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ABSTRACT

It is established that some necessary conditions
for the realizability of a matrix T as the terminal
matrix of an oriented communication net are eguivalent.
A general method for the synthesis of a terminal matrix
of an oriented communication net is introduced.

Necessary and sufficient conditions are given for
the synthesis of a matrix T as the terminal matrix of
an oriented communication net having special topological
structure, namely: double tree net, double loop net or
separable net, A necessary and sufficient condition
for the synthesis of a triangular terminal matrix is also
obtained. |

Some properties of minimum total edge capacity
realizations of symmetric terminal matrices are found.
Using these properties, the problem of synthesizing a
given symmetric terminal matrix with minimum total edge
capacity and minimum number of edges, having non-zero
capacities, is solved.

Two lemmas, which are useful in reducing the work in
the evaluation of the terminal matrix of a non-oriented
communication net which has weights on both edges and

nodes, are given. Such a net is termed a radio-wire



(11)

communication net. A necessary and sufficient condition
for the realizability of a symmetric matrix T as the
terminal matrix of a radio-wire communication net is
presented.

Finally, necessary conditions are obtained for the
synthesis of a symmetric matrix as the terminal matrix of
a radio-wire communication net containing a given set of

edges and nodes which have unlimited capacities.
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CHAPTER I

An Algorithm For Synthesizing An Oriented

Communication Net

1.1 Introduction

An oriented communication net, N, is an oriented graph
with weightson edges. The weight of an edge is a reél
non-negative number called the "edge capacity'"; that is,
fhe capacity of transferring information in the direction
indicated by the orientation of the edge. Without loss
of generality we shall assume that there is at most one
edge leading from any node to another in N. Also, we
shall assume, until Chapter IV, that no capacity constraints
on nodes are admitted. Let the net N contain n nodes
labelled by 1,2y...50. An edge from node i to node j

will be denoted by e, . and its capacity by Cy The

ij J°

maximum allowable information from node i1 to node j in N
is called the "terminal capacity' from node i to node j and

represented by ty The matrix T = [tij] is called a

5
"erminal matrix"® of a communication net if tij(i £ 3)

*®
Sometimes referred to in the literature as "terminal

capacity matrix".



is the terminal capacity from node i to node j and tii
is the symbol C) s representing node i; numerically
T4 is assumed to be 0 unless capacity constraints on
node i are admitted.

Throughout all the thesis the matrix T = [tij] is
assumed to be a square matrix of order n, where every

off-diagonal element ti i # j, is a real non-negative

j,

number, and every diagonal element tii is the node symbol
An important problem related to oriented communication

nets is to obtain necessary and sufficient conditions for

the realizability of terminal matrices. Gomory and Hu,6

lOand Tang and Chien13 have given necessary con-

Mayeda,

ditions. However, these conditions are not sufficient,

except for 3 )y 3 terminal matrices, as has been shown

by Tang and Chien.13
In this chapter we shall present a method for realizing

a given realigable terminal matrix, T, that is finding

an oriented net with associated edge capacities such that

its terminal matrix coincides with the given T.



1.2 Some Properties of the Terminal Matrix of an

Oriented Communication Net.

We shall first present some definitions and results
which will be required in this chapter and the next
chapters.

Definition (1.1). A subnet of N consisting of a sequence

and edges e; . js€; s
i 11,7 7i,1,
e. . 1ig called a "directed path from node 1, to node
1p-1'm 1

i," » or simply "directed path (il,im)", A path

(il,im)" is a subnet that becomes a directed path (il,im)

of distinct nodes il’iQ""’i veod

by réversing the orientationsof some of the edges.

Definition(1.2). A "cut (i,j)" of a connected oriented

net N is a minimal set of edges the removal of which
destroys all directed paths (i,j). If the removal of the
edges of acut (i,j) partitions the nodes of N into

v = {ip,..01 b ana vy = §55,...,3,3 such that

il’i2’°°°’ip are i and all nodes reachable from i after
the removal of all edges of the cut (i, j) and jl’jz'°"’jq
are all other nodes, then this cut (i,j) will be represented

by Kili2°"ip’jljz°°°jq. The capacity of a cut (i,j) is
the sum of the capacities of all edges of the cut (i,j).
The capacity of XK. . < . . . 1s denoted by

1112°‘°1p’3132"'3q
C(K,

1112..¢ip,jlj2,¢.jq)‘ A M"pinimum cut (i,3j)" is a



cut (i,j) whose capacity is not more than the capacity of
any other cut (i,j) in N.

A fundamental property of communication nets is
contained in a theorem formulated and proved by Ford and
Fulkerson,3 and independently by Elias, Feinstein and

2

Shannon. It is called the "Max-Flow Min-Cut Theorem"

and it reads:

Theorem (1.1). "Mor an oriented communication nest

the maximum flow from node i to node j is equal to the
capacity of a minimum cut (i,j)."

Definition (1.3). A matrix T is "semiprincipal partition-

able" if upon rearranging the rows and the corresponding

columns (if necessary) T is partitionable into
A 0 0T
S R D (1.1)

!

Cq By

b o

such that T, is a uniform matrix with element value tl
minimal for T (i.e. smallest among all elements of T),

Al and B1 afe square submatrices whose diagonal elements

are the node symbols and both Aq and Bl are again partition-~
able in the same fashion satisfying the same conditions
until finally each submatdx becomes a one-by-one matrix.

The matrices A, and By are called the "resultant main



submatrices" by the semiprincipal partitioning process.
Necessary conditions of a realizable terminal matrix

ére contained in the following theorems which are given

by Tang and Chien:13

Theorem (1.2). "A realizable terminal matrix of

an oriented communication net is semiprincipal partition-

able "

Theorem (1.3). "Let tij(i,j =1,2,...,0, 1 £ 3) be

any element of a realizable terminal matrix T. Then

fOI’ 3.11 k = 1,2,...-;,1’1."

Theorem (1.3) is also given by Gomory and Hu‘6

Definition (1.4). An "S-submatrix" of a realizable

terminal matrix T of an oriented communication net N is
a submatrix of T consisting of all elements of T which
are at the intersections of the rows representing'the
nodes in V., and the columns representing the nodes in V,,
where Vr = {rl,rQ,...,raf and Vc = {01’02"°°’063 ’
a + B8 = n, are the collections of nodes such that every
node of N is either in Vr or VC but not in both. Such
an S-submatrix will be denoted by s .
rlrg...ra,clcQ...cB
It is clear that for every cut K, . s s .
y SECTREE ST E PR M

of N there corresponds one S-submatrix, s. . s s .
11120- alp, 31320 @ ch,



p + q =n, in the terminal matrix T of N.

Definition (1.5). TLet V, = {ry,...,r ] and

v, = §cl,o..,03§ be any partitioning of the set of
nodes of N such that Vr(1VC = 4, the empty set. We

define® a "seg(V,., V)", denoted by g
! s T1?2-~-?a30102---qs
as the set of all edges ey 13 of N such that iiEVr and

J €V,. It must be noticed that seg (Vr,VC) # seg(Vc,Vr).

The capacity of a seg Ep_ c o denoted by

1¥p«+Tq?C %0 - S]
C(gr1r2“°‘ra’cl ¢y C3), is the sum of the capacities of
all edges in the seg (V VC)°

One can easily see that for every S-submatrix,

s of T there corresponds one and
r1r2’"‘°ra’°1°2"°°s
only one seg grlr CTgrC1Che . -C y and every seg

contai cut (r_,c where
Eriry.. .1, 1C1C,. .. ns a (i)

2°
X 1,2,...,0aand y = 1,2,...98. Therefore by Theorem
(1.1) we arrive at the following lemma:

Lemma (1.1). "For every S-submatrix s

I‘1I'2. . .ra, 01020 .,OB
of the terminal matrix T of an oriented communication

net N,

v
<t
-

Clg ) :
T1¥pe Tq2C1C0--+Cq 1d

for all i€ V.eand jEV, ."

®This definition of a seg is slightly different from that

given by Reede11
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The following theorem is given by Mayeda:1®

Theorem (1.4). *Every element in a terminal matrix

Ty, except the diagonal elements, belongs to at least one
S-submatrix in which this element is the largest."

10 asserts, without proof, that theorems (1.3)

Mayeda
and (1.4) are equivalent. His assertion is not obvious;
we shall prove it here.

Theorem (1.5). "The following statements are equi-

valent:
(a) Tor every element tij’ i# j, of T
£y 2 min {tik,tkj} , (1.2)
for 211 k¥ = 1,2,...,n,

(b) Por every element ty4s 1 # j, of T there is an S-

j,

submatrix containing t;. as a largest element."

3
Proof. (1) Assume that matrix T satisfies (a), we

shall show that it also satisfies (b). Let ti‘ be any

J
element of T and let {il,iz,a.o,ia} be all elements in
1,2,0.-,1’1 such that

tia < tllr ’ r = 1,2,.”,8., (1-3)

and let {sl’jZ"°°’jb} be all elements in {1,2,0..,n}
such that

ij jrj ’ r = 1,2y...5b. (1.4)



The sets {il,iz,...,ia} and {jl’jz"'“’jb } have no
elements in common, because otherwise if p is in both of
them then

ES < bipr Py

contradicting (1.2)

Now let

Q = {1,2,,,,,11}— gi,il,iz,a..,ia}- [j,jlsjgao.eyjb} 3
and {nl,nz,...,nd}v be all elements of Q such that

t. > bis X = 13250090, (1.5)
X J

for at least one ir 6:{11,12,0..,iai}. _Finally, let
{nﬁ}m2,...,m0} be the complement of {hnl,ng,...,nd} in
Q. Ye shall prove that s,. . . - cs s .

1ijipeei B Nye gy Jiqdp e JpBqp el

is an S-submatrix of T which contains ti. as largest element.

J
Suppose, if possible, that

tag > tij , (1.6)

where @6{iyilyo-oyiaynlam;nd} and '13E{jsjlso--’jb,mly-o’mc;}
p

We have three cases:
(A) If @E{i,ilya..,ia} and Be_{j’jl,.o.,jb}, then
from(1.3), (1.4) and (1.6),

By g <min §ty 0. By tBj}

1
= min {;tia’ min { Fag? tB;}}
{

< min T g taj}‘ ’



contradicting (1.2)

(B) I.f 046{1,11,0.»,1&} and B€{mlg...’mc} then
we get contradiction to the definition of {ng,...,n4 }

(C) If a€dngy...,my }and (3Gij,jl,...,jb,ml,...,mc}
then from (1.2), (1.5) and (1.6) we have, for at least one

ir€{il,..o,ia} ,
t. > min {t. toa
1.8 = , 1ra,’ aﬁ} !

> 4

which has been shown in Cases (4) and (B) above to lead to
a contradiction. |
Hence in any case

bap X iy o

for all a & i’il’“"ia’nl’“"nd} y and Beij,jl,...,jb,

ml,o-.,mc}'
Thus (a) implies (b).

(2) Suppose that T satisfies (b), and let t; 4 be any

J

element of T and s be an S-submatrix of
rlrzo 3 .I'd" Clczo ° .CS

T in which -tij is g largest element. If kg{l,z, ,..,n} ’

k # i,j, then either kﬁ{rl,rz,.,..,ra_}. or ke{cl,ng,...,c% .
Therefore either tkj or tik is an element of Sr]_rz‘"ra,’clcz"“ce
Thus
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for all k = 1,2,.,..,1’1.
Hence the theorem.
Now we shall prove that Theorem (1.4) implies Theorem

(1.2), that is

Theorem (1.6). "If for every element tij’ i # j, of

matrix T there is at least one S-submatrix of T in which

tij is a largest element, then T is semiprincipal

partitionable matrix."
Pfoof, Let tl be g8 minimal element of T and let Tl

(= s ) be an S-submatrix of T in which 1
r1r2*°'ra’°102°"05 1

is a largest element, then Tl is a uniform matrix of
element value tl and by rearranging the rows and columns
(1f necessary) T can be partitioned into

B | N

T = jeewedeansy
L]
]

C; B

- wad

where Al and B1 are square matrices; those are the resul-
tant submatrices of T. Now let t2 be a minimal element

riré°-'r&’°i°é-o-0é' be an S-submatrix of T

of Al’ and s
in which t, is a largest. Job £ %pl,pz,,..,pY} and
iél,qz,,..,qé} sy Y + 0 = ay; be 81l the elements of
{rl,rg,.,,,ra} which are in {ri,ré,..,,r&,’} and

tclyCly...yc) i
{ 12Chs ’ B'} s respectively, then Sp1p2"'pY’ql'q2“"q6 ’
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(= Tz) say, is an S-submatrix of Al. Since t2 is a largest
element of T2 andksmallest of Al’ and so of Tz, then T2
is a uniform matrix of element value tz. Thus Al can be

partitioned as

H

e wm ma -

.
]
t
L}
’
t
]

B,

L.
N -l

The above partitioning can be carried out until each
resultant main submatrix becomes a one-by-one matrix.
Thus T is semiprincipal partitionable.

Hence the theorem.

It must be noticed that the converse of Theorem (1.6)
is not necessarily true. This follows from the matrix in
(1.7) which is semiprincipal partitionable but does not
contain an S-submatrix in which element 3 is largest.

@ 2 1]
T = |5 e 1 (1.7)
L3 4 B

Corollary (1.1). 'If for every element b4 i £ j,

of matrix T,
t;, 2 min {tik, s } ,
for all k = 1,2,...,n,

~then T is semiprincipal partitionable."
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This follows directly from Theorems (1.5) and (1.6).

Mayeda also shows that Theorem (1.4) is not sufficient
for the realizability of terminal matrices of oriented
communication nets.

Let Sij’ i # j, be the set of all S-submatrices of T
each of which contains tij as a largest element. We
shall prove the following theorem which will be required in

the next section.

Theorem (1.7). "For every element tij’ i # j, of a
realizable terminal matrix T of an oriented commumbation
net N, there is at least one S~submatrix in Sij whose
corresponding seg is a cut (i,j) of N and its capacity is

{
equal to tij.'

Proof. By Theorem (1.1), there is a minimum cut

. 9 0f N such that

i, say K. . . .
(1,3), y 1112°‘°1p’3132'°'3q

C(Ko . . o . . ) = -to. .
1112..-lp’31320¢oaq 13
Consider the S-~submatrix s. . .. s . of T. By
1112"'1p’3132“'3q _
Lemma (1.1)
Clg: s . .. L) o= tL >t ’
1112°°'lp’3132'°‘3q 1] Pa
where t© is a2 maximal element of s. . . .. .
pq. 111209ulp,31320003q ]
But tij is an element of this S—submatrix. Thus tij = tpq
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and s1112.,.1p,3132...3q.€ ij

Hence the theorem.

One can easily see that if tpq is a maximal element of

n-2

T, then Spq consists of 2 S-submatrices; all combina-

tions of rows containing row p but not containing row d.
The following lemma is useful in obtaining Sij’ iz 3,

for some element, T of T.

1j°
Lemma (1.2). 'Let M be a submatrix of the terminal

matrix T whose elements are all those on the intersections

of rowsi,il,ig,...,i and columns j,jl,...,jb where

a
EE YRR A A PEIEIVRRRTEIN SR
tiir > tij sy Tor all r = 1,...,2,
and

33 > 55, for all x = 1,...,0.

Then M is a submatrix of every S-submatrix in Sij'"

Proof. Suppose, if possible, that sl.e Sij does not
contain M, then either

(1) there is at least one i, which is a column of

s.s then t.,. is an element of s,3 thus it must not be
1 ii,, 1
more than tij’ contradicting the hypothesis; or

(2) there is at least one j, which is a row of sy,

then tj 3 is an element of 81 and it must not be more than
r
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T,

13? contradicting the hypothesis also.

Hence the lemma.

Corollary (1.2). "If ;5 <ty for all k £ jy then

J
consists of one S-submatrix only which is column jJ

< tkj for all k #£ i,

Sij
without () . Similarly, if tij
then Sij consists of one S~submatrix which is row i with-

out @ .

The proof follows directly from Lemma (1.2).
Lemma (1.3). "Let tij and tpq be any two elements
of a realigzable terminal matrix T, such that tij At

= "
then sijrjqu 8.
Proof. If Sijr]qu is not empty then let s be an

pa’

S—=submatrix in both Sijand Spq, Thus each of tij and

tpq is maximal element of s, Hence tij = 3 contra-—

dicting the hypothesis. Hence the lemma.

pa?t
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1.3 Synthesis Procedure. M.WWP_‘/ CﬂM}l”h

Suppose we have a matrix T which satisfiesATheorem

(1.4), that is for every element t.,., i # j, there is at

ij?
least one S-submatrix of T in which this element is largest.

Then the following method will lead to a realization for
T if it is realizable as a terminal matrix of an oriented
communication net. The procedure will be described in
the following steps:

(1) Obtain Sij for each element %, 1 # 3y of T,

ij

and let {Sij;} be the set whose elements are all Sij’

i,j =1,2,...4m, 17£J
(2) Let {s(l)} { 51) s{1) . ,sili be the
1917 "1’ ata
set of all egements of (Sij each of which consists of

one S-submatrix only; +then obtain Sl’ where

1
S = Ug~1s(r3r°
z () _ (2) (2) (2)
(3) Let {sij }-_ E Siljl’siejz’ h 333} be all

elements of {S..} such that

(2) ﬁ {s(l}

52 [1 s, # 4,

I'JI'
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for all v = 1,25...48. The set {5(2) can be obtained

easily by applying Lemma (1.3). Then obtain S, and

{§§§{} s Where

s, =8, v (sl s () 3(2 ,

2 ‘mIm ‘rdp r

(531 = {sig] - {s@F- {3} -o0y 0
1)

l"=l,2,a..,Y, } 8aY s

rer
in which S j is the set of all S-submatrices each of
Tmdp
which contains ti . as largest element and ti . is a
mYm mdm

maximal element of T.

(4) Tet sgl), s§2),gao,s§Y) ve all different sets
such that each contains exactly one element from every
S&i%r, r=1l,...,Y and no other elements. Now we have
y cases, each corresponds to one ¢f S%l),...,sgy). Let
us take the first one. Obtain E1 and Il corresponding

to Sgl), where

- 15(2)
El = SlUS3 ’
- (3) (1)
I, = s, (g, i T 53 ]
It can be easily seen that each S.., except S, . has one
1J mdm
of its elements in El and the others in Il‘ Also, every

S—-submatrix of T is contained in either El or Il.
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(5) For each S-submatrix in B, form an equality by
setting the capacity of its corresponding seg in N equal
to the largest element of this S-submatrix, where N is

the complete oriented communication net™ of n nodes and

unknown edge capacities, Cij’ 1 £ 3. Thus we get
“
1
(1) (1) -
[a17) a337] = 1 (1.8)
Co
where
to . ]
191
T = ! t, . < t. .
1 ti:. ’ trde = lprprdria,
ada

- I‘=l,2,..,,a-—1,

in which ti 5. r=1,2,...5a, ig a largest element in
rYr
the corresponding S-submatrix in El, a is the number of

elements in El and C,

is a column matrix whose elements are the edge capacities

of N,’whioh are arranged in an order such that
r -

C. .

111

Cl_‘_.. : r

] C. .

i J

aa)

* . . . . .
A complete oriented communication net is an oriented net

that contains edges e and e 54 for all i # j.
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Matrices A(l) and A&% are the coefficient matrices (0,

+ 1 elements only) of the equations.

From the ordering

of the equations and the variableswe can easily see that

(1)

11 is a lower triangular matrix with +1 along the

diagonal; thus it is non-singular.

(6) For each S-submatrix of Il form an inequality by

making the capacity of its corresponding seg, in N, more

than or equal the value of a largest element in this S-

submatrix; and let the first M2 of the inequalities

(1.9)

correspond to those in 3. . Thus we get
i .
mem
(1) ,(1) "1
1 1
(4377 2557 ] . 2 T,
2

Since the edge capacities are non-negatives then

01]

- 02_.1

From (1.8) we have
-1 -1
o = AP Tz - @if) " afPe,
thus (1.9) becomes
A(l)[(A(l) - (A(l))"lA§% ¢,] + A

(1.10)

(1.11)

(1)
55 Cp 2 1,

Therefore from (1.10), (1.11) and (1.12) the set of

C(1.12)
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constraints in (1.8), (1.9) and (1.10) reduces to

-

T B T
I A N
U 0
L ) “ (1.13)

where U is a unit matrix of order n(n-1)-a
If the constraints in (1.13) are consistent then they
must have a solution. Any solution of (1.13%) which

n-2 constraints with

satisfies at least one of the first 2
equality is a realization of T, because: (1) from (1.8),
for any pair of nodes, say i and j, there is a cut (i,])
in N whose capacity is equal to tij’ and (2) every cut
(i) of N is a seg of an S-submatrix and thus it is con-
tained in either Il or E1 and so its capacity is not less
than &, (Lemma (1.1)), where N is the net of the solution.
If: (1) the constraints in (1.1%) are inconsistent
or (2) they are consistent but become inconsisteﬂt if any
of the first 2n—2 constraints becomes equality, then we
must go back to Step 4 and take Séz) then obtain 12 and
E2 and repeat the procedure. The method must be repeated

for the other sets S§3),...,S§y) until we arrive at a
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gsolution. If none of these sets leads to a solution,
then T is nof realizable as a terminal matrix of an
oriented communication net (Theorem (1.7)).

