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ABSTRACT  

The non-linear behaviour of elastic plane frames of portal 

type under static loading is investigated. 	Both axial 

loading and non-axial loading problems are discussed. 

For axially loaded frames a quick, exact method for evalua- 

ting the critical loads is proposed. 	The possibility of 

solving buckling problems in approximate, algebraic form is also 

demonstrated; the new concepts thus developed help to show clearly 

the effect on the buckling load of the stiffriesses of individual 

members. 

For non-axially loaded frames an iterative method, which is 

based on small-deflection assumptions, is developed for solving 

bifurcational problems for which the existing methods are too 

tedious. 	The method is also applied to non-bifurcational 

problems so as to estimate the approximate range of applicability 

of the small-deflection analysis, by comparing solutions thus 

found with the experimental results obtained from three model 

tests. 
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CHAPTER I 	INTRODUCTION 

1.1 	Types of frames and loading  

The objective of the thesis is to investigate the non—linear 

behaviour of elastic plane frames under static loading. 	Frames 

are of portal type, i.e., they possess a kinematic degree of 

freedom when pins are introduced at all joints and supports. If 

M denotes the number of members, R denotes the number of support 

reactions, and J denotes the number of joints where members meet, 

then portal frames are characterized by the inequality 

F = M + R — 2J < 0, 

in which F represents the kinematic degree of freedom. 

Portal frames are to be distinguished from triangulated frames, 

which become statically determinate if all rigid joints are replaced 

by pinned joints; or they satisfy the relation 

M + R 2J — 0. 	 (1.2) 

The common feature of these two types of frames is that they 

can be treated as being composed of inextensible members: deforma—

tion may be attributed solely to the flexural bending of members. 

This assumption of inextensibility, however, is not applicable to 

rigidly jointed trusses, which possess the property 

M 4- R — 2J > O. 	 (1.3) 
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• Loads considered in this thesis are applied in such a way 

that their directions and relative magnitudes remain unchanged 

during deformation of the frame, and their points of application 

remain fixed in relation to the deformed frame. 

Both axial loading and non-axial loading problems are dis- 

cussed in this thesis. 	Axial loading of a frame of inextensible 

members is defined as a system of external loads which satisfy 

simultaneously the following two requirements: 

(1) that the loads are acting along the centroidal axes of 

members. 

(2) that they can be expressed as self-equilibrating systems 

'of loads applied to individual members. 

Fig.(1.1) shows one such axial loading problem, with the 

typical possibility of the trivial response of zero deformation. 

All other loading systems are classified as non-axial loading 

systems; some such systems are shown in Fig.(1.2). 

Fig.(1.1) 

Fig.(1.2) 



1.2 Frame problems  

Both bifurcation and non-bifurcation problems will be dis- 

cussed in this thesis. 	A point of bifurcation is a point at 

which there is branching of the equilibrium path, for example, 

from a non-sway mode to a sway mode. 	Thompson (20) remarked 

that the point of bifurcation is actually the point of intersec- 

tion of two distinct equilibrium paths. 	This viewpoint, however, 

was questioned by Sewell (24) after examining the behaviour of 

elastic/plastic columns. 

Cases in which bifurcational buckling may occur include: 

(1) frames under axial loading. 

(2) syminetrical frames under symmetrical non-axial loading. 

(3) unsymmetrical frames under special distributions of non- 

axial loading. 

Case (3) represents a rare, coincidental or artificial arrange-

ment of the loading system and will not be discussed; case (1) will 

be discussed in Chapter II and Chapter III, and case (2) will be 

discussed in Chapter IV.4. 

All other frame problems are classified as non-bifurcation 

problems, to which Chapter 1V.2 and Chapter 1V.3 will be devoted. 

For this type of problem, equilibrium paths leading to local 

maximum load points will be determined. 
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1.3 Axial loading problems, bifurcational buckling  

For frames under axial loading (Case 1 of Section (1.2)) 

several methods of evaluating the bifurcation load have been 

proposed. 	For example, Merchant (5) applied disturbing moments 

to a symmetrical single-bay frame and derived the relation between 

the critical load factor and other parameters for the sway mode.' 

McMinn (13) applied to both sway and non-sway buckling the crite-

rion that the stiffness matrix corresponding to all possible 

disturbances is singular. 	Johnson (10) suggested an energy 

method, assuming for the displacement function of a multistorey 

frame a third degree polynomial in a non-dimensional length para-

meter; he finally used moment distribution to satisfy the equili- 

brium requirements. 	Bleich (4) applied four-moment equations to 

solve the side-sway buckling of two-storey rectangular frames with 

fixed bases. 	The same frames were also solved by Livesley and 

Chandler (8) using a relaxation technique with disturbing forces 

exciting a side-sway mode, and by Gregory (27) who extracted 

latent roots from the corresponding stiffness matrix. 	The cases 

of single-storey continuous bents were investigated by Timoshenko 

(1) and Goldberg (12). 

New methods of evaluating the bifurcation loads for axially 

loaded frames will be proposed in Chapter II and Chapter III; 

frames previously solved by Bleich, McMinn and some other researchers 

will be solved again as examples of the application of these new 

ideas. 



1,4 	Axial loading problems, post-critical behaviour  

Non-linear studies concerned with the equilibrium path confi-

gurations in the vicinity of a critical equilibrium state were 

pioneered by Koiter (3) in the structural field. The significance 

of Koiterts work is in determining the behaviour of an imperfect 

system which, depending on the type of structure and the degree of 

imperfection, might differ considerably from that of the perfect or 

idealized system. 

Following Koiter's work, Thompson (23) established in terms of 

generalized co-ordinates the criteria of elastic stability for both 

snapping and bifurcation conditions, and rederived in explicit form 

results similar to those contained in Koiterts work. 	Results 

parallel to Thompson's (23) were developed by Sewell (24) using 

static perturbation techniques in terms of a parameter representing 

progress along any prospective equilibrium path. 	Aspects of non-

conservative systems were also discussed in Sewell's work. 

In the specialized field of frame stability, the post-buckling 

behaviour of triangulated frames was investigated by Britvec and 

Chilver (18), and the corresponding behaviour of portal-type frames 

was investigated by Godley and Chilver (26). 	These studies lead 

to the conclusion that the initial elastic buckling of continuous 

frames is in general unstable. 	Thus the study of imperfect systems 

is of practical importance in predicting the behaviour of frames 

under axial loading. 
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1.5 - Non-axial loading problems, bifurcational buckling  

For symmetrical frames under symmetrical non-axial loading 

(Case 2 of Section (1.2)), the possibility of bifurcation was 

first demonstrated by Chwalla (2) in studying the effects of 

elastic restraints on the buckling strength of columns in a 

portal frame. 	Chwalla derived the governing equations for both 

symmetrical and antisymmetrical deflected modes by setting up and 

solving linear differential equations and boundary conditions for 

each member. 	The load that satisfied simultaneously these two 

governing equations represented the critical load at bifurcation. 

Chilver (7) confirmed Chwallats finding, by examining a simplified 

portal frame, that buckling loads corresponding to sway modes are 

only slightly affected by the presence of primary bending effects, 

for those types of frames studied. 	Chilver, however, also 

showed that for similar frames subjected to symmetrical distortions 

the maximum loads reduced notably due to primary bending effects. 

Horne (15) solved non-axial loading problems by expressing 

the general deflection y of an elastic system in terms of genera-

lized co-ordinates t.  in the form 

(i = 1,2,3....) 	(1.4) 

in which w. is a normalized eigenfunction deflection and si is a 
Coefficient. 	Orthogonality relations between slopes and between 
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curvatures of different critical modes were derived for the eigen- 

function system. 	Differentiated forms of Equ.(1.4) were then 

substituted into the virtual work equations governing the true 

loading system. 

Horne applied this method to analyse the frame proposed by 

Chwalla. 	Solutions were given both for the bifurcation point 

and the equilibrium path leading to it. 

A solution by Hornets approach requires the evaluation of 

consecutive critical (eigenfunction) load factors and deflection 

modes for a statically indeterminate frame. An improved approach 

was proposed by Brown (29,30), who gave rigorous derivations of 

new non-linear virtual work equations for frames under arbitrary 

loading. 	The equations were used to derive the orthogonality 

relations for axially loaded frames, and to produce results simi-

lar to those of Horne for non-axial loading, but with much reduced 

computational effort. 

In their attempt to solve Chuallats frame, Hasur, Chang and 

Donnell (11) formulated incremental equations from the original 

unbuckled state of the frame. 'Basic unknown quantities, which 

were in incremental form, were selected as independent variables 

in linear homogeneous equations. 	The condition that the deter-

minant which was formed by coefficients of such a set of equations 

should be singular represented a non-trivial, or bifurcational, 

solution. 	This method was subsequently applied by Lu (16) in 
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evaluating buckling loads for portal frames with uniform loads 

distributed on the cross beam. 	Experimental and theoretical 

results were reported to be in fair agreement. 

A new approach for solving bifurcational problems of non-

axially loaded frames will be proposed in Chapter IV.4 of this 

thesis; the method can be used with advantage in solving frame 

problems for which the existing methods are too tedious. 

1.6 	Non-axial loading problems, large-deflection analysis  

Parallel to the small-deflection theory which was employed 

in the works discussed in Section (1.5)  for non-axial loading 

problem the large-deflection theory presents solutions which can 

be beyond the range of validity of the forther theory. 	Though 

there are complete solutions for large-deflections of columns, 

investigators in the corresponding field for frame structures 

are few and have directed their analysis to specific structural 

models. 

For example, Williams (21) derived the load-deformation 

relation for beam-columns, taking into account the effects of 

finite deflection and flexural shortening. 	The derivation was 

fairly general, although certain restrictions were placed on the 

magnitudes of the shearing forces and the deflected member slopes. 

The analysis was applied to a symmetrical two-leg frame in a sym- 

metrical mode of buckling. 	Kerr (22) solved the elastica of a 
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square frame with loads applied at the mid—points of two opposite 

sides. 	For the case of tensile loading numerical values were 

given and were confirmed by a model test. 	The 'symmetrical buc— 

kling of a gable frame was solved by Saafan (17), taking into 

account the effects of finite deflections and flexural shortehing 

of frame members. 

Recently Lee, Manuel and Rossow (28) have successfully deve— 

loped a systematic and general method for analysing large deflections 

of frames. 	Frame members, which were assumed to have no initial 

imperfections, were sub—divided into more members which would end 

at joints, loading points, or inflection points. 	Thus recursive 

equilibrium and compatibility equations could be written for each 

member and the solution proceeded from the first nodal point, where 

trial values-were initiated, to the last one. 	Unsatisfied boundary 

conditions would recommend new trial values and the process went on 

until it converged. 

There are, however, two drawbacks to this approach: 

(1) instability of the systems of equations will occur when a 

point of inflection of any member falls into the close 

vicinity of other nodal points. 

(2) it is unsuitable for handling bifurcational problems, since 

the bifurcation point cannot be directly located by the 

incremental load method. 



Provided that frames are not sensitive to small changes in 

loads, and that a suitable choice of the initial values could be 

made, the method described should be able to give a reliable answer, 

and thus represents a valuable source of reference for other future 

methods. 

Comparisons between solutions based on large-deflection theory 

and those based on small-deflection theory for non-axial loading 

problems will be made in Chapter V of this thesis. 

12 General assum•tions and limitations 

The general assumptions and limitations of the present work 

are as follows: 

(1) Frames are of portal type. 	All joints are considered 

rigid and frame members piecewise prismatic. 

(2) The loading plane and the plane of bending coincide with 

the plane of the structure. 

(3) The applied loads are static in nature; their relative 

magnitudes and their positions relative to the frame do 

not alter during deformation of the frame. 

(4) Deformations are assumed to be within the range of validity 

of the small-deflection theory. 	Shear and axial deforma- 

tions, as well as flexural shortening of members, are 

neglected. 

(5) Deformations are assumed to occur in the elastic range. 
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CHAPTER II AXIAL LOADING PROBLE•IS (I)  

THE )' NETHOD AND ITS APPLICATIONS  

2.1 Introdution  

The y method proposed in this chapter is a quick, exact method 
for evaluating the bifurcation loads of certain types of structures. 

The common characteristic of these structures is that they should 

consist of open, but no closed, loops. 	Two such structures are 

shown in Fig.(2.1). 	The method can be extended to be a general 

one, but its speed, which is its virtue, is only apparent when 

either there is no joint displacement or, in certain symmetrical 

cases, the shearing force is zero in the structure; such cases 

include 

(1) continuous beams (Fig.(2.2a)). 

(2) viaducts or multi-bay bents (Fig.(2.2b)). 

(3) multistorey single-bay frames with equal stanchions under 

symmetrical loading (Fig.(2.2c)) - since such frames can 

be divided, across the line of symmetry, into two continuous 

"open-loop" bents with known support conditions. 

One useful feature of the y method is that it can be readily 
applied as well to structures with rotational elastic support. 
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(a) (b) 

Fig.(2.1) 

Line of 
symm try 

  

 

 

(a) 

(b) (c) 

Fig.(2.2) 
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2.2 Theoretical derivation  

Consider a typical linear elastic member connecting joints 1 

and 2 as shown in Fig.(2.3). All quantities are to be considered 

positive in the senses shown. Let E be the modulus of elasticity, 

I the second moment of area of the cross section, and L the length 

of member; let K = EI/L and 0= 	Then the "stability 

functions" c and s are given by 

c= (1 — 0 cot 0)/ 02 	for P > 0 	(2.1) 

=1/3 	for P = 0 

= (0 coth 95 — 1)/ 02 	for P < 0 

s = (0 csc 0 — 1)/ 02 	for P > 0 	(2.2) 

1/6 	for P = 0 

= (1 — 0 csch 0)/ 02 	for P < 0 . 

P 

Fig.(2.3) 
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If the square of the slope is small compared with unity the 

angular displacements at joints 1 and 2 may be expressed in terms 

of the bending moments and the angle of rigid body rotation 0 as 

follows: 

= (c 	s 142)/ K + 

02  = (c 112  s Mi)/ K 

 

(2.3) 

 

(see for example Bleich (4), where s and c are tabulated for 

positive P). 

We will define 

yi  .11/4 	K 01. 	(i = 1,2) 	(2.4) 

and consider the following two cases: 

(1) The case when ID = 0.  

Equ.(2.3) becomes 

K°I ▪ c K 71  01  s K — 	72 02 

K G2 = c K 	02  - s K yi  0 1  

or 

cYl) 81+s Y2  02 
01  + (1 — c Y2) 02 = 0. 

Either 1 = 02 = 0, or 

(1 	c yi) (1 — c 72) 	s2  yl  Y2  = 0 	(2.5) 
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- 	71. 72 	+ (s2  - c2) 71] 

Thus, solving for 72  : 

1- c yl  

c+dyl  72 (2.6) 

where 

d = s2 e2 	 (2.7) 

= (1 - 2 tan 	1 
2 
	for P > 0 

= 	1/12 	 for P = 0 

1 
02 

for P < 0 . 

(2) The case when V = 0.  

Moment equilibrium gives 

PL 	+11.1  + 112  = 0 . 

Equ.(2.3) thus becomes, when 	is eliminated, 

P L Ol ▪ P L (e 	s 112) / K - M1 - M2 

P L 2 • P L (c 112  s Mi) / K M1  M- z 

or 	[ 02+ (3. c 02)  yi 91  

(1 - s 02) yi  01  + [02+ 

+ (1 ÷ S 02) y2  G2  = 0 

(3. — c 02) j2  02  = 0 	. 
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Again, either Al  = 82  = 0, or 

[02 + (1 — c02) 73.] [02 ± (1 — c02) 72 ] 
_(1 + s 02)2 71  y2  = 0 	(2.0 

Since 

02 	(1 	02) yi  E- 02  + 0 cot 0 yi 	(i=1,2) 

and 

02)2 	02  csc2'4  (1 s 	, 

Equ.(2.8) becomes 

e  I 1  0 	( 71 ÷ Y2)  ] = Y1 Y2 

or solving for Y2  : 

1 — a yi  
Y2  (2.9) 

where 

a  = 	tan for P >0 	(2.10) 91 	9C 
= -oo 	for P = 0 

1  for P< 0 • —  tanh4 

and 	
b = 1/ 02 	for P > 0 	(2.11) 

for P = 0 

• —1/02 	for P < 0 . 

Values of a, b, c, d, and s for compressive members are listed 

in Table (2.1) for convenient reference. 

1 
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Table (2.1) 	. 

a 

0.0:0 -co 00 0.3333 -0.0833 0.1667 
0.02 -2499.6667 2500.0001 0.3334 -0.0833 0.1667 
0.04 -624.6666 625.0000 0.3334 -0.0833 0.1667 
0.06 -277.4444 277.7778 0.3334 -0.0834 0.1667 
0.08 -155.9165 156.2500 0.3335 -0.0834 0.1668 
_0.10 -99.6664 100.0000 0.3336 -0.0834 0.1669 
0.12 -69.1108 69.4444 0.3337 -0.0835 0.1669 
0.14 -50.6866 51.0204 0.3338 -0.0835 0.1670 
0.16 -38.7286 39.0625 0.3339 -0.0835 0.1672 

00.18 -30.5301 30.8642 0.3341 -0.0836 0.1673 
0.20 -24.6658 25.0000 0.3342 -0.0837 0.1674 
0.22 -20.3267 20.6612 0.3344 -0.0837 0.1676 
0.24 -17.0265 17.3611 0.3346 -0.0838 0.1678 
0.26 -14.4581 14.7929 0.3348 -0.0839 0.1680 
0.28 -12.4200 12.7551 0.3351 -0.0840 0.1682 
0.30 -1C.7758 11.1111 0.3354 -0.0841 0.1684 
0.32 -9.4300 9.7656 0.3356 -0.0842 0.1687 
0.34 -8.3146 8.6505 0.3359 -0.0843 0.1689 
0.36 -7.3798 7.7160 0.3362 -0.0844 0.1692 
0.38 _ -6.5886 6.9252 0.3366 -0.0846 0.1695 
0.40 -5.9131 6.2500 0.3369 -0.0847 0.1698 
0.42 -5.3316 5.6689 0.3373 -0.0848 0.1702 
0.44 -4.8276 5.1653 0.3377 -0.0850 0.1705 
0.46 -4.3878 4.7259 0.3381 -0.0851 0.1709 
0.48 -4.0017 4.3403 0.3386 -0.0853 0.1713 
0.50 -3.6610 4.0000 0.3390 -0.0855 0.1717 
0.52 -3.3587 3.6982 0.3395 -0.0856 0.1721 
0.54 -3.0894 3.4294 0.3400 -0.0858 0.1725 
0.56 -2.8483 3.1888 0.3405 -0.0860 0.1730 
0.58 -2.6316 2.9727 0.3411 -0.0862 0.1734 
0.60 -2.4362 2.7778 0.3416 -0.0864 0.1739 
0.62 -.2.2593 2.6015 0.3422 -0.0867 0.1745 
0.64 -2.0986 2.4414 0.3428 -0.0869 0.1750 
0.66 -1.9523 2.2957 0.3434 -0.0871 0.1755 
0.68 -1.8185 2.1626 0.3441 -0.0874 0.1761 
0.70 -1.6961 2.0408 0.3448 -0.0876 0.1767 
0.72 -1.5836 1.9290 0.3455 -0.0879 0.1773 
0.74 -1.4800 1.8262 0.3462 -0.0882 0.1780 
0.76 -1.3844 1.7313 0.3469 -0.0884 0.1786 
0.78 -1.2960 1.6437 0.3477 -0.0887 0.1793 
0.80 -1.2140 1.5625 0.3485 -0.0890 0.1800 
0.82 -1.1379 1.4872 0.3493 -0.0893 0.1807 
0.84 -1.0671 1.4172 0.3501 -0.0897 0.1815 
0.86 .-1.0011 1.3521 0.3510 -0.0900 0.1823 
0.88 -0.9394 1.2913 0.3519 -0.0903 0.1831 
0.90 -0.8817 1.2346 0.3528 -0.0907 0.1839 
0.92 - C. 8277 1.1815 0.3538 -0.0910 0.1847 
0.94 -0.7770 1.1317 0.3548 -0.0914 0.1856 
0.96 -0.7293 1.0851 0.3558 -0.0918 0.1865 
0.98 -C.6844 1.0412 0.3568 -0.0922 0.1874 
1.00 -0.6421 1.0000 0.3579 -0.0926 0.1884 
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1.02 
1.04 
1.06 
1.08 
• 1.10 

