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ABSTRACT

The non-linear behaviour of elastic plane frames of portal
type under static loading is investigated. Both axial
loading and non—aX1a1 1oad1ng problems are discussed,

For axjally loaded frames a quick, exact method for evalua-
ting the critical loads is proposed. The possibility of
solving buckling problems in approximate, algebraic form is also
demonstrated; the new concepts thus developed help to show clearly
the effect on the buckling load of the stiffnesses of individual
members.,

» For non-axially 1oaded.frames an iterative method, which is
based on small~deflection assumptions, is developed for solving
bifurcational problems for which the existing methods are too
tedious. The method is also applied to non-bifurcational
problems so as to estimate the approximate range of applicability

of the small-deflection analysis, by comparing solutions thus

" found with the experimental results obtained from three model

tests.,
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CHAPTER I INTRODUCTION

1.l Types of frames and loading

The objective of the thesis is to investigate the non-linear
behavioﬁr_of elastic plane‘frames under sﬁatig loading. Frames
are of portalltype, i.e., they possess a kinematic degree of
freedom when pins are introduced at all joints and supports. If
M denotgs the nunber of members, R deno?es the number of support
reaétions, and J denotes the number of Jjoints where members meet,

then portal frames are characterized by the inequality
F=M+R~2J <O, (1.1)

in which F represents the kinematic degree of freedom.
Portal frames are to be distinguished from triangulated frames,
which become statically determinate if all rigid joints are replaced

by pinned jointsj; or they safisfy the relation
M+R~2J = 0. (1.2)

The common feafure of these two types of frames is that they
can be treated as being composed of inextensible members: deforma-
tion may be attributed soleiy to the flexural bending of members,
This assumption of inextensibility, however, is not applicable to

rigidly jointed trusses, which possess the property

M+R=-2J > 0, (1.3)



loads considered in this thésis are applied in such a way
that their directions and relative magnitudes remain unchanged
'during deformatisn of the frame, and their points of application

.remain figed—in rela£ion fo the deformed frame.'

Bofh axial loading and non-axial loading problems are dis-
cussed in this thesis. Axial loading of a frame of inextensible
members is defined as a system of external loads which satisfy
similtaneously the'following two requirements:

(1) that the loads are acting along the centroidal axes of

members.,
(2) that they can be expressed as self-equilibrating systems
‘'of loads applied to individual members.
Fig,(1.1) shows one such axial loading problem, with the
typical possibility of the trivial response of zero deformation.
A1l other loading systems are classified as non-axial loading

systems; some such systems are shown in Fig.(L.2).
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l.2 Frame problems

Both bifurcation aﬁd nonrbifurcation problems will be‘dis-
cussed in ?his theéis. A point of bifurcation is a point at
which there is branching of the equilibrium path, for example,
from a non-sway mode to a sway mode, ‘Thompson (20) remarked
that the point of bifurcation is actually ﬁhe point of intersec-
tion of two distinct equilibrium paths, This viewpoint, however,
was questioned by Sewell (24) after exzmiﬁing the behaviour of
elastic/plastic columns,

- Cases in which bifurcationél buckling may occur include:

(1) frames under axial loading.

(2) symmetrical frames under symmetrical non-axial loading.

(3) unsymmetrical frames under special distributions of non-

axial loading.

Case (3) represents a rare, coincidental or artificial arrange-

ment of the loading system and will not be discusséd; case (1) will
be discussed in Chapter II and Chapter III, and case (2) will be
- discussed in Chapter IV,.Z,

A1) other frame problems are classified as non~bifurcation
problems, to which bhapter IV.2 and Chapter IV.3 will be devoted.
For this type of problem, equilibrium paths leading to local

maximum load points will be determined,



1,3 Axial loading problems, bifurcational buckling

For frames under axial loading (Case 1 of Section (1.2))
several methods of efaluating the bifﬁrcation load have been
proposed. For examplé, Merchant (5) applied disturbing moménts
to a symmetricﬁl single~bay frame and derived the relation between
the critical load factor and other parameters for the sway'ﬁode{
McMinn (13) applied ﬁo both sway and non-sway buckling the crite-
rion that the stiffness matrix corresponding to all'possible
‘disturbances is singular. Johnson (10) suggeéted an energy
method, assuming for the displacement function of a multistorey
frame a third degree polynomial in a non~dimensional length para=-
meter; he finally used moment distribution to satisfy the equili-
brium requirements. Bleich (L) applied four-moment equations to
solve the side-sway buckling of two-storey rectgngular frames with
fixed basés.- The same frames were also solved by Livesley and
Chandler (8) using a relaxation technique with disturbing forces
exciting a side-sway mode, and by Gregory (27) who extracted
latent roots from the corresponding stiffness matrix. The cases
of single-storey contimious bents were investigated by Timoshenko
(1) and Goldberg (12).

" New methods of evaluating the bifurcation loads for axially
loaded frames will be proposed in Chapter II and Chapter III;
frames previously solved by Bleich, McMinn and some other researchers

will be solved again as examples of the application of these new

ideas,



1.}, Axial loading problems, post—critical behaviour -~

Non=linear sfudies concerned with the equilibrium path confi-
gurations in the vicinity of a critical equilibrium state were
pioneered bf Koiter (3) in fhe structural field. The significance
of Koiter's work is in determininé the behaviour of an imperfebt
system which, depending on the type of structure and the degree of
imperfection, might differ considerably from that of<fhe perfect or
idealized system.- |

Following Koiter!s work, Thompson (23) established in terms of
generalized co-ordinates the criteria of elastic stability for both
snapping and bifurcation conditions, and rederived”in explicit form
results similar to those contained in Koiter's work. Results
parallel to Thompson's (23) were developed by Sewell (24) using
static perturbation techniques in terms of a parameter representing
progress along any prospective equilibrium path. Aspeqts of non-
conservatiye systems were also discussed in Sewellls work.

In the specialized field of frame stability, the post-~buckling
behaviour of triangulated frames was investigated by Britvec and
Chilver (18),'and the corresponding behaviqur of portal-~type frames
was investigated by Godley and Chilver (26). These studies lead

to the conclusion that the initial elastic buckling of contimous

frames is in general unstable. Thus the study of imperfect systems

is of practical importance in predicting the behaviour of frames

under axial loading.
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1.5 - Non=axial 1oadiﬁg‘problems, bifurcational buckling

For symmetrical frames under symmetrical non-axial loading
(Case 2 of Section (1.2)), the possibility of bifurcation was
first demonstrated by Chwalla (2) in studying the effects of
elastic restraints on the buckling strength of colummns in a
portal frame. Chwalla derived the goverﬁing equations fsr both
symmetrical and antisymmetrical ﬁeflected modes by setting up arid
solving linear differential equations and boundary conditions for
each member, The load that satisfied simultaneously these two
governing equations repr;asented the critical load at bifurcai'_,ion.
Chilver (7) confirmed Chwalla'!s finding, by examining a simplified
portal frame, that buckling loads corresponding to sway modes are
only slightly affected by the presence of primary bending effects,
for those types of frames studied. Chilver, however, also
showed that for similar frames sﬁbjec‘bed to symmetrical distortions
the maximum loads reduced notably due to primary bending effects.

Horne (15) solved non~axial loading problems by expressing
the genex"al deflection y of an elastic system in terms of genera-

lized co~ordinates § in the form
7= 25 (5 =1,2,3....) (L)

in which w, is a normalized eigenfunction deflection and § i is a

coefficient, Orthogonality relations between slopes and between



curvatures of differént critical modes were derived for the eigen-
function system. Differentiated forms of Equ.(l.s:) were then
substituted into the virtual work equations governing the true
loading system. _ -

Horne applied this method to analyse the frame proposed by
Chwalla.  Solutions were given both for the bifurcation point
and the equilibrium path leading to it.

A solﬁtion by Horne!s approach requires the evaluation of
consecutive critical (eigenfunction) load factors and defiection
modes for a statically indeterminate frame, An improved approach
was'proposéd by Brown (29,30), who gave rigorous derivations of
new non-linear virtual work equations for frames under arbitrary
loading. The equations were used to derive the orthogonality
relations for axially loaded frames, and to produce results simi-
lar to those of Horne for non-axiai loading, but with much reduced
computational effort,

In their attempt to solve Chwalla's frame, Masur, Chang and
Donnell kll) formulated incremental equations from the original
unbuckled state of the frame. ' Basic unknown quantities, which
vere in incremental form, were selected as independent variables
in linear homogeneous equations, The condition that the deter-
minént which was formed by coefficients of such a set of equations

should be singular represented a non-trivial, or bifurcational,

solution. This method was subsequently applied by Lu (16) in
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.

evaluating buckling loads for portal‘frames with uniform loads
disfributed on the cross beam, Experimental and theoretical
results were reported to be in fair agreement,

A new appro#ch for solving'bifurcational problems of non-
axially loaded frames wili be proposed in Qhapter IV.h of this
thesis; the method can be used with advantage in solving frame

problems for which the existing methods are too tedious,

1.6 Non-axial loading problems, large-deflection analysis

Parallel to the small-deflection theory which was employed
in the works discussed in Section (1.5) for non-axial loading
problem the lgrge—deflgction theory presenté solutions which can
be beyond the range of validity of the f&rﬁer theory. Though
there ére complete solutions for large-deflections of columns,
investigators in the corresponding field for frame structures
are few and have directed their analysis to specific structural
models, |

For example, Williams (21) deriveé the load-deformation
relation for beam~-columns, taking into account the effects of
finite deflection and flexural shortening. The derivation was
fairly general, although certain restrictions were placed on the
magnitudes of the shearing forces and the deflected member slopes,
The analysis was applied to a symmetrical two-leg frame in a sym=—

metrical mode of buckling. Kerr (22) solved the elastica of a
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squaré frame with loads applied at the mid-points of tivo gpposiie
sides. For the case of tensile loading mmerical values were
given and vere confirmed by a model test. The symmetrical buc~
kling of a gable frame was solved by Saafan (17), taking into
account the effects of finite deflections and flexural shortening
of frame members, a

Recently Lee, Manuel and Rossow (28) have successfully deve-
loped a systematic and general method for analysing 1argé deflections
of frames, - Frame memﬁers, which were assumed to have no initial
imperfections, were sub-divided into more members wﬁich would end
at joints, loading points, or inflection points. Thus recursive
equilibrium and compatibility equations could be written for each
member and fhe solution proceeded from the first nodal point, where
trial values.-were initiated, to the last one. Unsatisfied boundary
conditions would recommend new trial values and the process went on
until it converged. |

There are, however, two drawbacks to this approach:

(1) instability of the systems of equations will occur when a
point of inflection of any member falls ihto the close
vieinity of other nodal points,

(2) it is unsuitable for handling bifurcational problems, since
the bifurcation point cannot be.directly located by the

ineremental load method.
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Provided that frames are mot sensitive to small changes in
loads, and that a suitable choice of the initial values could be
‘made, the method described should be able to give a reliable ansver,
and thus represents a valuablé source of reference for other. future
methods,

Comparisons between solutions based on large~deflection theory
and those based on small-deflec;tibn theory for non-axial loading
problems will be made in Chapter V of this thesis. |

1.7 _ General assumptioﬁs and limitations .

The general agssumptions and lifnitatit.;ns of the present work

are as follows:

(1) Frames are of portal type. A1l joints are considered
rigid and frame members piecewise prismatic, ‘ |

(2) The loading plane and the plane of bending coincide with
the plane of the structure. |

(3) The applied loads are static in nature; their relative
magnitudes and their positions relative to the frame do
not alter during deformation of the frame,

(1) Deformations are assumed to be within the range ‘oi‘ validity
of the small-deflection theory, Shear and axial deforma-
tions, as well as flexural shortening of members, are
neglected,

(5) Deformations are assumed to occur in the elastic range,
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CHAPTER II  AXIAL LOADING PROBLEMS (T)

THE Y METHOD AND ITS APPLICATIONS

2.1 Introdution

The fxnethod proposed in this chapter is a quick, exact method _
for evaluating the bifurcation loads of certain types of structures.
The common characteristic of these structures is that they should
consist of open, but no closed, loops. Two such structures are
showvm in Fig.(2.1). The method can be extended to be a general
one, but its speed, which is its virtue, is only apparent when
either there is no joint displacement or, in certain symmetrical
cases, the shearing force is zero in the.structure; such cases
include
(1) contimious beams (Fig.(2.2a)).
(2) viaducts or multi-bay bents (Fig.(2.2b)).
(3) multistorey single-bay frames with equal stanchions under
symmetrical loading (Fig.(2.2¢)) = since such frames can
be divided, across the line of symmetry, into two continuous
"open-loop" bents with knowvm support conditions.

One useful feature of the ) method is that it can be readily

applied as well to structures with rotational elastic support.
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22 Theoretical derivation

Consider a typical linear elastic member connecting joints 1

and 2 as shown in Fig.(2,3).

positive in the senses shown.

A1l quantities are to be considered

Let E be the modulus of elasticity,

I the second moment of area of the cross section, and L the length

of member; let K= EI/L and § = L /IPI/EI,

functions" ¢ and s are given by

c =

=

1

©
I

I

(1 - ¢ cot )/ &
1/3
(# coth § - 1)/ ¢°
(8 csc § - 1)/
1/6
(1 - ¢ cseh §)/ &

for P >0
for P =0
for P< O
for P> 0
for P=0

0

for P <

Fig.(2.3)

Then the "stability

(2.1)

(2.2)
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If the square ‘of the slope is small compared with unity the
"angular displacements at joints 1 and 2/may be expressed in terms
of the bending moments and the angle of rigid body rotation P 2s
follows

o, = (c M, ~ sI-Iz)/K+ P
92=(cl-{2-le)/K+(o :
(see for example Bleich (4), where s and ¢ are tabulated for
positive P).

Vle will define
)!i =M /K e, (i =1,2) (2.4)

and consider the following two cases:

(1) The case wvhen L= 0.

Equ. (2.3) becomes
KGl=cK]101-sK}’2 9,
Ke,=ckK 7292'SK7191

or

I
o

(1-c71)91+s.7292-

57191+(1-.c)'2)92-—

|
o

Either 91 = 92 = 0, or

I
o

(1 - C 71) (1 - ¢C 72) - 32 71 Y2 (205)
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i.e.,
1-c)l=72[c+(52-c2) )'l]

Thus, solving for Yé :

l-c 71
y, = —*
- c +d )i
where
d=:_;2-c2
2 [} 1
= (1 - tan )
2 2
¢ ¢
=« 1/12

I

( —é}-tanh -%;— -1) -é;z

(2) The case when V = 0,

Moment equilibrium gives

PL P +-H1 +-H2 =0.

»

(2.6)
P
(2.7)
for P> 0
for P=20
for P< 0,

Equ. (2.3) thus becomes, when o is eliminated,

I

{PLOl PL(ch-st)/I_{-Ml-M2

PLSG, = PL(cMz-le)/K-Ml-MZ

2

or

[¢2+ (1 - c¢2) )’l]el+(1+s ¢2) )!2 92 = 0

@-sd y o +[fPra-c ), ]e,



Again, either 6, =8, = 0, or

[#ra-cirn][Pra-ci ]
~@+s Ny, = o. (2.8)

Since

M

P r-cf®) )= Frgetg), E=12)

and
(L +s ¢2)2 = ¢2_cscz¢ s
Equ. (2.8) becomes .
# [ 14 gk +)) | =0 2,

or solving for ]é :

v - 1l-a 71 )
2 a +b 71 (2.9)
where
_ 1 '
a = - m for P >0 (2,10)
= -0 for P=0
1
- ﬁrTEEEﬁZ for P< O
and -
b = 1/ ¢ for P> 0 (2.11)
= o0 : for P=0
= <1/ ¢ for P< 0.

Values of a, b, ¢, d, and s for compressive members are listed

in Table (2.1) for convenient reference.
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0.0.0

70.02

0.04

0.06 .

"0.08
0.10
0.12

" 0.14

Q.16

) 0.18

- 0.20
0.22

"0.24

0.26
0'28
0.30
0.32
0434
0.36
0.38
0.40
0.42
0.44
0.46
0.48
- 0.50
L 0.52
0'54
0.56
. 0.58
0.60
0.62
0+66
0.68
0.70
0.72
0.74
0.7¢
0.78
0.80

- 0.82 -

0.84
0.86
0.88
0.90
0.92
1 0.94
0.96
1 1.00

a

- 00
=24G5. 6667
—€24. 6666
=217.4444
=-155. 6165
-9G,.6664
-65.1108
-50.6866
-38.7286
-30.5301
—24. E658
—-20.3267
=17.0265
—-14.4581
=-12.4200
-1C.7758
-5.43C0
-8.3146
—703798
-€.5886
—SCGIBI
-5.32316
—4.8276
~4,3878
—410017
—-3. 6610
-3.3587
-3.086%4
—-2. 8483
—2.6316
—-2.4362
—2. 2593

-2.0686 -

-1.5523
-1.8185
-1. €961
-1.5836
-1.4800
-1.3844
~1.2560
-1.2140
~1.1379
—100671
'-1.0011
—-0.G394
-0.8817
-C. 8277
~0.7770
—-0.7293
—006844
-0.6421

Table (2.1)

b

[~}

250C.0001

625.0000
217.7778
156.2500
10¢.0000
69.4444
51.0204
35.0625
30.8642
25.0000
2C.6612
17.3611
14.7929
12,7551
11.1111
J.7656
B8.6505
7.7160
6.9252
6.2500
56689
5.1653
4,7259
4.3403
44,0000
3,6G82
3.4294
3.1888
2.9727
2.7778
2.6015
24414
2.2957
241626
2.0408
1.9290
1.82¢2
1.7313
1.6437
1.5625
1.4872
l.4172
l1.3521
1.2913
1.2346
1.1815
1.1317
1.0851
1.0412
1.0000

C

0.3333
0.3334
0.3334
0.3334
0.3335
0.3336
0.3337
0.3338
0.3339
0.3341
0.3342
0.3344
0.3346
0.3348
0.3351
0.3354
0.3356
0.3359
0.3362
0.3366
0.3366
0.3373
0.3377
0.3381
0.3386
0.3390
0.3395
0.3400
0.3405
0.3411
0.3416
Ce3422
0.3428
0.3434
0.3441
0.3448
0.3455
0.3462
0.3466
0.3477
0.3485
0.3493
0.3501
D.3510
0.35169
0.3528
0.3538
0.3548
0.3558
0.3568
0.357S

d

-0,0833
-0.0833
_000833
_0.0834
_000834
-0.0834
-0.0835
-0.0835
-000835
-000836
_O¢0837
-0.0837
-0.0838
_0.0839
-0.0840
-0.0841
-0.0842
~0.0843
-~0.0844
-~0.0846
-0.0847
~0.0848
-0.0850
—000851
-000853
—000855
-000856
-0.0858
“000860
-0.0862
_000864
-0.0867
~0.0869
-0.0871
~0.0874
-000876
_000879
-0.C882
-0.0884
°000887
-0.0890
-0.0893
-0.0897
—000900
-000903
=-0.0907
-0.0910
~-0.0914
—000918
-0.0922
-0.0926

