ULTRASONIC PROPAGATION IN LIQUID ALLOY SYSTEMS

A Thesis submitted for the degree of Doctor of Philosophy in the Faculty

of Science of the University of London by

Gerald Ifichael Bartlett Webber, B.Sc., A.R.C.S.

1969



ABSTRACT

An ultrasonic interferometer has been used to measure the sound
veloeity in liquid zinc, cadmium, mercury, indium, tin, lead and bismuth
at temperatures up to 520°C. Experimental techniques ahd sound velocity
measurements on various liquid metals are reviewed. The adiabatic and
isothermal compressibilities, together with the ratio of the principal
specific heats, are evaluated for eighteen liquid metals.

The results of sound velocity measurements as a function of temp-
erature and concentration across the whole alloy system for mercury-
zinc, mercury-cedmium, mercury-indium, mercury-tin, mercury-lead and
mercury-bismuth alloys are presented. It is found that the addition
of solute to mercury causes the adiabatic compressibility to decrease
rapidly with concentration.

It is seen that the Bohm~Staver sound velocities are in fair
agreement with experimental values for sound velocity in alkali metals.
As the valency Z in the polyvalent group of metals increases, then the
Bolm-Staver sound velocity becomes progressively larger than the
experimental sound velocity. An empirical compressibility defined by

Z séel) gives better agreement with experimental values for isothermal

compressibility than does the free-electron compressibility Béez).
Various theoretical approaches to compressibility of metals are dis-

cussed. The semi~phenomenological model due to Ascerelli is found to
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give good agreement with experimental compressibilities. Expressions
for the free-electron compressibility and Bohm-Staver sound velocity
for alloys are derived and compared with the present alloy results.
The pseudo-potential approach end semi=-phenomenological model for
compressibility are also extended to liquid alloys.

Measurements of sound absorption in mercury are reported. The
value for the ratio of bulk to shear viscosity is found to be 0.86+ 0.3.
Experimentel values of nB/ns for various liquid metels are reviewed
and it is seen that the values for this ratio evaluated from the dense-

gas formulation are in reasonable agreement with experiment.
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1. REVIEW OF PREVIOUS EXPERIMENTAL WORK AND THEORY

1.1 Sound Propagation in Liquid Metallic Systems

The velocity of propagation of longitudinal waves ¢ in an isotropic

medium is given by

)s (1.1)

uﬂfr

2 -+ (L,
¢ p(ss

vhere Bs is the adiabatic compressibility, G the shear modulus, and p
the density. For acoustic measurements carried out at frequencies of
several hundred MHz in liquids of fairly small viscosity, such as
liqpid metals, the effect of the shear modulus is neglected. This
procedure is justifiable since the relaxation time for the shearing
process is much shorter than the period of the applied stress. The
sound velocity in a fluid is thus related to the adiabatic compres-

s8ibility by

2 -2, .
c 6. (1.2)

Now adiabatic and isothermal compressibilities are defined respectively

by

= .. L1039
Bs = n(ap s (1.3)
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1,9
BT @ - E(-a—’;T . (1.%)

Here, Q is the volume of the system and p the applied pressure. It
can also be shown thermodynamically that

where vy is the ratio of the principal specific heats. Few direct
measurements of isothermal compressibility have been made on liquid
metals and acoustic measurements make it possible to estimate BT’ The
estimation of isothermal compressibilities of various liquid metals is

discussed in Section L.3.

1.2 Previous Experimental Work
Although sound propagetion has been studied in many types of

liquids and the results interpreted in terms of various theories for
liquids, there has been comparatively little investigation of liquid
metals. The first sound velocity measurements on liquid metals were
made by Kleppa (1950) who investigated thirteen metals. From his

results he calculated the adisbatic and isothermsl compressibilities,

the ratio of principal specific heats, and the Grllneisen constant.
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His results showed that y is slightly greater than unity, near the
melting point, and there is a smell increase in isothermel compressibility
from the solid to the liquid state.

An early interest in liquid metals was the measurement of the
sound velocity near the melting point. Yao and Kondic (1952) had found
that the shear viscosities of tin, lead and zinc showed deviations from
the Andrade equation near the melting point. This implied the exis-
tence of a relaxation time for tin of 10”7 sec, such that the liquiad
would present a more s0lid charsascter to sound waves of a frequency
greater than about 2 MHz. Acoustic measurements at 5 MHz made by
Gordon (1959) with tin and Proffit and Carome (1962) with gallium,
the metals cooled to a few degrees below their freezing points, did
not show any change in the linear decrease of velocity with temperature.
The temperature variation of velocity would be affected by the existence
of a shear modulus due to incomplete relaxation at the frequency of
the experiment. In verification of these acoustic measurements which
indicated the absence of pre—-solidification phenomena, later shear
viscosity investigations have failed to support the reported deviations
in viscosity.

More recently the interests have been in the investigation of
high melting point metals, such as antimony, copper and silver, and in
propagation of sound in liquid metals subject to external pressures.

The letter investigations are important for the evaluation of equations
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of state for liquids. Coppens et al. (1967) measured the sound
velocity in sodium, mercury, indium, tin and bismuth as a function of
pressure, whilst Davis and Gordon (1067) made measurements on mercury
at pressures up to 15 Kbars. The sound propagation measurements made
by the author were performed at atmospheric pressure only. Published
sound velocity data are compiled and discussed in Sections 3.1C, 3.3
and 4.3; the various experimental techniques are discussed in Section
2.1.

A few sound velocity measurements have been made on liquid alloy
systems. The investigators interpret the variation of sound velocity
with composition and temperature in terms of structural changes in the
alloy systems. For example, Hill and Ruoff (1965b) found an anomalous
behaviour for the variation of sound velocity with temperature in liquid
bismuth-cadmium entectic. The sound velocity increased with temperature
in the temperature range 150 to 180°C and then decreased, and this
behaviour was interpreted as being due to the presence of bonding between
unlike atoms. In general the sound velocity varies smoothly with com=
position of the alloy system when at a fixed temperature. For liquid
tin-lead alloys Gordon (1961) found that the sound velocity at a fixed
temperature and at a fixed composition was smaller than the value given
by the linear average of the two pure component values at the same
temperature (see Fig. 4.18). The adiabatic compressibility was found

to vary approximately linearly with composition. In contrast, Abowitz
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and Gordon (1962a) found that although the variation of sound velocity
with composition for sodium-potassium alloys was similar to that for
tin-lead, (see Fig. L4.17) the adiabatic and isothermel compressibilities
were up to about 4% greater than the weighted means of the compressibi-
lities of the pure liquids.

The investigations of Golik et al. (1961) and Abowitz and Gordon
(1963) have shown that the variation of adiabatic compressibility with
composition for mercury alloys differs from the other alloy systems
which have been studied so far. Abowitz and Gordon found that for the
mercury alloy systems Hg-Zn, Hg~Cd, Hg-In, Hg-Tl, Hg-Sn, Hg~Pb and
Hg~Bi the sound velocity increased with increasing content of solute,
and the adiabatic compressibility decreased rapidly with the addition
of a few atomic percent of solute. Apart from Hg-Tl which was inves<
tigated for concentrations up to about 4O at.? T1l, the other alloy
systems were studied to only a few atomic percent. The variation of
sound velocity with composition of Hg-T1l alloys is shown in Fig. 1l.1l.
For this alloy system it is seen that the sound velocity at a fixed
temperature and at a fixed composition is greater than the weighted
means of the sound velocities of the pure components. In contrast
to the mercury alloys which have already been mentioned Abowitz and
Gordon (1963) found that for dilute Hg-K alloys the sound velocity
decreases with addition of potassium and the adiabatic compressibility

increeses. These authors proposed that the variation of compressibility
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with composition in mercury alloys is due to an alteration of the
structure of liquid mercury itself, which leads to increased Debye
temperatures of the alloys.

Many physical and electrical properties have been measured on
mercury alloys and in particular the electrical behaviour has attracted
much interest. The present study gives the results of the measure-
ments of sound velocity in six mercury alloy systems, studied over
their entire range of concentration, and the sound velocities and
compressibilities of pure metals and elloys are discussed from several

theoretical approaches to these physical properties.

1.3 Various Theoretical Approaches to_Sound Velocity and Compressibility

of Metals

Several theoretical approaches have been used to interpret sound
velocity measurements and these approaches are introduced and discussed
below.

A. Hole Model due to Frenkel

If an equation of state for a materiel giving the volume as a
function of temperature and pressure is known, than expressions for
thermal expansion o and isothermal compressibility Bp can be calculated.
In the simple model of liquid structure derived by Frenkel (1956) it

is assumed that the thermal expansion and compressibility of the liquid
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are determined by a certain concentration of “holes" each of definite
volume. The work s required to form a hole of volume v by expanding

the liquid against a constant pressure p is given by
u=u +pv,

and the number of holes NH emong the N atoms of a mole of liquid is

assumed fo be

Ny = N exp(-u/kB?).

Here kB is the Boltzmann constant and T the absolute temperature. The
assumption that all the thermal expansion of the liquid is due to

hole formation gives

Nv=R+-Q

where 90 is the incompressible volume corresponding to & close-packed

array of atoms. Hence the volume Q is given by

u_ + pv
=0 [+ 5 exp(- —9@—- 1] (1.6)
o

This leads to BT and up being expressed by

(o ~ Qo)v
"-"Q—k'lj—-‘* (1.7

Bp
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and
_ (q ~ Qo)u
a-

P ﬂkBTZ

v (1.8)

Gordon (1959) used measured data for Q, BT and ap and solved equations
(1.6), (1.7) and (1.8) to find u, @ and v. He found two sets of
solutions were obtained. Assuming that ﬂo is the same as the volume
occupied by a close-packed array of atoms, Gordon took the first set

of solutions which gave Qo closest to that corresponding to their

Pauling radii for co—ordination number 12. Gordon computed u, Qo and

v for sodium, mercury, tin and lead. Neither uor v could.pe compared
directly with experiment, although their values were seen to be physically
reasonable.

Pronin and Filippov (1963a,b) have treated this approach in more
detail. In Pronin and Filippov (1963a) they considered the temperature
variation of ﬂo for cadmium, tin, lead and bismuth and found that neither
solution gave the expected constancy of 90. However, since the free
volume { - ﬂo is physically expected to increase with temperature, they
consider the second solution to be more appropriate. These authors assume
that the variation of energy of hole formation with temperature (absolute)

is represented by the power series

u=ul+ AT+ BT2, (1.9)
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where ué is that part of the energy of hole formation which is in-
dependent of temperature (i.e. u, + pv), and A and B are constants, and
solve for u and v. They solve equation (1.9) in a different menner in
Pronin and Filippov (1963b). There they choose a, in such a way as to
satisfy the condition that ué remains constant within the temperature
range considered. Frenkel's equation [equa.tion (1.6)] then assumes the

following form

Qa T
- 2 = -—D . A+ 2BT
(@ 90) B fRT exp( o “o) exp( P )s (1.20)

where R is the gas constant. A plot of (A + QBT)/kB versus T enables
A and B to be determined. After this the constancy of ué is checked.
Values of u were calculated for sodium, copper, silver, cadmium, mercury,
tin, lead and bismuth and were compared with their latent heats of
?apourisation L. The ratio Nu/L varied between 0.24 and unity. The
authors concluded that metals with a low value of Nu/L (for example, tin)
had a solution of equation (1.10) without a temperature correction over
a wide temperature range, whilst metals with high values for this ratio
(for example, cadmium) had no such solution.

Both Gordon (1959) and Pronin and Filippov (1963a) looked at the
applicability of the distributed free volume theory of Eyring and Hirsch-
felder (1937) to sound velocity measurements. Since this theory gave

poorer agreement with the Pauling radii for co—-ordination number 12 and
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gave Qo decreasing with inecreasing temperature, they concluded that
this approach was not applicable to liquid metels. Hole models do
not allow the sound velocity to be estimated accurately since u and v
are not measured physical quantities and therefore this approach will

not be discussed any further.

B. Hard-Sphere Model

Helfdnd et al. (1961) have shown that an equation of state for the

rigid-sphere fluid can be presented in the form

Ppt A _ (1432 +32)
]

RT (l - 2)3

(1.11)

where Py is the pressure and 2 the molar volume. If o is the rigid-

sphere diameter of the atoms comprising the pure fluid, then the packing

fraction z is given by

z2 ="z > (1.12)

(n)
T

of the hard-sphere fluid can be calculated from equation (1.11) and

where N__ is Avogadro's constant. The isothermal compressibility B8

is found to be

Q. (1 = z)4
o) o A

- . (1.13)
RT(1 + 22)2
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Seemann and Klein (1965) estimated values of ¢ from X-ray date and

the hard-sphere compressibilities of mercury and aluminium were com=

pared with the experimental compressibilities. The computed B(h)

for mercury was 3.06 x 10712 cm?/dyne as compared with the experimental

value of 4.0l x 10712 cm?/dyne for the isothermal compressibility at
(n)

was opposite to that found

(h)

20° C, and the temperature dependence of B
experimentally for BT‘ For aluminium the computed B was almost a
quarter to a fifth of the experimental BT' Values of ¢ calculated from
equations (1.12)and (1.13) are smaller than experimental values and

decrease with increasing temperature, contrary to the expected behaviour.

C. Pair Distribution Function Approach

The isothermal compressibility of a liquid composed of particles
with spherically symmetric force fields can be represented in terms of

the radial distribution function g(r), [ﬁee Egelstaff (1967)], by

Bp = chT { ]"'N I (e(r) - 1]r2dr} (1.14)

where N is the total number of particles in volume . This is known

as the "compressibility" equation. Here the average number of atoms at
a distance between r and r + dr from a given atom is lYnr2 g(r)%'dr.

The value of the integral in equation (1.14) is close to -1.0 and

thus BT results from the small difference between the two terms. For
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this reason theoretical and experimental results for g(r) lead to poor
estimates of the compressibility.

A further equation of state, usually termed the "pressure" equa-
tion can be calculated within the framework of the canonical ensemble,

and is given by

Tk T
R R —1IEE T =S T

where u(r) is the pair potential. Differentiation of equation (1.15)

with respect to volume gives

2
1.3 . W—j r3 & g(r)ar + 2 J 28 0 (1.6)
Q Q

Now since pwo at the triple point, then from equation (1.15) it is

seen that

2N

BQkBT

J r3 & 3 glrlar % 1. (1.17)

Hence, near the triple point,

8-V a T3 ar (1.18)

1 . “WET o2 ] o3 du(r)A(ag(r)) ar.
T Q

Since typically 851 ~ 30 NkBT/n the numerical evaluation of the integral
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term is seen to be important. Measurements of (égézl)T are not available

to test this approach.

D. Bohm-Staver Sound Velocity

Pines (1955) used the collective co-ordinate approach to derive
the sound velocity, known as the'Bohm?Staver velocity, in a metal.
Ziman (1964) derives the same expression in the following manner. The
metal is regarded as a lattice of positively charged ions immersed in
a gas of conduction electrons. The electron cloud about each ion
screens its electric field, so that at large atomic distances the
Coulomb potential associated with a bare ion of valency 2 is reduced

by an exponential screening factor, such that
V(r) % (-Ze?/r) exp(-kr). (1.19)

The screening parameter ks depends on the density of states at the

Fermi surface, N(EF), and is defined by
kg = hne?N(E),
vhere e is the electron charge. If we consider a lattice of point

positive ions of valency Z and of volume density n, then a long-wavelength

vibration of these unscreened point charges gives rise to locel volume
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changes and polarisation fields. When an ion of mass M is displaced a

distance x from its equilibrium position, its equation of motion is
M i = -4nz2e2nx,

The plasma frequency ¢ (angular) of the ions would then be given by
$2 = Lnz2e2n/M.

Electron screening reduces the polarisation forces by the Hartree
dielectric funetion e(q), which leads to the expression for the observed

angular frequency Vq of an excitation of wavenumber q,
\’c21 = ¢2/e(q). (1.20)

Now in the long-wavelength limit, when q + O,

elq) +1 + hine2N(Ep) .

q2

The free-electron model gives the electron density of states N(EF) at

the Fermi energy EF as

N(EF) = 3n2/2E;.
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Therefore in the limit q + 0, equation (1.20) becomes

3
Vg * a[nz2/M(E,)]*, (1.21)

which shows that the frequency is proportional to the wavenumber as is
observed acoustically at low frequencies. The longitudinal isothermal

(BS)

velocity ¢ obtained from equation (1.21) is expressed by either of

the equations
o(B8) - [nzalmw(EF)]! (1.22)
or

c(BS) = [Zm/31‘d]iv . (1.23)

where Vg is the Fermi velocity of the electrons of mass m. This ex~
pression is known as the Bohm-Staver sound velocity [see Bohm and
Staver (1951)].

It follows from equation (1.23) that the isothermal compressibility

BéBS) is given by
BéBS) = 3/2nZE; ‘
= Y'Bs >
vhere BEBS) is the corresponding adiabatic compressibility. This cal-~

culation has been made at the temperature of absolute zero. At finite

temperature it is necessary to know the ratio of principal specific
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heats, y', associated with the ion plasma model, which has not yet been
evaluated theoretically.

Pines (1955) compared the velues of c(S)

with experimental values
of sound velocity for solid metals and found that there was fairly
good agreement for the alkali metals. For polyvalent metals c(BS) was
several times larger than experimental values. The Bohm—-Staver sound

velocity is compared with experimental values for sound velocity in

liquid metals in Section b.k.

E. Energy of Electron Gas Approach

The Bohm~Staver sound velocity can also be derived from the
equation of state of a Fermi gas. At ebsolute zero of temperature the
lowest-order approximation to the ground state energy for a non-interacting
electron gas is due to the total kinetic energy of the electrons. The

total energy Eo of NZ electrons in volume @ is given simply by

=3
Eo =3 NZEF.
Hence the pressure p at T = 0 is found from

P=- BEO/BQ

1.25)
o 2 NZBp (
50
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Differentiation of equation (1.25) with respect to volume gives the

same expression for compressibility Béez) as given by equation (1.24).
Béez) is known as the free-electron compressibility and may be written

in terms of radius r, (in Bohr units). rg is defined by

% nrdad = qu’ (1.26)

where a is the Bohr radius. In these atomic units § = 2m = e2/2 =1

and therefore Eo(ryd) and Béel) (Bohr units3/ryd) are written respec—

tively as
E_/NZ = 3/5a2r2
° 8 (1.27)
= 2.21/r2
S
and
Béel) = 2na2r5
53 (1.28)
= l.TrS '

where o3 = (4/97). It is seen that the free-electron compressibility
is an increasing function of . The experimental isothermal compres-
8ibility of various liquid metals is plotted as a function of r,
in Fig. (4.10), vhere it is seen that within each valency group with
the exception of the pentavalent group, BT increases with rye
Pines and Nozilres (1966) have included the exchange and correlation

energies in the calculation of the ground state energy of the electron
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gas. When the exchange energy Ex is included, the ground state energy

is given by

E __3 _._3
Nz 5(!21‘: 2nars
and simple celculation gives for the isothermal compressibility BéeX)
B(ez)
plex) = L . (1.29)

T
[ ~ o.166r_]

This expression is similar to that derived by Harrison (1966). For
the alkali metals with a large ros the inclusion of exchange energy
drastically increases the theoretical compressibility.

The correlation energy Ec may be added and the form proposed by
Pines and Hozi®res (1966) is used. There are several existing inter-
polation formulae for Ec which differ by about 107 over the relevant

range of r. The ground state energy is now given by

E __3 ._3 . -
NE = T, Prar (0.115 - 0.031 znrs), (1.30)
sacry s .
and the corresponding isothermal compressibility Béexc) is found to be
gle2)
1y
B = — (1.31)

[1 - 0.166r_ - 0.00k2r?2]

The term in rg, which comes from the correlation energy, has only a
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slight influence on the compressibility compared to that arising from

the exchange energy.

F. Pseudo-Potential Approach to Calculation of Total Energy
A calculation of the total energy based on perturbation theory

was used by Ashcroft and Langreth (1967a) to estimate the compressibility
of nearly~free electron metals. In addition to the usual kinetic,
exchange and correlation energies, discussed previously, the energy of

a solid contains terms resulting from the electron-ion and ion—ion
interactions. Following the analysis due to Harrison (1966), if the
direct interaction between ions centred at x, and_z_jJo is given by

Vd(lga - E%I)’ then the contributions per ion, Ed’ of the direct inter-
action to the total energy of the system of ions is simply

E, =+ Xb Vd(lga-gb|). (1.32)

9

a#b

The total energy of the electrons in the field of the ions can be
obtained from second-order perturbation theory. The time—-independent

Schrddinger equation is

- B uolel = o),

where the potential yJ is small. The zero-order equation is solved to
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give the zero—order eigenstates ]_lg = Qﬂiel}i‘;—. and zero—order energies

E(o) = £2x2/2m. 'The wavefunctions are normalised in a box of volume Q.

In the usual notation, the matrix elements of W may be written

<k + g|W|k> = % J 'e-l(']y"g') S (_I_‘)elk'z'dar.
Q
The zero-, first- and second~order contributions to the electron energy

E(k) are added respectively to give

1
fi212 <k + glu|k><klw]k + g>
o+ ke + ] . . (1.33)

o 12~ [+ 97

E(x) =

The prime on the summation indicates that the q = O term is to be
onmitted.

Another important feature of the total pseudo-potential w(xr) is
the assumption that W(r) can be written as the sum of the superposition

of individual ionic pseudo-potentials, such that

wx) = Julr - z,) .
8

Then it may be shown that the matrix element <k + g|W|k> can be written

in the form

<k + g|¥W|k> = s(a)<k + glwik> , (1.34)
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where
(@) =1 ] ¢4 Ea (1.35)
a
and

<k + glw|k> = % J e-l(-l-i-tg') ‘L oy(r) BZ g3,
Q

Thus the matrix element is factorised into a structure factor 5(g),
which depends only on the ion positions, and a form factor <k + g|w|k>
which depends only upon the individual ion potentials and is independent
of the ion positions. The electron energy E(k) may now be written

) ' s*(a)s(a)<k|v|k + g><k + glvlk>
E(k) = = + <k|w|k> + ) . (1.36)

an q B2 2 . 2
o (2 = [+ g)7]

The total energy per ion Eeﬂ. is obtained from

E =% 1 E(k)

= —& JE(_I_{)d3k

43y

= -53 ZE, + Z <x[w[k>

: &lvlk + @><k + g|v|k>a®k
J . (131

+ J s*(g)s(g) hﬂs -
2 S -k+d?
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The first two terms depend upon the volume of the system but otherwise
are independent of the details of the ion positions. The third term
is known as the band=structure energy Ebs' It must be noticed that
the electron—electron interaction Eogmes has been counted twice in the
average value w of <k|w|k> and Eez-e 2 must be subtrapted from
the total energy Een when calculating the total energy per ion of the
metal.

It is now necessary to discuss the effect of the electron—-electron
jinteraction and screening. The electrons are assumed to interact with
each ion through a local potential wp(g), which includes the Coulomb
potential of the ion, and to interact with the other electrons through
a Coulomb potential which may be determined from the charge density due
to all electrons. The latter interaction is determined from a self-
consistent-field treatment to give a potential.wl(r). Then the total

potential seen by the electrons is

w(z) =wo(x) + W (2) (1.38)
since
Vo(g) = w(r - ;a) .
8

The oscillatory component of the electron denmsity n'(r) may be written

in terms of its Fourier components nq, such that
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1
nl(;) = z nqelg»’_l:.
q

and n(1 is found to be given by

1 <k + g_|W|_1_§_>. asx
f . {1.39)

B - k47

1 2n3

Assuming that W is a local potential, then <k + g|W|k> is independent
of k, and can therefore be taken outside the integral. Integration

of equation (1.39) gives

~mkp<k + alv|x> -2
n = (1 + 1 X

1+ x
L s 4o
Q 2n2h2 ex = | D (1-40)

1l--x

where x = q/ZJLF. If I-Ié is the qth Fourier component of Hl (r) such that
' -
wr) = § wcl-lelﬂ-i ,
q
then using Poisson's equation gives

2
wh o bme (1.41)
a2

Since W:i is defined by <k + _q[I-71|g>, then it follows from equations

(1.38), (1.40) and (1.L41) that



32.

<k + glw’ >

<k + glw|k>= e , (1.42)
where
2 1 - x2 1+ x
e{q) = 1 + —=5 1+ en =] . (1.43)
EnEZxZRF 2 1=l

Thus the screened potential W(r) mey be found from the unscreened
potential by the dividing factor e(q), which is called the static
Hartree dielectric function.

As a further step in the calculation of the total energy it is
necessary to consider the electron"electroﬁ interaction energy (per

ion) Eee’ vhich is given by

: 1
ee 217

]

I

&8

&
fro =

(]
|
t~
B
ffe)

X
roay &
+
l
=]
3.

(1.44)

n
o]
>
-3
::’3(-
=
+
=
.

Here Esu is the Coulomb self energy of a uniform negative charge
distribution. It is also useful to split the energy term Z <§Jw|g?,

seen in equation (1.36), into three contributions. We write
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wir) = =22 40 (x) +ut(r) (1.45)

The first -;erm leads to the potential energy, Eg» of a uniform electron
cloud in The Coulomb field of the ionsj the second gives the potential
energy, Fec’ of a uniform electron cloud in the field wgore of the ionj
and the :hird term leads to a potential energy equal to twice the
Coulomb self-energy, Esu’ of the electron cloud. The total energy may
be determined by adding ell the terms discussed above, together with
the electron exchange Ex and correlation energies Ec, in the following
manner

3

. = = + L
Etotal (per ion) ~ 5 ZEF + ZEx + ZEc ec

+ By +B +E I+ B~ [B, ~E,] - (1.46)

The term [E; + E_ + E_ ] is known as the Fuchs energy ... The last
three energy terms in equation (1.46) may be added and simplified.
Using the definitions of e€(q) given in equation (1.43) and the band~-
structure energy in equation (1.37), together with equations (1.38,

1.42, 1.44), we obtain

EBS = Ebs - Eez + Esu

= 1] : 21.012 ~l__
—_—e E q ]wq] s*(g)s(g)(e(q) 1). (1.47)
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Here WZ is the qth Fourier component of the interaction between an

electron and a bare ion. Hence the total energy may be written

E.. E
i1

=3 : —ec . 1
E =5 Ep *E +E Tt + 7 B - (L.48)

total (per electron)
The pseudo-pofential approach to the calculation of the total
energy has been successful in determining crystal structure [ﬁee for
examrle, Heine and Weaire (1966)], cohesive energy and compressibility.
Asheroft and Langreth (1967a) basically use the sbove energy expression
to calculate the compressibility of simple solid metals. In order to
obtain their energy equation it is necessary to redefine some of the

terms. We first note that

Ns*(g)s(gq) = alq) (1.49)
since
a(q) =]lj |12 e?0-Ei|2, (1.50)
1

a(q) is the usual structure factor. Ve also define the qth. Fourier

component of the bare ion potential Vq by
=8
V. = m W . (1.51)

The zeroth Fourier coefficient of the electron-ion potential is never
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small and its contribution to the energy (per electron) may be written

in the form 3A/h'n'rg, where

. (1.52)

The value of the Fuchs tem Eii/Z is then calculated as follows:—

E. J X
_ii_ 1 bre222 ig.(r;-r;)
z =z L. L , ¢
ifjqa q
© 212z
=] 2182 [a(q) ~ 1] . (1.53)
qa q?

Ashcroft and Langreth (196T7a) evaluate the value of this term as
w-l.79222/ 3/rs for hep, fce and bee structures.