1.14 
- 1.16 
1.18 

- 1.20 
1.22 
1.24 
1.26 
1.28 
1.30 
1.32 
1.34 
1.36 
1.38 
1.40 
1.42 
1.44 
1.46 
1.48 
1.50 
1452 
1.54 
1.56 
1.58 
1.60 
1.62 
1.64 
1.66 
1.68 
1.70 
1.72 
1.74 
1.76 
1.78 
1.80 
1.82 
1.84 
1.86.  
1.88 
1.90 
1.92 
1.94 
1.96 
1.98 
2.00 

a 
Table 
b 

(2.1) 	(continued) 
c 	d 

22 

s 

-0.6022 0.9612 0.3590 -0.0930 0.1894 
-0.5644 0.9246 0.3601 -0.0935 0.1904 
-0.5287 0.8900 0.3613 -0.0939 0.1914 
-0.4948 0.8573 0.3625 -0.0944 0.1925 
-0.4627 0.8264 0.3637 -0.0948 0.1936 
-0.4322 0.7972 0.3650 -0.0953 0.1948 
-0.4031 0.7695 0.3663 -0.0958 0.1959 
-0.3755 0.7432 0.3677 -0.0963 0.1971 
-0.3491 0.7182 0.3690 -0.0968 0.1984 
-C.3240 0.6944 0.3705 -0.0974 0.1997 
-0.2999 0.6719 0.3719 -0.0979 0.2010 
-0.2769 0.6504 0.3734 -0.0985 0.2023 
-0.2549 0.6299 0.3750 -0.0991 0.2037- 
-0.2338 0.6104 0.3765 -0.0997 0.2051 
-0.2136 0.5917 0.3782 -0.1003 0.2066 
-0.1941 0.5739 0.3798 -0.1010 0.2081 
-0.1754 0.5569 0.3816 -0.1016 0.2097 
-0.1573 0.5407 0.3833 -0.1023 0.2113' 
-0.1400 0.5251 0.3851 -0.1030 0.2129 
-0.1232 0.5102 0.3870 -0.1037 0.2146 
-0.1070 0.4959 0.3889 -0.1044 0.2164 
-0.0914 0.4823 0.3909 -0.1052 0.2182 
-0.0762 0.4691 0.3929 -0.1060 0.2200 
-0.0615 0.4565 0.3950 -0.1068 0.2219 
-0.0473 0.4444 0.3972 -0.1076 0.2239 
-0.0334 0.4328 0.3994 -0.1085 0.2259 
-0.0200 0.4217 0.4017 -0.1093 0.2280 
-0.0069 0.4109 0.4040 -0.1102 0.2301 
0.0058 0.4006 0.4064 -0.1112 0.2324 
C.C183 0.3906 0.4089 -0.1121 0.2346 
0.0304 0.3810 0.4114 -0.1131 0.2370 
0.0423 0.3718 0.4141 -0.1141 0.2394 
0.0539 0.3629 0.4168 -0.1152 0.2419 
C.0653 0.3543 0.4196 -0.1163 0.2445 
0.0764 0.3460 0.4224 -0.1174 0.2472 
0.0874 0.3380 0.4254 -0.1185 0.2499 
0.0982 0.3303 0.4285 -0.1197 0.2527 
0.1088 0.3228 0.4316 -0.1209 0.2557 
G.1193 0.3156 0.4349 -0.1222 0.2587 
0.1296 0.3086 0.4383 -0.1235 0.2618 
0.1398 0.3019 0.4417 -0.1249 0.2651 
0.1499 0.2954 0.4453 -0.1263 0.2684 
C.1600 0.2891 0.4490 -0.1277 0.2719 
0.1699 0.2829 0.4529 -0.1292 0.2755 
0.1798 0.2770 0.4568 -0.1307 0.2792 
0.1896 0.2713 0.4609 -0.1323 0.2830 
0.1995 0.2657 0.4652 -0.1340 0.2870 
0.2092 0.2603 0.4696 -0.1357 0.2911 
0.2190 0.2551 0.4741 -0.1375 0.2954 
0.2288 0.2500 0.4788 -0.1394 0.2999 



cc a 

Table 

b 

(2.1) 	(continued) 

c 	d 

23. 

s 

2.02 0.2387 0.2451 0.4837 -0.1413 0.3045 
2.04 0.2485 0.2403 0.4888 -0.1433 0.3093 
2.06 C.2584 0.2356 0.4941 -0.1453 0.3143 

- 	2.08 0.2684 0.2311 0.4996 -0.1475 0.3195 
2.10 0.2785 0.2268 0.5053 -0.1497 0.3249 
2.12 0.2887 0.2225 0.5112 -0.1521 0.3305 
2.14 0.2990 0.2184 0.5174 -0.1545 0.3364 
2.16 0.3094 0.2143 0.5238 -0.1570 0.3425 
2.18 0.3201 0.2104 0.5305 -0.1597 0.3489 
2.20 C.3309 0.2066 0.5375 -0.1624 0.3556 
2.22 0.3419 0.2029 0.5448 -0.1653 0.3626 
2.24 .0.3531 0.1993 0.5524 -0.1683 0.3699 
2.26 0.3646 0.1958 0.5604 -0.1715 0.3776 
2.28 0.3764 0.1924 0.5687 -0.1748 0.3856 
2.30 0.3885 0.1890 0.5775 -0.1783 0.3940 
2.32 C.4009 0.1858 0.5867 -0.1819 0.4029 
2.34 0.4137 0.1826 0.5964 -0.1857 0.4!22 
2.36 0.4270 0.1795 0.6065 -0.1898 0.4220 
2.38 C.4407 0.1765 0.6172 -0.1940 0.4323 
2.40 0.4549 0.1736 0.6285 -0.1985 0.4432 
2.42 0.4696 0.1708 0.6404 -0.2033 0.4548 
2.44 0.4850 0.1680 0.6530 -0.2083 0.4670 
2.46 0.5011 0.1652 0.6663 -0.2136 0.4800 
2.48 0.5178 0.1626 0.6804 -0.2192 0.4937 
2.50 0.5355 0.1600 0.6955 -0.2252 0.5084 
2.52 0.5540 0.1575 0.7115 -0.2316 0.5240 
2.54 0.5735 0.1550 0.7285 -0.2384 0.5406 
2.56 C.5942 0.1526 0.7467 -0.2457 0.5585 
2.58 0.6160 0.1502 0.7663 -0.2536 0.5776 
2.60 0.6393 0.1479 0.7873 -0.2620 0.5982 
2.62 C.6642 0.1457 0.8098 -0.2710 0.6203 
2.64 0.6907 0.1435 0.8342 -0.2808 0.6443 
2.66 0.7193 0.1413 0.8606 -0.2914 0.6703 
2.68 C.7501 0.1392 0.8893 -0.3029 0.6986 
2.70 0.7835 0.1372 0.9206 -0.3155 0.7294 
2.72- 0.8198 0.1352 0.9549 -0.3293 0.7633 
2.74 0.8594 0.1332 0.9926 -0.3445 0.8005 
2.76 0.9030 0.1313 1.0342 -0.3612 0.8417 
2.78 0.9511 0.1294 1.0805 -0.3799 0.8874 
2.80 1.0045 0.1276 1.1321 -0.4007 0.9386 
2.82 1.C644 0.1257 1.1901 -0.4241 0.9962 
2.84 1.1319 0.1240 1.2559 -0.4506 1.0614 
2.86 1.2087 0.1223 1.3309 -0.4809 1.1360 
2.88 1.2969 0.1206 1.4175 -0.5159 1.2220 
2.90 1.3994 0.1189 1.5183 -0.5567 1.3224 
2.92 1.5201 0.1173 1.6374 -0.6048 1.4409 
2.94 1.6643 0.1157 1.7800 -0.6625 1.5830 
2.96 1.8399 0.1141 1.9541 -0.7329 1.7565 
2.98 2.0585 0.1126 2.1711 -0.8207 1.9731 
3.00 2.3384 0.1111 2.4495 -0.9334 2.2509 
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a b 
Table (2.1) 	(continued) 

3.02 2.7098 0.1096 2.8194 -1.0832 2.6203 
3.04 3.2268 0.1082 3.3350 -1.2920 3.1353 
3.06 3.9963 0.1068 4.1031 -1.6032 3.9029 
3.08 5.2647 0.1054 5.3701 -2.1166 5.1693 
3.10 7.7512 0.1041 7.8553 -3.1237 7.6539 
.3.12 14.8413 0.1027 14.9440 -5.9965 14.7420 
3.14 199.9607 0.1014 200.0622 -81.0219 199.8598 
3.16 -17.1899 0.1001 717.0897 6.9866 -17.2929 
3.18 -8.1836 0.0989 -8.0847 3.3371 -8.2885 
3.20 -5.3443 0.0977 -5.2466 2.1870 -5.4511 
3.22 -3.5527 0.0964 -3.8563 1.6237 -4.0614 
3.24 -.3.1262 0.0953 -3.0310 1.2894 -3.2367 
3.26 -2.5785 0.0941 -2.4844 1.0680 -2.6908 
3.28 -2.1887 0.0930 -2.0957 0.9106 -2.3028 
3.30 -1.8970 0.0918 -1.8051 0.7930 -2.0128 
3.32 -1.6703 0.0907 -1.5796 0.7018 -1.7880 
3.34 -1.4892 0.0896 -1.3995 0.6289 -1.6086 
3.36 -1.3409 0.0886 -1.2524 0.5695 -1.4622 
3.38 -1.2174 0.0875 -1.1298 0.5200 -1.3403 
3.40 -1.1127 0.0865 -1.0262 0.4781 -1.2375 
3.42 -1.0230 0.0855 -0.9375 0.4423 -1.1494 
3.44 -0.9451 0.0845 -0.8606 0.4113 -1.0733 
3.46 -0.8768 0.0835 -0.7933 0.3842 -1.0067 
3.48 -0.8165 0.0826 -0.7339 0.3604 -0.9481 
3.50 -0.7627 0.0816 -0.6811 0.3391 -0.8961 
3.52 -0.7146 0.0807 -0.6339 0.3202 -0.8497 
3.54 -C.6711 0.0798 -0.5913 0.3031 -0.8079 
3.56 -0.6317 0.0789 -0.5528 0.2877 -0.7703 
3.58 -0.5958 0.0780 -0.5178 0.2737 -0.7360 
3.60 -0.5629 0.0772 -0.4858 0.2609 -0.7049 
3.62 -0.5327 0.0763 -0.4564 0.2492 -0.6764 
3.64 -0.5048 0.0755 -0.4293 0.2384 -0.6502 
3.66 -C.4790 0.0747 -0.4043 0.2285 -0.6261 
3.68 -0.4550 0.0738 -0.3811 0.2193 -0.6038 
3.70 -0.4326 0.0730 -0.3596 0.2108 -0.5831 
3.72 -0.4117 0.0723 -0.3395 0.2028 -0.5640 
3.74 -0.3922 0.0715 -0.3207 0.1954 -0.5461 
3.76 -C.3738 0.0707 -0.3031 0.1885 -0.5295 
3.78 -0.3565 0.0700 -0.2865 0.1820 -0.5139 
3.80 -0.3402 0.0693 -0.2709 0.1759 -0.4993 
3.82 -0.3248 0.0685 -0.2562. 0.1702 -0.4857 
3.84 -0.3102 0.0678 -0.2424 0.1648 -0.4728 
3.86 -C.2963 0.0671 -0.2292 0.1597 -0.4607 
3.88 -0.2832 0.0664 -0.2167 0.1549 -0.4493 
3.90 -0.2706 0.0657 -0.2049 0.1504 -0.4386 
3.92 -C.2587 0.0651 -0.1936 0.1460 -0.4284 
3.94 -0.2473 0.0644 -0.1829 0.1419 -0.4188 
3.96 -C.2364 0.0638 -0.1726 0.1380 -0.4097 
3.98 -0.2259 0.0631 -0.1628 0.1343 -0.4010 
4.00 -0.2159 0.0625 -0.1534 0.1308 -0.3928 
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Table (2.1) 	(continued) 

0 	a 	b 	c 	d 	s 

4.02 -0.2063 0.0619 -0.1444 0.1274 -0.3851 
4.04 -0.1971 0.0613 -0.1358 0.1242 -0.3777 
4.06 -0.1882 0.0607 -0.1275 0.1211 -0.3706 
4.08 -0.1796 0.0601 -0.1195 0.1182 -0.3639 
4.10 -0.1713 0.0595 -0.1118 0.1153 -0.3576 

-:::---.,---:'. 	4.12 -0.1634 0.0589 -0.1044 0.1126 -0.3515 
4.14 -0.1556 0.0583 -0.0973 0.1100 -0.3457 
4.16 -0.1482 0.0578 -0.0904 0.1075 -0.3402 
4.18 -0.1409 0.0572 -0.C837 0.1051 -0.3349 

- 4.20 -0.1339 0.0567 -0.0772 0.1028 -0.3299 
- 4.22 -0.1271 0.0562 -0.0710 0.1006 -0.3251 
4.24 -0.1205 0.0556 -0.0649 0.0985 -0.3205 
4.26 -0.1141 0.0551 -0.0590 0.0964 -0.3161 
4.28 -0.1078 0.0546 -0.0532 0.0945 -0.3119 
4.30 -0.1017 0.0541 -0.0477 0.0925 -0.3079 .  
'4.32 -0.0958 0.0536 -0.0422 0.0907 -0.3041 
4.34 -0.0900 0.0531 -0.0369 0.0889 -0.3005 
4.36 -0.0843 0.0526 -0.0317 0.0872 -0.2970 
4.38 -0.0788 0.0521 -0.0267 0.0855 -0.2937 
4.40 -0.0734 0.0517 -0.0217 0.0839 -0.2905 
4.42 -0.0681 0.0512 -0.0169 0.0823 -0.2875 
4.44 -0.0629 0.0507 -0.0122 0.0808 -0.2846 
4.46 -0.0578 0.0503 -0.0075 0.0794 -0.2818 
4.48 -0.0528 0.0498 -0.0030 0.0779 -0.2792 
4.50 -0.0479 0.0494 0.0015 0.0766 -0.2767 
4.52 -0.0431 0.0489 0.0058 0.0752 -0.2743 
4.54 -0.0384 0.0485 0.0102 0.0739 -0.2721 
4.56 -0.0337 C.0481 0.0144 0.0727 -0.2700 
4.58 -0.0291 0.0477 0.0186 0.0714 -0.2679 
4.60 -0.0245 0.0473 0.0227 0.0703 -0.2660 
4.62 -0.0201 0.0469 0.0268 0.0691 -0.2642 
4.64 -0.0156 0.0464 0.0308 0.0680 -0.2625 
4.66 -0.0113 0.0460 0.0348 0.0669 -0.2609 
4.68 -0.0069 0.0457 0.0387 0.0658 -0.2594 
4.70 -0.0026 0.0453 0.0426 0.0648 -0.2581 
4.72 0.0016 0.0449 0.0465 0.0638 -0.2568 
4.74 0.0058 0.0445 0.0503 0.0628 -0.2556 
4.76 0.0100 0.0441 0.0541 0.0618 -0.2545 
4.78 0.0142 0.0438 0.0579 0.0609 -0.2535 
4.80 0.0183 0.0434 0.0617 0.0600 -0.2525 
4.82 0.0224 0.0430 0.0655 0.0591 -0.2517 
4.84 0.0265 0.0427 0.0692 0.0582 -0.2510 
4.86 0.0306 0.0423 0.0729 0.0574 -0.2504 
4.88 0.0347 0.0420 0.0767 0.0565 -0.2498 
4.90 0.0387 0.0416 0.0804 0.0557 -0.2494 
4.92 0.0428 0.0413 0.0841 0.0549 -0.2490 
4.94 0.0469 0.0410 0.0879 0.0542 -0.2488 
4.96 0.0510 0.0406 0.0916 0.0534 -0.2486 
4.98 C.0551 0.0403 0.C954 0.0527 -0.2485 
5.00 0.0592 0.0400 0.0992 0.0520 -0.2486 
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Table (2.1) 	(continued) 

0 
	

a 	b 	c 	d 	s 

5.02 0.0633 0.0397. 0.1030 0.0512 -0.2487 
5.04 0.0674 0.0394 0.1068 0.0506 -0.2489 
5.06 0.0716. 0.0391 0.1107 0.0499 -0.2493 
5.08 0.0758 0.0388 0.1146 0.0492 -0.2497 
5.10 0.0801 0.0384 0.1185 0.0486 -0.2502 
5.12 0.0843 0.0381 0.1225 0.0479 -0.2509 
5.14 0.0887 0.0379 0.1265 0.0473 -0.2517 
5.16 0.0930 0.0376 0.1306 0.0467 -0.2525 
5.18 0.0975 0.0373 0.1348 0.0461 -0.2535 
5.20 0.1020 0.0370 0.1390 0.0455 -0.2547 
5.22 0.1066 0.0367 0.1433 0.0450 -0.2559 
5.24 0.1112 0.0364 0.1476 0.0444 -0.2573 
5.26 C.1159 0.0361 0.1521 0.0439 -0.2588 
5.28 0.1208 0.0359 0.1566 0.0433 -0.2605 
5.30 0.1257 0.0356 0.1613 0.0428 -0.2623 
5.32 0.1307 0.0353 0.1660 0.0423 -0.2643 
5.34 0.1359 0.0351 0.1709 0.0418 -0.2664 
5.36 0.1411 0.0348 0.1759 0.0413 -0.2687 
5.38 0.1465 0.0345 0.1811 0.0408 -0.2712 
5.40 0.1521 0.0343 0.1864 0.0403 -0.2739 
5.42 0.1578 0.0340 0.1919 0.0398 -0.2768 
5.44 0.1637 0.0338 0.1975 0.0394 -0.2800 
5.46 0.1698 0.0335 0.2034 0.0389 -0.2833 
5.48 0.1761 0.0333 0.2094 0.0385 -0.2869 
5.50 0.1826 0.0331 0.2157 0.0380 -0.2908 
5.52 C.1894 0.0328 0.2222 0.0376 -0.2949 
5.54 0.1964 0.0326 0.2290 0.0372 -0.2994 
5.56 0.2038 0.0323 0.2361 0.0367 -0.3041 
5.58 0.2114 0.0321 0.2435 0.0363 -0.3093 
5.60 0.2194 0.0319 0.2513 0.0359 -0.3148 
5.62 0.2278 0.0317 0.2594 0.0355 -0.3207 
5.64 0.2366 0.0314 0.2680 0.0352 -0.3271 
5.66 C.2458 0.0312 0.2770 0.0348 -0.3339 
5.68 0.2556 0.0310 0.2866 0.0344 -0.3414 
5.70 C.2659 0.0308 0.2967 0.0340 -0.3494 
5.72 0.2769 0.0306 0.3075 0.0337 -0.3580 
5.74 0.2885 C.0304 0.3189 0.0333 -0.3674 
5.76 0.3010 0.0301 0.3311 0.0329 -0.3776 
5.78 0.3143 0.0299 0.3442 0.0326 -0.3887 
5.80 C.3286 0.0297 0.3583 0.0323 -0.4008 
5.82 C.3440 0.0295 0.3736 0.0319 -0.4141 
5.84 0.3607 0.0293 0.3901 0.0316 -0.4286 
5.86 0.3789 0.0291 0.4080 0.0313 -0.4447 
5.88 0.3987 0.0289 0.4276 0.0309 -0.4624 
5.90 C.4205 0.0287 0.4492 0.0306 -0.4821 
5.92 0.4445 0.0285 0.4730 0.0303 -0.5040 
5.94 0.4711 0.0283 0.4995 0.0300 -0.5287 
5.96 0.5010 0.0282 0.5291 0.0297 -0.5565 
5.98 0.5346 0.0280 0.5625 0.0294 -0.5881 
6.00 0.5727 0.0278 0.6005 0.0291 -0.6243 



Table (2.1) 	(continued) 

b 	 - - 
6.02 0.6165 0.0276 0.6441 0.0288 -0.6661 
6.04 0.6673 0.0274 0.6947 0.0285 -0.7150 
6.06 0.7271 0.0272 0.7543 0.0282 -0.7728 
6.08 0.7983 0.0271 0.8254 0.0280 -0.8421 
6.10 0.8849 0.0269 0.9118 .0.0277 -0.9268 
6.12 _0.5924 0.0267 1.0191 .0.0274 -1.0325 
6.14 .1.1297 0.0265 1.1562 0.0271 -1.1679 
6.16 1.3112 0..0264 1.3375 0.0269 -1.3475 
6.18 1.5626 0.0262 1.5888 0.0266 -1.5971 
6.20 1.9345 0.0260 1.9605 0.0264 -1.9672 
6.22 2.5411 0.0258 2.5669 0.0261 -2.5720 
6.24 3.7086 0.0257 3.7343 0.0259 -3.7377 
6.26 6.8887 0.0255 6.9142 0.0256 -6.9160 
6.28 49.9901 0.0254 50.0154 0.0254 -50.0157 
6.30 -9.4391 0.0252 -9.4139 0.0251 9.4152 
6.32 -4.2960 0.0250 -4.2710 0.0249 4.2739 
6.34 -2.7732 0.0249 -2.7483 0.0247 2.7528 
6.36 -2.0429 0.0247 -2.0182 0.0244 2.0242 
6.38 -1.6139 0.0246 -1.5893 0.0242 1.5969 
6.40 -1.3315 0.0244 -1.3071 0.0240 1.3162 
6.42 -1.1314 0.0243 -1.1071 0.0237 1.1178 
6.44 -0.9821 0.0241 -0.9580 0.0235 0.9702 
6.46 -0.8663 0.0240 -0.8424 0.0233 0.8561 
6.48 -0.7739 0.0238 -0.7501 0.0231 0.7654 
6.50 -0.6984 0.0237 -0.6748 0.0229 0.6915 
6.52 -0.6355 0.0235 -0.6120 0.0227 0.6302 
6.54 -0.5822 0.0234 -0.5589 0.0225 0.5786 
6.56 -0.5366 0.0232 -0.5133 0.0223 0.5345 
6.58 -0.4969 0.0231 -0.4738 0.0220 0.4965 
6.6C -0.4621 0.0230 -0.4392 0.0218 0.4634 
6.62 -0.4314 0.0228 -0.4086 0.0216 0.4343 
6.64 -0.4040 0.0227 -0.3813 0.0214 0.4085 
6.66 -0.3794 0.0225 -0.3569 0.0213 0.3855 
6.68 -0.3572 0.0224 -0.3348 0.0211 0.3649 
6.70 -0.3371 0.0223 -0.3148 0.0209 0.3464 
6.72 -C.3187 0.0221 -0.2966• 0.0207 0.3296 
6.74 -0.3019 0.0220 -0.2799 0.0205 0.3144 
6.76 -0.2864 0.0219 -0.2645 0i0203 0.3004 
6.78 -0.2720 0.0218 -0.2503 0.0201 0.2877 
6.80 -0.2588 0.0216 -0.2371 0.0199 0.2760 
6.82 -0.2464 0.0215 -0.2249 0.0198 0.2652 
6.84 -0.2348 0.0214 -0.2135 0.0196 0.2553 
6.86 -0.2241 0.0212 -0.2028 0.0194 0.2460 
6.88 -C.2139 0.0211 -0.1928 0.0192 0.2375 
6.90 -0.2044 0.0210 -0.1834 0.0191 0.2295 
6.92 -0.1954 0.0209 -0.1745 0.0189 0.2221 
6.94 -C. 1869 0.0208 -0.1661 0.0187 0.2152 
6.96 -0.1788 0.0206 -0.1582 0.0186 0.2088 
6.98 -0.1712 0.0205 -0.1507 0.0184 0.2027 
7.00 -C. 1639 0.0204 -0.1435 0.0182 0.1970 



2.3 Procedure of solution  

The process for solving axial loading problems by the y method 

is as follows: 

(1) Select the 0 value of a reference member as 011. 	Compute the 

ratio 0k/0R  (k = 1,2...) for all members which sustain loads 

(this ratio is of course independent of load level for the type 

of loading specified in Section (1.7)). 