The method described above is very laborious, but it
can be simplified by making use of the following lemma:

Lemma (1.4): '"Let X be a square lower triangular

matrix of order h with nongero diagonzl elements, and let

X be partitioned as

X = , (1.14)

where Xll is a square 1o%er trianguiér matrix of order
(h-1), and X,y is a row matrix, 1 x (h-1). Then the

inverse of X is given by

i 1 ]
X33 0
1 = : (1.15)
~1
X%l 1
*nh  *nn
Proof. The lemma is true, because carrying out the

multiplication of the right hand sides of (1.14) and
(1.15) we get a unit matrix of order h.
Let Sq be an S-submatrix in S. . which dis also in

154
a'a
By then its corresponding equality occupies the last row
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in (1.8). If there is s, € S. . s s, # 8,, such that
2 1,3, 2 1

S%l) - leJSQ is a member of {S%Q),SgB),yu.,Squ },

then take sgz) to be sél) - s, Us,.  Thus

By = By - s1Usy s
— {
Ip = I, Usy -5
If the constraint corresponding to Sy occupies the jth
zow of (1.9) then [4{2) a{2)7 15 [a{}) A1) witn the ath
row replaced by the jth row of [Agi) Ag%)], and [Aéf)Aég)]
is [Agi) Aé%)] with the jth row replaced by the ath row
of [Ag%) A{%)]. Thus if we partition Aé%) and Aii) as
in (1.14),
i 7
(aih o
(1) 11
A =
11 3
(A£%))21 1
L -l
(A£§))11 0
(2) _ ’
S
.(Aif))zl 1

then by Temma (1.4), (A{f))‘l is (Ai%))"l with the last

row replaced by [-(Aéi))zl(Aii))i% 1), = R say. So

it is very easy to find (Agi))"l from (Aé%))_l.
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Similarly (A(2>) §§) is (A(l)) (1) except the last
row which must be RA(2)° and also (A( )) T, is (A(l))'lT
12 ? 11 1 1

except the last element which must be RTl. Other matrices
required in (1.13) can be found from those by some simple
multiplications.

The entire method of synthesis will be illustrated
in the following example:

Ekample (1.1)., Consider the matrix

@ 5 4 4
- 13 @ 4 4
9 8 3 6

| 25 13 9 @]

The set of all Sij’ i # j, are obtained:

S

il

13 = S14 = Sp3 = 8py = {512,34}
510 = §51,234}

Spp = {?2,134’ S23,14} ’
831 = {S3i124}' 9
§f13,24}"

534 = {5123,4} ‘

41 = {54,123’ ®42,13* 543,127 5423,1}

W
)
!
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42 = {314925’ S134,2} ’

S43 = {%124,3) -

Therefore
1 = {812,34’ °1,2347 123,47 ®13,24’ ®124,3° °3,124 }’
(2) 1 _
{Sij = Xd s

S2 = {34,123’ %42,137 43,127 S423,1 } o+ nd

{Sii)} = {5/ 842} °

Thus
(1) -
557 = {e2,150 214,05
(2) _
537 = {52,134 ®134,2 } ’
(3) _
550 = {s25,100 S14,05} » ema
(4) - -
5370 = {523,14’ *134,2 p -

Therefore we have 4 cases, at most.

Cése 1.

B = {312,34’ 1,2347 ®123,47 ®13,24° ®124,3’

®5,124" ®2,134" °14,25 }

1 {543,12' ®4,123° %42,137 %423,1' °23,14 5134,%} '
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The set of constraints in the order mentioned above is

given by

(1.16)

(1.17)

f
~ <t 1 W o G O L [T W T o SN T o NN T o SR A S W - oY
N , ~_ S S S I
f I
Lt | M v
SN o VI S N sV A e T <t 8} < N N~ o~ o
I T = T L0 T A W a2 T o T~ 4 M ON S n N<
0D DD D DD D LD D e R e - e o
) B T T
Q (&) o (&) (&) (&) (] ~ ~ ~ ~ (@) (@)
— - O ~N O O o o ~ o O O © ~ ©
~ Qo ~
s ~ )
<t s O O o = © o o O ~N O O ©
~ ~ ~ ~ (@] (@) (@) (@) (@) (@] (@) (&) (&)
4 — i O (&) (&) —
(@} (o] O ~ o~ ~ o
— (=] ~ (@] (@) ~ ~ O
-~ O ~ o H ~ © O ©
~ ~ o ~ (o] ~ (@] (@) o O ~
e |
<t
~ ~ (&) ~ (@] (@) o o O ~ o
S o ~H o © — o O o o o ~
Lo
S o~ O O ~H o — w O O O o o ©




Then we find (A&%))—l

(i1

ad

1
-1
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and all other

o O O O o o O o

required matrices,

1
0 1
0 0 1

(1.18)

(1.129)



- 26 -~

o O

A(l)(A(l))nlA(l) (1.20)

|
O =
o O O -
S B O O O O
. O O O O
=

(A(l))'l (1.21)

NVl oY

A(l)(ﬁ(l))“l (1.22)

. 15

Hence the set of constraints is given by



1 0 0 1
1 0 0 1
1 0 o0 1
1 0 0 1
0o 0 0 0
o 0 0 ©
1 -1 -1 o
o 1 1 0
-1 0 -1 0
0 -1 0 0
1 0 1 0
1 1 1 0
0 -1 -1 0
0 0 -1 0
e
1
1
1

From the sixth
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14
23
24
41

v .

(1.23)

row of (1.23) we have contradiction, that

is 0 Z 8, thus no solution for (1.16) and (1.17). Hence

we nust consider the next case.
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Case éa

i

{®12,30° 51,2347 S123,47 513,247 S124,3
53,1247 52,1347 ®134,2 }*

Tp = {843,027 S4,123 542,130 S423,10 %23,147 "14,23 } -

Using the modification mentioned in the discussions

following Lemma (1.4), we find that (A(z) ig identical

with that in (1.18) except the last row which must be

[0 0 1 -1 0 0 0 1]. Thus the last row of

0{2)72(2) 45 [0 0 1 0); +thus it is identical with

that in (1.19). Also, the last element of (A§§))"1Tl

is 11. Hence obtaining A(2 (A(2 _l(A(z) and
(2)(A(2)) lTl, we arrive finally at
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(1.24)

o O O O

il

-1 -1

-1

-1 -1

0

which is consistent and can be reduced to
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1 0 o 1] (11 ]
-1 -1 -1 O 0y, -4
0 -1 0 0 o -1

______________ 25 > |- (1.25)

1 Cpy 0
1 04 0
1 0
1 0

e o -~ o

The set in (1.24) remains consistent even if the first
constraint becomes equality. A solution of (1.25) which
makes the first constraint of (1.24), which is aléo the

first of (1.25), equality is given by

11-x

Hence substituting in

¢, = (ﬁ£2))—1Tl - (A{f))‘¥A§§)02 ’

we get for the transpose of C

C' = [4""X, 1, 6'—X, 1, 5+X’ 2+X’ 13, 11, X’ O’
0, 11-x],

which is a family of realizations of T.
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CHAPTER IT

ﬁealizabilit& Conditions of Spebiai Types

df Oriented ComﬁunicatibnhNéts

2.1 TIntroduction

We have mentioned in Chabter I that the necessary
and sufficient conditions for a matrix T to be realizable
as a terminal matrix of an oriented communication net have
not been found yet. We have also seen that the general )
method presented in Chapter I for the realization of a/“%é”iz
matrix T is long and laborious. Thus it is worthwhile
to present some sufficient conditions for the realizability

of some types of oriented communication nets. Tang and
13 '

(Theorem 2.6 of this Chapter) is realizable. Recently,
10

Chien showed that a matrix T satisfying some conditions

1962, Mayeda showed that a completely partitionable
matrix is realizable.

In this chapter, we shall present necessary and
sufficient conditions for a matrix T to be realizable as
a terminal matrix of communication nets having tree or
loop structures. We shall also show that Tang and Chien's
and Mayeda's results are special cases of ours. A method
for realizing a terminal matrix T which is lower oxr upper

triangular will also be given in this chapter.
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2.2 Doub1é~Tfee Nefés

Definition (2.1). A "double-tree net'" is a connected

oriented communication net containing no loop consisting
of more than two edges. That is a double tree net may
contain two parallel edges of opposite orientations (see
Fig.2.2).

Definition (2.2). A "louble linear tree net™ (or

double Hamiltonian path net) is a double tree net which
contains a path containing all the nodes of the net.

Definition (2.3). In the definition of the semi-~

principal partitionable matrix (Definition (1.3) the sub-
matrix Gy in (1.1) will be called a '"C-submatrix of T!" .
In general for each resultant main submatrix of order more
than one there is one C-submatrix obtained by applying
the semiprincipal partitioning process to that resultant
main submatrix. Thus a semiprincipal partitionable
matrix of order n contains exactly (n-1) C-submatrices.

Definition (2.4). A matrix T is said to be Mprincipal

partii:ionable"9 if it is symmetric and semiprincipal
partitionable, that is, T is semiprincipal partitionable
with O, = T. for each r = 1,2,...,0-1, where T, is the
transpose of Tr‘

The following theorem is given by Mayeda9:
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Theorem (2.1). " matrix T is realizable as a

termingl matrix of a2 non-oriented communication net if

and only if T is principal partitionable.®

Definition (2.5). A matrix T = [tij] is said %o be

7,10 ".

"completely partitionable if its rows and columns

can be rearranged to form a matrix T = [fi.} with the

property that matrices (1) [t§§)] and ng) = [t§§)]

are both (without further rearrangement of their rows and

columns) principal partitionable, where t§§) = tgi) = %ij
. . (2) _ (@ _ Do s
for i < j and tij = tﬁi = {ij for i } Jo
Lemms (2.1). "The terminal matrix of a double linear

tree net is completely partitionable.®
Prbof. Let N be a given double linear tree net.
Label the nodes of N by 1,2,...,nn such that e12,e23,.¢¢

e is a path (1,n) of N. TLet T = [tij] be the

n-l,n
terminal matrix of N with the diagonal elements in the
order 1,2y...,10. Any change in the capacity of edge

€95 P > k, does not change the terminal capacity tij’

i< j, of N. Thus T(l) and T(2)~are the terminal matrices
of Nl and NZ’ respectively, where T(l) = [t§%)],

tg%) = tg%) = %5 for 1 < 3, 2(2) - [tgg)], t§§)= tgg) =

iy for 1> j, and Wy (N,) is N with all edges e, (esy);

1]
i> j, removed and all other edges replaced by non-

oriented edges. By Theorem (2.1), T(l) and T(Z) are
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principal partitionable. Hence T is completely parti-
tionable.

Mayeda shows that a completely partitionable matrix
is realizable and its realization is a double linear
tree net whose edge capacity matrix, C = [cij], is given
by

+

tij’ ifi—j=—l,

13,
0 , otherwise.
Hence we arrive at the following theorem:

Theorem (2.2). "A matrix T is realizable as the

terminal matrix of a double linear tree net if and only
if it is completely partitionable.™

Definition (2.6). A matrix T = [tij] is a "tree

terminal matrix" if T is semiprincipal partitionable with
each C-submgtrix, Cr’ r = 1,2y...9n-1, containing at
least one element, say tij’ such that for every other

element in Cr’ say t&k’ the following relation holds:

g, = min {tﬂi, tyg0 by }, (2.1)
The element tij will be called a Yconnective element of
Cr ".

Lemma (2.2). "In Definition (2.6), the relation

(2.1) is equivalent to
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= min {tli’ tik} ’ (2.28)

ot
e
=
!

i

min {tﬂj, tjk} . (2.2b)

Proof. Suppose (2.1) holds, then

It

min {_tii’ tij’ tjk}
min {tij, iy } , (2.3)

because tii = 0, by definition.

ik

Similarly,

tg; = min {tﬂi, tij} : (2.4)
Thus substituting (2.3) and (2.4) in (2.1), we obtain
(2.2a) and (2.2b), respectively.

Now suppose (2.2) holds, then putting k¥ = j in (2.2a)
we get relation (2.4). Substituting tﬁj from (2.4) in
(2.2b) we obtain (2.1).

Hence the lemma.

One can easily see that a connective element of Cr
is not less than any other element in Cr. Thus we con-
sider only the maximum elements of C,. when we look for a
connective element of Cpe Another remark is that the
element of a C-submatrix consisting of one element only

is the connective element of that C-submatrix.
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Example (2.1). To illustrate Definition (2.6) con-

gider the matrix

b2 i1 1
7 @1 1 1
T =  [TTTTTTTTT cTTTErTTTTTTTTY v (2.5)
7T 10 :®. 4 '3
7T 8 18 '@ . 3
6 6 .6 410

b

The element t32 is the only connective element of the

C-submatrix, Cl’ where

-1 2_
317 10

1T t 7 8l 3
5|6 6l

because for 1 = 3 and j = 2, eqn (2.1) holds for each of
t31, t41, t42, t51, t52 which are the elements of C1 other
than t32. Similarly t53 is the connection element of 02,

where

3 4
T
1

The connective element of 03 = 2 [7] and 04 = 4 [8] are

C

t21 and t43, respectively. Thus every C-submatrix of
the matrix T given in (2.5) has a connective element;

so T isatree-~terminal matrix.
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Theorem (2.3). "\ matrix T is realizable asg the

terminal matrix of a double tree net if, and only if, T
is a tree terminal matrix."

Proof. TLet N be a double tree net and cyi & minimal
edge capacity in N. The removal of edges eij and eji
from N will cut it into two disjoint double tree nets,
N_and Ny, as shown in Pig.(2.1). Since there is one and
only one directed path from any node a to any other node
b in N, then the terminal capacity tab is equal to the
smallest edge capacity in the directed path (a,b). Thus

the terminal matrix T of N is partitionable into

v et & N - -

Q
o>}
=

-

where Tl is a uniform submatrix with element value tl =
cji = minimal for T, Al is the terminal matrix of Na and
Bl is the terminal matrix of Nb' If tlk is any element
in C; then I is a node in N, and k is a node in N_.

The directed path (0,k) consists of the directed path

(2,1), edge e and the directed path (j,k).  Thus

130
tg, = min {tﬂi’ £ 59 tjk} .

By similar method, the terminal matrices A1 and B1 of the
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double tree nets 1\Ta and Nb’ respectively, can be partitioned

in the same fashion with the elements of their C-submatrices

satisfying the corresponding equalities. We can carry on

this procedure until finally each subnet becomes a single

node. Thus T is a tree terminal matrix (Definition 2.6).
Now, suppose T is a tree terminal matrix of order n.

We shall prove by induction on n that T is realizable as

a terﬁinal matrix of a double tree net. The assertion

is true for n = 2. Suppose that it is true for n £ k,

and consider T of order n = k+l. Since T is a tree ter-

minal matrix then it can be partitioned as in (1.1).

Because A and B; are tree terminal matrices of orders

£ k, then by induction hypothesis the realizations of Ay

and Bl’ say Na and Nb’ respectively, are double tree nets.

Now consider the net N consists of Na’ Nb and edges e .

1J

and e.. of capacities c,. = t.. and c =1 in which

ji ij ij Ji

tij is a connective element of Cl‘ The terminal

ji

!
capacity typ, of N, where ? is a node of N, and k is a node

of Na’ is given by

1 . 1 ! '
tg, = min { tp3r by g tjk:;}.
= T -
Thus T is the terminal matrix of N.

Hence the theorenm.
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© lu | O

Fig.(2.1). A double tree net, N, for illustrating
the proof of Theorem (2.3).

Fig.(2.2). A realization of T in (2.5).
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The synthesis procedure of a tree terminal matrix of
order n is summarized in the following steps:
(1) Partition T by the semiprincipal partitioning
process.,
(2) PFind out a connective element for each C-submatrix

of T. Let £, . Ybe a connective element of C_,
1.4 r

- 1‘=1,2,...,n—1.
(3) A double tree net of T is determined by the edge

capacity matrix, C = [cij], where

cii = node Symb01 @ [} i= 1,2,...,1’1,
C. . = -t- . ’

1I‘JI‘ 1rJI‘

erir = tjrir ’ r = 1,2,...,1‘1—1 )

and every other element is zero.
For example, a realization for the matrix given in
(2.5) is shown in PFig. (2.2).

Corollary (2.1). " completely partitionable matrix

is a tree terminal matrix."
The proof follows from Theorems (2.2) and (2.3).
Thus Mayeda's result is a special case of ours.

Corollary (2.2). "The number of distinct elements

in a tree terminal matrix is not morethan 2(n-1)."
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The proof follows from Theorem (2.%3) and the fact that
the number of edges in a double tree net of n nodes is

not more than 2(n-1).

Corollary (2.3). " matrix of real non-negative

numbers given by

[ =
@ % By eeen tq tq
t, @ tp eees sy t,
T o= : .
tn-l tn-l tn—l"‘ (::) tn—l
bn tpar Tpyoees t2(n—1)6@

where t; < t, < vvu <ty o < min {tn,tn+l,...,t2(n_l) } ’

is realizable as a terminal matrix of a double star net,

that is, double tree net which is star-~shaped.™
Prof. The C-submatrix, O, obtained in the r'"

(r < n-1) semiprincipal partitioning step is given by

r
r+l P.tr+l ]
r+2 | tr+2
)
s ‘
n-1 tn-l
- Sper-1




- 42 -

The element T (= tn+r-1) is a maximal element of C_,

and it is a connective element of Cr because for each

(n> 8> r),

min {-tln’ Ty trr’! = Tp = gp -

Thus by Theorem (2.3), T is realizable and the edge

capacity matrix of its realization is given by C = [c. ],

1)
where
Ciy = node symbol CD y 1= 1,...,n;
‘ tij y for i =n, j =1,2y..e9n-1;
Cij = i= 1,2,-..,11—1, j = I,

0 otherwise.

Hence the corollary.

Since each C-submatrix of a tree terminal matrix may
have many connective elements, then theré-may be many
double tree net realizations for a given tree terminal
matrix. The number of these nets is determined by the

following corollary:

Corollary (2.4). WIf & tree terminal matrix T of
order n, has a unique semiprincipal partitioning form,
then it has %%}mr distinet double tree net realizations,
where m_ is tzglnumber of connective elements of the rth

r
C-subnatrix."
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2.3 Double-Loop Nets.

Definition (2.7). A "double loop net" is a connected

oriented communication net which becomes a single loop if
each set of parallel edges (not necessarily of the same
orientation) is replaced by one edge.

This section will be divided into two subsections.

2.3.1, Analysis of the Terminal matrix of a Double

Loop Ne%t.
Consider a double loop net, N, of n nodes labelled by

1,2,...yn, as shown in Fig. (2.3),where

°1n £ C541,1
(2.6)
°mym+l S Cn1 7 Ci,i41

for all 1 = 1,2y...30n-1, in which all edge capacities are
real non-negative numbers. Let Sa be the set of nodes
1525 ¢..,m and Sb the set of nodes m+l, m+2,...50. Finally,
let N, and N, be the doublelinear tree nets obtained from

N by removing edges €n1? ©1n’ m,m+1’ em+1,m' The ter-
minal matrices of N, and Ny will be denoted by T(a) =
[t§?)], (1,5 = 1,2,...,m) ana 7(P) = [t§?)], (i,5 = m+l,

«..30), respectively.
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A double loop net, N, of n nodes.

Fig.(2.3).
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It is clear that in the double loop net N there are
exactly two directed paths, which are edge-~disjoint,
leading from any node to another. Moreover, (1) one of
the directed paths from a node in Sa to a node in Sb

contains edge e and the other contains edge em,m+1’

(2) one of the directed paths (i,j), where i,] € S,
contains e;, (em,m+l) if 4 < j (i > j) and the other con-

tains neither e, mnor e (3) one of the directed

m,m+1?

paths (i,j), where 1,j & Sys contains edge eln(em,m+1) if

i < j (1> j) and the other contains neither €, nor
p,ms1 804 (4) each of the directed paths from a node in

Sb to a node in Sa contains neither e, nor e Thus

mym+1°
using (2.6) we get

(Cln * Oy el (= ty, say), if i €85, and § € S,

®in * tg?) ’ if 1,5 € S, and 1 < j§,
‘tij ='< ®mym+1 * tg?) y if i,j € 8, and 1 > j,
°1n+“°§?) ’ if 1i,J £ 8, and 1 < j,
© +{%) if 1, € 8y, and i > j.

(2.7)
The following lemma follows directly from the fact
that n(a) and 1(?) are completely partitionable (Lemma

(2 .l)):



- 46 -

Lemms (2.3). "The terminal matrix T of a double

loop net N is partitionable (without rearranging rows and

columns) into

such that T, is a uniform matrix with element value tl
minimal for T sand A and B are completely partitionable
matrices."

From now on we shall write, for shortness,

min {tm-l-l,n’ tlm} L

min gtn,m+l’ tml} = h.

Lemma (2.4). "Por the double loop net N,

min {ti’m_ﬂ_, tmj} > h,
(2.8)

min {tin’ 5 }_>_ £,
for all i € 5y and j € S,.

Proof. Prom Fig. (2.3), one can easily see that

for i =m+1,..¢,n and j =1,¢-',m$
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(b) (v)
ti,m+1 2 tn,m+l ’
(a) (a)
tmj 2 Tyl o
(b) (b)
tin 2 tm+l,n 4
and
(a) (a)
15 2 Sy
Thus
- () (a) . (b) (a)
min '{ti,m+l’ tmj ;2 min tn,m+1’ 1 ?

nmin {tgg), t(a) ‘ > min -{t(b> t(a) T}.