2

S

0.1667
0.1667
0.1667
0.1667
0.1668
0.1669
0.1669
0.167C
0.1672
0.1673
0.1674
0.1676
0.1678
0.1680
0.1682
0.1684
0.1687
0.1¢89
0.1692
0.1695
0.1698
0.1702
0.1705
0.1709
0.1713
0.1717
0.1721
0.1725
0,1730
0.1734
0.1739
0.1745
0.1750
0.1755
0.1761
0.1767
0.1773
0.1780
0.1786
0.1793
0.1800
0.1807
0.1815
0.1823
0.1831
0.1839
0.1847
0.1856
0.1865
0.1874
0.1884



a

20.6022

-005644
-0.5287
-0+ 4548
-0.4627

.—0.4322

—0.4031
-0.3755
-0.3491
~C.3240
-0. 2999
~0.27€9
~0.2549
~0.2338
-0.2136
-Oc1941
-0.1754
~C.1573
-C.1400
-0.1232
-0.1070
—-0.06514
—000762
-0.C¢é15
-0.0473
-0.0334
-G. 0200
-(0.GCC69
0.C058
C.C183
C.0304
0.0423
0.C539
C.C653
G4 CT64
0.0874
C.(CS582
0.1088
C.1193
0.1296
C.1398
C. 1499
C.1600
0.1659
0.1758
C.189%
0.1665
0. 2092
C.2190
0.2288

Table (2.1) (continued)

b

0.9612

0.9246
G.8900
0.8573
0.82¢4

07972

0.7655
0.7432
0.7182
0.6944
0.6719
0.6504
0.6299
C.6104
0.5917
0.5739
0.5569
0.5407
0.5251
0.5102
0.4959
0.4823
0.4691
0.4565
0.4444
0.4328
0.4217
0.4109
0.4006
0.3906
0.3810
0.3718
0.3629
0.3543
0.3460
0.3380
0.3303
0.3228
0.3156
0.3086
0.3019
0.2954
0.2891
0.2829
0.2770
0.2713
0.2657
0.2603
0.2551
C. 2500

c

0.3590
0.3601
0.3613
0.3625
0.3637
0.3650
0.3663
0.3677
0.3690
0.3705
0.3716
0.3734
0.3750
0.3765
0.3782
0.3798
0.3816
0.3833
0.3851
0.3870
0.3889
0.3909
0.3929
0.3950
0.3972
0.3994
0.4017
0.4040
0.4064
0.4089
0.4114
0.4141
0.4168
0.4196
0.4224
0.4254
0.4285
0.4316
0.4349
0.4383
0.4417
0.4453
0.4490
0.4529
0.4568
0.4609
0.4652
0.4696
0.47641
0.4788

d

-0.0930
_0-0935
-0.0939
=0.0%944
—000948
—0.0953
-0.0958
~-0.0963
—000968
-0.0974
-0.0979
-0.0985
-0'0991
~-0.0997
~0.1003
-0.1010
~0.1016
-0.1023
-0.1030
-0.1037
-0.1044
-0.1052
=-0.1060
-0.1068
'0.1076
-0.1085
-0.1093
-0.1102
-0.1112
-0.,1121
-0.1131
-0.1141
~0.1152
-0.1163
-0.1174
-0.1185
-001197
-001209
-0.1222
-0.1235
-0.12409
~-0.1263
-0e1277
-0.1292
-0.1307
-0.1323
'0.1340
-0.1357
-0.1375
-0.1394

22

s

0.1894

0.1904
0.1914
0.1925
0.1936
0.1948
0.1959
0.1971
0.1984
0.1997
0.2010
0.2023
0.2037
V. 2051
0.20¢6
0.2081
0.2097

D.2113

0.2129
0.2146
0.2164
0.2182
0.2200
0.2219
0.223¢9
0.225¢
0.2280
0.2301
0.2324
0.234¢
0.2370
0.2394
0.2419
Q2445
0.2472
0.2499
0.2527
C.2557
0.2587
0.2618
0.2651
0.2684
0.2719
0.2755
0.2792
0.2830
0.287¢C
0.2911
0.2954
0.2999

i



a

 0.2387

"G.2485
C.2584
C.2684
G6.21785
C. 2887
02990
0.3094%
6.32C1
C.3309
0.3419
£.3531
0.3646
0.3764
0.3885
€. 4C09
0.4137
Ce 4270
0. 4549
0.4696
C.4850
0.5011
6.5178
0.5355
G. 5540
0.51735
C.5642
C. 6160
‘0. £393
C.6642
C. 6507
0.7193
C.75C1
0.7835
C.8198
0.8594
G.S030

CeS511

1.0045
1. C844
1.1319
1.2087
1.2569
1.3594
1. 5201
1.6643
1.8359
2.0585
2.3384

Table (2.1)

b
0. 2451
0.2403
0.2356
0.2311
0.2268
0.2225
0.2184
0.2143
0.2104
0.2066
0.2029
0.1593
0.1958
0.1924
0.1890
0.1858
0.1826
0.1755
0.1765
0.1736
0.1708
0.1680
0.1652
0.1626
0. 1600
0.1575
0.1550
0.1526
0.1502
0.1479
0.1457
0.1435
0.1413
0.1392
0.1372
D.1352
0.1332
0.1313
0.1294
0.1276
0.1257
0.1240
0.1223
0.1206
0.1189
0.1173
0.1157
D.1141
D.1126
O.1111

(continued)

c a
0.4837 -0.1413
0.4888 -0.1433
0.4941 -0.1453
0.4996 -0.1475
0.5053 -0.1497
0.5112 =-0.1521
0.5174 -0.1545
0.5238 -0.1570
0.5375 -0.1624
0.5524 -0.1683
0.5604 -0.1715
0.5687 -0.1748
0.5775 -0.1783
0.5867 -0.1819
0.5964 -0.1857
0.6065 -0.1898
0.6172 -0.1940
0.6285 -0.1985
0.6404 -0.2033
0.6530 -0.2083
0.6663 -0.213¢
0.6804 -0.2192
0.6955 -0.2252
0.7115 -0.2316
0.7285 -0.2384
0.7467 =0.2457
0.7663 -0.25326
0.7873 -0.2620
0.8098 -0.2710
0.8342 -0.2808
0.8893 ~0.3029
0.5206 -0.3155
0.5549 -0.3293
0.9926 -0.3445
1.0805 =0.3799
1.1321 -0.4007
1.1901 =-0.4241
1.3309 -0.4809
1.4175 -0.5159
1.6374 -0.56048
1.5541 -0,7329
2.1711 -0.8207
244495 -0.9334

23.

8

0.3045
0.3093
0.3143
0.3195
0.3249
0.3305
0.3364
0.3425
0.3489
0.3556
0.3626
0.3699
0.3776
0.3856
N.3940
0.4029
0.4722
0.4220
0.4323
0.4432
0.4548
C.4€70
0.4800
0.4937
0.5C84%
0.5240
0.5406
0.5585
0.577¢
0.5982
0.£203
0.5443
0.6703
C.6986
0.7294
0.7633
0.8005
0.3417
0.8874
0.938¢
0.9962
l.0614
1.13¢60
1.2220
1.3224
1.4409
1.5830
1.7565
1.9731
2.2%089



a

. 2.7098
3.22¢€8
3.G663
5.2647
7.7512

14.€413

165. 6607

-17.1899

—B8.1836

-5.3443

-3.5527

-3.1262

-2.5785

—-2.18E87

~1.8570

-1.£€703

-104892

— 13409

-1.2174

-1.1127

-1.C230

— (045451

—0-8768

—-C. EL65

-0.7627

—Ce 7146

-C. 6711

~C. €317

~005958

-0.5629

-0.5327

-0.5048

~C.4790

~0. 4550

-0.4326

-0.4117

-0.3922

-C.3738

—0. 3565

-0.3402

~0.3248

-043102

~L. 2663

~0.2832

-0.27C8

-C-2587

-0o2473

~-C. 2364

-0.2259

-O¢2159

Table (2,1)

b

0.1056
0.1082
0.1068
0.1054
0.1041
0.1027
0.1014
0.1001
0.0985
0.0977
0.0964
0.0953
0.0941
6.0930
0.0918
0.0907
0.0896
0.088¢
0.0875
0.0865
0.0855
0.0845
0.0835
0.0826
0.0816
0.0807
0.0758
0.0789
0.0780
0.0772
0.0763
0.0755
0.0747
0.0738
0.0730
0.0723
0.0715
0.0707
0.0700
0.0693
0.0685
0.0678
0.0671
0.0664
0.0657
0.0651
0.0644
0.0638
0. 0631
0.0625

(continued)

c d
2.8194 -1.0832
3.3350 ~1.2920
441031 -1.6032
5.3701  -2.1166
T.8553 -3.1237

14,5440 -5.9965
200.0622 -81.0219
-17.0897 6.9866

~-8.0847 3.3371

=54 2466 2.1870

=-3.8563 1.6237

-3.0310 1.2894

-2.4844 1.0680

-2.0957 0.9106

-1.8051 007930

~1.579¢ 0.7018

=-1.3995 0.£289

—1.2524 0.5695

-1.1298 0.5200

-1.0262 0.4781

-0.6375 0.4423

-0.8606 0.4113

-0.7933 0.3842

—007339 003604

~0.6811 0.3391

-0.6339 0.3202

-0.5913 0.3031

-0.5528 0.2877

-0.5178 0.2737

~-0.4858 0.26009

-0.4564 0.2492

-0.4293 0.2384

-0.4043 0.2285

-0.3811 0.2193

-0.3596 0.2108

-0.3395 0.2028

-0.3207 0.1954

-0.3031 0.1885

-0.2865 0.1820

_002709 0.1759

~0.2562. 0.1702

-0.2424 0.1648

=-0.2292 0.1597

~-0.2167 0.154¢9

-0.2049 0.1504

-0.1936 0.1460

-0.1829 0.1419

_Oo1726 0.1380

~0.1628 0.1343

=-0.1534 0.1308

2l

8

26203 -
3.1353
3.9029
5.1693
T.6539
14,7420
196.8598

~17.2929

-8.2885
-5.4511
-400614
~3.23¢67
-2.6908
-2.3028
-2.0128
—-1.7880
-1.6086
~l.4622
-1.3403
=~142375
~1.1494

~1.0733

-1.0067
-0.9481
-008961
-0.8497
_0.8079
-0.7703
-0.7360
-0.7049
"006764
-0. 6502
-0.6261
~0.6038
-0'5831
=0.5640
=-D.5461
-0.5255
-0.5139%
-0.4993
-0.4857
~0.4728
-0.4607
-0.4493
-0.4386
-0.4284%
-0.4188
-N.4097
-0.4010
“0c3928



a

 20.2063

-0.1571
-0.1713
f001634
~0.1556
-C.1482
-0.1339
-0.1205
-0.1141
-0.1078
-001017
-0.0558
~C. 6900
~C. (0843
-0.G0788
~000734
-0. G681
-0.0629
-0.C578
-0.(0528
_000431
-0.0384
-0.0337
-C.0156
-0.C113
~-0.C0069
-0.06026
0.0016
0.CC58
C.G100
0.0142
0.0183
C. 0224
C.C265
0.C306
C. C347
C.C387
€.C428
C.C469
G. G510
C.C551
¢.0562

- Table (2.1)

b

0.0619

0.0613
0.0607
0.0601
0.0555
0.0589
0.0583
0.0578
0.0572
0.0567
0.0562
0.0556
0.0551
0.0546
0.0541
0.0536
0.0531
0.0526
0.0521
0.0517
0.0512
0.0507
0.0503
0.0498
0.0454
0.0489
0.0485
C.0481
0.0477
0.0473
0.0469
0.0464
0.0460

- 0.0457

0.0453
0.0449
0.0445
0.0441
0.0438
0.0434
0.0430
0.0427
C.0423
0.0420
0.0416
0.0413
0.0410
6.0406
C.040C3
0.0400

(continued)

R d
-0.1444 0.1274
~-0.1358 0.1242
-0.1275 0.1211
-0.1195 0.1182
-0.1118 0.1153
-0.1044 0.1126
-0.0973 0.1100
-0.0904 0.1075
-0.0772 0.1028
-0.0710 0.1006¢6
-0 .0649 0.03985
-0.0590 0.0964
-0.0532 0.0945
-0.0477 0.0925
-0.0422 0.0907
-C.036¢% 0.08865
~-0.0317 0.0872
-0.0267 0.0855
-0.0217 0.0839
_=0.0169 0.0823
-0.0122 0.0808
-0.0075 0.0794
-0.0030 0.0779
0.0015 0.0766
0.0058 0.0752
0.0102 0.0739
0.0144 0.0727
0.0186 0.0714
0.0227 0.2703
0.0268 0.06%1
0.0308 0.0680
0.0348 D. 0669
0.(0387 0.0658
0.0426 0.0648
0.0465 0.0638
0.0503 0.0628
0.0541 0.05618
0.0579 0.0609
0.0617 0.05600
0.0655 0.0591
0.0692 DN.0582
0.0729 0.0574
0.0767 0.0565
0.0804 0.0557
0.C841 0.0549
0.0879 0.N542
0.0916 0.0534
0.C954 0.0527
0.0992 0.0520

25

S

~-0.3851

-0.3777
-0.3515
-0.3402
-0.3349
-0.3299
-0.3251
~0.3161
-0.3119
~0.3079
~0.3005
-0.297¢C
-0.2937
-0.2905
-0, 2875
-0.2818
-0.2792
~N.2767
=-0.2743
-0.2721
-0.2700
-0.2679
-0.2660
—-0.2642
—0.2609
-0.2581
-0.2568
-0.255¢6
-0.2545
-0.2535
-0.2510
-0.2504
-0.2498
-0.2488
-0.248¢
-0.2485
-0.2486



2

0.0633
0.0674
C.0716

C.0758
0.0801
0.0843

0. 0887

G.C330
0. CS75
0.1020
0.1066
0.1112
C.1159
C.1208

.0e1257

0.1307
0.1359
0. 1411
Ce 1465
0.1521
C.1578
0.1637
0.1698
0.1761
C.1826

Ce 1894

0.1564
C.2038
0.2114
0.21%4
0.2278
0.2366
C.2458
0.2556
C. 2659
C.2769
0.2885
G.3C010
0.3143
C.3286
€« 3440
C. 3607
C.3789
C.3¢87

0. 4205

G 4445
0.4711
0.5010

« 5346
C. 5727

- Table (2,1)

b

0.0397
0.0394
0.0361
0.0388
0.0384
0.0381
0.0379
0.0376
0.0373
0.0370

0.0367 .

0.0364
0.0361
0.0359
0.0356
0.0353
0.0351
0.0348
0.0345
0.0343
0.0340
0.0338
0.0335
0.0333
0.0331
0.0328
0.0326
0.0323
0.0321
0.0319
0.0317
0.0314
0.0312
0.0310
€.0308
0.0306
C.0304
0.0301
6. 0259
0.0297
0.0295
0.0293
0.02651
0.0289
0.0287
0.0285
C.0283
C.0282
C.0280
0.0278

(continued)

c d
0.1030 D.0512
0.1068 0.05086
0.1107 C.0499
0.1146 C.0492
0.1185 " 0.0486
0.1225 0.0479
0.1265 0.0473
0.1306 0.0467
0.1348 0.0461
0.1390 0.0455
0.1433 0.0450
0.1476 0.0444
0.1521 0.0439
0.1566 0.0433
0.1613 0.0428
D.1660 C.0423
C.1706 0.0418
0.1759 0.0413
0.1811 0.0408
0.1864 0.0403
0.1919 0.0398
0.1975 0.0394
0.2034 0.0389
C.2094 0.0385
0.2157 0.0380
0.2222 0.0376
0.22¢90 0.0372
0.2361 0.03867
0.2435 0.0363
0.2513 0.035¢°
0.2594 0.0355
0.2680 0.0352
0.2770 0.0348
0.2866 0.0344
0.2967 0.0340
0.3075 0.0337
0.3189 0.0333
0.3311 0.0329
0.3442 0.0326
0.32583 0.0323
0.3736 0.0319
0.3901 0.0316
0.4080 0.0313
0.4276 0.0309
D.4492 0.0306
0.4730 0.0303
0.4995 0.0300
0.5291 0.0297
0.5625 0.0294
0.6005% 0.0291

26

8

-0.2487

-0.248°
-0.2497
-0.2502

. =0.2509

-0.2517
-0.2525
-0.2547
-0.2573
-0.2588
-0.2605
~0.2623
—=0.2643
-0.2664
-0.2687
—-0.2739
-0.2800
-0.2833
-0.2869
-0.2949
-0.2994
-0.3041
-0.3207
-0.3271
-0.3339
-D.3414
~0.3494
-0.3674
-0.3887
-0.4008
-0.4286
-0.4447
~0.4624
~-0.4821
-0.5040
-0.5287
~Qe5565



602
6.04
6.06
. 6.08
6.10

6.12

6.14
6.16
6.18
6.20
6422
6424

6.26
6.28
6430
6432
6434
6.36
6.38
| 6.40
6442
644
646
6.48
6.5C
6452
6.54
6.56
6.58
6.+6C
6.62
6.64
6.66
6.68
6.70
6.72
6.74
6.76
6.78
6.8C
6.82
6.84
6.86
6.90
6.92
6+94
6.96
6.98
7.60

. a

0.6673
0.7271
G. 7983
C. 8849

... 05924
1.1297

1. 3112
1.5626
1.5345

2.5411
- .3.7086

6.8887
4545601
~9.4391
—4.2960
-2.7732
—-2.0429
-1.3315
-1.1314
-0.5821
-0. 8663
-0. 6584
-0.€355
-0.5822
-0.5366
-0.4040
~0.379%
-0.3572
-0.3371

-C.3C19
—Ce2864
-0.2720
-0.2588
-0.2464
-0.2348
-C.1954
-C.1869
-C. 1788
~0.1712
-C. 1639

C.6165

" Table (2.1)

b

0.0276
0.0274

0.0272
0.0271
0.0269
0.0267
0.0265
0.0264
0.0262
0.0260
0.0258
0.0257
0.0255
0.0254
0.0252
0.0250
0.0249
0.0247
0.0246
0.0244
0.0243
0.0241
0.0240
0.0238
0.0237
6.0235
0.0234
0.0232
0.0231
0.0230
0.0228
0.0227
0.0225
0.0224
0.0223
0.0221
0.0220
0.0219
0.0218
0.0216

-0.0215

0.0214
0.0212
0.0211
0.0210
0.0209
0.0208
0.0206
C.02C5
0.0204

(continued)
e d
0.6441 0.0288
0.6947 0.0285
0.7543 0.0282
0.8254 0.0280
0.9118 - 0.0277
l1.0191 .0.0274
1.1562 N.0271
1.3375 0.0269
1.5888 0.0266
1.9605 0.0264
25669 0.0261
3.7343 0.0259
6.9142 0.0256

50.0154 0.0254
-9.4139 0.0251
-4,2710 0.0249
-2.T483 0.0247
-2.0182 0.0244
-1.3071 0.0240
-0.55840 0.0235
-0.8424 0.0233
-0.7501 0.0231
-0.6748 0.0229
-0.6120 0.0227
-0.5133 0.0223
-0.4738 0.0220
-0.4392 D.0218
-0.4086 0.0216
-0.3813 0.0214
-0.3569 0.0213
-0.3348 0.n211
~-0.3148 0.0209
-0.2966 0.0207
-0.2799 0.N0205
-0.2645 0.0203
-0.2503 0.0201
~0.2371 0.0199
~-0.2249 0.0198
-0.2135 0.0196
-0.2028 0.0194
-0.1928 0.0192
~0.1834 0.0191
-0.1745 0.0189
~0.1661 0.0187
-0.1582 0.0186
-0.1507 0.0184
-0.1435 0.0182

an

8 .

