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1. 

ABSTRACT  

An ultrasonic interferometer has been used to measure the sound 

velocity in liquid zinc, cadmium, mercury, indium, tin, lead and bismuth 

at temperatures up to 520°C. Experimental techniques and sound velocity 

measurements on various liquid metals are reviewed. The adiabatic and 

isothermal compressibilities, together with the ratio of the principal 

specific heats, are evaluated for eighteen liquid metals. 

The results of sound velocity measurements as a function of temp-

erature and concentration across the whole alloy system for mercury-

zinc, mercury-cadmium, mercury-indium, mercury-tin, mercury-lead and 

mercury-bismuth alloys are presented. It is found that the addition 

of solute to mercury causes the adiabatic compressibility to decrease 

rapidly with concentration. 

It is seen that the Bohm-Stayer sound velocities are in fair 

agreement with experimental values for sound velocity in alkali metals. 

As the valency Z in the polyvalent group of metals increases, then the 

Bohm-Staver sound velocity becomes progressively larger than the 

experimental sound velocity. An empirical compressibility defined by 

(0.) . Z T 	gives better agreement with experimental values for isothermal 

compressibility than does the free-electron compressibility (ek). 

Various theoretical approaches to compressibility of metals are dis-

cussed. The semi -phenomenological model due to Ascarelli is found to 
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give good agreement with experimental compressibilities. EXpressions 

for the free-electron compressibility and Bohm-Staver sound velocity 

for alloys are derived and compared with the present alloy results. 

The pseudo-potential approach and semi-phenomenological model for 

compressibility are also extended to liquid alloys. 

Measurements of sound absorption in mercury are reported. The 

value for the ratio of bulk to shear viscosity is found to be 0.36+ 0.3. 

Experimental values of nB/Tis  for various liquid metals are reviewed 

and it is seen that the values for this ratio evaluated from the dense-

gas formulation are in reasonable agreement with experiment. 
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1. REVIEW OF PREVIOUS EXPERIMENTAL WORK AND THEORY  

1.1 Sound ProDagation in Liquid Metallic Systems  

The velocity of propagation of longitudinal waves c in an isotropic 

medium is given by 

c 2  = 1 (1 + 4 ) - —G p t3s  3 

where a is the adiabatic compressibility, G the shear modulus, and p 

the density. For acoustic measurements carried out at frequencies of 

several hundred MHz in liquids of fairly small viscosity, such as 

liquid metals, the effect of the shear modulus is neglected. This 

procedure is justifiable since the relaxation time for the shearing 

process is much shorter than the period of the applied stress. The 

sound velocity in a fluid is thus related to the adiabatic compres-

sibility by 

C2 = 
1 
Pas 

(1.2) 

Now adiabatic and isothermal compressibilities are defined respectively 

by 

',an, 
Bs  = n ap s (1.3) 



and. 

1 an 
0 	- --(—) 	• T 	n ap T (1.4) 
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Here, n is the volume of the system and p the applied pressure. It 

can also be shown thermodynamically that 

T = Yas 
	 (1.5) 

where y is the ratio of the principal specific heats. Few direct 

measurements of isothermal compressibility have been made on liquid 

metals and acoustic measurements make it possible to estimate ST. The 

estimation of isothermal compressibilities of various liquid metals is 

discussed in Section 4.3. 

1.2 Previous Experimental Work  

Although sound propagation has been studied in many types of 

liquids and the results interpreted in terms of various theories for 

liquids, there has been comparatively little investigation of liquid 

metals. The first sound velocity measurements on liquid metals were 

made by Kleppe (1950) who investigated thirteen metals. From his 

results he calculated the adiabatic and isothermal compressibilities, 

the ratio of principal specific heats, and the GrUneisen constant. 
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His results showed that y is slightly greater than unity, near the 

melting point, and there is a small increase in isothermal compressibility 

from the solid to the liquid state. 

An early interest in liquid metals was the measurement of the 

sound velocity near the melting point. Yao and Kondic (1952) had found 

that the shear viscosities of tin, lead and zinc showed deviations from 

the Andrade equation near the melting point. This implied the exis- 

tence of a relaxation time for tin of 10-7  sec, such that the liquid 

would present a more solid character to sound waves of a frequency 

greater than about 2 MHz. Acoustic measurements at 5 MHz made by 

Gordon (1959) with tin and Proffit and Carome (1962) with gallium, 

the metals cooled to a few degrees below their freezing points, did 

not show any change in the linear decrease of velocity with temperature. 

The temperature variation of velocity would be affected by the existence 

of a shear modulus due to incomplete relaxation at the frequency of 

the experiment. In verification of these acoustic measurements which 

indicated the absence of pre-solidification phenomena, later shear 

viscosity investigations have failed to support the reported deviations 

in viscosity. 

More recently the interests have been in the investigation of 

high melting point metals, such as antimony, copper and silver, and in 

propagation of sound in liquid metals subject to external pressures. 

The latter investigations are important for the evaluation of equations 
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of state for liquids. Coppens et al. (1967) measured the sound 

velocity in sodium, mercury, indium, tin and bismuth as a function of 

pressure, whilst Davis and Gordon (1967) made measurements on mercury 

at pressures up to 15 Kbars. The sound propagation measurements made 

by the author were performed at atmospheric pressure only. Published 

sound velocity data are compiled and discussed in Sections 3.1C, 3.3 

and 4.3; the various experimental techniques are discussed in Section 

2.1. 

A few sound velocity measurements have been made on liquid alloy 

systems. The investigators interpret the variation of sound velocity 

with composition and temperature in terms of structural changes in the 

alloy systems. For example, Hill and Ruoff (1965b) found an anomalous 

behaviour for the variation of sound velocity with temperature in liquid 

bismuth-cadmium entectic. The sound velocity increased with temperature 

in the temperature range 150 to 180°C and then decreased, and this 

behaviour was interpreted as being due to the presence of bonding between 

unlike atoms. In general the sound velocity varies smoothly with com-

position of the alloy system when at a fixed temperature. For liquid 

tin-lead alloys Gordon (1961) found that the sound velocity at a fixed 

temperature and at a fixed composition was smaller than the value given 

by the linear average of the two pure component values at the same 

temperature (see Fig. 4.18). The adiabatic compressibility was found 

to vary approximately linearly with composition. In contrast, Abowitz 
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and Gordon (1962a) found that although the variation of sound velocity 

with composition for sodium-potassium alloys was similar to that for 

tin-lead, (see Fig. 4.17) the adiabatic and isothermal compressibilities 

were up to about 4% greater than the weighted means of the compressibi-

lities of the pure liquids. 

The investigations of Golik et al. (1961) and Abowitz and Gordon 

(1963) have shown that the variation of adiabatic compressibility with 

composition for mercury alloys differs from the other alloy systems 

which have been studied so far. Abowitz and Gordon found that for the 

mercury alloy systems Hg-Zn, Hg-Cd, Hg-In, Hg-T1, Hg-Sn, Hg-Pb and 

Hg-Bi the sound velocity increased with increasing content of solute, 

and the adiabatic compressibility decreased rapidly with the addition 

of a few atomic percent of solute. Apart from Hg-T1 which was inves-

tigated for concentrations up to about 40 at. Ti, the other alloy 

systems were studied to only a few atomic percent. The variation of 

sound velocity with composition of Hg-T1 alloys is shown in Fig. 1.1. 

For this alloy system it is seen that the sound velocity at a fixed 

temperature and at a fixed composition is greater than the weighted 

means of the sound velocities of the pure components. In contrast 

to the mercury alloys which have already been mentioned Abowitz and 

Gordon (1963) found that for dilute Hg-K alloys the sound velocity 

decreases with addition of potassium and the adiabatic compressibility 

increases. These authors proposed that the variation of compressibility 
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with composition in mercury alloys is due to an alteration of the 

structure of liquid mercury itself, which leads to increased Debye 

temperatures of the alloys. 

Many physical and electrical properties have been measured on 

mercury alloys and in particular the electrical behaviour has attracted 

much interest. The present study gives the results of the measure-

ments of sound velocity in six mercury alloy systems, studied over 

their entire range of concentration, and the sound velocities and 

compressibilities of pure metals and alloys are discussed from several 

theoretical approaches to these physical properties. 

1.3 Various Theoretical Approaches to Sound Velocity and Compressibility  

of Metals  

Several theoretical approaches have been used to interpret sound 

velocity measurements and these approaches are introduced and discussed 

below. 

A. Hole Model due to Frenkel  

If an equation of state for a material giving the volume as a 

function of temperature and pressure is known, than expressions for 

thermal expansion a and isothermal compressibility OT  can be calculated. 

In the simple model of liquid structure derived by Frenkel (1956) it 

is assumed that the thermal expansion and compressibility of the liquid 
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are determined by a certain concentration of "holes" each of definite 

volume. The work 4# required to form a hole of volume v by expanding 

the liquid against a constant pressure p is given by 

u = uo + pv, 

and the number of holes N
H among the N atoms of a mole of liquid is 

assumed to be 

NB  = N exp(-u/kBT). 

Here kB  is the Boltzmann constant and T the absolute temperature. The 

assumption that all the thermal expansion of the liquid is due to 

hole formation gives 

N
H
v = 0 - 0

o
, 

where Ro is the incompressible volume corresponding to a close-packed 

array of atoms. Hence the volume 0 is given by 

Nv 	u + pv 
n = no  + 	exp( 01cET 

0 
(1.6) 

This leads to e
T 
and u being expressed by 

0 = 
(n  %)v  

T 	QkBT (1.7) 



and 
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ap  - (n no)u  nkg2 (1.8) 

Gordon (1959) used measured data for 0, T and ap 
and solved equations 

(1.6), (1.7) and (1.8) to find u, no  and v. He found two sets of 

solutions were obtained. Assuming that no  is the same as the volume 

occupied by a close-packed array of atoms, Gordon took the first set 

of solutions which gave no  closest to that corresponding to their 

Pauling radii for co-ordination number 12. Gordon computed u, no  and 

v for sodium, mercury, tin and lead. Neither u or v could be compared 

directly with experiment, although their values were seen to be physically 

reasonable. 

Pronin and Filippov (1963a,b) have treated this approach in more 

detail. In Pronin and Filippov (1963a) they considered the temperature 

variation of no for cadmium, tin, lead and bismuth and found that neither 

solution gave the expected constancy of no. However, since the free 

volume 0 - o 
is physically expected to increase with temperature, they 

consider the second solution to be more appropriate. These authors assume 

that the variation of energy of hole formation with temperature (absolute) 

is represented by the power series 

u = u' + AT + BT2, 
	(1.9) 
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where u' is that part of the energy of hole formation which is in-

dependent of temperature(i.e. 11.0  + pv), and A and B are constants, and 

solve for u and v. They solve equation (1.9) in a different manner in 

Pronin and Filippov (1963b). There they choose Sao  in such a way as to 

satisfy the condition that 1.14/3  remains constant within the temperature 

range considered. Frenkel's equation ['equation (1.6)J then assumes the 

following form 

na T 

(n 	no)2  = a ISIRT exp(- 	
A + 2BT  e

xP 	). 	(1.10 
0 

where R is the gas constant. A plot of (A + 2BT)/kB  versus T enables 

A and B to be determined. After this the constancy of u(!)  is checked. 

Values of u were calculated for sodium, copper, silver, cadmium, mercury, 

tin, lead and bismuth and were compared with their latent heats of 

vapourisation L. The ratio Nu/L varied between 0.24 and unity. The 

authors concluded that metals with a low value of Nu/L (for example, tin) 

had a solution of equation (1.10) without a temperature correction over 

a wide temperature range, whilst metals with high values for this ratio 

(for example, cadmium) had no such solution. 

Both Gordon (1959) and Pronin and Filippov (1963a) looked at the 

applicability of the distributed free volume theory of 1rring and Hirsch-

felder (1937) to sound velocity measurements. Since this theory gave 

poorer agreement with the Pauling radii for co-ordination number 12 and 



(h) 	aA(1 - z)4 S(h)  
_ 

T - 
RT(1 + 2z)2  
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gave Qo 
decreasing with increasing temperature, they concluded that 

this approach was not applicable to liquid metals. Hole models do 

not allow the sound velocity to be estimated accurately since u and v 

are not measured physical quantities and therefore this approach will 

not be discussed any further. 

B. Hard-Sphere Model  

Helfiind et al. (1961) have shown that an equation of state for the 

rigid-sphere fluid can be presented in the form 

Pha  A (1 + z + z2)  
RT 	(1 z)3  

where ph  is the pressure and QA  the molar volume. If a is the rigid-

sphere diameter of the atoms comprising the pure fluid, then the packing 

fraction z is given by 

ira3rl 
 z 	, (1.12) 

where Nav is Avogadro's constant. The isothermal compressibility 8
(h) 

of the hard-sphere fluid can be calculated from equation (1.11) and 

is found to be 

(1.13 ) 
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Seemann and Klein (1965) estimated values of a from X-ray data and 

the hard-sphere compressibilities of mercury and aluminium were 

(

com- 

pared with the experimental compressibilities. The computed (3Th)  

for mercury was 3.06 x 10"12 cm2  /dyne as compared with the experimental 

value of 4.01 x 10-12 cm2  /dyne for the isothermal compressibility at 

20 C, and the temperature dependence of 8(h) was opposite to that found 

( experimentally for 8T. For aluminium the computed 8Th)  was almost a 

quarter to a fifth of the experimental 8T. Values of a calculated from 

equations (1.12)and (1.13) are smaller than experimental values and 

decrease with increasing temperature, contrary to the expected behaviour. 

C. Pair Distribution Function Approach  

The isothermal compressibility of a liquid composed of particles 

with spherically symmetric force fields can be represented in terms of 

the radial distribution function g(r), (See Egelstaff (1967)], by 

ST = 
	4uN r  

T 	NkBT [1 	j 6i(r) a  11r2drl (1.14) 

where N is the total number of particles in volume R. This is known 

as the "compressibility" equation. Here the average number of atoms at 

a distance between r and r + dr from a given atom is 41Tr2  g(r) dr. 