1; m+l,n’ “Im
Hence (2.8) follows by direct substitution from (2.7).
Now, turning to the case when node i E{Sb and

J € By, we can easily see that:

= i (o) (a) . (b) . (a)
tij = min {%i,m+l’tmj *Cmyl,m TR Tin ’tlj 7Cn1 ’
which becomes, by using (2.7),
tij = min’{J"i,,m+1’ tmj’ (Cm+1,m + Cm,m+1)}‘

+ min {}in’ tlj’ (Cnl + cln):} - tl’ (2.9)

where tl = ¢ + Cq_ .

m,m+1l 1in

Consequently,

£S5 minu{h, (Cm+1,m * cm’m+1)_}'+ “nl 7 “mymel’

tm+l,m =1mn1{fy(cnl + Cln) }-+ nel,m = ln - (2.10)
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mil,m cm,m+l) and h, and (Cnl + Cln) and f,

we have the following four cases:

Comparing (c

Ha
f"‘l

Case (A):
Cm+l,m + Cm,m+1 > h
and ' (2-11)
Cpy t Cip > f.
Then from (2.10) we obtain
¢p1 = Pn1 * Cpymer T B
(2.12)
°m+1,m tm+l,m togy - 1T
Substituting (2.12) in (2.11) and (2.9) we get
byel,m? Tpy > L+ B -ty (2.13)

iy = min {8 pape tpyr (Spya,n * %1 - f)}

+ min {ting ty 0 (byy + By - B) }- t (2.14)

for all i € Sy and j € S, -

Case (BZ:;‘@E

Cm+1,m + Cm,m+1 > h,
(2.15)
°p1 * %1n S T -
Em s ; . - =
This case does not occur if 1 = Cm,m+1 and/or °mil,m”

i S .
This ¢ 8 = ¢ .
h ase does not occur if °m+1,m in

Cln’
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Then from (2.10) we obtain

®n1 < tnl + ®m,m+l T h,
(2.16)
Co+l,m = Pmel,m ~ ¥nl T Cmymel * B
From (2.6) we have

Substituting (2.16) in (2.17), (2.15) and (2.9) and using
TLemma (2.4) in the latter, we get

typ 2 B
(2.18)
and
¥4 = min {ti,m+1’tmj’ (tpi1,m=tn1t h)}
for all 1 € 5, and j € Sy -
Case (0) =%
cm+1,m + cm,m+1 L b
(2.20)
Ch1 t Cin > £ .

KEE -
This case does not occur if Cp1 = cm,m+1 .
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Then from (2.10) we obtain

Cp1 = Bp1 - tm+1,m - Cp F I
(2.21)
°n+l,m = Pmel,m t G~ T -
From (2.6) we have
> (2.22)

cm+1,m Z %np
Substituting (2.21) in (2.22), (2.20) and (2.9) and using

Lemma (2.4) in the latter we get

tm+1,m 2t
(2.23)
by > tpy,m ST AR -ty
and
byg = min {ypatyge (b = By + 9 )
(2.24)
+ tm+1,m -f,
for all i €Sb and j € 5,
Case (D):
°n+l,m * Cm,m+1 £ b,
(2.25)
Chyp + Cin < £,
Then from (2.9) and using Lemma (2.4), we obtain
tij = %1 * %nyl,m (= Tos say), (2.26)

for all i € 8, and j € S,.
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Thus constraints (2.25) make submatriy C uniform. Adding
the inequalities in (2.25) and using (2.6) we get
t] Lt < f+h -t (2.27)

Before summing up the previous results, we shall
define a loop-terminal matrix.

Definition (2.8). A square matrix T of order n is

called a "loop-terminal matrix' if it can be partitioned,

by rearranging its rows and columns (if necessary), into

m n-m
S O U }.m
P o= | emeee - (2.28)

such that
1) T, is a uniform matrix with an element value
tl minimal for T,
2) A and B are completely partitionable (without
further rearrangements of rows and columns), and
3) one of the following cases holds:
(A) inequalities (2.13) and equalities (2.14),

(B) " (2,18) w u (2¢19),
(0) " (2.23) » " (2.24),
or (D) " (2.27) » " (2.26).

Summing up the results of this subsection we arrive
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at the fact that the terminal matrix of a doubie loop net
is a loop-terminal matrix.

2.3.2. Synthesis of a loop~terminal Matrix.

In this subsection, we shall prove the second part
of the following theorem

Theorem (2.4). "\ matrix T is realizable as the

terminal matrix of a doudble loop net if, and only if, T
is & loop terminal matrix."

Proof. It has been shown in §2.3.1 that the terminal
matrix of a double loop net isdloop terminal matrix.
The second part will be proved here.

Let T = [tij] be a loop-terminal matrix partitioned
as in (2.28). Assume that x and y be any non-negative
real numbers such that

X +y =% (2.29)

Moreover, let T(a) = [tg?)] and T(b) = [tgg)] be A and B,
respectively, with x subtracted from each element above
the diagonal and y subtracted from each element below the
diagonal; that is
gla)
1]
tij - ¥ if i > j , where 1,3 = 1,2,
...,m, i%j 1

and
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_pa—

ty - x, if1<j,

t§?) =
tij - ¥ if 1 > j, where i,j = m+l,
ceesny, 1A 3. (2.30)

The elements of T(a) and T(b) are non-negative real numbers.
Since A and B are completely partitionable then T(a) and
T(b) are completely partitionable without rearranging the
rows and columns. Thus T(a) and T(b) are realizable as
terminal matrices of double linear tree nets with edge
capacities given by

¢ 1 - X

i,i+1 i,1i+1

(2.31)

¢iy1,i =

i+1,i Y 0
. (a) - (b)
where 1 = 1,2,...,m-1 for T and 1 = m+l,...y0n-1 for T .
It is clear that the order of the nodes of the double
linear tree nets of T2) ana ™) will be as in A and B;
that is, 1,2,...,m, and m+l,...,n, respectively.
Connect these two nets by adding edges €10’ Cm, m+1’

€n1 and e The edge capacities of €1p and e

m+l,m* mym+1

are x and y, respectively; the capacities of en1 and
e will be determined in each of the four cases corres-
m+l,m _

ponding to Definition (2.8). Let this double loop net

be denoted by Ny . We shall prove for each case that the
terminal matrix, say K = [kij], of N, is identical with

the given loop-terminal matrix T.
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Before considering each case we observe from (2.29)

and (2.31), that

. >
C1,1+1 =~ Cm,m+1 ?

(2.32)
©i41,i 2 Cin ?
for i =1,2,...,m-1,m+l,...,n-1.
Case (A): If T satisfies (2.1%) and (2.14) then let the
values of Ch1 and Cm+1,m in Nk be
Cp1 = Fp1 - Bt Cppeg o
(2.33)
°nei,m T tm+1,m =+,
Substituting (2.33) in (2.13) we obtain
°nl > Cm,m+l ?
(2.34)
Cm+l,m > Cin

Thus using (2.32) and (2.34) and analysing Ny as in

82.3.1, we get equation (2.7) with kij in the left hand

which gives by substituting t(%)

gide instead of ti 3 ij

j’
and tg?) from (2.30):

1y = Py

for all i and j except i = m+l,...,n and j = 1,2,...,m.

From (2.33%) and using (2.1%) we obtain
°n+l,m * Cm,p+y > B (= min {kn,m+l’ ko } ) »

Cpy * Gy > T (= min {km+l’n, klm') ).
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Thus continuing the analysis of Nk as in Case (&) of
82.3.1, and using (2.14) we arrive at

Kig = By

for all i € 8y and j € S,.
Hence K =T,
Case (B): If T satisfies (2.18) and (2.19), then let

n1 < tnl -h +'cn:l,m+1 ’

(2.35)

- tnl + h - ¢

cm+l,m = tm+l,m mym+1°

Thus substituting (2.3%5) in (2.18), we obtain
®n1 2 cm,m+l ’

> c

cm+1,m in ?

and
cm+l,m + cm,m+1 > h,
Cin * Cp1 f.

Hence following the analysis of Case (B) we get, as in the
synthesis of Case (A), X = T.
Case (C): If T satisfies (2.23) and (2.24), then let

=% -t

n1 = 'm1 m+l,m ~ 1n F T

(2.36)

=t + c - f .

cm+l,m m+l,m 1n

Substituting (2.36) in (2.23) we obtain

> c

®n1 mym+1 ?

°n+l,m 2 %1n ?
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and

+ <h,

Cm+1,m Cm,m+1 -

Chq + Cin > f .

Hence following the analysis of Case (C) we get, as in
the synthesis of Case (4), K =T .

Case (D): If submatrix C of T is a uniform of element
value t2 and

t; S, £+ h - by, (2.27)

1
then there are always two positive real numbers a and 3

such that

<alf - Cip ? (2.37)

~ °m,m+1°
This can be proved by plotting (2.37) (see Fig.2.4) and

noticing that the point (¢ ) is always inside the

m,m+1’°ln
region bounded by @ =0, 8 =0 and @ + 8 = t, (or on the

b

boundary o + B = tz) because ¢ + ey =ty < tz, and

mem+1

the point (f - is always outside the

Cin? h - Cm,m+l)
same region (or on the boundary) because f + h - (c1n +

c ) > Ty Thus any point on the line adb in Fig.2.4

m,m+1
satisfies (2.37). TLet (ao, BO) be any such point.
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Now, 1e£ the values of Cpn1 and c be given by

m+l,m
Cn1 = %

®me1,m = 8o -

Then using (2.37) we obtain

Cn1 2 cm,m+1

¢m+l,m 2 Cip
and
Cot+l,m * Sm,m+1 S B
Coq + c1n < £ .

Thus following the analysis of Case (D) we get, as in the
synthesis of the previous Cases, K =T .

Hence the theorem.
64\
TN ¢ 1Lalf - ¢

m,m+l= 1in

h-c

mym+1 \\\ b ¥

¥

0 c % Fe

m,m+1 2 ®1n

Fig.(2.4). ©Plots of relations (2.37).
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It should be noticed that a loop terminal matrix
satisfying Case (D) is not necessarily completely partition-
able. This can be seen by considering the loop terminal
matrix given in (2.39), page €0 . |

Corollary (2.5). upf tM is a maximal element of the

submatrix C of a loop terminal matrix T, then

Stpua,m* tpy + 6y - f-h,y if T satisfies (2.14)
ty = tm+1,m , if T satisfies (2.19),
= %7 if T satisfies (2.24).

The proof is obvious.
The following corollary follows directly from Corollary
2.5 and Definition 2.8:

Corollary (2.6). *Suppose T has a unique partitioning,

e
3
=

Q
t

where Tl is a uniform of element value tl minimal for T
and A and B are completely partitionable without rearranging

rows and columns. Ir tM is a maximal element of C and

ty > max {(tm+1,m + tnl by - f - ), tm+1,m’tn{} ’

then T is not a loop terminal matrix."
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The synthesis procedure indicated in the proof of
Theorem 2.4, of a loop~terminal matrix, will be illustrated
in the following two examples.

Example 2.2. Consider the matrix

— -~

@ 4 .3 3 3

9 ’@23 3 3

S S (2.38)
7 6i@ 5 5|

8 6 +8 @ 6

9 6%7 7T ®

.

The resultant main submatrices A and B are completely
partitionable, but the C-submatrix C is not wuniform, so we

exclude Case (D). Since m = 2, n = 5, then

nin {tgl,t%} = 7.

It is easy to see that inequalities (2.13) and (2.18) do

h

it

not hold, but the inequalities in (2.23) do hold.  Thus
considering (2.24) we find that for i = 3,4,5 and j = 1,2,
this equality holds in T. Hence T is a loop-terminal
matrix satisfying Case (C). Therefore the edge capacities
Czo and Cgq are given by

Czop = 6 + X - 4 =2 + X,

Cgy = 9 -6 ~ux + 4 =T - X,
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where x = ¢z and ¢p3 =y =3 - x, in which 0 < x < 3.

The other edge capacities are given by

012 = 4 - X 021 = 6 + X,
034 = 5 - X 043 = 5 + X,
Cy5 = 6 - x , Cgy = 4 + x,

The double loop net is shown in PFig. 2.5,

" Pig.(2.5). A realization of T in (2.38), where 0<x<3.

Example 2.3%. Congsider the matrix

PO I (2.39)

As in Example 2.2,

min {tl2’t34} =5
h = min {§21,t43 } =6 ,

tl = 2 and t2 = 8.

b
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Therefore, inequalities (2.27) hold and T is a loop-terminal

matrix satisfying Case (D). Let C1gq = % 0 {x £ 2, then

Cqyp = 5 - x, Cop = 4 + X,

034 = 7 - X, 043 =7 + X.

To determine 41 and 309 let Cpp = a4, then Czp = 8 - ay
where
(2.40)
x {8 -a< 4+ x.
One can easily combine the inequalities in (2.40) and get

4 ~x£a<f5-x. (2.41)

The double loop net of (2.39) is shown inpig.2.6.
5-x

Pig.(2.6). A realization of T in (2.39), where
0 {x<2and 4 -xfLaf5~-x.
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2.4 Separable Oriented Nets.

Definition (2.9). A net N, oriented or non-oriented,

is "nonseparable"15 if every subnet of N, consisting of
more than one node, has at least two nodes in common with

its complement. All other nets are %separable¥,

Definition (2.10). A matrix T is called a Yseparable-

terminal matrix™ if it can be partitioned into

D= Ry @ Ry | (2.42)
B

such that

are realizable as teminal matrices, and every element of

Bl and B2, say tij’ satisfies
tij = min {tivc’ ‘tvcj} . (2.43)

Theorem (2.5). YA matrix T is realizable as the

terminal matrix of a separable oriented net if and only
if it is a separable terminal matrix.’t
Proof. Let N be a separable oriented net, and Nl

and N2 be its components (not necessarily non-separable)
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at the cut-node® Vs and also let T be the terminal
matrix of N. By rearranging the rows and columns (if
necessary), T can be partitioned as in (2.42). Since N
is separable, then every directed path between two nodes
of N;(N,) does not contain any edge of NZ(Nl)‘ Thus Ty
and T2 are the terminal matrices of Nl and N2, respectively.
Moreover, any directed path (i,j), where iin N and jin N,
consists of a directed path (i, vc) in N and a directed
path (v, j) in N,. Thus every element of B, and B,, say
tij’ must satisfy (2.43). Therefore T is a separable
terminal matrix.

Now, let T be any separable terminal matrix partitioned
as in (2.42), and let Ny and N, be the realizationsof T4
and T2, respectively. Form the net N'!' by identifying node
v, of Ny with node v, of N,. If t;j is the terminal

capacity of N' from node i in N; to node j in N,, then (as

in the proof of the first part)
1 . ' '
tij = min {tivo’ tVCj }

min }t..__ 5 bt .
{.1VC Vod }

tij » by Definition (2.10).

II

¥\ teut-node is a single node which is common to a sub-

graph and its complement.
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Thus N' is a realization of T.
Hence the theoren.

Corollary (2.7). "\ tree-terminal matrix of order

nyn > 3, is a separable terminal matrix."

The proof follows from Theorems (2.3) and (2.5).

The following theorem is given by Tang and Chien13

®
*

Theorem (2.6). WA matrix T is realizable if it can

be partitioned, by rearranging the nodes in such a fashion
that the following conditions are satisfied:

(1) Bach submatrix corresponding to a sub-collection
of nodes lying along the diagmal line is square and
contains elements with values no smaller than the value of
any of the elements in an off-diagonal submatrix.

(2) Bach off-diagonal submatrix is a uniform matrix.

(3) Bach submatrix along the diagonal line is realiz-
able.

(4) Treating these submatrices along the diagonal
line as nodes, the matrix T is realizable.™

A realizgtion net, N, of matrix T which satisfies the
conditions of Theorem (2.6) is a separable net containing
at least mlcut-nodes, where m is the number of submatrices
along the diagonal line. Thuss by Theorem 2.5 we arrive

at
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Corollary (2.8). “Every matrix T satisfying the con-

ditions of Theorem (2.6) is a separable matrix."

Excluding the trivial case when every submatrix along
the diagonal line consists of a single node, the converse
of Corollary (2.8) is not necessarily true; that is, not
every separable matrix satisfies the conditions of Theorem
(2.6). This follows from the following example.

Example (2.4). Consider the matrix T given in (2.44)

which is partitioned corresponding to Definition (2.10),
with node 3 as the cut-node, Vo and submatrices Tl and

T, are given in (2.45).

D =2 1
4 @Il;
}
{

- —

T = | e Tt

9 7,0

(2.44)

2 1
@ ® |
n=14 @ 1, T = | ® (2.45)
9 17 O

One can easily see that T is separable matrix; its realiza-
tion is shown in Fig.2.7

It can be easily seen that there is no partitioning
of the matrix in (2.44), except the trivial one, that
satisfies condition (1) of Theorem (2.6). Hence our

Theorem (2.5) is more general than Theorem (2.6).
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Nl: A realization of Tl'

sz The realization of TZ'

N: A realization of T in (2.44).

Fig.(2.7).
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2.5 A necessary and sufficiemt Condition for the

Realizability of a Triangular Terminal Matrix.

Definition (2,11). %4 descending net%, N, is an

oriented communication net of n nodes labelled 1,2,...5n

and edges e 4 (i # j) of capacities Cs 4 such that

cjj =0, if i < g,

iy 20, if 1> j.

Lemma (2.5). %The terminal matrix, T = [tij], of a
descending net, N, is a lower or upper triangular matrix
if the node order along the diagonal line is 1,2,...s%,
or nyn-ly...yl, respectively."®

Proof. Since there is no directed path (i,j) if
i< j in N, then there is no flow from i to j; that is,
tij = 0.

Hence the lemms.

It is always possible to transform an upper triangular
terminal matrix to a lower triangular terminal matrix by
rearranging the rows and columns such that the node order
along the diagonal line 1is reversed. Thus all the
following results are applicable to upper triangular

terminal matrices as well, after appropriate transformations.

Definition (2.12). An Yh-subnet", N(h>, of a

descending net N is the net obtained from N by deleting

every edge eij’ i -3 > h, where h is a positive integer

not more than n-1.
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Lemma (2.6). 'Let N(h), where h isapositive integer

£ n-1l, be an h-subnet of a descending net N, then

_ +(n)
Bi5 = b33

123
if
i-3<h,
where t§?> is the terminal capacity from i to j in N(h)."

Proof. Let ey, be any edge of N which is not in

¥, that is, 1 - k > h, then

£ - x> 1 - 3.
Therefore, if § < i, then k < j. Thus ep, has one or
both of its nodes in the subset of nodes {1,2,...,j—1,
i+1,...,11;; . Therefore, by Definition (2.11), &gy 1s
not contained in any directed path (i,j) in N; +that is
the removal of € P does not change the terminal capacity
(i!j)‘

Hence the lemma.

Let C = [cij] be the edge capacity matrix of a
descending net N whose teminal matrix is T = [tij], then
one can easily see that

Cy41,5 = Tie1,5 0 3 = 1s25...m-1,
and (2.46)

Cyp2,5 = Yy4p,5 - min {%j+2,j+l’tj+l,j}' ’

for all jJ = 1,25...40n=2,
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Theorem (2.7). "\ lower triangular matrix, T = [tij],
is realizable as a terminal matrix of an oriented communi-

cation net, N, if and only if,

(i-3-1)
EERAE ’

(2.47)

for all i and j such that 1 > j + 1, vwhere tgg‘j‘l) ig the
terminal capacity (i,j) in the (i-j-1)-subnet, N(i-j-l),
of N."

Proof. It must be noticed that any realization of
a lower triangular terminal matrix is a descending nedt.
Thus N is a descending net. Since N3 9-1) is & submet
of N, then condition (2.47) is necessary for the realiza-
bility of T. Now, suppose T satisfies (2.47) and assume
that we have found N(r) for some ry 1 { r £ n-2, then we
can construct N(r+l) by adding to N(r) all edges eij such
that i - J = r + 1, whose capacities are given by

_ (r)
Cij = tij - tij y

>0 , by  (2.47)

But using (2.46),we can easily find N(z). Thus we can
obtain N(B), N(4), coas N(n"l), successively. By Lemmag
(2.6), w{2-1) ig tne reélization net N of T.

Hence the theoren.

The procedure of the synthesis of a lower triangular

matrix T will be illustrated in the following example.
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BExample (2.5). Consider the following lower trian-

gular matrix,

@ B
3 @
6 6 @
T =[5 8 4 @ (2.48) .
14 12 4 2 ®
17 11 8 6 1 ®

By (2.46), we get

Coy = 3y Czp = 6, Chz = 4, Chy = 2, Ces = 1,

031 = 3, 042 = 4, 053 = 2y 064 =5

The 2-subnet, N(Z), is shown in Fig.(2.8a), from which we
find tgf) = 6, tég) = 4 and tég) = 5. Therefore, o, =9,
Cgp = 8 and Ce3 = 3. The 3-subnet, N(B), is shown in
Fig.(2.8b). Similarly from N(B) we find tgi) = 7 and

t(3) = 9, thus c¢ =7 and ¢, = 23 and the 4-subnet,

51 &2
N(4), is shown in Pig.(2.8c¢c). PFinally, from N(4) we

obtain téf) = 11y thus c = 6 and the realization of T

6l
is shown in Pig.(2.84).
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Fig.(2.8a). n(2)

Pig. (2.8b).‘ n(3)
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Fig.(2.8a). n) =w
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CHAPTER III

On the Synthesis of NON-Oriented Communication

Nets with Minimum Totgl Edge-Capacity and Minimum

Number of Edges.