~0.6661

-0.7150
-0.7728
-0.9268
-1.0325
-1.167S
-1.3475
-1.5971
-1.9672
-2.5720
=-3.7377

9.4152
4.2735
2.7528
2.0242
1.5969
1.3162
1.1178
0.9702
0.8561
0.7654
0.6915
0.6302
0.5786
0.5345
0.4965
0.4634
0.4343
0.4085
0.3855
0.3649
0.3464
0.329¢
0.3144
0.3004
0.2877
0.2760
0.2652
0.2553
0.2460
0.2375
0.2295
0.2221
0.2152
0.2088
0.2027
0.1970
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2.3 Procedure of solution

The process for solving axial loading problems by the ) method

is as follows: - ' _

(1) Select the @ value of a reference member as QR. Compute the
ratio ¢;/¢h (k = 1,2...) for all members which sustain loads
(this ratio is of course independent of load level for the type
of loading specified in Section (1.7)).

(2) Assume a value of ¢h. Compute the ¢k and the corresponding .
stability functions a and b, or ¢ and d of each loaded memBer,
according to whether the member falls in catagory 1 or 2 of
Section (2,2). ‘ ) A

(3) Use Equ.(2.6) or Equ.(2.9) to compute the ) value at the inner
end of all loaded "end members" (members having one end connected
to the support foundation). For members which are not subjected
to load, some ) values which appear frequentl& can be read off
directly from Table (2.2) shown in Section (2.4).

(4) start with any joint at which all ) values are known except one.

Apply the moment equilibrium condition

6> JK = 0

or, since we assume a priori that @ # O,

2 JK =0 (2.12)
where summation is extended over all members framing into the

joint. Thus the one unknown ) value can be evaluated.
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(5) Apply Equ.(2.6) or Equ.(2.9) to compute the ) at the other e.nd
of the member treated in step (4).

(6) Repeat steps (4) and (5) until the last internal joint is reached.

(7) At the last joint, all ) values will be known, and if the assump-
tion of @ # 0 is to be maintained the equilibrium equation (2.12)
mst in gene.ral be modified by the inciusion of an externally

applied couple I-Io :

62K = M.
If positive Mo is needed to excite a positive O the structure is
stable, On the other hand if negative Mo is needed to maintein
the deformation, the siructure is unstable. Thus we have the
stability criterion:

> stable equilibrium

SJYr = o neutral equilibrium (2.13)
<

unstable equilibrium ,

The condition for locating the critical ¢R value, ¢§ , is thus

% 2 4% (2.14)

where the equality/inequality sign corresponds to that found in
Equ.(2.13).

(8) After the value of Q'R is thus revised once, the subsequent ¢R
values can, in principle, be estimated by interpolation or

extrapolation, based on two previous ¢R values and their
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corresponding remainders € ( =2 Y K for the last internal

~ Joint). Thus

. . é .
_ . (n-1)
) = P * oy = P2)) T 57 €y

_ eee(2.15)
vhere ¢(n) denotes thé nth est:hnarbe of ¢R'

However, it should be noted that there exists a possibility
of having a @ value exbfapola‘béd into the range of 'convergence
of a higher order critical modej one such caée is illustrated by
¢(3) in Fig.(2.4).

This undesirable situation can be avoided by refraining from
the use of Equ.(2.15) for extrapolation. Instead, the value of
¢R should be inereased until the € value changes sign; ¢'<3) in
Fig.(2.4) was located by such a process. Subsequent values of

Q’R can be interpolated by Equ.(2.15).

+ €

Figo (201{.)
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2., Tllustrative examples

The ) method described in the previous section will be applied
to two models. The quulus of elasticity E in each model is
assumed. to be the éame for all members composing the frame; the
quantity K (=EI/L) shown in the diagrams is a relative value.
Computations in the examples are carried out to an accuraey of not
more than 3 significant figures.

Some useful J values which appear frequently are listed in
Table (2.2); all these values correspond to zero load and so do
hot vary in magnitude. . In addition, it should be noted that a

moment—~free end has J = O and an encastré end has J = =00 ,

Table (2.2)

Type Member Gl fi

1 M(z -ZQ M M/2K 2
1 2

2 M (4 i M/3K 3
1 2
E

3 MUK 4 M/LK L
-1 2

I u(& Z)N M/6K 6
1 2




32

Example 1 The unsymmetrical contimious bent shown in Fig.(2.5),

restrained against side-sway.

2p
P__ A BY c D P
A I,L - LL IL AN
(k=1) (k=1) (k=L1)
(21,1). _
K=2
) 1, 5
(=1/2)
E A ‘
ke

The process of solution will follow that of Section (2.3) and
is shown in the following steps:
(1) select ¢R = ¢AB , and compute the ratio 525/525R for all other
members : ¢BE/¢R =1,

Boo/e = G/t = 1o and  Bop/ty = O

I

(2) since ¢ AB > 7T (the value corresponding to having both joints
A and B pinned), assume ¢R = 7] as a convenient start. Thus
Poc=%o =P =P =T
Since it is a non-sway problem, stability functions ¢ and d will
be computed. From Table (2.1) corresponding to @ =17 ,

c =1 co and d = _-*; oo s these values of ¢ and d are the

same for all loaded members since their @ values are the same

in this example. -
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(3) The loaded "end members" are AB, BE and CD. Since

IAB = XEB = XDC =0 (hinged end)

XFC ==~co (encastré end),

Equ. (2.6) gives

IBA::(l— OXAB)/ (c +dxAB)=l/c=0; and

XBTE = 701)__: 0.
For the unloaded n;emberv cF, XCF =, corresponding to Type 3
‘of Table (2.é). This value of .ICF remains unaltered for all

_ computational cycles.

(4) Both joint B and joint C contain only one unknown value of J

(namely, JBC and ),CB respectively); thus any one of these two

joints can be used as the first internal joint, If joint B

is selected Equ.(2.12) gives
Yo +2 Jgg + Vg =0
vhich gives XBC = 0,

(5) )’CB in member CB is computed by Equ.(2.6):
Jop=0-
(6) The last internal joint is joint C; therefore we can proceed
directly to step (7).
(7) At joint C, Equ.(2.13) gives

7CB+%ICF+XCD=O+%(A)+O=2‘

_ . - . o AC
Thus ¢(l)_ T gives 6(1) 2, which is > 0. Therefore ¢R >

according to Equ. (2.14).
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The first cycle of computation is thus complefed; the computed
values of ) and € are shown in the first horizontal line of Table
(2.3).

The second cycle starts from step (2) as follows:

(2) Assume @ = 3.20.  Thus ¢ = 3.20 and from

e = Pop = e
Table (2.1) ¢ = =5,25 and d = 2,19, for all members,

(3) Equ. (2.6) gives Jp, = Vg = Jgp = 1/e = =0.191.

(4) At joint B Equ.(2.12) gives Jg, = 0.573.

(5) At member CB Equ.(2.6) gives ),CB = ~1,00.

(6) The last joint is Joint C.
(7) At joint C, Equ.(2.13) gives
L -
Yo +5 Vo + g = +0.809.
Thus

Bra) = 3:20, €[5y =0.809 >0, and ge > 3.20.

The second cycle of computation is thus completed; the computed
values of ) and € are shovn in the second horizontal line of Table
(2.3). The ¢R value for the subsequent cycle may be estimated by

Equ. (2.}.5) :

i3y = P2y ¥ (Fa) =~ Pay) €2y / (€)= €2y

Il

= 3,20 + 0,06 (0.809)/1.19 324,
A new cycle of computation may thus be started with ¢R = 3,24,

The ¢R value of 3,22 at the 4th cycle is accurate to the second
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decimal and is accepted as the final value,

of P is thus computed from member AB:

( PE1/? ), = (3.22)%m1/17

The critical value

P =
= 1.05 2m /A%
Table (2,3)
Cyele P Tpr = Jae Jop | € | Remerk
Yo = o
1 (aszrume a) 0 0 o [+2.00 | gE>¢
2 (ommmmed) 0,191 | 40.573 | -1.00 |40.81 | £S5
3 (exf;igo ) 0330 | 40.990 | -2,28 | -0.61 | £ <
b (immeo1n.) 0,259 | +0.778 | -1.54 | -0.20 | #E=g
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not prevented from side-sway.

bending are to be neglected,

36

The three-storey symmetrical frame shown in Fig.(2.6a),
The effects of primary

Thus loads are assumed

to be carried equally by the two columns and axial

forces in the beams are ignored; the equivalent loading

system is shown in Fig.(2.6b).

for column CD is given as 59.2 tons.

McHinn (lzl»), pp0193"1960

Sway is possible in this frame, so in the columns # 0,

11}
. R R ] ¥ 1
D 3L (K=1) E
I,1.5L
(k=2/3)
W
c RIS O N A T e !
3I (K=1 F
21,1.8L
N ‘
FL (K=h73) G
) 31,2.4L
(K=5/L)
A H
”#7 3L 7 (a)
. Given: I = 100 in
L = 100 in.

W

The Euler load (PE)

Reference :

1
|z | |
l_ ]
2" |
i : 1
3+ 1
LY | l
' i 1
}
Line of
symmetry
I
b i b (b)
Fig.(2.6)

However, symmetry suggests that the two columns will deform simi-

larly and horizontal equilibrium then requires zero horizontal shears,

so that Equ.(2.9) is appicable.

Only columns at one side of the

frame need be analysed; computational steps corresponding to those

outlined in Section (2.3) are as follows:
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(1) select ¢R = ¢CD° The ratio of @ for other members are

Boc © |w/eET 181
T Jvr/z_EI ton - TR0
Iy A
= TI/I2E1 24T, _
P J el 1L T T

and Py e
o B K

(2) since member CD is elastically supported at C and D, 0 < ¢R< T

(corresponding to the case of V = 0, for the first cri{:ical mode ).

Try § =7 /2 = 1,57 as a start. Thus

Fop = 157, gy = 0 bep = 04406,
¢BC = 1088’ a-BC = 0;172, bBG = 00282,
and | ’

(3) The loaded "end member! is AB. Since
)’AB = - 00 (encastré end),
Equ.(2.9) gives
Yoo = = (afo)yy = =5.9 .

For the unloaded members DE, CF, and BG Table (2,2) gives

= 6, These values of ) remain

Jog Je = T
unaltered for all computational cycles.
(1) Joint D contains one unknown ) value (namely ’YDC) while joint C

contains two unknovms (nzmely ;(CD and ) CB) and joint B contains
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one unknovn (namely XBC); thus either joint D or joint B
can be assigned as the first internal joint. If joint D

is selected Equ.(2.12) gives
2y +¥. =0, or J _ ==9
3 “DC DE ? De ¢

This value of XDC is constant for all computational cycles,

since it relates only to which itself is a constant,

]DE
(5) Equ.(2.9) gives )’CD = =0,272,

“(6) ICB is evaluated by applying Equ.(2.12) at joint C:

10 2 _ . -
jg-ZpB + YCF + 3 ?CD = 0, or ]CB = 5,2}
and )éc is equal to =~l.46 by Bqu.(2.9).

(7) The remaining internal joint is joint B, at which Equ.(2.13)

gives

’ )bA + 3 733 + 5 Yéc 1.05.
The first cycle of computation is thus completed with
¢(1) = 1,57 and e(l) = ~1,05 < O which indicates, according

to Equ.(2.14), that ¢§ < 1.57. The computed values of )
(except ch which is of constant value of =9) and € are shovn
in the first line of Table (2.k4). The ¢ﬁ value of 1.54 at

the 3rd cycle is accurate to the second decimal and is accepted

as the final value.
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The critical value of W is thus.computed from member CD:

W

= 2 (L.54/17)% (59.2) tons

= 28,5 tons.

The same answer is given by McMinn,

Table (2.4)

2 (PmAP), = 2 (/) g

cyele | dy (= 0g) | o | oo Too | Jma | € |Femark
1 (ai;gged) 0,272 | =5.21 | ~L.16 | ~5.9% | ~1.05 do<®y
2 (a:;;gged) 0,142 | =5,31 | =1.12 | =h.24 | +L.46 | 95 > ¢
3 (in%;f.;foln.) =0.215 | =5.27 | =1.30 | ~5.11 | 40.17 TN
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CHAPTER III AXIAL LOADING PROBLEMS (II)

THE STABILITY FUNCTION TRANSFORMATION AND ITS APPLICATION

3.1 The tan ¢ transformation

_For the types of structure discussed in Chapter II it is
possible to transform the exact-transcendental equations into
gpproxjmate algebraic equations. | The critical léad can then
be expressed in explicit terms of the properties of members
~composing the frame, Consequently the relative influeﬁce of
..each.member on the critical load can be examined, and this will
be of use during the process of design. -

The basic idea arises from the observation that if P is
positive the only nonralgebralc function in both Equ.(2.5) and
Equ.(2.8) is tan ¢ ; i.e., terms 1nVOIV1ng sin f or cos § in
their separate form will not be present. For example, if

= 0 the governing equation for a typical member is Equ.(2.5):
2 '
sy o= (-c)) A=c)y) =0

or, for P> 0, )

vhich may be written as



- F0-g ) ) - ), [ 309 o9

L

2
+ ¢2 (1. - T‘ban-g—) 71] = 0, (3.1)
Similarly if V = O the governing equation for a typical member

is Equ.(2.8):

O+ s 7 Y Y- [P a- ey ]
[Fra-edr ] = o

‘or, for P> 0,
csc®B ¥y Vo= (F+)) cotf ) ¢ §+ ), cotf ) = o.

After rearranging this becomes
F + Footd Oy +)) = Ny Js. (3.2)

The problem of transforming the transcendental equations
into algebraic equations is thus reduced to the problem of
finding a suitable expansion for tan ¢ .

The well~knowvn tan § expression, namely,

= L3 240 4 L1 47
tanf = ¢ + 3 ¢ + 13 ¢’ + A5 B 4 veeene

is prohibitive for such a purpose, since a satisfactory algebraic
expression thus derived would involve many high order terms of g,
and the purpose of pursuing a simple yet accurate approximation

would be defeated,
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However, it is observed that the function tan ¢ has the

following properties:

tan - =70 at §=0, 277, £2], £37)....
= % 00 at ¢'—+"‘ iir,_sz, 1%7)- soece

A possible transformation of tan @, after grouping together

proper quadratic terms, would then be

6 [1-@2] [ 7o [1-he 907

tan ¢ = .

(-2 92| -t 9] [2- (o]

This intuitively derived form has all the correct zeros and
singularities, and its general validity will be established

in the following section.

(3.32)
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3.2 Proof of the tan ¢ transformation

v

The tan ¢ transformation glven by Equ. (3.3) will be exact if

sing = ¢ [1-(,%)2] _r1-<2—1f 97 .... [1-(-—;; 9]
and :

o ¢ = [1-& 9P| [1-G% 977 [1m(elayr 7]
_ |
(1)'sin ]

The theorem of infinite products (see for example, Morse and
Feshbach, " Methods of Theoretical Physics ", Part I, pp.382-385)
is

g

£1(0) il = .
£(g) = £(0) e IO g ﬂ[(l--g-)en] (3.4)
=1

in which £(@) is a differentiable function of ¢, £! = df/d¥, and
a is a value of @ where the function £ has a zero,
We shall consider, instead of sin ¢, vwhich gives £(0) = 0, the

function
f(¢) = sin .

Thus,

r0) = (2h

1,

i
-
!
=
+
Nl
hiy



£00) o (oot f = L |
£0) - (cot ¢ ﬁ’)¢=0
3
- 1 1
- [G-5-53 e -0
and .
a,nz.-. inT’ n=l,2,3"°-

Equ.(3.4) gives

. . ad _2 ‘ .n-'g'
iyt - ﬂ[ﬂ-‘nﬁf’em’] [‘1,*::“%"9“”]

Hence, =l '
oo .
sin¢ = ¢ ﬂ-[l - ('ﬁ%_r)z] Q.E.D,
=1
(2) cos ¢ »
The function f(f) = cos ¢ has the following properties:
£(0) = 1, '
£f1(0) = 0
and N
a = t(2n-1)7/2, n=1,2,3e00

Equ.(3.4) gives directly

ot = T~ el (b + =

=1
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or,

~ cos g = ﬁ-{l - ["(?‘:1'—0,‘1777’] 2} ) ‘Q.EoD,
L - =l . . |
s, |

with an expanded form as in Equ.(3.3).
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33 A simple non-sway case .

As an illustration of the transformation process, we shall

calculate the critical load of the strut shown in Fig.(3.1).

End

2 is attached to a spring with rotational stiffness 52 but allowing

‘no translation; the end 1 is pinned.

or Equ.(3.1) gives

72=T = 1-¢ cotp °

As an approximation we shall take

¢ [1-(Lg)

tan @

and denote

o« = (/>
Equ.(3.5) is thus reduced to
T3(1 - o)

Jo = L

: 9 9

Solving for & :

1--2)/2

X = —2
1—1/2

in which

Vo, = "'Lé“é"'yz

[1- 5] [

2

3——¢)]
T (L~00)
16 (2 - 0)

For such a strut, Equ.(2.6)

(3.5)

(3.6)

(3.7)

(3.8)
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Fig.(3.1) K = EL

o show the order of error involved in such a transformation,
it will be assumed that the spring has a rotational stiffness S,
of 2K, Then )’2 = -52/K = =2, 1/2 = =0,36, and ¢ = U,JB(-= 3.53
which compares to the exact critical ¢ value of 3.59. For the
limiting case of S, being infinite, o = 23 then ¢ = L.44 which
compares to the exact value of L.A49.

The practical range of ¢ in compression members with one end
pinned (Fig.(3.1)) is W € @ £ 1.43 , if only the first critical
1oad is to be considered., In the iower part of this range the
approximation given by Equ.(3.6) is good, but for the higher part
of the range it is not. Nevertheless the expression for X thus
derived (Equ.(3.8)) is acceptable, as previously demonstfated.

The underlying reason for this is best illustrated by plotting the

value of ), against @, as shown in Fig.(3.2). Curve A, which
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represents the exact solution given by Equ.(3.5) for the strut of
Figf(B.l), is plotted alongside curve B which represents the appro-
ximate solution given by Equ.(3.7). It is seen that at g = h.é,
_for‘instancé, the error in 72 given by curve B may bé more than
5043 but the error in ¢ for a given value of 7é in this vicinity is
less than 3%. .

It is also of interest to point out that the rounding off made
in deriving Equ.(3.7), namely the simplifying of (L1.94 = () to
(2 - L), is actually improving the limiting (52 = o62) @ value from
¢ = 4.37 (corresponding to A = 1,94) to @ = h.hﬁ (corresponding to
ol = 2.00), while the exact value is @ = 4.49.