With the above definitions, the band-structure energy EBS/Z (per
electron) given in equation (1.47) is written in atomic units as

Eps _

Z 16729 Z 2v2(.... - l)E(Q) (105,"')
q

Contributions to EBS occur at all non-zero reciprocsl lattice vectors

g =g. For a crystal the structure factor becomes

a(q) = Nﬁg . (1.55)

7
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Ashceroft and Langreth write the Lindhard dielectric function € in the

form
.
£ =1+ -;2- £(x), (1.56)
vhere
1,1-x2 1
£(x) =3 + hxx znil s f;l’ (1.57)
A2 = [ra k71 = 0.166r_, (1.58)
end
x = q/2%k; . (1.59)

The authors use the simple form of Vq proposed by Ashcroft (1966),
where Vq is given by

v = j e-i‘q"L v{r)adr

qQ
and
V(r) =0 for r < T,
V(r) = «2Z/r for r > r, - (1.60)

Integration gives the form of V(1 as

vV =~ 8r2 cos qr_ . (1.61)
q 2 c
Q
‘\r(1 has the advantage of being in an analytical form and r, cen be chosen

to give the best fit to Fermi surface or electrical resistivity data.



The band-structure energy per electron now takes the form

coslar

EBS_hﬂNZ c 1 _
Zz  Q 2 (e 1).

g 3 &

If we define

y = xr 2k, = 3.84 xrc/rs ,

then using equations (1.56) to (1.59), eguation (1.62) becomes

s _ _ hmiz y cos?y 0.166r 2(x)
; Tox XL+ Qilgéisiizﬂi
X
By defining
= £(x)
o) = 1 0.166r_f(x). °
* 1M+ —7=—
X
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(1.62)

(1.63)

(1.64)

(1.65)

then the energy contribution due to band-structure msy be written as

-E—E-S- (ryd/electron) = ~0.0338 G(rs) cos?y.

(1.66)

When the Fuchs term, eguation (1.53), and band-structure tern,

equation (1.66) are substituted into the total energy expression given

by equation (1.48), it is found thet the total energy of the solid
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E(AL’S) can be written in the form proposed by Ashcroft and Langreth as

E(AL,s) _2.20 _0.916

r

- (0.115 - 0.031 2nrs)
rg s

. 1.79222/3
r

+ 34

3
8 hnrs

- 0.0338 G(rs) cos?y. (1.67)

The energy term 3A/hnrg is large and if it is assumed that the zeroth
Fourier component of the potential Vq given in equation (1.6l) is

accurate, it can be shown that

A= hnrg. (1.68)

Ashcroft and Langreth then found that the equilibrium condition dE/drS =0

predicts values of rg in fair agreement with observed densities.

However for the calculation of binding energy EéAL’S) and isothermal
compressibility BéAL’S) they used the more accurate procedure of elimina-

ting A with the zero-pressure condition dE/drS = 0, and found that

p(ALss) _ Q.37 _ 2,0.916 + 1.7922%/3,
& r2 3 r
(ryd/electron)

- 0.105 + 0.031 knrs
8

~ 0.0338 G(r_) [cos?y +'§- sin2y], (1.69)
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and (AL,s)

T

Bp

B

el)

22.1

50.09372 + 2(0.916°+ 1.792Z§)rs b 42 - 0.0338r§G(r8){2y(sin2y-y cos2y))]

(1.70)

Her:s: Béez) is the free-electron compressibility, already discussed in

Section 1.3E. The negligible contributions arising from the differentiation
of (%?-" 1) are ignored.

q
Table 1.1 Comparison of Theoretical Compressibilities with Experiment

for Solid ietsls

Metal BT/eéez)
Theory Ixperiment

Na 1.6 1.5

K 1.1 1.0

Rb 0.82 0.82

Cs 0.71 0.76

Zn 2.1 2.1

Al 3.5 3.9

Pb 3.2 3.5
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With the exception of the band-structure contribution, the relative
sizes of the various contributions to the binding energy and compres-
sibility can be seen in equations (1.69)and (1.70). In order to
estimate the size of the band-structure contribution it is sufficient
to take y ~ /2, and it cen be shown that G(rs) ~ Hx/3x5,where H, is
the number of shortest reciprocal—lattice vectors. The values of r,
for various metals can be estimated from Fig. 4.10. It is clearly
seen from the G(rs) term that the band~-structure contribution to binding
energy is very small. In the determination of compressibility, however,

the term G(rs) due to band-structure is of the order of unity and there-

(AL9
T L3
greatest importance in the polyvalent metals (more than 100% in

fore greatly influences B The band-structure contribution is of
aluminium) and is still fairly important for the alkali metals. The
result of the calculation of BéAga/Béez) for several simple metals is
shown in Table 1.1, due to Ashcroft and Langreth (1967a). They conclude
that the pseudo~potential method shows fairly good asgreement with
experiment, and the importance of the band-structure energy is clearly
significant.

The application of the pseudo-potential approach to the calcula-
tion of compressibility, based on the Ashcrof't and Langreth paper, is

discussed for liquid metals in Section 4.4B,

G. Semi-Phenomenological liodel due to Ascarelli

A fairly successful calculation of sound velocity and compressibility
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of liquid metals has just been published by Ascarelli (1968). As a
background to this model it is of interest to calculate the effective
interatomic potential between ions. We have seen in Section 1.3F that
the direct ion interaction E a and band-structure energy EBS depend upon

both volume and structure. The band-structure energy may be considered

as giving rise to an indirect interaction between ions in the following

manner: =
Egg = L S*(2)8()F(a),
where *
Fla) = 385 100 |2y o - L (1.72)

Therefore, using the definitions of S*(g) and S(q),

) T(Q)—-elﬂ(zi rj)
q i,J 12

s

$

y Ha) S (mirzs) L 1y pq) | (1.72)
ifj m? q

]
q
The last term in equation (L.72) is indevendent of ionic arrangement,

except through the total volume of the system. We can write the in-

direct interaction Vind(r) between the ions as

1
_ 2 ig.r
Vind(r) T H L F(Q)ez -
q
-8 [ F(q)el2'T g3, (1.73)
L3y
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The following definitions are made for simplification:-

q=2k1;»xs

Ro= 2k,
i A
XL _ 3Zwedn
- 3
2EFk§,9

and

& )0°(x) = w°x) . (1.74)

The form of the bare potential Uo(x), in units of %-EF, proposed by
Asheroft (1966) is
2 "
AL cos(2kFxrc)

u%(x) = - - . (1.75)
X

Then Vind(R) is found from equation (1.73)by simple substitution to be

2 322, [ x2 |,0 iR.x (1
. = (Z == = |u N 3 . .
Vina(R) = (5 ER) () J 2 |U7(x)|2 e (£ - 1)a’x (1.76)
L
The direct interaction between a pair of ions is Z2e2/r and can be
written in the form 6nZ2A§(§ EF)/R. This interaction together with the
indirect interaction Vind(R) gives the effective interaction between

ions, veff(R)’ such that

% [0°(x) |2 BE (% - 1)d3x]. (1.77)

L
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Ashcroft and Langreth (1967c) evaluate this expression for several
metals and veff(R)’ (in units of %‘EF), which is shown for sodium in
Fig. 1.2, is seen to exhibit a hard-core nature. It was found that
the effective hard-sphere dismeter ¢ gave a packing fracticn z of 0.h4
which was in good agreement with a value of 0.45 found by Asheroft
and Lekner (1966) to fit the structure curve a{q). The effective inter-
action between ions for alkali, noble and several polyvalent metals
was seen to be hard-core in nature.

Ascarelli (1968) proposed that Veff(R) could be approximated by

a simple hard—sphere potential Vh(r), which has the form

Vh(r) =wo forr<o

=0 for r > 0o .

The semi-phenomenological model proposed by Ascarelli consists of hard-
spheres immersed in & uuiform background potentiel, which provides the
cohesion that the hard-sphere gas otherwise lacks.

If we now look at the total energy expression given in equation

(1.48) it is seen that the energy can be separated into two terms, such

that

(4) _ (a) 2
=E o5 Ry veff(rij) . (1.78)

(i73)

E
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Here EgA) depends upon volume alone and the second term depends upon
both structure and volume. Thus Ascarelli proposes that to a good
approximation
=Eo +-2_H- .z‘ Vh(rij) - (1-79)
1] ~
(i#3)
It is now necessary to consider the volume dependences of the interac-

tions vhich contribute to E(A). If we compare E‘A)

5 5 with equation (1.48),

we see that E, depends upon l/rg, whilst the energy terms E. E , and
Esu depend upon l/rs. The correlation energy Ec can be written as
0.28b/rS (ryd) to a good approximation. Ascarelli makes the further
assumption that the ions cen be consiGered as point ions since the
volume of the Wigner~Seitz sphere is large with respect to the ionic
core volume and therefore the positive repulsive term contained in the

energy of the lowest state of the valence electrons can be neglected.

Hence, with these assumptions, EéA) is made up of contribubtions
depending upon 0-2/3 and @"1/3. Thus the total energy E(A) of the
system may be written
A = 3 g - B (1.80)
5 F q1/3

For simplieity, B is written in terms of a dimensionless constant C

defined by

B = 3c(nm)1/3 T, (1.81)
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where Qm is the volume of the system at the melting point Tm' llence

the total energy E(A) of the system in this approximation is given by

NE(A) _ 3NZEF

kT ‘5kBT

T Q
~ 3CH F"l (':7)1/3 . (1.82)

In this model, the pressure of the system is the sum of the pressure
derived from the asbove energy expression and the pressure oN of a hard-
sphere fluid, which has been defined previously in equation (1.11).

The pressure of the system is therefore

a 22 Q 1/3 7 phn
PR _ ) oo, _h_
NkBT SkBT Q T HkBT

2%E Q 1/37
okgT '@ T (1-2)3

In order to celculate the sound velocity at the melting point it is
assumed that all the simple metallic liquids have the same packing
fraction z = 0.45 at the melting point. This value for z has been
seen to yield a good fit to diffraction data. Thus th/HkBTm ~ 10 is
assumed to hold for all the simple liquid metals. The value of C can
be determined by considering the pressure p of the system to be zero

at the melting point and from equation (1.83) it is seen that

22[Eg]

C=10+——5—1€.E1;— s

(1.84)
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where [EF]m is the value of the Fermi energy at T .
The isothermal compressibility, B,;A), and sound velocity, C(A),

mey be derived from equation (1.83) by simple differentiation with

respect to volume, such that

Mgt 2ZE Q 1/3 k1
--1——--13_[(1+2zﬁ F _ .o N
BT Qg T SR 31.']’ (1.85)
and
(A)12 _ Y'kBT (1 + 22)2 2ZEF ) _‘?_ 1{3 hig
Lc ]2 - (1~ z)t ¥ 3kBT C(Q 3T |° (1.86)

Here il is the atomic mass and y' 1s the value of the ratio of principal
specific heats to be associated with this model. Ascarelli assumed
Y' = 1.15 for simple metals at their melting point. It follows from
equations(1.84) and (1.86) that at the melting point the sound velocity

[Q(A)]ni is given by

['c(‘A‘)]nZ1 = .Y_"Ef.?l [27 + E.Z.EI'::"E] .

I 15T (1.87)

Ascarelli found that the wvalues of [C(A)Jm calculated from equation
(1.87) were in fairly good agreement with experiment. Those values

of c(A)] are compared with experiment in Section L.lhic and are discussed
m

further there.
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2.  APPARATUS AND EXPERIMENTAL PROCEDURE

2.1 Review of Experimental Technigues

A variety of techniques have been employed for the measurement of
sound velocity in liquid metals. Since quartz ceases to be piezo-
electric at temperatures above 573°C, measurements above this tempera~
ture with the transducer in the furnace are not feasible. For these
high temperatures a length of fused siliea rod is often interposed
between the specimen and quartz transducer, the latter being outside
the furnace. The measuring techniques are grouped below into four
classes.

A. Direct Pulse Methods

In these methods the velocity of propagation is determined by a
direct measurement of the transit time for an ultrasonic pulse to
traverse a known distance in the liquid. A short radio frequency
pulse of 5 to 12 MHz is applied across a quartz transducer and a short
train of waves (periodically repeated) is transmitted directly, or
via a delay line, into the liquid. The ultrasonic pulses reflected
from a plane parallel reflector re-excite the transducer and the elec-
trical signal is emplified and displayed on an oscilloscope. Kleppa
(1950) measured the transit time by counting the number of time markers
between the pulses, and hence calculated the sound velocity from the
known distance between the end of the delay line and reflector. The

dissimilar shapes of the leading edges of the pulse echoes introduce
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an error in the measurement of the transit time and Kleppa estimated
that his velocity measurements were only accurate to 1%.

Several investigators [Polotskii et al. (1959), Pronin and
Filippov (1963 a, b), and Plass (1963)] increased the accuracy of
measurement by using the direct pulse method with a varisble path
length in the liquid. The use of a movable reflector makes it
possible to exclude the errors‘associated with dissimilar pulse shapes,
but the accuracy is again limited by the difficulty in measuring the
time interval by the oscilloscope. The estimated errors in sound
velocity range from 0.3% (Polotskii et al.) up to 3.5% (Pronin and
Filippov).

B. Pulse Comparison Method

The time interval between two pulses which have travelled a
known path length £; in the liquid is compared with the propagation
time of ultrasound in a reference liquid, usually mercury or distilled
water, with a known sound velocity c. Gordon (1959) used the trans-
ducer in direct contact with the liquid metal and adjusted the length
of a mercury delay line until the leading edges of the two sets of
reflections were just in coincidence. The sound velocity c; in the

liquid metal is then given by

c; = a1/ (2.1)
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where £, is the path length in the reference liquid. The oscilloscope
is used essentially as a ‘"null" indicator. The error in the sound
velocity ¢; was estimated to be about 0.2%. The change of velocity
with temperature could be measured with good precision (a few per cent)
from the small displacement of either reflector. Hill and Ruoff

(1965 a) used this method of measurement but had a stepped reflector
to give the known path length.

C. Repetition Rate Method

The acoustic cell used by Coppens et al. (1967) consisted of a
liquid=filled cylinder with parallei quartz transducers mounted at
éach end. An ultrasonic pulse from one trensducer traverses the liquid
and is received by the second, undergoing multiple reflections at each
transducer. The pulse repetition rate was so adjusted that the signal
from each pulse is received at the second tremsducer in phase with
the echoes of the previous pulses, thus leading to a reinforcement of
the signal. This superposition is observed only when the repetition

rete £, is adjusted so that

c= 22-fr ’ (2.2)

vhere ¢ is the velocity of sound in the liquid and & is the length of
the cylinder. Coppens et al. (1967) used a path length of 2 inches

and estimated that their error in the sound velocity was 0.1%. This
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technique was used to measure sound velocity as a function of tempera-
ture and pressure in various low melting point metals.

D. Phase Comparison

The phase between two ultrasonic¢ pulses is made to fluctuate
periodically by either changing the frequency or path 1ength in the
liquid. In the technique used by McSkimin (1959) the quartz transducer
was in direct contact with the molten metel and the pulse width was ad-
justed so that overlap occurred between the first and second wave-
trains vhich had traversed the liquid. The specimen length £ was fixed
by the silica cell and no correction for expansion was needed. By
changing the frequency of the ultrasound the received signal fluctuates
and f, is measured when phase opposition is produced. In this "out

of phase" condition the sound velocity is given by

c =20 /n , (2.3)

in which £, is any frequency for which the Yout of phase' condition
for echoes exists and n is the eppropriate integer. By swinging the
frequency f), and noting the separation Af between adjacent "out of
phase' conditions, obtained by averaging over as wide a frequency span

as possible, n can be calculated from

n= /A . (2.1)
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The sbsolute velue of c at 232°C was determined by the sbove method
with an error of 0.5%. The relative change of sound velocity with
temperature was determined by changing the frequeney f, at a particular
value of n so as to maintain the phase opposition. The frequency
must be known accurately and the technique uses a gated amplifier in
conjunction with a stable continuous wave oscillator.

Hubbard and Loomis (1928) varied the liquid path length by moving
a reflector and used a continuous wave electrical interference method
to detect the positions for standing waves. The impedance of the
liquid varies through a cycle and results in a periodic swinging of
the transmitter frequency applied to the quartz transducer. The
transmitter frequency was '"beat" against e constant frequency from
a second oscillator. A vernier condenser in the transmitter circuit
requires a cyclic variation in order to maintain the transmitter
frequency f constant. Since e single transducer and reflector system
was employed, successive positions are recorded from the micrometer
corresponding to movements of a half-wavelength. The sound velocity

is determined from

¢ = Af R (2.5)

where A is the wavelength of the sound.

Gitis and Mikheilov (1966a,b,c) used & pulsed acoustic interfercmeter
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with electrical interference. The ultrasound transmitted through the
liquid was detected by a second quartz transducer, amplified and
added to a sinusoidal reference voltage. The mixed signal is zero
when the two signals are equal in emplitude end opposite in phase.
The second transducer was bonded to the delay line and its gradual
displacement caused the interference pattern to vary periodically on
moving through multiples of a sound wavelength. A knowledge of the
frequency enabled the sound velocity to be computed.

Another type of pulsed acoustic interferometer depends upon varying
the path length in the liquid [Jarzynski (1963)]. The path -length is
short and the pulse length is increased so as to produce an overlap
of the pulses reflected from the interfaces between delay rod and
liquid and between reflector rod and liquid. As the liquid path length
is varied the pulses interfere and are periodically "out of phase’.
Measurements of the successive positions of constructive interference
correspond to movements of half-wavelengths of sound in the liquid.
Since the transmitter is pulsed it is necessary to measure the frequency
by a beat technique. This technique was the one employed for the
measurement of sound velocity in the present study. The results of
sound velocity measurements on various liquid metals by numerous
investigators is examined in Section 3.3.

The choige of the pulsed acoustic interferometer method for the

measurement of sound velocity in liquid metals was guided by the
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following considerafions:

(a2) since much difficulty is experienced in transmitting a satisfactory
ultrasonic signal into the liquid metal due to the poor wettability
with the quartz delay rod and also the sound absorption is such that
the reflected pulse reduces, with distance, to the noise level, it

is important to keep the path length fairly small;

(b) the results of previous investigations which employed the method
of direct time measurement were seen to be of poor accuracy and incon-
sistent with one another. This method requires a fairly long path
length in the liquid;

(¢) the pulse comparison method requires a fairly long path length
and requires a transmitter capable of giving a high amplitude R.F.
pulse since the signal is applied simultaneously to two quartz trans-—
ducefs. For this reason the R.F. frequency usually employed is about
5 MHz;

(d) the repetition rate technique requires a fairly long liquid path
length and also the quartz transducers to be in contact with the
liquid metal, thus limiting the temperature range of the experiment;
(e) phase comparison techniques are capable of greater accuracy than
the direct time delay measurements. A movable reflector was required
for measurements of sound absorption, for which it was necessary to
use a pulse method capable of operation in the fiequency range 20 to

100 MH#.
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2.2 Explanation of Sound Velocity Technigue

A block diagram of the apperatus used for sound velocity measure-
ments is shown in Fig. 2.1. A 20 usec radio frequency pulse from a
modulated transmitter is applied to a U4 MHz X-cut quartz transducer.
When operating at 68 MHz the crystal is resonating at its 17th harmonic.
The ultrasonic pulse which is generated traverses the fused silica
delay rod and is partly reflected at the interface between delay rod
and metal and partly transmitted into the liquid metal. When the
reflector rod immersed in the liquid metal is accurately aligned paral=-
lel to the transmitting surfaces, some of the ultrasonic pulse is
reflected back towards the transducer, which reconverts the series of
ultrasonic pulses into electrical pulses. After the signals are
detected by the R.F. receiver, the I.F. of 7.5 MHz or the video pulse
envelope is displayed on an oscilloscope. A typical pulse pattern is
shown in Fig. 2.2a. Pulse 1 is the signal applied to the transducer
and pulses 2, 4, 6 and T are the series of pulses due to reflections
from the interface between delay rod and metal. Pulses 3 and 5 are
due to reflections from the interface between metal and silica reflector.
As the liquid path length is decreased pulses 2 and 3, 4 and 5 start
to overlap. DMovements of the reflector corresponding to changes in
path length of the order of a wavelength cause the phase between the
two pulses to change such that the pulses add or cancel. Figs. 2.2b,c,d

show the effect of moving the rod from an 'out of phase” condition
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successively by a quarter- and a half-wavelength. A typical micrometer
movement for a change of A/2 is 1 x 1073 em.

A more precise measurement of wavelength A is obtained by noting
the micrometer positions of the first 10 minima (i.e. "out of phase"
conditions) and then shifting by 50 to 100 minima and recording the
next 10 minima positions. Since the number of minime has been counted
an accurate value for A is determined from the micrometer settings.

The frequency of the sound wave is determined by mixing the transmitted
signal with the continuous wave output of a Schomandl Frequency Syn-—
thesizer. The two R.F. signals beat together and the frequency
corresponding to a zero beat (i.e. to a slow amplitude variation of the
pulses) is recorded from the standard frequency generator. TFig. 2.2e
shows the effect when the two frequencies are fairly close and in

Fig. 2.2f when the frequencies are equal. The sound velocity is then
simply given by Af at a given temperature. All the measurements are

nade at an ambient pressure of one atmosphere.

2.3 Description of the Electronic Apparatus

A block diagram of the electronic apparatus is shown in Fig. 2.1.
The basic sections of the electronic apparatus had been constructed
previously by Jarzynski (1961) aend will only be briefly described here.

The electronic circuits are reproduced in the Appendix for reference.
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The repetition rate of the pulse generator is synchronised to that of
the mains supply in order to avoid "jitter" of the observed pulses.
The pulse generator provides a positive pulse to trigger the oscil-
loscope and a 50 volt pulse of 5 to 20 pusec duration. The latter
pulse is amplified and triggers the modulsator circuit so that a 500
volt negative pulse is applied to the cathode of the transmitter valve.
The transmitter oscillates for the duration of the negative pulse
and its frequency can be altered by means of the variable air-condenser.
Frequencies of 12, 20, 68 and 92 MHz are obtained by inserting the
appropriate inductence coil in the tank circuit of the oscillator.
The R.F. receiver is a radar receiver type R. 1355, the units of which
had been modified by Jarzynski to cover the frequency range 12 to 92
MHz. The author modified the receiver so that both the I.F. and video
outputs can be displayed on an oscilloscope. An E.M.I. oscilloscope
type W.M.2 is used, which has a band width of O to 20 MHz. When
observing the intermediate frequency the I.F. strip of the first R.F.
receiver is coupled to the I.F. amplifier strip of a second modified
R. 1355 unit. The H.T. and filament current for the second unit are
obtained from an external power supply. Details of the stabilised
power supplies are given in Jarzynski (1961).

At resonance the equivalent circuit of the quartz transducer

consists of a capacitance of about 25 pf in parallel with an equivalent
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resistance of about 5 k. For efficient operation of the transducer

it is necessary to tune out its capacity so that it does not act as s
shunt for the R.F. signal. The matching unit consists of a tuned
transformer (see Fig. A.5) and the variable capacitor is so chosen
that, together with the capacity of the transducer, it can be tuned to
resonance with the coil at the required frequency. The variable

capacitor is adjusted until the received R.F. signal is maximum.

2.4 Fused Silica Cell

A diagram of the silica apparatus is shown in Fig. 2.3 and the
silica cell can be seen in Plate 1. Fused silica was used since it is
not chemically attacked by many liquid metals and it hes an extremely
low sound absorption at the high frequencies used. The choice of the
dimensions of the delay rod was governed by the following factors:
(a) The size of container, which needed to be as small a diameter as
possible, was influenced by the size of standard silica sockets
available. Sufficient space inside the container was required for
the reflector rod and thermocouple.

(b) The length of the delay rod had to be sufficient for the quartz
transducer to be at room temperature outside the furnace.
(¢) The length was chosen such that there was a suitably long time

interval between pulses of ultrasound reflected within the delay rod.
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This delay between the initial R.F. pulse applied across the transducer
and reflected pulses allows time for the detector circuits to recover
from being overloaded. The actual time interval was 54 usec.

(d) It was decided to cover the frequency range from 20 to 100 MHz .
Mason (1958) states that if the sound pulses are to be propagated as
if the rod diameter were infinite, it is necessary for the ratio of
rod diameter to sound wavelength to exceed the figure of 20. At 20
and 70 MHz this ratio is 80 and 280 respectively for a rod diameter
of 24 mm.

(e) The radiating quartz may be regarded as & plane piston and the
resulting polar diagram is similar to that due to optical diffraction
at & circular aperture. The path length L over which the sound pulse

radiates as a plane wave, known as the Fresnel region, is determined by

o)
L
%

o o>
N
+

> (2.6)

]
ol

where R is the radius of the transducer and A is the wavelength

of sound in the medium. In the present apparatus the transducer is
bonded on to fused silica, ih vhich the velocity of sound ¢ is 5970
m/sec at room temperature. At a frequency f of TO MHz the wavelength A

is 8.5 x 10”3 ¢m. For a transducer of radius 0.7 em, L is about 57 cm.
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Fige 2.3. Silica cell.
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At 20 MHz L is about 16 cm. The length of the delsy rod was chosen to
be 16 em so that for frequencies as low as 20 MHz the sound pulse
could be considered as a plene wave in the liquid. The frequency for
which the plane wave condition applied for the total acoustic path
length was 30 MHz.

The end faces of the delay rod were polished optically flat to
within a wavelength of light. It was also necessary to consider the
parallelism of these two faces. The problem of the resultant amplitude
of the signal from the quartz transducer when a plane wave is incident
at an angle 6.to the normal is analogous to that of diffraction due to

a circular aperture (Fraunhofer) and a minimum will occur vwhen

JI(Z) =0
(2.7)

For a transducér of radius 0.7 cm. and sound wavelength of 8.5 x 10~3 cem »
the first minimum occurs when 6 is about 25 minutes of arc. The end
faces of the delay rod were polished parallel to within 1 minute of
arc so that the ratio of the actual amplitude A to the amplitude A,
corresponding to 6 = O gave A/A, of about 0.996.

The silica apparatus was fabricated by Thermal Syndicate Ltd., and

fused silica type DL103 was used for the delay rod. One end of the delay
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rod was ground with a 1:10 taper so a.s to take a B.2hk socket. This
allowed the silica container and delay rod to be disconnected and
enabled the polished surface to be accessible to thorough cleening.
The container consisted of a 31 mm bore transparent silica tube with a
B.24 socket at its lower end and a B.50 cone at its upper end. A
silica B.50 socket fitted on to the container and had a central entry
for the reflector rod and side entries for a thermocouple and inert
gas. Further entries allowed for the container to be evacuated and
for mercury to be filtered directly into the container. The reflector
rod entry was sealed by a cylindrical piece of rubber which was cut from
the thumb of a glove. Copper wire was used to tighten the rubber
against the reflector rod and the rubber was pulled over the entry
tube. The entries for evacuation, gas and thermocouple were sealed
by rubber tubing.