(2) Assume a value of On. 	Compute the 0lc and the corresponding 

stability functions a and b, or c and d of each loaded member, 

according to whether the member falls in catagory 1 or 2 of 

Section (2.2). 

(3) Use Equ.(2.6) or Equ.(2.9) to compute the y value at the inner 

end of all loaded "end members" (members having one end connected 

to the support foundation). 	For members which are not subjected 

to load, some y values which appear frequently can be read off 

directly from Table (2.2) shown in Section (2.4).. 

(4) Start with any joint at which all y values are known except one. 

Apply the moment equilibrium condition 

0 	y K = 0 

or, since we assume a priori that A 0, 

yK = 0 	 (2.12) 

where summation is extended over all members framing into the 

joint. 	Thus the one unknown y value can be evaluated. 
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(5) Apply Equ.(2.6) or Equ.(2.9) to compute the 7  at the other end 

of the member treated in step (4). 

(6) Repeat steps (4) and (5) until the last internal joint is reached. 

(7) At the last joint, all 7  values will be known, and if the assump—

tion of G 0 is to be maintained the equilibrium equation (2.12) 

must in general be modified by the inclusion of an externally 

applied couple Mo  : 

0 	Y K = 2io  . 

If positive Mo  is needed to excite a positive 0 the structure is 

stable. 	On the other hand if negative Mo is needed to maintain 

the deformation, the structure is unstable. 	Thus we have the 

stability criterion: 

stable equilibrium 

7 K 	= 0 	neutral equilibrium 	(2.13) 

unstable equilibrium 

The condition for locating the critical 0R value,  '11 Vc 

° R 

is thus 

(2.14) 

where the equality/inequality sign corresponds to that found in 

Equ.(2.13). 

(8) After the value of OR  is thus revised once, the subsequent OR  

values can, in principle, be estimated by interpolation or 

extrapolation, based on two previous OR  values and their 
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corresponding remainders E (=z7K for the last internal 

joint). 	Thus 

6(T-1)  
9r(n) = 95(n-1) 	( 	-1 • -; (n_2)) 	- 4 (nr.2) -(n-1) 

...(2.15) 

where 0(n)  denotes the nth estimate of 0Ft. 

However, it should be noted that there exists a possibility 

of having a 0 value extrapolated into the range of convergence 

of a higher order critical mode; one such case is illustrated by 

0(3) in Fig.(2.4). 

This undesirable situation can be avoided by refraining from 

the use of Equ.(2.15) for extrapolation. 	Instead, the value of 
,t  

OR  should be increased until the E value changes sign; p(3)  in 

Fig.(2.4) was located by such a process. 	Subsequent values of 

OR  can be interpolated by Equ.(2.15). 

Fig.(2.4) 
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2.k Illustrative examples  

The 7  method described in the previous section will be applied 

to two models. 	The modulus of elasticity E in each model is 

assumed to be the same for all members composing the frame; the 

quantity K (=ETA) shown in the diagrams is a relative value. 

Computations in the examples are carried out to an accuracy of not 

more than 3 significant figures. 

Some useful 7  values which appear frequently are listed in 

Table (2.2); all these values correspond to zero load and so do 

not vary in magnitude. 	In addition, it should be noted that a 

moment—free end has 7 = 0 and an encastre end has 7 = -00 . 

Table (2.2) 

Type Member Al  73.  

1 M/2K 2 1  - - 14 a 	 i 1  ). 1 1 
1 	2 

2 M/3K 3 M ('L 	A 
1 	2 

3 CE. mAK 	. 4 14 	 P 
- 1 	2 

4 M/6K 6 lif:NI 	„1.)14 
1 	2 
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Example 1 	The unsymmetrical continuous bent shown in Fig.(2.5), 

restrained against side-sway. 

2P 

I,L 	•I,L 	I,L 
(K=l) 	(K=l) 	(K=1) 

211L 
(K=2) 21, 

4 2 
(K=1/2) 

Fig.(2.5) 

The process of solution will follow that of Section (2.3) and 

is shown in the following steps: 

(1) Select °.R = °AB , and compute the ratio 0/0
1t  for all other 

members: 	0BEi011 = 1/ 

°BC41/ = °COR = 1/ and 0
17/0R  = O. 

(2) Since 0 71-  (the value corresponding to having both joints AB 

A and B pinned), assume OR  =7T as a convenient start. 	Thus 

°BC = °CD = °BE = = 
Since it is a non-sway problem, stability functions c and d will 

be computed. 	From Table (2.1) corresponding to 0 = Tj , 

C 	c>a 	and d = + c 	; these values of c and d are the 

same for all loaded members since their 0 values are the same 

in this example. 
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The loaded "end members" are AB, BE and CD. 	Since 

0 /AB = /EB /DC= 	(hinged end)  

IFC oo 	(encastre end), 
= — 

Equ.(2.6) gives 

/BA "..= (1  — Yom)/ (c d  /AB) lic  1-2 0, 	
and 

/BE = /CD = o.  

For the unloaded member CF, YeF  = 4, corresponding to Type 3 

of Table (2.2). 	This value of yer  remains unaltered for all 

computational cycles. 

Both joint B and joint C contain only one unknown value of 

(namely, ID_u  and CB  respectively); thus any one of these two 

joints can be used as the first internal joint. 	If joint B 

is selected Equ.(2.12) gives 

BA 4.2 /BE 
+ 7BC = 0 

which gives Y -BC = 00  

(5) YcB  in member CB is computed by Equ.(2.6): 

7CB = 0.  

(6) The last internal joint is joint C; therefore we can proceed 

directly to step (7). 

(7) At joint C, Equ.(2.13) gives 

YcB  + / y 17  + jcp  = 0 + (4) + 0 = 2 . 

Thus 0(1)= T gives E(1). 2, which is )-0. 	Therefore 4:>. 

according to Equ. (2.14). 

(3)  

(4)  
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The first cycle of computation is thus completed; the computed 

values of and E are shown in the first horizontal line of Table 

(2.3). 

The second cycle starts from step (2) as follows: 

(2) Assume 	= 3.20. 	Thus 'BC = °CD = O
BE  = 3.20 and from 

Table (2.1) c = —5.25 and d = 2.19, for all members. 

(3) Equ.(2.6) gives /BA = /BE = /CD = 1/c  = 

(4) At joint B Equ.(2.12) gives 7BC = 0.573. 

(5) At member CB Equ.(2.6) gives /CB = 

(6) The last joint is joint C. 

(7) At joint C, Equ.(2.13) gives 

7CB 	/CD = +0.809. 

Thus 

0(2)  = 3.20, 	E(2)  = 0.809 > 0, and 4 > 3.20. 

The second cycle of computation is thus completed; the computed 

values of and E are shown in the second horizontal line of Table 

(2.3). 	The 0R  value for the subsequent cycle may be estimated by 

Equ.(2.15): 

0(3) = 0(2) + 0(2) - 0(1)) E(2)  / E(1) E(2))  

= 3.20 + 0.06 (0.809)/1.19 = 3.24. 

A new cycle of computation may thus be started with OR  = 3.24. 

The OR  value of 3.22 at the 4th cycle is accurate to the second 
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decimal and is accepted as the final value. 	The critical value 

of P is thus computed from. member AB: 

P = ( 02E1/L2  )AB  = (3.22)2E1A2  

= 1.05 Tr  2E1/L2.  

Table (2.3) 

Cycle OR YBA = 

YBE = ICD 

YBC YCB E Remark 

1 71 
(assumed) 0 0 0 42.00 O0 R> R 

2 3.20 
(assumed) -0.191 +0.573 -1.00 40.81 4:>OR  

3 3.24 
(extrapoln.) -0.330 40.990 -2.28 -0.61 cl:0R  

4 3.22 
(interpoln.) -0.259 +0.778 -1.54 -0.20 OPFOR  



	3L H ...., 	, , e..• (a) 
Given: I = 100 ink' 

L :--- 100 in. 

151.51, 
K=2/3) 

21,1.8L 
(K=10/9) 

31,2.4L 
(K=5/4) 
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Example 2 	The three-storey symmetrical frame shown in Fig.(2.6a), 

not prevented from side-sway. The effects of primary 

bending are to be neglected. Thus loads are assumed 

to be carried equally by the two columns and axial 

forces in the beams are ignored; the equivalent loading 

system is shown in Fig. (2.6b). The Euler load (PE) 

for column CD is given as 59.2 tons. 	Reference : 

EcMinn (14), pp.193-196. 

W 

1 W 
C 

2  W 

Line of 
symmetry 

77'77  (b) 

Fig.(2.6) 

Sway is possible in this frame, so in the columns 10 0. 

However, symmetry suggests that the two columns will deform simi-

larly and horizontal equilibrium then requires zero horizontal shears, 

so that Equ.(2.9) is appicable. Only columns at one side of the 

frame need be analysed; computational steps corresponding to those 

outlined in Section (2.3) are as follo-.;s: 

W 



7WAPRI 2 4L 
WY2EI 1.5L 

00F  
= 

—1.73 

0BG  
0R 

0 . 
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(1) Select 'R °CD. The ratio of 0 for other members are 

pW
1/2.E1 1.8L 

/PET 1.5L =1.20 

(2) Since member CD is elastically supported at C and D, 0 < 0R <IT 

(corresponding to the case of V = 0, for the first critical mode). 

Try 0 = V/2 ---- 1.57 as a start. 	Thus 

°CD = 1.57, 	aCD = 0, 	bCD = 0.406, 

	

., 	 = 0.282, 
°BC= 188 	aBC = 0.172, 

and 

°AB = 2.71, 	aAB = 0.808, 	bAB  = 0.136 . 

(3) The loaded "end member" is AB. 	Since 

7AB = — " 	(encastr6 end), 

Equ.(2.9) gives 

/BA = 	(a/b)AB = -5.94 . 

For the unloaded members DE, CF, and BG Table (2.2) gives 

/DE 	icF 	YEG = 6° 	These values of y remain 

unaltered for all computational cycles. 

(4) Joint D contains one unknown y value (namely Y pc) while joint 

contains two unknowns (namely ycp  and 7cD) and joint B contains 

and 

°BC 

°R 

°AB 

°DE 
Tct 



one unknown (namely /Be); thus either joint D or joint B 

can be assigned as the first internal joint. 	If joint D 

is selected Equ.(2.12) gives 

3 yDC + yDE  = 0, 	or 'DC =  — 9* 

This value of yDC is constant for all computational cycles, 

since it relates only to IDE  which itself is a constant. 

(5) Equ.(2.9) gives YCD  r-- —0.272. 

(6) )'CD  is evaluated by applying Equ.(2.12) at joint C: 

2 v 10
9CB -I-  fCF 	3 'CD 0, • or 7CB = —5.24 

and 7B0  is equal to —1.46 by Equ.(2.9). 

(7) The remaining internal joint is joint B, at which Equ.(2.13) 

gives 

y
DA 	3 

y
DG 	

v 
9 IBC 	-1.05.  

The first cycle of computation is thus completed with 

0(1) = 1.57 and E(1)  -1.05 < 0 which indicates, according 

to Equ.(2.14), that 95.pet  <1.57. 	The computed values of y 

(except IDc  which is of constant value of —9) and E are shown 

in the first line of Table (2.4). 	The 0,11  value of 1.54 at 

the 3rd cycle is accurate to the second decimal and is accepted 

as the final value. 
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The critical value of W is thus.computed from member CD: 

1I • 2  (r4E1A2)CD = 2 (952130/2)CD 

• 2 (1.5002  (59.2) tons 

• 28.5 tons. 

The same answer is given by McMinn. 

Table (2.i) 

Cycle 0R (r 6) 'CD' Y: - CD ICB IBC IBA 6 Remark 

1 (
1
assumed) 
.57 -0.272 -5,24 -1.46 -5.94 -1.05 It<Adit  

2 1.50 
(assumed) —0.142 —5.31 —1.12 —4.24 +1.46 0.1q),-0 11  

3 1.54 
(interpoln.) -0.215 -5.27 -1.30 i  -5.11 +0.17 9fct411  
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. CHAPTER III 	AXIAL LOADING PROBTRMS (II)  

THE STABILITY FUNCTION TRANSFORMATION AND ITS APPLICATION 

The tan 0 transformation  

For the types of structure discussed in Chapter II it is 

possible to transform the exact transcendental equations into 

approximate algebraic equations. 	The critical load can then 

be expressed in explicit terms of the properties of members 

composing the frame. 	Consequently the relative influence of 

each member on the critical load can be examined, and this will 

be of use during the process of design. 

The basic idea arises from the observation that if P is 

positive the only non-algebraic function in both Equ.(2.5) and 

Equ.(2.8) is tan y ; i.e., terms involving sin 0 or cos 0 in 
their separate form will not be present. 	For example, if 

0 the governing equation for a typical member is Equ.(2.5): 

2 v v  
s 1  / - (1 - c yi) (1 - c y2) 	0 

or, for P > 0, 

1 	 _ 
04 sinO )2  yl Cl-?-(1_Ocot¢) ylJ  

{
_ 0 1 -ro.1- (1 	coo) y2 	= 0 

which may be written as 



1— 1  (1— cow) y—y2  02 (l-0 cot0 ) 

+ 	(3. f 2  tanir) yl 	0. 	(3.1) 

Similarly if V = 0 the governing equation for a typical member 

isEqu.(2.8): 

(1 s 02 )2  7172 . [02+ (1_ 02 ).  yi ] 
[02+ ("L. c 02 ) 72 ] 

or, for P > 0, 

csc20 73.  Y2  - ( + 7i  coto ) 	+ y2  coto ) = 0. 

After rearranging this becomes 

92  + 0 coto (yi  + y2) . yi  Y2  . 	(3.2) 

The problem of transforming the transcendental equations 

into algebraic equations is thus reduced to the problem of 

finding a suitable expansion for tan 0 . 

The well-known tan 0 expression, namely, 

tan= 0 + 1, 03 +15  
fgy,5 +3 2  r

(17 + 	 
3 

is prohibitive for such a purpose, since a satisfactory algebraic 

expression thus derived would involve many high order terms of 9, 

and the purpose of pursuing a simple yet accurate approximation 

would be defeated. 



1.2 

However, it is observed that the function tan pi has the 

following properties: 

tan 9 • = —0 	at 0=0, ±TT, 127T, ±37.... 

at O=±2 ti TT ± 11.  1, ± 	. . . . 

A possible transformation of tan pc after grouping together 

proper _quadratic terms, would then be 

0 [42] [1.42111.  0)2]....  [1_42.Ar :02] 

(3.3) 
[14 0)2] {3._.(.3% 	:: {1_(2n-1 ji.)2] 

This intuitively derived form has all the correct zeros and 

singularities, and its general validity will be established 

in the following section. 
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'.2 Proof of the tan 0 transformation 

The tan 0 transformation given by Equ.(3.3) mill be exact if 

and 

sin 

COS 

0 = 0 [1-( )1 [1-(2  

0 	0)2] 

0)2] 

0)2] 

• • • • 

• • • • 

‘n77 0)2] 

{1-((2n21)7T  95)2  

Proof 

(1) sin 0 

The theorem of infinite products (see for example, Morse and 

Feshbach, " Methods of Theoretical Physics ", Part I, pp.382-385) 

is 

f JO)  0  

:f(0) = £(0) e f(°)  

ao —g 
a II-  [0. 4; e n 

n=l 

 

(3.4) 

  

in which f(0) is a differentiable function of 0, f' = df/d0, and 

an is a value of 
0 where the function f has a zero. 

We shall consider, instead of sin 0, which gives f(0) = 0, the 

function 

f(0) 	sin pi 
0 

Thus, 

f(0)— 



= 
f(0) 	(cot 0— )$ )0=0 

• 

[( - - 	- d03 
and 

an  = ±niT $ 	n = 

Ecill.(3.4) -gives 

= 0 

 

00  

= 	I 	[(1 	env] [ (1 4. 	) e nv -a
n 7j n iT 

 

Hence, 	n=1 

sin 
	If [ 1- (47)2i 
	

Q.E.D. 

nr=-1 
(2) cos V 

The function f(0) = cos 0 has the following properties: 

f(0) = 1, 

ft(0) = 0 

and 

an = 	(2n - 1) 1172 	n = 1,2,3.... 

Equ.(3.4) gives directly 

cos 0 



Or, 

cos 0 Q.E.D. 2a  	2  
(2n-1)1T j 

• 
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'Thus, 

tan 0 

 

fl 	- -E. )2} 
n71  

03 

2 	12i jr [1 - 
n1 

  

with an expanded form as in Eciu.(3.3)• 



Tr2( 1- 	 2 971,  (1 -- oC )  
16 	(2 - of 72 1=  21_ 1-6. 

9 9 
(3.7) 
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3.3 	A simple  non-sway case  
• 

As an illustration of the transformation process, we shall 

calculate the critical load of the strut shown in Fig.(3.1). End 

2 is attached to a spring with rotational stiffness S2  but allowing 

no translation; the end 1 is pinned. 	For such a strut, Equ.(2.6) 

or Equ.(3.1) gives 

72 2=-2:-  --= (3.5) 

As an approximation we shall take 

tan 0 

and denote 

= 

0 11 -(10 )2 ] (3.6) 
[ 1 	( 371 0 )2] [1 	( 3 T 	)2] 

so-02. 
Equ.(3.5) is thus reduced to 

Solving for 0( 

1 - pe2  

in which 

112 = 162 Y2 9 7T 

1 - 2)/2 
(3.8) 
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Fig.(3.1) 
ev.  

To show the order of error involved in'such a transformation, 

it will be assumed that the spring has a rotational stiffness S2  

of 2K. 	Then y2  = -s2/k = —2, Y:a  = —0.36, and 0= 1110—(= 3.53 

which compares to the exact critical 0 value of 3.59. 	For the 

limiting case of S2  being infinite, 0( = 2; then 0 = 4.44 which 

compares to the exact value of 4.49. 
The practical range of O'in compression members with one end 

pinned (Fig.(3.1)) is 1J' 6  0 6  1.43 	if only the first critical 

load is to be considered. 	In the lower part of this range the 

approximation given by Equ.(3.6) is good, but for the higher part 

of the range it is not. 	Nevertheless the expression for 0( thus 

derived (Equ.(3.8)) is acceptable, as previously demonstrated. 

The underlying reason for this is best illustrated by plotting the 

value of y2 against 0, as shown in Fig.(3.2). 
	Curve A, which 
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represents the exact solution given by Equ.(3.5) for the strut of 

Fig.(3.1), is plotted alongside curve B which represents the appro- 

ximate solution given by Equ.(3.7). 	It is seen that at 0' = 4.2, 

for instance, the error in Y2  given by curve B may be more than 

50%; but the error in 0 for a given value of y2  in this vicinity is 

less than 3%. 

It is also of interest to point out that the rounding off made 

in deriving Equ.(3.7), namely the simplifying of (1.94 - 00 to 

(2 - 0(), is actually improving the limiting (S2  =ao) 0 value from 

0= 4.37 (corresponding to 0( = 1.94) to 0= 4.44.  (corresponding to 

= 2.00), while the exact value is 0 = 4.49. 
After examining Fig.(3.2), it is obvious that the exact curve 

can be better fitted. 	Rewrite Equ.(3.7) in the form 

Cf  -1 2 - 0() 

and the maximum error can be minimized by a proper choice of the 

coefficient C. 	Curve C in Fig.(3.2) represents one such possibi- 

lity, with 

Cf 
-2- 
2 • 

This particular value of Cf will be chosen for non-sway problems, 

since it will be shown to be suitable for the general non-sway case 

to be discussed in the following section. 
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3.4 The general non-sway case  

For the general non-sway case, consider the strut shown in 

Fig.(3.3). 	End 1 and end 2 are attached to springs of rotational 

stiffness S1 and S2, respectively. 
	Both springs allow restrained 

rotation but no translation. 	For such a strut the governing 

equation is given by Equ.(3.1), namely, 

1 (1 — v cot0 ) yl  — y2  12 (1 — V cot95 ) 
0 

 

-2- (1 - ta42. ) yl 	— 0 	(3.9) 

in which yi  = - s.
3.
/ K  (i = 1,2). 

The practical range of 0 now extends to 0 = 2 7)" (Corresponding 

to S1 = S2 = 040 ), and a reasonable tan 0 approximation for this 

range requires an additional numerator.factor: 

tan 0 
{1(To)2] 	yliss )2] 

• (3.10) 
[1 	( W. 0 )2] [1 	*-T  0 )2] 

It is obvious that substitution of Equ.(3.10) into Equ.(3.9) 

would lead to a high order polynomial expression for 0 . 	Thus 

the approach of direct substitution is undesirable for the general 

non-sway case. 

A new approach is possible. 	It has been shown in Section (3.1) 

how the exact tan 0 transformation was formed by merely collecting 
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terms satisfying the limiting conditions, namely, the zeros and 

singularities. 	Possibly therefore, a technique parallel to this 

might be employed to form an expression for 0( in the form 

= 0(3. 0(2 
	 (3.11) 

in which 0( = (Wa/V )
2 as previously defined, and 0(1  and 0(2  are 

functions only of 	and Y20  respectively. 	It is required that 

the product of 0(1  and 0(2 should be correct, or nearly so, for all 

the limiting conditions of the strut; these conditions are listen 

in Table (3.1). 