After examining Fig.(3.2), it is obvious that the exact curve

can be better fitted. Revwrite Equ.(3.7) in the form

and the maximum error can be minimized by a proper choice of the
coefficient Cf. Curve C in Fig.(3.2) represents one such possibi=-
lity, with
= g
Cf 5
This particular value of Cf will be chosen for non~sway problems,

since it will be shown to be suitable for the general non-swey case

to be discussed in the following section.,
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3.k The general non-sway case

For the genefal non-sway case, consider the strut showm in
Fig.(3.3). End 1 and end 2 are attached to springs of rotational
stiffness Sl and 52’ respeétively. Both springs allow restraihed
rotation but no translation. For such a strut the governing

equation ig given by Equ.(3.1), namely,
1‘~—$§-<1-¢cot¢>71-72[-{-ﬂga-acow)

Lo -2 g = .
+¢2( atanz))’l]A 0 (3.9)
in which fi = - Si/ K (i=1,2).

The practical range of ¢ now extends to § = 27 (corresponding
to 8; =8, = e° ), and a reasonable tan ¢ approximation for this
range requires an additional mumerator .factor:

tan § = ’ [l-(%gf)z] [1-(51'1';-¢ )é]. (3.10)

[1- (202 [- (9]

It is obvious that substitution of Equ.(3.10) into Equ.(3.9)

would lead to a high order polynomial expression for O( R Thus
the approach of direct substitution is undesirable for the general
non-sway case,

A new approach is possible, It has been shown in Section (3.1)

how the exact tan ¢ transformation was formed by merely collecting
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terms satisfying the limiting conditions, namely, the zeros and
singularities. . Possibly therefore, a technique parallel to this

.might be employed to form an expression for o in the form
= ki
o« = o &, (3.11)

in which & = (@/7 )2 as previously defined, and O(l and O(:2 are
functions only of )'l and 72, respectively. . It is required that
the product of O(l and 0(2 should be correct, or nearly so, for all
the limiting conditions of the strut; these conditions are listeu
in Table (3.1).

A possible approximate expression for ( , guided by Equ.(3.8),

is thus

ol = (1-21/1)(1-'2)/2) (3.12)
1-1/1 l~)/2
in which

Y. 1 -
V i

i = G = mj-" (i =1,2). (3.13)
£ i

Table (3.1) shows that Equ.(3.12) satisfies closely all the
limiting values of O( . In order to verify that Equ.(3.12) also
gives satisfactory approximate solutions under various combinations

of the values of S, and 5,, Table (3.2) has been prepared. For

1

comparison the exact solutions are given in Table (3.3). Since
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subscripts 1 and 2 are interchangeable, only halves of the tables
divided by the diagonal need to be filled in.

' Itdis observed that the approximate solution shown in Table (3.2)
involves an error of not more than -2% and 4+2% for underestimate and
overestimate, respectively, of & . These errors are deemed
acceptaﬁle since they are probably leés than that of estimating the

actual loading in a structure.

r—

Fi [ ] ®
Table (3.1) g-(3.3)
P
p Y
Limiting Exact A by S
Boundary Conditions 4 Equ.(3.12) S @3;_%
71 =0 and ), =0 1.00 1.00
71 =0 and 72 = -00 2,04 2,00
)y =-c2 and J, =0 2,05 2,00
71 =-00 and ), =-oo 1. 00 4,00 Sq. @j_g

The expression of X given in the form of Equ. (3.12) is particu-
1arly.useful in visualizing the various effects of Sl and 82 on the
load carrying capacity of the structure. For example, if the K
value for the frame shovm in Fig.(3.4a) is O(a, then the fixing of
the bases of the columns in a similar frame (Fig.(3.4b)) would
increase the load factor to 2O<a’ as Equ.(3.12) clearly shows. In
fact, Table (3.2) has been prepared according to this principle:

only the O\ values in the first column of the table (corresponding



53

1

immediately by taking the products of these values. Thus X for

to S,= 0) had to be computed; the rest of the table could be formed

the case of S;/K = 0,5 and S,/K = 1.0 is formed by (1.18)(1.10) =
1.30; O{ for the case of sl/x = 5.0 and S,/K = 5,0 is formed by

(1.53)2= 2.33, and so on.

P P P P
b <L: J "’,E
Z g
X X K K
T A7 77 77
(a) (b)

Fig. (Bel})
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Table (3.2)

The avproximate values of X given by Equ.(3.12)

sl/K
s, /K 0 0.5 1.0 5.0 10.0 )
0 1.00
0.5 1.10 1.2
1.0 1,18 1.30 .40
5.0 1.53 1.68 1.80 2,33
10.0 1.69 1.86 2,00 2,58 2,86
oo 2,00 2.20 2,36 3;05 3.38 L.00
Table (3.3)
The exact values of O{_ given by Equ.(3.9)
sl/K
S,/K 0 0.5 1.0 5.0 10,0 oo
0 1,00
0.5 1.10 1.21
1.0 1,18 1.30 1.38
5,0 1.5 1.68 1.77 2.31
10.0 1.73 1.87 1.99 2,55 2,88
co 2,0l 2,21 2,33 3.00 3.38 4.00
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Bxample - The two-storey symmetrical frame shown in Fig.(3.5),
prevented from side-sway. Reference ¢ Bleich (4),
.2 l‘.'._2 .
pPp.255-259 P P
A L
C
2L (K=1/2) D
I,L IiL
. (K“l) (K~l)
B I T a w=1/2) E
I,L 1,L
Fig. (3.5) e E
A 5y s

Since sway is io be prevented the columns will deform symmebri-
cally about the centre line of the frame and consequently only colunns

at one side of the frame need be analysed. For reference we have

7013 = )’BE = 2 (type 1 of Table (2.2)), XAB = ~c0, and G, 9/2.
First we shall consider the ratio of ¢ between columns AB and BC:
¢ T[K,n X
AR 1, so that AB__BA - 1
5 T [% g K
or,
K pg Xpy = Agg Keg - (@)

Equ,(2) involves four unknowns and thus three auxiliary equations
are needed for a solution. These three equations will be obtained
at the three joints A, B and C.
At Joint A4, O(AB
T e 4 = ~s , u) = 1
Yyp/te = =00t Op= (L~ 24)/(L=)) =2 (v)

is given directly by Equ.(3.12) with J/g =
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At Joint C Equ.(2.12) gives ) = ~1, thus Vg = Jo/Cp = =2/9

and Equ, (3,12) gives
Ko = (L ~2))/Q =lp) = 1.18, (c)

|

Substituting (b) and (c) into (a), we have
Rpe = L2.69 oi_BA' | ' | (a)
The last auxiliary equation will be obtained by applying
Equ.(2.12) at joint B:
1 -
Too *Jpp t5 gy = O

or, in view of Equ.(3.13),

s e+ o g+ b (@)
= Y“BC BA

C = 0. (e)

Solving (d) and (e) simultaneously we have, after rearranging,
\ 2 -
O(BA - 261}7 (XBA + 1030 = 0

which gives

OLBA = {0.76 (first mode)
1,70 .

Thus
_ 2, 2 2
P = (BN, = 77 &y Ky B/ L
= 1.53 I/
. . . 2
The exact value of P given by Bleich is 1.55172EI/I .
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3.5 A simple no shear case

The stability function transforming process for the no shear
cases is parallel to that for the non-sway cases discussed in the
previous two sections, As an introduction, let us consider the
strut showm in Fig.(3.6). End 2 of the strut is attached to a
spring of rotational stiffness 52; the spring allows both restrained
rotation and free lateral translation; the end 1 is encastré., For
such a strut, Equ.(2.9) or Equ.(3.2) gives

Yo = =% = S (3.14)

The range of ¢ in éompression mémbers isnow /2 E¢ =7 if
only the lowest critical load is sought. A possible approximation
for tan ¢ is thus
¢ [1'- (2% ¢ ;2] .

[1-(%¢) ]

tan § =

Denote, as in non~-sway cases,

X = (¢/T)
Equ.(3.14) is thus reduced to

y, = {i=kQ) (3.15)

(1= o)

. Solving for ol
1- Y

L=y

(3.16)

in which

Y, =1,
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To show the order of error involved in such a transformation,
it will again be assumed that the spring has a rotational stiffness
S, of K. Then ), = ), = ~5,/k = =2, K = 0,50, and § = 7T,_f6f=
2,22 which compares to the exact ¢ value of 2.29. For the limiting
case of S, being infinite, K =1 from Equ.(B.lé). Then § =T,
which is the exact value. Curve A in Fig.(3.7) represents the
exact solution given by Equ.(3.1L4), while curve B represents the
approximate solution given by Equ.(3.15). Again it is seen that
the exact curve can be better approximated, Put Equ.(3.15) in the

form

_ 1- 4
Yo = ¢ TR

and the maximum error can be minimized by a proper choice of the
coefficient C_; curve C in Fig.(3.7) represents one such possibility,

vith

R
J
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This particular value of Cs‘will be chosén for sway problems, siﬁce
it will be shown to be suitable for the general sway cases to be
discussed in_the following section.

On the other hand curve C, éhough reducing the absolute value
of the maximum error in @, may slightly overestimate § at some
values of Xé, in contrast to curve B which always gives a lower-
bound solution. However, since the error involved is so small

the overestimate is deemed acceptable.



P D e v
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3.6 The general no shear case

For the general no shear case we shall consider the strut
shovn in Fig.(3.8). End 1 and end 2 are attached to springs
with rotational stiffness Sl and 52’ respectively. Both springs
allow restrained rotation, and one of them a_]_'l.ox-rs free lateral
translation compelling zero shear. For such a strut the gover-

ning equation is given by Equ. (3.2), namely,
6+ G cotd (VL + V) =) )y (3.17)
in which )fi = - si/ K (i =1,2).

The tan ¢ approximation, which will be required from =0
(corresponding to Sy =5, = 0) up to the limiting case of =T

(corresponding to 5p =5, = o), is given by~

¢ [1-(Lg)?]

t ¢ = (3.18)
- [1-(29)?]
The substitution of Equ.(3.18) into Equ.(3.17) leads to
2
(L-o) +(@=-4X) 7
72 = oo «Tr L (3-19)

vhich is the transformed Equ.(2.9). Thus O can be solved in a
quadratic form by Equ.(3.19), or the ) method described in Chapter II

may be employed, with Equ.(3.19) replacing Equ.(2.9).
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Following closeljr the argument of Section (3.L4), it is possible

to approximate the solution of O( in the form

0§

I

oy o, (3.20)

in which & = (@/7T )2 and 0(1 and 0(2 are functions only of Xl and

72 respectively, It is required, as before, that the product 0(10( 5
should be satisfactory for all the limiting condition of the strutj
these conditions are listed in Table (3.4).

A possible approximate expression for & , guided by Equ.(3.16),

is thus
1 -1{ 1 -1/2)
0( = ( ll- -){ )( 1+ _}/2 (3021)
in vhich
’ 7 1 - 50,
Y, = C: = '"'1"-'-"61"?‘ (1 =1,2), (3.22)

Table (3.4) shows that Equ.(3.21) satisfies all the limiting

conditions except the case of 71 = )(2 = Q,

Fig.(3.8)
Table (3.4) P
Limiting Exact o by )y
Boundary Conditions 0. Equ.(3.21) ]
P52
;=0 and ), =0 0 1/16
J; =0 and ), =-c0 1/4 1/4
J; =-00 and ), =0 1/h 1/
1 2 1@) Sl
)’l =-o0 and 72 =~00 1 1 77"T’P
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In order to verify that Equ.(3.21) also gives satisfactory
-appro%imate solutions at most ;ombined values of Sl and 52, Table
(3.5) has been prepared. For comparison the exact solutions are
given in Table (3.6). Since subscripts 1 and 2 are interchangea~
ble only halves of the tables divided by the diagonal need to be
filled in. ;

It is to be noted that due to the violation of the limiting
condition at 71 = ]2 = 0 Equ.(3.21) should not be applied to struc-
tures in which columns are connected to very flexible members, For
most well-proportioned structures, however, the possibility of
encountering this situation is remote. ~ Whenever in doubt, Equ.
(3.19) instead of Equ.(3.21) should be used to evaluate KA.

It is observed in Teble (3.5) that phe approximate solutions,
except those values shown in brackets which are outside the applica-
bility of Equ.(3.21), involve an error of not more than -4% and +5%
for underestimate and overestimate of O, respectively.

Table (3.5) was prepared in this manner: first the values in
the last row of the table (corresponding to S, =00 ) were computed;
then the rest of the table could be formed immediately by taking
the products of these values. Thus O for the case of Sl/K = 1.0
and S,/K = 5.0 was formed by (0.1;3)(0.71) = 0,313 O for the case of

Sl/K = 5,0 and 52/‘K = 5,0 wvas formed by (0.71)2 = 0,51 and so on.
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Table (3.

5)

The approximate values of O given by Equ.(3.21)

5, /K
S,/K 0 1.0 5.0 10,0 oo
-0 (0.06)
1.0 (0,11) | (0.19)
5.0 0.18 0.31 0.51
10.0 0.21 0.36 0.59 0.68
co 0.25 0.43 0.71-| 0.82 1.00

Table (3.6)

The_exact_values of O{ given by Equ.(3.17)

sl/K
s,/ |0 "1i.0 5.0 10.0 co
o} 0
1.0 0,08 0,17
5.0 0.17 0.31 0.53
10,0 0.21 0.36 0.61 0.70
oo 0.25 0.42 0.72 0.83 1.00
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Example The two-storey symmetrical frame shown in Fig.(3.9),
not prevented from side-sway. Reference: Livesley

and Chandler (8), pp.10-12, or Gregory (27), pp.340-

3,2, lp P
3
c 1%L D
(K=1)
I,L - | I,L
(K=1) (k=1)
B I E
(k=1)
Fig.(3.9) 1L 1L
(k=1) K=1)
Al -

This is a no shear problem since symmetry suggests that the two
columns will deform similarly and horizontal equilibrium then requires
zero horizonual shear, Again, only columns at one side of the frame
need be analysed. Forrreference.we have 7CD = 7ﬁE = 6 (type L of

Table (2.2)), = =02 and G = 7/9.

Jan
First we shall take the ratio of @ between columns AB and BC:

¢AB -"-JOLAB OKBA

a—— =1, so that
BC T 1 Kge Xg
or, )
o yp Ky = g Kp o (2)
Equ.(2) involves four unknowns and thus three auxiliary equations
are needed for a solution. These three equations will be obtained

at the three joints A, B and C.

At joint A, O,y is given directly by Equ.(3.21) with Vg =

)AB/QS ==oos



66

At joint C Equ.(2.12) gives Jop = =6, thus VcB = )op/C, =
=54 /7 and Equ.(3.21) gives

Reg = Q= Yp)/(h = Vig) = O.7h. (c)
Substituting (b) and (c) into (2), we have

Ay = 1.3k Og,. ' ' (d)

The last auxiliary equation is given by applying Equ.(2.12)
at joint B '

Jpe t )y tlgg = O

or, in view of Equ.(3.22),

1-4 1-4 0 '
BC BA _
cS 1l - O(BC + Gs 1 - (XBA + 6 = 0. (e)

Solving (d) and (e) simultaneously we have, after rearranging,

2 _
(XBA - 1.41 o(BA +046 = O

which gives

O(BA = {0.51 (first mode)
0.,90. :
Thus
: 2 _2 2
P = (¢2EI/L g = T O(ABOLBAEI/L
= 0.51772EI/L2.

The exact value of P given by Livesley and Chandler, or by Gregory,

is 0,527 2B /L.
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3.7 Multistorey single-bay frames under either no shear or

non~-sway condition

It was mentioned in Section (3.4) and Section (3.8) that for
a multistorey single-bay frame under ;ymmetrical loading condition
the rotational stiffnesses of the beams are known, and thus only one
stanchion at either side of the frame need be analysed. _Fig.(B.lOa)
and Fig.(B;lOb) illustrate stanchions with N storeys in no-shear
and non-sway conditions, respectively, with S (k = l...Ns) repre—
senting Lthe rotational stiffness of beam at the kth floor. As in
the previous sections external loads acting on the stanchion are

proportional and are given in terms of a cbmmon load multiplier P,

the critical value of which is to be determined. The corresponding
axial force in the kth column can thus be expressed as CkP s with Ck

representing the rumerical part of the axial force (Fig.(3.10)).

) ' s

s Q= Nag—F
O | K O P Ky

%3 Gz 53 op—F

S, ¢ S

2 P—pnxt 2 op—F

CP | K, C,P|X,

O o—F
C,P | Ky (=) ¢ PIKy (b)

77 Figo (3010) 7
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The eritical wvalue of P is given by

p = (IEL

)
o2 L

T2ET TPEL
ol —= = .4 =
@2, @I,

and the problem is solved if any of the X values is evaluated,
It can be readily shown that the direct evaluation of O(k for the
'kth column in a frame of NS storeys requires the solution of a

polynomial in 0(k of degree NS. For the particular case of

So= oo s
Sl=52=53= seve =SNS
and C,=60C,=¢0

1 > g = eeee = CNs ’
the resulting polymomial for &K, will be similar to that derived
by Merchant (5).

However, this direct approach of solving for 0(k is not advis~
able when NS is large and when the axial forces and/or beam stiff-
ness vary from storey to storey. A modified approach will now be
proposed,

Ve have noted in the previous sections that the value of O at
an end of a column is in general insensitive to the variation of J
at the corresponding end. Consequentiy one value of ) at each
internal joint may be assumed; the ) value at the other side of the

joint may be found from Equ.(2.12), namely,

(Z)). =0 k= le...N_. (3.23)
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After 21l ) values are thus obtained the corresponding oA value
at top and bottom of each column can be computed by Equ.(3.13) or
Equ.(3.22), or can be read off directly from Table (3.7) which has
been prepared for this purpoée.

If we write O(t and O(b as the O values at top and bottom of

each column and denote

P o= -cﬁii- ) k =1o...N (3.24)

the corresponding value of P estimated from the kth column is given

by

_ B
P, = o(,co’\b P, (3.25)

and the critical value of P may be conveniently approximated by the
arithmetic mean?:
Ns

1
P = ~—= E: P, . (3.26)
Ns =i k

A satisfactory approximate value of P is reached when the

condition

P1 =P, = P3 T oeeee = PNs | (3.27)
is satisfied (or nearly so); any subsequent cycle of trial-and-error
may be guided by the value of P computed by Equ.(3.26) in a previous

cycle,



Table (3’;;/) :

~¢

=NoWhbUMOONOCOOENWMDPINONOOOO

a @ o & & & 8 & 8 & 0 & 4 4 b s s e

[ ]
DN -

v ,
CO0COQOOOOOODTC OO M =k o bt = = = N

_0-5
-0.6
-0.7
-0.8
-0.9
—1.0
-lal.
—102
-1.3
—104
-1-5
"106
-1.7
_108
-1.9
_200
—291
"202
"2.3
—244
—2e5
-2.6
—207
-2.8

_209 *

(Equ-(B 13) and Equ-(B 22))
°‘(,<>=o) °<(v=o) SV K (gmg)
04200 _ o s siims |z 3,0 0 = 1e400_ 0 .k
0.269 -3.1 1.408
0.333 cn_mfesmm | m3e2 - 1e416
0.448 nzm= il m3e4 . - 14430
0. 500 -3.5  1.437
0.548 . I=3.6 L. . lebbbh
0. 594 3.7  1.451
0.636 e b =348 - 1.458 -
0.676 T 3.9 l.464
0.714 e ".;;:‘4¢0~__“_l_ 1.471 o )
0. 750 4.1 1.477
0. 784 T | =802 - 1.483
0.816 0.032 -4,3 1.489
0. 846 _ 0.071 L —he&  1.494
0.875  0.106 —4.5 1.500
0.902 _0.139 I . =4.6_ 7771505 _ _
0. 929 0.170 4.7 1.511
0. 953 " 0.198 “4.8 . 1.516
0.677 0.225 -4.9 1.521
1.000 —'~0‘250 _-500 - N 1.526 .
1.022 7 0.273 5.1 "1.531
l1.C82 .0.335 . . —54 1.545
1.100 0.354 =-5.5 _1.550
1.118 0.371 =546 1.554
1.135 0.388 =-5.7 1.559
1.151 0.403 -5.8 1.563
1,167 0.418 ~5.9 1.567
1.182 0.432 6.0 _ 1.571
1.166 0.446 -T.0 1.609
1.211 0.459 -8.0 1.640
1.224 0.471 -9.0 1.667
1. 237 0.1f83 B -10'0 B - 10690
1.250 0.494 -11.0 1.710
1.262 0.505 -12.0 1.727
1.274 0.515 -13.0 1.743
1.297 0.534 -15.0 1.7€9
1.3C8 0.543 -16.0 1.780
1.318 0.552 -17.0 1.791
1.338 0.569 -19.0 1.809
1.348 0.577 . —-20.0 1.816
1.357 0.584 -30.0 1.870
1.366 0.591 -40.0 1.899
1.375 0.598 -50.0 1.917
1.384 0.605 -50.0 1.230
1.392 0.612 -70.0 1.940

B TR 2,000 .