The diameter of the reflector rod was chosen to be 18 mm so that
its area was larger than that of the transducer and allowed for slight
movements off the axis of the system. One face was polished optically
flat and perpendicular to the axis of the rod whilst the other end

. of the rod was unpolished and was clamped to the slide.

2.5 Transducer Mounting

A chromium film was vacuum deposited on the end of the delay rod



65.

and made contact with the brass base (the earth terminal) on which the
delsy rod rested. A copper electrode was pressed lightly against the
transducer by means of a spring. The surface of the copper electrode
was polished and the electrode insulated from the metal base by means
of & disc of P.T.F.E. Three screws, one spring loaded, held the delay
rod in position, see Plate 2, and an initial pressing of the rod on to
the brass base was sufficient for electrical contact to be maintained.

Great care was taken in cleaning surfaces before vacuum deposition
in en Edwards coating plant. The delay rod was first cleaned in hot
concentrated hydrochloric acid and then left in warm chromic acid for
several hours, The rod was afterwards washed with distilled water,
carbon tetrachloride and absolute alcohol. The metal for deposition
consisted of small pieces of chromium pellet containing 1% carbon
vhich were held in a tungsten spiral and outgassed at red heat for é
few minutes. The delay rod was then mounted vertically above the
tungsten spiral in the vacuum chamber and the silica surfaces were
cleaned by ionic bombardment. A 15 amp current was passed through the
tungsten to get it to white heat and it was found thaet the chromium
evaporated within a few minutes. A semi-transparent film was obtained
which, however, was not sufficiently tenacious if it was too thick.

A chromium film was chosen since the film had to be very tenacious

to withstand the prolonged "wringing" on of the transducer. Both faces
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of the transducer were polished. The transducer was bonded to the
delay rod by a thin film of silicone oil (the viscosity of the oil was
20 centipoise). A small drop of silicone oil was put on the silica
surface and the transducer pressed firmly on to the surface. The
transducer was moved to and fro, under slight pressure, across the
gurface and excess silicone oil was wiped off with a piece of chamois
leather. It was essential to avoid dust particles- getting beneath
the transducer as then the film was scratched off. The wringing
process was continued until, on looking through the transducer, no
coloured interference fringes could be seen. The coupling film was

then uniform and less than one optical wavelength thick.

2.6 Mechanical Construction and Alignment Mechanisms

The complete mechanical arrangement is seen in Plates 3 and L.,
A % in. aluminium platform of 12 in. diameter is supported by three
11—35 in. diameter steel rods. Three steel rods are mounted on the aluminium
platform and are rigidly connected to one another by means of a 3 in.
aluminium cross—piece. A one inch aluminium bar, which is adjustable
in height on the two steel rods, carries a kinematic slide and micro-
meter, see Fig. 2.3. The slide consists of two accurately machined
1

t in. steel rods which carry the holder for the reflector rod. These

two rods are held in position on the aluminium bar by means of seven
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rollers, two of which are spring loaded against the rods. Verticel
movement of the slide is controlled by rotation of the barrel micro-~
meter (graduated in 0.002 cm divisions). The normal one inch movement
of the micrometer is increased by insertion of a ome inch slip rod
between the micrometer spindle and the slide. When operating without
the slip piece the two central spindles of the slide are held together
by & jubilee clip in order to prevent rotation of the slide spindle
vwhen the micrometer is rotated.

A diagram of the holder for the reflector rod is shown in Fig. 2.k4.
The reflector rod is held in the split steel collar when the latter is
pulled into the shaped brass cylinder. The cylinder is held in position
within the brass holder by means of five screws, one of which is spring
loaded. Adjustment of the four screws causes the reflector rod to
change the ineclination of its axis to the vertical.

The furnace rests on three levelling screws (i in. B.S.F.) mounted
in a 3 in. aluminium ring. The screws fit into three radial grooves
in the brass base plate of the furnace. Three screws, one of which
is pring loaded, are in contect with the edge of the aluminium ring and
can be adjusted so as to correctly position the furnace with respect

to the reflector rod.

2.7 Furnace

A 83 in. brass tube of 8 in. diameter, 10 s.w.g. wall thickness,
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forms the outer shell of the furnace. Syndanyo plates of  and % in.
thickness respectively are bolted to brass flanges at the top and
bottom of the furnace. A ¢ in. brass plate forms the base of the
furnace. Central holes in the top and bottom of the furnace allow
entry for the silica container and delay rod respectively. Three brass
rods fixed to the base plate support the transducer mounting.

The silica container was surrounded by a close fitting steel tube
in order to reduce any longitudinal temperature gradient in the central
region of the furnace. Thermal insulation at both ends of the steel
tube was provided by shaped rings of purimachos fire cement. The 8 in.
steel tube was wrapped in several layers of asbestos paper, over which
the heater tape was wound, the windings being closer at the ends. The
ends of the heater tape were clamped in molybdenum collars at the top
and bottom of the furnace. Electrical connections were made from the
two insulated lead throughs in the furnace casing to the heater tape
by thick copper wire enclosed in insulating beads. The heater tape in
turn was covered with layers of asbestos paper and for thermal insula-
tion asbestos wool was packed around the heater element and glass wool
inserted in the interspace with the furnace casing.

Nichrome tape ofi% in. width, 25 s.w.g. was used as the heater
element. The total length of tape was 450 cm. and its resistance was

33 ohms, so that the density of windings at the centre was about 2
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turns/em , which increased at the ends.

2.8 Temperature Control and Measurement

Temperature control of the furnace was provided by a proportional
temperature controller which used a saturable reactor (type S.R.1l.
manufactured by C.N.S. Instruments Ltd.), see Fig. 2.5. A 10 obm
platinum resistance was placed in the central region of the furnace and
was strapped directly ageinst the asbestos paper which covered the
heater tape. The platimm resistance forms one arm of an A.C. bridge.
Changes in resistance of the platunum are proportional to temperature
and the output voltage from the A.C. bridge is amplified and rectified
to give a D.C. output voltage, proportional to temperature, which is
applied to the control windings of the saturable reactor. When the D.C.
voltage is small the saturable reactor behaves like a high inductance
in series with the furnace windings and results in a smsll furnace
current. Increase in the D.C. voltage drives the iron circuit of the
reactor towards saturation and therefore decreases the effective in-
ductance and results in an increase of furnace current. Thus the
furnace current is controlled continuously.

The equilibrium temperature reached by the furnace was altered by
means of a variable resistance in one arm of the A.C. bridge. An

ammeter indicated the furnace current and as a precaution against
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breakdown of the furnace windings, the variable resistance was increased
slowly so that the furnace current did not suddenly exceed 2 amps. A
type SR60A saturable reactor rated at 240 volt, 6 amps, into a 30 ohm
load was used. The sensitivity of the controller was adjusted accord-
ing to the temperature range: setting on 5 for temperatures below
about 300°C and on 4 for temperatures above 30000. Since there was a
minimum controllable current to the heater it was found that the time
for reaching temperature equilibrium between 20 and SOOC was several
hours. Above 50°C the temperature reached equilibrium after about
3 to 1 hr. A sound velocity measurement took about 20 minutes and in
that time the temperature typically varied by less than 0.3°C.

The temperature of the liquid metal was measured with a sheathed
chromel-alumel thermocouple for which a calibration was available.
The thermocouple was protected by a sheath of twin bore silica tubing
(see Plate 1) and the cold junctions contained inside Pyrex tubes
immersed in water in a Dewar. A Tinsley potentiometer was used to

measure the thermal e.m.f.

2.9 Evacuation and Clesning of ilaterials

A Pyrex systenr was constructed so that a molten metal could be
cleaned by being forced under pressure through two sintered glass

filters. Simple heating elements were wrapped round the Pyrex tubes.
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The filter system could be attached directly to the silica container
by means of a ground joint and a silica~Pyrex seal. A diagram of the
Pyrex system is shown in Fig. 2.6 and the system is seen in Plate 5.
The container was evacuated by means of a rotary pump and a water—
cooled vapour trap was used to condense any metallic vapour present.
A nitrogen gas cylinder was connected to a 2 litre chamber, from which
the gas was released slowly. The system was used to filter a sample
of mercury into the silica container and to meintain a nitrogen atmos-
phere above the mercury. Sound velocity measurements made on this
sample of mercury were found to be in agreement, within experimental
error, with mea.surements. on samples of mercury which were filtered in
a simpler Pyrex system constructed by Jarzynski (1961). In the latter
system mercury was filtered through a sintered glass disc and collected
in a beaker, and was then poured into the silice conteiner after having
been exposed to the air. It was not found necessary to use the Pyrex
system to filter the other molten metals directly into the container.
In order to ensure a satisfactory transfer of acoustic signal into
the liquid metal and to maintain the purity of the specimen, it wes
necessary to thoroughly clean the silica rods and container. Metallie
deposits were dissolved away in concentrated nitric and hydrochloric
acids. The container and rods were then washed with distilled water

and cleaned with glass fibre sosked in cleaning powder (care was taken
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not to scratch the polished surfaces of the rods). The silica was
then left in warm chromic acid for sbout an hour, rinsed with distilled

water and trichlorethylene and dried using sbsolute alcohol.

2,10 Experimental Procedure

The cleaned silica container and delay rod are connected and are
then placed .carefully in the furnace, the delay rod being held in
position by tightening the three screws on the transducer mounting.

The thermocouple and silica cap are then assembled and placed in
position. The relevant transmitter coil and receiver unit are connected
so as to operate at the selected frequency, usually 68 MHz. After
meking the electrical connection to the transducer, the transmitter,
receiver and matching unit are alternately tuned to give maximum signal
amplitude of those acoustic pulses which are reflected within the delay
rod. Next the reflector rod is lowered carefully into the silica
container and is allowed to rest freely within its holder. The micro-
meter is lowered so that the slide is free and the reflector rod is
pushed against the delay rod under its own weight and that of the slide.
This procedure helps to prevent a layer of oxide collecting on the
polished surfaces when the metal specimen melts. The procedures

which are then adopted for mercury, pure metals and alloys are described

separately below.
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A, Mercury

A known weight of mercury which had previously been filtered is
poured carefully into the silica container. The weight was usually
about 150 gm so as to give & volume of about 11 cm3. The micrometer
is now raised and the reflector rod is clemped in its holder. Then
the reflector rod is raised until its polished surface is a few milli-
metres above the delay rod. When the rod is moved away from the
surface of the delay rod the amplitude of the acoustic pulses decreases
showing that some acoustic signal is being transmitted into the liquid.
The four reflector rod screws and three levelling screws are adjusted
until an ecoustic pulse, returned from the reflector, appears. Care
has to be taken not to force the reflector rod ageinst the walls of
the container or delay rod at any stage of the manipulations. The
screw adjustments are critical to within a turn of the levelling screws.
The reflector surface is accurately aligned parallel to the delay rod
surface by adjusting the levelling screws so that the amplitude of the
reflected pulse is a maximum. The furnace platform is moved laterally
so that the reflector rod lies centrally above the delay rod. It was
found that the screws did not require further adjustment during the
period of the experiment and alignment was still maintained when the
furnace was operated up to 520°C.

The platinum resistance leads are connected to the temperature
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controller and the thermocouple to the potenticmeter. The temperature
controller is set to the temperature which is required and when the
thermocouple indicates that thebtemperature of the liquid metal is
varying by less than 0.3°C over & period of 20 minutes the wavelength
of sound is measured. The positions of the first 10 minima are
recorded and the micrometer is raised by 50 to 100 minima and the next
ten positions are recorded. This usually corresponds to a vertical
movement of about 1 mm. The micrometer is raised again and the pro-
cedure is repeated for the next few millimetres. The reflector rod is
then lowered to the initial position and the above procedure is
repeated three or more times. The sound wavelength is determined by
averaging the differences between the micrometer positions for a known
number of wavelengths, see Section 3.1A. The temperature and transmitter

frequency are measured several times during the period of the measurements.

B. Pure Metals

Indium was the first metal investigated after mercury and it was
found that the amplitude of the reflected pulses were small and it
was difficult to align the system. The indium was melted in air at a
pressure of a few mm of mercury. The measurements were carried out in
the same manner as with mercury. An attempt was made to measure the

sound velocity in liquid thallium in & similar manner but the acoustic
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signal was too small. A hard crust of oxide formed on cooling and after
cleaning the polished surfaces of the silica it was found that the
surfaces had been pitted and required repolishing. To avoid the
difficulty in finding the position of alignment the procedure that was
followed for zine, cadmium, tin, leed and bismuth geve improvement and
was as follows.

After the cleaned silica had been assembled in the furnace the
reflector rod was placed in contact with the delay rod, as described
previously in the case of mercury, and about 15 cm3 of ebsolute alcohol
poured into the container. The same alignment procedure is carried
out as for mercury, and once the system is aligned the reflector rod
is again lowered on to the surface of the delay rod. Then the furnace
is switched on so that the alcohol boils off and when the texperature
hes reached about 100°C pellets of the metal are dropped into the
container. The system is sealed and when the conteiner is pumped
to & low pressure (about 3 mm Hg) the surfeces of the reflector and
delay rods are forced together. The furnace temperature is raised
to ebout 10°C above the melting point of the metal and while still -
molten the vacuum pump is switched off and atmospheric air is introduced.
When the reflector rod is raised the reflected pulse is displayed on
the oscilloscope showing thet the system remains correctly aligned.

After agitaeting the melt for a few minutes by raising and lowering the
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reflector rod (care being taken not to raise it out of the melt so
preventing oxide being collected on its polished surface) it is found

that the system is set up for the sound velocity measurements.

cC. Mercury Alloy Systems

The reflector rod is placed in contact with the delay rod and a
known weight m, of mercury is poured carefully into the container. The
system is aligned by the procedure described previously. For an alloy
of fractional atomic concentration b the fraction by weight of soluteY
is given by

b

Y = Mo ° (2-8)

(1-v) m- + b

where My and M; are the atomic masses of mercury and solute respectively.
The weight m; of metal which is required is simply celculated from

¥
mp =my 77§ . (2.9)

The metals are cut into small pieces (about 10 mm3) so as to fit into
the space between reflector rod and container. Zinec, indium, tin and
lead are easily cut with stainless steel side-cutters (previously

cleaned), whilst cadmium and bismuth are firstly sawn into pieces reedy
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for cutting. The temperature of the mercury or mercury alloy system

is raised to about 50°C above the liquidus temperature, the rubber seal
is removed and the metal pellets poured into the container and the seal
is remade. In order to increase the rate of mixing the reflector rod
is raised and lowered for a period of several minutes to agitate the
liquid. The temperature is also varied rapidly over a range of about
10000 for at least three hours and at the same time the melt is period-
ically agitated. Contact between reflector and delay rods is avoided
to prevent their surfaces becoming dirty. When the velocity measure-
ments of a particular alloy concentration are completed a further weight
of metal is added in order to make up the next composition. At high
concentrations of solute (b of about 0.8 to 0.9) a known weight of
mercury is added to the pure metal.

The procedure for removing the melt from the container is as
follows. The furnace temperature is maintained at about hOOC above
the melting point of the pure metal or liquidus temperature for the
alloy composition. The reflector rod is unclamped and :emoved; the
thermocouple leads are disconnected and the silica cap removed. Next
the furnace current is switched off and the platinum resistance and
furnace leads are disconnected. The furnace is then lifted from its
stand with the aid of asbestos gloves and is tilted so that the melt
pours into a pyroceramic dish, standing on asbestos, placed at a con-

venient height. The furnace is placed back in its stand and allowed to
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cool. When the silica is cool it is carefully l1lifted out of the

furnace and the cleaning procedure is commenced.

2.11 Sound Absorption Apparatus and Experimental Procedure

The electronic apparatus used for the measurement of sound absorp=-
tion in mercury is shown in Fig. 2.7. In principle a delayed pulse
triggers the comparison oscillator and a R.F. pulse passes through a
precision attenuastor. By adjustment of the delay the comparison pulse
is displayed beside the "ultrasonic" pulse on the oscilloscope. The
frequency of the comparison oscillator is made equal to the transmitter
pulse by superimposing the two signals and adjusting for the absence
of beats. Movement of the reflector rod in the mercury alters the
acoustic path length and results in a change in amplitude of the
reflected pulse. The absorption is measured by adjusting the attenua-
tor for various acoustic path lengths so that the comparison pulse is
exactly the same amplitude as the ultrasonic pulse. The sound
absorption coefficient is calculated from the plot of amplitude (db)
versus path length.

Either of the I.F. or video outputs can be displayed on the oscil-
loscope. In order to prevent overloading of the detector circuits by
the transmitter pulse a blanking pulse is used to cut=off the first

valve of the R.F. receiver for the duration of the transmitter pulse.
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The circuit for the blanking pulse generator is due to Williams (1958)
and is shown in the Appendix. The circuit generates a 200 volt
negative pulse of variable pulse width up to 30 sec and this is applied
to the grid of the first detector valve in the R.F. receiver unit.

The comparison oscillator is a British Communicaetions type CT53
covering the frequency range from 8 to 300 MHz which hes provision for
external pulse modulation. The piston attenuator used is an Advance
type A.57 with an attenuation range of 126 db and its scale is calibrated
in units of 0.85 db. A tuned transformer is used at the input of the
attenuator. A 75 ohm resistor (non=inductive) is inserted in the output
of the attenuator and & single turn of wire is loosely coupled to
the input coil of the R.F. receiver.

The experimental procedure is as follows. The spparatus is assembled
and aligned as has been previously described for mercury in Section 2.10A.
The slide is reised and a roller bearing is inserted over the micro-
meter spindle so as to reduce wear of the surfaces. The frequency of
the comparison oscilletor is adjusted to the frequency of the transmitter
and the attenuator matching unit is adjusted for maximum signal ampli-
tude. The carrier current of the comparison oscillator is kept below
e value which produces a strong coupling with the receiver circuits and
causes the ultrasonic pulses to jitter. The piston attenuator settings

for equal pulse amplitudes are recorded for various acoustic path lengths.
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Usually the path length is increased in intervals of 2 mm and a one
inch slip gauge is inserted before fhe micrometer so as to increase
the total range of movement. The attenuator settings (dv) are plotted
against the micrometer settings and the absorption coefficient a is
calculated from the slope. A least square fit of the data according
to the method given by Topping (1955) is used to compute the sound
absorption coefficient. The experimental results and difficulties

are discussed in Section 3.11.
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3. Experimental Results and Discussions

3.1 Sound Velocity in Mercury

A. Typical lMeesurement and Results

The measurenents were performed on triply distilled mercury
(Grade 1, Johmson, Matthey and Co. Ltd.). The experinental procedure
has been described in Section 2.10A. A typical set of micrometer
readings for the positions of minime is shown in Table 3.1. In order

to prevent error due to possible irregularity of the surfaces of the

Table 3.1 Typical Measurement (temperature 134.5°C)

Minima No. Micrometer settings (mm) for shifts of 99 minima
0 12,516 11.509  10.50L 9.498
1 12.50¢ 11.499  10.493  9.L88
2 12.495 11.489  10.h82 9.478
3 12.458  11.878  10.472  9.460
L 12,475  11.468  10.462  9.L57

5 12,464 11.458  10.452 9.7
G 12,454 11.448  10.W2  9.L436
T 12.44h 11.k380  10.432  9.L426
8 12.43%  11.428  10.h22  9.k1€
9 12.42% 11.4138  10.k12 9.1406
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microneter spindle and slide the mumber of minima were chosen so that
the micrometer rotated almost exactly one complete rotation. All the
measurements were taken when the reflector rod was bein: raised. Two
further sets of micrometer readings were taken along with the above
set and it was found that the settings were reproducible to within
0.002 mn. The average for 99A was obtained by averaging the differences
between the first and third, and second and fourth columns. The above
set of results gave 2.0125 + 0.001 ma for 99A and the transmitter
frequency was (0.845 + 0.015 MHz. 'Thus the sound velocity was found to
be 1399.5 + 0.7 m/sec at 134.5 + 0.5°C.

The variation of sound velocity with temperature is shown in Fig.
3.1, end it is seen that the sound velocity decreases linearly with
temperature in the temperature range up to 156°C. A lineer fit to the
sound velocity date is obtained by the method of least squares from
the Atlas Computer Laboratory program VBOlA and is expressed in the

form

c=c + a(t - tm). (3.1)

Here y is the sound velocity at the melting point tm and 4 is a constant,
that is, the value of (ac/at)P. The best values and estimatel errors
for cn and (ac/at)p are ziven in Table 3.2. Evaluation of the experimen~

tal error is discussed in the following section.
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B. _Error in Velocity Results

The sources of possible error in sound velocity are due to the
uncertainties in wavelength, frequency and to diffraction effects and
non-uniform temperature in the specimen. These factors are discussed
below.

(a) The measurement of the wavelemgth depended upoh the accuracy
of determining the positions of the successive minime and the stability
of the transmitter frequency. It was found that the rigidity of the
framework end the use of the kinematic slide resulted in excellent
reproducibility of the measurements. Also the reproducibility of the
nicrometer settings..indicated the absence of large fluctuations in
temperature. The linear expansion coefficient for fused silica is about
0.5 x 1076 deg C™l. Thus the correction due to changes in length of
the reflector rod as the rod was moved a few millimetres in the liquid
was negligible. The position of a particular minima was maintained for
several minutes. The standerd deviation on the mean value of A was
usually about 0.05/4.

(b) It was found that the frequency could be determined to within
0.02%. The transmitter frequency remained constant, within the error
of frequency measurement, throughout the period of velocity measurement.

(c) The uffect of diffraction on measured wave velocities has

been investigated by McSkiwmin (1964). It was found that the excess
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velocity Ac (over the plane wave velocity ¢) is given by the dimension—

less pareameter

ac _ A3/2
- ]
hn2Re

. (3.2)

vhere A is the sound wavelength, R the transducer radius and £ the
distance from the transducer. For the present study the percentage
excess velocity at 7O MHz was less than 1 x 1073, Measurements at
20.59 and 12.13 MHz gave 1450.5 + 0.7 m/sec at 23.4°C and 1h451.4 + 0.h
m/sec at 2200. respectively for the sound velocity. It was seen that
although the sound pulse could no longer be considered as radiating as
a plane wave at 12 MHz the measured velocity was larger than the value
at 68.0 Miz by only 0.03%, whilst at 20 MHz the values agreed within
the experimental error.

(d) Non=-uniform temperature did not appear to affect the velocity
measurements visibly and its effect was difficult to estimate. The
vertical temperature gradient over the central region of the liquid
was about 0.5 deg C/em and this would result in an error of about 0.1
m/sec in the sound velocity. The chromel-alumel thermocouple was
checked at the boiling point of water and was found to agree with the
nelting points of the various metals to within 0.5°C. The temperature

of the mercury was therefore probauly correct to 0.500.
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In conclusion, it was estimated that the total error in sound
velocity was about 0.05% due to the experimental errors in sound wave-
length and frequency. The estimated errors in -(aclat)p and ¢, were
calculated from the computed deviations from the line of regression
and the experimental error respectively.

C. __ Comparison with Other Investigetions

The reported results for sound velocity in mercury are recorded in
Table 3.4, and are seen to agree within a few m/sec. The values for
c and “(ac/at)p obtained in the present study are seen to agree closely,
within experimental error, with the recent measurements of Hill and
Ruoff (19G5b), Seemann and Klein (1965), and Coppens et al. (196T).
The techniques employed are indicated in Table 3.4, where the notation

is as follows:-

o=
H

Direct Pulse Methods

B ~ Pulse Comparison Method

C - Repetition Rate Method

D ~ Phase Comparison Methods
These techniques have already been deseribed in Section 2.1. Abowitz
and Gordon (1963), Hill and Ruoff (19G5b) end Davis and Gordon (1967)
used mercury mainteined at a fixed temperature as the reference liquid,

whilst Seemann and Klein (19G5) used distilled water. The sound

velocity data for mercury and distilled water were taken from Hubbard
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and Loomis (1928) and Greenspan and Tschiegg (1957). It would appear
that Abowitz and Gordon (1963) have underestimated their experimental
error in sound velocity since they quote an accuracy of 0.1 m/sec in
spite of the fact that Hubbard and Loomis give an error of 0.3 m/sec
on their values for mercury. Also of interest is the fact that the
results due to Hubbard and Loomis (1928) for distilled water are about
1 n/sec higher than recent values for the sound velocity [pee MeSkimin
(1965)1. The data of Greenspan and Tschiegg (1957) has likewise been
seen to be high by 0.35 m/sec and would result in the sound velocity
for mercury determined by Seemann and Klein (1965) being systematically
high.by about 0.3 m/sec. The author's preliminary results for mercury
have been reported EWebber (1965)] in which the highest temperature
reached was 75°C. In contrast to the pulse comperison technique the
nethods used by Coppens et al. (19G7) and in the present study
measure directly the absolute sound velocity. The excellent agreement
with the recent investigations show that the present apparatus and
technique give consistent results for the sound velocity. It is also
apparent that direct pulse methods are unrelisble for meassurements of

~(ac/at)P.

3.2 Sound Velocities in Various Liquid Metals

The zinc, cadmium, indium, tin, lead and bismuth were 99.99,

99.95, 99.97, 99.9, 99.99 and 99.98% pure respectively. These materials
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Table 3.2 Results for Velocity of Sound in Pure Metals

o7,

Metal v . =-(3c/at)p

(°c) {(m/sec) (m/sec.deg C)
Zn k20 2851.8 + 1.4 0.400 + 0.00k4
cd 321 22h2.1 + 1.0 0.376 + 0.005
Hg -38.9 1478.7 + 0.7 0.457 + 0.003
In 156 2317.7T + 3 0.293 + 0.005
Sn 232 2473.9 + 1.3 0.223 + 0.003
Pb 328 1018.9 + 0.8 0.259 + 0.003
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were supplied by Johnson, Matthey and Co. Ltd. The experimental
procedure has been described in Section 2.10B. In the case of zinc, a
draught of air from a fan was used to cool the outer casing of the
furnace and sir at a few 1b/in? pressure blown over the transducer
mounting so as to prevent a deterioration of the transducer bond. The
poor transmission of ultrasound into the indium resulted in a slightly
greater error in the measurement of A as compared with the other pure
netals.

It is seen from Figs. 3.2, 3.3, 3.4, 3.5, and 3.C that within
experimnentel error the sound velocity decreases linearly with increasing
temperature in liquid zine, cadmium, indium, tin and lead. A lineer
fit to the sound velocity data is used and the best values and estimated
errers ‘for c, and (ac/at)p for these liquid metals are shown in Table 3.2.
The present results are compared with other investigations in Table 3.5
and discussed in Section 3.3.