A possible approximate expression for OIL guided by Equ.(3.8), 

is thus 

0( = 

in which 

 

1 -241 	l 7  21 
(3.12) 

 

1-Ill -112 

Yi 	- oi  
Of 	2 — 0(. (i = 1,2). 	(3.13) 

Table (3.1) shows that Equ.(3.12) satisfies closely all the 

limiting values of 0( . 	In order to verify that Equ.(3.12) also 

gives satisfactory approximate solutions under various combinations 

of the values of S1  and S2, 
Table (3.2) has been prepared. 	For 

comparison the exact solutions are given in Table (3.3). 	Since 
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subscripts 1 and 2 are interchangeable, only halves of the tables 

divided by the diagonal need to be filled in. 

It is observed that the approximate solution shown in Table (3.2) 

involves an error of not more than -2% and +2% for underestimate and 

overestimate, respectively, of 0( 	These errors are deemed 

acceptable since they are probably less than that of estimating the 

actual loading in a structure. 

Table (3.1)  

Limiting 
Boundary Conditions 

Exact 
04 

0( by 	' 
Equ. (3.12) 

yi  . 0 	and y2  . 0 1.00 1.00 

yi  . 0 	and y2  .-00 2.04 2.00 

yi  =-0,0 and y2  . 0 2.04 2.00 

yi  .-.0 and y2  ..-00 4.00 4.00 

Fig.(3.3) 

IP  
S
2 g\--f 

2 

Si 	 

IP 

The expression of 0( given in the form of Equ.(3.12) is particu-

larly useful in visualizing the various effects of S1 and S2 
on the 

load carrying capacity of the structure. 	For example, if the 0( 

value for the frame shown in Fig. (3.4a) is 0(a' 
then the fixing of 

the bases of the columns in a similar frame (Fig.(3.4b)) would 

increase the load factor to 20(a' as Equ. (3.12) clearly shows. 
	In 

fact, Table (3.2) has been prepared according to this principle: 

only the 0( values in the first column of the table (corresponding 



P P u 
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to S1= 0) had to be computed; the rest of the table could be formed 

irmediately by taking the products of these values. 	Thus OC. for 

the case of SliK = 0.5 and 32/k = 1.0 is formed by (1.18)(1.10) = 

1.30; 0( for the case of Si/K = 5.0 and S2/K = 5.0 is formed by 

(1.53)2= 2.33, and so on. 

K 	 K 

77„;_f77 

K 	 K 

//../ 	 7777 

P 
	

P 

(a) 	 (b) 

Fig. (3.1;) 
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Table (3.2) 
The aporoximate values of OK given by Equ. (3.12)  

s lic 3, 
s2IK 0 0.5 1.0 5.0 10.0 ao 

0 1.00  
0.5 1.10 1.21 
1.0 1.18 1.30 1.40 
5.0 1.53 1.68 1.80 2.33 
10.0 1.69 1.86 2.00 2.58 2.86 
040 2.00 2.20 2.36 3.05 3.38 4.00 

Table (3.3) 
The exact values of IX given by Equ. (3.9)  

S1  AC 
52/K 0 0.5 1.0 5.0 10.0 oo 
0 1.00 

0.5 1.10 1.21 
1.0 1.18 1.30 1.38 
5.0 1.54 1.68 1.77 2.31 
10.0 1.73 1.87 1.99 2.55 2.88 

00 2.04 2.21 2.33 3.00 3.38 4.00 
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Exemnie 	The two-storey symmetrical frame shown in Fig.(3.5), 

prevented from side-sway. 	Reference: Bleich (4), 

pp.255-259. 

B 

Fig.(3„5) 
A 

Since sway is to be prevented the columns mill deform symmetri-

cally about the centre line of the frame and consequently only columns 

at one side of the frame need be analysed. For reference we have 

YCD = y = 2 (type 1 of Table (2.2)), YAB 	and Cf  = 

First we shall consider the ratio of Or between columns AB and BC: 

°AB TOCK AB °(BA  = 	so that 	1 

°BC 	 ti°(  BC (CB 
or, 

04 0( (a) AB 	DA 	°BC °CB 

Equ,(a) involves four unknowns and thus three auxiliary equations 

are needed for a solution. These three equations will be obtained 

at the three joints A, B and C. 

At joint A, rìAB is given directly by Equ.(3.12) with YAB  -  

YAB/Cf 	CRAB = (1  - 21/AB)/(1  -1/J/kB) 	2° 	
(b) 
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At joint C Equ.(2.12) gives 7CB = -1' thus Ye  = YCB/cf = -2/9 

and Equ.(3.12) gives 

of CB=  (1 - 2),‘)/(1 -1/0) 2= 1.18. 	(c) 

Substituting (b) and (c) into (a), we have 

()(BC = 1.69 C(BA' 	 (d) 

The last auxiliary equation will be obtained by applying 

Equ.(2.12) at joint B: 

)}3C 	+ 221  'BE 
	0 

or, in view of Equ.(3.13), 

1 - 0(BC 	1 - 0(BA 	1 
Cf 2 - 01, 	+ Cf 2 - c( 	+ 2  - (2) = 0. 	(e) 

BC 	BA 

Solving (d) and (e) simultaneously we have, after rearranging, 

01(123A  - 2.47 °(BA 4.1.30 
	

0 

which gives 

0(BA = f 0.76 (first mode) 
1.70 . 

Thus 

( 02E1/L2)AB  = -Tr 2 0(AB  0(EA  EI/ L2  

1.53 IT
2
EIA

2
. 

The exact value of P given by Bleich is 1.55 71-2E1A2. 
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A simple no shear case  

The stability function transforming process for the no shear 

cases is parallel to that for the non—sway cases discussed in the 

previous two sections. 	As an introduction, let us consider the 

strut shown in Fig.(3.6). 	End 2 of the strut is attached to a 

spring of rotational stiffness S2; the spring allows both restrained 

rotation and free lateral translation; the end 1 is encastr6. For 

such a strut, Equ.(2.9) or Equ.(3.2) gives 

72 
	a 	

tan 
	 ( 3 .14 ) 

The range of 0 in compression members is now 7r/2 ..5.0.4.17T if 

only the lowest critical load is sought. 	A possible approximation 

for tan 0 is thus 

tan 0 

 

Clo(40)2] 

 

 

( 727 0 )2 ] • 

 

  

Denote, as in nonsway cases, 

0C = ( 0/7 )2  

Eqq.(3.14) is thus reduced to 

Y2 — 

Solving for 0( : 

0( — 

(3.15) 

 

) 

 

(3.16) 
4 `y2 

 

in which 
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To show the order of error involved in such a transformation, 

it will again be assumed that the spring has a rotational stiffness 

S2  of 2K. 	Then p/2  = y2  .. -s2/K = -2, 0( = 0.50, and 0 = 71-1-0—c= 

2.22 which compares to the exact 0 value of 2.29. 	For the limiting 

case of S2 being infinite, 0( = 1 from Equ.(3.16). 	Then 0 = 

which is the exact value. 	Curve A in Fig.(3.7) represents the 

exact solution given by Equ.(3.14), while curve B represents the 

approximate solution given by Equ.(3.15). 	Again it is seen that 

the exact curve can be better approximated. 	Put Equ.(3.15) in the 

form 

- 
= 	0( 

and the maximum error can be minimized by a proper choice of the 

coefficient Cs; curve C in Fig.(3.7) represents one such possibility, 

with 

Cs 9 • 

Fig.(3.6) 
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This particular value of Cs  will be chosen for sway problems, since 

it will be shown to be suitable for the general sway cases to be 

discussed in the following section. 

On the other hand curve C, though reducing the absolute value 

of the maximum error in 95, may slightly overestimate 0 at some 

values of y2' in contrast to curve B which always gives a lower— 

bound solution. 	However, since the error involved is so small 

the overestimate is deemed acceptable. 



:11 

I lt 

11 it 



Y2 	(1 — 400 — (1 — 	yi  

0(72(1 - co + (1 - 40() yi  
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246Thegeneral no shear case  

For the general no shear case we shall consider the strut 

shown in Fig.(3.8). 	End 1 and end 2 are attached to springs 

with rotational stiffness S1 and S2' respectively. 
	Both springs 

allow restrained rotation, and one of them allows free lateral 

translation compelling zero shear. 	For such a strut the gover-

ning equation is given by Equ.(3.2), namely, 

2  ÷ 0 cot0 ( yi  + y2) yi  y2 
	 (3.17) 

—in which 	= S./ K 
	(i = 1,2) 

The tan 0 approximation, which will be required from 
	0 

(corresponding to S1  = S2  = 0) up to the limiting case of 0 = Tr 

(corresponding to S1  = S2  = 00), is given by- 

tang( 
0 	- ( 	)2]  

[1 	( 	0 )2] (3.18) 

The substitution of Equ.(3.18) into Equ.(3.17) leads to 

(3.19) 

which is the transformed Equ.(2.9). 	Thus 0( can be solved in a 

quadratic form by Equ.(3.19), or the )' method described in Chapter II 

may be employed, with Equ.(3.19) replacing Equ.(2.9). 



Table (3.4) 

Limiting 
Boundary Conditions 

Exact 
0( 

0( 	by 
Equ.(3.21) 

yi  = 0 	and y2  = 0 0 1/16 

yi  = 0 	and ; =-00  1/4 1/4 
yi  =-0. and Y2  = 0 1/4 1/4 

yi  =-0.0 	and )12  = -00 1 1 
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Following closely the argument of Section (3.4), it is possible 

to approximate the solution of 0( in the form 

--- 	0L2 
	 (3.20) 

in which 0( = (OM )2 and  al  and 0(2  are functions only of yi  and 

y2  respectively. 	It is required, as before, that the product 0(10(2  

should be satisfactory for all the limiting condition of the strut; 

these conditions are listed in Table (3.4). 

A possible approximate expression for 0( , guided by Equ.(3.16), 

is thus 

o( = 	
1-i{ 

l 
 1-14  

k 4 	34.  A 4 -/2  

in which 

(3.21) 

  

1-40c 
(i = 1,2). 	(3.22) 

Cs 

 

1 — 0(i  

Table (3.4) shows that Equ.(3.21) satisfies all the limiting 

conditions except the case of y1 = 72 = °' 
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In order to verify that Equ.(3.21) also gives satisfactory 

.approximate solutions at most combined values of S1  and S2, Table 

(3.5) has been prepared. 	For comparison the exact solutions are 

given in Table (3.6). 	Since subscripts 1 and 2 are interchangea- 

ble only halves of the tables divided by the diagonal need to be 

filled in. 

It is to be noted that due to the violation of the limiting 

condition at yi  = y2  = 0 Equ.(3.21) should not be applied to struc-

tures in which columns are connected to very flexible members. For 

most well-proportioned structures, hOwever, the possibility of 

encountering this situation is remote. 	Whenever in doubt, Equ. 

(3.19) instead of Equ.(3.21) should be used to evaluate OL. 

It is observed in Table (3.5) that the approximate solutions, 

except those values shown in brackets which are outside the applica-

bility of Equ.(3.21), involve an error of not more than -4% and 45% 

for underestimate and overestimate of 0(, respectively. 

Table (3.5) was prepared in this manner: first the values in 

the last row of the table (corresponding to S2  =co) were computed; 

then the rest of the table could be foimed -iiimediately by taking 

the products of these'values. 	Thus 0( for the case of S1/k = 1.0 

and S2/k = 5.0 was formed by (0.43)(0.71) = 0.31; 0( for the case of 

s1  /k = 5.0 and S2/k = 5.0 was formed by (0.71)
2 = 0.51 and so on. 
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Table (3.5) 

The approximate values of of given by Equ.(3.21)  

s /k 1 

s2/k 0 1.0 5.0 10.0 00 

- o (0.06) 

1.0 (0.11) (0.19) 

5.0 0.18 0.31 0.51 • 

10.0 0.21 0.36 0.59 0.68 

00 0.25 0.43 0.71 0.82 1.00 

Table (3.6) 

The exact values of 0(. given by Equ. (3.17)  

s1/k 

s2/k - 0 1.0 5.o 10.0 00 

0 0 

1.o 0.08 0.17 

5.0 0.17 0.31 0.53 

10.0 0.21 0.36 0.61 0.70 

00 0.25 0.42 D.72 0.83 1.00 
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Example 	The two-storey symmetrical frame shown in. Fig. (3.9), 

not prevented from side-sway. 	Reference: Livesley 

and Chandler (s), pp.10-12, or Gregory (27), pp.340- 

342. 

Fig.(3.9) 

I,L 
(K=1) 

I,L 	I,L 
(K=I) 	K=1) 

    

This is a no shear problem since symmetry suggests that the two 

columns will deform similarly and horizontal equilibrium then requires 

zero horizontal shear. 	Again, only columns at one side of the frame 

need be analysed. 	For reference we have yCD  . YBE = 6 (type 4 of 
Table (2.2)), 7 = -c44 and Cs  = 7/9. 

First we shall take the ratio of 0 between columns AB and BC: 

OAB a-- 1, 
TBC 

so that 11- JIDLAB SBA  

rtIC(BC C(CB 

1 

or, 

°( AB °(BA = 1°63C( CB • 	
(a) 

Equ.(a) involves four unknowns and thus three auxiliary equations 

are needed for a solution. 	These three equations will be obtained 

at the three joints A, B and C. 

At joint A, 0(AB  is given directly by Equ.(3.21) with )/AB B = 

YAB/Cs = 
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0( AB  = 	- J/AB)/ (4 - liAB) = 1. 	 (b) 

At joint CEqu.(2.12)' gives ICB = —62 thus  

—54/7 and Equ.(3.21) gives 

C(CB = (1 — VCB)/(4 — VCB) = 0.74. 

Substituting (b) and (c) into (a), we have 

0( 	= 1.34 BC 	°(BA' 

VCB = Yo/Cs 

(c)  

(d)  

The last auxiliary equation is given by .applying Equ.(2.12) 

at joint B: 

/BC + YEA YBE 
	0 

or, in view of Equ. (3.22), 

1  — 4 C(  BC 	1  — 4 C)(BA  
C
s 1 — 0(BC + Cs 1 — OcBA 	

+ 6 = O. 	(e) 

Solving (d) and (e) simultaneously we have, after rearranging, 

0(BA — 1.41 0(BA + 0.46 = 0 

which gives 

C(BA 
{

0.51 	(first mode) 

0.90 . 

Thus 

P = (02EU/12) - AB 
0.517j2E1/L2. 

--2(V 04.  rTir_2  
''AB 

The exact value of P given by Livesley and Chandler, or by Gregory, 

is 0.521j2E1/2. 



(a) 

Fig.(3.10) 
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3.7 	Multistorey single-bay frames under either no shear or  

non-sway condition  

It was mentioned in Section (3.4) and Section (3.6) that for 

a multistorey single-bay frame under symmetrical loading condition 

the rotational stiffnesses of the beams are known, and thus only one 

stanchion at either side of the frame need be analysed. Fig.(3.10a) 

and Fig.(3.10b) illustrate stanchions with Ns  storeys in no-shear 

and non-sway conditions, respectively, with Sk  (k = 1...Ns) repre-

senting the rotational stiffness of beam at the kth floor. As in 

the previous sections external loads acting on the stanchion are 

proportional and are given in terms of a common load multiplier P, 

the critical value of which is to be determined. 	The corresponding 

axial force in the kth column can thus be expressed as CkP , with Ck 

representing the numerical part of the axial force (Fig.(3.10)). 
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The critical value of P is given by 

P = (0< 22r  )(0:---- ) = 	= 01( 	 )N 

712E1 

C L2 1 C L2 2 C L 	s 

and the problem is solved if any of the O( values is evaluated. 

It can be readily shown that the direct evaluation of 0(k  for the 

Icth column in a frame of Ns storeys requires the solution of a 

polynomial in 0(k 
of degree N

s. 	
For the particular case of 

So 7-2 00, 

S1 =S2 = S3 
	• • • • .4 

 
SNs 

and 
	

C1 = C2 = C3 
	• • • • r-'1 

 
CNs' 

the resulting polynomial for 0(k  will be similar to that derived 

by Merchant (5). 

However, this direct approach of solving for 0(k  is not advis—

able wheri N
s 
is large and when the axial forces and/or beam stiff— 

ness vary from storey to storey. 	A modified approach will now be 

proposed. 

Ne have noted in the previous sections that the value of 0( at 

an end of a column is in general insensitive to the variation of y 

at the corresponding end. 	Consequently one value of y at each 

internal joint may be assumed; the y value at the other side of the 

joint may be found from Equ.(2.12), namely, 

)k  = 0 
	

k= 1....Ns 
	(3.23) 
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After all y values are thus obtained the corresponding a value 

at top and bottom of each column can be coMputed by Equ.(3.13) or 

Equ.(3.22), or can be read off directly from Table (3.7) which has 

been prepared for this purpose. 

If we write 0(t and 0(b as the a. values at top and bottom of 

each column and denote 

,2t  
L k 	I) 	

EI 

CL  2  
k= 1....Ns (3.24) 

the corresponding value of P estimated from the kth column is given 

by 

Pk 	= ( OCt0.1) PB )k 
	 (3.25) 

and the critical value of P may be conveniently approximated by the 

arithmetic mean: 

P 
1 Ns 

• Ns k=1  k  
(3.26) 

A satisfactory approximate value of P is reached when the 

condition 

P1 	P2 	•• 
= pNs 
	 (3.27) 

is satisfied (or nearly so); any subsequent cycle of trial-and-error 

may be guided by the value of P computed by Equ.(3.26) in a previous 

cycle. 



-4.7 
-4.8 
-4.9 
-5.0 
-5.1 
-5.2 
-5.3 
-5.4 
-5.5 
-5.6 
-5.7 
-5.8 
-5.9 
-6.0 
-7.0 
-8.0 
-9.0 
-10.0 
-11.0 
-12.0 
-13.0 
-14.0 
-15.0 
-16.0 
-17.0 
-18.0 
-19.0 
-20.0 
-30.0 
-40.0 
-50.0 
-60.0 
-70.0 
-co 

1.511 
1.516 
1.521 
1.526 
1.531 
.1.536 
1.541 
1.545 
1.550 
1.554 
1.559 
1.563 
1.567 
1.571 
1.609 
1.640 
1.667 
1.690 
1.710 
1.727 
1.743 
1.757 
1.769 
1.780 
1.791 
1.800 
1.809 
1.816 
1.870 
1.899 
1.917 
1.930 
1.940 
2.000 

Table (3.7) 	Value of 0( 	Equ.(3.13) and Equ.. (3.22)) 

0( 
( 	0) 	c( (v. 0 ) o( f  

k io2=0) 

	

2.0 	0.200 

	

1.9 	0.269.  

	

1.8 	0.333 

	

1.7 	0.393 

	

1.6 	0.448 

	

1.5 	0.500 

	

1.4 	0.548 

	

1.3 	0.594 

	

1.2 	0.636 

	

1.1 	0.676 

	

1.0 	0.714 

	

0.9 	0.750 

	

0.8 	0.784 

	

0.7 	0.816 

	

0.6 	0.846 

	

0.5 	0.875 

	

0.4 	0.902 

	

0.3 	0.929 

	

0.2 	0.953 

	

0.1 	0.977 
. 0. 	1.000 
-0.1 	1.022 
-0.2 	1.043 

	

-0.3 	1.062 

	

-0.4 	1.082 
-0.5 	1.100 
-0.6 	1.118 
-0.7 	1.135 

	

-0.8 	1.151 
-0.9 	1.167 
-1.0 	1.182 
-1.1 	1.196 
-1.2 	1.211 

	

-1.3 	1.224 

	

-1.4 	1.237 

	

-1.5 	1.250 

	

-1.6 	1.262 
-1.7 	1.274 
-1.8 	1.286 

	

-1.9 	1.297 

	

-2.0 	1.308 
-2.1 	1.318 

	

-2.2 	1.328 

	

-2.3 	1.338 
-2.4 	1.348 

	

-2.5 	1.357 

	

-2.6 	1.366 

	

-2.7 	1.375 

	

-2.8 	1.384 

	

-2.9 	1.392 

- - 
0.032 

0.106 

0.170 
0.198 
0.225 
0.250 
0.273 
0.295 
0.316 
0.335 
0.354 
0.371 
0.388 
0.403 
0.418 
0.432 
0.446 
0.459 
0.471 
0.483 
0.494 
0.505 
0.515 
0.525 
0.534 
0.543 
0.552 
0.561 
0.569 
0.577 
0.584 
0.591 
0.598 
0.605 
0.612 

	

-3.1 	1.403 	0.624 
1.416. 	0.630 

	

-3.3 	_1.423 	0.636 

	

- -1.430 	0.642 

	

-3.5 	1.437 	0.647 
0.652 

-3.7 	1.451 	0.657 
__L73.81.458_ _0.662 
-
3.9----- 
 1.464 	0.667 

0.672 

	

-4.1 	1.477 	0.676 
0.681 

	

-4.3 	1.489 	0.685 

	

1.494 	0.689 

	

-4.5 	1.500 	0.693 

	

-4.6 	1.505 	0.697 
0.701 
0.705 
0.709 
0.712 
0.716 
0.719 
0.723 
0.726 
0.729 
0.732 
0.735 
0.738 
0.741 
0.744 
0.769 
0.790 
0.807 
0.822 
0.835 
0.846 
0.855 
0.864 
0.871 
0.878 
0.884 
0.889 
0.894 
0.899 
0.930 
0.946 
0.955 
0.963 
0.968 
1. 000 
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btu P  u 

(4-tc (3.30) 
At  
0( PE  bc c 1 + 

• 

The method described is essentially a trial-and-error one, so 

a quick solution depends on a reasonable estimate of the y values. 

The following procedure may be helpful in initiating the y values. 

We notice that the column having the minimum value of PB  (given 

be Equ. (3.24)) is probably the controlling, or critical, column. 

If we can roughly estimate the 0( values at the ends of this criti- 

cal column the critical load thus computed will not be far from the 

correct value and thus will give a valuable guide in estimating the 

y values for other members. 

If column c is the assigned critical column with columns u and 

v connecting to its top and bottom respectively, a good approximation 

of (3(t c° or 0(130
, will be obtained by establishing the relationship 

between columns c and u, or between columns c and vs  respectively. 