‘ Value of 0(




The method described is essentiélly a trial-and-error one, so
a quick solution depends on a reasonable estimate of the ) values.
The following procedure may be helpful in initiating the ) values.

Ve nolice that thé column having the minimum value of PB (given
be Equ.(3.24)) is probably the controlling, or critical, column.
If we can roughly estimate the (X values at the ends of this criti-
cal column the critical load thus computed will not be far from the
correct value and thus will give a valuable guide in estimating the
J values for other members.

If column c is the assigned.critical column with columns u and
v connecting to its top aﬁd bottom respectively, a good approximation
of O(tc’ or O(bc’ will be obtained by establishing the relationship
between columns ¢ and u, or between columns ¢ and v, respectively.

Thus for estimating o(tc we relate

B B
(o ok, P7) = (ol oL P°),

whieh gives

. oL, PP
— .bec "¢
Oy = Ry X (3.28)
tu "u
and denote
A'b = O(tc’f'qbu. (3-29)
Substituting Equ.(3.28) into Equ.(3.29) we have
At
Rpe = o, _p5 ° (3.30)
1 + be "¢
ol B
tu u
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A good approximate value of o<tc will be obtained if we maké
rough assumptigns.on the values of Y at the ends of both columns
¢ and u (a2 convenient way is to assume equal distribution of S
values between consecutive columns at evefy joint) and evaluate the
corresponding O\ values, then the revised value of O(tc is given by
Equ. (3.30).

For estimating O(bc similar derivation between column ¢ and v

gives
A‘b .
Ko = L (3.31)
T tc "¢
B
Okbv Pv
in which
by = Ky * &gy ‘ (3.32)

The process for evaluating o(bc by Equ.(3.31) is parallel to that

for evaluating X te (b7 Eau.(3.30)) described above.

After the values of o(tc and O(bc are thus estimated the first

approximation of P is given b&

P o= (o0, P, . (3.33)

This eritical value of P is to be maintained throughout all
other columns and their ) values will be evaluated accordingly.
This evaluation of ) will be stariting from the highest and lowest
columns (since the ) values at one end of these columns are known

constants) and proceed thus towards the critical column. A
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satisfactory answer is reached when Equ.(3.27) is satisfied appro-
ximately. For subsequent computational cycles Equ.(3.26) will be
applied to replace Equ.(3.33) and the computation repeated until it
converges.

The computational procedure will be summarized as follows:

(1) Compute pB according to Equ.(3.24) and denote the column
having the ﬁinimum PB value as the critical column.'

(2) Estimate the O( values at top and bottom of the critical
column by assuming equal distributions of S values between the
critical column and its adjacent columns and determining the cor-
responding O{ values from Table (3.7). The values of o(tc and
O{bc are then given by Equ.(3.30) and Equ.(3.31), respectively, and
the initial P value is given by Equ.(3.33).

- (3) Evaluate the ) values of all other columns in such a way
that the P walue can be maintained, The process will start
systematically from the highest and lowest columns and work towards
the critical column. This will result in the revision of the &
values (and, consequently, the P value) of the critical column.

(L) The final solution is reached when Eaqu,(3.27) is closely
satisfied. Until then the value of P for the subsequent compu-
tational cycles will be given by Equ.{(3.26) and step (3) will be
repeated until the convergence is satisfactory.

The process will be illustrated by the following example.
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Example

We shall determine the critical load of the symmetrical two-
storey frame previously investigated in Section (2.4).  The frame,
vwhich is permitted to sway, is shown again in Fig.(3.11a) below.
Since for this type of side-sway problem ) = 6 for all beams (Table
(é.2), type 4), S, = 8.0 and 5, = Sy = 6.0; the equivalent column
is shown in Fig.(3.11b). The following computational steps cor=

respond to those listed above.

1
{27
S
31 1(x=1) - 13 =
|% P (k=2/3) 27 %3
J 3T I(K=1) LI —
‘ L .
2 K=10/9) .
|z F .
Lind of 31,2.4L 7
symmetry (X =5/4) TPl Ky
"Given:
7 (PE)CDzsgoztOHS T (a) ey (b)
Fig.(3.11)

(1) Equ.(3.24) gives
PP = (u/1)TE(D)/(2.00)% = 0.30 TELAC.
B _

3 0.89ngEIﬁL2; column 1 is

Similarly, Pp = 0.627ET/L? and P
therefore the critical column,
(2) since 7b1 = =00 Table (3,7) gives o(bl = 1,0 and we need only to

evaluate X Assuming

t1°



(3)
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841 = Spo = 51/2 =} and Sgo = 32/2 = 3,

we have

Yo = k/1e25 = -3.2, [, ,=-3.6, and ), =-2.7.

Consequently
0(t1= 0.63, oLbz = 0,65, and oLt2 = 0,62

and Equ.(3.30) gives
O('bl - _0.63 + 9662
1+ <
(0.62)(0.62)

According to Equ.(3.33)

0.71.

P =P, = (0.71)(0.30) T2E1/L? = 0.2172EL/L.

The evaluation of ) values will proceed from column 3 to column
1 vhich is the critical column, Thus we start the first cycle
of trial-and-error (Table (3.8)) by letting

P3 =P = 0,21 7]'2EI/L2.

Since O(tB = 0.81 corresponding to th = ~9,0, we have
= B =
O(b3 Py /o(,GBP3 0.29
and, from Table (3.7) XbB £ -0,2, Equ.(3.23) gives }£2 = =5,3,

thus O(,, = 0,72 from Table (3.7). Similarly we shall let

t2

P, = P = 0,21 T7°EI /1°

2
) _ B _
so that o(b2 = Pz/o( wofs = O.47

and, from Table (3.7) sz £-1,3, Equ.(3.23) gives 7£1= -5.33

then O{ $1= =0.72 from Table (3.7) and Py = 0.22 UQEI/LZ by Equ.
(3.25).
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(4) The critical value of P is thus given by Equ.(3.26):
P = (1/3) (0.21 +0.21 + 0,22) TEI/1? = 0.213 T2EI/L%.

The solution obtained is deemed accurate enough since Equ. (3.27)
is closely satisfied; if another computation cycle is required
step (3) will be repeated with P=0,213 TEI/L° .

The solution is thus

P=O.21371'2EI/L2 = o.hs(PE)CD = 28,4 tons,

while the exact solution is 28,5 tons.

Table (3.8)

Cycle 1

k | s | x  [eF/afmat| ) o P, /(TEL/L?)
(-9.0) | (0.81)

3 0.67 0.89 o2 05 0.21

6.0
2 1.11 0.62 =5.3 0.72 0.21
~1.3 0.L7

1 1.25 0.30 . . 0.22

(=e2) | (1.00)
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3,8 Single-storey multi~bay frames with V # 0 and y £ 0.

Let us consider the frame consisting of Nc columns shown in

02, C, ... are numerical constants.

3
cilP CfP cl;BP (TCP »
' /a S —5

. 4
K1 Kp2 K (1)
K, ) X3 77 SR K
7 2

Yooza

Fig.(3.12a),in which Cys

o (2) Fig.(3.12) ,2,, (b)
In general any column j (j = 1,2....N;) of the frame has

Vj % 0 and s # 0; thus neither Equ.(3.12) nor Equ.(3.21) is

applicable in evaluating the load-carrying capacity of each column.

In exact solution would have to equate to zero the sum of the end

moments at each joint and apply the condition of shearing force

equilibrium at the cross beam: |

Ne

vV = ZVJ = 0. (3.34)
= .

This formal approach has been detailed by many previous investigators'
(for example, Goldberg (12)). '

Ve notice, however, that Equ.(3.34) can be satisfied in the.
mean if the whole frame is replaced by an equivalent column, as shown
in Fig.(3.12b). By doing so individual joints of the frame will

not necessarily be accurately in equilibrium but the bending moments
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as a whole will satisfy Equ.(3.34). Consequently Equ.(3.215,,
which was derived under the condition of V = 0, will be applicable
in estimating the average load-carrying capacity of the frame as a
whole, |

If we denote, as in Ssction (3.7), O(t and O(b as the values
of 0( at the top and bottom, respectively, of a column subjected
to the condition of V = 0 and P # 0, then at the jth column we
have o

0, P = (X &, T EI/L?), 3= Loy (3.35)

Since the support condition of every column is specifieda we

shall first determine (XK (j=l...Nc) by Equ.(3.22), which was

b)j
derived under the assumption that Vj = 0, or from Table (3.7).
However, the wvalues of (O<t)j remain unknowvm, In order to estimate

the average load-carrying capacity of the columns we shall assume

that every unknown (O(t)j can be approximated by one value C(t, i.e.,

Ry & Lgg & Ky eoene 7 Ky (3.36)

Then by summing Equ.(3.35) for all j the value of P may be approxi~

mated by
S TE
o, Lo (K, ——2)
p = —0 i P g2 73 (3.37)
Ne

=k
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It should be pointed out that an alternative approximation to

P may be given by

P = NZC (3.38)
c
=
in which
Nc
Ry = Fo 2 %uy o (3.39)
j:':

However, the value of P thus evaluated would in general be less
accurate than that given by Equ.(3.37). 'The reason is that Equ.
(3.37) retains as much of the characteristies of the individual
columns as the process permits; this is an advantage for a frame
of the type shovn in Fig.(3.12a) where the values of 0(bj may range
from 1/l to 1 (corresponding to pinned and encastré ends, respec-
tively), a variation of LOOZ.

In order to evaluate O(t we shall form an equivalent column
(Fig.(3.12b)) having the property

N

X .
1
K = -Tq-; sz o . (3.1{.0)
=1

The value of S at the top of the equivalent column may be estimated

as follows: the points of contraflexure of all beams are assumed



to be at their mid-spans; thus if () K)bl, (7 K)yao (y K)b3

denote the rotational stiffness of beams to the right of columns

1,2,3...., then

5 = '%Tc' [yblel + (JpKpy + Npofp2) *+ e

+ }b(Nc-l)Kb(Nc-l) ]
N -1
= “1%; Z Foi¥er1 . ' (3.41)
e .

If the beams composing the frame are free from axial forces then

Ibi = 6 i=1l...(N-1), (3.42)
N -1
¢ i=

and the J value at the top of the equivalent column is given by

]t = -S/K . (BGIFZ!-)

Thus &, can be determined by Eque(3.22) or from Table (3.7).

It should be noted that the proposed approach is different
from the approach of evaluating the critical load directly based
on an equivalent column. The reasons are:

(1) In the proposed method the only purpose of forming an
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equivalent column with stiffness K is for estimating )£ and,

therefore, O As O is generally insensitive to the varia-

£
tion of ) it follows that a rather poor approximation of K will
not significantly influence the value of Oﬁt.

(2) For a general frame (such as that shovm in Fig.(3.122a))
in which support conditions of columns may be different (ranging
from ) =0 to ) =-00 ), a direct equivalent column approach is
inapplicable since the equivalent support condition for such a
column cannot be properly deterﬁined. On the other hand the
proposed method can handle this type of problem with considerable
accuracy since the approach is founded on %he principle represented
by Equ.(3.21), so that a value of X can be evaluated by separate
consideration of the end conditions of any column; consequently
the foundation condition of an equivglent column need not be
specified since the determination of O(t is independent of the
foundation conditions. |

It is thus seen that the proposed method is more versatile
than the equivalent portal method (9), which is mainly applicable
to frames composed of columns with equal lengths and uniform
support conditions,

In the general case when axial forces at the beams are also
present, i.e., if beam i (i = 1,2....Nc~1) is subjected to axial
force cbiP (Cbi being a numerical constant) the corresponding

value of )ﬁi in Equ. (3.41) vill have to be modified from the basic
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value of 6. The modifying factor is a function of ¢5i’ where

Fos = ( “I%IP'LL>bi (3.45)

and the modified 7£i is given by

6
),bi = (3 c.b) (3.46)

1

‘(see for example Gere (19), p.182) in which cp; is the stability
function, given by Equ.(2,1), of the ith beam,

In general ¢£i £ 13 then 0.333 é'cbi-é 0.358 and consequently
ybi seldom differs much from the basic value of 6. A possible
approach for solving this type of frame problem would be first to
evaluate P in the frame with the effects of axial forces at the
beams neglected (i.e., with all 7£i = 6); this value of P would
then be used to compute all ¢£i values given by Equ. (3.45) and the
'modification to )£i vould be made according fo Equ. (3.46). The
analysis of the frame would then be repeated, with all previous
values of ) at the columns properly modified. In most cases the

value of P thus evaluated would give a good approximate answer.
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Example

We shall determine the critical load of the three~bay bent -
shown in Fig.(3.13a), not prevented from side-sway.
P 2r 2p P

I,L 1/2,L I,L

(¥=1) (K~l/2) (k=1)
I,L I,L
%)S:K=l) I,2L 1,2L n)(K=l) K

_..]; ___]__' 7
(K""z) (K_z

T

() b Ars Fig. (3..13) ' (v)

For the equivalent column (Fig.(3.1.3b)) Bqu.(3.40) gives

_ 1 1.1 =
K-—h(l+2+2+l) 0.75

and Equ. (3.43) gives S = (12/4)(2.5) = 7.5 o
Thus J, = = 10,0 by Equ.(3.kk), and K, = 0,822 from Table (3.7).
The critical load evaluated from the equivalent column is,

from Equ. (3.37) with Op; = ®pp = o) =1/ and ;5 =1,

! T%EL , 1,1, 1,1 _ 1T2EI
P = 3'0(_‘;---—---—112 (Z+E+R.E) = 01370«'1’;
=o.1127—T-2=E2—1-.
L

The exact solution is P = 0.113 T)'ZEI/LZ.
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3.9 General multistorey mlti-bay frames

The method described in Section (3.7) for evaluating the
critical load of a2 multistorey frame and the method described in
Section (3.8) for evaluating a multi-bay frame can be combined
to estimate the critical load of a multistorey mmlti-bay frame
having N_ storeys and N_ columns (Fig.(3.142)). Columns in
each storey are first transformed into an eaquivalent column
(Fig.(3.14b)) according to the procedure described in Section
(3.8), and then the vertical distribution of ) can be estimated

according to the procedure described in Section (3.7).

J=1 2 3 ees N

1}
)\

XX
1
1
L]
|
I
—t

k)
]
]

727 777 L
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Thus if we denote (as in Equ.(3.25)) P, as the value of P
estimated from the equivalent column at storey k (k = 1....NS)

then 2t the kth storey Equ.(3.35) reads

C. P K Ky 113§I—>

k' k J=1..N . (3.47)

Observ;ing that for any column connecting to the foundation
*, is known while for any other column neither oy nor O(b is
knovm, we shall assume that at any storey k every unknown (& t)jk
and (O(b) 5% can be approximated by constant values (0( )
(O(b)k, reépectively. Then by summing Equ.(3.47) for all j the

value of Pk is given by

2
rPl= [tZ(O( TrEI)/
3—-1

=L

¢ (3.48)

| 7, = [o( o(bz(”'EH/

=L

(m..‘: 2’3..‘.NS) .

In order to evaluate the values of (XX t)k and (O(b)Ic ve shall

form an equivalent column (Fig.(3.14b)) having the property

- L -
K = Nc(iKi>k K= Leo.o. (3.49)

FL
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If we denote Sk as the value of rotational stiffness of an

equivalent spring_attached to the upper joint of the kth column

then Equ.(3.41) becomes

(i Ybllcbl) k =1...N_. " (3.50)

i=L

The vertical distribution of ) may thus proceed as in Section {3.7).
However, in order to conform wit the computational pattern
established in Section (3.7) in initiating the value of P, we shall

denote

rp=i(o< 1T2F%/Z =)
= = bl

1 (3.51)

_ ‘IT2E1
| 'n Z( ) /J= (m=2,3.0..0)

| J=

- w

<}

so that Bqu.(3.48) may be rewritten in a single form, similar to

Equ, (3-25): as

B -
P, = (L 0, P e : k =1...N_ . (3.52)

It is observed that the actual value of O(bl is immaterial since

O(bl will be cancelled out in computing Pl by Equ.(3.52); we may
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thus employ Equ.(3.39), namely,
!k L (S (3.53)
bl H (2 bj)l .
. 71

for the purpose of estimating Pi .

The process of transforming a multi-bay frame into an equiva—
lent colunn is thus as follows:

(1) Compute the K value of the equivalent column at each
storey by Equ.(3.49) and the equivalent spring stiffness at each
floor level by Equ.(3.50). _

(2) Compute P2 values according. to Equ.(3.51) and denote the
column having the minimum PB value as the critical column,

" After that the computational procedure follows exactly steps
(2) to (4) listed in Section (3.7).
The complete process will be best illustrated by the following

example,



Exemple

Ve shall evaluate the critical value of P for the fréme shovm

in Fig.(3.15a); the frame is allowed to sway.

The axial forces

of the columns are as shovm and those for the beams are zero.

Reference : Bowles and Merchant (6), and McMinn (14).

Given ¢ [
I =115 in*
L = 183 in. Llne erv
-IT-Z—E-I- = 40 tons
4.28 I (K=2,81)
P 2,00P|1,L, I,L
- (k=1) (k=1)
10.67 I (K=7.00)
1,92 1 1.81 1
(K=1075)
10,67 I (K=7.00)
. O I 2‘36 I
4,95 P 9.88 P |20 0 Gior i
(K=2.L44)
10,67 T (K=7.00)
6,91 P 13.82 P {4,00 I 2,80 I
(K=h.1}) 0,97 L
(k=2.90)
10.67 I (K=7.00)
8.88 P 17.76 P rg;‘z)_z:;) g:gg i
(K=2-85)
77 4531 777 a3 77
|l I kgt ]
(a) -




Computationai steps:
(1) Transform the frame into an equivalent column (Fig.(3.15b)):
(2) Equ.(3.49) gives :
| Ky = (1/3) (2.85 + 5,32 + 2.85) = 3.7 3
similarAcomputation gives
_KZ-% 3.3, K3 = 2,8, Kh = 1,8, and KS = 1,0 ,
(b) Equ.(3.50) gives

S, =8, =83 =8, = (12/3)(7 +7) = 56.0

while 55 = (12/3) (2.8 + 2.81) = 22,5 ,

(¢) Equ.(3.51) gives, with (O(b;j)l =1,
2,85y, 5.32
g RGP+ m%Er, T2ET
Py = (—5—) = 0.317 =5~ 3
(2)(8.88)+ 17,76 L L

similarly P5 = 0,370 T°EL/L?, P5 = 0.432T g1 /12,

3
PE = 0.438 T EIL /1%, and P}; = 0.750 TEL /1.

Thus column 1 will be regarded as the critical column; these
values of PB, as well as those of_S and K, are recorded in Table
(3.9). The process of determining the vertical distribution of
¥ for the equivalent column then follows steps (2) to (4) listed
in Section (3.7).