Since Hill and Ruoff (19G5b) had found that the sound velocity in
liquid bismuth decreased non-linearly with temperature, the sound
velocity in liquid bismuth was measured in greater detail, particularly
below 300°C. The present results are recorded in Teble 3.3 and plotted
as a function of temperature in Fig. 3.7. A second and third degree
polynomial were fitted to the data by the method of least squares from

the Atlas Computer Laboratory program VCOlA snd it was found that the
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Table 3.3 Sound Velocity in Liquid Bismuth
t c t e

(%) (m/sec) (°c) (m/sec)
273 1648.8 309 16L45.7
27h4.5 1649.1 310.5 1645.3
27h.5 16L8.4 317 16LL.5
275.5 1648.8 321.5 1644.3
276 1648.3 325.5 1644 .3
276.5 16.48.5 333.5 1643.1
277 1648.4 334 1643.0
277.5 1648.7 340.5 16k2.6
279 1648.7 3h1.5 1642.5
279 1648.4 343 1641.9
279.5 1648.5 346 164k2.0
282 1647.8 349 16k1.9
28k4.5 1648.1 349.5 1641.1
28k4.5 1647.9 354.5 1640.8
285 1647.8 360.5 1640.3
287 1647.8 368.5 1639.1
207.5 16L47.6 377.5 1638.1
290.5 1647.5 381 1637.7
293.5 1646.9 392 1636.1
205.5 1646.8 401.5 1635.1
298.5 1647.1 408 163k.1
306 1646.2

Estimated error in c = 0.7 m/sec’
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best curve fit within experimental error wes given by
c = 1653.k + 4,52 x 1072t - 2,27 x 107%t2, (3.3)

valid for t > 271°C.
Estimeted error in zeroth coefficient = 0.7 m/sec.
Estimated error in first coefficient = 0.12 x 102 m/sec.deg C.
Estimated error in second coefficient = 0.33 x 10™"* m/sec.deg C2.
The present result is compared with other investigations in Table 3.5

and discussed more fully in Section 3.3F.

3.3 Discussion of Results for Pure iletals

A compilation of sound velocity measurements is recorded in Table
3.5. The present results for pure metals are discussed below.

A. Zinc

The present result for sound velocity is in excellent agreement
with that of Gitis and Mikhailov (19G6b). The inaccuracy of direct
pulse methods is readily apperent. It is seen from Fig. 3.2.that the
present results show that the sound velocity decreases linearly with
temperature within the temperature range of the experiment, whilst
Gitis end Mikhailov (19C6b) report that the sound velocity falls off

more rapidly as the temperature increases. Murthy and Rao (1967T)



Teble 3.4

Comparison of Published Values for Velocity of Sound in Mercury

t c -(3c/at) P Technique{ Temperature Investigator

(°c) (m/sec) (m/sec deg C) range (°C)

30 {1Lk6.2 + 0.3} 0.464 + 0,003 D 0 - T0 |Hubbard and Loomis (1928)
23,8 f1kk9 + 2 D 20 - 28 |Ringo et al (1947)

50 {1440 + 10 { 0.7 A 50 = 150 {Kleppa (1950)

20 |12 + 4 | 0.312 D 20 = 100 [Polotskii and Khodov (1955)
20 [1452 * 3 | 0.37 D 20 - 100 |Golik et al (1961)

30 |1kb6.4 + 0.1] 0.k6 + 0.002 B , Abowitz end Gordon (1963)
30 (1448 + 2 | 0.60 B 25 - 130 |Hunter et al (1963)

25 |akso + 6 | 0.b5 D 25 = 204 [|Jarzynski (1963)

30 1446 C Beyer and Coppens (1965)
30 |ikb7.k 0.473 + 0.002 B 30 = 197 |Hill and Ruoff (1965b)
20  |1451.6 + O.k| 0.458 + 0,00k B -36 =~ 60 |Seemamand Klein (1965)
20  |1k51.5 + 0.7} 0.45 + 0,01 D 20 = 75 [Webber (1965)

30  [14L46.4 + 0.2] 0.462 C 30 - 199 |Coppens et al (1967)
21.9 |1iks0.1 + 0.3} 0,464 + 0.003 C 22 = 53 |Davis and Gordon (1967)
30  {1kb7.2 + 0.7| O.45T + 0.003 D 20 = 156 |Webber

‘20T



Table 3.5 Comparison of Published Values for Velocity of Sound in Pure Metals

Metal | ¢ c -(3c/ Bt)p Technique |Temperature Investigator
(°c) (m/sec) (m/sec deg C) range (°c)

Zn 420 { 2790 + 60 A 420 480} Kleppa (1950)
L50 | 2700 A Plass (1963)
Lho | 2840 + Lo | 0.268 A 440 850 | Kazakov et al (196k4)
420 | 2850 + 0.305 D 420 850 Gitis and Mikhailov (1966Db)
428 | 2816 D 428 670| Murthy and Rao (1967T)
420 | 2851.8 + 1.4f 0.400 + 0,004 D L2k 521} Webber

cd 321 | 2200 * 20 | 0.5 A 321 360| Kleppa (1950)
335 | 2215 + T A Polotskii et el (1959)
331 | 2223 + 7 A Khodov (1960)
360 | 2150 A Plass (1963)
321 | 2220 &+ 34 | 0.618 A 330 750{ Pronin and Filippov (1963a)
321 | 2256 + 5 0.29 D 321 TOO| Gitis and Mikhailov (1966b)
ko2 | 2225 0.58 D 420 650| Murthy and Rao (1967)
321 | 2242,1 + 1,0{ 0,376 * 0,005 D 323 LO6| Webber

In [156 { 2235 + 20 | 0.5 A 156 260 Kleppa (1950)
160 | 2313 C Beyer and Coppens (1965)
167 | 2310.7 0.296 + 0.001 B 167 345| Hill and Ruoff (1965b)

*€oT
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Table 3.5 continued
Metal{ t e -(3c/ at)p Technique| Temperature Investigator
(°c) (n/sec) (m/sec «deg C) range (°C)
In | 156 |2315 + 5 0.27 D 156 950 |Gitis and Mikhailov (1966b)
156 |231L4,2 + 0.6 0.29 c 159 230 {Coppens et al (1967)
156 |2317.7 + 3 { 0.293 + 0,005 D 159 351 |Webber
Sn 232 2270 + 20 { 0.7 A 232 380 |Kleppa (1950)
232 |2464 + 4 | 0,236 + 0,001 B 230 335 |Gordon (1969)
232 [2473  + 12 { 0.24T D 2ko 500 {McSkimin (1959)
27 [2ksk  + 8 A Polotskii et el (1959)
243 2466 + 8 0.2 A Khodov (1960)
240 |2L70 A Plass (1963)
232 2420 + 50 } 0.211 A 232 620 {Pronin and Filippov (1963a)
240 |2470 c Beyer and Coppens (1965)
22 [2W70  + 5 D Litovitz and Jarzynski (1965)
232 |2480 + 6 | 0.3 D 232 800 [Gitis and Mikhailov (1966a)
232 (281 0.28k4 B Nagel (1966)
232 {2k72  + 3 c 239 262 [Coppens et al (1967)
232 [2473.9 + 1.3} 0,223 + 0.003 D 235 L0l |Webber
Pb | 328 |1790 + 15 | 0.5 A 328 380 |Kleppa (1950)
328 [1776 + 4% | 0.277 + 0.006 B 328 370 |Gordon (1959)
340 {1834 + 6 A Polotskii et a1 (1959)
34 1826 + 6 | 0.3 A Khodov (1960)




Table 3.5 continued

Metal | t ¢ —(ac/at)p Technique {Temperature Investigator
(°c) (n/sec) (n/sec deg C) range (°C)

Plass (1963)

328 = 930| Pronin and Filippov (1963=)
328 - B800| Gitis and Mikhailov (1966e)
Nagel (1966)

330 = k28| Webber

Pb 3%0 | 1760
328 | 1810 + 27 |0.381

330 {1820 + 4 |0.3

328 | 1816 0.273

328 | 1818.9 +-0.8 |0.259 + 0.003

Bi |271 | 1635 +15 [0.5 271 - 380| Kleppa (1950)
287 | 1663 + 5 Polotskii et al (1959)
289 | 1666 * 5 289 = 356| Khodov (1960)
305 { 1650 *+8 )0.8 305 =~ k42| Jarzynski (1963)
280 | 1650 Pless (1963)
271 | 1620 + 2k 10,209 271 = 930 Pronin and Filippov (1963e)
318 | 1539 Beyer and Coppens (1965)
280 | 16L45 280 = 410| Hill and Ruoff (1965b)
271 | 16T  + b 0.18 271 = 850| Gitis and Mikhailov (19662)
271 | 1650 0.13 Nagel (1966)

318 = 357| Coppens et al (1967)
273 = k08| Webber

318 | 1639.h + 2
271 | 1649.0 + 0.7

O Q U waax=r g > p» > Uwoke e

*S0T
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report that the sound velocity increases in the temperature interval
between the melting point and 500°C and then falls linearly with in-
creasing temperature. The latter measurements would appear'to be
erroneous. The excellent agreement with other‘investigations of the
present values for “(Bc/at)p in other pure metals suggests that the
value for -(Sclat)p determined by Gitis and Mikhailov is slightly in .
error.

B.  Cadmium

The present result for sound velocity differs from that of Gitis
and Mikhailov (1966b) by 14 m/sec and the direct pulse methods give
values which are lower by about 20 m/sec. Gitis and Mikhailov cbserved
that the sound velocity decreased linearly with temperature until
about 600°C and then decressed more rapidly with temperature. It is
seen from Fig. 3.3 that the present result shows that the sound velocity
decreases linearly with tewpurature within the temperature range of
the experiment. There is a large variation in the reported values for
~(ac/3t)P, the values due to Pronin and Filippov (1963a) and Murthy
and Rao (1967) being exceptionally high.

C. Indium

Apart from the result obtained by Kleppa (1950) the sound veloci-
ties determined by various investigators agree to within 3 m/sec. The

values for —(ac/at)p obtained by Hill and Ruoff (196Gb), Coppens et al.
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(1967) and in the present study agree within the estimated experimental
errors. The value determined by Gitis and Mikhailov (1966b) is about
7% lower and they report that the sound velocity decreases linearly
with temperature up to about BTSOC and then decreases more rapidly
with temperature.

D. Tin

There is fairly good agreement between the literature values for
sound velocity. Nine investigations agree to within 10 m/sec with the
present determination, and five investigations to within 2 m/sec. The
sound velocity determined by Kleppa (1950) is seen to be erroneous.
The values for -(ac/at)P are seen to be in fair agreement. In the
temperature range from the melting point to 400°C the present resulté
showv that the sound velocity decreases linearly with temperature (see
Fig. 3.5) whereas Gitis and Mikhailov (19C6a) report that the velocity
decreases non-linearly and less rapidly as the temperature increases.

L. Lead

The present result for sound velocity at the melting point agrees
to within 5 m/sec with the values obtained by Gitis and Mikhailov
(1966a) and Nagel (1966). These three investigations give values for
n(ac/at)p which are in fairly close agreement. The value of ¢ determined
by Gordon (1959) is seen to be low by 43 m/sec whereas “(ac/at)p is

close to the present result. The measurements of Kleppa (1950) and
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Plass (1963) are again seen to be fairly inaccurate. Gitis and Mikhailov
(19G66a) report that the sound velocity decreases non-linearly with
temperature in the temperature interval 320 to hOOOC, contrary to the
present result (see Fig. 3.0). |

F. Bismuth

At the melting point the present result agrees to within 4% m/sec
with the results of Hill and Ruoff (19G5b) and Nagel (1966). The
result due to Gitis and Mikhailov (19G6a) is seen to be higher by 25
m/sec. It is seen from Fig. 3.7 that in the present study the sound
velocity does not remain constant in the temperature interval between
the melting point and 290°C as reported by Hill and Ruoff (1965b) but
decreases with increasing temperature. Above 320°C the results of Hill
and Ruoff, Nagel (1966), Coppens et al (19CT) and the present investi-
zation for the variation of velocity with temperature are very similar.
The values for -(30/81;)p obtained by Kleppa (1950) and Jarzynski (1963)
ere seen to be exceptionally high.

G. _ Summary of Sound Velocity Results in Pure Metals

It has been seen that the present apparatus and measuring technique
is capable of giving results for sound velocity which are in close
agreement with other investigations. MMeasurements obtained by direct
pulse methods are seen to be inaccurate and unrelisble, perticulerly

the original results of Kleppa (1950). Pulse comparison, repetition rate
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and phase comparison techniques are seen to be more accurate and con—
sistent with one another. Although there is a large scatter in values
of -(ac/at)P reported in the literature, the present values are in
fairly close agreement with other investigations on mercury, indium,
tin, lead and bismuth where the values are more consistent. This
suggests that for zinc and cadmium the present values for —(ac/at)P

can be considered as more reliable.

3.4 Sound Velocity in Mercury-Zinc Alloys

The experimental procedure is described in Section 2.10C. The
results for the mercury alloy systems are presented in order of increas-
ing valency and atomic weight of the solute whereas the experimental
order is Hg~In, Hg-Bi, Hg~Cd, Hg~Pb, Hg~Sn and Hg~Zn. Each alloy
system is maintained at a temperature above the liquidus temperature
given by Hultgren et al. (1963) for the alloy composition. If the
liquid alloy is taken below the liquidus temperature the sound velocity
decreases rapidly as is expected since the solute becomes a suspension
in mercury and the sound velocity tends towards the value for pure
mercury. If this occurs accidentally the temperature is raised above
the liquidus temperature and the liquid is agitated until the sound
velocity measurements are consistent within themselves, showing that

the alloy is thoroughly mixed.
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All the mercury-zinc alloys are prepared by adding a known weight
of zinc to mercury. Within the temperature range of the experiment
the sound velocity is found to decrease linearly with temperature for
each alloy. A linear fit to the velocity data is obtained from the
Atlas Computer Laboratory program VBOlA and the results are recorded
in Table 3.6 for each composition. The error in the fractional atomic

concentration a varies from sbout 0.1 to 0.3%.

The sound velocities are calculated for each composition at 158
and 350°C (see Table A.l) and are plotted in Fig. 3.8. Solid and
dashed lines on the graph correspond to concentrations for which the
alloy composition is sbove or below, respectively, the liquidus tem-
perature. It is seen from Fig. 3.8 that the addition of zine to mercury
causes the sound velocity to increase, which confirms the measurements
of Golik et al. (1961) and Abowitz and Gordon (1963). Contrary to the
variation of sound velocity with composition in mercury-thallium alloys
reported by Abowitz and Gordon (1963), (see Fig. 1.1), the graphical
curvature between the pure component values is concave rather than
convex. A theoretical approach to the varistion of sound velocity with
composition is discussed in Section h.6.

The varistion of ~(8c/8t)P with alloy composition is shown in
Fig. 3.14. The value of H(Bclat)p is seen to decrease raepidly with

inerease in atomic concentration of zinc; Golik et al. (1961) and
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Abowitz and Gordon (1963) report & more rapid decrease with composition

than is found in the present investigation.

3.5 Sound Velocity in Mercury-Cadmium Allgxa

Difficulty in measurement of sound velocity was experienced due
to poor sound transmission into the molten alloys. As a result new
alloy compositions were made up at 20 and 30 at. % Cd and gdditional
cadmium was added to these to vary the composition.

The sound velocity results are recorded in Table 3.7 and are
plotted as a function of composition at 158 and 35000 in Fig. 3.9;
the calculated data are shown in Teble A.2. The liquidus temperature
of 158°C corresponds to the alloy composition 54 at. % Cd [gultgren
et al. (1963)]. At 350°C all the mercury—cadmium alloys are above
their liquidus temperatures. It is seen from Fig. 3.9 that the sound
velocity increases smoothly with concentration of Cd and shows a
graphical convex curvature between the two pure component values. The
variation of —(ac/Bt)p with composition is shown in Fig. 3.15, from
vhich it is seen that the value of —(Bc/Gt)P decreases fairly rapidly
in the composition range up to 30 at. % Cd and then remeins fairly
constant. Golik et al. (1961) and Abowitz and Gofdon (1963) report a
more rapid decrease of -(aclat)p with concentration of Cd than is found

in the present investigation.



112.

3.6 Sound Velocity in Mercury=-Indium Alloys

Mercury-indium was the first alloy system investigeted. An slloy
composition of 2 at. %.In was prepared in a beaker and was poured into
the silica container. At the end of the meésurements the alloy was
removed and the container cleaned. A second elloy composition of 2 at.

% In was prepared in the ususl manner, as described in Section 2.10C,
and it wes found that the two sets of measurements agreed within the
experimental error. Several initial compositions were prepared and the
composition varied, the different series of compositions over—lapping
one another. The sound velocity was found to decrease linearly with
temperature for all the alloy compositions.

The results are recorded in Teble 3.8 and the calculated values
for the sound velocity at 160°C for various compositions are shown in
Table A.3. From Fig. 3.10 it is seen that the sound velocity increases
smoothly with increasing at. /7 In. The values of 4(8c/at)p are plotted
as a function of composition in Fig. 3.16 and it is seen that "(8c/at)p
decreases rapidly in the composition range up to about 30 at. % In and

then remains fairly constant.

3.7 Sound Velocity in Mercury-Tin Alloys

The usual experimental prccedure was carried out for compositions
up to 40 at. % Sn, whilst in the composition range between 50 and 90

at. # Sn mercury was added successively to tin or mercury-tin alloys.
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It was found that the mercury-tin alloys needed to be agitated for about
a day before the sound velocity measurements became consistent within
themselves. The sound velocity was found to decrease linearly with
temperature for all the compositions.

The results are recorded in Table 3.9 and the calculated sound
velocities at 240 and 350°C are plotted as a function of composition
in Fig. 3.11, the data for which are shown in Table A.4k. It is seen
that the sound velocity increases smoothly with at.”? Sn. The value of
~(ac/3t)P is plotted as function of composition in Fig. 3.17 and it is
found that -"(ac/at)p decreases rapidly to a minimum at about 20 at.% Sn

and then increases to a value which is greater than that for pure tin.

3.8 Sound Velocity in Mercury-Lead Alloys

Poor sound transmission occurred in the composition range up to
20 at.% Pb and several of the compositions had to be repeated. The
acoustic signal improved at higher concentrations of lead and it was
possible to vary the composition as ususel. It was found that the sound
velocity decreased linearly with temperature in all the alloy composi-~
tions.

The sound veloecity results are recorded in Table 3.10. Sound
velocity is plotted as a function of composition at 158 and 350°C in

Fig. 3.12 and it is found to vary smoothly across the alloy system.
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Calculated data for Fig. 3.12 are shown in Teble A.5. The value of
=(ac/at)p is plotted as a function of composition in Fig. 3.18, from
vhich it is seen that ~(8c/3t)P decreases rapidly to a minimum at about
15 at.% Pb and then increases to a value which is greater than that for
pure lead. It is noted that the variation of -(3c/3t)p with composition

is similar to that found in the mercury—tin system.

3.9 Sound Velocity in Mercury-Bismuth Alloys

The usual experimental procedure for mercury alloys was carried
out. The composition 15 at.% Bi was repeated and it was found that the
two sets of measurements agreed to within 1 m/sec. No experimental
difficulty was experienced in obtaining consistent measurements once
the usual agitation processes had been carried out. The 50 at.% Bi
composition was taken below its liquidus temperature and the expected
drop in sound velocity was observed. 90 at.? Bi was obtained by adding
mercury to liquid bismuth.

The sound velocity results are recorded in Table 3.11 and Fig.
3.13 shows that at 158 and 350°C the sound velocity increases smoothly
with concentration of bismuth. Liquidus temperature of 158°C corres-
ponds to the alloy 48 at.% Bi. The velocity data for Fig. 3.13 are
recorded in Teble A.6. From Fig. 3.19 it is seen that w(ac/at)P
decreases vrepidly in the composition range between O and 10 at.# Bi

and then decreases approximately linearly with increasing at.? Bi.



Table 3.6 Sound Veloeity in Mercury- Zine Alloys

Fractional atomic Tenperature c —(Bc/at)p Temperature
concentration (°c) (n/sec) (n/sec.deg C) renge (°C)

b of Zn
0.0201 40 1472.9 + 0.7 | 0.438 + 0.008 L - 110
0.0503 81 1500,0 + 0.8 | 0.421 + 0.006 81 - 164.5
0,100 72 1565.7 + 0.8 0.362 + 0.006 71.5 = 178
0.150 87 1623.0 + 0.8 | 0.350 + 0.006 8T - 20
0.200 115 1669.1 + 0.8 | 0.326 + 0.006 | 11k.5 - 221
0.250 143 1716.7 + 0.9 0.312 # 0,006 | 143 - 245
0.300 161 1769.2 + 0,9 | 0.317 + 0.006 | 160.5 - 270
0.350 178 1822,7 + 0.9 | 0.30k + 0.006 | 178 = 277.5
0.k00 208 1872.0 + 0.9 | 0,295 + 0.006 | 207.5 = 298
0.500 228 1988s3 + 1.0 | 0.276 + 0.006 | 227.5 = 321.5

*SIT



Teble 3.7 Sound Velocity in Mercury—-Cadnium Alloys

Fractional atonic Temperature c =(3c/3t) Temperature
concentration (°c) (m/sec) (n/sec.deg C) range (°c)

b of Cd

© 70,0200 54 1463.1 + 0.7 | 0.451 + 0.005 53 = 121
0.0500 T2 1491.0 # 0.7 | 0.429 + 0,008 T1.5 = 161
0.100 85 1543.1 + 0.8 | O.k1k + 0,006 84 - 164
0.150 103 1587.4 + v.9 | ©.389 + 0.011 {103 = 160
0,200 0L 1638.6 #£ 0.8 | 0.395 + 0.009 {103 = 184
0,250 113 1682.9 + 0.8 { 0,378 + 0.008 | 113 = 202,5
0.300 133 1721.2 + 1,0 | 0,348 + 0.012 | 132,5 = 196.5
0.350 148 1760.7 + 0.9 0.359 + 0,010 | 147.5 - 236
0.k00 169 1797.3 + 1.0 0.347 + 0,014 | 169 - 260,5
0.500 176 1876.6 + 1,0 | 0,354 + 0,011 | 176 = 265.5
0.600 227 1939.5 + 1.0 0.346 + 0.010 226 - 286
0.700 264 2002.3 + 1.0 | 0.359 + 0.014 | 263 - 303.5

*oTT



Table 3.8 Sound Velocity in Mercury=Indium Alloys

Fractional atomic Temperature c -(3c/ Bt)p Temperature
concentration (°c) (n/sec) (n/sec deg C) range (°¢)
b of In
0.0060 22 1k59.4 + 0.7 | 0.439 + 0.005 22 - 103
0.0100 35 1459.7 + 0.7 0.4h1 + 0.005 35 - 109
0.0150 23 1471.3 + 0.7 | 0.439 #0.005 |22 - 113
0.0200 33 147k .4 + 0.7 | 0.436 + 0.005 32.5 = 107
0.0200 23 1478.3 + 0.7 0.431 + 0.008 22.5 = 117
0.0500 24 1517.6 + 0.8 0.394 + 0.006 23 - 111.5
0.0800 31 1553.6 + 0.8 | 0.383 + 0,006 | 30 - 110.5
0.0946 2k - 1573.1 + 0.8 0.364 + 0.006 23 - 124
0.1k 24 1624.3 + 0.8 0.34L + C.006 23 - 10k4.5
0.181 2L 1667.5 + 0.8 0.334 + 0.006 23 - 138
0.250 41 1727.6 + 0.9 0.299 + 0.006 | ko.5 = 129
0.300 23 1777.9 + 0.9 | 2.281 + 0.010 | 23 - 117.5
0.350 2k 1820.4 + 0.9 | 0.289 + 0.006 | 23.5 - 110.5
0.400 22 1863.4 + 1.0 | 0.299 # 0.010 | 21.5 =~ 123.5
0.500 23 1942.4 + 1.0 | 0.283 + 0.006 | 22 - 126
0.600 21 2020.2 + 1.0 0.282 + 0,00k 20,5 = 206
0.725 63 2108.0 + 1.1 0.288 + 0.00k4 62.5 = 165.5

AN



Table 3.9 Sound Velocity in Mercury-Tin Alloys

Fractional. atonic Tempereture c -(ac/at)p Tenperature
concentration (°c) (nn/sec) (m/sec +deg C) range (°c)

b of &n
0.0200 67 1475.2 + 0.7 0.405 + 0.006 66.5 = 134.5
0.0500 92 1509.1 + 0.8 | 0.311 # 0.011 91.5 = 153
0.100 115 1564.8 + 0.8 | 0.275 + 0.008 | 114k.5 = 190.5
0.1k2 126 1611.5 + 0.8 0.215 + 0.006 125.5 = 224
0.200 118 1676.0 + 0.8 0.195 + 0.006 117.5 - 226
0.250 124 1732.8 + 0.9 0.200 + 0.006 123.5 -~ 233.5
0.300 130 1787.3 + 0.9 | 0.208 + 0.006 | 129.5 = 258.5
0.400 145 1890.2 + 0.9 0.215 + 0.006 1k5 - 259
0.499 166 1985.1 + 1.0 | 0.226 + 0.006 | 165.5 =~ 299.5
0.598 162 2084.4 + 1.0 | 0.232 + 0.006 | 161.5 = 326
0.748 201 2223.3 + 1.1 | 0.264 + 0.009 | 200.5 =~ 326
0.899 224 2373.8 + 1.2 0.276 + 0.007 224 - 332.5

Q1T



Table 3.10 Sound Velocity in Mercury-Lead Alloys

Fractional etonmic Temperature e -(aclat)p Temperature
concentration (°c) (n/sec) (m/sec .deg C) range (°c)

b of Pb
0.0200 62 1469.1 *+ 0.7 0.389 + 0.008 61.5 = 10h.5
0.0400 82 148k.6 + 0.7 0.362 + 0.008 82 ~ 127.5
0.0500 82 1492.3 + 0.7 | 0.301 # 0.008 81 - 137.5
0.0527 17 1kok.8 + 0.9 0.264 + 0.012 76.5 = 120
0.0800 100 1511.3 + 0.8 0.264 + 0.008 99 - 150.5
0.0971 10k 1520.5 + 0.8 0.236 + 0.008 } 10h - 166.5
0.050 113 1558.5 + 0.8 0.215 + 0.008 | 117 - 19k.5
0.200 124 1592.8 + 0.8 0.222 + 0.008 | 123.5 - 216
0.250 132 1625.9 + 0.8 | 0.239 + 0.008 | 132 = 230.5
0.300 136 1658.3 + 0.8 0.255 * 0.008 | 136 - 2%0.5
0.350 148 1685.6 + 0.8 0.275 + 0.008 | 148 - 257
0.400 163 1709.2 +°0.9 | 0.307 + 0.008 | 162.5 - 268.5
0.450 168 1734.1 + 0.9 | 0.305 # 0.008 | 167.3 = 287
0.500 182 1751.7 + 0.9 { 0.331 + 0.008 | 181.5 =~ 275
0.600 204 1782.7 + 0.9 0.325 + 0.008 203.5 =~ 308
0.700 2h2 1801.2 + 0.9 | 0.333 £ 0.008 | 2kr - 309
0.796 270 181k.€6 + 0.9 0.327 + 0,008 269.5 =~ 332.5

*6TT




Table 3.11 Sound Velocity in Mercury-Bismuth Alloys
Fractional atomic Terperature ¢ -(3c/3t) Temperature
concentration (°c) (n/sec) (n/sec .degpc) range (°C)

b of Bi
0.0200 73 1456.9 + 0.7 | 0.393 + 0.012 73 105.5
0.0500 T4 1482.8 + 0.7 | 0.331 + 0.010 Th 1ko.5
0.100 88 1511.6 +# 0.8 | 0.309 + 0.010 87.5 167
0.150 104 1535.1 + 0.8 | 0.251 + 0.010 | 103.5 170.5
0.200 120 1556.3 + 0.9 0.253 + 0.013 119 215.5
0.250 126 1577.6 + 0.8 { 0.2k3 + 0.010 | 126 226
0.300 129 1595.2 + 0.9 | 0.2kl + 0.012 | 128.5 234.5
0.350 1ko 1606.k + 0.8 0.215 + 0.008 139.5 2kg
0.400 1Ly 1617.3 + 0.8 | 0.199 + 0.008 | 1L3.5 253
0.450 161 1625.1 # 1.0 | 0.200 + 0.01k | 160 261.5
0.500 165 1630.4 + 0.9 0.164 + 0.012 164.5 261
0.600 196 1638.6 + 0.8 | 0.167 + 0.008 | 196 305.5
0.700 216 1€42.5 + 0.8 | 0.136 + 0.008 | 215.5 304
0.893 271 1644.9 + 0.8 | 0.191 + 0.008 | 270.5 310.5

*02T
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3.10 Discussion of Sound Velocity Results for Mercury Alloys

The results for dilute mercury alloys can be compared with the
measurements of Golik et al.(1961) and Abowitz and Gordon {1963).
Comparison of results for mercury-zinc and mercury- cadmium alloys are
shown in Figs. 3.20 and 3.21. At 158°C the sound velocity extrapolated
from the measurements due to Abowitz and Cordon is 1387.5 m/sec for
mercury, in excellent agreement with the present result, whilst the
measurements due to'Golik-et al. give 1400 m/sec. It is seen from
Fig. 3.20 tbat the present results for dilute Hg~Zn alloys are in good
agreement with the other investigations. However, for dilute Hg~Cd
alloys, the results due to Golik et al. agree fairly closely with the
present results, whilst Abowitz and Gordon find that the sound velocity
increases more rapidly with at.Z Cd (see Fig. 3.21). The results due
to the latter are in good agreement with the present results for dilute
Hg~Sn, Hg-Pb and Hg~Bi alloys (see Fig. 3.23, 3.24, and 3.25 respec-
tively) but are about 1% higher for dilute Hg~In alloys (see Fig. 3.22).
This difference is outside experimental error and the reason is not
readily apparent.