The value of the integral in equation (1.14) is close to -1.0 and 

thus ST results from the small difference between the two terms. For 



20. 

this reason theoretical and experimental results for g(r) lead to poor 

estimates of the compressibility. 

A further equation of state, usually termed the "pressure" equa-

tion can be calculated within the framework of the canonical ensemble, 

and is given by 

NkBT ci 	27rN 	r3 derP = 	3i2kg 	dr gr)dr]  si 
(1.15) 

where u(r) is the pair potential. Differentiation of equation (1.15) 

with respect to volume gives 

1 	Hkg _ 4wN2  f r3  jag(r)ar 2 ff112 	r3 LIR  
(t)Tdr. 

T 	3a2 	dr 	3a n  
(1.16) 

Now since TiAo at the triple point, then from equation (1.15) it is 

seen that 

302kBT 
RK 	r3---  ddr 

u g(r)dr % 1. 

Hence, near the triple point, 

-NkBT 2nN2  f 0 3 011E/ 041 
T

ti 
 0 	

371 	11)Tdr. r dr 

(1.17) 

(1.18) 

Since typically OV q,  30 NkBT/S2 the numerical evaluation of the integral 
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term is seen to be important. Measurements of (ag(r))T  are not available aa  

to test this approach. 

D. Bohm-Staver Sound Velocity  

Pines (1955) used the collective co-ordinate approach to derive 

the sound velocity, known as the Bohm-Staver velocity, in a metal. 

Ziman (1964) derives the same expression in the following manner. The 

metal is regarded as a lattice of positively charged ions immersed in 

a gas of conduction electrons. The electron cloud about each ion 

screens its electric field, so that at large atomic distances the 

Coulomb potential associated with a bare ion of valency Z is reduced 

by an exponential screening factor, such that 

V(r) ti  (-Ze2/r) exp(-ksr). 	(1.19) 

The screening parameter ks  depends on the density of states at the 

Fermi surface, N(EF), and is defined by 

k2  = 4ne2N(EF)' 

where e is the electron charge. If we consider a lattice of point 

positive ions of valency Z and of volume density n, then a long-wavelength 

vibration of these unscreened point charges gives rise to local volume 
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changes and polarisation fields. When an ion of mass M is displaced a 

distance x from its equilibrium position, its equation of motion is 

M 5 = -47a2e2nx. 

The plasma frequency $ (angular) of the ions would then be given by 

02  = 4rZ2e2n/M. 

Electron screening reduces the polarisation forces by the Hartree 

dielectric function e(q), which leads to the expression for the observed 

angular frequency vci  of an excitation of wavenumber q, 

v2q  = A2/e(q).  
I (1.20) 

Now in the long-wavelength limit, when q + 0, 

I&ire2N(Ep)  e(q) + 1 + 
q2 

The free-electron model gives the electron density of states N(EF) at 

the Fermi energy EF  as 

N(EF) = 3nZ/2EF. 
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Therefore in the limit q + 0, equation (1.20) becomes 

qbaz2/mN(EF)1, 	 (1.21) 

which shows that the frequency is proportional to the wavenumber as is 

observed acoustically at low frequencies. The longitudinal isothermal 

velocity c(BS) obtained from equation (1.21) is expressed by either of 

the equations 

c(BS) = &z2/NN(EF)ll 
	

(1.22) 

or 

c(Bs)  Onni/AvF. 	 (1.23 ) 

where vF 
is the Fermi velocity of the electrons of mass m. This ex- 

pression is known as the Bohm-Staver sound velocity [see Bohm and 

Stayer (1951)]. 

It follows from equation (1.23) that the isothermal compressibility 

(BS  ) 
T 	is given by 

(Bs) 8T 	= 3/2nZEF  

= YI 0
(BS)  
s 	$ 

(1.24) 

where Bs ) is the corresponding adiabatic compressibility. This cal-

culation has been made at the temperature of absolute zero. At finite 

temperature it is necessary to know the ratio of principal specific 
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heats, y', associated with the ion plasma model, which has not yet been 

evaluated theoretically. 

Pines (1955) compared the values of c(BS)  with experimental values 

of sound velocity for solid metals and found that there was fairly 

good agreement for the alkali metals. For polyvalent metals c
(Bs) was 

several times larger than experimental values. The Bohm-Staver sound 

velocity is compared with experimental values for sound velocity in 

liquid metals in Section 4.4. 

E. Energy of Electron Gas Approach  

The Bohm-Staver sound velocity can also be derived from the 

equation of state of a Fermi gas. At absolute zero of temperature the 

lowest-order approximation to the ground state energy for a non-interacting 

electron gas is due to the total kinetic energy of the electrons. The 

total energy Bo  of ITZ electrons in volume Sl is given simply by 

E0  = 
5 

NZEF. 

Hence the pressure p at T = 0 is found from 

p = aEo/an 

2 NZEF  
(1.25) 

 

5 n 
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Differentiation of equation (1.25) with respect to volume gives the 

( same expression for compressibility OTel)  as given by equation (1.24). 

(el) . ST e2.) 	known as the free-electron compressibility and may be written 

in terms of radius rs (in Bohr units). rs is defined by 

4 	3 --nr3  a = 3 	s o NZ 

where ao is the Bohr radius. In these atomic units t 

( and therefore Eo(ryd) and 13T
el)  (Bohr units3/ryd) are 

tively as 

Eo/NZ = 3/5a2r2  

= 2.21/r: 

and 

0(e9)  = 2wa2r5  

= 1.7r5  

(1.26) 

= 2m = e2/2  = 1 

written respec- 

(1.27) 

(1.28) 

where a3  = (4/9n). It is seen that the free-electron compressibility 

is an increasing function of rs. The experimental isothermal compres- 

sibility of various liquid metals is plotted as a function of rs  

in Fig. (4.10), where it is seen that within each valency group with 

the exception of the pentavalent group, OT  increases with rs. 

Pines and Nozilres (1966) have included the exchange and correlation 

energies in the calculation of the ground state energy of the electron 
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gas. When the exchange energy Ex  is included, the ground state energy 

is given by 

3 	3 — = 
NZ 2nars  ' 5a2r2 

( 
and simple calculation Gives for the isothermal compressibility fiT

ex)  

(et) 

B(ex)  = 	
aT  

T 	[1. - 0.166r 1 s 

(1.29) 

This expression is similar to that derived by Harrison (1966). For 

the alkali metals with a large rs, the inclusion of exchange energy 

drastically increases the theoretical compressibility. 

The correlation energy Ec  may be added and the form proposed by 

Pines and Nozibres (1966) is used. There are several existing inter-

polation formulae for Ec 
which differ by about 10% over the relevant 

range of rs. The ground state energy is now given by 

. _a__ 	3  (0.115 - 0.031 tnrs), 
NZ 5a2r2  2nars 

(1.30) 

( 
and the corresponding isothermal compressibility 6Texc)  is found to be 

(exc) 
0T 

0 
(et) 

 

(1.31) 
[1 - 0.166rs 0.0042r:1 

• 

The term in r2, which comes from the correlation energy, has only a 
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slight influence on the compressibility compared to that arising from 

the exchange energy. 

F. Pseudo-Potential Approach to Calculation of Total Energy  

A calculation of the total energy based on perturbation theory 

was used by Ashcroft and Langreth (1967a) to estimate the compressibility 

of nearly-free electron metals. In addition to the usual kinetic, 

exchange and correlation energies, discussed previously, the energy of 

a solid contains terms resulting from the electron-ion and ion-ion 

interactions. Following the analysis due to Harrison (1966), if the 

direct interaction between ions centred at ra  and r is given by - 

Vd(lIa  - 41), then the contributions per ion, Ed, of the direct inter-

action to the total energy of the system of ions is simply 

Y v 	r 1). Ed = 2U - d -a -is,  
a,b 
alb 

(1.32) 

The total energy of the electrons in the field of the ions can be 

obtained from second-order perturbation theory. The time-independent 

Schr3dinger equation is 

tr-a2- + I1(r)]4)(r) = Egr), 

where the potential w is small. The zero-order equation is solved to 



20. 

give the zero-order eigenstates 1k> = 0- e14-4:. and zero-order energies 

E
(0) = t

2k2/2m. The wavefunctions are normalised in a box of volume Q. 

In the usual notation, the matrix elements of W may be written 

<k + 	= r e (k+-g)  *xw (r )ei1.243r 
ft 

The zero-, first- and second-order contributions to the electron energy 

E(k) are added respectively to give 

E(k) = 
ft2k2 	 1- 

.-.. 	2m 	<It lt, 1k> + 	`E 	ik>‹k IW 1k + 

	

— 	7 

  

(1.33) 

  

q 
-2  h2 71  [k 2  - + 1 

The prime on the summation indicates that the q = 0 term is to be 

omitted. 

Another important feature of the total pseudo-potential W(r)is 

the assumption that1J(r) can be written as the sum of the superposition 

of individual ionic pseudo-potentials, such that 

1.7(1) = E4 
	 • 

a 

Then it may be shown that the matrix element <k + all,11k> can be written 

in the form 

<k + 2.1141k> = S(A)<k + gityik> 
	(1.34) 
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where 

S(a) = I e-la.ma 	(1.35) 
a 

and 

<k + alwik> = 	e-i(k+2)4:w(r) 	dik.r 3r. 
a 

Thus the matrix element is factorised into a structure factor S(g), 

which depends only on the ion positions, and a form factor <k + giwik> 

which depends only upon the individual ion potentials and is independent 

of the ion positions. The electron energy E(k) may now be written 

2k2 	 ' SIF(a)s(g)<klwik 9.><1S +11114'  E 
E(k) - 	+ <klwlk> + 

q 	E2 rt..2 	.g3  
2m 121  

. 	(1.36) 

The total energy per ion Ea  is obtained from 

1 L r Ee9. = N — 	E(k) 
k<kF  

f 
E(k)d3k 

4n3N 

= 3 — ZE
F 
 + Z 7cETTTTIT 5  

iw iIk + g><k +aiwlk>d3k 
+ S*(g)S(.9) 

ItI ON 

	

	
(1.37) 

E2 EL:2-.6323 
2m 
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The first two terms depend upon the volume of the system but otherwise 

are independent of the details of the ion positions. The third term 

is known as the band-structure energy E. It must be noticed that 

the electron-electron interaction Eek-e2. 
has been counted twice in the 

average value7E7g of <klylk> and Eel-et 
must be subtracted from 

the total energy Eat  when calculating the total energy per ion of the 

metal. 

It is now necessary to discuss the effect of the electron-electron 

interaction and screening. The electrons are assumed to interact with 

each ion through a local potential w°(r), which includes the Coulomb 

potential of the ion, and to interact with the other electrons through 

a Coulomb potential which may be determined from the charge density due 

to all electrons. The latter interaction is determined from a self-

consistent-field treatment to give a potential Wl(r). Then the total 

potential seen by the electrons is 

17(r) = W°(r) + Wl(r) 	(1.38) 

since 

Wo(r) = wo(r r ) 
• 

a 

The oscillatory component of the electron density n'(r) may be written 

in terms of its Fourier components n , such that 
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nqr) = n 

and n is found to be given by 

n - 1 
	—  

<k + 	d3k 

20 J  n2 
-211- 	gs 931 

(1.39) 

Assuming that W is a local potential, then <k + 11111k> is independent 

of k, and can iberefore be taken outside the integral. Integration 

of equation (1.39) gives 

n = 	 
 	+ 	j Wik> 

(1 + 1 - x2  

2n2t2 	2x 
kn 11 	I XI 

11 -- x l  (1.4o) 

where x = q/2kF. If Wq is the qth Fourier component of W1(r) such that 

i W 1(r) = 2 Wleig.r , 

then using Poisson's equation gives 

4ne2  n 
q2 q 

• (1.41) 

Since 111  is defined by <k + AdWilk>, then it follows from equations 

(1.38), (1.40) and (1.41) that 
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<k + AjUlk>- 

where  

cit Ildwolk>  

e(.1) 	5 (1.42) 

(1.43) e(q) = 1 + 	met 
a 	x2 	+ x 

X 2nt2x2k1, 6 	2x 	
11il 

Thus the screened potential W(r) may be found from the unscreened 

potential by the dividing factor c(q), which is called the static 

Hartree dielectric function. 

As a further step in the calculation of the total energy it is 

necessary to consider the electron-electron interaction energy (per 

ion) E
ee 

 , which is given by 

Lee 	2N = — 	n(r)V11(r)d3r 
it 

= 	E n *W/  
2N q q 

= 	 n *111  + 	n 
2N q  q q 2U o o 

SZ  
T 2  

q f.111 E  

8nNe2 q 	q q 	su 

Here Esu  is the Coulomb self energy of a uniform negative charge 

distribution. It is also useful to split the energy term Z 

seen in equation (1.36), into three contributions. We write 

(1.44) 
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w(r) = 
Ze2 1 + 	(r) + w 	. 
r 	core 

(1.45) 

The first ;erm leads to the potential energy, Ee, of a uniform electron 

cloud in /he Coulomb field of the ions; the second gives the potential 

energy,Fee  of a uniform electron cloud in the field w:
ore  of the ion; 

and the .third term leads to a potential energy equal to twice the 

Coulomb self-energy, Esu, of the electron cloud. The total energy may 

be determined by adding all the terms discussed above, together with 

the electron exchange Ex  and correlation energies Ec, in the following 

manner 

E
total (per ion) = ZEF  + ZEx  + ZEc  + Eec 

Ee 	Esal. Ebs - [Eel - Esu] • 
	(1.46) 

The term [Ed  + Be  + Es115 is known as the Fuchs energy E... The last 
11 

three energy terms in equation (1.46) may be added and simplified. 

Using the definitions of e(q) given in equation (1.43) and the band-

structure energy in equation (1.31), together with equations (1.38, 

1.42, 1.44), we obtain 

EBS = Ebs - Eel I. Esu 

xeivoi2s*(a)s(n)( 
e(q) . . - 1). 

87re2N q 
(1.47) 
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Here w°  is the qth Fourier component of the interaction between an 

electron and a bare ion. Hence the total energy may be written 

E.. 3 ec Etotal (per electron) = $ "F 	"c 	Z 	Z 	"HS 	(1.48) 

The pseudo-potential approach to the calculation of the total 

energy has been successful in determining crystal structure [See for 

example, Heine and Weaire (1966)1, cohesive energy and compressibility. 