(2) Estimate the { values at the ends of the critical column.

In this case, since column 1 is connected to known support
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condition, we need only to estimate the value of O(tl’ Tf
We assune equél distribution of Sl between column 1 and column

2, then Equ.{3.30) gives

o(tl' = 1.58/(1 + 1.08) = 0,76

" and, according to Equ.(3.33), \

P =P, = (0.76)(0.317) TPEL /12 = 0.241 ToEL/L2.

The evaluation of ) values will thus proceed from column 5,
which is connecting.to the éoof, to the critical column. Thus
we shart the first cycle of computation by letting

5 = P = 0.251 T°EI/8°,

Since C(ts = 0,906 corresponding to 7%5 ==-S5 = =22,5, we have

P

_ By _
Ky = Ps/(KysPs) = 0,355
and, from Table (3.7) 7b5 £ ~0.5.  Equ.(3.23) then gives

Yy, = =31.0, thus Oy, = 0.932 from Table (3.7).

Similarly we shall let

P, =P = 0.2h1'iTzEI/L2,

L
= By .
thus °<bz, = Ph/(dthph) 0.5%0

and, from Table (3.7) ~ ), & =2.6 . Equ. (3.23) gives )i, =

-18.6, thus O, , = 0,892 from Table (3.7).

3
Subsequent computation for the remaining floors will be

similar to that described and the result is clearly showvm in

Table (3.9). After o<tl is thus revised we have, by Equ.{3.25),
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P, = 0.260 TT%EL/L2.

1
(4) The critical value of P is thus given by Equ.(3.26):
P = (1/5) [ (8)(0.241) + 0.260] w2ET /L% = 0,245 T2EL/LZ.

The second cycle of computation stgft; from step (3) with
P = 0,245TT7E1/L°.  The subsequent solution of P = 0,247 TT2EL/L?
is considered accurate enough since Equ.(3.27) is approximately
satisfied, If another computation cycle is requifed step (3)
will be repeated with P = O.2h7iT2EI/L?. '

The critiecal value of P is thus given by

P = 0,247 T]'2EI/L2 = (0.247) (440) ‘tons
109 tons .

For comparison, Bowles and Merchant employed a relaxation
method and obtained P = 107 tons while McMinn applied the equivalent

portal method with a matrix approach and gave P = 112 tons,
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Table (3.9)

Cycle | 1 2
B .2 2 2
pB 12 . - P L P I
X % K
k| s | K J V¢ J 04
25T T2ET T2ET
(-22.5) | (0.906) | - (0.906)
5 1.0 | 0.750 =5 =T o355 | -2 [To5 T o.36 | O245
56.
=310 | 0.932 | ooy | 350 | 02932 | o005
b . 1.8 | 0,438 571 0. 590 2.7 | 0.800
56,
~18.6 | 0.892 ~18.6 | 0.892
. 0.241 0.245
3 2.8 | 0.432 -3.1 0. 625 -3,3 | 0.638
56. 1.3 | 0.866 5.1 | 0.868
2 . 3.310.370 5.2 0.750 0.241 ~%.6 | 0.765 0.245
56,
29.6 | 0.816 | o oep| <91 | 0.808 | o 2sp
L 37103 " ey | (1.000) (1.000)
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CHAPTER IV NON=-AXTAL IOADING FROBLEMS

IV,l GENERAL DESCRIPTIONS

L.1.l The method

An iterative method is developed_to determine the equilibrium
paths of rigidly jointed frames under non-axial 1oading,according to
small displacement theory. The characteristic of this approach is
that a reference deformation parameter, rather than the load factor,
is treated as the independent'variable. The usual approach of
incrementing the load factor has to limit its increments to small
steps, or there is a danger that the assumed load factor might be
greater than its maximum equilibrium value. The present method is
aimed to avoid such'a difficulty: by incrementing from zero the value
of a reference deformation parameter pop, as shown in Fig.(4.1.1), a
continuous equilibrium path will be determined,

The main advantage of this approach is that bifurcation buckling
can be solved directly, without resorting to laborious formulations
based on the existing bifurcafion criteria such as that proposed by
Masur et al (11).  In this thesis the proposed method will be
applied to rectangular frames which suffer no side-sway deflection
priof to bifurcation (Fig.(4.l.22)). For such a frame the bifurca-
tion load may be found directly by assigning an infinitesimal value
té the reference side-—sway parameter Pr> 28 illustrated in Fig.(k.1.

2b).
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This approach of evaluating the bifurcation load for rectanéu—
lar frames may be extended to include other type of frames, suéh as
gable frames, in which PR is non-zero prior to bifurcation. For
example, Fig.(L.1l.32) shows a symmetrical gable frame under symmetrie-
cal 1bading; if the sum of the side-sway rotations of the two stan-
chions is plotted against.the load factor A (Fig.(4.1.3b)), the
bifurcation load may be found under the condition (/ol+'/02) =0,

In general, if the deflection mode of a symmetrical frame under
symmetrical loading is expressible in terms of a symmetrical mode
function fs and an antisymmetrical mode function fa’ so that

W= fs + fa ’
then the critical load factor can be evaluated by assigning an infi-
nitesimal value to fa in the fa-;k plot,‘provided that after bifur-

cation the frame deforms in an antisymmetrical mode (Fig.(4.1l.4)).

l7uu 4

AL

Pr
,1;!
i

|

/

I

|
1577,

:
78 > -~ N
-

(a) ' (v)
Fig.(4.1.1)
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L.1.2 The frame and the loading

Theoretical derivations are based on a "viaduct" (i.e., &
s;ingle-storey contimaous regtangular frame) with non~sinking supports;
the general agssumptions and limitations of the analysis were listed
in Section (1.7).

The following facilities aré provided in the derivation:

(1) The; number of spans is unlimited.

(2) ’fhe coluxx;ns may be of unequal lengths, different materials

_ and different sectional properties; the same applies to the
beams,

(3) Bases of columns may be hinged or fixed.

(4) Yembers may have initial (imperfect) slopes.

For the sake of clarity in derivation, the structural members

and joints of a viaduct will be designated by mmbers as shown in

Fig.(h.1.5).

",joints ~

e L 2 ) 6 8 . g
(2) (%) (6) "
(1)
\members N (5) (7)
'S
1 (3) 7
1 A i
5
.

Figo (ll-tl‘ 5)
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Loads are proportional and are éiven in terms of a common load
factor A and a common constant multiplier PER which is chosen in
_ this thesis as the Euler load of a reference column. If Nmn
denotes the number of vertical loads acting on beam m then vertical
loads -are given in the form:
{ k = 1‘,2....1\1%1m

AW, P
mke *ER m=2,h....

Distributed loads are to be simulated by a series of point loads.
Horizontal loads are assumed to be applied only at the beam

level; the sum of these horizontal loads is given in the form:
N Wh PER

in which Wh

The proposed method, though derived on single-storey frames,

is positive when acting from left to right,

‘can be readily extended to multistorey frames which may be treated

as being compounded of single-storey frames. For example, if NS
denotes the mumber of storeys in a rectangular frame which is composed
of inextensible members and allowed to sway, it then has NS degrees
of freedom of joint translation at floor levels. One of the joint
translations may be assigned as the reference deflection parameter
/OR; the remaining Ns-l joint translations and the common load factor
A may be found from conditions of shear equilibrium at floor levels

(Ns of them) and the A - (op curve may be plotted.
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IV.2 EQUILIBRIUM PATHS FOR FRAMES WITHOUT SWAY

L.2.1 The procedure of solution

The procedure of determining the equilibrium paths for frames

without side-sway is as follows:

(1)

If the frame has a degree of indetérminacy N choose N statically

independent bending moments Q (n=1,2...N) as the "indetermi-

naciest, For uniformity of analysis these bending moments are

to be chosen at the ends of members (the numbering system for

" members and end moments is as shown in-Fig.(h.1.5)).

- (2)

" (3)
()

(5)

Select a reference joint ;R’ and assign its rotation as the
reference rotation parameter QR' (In general, any internal
Joint may be selected as the reference joint; the selection is
subject only to one conditidn, that there is at least one non-
zero vertical load acting on a beam framing into that joint.
The reason for this'requirement will become clear in the next
section when A is being evaluated.)

Choose a small but non~zero value of GR’

Initiate the values of the load factor A and the indeterminate

end-moments.,

Evaluate the axial force in each member in the form

N
(o]
P= AP +nzlrnan

vhere rn is an influence coefficient. This formula for P is



(6)

(7)
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only valid for non~sway cases,

Evaluate the stability functions of 21l members, and the primary
bending terms for all loaded beams,
Evalucte end-moments and Joint rotations. Conventional end

moment expressions are used (See, for example, Bleich (4)) with
terms for initial imperfections and for primary transvérse

loading. These expressions are derived based on small—defleqtion
assumptions, If the condition of moment_equilibrium is applied

at all joints (J of them) except the reference joint, J-1 joint

" rotations can be evaluated, These joint rotations, incorpora-

(8)

(9)

ting the chosen value of OR, are then used to evaluate the end
noments (including indeterminate endfmoments).

To facilitate convergence of iteration, the indeterminate end
moments may be substituted Eack to step (5) to modify the axial
forces., If this is to be adopted, step (5) to step (7) will be
repeated until the values of all indeterminate moments have
converged satisfactorily.

Apply the condition of moment equilibrium at the reference joint
Ins then the only remaining unknswn - the load factor A = may be

evaluated,

(10) since this iterated value of A is in general not the correct

one, it is to be substituted back in step (5) to re-compute the

axial forces, Thus step (5) to step (9) are to be repeated

until the value of A converges, Then a point on the A - GR
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curve is located,

(11) The subsequent points on the ) ~ 6, curve can be similarly
found, by incrementing the reference rotation parameter QR
in step (3). It is to be noted that step (4) can be hence-
forth omitted since the initial values of the 16ad factor and
the indeterminate moments are conveniently furnished by the

corresponding values computed for a previous point.,

L.2.2 Formulation

Theoretical derivations will be given in this section for non-
axially loaded frames prevented from sway., Computational steps
following each subtitle of this section are corresponding to those
listed in Section (4.2.1).

Evaluating the degree of indeterminacy (step (1))

Let M denote the mumber of members in a frame, J the mumber of
Joints where members meet (i.e., internal joints), and H the number
of hinges, Then the number of indeterminate end-moments N is given
by:

N=301-J) - H - (he2.1)

Evaluation of axial forces (step (5))

The axial force in the ith member (i = 1,2...M) of the frame
(Fig.(4.1.5)) under a specified loading proportional to a load factor

A may be expressed (exactly) by equilibrium considerations as
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= AP +Z x50 Q ' (i = 1...M) (ho2.2)

in which
P® = force at member i when the specified loading acts on the

frame, with Q =0 (n = 1...N).

: the nth indeterminate end-moment.,

O
Il

r = influence coefficient of the axial force in member i due

in
to Qn.

The influence coefficients.r caﬁ be evaluated by statics,

N Let.PER denote the Fuler load of a reference column having a

length LR’ modulus of elasticity ER and second moment of area IR (The

external loads have already been referred to this same value PER in

Section (4.1.2) above), Iet

= Pi/PER’
[o]
= P; /Pgp>

prl
|

n riﬁpR’

and

Ol
i

n = %/ Crgli)s

then Eque(4.2.2) in non-dimensional form is

)
i

N
50 - = s
i h Pi + grin QI] . (l - lo . o}{) ¢ (h0203)
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Evaluation of stability functions (step (6))

The @ velue of the ith member is

g, = J—Tﬁrsq L, = J_;;?TETS' I,

5 .
T I( Ef)l Ll (i = 1...H) (L.2.4)

il

in which E;= Ei/‘ER, I= Ii/IR, and L= Li/LR. The value of ¢i
may be substituted in Equ.(2.1) and Equ.(2.2) of Chapter II to compute

stability functions ¢ and s, resvectively,

EBvaluation of primary bending terms, end-moments and joint rotations

(steps (6) and (7))

Consider a typical linear elastic member connecting Jjoints A

and B as shovn in Fig.(4.2.1). A1l quantities are to be considered
positive in the senses showvm. Provided .that the square of the
slope is small in comparison with unity the angular displacement at

joints A and B are (by modifying Equ,(2.3) of Chapter II):

1 o
GA X (e H -5 MﬁA) + 8
3 (5.2.5)
QB X (c H BA ) + GBA
in which GAB and GEA are primary angles at ends A and B, respectively,

due to lateral load and member imperfections, with joints A and B

pinned; stability functions ¢ and s are as defined in Section (2,2).
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AVP. v
M

I\—!/ y:%»
. l L B EI
Fig. (ll-ozcl) = 'Jl K = -i,—-
T
Equ. (4.2.5) may be transformed to give
_ - o o
MAB—K[COA-I-SQB.(COAB+SOBA)] _
. (1h.2.6)
MBA~K[COB +50, - (€62, +s5 GAB)]
N 2 2 2 2 i
in vwhich C = ¢/(c"~ 8°) and S = s/(c~ s°). We will denote
Moo= 4/(PL;),
K =K/(PgLy),
and
= o o
Typ = (C 85 +5 8p,)
. (h.2.7)
TBA = (C QBA + 8 GAB)’
then Equ.(4.2.6) becomes
Myp=K (C 8 +5 65 ~T,,)
(4.2.8)

MBA =X (C GB + S GA - TBA) R

: o o .
To evalunate GAB and GBA we shall denote by w and Vi the location

factors of the lateral load Wk (x = 1,2...) acting on the member, as
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) , - .
shown in Fig.(h.2.2), and by GZB and S%A the initial imperfection
angles of the member at Joints A and B, respectively, prior to the

application of loads, Then for the case of P>0 the values of

O_KB and G%A are given (see, for examp}e, Timoshenko (1)) by
S s SN
I e kR x/| T °B
[~ . 1 ‘ ‘ 020
o A Z sin(u, %) o (4.2.9)
e = T 4 oI W) O

in which sumations are extended oveI: all 1a'i:eral loads acting on
_the member, In the case of P<0, hyperbolic functions should
replace all the circular functions in Equ.{4.2.9).

For a member with an encastré end B the expression of moments
are given by Equ.(4.2.8) with 8, = 0. For a member pinned at end

B, EBA = 0 and the expression for EAB may be found by substituting

65 from the second of Equ.(4e2.8) into the first:
T o= T (L S _
Myp= K (50, +Tp 5= Typ)

which may be simplified, in view of Equ.(4.2.7), to

o— _ —].; - o
Mp= K2 (8 =60 (4.2.10)

Ay
627 ®°p B
Fig.(4.2.2) _AB L

s A
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It was mentioned in Section (%4.1.2) that horizontal loads of
the frame are to be applied only at the beam level. Thus at each

end of every column we have

When.endemoments are expressed in terms of joint rotations by
Equ. (4.2.6) the condition of moment equilibrium at every inbernal
joint except the reference joint will give J-1 equafions for the
J=1 unknown joint rotations. After that the end-moments, including

the indeterminate end-moments Q, may be evaluated.

Evaluation of A (step (9))

For the purpose of illustration we shall assume that member 2
of the frame shown in Fig.(4.l.5) is subjected to non-zero vertical
loads. Then joint 2 may be selected as the reference joint, at

which the condition of moment egquilibrium reads

le + HzlIr =
or
’ le +-K2 ( 9, *+ 5, @h - TZA) =0> (4.2.11)
in which
_ o o
or, in view of BEqu.(4.2.9),
A N2 s:.n(v ¢,) 'P--
T, =5 °2LZ 21 ZZ -v) + 8, &
o J
-1, 1
w2 51n(uk¢ ) o T
.f— S2 Z 2k ""7""" * band u '!' 91}2 7-\-4 .
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If we denote

Dy, = Toy /A (he2.12)

then the load factor may be found by Equ.(4.2.11), in view of

Equ., (ll-ozolz) H
. o
A = :7"'"-"'[M24 +K,(c, 6, +5, gh)] _ (4.2.13)
Ky Do)

The iterative process

The process of locating a point on the A - QR curve by

iteration is summarized in the simplified flow~chart showm in

Fig.(4.2.3).
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Example
The frame shown in Fig.(hk.2.4) is prevented from sway. The
- E,I,L vaiues are as shown; there is no initial imperfection of members.
The degree of indeterminacy for such a frame is obviously one.
If the indeterminacy Q is selected as shown in Fig.(4.2.5), then
' b:l = i—2l+ and F; = W(1l-u), .
Since the load is given in terms of PEl’ column 1 is thus the
reference column. If we denote fi = Li/Ll (i=1,2), then the values

of r, are as shovn in Table (4.2,1), which was prepared according to

Fige(4e2.6).

AVP.

El
uL

2 i 2 Vv 'é L" Ql l

(E,I,L), P -

NN

(,I,L),

1l

oA Fig.(h.2.4) w7z . Fig.(h.2.5)

Table (L.2.1) Fige(h.2.6)

The value of rin The value of ri-ll.
— o S5
- Y C”r —>1/Ly
1 ~1/ L, ~1

<

| 2/5,
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The axial force is thus, from Equ.(4.2.3),

m
1%

Fi = AP + ?i (i=1,2),
These forces are used to generate stability functions cy and Sy (1=
1,22, with ¢i given by Equ.(h.2.4).

Since joint 2 is the only internal joint in the structure the
value of A can be found directly by applying the condition of equi~-

librium of moments at that Joint:

= = _= 1 = Ly =
My +H, =K clez +K, c2(92 e%) =0 (Le2.14)

in which GZA is given by Equ.(4.2.9):

2 = .;)_-\-[w-s-i—n%%- (1- u)].
2

i
sin@,

If we denote d = GEA/A , then Equ.(4.2.14) may be solved for A as

I? c e}
A= (1+22 d2
Koy e

For the case when the E, 'I, and L values are equal for the two

members and with W = 1 and u = 0.2, the numerical solutions are given

in Fig.(h.2.7), where A is plotted against 8,, 'Q'l, P, and Pys

accuracy of the solutions will bé revealed by a model test to be

the

éhown in Chapter V.
The mumber of iterative cycles required for a satisfactory
convergence increases as A. approaches its maximum equilibrium value.

As 2\ increases, and convergence becomes more difficult, increments
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of the reference deflection pai*ameter may be reduced to smaller
values to facilitate the convergence; the computation finally ceases
when further reduction would be impracticable. In this example
the computation stops at 92 = 0.96; the corresponding value of A

is 1,56 which is about 84% of the maximum value obtained by Lee et al

- (28).
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IV.3 EQUILIBRIUM PATHS FOR FRAMES WITH SWAY

L.3.1 The procedure of solution

_ The procedure follows closely the procedure outlined in

Section (4.2.1) for frames without sway:

(1)

If the frame has a degree of indeterminacy N choose N statically

independent bending moments as the "indeterminacies". " For

uniformity of analysis these bending moments are to be chosen at |

the ends of membeis (the numberiﬁg system for members and end-

" moments is as shown in Fig.(4.1l.5)).

