively. Thus m6  and m7  have positive signs, and the number of 

1964 
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interchanges of edges needed to give 7n6  and m7  the same principal 
nodes is one. Therefore, from Lemma 1, the sign of the tree pair 
is ( -1). 

Some results which reduce the work in determining the signs of 
all tree pairs of S  will be given in this communication. 

Let t lie a 2-tree of a directed graph G, and e i  and e2  be edges of G 
such that en  t and ex ./ are trees of C. t consists of two unconnected 
subgraphs, each being connected and called a part (or a maximal 
connected subgraph 4 ) of I. Let 1, and t2  be the parts of t. Each of 
el  and e2  has one of its nodes in ti  and the other in t 2. If both e, and 
e 2  have their directions from 1, to t2 or from t2 to 1,, then we shall 
say that e l  and e2 have the same direction with respect to ti  and t2; 
otherwise, they have opposite directions. 

Lemma 2: If g is a subgraph of 9  consisting of ordinary edges only 
and e is an active edge pair such that eg is a tree pair of 9, then the 
sign of eg is determined by a. 

In other words, if el . and cv are the current and voltage edges of e, 
respectively, and fa and g2  are the parts of g, then the sign of cg is 
(+1) if ci  and ey have the same direction with respect to 0-7  and 
0'2; otherwise, ( -1). The proof follows from Lemma 1. 

By Lemma 2 and from the triode and transistor graphs [Fig. 1(a), 
(1.7)] we have: 

Corollary 1: The sign of a tree pair that consists of ordinary edges 
and the active edge pair of a triode (a transistor) is positive 
(negative). 

Corollary 2: 1) The sign of a tree pair of 9 that consists of ordinary 
edges and one active edge pair of a transformer [Fig. 1(c)] is (+1) if 
its ordinary edges form a 2-tree (12, 1'2') of 9, where (1, 1') and 
(2, 2') are the node pairs of the transformer. 2) The sign of a tree pair 
that consists of ordinary edges and the two active edge pairs of a 
transforme,! is ( -1). 

Proof: 1) Let nn be an active edge pair Of a transformer and gi  be 
a subgraph of g consisting of ordinary edges such 	it migi  is a 
tree pair of !•3, Then g is a 2-tree, separating nodes 1 	cl I' as well 
as 2 and 2'; that is, j;  is either a 2-tree (12, 1'2') or a 2-tree (12', 1'2) 
of 9. Applying Leon..., 2, we find that if g7  is a 2-tree (12, 1'2') then 
the sign of inig7  is t.± .1, and if gi  is a 2-tree (12', 1'2) then the sign 
of 2771 g7  is ( -1). 

2) Let g2  be a subgraph of 9 consisting of ordinary edges such 
that mon2g2  is a tree pair of 9, where 7n2  is the other active edge 
pair of the same transformer. Then g2  must be a 3 tree of 9. It is 
easy to see that g2 is a 3 tree (12, 1', 2'), (12', 1', 2), (1'2', 1, 2) or 
(1'2, 1, 2') of 9. Applying Lemma 1 we find that the sign of mon2g2  is 
( -1) for each of the four eases of 	Hence the Corollary. 

Lemma 3: Let e l, e2, • • • , e5 be the edges of a connected-directed 
graph G, A the reduced incidence matrix of G with the rth column 
corresponding to e,.(r = 1, 2, • • - , b), e it, and eit (1 < i < j < b) 
two trees of G, A; and Al  square submatrices of A whose columns 
correspond to the edges of ei t and eit, respectively, and n the number 
of all edges of t which are in the sequence ei+1, ei+2, • • • , ei_7. Then 

121;1 = (- 

where a = 	1, if e, and ei  have the same direction with respect to 
the two parts of 1, a = - 1, otherwise. 

Proof: Let Ai  be A with column ei replaced by column ei, then 
looking upon ea and e,t as the current and voltage trees of one tree 
pair, and using Lemma 2 we get 

I Ai I • IA, I = a. 

But A;  can he obtained from A; by n interchanges of columns, thus 

!Ad = (-1)a 	I. 
Hence the Lemma. 

S. Seshu and M. 13. Reed, "Linear Graphs and Electrical Networks." Addi-
son-Wesley Publishing Co., Reading, Mass.; 1961. 
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Fig. 5—Current and voltage graphs of gmuryontmr. (a) Current graph, (b) Voltage 
graph. 

Talbot's Lemma' and Theorem 5 of Watanabe' are special cases 
of our result above. 

Next we present a simple method for determining the relative 
sign of two tree pairs that differ by one edge only. 