When the variations of sound velocity with composition at low
atomic concentrations for each mercury alloy system are compared, it is
found that the eddition of tin produces the largest increase of sound

velocity. The measurements on Hg~K due to Abowitz and Gordon (1963)
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show that the addition of potassium causes & slight decrease of sound
velocity, opposite in direction to. the other mercury alloys. Study

of the variation of sound velocity across the entire composition range
for each alloy system, at a fixed temperature, shows that with the
exceptions of Hg-K and Hg=-Zn, the sound velocity at a given composition
is greater than the weighted mean of the sound velocities of the pure
components. The variation of sound velocity with composition of alloy

is discussed from a theoretical viewpoint in Section L.6.



135.

3.11 Sound Absorption in Mercury

A. Sound Absorption Results

The sound absorption in distilled water at room temperature was
measured in order to test the apparatus and experimental procedure.
It was found that the value for a/f2 of (24.§ + 0.5) x 19"17 em™! gec?
at 22.3°C was in fair agreement with the value of (2.3 + 0.3) x 1017
em~! sec? at the same temperature reported by Pinkerton (1947). However,
greater difficulty was experienced in obtaining consistent sound ab-
sorption measurements in mercury, for which «/f? is about 5.7 x 10717
cm™! sec? at room temperature. One of the difficulties was due to the
depression of the base line of the oscilloscope caused by overloading
of the electronic circuits, leading to uncertainty in the signal ampli-~
tudes. In order to eliminate this effect measurements were made with
both the I.F. and video outputs, together withthe use of a blanking
pulse. The results obtained with these two techniques were found to be
the same within experimental error. It was also found preferable to
keep the comparison pulse in a fixed position, usually before the first
reflected pulse. All the measurements were made at 68 MHz; the ultrasonic
pulse was too small for a measurement to be made at 92 Miz.

The present results for sound absorption in mercury are shown in
Table 3.12 and o¢/f? is plotted as a function of temperature in Fig. 3.26.

It is seen from Fig. 3.26 that o/f? increases approximately linearly with
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temperature and the present results agree within experimental error

with the measurements ofJarzynski (1963) and Hunter et al. (1963).

Table 3.12 Sound Absorption Results for Mercury

t a/£2 x 1017
(°c) (em™! sec?)
22.5 5.6 + 0.3
23.5 5.6 + 0.3
52.5 6.7 + 0.3
66 7.1 + 0.4
76.5 7.4 + 0.4
137.5 g +0.
141 9.5 + 0.4
156 9.8 + 0.4

B. Error in Sound Abgorption Results

The sources of possible error in a/f? are due to uncertainties in
the absorption coefficient a and in the frequency, and to diffraction
effects and non-uniform temperature in the specimen. These contributions
are discussed below.

a) A typical decrease in pulse amplitude for 2 cm. increase in



137,

1
o - 130 IS0

A A ‘ A | ']
o 30 so 70 90
| Temperature (°C)

4 - | 1 ‘L

Fig. 3;26. Sound absorption as a function of temperature in mercury.
Webbor +, Hunter ef'sel D, Tarzyash &, Abowitz and
Lor Joh_ ‘#. ' ‘{{f"




138,

acoustic path length was about T db.. Attenuator settings could be read
to 1_0;1 db. and the pulse heights aadjusted to equality to within

+ 0.2 db. A plot of attenuator setting (db) against acoustic path
length gave the absorption D in db/em, from which the sound absorption

coefficient a{em™!) was calculated according to the relation
a = D/8.68 . (3.10)

The measurements were taken with the reflector rod being reised and
lowered and at least six absorption measurements were made at a given
temperature. It was found that measurements of D were only reprodu-
cible to within 3 to 5%, accuracy of measurement improving at higher
temperature since the total change in amplitude was greater.

b) The measurement of frequency has already been discussed in
Section 3.1B and was accurate to within 0.02%._ Thus the possible error
in attenuation due to this cause was 0.047 and was negligible.

c) When the present apparatus was operated at 68 MHz the sound
pulse could be considered to be propagating as a plane wave in the
liquid (see Section 2.4e). Even within the Fresnel zone correction
of the apparent absorption, which includes a diffraction loss, must be
considered since the total sound sbsorption of the sample was small.
This diffraction loss which is geometriecal in nature due to the gradual

spreading out of the ultrasonic beam has been studied by Seki et al. (1956).
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They consider the case when the transducer vibrates as a piston and
the éource radiates into a semi-infinite medium. ‘They assume that the
amplitude of the received pulse is proportional to the maximum value
of the pressure averaged over the surface of the receiving transducer
at a given time. The Gecrease in amplitude of the pulse, due to
diffraction, is a function of distance and is given approximately by
1.7 db per unit of distance R2/A, where R is the transducer radius and A
the sound wavelength. 1In addition, when the liquid is confined
laterally by the walls of e container, as in the present spparatus,
the diffraction pattern is influenced by reflection at the walls and
depends upon the ratio R'/R of the radii of the transducer and container
(R'), and on the acoustic impedances of the liquid and wall material
[see Carome and Witting (1961) and Carome et al. (1961)]. These authors
find that for R'/R = 2, as is the case for the present apparatus, the
diffraction.loss is approximately 2 db per unit of distance RZIA..

In the present measurements it was assumed that, at a particular
temperature, the fractional decrease in amplitude due to diffraction
in the delsy rod remained constant. The possible error was considered
to be that due to the additional diffraction which occurred when the
acoustic path length was altered. For a change in path length of 3 cnm
the decrease in pulse amplitude due to diffraction was estimated from
Carome and Witting (1961) to be sbout 0.02 db. The error in the measure-

nent of a/f2, due to diffraction, is therefore less than 0.2%.
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d) It was also necessary to consider the errors which arose from
thermal fluctuations and gradients within the mercury. The maximum
variation in the thermocouple reading duriné the absorption measurements
wvas 0.5°C. Since the change of o/f? with temperature was about 0.03
em~! sec? deg C”! the error due to a variation of O.5°C in the tempera-
ture of the mercury was less than 0.3% at room temperature. A temperature
gradient of 0.5 deg C/em in the direction of sound propagation would
result in an error of about 0.1% in the measured sound absorption.

Error due to thermal expansion of the silica reflector rod was also
negligible. Error in ebsorption measurements due to temperature
gradients in the plane perpendicular to the direction of propagation
was difficult to estimate. A temperature difference between the centre
and outer edge of the ultrasonic beam would distort the plane wave-
front but the resultant effect on pulse amplitude could not be large
since at all temperatures the pulse amplitude was found to decrease
exponentially with path length.

In conclusion it was found that accuracy in the measurements of
the sound absorption in mercury was limited by the reproducibility of
the measurements for &, which was between 3 to 5Zandimproved transmitter
detector circuits are required if greater accuracy is to be achieved
and would necessarily require temperature control to within 0.1°C. The
amplitude of the reflected pulse was too small for attenuation measure-

ments to be carried out on the other pure metals and alloys.
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Table 3.13 Sound Attenuation Measurements in Mercury at 25°C

Investigator and technique f Observed attenuation
MHz a/f2 x 10'7 cm™! sec?
Bdr (1937), light diffraction: 54 6.6
Reickmann (1939), radiation pressure: 21.5 6.3
54.0 6.4
Ringo et al (1947), continuous wave: 152 5.8 + 0.5
291 5.5 + 0.5
390 5.7 £ 0.5
TTh 4.7 + 1.0,
996 6.0 + 1.0
Jarzynski (1963), pulse: 63 6.2 + 0.3
92 6.2 + 0.3
Abowitz and Gordon (1962b), pulse: 45 5.4 + 0.5
65 5.4 + 0.3
75 5.5+ 0.2
115 5.3 + 0.1
Hunter et al (1962), pulse: ' 130 5.6
270 5.4
Hunter et al (1963), pulse: 90 5.71+ 0.1
150 5.72+ 0.1
270 5.67+ 0.1
Webber (1965), pulse: 68 5.6 + 0.3
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C. Comperison with Other Investigations

It has been seen from Fig. 3.26 that the present results for sound
absorption are in fairly good agreement with the measurements of
Jarzynski (1963) and Hunter et al. (1963). The ultrasonic attenuation
in mercury has been measured by a variety of techniques over a large
frequency range, as shown in Table 3.13. It is only recently that
agreement has been found in the experimental values obtained from the
use of pulse techniques. The present result at room temperature is
in close agreement with that obtained by Hunter et al (1963) and it
would appear that the value obtained by Jarzynski (1963) is slightly
high. The results obtained by Abowitz and Gordon (1962b) are fairly
close to the value of the classical sound absorption. Sound absorption
measurements and the calculation of the ratio of bulk to shear vis-
cosities for mercury and other liquid metels are discussed in Sections

4.1 and 4.2,
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L. DISCUSSION OF §0tJND ABSORPTION AND VELOCITY IN LIQUID METALS

AND ALLOYS

4.1 Structural Viscosity of Liquid Metals

A. nB/ns for Mercury

Measurements of sound absorption in several types of liquid have
shown the existence of a volume viscosity. Litovitz and Davis (1965)
observe that the volume or bulk viscosity is usually of about the same
magnitude as the shear viscosity. Molten metals are monatomic in
character, and ultrasonic absorption measurements have shown that vi-
brational or rotational isomeric relaxation does not occur but that a
structural relaxation similar to that in nonmetallic liquids does
[stephens (1963)].

The Stokes~Kirchhoff classical attenuation coefficient @ is given
by the addition of the viscous @ and thermal-conduction a, attenuation

T

coefficients, such that

T
2
2 Falk T
=224, -—-EET—-) £2, for ac/f<<l (k.1)
pe3 3 8 G2y
p

where ng is the shear viscosity, kT the thermal conductivity, Cp the
specific heat at constant pressure, J the mechanical equivalent of heat

and f the frequency of the sound wave. The excess absorption coefficient
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is formally attributed to a volume viscosity Ny defined by

o =" %

2n2n_f2
T (4.2)

pc3

where o is the experimental attenuation coefficient. The bulk viscosity

n. can therefore be calculated from

B

ng =% n——2) . (1.3)

The values of the classical sound absorption for mercury at
various temperatures are shown in Table 4.1, together with the values
of nB/ns. The physical data used are shown in Table A.7. The estima-
ted error in us/f2 is about 1%, mainly due to error in ng» and the
error in a,l,/f2 is about 27, mainly due to the uncertainty in kT. It
is seen that nB/nB is constant within experimental error. The probable
value of nB/nsis 0.86 + 0.3, which is slightly higher than the value
of 0.45 # 0.1 estimated by Hunter et al. (1963). Unfortunately Hunter
et al. incorrectly use the thermal expansion equation due to Beattie
et al. (1940) which resulted in their using higher values for o also
their values of sound velocity c are low. Correction of the data used -

by Hunter et al. results in their sound absorption measurements yielding
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Table 4.1 Sound Absorption and Ratio of Bulk to Shear Viscosity for

Mercury

% a /£2 x 1017 ap/£2 x 1017 | a/f x 1017 ny/n,
(°c) (em™! sec?) (em™! sec?) (em™1 sec?)

22, 0.99 k.26 5.6 0.48 + 0.4
23. 0.98 L,28 5.6 0.45 + 0.4
52, 0.91 5,17 6.7 0.93 + 0.4
66 0.89 5.61 T.1 0.90 + 0.6
6. 0.87 5.97 (A 0.86 + 0.6
137. 0.84 7.82 9.4 1.19 + 0.6
1 0.84 7.93 9.5 1.17 + 0.6
156 0.83 8.h2 9.8 0.88 + 0.6
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a value for nB/ns of 0.62 + 0.1. The sound absorption measurements of
Jarzynski (1963) and Abowitz and Gordon (1962b) yield values for nB/nB
of 1.3 + 0.3 and 0.17 + 0.2 respectively. The experimental values for
nB/nB in mercury are compared with theoretical values derived from a

dense-gas formulation applied to liquid metals in Section 4.2.

B. nB/nB for Vaerious Liquid Metals

The reported experimental sound absorption . a/f? for various
liquid metals are shown in Table 4.2, taken from Webber and Stephens
(1968), together with the calculated classical absorption and nB/ns.

The required physical dats are recorded in Table A.0. The thermal
conductivities of zinc, cadmium, gallium and indium are calculated from
the modified Wiedermann-Franz law, evaluated by Ewing and associates
(1957), which is reliable to within 12%. Errors shown for ng/ng are
calculated from the experimental errors alone. Letcher and Beyer (1963)
take a higher value for the expansion coefficient to calculate nB/ns <1
for sodium, whilst Jarzynski and Litovitz (1964) calculate the ratio

of bulk to shear viscosity as 2.6. For potassiun Letcher and Beyer
(1963) and Jarzynski and Litovitz (1964) calculate nB/nB to be 1.7 and
<1.9 respectively. Less emphasis must be placed on the exceptional
values of nB/ns for zinc end cadmium since Plass (1963) reported greater
experimental difficulties with these two metals. At the same tempera-

tures, Gitis et al. (1968) recently report values for a/f2 of 4.6 x 1017
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Table 4.2 Sound Absorption and Ratio of Bulk to Shear Viscosities in

Liquid Metals

Metal | t o /£2 x 1017 o /2 x 1017 | a/f? x 1017 ng/ng
(°c) | (em=! sec?) (em™! sec?) (em™! sec?)

Na 100 1.24 8.31 11.5 + 0.3% [2.0 + 0.5

X 75 2,41 26.9 29.9 + 0.9% |o.h +1

Zn 450 0.75 3.148 3.7 * 0.6° 0.9 + 2

cd 360 0.48 10.8 1.5 +2.9° [9.0+9

Hg 25 0.98 .20 | 5.71+ 0.1% |0.6 + 0.8

Ga 30 0.37 1.0 1.58 # 0.03%0.6 + 0.2

In 200 0.51 3.60 5.9 + 0.6° |L.T +1.6

sn 2ko 0.49 3.8k 5.63 + 0.3° [3.5 +1

Pb 340 1.13 6.44 s +0.3° [2.1 0.5

Bi 280 1.07 .66 8.05 + 0.3° |2.9 + 0.5

a Jarzynski and Litovitz (196L)

Y plass (1963)

° Hunter et al (1963)

a

Hunter and Hovan (196ha,b)

Gitis et a1 (1968)
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and 12.0 x 10~17 cm™! sec? for zinc and cadmium respectively, from
vhich we calculate the corresponding values of nB/ns to be 0.7 and 2.0.
Using the experimental value of 4.7 x 10717 cm™! sec? for o/f? measured
in tin by Litovitz and Jarzynski (1965) gives a value of 1.9 for ng/nge
For tin these investigators take smaller values for the expansion co-
efficient and the thermal conductivity to estimate 2.3 x 10717 em™! sec?
for aT/fz, which results in the value of 5.1 for nB/ns. Jarzynski and
Litovitz [see Litovitz and Devis (1965)] estimate e value of ny/n_ < 0.k
for lead because of their higher estimation of aT/f2 and their smaller
observed value for a/f? of 8.9 x 10717 cn™! sec? at 357°C. Gitis et al.
(1968) measured a/f2 in lead to 340°C to be 10.0 x 10717 em™! sec?,
from which we calculate the value of nB/ns as 2.9. For bismuth,
Jarzynski (1963) calculated nB/ns to be 4.2. Recently, Smirnow and
Jarzynski (1967) have reported the value of nB/n8 for antimony to be 4.2.
It is seen that the excess sound absorption is less than 107 of
the totel observed absorption in potassium, mercury, gallium and is
between 20 and 40% in indium, tin and bismuth. In general, nB/né is
of the order of unity, sodium, cadmium, indium, tin, lead and antimony
having higher values, between 2 and 5. The structural rearrangements
in bismuth end antimony close to their melting points which results in
& non-linear variation of sound velocity with ﬁemperature suggests the
existence of a large bulk viscosity in these metals. Study of the

temperature dependence of the sound absorption in sodium, potassium,
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mercury, gellium and bismuth has shown that the bulk viscosity decreases
with increasing temperature and that nB/ns is independent of temperature
within the small temperature ranges of the experiments. This indicates
that the excitation enthalpies for shear and for structural viscosity
mechanisms are closely related. However, the recent sound absorption
measurements by Gitis et al. (1968) on zinc, cadmium, indium and lead
over a wider temperature range up to 850°C would appear to give con-
flicting evidence for the temperature variation of bulk viscosity.
According to their experimentel cbservations.of a/f? and estimations

of aolfz, their results show that o - a increases with temperature,
rather than decreasing, and this would give N increasing with tempera-
ture, contrary to the expected physical behaviour. Their experimental
results and calculations of classical absorption require further examina-
tion.

Jarzynski and Litovitz (1964) considered the possibility of a
relaxation of the electronic specific heat, giving rise to the excess
sound absorption in sodium. They found that this effect is several
orders of magnitude smaller than the excess absorption, which cannot
be attributed to a slow transfer of thermsl energy from the liquid
lattice to the free electrons. It appears that the excess ultrasonic
absorption in liquid metals is due to a structural relaxation, in which
there is a slow structural rearrengement of the liquid lattice following

the temperature and pressure fluctuations produced in the liquid by
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by the ultrasonic wave. Litovitz and Jarzynski (1965) suggest that
a correlation exists between nB/nS and the co-ordination number of the
liquid metal. The liquid metals with low co-ordination numbers, such
as tin snd bismuth, generally have a larger value of nB/nS and the
relatively more closely packed metals with a number of nearest neigh-

bours of about 12 have the smallest values for the ratioc, see Table 4.3.

k.2 Dense-Gas Formulation for Ultrasonic Absorption in Liquid Metals

Sharma (1968) discussed the excess ultrasonic absorption from a
viewpoint in terms of a dense~gas formulation when the behaviour of the
system is dominated by collisions. Ascarelli and Paskin (1968) use
a dense~gas formulation to calculate the values of the self-diffusion
coefficient in liquid metals and obtain good agreement with experimental
data. These authors use the van der Waals concept in the Emskog
theory for dense gases. The van der Waals concept of a fluid considers
the particles as having a potential made up of & hard-core plus a
weak long-range attractive force. Particles are assumed to move in
straight lines between core collisions. The attractive potential energy
or cohesive energy term is thrcugh of as a uniform negative potential
which does not affect the basically hard-sphere collisions.

From the Enskog theory the expression for the bulk viscosity g

derived in Hirschfelder et al. (196L) mey be written as

ng = X 1622 (Mkni)%/n3/202, (4.%)
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where M is the atomic mass, z the packing factor, o the hard-sphere
diameter and x the Enskog high-density correction. In terms of the

hard-sphere pressure Dy the factor x can be expressed by

PR
X =i Gy - 1) (b.5)

Hence the bulk viscosity (c.g.s. units) is given by

b B
nB_,,a/zoz NkBT l)(M]LBT) . (L4.6)

Guggenheim (1965) proposes that the equation of state for non-

interacting rigid—spheres is given by

joi?) -8 1
- = 7 + . (h~7)
dkBT ﬂkBTQ (1 - z)¥
At atmospheric pressure the hard—-sphere pressure has to be balanced
almost completely by an attractive van der Waals term, such that at

the melting point

k. T Q
g = —24.0 (4.8)
(l*zm)"

If a is assumed to be independent of temperature and pressure, then

P, § T Q
Ih = = nm . (h.9)
el (1 - zm)'*




152.

Hence from equation (4.6), the bulk viscosity at any temperature is

given by

= L [ Wn 1] (MkBT)i (4.10)
72/3s2 log(1 - zm)" '

The value of the packing fraction Z, is taken to be 0.45 for all simple

metals. The variation of z with temperature is derived from equation

(4.8) and Guggenheims® equation of state for hard—-spheres and is simply

70 )ﬁ
TQ -’
mm

z=1-(1-2) (k.11)
The Epskog theory for dense hard—sphere systems includes considera-~
tion of collisional transfer of momentum and energy and of an increased
number of collisions over that in dilute gases, but does not include
the effect of correlating the successive hard—sphere collisions. The
principal correlation effect can be ascribed to the backscattering
caused by the high probability of the reversal of the velocity of a
particle upon collision with the nearest neighbours. Alder and
Wainwright (1967) find from molecular dynamics calculations of hard-
spheres that the effect of this backscattering correction is to divide

x by a factor of O.TBzm/z. The bulk viscosity né corrected for the

effect of backscattering is thus given by
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s M R
m m

Sharma (1968) uses equation (4.10) to calculate values of g for
several liquid metals and those values are compared with experimental
values in Table 4.3. The experimental values for nB/n8 are taken from
Section 4.1. Although there are considerable variations in the esti-
mates of nB/ns from experiment, it is seen that the dense-gas formula-
tion gives reasonable estimates for nB/ns. Inclusion of the correction
for the effect of backscattering would have increased the estimate for
ng by about 30%.

H?rschfelder et al. (1964) show that the ratio ng/ng derived from

the dense-gas formulation can be written as

n 2
;Q = H , (4.13)
s. 1+ 0.8H + 0.761H2
where
Phﬂ

The theoretical value of n]'3/ns corrected for the effect of back-

scattering is simply given by

-

- 1.88H222
8 22 + 1.10Hzz + 1.h3H222
m m

:!l:!

. (4.15)
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Table 4.3 Comparison of Theoretical and Experimental Bulk Viscosities

near the Melting Points of Various Liquid Metals

HMetal Theory Experiment
g g nB/nB Co-ordination
(cP) (cp) Number 2
Na 0.52 1.4 2.0 9.5
K 0.h2 0.20 0.4 9.5
Zn 2.27 2.6 0.7 10.8
cd 2.29 2.9 2.0 8.3
Hg 1.72 0.95 0.6 10.0
Ga 1.2 0.6 11.0
In 7.8 h.7 8.0
Sn 1.76 3.6 1.9 8.5
Fb 2.34 T.h 2.9 8.0
Sb b2 6.1°
Bi 2.9 7-8
Waghorne et al (1967) ® wilson (1965)
and

Table 4.4 Comparison of Theoretical [Experimental Bulk Viscosities
as a Function of Temperature for Mercury

t Theory Experiment
(o]

(c) nﬁ/ns jé/ns nB/ns
-39 1.17 1.21 n0.62

25 1.11 1.15 0.62
128 1.02 1.04 0.62
204 0.95 0.94 0,62
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Sharma (1968) assumes that H can be evaluated from equation (4.9)

with z, = 0.45, In Table 4.4 the theoretical values for nB/ns and

né/nS for mercury calculated by Sharma are compared with experimental
values taken from our correction of the data due to Hunter et al. (1963).
It is seen that the theoretical values of nB/ns and né/ns are about
twice the experimental values and decrease more rapidly with temperature
than values obtained by experiment. The correction to the ratio of

bulk to shear viscosity for the effect of backscattering is found not

to be too important.

From equations (4.13) and (4.15) we find that at the melting points
of simple liquid metals nB/nS and n}!s/nB are 1.17 and 1.21 respectively.
If H is calculated by using the Percus and Yevick hard-sphere equation
of state given by equation (1.11) we find that the values for nB/ns and
n]'3/ns at the melting point are 1.16 and 1.20 respectively, showing that
the choice of equation of state for hard-spheres is not critical.
Modification of the dense-gas formulation as applied to liquid metals
would appear to be necessary to account for experimental values of nB/nS
which differ significantly from unity, see Table 4.3. In conclusion
it is seen that the dense-gas formulation provides reasonable estimates
for nB/ns, but further accurate scund absorption measurements over a

wide range of temperature are required to evaluate nB/ns from experiment.
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4.3 Compressibilities of Pure Liquid Metals

A. Mercury

Knowledge of density, expansion coefficient and specific heat as
e function of temperature enables the isothermal compressibility BT to
be calculated from the present acoustic measurements by the use of the

following thermodynamic relationship

- 2
Bp = v/pc
¢2q27T 1
= (1 + T‘}L) -, (4.16)
P pe?

vhere y is the ratio of the principal specific heats. The most
relisble data have been used for the computations of Bs and. BT shown

in Teble 4.5. The values of C,, are taken from Dougles et al. (1951)
who used an ice calorimeter to measure the heat evolved in cooling
samples of mercury from a given temperature to 0°C. They estimate

the probable error in Cp as 0.3%. The values of ap are those of Beattie
et al. (1940). Cock (1956) considers that Beatties' expansion formula
is correct to 1 part in 10%. Density vaelues are taken from Bigg (1964),
who used the most recent determination of the density of mercury &t
20°C, in conjunction with Beatties' expansion formula to determine p

as & function of temperature to within 4 parts in 106. The estimated



Teble 4.5 Adiabatic and Isothermal Compressibilities as a Function of Temperature for

Mercury
% p a_ x 104 c, ¢ Y B, x 1012 By X 1012
(°c) | (em/em3) | (deg c*1) | (cal/g-atom.deg C) | (m/sec) (cm?fdyne) | (cm?/dyne)
~39 13.6910 1.824168 6.7578 1478.7 | 1.1208 3.341 3.744
-20 13.6hh456 | 1.819121 6.7272 1470.0 1.1289 3.391 3.829
-10 | 13.61978 | 1.816779 6.7120 1465.5 | 1.1331 3.519 3.87h
0 13.59508 | 1.8146L43 6.6967 1460.9 1.1373 3.hh7 3.920
10 13.57045 | 1.81271k 6.6825 1456.3 1.1h15 3.47h 3.966
20 13.54588 | 1.810999 6.6683 1451.7 1.1456 3.503 4.013
30 13.52139 { 1.809Lk92 6.6551 1hh7.2 1.1496 3.531 4.060
4o 13.49695 | 1.808200 6.6419 42,6 | 1.1537 3.560 L.107
50 13.47257 | 1.807121 6.6298 1438.0 1.1577 3.589 h,155
60 13.44825 | 1.806259 6.6176 1433.5 1.1617 3.619 4.204
70 13.42398 | 1.805616 6.6065 1428.9 1.1656 3.649 4.253
80 13.39977 | 1.805190 6.5954 1424 .3 1.1696 3.679 4,303
90 | 13.37560 | 1.80L4987T 6.5853 1419.7 | 1.1735 3.709 4,353
100 13.35148 | 1.805006 6.5752 1415.2 1.1774 3.7h0 4.403
110 13.327h 1.805249 6.5662 1410.6 1.1813 3.T11 4 455
120 | 13.303%4 1.805711 6.55T1 1406.0 | 1.1852 3.802 4,507
130 | 13.2793 1.806420 6.5491 1401.5 | 1.1890 3.834 4.559
140 | 13.255k 1396.9 | 1. 4.612

1.807336

6.5410

1929

3.866

*LST



Table 4.5 continued

t p «_ x 10% c, c Y B, x 10'2 | 8, x 1012
(°c) | (gm/em3) | (deg 1) | (cal/g-atom.deg C) | (m/sec) (cm?/dyne) | {em?/dyne)
150 13.231% 1.808499 6.5340 1392.3 1.1967 3.899 4 .666
160 13.2075 1.809885 6.5270 1 387.7 { 1.2006 3.932 4.720
170 13.1836 1.811509 6.5210 1383.2 1.2044 3.965 4.775
180 13.1597 1.813371 €.5150 1378.6 1.2083 3.998 4,031
190 13.1359 1.015459 6.5100 1374.0 1.2121 L.032 }4.888
200 13.1120 1.817802 6.5050 1369.4 1.2160 4,067 4,045

o~
K, 71 WO

*QST
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standard errors in v, Bs and BT are 0.04, 0.07 and 0.08% respectively.