Thus for estimating 0( to  we relate 

PB)c 	(0 tC4b PB)u 

which gives 

0( Pc bc c 
te 	pB ik

to u 

 

(3.28) 

  

and denote 

  

At 	Ci(tc 	u' 
	 (3.29) 

Substituting Eqq.(3.28) into Equ.(3.29) we have 



B 
tc Pc 

(3.31) °(bc 
Ab 

1 + 
pB 

"bv v 
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A good approximate value of OC-be 
will be obtained if we make 

rough assumptions on the values of y at the ends of both columns 

c and u (a convenient way is to assume equal distribution of S 

values between consecutive columns at every joint) and evaluate the 

corresponding 0( values, then the revised value of ri 
-̀ te is given by 

Equ.(3.30). 

For estimating 0( be  similar derivation between column c and v 

gives 

in which 

Ab 	0(bc + C tv 
	 (3.32) 

The process for evaluating °qc byET"(3°3/) 
 is parallel to that 

for evaluating 0(te  (by Equ.(3.30)) described above. 

After the values of 0(tc and 0(bc 
are thus estimated the first 

approximation of P is given by 

	

(C(t°(b PB)c 	 (3.33) 

This critical value of P is to be maintained throughout all 

other columns and their y values will be evaluated accordingly. 

This evaluation of y will be starting from the highest and lowest 

columns (since the y values at one end of these columns are known 

constants) and proceed thus towards the critical column. 	A 
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satisfactory answer is reached when Equ.(3.27) is satisfied appro— 

ximately. 	For subsequent computational cycles Equ.(3.26) will be 

applied to replace Equ.(3.33) and the computation repeated until it 

converges. 

The computational procedure will be summarized as follows: 

(1) Compute PB  according to Equ.(3.24) and denote the column 

having the minimum PB value as the critical column. 

(2) Estimate the 0( values at top and bottom of the critical 

column b3 assuming equal distributions of S values between the 

critical column and its adjacent columns and determining the cor— 

responding 0( values from Table (3.7). 	The values of 0(tc and 

0(be  are then given by Equ.(3.30) and Equ.(3.31), respectively, and 

the initial P value is given by Equ.(3.33). 

(3) Evaluate the y values of all other columns in such a may 

that the P value can be maintained. 	The process will start 

systematically from the highest and lowest columns and work towards 

the critical column. 	This will result in the revision of the 0( 

values (and, consequently, the P value) of the critical column. 

(4) The final solution is reached when Equ.(3.27) is closely 

satisfied. 	Until then the value of P for the subsequent compu—

tational cycles will be given by Equ.(3.26) and step (3) will be 

repeated until the convergence is satisfactory. 

The process will be illustrated by the following example. 



(K=2/3) 

21,1.8L • 
(K=10/9) 

41 1 
Line of 	31,2.4L 
symmetry 	(K =5/4) 
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Example  

We shall determine the critical load of the symmetrical two-

storey frame previously investigated in Section (2.4). The frame, 

which is permitted to sway, is shown again in Fig.(3.11a) below. 

Since for this type of side-sway problem x = 6 for all beams (Table 

(2.2), type 4), S1  = 8.0 and S2  = S3  = 6.0; the equivalent column 

is shown in Fig.(3.11b). The following computational steps cor-

respond to those listed above. 

1 

P  

/ 	(1° ) 	cc/ 2tons , 
Given: 	(a) 

Fig.(3.11 

(1) Equ. (3.24) gives 

P
B
1 = (4/7)72E(31)/(2.4L)2 

	
0.3072EI/L2. 

Similarly, 4 = 0.621E1/L2  and 1°13  = 0.89712E1/L2; column 1 is 

therefore the critical column, 

(2) Since Y1:11  = -co Table (3.7) gives 0:131  = 1.0 and we need only to 

evaluate 0(tl. Assming 

(b ) 
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and 	St2 S2/2 = 3, Stl = Sb2 = 1/ = 4 

we have 

= 1 6 and 	= —2.7. = —4/1.25 = -3.2, - Y b2 

Consequently 

tl 	- = 0.63, OCb2  = 0.65, and 0(t2  = 0.62 

and Equ.(3.30) gives 

ni 	0.63 + 0.65 
—'t1 	O. 1 + 

= 0.71. 
0.62 

According to Equ.(3.33) 

P = P1  = (0.71)(0.30 )17-2E0,2 = 0.217T2EI/L2. 

(3) The evaluation of Y  values will proceed from column 3 to column 

1 which is the critical column. 	Thus we start the first cycle 

of trial—and—error (Table (3.8)) by letting 

P
3 

= P = 0.217T2EI/L2. 

Since 0(t3 = 0.81 corresponding to 7t3  = -9.0, we have 

b3 =P3 /b(t3P3 = 0.29 

and, from Table (3.7) yb3  —0.2. 	Equ.(3.23) gives 7t2  = —5.31  

thus 0(t2  = 0.72 from Table (3.7). - 

2  P2 	P = 0.21 7T Ea/L2  

so that 0(b2 = P2/'‘pi  t2rL2d3  . 0.47 

and, from Table (3.7) 7b2  —1.3 . 

Similarly we shall let 

Equ.(3.23) gives 7b1= -5.3; 

then C'tbl' —0.72 from Table (3.7) and P1  = 0.22 7T2E1/2 by. Equ. 

(3.25). 
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(4) The critical value of P is thus given by Equ.(3.26): 

	

P = (1/3) (0.21 + 0.21 + 0.22) J 	hI/t2  = 0.213 Tr2EI/L2. 

The solution obtained is deemed accurate enough since Eque(3.27) 

is closely satisfied; if another computation cycle is required 

step (3) will be repeated with P=0.21372E1/2 . 

The solution is thus 

	

P = 0.2137T2E1/L2  = 0.48(PE)CD 	28.4 tons, 

while the exact solution is 28.5 tons. 

Table (3.8) 

Cycle 1 

k S K I 0( P/(72EI/L2) k Pk/(ti EI/L
2) 

3 
6.0 

8.0 

0.67 0.89 
(-9.0) (0.81) 

0.21 —0.2 0.29 

2 1.11 0.62 -5.3 0.72 0.21 
—1.3 0.47 

1 1.25 0.30 -5.3 0.72 0.22 
(—ate) (1.00) 
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3.8 Single-storey multi-bay frames with V 0 0 and /o 0. 

Let us consider the frame consisting of Nc  columns shown in 

Fig.(3.12a),in which Ci, C2, C3  .... are numerical constants. 

  

 

IC 

  

   

(b) 

 

.171 

In general any column j (j = 1,2....dc) of the frame has 

Vj  0 0 and /Di r  0; thus neither Equ.(3.12) nor Equ.(3.21) is 

applicable in evaluating the load-carrying capacity of each column. 

An exact solution would have to equate to zero the sum of the end 

moments at each joint and apply the condition of shearing force 

equilibrium at the cross beam: 

Nc  
V = 	V = 0. 
	 (3.34) 

j=1 

This formal approach has been detailed by many previous investigators 

(for example, Goldberg (12)). 

We notice, however, that Equ.(3.34) can be satisfied in the 

mean if the whole frame is replaced by an equivalent column, as shown 

in Fig.(3.12b). 	By doing so individual joints of the frame will 

not necessarily be accurately in equilibrium but the bending moments 
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as a whole will satisfy Equ.(3.34). 	Consequently Equ. (3.21), 

which was derived under the condition of V = 0, will be applicable 

in estimating the average load-carrying capacity of the frame as a 

whole. 

If we denote, as in Section (3.7), 0(t  and 0(13  as the values 

of 0( at the top and bottom, respectively, of a column subjected 

to the condition of V = 0 and to 0, then at the jth column we 

have 

Cj  P = (0(tC( 7j2EI/L2)j 	j= 1....Nc. 
	(3.35) 

Since the support condition of every column is specified we 

shall first determine (0(b)j (j=1...Nc
) by Equ.(3.22), which was 

derived under the assumption that V = 0, or from Table (3.7). 

However, the values of (0(t)j remain unknown. 	
In order to estimate 

the average load-carrying capacity of the columns we shall assume 

that every unknown (0(t)j  can be approximated by one value 0(t, i.e., 

at 	CC  t1 	c(t2 

 

s'‘ tN 
(3.36) 

 

Then by summing Equ.(3.35) for all j the value of P may be approxi- 

mated by 

7r2EI  
L2  J  P 	 (3.37) 

N 

j=1 

N 
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It should be pointed out that an alternative approximation to 

P may be given by 

P 

 

nt 	 X21, b 	2 ' 1=1 L  
Ne  

>-"  C 
JA j=1 

(3.38) 

 

in which 

C(bj • (3.39) 
j:=1 

However, the value of P thus evaluated would in general be less 

accurate than that given by Equ.(3.37). 	The reason is that Equ. 

(3.37) retains as much of the characteristics of the individual 

columns as the process permits; this is an advantage for a frame 

of the type shown in Fig.(3.12a) where the values of 0(bj  may range 

from 1/4 to 1 (corresponding to pinned and encastre ends, respec-

tively), a variation of 400%. 

In order to evaluate 0(t 
we shall form an equivalent column 

(Fig.(3.12b)) having the property 

N 

K (3.40) 
j=1 

The value of S at the top of the equivalent column may be estimated 

as follows: the points of contraflexure of all beams are assumed 



to be at their mid-spans; thus if (7 K)bl, (7  K)  •b21 (7  K)b3 

denote the rotational stiffness of beams to the right of columns 

1,2,3...., then 

S N 	kVIC + fYV 4-Yle 1 4- 
l-b1 vibl-b1 /b2"b2/  "" 

7b(Nc-1)Kb(Nc-1) 
N -1 

iKbi . (3.41) 

If the beams composing the frame are free from axial forces then 

7bi = 6 
	

i = 1...(Ne  -1), 	(3.42) 

N -1 

S (3.43) 

and the y value at the top of the equivalent column is given by 

yt = - s/K • 
	 (3.44) 

Thus Oct  can be determined by Equ.(3.22) or from Table (3.7). 

It should be noted that the proposed approach is different 

from the approach of evaluating the critical load directly based 

on an equivalent column. The reasons are: 

(1) In the proposed method the only purpose of forming an 
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equivalent column with stiffness K is for estimating yt  and, 

therefore, 0(t. 	As 0( is generally insensitive to the varia— 

tion of y it follows that a rather poor approximation of K will 

not significantly influence the value of 0(t. 

(2) For a general frame (such as that shown in Fig.(3.12a)) 

in which support conditions of columns may be different (ranging 

from y = 0 to 7=-00 ), a direct equivalent column approach is 

inapplicable since the equivalent support condition for such a 

column cannot be properly determined. 	On the other hand the 

proposed method can handle this type of problem with considerable 

accuracy since the approach is founded on the prinCiple represented 

by Equ.(3.21), so that a value of 0( can be evaluated by separate 

consideration of the end conditions of any column; consequently 

the foundation condition of an equivalent column need not be 

specified since the determination of 0(t  is independent of the 

foundation conditions. 

It is thus seen that the proposed method is more versatile 

than the equivalent portal method (9), which is mainly applicable 

to frames composed of columns with equal lengths and uniform 

support conditions. 

In the general case when axial forces at the beams are also 

present, i.e., if beam i(_ i = 122.... Nc-1) is subjected to axial 

force C,.P (C,. DI 
 being a numerical constant) the corresponding 

DI  

value of ybi  in Equ.(3.41) will have to be modified from the basic 
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value of 6. 	The modifying factor is a function of Obi, where 

ICPI 
4 EI /bi 

and the modified Ibi is  given by 

(3.45) 

Ybi (3 
6 (3.46) 
cbi)  

(see for example Gere (19), p.182) in which cbi  is the stability 

fdnction, given by Equ.(2.1), of the ith beam. 

In general Obi  4- 1; then 0.333 -4  cbi  -4  0.358 and consequently 

i 
seldom differs much from the basic value of 6. 	A possible 

approach for solving this type of frame problem would be first to 

evaluate P in the frame with the effects of axial forces at the 

beams neglected (i.e., with all Ybi  = 6); this value of P would 

then be used to compute all Obi  values given by Equ.(3.45) and the 

modification to ybi  would be made according to Equ.(3.46). 	The 

analysis of the frame would then be repeated, with all previous 

values of yat the columns properly modified. 	Inmost cases the 

value of P thus evaluated would give a good approximate answer. 



(b) 

P 

Fig.(3.13) (a) 
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Example 

We shall determine the critical load of the three-bay bent' 

shown in Fig.(3.13a), not prevented from side-sway. 

For the equivalent column (Fig.(3.13b)) Ega.(3.40) gives 

K = 	(1 + 1  + 2 + 1) = 0.75 2  

and Eqq.(3.43) gives S = (12/4)(2.5) = 7.5 . 

Thus 4 = - 10.0 by Eqq.(3.44), and 0(t  = 0.822 from Table (3.7). 
The critical load evaluated from the equivalent column is, 

from Equ. (3.37) with 0(131  = 0(1,3 _ably = 1/4 and (Y 'b2 = 1/ 

1TT2EI (111 P 	 — 
= 	

,/ 
t 1,2 	4 + 4 T.6 ' 

= 0.112 1T2EI . 
L2  

) = 0.137 v\t 
IT2EI 

4 

The exact solution is P = 0.1131T7hi/L
2 



General multistorey multi-bay frames  

The method described in Section (3.7) for evaluating the 

critical load of a multistorey frame and the method described in 

Section (3.8) for evaluating a multi-bay frame can be combined 

to estimate the critical load of a multistorey multi-bay frame 

having Ns storeys and Nc columns (Fig.(3.14a)). 	Columns in 

each storey are first transformed into an eauivalent column 

(Fig.(3.14b)) according to the procedure described in Section 

(3.8), and then the vertical distribution of Y  can be estimated 

according to the procedure described in Section (3.7). 

 

j = 1 2 	3 ... 	Nc 	1/ 	 

17  

   

Ns 

  

   

• 
• 

         

	IF 	 

         

                   

           

	II 	 

        

4 

                  

3 

          

	II 	 

      

2 

                

           

	If 	 

       

k = 1 

                  

                      

                      

                

//Nil 

   

 

9 4; 

                

                      

                    

/le 

         

(a) 

            

                     

Fig. (3.14) 
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Thus if we denote (as in Equ.(3.25)) Pk  as the value of P 

estimated from the equivalent column at storey k (k = 1....Ns) 

then at the kth storey Eqq.(3.35) reads 

7.2EI )  CjkPk 	(0(t0( 71) L2  ,jk 	j = 17..Ne  . 

Observing that for any column connecting to the foundation 

0(b is known while for any other column neither 0(t 
nor b is 

known, 1.1.6 shall assume that at any storey k every unknown (0(t)jk  

and (0(b)jk  can be approximated by constant values (0(t)k and 

(0(b)k, respectively. 	Then by summing Equ.(3.47) for all j the 

value of Pk is given by 

(0( 7T2EI  
b L2 j 

(3.48) 

[CKt  0(b 	'//1  5 	:  C 

N 

	

	-2 M
i  Pm 

= 	„c i(  0 I  , 

_.31.  L 2  J j=1 	m 

(m.= 2,3....Ns) . 

In order to evaluate the values of (0(t)k and (0(b)k we shall 

form an equivalent column (Fig.(3.14b)) having the property 

N 
1 Kk 	Nc 

  

(3.49) k k= 1....Ns 

   

   

j-=1 

(3.47) 

{ 

P1  

 

j=1 

 

Nc  
> ci  

1 
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If we denote Sk as the value of rotational stiffness of an 

equivalent spring attached to the upper joint of the kth column 

then Equ.(3.41) becomes 

110-1 

S = N
c > 	)k 	k 1...Ns 

i=3. 
(3.50) 

The vertical distribution of Y  may thus proceed as in Section (3.7). 

However, in order to conform wit% the computational pattern 

established in Section (3.7) in initiating the value of P, we shall 

denote 

     

     

P1  

    

   

=1 

     

(3.51) 
Nc  

pB = 

j=1 
(m = 223....N s) 

so that Equ.(3.48)  may be rewritten in a single form, similar to 

Equ.(3.25), as 

Pk 	( °(t°(b P  )k 	k = 1...N . (3.52) 

It is observed that the actual value of 0(bl is immaterial since 

0(bl will be cancelled out in computing P1  by Equ.(3.52); we may 
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thus employ Equ. (3.39), namely, 

 

1 
N 

    

bbl =  

   

(3.53) 

  

bj 

      

for the purpose of estimating Pi . 

The process of transforming a multi—bay frame into an equiva—

lent column is thus as follows: 

(1) Compute the K value of the equivalent column at each 

storey by Equ.(3.49) and the equivalent spring stiffness at each 

floor level by Equ.(3.50). 

(2) Compute PB  values according to Equ,(3.51) and denote the 

column having the minimum PB value as the critical column. 

' After that the computational procedure follows exactly steps 

(2) to (4) listed in Section (3.7). 

The complete process will be best illustrated by the following 

example. 



L = 183 in. 
1 = 115 in. 	

Line pf 
symmd,try 

— 440 tons 	1 

2.00 P 
- 

4.28 I. 	(K=2.81) 

I,L 	I,L 
(K=1) 	(K=1) 

? 

5.95  p 

10.67 I 	(K=7.00) 

1.92  I 	1.81 I 
(K=1.86) 	1.03 L 

(K=1.75) 

9.88 P 

10.67 I 	(K=7.00) 

3.30 I 	2.36 I 
(K=3.40) 	0.97 L 

(K=2.44) 

13.82 P 

10.67 I 	(K=7.00) 

4.00 I 	2.80 I 
:K=4.14) 	0.97 L  (K=2.90) 

17.76 p 

10.67 I 	(K=7.00) 

5.24 I 	2.80 I 
OC=5.32) 	0.98 L 

(K=2.85) 

112E 
L2 

P 

2.97 

4.95 

6.91 

8.88 

S5 	 

Example  

We shall evaluate the critical value of P for the frame shown 

in Fig. (3.15a);the frame is allowed to sway. 	The axial forces 

of the columns are as shown and those for the beams are zero. 

Reference: Bowles and Merchant (6), and McMinn (14). 

Given : 

1-1  1.53 L 1.53 L 

  

(a) 
	

Fig.(3.75) 
	

(b) 
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Computational steps: 

(1) Transform the frame into an equivalent column (Fig.(3.15b)): 

(a) Equ.(3.49) gives 

K1 
 = (1/3) (2.85 + 5.32 4-2.85) = 3.7 ; 

similar computation gives 

K2 = 3.3, K3  = 2.8, K4  = 1.8, and K5 = 1.0 

(b) Equ.(3.50) gives 

S1  = S2  = S3  = S4  = (12/3)(7 + 7) = 56.0 

while 5
5 
= (12/3)(2.81 + 2.81) = 22.5 . 

(c) Equ.(3.51) gives, with (0(15j)1  = 1)  

PB 
1 

(2%  (La).*  5,2 
/%0 .98,  0.98 	( TT2EI  ) 

(2)($.88)+ 17.76 
ir
2a 

0.317 

similarly P123  = 0.370712E1/L2s  P13 = 0.4321T2EI/t2, 

PB  = 0.4381T2E1/t21  and PB  = 0.7501T2BI/L2. 

Thus column 1 will be regarded as the critical column; these 

values of PB, as well as those of S and K, are recorded in Table 

(3.9). 	The process of determining the vertical distribution of 

Y for the equivalent column then follows steps (2) to (4) listed 

in Section (3.7). 

(2) Estimate the 0( values at the ends of the critical column. 

In this case, since column 1 is connected to known support 
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condition, we need only to estimate the value of 0(tl. If 

we assume equal distribution of Si  between column 1 and column 

2, then Equ.(3.30) gives 

= 1.58/(1 4-1.08) = 0.76 C(t1 

and, according to Equ.(3.33), 

P =-: P1  = (0.76)(0.317) 712E1/2 = 0.241 11Pla/L2.' 

(3) The evaluation of )' values will thus proceed from column 5, 
which is connecting to the roof, to the critical column. Thus 

we start the fiitt cycle of computation by letting 
A. P

5 
= P = 0.241 TT2  .61/112  • 

Since 0(t5  = 0.906 corresponding to yt5 .:-S5 = 	we have 

0(b5 = P5  /(0(t5 5  
PB) = 0.355 

and, from Table (3.7) 45 h —0.5 • 	Equ.(3.23) then gives 

Yt4  = —31.0, thus 0Ct4  = 0.932 from Table (3.7). 

Similarly we shall let 

P
4 

= P = 0.241 1-f2 	
2 

 

thus 0(b4 = P4AtAt4P4 = 0.590 

and, from Table (3.7) 7b4  1-2.6 f 
	Equ.(3.23) gives 7t3 

—18.6, thus C<t3  = 0.892 from Table (3.7). 

Subsequent computation for the remaining floors will be 

similar to that described and the result is clearly shown in 

Table (3.9). 	After OCti  is thus revised we have, by Equ.(3.25), 
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P1 = 0.26072E1/L2. 

(4) The critical value of P is thus given by Equ.(3.26): 

P = (1/5) [ (4) (0.241) + 0.260] 1r2EI/L2  = 0.245 11-2E1/2. 

The second cycle of computation starts from step (3) with 

P = 0.245 TT2EI/L2- 2A. 2 The subsequent solution of P = 0.2471T 11;1  /JJ 
is considered accurate enough since Equ.(3.27) is approximately 

satisfied. 	If another computation cycle is required step (3) 

will be repeated with P = 0.247 IT2EI/L2. 

The critical value of P is thus given by 

. P = 0.2471T2EI/L2  = (0.247)(440) tons 

= 109 tons . 

For comparison, Bowles and Merchant employed a relaxation 

method and obtained P = 107 tons while McMinn applied the equivalent 

portal method with a matrix approach and gave P = 112 tons. 
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Table (3.9) 

Cycle 1 2 

k S K 
Pt.B L2 • 

v• 
I OC 

Pk L2 
Y 0: 

Pk L2  
'"--*".--- 
ii' 

0 
 BI Tr2EI 1r2EI 

5 
56. 