3.1 Introduction.

A non~oriented communication net is an undirected
graph with capacities as weights. We shall assume that
no capacity constraints on nodes are admitted. The flow
in any edge may go in either (but not both) direction as
long as its magnitude does not exceed the edge capacity.
The edge matrix, E = [eij]’ edge capacity matrix, C = [cij]’
end the terminal matrix, T = [tij], for a nonoriented
communication net, N, are defined in the same way as in
the oriented case. It must be noticed that in the non-
oriented case E, C and T are symmetrical matrices. We
shall assume, as before, that N is connected and contains
exactly n nodes labelled by 1,2,...sn.

It is easy to see that a cut (1,j) of a nonoriented
communication net N is s cut-set (i,j) of N, that is, a
minimal set of edges whose removal separates N into two
disconnected nets, each being connected and one containing

node i and the other node j. For nonoriented nets, we



S

shall use the term cut-set instead of cut. The capacity
of a cut-set (i,j) is the sum of the capacities of its

edges; and a minimum cut-set (i,j) of N is a cut-set

(1,j) whose capacity is not more than the capacity of any
other cut-set (i,j) of N. A minimum cut-set (i,j) of N
will be denoted by Svi,V if the removal of all its edges
gseparates N into two subnets Ni and Nj’ where Vi and V,

are the sets of all nodes in Ni and Nj respectively. ;

It has been shown9 that a symmetric matrix T is
realizable as the terminal matrix of a nonoriented net if,
and only if, T is principal partitionable (Definition 2.4).

6 have shown that a necessary and sufficient

Gomoy and Hu
condition for a matrix T to be realizable as the terminal
matrix of a nonoriehted communication net is that for all
1,3k = 1,2y ..4ym,

tyy = tji > min {tik’tkj} .

The total sum of edge capacities of a nonoriented
commmication net is called the "total edge capacity®.
Several methods for the synthesis of nonoriented nets with
minimum total edge capacity are known; those are listed
below: |

(1) Method of equal distri'bu'bion,8

(2) Method of decomposition of matrices,6
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(3) Method of elementary matrices,14

(4) Method of successive expansion.l4
The last method will be discussed in detail in the next
secfion.

In this chapter, we shall add some properties of the
minimum total edge capacity realization (in short, minimum
realization) of nonoriented communication nets. Some
results on the minimum realization with minimum number

of edges, having nonzero capacities,will also be given.

3.2 A minimum Realization of a Symmetric Terminal Matrix.

A symmetric terminal matrix T, i.e. a terminal matrix
of a nonoriented communication net, is principal partition-
able. Wing and Chienl4 show that T can also be partitioned

uniquely into the form:

_ -
k]
o Ap oo Ty
T = * “ 9 (301)
v '
le T2k [ 3R BN ) Ak

bomten.

for some k { n, such that:

1) Aisboy oo .5y are square submatrices,
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2) Every‘Tij is a uniform matrix with eleﬁent value
'
tl, Tij is the transpose of Tij’
3) Every element in Aqshpseieyhy 1s greater than t,
4) Every submatrix Aqsdsyeeeshy can be partitioned in
the same way and satisfies the same conditions.
This partitioning will be called '"Wing~Chien partitioning".
Definition (3.1). The 'index of partitioning™, Ip,
of a symmetric terminal matrix T is the number of operations

necessary to partition T, by Ving-Chien partitioning, into
a form in which every diagonal submatrix is either of
order 2 x 2 or 1 x 1, with the provision that each operation
is to be applied to one diagonal submatrix at a time.

It is well-known that the set of all edges incident
at any node i of a nonoriented net N contains a cut-set
(i,r), for all r #41. Thus if N is any realization of a

symmetric terminal matrix T, then

n )
E Cij 2_ tiO [} i = 1,2’.00’11’ (3‘2)
j=1
343,
where  t, = max {:tir T = 1ly.eayn, i # r} .

Thus the total edge capacity, Et’ of N must satisfy

By = J_3cyy > %ttio , (3.3)

157 i=1

i,j = 1,2,.--,11-
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Hence any realization of T that satisfies (3.3) as an

equality, and so (3.2), is a minimum realization, Np» of

T. We have mentioned in 83%.1, four such realizations.

The one which is of interest here is the Method of

Successive Expansion which may be summarized in the

following steps:

1) Partition T by Wing-Chien partitioning (eqn 3.1),

2) Treating each diagonal submatrix Aq,...,Ay, as a node
construct a loop with each edge capacity equal to
t1/2’ i.e. half the capacity of the first partitioning
step.

3) To realize each of Ay (i =1y..09k) which is of order
more than 1, a new loop is formed, by repeating steps
1) and 2) on A;» to take the place of the corresponding
node and each edge in the new loop will have a
capacity of t2/2 (where t, is a minimal element of
Ai) except for one edge, which has a capacity of
(t2~tl)/2 and is the one and only one edge which the
new loop shares with the original loop;

4) Bach submatrix 1s carried out in the same way until
each node in the net obtained reﬁresents one node
in T and not a diagonal submatrix of order more than 1.

The net obtained by the above method of realization satis~

fies (3.3) as an equality; and if every set of parallel
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edges replaced by one edge then this net, Nﬁ, will contain

exactly (I + n - 1) edges, where I_ is the index of .
partitioning of T. i R 3

planar15

net consisting of Ip meshes.
The following theorem follows from (3.2) and the
above discussions:

Theorem (3.1). YA realization N, of a symmetric

terminal matrix T is minimum if, and only if, for every
node i of Nm
Qi(Nm) = tio ] i= 1,...,1‘1, (3‘4’)

where Qi(Nm) is the sum of the capacities of all edges
incident at node i in Nm’ that is
n .

Qi(Nm> =2 :Cij "

J=1
JAL

3.3 Properties of the Minimum Realizations of a Symmetric

Terminal Matrix.

Without loss of generality, we may assume that T con-

tains no zero elements, that is, tij > 0 for all i # j.

Theorem (3.2). "A minimum realization N of a

gaymmetric terminal matrix T is a non-separable net.'

Proof. Suppose, if possible, that Nm is a separable
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net, then it must contain at least one cut—node(x), say
node i. Let Np,Np,...,N, (a > 2) be all the maximally
connected subnets(xx) of the net obtained from Nm by
removing node i and all edges incident at it. Thére is
at least one edge in N, connecting node 1 with a node in
Nr for each r» = 1,...,a, Thus for every Jj = 1y32s...90y
j # i, there is a cut-set (i,j) in N, which is a proper
subset of the set of all edges incident at node 1.
Therefore

21

0 < Q)

contradicting Theorem (3.1). Thus N, is a nonseparable
net. Hence the theorem.

Corollary (3.1). ™A minimum realization of a symmetric

terminal matrix T contains no cut-set consisting of one
edge only if the order of T is more than 2.M"

Proof. Any net which consists of more than 2 nodes
and contains a cut-set consisting of a single edge is

separable. Hence the assertion (Theorem (3.2)).

(K)Theorem (3.1), Ref.l2.

(*K)Let S be a non-empty set of nodes of an unconnected
net, N, and S5 the complement of S in N such that there
exists a path between any two nodes in S and no path
between any node of S and any node of 5. The subnet of N
which consists of all nodes in S and all edges having their

nodes in S is called a ™paximally connected subnet" of N.
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Definition (3.2). Let Vg be a set of nodes of a

nonoriented communication net N. A"(Yﬂ)-condensed
net, denoted by N(Tﬁ)", of N is a net obtained from N
by identifying(x) all the nodes in YE; the new node will
be denoted by vy. "

The following lemma is given by Gomoy and Hu6
(Lemma 1):

Temma (3.1)(xx). et S be a minimum cut-

V‘g;vk
set (ﬂ,k) of a nonoriented net N, then the terminal

capacity (i,3), 1yJ€Vyy 1 # j, 1s the same in both N
and N(YB), where N(Yt) is the (Vl)-condensed net of N."

Theorem (3.3).  Whet S be a minimum cut-set

k
(Lyk) of a minimum realization Nm of a symmetric terminal

YE;V
matrix T, then the (V£)~condensed net, Nm(vl)’ is a
minimum realization of T = [Eij] if tlk is a minimal
element of row !, where T is T with: (1) all rows and
columns correspdnding to the nodes in Vf deleted and (2)

row and column corresponding to node /4 added, with element

value ﬁik.“

(K)If the nodes of an edge are identified (shorted), the
edge is removed from the net, that is, no self-loop edges
are allowed.

(xx)A rigorous proof of this assertion is given by Ford

and Fulkerson- (Lemma 3.1, page 179).
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Proof. By Lemma (3.l1), the terminal capacity (i,j),

1,j €V in Nm(vﬁ) is equal to t Shorting an edge

5
is equivalent to making its capacity o, thus it does

not decrease the terminal capacity between any pair of
nodes.  Since fp, is a minimal element of row Ain T and
the set of all edges incident at node Wﬂ in Nm(Vg) is a
cut-set (3@,10, I'QNk, and its capacity is equallto Elk'
then the terminal capacity (1? ,T) in Nm(Yt) is equal to
bpe Thus T is the terminal matrix of (g ).

Because Nm is a minimum realization of T, then by
Theorem (3.1), eqn (3.4) holds for every node igVy in
both N and Nm(Ya ). Thus Nm(Y@ ) is a minimum realization
of T. Hence the theorem.

Theorem (3.4). Let N, be a minimum realization of

a symmetric terminal matrix T, and let Nm contain a node,
say ry, of second degree, that is only two-edges, say

erp and en,t are incident at r, where er > CI‘P > 0.

Then ngl) is a minimum realization of T(%), in which ngl)
rq short-circuited (see Pig.3.l) and
T(l) is T with row and column r deleted.?

is N, with edge e
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O) CHN—

rp

o (O 10 o

o .

Fig.(B.l). TI1lustration of Theorem (3.4).

| . Proof. It is obvious that the terminal capacity
(i53), 1 £ 3 £ v, in Nél) is equal to ty;5 thus Nél) is
a realization of T(1),

Ile't -t}(c:cl).) = max {txy'y = 1’2,ooo$n’ Y% X ;é r }’

then txo = max {tég), txr‘} y for all x = 1,2,...90,

x #r. Suppose i (# q,r) is any node of N, and Sy ;v is
i’'q

a minimum cut-set (i,q) in N, Since Crp < Crg? then

Sy .y 1s a cut-set (i,r). Thus

i?'q
tiq 2 B3y 0 for all 4 £ ryq.
Therefore

t§§) = t;, » for all i # ryq.

Since Nm is a minimum realization of T and

Qi(Nm) = Qi(Nél)) » 1 # 1yq,
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then by Theorem (3.1)

Qi(Nél)) = tgg), for all i £ r,q. (3.5)

To complete the proof of the theorem we must prove that

(1)y _ (1)
o () = £{3) . (3.6)
If
tgz < Q)
then
(1) _ _ ) (1)
b’ = Tgo = QM) 2 Qg (ugt))
and by (3.2)
(1) _ (1)
tyo = Q(gt)).
If
tqr = Qq(Nm>’
then
Qq(Néf)) = min {tég), cm} ,
where T(o) = [t£§)] is the terminal matrix of Néo) (see
Fig. 3.1).
Thus

(1)y _ . (o
Qq(Nm ) = Cpry + min tqp), Crp
$ Pop
and by (3.2),

(1)y -
QW) = bap = bgo
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Therefore node q in Nél) satisfies (3.6) in any case.

Hence the theorem.

Let Nl and N2 be nonoriented nets which have the
same nodes, and let 01 and 02 be the edge capacity matrices
of Nl and NQ, respectively, with the same node ordering;
then the net obtained by superimposing Nl and Ng,
N =N, + N2 ’
is the net whose edge capacity matrix C is given by

¢ = C1,+ Cos

and its nodes are those of N1 or Ng.

Theorem (3.5). "Suppose Nél) and Nég) are minimum
realizations of T(l) = [tgg)] and T(z) = [t§§)], respec-
tively, where both have the same nodes in the same order.
Let

r = (1) 4 2(2)]
and

1 2
N, = Né - Né ),

then Nm is a minimum realization of T if, and only if:
(1) for each node pair (i,j), there exists a cut-set

(i,j) which is minimum for both Nél) and Nég), and

(2) for each row i there exists a column, say r, such
that the entry (i,r) is a maximal element of row i

excluding e node s ol)in bo an ’
(excluding the node symbol)in both (%) ana m(2)
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that is

1 1 2 2 "
téo) = tgr) and tgo) = tgr) .

Proof. (a) Suppose conditions (1) and (2) are satis-
fied. Tet %ij be the capacity of a minimum cut-set

(iy3)y say S y Of N . Then the set of all edges

e‘(ulc)(eﬁ)),levi and kEVj, contains a cut-set (i,j) of
(1) ((2)
N (Nm ). Therefore

(1) (2)
fij > tij + tij .

By condition (1), there is a cut-set (i,j), say Syt yt o
. i b j

which is a minimum cut-set (i,3) for both Nél) and Ngz).

But Syes:qt is also a cut-set (i,j) of N_ with capacity
Vi,V- m

]
t£§) + tgg) , thus

(1) (2)
%ij < tij + tij .

Hence Eij = tij R

that isy, T is the terminal matrix of Nm.
From condition (2), for each row i

_ +(1) (2)
tio - tio + tio *

But by Theorem (3.1),

t&%) = Qi(Nél)) ’
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and
62 = o f®) .
Since
a; () = q (i) + o, (nl?))
then

tiO = Qi(Nm) ]
and Nm is a minimum realization of T.

(b) Suppose that N, is a minimum realization of T.

Any minimum cut-set (i,j), say Sy S, of N is a cut-set
33V

j
(i,5) for both Nél) and Néz). Since

= (1) (2)
tij = tij + tij

then S, .. is a minimum cut-set (i,3) for both M%) ana
Néz). Hence condition (1).

Now, 1let
bip = Qi(Nm) 4
where i is any node of Nﬁ. Since
- +(1) (2)
tir - tir + tir

s < HESOR
2
+{2) ¢ 0, n{?)

and
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Q; (1) = o (i) 4 o (w{?)y
then

t§%) Qi(Nél))’

{2+ wal®),
and condition (2) follows.
Hence the theorem.
Theorem (4.1) of Reference 5, page 190, that is the
fact that the " Method of Decomposition of Matrices"M
gives a minimum realization, follows from our theorem

above.
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3.4 Synthesis of Non-Oriented Communication Nets With

Minimum Total-Edge Capacity and Minimum Number of

Edges.

In this section we shall present some results on a
minimum realization, with minimum number of edges, of a
terminal matrix of a nonoriented communication net. The
edges counted are those having non-zero capacities. We
shall assume that the minimal element tl of T is not .zero.

Lemma (3.2). "The minimum number of edges, m, of a

minimum realization, N _, of g symmetric terminal matrix,

m
Ty of order 4 is given by

mo= I, + 3, (3.7)

where Ip(= 1,2) is the index of partitioning of T."

Proof. If I:p = 1, then by Theorem (3.2), eqn (3.7)

is true. Now, let Ip = 2, then T must have the following

form: -
i . ' )
D 3 1y 0 By
{ '
t; @ , by B
o R T ’ (3.8)
ty  t, 1@ !
S S S
]
L T S )
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where % < t, < t3.

By Theorem (3.1), the minimum total edge capacity, By, is
given by

E, = %(tl + b, + 2t3) , (3.9)

Suppose, if possible that N of (3.8) consists of 4 edges;
that is N is a loop (Theorem 3.2), then

By = QM) + Q (M) (3.10)
where X is the node opposite to node 4 in the loop; that

ig, x = 1,2 or 3. Thus (3.10) gives
By = t) + T, (or t3) . (3.11)

From (3.9) and (3.11) we get ty > t,, which contradicts
the assumption in (3.8). Thus N, must consist of at
leas+ 5 edges if Ip = 2,

Hence the lemma.

Theorem (3.6). MIf T is a symmetric terminal matrix

of order n, then there is no minimum realization of T

consisting of n edges only if the index of partitioning,

Ip, of T is more than 1.V
Proof . Since Ip > 1, thenn > 4. The case for
n = 4 has been shown to be true in Temma (3.2). The
proof will be completed by induction on n. Let the theorem

be true for any symmetrical terminal matrix of order
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h> 4and I_ > 1, and consider a matrix T of order (h+l)

Y
and partitioning index Ip > 1. Supposey, if possible,
that its minimum realization, N , consists of (h+1)

edges; then by Theorem (3.2), N, is a loop. If Ip > 2,
then by Theorem (3.4), Nél) is a minimum realization of
T(l), where Nél) is Nm with the edge of greatest capacity
at node ry, any node in Nm, short-circuited, and T(l) is

T with row and column r deleted. This contradicts the
induction hypothesis, because Nél) is a loop, T(l) is of
order h and the index of partitioning of 21) is more than
1. Now, suppose Ip = 2, Let the first step of the
Wing~Chien partitioning of T be as given in (3.1). One
submatrix only, say Aqs along the diagonal line is of
partitioning index 1, the others are of orders 1 or 2.
Since (h+l) > 4, then either A, is of order more than 3
and/or the total order of Aps...shy is more than 1.  Thus
there is at least one node, say r, whose deletion from T
gives T(l) having partitioning index equal 2 also. A
loop minimum realization, Nél), of T(l) is obtained from
Nm by shorting the edge of greatest capacity incident at
node r (Theorem 3.4). This also contradicts the induction

hypothesis. Thus Nm cannot be a loop.

Hence the theorem.
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The following-corollaries follow directly from the
above theorem.

Corollary (3.2). A minimum realization with

minimum number of edges of a symmetric terminal matrix
is a loop if, and only if, its index of partitioning is
l‘lﬁ

Corollary (3.3). "“The minimum number of edges of a

minimum realization of a symmetric terminal matrix, whose
order is n and index of partitioning is 2, is (n+l).®

The converse of the above assertion is not necessarily
true; this can be seen by examining Example (3.1)s#
(page 94) . That is because some of the edge capacities
become zero if certain relationships between some edge
capacities exist. Thus in order to consider the minimum
realization with minimum number of edges for any symmetric
terminal matrix whose index of partitioning is more than
2, the following definition is needed.

Definition (3.3). A %variable terminal matrix®, T,

is a terminal matrix of a nonoriented communication net
whose elements 0 < tl,tz,...,ﬁa(IPSQSn—l y Ip is the index
of partitioning of T) which are obtained by Wing-Chien
partitioning of T, are arbitrary variables taking any set

of real positive values that do not change the partitioning
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structure of T. No particular relationships between
some of the t's are assumed.

Let Nm be any minimum realization of a variable
terminal matrix T of order n, then one can easily observe
that every edge capacity of N 1s a function of some tls,
and every edge net in N, has identically zero capacity.
Let Al’Az""’Ak be the submatrices along the diagonal
line of T corresponding to the first step of Wing-Chien
partitioning (eqn 3.1), and let T, be T with t; = 0.

Then Nmo is a realization of To’ where Nmo is Nm with tl

set equal to zero in each edge capacity function.

Matrix TO is a symmetric terminal matrix of an unconnected

communication net, that is, Nm is unconnected. Each
o}
Ay (i =1,...yk) is a symmetric terminal matrix of one
maximally connected subnet of Nm y Say Néi), Moreover,
0 o)

(1) . . . . .
Nmo is g minimum realization of Ai. Since tl,tg,...,tOL

are arbitrary variables and no particular relationships
hold between some of them then every edge in Néi) sy for

(o}
all i = 1,2y...,k, is an edge in Nm’ possibly with

different capacity value. Now, we can prove the following
result:
Theorem (3.7). "The minimum number of edges, m,

of a minimum realization, Nm’ of a wvariable terminal
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. . . . . .
natrix,; T, of a nonoriented communication net is given

by
m=n+Ip—l, (3.12)

where n is the order of T and I is its index of partitioning.!

Senee 312484 ko0 P

Proof. Heixng the method of Successive Bxpansion,
we need only to prove that the number of edges of any
minimum realization satisfies

m2yn+ I -1. (3.13)

This is true for n = 3 or 4. The proof will be completed
by induction on n. TLet (3.13) be true for any T of order

h {n -~ 1 and consider T of order n. Suppose Nm s T

’
o 0

Néi) and Ai’ i=1,2,...5k, are defined as in the previous
o}

discussions. Moreover, let n; and Iél) be the order and

the partitioning index, respectively, of Ai. Since n, <

n -1 and Néi) is a minimum realization of A, then by the
o

induction hypothesis, the number of edges, my of Néi)
o)

sgtisfies

m; 2 n; + Iél) -1, for all 1 = 1,2,...5k.

Since Nm contains no cut-set consisting of one edge only

(Corollary 3.1) and every edge of Nm is an edge of N ,
()

then

k
m >k +2 m;

i=1

>§k§m.+lhh.
—i=1  *+ P
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But

and

thus (3.13) is true, which completes the proof of the
theorem.