Ashcroft and Langreth (1967a) basically use the above energy expression 

to calculate the compressibility of simple solid metals. In order to 

obtain their energy equation it is necessary to redefine some of the 

terms. We first note that 

ITS*(2)s(a) = a(q) 	(1.49) 

since 

a(q) = 	1E el-1.1'112. 	(1.50) 

a(q) is the usual structure factor. We also define the qth. Fourier 

component of the bare ion potential V by 

V. 	w°  q N q ' (1.51) 

The zeroth Fourier coefficient of the electron-ion potential is never 
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small and its contribution to the energy (per electron) may be written 

in the form 3A/4nr3, where 

A =ilim  (V 4..liaL4 
Z qt0 q 

q2 
(1.52) 

The value of the Fuchs term E../Z is then calculated as follows:-11 

Eii = 1 v 2 4ne2Z2  eig.(zi-124) 
Z 	2NZ i## J  q q2 

27re2Z = 	[a(q) 	. 
q q2 (1.53) 

Ashcroft and Langreth (1967a) evaluate the value of this term as 

-1.792Z2/3/rs  for hcp, fcc and bcc structures. 

With the above definitions, the band structureenergy EBs/Z (per 

electron) given in equation (1.47) is written in atomic units as 

EBS = 	r 
16rzn 	c 

2 21 a V
q
, 	- 1)a(q). 

q 	q 
z  (1.54) 

Contributions to EBs  occur at all non-zero reciprocal lattice vectors 

a= a. For a crystal the structure factor becomes 

a(q) = N 6 
AIL.' • 
	 (1.55) 
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Ashcroft and Langreth write the Lindhard dielectric function e in the 

form 
At 

e = 1 +— 
2 
 f(x), 

x 
where 

1 1 - x2 	11 + x 
f(x)  = 2 	4x Intl - x1' 

AZ = [naek0 -1  = 0.166rs, 

x = q/2kF  

and 

(1.56) 

(1.57) 

(1.58) 

(1.59) 

The authors use the simple form of Vq  proposed by Ashcroft (1966), 

where Vq  is given by 

and 

V = J  e-lg.r V(.r)d3r 

V(r) = 0 
	

for r < rc, 

V(r) = -2Z/r for r > re  . 	(1.60) 

Integration gives the form of V as 

Z Vq  - an cos qrc . 
q2 

(1.61) 

Vq  has the advantage of being in an analytical form and re can be chosen 

to give the best fit to Fermi surface or electrical resistivity data. 
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The band-structure energy per electron now takes the form 

S _ lorNZ 	 ra (1  

SI 	4 

cos2g 

 
g g2  s

g  1). 	(1.62) 

If we define 

y = xrc2kF  = 3.84 xrc/rs  , 	(1.63) 

then using equations (1.56) to (1.59), equation (1.62) becomes 

By defining 

EBS 	4nNZ 	cos2y 0.166rsf(x) 

Z 	a
Xi+ 
 Cl+ 0.166rsf(x)  

X  

X2  

(1.64) 

G(rs) = 

 

f(x)  
0.166rsf(x) ' + 

x2  

(1.65) 

 

then the energy contribution due to band-structure may be written as 

EBS (ryd/electron) = -0.0338 G(rs) cos2y. 	(1.66) 

When the Fuchs term, equation (1.53), and band-structure term, 

equation (1.66) are substituted into the total energy expression given 

by equation (1.48), it is found that the total energy of the solid 
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u(AL,s) 
can be written in the form proposed by Ashcroft and Langreth as 

(AL s) 	2.21 0.916  E 	' 	= 	(0.115 - 0.031 Rar) 
r2 	rs 

1.-  792Z2/3  3.4 - 0.0338 G(rs) cos2y. 	(1.67) 

The energy term 3A/4nr: is large and if it is assumed that the zeroth 

Fourier component of the potential V given in equation (1.61) is 

accurate, it can be shown that 

A = Imr2. 	(1.68) 

Ashcroft and Langreth then found that the equilibrium condition dE/drs  = 0 

predicts values of rs in fair agreement with observed densities. 

However for the calculation of binding energy EAL,$)( and isothermal 

(AL ,$) compressibility al, 	they used the more accurate procedure of elimina-

ting A with the zero-pressure condition dE/drs  = 0, and found that 

E(AL' 	0.737 	2( 	rs 

0.916 + 1.792Z2/3)  
2 	

0.105 + 0.031 tnrs r 
(ryd/electroR) 

0.0338 G(rs)[cos2y + 	since] , 	(1.69) 

rs 	lorr3  
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22.1 

+ 2(0.916%4. 1.792Z§)rs  - 4.42 - 0.0338r:G(rs){2y(sin2Y-y cos2y))3 

(1.70) 

Hero a(a) is the free-electron compressibility, already discussed in 

Section 1.3E. The negligible contributions arising from the differentiation 

of ( il- - 1) are ignored. 
q 

:able 1.1 Comparison of Theoretical Compressibilities with Experiment 

for Solid Metals 

Metal 

Theory 

0T/0T 
(a) 

Experiment 

Ha 1.6 1.5 

K 1.1 1.0 

Rb 0.82 0.82 

Cs 0.71 0.76 

Zn 2.1 2.1 

Al 3.5 3.9 

Pb 3.2 3.5 



40. 

With the exception of the band-structure contribution, the relative 

sizes of the various contributions to the binding energy and compres-

sibility can be seen in equations (1.69)and (1.70). In order to 

estimate the size of the band-structure contribution it is sufficient 

to take y ti  n/2, and it can be shown that G(rs) ti  Nx/3x6,where gx  is 

the number of shortest reciprocal-lattice vectors. The values of rs  

for various metals can be estimated from Fig. 4.10. It is clearly 

seen from the G(rs) term that the band-structure contribution to binding 

energy is very small. In the determination of compressibility, however, 

the term G(rs) due to band-structure is of the order of unity and there-

fore greatly influences $T  . The band-structure contribution is of 

greatest importance in the polyvalent metals (more than 100% in 

aluminium) and is still fairly important for the alkali metals. The 

(0.) 
result of the calculation of B(AV  /0T 	for several simple metals is 

shown in Table 1.1, due to Ashcroft and Langreth (1967a). They conclude 

that the pseudo-potential method shows fairly good agreement with 

experiment, and the importance of the band-structure energy is clearly 

significant. 

The application of the pseudo-potential approach to the calcula-

tion of compressibility, based on the Ashcroft and Langreth paper, is 

discussed for liquid metals in Section 4.48. 

G. 	Semi-Phenomenological LIodel due to Ascarelli  

A fairly successful calculation of sound velocity and compressibility 
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of liquid metals has just been published by Ascarelli (1968). As a 

background to this model it is of interest to calculate the effective 

interatomic potential between ions. We have seen in Section 1.3F that 

the direct ion interaction Ed  and band-structure energy Em  depend upon 

both volume and structure. The band-structure energy may be considered 

as giving rise to an indirect interaction between ions in the following 

manner:- 
► 

EBS = / S*(9)5
(g)F(q), 

where 

F(q) = 	lw°(q)12(i.ecg 1). 

Therefore, using the definitions of S*(g) and S(g), 

EEs = I 1 F(q) 
q 	/12 

1 	 ► 
F(g ) -iq.(r--r-) 1 = 1 e 	-a 0 + 	F(q) . 

q i0j N2 	
Td 

q 

(1.71) 

(1.72) 

The last term in equationa.72)is independent of ionic arrangement, 

except through the total volume of the system. We can write the in- 

direct interaction V.  (r) between the ions as ind 

1 

Vind(r) 
2 = — 	F(q)e 

2 

lor3
N f F(q)eia4 d3q. 	(1.73) 
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The following definitions are made for simplification:- 

and. 

q = 2kFx 

R = 2kFr 

X L  - 3Zire2N  

2E141 

 

 

EF)e(x) = w°(x) (1.74) 

The form of the bare potential U°(x), in units of 1- EF, proposed by 

Ashcroft (1966) is 

AL2cos(2kFxrc) U0(x) ... 

x2 
(1.75) 

Then Vind (R) is found from equation(1.73)by simple substitution to be 

V.  nd(R) 	(- 2 	3Z2  .1 x2 	o(x)1  
12 
 e  iR.x 1 - 1)d3x . 	(1.76) 3 r 	A2 

L 

The direct interaction between a pair of ions is Z2e2/r and can be 

written in the form 67rZ2)1(3 EF)/R. This interaction together with the 

indirect interaction V. nd(R)gives the effective interaction between 

ions, Veff(R),  such that 

Veff(1) 	3 = 	EF 
L 	 3Z2  x2  

X2 

, 	1 2  11.1o  kx)i- eiR.x 1 1)d3x]. (1.77) R 	+ (-) f 
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Ashcroft and Langreth (1967c) evaluate this expression for several 

2 metals and Veff(R), (in units of -§ EF), which is shown for sodium in 

Fig. 1.2, is seen to exhibit a hard-core nature. It was found that 

the effective hard-sphere diameter a gave a packing fraction z of 0.44 

which was in good agreement with a value of 0.45 found by Ashcroft 

and Lekner (1966) to fit the structure curve a(q). The effective inter- 

action between ions for alkali, noble and several polyvalent metals 

was seen to be hard-core in nature. 

Ascarelli (1968) proposed that Veff(R) could be approximated by 

a simple hard-sphere potential Vh(r), which has the form 

Vh(r) = co for r < a 

=0 for r > a . 

The semi-phenomenological model proposed by Ascarelli consists of hard-

spheres immersed in a uiliform background potential, which provides the 

cohesion that the hard-sphere gas otherwise lacks. 

If we now look at the total energy expression given in equation 

(1.48) it is seen that the energy can be separated into two terms, such 

that 

(A) (A) 	1 E 	= Eo + 2N 	Veff ij (r..) .1. 1,J 
(10j) 

(1.78) 



(A) 3 =  NZE - 
5 F a1/3 

11B 
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Here E(A) depends upon volume alone and the second term depends upon 

both structure and volume. Thus Ascarelli proposes that to a good 

approximation 

(A) (A) 1 E 	= Ea 	E Vh(rii) 
i,j 
(W) 

(1.79) 

It is now necessary to consider the volume dependences of the interac-

tions which contribute to E(A). If we compare E(A)  with equation (1.48), 

we see that EF  depends upon 1/r2, whilst the energy terms Ex, Ee, and 

Esu depend upon l/rs. The correlation energy Ec can be written as 

0.234/rs  (ryd) to a good approximation. Ascarelli makes the further 

assumption that the ions can be considered as point ions since the 

volume of the Wigner-Seitz sphere is large with respect to the ionic 

core volume and therefore the positive repulsive term contained in the 

energy of the lowest state of the valence electrons can be neglected. 

Hence, with these assumptions, E(A) is made up of contributions 

depending upon Q-2/3  and n-1/3. Thus the total energy E(A)  of the 

system may be written 

(1.80) 

For simplicity, B is written in terms of a dimensionless constant C 

defined by 

B = 3C(2m)1/3 k_B
T
m ' 	(1.81) 
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where 0
m 

is the volume of the system at the melting point T
m
. Hence 

the total energy E(k) of the system in this approximation is given by 

P

T 

W 

5 
3NZE 	T SI 

= 	3CN - 
T11-/  (--1-') I  /3  • y  (1.82) 

In this model, the pressure of the system is the sum of the pressure 

derived from the above energy expression and the pressure ph  of a hard-

sphere fluid, which has been defined previously in equation (1.11). 

The pressure of the system is therefore 

2ZEF, 	a 1/3 T 	P a 

m  NkBT 5kBT c(Qm)  T  

2ZEF cf
a_ah1/.3  T 	, + z + Z2 

5kBT 	‘a I 	(1 - z)3  
(1.83) 

In order to calculate the sound velocity at the melting point it is 

assumed that all the simple metallic liquids have the same packing 

fraction z = 0.45 at the melting point. This value for z has been 

seen to yield a good fit to diffraction data. Thus phO/Nym  N 10 is 

assumed to hold for all the simple liquid metals. The value of C can 

be determined by considering the pressure p of the system to be zero 

at the melting point and from equation (1.83) it is seen that 

G = 10 + 
2Z [EF1m  

(1.84) 
5kBT 	I  



°Iv'j , 2ZEF 
(1 + 2z)2  + 

4T  cp2)1/3  
. R 

M (1 	3kBT 2 	3T ' 

and 

Ec(A)]2  (1.86) 

46. 

where [EF] is the value of the Fermi energy at Tm. 

The isothermal compressibility, (A), and sound velocity, 
(A), 

may be derived from equation (1.83) by simple differentiation with 

respect to volume, such that 

T 	2ZE 	11 1/3 la 

	

t-a) 	 12 
1 

3kBT 	- 
e

1/  ' 	3T  
8(A) - a 	(1 	z)4 
T 

(1.85) 

Here il is the atomic mass and y' is the value of the ratio of principal 

specific heats to be associated with this model. Ascarelli assumed 

y' = 1.15 for simple metals at their melting point. It follows from 

equationn(1.84) and (1.86) that at the melting point the sound velocity 

[c(A)]. is given by 
y'k,T 	2Z[E] 

fc(A)12
m 
 = 	m  [27 + 	F 15kBTm 	

(1.87) 
J  

Ascarelli found that the values of [c(A).]m  calculated from equation 

(1.87) were in fairly good agreement with experiment. Those values 

of rc(A)]m are compared with experiment in Section 4.4c and are discussed 

further there. 
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2. APPARATUS AND EXPERIMENTAL PROCEDURE  

2.1 Review of Experimental Techniques  

A variety of techniques have been employed for the measurement of 

sound velocity in liquid metals. Since quartz ceases to be piezo-

electric at temperatures above 5730C, measurements above this tempera-

ture with the transducer in the furnace are not feasible. For these 

high temperatures a length of fused silica rod is often interposed 

between the specimen and quartz transducer, the latter being outside 

the furnace. The measuring techniques are grouped below into four 

classes. 