56. 

56. 

56.. 

1.0 0.750 
(-22.5) (0.906) . 

0.241 
(0.906) 

0.245 -0.5 0.355 -0.5 0.361 

4 1.8 0.438 
-31.0 0.932 0.241 -31.0 0.932 0.245 
-2.6 0.590 -2.7 0.600 

3 2.8 0.432 
-18.6 0.892 0.241 -18.6 0.892 0.245 
-3.1 0.625 • -3.3 0.638 

2 3.3 0.370 
-14.3 0.866 

0.241 
-14.1 0.865 

0.245 -6.2 0.750 -6.8 0.765 

1 3.7 0.317 
-9.6 0.816 0.260 -9.1 0.808 0.056  

(- co 	) (1.000) (1.000) 
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CHAPTER IV 	NON-AXIAL LOADING PROBTRMS  

IV.1 GENERAL DESCRIPTIONS  

4.1.1 The method  

An iterative method is developed to determine the equilibrium 

paths of rigidly jointed frames under non-axial loading,according to 

small displacement theory. 	The characteristic of this approach is 

that a reference deformation parameter, rather than the load factor, 

is treated as the independent variable. 	The usual approach of 

incrementing the load factor has to limit its increments to small 

steps, or there is a danger that the assumed load factor might be 

greater than its maximum equilibrium value. 	The present method is 

aimed to avoid such a difficulty: by incrementing from zero the value 

of a reference deformation parameter /ow  as shown in Fig. (1 	a 

continuous equilibrium path will be determined. 

The main advantage of this approach is that bifurcation buckling 

can be solved directly, without resorting to laborious formulations 

based on the existing bifurcation criteria such as that proposed by 

Easur et al (11). 	In this thesis the proposed method will be 

applied to rectangular frames which suffer no side-sway deflection 

prior to bifurcation (Fig. (4.1.2a)). For such a frame the bifurca-

tion load may be found directly by assigning an infinitesimal value 

to the reference side-sway parameter ply  as illustrated in Fig.(4.1. 

2b). 
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This approach of evaluating the bifurcation load for rectangu- 

lar frames may be extended to 

gable frames, in which pja  is 

example, Fig.(4.1.3a) shows a 

include other type of frames, such as 

non-zero prior to bifurcation. For 

symmetrical gable frame under symmetri- 

cal loading; if the sum of the side-sway rotations of the two stan-

chions is plotted against the load factor A (Fig.(4.1.3b)), the 

bifurcation load may be found under the condition (p1+ t02) k 0. 

In general, if the deflection mode of a symmetrical frame under 

symmetrical loading is expressible in terms of a symmetrical mode 

function f and an antisymmetrical mode function fa' so that 

It= fs 4-fa, 

then the critical load factor can be evaluated by assigning an infi- 

nitesimal value to fa in the f 	plot, provided that after bifur- 

cation the frame deforms in an antisymmetrical mode (Fig.(4.1.4)). 

 

OR 

   

   

   

(a) 	
Fig. (4.1.1) 
	(b) 
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A 

PR ›. 
(a) 
	

(b) 
Fig.(4.1.2) 

   

  

P1l-1°2 .  

   

(a) 
Fig.(4.1.3) 

(b) 

    

x 

 

       

    

1 

  

      

  

el , 

 

	> 

   

(a) 

	

	(b) 
Fig.(4.1.4) 
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4.1.2 The frame and the loading  

Theoretical derivations are based on a "viaduct" (i.e., a 

single—storey continuous rectangular frame) with non—sinking supports; 

the general assumptions and limitations of the analysis were listed 

in Section (1.7). 

The following facilities are provided in the derivation: 

(1) The number of spans is unlimited. 

(2) The columns may be of unequal lengths, different materials 

and different sectional properties; the same applies to the 

beams. 

(3) Bases of columns may be hinged or fixed. 

(4) Members may have initial (imperfect) slopes. 

For the sake of clarity in derivation, the structural members 

and joints of a viaduct will be designated by numbers as shown. in 

„joints., 
2 -- 	"*4 	 6 	a  

(2) 	 (4) 	(6) 
(3-v) 	

(5) 	
(7) 

\members  

(3) 	7 

1 

3 	
Fig.(4.1.5) 
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Loads'are proportional and are given in terms of a common load 

factor A and a common constant multiplier PER  which is chosen in 

this thesis as the Euler load of a reference column. 	If N 

denotes the number of vertical loads acting on beam m then vertical 

loads are given in the form: 

m =204.... 

Distributed loads are to be simulated by a series of point loads. 

Horizontal loads are assumed to be applied only at the beam 

level; the sum of these horizontal loads is given in the form: 

A 1h PER 

in which W
h 
is positive when acting from left to right. 

The proposed method, though derived on single-storey frames, 

can be readily extended to multistorey frames which may be treated 

as being compounded of single-storey frames. 	For example, if Ns  

denotes the number of storeys in a rectangular frame which is composed 

of inextensible members and allowed to sway, it then has Ns  degrees 

of freedom of joint translation at floor levels. 	One of the joint 

translations may be assigned as the reference deflection parameter 

foR; the remaining Ns-1 joint translations and the common load factor 

may be found from conditions of shear equilibrium at floor levels 

(Ns  of them) and the A. -/oR  curve may be plotted. 

k = 1,2....Num  
A YTS  PER  
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IV.2 	EQUILIBRIUM PATHS FOR FRAMES WITHOUT SWAY 

4.2.1 The procedure of solution 

The procedure of determining the equilibrium paths for frames 

without side-sway is as follows: 

(1) If the frame has a degree of indeterminacy N choose N statically 

independent bending moments Qn  (n = 1,2...N) as the "indetermi 

naciesn. 	For uniformity of analysis these bending moments are 

to be chosen at the ends of members (the numbering system for 

members and end moments is as shown in.Fig.(4.1.5)). 

(2) Select a reference joint JR, and assign its rotation as the 

reference rotation parameter GR. 	(In general, any internal 

joint may be selected as the reference joint; the selection is 

subject only to one condition, that there is at least one non-

zero vertical load acting on a beam framing into that joint. 

The reason for this requirement will become clear in the next 

section when k is being evaluated.) 

Choose a small but non-zero value of AR. 

Initiate the values of the load factor A, and the indeterminate 

end-moments. 

Evaluate the axial force in each member in the form 

= 	 pip 4.  

114  n 'n 

where rn 
is an influence coefficient. 	This formula for P is 
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only valid for non-sway cases. 

(6) Evaluate the stability functions of all members, and the primary 

bending terms for all loaded beams. 

(7) Evaluate end-moments and joint rotations. 	Conventional end 

moment expressions are used (See, for example, Bleich (4)) with 

terms for initial imperfections and for primary transverse 

loading. 	These expressions are derived based on small-deflection 

assumptions. 	If the condition of moment equilibrium is applied 

at all joints (J of them) except the reference joint, 	joint 

rotations can be evaluated. 	These joint rotations, incorpora-

ting the chosen value of OR, are then used to evaluate the end 

moments (including indeterminate end-moments). 

(8) To facilitate convergence of iteration, the indeterminate end 

moments may be substituted back to step (5) to modify the axial 

forces. 	If this is to be adopted, step (5) to step (7) will be 

repeated until the values of all indeterminate moments have 

converged satisfactorily. 

(9) Apply the condition of moment equilibrium at the reference joint 

Ja, then the only remaining unknown - the load factor X - may be 

evaluated. 

(10) Since this iterated value of A. is in general not the correct 

one, it is to be substituted back in step (5) to re-compute the 

axial forces. 	Thus step (5) to step (9) are to be repeated 

until the value of A. converges. 	Then a point on the A, — OR 
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curve is located. 

(11) The subsequent points on the A- OR  curve can be similarly 

found, by incrementing the reference rotation parameter OR  

in step (3). 	It is to be noted that step (4) can be hence- 

forth omitted since the initial values of the load factor and 

the indeterminate moments are conveniently furnished by the 

corresponding values computed for a previous point. 

42.2 Formulation 

Theoretical derivations will be given in this section for non- 

axially loaded frames prevented from sway. 	Computational steps 

following each subtitle of this section are corresponding to those 

listed in Section (4.2.1). 

Evaluating the degree of indeterminacy' (step (1)) 

Let N denote the number of members in a frame, J the number of 

joints where members meet (i.e., internal joints), and H the number 

of hinges. 	Then the number of indeterminate end-moments N is given 

by: 

N= 3(M - tr) - H. 	 (4.2.1) 

Evaluation of axial forces (step (5))  

The axial force in the ith member (i = 	of the frame 

(Fig.(4.1.5)) under a specified loading pioportional to a load factor 

may be expressed (exactly) by equilibrium considerations as 
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P. = 2L P? +Q ...41 in n n   (i = 	 (4.2.2) 

in which 

P? 	= force at member i when the specified loading acts on the 

frame, with Qn  = 0 (n = 

Qn = the nth indeterminate end-moment. 

rin = influence coefficient of the axial force in member i due 

to Q. 

The influence coefficients r can be evaluated by statics. 

Let PER denote the Euler load of a reference column having a 

length LR, modulus of elasticity ER  and second moment of area IR  (The 

external loads have already been referred to this same value PER  in 

Section (4.1.2) above). 	Let 

F. 	= P. /P ER' 

Pi = off,
Pi ER' 

rin  = rinLR, 

and 

Qn = Qn/(PERLR),  

then Equ.(4.2.2) in non-dimensional form is 

P 	20? + rin9n (i = 1...m). 	(4.2.3) 
n=1 



1 I M A) 'B 	+ ®AB 0/1 = if (c NAB - s  

913 = (c MBA - 5  NAB)  + 0BA 
(4.2.5) 
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Evaluation of stability functions (step (6))  

The 0 value of the ith member is 

= j( 	Li 	P (111). L PER EI I i 

7d(IT1). (i = 
" 	

(4.2.4) 
EI 

in which E.i- I-E. 	Ii= 	and Li LiA.R. 	The value of 03.  

may be substituted in Equ.(2.1) and Equ.(2.2) of Chapter II to compute 

stability functions c and s, respectively. 

Evaluation of primary bending terms, end-moments and joint rotations  

(steps (6) and (7))  

Consider a typical linear elastic member connecting joints A 

and B as shown in Fig.(4.2.1). 	All quantities are to be considered 

positive in the senses shown. 	Provided that the square of the 

slope is small in comparison with unity the angular displacement at 

joints A and B are (by modifying Equ.(2.3) of Chapter II): 

in which eB 	B and 95A  are primary angles at ends A and B, respectively, A  

due to lateral load and member imperfections, with joints A and B 

pinned; stability functions c and s are as defined in Section (2.2). 



LK Fig.(4.2.1) 
V 

11AB 

P 
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Equ.(4.2.5) may be transformed to give 

(C 0°AB  4-8 0;13A)] MAB =2 K  EC QA 4'S QB - 

MBA  =K rC GB 4-S A - (C SBA  4-8 G°  AB 

in which C = c/(c2- s2) and S = s/(c2- s2). 	We will denote 

(4.2.6) 

NI = m/(pERLR), 

= KAPERN), 

	

fn ° 	° 

TAB =2  " 'AB ' ®BA) 

	

T = (C e 	0°  BA " BA 	AB" 

then Equ.(4.2.6) becomes 

i MAB = K (C GA + S G-Id  - TAB) 

RBA = I (C GB + S G.A  - TBA'  ) • 

and 

(4.2.7) 

(4.2.8) 

To evaluate ®AB 	B ando A  we shall denote by uk and vk the location 

factors of the lateral load Wk (k = 1,2...) acting on the member, as 
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GAB and shown in Fig.(4.2.2), and by GAB  and GBA  the initial imperfection 

angles of the member at joints A and B, respectively, prior to the 

application of loads. 	Then for the case of P>0 the values of 

GAB 	B and Go A are given (see, for example, Timoshenko (1)) by 

0° 	si1  

	

AB   wk 
f 	v  . 

	

k 	snO 	k) 4' GAB 
l(vkY)  
i

] 

 

>t  if F 	 k 

  

(4.2.9) 
oo 
BA 

sin(ukY) 

( sink 	uk)  
fio + GBA 

 

    

in which summations are extended over all lateral loads acting on 

the member. 	In the case of P< 0, hyperbolic functions should 

replace all the circular functions in Equ.(4.2.9). 

For a member with an encastre end B the expression of moments 

are given by Equ.(4.2.8) with GB  = 0. 	For a member pinned at end 

B, I4BA  = 0 and the expression for MAB  may be found by substituting 

B from the second of Equ.(4.2.8) into the first: 

MAB 	( 16  G 4-T 	T ) c A 	BA C 	AB 

which may be simplified, in view of Equ.(4.2.7), to 

ARAB  = 	c (0A  — GAB) 
	 (4.2.10) 

P 

Fig.(4.2.2) 
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It was mentioned in Section (4.1.2) that horizontal loads of 

the frame are to be applied only at the beam level. 	Thus at each 

end of every column we have 

oo = 

When end-moments are expressed in terms of joint rotations by 

Equ.(4.2.6) the condition of moment equilibrium at every internal 

joint except the reference joint will give J-1 equations for the 

J-1 unknown joint rotations. 	After that the end-moments, including 

the indeterminate end-moments Q, may be evaluated. 

Evaluation of 7L (step (9))  

For the purpose of illustration we shall assume that member 2 

of the frame shown in Fig.(4.1.5) is subjected to non-zero vertical 

loads. 	Then joint 2 may be selected as the reference joint, at 

which the condition of moment equilibrium reads 

H21 4-11̀ 24 = 0 

or 

221+K2 (02 g2 32 04 -T24) = 	
(4.2.11) 

in which 

o 	o T24 = C2 024  + S2 042  

or, in view of Equ.(4.2.9), 

N 

C2p::W2k(sisl(  ilnZ T24 
= 	&°'2)  _ 	elo 

vk)  4. 024 77 F2 

4-S2[

w2. 	sin(uk02) 
;>r2k(  sin02 
	- uk) +9421d} 

k=1 



If we denote 

D24 = T24A. 
	 (4.2.12) 

then the load factor maybe found by Equ.(4.2.11), in view of 

Equ.(4.2.12): 

106 

A 

 

• 1 [11 724 4.  7202 + S22 	°id . (4.2.13) 
K2 D24 

The iterative process  

The process of locating a point on the A.- R curve by 

iteration is summarized in the simplified flow-chart shown in 

Fig.(4.2.3). 



Qn 
converges 

x 
converges yes Compute D 

and A 
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Compute P. and ril; 

n=1... N;  

a value of 8 

Compute stability functions and 
values of T for all members 

Solve simultaneous equations 
for 8 (J-1 of them) 

Proceed to next point 
on the 2L— 8 curve 

I 

A 
yes 

no 

Fig.(4.2.3) Iteration flow—chart for non—sway problems 
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Example 

The frame shown in Fig.(4.2.4) is prevented from sway. 	The 

E,I,L values are as shown; there is no initial imperfection of members. 

The degree of indeterminacy for such a frame is obviously one. 

If the indeterminacy Q is selected as shown in Fig.(4.2.5), then 

-,P4 and ir w(1-u). 1 

Since the load is given in terms of PEl' column 1 is thus the 

reference column. 	If we denote Li 	a. =L."1  (i=1,2), then the values 

of rim  are as shown in Table (4.2.1), which was prepared according to 

Fig.(4.2.6). 

     

Ql  

   

     

     

x Fig.(4.2.5) 

Table (4.2.1) 	FiF.(4.2.6)  

The value of r. 	The value of r. in 	 in 

i.IN 1 2 

1 —1/ 172  —1 
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The axial force is thus, from Equ.(4.2.3), 

= x+ 	7:5-  i 	1 (1=1,2). 

Theseforcesareusedtogeneratestabilityfunctionsci ands.(i= 

1,2), with O. given by Equ.(4.2.4). 

Since joint 2 is the only internal joint in the structure the 

value of X can be found directly by applying the condition of equi—

librium of moments at that joint: 

1721  4-R2  = 	.0 +17 1
2 4 	1 c1  2 	2 c (92—  92

4)  

in which 024 
is given by Equ.(4.2.9): 

= 0 	(4.2.14) 

oo 
24

2 

I sin(1—u)0, 
VI si 	— (1— u)] n02 	 

If we denote d = 0°24 
 /X , then Equ.(4.2.14) may be solved for A as 

(1 11 °2  ) d2 -F._ • K2 c1 

For the case when the E, I, and L values are equal for the two 

members and with W = 1 and u = 0.2, the numerical solutions are given 

in Fig.(4.2.7), where 	is plotted against 02, Ql, 11  and F2; the 

accuracy of the solutions will be revealed by a model test to be 

shown in Chapter V. 

The number of iterative cycles required for a satisfactory 

convergence increases as X approaches its maximum equilibrium value. 

As X increases, and convergence becomes more difficult, increments 
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of the reference deflection parameter may be reduced to smaller 

values to facilitate the convergence; the computation finally ceases 

when further reduction would be impracticable. 	In this example 

the computation stops at 82  = 0.96; the corresponding value of A. 

is 1.56 which is about 84% of the maximum value obtained by Lee et al 

(28). 
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IV.3 	EQUILIBRIUM PATHS FOR FRAMES WITH SWAY 

4.3.1 The procedure of solution  

The procedure follows closely the procedure outlined in 

Section (4.2.1) for frames without sway: 

(1) If the frame has a degree of indeterminacy N choose N statically 

independent bending moments as the nindeterminacies". 	For 

uniformity of analysis these bending moments are to be chosen at 

the ends of members (the numbering system for members and end-

moments is as shown in Fig.(4.1.5)). 

(2) Assign the side-sway rotation of a column as the reference sway 

parameter ioR  (the external loads have already been referred to 

this same column in Section (4.1.2) above). 

(3) Choose a small but non-zero value of ,o R.  

(4) Initiate the values of the load factor A and the indeterminate 

end-moments. 

(5) Evaluate the axial force at each member as given by Equ. (4.2.2), 

with the addition of a new term representing the influence of the 

axial force due to differential movement of the ends of members 

in the frame. 

(6) Evaluate the stability functions of all members and the primary 

bending terms of all loaded beams, as in Section (4.2.1). 

(7) End-moments are expressed in terms of joint rotations, initial 

bending moments and differential movements of the ends of the 
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members. 	Again, expressions are derived according to small— 

deflection assumptions. 	Rotations at internal joints (J of 

them) may be evaluated by applying the condition of moment 

equilibrium at all internal joints. 	These joint rotations 

are then used to evaluate end—moments (including indeterminate 

end—moments). 

(8) To facilitate convergence of iteration the indeterminate end—

moments may be substituted back to step (5) to modify the axial 

forces. . If this is to be adopted step (5) up to step (7) will 

be repeated until the values of all indeterminate moments 

converge. 

(9) Apply the condition of horizontal force equilibrium at the cross 

beam to evaluate the remaining unknown, the load factor A 

(10) Since this value of A. is in general not the correct one it is 

to be substituted back in step (5) to re—compute the axial forces. 

Step (5) to step (9) are repeated until the value of A. converges; 

a point on the A (DR  curve is then located. 

(11) The subsequent points on the A -foR  curve can be similarly 

found, by incrementing the reference sway parameter (oR  in 

step (3). 	It is to be noted that step (4) may be henceforth 

omitted since the initial values of the load factor and the 

indeterminate-  moments are conveniently furnished by corresponding 

values computed for a previous point. 
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4.3.2 Formulation 

Theoretical derivations will be given in this section for non- 

axially loaded frames subjected to sway. 	Computational steps 

following each subtitle of this section correspond to those listed 

in Section (4.3.1). 

Evaluating the degree of indeterminacy (step (1))  

Again, if N denotes the number of members in a framel.J the 

number of internal joints and H the number of hinges then the number 

of .indeterminate end-moments N is given by EqA.(4.2.1), namely, 

= 3(11 	J) - H. 	(4.3.1) 

Evaluation of axial forces (step  (5))  

As a frame sways there is differential movement of the ends of 

each member in the direction normal to its original centre line. 

Let S represents such a differential movement at the jth member 

= 1...M); then the induced bending moment at member j caused by 

8.isequaltotheproductoftheaxialforcePj and054this bending 

moment will in turn induce axial forces in other members. 	Thus the 

axial force in the ith member of the frame is given, exactly, by 

Equ. (4.2.2) with the addition of a new term: 

N 

	

P . 	 PO.  + 

	

1 	 I 

rin  Qn  + 

 

'X# . P 
 J 1J 	J 

(i=1...14). (4.3.2) 

  

The coefficients 	can be evaluated by statics. 
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If the frame is to be composed of inextensible members then 

the differential deflections Sof all columns are the same and those 

of all the beams are zero. 	Thus, following the notation system 

shown in Fig.(4.1.5), - 

S1= 53 - 	=.... = 
(4.3.3) 

= 	= 	= 0 
2 	6 "•• 

and Equ.(4.3.2) can be simplified as 

N 	M  
AP? + rin Qn  + S >  1/. P • 

11=-1 	j=113 
(4.3.4) 

Let PER 
denotes the Euler load of the reference column having 

length LA, modulus of elasticity ER  and second moment of area IR, and 

let 

Pi = pi/PER, 

PZ/PER,  

ri  = r. n 	inL.R 2  

Qn = Qn/(PERI1)2  

7k-  ij=  %ijI1R2  
and 

PR = 6/LW 

then Equ.(4.3.4) may be non-dimensionalized as 
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- 

157'  = 	12117.' 1-  n=11111 11+ (DR  j=1013xi j  Fj 
(1 = 

(4.3.5) 

Evaluation of stability functions (step (6))  

The 0 value of the ith member is given by Equ.(4.2.4), namely, 

csi== • - j ( a)
1  

. L.  
El l  

(i = 	(4.3.6) 

in which E. = Ii  = 	and L. = LiArt. 

Stability functions c and s may then be computed according to 

Equ.(2.1) and Equ.(2.2), respectively. 