Theorem (3.7) may not be true if there are some
relationships between some of the t's. This will be
illustrated in the following‘example:

Example (3.1). Consider the terminal matrix

o

i i
@ t, t, : s : ty ty
t
t, @ by bt %
i
3
{
t, t4@;t2:tl tlg
T = | ~77TTTTTTTTTTTTY P '
T % T i@ I
________________ b
|
0%t f ;® 3
]
g 2] tq by g ®
Where 0 < tl < t2,t3,
ty < %y
and t, = t, + ¢

4

(3.14)
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The relation (3.12) gives m = 8, but the net shown in
Fig. (3.2) consists of 7 edges only and it is a minimum
realization of T. Considering the sum of the capacities
of the edges incident at node 1 or 3, we observe that this

net cannot be minimum if t, # Tty + 0t

2'

Pig.(3.2) A pinimum realization of the matrix

given in (3.14).
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CHAPTER IV

USYNTHESIS OF RADIO-WIRE~-COMMUNICATION NETS™

4.1 Introduction.

In the previous chapters we have considered the syn-
thesis of communication nets which are assumed to have
weights on edges only; the nodes are assumed to have
sufficient capacities to handle all information flowing
into them.

16 considered the synthesis

In a recent paper, 1962, Yau
of a radio-communication net, that is, a net which has
weights on nodes only; the edges have unlimited capacities.
In this chapter and the next one, we shall investigate the
synthesis of more general communication models which werYau
sirarl callS radio-wire-communication nets. In these nets
the nodes and the edges are assumed to have weights which
are real non-negative numbers, called capacities. The
capacity of an element may be very large (o ). We mean
by an element of a radio-wire communication net, N, either
an edge or a node.

It is assumed that for every node the maximum amount

of information which can be transmitted and the maximum

amount which can be received are the same, and each not
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exceeding the capacity of the node. It is also assumed
that the edges are nonoriented, that is, the flow in any
edge may go in either direction (but not both) as long
as its magnitude does not exceed the edge capacity.

The nodes of a radio~-wire-communication net, N, will

and the edge between nodes

be denoted by V9sVoseeesVis
v; and vj is denoted by ej_j = eji‘ The capacity of a
node Vi will be represented by Cys and the capacity of eij

by cij = Cyy-
The maximum amount of information flow between a pair

j) of N is called the 'serminal capacity

(vi,vj)". When we find the terminal capacity between

of nodes (vy,v

two nodes, all other nodes may be considered as relay
stations without changing their capacities. Therefore, in
the analysis, a multiterminal communication net is
essentially treated in the same way as a two-terminal
communication net.

The terminal matrix, T = [t.

1j]’ of N is a symmetric

matrix with entry t,., i # Jj, being the terminal capacity

j’
(vi,vj), and t,,; being the node v

@ , for all 1,5 = 1,...,1.

The purpose of this chapter is to present a necessary

X represented by symbol

and sufficient condition for a symmetric matrix T to be
reglizable as the terminal matrix of a radio-wire communi-

cation net.



...98'...

4.2 Analysis of Radio-Vire-Communication Nets.

In radio-wire-communication nets the concept of

cut-set must be generalized to include nodes as well as

edges. This has been done by Yau°17

Definition (4.1). A Y“generalized cut-set (vi,vj)“

of a radio-wire-communication net, N, is a minimal set of

elements whose removalcr) destroys all paths (vi,vj) in N.

A generalized cut-set (vi,v.) will be denoted by Sij'

J
It must be noticed that Sij contains neither V4 nor vj.

Yau used the term 'cut-set" to mean generalized cut-
set. Since the term Ycut-set' is widely used in the
literature to represent an edge-cut-set(ﬁ), then we prefer
to use the term %generalizedcut-get®. Some properties
of generalized cut-sets (vi,vj) together with a method

17

for obtaining all of them are given by Yau. The capacity

of a generalized cut-set, 9.

;40 denoted by c(sij), is the

(T)If a node is removed from N then every edge incident
at that node must be deleted.

17 are generalized cut-

(E)Edge—, node- and mixed-cut-gets
sets consisting of edges, nodes and edges and nodes,
respectively.

A cut-set (Vi’vj) ig called, by Yau, basic cut-set (Vi’vj)'
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sum of the capacities of all elements in Sij“ A 'Yminimum
generalized cut-set (Vi,vj) of N is a generalized cut-
set (vi,vj) whose capacity is not larger than the capacity
of any other generalized cut-set (vi,vj) of N,

Dentzig end Pulkerson,® snd Ford and Pulkerson? proved
that the Max-~-Flow Min-Cut Theorem is also valid for a
communication net with weights on both edges and nodes.
In our notations, this theorem states:

Theorem (4.1). “The maximum flow, t.., between a

1]
pair of nodes (vi,vj) in a radio-wire communication net N

is given by

1J

t.. = min {01’0 ,C(S(m))}

where ¢; and c., are the capacities of nodes Vi and vj,
respectively, and C(Sgg))is the capacity of a minimum
generalized cut-set (vi,vj) of N.%

Now, we shall present some results which simplify the
work for finding the terminal matrix for a given radio-

wire~-communication net.

Lemma (4.1). ¥In any radio-wire communication net,

N, there exists a minimum generalized cut-set (Vi’vj)’
for all i # j, which does not contain node v, if

3Q,(M) < o (4.1)

) %lf {c.emﬂ MW&?EJ’MWJW e
copltnad o ML cal— St



- 100 -

where Qr(N) is the sum of the capacities of all edges
incident at node Vo in NW%,

Proof. Let S(?) be any minimum generalized cut-set

(vi,vj) and Nij be N with all the elements of S(J) removed.

Moreover; let Ni and Nj be maximal connected subnets of

NlJ which contain nodes vy and VJ, respectively. If

Sg?) contains node v, then each of the sets (S(m LJE

and (S(m)LJE Vo is a generalized cutbt-set (vi,vj), where

(EI_ ) is the set of all edges each of which is incident

i
at node v, and at a node in Ni(Nj)° Since neither E,
i
nor Er. has a common element with Sgﬁ), and(T)
J
(m) (m)
c(s; i3 UE ) > c(sij )
(m) (m)
c(s; UB ) > c(s13 )
then
C(E. )y, C(E_ ) > c_ .
But
E B = 4
ri{w rJ ?

and from (4.1)
C(EriU Erj) L2, 3

(T)C( ) = sum of the capacities of all elements in the

set ( ).
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then

C(Er.) = C(Er.> = c

1 J T

Thus each of(S§?>LJ Eri—vr) and (Sg?)tj Erj-vr) is a
minimum generalized cut-set (vi,vj) of N.

Hence the lemmna.

By the above lemma, if

2Q.(N) < e,

for all r = 1,2,...,n, then we can obtain all Sg?), for
iy = 152,...5n, i # j, by treating N as an ordinary non-
oriented communication net with weightson edges only.
In this case T can be found by evaluating (n-1) flow
problems only, by using the Gomory and Hu6 technigue which
depends on Lemma (3.1).

The following assertion is similar to Lemma (3.1)
for radio-wire communication nets. Indeed, one can
easily see that Lemma (3.1) follows directly from our
Lemma (4.2).

Let Vr be any set of nodes of a radio-wire communi-
cation net, N. We extend Definition (3.2) as follows:
A "(Vr)—condensed net®, denoted by N(Vr), of N is a net

obtained from N by identifying all nodes in V.3 the new

node is denoted by v; and given infinite capacity.
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Let s(?> be any minimum generalized cut-set (v AF )

of I\T, and let Nl, N Py Nl, N a.,NG‘ be the maximal

2’
connected subnets og‘ the net I\Tij obtained from N by
removing all the elements of Sg?), where I\T; and N; contain
nodes vy and vj, respectively. Moreover, 1let l\Ti be I\T;_
and some or all of Nyy Np,...,N, , and let N, be N3 and
the remainder of N, Nyy...,N.. We shall call N, and Nj‘
the parts of Nij' Now, we can state our lemma.

Lemma (4.2). WIf
o(s{®)) <oy (4.2)

then the terminal capacity (Vl ,vk) in N is equal to the
temminal capacity (x@ ,vk)in the (Vi)-condensed net, where
nodes Yf and Vi are in l\Tj, and Vi is the set of all nodes
in Ni""

Proof. It is sufficient to prove that there exists
a minimum generalized cut-set (? ,vk) in N which does not
contain any element of l\Ti.

TLet S}]I? ‘be a minimum generalized cut-set (x@ ,vk) of
N. Suppo se Séﬁ) contains some elements of Ni. Let:
Nﬂ, and l\Tk denote the parts of N,Qk corresponding to S_éﬁ),
VlJ, ka, Vs V ’ Vf and Vi denote the sets of all nodes

in s(m), gék , Ni, Nj, m{ and I

Xk? respectively,
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v, = Vi% o

Vo o= Vi Ny

V; = v, Ny, ,

Vo= vy

vy = Vs Vg s

Ve = v, NV

7= VN

vy = Vi My s

v; = v Nvg,  ana

qu = the set of all edges each of which has

?
one node in Vp and the other in Vé s DA dy Py q = 152y...59.

Fig.4.1 illustrates the connection between s%“ and séf{l)

in N, where each qu is represented by one edge, for

simplicity. In the above notations, the sets Sg?) and

S?E% are given by

(m) _ o -
Si57 = By UEB s U B g U By, UEys | By
H] 1 1
UEsy LU Bss U B U V7 UV Uy s
Bys U Byg U By U B, L Byl Byq
$ ] 1
UE A Bgy L E79UV2UV5 Uvg .

I

s}ﬁ)
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ustration for the proof of Lemma (4.2).

An i1l

Fig.4.1,

ider two cases only:

We have to cons

Then it can easily be

%

Node vi€ Vl'

1

Case

seen that the set Sij contains a generalized cut-set

(vi,vj) of N, where
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515 = Byl B U Bi5\UBg | By
Un U Uy,
Since
c(s(m)} < o(s; i) 0
then
0 (2 U Bl Bog L5, UE55 B3 U )
$ C(EBq 5B g Uvy) (4.3)
The set of elements Sy given by
She = S U (B0, U5 UBoel B3, UB55 UBselUTy)

- (B Uz 4UT)

1l

(E16UE26UE36UE46UE67UVé Uv; Uvé)
U (25 U5 UB5 fJUBS5 U gU B3, UEg),

¥
contains a generalized cut-set (Yz,vk). This set ka

contains no elements of N,y and from (4.3)
c(sfk) < c(sh"

vThusszk must be a minimum generalized cut-set (Yi’vk)‘
Case (2). Node vy € V,
The set of elements S}L given by

1

Spx (m) LJ s(m) (B3 (UT5) s
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contains a generalized cut-set (Yﬂ’vk)' Since

(m)
C(Sij ) £ i s
then

C(Sﬂk) < c(sz(m))

Thus SEL is a minimum generalized cut-set (v?,vk).

The case, node v&_E“V; sy 1s exactly similar to Case
(1).

Hence the lemma.

It must be mentioned that Temma (4.2) may not be true

- (m)
if C(Sij ) > C.,

i as illustrated in the net given in Pig.4.2,

from which we observe that

(m) { 237 56}'

The set

S(m) = .845, 9269 Vl} ’

is the only minimum generalized cut-set (v,,v:-), and it
3775

contains two elements, namely, eog and Vqo from Nl.
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4.% Synthesis of Radio-Wire-Communication Nets.

Lemma (4.3). '"A symmetric matrix, T = [tij]’ is

principal partitionable if, and only if, for every ti

1#ds

j’

ttjzmﬂlftﬂﬁﬁﬁ} , (4.4)
for 21l k # i,j.9
The proof follows directly from Theorem (2.1) and
the fact that T is realizable as a terminal matrix of a
nonoriented communication net if, and only if, T satisfies
(4.4) for every i # j # k(ﬁ).

Temma (4.4). %"The terminal matrix, T = [tij]’ of a

radio-wire-communication net, N, satisfies (4.4) for every
i £k
Proof. Let ng) be a minimum generalized cut-set

J

(vi,vj), then we have two cases:

Cage (1).

tyy = o(s&?)) .

(m)
If Ve éﬁSij , then

(m)
c(sij ) 2 ey 2 iy b

kj

If Vic ﬁ{sg?), then Sg?) contains a generalized cut--set

(Vi’vk) and/or (vk,vj),

Thus inequality (4.4) holds in both cases.
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Case (2).

tij = cy (or Cj) < C(Sgﬁ))

Since
tip £ ¢y and tkj £ cy >
then (4.4) holds in this case as well.

Hence the lemma.

Theorem (4.2). YA symmetric matrix T is realizable

as the terminal matrix of a nonoriented radio~wire communi-
cation net if, and only if, T is a principal partitionable
matrix,®

Proof. TFrom Lemmas (4.3) and (4.4), the terminal
matrix of a nonoriented radio-wire communication net is
principal partitionable.

Now, suppose T is principal partitionable, then by
T.’zj&rem ( 2.11‘ jc-l.t /&%ia&l‘j’:/ia;)u:}e. %ﬁ &erminal matrix of
a nonoriented communication net,| JLet N' be any such
realization. Each node of N' has infinite capacity.

Now, obtain a nonoriented radio-wire communication net N
from N' by giving each node, say Vi finite capacity cy
determined by

c; & Qi(N°)9
where Qi(N') is the sum of the capacities of all edges

incident at node v, in N. By Theorem (4.1) and using

Lemma (4.1), it follows that N is a radio-wire realization

of Toustll &M /) cazaaa,@
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Hence—the—theoren.
Corollary (4.1). %A symmetric matrix T = [tij] is

realizable as the terminal matrix of a nonoriented radio-
wire-communication net if, and only if, for every element
tij, i # j, of T,
t;5 2 min {tik,tkj} ,
for all k # i,j.%
The proof follows directly from Lemmas (4.3) and

(4.4) and Theorem (4.2).

Corollary (4.2). ®The terminal matrix of a radio-

wire communication net of n nodes contains at most (n-1)
distinct elements.®

The proof is obvious.

Let CT(N) denote the total element capacity of a
radio-wire communication net N, that is CT(N) is the sum
of the capacities of all edges and nodes of N. A radio-
wire reglization of a principal partitionable matrix T
with minimum total element capacity is described in the
next theorem.

Theorem (4.3). "A radio-wire-communication net, N,

is a realization, with minimum CT(N), of a symmetric
terminal matrix T if, and only if, for every node v of N,

Ql(N) = Cj_ = t. ’ (4—-5)

10
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where

r = 1’2,-...,1—1’i+1’-..’n } -"

tio = max %tir

Proof. From Theorem (4.1), for every node vy of any
radio-wire communication net, N, whose terminal matrix is
Ty the following relations hold

cys Qi (W) > 4,0 (4.6)

i’

Thus
n

CT(N) = E (Ci + %Qi(N))
25 25 by, -

i=1

v

Therefore, if (4.5) holds for every node v; of N, then
5 D
Cp(M) = R LI

and so N has minimum CT(N).

In the proof of Theorem (4.2), we can choose a non-
oriented communication net N' to be a minimum realization
of Ty, that is, every node of N' satisfies (3.4), Theorem
(3.1). Thus it is possible to obtain a radio-wire
realization for T satisfying (4.5). Thus by (4.6), every
node v; of a radio-wire realization with minimum total
element capacity of T must satisfy (4.5).

Hence the theorem.



It is worthwhile to mention that if N' is obtained
by using the Method of Successive Expansion (83.2), then
N will contain a minimum number of edges, corresponding
to the results of §%.4, as well as minimum total element

capacity .
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CHAPTER V

Necessary Conditions For Conditional Synthesis

of Radio-Wire-Communication Nets

5.1 Introduction

An interesting problem concerning the synthesis of
radio~-wire-communication nets is the following: What are
the necessary and sufficient conditions for the realiza-
bility of a given symmetric matrix T such that a given set
of elements, of the realization net, have unlimited
capacities. It can easily be verified that the synthesis
_ problems of ordinary nonoriented communication nets,

16 and radio-wire communication

radio-communication nets
nets presented in Chapter IV are included in this general
synthesis problem.

Let SOO be the set of the given elements which must
have unlimited capacities. A realization of a symmetric
principal partitionable matrix T of order n which contains
Sy Will be called a (T,Sa))—realization and denoted by
N. The o -subnet of N, denoted by n(® ) i gefined as

a radio-wire-communication net consisting of all nodes

V.

j+ 1 =1,...yn, of N whose capacities c; are given by
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C.=(D, ifVi 6800’

= tiO’ if Vi g SOO’
where

tio = max {tir

and whose edges are all those in Sa>’ each having o

I‘=1,...,i-—l,i+l,...,n} ,

capacity.

From the results of Chapter IV, matrix T must be
principal partitionable. Another necessary condition for
the (T, S )-realization will be obtained from §(®) 4n
this chapter.
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5.2 Necessary conditions For (T,SG))—Realizations.

Suppose that (T,8_ ) is realizeble and N is its
realization. Then T can be partitioned by Wing-Chien
partitioning. We shall assume, without loss of generality,
that the order of the nodes along the diagonal of T in

its Wing-Chien partitioning is VysVoyeeesVy .

A square submatrix of T whose diagonal elements are

node symbols v,V cesVgy L L0 X3 < n, will be

a+l? "

denoted by D ~s» and the value of a minimal

CL,CL""]., o s 09D

element of D will be represented by t

AyQ+lycoesB’

LyA+ly ooy

Finally, the set of nodes VsV AL will be represented

a+l’ !

QyQtly oo ey3” For example, T = D1,2,...,n’ Dr = [(::>]’
r=1;2;...50. I£f D is of order more than one,

by V
LyeO+ly o3
i.e. B-a > 1, then its resultant main submatrices by Wing-

Chien partitioning process, denoted by Da,a+1, ,a.?
veerQq

D 2 s Dcx

Q@ +1y ...y k+l""e’ are the sutmatrices obtained

by applying the first operation of Wing-Chien partitioning

on Da,a+l,...,6’ where k+1 is the number of these sub-
matrices. It must be noticed that each element of any
of these submatrices is greater then ta,a+1,...,ﬁ“ For

illustration, consider the terminal matrix given in (5.1),

which is in Wing-Chien partitioning form.



(D
2 1 (W)
2, 3
T = 1
|
2, 3
]
|
2 2
2 2

The resultant main submatrices of D1,2,

]
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Chien partitioning process, are

Dy = [@]’ P2,3,4

Ds,6 =

©

3

3

@

The minimal element of D2 3
-

y 4

3
5
4 -

2

4

(5.1)
2
b4

!
'

i
)
1
)
i

e

and

has value t2,3,4 = 3, and

its resultant main submatrices are

D, = [(::)] and Dy , =
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Temma (5.1). "In Wing-Chien partitioning of T, let

D and Da

Qs oevsly be any two resultant main sub-

. & @ a
c? 1a

matrices, each of order more than onesof D ’
: Oi, 0#+1’ e s o ’B

where @ L a < ap < a <ay <B. I (T,Soo) is realiz-

able then S, contains no edge e;; such that vy €V

13 aa,oo',ab

L3 V ."

Proof. Suppose, if possible, that eijE S, and

vi€ Va‘a""’a’b and Vjev%’“-’“d' then Cij = ® .
Thus
tij = min {Ci’cj} (5.2)
Let vz, €V and v, & V s then
4 O'a’ .09l k A - og
Yigr Y5k ? Po,a41,...,80
But
therefore

nin {ci,cj} > tij ’
contradicting (5.2).

Hence the lemma.

The phrase %identifying the nodes of Da,a+1, ,8

. 0" eos . .
in N" will mean: if Va,o,+1,...,(3 consists of one node

only no change is made in N, otherwise the nodes

v g are identified in N and the new node, called

a,a'l‘l, LECREDS
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a combined node and denoted by v s 1s given

qc,da'l'l, . ",B
~unlimited capacity. If the nodes of an edge are identified

that edge must be deleted. Any set of parallel edges
resulting from this process is replaced by one having
capacity equal to the sum of capacities of all these
parallel edges.

Definition (5.1). The "signature of D

QGyO4lyee.yB
in N with respect to Wing-Chien partitioning of T, g > a®

denoted by N(wc) is a radio-wire-communication net

QyQ4ly o o.yB’
obtained from N by identifying the nodes of each of (1)

resul tant main submatrices of D 3 and (2)
X

QyQ+ly ..
largest resultant main submatrices each of which does

not contain D To illustrate this definition,

CL,CL‘!‘]., ooc,B.
consider the matrix given in (5.1) which is the terminal
natrix of the net N shown in Fig.(5.1). The'signature
of D2’3,4 in N with respect to Wing-Chien partitioning

is shown in PFig.5.2.
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2 5 @
® A =
1) e @
[oe) co 3

Fig.5.1

Fig.5.2
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- Temma (5.2). M"Let T be the terminal matrix of N

and D
,coa+1,...,ab ac,ac+1,...,ad

and Dy any two resul tant

a

main submatrices of D by Wing-Chien partitioning.

C(I’C(l+1, ""18

The terminal capacity (Vp’vq)’ Vp = vaa,...,ab’
- () . (we)
Vq - VCLC; ceeyly » 1N N@sa"*'l’ ceesB’ denoted by

(we) s ‘ t
tpq(Na,...,B)’ is equal to ta,a+l,...,6"

Proof. If there is at least one resultant main

submatrix of T not containing D and of order

Cb,do"l‘l, . ',B
more than one, then there must be a minimum generalized

cutset, say Sl’ of N such that

C(Sl) = tl,z,-oc,n *
It tl,z,...,n < ta,a+l,...,5’ then the removal of S1 does
1
not separate any two nodes of Va,a+1,...,6' Let Nl be

the maximal connected subnet of N—Sl(ﬁﬁ) which contains

(E)This means that nodes v_ and v are
C(:a,...,(l-b Q.C,...,de

given, for simplicity, labels vp and vq, respectively.