A. Direct Pulse Methods  

In these methods the velocity of propagation is determined by a 

direct measurement of the transit time for an ultrasonic pulse to 

traverse a known distance in the liquid. A short radio frequency 

pulse of 5 to 12 MHz is applied across a quartz transducer and a short 

train of waves (periodically repeated) is transmitted directly, or 

via a delay line, into the liquid. The ultrasonic pulses reflected 

from a plane parallel reflector re-excite the transducer and the elec-

trical signal is amplified and displayed on an oscilloscope. Kieppa 

(1950) measured the transit time by counting the number of time markers 

between the pulses, and hence calculated the sound velocity from the 

known distance between the end of the delay line and reflector. The 

dissimilar shapes of the leading edges of the pulse echoes introduce 
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an error in the measurement of the transit time and Kleppa estimated 

that his velocity measurements were only accurate to 1%. 

Several investigators [Polotskii et al. (1959), Pronin and 

Filippov (1963 a, b), and Plass (1964 increased the accuracy of 

measurement by using the direct pulse method with a variable path 

length in the liquid. The use of a movable reflector makes it 

possible to exclude the errors associated with dissimilar pulse shapes, 

but the accuracy is again limited by the difficulty in measuring the 

time interval by the oscilloscope. The estimated errors in sound 

velocity range from 0.3% (Polotskii et al.) up to 3.5% (Pronin and 

Filippov). 

B. Pulse Comparison Method  

The time interval between two pulses which have travelled a 

known path length 9 in the liquid is compared with the propagation 

time of ultrasound in a reference liquid, usually mercury or distilled 

water, with a known sound velocity c2. Gordon (1959) used the trans—

ducer in direct contact with the liquid metal and adjusted the length 

of a mercury delay line until the leading edges of the two sets of 

reflections were just in coincidence. The sound velocity cl in the 

liquid metal is then given by 

CI = C211/&2 

	 (2.1) 
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where 12  is the path length in the reference liquid. The oscilloscope 

is used essentially as a "null" indicator. The error in the sound 

velocity ci was estimated to be about 0.2%. The change of velocity 

with temperature could be measured with good precision (a few per cent) 

from the small displacement of either reflector. Hill and Ruoff 

(1965 a) used this method of measurement but had a stepped reflector 

to give the known path length. 

C. Repetition Rate Method  

The acoustic cell used by Coppens et al. (1967) consisted of a 

liquid-filled cylinder with parallel quartz transducers mounted at 

each end. An ultrasonic pulse from one transducer traverses the liquid 

and is received by the second, undergoing multiple reflections at each 

transducer. The pulse repetition rate was so adjusted that the signal 

from each pulse is received at the second transducer in phase with 

the echoes of the previous pulses, thus leading to a reinforcement of 

the signal. This superposition is observed only when the repetition 

rate fr is adjusted so that 

c = 29.fr 
	 (2.2) 

where c is the velocity of sound in the liquid and 2. is the length of 

the cylinder. Coppens et al. (1967) used a path length of 2 inches 

and estimated that their error in the sound velocity was 0.1%. This 
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technique was used to measure sound velocity as a function of tempera-

ture and pressure in various low melting point metals. 

D. Phase Comparison  

The phase between two ultrasonic pulses is made to fluctuate 

periodically by either changing the frequency or path length in the 

liquid. In the technique used by McSkimin (1959) the quartz transducer 

was in direct contact with the molten metal and the pulse width was ad-

justed so that overlap occurred between the first and second wave-

trains which had traversed the liquid. The specimen length R. was fixed 

by the silica cell and no correction for expansion was needed. By 

changing the frequency of the ultrasound the received signal fluctuates 

and fn  is measured when phase opposition is produced. In this "out 

of phase" condition the sound velocity is given by 

c = 2ifn/n 
	 (2.3) 

in which fn is any frequency for which the "out of phase" condition 

for echoes exists and n is the appropriate integer. By swinging the 

frequency fn  and noting the separation Af between adjacent "out of 

phase" conditions, obtained by averaging over as wide a frequency span 

as possible, n can be calculated from 

n = fn/Af 	 (2.4) 
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The absolute value of c at 232°C was determined by the above method 

with an error of 0.5%. The relative change of sound velocity with 

temperature was determined by changing the frequency fn  at a particular 

value of n so as to maintain the phase opposition. The frequency 

must be known accurately and the technique uses a gated amplifier in 

conjunction with a stable continuous wave oscillator. 

Hubbard and Loomis (1928) varied the liquid path length by moving 

a reflector and used a continuous wave electrical interference method 

to detect the positions for standing waves. The impedance of the 

liquid varies through a cycle and results in a periodic swinging of 

the transmitter frequency applied to the quartz transducer. The 

transmitter frequency was "beat" against a constant frequency from 

a second oscillator. A vernier condenser in the transmitter circuit 

requires a cyclic variation in order to maintain the transmitter 

frequency f constant. Since a single transducer and reflector system 

was employed, successive positions are recorded from the micrometer 

corresponding to movements of a half-wavelength. The sound velocity 

is determined from 

c = Af 
	

(2.5) 

where A is the wavelength of the sound. 

Gitis and Wikhailov (1966a,b,c) used a pulsed acoustic interferometer 
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with electrical interference. The ultrasound transmitted through the 

liquid was detected by a second quartz transducer, amplified and 

added to a sinusoidal reference voltage. The mixed signal is zero 

when the two signals are equal in amplitude and opposite in phase. 

The second transducer was bonded to the delay line and its gradual 

displacement caused the interference pattern to vary periodically on 

moving through multiples of a sound wavelength. A knowledge of the 

frequency enabled the sound velocity to be computed. 

Another type of pulsed acoustic interferometer depends upon varying 

the path length in the liquid [Jarzynski (19632. The path-length is 

short and the pulse length is increased so as to produce an overlap 

of the pulses reflected from the interfaces between delay rod and 

liquid and between reflector rod and liquid. As the liquid path length 

is varied the pulses interfere and are periodically "out of phase". 

Measurements of the successive positions of constructive interference 

correspond to movements of half-wavelengths of sound in the liquid. 

Since the transmitter is pulsed it is necessary to measure the frequency 

by a beat technique. This technique was the one employed for the 

measurement of sound velocity in the present study. The results of 

sound velocity measurements on various liquid metals by numerous 

investigators is examined in Section 3.3. 

The choice of the pulsed acoustic interferometer method for the 

measurement of sound velocity in liquid metals was guided by the 
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following considerations: 

(a) since much difficulty is experienced in transmitting a satisfactory 

ultrasonic signal into the liquid metal due to the poor wettability 

with the quartz delay rod and also the sound absorption is such that 

the reflected pulse reduces, with distance, to the noise level, it 

is important to keep the path length fairly small; 

(b) the results of previous investigations which employed the method 

of direct time measurement were seen to be of poor accuracy and incon-

sistent with one another. This method requires a fairly long path 

length in the liquid; 

(c) the pulse comparison method requires a fairly long path length 

and requires a transmitter capable of giving a high amplitude R.F. 

pulse since the signal is applied simultaneously to two quartz trans-

ducers. For this reason the R.F. frequency usually employed is about 

5 MHz; 

(d) the repetition rate technique requires a fairly long liquid path 

length and also the quartz transducers to be in contact with the 

liquid metal, thus limiting the temperature range of the experiment; 

(e) phase comparison techniques are capable of greater accuracy than 

the direct time delay measurements. A movable reflector was required 

for measurements of sound absorption, for which it was necessary to 

use a pulse method capable of operation in the frequency range 20 to 

100 M14. 
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2.2 Explanation of Sound Velocity Technique  

A block diagram of the apparatus used for sound velocity measure-

ments is shown in Fig. 2.1. A 20 sec radio frequency pulse from a 

modulated transmitter is applied to a 4 MHz X-cut quartz transducer. 

When operating at 68 MHz the crystal is resonating at its 17th harmonic. 

The ultrasonic pulse which is generated traverses the fused silica 

delay rod and is partly reflected at the interface between delay rod 

and metal and partly transmitted into the liquid metal. When the 

reflector rod immersed in the liquid metal is accurately aligned paral-

lel to the transmitting surfaces, some of the ultrasonic pulse is 

reflected back towards the transducer, which reconverts the series of 

ultrasonic pulses into electrical pulses. After the signals are 

detected by the R.F. receiver, the I.F. of 7.5 MHz or the video pulse 

envelope is displayed on an oscilloscope. A typical pulse pattern is 

shown in Fig. 2.2a. Pulse 1 is the signal applied to the transducer 

and pulses 2, 4, 6 and 7 are the series of pulses due to reflections 

from the interface between delay rod and metal. Pulses 3 and 5 are 

due to reflections from the interface between metal and silica reflector. 

As the liquid path length is decreased pulses 2 and 3, 4 and 5 start 

to overlap. Movements of the reflector corresponding to changes in 

path length of the order of a wavelength cause the phase between the 

two pulses to change such that the pulses add or cancel. Figs. 2.2b,c,d 

show the effect of moving the rod from an "out of phase" condition 
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successively by a quarter- and a half"wavelength. A typical micrometer 

movement for a change of A/2 is 1 x 10-3  cm. 

A more precise measurement of wavelength A is obtained by noting 

the micrometer positions of the first 10 minima (i.e. "out of phase" 

conditions) and then shifting by 50 to 100 minima and recording the 

next 10 minima positions. Since the number of minima has been counted 

an accurate value for A is determined from the micrometer settings. 

The frequency of the sound wave is determined by mixing the transmitted 

signal with the continuous wave output of a Schomandl Frequency Syn-

thesizer. The two R.F. signals beat together and the frequency 

corresponding to a zero beat (i.e. to a slow amplitude variation of the 

pulses) is recorded from the standard frequency generator. Fig. 2.2e 

shows the effect when the two frequencies are fairly close and in 

Fig. 2.2f when the frequencies are equal. The sound velocity is then 

simply given by Af at a given temperature. All the measurements are 

made at an ambient pressure of one atmosphere. 

2.3 Description of the Electronic Apparatus  

A block diagram of the electronic apparatus is shown in Fig. 2.1. 

The basic sections of the electronic apparatus had been constructed 

previously by Jarzynski (1961) and will only be briefly described here. 

The electronic circuits are reproduced in the Appendix for reference. 
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The repetition rate of the pulse generator is synchronised to that of 

the mains supply in order to avoid "jitter" of the observed pulses. 

The pulse generator provides a positive pulse to trigger the oscil-

loscope and a 50 volt pulse of 5 to 20 psec duration. The latter 

pulse is amplified and triggers the modulator circuit so that a 500 

volt negative pulse is applied to the cathode of the transmitter valve. 

The transmitter oscillates for the duration of the negative pulse 

and its frequency can be altered by means of the variable air-condenser. 

Frequencies of 12, 20, 68 and 92 MHz are obtained by inserting the 

appropriate inductance coil in the tank circuit of the oscillator. 

The R.F. receiver is a radar receiver type R. 1355, the units of which 

had been modified by Jarzynski to cover the frequency range 12 to 92 

MHz. The author modified the receiver so that both the I.F. and video 

outputs can be displayed on an oscilloscope. An E.M.I. oscilloscope 

type W.M.2 is used, which has a 'band width of 0 to 20 MHz. When 

observing the intermediate frequency the I.F. strip of the first R.F. 

receiver is coupled to the I.F. amplifier strip of a second modified 

R. 1355 unit. The H.T. and filament current for the second unit are 

obtained from an external power supply. Details of the stabilised 

power supplies are given in Jarzynski (1961). 

At resonance the equivalent circuit of the quartz transducer 

consists of a capacitance of about 25 pf in parallel with an equivalent 
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resistance of about 5 k. For efficient operation of the transducer 

it is necessary to tune out its capacity so that it does not act as a 

shunt for the R.F. signal. The matching unit consists of a tuned 

transformer (see Fig. A.5) and the variable capacitor is so chosen 

that, together with the capacity of the transducer, it can be tuned to 

resonance with the coil at the required frequency. The variable 

capacitor is adjusted until the received R.F. signal is maximum. 

2.4 Fused Silica Cell  

A diagram of the silica apparatus is shown in Fig. 2.3 and the 

silica cell can be seen in Plate 1. Fused silica was used since it is 

not chemically attacked by many liquid metals and it has an extremely 

low sound absorption at the high frequencies used. The choice of the 

dimensions of the delay rod was governed by the following factors: 

(a) The size of container, which needed to be as small a diameter as 

possible, was influenced by the size of standard silica sockets 

available. Sufficient space inside the container was required for 

the reflector rod and thermocouple. 

(b) The length of the delay rod had to be sufficient for the quartz 

transducer to be at room temperature outside the furnace. 

(c) The length was chosen such that there was a suitably long time 

interval between pulses of ultrasound reflected within the delay rod. 
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This delay between the initial B.F. pulse applied across the transducer 

and reflected pulses allows time for the detector circuits to recover 

from being overloaded. The actual time interval was 54 psec. 

(d) It was decided to cover the frequency range from 20 to 100 MHz. 

Mason (1958) states that if the sound pulses are to be propagated as 

if the rod diameter were infinite, it is necessary for the ratio of 

rod diameter to sound wavelength to exceed the figure of 20. At 20 

and 70 MHz this ratio is 80 and 280 respectively for a rod diameter 

of 24 mm. 

(e) The radiating quartz may be regarded as a plane piston and the 

resulting polar diagram is similar to that due to optical diffraction 

at a circular aperture. The path length L over which the sound pulse 

radiates as a plane wave, known as the Fresnel region, is determined by 

L = Ei 

R2f 
(2.6) 

  

where R is the radius of the transducer and A is the wavelength 

of sound in the medium. In the present apparatus the transducer is 

bonded on to fused silica, in which the velocity of sound c is 5970 

m/sec at room temperature. At a frequency f of 70 MHz the wavelength A 

is 8.5 x 10-3  cm. For a transducer of radius 0.7 cm, L is about 57 cm. 