(2)

(3)
()

(5)

(6)

(7)

Assign the side-sway rotation of a column as the reference sway
parameter PR (the external loads have already been referred to

this same column in Section (4.1.2) above).

Choose a small but non-zero value of PR

Initiate the values of the load factor A and the indeterminate
end-moments,

Evaluate the axial force at each member as given by Equ.(4.2.2),

with the addition of a hew tefﬁ fep}esenting the influence of the
axial force due to differential movement of the ends of members
in the frame,

Evaluate the stability functions of all members and the primaryA
bending terms of all loaded beams, as in Section (4.2.1).
End-moments are expressed in terms of Joint rotations, initial

bending moments and differential movements of the ends of the
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members., Again, expressions are derived according to small-
deflection assumptions. Rotations at internal joints (J of
them) may be evaluated by applying the condition of moment

equilibrium at all internal joints. These Jjoint rotations

" are then used to evaluate end-moments (including indeterminate

(8)

end-moments).
To facilitate convergence of iteration the indeterminate end-
moments may be substituted back to step (5) to modify the axial

forces., _ If this is to be adopted step (5) up to step (7) will

" be repeated until the values of all indeterminate moments

(9)

converge.
Apply the condition of horizontal force equilibrium at the cross

beam to evaluate the remaining unknown, the load factor A .

(10) Since this value of A is in general not the correct one it is

to be substituted back in step (5) to re-compute the axial forces.
step (5) to step (9) are repeated until the value of A converges;

a point on the A -~ (g curve is then located,

(11) The suﬁsequent points on the ‘A_-/OR curve'can be similarly

found, by incrementing the refe}ence sway parameter (°r in

step (3). It is to be noted that step (4) may be henceforth
omitted since the initial values of the load factor and the
indeterminafe'moments are conveniently furnished by corresponding

values computed for a previous point.
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L.3.,2 Formulation

Theoretical derivations will be given in this section for non~-
axially loaded frames subjected to sway. Computational steps
following each subtitle of this section correspond to those listed

in Section (A.B.l){

Evaluating the degree of indeterminacy (stev (1))

Again, if M denotes the number of members in a frame,.dJ the
mmber of internal joints and H the number of hinges then the rumber
of indeterminate end-moments N is given by Equ.(4.2.1), namely,

N =3~ J) ~H ~ (k.3.1)

Evaluation of axial forces (step (5))

As a frame sways there is differential movement of the ends of
each member in the direction normal to its original centre line,
Let Sj represents such a differential movgment at the jth member
(5 = 1...M); then the induced bending moment at member J caused by
Sj is equal to the product of the axial force Pj and Sj; this bending
moment will in turn induce axial forces in other members. Thus the
axial force in the ith member of the frame is given, exactly,.by

Equ.(4.2.2) with the addition of a new term:

N M
= (o] s y
P, = AP + ;rin Q, + JZ;%U P, Sj (i=1...M)., (4.3.2)

The coefficients 7{. can be evaluated by statics.
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If the frame is to be composed of inextensible members then
the differential deflections § of all columns are the same and those
of all the beams are zero. Thus, following the notation system

shown in Fig.(4.1.5), .

8, =0, =0, =eee. =3

1 3 5 . _
’ (IHBOB)
62 = 524' = 56 =".. = 0
and Equ.(4.3.2) can be simplified as
P, = MAP; it Zrm ) Z Vg (he3.4)

=1 J=L,3

Let PER denotes the Euler load of the reference column having

length LR’ modulus of elasticity ER and second moment of area IR’ and

let
Py =P/ P,
Py = P3/Prps
E::i.n = Tin’Re
Q, =0 /(Plp),
L 35= s sins
and

p = /g,

then Equ.(4.3.4) may be non~dimensionalized as
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N_ .JI

P AR DR T ey 2 Foay T (1.3.5)

=il =3
’ (i =1,. .II) -

Evaluation of stability functions (step (6))

The ¢ value of the ith member is given by Equ.(4.2.4), namely,

g. = TT ('P') L. (i = 1...H4) (h.s.é)

A —-—-1 3. .

in which E-i = Ei/ER’ fi = Ii/iIR, and i'-:i. = Li/LH'

Stability functions ¢ and s may then be computed according to

Equ.(2.1) and Equ.(2.2), respectively.

‘Evaluation of primary bending terms, end-moments and joint rotations

(step_(6) and_step (7).

If the linear elastic member shown previously in Fig.(4.2.,1) is
to have a rigid-body rotation [ as shovn in Fig.(4.3.1), the angular
displacement at joints A and B will be given by Equ.(4.2.5) with the

addition of a new term:
o, =% (cH - s 1,) + 6
A X 'AB TP

1 (4e3.7)
QB=K—(CMBA-SM )+QBA+/O

in which QAB and QEA are, as defined in Section (4.2.2), primary

angles due to lateral load and member imperfections, with joints

A and B pinned.



Hpp ' v
N ] |
P >\ ——
M
K .
{ L

) Fig' (1}03'1)

i

Equ.(4.3.7) may be transformed to give

H

_ _ o oy _
s =K [Cots 0, (co5u+s63) - (c+s)p]

U_BA_K[COB-I—SO (ceBA+seAB)— (C+S)p]

&) 4———_1)
B
Mpy

(4.3.8)

in vhich C = c/(cz- sz) and § = s/(cz— 52). Again, if we denote

M =M/(Pgly)s

= K/(PERLR)’
and
Tpp = (c GAB+ S GBA)
Tpa = (C 634+ s 64p)

then Equ.(4.3.8) becomes

Myp =K [c 9A+ S eB.. Typ~ (c + S)ro]

I, = [c 0+ S 0, Ty= (C +8)p]

(4.3.9)

(4.3.10)
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The values of 8°_ and 62 i‘or the case of P>0 are given by
AB BA

Equ. (4.2.9):

a A sm(v ¢) 1 ~
o5p = ';-—2 @ ) + 05
k-
S P ] (4.3.11)
: - sin(u ~
, ‘g;A = -;_-@-Z' W (——7— u,k) + Q%A
; k-

in whichrsummations are extended over all lateral loads acting on
the member and'azB and‘ggA were defined as the initial imperfection
angles of the member at joint A and B, }espectively. In the case
of P<O hyperbolic functions should replace the circular functions
in Equ. (4.3.11).

For a member with an encastré end B the moment expressions are
given by Equ.(4.3.10) with 8y = O. For a member pinned at end B
we have ﬁéA= 0, and the expression for E%B may be found by substitu-
ting 6 from the second of Equ.(4.3.10) into the first; after re-

arranging we have

8- p - OXB) . (4.3.12)

If 211 horizontal loads on the frame are to be applied at the
beam level we have, at each end of every column,
90 = ’é,ov

After expressions for the end-moments have been written dowm
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for all beams and columns the conditions for moment equilibrium at
every internal joint will give J equations for the J unknown joint
rotations. The end-moments, including the indeterminate moments

Q, may be evaluated once these equations have been solved.

Evalua-j;ion of A (step (9))

If the horizontal load AW, P., is to be applied at the beam

h" ER
level the equilibrium of horizontal forces acting on the beam gives

(i. 10t i, 1) (i, + 1 .)
5 _zﬁ____@_ g o=
= + Pl l°1+ 3 + P3 103+.. .- ?dfh 0
1

or

- T T 3T - 3f M
Hz‘*) + <M3’* T2 Hl*‘”) teeot E P + AW =
— — [ X ] P j Pj h
I Ly =1,3
(4.3.13)

which will be regrouped to ensure convergence of iteration as

i, M H, M M, - H

2k B6 L AU, = ijf’j + (I}_'Q i

L Iy 1,3 L L

- e o (L.3.14)
If we denote

My, = 1+ Kol

and

Dg = Tue/ A
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the left-hand-side of Equ.(4.3.14) may be rearranged as

- - . =
(2h TS Ly L oa(2 D+ =D, hs) = AW, -
T i T 2k WO h

1 I 1 3

Thus Equ. (h.3.14) mey be solved for A in the form

i Mom,2(mt) _ Mol 2(nt1)” P2(nt1) ,2m

o Lon=1 Lomt1
m=L |
i
- 12 | -
= Ponta Pomtr | = (—i'— + Py pq)
. .
A = =
i 2n Pom2mil) |
- h
Lom-1

m=L
in which Nb denotes the mumber of bays in the frame.

The iterative process

The process of locating a point on the A-,oR curve is

(4.3.15)

summarized in the simplified flow-chart shown in Fig. (4e3.2).
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(o . _
-Compute Pi’ T { i=l...M

Fl. 2 .N
and 7 4 3=1,3..8
Y

Initiate A and
set Q = 0. (n=1..N)

Y

Fix a value of /°R

Y

A

Solve simultaneous equations

Y

for Pi (i=1...M)

Y

values of T for all members

Compute stability functions and

Y

Solve simultaneous equations
for 8 (J of thenm)

Proceed to next point
on the A - [Pp curve

{

Compute indeterminate
moments Q_ (n=1...N)

Compute m, D,!
and A

A

Fig.(4.3.2) Iteration flow-chart for sway problems
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Example '

We shall consider the two-bay frame shown in Fig.(h.3.3).
For each frame member the modﬁlus of elasticity, second moment of
area and length are given as Ei’ Ii, and I'i’ fespectively, vith
i= 1,2..;5; theré afe no member imperfections.

The degree of iz;determinacy for such a fraie, from Equ. (4.3.1)
with M =5, =3, and H= 3, is

N =3(5-3) - 3 =3.
If the indeterminacies are selected as shovm in Fige(4.3.4)

then we have

(-, R =)
T . ._0_

- N 3T 50 __ 50 __ 50 _

| § =¥y, . | By =F) =F; =o0.

7LWPE1

ukL . -

G T -6 G l % %
(2) (%)
- (5)

1) 2 a8

1 \membez:s
3

Fig. (4.3.3) Fige. (hoB-h)
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Since the load is given in terms of P_. the Tirst column is

, El .
the reference column. ~ If we denote fi = Li/'L'l (j.=l...5) then the
valunes of ;in are as shown in Table (4.3.1); _Tyq Were prepared

according to Fig.(L.3.5).

Table (4.3.1) The values of ;in

N3 1 2 3 L 5

1 (53-1)/ L,| =L (1- i.'3) / I, 0 0

2 1/ L, 0 -1/ L, -1/ L, 0 1/ fh
3 fB/(iz'fs) 0 |-1/ fh-i,‘z/(fzis)' 1/ fs 1/ fh

The values of %i;j are as showm in Table (4.3.2). For example,
if ’X,is (i=1...5) is to be computed, we would set P555 (see Bqu.
(L.3.2)) equal to unity and the P§ values of all other members equal
to zeroj this is equivé.lent to applying to member 5, alone, a positive
(clock-wise) unit moment, as shovmn in Fig. (L.3.6). The ffarces
in@uged at ojc.}}er nembers due to this unit moment can then be evalu-

ated by statics.

Table (4.3.2) The values of 77’15

3 i 1 2 3 4 5
1 -LB/ L, 1 LB/ L, 0 0
3 -1/ L, 0 1/ L, - 0 0
5 -LB/(Lst) 0 L3/(L2L5) ~1/ L5 0
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} 4‘ . QQ:J:H ¥ 1
T(2) j (.‘TTD_I" * "'F'(ET <_(l,f
P555—l

,(l) (3) (5) | (1) (3) (5) :
\ | j TR %3
o L, = L
2 L1 275 —_——

L," L, Ll .

Fige(4e3.5) Fige(he3.6)

The axial forces are thus, from Equ.(%.3.5),

3 5
[ .. =0 L] — — — F

n=1,3 - 1J J
Stability functions ¢, and s, (i=l...5) and thus C; and S; may

now be computed, with

g = T|EY), 1

i ET 1L i
in vhich &, = EiEl and I, = Ii/Il (i=1...5).

Bending moments for the columns are given by Equ.(4.3.12) and
those for the beams by Equ.(4.3.10); for example,

o = l_. -

1-121 = Kl 01(92 /ol),

Mzh =X, (0292+ 5291;' T‘%),

in which T, is given by Equ. (4.3.9), in view of Equ.(4.3.11):

_ AW s:ln(l—u)?f2 s:ll’zu.,f.’f2 -u
T2, T g Ca ing, = (= u)| +5, sing, ]

for P, > 0. Hyperbolic instead of circular funciions should be used
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for the case of $2< 0.

Angles of rotation at any joint are computed by the equilibrium

of moments acting at the joint. For example, at Jjoint 2 we have
H21+-M2A= 0; this gives

o Ky 1/ + Kp(T5,-5,8,)

2 . [

Ky/ey +K,0,y

Similar expressions for Oh and 96 can be written, and they are
to be solved simultaneously with the expression for 02.~
With joint rotations thus determined the end-~moments may be

computed, and the load factor is given by Bau.(4.3.15) with N=2

i.'l I L
l = 3 1,3
K2 Doy,
Ei
in which
my, = My + Koy, Dy, = Ty /n
- - and

For the case of equal E, I, L values for all members, and with
W=2 and u = 0,5, the mmerical solutions are given in Fig.(4.3.7).
The computation stops at .= 0.170 (the corresponding A = 0,233).
The accuracy of the method for sway problems will be investigated by

rnodel tests, to be discussed in Chepter V.
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IV,! BIFURCATIO:NAL BUCKLING

Preyious investigators (see Chapter I) have given methods for
finding bifurcation points for non-axially loaded frames of an
appropriately symmetrical nature. Unfortunately these methods
involve a great deal of‘labour if used to analyse frames of any
complexity, and the approach to be éuggestgd here is belleved to be
a conslderable improvement in this respect,

The distinction between previous methods of solution and the
_proposed one is as follows:

(1) Previous solutions: As the load factor A reaches its
critical value both symmetrical and antisymmetrical configurations
become equally possible; consequently the characteristic equations
of these configurations should be satisfied simultaneously. At-
tention is thus focussed on the~point of bifurcation itself (point
B in Fig.(h.4.22), in vhich the load factor A is plotted against
a reference sway parameter /oR); in order to find that point both
non-sway and sway behaviour have to be considered simultaneously.

(2) The proposed solution: -The concept is schematized in
Fige(4.he1lb), in which Pr again represents a reference sway para-
meter, It appears that if A values can be found for specified
values of (Pp Our attention can be focussed solely on the sway mode,

for the bifurcation load }\c is located by the limiting condition

Ao Al"R]PR""O
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provided the symmetry of the problem assures us that PR= 0 before
bifurcation (for the general treatment, see Section (4.1,1) above).

It follows at once that the method described in Chapter (IV.3)
for evaluatihg the load factor corresponding to an assumed value of

[Pp ¢an be applied without modification to the present bifurcational

problemn,
A N
4 4
B |:<:;—/ /
Cr fr_.
(2) (b)
Fige.(bL.h.1)
Numerical solutions will be given for three examples. Since

the procedure of solution follows exactly that of the preceding
section the results of computation will be given directly; the com-
putations were performed using 8 significant figures by an IBM 709L
computer, In each example the bifurcation load may be evaluated
directly by assigning an extremely small value to /PR (say, 10-10);
for the purpose of determining the post-buckling curve, however, we
shall start with a op value of 107" and then gradually reduce it

to 10710,
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Example 1 The symmetrical portal proposed and solved by Chwalla

(2); The frame and loading is shown in Fige.(h.4e2)s

APz APgy Table (b.h.1)
L L
— 2 ! A
(2) E,I,L 107t 0.1799
nember 10-2 0.1798
() (3) =
10 0.1790
e E’I’Ll 1070 0.1790
I 5 =T
Fig.(hehe2) 10 0.1790

The solution is shovm in Table (4.4.1l), in which the load factor
A is listed against the side-sway rotation of member 1. It thus
appears that, in the context of small~deflection assumptions, the
post-buckling curve is initially horizontal and consequently the
equilibrium condition at bifurcation is either neutral or very nearly
SO.

The value of APp, at bifurcation is thus 1.767 EI/‘L2 which
compares to 1.775 EI/fL2 given by Chwalla and by Masur et al (11), and
to 1.780 EI/I-2 given by Horne (15); the large-deflection solution

given by Lee et al (28) was 1.751 EI/Lz.
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Example 2 Fige(Lhehe3a) shows the frame solved by Lu (16), who
extended Masur's approach to solving portal frames with

uniformly distributed loads applied on the cross beam.

t

Fig. (lPOII-OB)
27\PE1
RENNTRRRNEREE

@) La Table (4.4.2)
member (3)
I(.l) L L .
(2) | 1 {Ll=§L2 10 1 A
Gz EI constant 7% "
10 0.1407
- 0.4, AP, each
— Ly . ‘ 1072 0.1402
0'27];PE1 l 1 l l O.lszEl 10-3 0.1398
4
e 5(L2/5)= Lz—*‘—"—-" 10-5 0-1398
1070 | o0.1398
) I Ly
b2 . BIZ
In applying the present method we shall replace the distributed
loads with isolated point loads as shovm in Fig.(A4.L.3b). The
corresponding A - (01 Telation is shown in Table (4.k.2). The

value of APp, at bifurcation is thus 1.38 EI/Li which compares

with 1,39 EI/L? given by Iu,  For the cases of Ly=T, and L= L,/3

the corresponding values are 1.77 EI/Li and 1,07 EI/L%, respectively,

which compare to Tu's solution of 1,79 EL/L> and 1.08 EL/L5.
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Example 3 The three-bay frame shown in Fig.(4.h4.4); properties

of the frame members are as shown in Table (L.L.3).

hAPE b APy
2 2 -
£1 5L
2 6
"_3 Y \7—3—-'!
(2) (%) (6)
member
(1) (7
b (3) (5) 25
Fig.l(h.h.h)
777 77
Table (L.4.3) Table (helrels)
Menber 1 lol A
1]l 23|45 ]61]7 107t 0.1045
E/s |1l 11|11l 10~2 0,104,
L/ |1 1|12l |1 1073 0.1036
/i, [l |21 2|12 10~ 0.1029
10710 0.1029

Since there are no special handling difficulties for this frame

the solutions are given directly in Table (A.h.h). The value of

A at bifurcation is thus 0.1029,
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CHAPTER V APPLICABILITY OF SMALL DEFLECTION ANALYSES

‘V.1l  EXPERIMENTAL INVESTIGATIONS

The purpose of the present experimental investigation is to
determine the non-lineér response’ of frames under load, in order to
estimate the range of applicability of the small-deflection theory.

Consequently, three different model frames were made and tested;
each test represented one type of frame problems (i.e., sway, non;
sway, and bifurcation problem).- ‘ ,

The models had high-strength a2luminium alloy members, 3/ inch
wide, 1/4 to 1/2 inch thick, and from & to 18 inches long. The
reason for selecting aluminium alloy strips was that they possess a
yield-point of 60.5 ksi, which is comparable to that of mild steel,
yet the modulus of elasticity E is only 9.2x103 ksi. This permitted
the use of relatively thick members so as to decrease the degree of
initial crookedness, and at the same time kept the Euler loads of
the members within reasonable limits for small-~scale testing. The
use of high-strength aluminium alloy strip also made it possible
that large deformations would be achieved without inducing plastic
strains,

The test set-ups are depicted in Fig.(5.1) while individual
model frames are described in Table (5.1), in which dimensions of
members are given in the order of thickness-widbth~length (1engths

are measured between centres of joints). Table (5.2) shows the
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corresponding Euler load Py (=1T2EI/L2) of each member.