(KX)The net N—Sl is the net obtained from N by removing
every element in Slo If a node is removed then every

edge incident at it must be deleted.
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the set of nodes Va,a+1,...,5’ and let Nl be the comple-
)
ment of Nl in N—Sl. Moreover, let Nl be N with each
set of nodes of a resultant main submatrix of T in ﬁi
identified. Then by Lemma (4.2), if v, and vy are any
t
two nodes in Nl’ then

t. (N

xy 1) = txy(N) = txy .

If N' contains the nodes of a resultant main sub-

1
matrix of T which is of order more than 1 and not contain-

ing D 3? then there must be another minimum
* 9

Qg+l ..
generglized cut-set, say Sg, of Nl such that

C(8p) = %9 o ... ,n -

The removal of 82 from Nl will not separate any two nodes

of D@:@+1s---aﬁ° As in the case of Sl’ let N2 be the

maximal connected subnet of Nl - 82 which contains the

nodes of Vm,a+1,...,3’ and let N2 be the complement of
]
N2 in N1 - SQ. Then

txy(Nz) = th’

where N2 is Nl with each set of nodes of a resultant
main submatrix of T in ﬁ; ldentified, and v and v, are
any two nodes in N; which are also in Ni.

We repeat the above process until we arrive at the

net Ni such that
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txy(Ni) = th ’

where Ni is N with the set of nodes of each resultant

main submatrix of T, except the one containing Da,a+l,...,3’

. and vy are any two nodes of

say D{1), identified and v,

p(1),

We repeat the above process on the resultant main
submatrices of D(l), and so on until we arrive at the
net Nj such that

txy(Nj) = txy

where l\Tj is N with the set of nodes of each largest resul-

tant main submatrix not containing D identified,

a,a+ls...,a

(we
and Vx’bvy E'-Vou,ot.+1,‘...,6' The net Na,a+1,...,6

obtained from I\T‘,j by identifying the nodes of each resultant

can be

main submatrix of D

Gl,dl-*.l,ucﬁ’ﬁ" Thus :Lf le

a’dla+1, 2 e -,Glb

or V consists of one node whose capacity,

G‘C,G‘C+1’ o . ',Gld

in ¥ (and so in Nj), is equal to ta,a+l,...,5’ then
+ (we) - .
pq(Nd.,d.+l,...,§) td.,d.-}*l,...,ﬁ (5 3)
If neither Va s Nor V consists

a,dla+l’-o.,dl-b G‘C,G‘C+1’...G‘d

of one node whose capacity in N is equal to ta,a+1, ,B?

then there must be a minimum generalized cut-set (Vx’vy)’

v, e V and VyiE v

x\-
that

a&,..:;ab ac""’“d’ say Sa+l, in Nj such
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C(Sj+1) = ta,a+1,.-op5 )

The removal of S. does not separate any two nodes

j+l
belonging to the same resultant main submatrix, by Wing-—
Chien partitioning process,; of Da,«..,Bé )Thus Sj+1 is
. . we

also a generalized cut-set (vp,vq) in Na,a+l,...,6 and
hence (5.3) follows.

Hence the lemms.

Corollary (5.1). “If (T,5 ) is realizable and
N(Oo) is its o ~subnet, then

(co ) (we)

tpq(Na,a+l,...,5) < ta,a+l,...,B’ (5.4)

for every resultant main submatr?x ?%’ail""’s in Wing-
. s s o )(we .

Chien partitioning of T, where Nasa+l,...,§ is the
signature of D in N(OO with respect to Wing-

Qy0tly o0y

Chien partitioning of T, and vp and vq are as defined

in Lemma (5.2).%
The proof follows directly from Lemma (5.2) and the
fact that N(®) 15 a submes of N.

Definition (5.2). Given (T,Sa)) where T is principal

partitionable, the net N(Oo) will be called %satisfactory
with respect to Wing~Chien partitioning® if, and only if,
in Wing-Chien partitioning of T, for every pair of

resul tant main submatrices of T and of every resultant
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main submatrix of order more than one, inequality (5.4)
holds.

Corollary (5.1) provides us with another necessary
condition for the realizability of (T,Sa)), namely, N(a))

must be satisfactory with respect to Wing-Chien partition-

ing.
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5.3 Satisfactory Principal Partitioning.

All definitions and notations mentioned previously
in 85.2 are based on Wing-Chien partitioning of T. We
extend them to any principal partitioning of T. To avoid

confusion, if D 5 1s any resultant main submatrix
.3

Y’Y'i‘l’ ° 0
in a principal partitioning of T then its signatures with
respect to this partitioning in N and N(a)) will be

(p) (o0 ) (p) :
represented by NY,Y+1,...,6 and NY,Y+1,...,6’ respectively,
where & > ¥. Other notations will be used as before.
It must be noticed that T and every resultant main sub-
matrix of order more than one, in 2 principal partitioning
of Ty has exactly two resultant main submatrices, and a
minimal element of a resultant main submatrix of.D .

Y,Y'i‘l, o -,O

by a principal partitioning process, may be equal to the

minimal element of D that is, t

Y’Y+l’o.-,6’ Y,Y'i‘l,...,é.
Thus Lemma (5.2) may not be true for any principal par-
titioning of T. But it is true for at least one principal
partitioning as we shall show in the next statement.

Lemma (5.3). %Let T be the terminal matrix of N,

then there exists at least one principal partitioning of
T (called satisfactory) such that for every resultant main

submatrix D 5 of order more than one whose
-.,

Y’ Y'i‘l, .
resultant main submatrices, by this satisfactory principal

partitioning,are D and D

Y’Y'i‘l,no-,Ye Ye+l,...’6,
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Q(N(SP)

tp'q ‘Y’Y+l,.-.’6) = tY,Y"'l,ooo,&’
wherey
Vpi = vY’Y+l’luD’Ye ’ vq' = er+1,Ye+2’-00,6 ’
. (sp) ;
1<y X Ye <6 <£n, and NY,Y+1,,-.,6 is the

signature of D « in N with respect to this satis-

YsY+ly o050 .
factory principal partitioning of T.
Proof. We shall obtain a satisfactory principal
partitioning of T by the following steps:
(1) Partition T by Wing-Chien partitioning.
(2) If there are only 2 resultant main submatrices, by
Wing-Chien partitioning, in T then these are also
the resultant main submatrices of T in the satis-
factory principal partitioning. If there are more
than 2 resultant main submatrices in T, find
NéYSZ...,n’ = N(l), say. Then consider the following
two cases:
(a) N(l) contains a node, say v,, such that
Cp = tl,2,,.,,n' In this case, T is partitioned
88 Dpoand Dy o L ,r-1,r41,...,10°
(b) N(l) contains no such node, then there is a
generalized cut-set (vx,vy), say Sy, such that

n -
C(Sl) = tl,2,...,n‘ Let Ny be the maximal
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(4)
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connected subnet of N(l) - S1 which contains Vo

In this case T is partitioned as D
Ti9Toyeeesl,

and D s Where v V. 4...37V are
Tat12Tar2? s o2 Ty 1 To Ta

all nodes of the resultant main submatrices of T,
in its VWing-Chien partitioning, whose corres-

coribined '

pondingﬂnodes are in Ny, a2nd v 'V seeeaV,

Lat2 n

Ta+l
are all other nodes of N.

To partition any of the submatrices just obtained in

Step (2) Which is of order more than 2, we partition

it first by Wing-Chien partitioning and obtain its

signature corresponding to this partitioning, then

repeat Step (2).

Continue this procedure successively, In general,

suppose we have arrived at the submatrix D which is

of order more than 2. To partition it into two

submatrices, first partition it by Wing-Chien process

and within the partitioning, already reached, of T

- find its signature in N, say N(D), and with respect

n oY the

©c e e 9

to it repeat Step (2) replacing t1,2,
value of a minimal element of D and N(l) by N(D).

By Lemma (4.2), the terminal capacity in N(D)
between any pair of nodes corresponding to the resul-

tant main submatrices of D, by Wing-Chien partitioning



- 128 -~

process, is equal to the terminal capacity between
the same pair of nodes in the signature of D in N
with respect to Wing-Chien partitioning of T, and
hence equal to the minimal element of D, by Lemma
(5.2), where D is the largest resultant main sub-
matrix of T, in Wing-Chien partitioning, such that
D contains D and the value of a minimal element of
D is equal to that of D. Thus the partitioning
obtained by this method is satisfactory.

Hence the lemma.

The procedure will be illustrated later (in page 130)

by an example.

Corollary (5.2)., WIf (T,SOO) is realizable and N(aj)

is its oo ~subnet, then

(00 ) (sp)
t1>‘c_1'(N\r,~(+iL,.,..,é) i tv,wl,...,é ? (5.5)
for every resultant main submatrix DY,Y+1,...,6’ ¥ < 9y
In a satisfactory principal partitioning of T, where
w0 ) (sp) is the signature of D - in n(%)

Ye¥+ly.oay® YoY¥+ly caeyd
with respect to the satisfactory principal partitioning

of Ty and v_, and Ve 8re as defined in Lemma (5.3)1

p|
The proof follows directly from Lemma (5.3) and the

fact that N(aj) is a subnet of N.
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Definition (5.3). Given (T,sOO )y where T is

principal partitionable, N(a)) will be called "satisfactory
with respect to a principal partitioning¥, if, and only

if, there is at least one principal partitioning of T such
that for T and for every resultant main submatrix of order
more than one, inequality (5.5) holds.

Theorem (5.1). "iven (T,SOO), where T is principal

partitionable, then N(a3> is satisfactory with respect to
a principal partitioning if, and only if, it is satis-
factory with respect to Wing-Chien partitioning."®

Proof. If N(OO) is satisfactory with respect to
Wing-Chien partitioning of T, then by replacing N by N(GD)
and Y =" gign in Steps (2b) by "Lt gign in the procedure
described in the proof of Lemma (5.3) we get a procedure
for obtaining a satisfactory principal partitioning of T
from a given (T,Sa)).

It N(a)) is satisfactory with respect to a principal
partitioning of T, then let D be any resultant main sub-
matrix, of order more than one, in Wing-Chien partitioning
of T. Since the signature of D in N(OO) with respect to
a principal partitioning of T is the signature of D in
N(a)) with respect to Wing-Chien partitioning with the
capacities of some elements increased to ® , then by Lemma

(5.3) (@) is satisfactory with respect to Wing-Chien
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partitioning &s well.

Hence the theorem.

The following example illustrates the procedure of
obtaining a satisfactory principal partitioning of T
from ifs Wing-Chien partitioning if (T,Sa)) is given and
(o)

is known to be satisfactory with respect to Wing-

Chien partitioning.

Example (5.1). Consider the matrix T which has

been partitioned by Wing-Chien partitioning.

— , -
b1 1 1 1 1 1 1
]
----J'--..-..T ..........................
1 @: 2 2 2 2 2 2
ST e e
102 @{ 4 12 2 2 2
I :_-,.-_% ...... ]
i 1]
100 02 o4 ;i 2 2 2 2
T = ; L----J---Q-i---..l._m__ ....... (5.62)
1 e 2 2 ! L3 3 3
: R e Lt
102 2 2 13 ' ' 3.5 3.5
: ; :..--;....' ......
{ ) : )
12 2 2 '3, 35.@ | 3.5
i t : L---.-L-.a.
] §
1 : 2 2 2 3 1 3.5 3.5 :
L. i 2 : : —

The set S@ is given by

% = {2137 01670100 207 03009560 57 T3 Ve T} (5460)
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The net N(©) of this (7,8, ) is shown in Fig.5.3. By
obtaining each of Nia%)(wc) y i ) (we) , nlo ) (we)

( )( ) ( )(, 3c.o,8 2,3’0-0’8 3,4—
@ we Q© WwC
¥5,6,7,8" 274 Te,7,8

satisfactory with respect to Wing-Chien partitioning.

b

s One can easily see that N(a)) is

Thus N(a)) is satisfactory with respect to a principal
partitioning. We shall obtain a satisfactory principal
partitioning of T.

The submatrices D4 and D2,3,...,8 are the resultant
main submatrices of T in the required satisfactory principal
partitioning. To partition D2,3’ ..,8? we partition it
first by Wing-Chien partitioning, as in (5.6a), and then
obtain its signature in N(a)) with respect to this

partitioning, as shown in Fig.5.4.

Fig.5.3 The o -subnet of (T,sm) of Ex.5.1.
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Fig.5.4

Since Vs is a node corresponding to a resultant main sub-
matrix, by Wing-Chien partitioning, of DZ,B,..,,B’ then

it is partitioned as D2 and D3,4,,..,8‘ Since D3,4,..,,8
consists of D3,4 and D5,6,7,8 onlys; by Wing~Chien par-
titioning, then these are its resultant main submatrices
in the satisfactory principal partitioning. Similarly,
]33,4 is partitioned into D3 and D4; and D5,...,8 is
partitioned into D5 and D6,7,8' To partition D6,7,8’

we partition it by Wing~Chien partitioning and then obtain
its signature in w{®) yitn respect to this and the satis-
factory partitioning obtained up to this step. This
signature, say N, is shown in Fig. (5.5). The minimum

/
generalized cut-set (v6,v8) in N is Vs whose removal
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does not separate Ve from Vi thus D6 7.8 can be partitioned
217
as D6,7 and D8. If we consider the minimum generalized
. ' . .
cut-set (v6,v7) in ¥ 4 which is v5, then D6,7,8 can also
be partitioned into D6,8 and D7, But we cannot partition
it into D6 and D7,8’ because for every generalized cut-
set (vx,vy), Xy Y E; {6,7,8}' sy X # ys the nodes Vo and Vg
are separated by its removal. One can see the reason for
that by noticing that if D6 and D7 g are teken as the
?
resultant main submatrices Of‘D6,7,8 then its signature in
N(aj) with respect to this partitioning will be as in
Pig.5.6. From which we find that the terminal capacity
(V6’V7,8) is equal to 4, which is greater than t; - g
(= 3.5), contradicting the definition of the satisfactory

principal partitioning. The final satisfactory principal

partitioning of T is shawn in (5.7).

— ' 1

i

! 1 1 1 1 1 1
T T T AR T T T TS e s s e TEm T
1 @ r2 2 2 2 2 2

R A e it
10 o2 L4 g2 2 2 2

|

| - - AR z
12 14 ., 2 2 2 2

P A NG S P

1 v 2 a2 2 ! ro3 3 3

! : PN

§ ! i ‘-- ‘lﬁﬂ*’r---_
12 2 2 3 ;:3.5‘3.5

1 \ i ]

i S T

1 ! ‘ )
L2 2 2 13 | 3.5, 3.5

: \ ] PRI o R
112 f2 2 135 135 3.5

] [}

S ! | : I
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The matrix T, in (5.7), can in fact be realized by
the following procedure:
(=1,

say), obtain nets Nl’ NZ’ ceop Nf, successively, such

Starting from the combined node v
1,2,...,1’1

that l\Tf contains no combined nodes and every Nj’ 0 < j<i
contains at least one combined node. Suppose that Ni~1’

1 £ 1i< £, which contains the combined node va,a+l,..,,ﬁ’

has been obtained. To obtain Ni apply the following

steps:

(1) Delete from N;_y node v together with

CL,CL+1, . nyB
all edges incident at it.

(2) Add nodes Va’a+1z°°5ZY ?nd Vot 142, + s B whose
. s . . o ){(sp
capacities are given in Na,a+1,...,6’ where Da,a+1,...,Y

and D are the resultant main submatrices of

Y+19Y+29 Y

Da,a+1,...,5 in the satisfactory principal partitioning
of T.

(3) Comnect mode vy o4y | v(Viyq yyo, ., .,p) With
node v. of Ni—l by an © -capacity edge if

11,3’_2,...,1m
exy GSCO s X 6{&,&'+1’00.’Y} ( {Y+19Y+2,-.-,6}) and

vy &€ {il,iz,...,im } . Denote the net obtained by ﬁi‘
(4) Pind a minimum generalized cut-set (vp_,vq_),
i *i
= = *in N, .
Yoy T Vasatl, .yt Yo, T Vvl ve2,...,8 0 N Denote

this out-set by ;. Let N, and N, be the maximal
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connected subnets of ﬁi - Si which contain nodes v and

Py
v. » Tespectively.
9
(5) Obtain N; from ﬁi by (a) connecting an edge of
capacity [ta,a+1,,..,5 - tpiqi(Ni)] between podes vpi and

vq., and (b) reconnecting all finite-capacity edges which
i
were incident at va,a+1,...,5 in Ni—l by using the follow-~

ing techniques: Let eXpi—l’ Vpi-l = va,a+1,...,5’ be any
finite-capacity edge incident at vp in N1~l' If
i-1
c(s;) £ o4l ...,p Then reco?neot eXPi_l between nodes
» . ' ' - ] -
v, and vpi(vqi) if v in Ny (Nz)g If v, is in neither
1 !
Nl nor N2 then eXpi—l can be reconnected with either vpi
or vCi unless one of them is combined, say Vp y and the
i i
other is not combined; in this case eXp is reconnected
i-1
between v_ and vpi. If C(Si) > ta,a+1,...,6 = cqi then
expi__1 is reconnected hetween Vi and vpi.

A realization of (T,Sa)), which is given in (5.6),
is shown in Pig.5.7.

Considerétion of a number of examples seems to suggest
that the above procedure of the synthesis for (T,S5) is

always valid, and so the conditions (1) T is principal
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partitionable and (2) I\T(OO) is satisfactory with respect
to Wing-Chien partitioning are sufficient for the
realization of (T, Sy )2 but no proof of this has yet

been found.

2 () =

Pig.5.7 A realization of (T’sco) given in (5.6).
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CONCLUSION

Several problems on the synthesis of communication
nets have been solved in this thesis. We hope that the
ideas and techniques presented here will prove to be use-
ful in tackling other problems which have not yet been
solved. Some of these unsolved problems in this field
ares
(1) To obtain necessary and sufficient conditions for

realizability of a matrix T as the terminal matrix

of an oriented communication net which are general

and easy to check on the given T.

(2) To find an optimal synthesis for each of the special
terminal matrices introduced in Chapter II, i.e. a
tree-terminal matrix, a loop-terminal matrix, a
separable terminal matrix and a triangular terminal
matrix.

(3) To find a sufficient condition for realizability of
a terminal matrix in which there are k different
entries for a fixed k.

(4) To obtain, depending on Lemms 4.2, a systematic
method for evaluating the terminal matrix of a non-
oriented radio-wire-communication net by solving

fh-1) flow problems.



(5) To find necessary and sufficient conditions for

realizability of a given (T,SOO ).
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ON TWO-TREE TRANSFORMATIONS AND THE
SEPARATION OF TWO-TREE SETS

BY
A. ALALT

ABSTRACT

The present paper presents a necessary and sufficient condition for a two-tree {y7,lk)
to be obtained from another two-tree (i7,0k) of a connected graph, by a finite number of
elementary two-tree (7,/k) transformations. A procedure for separating the common terms
between T yand T ,1into two groups, one of them T7;  and the other T}, ., is given in this

paper.
I, INTRODUCTION

In 1959, Fujisawa (1) introduced the concept of the distance between
any two trees of a connected graph G. And he had introduced, in the same
paper, the concept of an elementary operation (or elementary transforma-
tion) on a tree of G. He used this operation to list all the trees of G.

In 1960, Watanabe (7) and more recently Hakimi (2) have used the
concept of distance to find other procedures for listing all the wees of G.
Watanabe’s definition of the distance differs from that given by Fujisawa
and Hakimi, and a slightly modified version of it is used in the present

paper.

Hakimi and Mayeda (3) introduced the concept of an elementary two-
tree (12,0) transformation, and they showed that it is possible to obtain
any term of 7 ,, from another term in 7, , by a finite number of elemen-
tary two-tree (12,0) transformations.

In this paper, we shall give a definition for the distance between any
two subgraphs of G which have the same number of edges (branches).
And we shall introduce the concept of an elementary two-tree (i, /£) trans-
formation, and find a necessary and sufficient condition for two terms of

! Department of Mathematics, Imperial College of Science and Tecknology, London, England
2 The boldface numbers in parentheses refer to the references appended to this paper.

(Note—The Franklin Institute is nol responsible for the stalements and opinions advanced by contributers in the Journair)
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T, .. to be derivable one from the other by a finite number of elementary
two-tree (17, {£) transformations.

Next, we shall use the concept of distance to separate the common
terms between 7,,,and 7 _into two groups, one of them 7, ,, and the other
T, 4 This resultis useful in the synthesis of four-terminal networks with-

out mutual inductance by topological considerations (4).

1. ELEMENTARY TWO-TREE (ij,/k) TRANSFORMATIONS

We assume a connected graph G containing ¢ edges and v vertices. A '
complete discussion of the properties of linear graphs may be found in the
references cited in this paper. Only those definitions which are needed in
the paper are given here.

A subgraph ¢ of G may be represented by the product of its edges. If
b is an edge of G, then g,-b = g,, where g, is a subgraph of G containing
all the edges of g, and edge b; if & is an edge of g, g, contains two edges
b in parallel.

The union of g, and g, is represented by g, U g, = g,, where g; con-
iy tains all edges and vertices of g, and g,. (The same notation is used for the
s union of subgraphs as well as for the union of sets.)

‘ The intersection of two sets S, and S, is represented by § N §, = S,
_ where S is a set containing only those elements of S, and §, which are in
o _ both.