Let e,, e2, • • • , eb be the ordinary and active edge pairs of the 
graph 9, and let the columns of Ar  and A v  appear in the order 

e2, • • • , eb. Let g be a subgraph of 9  such that e,g and e,g(i < j) 
are tree pairs of 9, where ei and e i  are edges (ordinary or active 
edge pairs) of 9. Moreover, let gr , gv, eir, e,v  and ei r , e,v  be the 
current and voltage graphs (edges) of g, e; and e„ respectively. 
Denote the parts of gr  and gv  by gr„ gr , and gv„ g v„ respectively, 
and let Ar , and Ar , be submatrices of Ar  whose columns correspond 
to the edges of eig and e,g, respectively. Similarly, let A v, and A v, be 
submatrices of Av  whose columns correspond to the edges of e i g and 
e,g, respectively. Then by Lemma 3, we have 

lAr j• !A ri l 	(-1)", if e ir  and eir  have the same direction 
with respect to gr , and gr. 
(-1)^+1, if eir and e ir  have opposite directions 
with respect to gr , and gr , 

lAv,I•lAvil --= (-1)^, if eiv and e iv  have the same direction 
with respect to gr, and gv, 

- (-1)̂ +', if ei v  and eiv  have opposite directions 
with respect to gv, and gv„ 

where it is the number of all ordinary and active edge pairs of g 
which are in the sequence ei+l, ei+2, • • • , 

The sign of eig and eig are given by lAri l • 	and lArii • 
respectively where A cf, indicates the transpose of A vi. Hence we 
arrive at the following theorem. 

Theorem: The tree pairs ei g and eig of 9 are of the same sign 
if ei and ei have (or have not) the same direction with respect 
to the parts of g in both current and voltage graphs; otherwise they 
are of opposite signs. 

This result is useful in reducing the work in finding the signs of 
all tree pairs, and in evaluating the network functions of a general 
linear network.3  

Example 2: The set of all tree pairs of 9, shown in Fig. 2, is 

(g3Y3Y4Y5, g1g2Y3Y4, 91Y3Y59p, 7/04Y5gp) g1g2Y3gp, 92Y3Y491)., 

(g3Y3Y59., Y3Y41./59„,, g2Y3Y49,.) 9192Y39.), 

(91113m6m7, Y3gpmem7, Y39.7n6m7). 

The tree pairs in the first brackets consist of ordinary edges only, 
so they have positive signs. Every tree pair in the second brackets 

6  A. Talbot, "Topological Analysis of General Linear Networks," presented at 
6th Midwest Symp. on Circuit Theory, Madison, Wis.; May, 1963. 

II. Watanabe, "A computational method for network topology," IRE TRANS. 
ON CIRCUIT THEORY. vol. CT-7, pp. 296-302; September, 1960. 

contains one active edge pair g„, only; therefore by Corollary 1, all 
the trees in the second brackets haVe positive signs. The first two 
tree pairs in the third brackets consist of ordinary edges and the 
two active edge pairs (ote  and m7 ) of the transformer; therefore 
they have negative signs (Corollary 2). To find the sign of yw,„m6m7 , 
we shall compare it with y3 g„m6 n7 . These two tree pairs have edges 
y,, nt, and m7  in common. The current and voltage graphs of 
g pg„y3 non7  are shown in Fig. 5, where the noncommon edges g„ and 
g„, are drawn in dotted line. The parts of y3m6m7  in both current 
and voltage are 7/37n6m7  and an isolated vertex 3. Edges 	and g,„ 
have the same direction with respect to the parts of yamsmi  in both 
current and voltage graphs. Therefore, by the Theorem, y3g,,,m,m7  
and y3g,,m6m7  have the same sign; that is y3g,,,m6m7  has negative sign. 

A. A. Au 
Dept. of Mathematics 

Imperial College 
London, England 

A Comment on Minimum Feedback Arc Sets 
In a recent paper Younger' proposed a procedure f. finding mini-

mum feedback arc sets for a directed graph, i.e., utirraim sets of 
arcs which when removed leave the resultant grap free of directed 
loops. It may be worth mentioning that the prob in can be formu-
lated and solved by dynamic programming te' niques and as a 
quadratic assignment problem. 

Younger points out that the problem of fin ng a minimum feed-
back are set is equivalent to the problem o' finding an optimum 
linear ordering of the nodes of the grapn, o' 	 Tucku2  ;ffevionsly 
observed, an optimum assignment of node ",eotentiuls." An ordering 
is optimal when as few arcs as possible a e directed from nodes in 
position i of the order to nodes in positi. j, where i < j. 

An optimum ordering of the nodes c n be found from optimum 
orderings of subsets of nodes. Let S denote an arbitrary subset 
of nodes, and let f(S) stand for the tuber of arcs in a minimum 
arc set for the subgraph consisting tf the nodes in S and all the 
arcs between them. Let c(k, S') d note the number of arcs from 
node k to nodes in the subset S'. hen, assuming no self-loops, we 
have the functional equation 

f(S) = min { (S') 	c(k, S')1, 
where the minimization is car ied out over all subsets S' and nodes 
k, such that S r S'U{k}. 

In carrying out computa ons with the functional equation, com-
puter memory requiremen increase as 2^ and computation time as 
n2^, where n is the numb of nodes. Computations for graphs with 
up to 15 nodes can be c• rried out efficiently on an IBM 7090, and 
various means can be ed to obtain solutions for larger problems. 
(Compare the "subop imization" procedures of Held and Karp.3 ) 

The problem can 	formulated as a quadratic assignment prob- 
lem of the Koopma -Beckmann type* as follows. Let C denote the 
nxn connection ma ix of the graph and let U denote an nxn upper 
triangular matrix, here 

U,1  = 1 if i< j 
= 0 otherwise. 

Received S ptcmber 23, 1963. 
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