Frame members in frames 1 and 2 were connected to each other
by smell (nominal length: one inch) rigid clamps (Fig.(5.22)), vhile
the stanchions in frame 3 were bolted directly to the rigid steel
beam. Pinned ends were realized by knife edges, with the exception
that a roller-type hinge (Fig.(5.2b)) capable of taking tension or
compression was used for the horizontal member in frame 2. Toads,
which were applied at the mid-width of the horizontal members through
a pin connected to a loading rod (Fig.(5.2c¢)), were supplied by
weights placed on a pan at the other end of the rod. This type of
loading device was adequate for the present tests, in which post-
buckling behaviour was not to be studied.

Dial gauges with an accuracy of 0,0001 inch/division'were used
to measure displacements at loading points and midpoints of members
of frame 2, However for frames 1 and 3, which were without lateral
support and thus had side-sway deflections sensitive to lateral
loads, a cathetometer (sliding telescope) was used to measure lateral
displacements; by this means any undesirable lateral forces that

might be exerted by dial gauges were eliminated.
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Table (5.1) Dimension (inches)

Frame Member |Thickness| width |[length
_ 1 0.129 0.746 9.00
2)
(1)
1 : 2 0.253 0.752 11.86
(3)
3 0.129 0.7L6 18,06
1 0,129 0.746 18.06
(2)
2 2 0.129 0.746 18.06
(1)
3 PSR St e
— 1 0.129 0.746 8,00
(2)
3 (1) 2 1.00 0.746 8.00
(3) (steel)
3 0.129 0.746 12.00
Table (5.2)
Values of Py (=T°EI/L?)  (1bs)
Member Frame 1 Frame 2 Frane 3
1 151.2 37.5 191.4
2 662.3 37.5 2.89x10°
3 3705 _— 85.1
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Test I
The frame was to be tested without lateral support (Fig.(5.l1a)).
The load was applied at a distance D of 4.0 inches along the cross

beam from the joint connecting the shorter column:

. W
!“D_‘v
L2 L1= 9.0 in.,
Ll L2= 1109 in.
L3 L3= 18,1 in.
A7

Snap buckling of the frame was observed at a load of 57 lbs
(which will be referred to as W;),,at which point the side-sway
deflection of the frame increased rapidly and was checked only by
a limiting pin. The experimental results are given in Fig.(5.3)
and Fig.(5.4); corresponding solutions given by the small~deflection
analysis, as described in Chapter IV.3, are presented by curve Ain
the same figures. The frame members regained their original
strajghtness upon unloading, so the test was within the glastic
range of the frame. |

It is observed from Fig.(5.3) that the small-deflection analysis
gives good approximations to the vertical deflection év' For
example, at W = 0,85 W;, the error in estimating 6v is about 10%.
However, an error of 10% in estimating the side-~sway deflection 5h

occurs at W = 0.47 w{, as indicated by Fig.(5.4).
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A similar test was conducted with the load applied at a distance
D of 6,0 inches instead of 4.0 iﬁches. Snap buckling of the frame
was observed at a load of 59 1bs (which will be referred to as wg);
again, the frame members resumed their original straightness upoﬁ
unloading. _

Experimental results are shown in Fig.(5.5) and Fig.(5.6);
corresponding solutions given by the small~deflection analysis are
shovn by curve A in the same figures,

It is observed from Fig.(5.5) that the small-deflection analysis
again gives good approximations to the vertiéﬁl deflection Jv. For
example, at W = 0,87 Wg, the error in estimating Ev is about 10%.
However, Fig.(5.6) indicates that an error of 10% iﬁ estimating the
side-sway deflection 6h occurs at W = 0,42 we,

It is to be noted that if fhe effects of gusseted connections on
the model frame could have been removed the experimental maximum load
would have been slightly reduced. For example, if the increase of
buckling strength in the médel-frame due to gussets was about 104
(see Bowles and Merchant (6)), the corresponding maximum load for the
two tests would be W{ = §2 1lbs and W; = 54 1bs, respectively. The

adjusted analytical solutions at a region near to the maximum loads

are as shown by curve B in Fig.(5.3) to Fig.(5.6).
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Test IT

The column of the frame in this test had an Euler load PE of
37.5 1bs. The frame was to be tested with a lateral support
provided by the hinge at one end of the beam as shovm in Fig.(5.1b);
-the hinge was securely mounted to the rigid test frame in such a way
that it allowéd only rotational freedom in the plane of the frame,
The load was applied at a distance of 3.5 inches along the beam from

the joint connecting the column:
W
D]

1 72
D= 3.5 ine.

1 {L=Lél&lhh
7

At 2 test load of about 36 lbs the frame started to yield and
plastic deformation occurred under the loading point until about
L1, 1bs, at which load the test was ended.

The occurrence of yielding, however, did not impede the purpose
of the test, since at a load of 38 1bs the vertical deflections at
the loading point and at mid-span of the beam were élready more than
1.4 inches and 2,2 inches, respectively, and these deflections were
probably already too large to be predicted satisfactorily by 2
small-deflection analysis,

The experimental result is shown in Fig-(5.7) where the load is

plotted against the vertical deflection at loading point, Sv; curve A
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in the same figure represents the large-deflection solution, estimated
from the original diagram given in small scale by Lee et al (28).

The corresponding snall-deflection soiution, as described in
Chapter IV.2, is given by curve B (Eig.(S.?)) which regiéte%s an
‘error of about 10% in estimating 3 at W= 0.5 Py At the load of
36 1bs, which is the maximum recorded load before yielding occurs,
the corresponding error is sbout 30%,

The mid-span deflections of the frame members are also plotted
against load in Fig.(5.8).
h Adjustment of the theoretical values for gusset effects may be
neglected in the present test. Fige(4.2.7) shows that at a low
16ad level the absolute value of the end-moment Q is small, and that
its value increases very rapidly as the load approaches its maximum
equilibrium value; consequently the effect of the gussets, which is
to reduce the curvature locally and so influence the load-deflection
relation of the frame, is negligible in the present test when the
load level is relatively low. Furthermore the ratio of gusset
length to column length, which is one of the factors that ‘determine
the gusset effect ((25), pp.67-72), is relatively small in the

present model,
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Test IIT

The frame (Fig.(5.9a)) in %his test had a cross beam which was
virtually rigid in comparison with its connecting members (see Table
(5.1)); there was no lateral load applied to the frame. Then it
can readily be shown that before bifurcation the condition of equi-
librium of horizontal shears precluded sway, and as a result the
columns were subjected only to axial loads at an arbitrary load level,
The test therefore represented a bifurcational problem. In actual
test, however, minor imperfections were expected in the straightness
of members and the perpendicularity of the columns and the rigid beam.
These initial imperfections caused bowing of the columns, bending
moments, and side-sway of the frame, affects which were magnified as
the load was increased,

The experimental load-deflection curve is given in Fig.(5.10).
The maximum load was 76 1bs; the frame members resumed their original
straightness after unloading, showing again that the load-deflection
relation was within its elastic range.

As an estimate of the order of magnitude that the effect of
imperfection might have had, the frame was analysed with an imperfec-
“tion of the direction of loading, giving a horizontal disturbing
force W, as shown in Fig.(5.9b).

Curve A and curve B in Fig.(5.10) represent the load~deflection

curve of the frame (Fig.(5.9b)) with W,/ equal to 0.1 and 0,0055,
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W W
D D ::]
" —Y
L, Wh
I3l (2 (v)
A7 ) 2%
L;=Ly,=8.0in. |
Ly= 12.0 in, a7 Fi (‘ ) Y7
D = 4.0 in. 18- (549
respectively. It is thus seen from curve B that a horizontal

force component of 0,0055W would produce a sﬁay very similar to the
observed sway, which is believed to arise from the combination of
various imperfection effects. For example with W = 76 lbs, Wh
= 0.42 1bs,

The bifurcation load represented by curve C in Fig.(5.10) was

10% O. The load thus found is equal to

found by letting W, = 10~
7he2 1lbs which is slightly lesslthan the maximum test load of 76 lbs,
Since there were no gusset connections in the present model frame
the discrepancy was probably due to the fact that the figure of

74.2 was calculated for unsupported column lengths measured from the
knife edges to the mid~depth of the deep, rigid beam. The experi-
mented columns had a free length shorter than this by half the depth

of the beam,
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V.2 DISCUSSION

(1) Axial loading problems

The fraﬁe shovn in Fig.(5.11) is subjected to axial loading
and its inextensible members are free from initial geometrical
imperfections. For such a perfect frame deformation will not
occur until the load factor A reaches its critical value. Con—-
sequently solutions given by small-deflection analysis for this
type of frame problem, as discussed in Chapter II, are exact as
long as the assumption of inextensibility remains wvalid for all

the members composing the frame.

Al Al

L 2 AW AW ?‘

AN

. : D D
7\U3 b 4 J \A‘I? l"————‘ ‘:—-—o!
. ’1

E,I, E,I B

L L 8

7T 7 2.2 >
Fig.(5.11) (a) (b)

Fig.(5.12)

(2) Bifurcational non-axial loading problems

This type of frame problem is exemplified by the frame proposed
by Chwalla; the frame is shown in Fig.(5.12a), If the load factor
A is plotted against a reference joint rotation OR the resulting
load-deflection relation will be as shovm in Fig.(5.12b), in which

point B represents the point of bifurcation from the non-sway mode
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to a sway mode. In this case deformation, without side-sway,
will occur at any non-zero load level, and consequently only the
large-deflection theory is capable of providing an exact answer.
However, due to the facf that bifurcation generally occurs at a
relatively low load level and thus the corresponding deformations
remain small, a solﬁtion given by the small-deflection theory in
predicting the bifurcation load should usually be satisfactory.

The bifurcation load of Chwallals frame given by Lee et al (28),
using large~deflection theory, is about 2% less than that given by
gmallrdeflection analysis. The discrepance is mainly due to the
fact that a large-deflection analysis takes into account the flexu-
rallshortening of the cross beam due to bowing, which causes-
additional eccentricity of fhe column load,

(3) General non-axial loading problem
The frame and loading shown in Fig.(5.13a) typically represent

such a problem. The general shape of the 1oad—def1éction curve

is shovmn in Fig.(5.13b), in which 5h represents a general deflection

parameter,
AW, A
AW ! 1 4 <
2
S
7 O >
(2) | (b)

Fig.(5.13)
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Depending on the properties and proportion of frame members and

the pattern of 16ading, the frame may undergo very large deflections
as the load factor approaches its local maximum (point C in Fig.
(5.13b)) and consequently the small-deflection assumption can no
longer hold.

In reality, however, there is always opportunity for the appli-
cation of a small-deflection analysis, for structural failure may
in general be viewed as either the collapse of a structure (failure
in strength) or the occurrence of excessive deformation in it so
that the structure loses its serviceability (failure in stiffmness);
consequently, for civil engineering structures, there is normally 2
limit of deformation imposed on a practical structure, The
'allowable deformation varies according to circumstances and codes
of practice, but its order of magnitude is inveriably small., Fig.
(5.3) to Fig. (5.8) show that small-deflection theory gives a good
approximation in each case provided that the measured deflection is
less than about 1/50 of the corresponding member length, and this is

well above the limiting deflection which would be considered accep-

table in any building frame.
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CHAPTER VI CONCLUSIONS

Axial loading problems

Two mebthods of evaluating the critical loads of axially-
loaded rectangular frames have been proposed in this thesis.
They are mamial methods (as opposed to methods for electronic
computation) and, as such, are much quicker than existing methods,
The proposed methods are:
(1) The ) method (Chapter II): .

The ) method is an exact method of analysis for portal=type
structures which consist of open locps. The method ie_, thus
applicable to structures such as continuous beams, multi--bay
bents, and multistorey single-~bay frames of an appropriately
symmetrical nature (since such frames can be divided, across the
line of symmetry, into two continmmous 'open-loop" bents with
known support conditions). Ij?he characteristic of the J method
is that it proceeds by successive trial estimates of the critical
load value, at which the stiffnesses J are ‘computed for every
member of the frame. |
(2) The stability funetion transformation method (Chapter III):

This is an approximate method in vwhich stability problems
are solved in algebraic terms. Any portal~type structure,
either open~looped or closed-looped, can be solved by this method.

Vthen applied to open-looped structures it can give specifiec
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information on the behaviour of individual members under load,

However,

when applied to closed=~looped structures the method

invokes the concept of an equivalent column, so it can only give

information on the behaviour of the frame as a whole, although

the contribution of each individual member to the bucklihg

strength of the frame is still recognisable during the process

of forming the equivalent column.

The method offers two possible approaches of solution:

(a) The direct approach (Section (3.3) to Section (3.6)).:

(b)

For an open~looped structure consisting of Ns loaded
members the critical load may be evaluated directly by
solving a polynomial of degree Ns’ ;The behaviour oEt‘

a multistorey structure may be approximated by an equi~
valent column, so a frame having NB storeys and Nc
continuous columns may be transformed into an equivalent
column (which is an open-looped structure) consisting of
NS loaded members. In this case therefore the direct
approach is applicable. . In general the direct approach
is recommended when Ns< 33 for frame problems in which
N.>3 a trial-and-error type of solution (Approach (b))
will be preferred, )

The trial~and-error approach (Section (3.7) and Section

(3.9)): This approach may be applied with advantage

vhen Nsé 3. The method is to assume a distribution of
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S (the rotational stiffness of beams) at the ends of each
column so that the load~carrying capacity of each loaded
member may b; evaluated; a successful trial is represented
by the condition that the load-carrying capacities thus
computed are equal (or nearly so) to their mean value.
Tﬁe method is easy to apply and powerful in obtaining a
satisfactory solutibn. The speed of convergence is
- further enhanced by initiating the trial-and~error process
at a probable "critical column!, whereby the critical load
may be more quickly approximated. Furthermore, since‘
this critical load value has to be maintained throughout
the structure the values of ) at all columns may be computed
accordingly, and the effort of guessing the'Y values is
greatly reduced, . |
The main feature of the stability function transformation
method is that the load-carrying capacity of a column (or an equi-
valent one) under either a no shear or a non-~sway condition may be
evaluated by separate consideration of its end conditions. This
is believed to be of value in the process of preliminary design of
a structure and of its subsequent modification. For example,
Equ.(3.12) and Bau.(3.21) (or Table (3.7)) show that it is moxe
profitable to fix the base of a column subjected to sway than to
fix a similar column prevented from sway (since the buckling

strength in the former case will increase fourfold while that of
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the latter case will increase only twofold), and that in both

cases the increase in strength is independent of th.e boundary
condition at the other end o:£" the column. Table (3.7) also
shows that for a column subjected to sway a slight degree of fixity
at one end will considerably improve the load=-carrying capacity,
and ‘bhé rate of i.mprovemen"b decreases rapidly as the degree oi;
fixdgty in'creases; therefore we realize that the proﬁsion of full
fixity at the base of a column subjected to sway may not alﬁays be
worth the effort. . _ |

Both the method of stability function transformation and the
J method are able to depict the physical phenomenon of bﬁckling
throughout the process of computation: the ) method shows the
effect on the stiffness of individual members of the buckling load,
while the transformation method shows the effect on the buckling
load of the stiffness of the individual members, Consequently
these methods have a definite advantage over computer methods and
most other manmual methods,

When computer methods are used they can of course provide
exact solutions to complex stability problems, but the validity
of the solution is difficult to verify because of the non-linear
nature of the problem. In this situation the proposed methods
are especially useful, as they give a rapid procedure for the desk

calenlation of an approximation to the critical load.
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Non—axial loading problems -
An iterative method was proposed (Chapter IV) to determine the

equilibrium paths of rigidly-jointed rectangular frames under non-
axial loading, éccording to small-deflection theory. The charac-
teristic of this approach is that a reference deformation parameter,
rather than the load factor, is treated as the independent variable.

The main advantage of this approach is that bifurcation bﬁckling
can be solved directly, without resorting to laborious formulations
based on the existing bifurcation criteria, The saving in labour
of formulation and of obtaining a solution may be gauged by the fact
that the proposed method need only consider the bifurcated (asym=
metrical) mode of deformation, while the existing methods have to
consider simultaneously the symmetrical and asymmetrical modes.
Furthermore, for frame problems~where distributed loads are present
the proposed method requires no additional f;rmulation effort.

The method was also applied to non=bifurcational problems so
as to estimate the approximate range of applicability of the small-

deflection theory, by comparing solutions thus found with the experi-

mental results obtained from modei tests (Chapter ). In ééch test
the small=deflection analysis gives a good approximation provided

the measured deflection is less than about 1/50 of the corresponding
member length, and this is well above the limiting deflection which

would be considered acceptable in any building frame.
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NOTATION

A'b = O(tc+ o(bu

By =Xyt
2 2, . - ) o
c = ¢/(c“~ 8°) for non-axial loading problems;

coefficient of axial forces for axial loading problems,

Cf coefficient for frame probléms where P = 0
CS coefficient for frame problems where V =0
D =T/A

E modulus of elasticity

ER the value of E of a reference member

E = E/fEy

F kinematic degree of freedom

H the number of hinges in a frame

I second moment of area

IR the value of I of a refe;r'ence member

I =1/I,

J the number of internal joints in a frame

K =EL/L

K = K/(Pgply)

L length of member

o

the value of L. of a reference member

= L/LR

=i
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non-subscripted: the mmber of members in a frame

subscripted: bending moment

the number of indeterminate end-moments in a frame
the number of bays in a frame

the number of column lines in a frame ( = N5+'1)
the number of storeys iﬁ.a frame

tle nmumber of transverse loads acting on a beam

axial force -
the Euler load of a member (='I]'2EI/L2)

the value of PE of a reference menmber

axial force in a determinate frame

O

=P /PR

indeterminate end-moment

= /(P L)

the mumber of support reactions in a frame

= s/(c2— %) for non-axial loading problems;
rotational stiffness for axial-loading problems.
Primary bending term

shearing force

external load
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horizontal extermal load

vertical external load

= «1/(¢ tanf), for P>0
= 1/0%, for P>0

= (1 - ¢ cotf) /g>, for P>03

suffix for the critical column.

= s2- 02

the base of natural 1ogarithﬁs

general mathematical function

index

index

index

index

index

influence coefficient of axial force in a frame due to an
indeterminate end~moment

= LR

= (¢ cscff ~ 1)/¢2, for P>0

suffix for the column located above a critical column

suffix for the column located below a critical column

eigenfunction deflection
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sbability coefficient, = &K O(b

the value of X at the bottom of a column
the value of X at the top of a column

= H/(K 9)

differential displacement of the ends of a member
horizontal displacement

vertical displacement

remainder

angie of rotation at a joint

primary angle of rotation due to lateral load

initial imperfection slope at an end of a member

load factor
= )’/Cf for frame problems where © =0;
= )(/CS for frame problems where V = O,

= 3,14159265

rigid-body rotation of a member

= JIB/EI L
coefficient of axial force due to differential movement

of frame members

= ‘7LLR
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