A two-tree (17, [k) of G is a pair of unconnected, circuitless subgraphs,
each subgraph being connected, and one of them containing vertices :
and j, the other containing vertices / and £, and together including all the
vertices of G. Hence the two-tree contains (v-2) edges.

f%?.. : Let T, ,, be the set of all two-trees (17, (k) of the graph G, and let ¢ be

any member of 7 . It will be represented by -

by=by-by--- by

inwhich 4 (1 <y < v-2)isanedgeof,.
If ¢ contains an edge b, then % is ¢ with edge b removed (open-cir-
_cuited).
o Definition 7. Let b, be any edge of iG; the operation
to=4-b,/b,, (1)

{ ~ wherel <y < v~-2,iscalled an elementary two-tree (i, [k) transformation on 1,
if t,1s a two-tree (y, lk) of G. b, does not always exist such that ¢, is in
T, ,:; that is, this transformation is not necessarily always possible. We
shall see that the existence of such a transformation depends on 4,.
Let -
PO = bl p@) - bl :
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consist of edges of £, which form a path between 1 and j; and suppose that
[;“) is connected to vertex ¢ and 6% is connected to vertex J, and in general
9) is connected to 6@V, where 2 <y £ a. Let similar assumptions be

madc for
) = AW L A@ ... hB
P\Ifk - b/lk b//k b}lk

Furthermore, let V{7 and F{{) be the sets of all vertices of &’ which are con-
tained in P{/?and P{P, respectively.

[)sfnition 22 We shall call an edge 6 a bridged-edge with respect to ¢,
(4, & Tyu)sif 4 bisatreeof G. (Theedge bcannotbeini,.)

Definition 3. The unique path which passes through a bridged-edge b,
has one of its terminals on P(J“ and the other on P} and contains no
other vertices of 1'% and VY is called a bridged-path (b) with respect to ¢, and
denoted by B(¢,8). In ¢ - b, the paths P}/, PY, PY) and P’ contain
B(t, b) in common.

Defimtion 4. b is called a direct bridoed-edge with respect to £, if
contains no P(“O‘PQ other than h that IQ h = BUI" b) That ig b hag

B4, b

»-r,\/

]

its vertices on Pfj” and the other on P‘/k).

Let b, be an edge of (- not in ¢,.

If b,is not a bridged-edge with respect to ¢, then ¢, - 4_contains a circuit
in one of the connected subgraphs of {, and any edge of this circuit other
than &, may be taken as b, such that t , (sce Eq. 1) is a two-tree (i, (k)
of G.

If b,is a bridged-edged with respect to {, but is not a direct bridged-
edge, then ¢ - b, is a trec and B({,b,) contams at least one edge (say
b/y) other than b,; and because B({,b,) has no vertices other than its
terminals in common with P{/’ and P‘,{’, then b, is not an edge of PY) or
P Thus ¢ is a two-tree (77, /k) of G.

If b, is a direct bridged-edge with respect to ¢, then (- b, 1s a tree of &
and contains paths £, P, PY? and PY all passing through &,. Thus
on removing any b, (other than b ) there must remain one path via &, be-
tween i or j and /c or {. Hence there is no b such that ¢, is a two-tree
(1, 1K) of G.

Now, we are able to prove the following statement.

Lemma 1. Given a two-tree, say 4, in T;,, every two-tree, say {,, in
T, can be obtained by a finite number of elementary two-tree (, lk)
transformations, if
7k .
VN vl = e,

where ¢ is a null set.

The proof of Lemma 1 is in the Appendix.

3 The definition of bridgec-edge given here is equivalent to Wing & Kim’s (7) definition.
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Let {,and ¢,bein 7. If we can obtain ¢, from ¢ by a finite number of
lementary two-tree (y, (k) transformartions, then v sl hah represent this
relation between £, and ¢, by

= L6 (1).

But if we cannot obtain ¢,from ¢, by a finite number of elementary two-tree
. (y, (k) transformations, we write

b = LGS (L),

v ¢

It is easy to see that, if

It

L= (=) LEW (L),
: then

L= (=) L6 (1),

Lemma 2 of Hakimi and Mayeda (3) which states: “Given a two-tree
in 7,4, every two-tree in 7,,, can be obtained by a finite number of cle-
mentary two-tree (12,0) transformations,” is a special case of Lemma |
given here.

. Lemma 2. Let t,and 4, bein T;,,. If 1, ¢, contains a path P§ such that
S | vON T - g

and

: rom re = ¢,

_ then

i L= L),

3 Lemma 1 is a special case of this lemma when P(,-J’-‘) = Por Pfj" = P
X Proof: Let

Gj. . P(x) b(x) b .- b,(f)’

taking the edges in order starting at vertex z.
: By the first condition of the lemma, 6% is not a direct bridged edge with
respect to =Y, where

o ~ L= bEp, (1< 7 < u),
| " in which b9 is an edge of {,. Each (pisin 7, ,. Thus starting with ¢, and

using the edges of P{? in order, we get a two-tree (17, [k), ¢, by u elemen-
tary two-tree (i, [k) transformations. That is,

y = L (L),
' By the second condition and using Lemma 1,

LG (1),

Hence

L = LGB (t/);

*# Two subgraphs of G identically equal if they have the same edges.

N R I P R e e 19 it - e e o [
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which proves the lemma.
The next statement is the general case of this transformation.

'T/zeorem 7. If t,and t,arein 7, and ¢, U ¢, contains a set of (u 4 2) paths

P, 1)('.71)’ PR P Pu(") (if uis even)
or ( G pw
1 2 > ? ful
P, P(,-J-), PO IU‘, Py (if uis odd),

such that no two successive members have common vertices, then

= £""“’(t/)-
Proof: Starting with ¢, and applying the technique used in tne first
part of the proof of Lemma 2, we can obtain ¢, containing £,

L= LEW(L).
froms, (1 <7 < u),
p= LML),

where ¢, contains P? and ¢,,, contains PV Af 7 is odd; or ¢, contains PY)
. , N o . &
and,,, contains PU*if 7 is even. ¢, , contains PP (or PY).
"By Lemma 1,

In general we can obtain ¢, ,

b= L0 ()

Thus L= LG,

Hence the theorem.
Corollary 1. If PY)) = PP, where t,and t,¢ T ,, then
L= L)
The proof is obvious.

Defimtion 5. Let g, and g, be any subgraphs of G which have the same num-
ber of edges. The distance’ between g, and g, is denoted by d(g,, g,) =
number ofedaes in g, (or g,) which are noting, (or g,). d(g,,g,) could be
written in the alternatxvc form

d(g,,8,) = Yonumber of edges of g, () g;.¢
We call ¢, and g, neighboring if d(g,, g,) = 1.
Lemma 3. Ifd(¢),¢,) = 1, where fand ¢, ¢ 7, ,, then
YOV -6
PN e < 6.

5 Several authors (1,2) have given definitions for the distance between two trees. This definition is
a general definition for distance; and it differs from Watanabe’s definition which is as follows: The dis-
tance between two subgraphs is the total number of cdges in them, diminished by the number of com-
mon cdges.

¢ The ring sum, g,@gz, of g, and g, consists of edges of g, and g, which are not in both.

3)
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Proof: Let &, be the edge of ¢, which is not in ¢, and let 4, be the
edge of £, which is not in £,. Then '

' ‘ b= 1-b,/b,.
o = If 4. b, contains a circuit, then Eq. 3 follows. If ¢ -4, is a tree of C,
o then &, must be contained in B({,5,). Thus ¢ and ¢, will have the

gt same paths between : and j and between [ and 4; and Eq. 3 follows.
Hence the lemma.

The following theorem is the converse of Theorem 1.
Theorem 2. 1f ¢, and ¢, are in T, ,, and {,{J ¢, does not contain a set of
(U + 2) paths (where Uis any finite number):
P Pf}’, P P Pf;" (if Uis even)
r or

. : n (2 >
B P([}I;)7 1)1'1‘3 Plk)> R { 1(;)3

P (f Uisodd),
such that no two successive members have common vertices, then
L, # LG
v Proof: Suppose, if possible,
= LML)
then there is a set of two-trees (ij, (k) of G
' . . Yy O 1A LA
N l in which A is finite, such that
d{tm, 1) = d(U0, (o) = dt®, 4) =1,
where1l < r < A, Moreover,

i A
LU ¢, U[U tﬂ -4, U,
r=1

Thus, by Lemma 3, ¢, U ¢, contains a set of paths
PP, PO PR PR PY (if A is even)
or

Py, pao

¥

PR ... p» pH (if A is odd),

o
such that no two successive members have common vertices. This contra-
dicts the hypothesis of the theorem. Hence the theorem.

Thus we have found a necessary and sufficient condition such that

L= £6W():

There are many special cases of Theorem 2, but they are long and
tedious to state and to prove. We omit these cases since they are not of
great interest.

S e T e T L e g
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Il THE SEPARATION OF T; N TiJ INTO TWO GROUPS

We denote by T, , the set of all two-trees (g, b) of a graph G.
Given T, ,and T, only, it is easy to see that

il
T;_;.» N Tj.z = Tij, 3 U Tzl,jk‘

Our present problem is to find how to separate T,j, 4 from T,.,,J,: (4,5,6,9).
It is necessary to notice that it is impossible to say which set of two-trees

belongs to 7, , and which to T;, ; it is required only to separate the set

F=T,,UT

i, 7k

into two groups, one of them 7 , and the other 7, .
To find a procedure for separating the set I, we need to prove a num-
ber of preliminary results.

Defimition 6. A maximal connecled sel (1, lk), denoted by S; ,, is 2 non-empty
set of two-trees (y, lk) of G, such that

(1) ify, = LEBD(@), where{, & §; 4, then{, & S, 4;
2) ife, = L@ W (), where L & S, 4, thent, & S, .

Definition 7. Let §;and S, be any two sets of two-trees of G. We say S, and
S, are m-joined sels (or §, is m-joined with §,), if there exist (™ & S, and
tfm & §, such that

4, 1) = m,

and for all other elements {® & §, and £ & S,
d{t®, 1) > m.
Now, let
D, = {d,“), dm, .-, d,g)}
be the set of all edges of £/ which are not in t/; and let
D, = {d®, d®, ..., d@}
be the set of all edges of 1y~ which are not in £™. Furthermore, let
C={en s st

be the set of all edges which are in both ¢ and ¢{™.

Let d®, 1 < 5 £ m, be any element of D,. If tf™. d® contains a cir-
cuit, then this circuit must contain at least one element of D,, say d®.
Then tf - dV/d@is a member of S,, and

4, o - d0/dP) = m — 1.

This is impossible, by Definition 7. Thus tf» - d® is a tree. Hence each
edge of D, is a bridged-edge with respect to ¢{™; and each edge of D, is a
bridged-edge with respect to ¢{. -
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Let §,and §@, be m-joined scts of G, and d(£{™, ¢{m)
[ S0, and 10 S SO

Let P and P be the paths of 1™ between 7 and j and between / and £,
respectively. Similarly, let 7% and P be the paths of ;.

From Definition 7, we can see that B(¢™, d®), 1 < 5 < m, contains
no edges of D, since otherwise §¢’, and §(2),, will not be m-joined scts.
Thus B(t™, d@) consists of d® and cdges of € only. Similarly, B(¢f™, )
contains no edges of D,, and consists of () and edges of C only. ’Vioreow:r
in ¢fm U t"") B(tfm, d® is unique for each s; and similarly for B (4f™, dv).

Lemma 4. No two bridged paths B(¢f", d®) and B(tf», d®), s = ¢ and
1 < 5,9 £ m, have any vertices in common except possibly one only of
their terminals.

m, where

i, 1k

Proof: tfm . d® . d® is a connected subgraph of G containing all the
vertices and one circuit only which contains ¢/, 4/ and at least onc edge
of D,, say d!, which is either an cdge of P or of P{. Thus, this circuit
does not consist of B¢, d®) and B (¢ , d?) only; that is, the terminals of
Bt d@®) can not be termmals of B¢, d(’))

IfB(t("') d®) and B(¢{™, d®) have common vertices other than their
terminals, then they have at least one cdge of C, say ¢,, in common, other-
wise ¢ - a’}” - d# would contain two (or more) circuits. Thus

tl(m) . d:(2) . dq(Z)

L =
1
di ¢,

is a two-tree (i, [k). If 4" is an edge of, say P, then ¢{* contains P}, and
by Corollary 1, ¢{” belongs to S, But

(4, dym) = m — 1,

which contradicts the hypothesis. Hence the lemma.
The next statement follows directly from Lemma 4.

Lemma 5. In 1™ | ¢/, there s no path which contains more than onc
edge of D, (or D,), has its terminals on 2% and P¢) (or P and 1Y), and
contains no other vertices of ' and "% (or I’Ej”and V“)).

We are now in a position to prove the following important theorem.

Theorem 3. All the edges of D, are contained in P’ U PG,

Proof: Let d be in D, and suppose if possible that ¢{V is neither in
PP norin ). Let v, and v, be the werminals of B(1”, dV), where v, & V¢
and v, & V. Furthermore, let 4 be in g, the part of £/ whlch con-
tains vertices 7and ;. Then v, and v, are in gﬂ”, since B(¢{™, diV; consists
of d" and edges of C, that is all the edges ofB(t(’") d{) are in g¢. Now o,
and v, cannot both be in V{, since ¢! contains no circuits and 4" is not

e e dmmp—— A
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3
anedge of P by our assumption. 1f3(4", (") and P{ have no commen
vertex, then it is casy to sce that there is a path in g, say P, which con-
tains ¢V and has only one vertex in common w1th P“’ which must be a
terminal of I, the other terminal being either o, or o,.

Let v, be the common vertex of £ and P or of B(¢{”, d™) and P
"~ Now we have to consider two cases: (1) the path between o, and v, In

gV contains d; or (2) the path between v,and v,in g% contains ¢

Case 1: On P(;), there is at least one edge of D, between », and J, since
otherwise g} will contain circuits. Let d® be the first edge of D, after o,
between v, and jon P, Let v, and 2, be the vertices of ¢?, v, being the one
nearer 10 v;. Then v; must be in g{. Also v, cannot be in g%, that is, v,
must be in ¢¥), since otherwise (™ . 4@ would contain a circuit, and this
leads to a new term of SV, having distance (m — 1) from ™. Thus ¢ .
d®is atree of G. The path between v, and o, in ¢ . d® contains no ver-
tices of V{ except v, since otherwise ¢ contains a cireuit or else 4! is an
cdge of P{. Hence B(t{”, d?) contains the path between v, and v, in ¢{™ .
d?, which is impossible since B(¢{, d?) cannot contain an edge of D,, as
we have shown in the previous discussion. Thus ¢ must be an edge
of P.

Case 2: Between v, and ! on /4, there is at least one edge of D,, since
otherwise there will be a path in /" between / and a vertex of P{ which
is impossible. Thus by the same technique that was applied to Case 1, we
can show that ¢/ must be an edge of P

If we had assumed mmally that d Y was in g@), then it would follow
similarly that ¢/ must be an edge of P{}. Hence the theorem.

Thus any path between a vertex of 1'% and a vertex of V'@ which con-
tains no other vertices of either, is a brxdged -path with respect to ¢, and
is contained in either £{ or ).

Moreover, from Lemmas 4 and 5, and Theorem 3, between any two
successive edges of D, on P! (or PE‘[) there is at least one vertex of either
V@ or 1@,

\Tow to simplify the discussion in the following subsection, we short-
circuit all the edges of Cin ¢ | ¢{” and we denow the new graph by

If ¢0 and ¢§, respectively, represent (™ and t{™ with the edges of C
short cxrcuxtedv then

g = U 1Y
Each bridged-path with respect to (" (or ¢{) in ¢{? | t{” becomes a di-
rect bridged-edge with respect to t"”’ (or ¢§™), respectively. Not: that £
and (§” are two-trees (¢'j’, I’k"), but not two-trees (ij, {£} of G unless C is

empty; where vertices ¢, j', /' and &' of g, correspond to i, j, /, and %, re-
spectively.

T o
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\,’v\_] V\\ Vi Y _ j
M/. _-__.X»,.mp;-\m i
Fie. 1. g, for i € 8P, and " € 5P,

The number of edges in g, is 2m.
Hence, from Lemmas 4 and 5, and Theorem 3, g, will be as in Fig. 1,

where thick lines denote edges oftg’:’, thin lines denote cdges of ¢{7.
Thus the number of edges of D, is

m=12(2A — 1) + 2 = 4X.

Thus, we have the following theorem:

Theorem 4. 1fS{, and §?, are m-joined sets, then

m = 4\,
where A is a positive integer.

It is easy to see that all previous discussion (from Definition 7 onwards)
except Theorem 4 and Fig. 1 hold if S®, is replaced by §@), while §,

i, gk
remains. In this case g, will be as in Fxg 2 where thick lines denote edges,

of t{™, thin lines denote edges of ¢{7.
Thus the number of edges of D, is

=202\ +2 =221+ 1).
Thus we have the following theorem:
Theorem 5: 1£S{,and §§, are m-joined sets, then
=221 + 1),

where A is zero or a positive integer.

Corollary 2. Each set §; , is two-joined with 7,, ,, and each set S

X 1S
two-joined with 7 ;.

i,

The proof of this statement follows from Fig. 2.

(m) (1) tm} (2
Fia. 2. g forey" € 557 and t; ES“}k

o~

g . e e+ R T Tt T
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Next, we shall prove a simple lemma which will be needed in explain-
ing the separation procedure.

Lemma 6. There is no two-tree (i, (k) which has a neighboring two-
tree (14, Jk).

O Proof: Suppose, if possible, ¢, & 7, ,andt, & T, , are neighboring,
that is
d(tla tz) = 1:

then there is one and only one edge of £, which is not in ¢,. Let this edge
be in the part which contains vertices 7 and j. Then the edges of the path
between [ and £in ¢, are also in ¢,; that is, there is a path between / and £
in t,, which is impossible. Hence the lemma.

4

We are now able to solve the problem posed at the beginning of this
section: given the sets 7,, and 7, of two-trees of a graph G, and hence
the set

F= Ti,km Tj,/ = ij, k U Tu,,‘u

find a procedure for separating F into two groups f; and f,, one of them
T, ,and theother 7 ..

b

IV. SUMMARY OF PROCEDURE

Our procedure is summarized in the following steps:

(a) Find, from F, all thc maximal connected sets, §¢, where r =
1,2,..., n, nbeing finite. This can be done by the following steps:

1. Choose any member (term) of ¥, say £;; and let {£,} be the set of all
the neighbors of ¢,

2. Find the ncighbors of the members of {,} which are not ¢, or in
{t,]. Let the set of all these new members be {¢,}.

3. Repeat this procedure until a set {2}, 1 < g, is found such that the
neighbors of all its members are eitherin{¢,_}orin {7 }; thatis }1 .} = ¢.

4. The union of all these sets will form a maximal connected set, say
SO that 1s

S(l) = UZ=0 {tx}!

where {¢,} = #,. All the members of S® are either in 7, ,orin 7, ,, by
Lemma 6.

5. Apply steps 1,2, 3, and 4 to the complement in I of Uz _, §©, where
1 € 7z < n, to find §¢+Y, Since F contains a finite number of terms, then

F= Uz, SO,
We denote by { S} the set of all sets $©.
(b) Choose a member of {§®}, say SO, and find from {$®} all the max-
imal connected sets which are 4A-joined with §®. The union of S® and

those sets is the first group, f;- The union of the remaining sets of {S®}
will be the sccond group, f,. ‘
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We can check the resultby:

1. Using Theorems 4 and 3; that is, ecach maximal set of f, should be
4 \-joined with each other such set, and cach maximal set of f; should be
2(2\ + 1)-joined with each maximal set of f;;

2. Using Corollary 2 for a further check.

We now give a simple method for finding the value of m for two maxi-
mal connected sets. When v is large and the number of terms of each of
these sets is large, a quick method for finding m is very desirable. Let §®
and S® be m-joined sets, and let

S = g, ¢ .. tam}
and
S@ = (1@, 1P ..., 1],

Construct a matrix M = [m;] of order a x &, with rows corresponding to
the members of §® and columns corresponding to the members of §@,
and clements

my = d(¢, (@),

Then mis the minimum element in A,
It is worthwhile to illustrate the whole procedure by an example.