Fig. 2.3. Silica cell. 
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' Plate 1. Silica cell. Plate 2. Transducer mounting. 
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At 20 IIz L is about 16 cm. The length of the delay rod was chosen to 

be 16 cm so that for frequencies as low as 20 MHz the sound pulse 

could be considered as a plane wave in the liquid. The frequency for 

which the plane wave condition applied for the total acoustic path 

length was 39 MHz. 

The end faces of the delay rod were polished optically flat to 

within a wavelength of light. It was also necessary to consider the 

parallelism of these two faces. The problem of the resultant amplitude 

of the signal from the quartz transducer when a plane wave is incident 

at an angle 0 to the normal is analogous to that of diffraction due to 

a circular aperture (Fraunhofer) and a minimum will occur when 

Ji(z) = 0 

(2.7) 
and z = 2 RAsin° - 3.83 . 

For a transducer of radius 0.7 cm. and sound wavelength of 8.5 x 10-3  am 

the first minimum occurs when 0 is about 25 minutes of arc. The end 

faces of the delay rod were polished parallel to within 1 minute of 

arc so that the ratio of the actual amplitude A to the amplitude Ao  

corresponding to 0 = 0 gave A/A0  of about 0.996. 

The silica apparatus was fabricated by Thermal Syndicate Ltd., and 

fused silica type DL103 was used for the delay rod. One end of the delay 
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rod was ground with a 1:10 taper so as to take a B.211 socket. This 

allowed the silica container and delay rod to be disconnected and 

enabled the polished surface to be accessible to thorough cleaning. 

The container consisted of a 31 mm bore transparent silica tube with a 

B.24 socket at its lower end and a B.50 cone at its upper end. A 

silica B.50 socket fitted on to the container and had a central entry 

for the reflector rod and side entries for a thermocouple and inert 

gas. Further entries allowed for the container to be evacuated and 

for mercury to be filtered directly into the container. The reflector 

rod entry was sealed by a cylindrical piece of rubber which was cut from 

the thumb of a glove. Copper wire was used to tighten the rubber 

against the reflector rod and the rubber was pulled over the entry 

tube. The entries for evacuation, gas and thermocouple were sealed 

by rubber tubing. 

The diameter of the reflector rod was chosen to be 18 mm so that 

its area was larger than that of the transducer and allowed for slight 

movements off the axis of the system. One face was polished optically 

flat and perpendicular to the axis of the rod whilst the other end 

of the rod was unpolished and was clamped to the slide. 

2.5 Transducer Mounting  

A chromium film was vacuum deposited on the end of the delay rod 
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and made contact with the brass base (the earth terminal) on which the 

delay rod rested. A copper electrode was pressed lightly against the 

transducer by means of a spring. The surface of the copper electrode 

was polished and the electrode insulated from the metal base by means 

of a disc of P.T.F.E. Three screws, one spring loaded, held the delay 

rod in position, see Plate 2, and an initial pressing of the rod on to 

the brass base was sufficient for electrical contact to be maintained. 

Great care was taken in cleaning surfaces before vacuum deposition 

in an Edwards coating plant. The delay rod was first cleaned in hot 

concentrated hydrochloric acid and then left in warm chromic acid for 

several hours. The rod was afterwards washed with distilled water, 

carbon tetrachloride and absolute alcohol. The metal for deposition 

consisted of small pieces of chromium pellet containing 1% carbon 

which were held in a tungsten spiral and outgassed at red heat for a 

few minutes. The delay rod was then mounted vertically above the 

tungsten spiral in the vacuum chamber and the silica surfaces were 

cleaned by ionic bombardment. A 15 amp current was passed through the 

tungsten to get it to white heat and it was found that the chromium 

evaporated within a few minutes. A semi-transparent film was obtained 

which, however, was not sufficiently tenacious if it was too thick. 

A chromium film was chosen since the film had to be very tenacious 

to withstand the prolonged "wringing" on of the transducer. Both faces 
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of the transducer were polished. The transducer was bonded to the 

delay rod by a thin film of silicone oil (the viscosity of the oil was 

20 centipoise). A small drop of silicone oil was put on the silica 

surface and the transducer pressed firmly on to the surface. The 

transducer was moved to and fro, under slight pressure, across the 

surface and excess silicone oil was wiped off with a piece of chamois 

leather. It was essential to avoid dust particles• getting beneath 

the transducer as then the film was scratched off. The wringing 

process was continued until, on looking through the transducer, no 

coloured interference fringes could be seen. The coupling film was 

then uniform and less than one optical wavelength thick. 

2.6 Mechanical Construction and Alignment Mechanisms  

The complete mechanical arrangement is seen in Plates 3 and 4. 

A g in. aluminium platform of 12 in. diameter is supported by three 

lrg in. diameter steel rods. Three steel rods are mounted on the aluminium 

platform and are rigidly connected to one another by means of a g in. 

aluminium cross-piece. A one inch aluminium bar, which is adjustable 

in height on the two steel rods, carries a kinematic slide and micro- 

meter, see Fig. 2.3. The slide consists of two accurately machined 

4 in. steel rods which carry the holder for the reflector rod. These 

two rods are held in position on the aluminium bar by means of seven 
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rollers, two of which are spring loaded against the rods. Vertical 

movement of the slide is controlled by rotation of the barrel micro-

meter (graduated in 0.002 cm divisions). The normal one inch movement 

of the micrometer is increased by insertion of a one inch slip rod 

between the micrometer spindle and the slide. When operating without 

the slip piece the two central spindles of the slide are held together 

by a jubilee clip in order to prevent rotation of the slide spindle 

when the micrometer is rotated. 

A diagram of the holder for the reflector rod is shown in Fig. 2.4. 

The reflector rod is held in the split steel collar when the latter is 

pulled into the shaped brass cylinder. The cylinder is held in position 

within the brass holder by means of five screws, one of which is spring 

loaded. Adjustment of the four screws causes the reflector rod to 

change the inclination of its axis to the vertical. 

The furnace rests on three levelling screws (a in. B.S.F.) mounted 

in a g in. aluminium ring. The screws fit into three radial grooves 

in the brass base plate of the furnace. Three screws, one of which 

is spring loaded, are in contact with the edge of the aluminium ring and 

can be adjusted so as to correctly position the furnace with respect 

to the reflector rod. 

2.7 Furnace  

A 8i in. brass tube of 8 in. diameter, 10 s.w.g. wall thickness, 
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forms the outer shell of the furnace. Syndanyo plates of 4 and i in. 

thickness respectively are bolted to brass flanges at the top and 

bottom of the furnace. A 4 in. brass plate forms the base of the 

furnace. Central holes in the top and bottom of the furnace allow 

entry for the silica container and delay rod respectively. Three brass 

rods fixed to the base plate support the transducer mounting. 

The silica container was surrounded by a close fitting steel tube 

in order to reduce any longitudinal temperature gradient in the central 

region of the furnace. Thermal insulation at both ends of the steel 

tube was provided by shaped rings of purimachos fire cement. The 8 in. 

steel tube was wrapped in several layers of asbestos paper, over which 

the heater tape was wound, the windings being closer at the ends. The 

ends of the heater tape were clamped in molybdenum collars at the top 

and bottom of the furnace. Electrical connections were made from the 

two insulated lead throughs in the furnace casing to the heater tape 

by thick copper wire enclosed in insulating beads. The heater tape in 

turn was covered with layers of asbestos paper and for thermal insula-

tion asbestos wool was packed around the heater element and glass wool 

inserted in the interspace with the furnace casing. 

1  Nichrome tape of g in. width, 25 s.w.g. was used as the heater 

element. The total length of tape was 450 cm. and its resistance was 

33 ohms, so that the density of windings at the centre was about 2 
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turns/cm , which increased at the ends. 

2.8 Temperature Control and Measurement  

Temperature control of the furnace was provided by a proportional 

temperature controller which used a saturable reactor (type S.R.1. 

manufactured by C.N.S. Instruments Ltd.), see Fig. 2.5. A 10 ohm 

platinum resistance was placed in the central region of the furnace and 

was strapped directly against the asbestos paper which covered the 

heater tape. The platinum resistance forms one arm of an A.C. bridge. 

Changes in resistance of the platunum are proportional to temperature 

and the output voltage from the A.C. bridge is amplified and rectified 

to give a D.C. output voltage, proportional to temperature, which is 

applied to the control windings of the saturable reactor. When the D.C. 

voltage is small the saturable reactor behaves like a high inductance 

in series with the furnace windings and results in a small furnace 

current. Increase in the D.C. voltage drives the iron circuit of the 

reactor towards saturation and therefore decreases the effective in-

ductance and results in an increase of furnace current. Thus the 

furnace current is controlled continuously. 

The equilibrium temperature reached by the furnace was altered by 

means of a variable resistance in one arm of the A.C. bridge. An 

ammeter indicated the furnace current and as a precaution against 
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breakdown of the furnace windings, the variable resistance was increased 

slowly so that the furnace current did not suddenly exceed 2 amps. A 

type SR60A saturable reactor rated at 240 volt, 6 amps, into a 30 ohm 

load was used. The sensitivity of the controller was adjusted accord-

ing to the temperature range: setting on 5 for temperatures below 

about 300°C and on 4 for temperatures above 300°C. Since there was a 

minimum controllable current to the heater it was found that the time 

for reaching temperature equilibrium between 20 and 50°C was several 

hours. Above 50°C the temperature reached equilibrium after about 

1 to 1 hr. A sound velocity measurement took about 20 minutes and in 

that time the temperature typically varied by less than 0.3°C. 

The temperature of the liquid metal was measured with a sheathed 

chromel-alumel thermocouple for which a calibration was available. 

The thermocouple was protected by a sheath of twin bore silica tubing 

(see Plate 1) and the cold junctions contained inside Pyrex tubes 

immersed in water in a Dewar. A Tinsley potentiometer was used to 

measure the thermal e.m.f. 

2.9 Evacuation and Cleaning of i•Iaterials  

A Pyrex system was constructed so that a molten metal could be 

cleaned by being forced under pressure through two sintered glass 

filters. Simple heating elements were wrapped round the Pyrex tubes. 
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The filter system could be attached directly to the silica container 

by means of a ground joint and a silica-Pyrex seal. A diagram of the 

Pyrex system is shown in Fig. 2.6 and the system is seen in Plate 5. 

The container was evacuated by means of a rotary pump and a water-

cooled vapour trap was used to condense any metallic vapour present. 

A nitrogen gas cylinder was connected to a 2 litre chamber, from which 

the gas was released slowly. The system was used to filter a sample 

of mercury into the silica container and to maintain a nitrogen atmos-

phere above the mercury. Sound velocity measurements made on this 

sample of mercury were found to be in agreement, within experimental 

error, with measurements on samples of mercury which were filtered in 

a simpler Pyrex system constructed by Jarzynski (1961). In the latter 

system mercury was filtered through a sintered glass disc and collected 

in a beaker, and was then poured into the silica container after having 

been exposed to the air. It was not found necessary to use the Pyrex 

system to filter the other molten metals directly into the container. 

In order to ensure a satisfactory transfer of acoustic signal into 

the liquid metal and to maintain the purity of the specimen, it was 

necessary to thoroughly clean the silica rods and container. Metallic 

deposits were dissolved away in concentrated nitric and hydrochloric 

acids. The container and rods were then washed with distilled water 

and cleaned with glass fibre soaked in cleaning powder (care was taken 
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not to scratch the polished surfaces of the rods). The silica was 

then left in warm chromic acid for about an hour, rinsed with distilled 

water and trichlorethylene and dried using absolute alcohol. 

2.10 Experimental Procedure  

The cleaned silica container and delay rod are connected and are 

then placed_ carefully in the furnace, the delay rod being held in 

position by tightening the three screws on the transducer mounting. 

The thermocouple and silica cap are then assembled and placed in 

position. The relevant transmitter coil and receiver unit are connected 

so as to operate at the selected frequency, uswoly 68 MHz. After 

making the electrical connection to the transducer, the transmitter, 

receiver and matching unit are alternately tuned to give maximum signal 

amplitude of those acoustic pulses which are reflected within the delay 

rod. Next the reflector rod is lowered carefully into the silica 

container and is allowed to rest freely within its holder. The micro-

meter is lowered so that the slide is free and the reflector rod is 

pushed against the delay rod under its own weight and that of the slide. 

This procedure helps to prevent a layer of oxide collecting on the 

polished surfaces when the metal specimen melts. The procedures 

which are then adopted for mercury, pure metals and alloys are described 

separately below. 
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A. Mercury  

A known weight of mercury which had previously been filtered is 

poured carefully into the silica container. The weight was usliAlly 

about 150 gm so as to give a volume of about 11 cm3. The micrometer 

is now raised and the reflector rod is clamped in its holder. Then 

the reflector rod is raised until its polished surface is a few milli-

metres above the delay rod. When the rod is moved away from the 

surface of the delay rod the amplitude of the acoustic pulses decreases 

showing that some acoustic signal is being transmitted into the liquid. 

The four reflector rod screws and three levelling screws are adjusted 

until an acoustic pulse, returned from the reflector, appears. Care 

has to be taken not to force the reflector rod against the walls of 

the container or delay rod at any stage of the manipulations. The 

screw adjustments are critical to within a turn of the levelling screws. 

The reflector surface is accurately aligned parallel to the delay rod 

surface by adjusting the levelling screws so that the amplitude of the 

reflected pulse is a maximum. The furnace platform is moved laterally 

so that the reflector rod lies centrally above the delay rod. It was 

found that the screws did not require further adjustment during the 

period of the experiment and alignment was still maintained when the 

furnace was operated up to 520°C. 

The platinum resistance leads are connected to the temperature 
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controller and the thermocouple to the potentiometer. The temperature 

controller is set to the temperature which is required and when the 

thermocouple indicates that the temperature of the liquid metal is 

varying by less than 0.3°C over a period of 20 minutes the wavelength 

of sound is measured. The positions of the first 10 minima are 

recorded and the micrometer is raised by 50 to 100 minima and the next 

ten positions are recorded. This usually corresponds to a vertical 

movement of about 1 mm. The micrometer is raised again and the pro-

cedure is repeated for the next few millimetres. The reflector rod is 

then lowered to the initial position and the above procedure is 

repeated three or more times. The sound wavelength is determined by 

averaging the differences between the micrometer positions for a known 

number of wavelengths, see Section 3.1A. The temperature and transmitter 

frequency are measured several times during the period of the measurements. 