The compressibilities Bs and BT are plotted as a function of tem-
perature in Fig. 4.1l. These estimetes of compressibilities are in very
close agreement with Davis and Gordon (1967) who used the same physical
data together with their sound velocity measurements. Seemann and
Klein (1965) used different physical data and their estimates of By
and BT differ from the present estimates by about 0.05%. Since Seemann
and Klein (1965) found that the sound velocity decreased linearly with
temperature in the interval between -35 and 48°C, and Hill and Ruoff
(1965b) found that this was also true between 30° and 197°C, then it is
reasonable to extrapolate the present acoustic measurements to cover
the interval -39 to 200°C.

Several investigations have been made on the isothermal compressi-
bility of mercury. The measurements of Carnazzi (1903) on the change
of volume with pressure yield isothermal compressibilities which are
low by between 3 to 8%. Bridgman (1911) used a piezometer method to
measure the compression of mercury in terms of the cqmpressibility of
water. Bett et al. (1954) analysed Bridgmans' results and, using the
Hudleston relationship for liquid compression, calculated the isothermal
compressibilities to be 3.926 x 10712 and 4.036 x 10712 em2/dyne at O
and 22°C respectively. It is seen from Fig. L.l thet these measure-
ments are about 0.2% higher than BT calculated from sound velocity

measurements. Richards and Bartlett (1915} used a piezometer method
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Temperature (C)

Fig.4.l. Adiabatic and isothermal compressibilities
as a function of temperature for mercury.
 Webber + ,Bett etal. 4 ,Bridgman o ,Smith and

" Keyes a . :
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in which the level of mercury in & capilliary tube was determined
by a pointed platinum wire which completed an electrical circuit. When
the steel piezometer was compressed a known weight of mercury was
added in order to remake the electrical contact and thus the difference
between the compressibility of mercury and the soft steel was determined.
The authors took Bridgmans' value for the compressibility of steel and
found the isothermal compressibility of mercury at 20°C to be 3.96 x
10712 cm?/dyne.

Smith and Keyes (1934b) used a nickel dilatometer to measure the

mean compressibilitylg of mercury up to 30000, where 8, is given by
T T

AQ
A (h.17)

BT="}1§ :
and Qo is the volume at 0°C. The isothermal compressibilities calcula-
ted from their results are seen from Fig. 4.1 to be high, particularly
at 200°C. Measurements above 200°C were considered as less reliable
due to amalgamation of nickel with mercury. It is also of further
interest that Rowlinson (1959) pointed out that the direct measurements
of By for water made by Smith and Keyes (1934a) were about 8% lower
than values calculated from Bs for water. Diaz Pefla and McGlashan
(1959) used 2 piezometer method to measure the compressibilities of

water and mercury and verified Rowlinsons' statement. Their compres-—

sibilities for mercury are in fairly close asgreement with the present
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evaluation. Recent accurate density measurements on mercury as a
function of temperature and pressure by Postill et al. (1968) using
an Archimedes method ensbles BT to be calculated from equations of

isochores, such that
(& (4.8
Their values agree within experimental error with those of Beatt et

al. (1954).

B. Pure letals

There have been no published work on the direct measurement of the
isothermal compressibility of liquid metals other than mercury. The
compressibilities Bs and BT have been calculated as a function of
temperature from the présent sound velocity measurements for zine, cadmium,
indium, tin, lead and bismuth and are shown in Figs. 4.2 to 4.T res-
pectively. The relevant physical data are compiled in Tables A.9 to
A.1h. Different values for the expansion coefficients taken from
various density investigations give estimated errors of a few percent
in BT' It is seen that both Bs and BT increase smoothly with temperature,
in a similar manner to the alkali metals. Other acoustic measurements
on these metals by Gitis and Mikhailov (1966e,b,c), Pronin and Filippov

(1963a) and Kazakov et al. (1964) show that B continues to increase

smoothly with increasing temperature.
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Fig.4.3, Adiabatic and isothermal compressibilities as
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function of temperature for cadmium.
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Fig. 4.4. Adiabatic and isothermal compressibilities as a function

of temperature for indium.
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Fig. 4.5. Adiabatic and isothermal compressibilities as a

function of temperature for tin.
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It is of interest to contrast the above hehaviour of Bs and B
for the metals discussed with the variation of the compressibilities
with temperature in antimony and in tellurium, shown in Figs. 4.8 and
4.9 respectively. The relevant physical data are collected in Tables
A.15 and A.16. In antimony both Bs and BT exhibit a minimum at about
800°C. This behaviour has been suggested by Gitis and Mikhailov
(1966c) as being due to the presence of two structures of different
co—-ordination number. One structure corresponds to the structure of
antimony in the solid state and the other to a close-packed structure.
As the temperature incresses the increase in volume is expected to
lead to an increase in compressibility, whilst an increase in the
relative number of atoms in the close=packed structure would lead to a
decrease of BT with increasing temperature, which may be sufficient to
account for the observed behaviour. In tellurium the adisbatic and
isothermal compressibilities decrease rapidly with temperature at
first and then decrease more slowly above 800°¢. Tellurium is reported
to be a semiconductor in the liquid state which becomes more metallic
as the temperature is increased. The compressibility of tellurium
does not seem to show a typical metallic behaviour below TOOOC.

In order to calculate the adiabatic and isothermal compressibilities
for further metals 1t is necessary to review the sound velocity dats

available for them. The various published measurements are collected
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in Table 4.6, and are discussed briefly below.

a) Sodium. Six investigations agree to within 1 m/sec for the
sound velocity and are in fairly close agreement for ~(8c/8t)p. The
measurements due to Kleppa and Trelin et al. are seen to be inconsis-
tent with & preferred value for sound velocity of 2527 m/sec at the
melting point.

b) Potassium. There is fairly close agreement between three of
the investigations. The measurements due to Kleppa and Trelin et al.
differ considerably from those due to Abowitz and Gordon, which are
taken for the calculation of compressibilities.

¢) Rubidium. The recent measurements due to Jarzynski et al.
are in fairly close agreement with those due to Kleppa, and are used
in further calculations.

d) Caesium. This has only been investigated by Kleppa so far
and the sound velocity may be somewhat in error.

e) Copper. The measurements of Gitis and Mikhailov have been
seen in Section 3.3 to be generally more reliable than those due to
Pronin and Filippov.

f) Silver. The measurements of Gitis and lMkhailov, and Hagel
are in fairly close agreement, Nagel's measurements have been shown in
Section 3.3 to be generally in better agreement with results in other

metals.



Table 4.6 Comparison of Published Values for Velocity of Sound in Pure Metals

Metal| t e -(3c/3t) Technique| Temperature Investigator
(°c) | (m/sec) (m/sec.degpc) range (°C)
Na 98 12395 + 25| 0.3 A 98 = 235 |Kleppa (1950)
98 12526 + 5 | 0.524 + 0.003 B 98 = 272 [Pochapski (1951)
100 |2533 0.66 D 100 - 180 |Ilglnas & Yaronis (1958)
98 2653 + 27| 0.577 D Trelin & Vesil'ev (1961)
100 |2526 + 5 | 0.524 + 0.003 B Abowitz & .Gordon (1962a)
1ok (2523 + 13| 0.50 D 104 - 15k |Jarzynski & Litovitz (196k4)
110 (2521 c Beyer & Coppens (1945)
96 |252¢ 0.523 98 « 315 |Ying & Scott (1965)
93 |2631 + 27| 0.542 D 100 - 800 |Trelin et al. (19%6)
93 j2527 + 1 { 0.530 c 109 = 140 |Coppens et al. (1967)
K 64 |1820 *+ 20| 0.5 A €4 - 160 |Kleppa (1950)
64 11880 0.52 D €4 = 140 |Ilgunes & Yaronis (1958)
100 |1069 + 5 { 0.53 + 0.03 B Abowitz & Gordon (1962s)
T4 {1887 + 10{ 0.58 D T4 = 150 |Jarzynski & Litovitz (1964)
100 |1922 + 20| 0.539 D 100 - 300 |[Trelin et el. (1966)
Rb 39 {1260 + 10| 0.4 A 39 ~ 160 |Kleppa (1950)
56 [1253 + 2 | 0.399 D 56 - 260 |Jarzynski et al. (1969)
Cs 29 967 * 10| 0.3 A 29 - 130 |Kleppa (1950)

*€LT



Teble 4.6 continued

Metal | ¢ ¢ -(3c/at)p Technique |[Temperature Investigator
(°c)| (m/sec) [(m/sec.deg C) range (°C)
Cu {1083} 3270 + 49 10.978 A 1053 - 1400 | Pronin & Filippov (1963b)
1100f 3450 + 7 [0.46 D 1100 ~ 1490 | Gitis & Mikhailov (196Gs)
Ag 961 2770 + 32 [0.L4E6 A 961 ~ 1540} Pronin & Filippov (1963b)
970{ 2710 + 6 |0.L1 D 961 = 1220 | Gitis & Mikhailov (1966a)
961} 2693 0.293 B Nagel (19G¢)
A 6601 4673 + 15 [0.L68 + 0.022 B 660 = 1000 | Seemann and Klein (1965)
660{ 4730 + 25 {0.16 D 700 =~ 1000 V'yugov & Gumenyuk (1966)
Ge 30| 2740 * 50 A 30 = 50| Kleppa (1950)
30{ 2880 + 14 |0.18 D 57 ~ 438 | Jarzynski (1961)
20301 28T + 1 |0.3 D 20 = L1 | Proffit & Carome (1962)
30| 2873 0.3 30 = 80 | Hunter & Hovan (1964b)
75| 2770 + 40 |0.25 A 750 = 950| Kazekov et al. (1965)
30| 2572 + € [0.225 D 30 = 0850| Gitis & Mikhailov (1966b)
40| 2760 + G0 40 Shepira (19€7)
T 302{ 1625 + 15 A 302 = 310| Kleppa (1950)
305| 1660 + 4 |0.231 D 302 - 850| Gitis & Mikhailov (1966b)
Sb §50] 1980 + 30 {0 A 650 = 1000| Kazakov et al. (198k4)
€50] 1900 + 4 |=0.25 D €40 - 1100{ Gitis & Mikhailov (1965a)
Te 4b51f 913 + 5 |-1.0 D 451 - 900{ Gitis & Mikhailov (1966b)
4511 980 ~0.75 D 451 = 710| Murphy et al. (1967)

"HiT
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g) Aluminium. The investigation due to Seemann and Klein is
considered to be more accurate than that due to V'yugov and Gumenyuk.
h) Gallium. The sound velocity results due to Proffit and
Carome, Hunter and Hovan, and Gitis and lMikhailov agree to within a

few m/sec.

i) Thallium, Antimony and Tellurium. The investigations due to
Gitis and Mikhailov are considered the mose reliable for these metals.

The preferred values for sound velocity and “(3c/3t)p for pure
liquid metals, at their melting point tm’ are shown in Table 4.7. It
should be noted that within each valency group, the sound velocities
decrease with increasing atomic weight. This point will be discussed
later in Secfion L.k, Also the values of “(Bc/Bt)P become smeller for
higher valency metals.

The computed compressibilities and ratio of principal specific
heats, at the melting point of various liquid metals, are shown in
Table 4.8, and the required physical data are collected in Table A.1l7.
Different values for the expansion coefficients taken from various
density investigafions give estimated errors of a few percent in the
isothermal compressibilities. The following points revealed by Table
4.8 are significant:

1) With the exceptions of aluminium and the pentavalent metals,
the compressibilities within each valency group increase with increa~

sing atomic volume. The variation of Bep with r for each valency group
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Table 4.7 Sound Velocities at the Melting Points of Various Liquid

Metals
Metal t c -(ac/at)p
(°c) (m/sec) (m/sec.deg C)

Na 98 2527 0.5830
K 64 1888 0.53
Rb 39 1260 0.399
Cs 29 967 ~0.3
Cu 1083 3458 0.46
Ag 961 2693 0.293
Zn 420 2852 0.koo
ca 321 2242 0.376
Hg =39 1479 0.457
Al 660 4673 0.468
Ga 30 2873 0.30
In 156 2318 0.293
T1 303 1660 0.231
Sn 232 2LTh 0.223
Pb 328 1819 0.259
Sb 631 1893 -0.23
Bi 271 1649 0.078
Te 451 913 -1.0
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Table 4.8 Computed Compressibilities and Retios of Principal Specific
Heats at the Melting Points of Various Liquid Metals

Metal t B, x 1012 By x 1012 Y
(°c) (cm?/dyne) (em?/dyne)

Na 98 16.9 18.6 1.10
K €Y 34.1 38.2 1.12
Rb 39 42.7 49.3 1.15
Cs 29 . 58.1 68.8 1.18
Cu 1083 .1.03 1.50 1.45
Ag 961 1.7 2,14 1.45
Zn 420 1.87 2.30 1.23
cd 321 2.48 3.07 1.24
Hg -39 3.34 3.7k 1.12
Al 660 1.93 2.42 1.25
Ga 30 1.99 2.19 1.10
In 156 2.65 2.96 1.12
T1 303 3.10 3.67 1.18
Sn 232 2.34 2.69 1.15
Pb 328 2.83 3.35 1.19
Sb 631 4.32 4,81 1.12
Bi 27 3.66 4.19 1.15
Te 451 20.7 21.1 1.019




178.

is shown in Fig. 4.10.

2) The compressibilities of the alkali metals and tellurium are
an order of magnitude larger than those of the noble and polyvalent .
metals.

3) The compressibilities may be compared with values obtained
from sound velocity measurements in the solid metals near their melting
points [Schramm (1962a)]. The increase in isothermal compressibility
through the melting point is generally about 5 to 20%. Schramm {1962b)
used acoustic data and Birch (1942) used the hydrostatic data given by
Bridgmen (1931) to estimate the values 53.0 x 10™}2and 71.0 x 10712
cm?/dyne for the isothermal compressibilities of rubidium and caesium
respectively at room temperature. Jarzynski et al. (1969) found by
taking different density data together with their sound velocity data
on liquid rubidium that the calculated isothermal compressibility is
between 46.2 and 49.4 x 107 !2em?/dyne, which is smaller than Bridgmen's
value. Further hydrostatic and acoustic measurements are required to
confirm the decrease in isothermal compressibility through the melting
point for rubidium and caesium.

4) The ratios of the principal specific heats of the metals
are not widely different when compared at the same temperature. The
liquid semiconductor tellurium is seen to have a value for y which is

very close to unity.
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4.4 Comparison of Theoretical and Experimental Compressibilities of
Liquid Metals

A. Free-Electron Compressibility

The Bohm-Staver sound velocity and the free-electron compressibil~
ity were derived in Sections 1.3D and 1.3E, and the expression for the
compressibility is given by equation {L.24.) A comparison between the
theoretical and experimental compressibilities of various liquid metals
at their melting points is shovm in Table 4.9. The free~electron

value of the Fermi energy is used. It is seen that the free-electron

(e2)
T

alkali metals. In the case of the two noble metals the comparison

compressibilities B are in close agreement with experiment for the
shows that the presence of a strong repulsive force between the ions
drastically reduces their compressibility. As the velency in the poly-
valent group of metals increases, then the theoretical compressibility
Béez) becomes progressively smaller than the experimental compressib-—
ility. Within each valency group, the theoretical and experimental
compressibilities decrease with increasing atomic weight, aluminium
and antimony being exceptions. It is seen from equation (1.28) that
Béez) is proportional to rg and BT is plotted as a function of rg in
Fig. 4.10, in which a family of curves is produced according to valency s
the behaviour of the pentavalent metals would appear to be exceptional.

It was mentioned in Section 1.3L that Harrison (1966) included a

correction in the dielectric function, e(q), due to excihenge interaction
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(H)

and he derived the expression for the isothermal sound velocity, ¢ ', as

[92 = [B8211 - 029 £ ], (1.19)

(BS)

where ¢ is the Bohm=Staver sound velocity. This correction reduces
the sound velocity to 8 and 707 of the Bohm-Staver velocity in sodium
and in aluminium respectively, showing that a correction for exchange
alone is more drastic for the alkali metals. Thus the exchange inter—
action does not offer an explanation for the required correctioncto the
theoretical sound velocity in the polyvalent metels.

We reported in Smith et al. (1967) and Webber and Stephens (1968)

that a fairly good correlation appeared to exist between the experimental

compressibility and the compressibility Béw) defined by the empirical
relation
) _ ., .(e2)
By =2 By (4.20)

where Z is the valency. It is seen from Table 4.9 that agreement is
poorer for antimony, bismuth and tellurium. To account for this relation
it would be necessary for N(EF) to be increased by a factor of Z,

vhich has not been confirmed by any other physical measurement. Rice
(1963) has calculated that the electron-electron Coulomb interaction

and the virtual phonon interactions increase the density of states

N(EF) in solids by up to 10 and 30% respectively. The inclusion of
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Table 4.9 Isothermal Compressibilities at the Melting Points of
Various Metals

Metal | 2 Theoretical Experimental
eée“’ x 1012 | g sée“) x 1012 | Ascérelli By % 1012
B;A) x 1012
(em?/ayne) (em?/dyne) (cm?/dyne) (cm?/dyne)

Na 1 12.5 12.5 19.9 18.6

K 1 37.2 37.2 47.2 38.2

Rb 1 51.9 51.9 64.1 49.3

Cs 1 69.9 69.9 78.9 68.8

Cu 1 1.86 1.86 1.95 1.50
Ag 1 3.5L 3.54 3.34 2.1k
Zn 2 0.87 1.T4 2.57 2.30
cd 2 1.53 3.06 4.23 3.07
Hg 2 1.66 3.31 5.65 3.Th
Al 3 0.55 1.65 2.02 2.42
Ga 3 0.56 1.67 2.32 2.19
In 3 1.01 3.02 3.93 2.96
m 3 1.13 3.38 3.9k 3.67
Sn Y 0.67 2.68 2.77 2.69
Pb L 0.83 3.33 2.98 3.35
Sb 5 0.5h 2.70 1.78 4.81
Bi 5 0.64 3.21 2.64 4.19
Te 6 0.kl 2.49 1.80 21.1
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(e2)

these factors would increase the compressibility BT by several
percent but not to the extent of the factor Z. It has been seen in
Section 1.3F that the pseudo-potential approach to the calculation of
compressibility can successfully account for the compressibility of
solid metals, where the free—electron compressibility differs signifi-
cantly, and therefore it may be that the factor Z is a fortuitous
numerical factor and not physically significant. The application of the
pseudo-potential approach to the calculation of compressibilities of

liquid metals will be discussed in the next Section 4.4B.

B. Pseudo-Potential Approach

The pseudo~potentisl approach for the calculation of total energy
and compressibility of simple solid metals has been discussed in Section
1.3F, where it was seen that Ashcroft and Langreth (1967a) obtained
excellent agreement between theory and experiment. Since the structure
factors 5(g) and a(q) are no longer delta functions, but are continuous
functions of q, see Fig. 4.11, it is necessary to develop expressions
for the total energy and compressibility of simple liquid metals. We
may start with the total energy expression for simple solid metals
given in equation (1.67) and we must consider the Fuchs and band-structure
energies which are both structure dependent and therefore different

for liquid metals. It can be seen from equation (1.53) that the Fuchs
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term Eiilz’ in atomic units, is given by

E.. oo
i1 J baz roq T kng?
= q) ~ 1] bmq2dq
Z g3 g g2 [ )
- _iij [a(a) - 1]aq. (4.21)
0

Asheroft and Langreth (1967a) numerically integrated this expression
using the hard-sphere structure factor of Ashcroft and Lekner (1966)

and found that for simple liquid metals the Fuchs term (ryd/electron)

is given by

E;; _-l.13272/3 (4.22)
r

In order to calculate the band-structure contribution EBS/Z to
the total energy of the liquid metal we may start with the expression
for EBS given in equation (1.47). If we use the relationship between
S*(q)S(q) and a(q) given in equation (1.49) and replace the sum by an

integral, then the band-structure energy (per electron), written in

atomic units, is given by

-]
2
Elzas __9 J 292 |0

|23 - 1alq) ¥nq2dq

8n3z Jo 16mn2 ¢ q
2 Q0
=i I q"lwglz(%- - 1)a(q)aq. (4.23)
32m3z82 o qQ
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Using the definition of Vq given in equation (1.51), the above ex~

pression may be written as

Bs 2

Z 3273z

I Q“Vg(% - 1)a(q)dq. (4.24)
9]

If we use the simple form for Vq proposed by Ashcroft (1966), given

by equation (1.61), then equation (4.24) becomes

E - L -
Zs o2 L cos(ar,) [E2H a(@as. (4.25)

(AL, %)

The total energy E of the simple liquid metal may therefore be

written in the form

QMJ)=&%~9%E»(mns-mmuMg+ =

Ys s Y3
73223 ® _
- & iZ?/ ~ %& J cosz(Qrc)[é = 1]a(q)dq. (4.26)
8 e}

* We now proceed to the calculation of the band-structure contribu-
tion to the compressibility of liquid metals, for which it is necessary
to know the volume dependence of EBS' The volume dependence of a(q)
is not known accurately from experiment. However, the hard-sphere

gtructure factor due to Ashcroft and Lekner (1966) could be used for
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the evaluation of EBs and its volume dependence. If we put q in units
of 2k, see equation (1.59), then the structure factor a(q) may be
written as a(x, rs). Using the definition of y given in equation (1.63),

the band-structure energy given by equation (4.25) becomes

g (s )-1
Ess = :I;EQE J coszy[ s ]a(x, r_)ax. (4.27)

Z o e(x, rs)rs

The first derivative of the band~structure energy given in equation

(4.27) with respect to T, at constant x is found to be

(EES) = “T-;"BZ I {Ey_Si_U_?X - (E;rl-)a coszy + -g%— COSzY}(e_l'
) s 8

)ax,
¥ s (L4.28)

or
8 s

where e(x, rs) is given by equation (1.56). The second derivative is

found to be

28y (sin 2y + y cos2y)

1‘2
S

5y .68z [
(-58) . I 682 Jo {

ar? Z T
8

gl [( E--l) is] sin 2}’

EY
S B

- [2(E2)2, - p(EL 20 “] coszy}( L)ax. (4.29)
8
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When we calculate the isothermal compressibility by the more accurate
procedure of eliminating A from equation (L4.26) by using the zero-

pressure condition aE/ars = 0, then we require the expression for

b s JPps, a2 Fpg
- ( Z ) + o2 (_E—)'

It follows from equations (%.28) and (4.29)

r or
8 8
that 8
2 E _ o
%- ag (Egs) +2— ?S) - 2 j {2ay(sin2y - y cos2y)

-1 ) .
- or, [('E;-s- a - 3‘%;] [vsin2y + 2cos?y]

2
oborErlyv2,. _ orE71 98 9“a 2. 1 (E71
+ r5[2(£rs) a - 2( + 2:]cwt.v.*a y}(ers)dx

er ‘or
s 8 ars
(4.30)
=2 (4.31)
rS

where G'(rs) is defined by the integral in equation (4.30). It is
seen that the first term of G'(rs) corresponds to G(rs){Ey(sin2y - yecos2y)},
obtained for a solid metel. The further terms in G' (rs) come from the

consideration of the volume depenilence of a(x, rs) and ('2;—1), the con=-
8

tribution due to the latter being negligible in the case of the solid

metal.

The isothermal compressibility Bé,AL’z) for a simple. liquid metal
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can be calculated in the manner outlined in Section 1.3F and is found

to be given by

B(AL,Z)
M ) 22.1 .
B éez) [b-°93r§ + 2(0.916 + 1,73z2/3)rs - 4 .42 - 2.thr§G'(rs)]

(4.32)

The evaluation of this expression for isothermal compressibility
requires the knowledge of G'(rs), which could be evaluated numerically.
Since the increase is isothermal compressibility through the melting
point is generally about 5 to 207 it is expected that the band~structure
contribution to the compressibility does not change significantly. In
conclusion it is seen that the pseudo-potential approach to the cal-
culation of compressibility of liquid metals requires further knowledge

of the volume dependences of pseudo-potentials and structure factors.

C. Semi-Phenomenological lModel due to Ascarelli

The theoretical approach to the calculation of the sound velocity
in liquid metals proposed by Ascarelli (1968) has been described in
Section 1.3G. Ascarelli calculated the theoretical sound velocity
[c(A)]m from equation (1.87) and those values are compared with the
Bohm-Staver and experimental sound velocities for various liquid metals,
at their melting points, in Table L4.10. Slightly different values of

[c(A)]m would be obtained if experimental values of y for each metal
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Teble 4.10 Comparison of Theoretical and Experimental Sound Velocities
at the Melting Points of Various Metals

Metal tm Theoretical Experimental
(°c) Bohm~Staver Asc arelli
.(88) [e (A) 1. o

(n/sec) (n/sec) (m/sec)
Ne 98 2940 2500 2527
K 6k 1810 1720 1888
Rb 39 1140 1103 1260
Cs 29 880 890 96T
Cu 1083 2580 2700 3458
Ag 961 1740 1920 2693
Zn 420 4180 2610 2852
ca 321 2850 1840 2242
Hg -39 2100 1220 1479
AL 660 8750 4900 4673
Ga 30 5430 2850 2873
In 156 3760 2041 2318
T 303 2750 1580 1660
Sn 232 4630 2kko 2hTh
Pb 328 3350 1900 1819
Sb 631 5340 3150 1893
Bi 271 2940 2080 1649
Te 451 6450 3320 913
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were used rather than the common value of 1.15 chosen by Ascarelli.
There is a fairly close agreement between [p(A)]m.and experimental
values, and the decreese of sound velocity with increasing atomic

mass within each valency group is obtained. This approach is a sig-
pificent improvement over the Bohm-Staver result for the polyvalent
metals. With the exceptions of copper, silver, antimony, bismuth and
tellurium the calculated [c(A)]m agree generally to better than 20% of
the experimental value. For copper and silver an extra contribution to
the energy due to overlap between electron shells of neighbouring atoms
is probably needed. For antimony and bismuth [p(A)]m.is 4o and 20%
respectively smaller than the experimental value and modification of
this theory would appear to be necessary to account for the discrepancy.
Gitis and Mikhailov (1966¢), previously mentioned in Section 4.4B,
suggest that structural changes occur in these two metals near their
melting points since their temperature dependence of sound velocity
differ considerably from the other liquid metals.