Example

We shall not set down 7,,and 7, since they contain a large number
of terms; but we enumerate their common terms, which are

F = {3.0:0304 )5 Y6101 ) PsYed1Ys Yo 12d i3 )iss  YaYs D1l e dss
PYsYoXiodn D23 diss JaYa¥she 1Yz Yida¥sdodwudidis
N YadedsYo Y3 dias  YadsVr Y ididiss D1YsdadedsYodizdis
NidadedsPwdududiss Je)sVsYe i YizYudiss  Yadedidsdod Yl
YiYadedodwlndisde s ¥sYed ¥l Y12 dsdadsVedisJis
P22 YaYs Il YsdeY1VedoFnududis  YiVeY3dedsVedis e
MD2dadsDdududis Y1 YsdeYwIndedidus Y2dsYileIudieYudie
Y1 2aYs Yol udids ViV3dsdedsYod1adiss 31350 Yo Yi2 st
Pick up any member of F, say 3,735 Y6 )115- Lhere are two neigh-
bors of this member, namely
D1 X2 Y3 adsVed1ad1s and Y122 Y3)ads Y3
these arc the members of {¢,}. We find that {¢,} = ¢; thus the first maximal
connected set is
{2120504Y5X6 000155 D1 Y2)3)sYsYeduadss Y23 Yeds VeI Dual-

Similarly finding the other maximal connected sets, we get the follow-
ing complete set of the maximal connected scts:
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SO = {3, 22035: 75 V6130155 P23 ¥ads VeI 1ad s )’1)’2)’3)’4}’5)’(,}'13)’14}
SO = {33310 35duhiss IsYedadsdo¥udisde  VsdeVYsPoYuIidish

yz)’s}’7}’xo}’11)’12}’13)’15}
)’7}’8)’9}’10}’11}’12)’14)’15}

SO = {33531 y0In s
S® = {33579 Y10 )1 Y12 Y3 Y150

Y2¥s Y1 Yo ¥udi2ad s
YadsYo w2l ) e

$6) = {}’2}’3}'5)’6)’7)’12)’13)'14: Y2 Y3Ys ¥ Y1 12Y13) 155 )’2)’3}'5}’6)’7)’12))14)’15}
$O = {)’1}’4)’8}’9)’10)’11)’13%5’ IiVads Yo Fi3das )’1)’4)’8)’9}’10)’11)’14}’15}
S0 = Ulys}’a)’e)’s)'o)’n)’m Y103Y4deYs Vo Y1313 )’1)’3}’4)’6)’3)’9}’14))15}

5O = {})1}’2)’4)’3}’10}11)’13}’14: )’1)’2}’4}’5)’10}’x1)’13)’15}-

Consider §® and §®@:

DD dadsVwInYiads

S
$® N2 P3YsYs Ve Vi3 Vis | 1 VadsVads Ve Yiadis | V1 Y2 V3 Dads Ve Vi3 4
W3 Ve V1V Yo Y2 Y1315 4 5 5
Y3YeY1 Vs Y1213 1s | 5 5 4
Yaded71Ys8 Yo V12 Y14 1s 5 4 5

Thus S and S®are 4—joined sets. In a similar way or by direct computa-
tion we find that §® is 4-joined with §® and §®. But §® is 6-joined
with §®, and 2-joined with $®, $Pand $®. Thus

fi={Sw, S& §o §©]
and
fo = {S®, §& g0, S®y,

It is easy to check this result.

V. CONCLUSION

In the present paper, we have found two main results, namely:

1. A necessary and sufficient condition for a two-tree (i, /k) to be ob-
tained from another two-tree (77, {£) of G, by a finite number of elementary
two-tree (17, {£) transformations:

2. Aprocedure for scparating the common terms between 7,,and 7,
into two groups, onc of them 7; ,, and the other 7 ;.

In synthesizing two terminal-pair networks without mutual inductance
from the open circuit impedance matrix, <, using topologlcal methods,

the given functions z,;, z;; and z,,, where

in 2
Zoc = ’ b
L2 Zm

are expressed in ierms of c¢lements admittance functions y,, ¥, ...

» Vo>
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(see Mayeda and Seshu (4)). The problem of sclecting a number of cle-
mentary positive real functions” y,, y,,..., y, such that the given positive
real functions z,, z;,, 2, are expressible in terms of them, remains un-
solved (4,5,6).

However, assuming ¢z, is given by

= —— W (1) Wi (V) = Wz (1)
: " V(T) VV12.1'2'(T) - le‘,x'z (T) 'Wz,z'(Y)

where
V(Y) = Z (tree-admittance products),
W, . (¥) = Z (two-tree (1,1')-admittance products),
W,»(¥) = Z (two-tree (2,2")-admittance products),
Wi () = 2 (two-tree (12,1'2")-admittance products), and
Wip12(Y) = Z (two-tree (12°, 1'2)-admittance products),
in which 1,1 are the input vertices and 2,2’ are the output vertices,
Seshu (4,5) gave a procedure for determining the network, (to within a
2-isomorphism), starting with V(¥), W,,.(Y), W, .(T), and [W, ,(¥) ~
Wipa(9)]. 1t is to be noted that the same network realizes also the nega-
tive of the given [W,,,,. — W, ,,] if the labels of output vertices are
interchanged.

It is clear that, using the procedure given in Section III, we can carry
out Seshu’s synthesis whenonly V(¥), W, (Y1) and W,,(Y) are given.

]
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LPPENDIX
Proof® of Lemma 1 .
Add b,fll)k tof;. Since b’(lll)k is not a dircct-bridged edge with respect to iy, then there exists an edge,
say b}”, in f; such that
yD = o g

is a two-tree (1, (k) of G.
Repeat the operation by adding b/fll)/; to 1}1), and so on.
In general we use the recursion formula

0 =10 0
A A AN 1 <724

where tf(o) = i and d is the number of edges in PE.
In each t('), the path between vertices i and Jis P(,f ), since

b
AP -
hence all t}') are in T;j, -
Thus we obtain a two-tree (i, (k), 1}‘”, by a finitc number of clementary two-trec (i, (k) trans-
formations; and z}‘“ contains p([l? )
Now, we repeat the operation on 1](‘” by adding in order

1) 4 (c)
O, o2 0

which are the edges of P(g) in order (that is, bﬁj) is connected to ¢ and b,,(;.) is connected to j, and in

general b,f:j) is connected to b,(,'x.j'l), 2 <r <o)
Since
v v <,
then in each step, b,%) (1 £y £ ¢)is not a direct bridged-edge with respect to tf('i”—”. Thus all of
L4+ vy )
A A
arein T; ; and contain P‘ZZ, tj(«d“) contains bothl’(,;) and P(,h,z.

To complete the transformation we make usc of those edges of 4, which have common vertices with
P® . After that we make use of the edges of ¢, which have common vertices with the previous set of
edges; and so on until we use (in order) all the edges of ; which are in the part that contains vertices
{ andk.

Then we turn to the edges of ¢, which have common vertices with V(;), then those which have com-
mon vertices with them, and so on until we use (in order) all the edges of ¢, which are in the part that
contains vertices ¢ andj. In each of the above steps, the two-tree (y, () transiormation is possible,
since on adding one of the previous edges in the order mentioned above, we get either a circuit which
contains an edge of {; which is not in ¢, or a tree which contains paths between the pairs of vertices
G, 1), G,k), (J, 1) and (J,k) that have at least one edge of ¢ in common which is not in the paths be-
tween (1, j) and (4, k).

Thus the lemma is proved.

8 The technique used here is similar to that used by Hakimi and Mayeda (3).
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and quicker results. The use of the above discussions hcs i obtain-
ing the zero distribution of any real polynomial in the un#t circle and
in simplifying the procedures for obtaining the zeros of any {orm of
F(z). Such a general form of F(z) could represent thyf chiaracteristic
equation of a linear discrete feedback system or a/uised ueiwork,
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On the Sign of a Tree Pair

Several methods for determining the sign of a tree pair! (complete
trece?+3) have been described by several authors. The method of
interest here is that of Frisch and Kim.? For completeness, we shall
outline bricfly the terminology used by Frisch and Kim.

The graph G of a general lincar network consists of two kinds of
edges: ordinary edges and active edge pairs. Each ordinary edge is
weighted by its sclf-admittance and each active edge pair by its
mutual admittance. An active edge pair consists of two edges:
current edge and voltage cdge; they occur in pairs and between
dificrent node pairs. The vurrent edge is indicated by double arrows
and the voltage edge by a triangular-shaped arrow.

A triode of Fig. 1(a) is characterized as a linear active device by

»

I,, = ngg}c + ngPK

where g, is the transconductance and g, is the plate conductance,
The grapic of this triode is shown in Fig. 1(a’).

A trars  or, shown in Fig. 1(b), is characterized by the following
set of equutions:
I, =g¢(V.—-V.)
I.=agV, — Vo) + g(V. — Vo)
I, = gb(Vb = V)
\I.A..-a. ot rccencd July 8, 1963; revised December 16, 1963,

Propcrhms of 2-semi- lsomorpluc gruphs and

Friseh and W, H, Kim,
Jo Math, Phys,, vol. 2, pp. 627-635;

their upphc‘muns active network analysis,”
Aun'na.,. 1661,
2 C. L. Contes, *"General Topological I’ormuhs for Linear Network Iunetions,””
General Electric Rea. Lab., Scheneetady, . Rept. No. 67-RI1~1746; 1057.
3W. Mayeda, Topologmnl Tormulas for Ac tno Networks,” 'Umvers)ty of
Hlnois, Urbana, Interim Tech., Rept. No. 8, U. 5. Army Contract No. DA-11-
022-ORD-1983; 1958.

CTIONS ON CIRCUIT

University of California

“Theory and Application of t.he 2-Trapsform Me thod,” John

THEORY June

K
(a')
e % g
g, |
/N
B
b
b
(b")
i 2 Lo ] 4 3
1 Pd pd
T . m, m,
m m,
vy L 1 2
' .
] 1’ 2’
(c) (c"

Fig. 1—(a) A triode. (a’) Triode graph. (b} A transistor. (b’) Transistor graph,
(c) A teansformer. (¢”) Transformer graph, where mi = mz = —My/pd.

and

Ia+Ic+Ib:'=0

where g, i3 the emittor conductance, g, is the base conductance, g, is
the collector conductance and a is the current amplification factor.

‘The graph of this transistor is shown in Fig. 1(b").

The graph of the transformer [Fig. 1(¢)], which is determined by

=ty Aty
_ Muy L
I, = pd V1+pdV2

where
d = LILZ - ll]fg 7= 0

and p is the complex frequency varisuble, is shown in Fig, 1(c).

The graph G can be decomposed into two subgraphs: current
graph G, which consists of all the current edges and the ordinary
edges, and voltage graph Gy, which consists of all tae voltage edges
and the ordinary edges.

Fig. 2 shows o network with its graph G, in wlhich

L; L,

Y = pdr Ys = pd’
_My
pd’

Ys = pCs,
M = My =

and

d = L4L5 - .Alfa ;‘é 0-



< e e 4 e s

i e e any e T TR T

- b i

|

1964
c
3 v.
4 i 3
—3 >
1 g . é.
v L L. <g
-GK\ 4 5%2%9"19p
03
Bl
T o— 02" 3 g ¥
g 2y 2

(a) (b

Fig. 2—(a) A network. (b) Its graph.
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Fig. 3—Tree pair giyamemz of Fig. 2 (b). (a) Current tree. (b) Voltage tree,
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Fig. 4—Reduced tree pair of the tree pair gwsmemr. (8) Reduced current tree.
b) Reduced vollage vree.

A pair of trees of §; and Gy that contain the same edges are
culled a tree pair of §. Fig. 3 shows the voltage and current trees of
the tree pair giysmems of the graph in Fig. 2(b).

The principal node of an edge of a given trec is a node of the edge
sueh that the trce path between it and the reference node contains
the edge.

The reduced tree pair of a tree pair is a pair of subgraphs derived
from the current and voltage trees by short circuiting all ordinary
cdges in the tree pair.

Let A and Ay be the reduced incidence matrices of G and Gy,
respectively, with respeet to the same reference node. Let Ay, and
Ar,, respectively, be square submatrices of A; and Ay whose
columns correspond to the edges of a tree pair r; of §. Then the
sign of 7yds piven by {4y, - A%,], where A4, is the transpose of Ayp,.

The following lemma is that of Frisch and Kim.t

Lemma I: The sign of a tree pair is given by (—1) *1Ix (sign of
active edge pairs of the reduced trec pair of a tree pair), where v is the
number of interchanges of edges in the current graph or in the
voltage graph needed to give the eurrent and voltage edges of each
active pair in the reduced tree pair the same principal nodes, and %
is the number of active edge pairs in the reduced trec pair.

Lrwmple 1; Tn order to find the sign of the tree pair giyunems by
the formula of Lemma 1, the ordinary edges g1 and i3 are redueed
and the reduced tree pair is shown in Fig. 4. Taking node (1/, 2/, 3) as
4 reference node we find that the principal nodes of the edge pairs
mg and my in the reduced current tree [Fig. 4(a)] are 2 and (1, 4),
and in the reduced voltage tree [Fig. 4(b)] are (1, 4) and 2, respec-
tively, Thus ms and m; have positive signs, and the number of
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interchanges of edges needed to give ms and mq the same principal
nodes s one. Therefore, from Lemma 1, the sign of the tree pair
is (—1).

Some results which reduce the work in determining the signs of
all tree pairs of § will be given in this communication.

Let t he a 2-trec of a directed graph @, and ¢; and ¢; be edges of G
such that ¢,-¢ and e;-t are trees of (7. ¢ consists of two unconnected
subgraphs, eacl being connected and culled a part (or & maximal
connected subgrapht) of i. Let & and ¢ be the parts of t. Bach of
¢; and ¢2 has one of its nodes in # and the other in ¢,. If both e, and
ez have their directions from 4 to £; or from ¢, to £, then we shall
say that ¢; and e; have the same direction with respect to & and ¢;;
otherwise, they have opposite directions.

Lemma 2:1f g is a subgraph of g consisting of ordinary edges only
and ¢ is an active edge pair such that eg is a tree pair of G, then the
sign of eg is determined by e.

In other words, if ¢; and ey are the current and voltage edges of e,
respectively, and g and g; are the parts of g, then the sign of eg is
(+1) if e; and ey have the same direction with respect to g, and
g2; otherwise, (—1). The proof follows from Lemma 1,

By Lemma 2 and from the triode and transistor graphs [Fig. 1(a),
(b)] we have: )

Corollary 1: The sign of a tree pair that consists of ordinary edges
and the active edge pair of a triode (a transistor) is positive
{negative).

Corollary 2; 1) The sign of a tree pair of G that consists of ordinary
edges and one aetive edge pair of a transformer {Fig. 1(c)] is (1) if
its ordinary edges form a 2-tree (12, 1'27) of g, where (1, 1’) and
(2, 27) arc the node pairs of the transformer. 2) The sign of a tree pair
that consists of ordinary edges and the two active edge pairs of a
transformey is (~1).

Proof: 1) Let my be an active edge puir of a transformer and ¢, be
a subgraph of § c¢.nsisting of ordinary cdges such %1t g is a
tree pair of 2. Then 4 is a 2-tree, separating nodes 1 =2 17 as well
as 2 and 2’; thau is, 4 is elther a 2-tree (12, 172°) or a 2-tree (12/, 1'2)
of G. Applying Leiar. .. 2, we find that if ¢, is a 2-tree (12, 1’2’) then
the sign of myg, is (+ .), and if g, is a 2-tree (127, 1’2) then the sign
of myg Is (—1).

2) Let gz be a subgraph of § consisting of ordinary edges such
that mumag, 1s a tree pair of G, where m; is the other active edge
pair of the same transformer. Then g, must be a 3 tree of G. It is
easy to sce that gz is a 3 tree (12, U/, 2'), (12, 1/, 23, (1'2/, 1, 2) or
(12,1, 2") of G. Applying Lemma 1 we find that the sign of mymags is
(—1) for cach of the four cases of , .. Hence the Corollary.

Lemana 3: Let ey, €2, + -, €5 be the edges of a connected-directed
graph @, A the reduced incidence matrix of G with the rth column
eorresponding to e-(r = 1,2, --- , b), eif, and et (1 <12 <5 <b)
two trees of &, A and A; square submatrices of 4 whose columns
correspond to the edges of e;t and ¢;t, respeetively, and n the number
of all edges of ¢ which are in the sequence ey, €iys, -+ -, €;-1. Then

|4+ 144 = (=1)"a
where @ = + 1, if ¢; and ¢; have the same direction with respect to
the two parts of {, @« = — 1, otherwise.
Proof: Let A; be A; with column ¢; replaced by column ¢;, then

looking upon e;t and e;t as the current and voltage trees of one tree
pair, and using Lemma 2 we get

|“I;‘|'IA-'| = a.
But A; can be obtained from 4; by n inﬁerchanges of columus, thus
' |A,~] = (—1)" lfii|~
Hence the Lemma.

. 48. Seshu and M., B, Reed, “Linear Graphs and Electrical Networks,” Addi-
son-Wesley Publishing Co., Reading, Mass.; 1961
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Fig. 5~Current and voltage graphs of Umﬂﬁﬂ'ﬂl‘"ll. (a) Current graph. (b) Voltage
graph.

Talbot's Lemma® and Theorem 5 of Watanabe® are special cases
- of our result above,

Next we present a simple method for determining the relative
sign of two tree pairs that differ by one edge only.

Let e, €z, -+ , ep be the ordinary and active edge pairs of the
graph G, and let the columns of Ay and Ay appear in the order
1, €2, * -+ , €p. Let g be a subgraph of G such that eig and e;g( < j)
are tree pairs of G, where e; and e; are edges (ordinary or active
edge pairs) of §. Moreover, let g7, gv. €1, esv and ¢;1, ¢ be the
current and voltage graphs (edges) of g, & and ej respectively.
Denote the parts of gy and gy by g5, g1, and gy,. gv,, Tespectively,
and let A5, and Ar; be submatrices of A; whose columns correspond
to the edges of e;g and e;g, respectively. Similarly, let Ay, and Ay, be
submatrices of Ay whose columns correspond to the edges of e;g and
e;g, respectively. Then by Lemma 3, we have

|Agl-l4n}l = (=1)% if €;; and ¢;; have the same dircction
with respect to g5, and g;,
= (=1t if e;; and e;; have opposite directions
with respect to ¢gr, and gy,
(—1), if e;y and e;p have the same direction
with respect to gy, and gy,
{(—=1)**1, if e;y and ejy have opposite directions
with respect to gy, and gy,,

[Av;]- 14

where n i the number of all ordinary and active ed;:e pairs of g
which are in the sequence Ciily Civay vc-
The sign of e:g and e;g are given by [Ay|- Ay and |4y 4%,

sy €j—1e

respectively where Af,; indicates the transpose of Ay,. Hence we

arrive at the following theorem.

Theorem: The tree pairs e;y and ¢;g of G are of the same sign
if e; and e¢; have (or have not) the same direction with respect
to the parts of g in both current and voltage graphs; otherwise they
arce of opposite signs.

This result is useful in reducing the work in finding the signs of
all tree pairs, and in evaluating the network functions of a genecral
linear network.?

Ezample 2: The set of all tree pairs of G, shown in Fig. 2, is

(g1 YsYsUsy N1G2YaYs, G ¥sYsGpy YsUalsGor G102Ya0p) gzyayagp),,
(@1Y3YsGms YaYsYsGms G2YsYaGms G102YaGm)

(g1ysmema, Yago My, YaGmMetr).

The tree pairs in the first brackets consist of ordinary edges only,
so they have positive signs. Every tree pair in the second brackets

presented at
IRE Traxs,

s A, Talbot, “Topologieal Annlysis of General Linear thworks
6¢b Midwest Hymp on Circuit Theory, Madison, Wis.; May, 1
¢ 11, Wutanabe, “A eomputational mcthod for network copology
on Cincurr TrEORY, vol. CT-7, pp. 296-302; September, 1960,

IEEE TRANSACTIONS ON CIRCUIT THEORY

~mum feedback arc sets for a directed graph, Ze.,

June

contains one active edge pair gn only; therefore by Corollary 1, all
the trees in the second brackets have positive signs. The first two
tree pairs in the third brackets consist of ordinary edges and the
two active cdge pairs (me and m;) of the transformer; therefore
they have negative signs (Corollary 2). To find the sign of ygnmema,
we shall compare it with ysgpmems. These two tree pairs have edges
¥s, Mg and my in common. The current and voltage graphs of
UpOmismem; are shown in Fig. §, where the noncommon edges ¢, and
gm are drawn in dotted line. The parts of yamgms in both current
and voltage are ysmem; and an isolated vertex 3. Edges g, and gm
have the same direction with respect to the parts of yamgms in both
current and voltage graphs. Therefore, by the Theorem, ysgmmems
and y;g,mem; have the same sign; that is yygmmem; has negative sign.

A A Au

Dept. of Mathematics
Imperial College
London, England

A Comment on Minimum Feedback Arc Sets

finding mini-
mimum sets of
arcs which when removed leave the resultant grapy free of directed
loops. It may be worth mentioning that the problém can be formu-
lated and solved by dynamic programming teghniques and as a
quadratic assignment problem.

Younger points out that the problem of finding a minimum fecd-
back arc set is cquivalent to the problem of finding an optimum
linear ordering of the nodes of the grapn, oy as Tuckes® areviously
observed, an optimum assignment of node “potentiuls.” An ordering
is optimal when as few arcs as possible aye directed from nodes in
position 7 of vhe order to nodes in positioh j, where 7 < j.

An optimum ordering of the nodes cgn be found from optimum’
orderings of subsets of nodes. Let S/denote an arbitrary subsct
of nodes, and let f(S) stand for the plimber of arcs in a minimum
arc set for the subgraph consisting Af the nodes in S and all the
arcs between them. Let ¢(k, S’) d¢note the number of arcs from
node % to nodes in the subset S’. Then, assuming no self-loops, we
have the functional equation '

f(8) = min {/(8") + ek, 8},

where the minimization is caryied out over all subsets S’ and nodes
k, such that § = S'\U {k}.

In earrying out computations with the functional equation, com-
puter memory requirement$ increase as 2° and computation time as
a2 where n is the numbgr of nodes. Computations for graphs with
up to 15 nodes can be cjrried out efficiently on an IBM 7090, and
various means can be yked to obtain solutions for larger problems.
(Compare the ‘‘subopfimization’ procedures of Held and Karp.?)

The problem can bt formulated as a quadratic assignment prob-
lem of the Koopmarns-Beckmann typet as follows. Let C denote the
nzn connection mafrix of the graph and let U denote an nazn upper
triangular matrix, /where

Uy, =1 if 1<j

= ( otherwise.

In a recent paper Younger! proposed a procedure f

Received S x)tcmber 23, 1963.
1D. H. unger, “Minimum feedback arc sets for directed graphs,” 1EEL
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