B. Pure Metals  

Indium was the first metal investigated after mercury and it was 

found that the amplitude of the reflected pulses were small and it 

was difficult to align the system. The indium was melted in air at a 

pressure of a few mm of mercury. The measurements were carried out in 

the same manner as with mercury. An attempt was made to measure the 

sound velocity in liquid thallium in a similar manner but the acoustic 
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signal was too small. A hard crust of oxide formed on cooling and after 

cleaning the polished surfaces of the silica it was found that the 

surfaces had been pitted and required repolishing. To avoid the 

difficulty in finding the position of alignment the procedure that was 

followed for zinc, cadmium, tin, lead and bismuth gave improvement and 

was as follows. 

After the cleaned silica had been assembled in the furnace the 

reflector rod was placed in contact with the delay rod, as described 

previously in the case of mercury, and about 15 cm3  of absolute alcohol 

poured into the container. The same alignment procedure is carried 

out as for mercury, and once the system is aligned the reflector rod 

is again lowered on to the surface of the delay rod. Then the furnace 

is switched on so that the alcohol boils off and when the temperature 

has reached about 100°C pellets of the metal are dropped into the 

container. The system is sealed and when the container is pumped 

to a low pressure (about 3 mm Hg) the surfaces of the reflector and 

delay rods are forced together. The furnace temperature is raised 

to about 10
oC above the melting point of the metal and while still - 

molten the vacuum pump is switched off and atmospheric air is introduced. 

When the reflector rod is raised the reflected pulse is displayed•on 

the oscilloscope showing that the system remains correctly aligned. 

After agitating the melt for a few minutes by raising and lowering the 
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reflector rod (care being taken not to raise it out of the melt so 

preventing oxide being collected on its polished surface) it is found 

that the system is set up for the sound velocity measurements. 

C. Mercury Alloy Systems  

The reflector rod is placed in contact with the delay rod and a 

known weight mo  of mercury is poured carefully into the container. The 

system is aligned by the procedure described previously. For an alloy 

of fractional atomic concentration b the fraction by weight of soluteY 

is given by 

- b  

MO 
(1-b) TIT + b 

(2.8) 

where V10  and H1  are the atomic masses of mercury and solute respectively. 

The weight m1  of metal which is required is simply calculated from 

m1 = mo y 	
(2.9) 

The metals are cut into small pieces (about 10 mm3) so as to fit into 

the space between reflector rod and container. Zinc, indium, tin and 

lead are easily cut with stainless steel side-cutters (previously 

cleaned), whilst cadmium and bismuth are firstly sawn into pieces ready 
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for cutting. The temperature of the mercury or mercury alloy system 

is raised to about 50°C above the liquidus temperature, the rubber seal 

is removed and the metal pellets poured into the container and the seal 

is remade. In order to increase the rate of mixing the reflector rod 

is raised and lowered for a period of sevekal minutes to agitate the 

liquid. The temperature is also varied rapidly over a range of about 

100°C for at least three hours and at the sane time the melt is period-

ically agitated. Contact between reflector and delay rods is avoided 

to prevent their surfaces becoming dirty. When the velocity measure-

ments of a particular alloy concentration are completed a further weight 

of metal is added in order to make up the next composition. At high 

concentrations of solute (b of about 0.8 to 0.9) a known weight of 

mercury is added to the pure metal. 

The procedure for removing the melt from the container is as 

follows. The furnace temperature is maintained at about 40°C above 

the melting point of the pure metal or liquidus temperature for the 

alloy composition. The reflector rod is unclamped and removed; the 

thermocouple leads are disconnected and the silica cap removed. Next 

the furnace current is switched off and the platinum resistance and 

furnace leads are disconnected. The furnace is then lifted from its 

stand with the aid of asbestos gloves and is tilted so that the melt 

pours into a pyroceramic dish, standing on asbestos, placed at a con-

venient height. The furnace is placed back in its stand and allowed to 
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cool. When the silica is cool it is carefully lifted out of the 

furnace and the cleaning procedure is commenced. 

2.11 Sound Absorption Apparatus and Experimental Procedure  

The electronic apparatus used for the measurement of sound absorp-

tion in mercury is shown in Fig. 2.7. In principle a delayed pulse 

triggers the comparison oscillator and a R.F. pulse passes through a 

precision attenuator. By adjustment of the delay the comparison pulse 

is displayed beside the "ultrasonic" pulse on the oscilloscope. The 

frequency of the comparison oscillator is made equal to the transmitter 

pulse by superimposing the two signals and adjusting for the absence 

of beats. Hovement of the reflector rod in the mercury alters the 

acoustic path length and results in a change in amplitude of the 

reflected pulse. The absorption is measured by adjusting the attenua-

tor for various acoustic path lengths so that the comparison pulse is 

exactly the same amplitude as the ultrasonic pulse. The sound 

absorption coefficient is calculated from the plot of amplitude (db) 

versus path length. 

Either of the I.F. or video outputs can be displayed on the oscil-

loscope. In order to prevent overloading of the detector circuits by 

the transmitter pulse a blanking pulse is used to cut-off the first 

valve of the R.F. receiver for the duration of the transmitter pulse. 
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Block diagram of sound absorption apparatus. 
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The circuit for the blanking pulse generator is due to Williams (1958) 

and is shown in the Appendix. The circuit generates a 200 volt 

negative pulse of variable pulse width up to 30 sec and this is applied 

to the grid of the first detector valve in the R.F. receiver unit. 

The comparison oscillator is a British Communications type CT53 

covering the frequency range from 8 to 300 MHz which has provision for 

external pulse modulation. The piston attenuator used is an Advance 

type A.57 with an attenuation range of 126 db and its scale is calibrated 

in units of 0.85 db. A tuned transformer is used at the input of the 

attenuator. A 75 ohm resistor (non-inductive) is inserted in the output 

of the attenuator and a single turn of wire is loosely coupled to 

the input coil of the R.F. receiver. 

The experimental procedure is as follows. The apparatus is assembled 

and aligned as has been previously described for mercury in Section 2.10A. 

The slide is raised and a roller bearing is inserted over the micro-

meter spindle so as to reduce wear of the surfaces. The frequency of 

the comparison oscillator is adjusted to the frequency of the transmitter 

and the attenuator matching unit is adjusted for maximum signal ampli-

tude. The carrier current of the comparison oscillator is kept below 

a value which produces a strong coupling with the receiver circuits and 

causes the ultrasonic pulses to jitter. The piston attenuator settings 

for equal pulse amplitudes are recorded for various acoustic path lengths. 
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Usi1 ly  the path length is increased in intervals of 2 = and a one 

inch slip gauge is inserted before the micrometer so as to increase 

the total range of movement. The attenuator settings (db) are plotted 

against the micrometer settings and the absorption coefficient a is 

calculated from the slope. A least square fit of the data according 

to the method given by Topping (1955) is used to compute the sound 

absorption coefficient. The experimental results and difficulties 

are discussed in Section 3.11. 



3. Experimental Results and Discussions  

3.1 Sound Velocity in Mercury  

A. Typical Measurement and Results  

The measurements were performed on triply distilled mercury 

(Grade 1, Johnson, Matthey and Co. Ltd.). The experimental procedure 

has been described in Section 2.10A. A typical set of micrometer 

readings for the positions of minima is shown in Table 3.1. In order 

to prevent error due to possible irregularity of the surfaces of the 

Table 3.1 	Typical Measurement (temperature 134.500) 

Ainima No. Micrometer settings (mm) for shifts of 99 minima 

0 12.516 11.509 10.504 9.498 

1 12.50: 11.499 10.493 9.488 

2 12.495 11.489 10.482 9.478 

3 12.4j4 11.478 10.472 9.466 

12.475 11.468 10.462 9.457 

5 12.464 11.458 10.452 9.447 

6 12.454 11.448 10.442 9.436 

7 12.444 11.438 10.432 9.426 

8 12.434 11.428 10.422 9.416 

9 12.424 11.413 10.412 9.406 

35. 
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micrometer spindle and slide the number of minima were chosen so that 

the micrometer rotated almost exactly one complete rotation. All the 

measurements were taken when the reflector rod was beial raised. Two 

further sets of micrometer readings were taken along with the above 

set and it was found that the settings were reproducible to within 

0.002 mm. The average for 99A was obtained by averaging the differences 

between the first and third, and second and fourth columns. The above 

set of results gave 2.0125 + 0.001 mm for 99X and the transmitter 

frequency was 63.845 + 0.035 MHz. Thus the sound velocity was found to 

be 1399.5 + 0.7 m/sec at 134.5 ± 0.5°C. 

The variation of sound velocity with temperature is shown in Fig. 

3.1, and it is seen that the sound velocity decreases linearly with 

temperature in the temperature range up to 156°C. A linear fit to the 

sound velocity data is obtained by the method of least squares from 

the Atlas Computer Laboratory program VB01A and is expressed in the 

form 

c = c
m + d(t - tm). 
	(3.1) 

Here cm is the sound velocity at the melting point tm and d is a constant, 

that is, the value of (aa/at) . The best values and estimate2. errors 

for cm and (3c/Dt)P 
 are given in Table 3.2. Evaluation of the experimen-

tal error is discussed in the following section. 
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B. Error in Velocity Results  

The sources of possible error in sound velocity are due to the 

uncertainties in wavelength, frequency and to diffraction effects and 

non-uniform temperature in the specimen. These factors are discussed 

below. 

(a) The measurement of the wavelength depended upon the accuracy 

of determining the positions of the successive minima and the stability 

of the transmitter frequency. It was found that the rigidity of the 

framework and the use of the kinematic slide resulted in excellent 

reproducibility of the measurements. Also the reproducibility of the 

micrometer settings.. indicated the absence of large fluctuations in 

temperature. The linear expansion coefficient for fused silica is about 

0.5 x 10-6  deg C-1. Thus the correction due to changes in length of 

the reflector rod as the rod was moved a few millimetres in the liquid 

was negligible. The position of a particular minima was maintained for 

several minutes. The standard deviation on the mean value of A was 

usually about 0.05%. 

(b) It was found that the frequency could be determined to within 

0.02%. The transmitter frequency remained constant, within the error 

of frequency measurement, throughout the period of velocity measurement. 

(c) The affect of diffraction on measured wave velocities has 

been investigated by Nakimin (1964). It was found that the excess 
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velocity Ac (over the plane wave velocity c) is given by the dimension-

less parameter 

Ac  = A3/2 

c 	4n2112, 
(3.2) 

where X is the sound wavelength, R the transducer radius and ft the 

distance from the transducer. For the present study the percentage 

excess velocity at 70 MHz was less than 1 x 10-3. Measurements at 

20.59 and 12.13 MHz gave 1450.5 + 0.7 m/sec at 23.4cC and 1451.4 + 0.4 

m/sec at 22oC•  respectively for the sound velocity. It was seen that 

although the sound pulse could no longer be considered as radiating as 

a plane wave at 12 MHz the measured velocity was larger than the value 

at 68.0 MHz by only 0.03%, whilst at 20 MHz the values agreed within 

the experimental error. 

(d) Non-uniform temperature did not appear to affect the velocity 

measurements visibly and its effect was difficult to estimate. The 

vertical temperature gradient over the central region of the liquid 

was about 0.5 deg C/cm and this would result in an error of about 0.1 

m/sec in the sound velocity. The chromel-alumel thermocouple was 

checked at the boiling point of water and was found to agree with the 

melting points of the various metals to within 0.5°C. The temperature 

of the mercury was therefore probaLly correct to 0.5°C. 
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In conclusion, it was estimated that the total error in sound 

velocity was about 0.05% due to the experimental errors in sound wave-

length and frequency. The estimated errors in -(9c/9t) and cm 
were 

calculated from the computed deviations from the line of regression 

and the experimental error respectively. 

C. Comparison with Other Investigations  

The reported results for sound velocity in mercury are recorded in 

Table 3.4, and are seen to agree within a few m/sec. The values for 

c and -(Dc/at) obtained in the present study are seen to agree closely, 

within experimental error, with the recent measurements of Hill and 

Ruoff (1965b), Seemann and Klein (1965), and Coppens et al. (1967). 

The techniques employed are indicated in Table 3.4, where the notation 

is as follows:- 

A - Direct Pulse Methods 

B - Pulse Comparison Method 

C - Repetition Rate Method 

D - Phase Comparison Methods 

These techniques have already been described in Section 2.1. Abowitz 

and Gordon (1963), Hill and Ruoff (1965b) and Davis and Gordon (1967) 

used mercury maintained at a fixed temperature as the reference liquid, 

whilst Seemann and Klein (1965) used distilled water. The sound 

velocity data for mercury and distilled water were taken from Hubbard 
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and Loomis (1928) and Greenspan and Tschiegg (1957). It would appear 

that Abowitz and Gordon (1963) have underestimated their experimental 

error in sound velocity since they quote an accuracy of 0.1 m/sec in 

spite of the fact that Hubbard and Loomis give an error of 0.3 m/sec 

on their values for mercury. Also of interest is the fact that the 

results due to Hubbard and Loomis (1928) for distilled water are about 

1 m/sec higher than recent values for the sound velocity (see McSkimin 

(1965)1. The data of Greenspan and Tschiegg (1957) has likewise been 

seen to be high by 0.35 m/sec and would result in the sound velocity 

for mercury determined by Seemann and Klein (1965) being systematically 

higli.by about 0.3 m/sec. The author's preliminary results for mercury 

have been reported [Webber (1965)1 in which the highest temperature 

reached was 75°C. In contrast to the pulse comparison technique the 

methods used by Coppens et al. (1967) and in the present study 

measure directly the absolute sound velocity. The excellent agreement 

with the recent investigations show that the present apparatus and 

technique give consistent results for the sound velocity. It is also 

apparent that direct pulse methods are unreliable for measurements of 

-(ac/at) p. 