Evaluation of primary bending terms, end-moments and :joint rotations  

(step (6) and step (7))  

If the linear elastic member shown previously in Fig.(4.2.1) is 

to have a rigid-body rotation to as shown in Fig.(4.3.1), the angular 

displacement at joints A and B will be given by Equ.(4.2.5) with the 

addition of a new term: 

=(c sM +0°  A K 1 MAB 	BA AB 

9B 	
1 = (c MBA  •- s MAB  ) + BA  + 1 

(403.7) 

in which AAB 	B and 0o A are, as defined in Section (4.2.2), primary 

angles due to lateral load and member imperfections, with joints 

A and B pinned. 

+ ro 



[ OA+ S GB— (C 8°AB  +S eA  ) .B 

[c eB+ s GA— (C e°BA  + s G°AB  ) 

}IAB = K 

MBA K  
(4.3.8) 
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P 

Fig.(4.3.1) 

Equ.(4.3.7) may be transformed to give 

L 

in which C = c/(c2- s) and S = s/(c2- 52). 	Again, if we denote 

fr = mfip Lit), 

= ic/(p LR ), 

and 

TAB := (a 43AB+ s CPBA )  

TBA = (C eA 	A + s eB  ) B  

then Equ. (4.3.8) becomes 

HAB = K [a QA+ S  QB- TAB

ITBA :--- it-  [ a QB+  S  QA- TBA- 

(4.3.9) 

(4.3.10) 



sin(vk0) 

Wk(sin 0—  "k
) + 0

AB 
k 

,.^Xo "BA  
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The values of o 
AB 	B and 	for the case of P>0 are given by 

Equ.(4.2.9): 

(4.3.11) 

in which summations are extended over all lateral loads acting on 
"aci  

the member and CAB and  0BA were defined as the initial imperfection 

angles of the member at joint A and B, respectively. 	In the case 

of 1/<:0 hyperbolic functions should replace the circular functions 

in Equ.(4.3.11). 

For a member with an encastre end B the moment expressions are 

given by Equ.(4.3.10) with 9B  = O. 	For a member pinned at end B 

we have IBA  = o/  and the expression for Fl may be found by substitu- 

ting 	

AB 

OB  from the second of Equ.(4.3.10) into the first; after re— 

arranging we have 

MAB = K —c  (AA— f — AB 
	 (4.3.12) 

If all horizontal loads on the frame are to be applied at the 

beam level we have, at each end of every column, 

go 

After expressions for the end-moments have been written down 
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for all beams and columns the conditions for moment equilibrium at 

every internal joint will give J equations for the J unknown joint 

rotations. 	The end-moments, including the indeterminate moments 

Q, may be evaluated once these equations have been solved. 

Evaluation of A (step (?))  

If the horizontal load AVER  is to be applied at the beam 

level the equilibrium of horizontal forces acting on the beam gives 

6c24- 1721) - 	(R344. 2.43)  
- 	

+ P3  + + -AWh = 0 fl+ 	
3 

	/-3 

or 

(C2- 1124)  ÷ 07311.-  R42-  1714 	> s 
1 	L3 	

+ 4wh = 0 
j=1;3 .3 Pi 

which will be regrouped to ensure convergence of iteration as 

(4.3.13) 

21. 4. 2i46 _K.._ 
1", 

L3 

	

2 	_34- 11  ei 	+ 	42  

	

Ll 	17
3 

) 

(4.3.14) 
If we denote 

- 	.- 	.- 

1 
 m24 :-.: 11244' K2T24 
n46 --.= 1746+ ri4T46 

and 

{

D24 = T24/A. 

D46 = T46/A- 
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the left-hand-side of Equ.(4.3.14) may be rearranged as 

•m• 	.04 

M211 ÷...) - X(2-.3) -1--AD 	•••) 	A"h • — 24 - 4 L3Ll   1 	L3 

Thus Equ.(4.3.14) may be solved for A in the form 

[1112_2m  2(m+1) . ii2m-fi 2 ...-1. - '7'2K2 -1-1 1,. 	2r, 
r 	r 2m--1 	 2m4-1 

F1 	 k 
, az 	, za P2m+i. 	P  ,-r• 	1. 1)  
'1 

  

K2m 	+ Wh 
i2 —1 

 

  

(4.3.15) 
m=1 

  

in which Mb  denotes the number of bays in the frame. 

The iterative process  

The process of locating a point on the A.-/oR  curve is 

summarized in the simplified flow-chart shown in Fig. (4.3.2). 



	

Compute 	

1 

P, rin 

and 1 

	

ii  / 	j=1„3. 

2  i=1...M 1  

Compute indeterminate 
moments 9, (n=1...N) 

A 

Compute m, 
and A 

yes 

Initiate A. and 
set (41.= 0. (n=1..N) 

Fix a value of /oR 

Solve simultaneous equations 
for P. (1=1...24) 

Compute stability functions and 
values of T for all members 

Solve simultaneous equations 
for 0 (J of them) 

Proceed to next point 
on the X /°R curve 
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Fig. (4.3.2) Iteration flow-chart for sway problems 



(1) 

NIIPEl 
uL2 	 

(2) 	(4) 
6 

(5) 

1  \members 	5 
'43) 

3 

Fig.(4.3.3) 
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Example  

We shall consider the two—bay frame shown in Fig. (4.3.3). 

For each frame member the modulus of elasticity, second moment of 

area and length are given as E1, 1., and Li, respectively, with 

i = 	there are no member imperfections. 

The degree of indeterminacy for such a fraMe, from Equ.(4.3.1) 

with H = 5, J = 3, and H = 3, is 

N = 3(5-3) - 3 = 3. 
If the indeterminacies are selected as shown in Fig.(4.3.4) 

then we have 

Zi1 = i24 

Zi2 = R/.4.6 

Q3 = E64 

  

PID  = W(3. u) 

3 
 = Wu. 

is° 	4 	5 = 	= 	= o . 
2  

and 

 

 

 

  

  

4V-7% 

Fig. (4.3.4) 
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Since the load is given in terms of PEl  the first column is 

therefereneecolumn.'lfwedenoter.=1,./t1  (i=1...5) then the 

values of rin  are as shown in Table (4.3.1); rig  were prepared 

according to Fig.(4.3.5). 

Table (4.3.1) The values of rin  

IX. 
1 2 3 4 5 

1 (C3-1)/ E2  -1 (1- 173)/ 1:2 0 0 

2 1/ L2  0 -I/ L2 - 1/ L4  0 1/ L4 
3 L3/(E2E5) o -1/ 14-173/( 5).  1/ L5  1/  L4  

The values of ;15.. are as shown in Table (4.3.2). ij 	 For example, 

if 1,15  (i=1...5) is to be computed, we would set P5F5  (see Equ. 

(4.3.2)) equal to unity and the PS values of all other members equal 

to zero; this is equivalent to applying to member 5, alone, a positive 

(clock-wise) unit moment, as shown in Fig.(4.3.6). 	The forces 

induced at other members due to this unit moment can then be evalu-

ated by statics. 

Table (4.3.2) The values of 17/ii  

1 2 3 4 5 
1 -13/ r2  1 E3/ I,2 0 0 

3 -1/ 172" 0 1/ ri2 	• 0 0 

5 473Ai:21:5) 0 r3/(1721:5) -1/ f,,- o 



124 

Fig.(4.3.5) Fig.(4.3.6) 

The axial forces are thus, from Equ.(4.3.5), 

3 	5 
ArI  Yrin%  . 	. 

n=1 	,1;3  iJ 
(i=1...5). 

Stabilityfunctionsci ands.(i=1...5) and thus Ci  and Si  may 

now be computed, with 

= Id(
E.1  f 

). L.  

in which E.I  = E./E1  and T. = I./I1  (1=1...5). 

Bending moments for the columns are given by Equ.(4.3.12) and 

those for the beams by Equ.(4.3.10); for example, 

21 — — Kl c  L- (Q2—  01),  

R24 	K2  (C2e2+ 32047  T24), 

in which T24 
is given by Equ.(4.3.9), in view of Eciti.(4.3.11): 

[sin(17-u)95 2(1- n) 	s  sinuV2  _ u  
124 	1,7  C2 sinc-- 	2 sin02 

2 

for P2>O. Hyperbolic instead of circular functions should be used 
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for the case of 72< 0. 

Angles of rotation at any joint are computed by the equilibrium 

of moments acting at the joint. 	For example, at joint 2 we have 

M214.1124--= 
0; this gives 

9 = 	12(T24 S294)  
2 	— Kr/el  rz 2  C2  

Similar expressions for 04  and 06  can be written, and they are 

to be solved simultaneously with the expression for 02.- 

With joint rotations thus determined the end-moments may be 

computed, and the load factor is given by Equ.(4.3.15) 

Wh= 0 Tc..2  if3 4  = ri56  = 0, arid T46  = D46  2-- 0: 

11//, 2
+  m46 	 5 _ 

1:5
>:;. P3 P 

=  1. 	
+ 

1  

with lib= 2, 

 

K2 D21, 

  

 

Ll  

  

in which 

   

m24 
=1/44' 12T24 

{ 

— 
m46 22  M46 	

and 	

D24  = T24bk, 

D
46 

= T46/  • 

For the case of equal E, I, L values for all members, and with 

VT= 2 and u = 0.5, the numerical solutions are given in Fig.(4.3.7). 

The computation stops at 'of= 0.170 (the corresponding X= 0.233). 

The accuracy of the method for sway problems will be investigated by 

model tests, to be discussed in Chapter V. 
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IV./ 	BIFURCATIONAL BUCKLING 

Previous investigators (see Chapter I) have given methods for 

finding bifurcation points for non-axially loaded frames of an 

appropriately symmetrical nature. 	Unfortunately these methods 

involve a great deal of labour if used to analyse frames of any 

complexity, and the approach to be suggested here is believed to be 

a considerable improvement in this respect. 

The distinction between previous methods of solution and the 

proposed one is as follows: 

(1) Previous solutions: 	As the load factor it reaches its 

critical value both symmetrical and antisymmetrical configurations 

become equally possible; consequently the characteristic equations 

of these configurations should be satisfied simultaneously. 	At-

tention is thus focussed on the point of bifurcation itself (point 

B in Fig.(4.4.1a), in which the load factor A. is plotted against 

a reference sway parameter foR); in order to find that point both 

non-sway and sway behaviour have to be considered simultaneously. 

(2) The proposed solution: 	The concept is schematized in 

Fig.(4.4.lb), in which pit  again represents a reference sway para- 

meter. 	It appears that if A values can be found for specified 

values of /opt  our attention can be focussed solely on the sway mode, 

for the bifurcation load 2'c 
is located by the limiting condition 

./°R iPR-*° 
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provided the symmetry of the problem assures us that ni= 0 before 

bifurcation (for the general treatment, see Section (4.1.1) above). 

It follows at once that the method described in Chapter (IV.3) 

for evaluating the load factor corresponding to an assumed value of 

tD.R  can be applied without modification to the present bifurcational 

problem. 

 

A 

   

_ 	B 

 

PR  

.4- - 

OR 

      

(a) 

	

	 (b) 
Fig.(4.4.1) 

Numerical solutions will be given for three examples. 	Since 

the procedure of solution follows exactly that of the preceding 

section the results of computation will be given directly; the com-

putations were performed using 8 significant figures by an IBM 7094 

computer. 	In each example the bifurcation load may be evaluated 

directly by assigning an extremely small value to /011  (say, 10-10  ); 

for the purpose of determining the post-buckling curve, however, we 

shall. start with a (DR  value of 10-1  and then gradually reduce it 

to 10-10. 



129 

Example 1 	The symmetrical portal proposed and solved by Chwalla 

(2); 	The frame and loading is shown in Fig.(4.4.2)0 

Table (4.4.1) 

P1 A 

101  0.1799 

10-2 0.1798 

10
-3  

0.1790 

10-5  0.1790 

10-10  0.1790 

The solution is shown in Table (4.4.1), in which the load factor 

A is listed against the side-sway rotation of member 1. 	It thus 

appears that, in the context of small-deflection assumptions, the 

post-buckling curve is initially horizontal and consequently the 

equilibrium condition at bifurcation is either neutral or very nearly 

SO. 

The value of APE].  at bifurcation is thus 1.767 EI/L2  which 

compares to 1.775 EI/L2  given by Chwalla and by Masur et al (11), and 

to 1.780 EI/L2  given by Horne (15); the large-deflection solution 

given by Lee et al (28) was 1.751 EI/L2. 
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Example 2 	Fig.(4.4.3a) shows the frame solved by Lu (16), who 

extended Masuris approach to solving portal frames with 

uniformly distributed loads applied on the cross beam. 

Fig. 

(a) 

(4.4.3) 
2 "El 

Table (4.4.2) 

I. t 
. 	(2) 

member 
(1) 
L1 

L2 
(3) 

1 y L2 	1  

EI constant 

0.4 'APE].  each 

Pi A 

10-1  0.1407 

10-2 0.1402 

10-3 0.1398 

10-5  0.1398 

10-10  0.1398 

In applying the present method we shall replace the distributed 

loads with isolated point loads as shown in Fig.(4.4.3b). 	The 

corresponding A— pi  relation is shown in Table (4.4.2). 	The 

value of 7LPE1  at bifurcation is thus 1.38 EI/Li  which compares 

with 1.39 EI/t2  given by Lu. 	For the cases of Ll= L2  and Li L2/3 

the corresponding values are 1.77 EI/q.  and 1.07 MA I, respectively, 

which compare to Luis solution of 1.79 EI/4.  and 1.08 EI/4.. 
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Example 3 	The three-bay frame shown in Fig.(4.4.4); properties 

of the frame members are as shown in Table (4.4.3). 

4 

	

470E1 	 XPE1  

	

2 	 2  0- L2 	 L 

(2) 	(4) 	(6) 
member 
(1) 	.(7) 

	

(3) 	(5) ,  

Fig.(4.4.4) 

Table (4.4.3) Table (4.4.4) 

Member i 

1 2 3 4 5 6 7 

Ei/ 3.  1 1 1 1 1 1 1 

Ii/ti  1 1 1 1/2 1 1 1 

Lilt].  1 1 2 1 2 1 1 

rl A 

10 -1---  0.1045 

10-2 0.1044 

10-3  0.1036 

105  0.1029 

1010  0.1029 

Since there are no special handling difficulties for this frame 

the solutions are given directly in Table (4.4.4). 

at bifurcation is thus 0.1029. 

The value of 



132 

CHAPTER V 	APPLICABILITY OF SMALL DEFLECTION ANALYSES  

- V.1 EXPERIMENTAL INVESTIGATIONS  

The purpose of the present experimental investigation is to 

determine the non-linear response'of frames under load, in order to 

estimate the range of applicability of the small-deflection theory. 

Consequently, three different model frames were made and tested; 

each test represented one type of frame problems (i.e., sway, non-

sway, and bifurcation problem). 

The models had high-strength aluminium alloy.  members, 3/4 inch 

wide, 1/4 to 1/2 inch thick, and from 8 to 18 inches long. 	The 

reason for selecting aluminium alloy strips was that they possess a 

yield-point of 60.5 ksi, which is comparable to that of mild steel, 

yet the modulus of elasticity E is only 9.2x103  ksi. This permitted 

the use of relatively thick members so as to decrease the degree of 

initial crookedness, and at the same time kept the Euler loads of 

the members •within reasonable limits for small-scale testing. 	The 

use of high-strength aluminium alloy strip also made it possible 

that large deformations would be achieved without inducing plastic 

strains. 

The test set-ups are depicted in Fig.(5.1) while individual 

model frames are described in Table (5.1), in which dimensions of 

members are given in the order of thickness-width-length (lengths 

are measured between centres of joints). 	Table (5.2) shows the 
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corresponding Euler load PE  (..772EI/L2) of each member. 

Frame members in frames 1 and 2 were connected to each other 

by small (nominal length: one inch) rigid clamps (Fig.(5.2a)), while 

the stanchions in frame 3 were bolted directly to the rigid steel 

beam. 	Pinned ends were realized by knife edges, with the exception 

that a roller—type hinge (Fig.(5.2b)) capable of taking tension or 

compression was used for the horizontal member in frame 2. 	Loads, 

which were applied at the mid—width of the horizontal members through 

a pin connected to a loading rod (Fig.(5.2c)), were supplied by 

weights placed on a pan at the other end of the rod. 	This type of 

loading device was adequate for the present tests, in which post—

buckling behaviour was not to be studied. 

Dial gauges with an accuracy of 0.0001 inch/division were used 

to measure displacements at loading points and midpoints of members 

of frame 2. 	However for frames 1 and 3, which were without lateral 

support and thus had side—sway deflections sensitive to lateral 

loads, a cathetometer (sliding telescope) was used to measure lateral 

displacements; by this means any undesirable lateral forces that 

might be exerted by dial gauges were eliminated. 
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Fig.(5.2) 

(a) Test I and Test III 

(b) Test II 

Fig.(5.1) Test set—up 

(b) 

(e) 
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Table (5.1) Dimension (inches) 

Frame Member Thickness width length 

1 0.129 0.746 9.00 

1 
. 

2)  
( 	) 

(3) 
2 0.253 0.752 11.86 

3 0.129 0.746 18.06 

2 

1 0.129 0.746 18.06 
(2) 

(1) 
2 0.129 0.746 18.06 

3 — — 

3 

1 0.129 0.746 8.00 
(2) 

(1) 	(3)2 + 
, 

(steel) 
1.00 0.746 8.00 

3 0.129 0.746 12.00 

Table (5.2) 	2  
Values of PE (=1(2EIA ) (ibs) 

Member Frame 1 Frame 2 Frame 3 

1 151.2 37.5 191.4 

2 662.3 37.5 2.897,105  

3 37.5 .__ 85.1 
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Test I 

The frame was to be tested without lateral support (Fig.(5.1a)). 

The load was applied at a distance D of 4.0 inches along the cross 

beam from the joint connecting the shorter column: 

W 

L2 	Li 9.0 in. 

Ll 	L2= 11.9 in. 

L
3 	

L
3
= 18.1 in. 

Snap buckling of the frame was observed at a load of 57 lbs 

(which will be referred to as Wc)2 
 at which point the side-sway 

deflection of the frame increased rapidly and was checked only by 

a limiting pin. 	The experimental results are given in Fig.(5.3) 

and Fig.(5.4); corresponding solutions given by the small-deflection 

analysis, as described in Chapter 1V.3, are presented by curve A in 

the same figures. 	The frame members regained their original 

straightness upon unloading, so the test was within the elastic 

range of the frame. 

It is observed"from Fig.(5.3) that the small-deflection analysis 

gives good approximations to the vertical deflection ay. 	For 

example, at W= 0.85 WI, the error in estimating 5 is about 10%. 

However, an error of 10% in estimating the side-sway deflection dh  

occurs at IT= 0.47 	as indicated by Fig. (5.4). 
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A similar test was conducted with the load applied at a distance 

D of 6.0 inches instead of 4.0 inches. 	Snap buckling of the frame 

was observed at a load of 59 lbs (which will be referred to as WD; 

again, the frame members resumed their original straightness upon 

unloading. 

Experimental results are shown in Fig.(5.5) and Fig.(5.6); 

corresponding solutions given by the small-deflection analysis are 

shown by curve A in the same figures. 

It is observed from Fig.(5.5) that the small-deflection analysis 

again gives good approximations to the vertical deflection Jv. For 

example, at W = 0.87 lc the error in estimating jir  is about 10%. 

However, Fig.(5.6) indicates that an error of 10% in estimating the 

side-sway deflection Jh  occurs at W = 0.42 W. 

It is to be noted that if the effects of gusseted connections on 

the model frame could have been removed the experimental maximum load 

would have been slightly reduced. 	For example, if the increase of 

buckling strength in the model frame due to gussets was about 10% 

(see Bowles and Merchant (6)), the corresponding maximum load for the 

two tests would be WI = 52 lbs and 	= 54 lbs, respectively. 	The 

adjusted analytical solutions at a region near to the maximum loads 

are as shown by curve B in Fig.(5.3) to Fig.(5.6). 



! 
HI' .1 • 1. 

0 

LI H 

JH' . 



.: 	:'',:' 	. 	I. 	: 	. 	• 	I''. 	'. 	'' 	: 	I . :.;',1 	I 	J...:1,:1 1, 1,1;i:!;•; 	•::: 	-,;• ,,:::',i1:: . :::; 111,, ,,;;; ;!  
'!' 1, 	 1:, •,,-, ;...t. ', 	" I 

	

.!,.,..___! '...._!!!. 4.  ::,..L.,—;: !:!i,!!: !I.; !!!!_:!:!,',j!!!' ..,• :::. 	!„ - : ., i,,i I !_.!..,,.....41,  :i. 	- 1 1 1 -;• 	.M.: 	 ,•,, •• . m,: 	. • , 1,,, 
i:IF:.:' '.1..L.1.•.•" ...,...„.. :. 

,. , 	:, • 1 	, 	; : 	•• 	••••.;;I:' , I' ;',, ',•: !.:' 7,-;.1,-1 1.1.7r, ;::1,7,1, i1 -,1,71.j.;':' 	; 	I 1,,  
;C: 1111 1i 	 hil 	 , 1,1:! ir! .':" , .::• ,,,II„;„ 1 „ 

1 ,1 ,71.1,*1: 4 :._::..ml.. H_:....:' 

	

,., 	.--,:;-,,' 	'.-;:';':ii,;41i ''.'41-;:4;.j 1"4:i114 II141241I-1:4::".1,1.-11ii-',17:r:.  
i 

,:,:: 	,.:,:: 	:':i;.,..,.:::::,,:;;;• 	:,., 	;:r. 	„ 	:,::: 	.....,:iii.:• 	::.:.: 	.,,:.!iii 	r,;:, 	:iii 	.:1, 	rt.,: 	....!,  ,;:. 	,.., ,. 	,,, :.: .::: .: 1,:, ..,,,,. 	 i i.!.}. ii, 	 qiii ..f,i1.1,, ,,,, , .,....„.1,:  :„. 	,!: i 	 , 	I - ..,[: ,,,,•: t.1:: ..,, ii.i.,• ,::,;, ,..: pii :11 :in :, :,,:,,,,.; 1,,ii :...,1 
• 7'-

1.. 
';; l';', 	r:  ' L I •:'11'::. I. 	I'''; 	':;;:i' lliiii, id11.1:: :':'''''' -;.: •11: 1; 1'1)1 Ill':  •' '''ll  • l'i rid i-111:1!  :311:: 1 11-k.:: 1'1'11! II': i 	'' 	•I '''," 	I',I ii 	1;d:::';  ';:' 	1;;; 	:• 	;:: 	1; 	 '''''l 	111,'IL: IV  

.. 	
... 