This simple model of hard-spheres in a uniform background potential
yields values for sound velocity which are in close agreement with
experiment and is a noticeable improvement over the free—electron
approach to compressibility. In order to improve the agreement between
calculated and measured sound velocity a hetter understanding of the
interatomic forces and their volume dependence in liquid metals is

probasbly needed. In this connection, it is of interest to note that
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Asheroft (private communication) has found that the Borr-Meyer inter~

action is important in mercury.

4.5 Adisbatic Compressibility of Mercury Allocys

It is of interest to calculate the adisbatic compressibility of
the mercury alloys studied here and to compare the variations of com-
pressibility with concentration for these alloys with the behaviour
for mercury-thallium alloys. The density data at fixed temperatures
vere calculated from the volume contraction measurements due to Kleppa
et al. (1961) and Davies (1966). Density, sound velocity and adiabatic
compressibility data are given as a function of composition for the
Hg-Zn, Hg-Cd, Hg~In, Hg-Sn, Hg~-Pb and Hg-Bi alloy systems, at a fixed
temperature in Tables A.l to A.6. Adiabatic compressibility at a fixed
temperature is plotted as a function of concentration for six mercury
alloy systems in Figs. 4.12 to k.1k, from which it is seen that the
addition of zinc, cadmium, indium, tin, lead, or bismuth produce a
rapid decrease in the compressibility. This behaviour is in agreement
with the dilute alloy measurements due to Abowitz and Gordon (1963).

For concentrations up to 40 at.% the variation of adiabatic compres-
sibility with concentration for these six mercury alloy systems is
similar to the behaviour of the mercury-thallium system. In the mercury-
lead and mercury=-bismuth systems the adiabatic compressibilities exhibit

minima at sbout 70 at.? Pb and 4O at.%? Bi respectively.
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The measurements of isothermal compressibility on mercury-tin
elloys by Lussana [see Bridgman (1958), page 147] indicated also that
a minimm occurred in compressibility. Since specific heat data are
not available for this alloy system it is not possible to calculate
isothermal compressibility from these sound velocity measurements.
However, the specific heat cp has been determined for mercury-thallium
alloys and therefore the ratio of principal specific heats y and iso-—
thermal compressibility can be calculated from the sound velocity
measurements due to Abowitz and Gordon (1963). The data for p, oy Gp,
¢ and calculated values of vy, Bs and BT for mercury-thallium alloys are
given in Table A.18. The ratio of specific heats is found to increase
between O and 5 at.% Tl and then decreases towards the extrapolated
value of y for pure Tl (see Fig. 4.15). Using these values for vy it is

found that the specific heat at constant volume C. increases smoothly

Q
with increase in concentration of thallium. The physical reason for
the peak in y is not readily apparent. Isothermal compressibility is
seen from Fig. 4.16 to decrease smoothly with increasing concentration
of thallium and deviates from linearity with concentration by up to
9%. A comparison between the theoretical and experimental variation

of compressibility with alloy composition is discussed in the following

Section 4.6.
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4.6 Comparison of Theoretical and Experimental Compressibilities for

Mercury Alloys

A. Bohm-Staver Sound Velocity
The euthor decided to formulate the Bohm~Staver sound velocity

for alloys and to compare it with the present alloy results. The
derivation of the Bohm-Staver sound velocity for pure metals has been
given in Sections 1.3D and 1.3E, and can be simply extended to include
alloy systems. For an alloy of metals of ionic masses Mb, M; and
valencies Zp, Z; respectively, the number of electrons/unit volume for

an alloy of atomic fraction b is simply given by

7 pb[ZI b+ Zg(1 ~ b))
[—517 STy o + (T - b)) ?

(4.33)

where Py is the density of the alloy. Hence the pressure Py of the

electron gas at T = 0 is found to be

0, [210 + Zo(1 ~ b)]y5/3
pl1® * %o } : (4.34)

o2 . 2y2/3
Py 5 (370 Mb + Mg(L - D)
From the differentiation of Py with respect to density it is found

that the isothermal compressibility [&§e2)]b for atomic fraction b is

given by
3[4 + M1 = b)]

(e2)
[8x" ']y = BE] o * 2oL - D)le, (4.35)
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where EEF]b is the free~electron Fermi energy for an alloy of atomic
fraction b.

The theoretical isothermal compressibilities of the pure components,
which are obtained by putting b equal to zero or unity in equation (L4.35),
have been seen in Section 4.UA to be much smaller than experiment for
the polyvalent metals. In a similar manner to the empirical relation
for the compressibilities of pure metals defined by ZBT, vhich was
discussed in Section 4.hA, it is possible to define an empirical com~
pressibility [&é‘”]b for alloys of atomic fraction b by [2;b + Zo(1 ~ b)]
[ﬁéez)]b, so that

. 3Mb+M(l"b)
[, = i + 4o 1, (4.36)

2[Bplypy,

Bquation (U4.36) gives fair agreement with experiment for the pure metal
compressibilities [B,] eand [8;]1. This expression for the variation
of compressibility with alloy composition at a fixed temperature was
first derived in Webber and Stephens (1966). Later, Enderby and March
(private communication) pointed out that equation (4.35) can be re-
written by substituting for Zgand Z; from the Bohm-Staver relation. At
a fixed temperature, the variation of isothermal compressibility

[BéEM)]b with alloy composition is then given by

M;b + Mg(1l - b)
[ MDb Mg(1 - b) . (b.37)

AL ¢ Talofiaioso) Fobos

Ty =
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This approach has the advantage over equation (4.36) of fixing the end
points to the known pure component compressibilities and then it is
possidble to readily compare the theoretical compressibility with
experiment for the alloys.

(EM)Jb

The corresponding sound velocity [c for the alloy of atomic

fraction b, at a fixed temperature, found from equation (4.37) is
[E], |'\«11bc§ Mgl ~ b)co]
[c(EM)]z = l'[EF] 1 [EF] 0
. b

b + Mo(1~b)]

s (4.38)

with the assumption that yé Yl % v'. This theoretical sound velocity
is compared with the experimental sound velocity for mercury alloys in
Figs. 3.8 to 3.13, where it is seen that this approach gives the correct
graphical curvature for the variation of sound velocity with composition
for mercury-zinc, mercury—-lead and mercury-bismuth. For mercury-cedmium,
mercury=indium and mercury-tin alloys theory gives the oppostie graphi~
_. ca.l curvature for the va.r:.at:.on of sound veloc:.ty with composition to
| tha,t found experlmentally |

It was decided to app]y this theoretical approach for sound
velocity to alloy systems of the same valency and experimental data
were available for sodium-potassium [Abowitz and Gordon (1962a)] and tin-
lead alloys [Gordon (1961)]. The theoretical variations of sound
velocity with composition for these two alloy systems are shown in

Figs. 4.17 and 4.18 respectively, and are seen to be in fairly close
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agreement with experiment, particularly for tin-lead. A further
system entimony-zine was examined [see Fig. 4.19]. Although theory
gives the correct grephical shape for the variation of sound velocity
with composition, the deviation from linearity is not as great as
that found experimentally by Kazakov et al. (1964). We conclude that
the Bohm~Staver sound velocity for alloys generally agrees fairly
well with experiment but exceptions occur amongst mercury alloys.

The theoretical variations of adiabatic compressibility with
composition calculated from equation (4.37) for six mercury alloy
systems are compared with experiment in Figs. 4.12 to 4.1k, where it
is seen that the theory gives the correct graphical shape for the
variation of compressibility across the whole alloy system for these
mercury alloys. The deviations from linearity with composition of
experimental values for adisbatic compressibilities.are greater than
predicted theoretically. It is of interest that for the mercury-
bismuth alloy system theory predicts a minimum in compressibility,
but the minimum occurs at about 60 at.? Bi rather than at 40 at.? Bi
found experimentally.

Abowitz and Gordon (1963) attempt to explein the rapid decrease
of compressibility on alloying mercury as being due to the presence of
more effective electrons than given by the valence electrons. Although
this idea has some support from one interpretation of Hall coefficient

data for mercury alloys by Hatthews (1966), which indicates an increase
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in the effective number of electrons, a strict theoretical account for
Hall coefficient values in liquid alloys has not been cerried out.

It has been seen that for mercury alloys the free—electron com-
pressibility for alloys does not successfully account for the large
decrease of compressibility on alloying. In the following Section
4.6B we shall examine the pseudo~potential approach, which includes
energies due to electron—electron, electron~ion and ion-ion interac-

tions, to the calculation of compressibility for alloys.

B. Pseudo-Potential Approach for Alloys

Ashcroft and Langreth (1967a) showed that the pseudo-potential
approach to the calculation of compressibility sgreed satisfactorily
with experiment for simple solid metals. In Section 4.4B the pseudo-
potential approach to compressibility for liquid metals was discussed
and we shall extend that approach to alloys. We need to consider the
Fuchs and band-structure energies which are structure dependent. The

partial structure factor 8,gs S€€ Faber and Ziman (1964), is defined by
LN R _ 2 singr
a.aB(q) =1+ =g E [baa(r) 1] r ar ar, (4.39)

where guB(r) represents the average distribution of type 8 atoms
obsérved from an o atom at the origin. Here a and B are dummy suffices

which may take the values O or 1 for a binary alloy. There are therefore
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three independent structure factors involved; a;;(q), 8go(q), and ajo(q);
it is eesily seen that a;g(q) and agy(q) are identical. Then Faber

and Zimen (1964) show that

6{r -zx,)+ ig.(r - r,)
_5_8 N Eegsuemﬂsa I

JHM

:

2
=Ne § .+ bmce N J

N - 2 singr
a af a B E%:B l]r qr dr

(o]

Iico'.émB + NcacB(aa - 1), (4.%0)

B
where ¢ and cg are the concentrations of the two species. The initial
d-function is needed to cover the case where ¢ and f happen to desecribe
the same species, so that gu and 53 can refer to the same ion.

The expression for the ion-ion interaction (per iom) in a pure
metal of valency Z is given in equation (1.53), which may be rewritten

in the form (atomic units)

Ln
i =W

Qo =

2(q)? ig.(z. - r.), (L.b1)
igj Q)? exp ig.(r; - z;

where Z(q) = 2/q. (4.42)
If we multiply Z(q) by its complex conjugate and define the
functions
Z,(Q) = 2 /q

and ZB(q) = ZB/q, (4.43)
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vwhere Zu and ZB are the valencies of species a and B respectively, then

the ion~ion interaction for an alloy is given by

bn .
[Eii]alloy o L ex ;9’(£u - 5%)

a
I I

O -

112 (a)z4(q)
a B

E

2'5‘

g g g 2,(2)2g() Neycq(a g ~ 1)

= by g EZ (a)2c i(aaa -1) +2 (q)zc’-(aBB - 1) +22(a)

2 (q)c cB(aaB - 1)]

[22(1 - b)2(agg - 1) + z23v%(ay; = 1) + 22)Zpd

1 - b)(ayg = 1)]. (4.4k)

"

L

E ]
ot -
, IH

Here b is the atomic fraction of species B or 1, Zp and Z; are the
valeuncies of the two species. If Z* is an effective valency determined
from the ratio of the electron density to the ion density, the Fuchs
term {per electron) becomes on replacing the sum by an integral

> “’;’_*J [22(1 - v)2(ago - 1) + Z202(ay; - 1) + 2%,Z;d(1 - b)
(o]

7.%
(8.10 - l)]dq. (h-h5)

The Fuchs terms for the pure components of the alloy are obtained when

b equals 0 or 1. As expected, the evaluation of the Fuchs term depends
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upon knowledge of the partial structure factors agg(a), a31(q) and ajp(a),
which are not available experimentally for mercury alloys. IHoweve;,
Asheroft and Langreth (1967b, 1968) have extended the Percus-Yevick
equation for a system of ﬁardrspherés to binary systems and their
partial structure factors could be used to evaluate the Fuchs term.

The band-structure energy EBS (per ion) for a pure metal has been
discussed in Section 1.3F and is given in eguation (1.54), which may

be written in the form

] 1 .
Fpg = 16nsm g E § q? V(Q)2(Z - 1) exp ialz; - aj), (k.46)

where V(q) is the qth Fourier component of the bare interaction of an
electron with a single ion. If we multiply V(q) by its complex con-
jugate and label Va(q) and VB(q) as the qth Fourier components of the
bare interactions of an electron with ions of species a and B, then the

band=-structure energy for an alloy becomes

1
6mON

[EBS]alloy

) 2(~--1)V(q)v (@) J expialr ~r)
o B

B8 T rB a

]

O -

13ism 2 ‘12(% - 1) 2 2 V{)Vgla) [iie 8 g + Heyeqlag - 1}

3 a?(F - D[V (@)%, + Vgla)2e, + V (a)2c2(ay, - 1)

6nQ

o

+ VB(Q)zcg(aBB - 1)+ 2Vm(q)VB(q)cmcB(a.mB - 12
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= laig 2 qz(% - 1) [V(q)2(1 = b) + V1{a)?b + Vo(q)2(1 - b)?2

(agp = 1) + V1(Q)2b2(&11 - 1) + 2Vp(a)Vvi(alb

(1 - b)(ayp = 1)]. (%.47)

Here Vp(q) and Vi(q) are the Fourier transforms of the bare electron-
ion interactions for species 0 and 1, respectively, immersed in the same
screening cloud of electrons. Replacing the sum by an integral, the

band-gstructure energy EBS/Z* (per electron) becomes

s 3

% opdne I q-u(% - 1)fVo(q_)2(l - b) + Vl(q_)z‘b + vo(q)Z(l - b)z
32u°Z% ‘0

(agg = 1) + Vi(a)?b2(a;; - 1) + 2Vo(q)Vy(a)b
(L - b)(agp = 1)]dg . (4.18)

This expression reduces to the pure component values for the band~-
structure energies when b equals O or 1. Evaluation of the band-structure
energy depends upon knowledge of Vp(q), Vi(a), app(a), a11(q) and ajg(a),
which are not available experimentally for mercury alloys.

The total energy Eb for the alloy of atomic fraction b may there-

fore be written in the form
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E, = 2.21 _ 0.916 _ (5 135 - 0.031enr ) + 3A
r? r hpyp3
8 8 8
2 - -]
=20 [o[zg(l - B)2(agg = 1) + Z2b2(ayy = 1) + 2ZgZyb(1 = )

(ajq = 1)]dq + —2 Im q“(%-- 1) [Vo(a)2(2 - b) + W(q)?®
32n3z# /o

+ Vp(a)2(1 = b)2(agp = 1) + Vi(a)?b2(ay; = 1) + 2Vp(q)Vy(q)b
(1 - v)(ajp - 1)]da. (4.49)

Here the value of ry is calculated from the electron density of the
alloy. In order to calculate the isothermal compressibility in the
usual manner it is necessary to know the volume dependences of the
pseudo~potentials and partial structure factors, which are not known

experimentally or theoretically for alloys.

C. Hard-Sphere Model

Ashcroft and Langreth (1967b) have derived the isothermal com-
pressibility for a binary mixture of hard-spheres of atomic fraction b,
[Béh)]b. For binary systems equation (1.13) must be modified in the

following manner:=
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(1 -2z )"
[B’gh)]b - Qb zb , (l&.50)

gl + 22)2 - o]

vhere Ab is given by the expression

3zbf

b+ £3(1 - b)

3b(1 ~ b)zb(l - £)2

Ab {(2 + zb)(l + f) +

2(1 - b) + bl}.
b+ £3(1 - b) C ]}

(4.51)

Here b is the atomic fraction of species 1 with the largest herd-
sphere diameter, and f is the ratio of the hard—~sphere diameter of

species 0 to that of species 1. The value of f is therefore
£=o0 /o ,(0¢fs1). (k.52)

It is usual to calculate the value of the packing fraction Zy for
atomic fraction b, at & fixed temperature, by using a linear inter-
polation between the two pure component values, zZg and z;, such that

2, = Z;b + zp(1 = b). (4.53)

b
Jarzynski et al. (1969) use this approach to calculate the isothermal
compressibilities of sodium~potassium alloys. They find that the hard-
sphere compressibilities are in good agreement with experiment when

the value of f is taken to be 0.72. For polyvalent metals, however,
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the hard-sphere compressibilities are considerably smsller than experi-
mental compressibilities and therefore this approach is not readily

applicable to polyvalent alloys.

D. Semi-Phenomenological Hard-Sphere Model
The isothermal compressibilities for liquid metals calculated

on the basis of the semi-phenomenological model proposed by Ascarelli
(1968) are in good mgreement with experiment (see Sections 1.3F and
4.4C) and we decided to extend this model to alloys. For liquid metals,
Ascarelll proposed that the total pressure is due to the sum of the
pressure derived from the total energy of the system, expressed by
equation (1.082), and the pressure of a hard-sphere fluid. In &

similer manner, we propose that the total pressure for an alloy system
is due to the sum of the pressure derived from the total energy of the
alloy system and the pressure for a mixture of herd—-spheres of atomic
fraction b, Eph]b. We must first calculate [ph]b and this may be
derived from equations (4.50) and (4.51). Ashcroft and Langreth (1967b)

define the total packing fraction for the mixture by

z, ﬁ [Wgod + 1o}, (4.5%)

i
=

W/
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where there are Ny hard-spheres of diameter og and Ny with diameter
0y (in the volume nb). For simplicity, D, is defined from equation
(4.54). From equations (4.50) and (4.54) it can readily be shown that
the variation of the hard—-sphere pressure with packing fraction, at

constant temperature, (3p,/9z)., » is given by
h T

GO, o G Sy

(az )T Db L - Zb)k . (4.55)
We may rewrite 4 given by equation (4.51) in the form
Ab = Hbzb + szg s (4.56)
where
- - £)2
ARt EER LTRSS (4.57)
b+ £3(1 - 1)
and
L £)2[(1 + beo + (422 + £9Q =) () 5q)

b+ £3(1 ~ v)]2

Integration of equation (4.55) with respect to packing fraction gives
the pressure [ph]b due to a mixture of hard—-spheres of atomic fraction

b, at a fixed temperature T, in the following manner:=

kgt 9 12 L (H, + Fp)
[Ph]b_ Dy J{(l.,z)um(l_ )3+(1_ 2 - o b
b % )t (1=

(Kb + 2F) F,
+ —
(1~ zb)3 (1 ~ zb)2

s
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[l -2z, + hz% +-Gb(1—zb)3+ ({(Hb-zFb) + (6Fb-311b)zb - 6szb}/6) 1
(1 - zb)3 4.59)

Here Gb is a constant of integration. For a single component system
of hard-spheres Ab = Hb = Fb = O and equation (4.59) reduces to the
usual hard-sphere pressure, see equation (1.11), when Gb takes the
value ~1. The equation of state for a mixture of hard-spheres of

atomic fraction b is therefore expressed by

[ph 9] lezo+ 22 + ({(g - 2F) + (6F =~ 3 )z - 6sz§}/6zb)

NkpT]b ) (1 ~ zb)3

(L.60)

This expression for the pressure due to a mixtﬁre of hard-spheres
reduces to the usual hard~sphere pressure when b equals O or 1.

The volume dependences of the interactions which contribute to
the total energy of the alloy system are the same as those discussed
in Section 1.3G for pure metals. With the same approximations as
assumed by Ascarelli (1968) for pure metals, the total energy [E(A)]b
of the alloy tystem a% tempcrature To may be written in the form

[c.f. BEq. (1.82)]
I, [E(A)l.g _anzeledy

B ok,

% 1/3 L
= 30,1 (370, (4.61)

where |I is the free-electron Fermi energy for an alloy of atomic
b
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fraction b, at temperature To’ ﬂo the volume of the system at tempera-
ture To and zero pressure, Zg the effective valency and Cb g dimen-
sionless constant. The subscripts b indicate that the physical quantities
are evaluated for atomic fraction b. On the free-electron model, if

Zo and Zl are the valencies of species O and 1 respectively, then the

effective valency is simply

Z¥ = Z1b + Zo(1 - ) . (4.62)

In this semi-phenomenologicel model, the total pressure for the alloy

of atomic fraction b, at a fixed temperature To’ is assumed to be given by

[pﬂ 1. 223 Erly —c (9_0)1/3
mg&bs%% b'Q

1 2 - oF 6F, - - 6F,22}/6
Gty v (U, -2 ¢ (6, - 3z, - 6Rzl/6n,)
(1--zb)3

-(4.63)

When the alloy system is under an ambient pressure of one atmosphere
and at a fixed temperature To, we may approximate the pressure to zero

and hence determine o from equation (4.63). Thus

. - 273 [Ec],, . 1+ 2z + 22+ ({(H - 2F,) + (6F ~ 3 )z, - 6F, 22} /62, ) ‘
b kT, (1-2)3

(4.64)
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The isothermal compressibility [ﬁéA)]b for the alloy of atomic
fraction b, at a fixed temperature To, mey be calculated from eguation

(4.63) in the usual menner and is given by

L, eam)ion mEl MGy
[géA)]b -y [ T + TR 3 ]. (4.65)

Substitution of the value of Sy given by equation (4.64) into equation

(4.65) gives

1 = 1\TkaTo
[B.;.A )] 5 ﬂb

[{hzg + 12z§ + 12z, = 1 + ({(th-zﬂb) - (16Fb-8Hb)zb + (2th~15Hb)z%
- 21sz{°;}/3%-)}/3(1 -z, )"

. 2Z§[Ef]b} _

TET (4.66)

Therefore in this semi~phenomenological model the isothermsl compres—
sibility for the alloy of atomic fraction b, at temperature To,may be

written in the form

y BT [Ef§,+ 1222 + 12z, = 1+ & 2Zg[EF]bi , h.67)

= +
[675['7&)]}) 2 31 - z7,)" 15k,T
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where

6, {{(UF, - 2H ) ~ (16F, - 8H )z, + (2UF, - 15H )22 - 21F 23}/3z ).
(4.68)
This expression reduces to the expression for the isothermal compres—
sibility of a pure metal given by equation (1.87) when Gb = 0 and
Z, = 0.45. This theoretical variation of isothermal compressibility
with alloy composition would be useful to compare with experiment for
alloys since the pure component isothermal compressibilities are
reproduced fairly well. The sound veloecity [c(A)]b for the alloy of
atomic fraction b, at temperature To’ can be obtained from equations

(4.67) and (4.68), and is given by

[c( A)]’- YT [hzb + 1222 + 122, ~148° 2zb [Egl,,

b T D * ()] [ 30 - )" * ez | (4.69)

Here Yﬁ is the theoretical ratio of principal specific heats for the
alloy, My and M) the atomic masses of species O and 1 respectively.
Numerical calculations of the theoretical sound velocity [c(A)]b for

alloys are not yet available to compare with experimental values of

sound velocity.

4.7 Conclusion

The ratio of bulk to shear viscosity for mercury has been measured
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to be 0.86 + 0.3 and within experimental error is independent of
temperature in the temperature range of the experiment. Correction

of the data due to Hunter et al. (1963) gives the most reliable value
for nB/ns as 0.62 + 0.1. A review of the values of nB/ns for various
liquid metals shows that mercury has a comparatively low value for this
ratio. Potassium, zinc, mercury and gallium appear to have values of
nB/ns les s than unity, whilst indiumand antimony have velues greater
than four for this ratio. The dense-gas formulation for ultrasonic
absorption in liquid metals is found to give reasonable estimates for
bulk viscosity and nB/ns. Modification of the theory would appear to
be necessary to account for experimental values of nB/ns vhich differ
significantly from unity. It should be possible to extend this theory
to alloys, where comparison can be made with sound ebsorption measure-~
ments which are aiready available for sodium-potassium, tin-lead, silver-
tin, and mercury-thellium alloys. Abowitz and Gordon (1962b) have
found that relaxation phenomena occur in mercury~thallium alloys and
therefore it would be of interest to perform sound ebsorption measure-—
ments on other mercury alloy systems.

The present investigation of the sound velocity and adiabatic
compressibility of six mercury alloy systems has shown that the
adiebatic compressibility decreases rapidly with increasing concentra-
tion of solute. These measurements confirm the decrease of adiabatic

compressibility in dilute mercury alloys found by Golik et al. (1961)
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and Abowitz and Gordon (1963). The present study of these alloys over
the whole range of concentration shows that for concentrations up to
40 at.% solute the variation of adiabatic compressibility with concen-
tration is similar to the behaviour of the mercury-thallium systen.

In the mercury-lead and mercury-bismuth systems the adiebatic compres-
sibilities exhibit minima at about TO at.? Pb and 40 at.% Bi respec~
tively, whereas theory predicts a minimum at about 60 at.# Bi. The
free~electron compressibility for alloys gives the correct graphical
shape for the variation of compressibility across the whole alloy
system for these six mercury alloy systems but the deviationsfrom
linearity with composition of experimental values for adiabatic com-
pressibility are greater than predicted theoretically.

Vhen applied to the six mercury alloy systems the Bohm~Staver
sound velocity for alloys gives the correct graphical curvature for
the variation of sound velocity with composition only for mercury-zinec,
mercury~lead and mercury-bismuth alloys. For sodium-potassium and
tin-lead alloys the theoreticel variation of sound velocity with
composition is in fairly close agreement with experiment. The
theoretical deviation of sound velocity from linearity with composition
in antimony-zinc alloys is not as great as that found experimentally.

The pseudo-potential approach to the compressibility of simple
solid metals and the semi-phenomenological model for liquid metals due

to Ascarelli have been seen to give fairly good agreement with experiment.
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These two theoretical approaches to compressibility have been extended
to liquid alloy systems and further numerical calculations are required
before cOmpa¥ison can be made with experiment. Calculationvof isother—
mal compressibility using a pseudo-potential approach requires more
theoretical and experimental knowledge of the volume dependences of
pseudo-potentials and partial structure factors. The isothermal
compressibility derived by considering a mixture of hard-spheres in a
uniform background potentisl is simpler to evaluate and further work

is being carried out in this direction by the author.