3.2 Sound Velocities in Various Liquid Metals  

The zinc, cadmium, indium, tin, lead and bismuth were 99.99, 

99.95, 99.97, 99.9, 99.99 and 99.98% pure respectively. These materials 
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Table 3.2 Results for Velocity of Sound in Pure Hetals 

Metal tm 
(oc)  

cm 

(n/sec) 

-(3c/3t) 
P 

(m/sec.deg C) 

Zn 

Cd 

Hg 

In 

Sn 

Pb 

420 

321 

-38.9 

156 

232 

328 

2851.8 + 1.4 

2242.1 + 1.0 _ 

1478.7 + 0.7 

2317.7 + 3 

2473.9 + 1.3 

1818.9 + 0.8 

0.400 + moll 

0.376 + 0.005 

0.457 + 0.003 

0.293 + 0.005 

0.223 + 0.003 _ 

0.259 + 0.003 
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were supplied by Johnson, Matthey and Co. Ltd. The experimental 

procedure has been described in Section 2.10B. In the case of zinc, a 

draught of air from a fan was used to cool the outer casing of the 

furnace and air at a few lb/in2  pressure blown over the transducer 

mounting so as to prevent a deterioration of the transducer bond. The 

poor transmission of ultrasound into the indium resulted in a slightly 

greater error in the measurement of A as compaked with the other pure 

metals. 

It is seen from Figs. 3.2, 3.3, 3.4, 3.5, and 3.0 that within 

experimental error the sound velocity decreases linearly with increasing 

temperature in liquid zinc, cadmium, indium, tin and lead. A linear 

fit to the sound velocity data is used and the best values and estimated 

cm and (3c/at) for these liquid metals are shown in Table 3.2. 

The present results are compared with other investigations in Table 3.5 

and discussed in Section 3.3. 

Since Hill and Ruoff (1965b) had found that the sound velocity in 

liquid bismuth decreased non-linearly with temperature, the sound 

velocity in liquid bismuth was measured in greater detail, particularly 

below 300°C. The present results are recorded in Table 3.3 and plotted 

as a function of temperature in Fig. 3.7. A second and third degree 

polynomial were fitted to the data by the method of least squares from 

the Atlas Computer Laboratory program VCO1A and it was found that the 
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Table 3.3 	Sound Velocity in Liquid Bismuth 

t 

(°c) (m/sec) 
t 

(°c) 
(m/sec) 

273 1648.8 309 1645.7 

274.5 1649.1 310.5 1645.3 

274.5 1648.4 317 1644.5 

275.5 1648.8 321.5 1644.3 

276 1648.3 325.5 1644.3 

276.5 1648.5 333.5 1643.1 

277 1648.4 334 1643.0 

277.5 1648.7 340.5 1642.6 

279 1648.7 341.5 1642.5 

279 1648.4 343 1641.9 

279.5 1648.5 346 1642.0 

282 1647.8 349 1641.9 

284.5 1648.1 349.5 1641.1 

284.5 1647.9 354.5 1640.8 

285 1647.8 360.5 1640.3 

287 1647.8 368.5 1639.1 

287.5 1647.6 377.5 1638.1 

290.5 1647.5 381 1637.7 

293.5 1646.9 392 1636.1 

295.5 1646.8 401.5 1635.1 

298.5 1647.1 408 1634.1 

306 1646.2 

Estimated error in c = 0.7 m/sec 
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best curve fit within experimental error was given by 

c = 1653.4 + 4.52 x 10-2t - 2.27 x 10-4t2, 	(3.3) 

valid for t 271°C. 

Estimated error in zeroth coefficient = 0.7 m/sec. 

Estimated error in first coefficient = 0.12 x 10-2  MjSee.dee C. 

Estimated error in second coefficient = 0.33 x 10-4  m/sec.deg C2. 

The present result is compared with other investigations in Table 3.5 

and discussed more fully in Section 3.3F. 

3.3 Discussion of Results for Pure Metals  

A compilation of sound velocity measurements is recorded in Table 

3.5. The present results for pure metals are discussed below. 

A. Zinc  

The present result for sound velocity is in excellent agreement 

with that of Gitis and Mikhailov (1966b). The inaccuracy of direct 

pulse methods is readily apparent. It is seen from Fig. 3.2 that the 

present results show that the sound velocity decreases linearly with 

temperature within the temperature range of the experiment, whilst 

Gitis and Mikhailov (1966b) report that the sound velocity falls off 

more rapidly as the temperature increases. Murthy and Rao (1967) 

101. 



Table 3.4 Comparison of Published Values for Velocity of Sound in Mercury 

t 

(°C) 

c 
(m/sec) 

-(Dc/at) 
P 

(m/sec .deg C) 

Technique Temperature 

range (°C) 

Investigator 

30 1446.2 + 0.3 0.464 + 0.003 D 0 	- 	70 Hubbard and Loomis (1928) 

23.8 1449 	+ 2 D 20 	- 	28 Ringo et al (1947) 

50 1440 	± lo 0.7 A 50 	- 	150 Kleppa (1950) 

20 1452 	+ 4 0.312 D 20 	- 	100 Polotskii and Khodov (1955 

20 1452 	+ 3 0.37 D 20 	- 	100 Golik et al 0.961) 

30 1446.4 + 0.1 0.46 + 0.002 B Abowitz and Gordon (1963) 

30 1448 	+ 2 0.60 B 25 	- 	130 Hunter et al (1963) 

25 1450 	+ 6 0.45 D 25 	- 	204 Jarzynski (1963) 

30 1446 C Beyer and Coppens (1965) 

30 1447.4 0.473 + 0.002 B 30 	- 	197 Hill and Ruoff (1965b) 

20 1451.6 + 0.4 0.458 + 0.004 B -36 	- 	60 Seemannand Klein (1965) 

20 1451.5 + 0.7 0.45 + 0.01 D 20 	- 	75 Webber (1965) 

30 1446.4 + 0.2 0.462 C 30 	- 	199 Coppens et al (1967) 

21.9 1450.1 ± 0.3 0.464 ± 0.003 C 22 	- 	53 Davis and Gordon (1967) 

30 1447.2 ± 0.7 0.457 + 0.003 D 20 	- 	156 Webber 

0 
IN) • 



Table 3.5 Comparison of Published Values for Velocity of Sound in Pure Metals 

Metal t 

(°C) 

c 

(m/sec) 

-(8c/8t) 
P 

(m/sec .deg C) 

Technique Temperature 

range (°C) 

Investigator 

Zn 420 2790 + 60 A 420 - 	480 Kleppa (1950) 

450 2700 A Plass (1963) 

440 2840 ± 40 0.268 A 440 - 	850 Kazakov et al (1964) 

420 2850 + 6 0.305 D 420 - 	850 Gitis and Mikhailov (1961 

428 2816 D 428 - 	670 lairthy and Rao (1967) 

420 2851.8 + 1.4 0.400 + 0.004 D 424 - 	521 Webber 

Cd 321 2200 + 20 0.5 A 321 - 	360 Kleppa (1950) 

335 2215 + 7 A Polotskii et al (1959) 

331 2223 + 7 A Khodov (1960) 

360 2150 A Plass (1963) 

321 2220 + 34 0.618 A 330 - 	750 Pronin and Filippov (196;  

321 2256 + 5 0.29 D 321 - 	700 Gitis and Mikhailov (1961 

422 2225 0.58 D 420 - 	650 Murthy and Rao (1967) 

321 2242.1 + 1.0 0.376 + 0.005 D 323 - 	406 Webber 

In 156 2215 + 20 0.5 A 156 - 	260 Kleppa (1950) 

160 2313 C Beyer and Coppens (1965) 

167 2310.7 0.296 + 0.001 B 167 - 	345 Hill and Ruoff (1965b) 



Table 3.5 continued 

Metal t 

(°C) 

• 
c 

(m/sec) 

-(3c/at) 
P 

(m/sec.deg C) 

Technique Temperature 

range (°C) 

Investigator 

In 156 2315 + 5 0.27 D 156 - 	950 Gitis and Mikhailov (1961 

156 2314,2 ± 0.6 0.29 C 159 - 	230 Coppens et al (1967) 

156 2317.7 ± 3 0.293 ± 0.005 D 159 - 	351 Webber 

Sn 232 2270 + 20 0.7 A 232 - 	380 Kleppa (1950) 

232 2464 + 4 0.236 ± 0.001 B 230 - 	335 Gordon (1969) 

232 2473 + 12 0.247 D 240 - 	500 McSkimin (1959) 

247 2454 + 8 A Polotskii et al (1959) 

243 2466 + 8 0.2 A Khodov (1960) 

240 2470 A Plass (1963) 

232 2420 + 50 0.211 A 232 - 	620 Pronin and Filippov (196:  

240 2470 C Beyer and Coppens (1965) 

242 2470 + 5 D Litovitz and Jarzynski C 

232 2480 + 6 0.3 D 232 - 	800 Gitis and Mikhailov (1961 

232 2481 0.284 B Nagel (1966) 

232 2472 + 3 C 239 - 	262 Coppens et al (1967) 

232 2473.9 ± 1.3 0.223 + 0.003 D 235 - 	401 Webber 

Pb 328 1790 + 15 0.5 A 328 - 	380 Kleppa (1950) 

328 1776 + 4 0.277 + 0.006 B 328 - 	370 Gordon (1959) 

340 1834 + 6 A Polotskii et al (1959) 

344 1826 + 6 0.3 A Khodov (1960) 

b) 

a) 

965) 
a) 

H 0 
• 



Table 3.5 continued 

Metal t 

(°C) 

c 

(m/sec) 

-(ac/3t) 
P 

(m/sec.deg C) 

Technique Temperature 

range (°C) 

Investigator 

Pb 340 1760 A Plass (1963) 

328 1810 + 27 0.381 A 328 - 	930 Pronin and Filippov (196 

330 1820 + 4 0.3 D 328 - 	800 Gitis and Mikhailov (196 

328 1816 0.273 B Nagel (1966) 

328 1818.9 4-'9.8 0.259 ± 0.003 D 330 - 	428 Webber 

Bi 271 1635 ± 15 0.5 A 271 - 	380 Kleppa (1950) 

287 1663 + 5 A Polotskii et al (1959) 

289 1666 + 5 A 289 - 	356 Khodov (1960) 

305 1650 ± 8 0.8 D 305 - 	442 Jarzynski (1963) 

280 1650 A Plass (1963) 

271 1620 + 24 0.209 A 271 - 	930 Pronin and Filippov (196 

318 1639 C Beyer and Coppens (1965) 

280 1645 B 280 - 	410 Hill and Ruoff (1965b) 

271 1674 + 4 0.18 D 271 - 	850 Gitis and Mikhailov (196 

271 1650 0.13 B Nagel (1966) 

318 1639.4 + 2 C 318 - 	357 Coppens et al (1967) 

271 1649.0 + 0.7 D 273 - 	408 Webber 
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report that the sound velocity increases in the temperature interval 

between the melting point and 500°C and then falls linearly with in-

creasing temperature. The latter measurements would appear to be 

erroneous. The excellent agreement with other investigations of the 

present values for -(ac/at) in other pure metals suggests that the 

value for -(3c/at) determined by Gitis and Mikhailov is slightly in 

error. 

B. Cadmium  

The present result for sound velocity differs from that of Gitis 

and Mikhailov (1966b) by 14 m/sec and the direct pulse methods give 

values which are lower by about 20 m/sec. Gitis and Mikhailov observed 

that the sound velocity decreased linearly with temperature until 

about 600°C and then decreased more rapidly with temperature. It is 

seen from Fig. 3.3 that the present result shows that the sound velocity 

decreases linearly with temperature within the temperature range of 

the experiment. There is a large variation in the reported values for 

-(ac/at)p, the values due to Pronin and Filippov (1963a) and Murthy 

and Rao (1967) being exceptionally high. 

C. Indium  

Apart from the result obtained by Kleppa (1950) the sound veloci-

ties determined by various investigators agree to within 3 m/sec. The 

values for -(ac/at) obtained by Hill and Ruoff (1966b), Coppens et al. 



107. 

(1967) and in the present study agree within the estimated experimental 

errors. The value determined by Gitis and Mikhailov (1966b) is about 

7% lower and they report that the sound velocity decreases linearly 

with temperature up to about 875°C and then decreases more rapidly 

with temperature. 

D. Tin  

There is fairly good agreement between the literature values for 

sound velocity. Nine investigations agree to within 10 m/sec with the 

present determination, and five investigations to within 2 m/sec. The 

sound velocity determined by Kleppe (1950) is seen to be erroneous. 

The values for -(3c/3t) are seen to be in fair agreement. In the 

temperature range from the melting point to 400°C the present results 

show that the sound velocity decreases linearly with temperature (see 

Fig. 3.5) whereas Gitis and Mikhailov (1966a) report that the velocity 

decreases non-linearly and less rapidly as the temperature increases. 

E. Lead  

The present result for sound velocity at the melting point agrees 

to within 5 m/sec with the values obtained by Gitis and Mikhailov 

(1966a) and Nagel (1966). These three investigations give values for 

-(3c/3t) which are in fairly close agreement. The value of c determined 

by Gordon (1959) is seen to be low by 43 m/sec whereas -(3c/3t) is 

close to the present result. The measurements of Kleppa (1950) and 
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Plass (1963) are again seen to be fairly inaccurate. Gitis and Mikhailov 

(1966a) report that the sound velocity decreases non-linearly with 

temperature in the temperature interval 328 to 400°C, contrary to the 

present result (see Fig. 3.6). 

F. Bismuth  

At the melting point the present result agrees to within 4 m/sec 

with the results of Hill and Ruoff (1965b) and Nagel (1966). The 

result due to Gitis and Mikhailov (1966a) is seen to be higher by 25 

m/sec. It is seen from Fig. 3.7 that in the present study the sound 

velocity does not remain constant in the temperature interval between 

the melting point and 290°C as reported by Hill and Ruoff (1965b) but 

decreases with increasing temperature. Above 320°C the results of Hill 

and Ruoff, Nagel (1966), Coppens et al (1967) and the present investi-

gation for the variation of velocity with temperature are very similar. 

The values for -(3c/at) obtained by Kleppa (1950) and Jarzynski (1963) 

are seen to be exceptional) high. 