	

0 .77.-11',: ,  di; 	.... :: C.4; .1.,.......,. :„........: I. 	•:'' '':' 	..!...:1-il.• 	......-...,-... ---1 	.:71. 
 ,...

-.;-, : 

	

; t j ' 	..irgiji 	
Tr:,71:1 "",T 1-T-7:•il i-r- 

' 1:i .::;ht.!! .. 	"1 '' II- I*. Hir . '"""7.-- . ''.1 	ll '•.1: :I:: II:: :1:, .,„it  11 :' li ' 1 1 :1 ' 11 '"" ----?' ' ' l '''' l '' .1  ':;!•ii,i 1,;!:. ilr., Ph i'''. :1:. . , ..1: ,:;:, :;:.,,.., i: 	..• ::1- -„:1,  ....:1:::: :1 • 1::: 	 1 . I, 
" : w; 	; .. •.•.,. •.;.:1:1:1 	:: 	„•!'' 1-7.1:::. 	.",1 :;.' .: 	:I 	Bii.  •::: ..,„; : . ••• •-: 

	

:i:.:. ''.:,!, y• Hi 	 !: 	 .; 	i ---11.  •• •, 1 1;i•• 	•  	' , ', 	• 	L.,,:,--------,. ::.. ;-.•. i!. 	;•:: 1 *:•.!, 	'''';' 	'''';:ii H,."-.-: r• 

	

: 	 1:•:: ".• 	. 	.' ..... 	.;----.7-77--  il i,r: i 	i : i,' r..1 . 

	

h:. ...,•. -...: :•. 	' .::.. • 	•: 	..! •'• 	., 	.- 	_,,,,:*!., •:,.,, 	,.. ::::: ; • :,,:;• ...;„:_:: ..._....._......: 	 .. 	 -- 	---1-if -  -- i.---r.- , . 	 " : :;1• 	" 	• ;1m:  

	

;II. 	I ,I ,,,./ 	__....--,•77, : ': 1: 	,iI : ' 'II •,:i 	:, II" ' I 
i.. ;ri :., ,,,. I.I. :. 	•^•• 	 • 	- J . ' 
I.', 11.! 	.--t- 	• ,., 	-I41. :-•- ••• - 

	

"!, 	„,• 
!!!! •.; 	I 	

-It: ! i iT 	- 'm :::: , ' - . i , :j  
r r1  

	

..lid-:-..-,-• :•,--:',-HI '. :r', riF 	si Ill: 	 4-ft:7- 

	

II 	111 	1: 
,..• 	t 	,!•!, 	, 	

M.. 	 1 	I 

;;; 

1 M i_ •  

	

.. 1' 	 IjP1 H.N11 1 i:' " 

‘: I. 1  ; •.; 	i I', I:1; Ilj: li 	i •;; ;W WII!' I 1,-•1 	Ill! 1: 	1:trli Tr fri 1 	111 iii r T-F, Ti.r Prir, i ftr ,:ii 	:.:11 
i 	 li iii101,,i 	! Ill 	',In] Fittl'il 	li 	 

	

li 	1 
1 	1., 	'1 	 '' 	1,  	

, 0 	.1. 	.,, 	wi  HE  idil 1 	'..ii.! ill [1•._ 	i 	i t, 	ijit  

	

, i '.1 . L'' 	, i 	"1  . 	 F 	,,, fill ' 
iid 	 i, I  1i 	II 	1111 	:111 ,Fi.! 1 	i 	1111 	 liTi III 	II 	I 	 i 	tr. 

1 
 

	

.1; 	
x  1 1 1 	 I; 1 	T . 	II 	1 

41-1-11 : I 
	H: 	Iti I - II I)] 	Illi 	i,,, 1/1 ,q., i 	Iii- ii-, 11 	1 	-1,-ir; rr, 

	

1 	1. :. 1 11, 	[Li 	i  

	

ii 	I 	1.1 

	

..1 	: li 	ih : 1-71:,, ' 	'11 -111  '1111'!"1 i ',1 iri  ' rt 9-  l'i 	1 	
Tli i 	:J1::  

	

t  I 	III'  III 	1 I  1I.1:1  Frrrlirit:F.1,„'rfi: ,I.,,(-:,,i[1:11 4';:):  IF 	-id   11 .'  1:  ,   	,t 

	

Ii 	if nit  11: 1i: Li 

	

il  	 1 Hi Tit cirri 11 .._4_ 
.171' 	- 	 ii 1 

	II I 	ill.. 	J1 Iii_—_-4 

	

Ii  ;71 TV i 1  !Till !ILL 	i , 	1 	•i!lit ' 
III al, 	II". II'l 1.:111, 	I'M 11'1  ii 1 1; !L  4-141 	it" ;,..; 	:III i,  t 
	li 	, 1;

1 : I,I :I.1 11;1 ' 	111 ' 

	

11111: 	 I  1.1-I 1- 	 =1 1: 	PT : 	: ': 	t- 	- 

	

;. '1,  ri  i,  l',  1: ; r i  ' ' I r T : : 	P ti 
ii!! iirli , T 1-1  ! 1 1.. 

	

-111,tt 	 "" 11 .., I  

;i1 	11 1 ....;:,,1711, '17 '17' ..-:rT • III ''',"1  r-i-,-,5 !ta i  	 1:'.1 :•!: ;Hi 	 : c illi 	 ., : ., Ir: 	, 1 	 . 	, :-1--- ,,„;-t 	71,-:-.11 i 1 • . , 	,, • i - • , :: i!. r . 	L  . 	 i 	i  1 	,d 

	

T 	, ill:. • 	1 i 11 	:::i  r  

	

11 I', 	iiii 
	r 	_ it• 1- ,-: 	: It '.'t' F.' 1  i ,.-rip-ti- 	IT II : ':"'• i:ii 	 1t;_. 	;:i.': t:ii !I ': 	I il I.:: : 	I t 

i 111 Ill!  L:.:".:1 0 [  
..:', •:',: 	 i;;•'; '. ii , 1  ! '• It, 	t ! iì.1 	• ,i ':.:, • !:,; 
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Test II 

The column of the frame in this test• had an Euler load PE 
of 

37.5 lbs. 	The frame was to be tested with a lateral support 

provided by the hinge at one end of the beam as shown in Fig.(5.1b); 

the hinge was securely mounted to the rigid test frame in such a way 

that it allowed only rotational freedom in the plane of the frame. 

The load was applied at a distance of 3.5 inches along the beam from 

the joint connecting the column: 

W 
D 

L2 

L1= L2== 18.1 in. 

D= 3.5 in. 

At a test load of about 36 lbs the frame started to yield and 

plastic deformation occurred under the loading point until about 

44 lbs, at which load the test was ended. 

The occurrence of yielding, however, did not impede the purpose 

of the test, since at a load of 36 lbs the vertical deflections at 

the loading point and at mid-span of the beam were already more than 

1.4 inches and 2.2 inches, respectively, and these deflections were 

probably already too large to be predicted satisfactorily by a 

small-deflection analysis. 

The experimental result is shown in Fig.(5.7) where the load is 

plotted against the vertical deflection at loading point, Sy; curve A 

L1  
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in the same figure represents the large-deflection solution, estimated 

from the original diagram given. in small scale by Lee et al (28). 

The corresponding small-deflection solution, as described in 

Chapter 1V.21  is given by curve B (Fig.(5.7)) which registers an 

error of about 10% in estimating av  at Vl = 0.5 PE. 	At the load of 

36 lbs, which is the maximum recorded load before yielding occurs, 

the corresponding error is about 30%. 

The mid-span deflections of the frame members are also plotted 

against load in Fig.(5.8). 

Adjustment of the theoretical values for gusset effects may be 

neglected in the present test. 	Fig.(4.2.7) shows that at a low 

load level the absolute value of the end-moment Q1  is small, and that 

its value increases very rapidly as the load approaches its maximum 

equilibrium value; consequently the effect of the gussets, which is 

to reduce the curvature locally and so influence the load-deflection 

relation of the frame, is negligible in the present test when the 

load level is relatively low. 	Furthermore the ratio of gusset 

length to column length, which is one of the factors that'determine 

the gusset effect ((25), pp.67-72), is relatively small in the 

present model. 
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Test III  

The frame (Fig.(5.9a)) in this test had a cross beam which was 

virtually rigid in comparison with its connecting members (see Table 

(5.1)); there was no lateral load applied to the frame. 	Then it 

can readily be shown that before bifurcation the condition of equi-

librium of horizontal shears precluded sway, and as a result the 

columns were subjected only to axial loads at an arbitrary load level. 

The test therefore represented a bifurcational problem. 	In actual 

test, however, minor imperfections were expected in the straightness 

of members and the perpendicularity of the columns and the rigid beam. 

These initial imperfections caused bowing of the columns, bending 

moments, and side-sway of the frame, affects which were magnified as 

the load was increased. 

The experimental load-deflection curve is given in Fig.(5.10). 

The maximum load was 76 lbs; the frame members resumed their original 

straightness after unloading, showing again that the load-deflection 

relation was within its elastic range. 

As an estimate of the order of magnitude that the effect of 

imperfection might have had, the frame was analysed with an imperfec-

tion of the direction of loading, giving a horizontal disturbing 

force Wh as shown in Fig.(5.9b). 

Curve A and curve B in Fig.(5.10) represent the load-deflection 

curve of the frame (Fig.(5.9b)) with Wh/W equal to 0.1 and 0.0055, 
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W 

F 

Fig.(5.9) 

(b) 

respectively. 	It is thus seen from curve B that a horizontal 

force component of 0.0055W would produce a sway very similar to the 

observed sway, which is believed to arise from the combination of 

various imperfection effects. 	For example with W = 76 lbs, Vh  

= 0.42 lbs. 

The bifurcation load represented by curve C in Fig.(5.10) was 

found by letting Wh 10-10. 0. 	The load thus found is equal to 

74.2 lbs which is slightly less than the maximum test load of 76 lbs. 

Since there were no gusset connections in the present model frame 

the discrepancy was probably due to the fact that the figure of 

74.2 was calculated for unsupported column lengths measured from the 

knife edges to the mid—depth of the deep, rigid beam. 	The experi— 

mented columns had a free length shorter than this by half the depth 

of the beam. 
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V.2 DISCUSSION 

(1) Axial loading problems 

The frame shown in Fig.(5.11) is subjected to axial loading 

and its inextensible members are free from initial geometrical 

imperfections. 	For such a perfect frame deformation will not 

occur until the load factor A reaches its critical value. Con-

sequently solutions given by small-deflection analysis for this 

type of frame problem, as discussed in Chapter II, are exact as 

long as the assumption of inextensibility remains valid for all 

the members composing the frame. 

AN ?1 / 411 A 

 

 

	> 

Fig.(5.11) (a) (b) 

 

Fig.(5.12) 

(2) Bifurcational non-axial loading problems 

This type of frame problem is exemplified by the frame proposed 

by Chwalla; the frame is shown in Fig.(5.12a). If the load factor 

21/4. is plotted against a reference joint rotation OR  the resulting 

load-deflection relation will be as shown in Fig.(5.12b), in which 

point B represents the point of bifurcation from the non-sway mode 
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to a sway mode. 	In this case deformation, without side-sway, 

will occur at any non-zero load level, and consequently only the 

large-deflection theory is capable of providing an exact answer. 

However, due to the fact that bifurcation generally occurs at a 

relatively low load level and thus the corresponding deformations 

remain small, a solution given by the small-deflection theory in 

predicting the bifurcation load should usually be satisfactory. 

The bifurcation load of Chwalla's fiame given by Lee et al (28), 

using large-deflection theory, is about 2% less than that given by 

small-deflection analysis. 	The discrepance is mainly due to the 

fact that a large-deflection analysis takes into account the flexu-

ral shortening of the cross beam due to bowing, which causes;  

additional eccentricity of the column load. 

(3) General non-axial loading problem 

The frame and loading shown in Fig.(5.13a) typically represent 

such a problem. 	The general shape of the load-deflection curve 

is shown in Fig.(5.13b), in which SR  represents a general deflection 

parameter. 

(a) 	(b) 
Fig.(5.13) 
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Depending on the properties and proportion of frame members and 

the pattern of loading, the frame may undergo very large deflections 

as the load factor approaches its local maximum (point C in Fig. 

(5.13b)) and consequently the small-deflection assumption can no 

longer hold. 

In reality, however, there is always opportunity for the appli-

cation of a small-deflection analysis, for structural failure may 

in general be viewed as either the collapse of a structure (failure 

in strength) or the occurrence of excessive deformation'in it so 

that the structure loses its serviceability (failure in stiffness); 

consequently, for civil engineering structures; there is normally a 

limit of deformation imposed on a practical structure. 	The 

allowable deformation varies according to circumstances and codes 

of practice, but its order of magnitude is invariably small. 	Fig. 

(5.3) to Fig. (5.8) show that small-deflection theory gives a good 

approximation in each case provided that the measured deflection is 

less than about 1/50 of the corresponding member length, and this is 

well above the limiting deflection which would be considered accep-

table in any building frame. 
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CHAPTha VI 	CONCLUSIONS  

Axial loading problems  

Two methods of evaluating the critical loads of axially- 

loaded rectangular frames have been proposed in this thesis. 

They are manual methods (as opposed to methods for electronic 

computation) and, as such, are much quicker than existing methods. 

The proposed methods are: 

(I) The y method (Chapter II): 

The y method is an exact method of analysis for portal-type 

structures which consist of open loops. 	The method is thus 

applicable to structures such as continuous beams, multi--bay 

bents, and multistorey single-bay frames of an appropriately 

symmetrical nature (since such frames can be divided, across the 

line of symmetry, into two continuous "open-loop" bents with 

known support conditions). 	The characteristic of the y method 

is that it proceeds by successive trial estimates of the critical 

load value, at which the stiffnesses y are computed for every 

member of the frame. 

(2) The stability function transformation method (Chapter III): 

This is an approximate method in which stability problems 

are solved in algebraic terms. 	Any portal-type structure, 

either open-looped or closed-looped, can be solved by this method. 

When applied to open-looped structures it can give specific 
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information on the behaviour of individual members under load. 

However, when applied to closed-looped structures the method 

invokes the concept of an equivalent column, so it can only give 

information on the behaviour of the frame as a whole, although 

the contribution of each individual member to the buckling 

strength of the frame is still recognisable during the process 

of forming the equivalent column. 

The method offers two possible approaches of solution: 

(a) The direct approach (Section (3.3) to Section (3.6)): 

For an open-looped structure consisting of Ns  loaded 

members the critical load maybe evaluated directly by 

solving a polynomial of degree Ns. 	The behaviour of 

a multistorey structure may be approximated by an equi-

valent column, so a frame having Ns  storeys and Nc  

continuous columns may be transformed into an equivalent 

column (which is an open-looped structure) consisting of 

Ns loaded members. 	
In this case therefore the direct 

approach is applicable. . In general the direct approach 

is recommended when Ns<3; for frame problems in which 

Ns?.
-t3 a trial-and-error type of solution (Approach (b)) 

will be preferred. 

(b) The trial-and-error approach (Section (3.7) and Section 

(3.9)): 	This approach maybe applied with advantage 

when Ns
r1t3. 	The method is to assume a distribution of 
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S (the rotational stiffness of beams) at the ends of each 

column so that the load-carrying capacity of each loaded 

member may be evaluated; a successful trial is represented 

by the condition that the load-carrying capacities thus 

computed are equal (or nearly so) to their mean value. 

The method is easy to apply and powerful in obtaining a 

satisfactory solution. 	The speed of convergence is 

further enhanced by initiating the trial-and-error process 

at a probable "critical column", whereby the critical load 

maybe more quickly approximated. 	Furthermore, since 

this critical load value has to be maintained throughout 

the structure the values of y at all columns may be computed 

accordingly, and the effort of guessing the y values is 

greatly reduced. 

The main feature of the stability function transformation 

method is that the load-carrying capacity of a colwmn (or an equi-

valent one) under either a no shear or a non-sway condition may be 

evaluated by separate consideration of its end conditions. 	This 

is believed to be of value in the process of preliminary design of 

a structure and of its subsequent modification. 	For example, 

Equ.(3.12) and Equ.(3.21) (or Table (3.7)) show that it is more 

profitable to fix the base of a column subjected to sway than to 

fix a similar column prevented from sway (since the buckling 

strength in the former case will increase fourfold while that of 
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the latter case will increase only twofold), and that in both 

cases the increase in strength is independent of the boundary 

condition at the other end of the column. 	Table (3.7) also 

shows that for. a column subjected to sway a slight degree of fixity 

at one end will considerably improve the load-carrying capacity, 

and the rate of improvement decreases rapidly as the degree of 

fixity increases; therefore we realize that the provision of'full 

fixity at the base of a column subjected to sway may not always be 

worth the effort. 

Both the method of stability function transformation and the 

7 method are able to depict the physical phenomenon of buckling 

throughout the process of computation: the 7  method shows the 

effect on the stiffness of individual members of the buckling load, 

while the transformation method shows the effect on the buckling 

load of the stiffness of the individual members. 	Consequently 

these methods have a definite advantage over computer methods and 

most other manual methods. 

When computer methods are used they can of course provide 

exact solutions to complex stability problems, but the validity 

of the solution is difficult to verify because of the non-linear 

nature of the problem. 	In this situation the proposed methods 

are especially useful, as they give a rapid procedure for the desk 

calculation of an approximation to the critical load. 
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Non-axial loading problems  

An iterative method was proposed (Chapter IV) to determine the 

equilibrium paths of rigidly-jointed rectangular frames under non- 

axial loading, according to small-deflection theory. 	The charac-

teristic of this approach is that a reference deformation parameter, 

rather than the load factors  is treated as the independent variable. 

The main advantage of this approach is that bifurcation buckling 

can be solved directly, without resorting to laborious formulations 

based on the existing bifurcation criteria. 	The saving in labour 

of formulation and of obtaining a solution may be gauged by the fact 

that the proposed method need only consider the bifurcated (asym-

metrical) mode of deformation, while the existing methods have to 

consider simultaneously the symmetrical and asymmetrical modes. 

Furthermore, for frame problems where distributed loads are present 

the proposed method requires no additional formulation effort. 

The method was also applied to non-bifurcational problems so 

as to estimate the approximate range of applicability of the snail-

deflection theory, by comparing solutions thus found with the experi- 

mental results obtained from model tests (Chapter V). In each test 

the small-deflection analysis gives a good approximation provided 

the measured deflection is less than about 1/50 of the corresponding 

member length, and this is well above the limiting deflection which 

would be considered acceptable in any building frame. 
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NOTATION 

Ab 	tc+ °(bu 

At 	= a 
be

+ C(
tv 

C 	= c/(c2— s2) for non—axial loadingproblems; 

coefficient of axial forces for axial loading problems. 

Cf 	
coefficient for frame problems where e = 0 

Cs 	
coefficient for frame problems where V = 0 

D 	= T/X., 

E modulus of elasticity 

ER 	
the value of E of a reference member 

---= E /ER  

F 	kinematic degree of freedom 

H the number of hinges in a frame 

I 	second moment of area 

IR 	the value of I of a reference member 

± 	= I/IR  

J 	the number of internal joints in a frame 

K =EI/L 

ic/(pERLR ) 

L length of member 

LE 	the value of L of a reference member 

=:L/LE 
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N 	non-subscripted: the number of members in a frame 

subscripted: bending moment 

=11V(PER   LR) 

N 
	

the number of indeterminate end-moments in a frame 

Nb 
	the number of bays in a frame 

Nc 	the number of column lines in a frame ( = Nb+ 1) 

N
s 
	the number of storeys in a frame 

the number of transverse loads acting on a beam 

P 	axial force 

PE 	
the Euler load of a member (= 71.2ETA

2
) 

PER 	the value of PE of a reference member 

PAR 
P° 	axial force in a determinate frame 

15° 	= p0 

Q 	indeterminate end-moment 

QAPERLR) 

R 	the number of support reactions in a frame 

s/(c
2
- s

2) for non-axial loading problems; 

rotational stiffness for axial-loading problems. 

T 	primary bending term 

V 	shearing force 

id 	external load 
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Wh 	horizontal external load 

vertical external load 

a 	= -1/(V tanV), for P.).0 
b 	= 1/02, for P>0 

c 	= (1 - 0 cot0)/02, for P>0; 
suffix for the critical column. 

2 s2 c2 

e base of natural logarithms 

f 	general mathematical function 

index 

j 	index 

k 	index 

m 	index 

n index 

✓ influence coefficient of axial force in a frame due to an 

indeterminate end-moment 

r 	= r LR  
s 	= (0 csc0 - 1)/02, for P;'.0 

u suffix for the column located above a critical column 

✓ suffix for the column located below a critical column 

w 	eigenfunction deflection 
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0( 	stability coefficient, = OCt  0(b  

0(b 	the value of 0( at the bottom of a column 

Oct 	the value of 0( at the top of a column 

= N/(K 0) 

differential displacement of the ends of a member 

h 	
horizontal displacement 

v 	vertical displacement 

remainder 

0 	angle of rotation at a joint 

A°  primary angle of rotation due to lateral load 
^po  

initial imperfection slope at an end of a member 

load factor 

= I/Cf  for frame problems where e, = 0;  

= 7/0s for frame problems where V = 0. 

TF 	= 3.14'59265 

t° 	rigid-body rotation of a member 

V 	= iP,TTAT L 

coefficient of axial force due to differential movement 

of frame members 

= 
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