It has been seen that sound velocity measurements provide a means
of calculating the adiabatic and isothermal compressibilities of high
melting point metals where direct measurements of isothermal compres-—
sibility are difficult to perform. TFused silica can be used as the
material for the acoustic delay rod and container up to temperatures
of about 1050°C and therefore it would be possible to investigate the
propagation of sound in liquid gold and germanium. It is also of
interest to investigate the propagation of sound in liquid metals and
alloys subject to applied pressure in order to gain further knowledge
of the equation of state of these materials. Further investigations
of the effect on sound velocity and compressibility of the addition
of solutes, with different valencies, to a particular metal are re-

quired in order to make comparison with theory.
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Table A.1 Comparison of Theoreticel and Experimental Values for Sound
Velocity and Adiebatic Compressbility at 158°C for the

) Mercury-Zinc Alloy Systenm

Atonmic frection Expt. | Theory Expt. Theory

of Zn o c [c(EM)_]b B, X 1012 [BéEM)]b x 1012
b (gn/cnd3)| (m/sec)| (w/sec) |(cm?/dyne)| (cm?/dyme)

0 13.21 1389 1389 3.92 3.92
0.0201 13.17 1421 1kok 3.76 3.05
0.0503 13.08 1468 1420 3.55 3.75
0.100 12.92 1535 1470 3.29 3.5C
0.150 12.7h 1498 1510 3.07 3.4k
C.200 12.5k 1655 1554 2.91 3.30
0.250 12.33 1712 1601 2.77 3.16
0.300 12.07 1770 1650 2.64 3.Ch
0.350 11.81 1829 1702 2.53 2.92
0.4C0 11.53 1087 1757 2.4L 2.01
0.500 10.94 2000 138¢ 2.27 2.59
1 5.7h0 2957 2957 1.70 1.70

a Kleppa et 2l. (1961).
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Table A.2 Conparison of Theoretical and Experimental Values for Sound
Velocity and Adisbatic Compressibility at 15800 for the

Mercury=Caduiun Alloy System

Atomie fraction Expt. | Theory Expt. Theory

of Cd ™ c [c(m)]b By x 1012 [BiEM)] x 1012
b (en/cm3)| (m/sec)| (m/sec) |(cm?/dyne)| (em?/dyne)

0 13.21 1339 1339 3.92 3.92
0.0200 13.15 iki6 1403 3.79 3.86
0.0500 13.05 1hsh kol 3.63 3.78
0.100 12.82 1513 1459 3.41 3.67
0.150 12.68 1566 14,06 3.22 3.52
0.200 12.47 1617 1535 3.07 3.40
0.250 12.26 1666 157k 2.04 3.29
0.300 12,04 1713 1613 2.03 3.19
0.350 11.82 1757 1654 2.74 3.09
0.400 11.59 1001 169€ 2.66 3.00
0.500 11.09 1883 1782 2.54 2.84
0.600 10.55 1963 1373 2.46 2.70
0. 700 9.977 20140 1969 2.41 2.58
i G.134 2303 2303 2.32 2.32

%Kleppa et el. (1961).
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Table A.3 Comparison of Theoretical and Experimental Values for Sound
Velocity and Adiabatic Compressbility at 160°C for the
Mercury-Indium Allcy System

Atomic fraetion Expt. | Theory Expt. Theory

of In p® c [c(EM)]b 8, ¥ 1012 [BiEMx]b x 1012
b (gn/cm3)| (m/sec)| (m/sec) [(cm?/dyne) | (cm2/dyne)

c 13.21 1380 1358 3.93 3.93
0.00€0 13.18 1399 1392 3.0C 3.92
0.0100 13.15 1405 1365 3.85 3.91
0.0150 13.13 k11 1399 3.063 3.69
0.0200 13.10 1419 1403 3.79 3.08
C.0200 13.10 1419 1403 3.79 3.60
0.0500 12.94 1h6k 1k2k 3.61 3.01
0.0800 12.78 1504 1hh7 3.46 3.7h4
0.0946 12.70 152k 1458 3.39 3.70
0.140 12,44 1578 1kg2 3.23 3.01
0.101 12.19 1622 1524 3.12 3.53
0.250 11.75 i692 1577 .57 3.hk2
0.300 11.47 1739 1617 2.88 3.33
0.350 11.15 1761 1659 2.83 3.26
0.400 10.84 1022 1700 2,78 3.19
0.500 10.20 1904 1707 2.71 3.07
0.600 9.564 1931 1877 2.66 2.97
0.725 8.701 2080 2002 2.63 2.04
1 7.062 2317 2317 2.64 2.64

& paevies (1966).
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Table A.4t Comparison of Theoretical and Experimental Values for Sound
Velocity and Adiabatic Compressibility at 240°C for the
Mercury=Tin Alloy Systen

Atomic fraction Expt. | Theory Expt. Theory

of Sn o c [b(EM)]b B, x 1012 [BiEM)]b x 1012
b (em/end)| (n/sec)| (m/sec) |(cm?/dyne)| (cm?/dyne)

0 13.02 1351 1351 h.,21 L.21
0.0200 12.90 1405 1370 3.93 4.13
0.0500 12.73 1463 1398 3.67 4.02
0.120 12.kh 1531 146 3.43 3.85
0.1h2 12.19 1507 1436 3.26 3.72
0.200 11.05 1652 1543 3.09 3.55
0.250 11.54 1710 1592 2.97 3.h42
0.300 11.23 17Ch 1642 2.86 3.30
0. ko0 10.62 1370 17hh 2.69 3.10
0.k499 $.939 1968 1846 2.58 2.93
0.593 9.372 2066 1957 2.50 2.79
0.Thd 3.455 2213 213k 2.h2 2.60
0.£99 7552 2369 2329 2.3C 2.4k
1 ’ €.962 | 2u72 oh72 2.3k 2.3h

& pevies (1966).
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Table A.5 Comparison of Theoretical and Experimental Values for Sound
Veloeity and Adiabatic Compresibility at 158°C for the
Mercury~Lead Alloy Systen '

Atomic fraction expt. | Theory Expt. Theory
of b p® e Ic(EM)Ib B, x 1012 IséEM)Ib x 1012
(em/end)| (m/sec)| (n/sec) |(cm?/dyne) (cn? /dyne)
0 13.21 1389 1339 3.92 3.92
0.0230 13.20 1432 1401 3.70 3.86
0.0400 13.17 1457 141k 3.58 3.30
0.0500 13.15 1469 1419 3.52 3.70
0.0527 13.15 1473 1420 3.50 3.77
0.0800 13.11 1496 1430 3.41 3.69
0.0971 13.08 1503 1448 3.36 3.65
0.150 12.97 1550 1470 3.21 3.53
0.200 12,06 1585 1505 3.10 3.43
0.250 12,74 1620 1531 2.99 3.35
0.3C0 12.61 1653 1557 2.90 3.27
0.350 12.43 1683 1501 2.03 3.20
0.400 12.34 1711 1605 2.77 3.1k
0.450 12.21 1737 1629 2.71 3.09
0.50C 12.09 1760 1652 2.67 3.03
0.600 11.3h 1798 1697 2.61 2.93
0.700 11.61 1629 1741 2.57 2.8k
0.796 11.39 1351 1780 2.56 2.77
1 10.97 1663 1863 2.63 2.63

& Kieppa et al. (1561)
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Table A.6 Comparison of Theoretici&l and Experimental Values for Sound
Veloeity and Adiabatic Compressibility at 150°C for the
Mercury-Bisnuth Alloy Systenm

Atomic fraction Expt. | Theory Expt. Theory
of Bi ® c |<:(EM)|b By X 1012 lBs(;EM)Ib x 1012
(gn/cm3)| (n/sec)| (m/sec) {(cm?/dyne)| (cn?/dyne)
0 13.21 1389 1389 3.92 3.92
0.0200 13.15 R 1359 3.75 3.89
0.0500 13.05 1455 1h11 3.62 3.05
0.100 12.37 1490 1437 3.50 3.76
0.150 12,70 1522 1460 3.40 3.70
0.200 12.53 1547 1477 3.3L 3.66
0.250 12.36 157C 1496 3.28 3.62
0.300 12.20 1565 1513 3.25 3.56
0.350 12.03 1602 1526 3.24 3.56
0.k400 11.8¢ 1615 1543 3.23 3.54
0.450 11.71 1626 1557 3.23 3.53
0.500 11.54 1632 1570 3.25 3.52
0.600 11.23 16ks 1592 3.29 3.51
0.700 10.92 1650 1611 3.36 3.53
0.093 10.37 1656 1643 3.52 3.57
1 10.07 1655 1655 3.62 3.62

% Kleppe et al. (1961).



Table A.T7 Physical Data for Mercury used in Table 4.1

Webber

t p® «® x 10% ¢P nS k% e®
(°c) (gn/cnd) (dgg c-1) (calgm?lgeg c1) (cg) 2calsec“1deg c"len™!) (m/sec)
22.5 13.54 1.011 0.0332 1.55 0.0202 1450.6
23.5 13.54 1.0190 0.0332 1.54 0.0202 1450.2
52.5 13.47 1.807 0.0330 1.30 0.0218 1%35.9
66 13.43 1.G608 0.0330 1.33 0.0225 1430.7
T€.5 13.41 1.3505 0.0329 1.29 0.0230 1425.9
137.5 13.26 1.807 0.0326 1.15 0.0244 1358.0

14 13.25 1.607 0.0326 1.15 0.02k4 1396.4

- 156 13.22 1.809 0.0326 1.12 0.0247 1309.6

* Bigg (196k)

b Hultgren et al. (1983)

¢ Erk (1926)

¢ Powell ena Tye (1961)

e

*TES



Table A.C Physicel Data used in Table 4.2
Metal| +t o? o® x 10% & ng .
(°c) [(em/en?)| (deg C™1) (ca.lgm"lgeg ¢ | (eP) |(celsec™laeg C™lem™!) | (nm/sec)

Ne | 100 | 0.927 2.43 0.331 0.705° 0.206% 2526
K 75 | 0.824 2.91 0.195 0.503° 0.114" 168
zn | 450 | 6.54 1.40 0.115 3.76 € 0.121Y 2700
cd 360 7.99 1.46 0.0832 1.4 ¢ 0.117'j 2150
He | 25 [13.5 1.01 5.033k 1.53 © 0.020% 1hko
Ge | 30 | 6.10 1.26 0.0954 2.06 ¥ 0.073 2073
In | 200 | T.00 1.16 0.0613 1.668 0.0739 2305
sn | 240 | 6.95 1.09 0.0595 1.92 B a.001% 2l62
Pb 340 |10.7 1.17 0.0352 2.56 h 0.034" 1772
Bi | 2%0 {ic.1 1.23 0.036k 1.3 ¢ 0.026" 1645

*cEe
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Same references as in Tebles A.T, A.9 to A.1k & A.1T.

Ewing et al. (1951).

Cfte and Wittemberg (1963).
"Liquid Metals Handbook" (1952).
Erk (19208).

Gutman end Simmons (1952).
Culpin (1957).

Rothwell (196€2).

' Ewing et al. (1955).

j Ewing et al. (1957).
Powell and Tye (1951).
Powell (1949).

Powell end Tye (1850).

D yebver and Stephens (1960).



Table A.9 Adisbatic end Isothermal Compressibilities as a Function of Temperature for Zinc

b

t p® o x 10" e c® Y B, *x 1012 | g x 1012
(°c) | (an/end) | (deg €*1) | (cel/gm.deg C) (n/sec) (em2/cyne) | (en?/dyne)
420 €.569 1.4% 0.115 2351.0 1.23 1.07 2.30
430 6.560 1.4 0.115 2047.0 1.23 1.62 2.32
440 £.551 1.4 0.115 2043.C 1.24 1.89 2.33
450 &.542 1.40 0.115 2339.8 1.24 1.90 2.35
LGo €.533 1.h1 0.115 2835.8 1.24 1.50 2.37
470 6.523 1.h1 0.115 2031.8 | 1.25 1.91 2.36
4E0 €.51k ll.hl 0.115 2327.5 1.25 1.92 2.40
490 &.505 1.4 C.115 2223.8 1.25 1.93 2.42
500 6.496 1.4 0.115 2019.5 1.26 1.94 2.43
510 6. 437 1.hk2 0.115 2015.C 1.25 1.94 2.45
520 6.473 1.h42 0.115 2211.8 1.26 1.95 2.47

g Thresh (19C5).

Hultgren et al. (1963).
Webber.

*HeES



Table A.10 Adiasbatic and Isothermal Compressibilities as a Function of Temperature for

Cadniumn.
t p® e x 10t e’ c® Y B X 1012 B X 1012
(°c) | (em/en?) | (deg c71) (cal/gm?deg c) (n/sec) (cm?/eyne) | (em?/dyne)
321 €.031 1.45 0.0632 22h2,1 1.2k 2.45 3.07
330 5.021 1.46 0.0C32 223C.7 1.24 2.k9 3.09
340 6.009 1.4€ 0.0632 2234k.9 | 1.25 2.50 3.11
350 7.99C 1.46 0.0632 2231.,2 | 1.25 2.51 3.1k
360 7.986 1.46 0.0€32 e22T.k | 1.25 2.52 3.15
370 7.97Th 1.6 0.0632 2223.7 1.26 2.54 3.19
380 7.9€3 1.h7 0.0£32 2219.9 | 1.26 2.55 3.22
390 7.951 1.47 0.0632 2216.0 1.27 2.56 3.24
400 7.939 1.h7 0.0632 2212.k 1.27 2.57 3.27
410 7.920 1.47 0.0632 2203.5 | l.27 2.59 3.29

& Greenawey (1948).
b Hultgren et al. (1933),
€ Webvber.

*GEC



Table A.11 Adiabatic and Isothermel Compressibilities as a Function of Temperature

for Indiun
t p? e x 204 Cg et Y B, x 1012 Bp X 1012
(°c) | (gm/en®) | (aeg ¢™1) | (cal/gm.des €) | (n/sec) (cm?/dyne) | (en?/dyne)
156 7.033 1.16 0.0614 2317.7 1.12 2,65 2.9¢
160 T7.030 1.16 0.061h 2316.5 1.12 2,€5 2.97
180 7.013 1.16 0.061k 2310.7 1.13 2.67 3.01
200 €.997 1.16 0.0613 2304.0 1.13 2.69 3.05
220 6.9€1 1.16 0.0613 2299.0 1.1k 2.71 3.0C
24o 6.965 1.17 0.0612 2293.1 1.1k 2.73 3.12
260 6.945 1.17 0.0611 2207.2 1.15 2.75 3.16
200 6.932 1.17 0.0€11 2201.4 1.15 2.77 3.20
3C0 6.916 1.10 0.0610 2275.5 1.16 2.79 3.24
320 6.399 1.18 0.0609 2269.7 1.17 2.01 3.20
340 6.8C3 1.13 0.0609 2263.0 1.17 2.03 3.32
360 6.86T 1.18 0.08008 2257.9 1.18 2.306 3.36

& ¥Liquid Metals Handbook" (1952)
® Hultgren et al. (1963)

¢ Webber

*9te



Table A.12 Adisbatic and Isothermal Compressibilities as a Function of Temperature

for Tin
t o2 o x 10" c; ® ¥ By X 1012 By X 1012
(°c)| (em/em3) | (ceg C™1) (cal/gn.deg C) (n/sec) (ern?/ayne) | (en2/dyne)
232 €.969 1.09 0.0598 2l73.9 1.15 2.34 2.69
240 €.963 1.09 0.0595 2h72.1 .15 2.35 2.70
260 6.948 1.06 0.0580 2h67.6 1.16 2.36 2.73
280 £.933 1.06 0.0503 2453.2 1.16 2.30 2.76
300 £.918 1.08 0.0561 2bs58. 7 1.17 2.39 2.79
320 6.903 1.0C 0.0579 2hsh,2 1.17 2,41 2.02
340 ;1 6.800 1.07 0.0578 2440 .G 1.1 2.h2 2.04
360 6.873 1.07 0.0570 2hls,3 1.10 2.43 2.07
360 €.858 1.07 0.0577 240,58 1.1C 2.45 2.90
4co G.044 1.07 0.0577 2435.4 1.19 2.45 2.902

1"
® Ubelacker and Lucas (1962)
Hultgren et al. (1963)

b

¢ Webter

*LET



Table A.13 Adisbatic and Isothermal compressibilities as & Function of Tenperature

for Lead
% 0% | o x 10% P c® Y B, x 102 |8 x 1012
(°c) | (em/en3)| (aeg C1) (cal/sm?des c) (r/sec) (cm?/dyne) | (em?/dyne)
328 10.65 1.17 0.0353 1018.9 1.19 2.33 3.35
337 10.67 1.17 0.0353 1016.£ 1.19 2.0h 3.37
347 1C.66 1.16 0.0353 101k.0 1.19 2.05 3.h40
357 10.65 1.18 0.0352 1011.k4 1.19 2.36 3.h42
367 10.€63 1.18 0.0352 1508.8 1.20 2.87 3.4
377 10.62 1.18 0.0352 13056.2 1.20 2.69 3.b47
307 10.61 1.16 0.0351 1803.6 . 1.20 2.90 3.h9
397 10.60 1.18 0.0351 1801.0 1.21 2.91 3.51
LoT 10.50 1.18 0.0351 179¢.5 1.21 2.92 3.54
b1t 10.57 1.19 0.0350 1795.9 1.21 2.93 3.56
427 10.56 1.19 0.0350 1793.3 1.22 2.95 3.58

® Streuss et al. (1960)
° Hultgren et al. (19¢3)
¢ Webber

*gee



Teble A.1k Adisbatic and Isothermal Compressibilities as & Function of Temperature

for Bisnuth

t pa a® x 10" cg c® Y Bs x 1012 BT x 1012
(°c) | (em/em®) | (deg C71) (cal/en.deg C) (m/sec) (cn?/dyne) | (em?/dyne)
271 10.06 1.23 0.036k 1649.0 1.15 3.66 4,19
275 10.05 1.23 0.036h 1645.7 1.15 3.66 k.20
280 10.05 1.23 0.035h4 1646.3 1.15 3.6€ L.21
290 10.0k 1.23 0.03Fh4 16474 1.15 3.67 }.23
300 10.02 1.23 0.036h 1646.5 1.16 3.60 4.25
310 10.01 1.23 0.036L 1645.6 1.16 3.69 L.27
320 9.995 1.2k 0.036L 164k.6 1.16 3.70 L.29
330 9.936 1.24 0.036L 1643.6 1.16 3.71 }.31
340 9.974 1.2h4 0.036h 16k2.6 1.17 3.72 L.3h4
350 9.961 1.24 0,036k 1€41.5 1.17 3.73 k.36
360 9.9k49 1.2k4 0.0364 16k, 3 1.17 3.7 4,30
370 9.937 1.24 0.0364 1639.1 1.18 3.75 4.40
300 9.924 1.25 0.0364 1637.9 1.16 3.76 4.43
390 9.912 1.25 0.0364 1636.5 1.18 3.TE L.45
400 9.900 1.25 0.0364 1635.2 1.18 3.78 %7
k1o 9.08T 1.25 2.,03€Eh 1633.0 1.19 3.79 4.50

& Strauss end Richards (1962)

b Hultgren et al. (1963)

¢ Webber

*6Ee



Table A.15 Adiabatic ard Isothermal Compressibilities as & Function cf Tenperature

for Antinmony
% p® o x 10" cz S Y B, x 1012 | g x 112
(°c) | (em/en?) | (ceg €71) (cal/gn.deg C) {cn?/cyne) | (cm?/dyne)
631 6.46h 0.957 0.0614 1893 1.12 }.32 L.01
650 G.h52 0.955 0.0616 1900 1.12 L.29 4.00
T0C G.h22 0.951 0.0616 1913 1.13 L.26 L.79
750 6.391 Q.07 £.0616 1925 1.13 L,22 L.,78
500 €.361 0.943 0.0616 1935 1.14 4.20 L.76
050 £.332 0.939 0.0616 1938 1.14 L.21 L.01
900 €.301 0.935 C.0616 1943 1.15 L,22 4.55
950 €.273 0.931 0.0%16 1939 1.15 4.2k 4.90
1000 6.24}4 0.926 0.0616 1937 1.16 L.27 L.95
1050 6.219 2.921 0.0616 1935 1.15 L.29 5.00
1100 6.187 0.917 0.0615 1931 1.17 4.33 5.0€

% Lucas end Urbain (1962a)

o Hultgren et al. (19€3)

€ Gitis and Mikhailov (1966a)

*Oofe



Table A.16 Adisbatic and Isothermal Compressibilities as a Function of Temperature for

Telluriun
t o ai x 104 cP e® Y B, x 1012 B X 1012
(°c) | (em/end) | (deg C71) (cal/gr.deg C) (n/sec) (cn2/dyne) | (em2/dyne)
451 5.797 3.957 0.0705 913 1.019 20.6% 21.08
) 5.792 0.95€ 9.0705 020 1.019 20.40 20.79
475 5,70k 0.95k4 $.0705 327 1.020 20.12 20.52
500 5.770 0.952 0.0705 950 1.021 19.20 19.61
525 5.757 0.950 0.0705 980 1.023 18.09 13.51
550 5.743 0.947 0.0705 1012 1.026 17.00 17.44
575 5.729 0.945 0.0705 1040 1.025 16.1h 16.59
600 5.716 0.943 0.0705 1050 1.029 15.87 16.33
€50 5.639 0.938 C.0705 1030 1.032 15.07 15.55
706 5.662 0.933 0. 3705 1100 1.034 14,60 15.10
750 5.636 0.920 0.0705 1120 1.037 14,15 14.67
800 5.610 0.922 0.0705 1120 1.039 1k.01 14.56
£50 5.50h 0.917 0.07C5 1133 1.041 13.95 1k4.52
900 5.559 0.912 0.0705 1140 1.043 13.3h 1k LY

% Lucas and Urbain (1962b)
b Kubaschewski (1950)
¢ Gitis and Mikhailov (1966Db)

*THe
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Table A.17 Physical Deta at the Melting Point used in Table 4.0

———

Metal oop a_ x 1o% cp
(ea/cm3) (deg C™1) (cal/gm.deg C)
Na 0.9269% 2,42% 0.331%
K 0.8237b 2.90b 0.196
Rb 1.475 © 3.38% 0.087T
Cs 1.0y ¢ 3.959 0.0573
Cu 8.090 © 1.17° 6.118
Ag 9.333 T 1.15% 0.0677
Al 2,374 © 1.16° 0.260
Ga 6.0955 1.268 0.095k
1 1.70 B 1.308 0.0352"
& Thomson =nd Garelis (1954)
b "Iiquid Metels Handbook, Sodium-Potassium Supplement"” (1955)
¢ "Liquid Metals Handbook" (1952)
d Gering and Sauerwald (1935)
€ El-Mehairy and Werd (1963)
T Lucas (1961)
€ Hoather (1936)
? Schneider et al. (1954)
1

Hultgren et al. (1963)



Table A.13 Adiabatic and Isothermal Compressibilities at 20°C es a Function of

Concentration b in the Mercury-Thalliunm Allcy Systen

Atonic fraction
of T1 p® a; x 104 c; c? Y | B, x 1012 | g, x 102
b (g/cr3)| (deg C71) |[(cal/gm.deg C)| (m/sec) (cm?/dyne) | (em2/dyne)
0 13.546 1.C2 2.033h 1450 1.1h5 3.511 h.02
0.05 13.31) 1.80 0.0342 1h92 1.148 3.348 3.0k
0.1 13.31h 1.77 0.0349 1521 1.1h45 3.247 3.72
0.15 13.203 1.72 0.0355 1547 1.140 3.164 3.61
0.2 13.115 1.68 0.0355 1570 1.135 3.093 3.51
0.25 13.022 1.64 0,036k 1592 1.131 3.030 3.43
0.3 12,001 1.62 0.0368 1010 1.129 2.995 3.38
0.35 12,8507 1.€0 0.0371 1622 1.127 2,963 3.35
0.4 12.703 1.59 0.037h 1633 1.126 2.952 3.32
1 12,157 1.25 0.0352 1726 1.093 2.762 3.02

& Abowitz and Gordon (1963)
b Richards and Daniels (1919)

*Efe
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Principal Symbols

For alloy systems, subseript b means that the physical quantity is

evaluated at stomic fraction b.

A defined in equation (1.52)
a(q), a(x,rs) structure factors
partial structure factors

constent defined by equation (1.84)

a
o

C

C, constant defined by equation (4.6h4)

Cp specific heat at constant pressure

c sound veloecity

( theoretical sound velocity defined in equation (1.87)
theoretical sound velocity defined in equation (1.23)

1 .
[c(EL)]b theoretical sound veloeity defined in equation (4.38)

Cyr € atomic fractions of species o and B respectively

EBS band-structure energy
Ebs band-structure energy
Ec correlation enerpgy
Ly energy due to direct interaction between ions
E potential energy of uniform electron cloud in Coulomb field
of ions
E,. potential energy of uniform electron eloud in field WZOre of ion.



| 2k5.
N

electron-electron interaction

electron-electron interaction

Fermi énergy

binding energy

Fuchs energy

electron energy

Coulomb self energy of a uniform negative charge distribution

exchange energy

electronic charge

defined in equation (4.58)

energy-wavenumber characteristic defined in equation (1.71)

frequency

ratio of hard-sphere diameters

defined in equation (1.57)

defined in equation (1.65)

defined in equation (4.31)

radial distribution function

radial distribution function for alloy of species a and B

defined in equation (4.1lh)

defined in equation (4.57)

Planck's constant /2n

mechanical equivalent of heat

Boltzmann's constant
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Fermi vector

thermal conductivity

atomic mass

electron mass

nurber of atoms in volume Q

Avogadro's number '

density of states at the Fermi level
number of atoms per unit volume

Fourier components of n'(r)

vscillatory component of electron density
pressure

hard-sphere pressﬁre_

universal gas constent .

defined in equation {(1.T4)

position vector s LY
radius defined in equation (1.60)
radius defined by equation (1.26)
structure factor

complex conjugate of S(g)

absolute temperature

temperature in deg. C

temperature of melting point in deg!l c

bare potential



2hT.

u(r) pair potential
Vd(r) direct interaction between ions
Ve ff(1-‘() effective interaction between ions

V. (R) indirect interaction between ions

ind

Vq defined in equation (1.61)

Va( a), VB(q) qth. Fourier components of the bare interaction of an

electron with ions o and B

Vo Fermi velocity
Wi(x) total pseudo-potential
wH(r)  potential due to conduction electrons

W° (x) sum of potentials due to the ions

w(q) Fourier components of W(r)

Wo(q) Fourier components of w°( r)
w ionic pseudo-potential

W local potential

x ratio of q to 2kF

y defined by equation (1.63)
Z valency

2% effective valency

Za(Q), ZB(q) defined in equation (L.U43)
z packing fraction

z value of packing fraction at the melting point

a (L/om)2/3
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observed sound attenuation coefficient

classical attenuation coefficient

excess absorption coefficient

volume expension coefficient

sound attenuation coefficient due to shear viscosity
sound attenuation coefficient due to thermel-conduction
adisbatic compressibility

Bohm=-Staver compressibility

theoretical compressibility defined in equation (1.85)
free-electron compressibility

compressibility of alloy system defined by equation (L.37)
hard-sphere compressibility

empirical compressibility defined by equation (4.20)
ratio of principal specific heats

theoretical value for y

defined by equation (4.51)

defined by equation (4.68)

dielectric function

bulk viscosity

theoretical value for g corrected for backscattering
shear viscosity

sound wavelength

defined in equation (1.57)



2hg,

p density

c Lard-sphere diameter

X Enskog high-density correction

Q volume of system

QA gram-atomic volume

ﬂm volume of system at the melting point
Glossary

The Born-ilayer interaction is due to the interaction between closed
electron shells and is written in the form V(r) = A exp(--f), in vhich
A dnd p are constants.

A Canonical Ensemble consists of a large ﬁumber of systems, each a
replica of the system of interest, which can exchanze energy but not

particles, and whose total energy remains constant.
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