G. Summary of Sound Velocity Results in Pure Metals  

It has been seen that the present apparatus and measuring technique 

is capable of giving results for sound velocity which are in close 

agreement with other investigations. Measurements obtained by direct 

pulse methods are seen to be inaccurate and unreliable, particularly 

the original results of Kleppa (1950). Pulse comparison repetition rate 
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and phase comparison techniques are seen to be more accurate and con-

sistent with one another. Although there is a large scatter in values 

of -(Dc/3t) reported in the literature, the present values are in 

fairly close agreement with other investigations on mercury, indium, 

tin, lead and bismuth where the values are more consistent. This 

suggests that for zinc and cadmium the present values for -(ac/at) 
p 

can be considered as more reliable. 

3.4 Sound Velocity in Mercury-Zinc Alloys  

The experimental procedure is described in Section 2.10C. The 

results for the mercury alloy systems are presented in order of increas-

ing valency and atomic weight of the solute whereas the experimental 

order is Hg-In, Hg-Bi, Hg-Cd, Hg-Pb, Hg-Sn and Hg-Zn. Each alloy 

system is maintained at a temperature above the liquidus temperature 

given by Hultgren et al. (1963) for the alloy composition. If the 

liquid alloy is taken below the liquidus temperature the sound velocity 

decreases rapidly as is expected since the solute becomes a suspension 

in mercury and the sound velocity tends towards the value for pure 

mercury. If this occurs accidentally the temperature is raised above 

the liquidus te=perature and the liquid is agitated until the sound 

velocity measurements are consistent within themselves, showing that 

the alloy is thoroughly mixed. 
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All the mercury-zinc alloys are prepared by adding a known weight 

of zinc to mercury. Within the temperature range of the experiment 

the sound velocity is found to decrease linearly with temperature for 

each alloy. A linear fit to the velocity data is obtained from the 

Atlas Computer Laboratory program VB01A and the results are recorded 

in Table 3.6 for each composition. The error in the fractional atomic 

concentration a varies from about 0.1 to 0.3%. 

The sound velocities are calculated for each composition at 158 

and 350°C (see Table A.1) and are plotted in Fig. 3.8. Solid and 

dashed lines on the graph correspond to concentrations for which the 

alloy composition is above or below, respectively, the liquidus tem-

perature. It is seen from Fig. 3.8 that the addition of zinc to mercury 

causes the sound velocity to increase, which confirms the measurements 

of Golik et al. (1961) and Abowitz and Gordon (1963). Contrary to the 

variation of sound velocity with composition in mercury-thallium alloys 

reported by Abowitz and Gordon (1963), (see Fie. 1.1), the graphical 

curvature between the pure component values is concave rather than 

convex. A theoretical approach to the variation of sound velocity with 

composition is discussed in Section 4.6. 

The variation of -(8c/30 with alloy composition is shown in 

Fig. 3.14. The value of -(3c/at) is seen to decrease rapidly with 

increase in atomic concentration of zinc, Golik et al. (1961) and 



Abowitz and Gordon (1963) report a more rapid decrease with composition 

than is found in the present investigation. 

3.5 Sound Velocity in Mercury-Cadmium Alloys  

Difficulty in measurement of sound velocity was experienced due 

to poor sound transmission into the molten alloys. As a result new 

alloy compositions were made up at 20 and 30 at. % Cd and additional 

cadmium was added to these to vary the composition. 

The sound velocity results are recorded in Table 3.7 and are 

plotted as a function of composition at 158 and 350°C in Fig. 3.9; 

the calculated data are shown in Table A.2. The liquidus temperature 

of 158°C corresponds to the alloy composition 54 at. % Cd alultgren 

et al. (1963)]. At 350°C all the mercury-cadmium alloys are above 

their liquidus temperatures. It is seen from Fig. 3.9 that the sound 

velocity increases smoothly with concentration of Cd and shows a 

graphical convex curvature between the two pure component values. The 

variation of -(3c/30 with composition is shown in Fig. 3.15, from 

which it is seen that the value of -(ac/Dt) decreases fairly rapidly 

in the composition range up to 30 at. % Cd and then remains fairly 

constant. Golik et al. (1961) and Abowitz and Gordon (1963) report a 

more rapid decrease of -(ac/at) with concentration of Cd than is found 

in the present investigation. 
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3.6 Sound Velocity in Mercury-Indium Alloys  

Mercury-indium was the first alloy system investigated. An alloy 

composition of 2 at. % In was prepared in a beaker and was poured into 

the silica container. At the end of the measurements the alloy was 

removed and the container cleaned. A second alloy composition of 2 at. 

% In was prepared in the usual manner, as described in Section 2.10C, 

and it was found that the two sets of measurements agreed within the 

experimental error. Several initial compositions were prepared and the 

composition varied, the different series of compositions over-lapping 

one another. The sound velocity was found to decrease linearly with 

temperature for all the alloy compositions. 

The results are recorded in Table 3.8 and the calculated values 

for the sound velocity at 160°C for various compositions are shown in 

Table A.3. From Fig. 3.10 it is seen that the sound velocity increases 

smoothly with increasing at. % In. The values of -(ac/3t)p  are plotted 

as a function of composition in Fig. 3.16 and it is seen that -(ac/at)p  

decreases rapidly in the composition range up to about 30 at. % In and 

then remains fairly constant. 

3.7 Sound Velocity in Mercury-Tin Alloys  

The usual experimental procedure was carried out for compositions 

up to 40 at. % Sn, whilst in the composition range between 50 and 90 

at. % Sn mercury was added successively to tin or mercury-tin alloys. 
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It was found that the mercury-tin alloys needed to be agitated for about 

a day before the sound velocity measurements became consistent within 

themselves. The sound velocity was found to decrease linearly with 

temperature for all the compositions. 

The results are recorded in Table 3.9 and the calculated sound 

velocities at 240 and 350°C are plotted as a function of composition 

in Fig. 3.11, the data for which are shown in Table A.4. It is seen 

that the sound velocity increases smoothly with at.% Sn. The value of 

-(ac/at) is plotted as function of composition in Fig. 3.17 and it is 

found that -(ac/at) decreases rapidly to a minimum at about 20 at.% Sn 

and then increases to a value which is greater than that for pure tin. 

3.8 Sound Velocity in Mercury-Lead Alloys  

Poor sound transmission occurred in the composition range up to 

20 at.% Pb and several of the compositions had to be repeated. The 

acoustic signal improved at higher concentrations of lead and it was 

possible to vary the composition as usual. It was found that the sound 

velocity decreased linearly with temperature in all the alloy composi-

tions. 

The sound velocity results are recorded in Table 3.10. Sound 

velocity is plotted as a function of composition at 158 and 350°C in 

Fig. 3.12 and it is found to vary smoothly across the alloy system. 
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Calculated data for Fig. 3.12 are shown in Table A.5. The value of 

-(Bc/at) is plotted as a function of composition in Fig. 3.18, from 

which it is seen that -(3c/at) decreases rapidly to a minimum at about 

15 at.% Pb and then increases to a value which is greater than that for 

pure lead. It is noted that the variation of -(3c/at) with composition 

is similar to that found in the mercury-•tin system. 

3.9 Sound Velocity in Mercury-Bismuth Alloys  

The usual experimental procedure for mercury alloys was carried 

out. The composition 15 at.% Bi was repeated and it was found that the 

two sets of measurements agreed to within 1 m/sec. No experimental 

difficulty was experienced in obtaining consistent measurements once 

the usual agitation processes had been carried out. The 50 at.% Bi 

composition was taken below its liquidus temperature and the expected 

drop in sound velocity was observed. 90 at.% Bi was obtained by adding 

mercury to liquid bismuth. 

The sound velocity results are recorded in Table 3.11 and Fig. 

3.13 shows that at 158 and 350°C the sound velocity increases smoothly 

with concentration of bismuth. Liquidus temperature of 158°C corres-

ponds to the alloy 48 at.% Bi. The velocity data for Fig. 3.13 are 

recorded in Table A.6. From Fig. 3.19 it is seen that --(De/at) 

decreases rapidly in the composition range between 0 and 10 at.% Bi 

and then decreases approximately linearly with increasing at.% Bi. 



Table 3.6 Sound Velocity in Mercury- Zinc Alloys 

Fractional atomic 

concentration 

b of Zn 

Temperature 

(°C) 

c 

(m/sec) 

-(3c/at) 
P 

(m/sec•deg C) 

Temperature 

range (°C) 

0.0201 4o 1472.9 + 0.7 0.438 + 0.008 40 - 	110 

0.0503 81 1500.0 + 0.8 0.421 + 0.006 81 - 	164.5 

0.100 72 1565.7 + 0.8 0.362 + 0.006 71.5 - 	178 

0.150 87 1623.0 ± 0.8 0.350 + 0.006 87 - 	201 

0.200 115 1669.1 + 0.8 0.326 ± 0.006 114.5 - 	221 

0.250 143 1716.7 + 0.9 0.312 + 0.006 143 - 	245 

0.300 161 1769.2 + 0.9 0.317 ± 0.006 160.5 - 	270 

0.350 178 1822.7 + 0.9 0.304 + 0.006 178 - 	277.5 

0.400 208 1872.0 + 0.9 0.295 + 0.006 207.5 - 	298 

0.500 228 19883 + 1.0 0.276 + 0.006 227.5 - 	321.5 



Table 3.7 Sound Velocity in Mercuxy-Cadmium Alloys 

Fractional atonic 

concentration 

b of Cd 

Temperature 
co 

c 

(m/sec) 

-(3c/at) 
P 

(m/sec.deg C) 

Temperature 

range (°C) 

)0.0200 54 1463.1 + 0.7 0.451 + 0.005 53 - 	121 

0.0500 72 1491.0 + 0.7 0.429 + 0.008 71.5 - 	161 

0.100 85 1543.1 + 0.8 0.414 + 0.006 84 - 	164 

0.150 103 1587.4 + ...9 0.389 + 0.011 103 - 	160 

0.200 104 1638.6 4- 0.8 0.395 + 0.009 103 - 	184 

0.250 113 1682.9 + 0.8 0.378 + 0.008 113 - 	202.5 

0.300 133 1721.2 + 1.0 0.348 + 0.012 132.5 - 	196.5 

0.350 148 1760.7 + 0.9 0.359 + 0.010 147.5 - 	236 

0.400 169 1797.3 + 1.0 0.347 + 0.014 169 - 	260.5 

0.500 176 1876.6 + 1.0 0.354 ± 0.011 176 - 	265.5 

0.600 227 1939.5 ± 1.0 0.346 + 0.010 226 - 	286 

0.700 264 2002.3 + 1.o 0.359 + 0.014 263 - 	303.5 



Table 3.8 Sound Velocity in Mercury-Indium Alloys 

Fractional atomic 

concentration 

ti of In 

Temperature 

(°C) 

c 

(m/sec) 

-(Dc/at) 

(m/sec .deg
P 
 C) 

Temperature 

range (°C) 

0.0060 22 1459.4 + 0.7 0.439 + 0.005 22 - 	103 

0.0100 35 1459.7 + 0.7 0.441 + 0.005 35 - 	109 

0.0150 23 1471.3 + 0.7 0.439 +0.005 22 - 	113 

0.0200 33 1474.4 + 0.7 0.436 + 0.005 32.5 - 	107 

0.0200 23  1478.3 + 0.7 0.431 + 0.008 22.5 - 	117 

0.0500 24 1517.6 + 0.8 0.394 + 0.006 23 - 	111.5 

0.0800 31 1553.6 + 0.8 0.383 + 0.006 30 - 	110.5 

0.0946 24 1573.1 + 0.8 0.364 + 0.006 23 - 	124 

0.140 24 1624.3 + 0.8 0.344 + 0.006 23 - 	104.5 

0.181 24 1667.5 + 0.8 0.334 + 0.006 23 - 	138 

0.250 41 1727.6 + 0.9 0.299 + 0.006 4o.5 - 	129 

0.300 23 1777.9 + 0.9 0.281 + 0.010 23 - 	117.5 

0.350 24 1820.4 + 0.9 0.289 + 0.006 23.5 - 	110.5 

0.400 22 1863.4 ±. 1.0 0.299 + 0.010 21.5 - 	123.5 

0.500 23 1942.4 + 1.0 0.283 + 0.006 22 - 	126 

0.600 21 2020.2 + 1.0 0.282 + 0.004 20.5 - 	206 

0.725 63 2108.0 + 1.1 0.288 + 0.004 62.5 - 	165.5 



Table 3.9 Sound Velocity in Mercury-Tin Alloys 

Fractional:atomic 

concentration 

b of Sn 

Temperature 
co 

c 

(m/sec) 

-(ac/at) 
P 

(m/sec.deg C) 

Temperature 

range (°C) 

0.0200 67 1475.2 + 0.7 0.405 + 0.006 66.5 - 	134.5 

0.0500 92 1509.1 + 0.8 0.311 + 0.011 91.5 - 	153 

0.100 115 1564.8 + 0.8 0.275 + 0.008 114.5 - 	190.5 

0.142 126 1611.5 + 0.3 0.215 + 0.006 125.5 - 	224 

0.200 118 1676.0 + 0.8 0.195 + 0.006 117.5 - 	226 

0.250 124 1732.8 + 0.9 0.200 + 0.006 123.5 - 	233.5 

0.300 130 1787.3 ± 0.9 0.208 + 0.006 129.5 - 	258.5 

0.400 145 1890.2 + 0.9 0.215 + 0.006 145 - 	259 

0.499 166 1985.1 + 1.0 0.226 + 0.006 165.5 - 	299.5 

0.598 162 2084.4 + 1.0 0.232 + 0.006 161.5 - 	326 

0.748 201 2223.3 +1.1 _ 0.264 + 0.009 _ 200.5 - 	326 

0.899 224 2373.8 + 1.2 0.276 + 0.007 224 - 	332.5 



Table 3.10 Sound Velocity in Mercury-Lead Alloys 

Fractional atomic 

concentration 

b of Pb 

Temperature 

(°C) 

c 

(m/sec) 

-(3c/3t)
P  

(m/sec.deg C) 

Temperature 

ranGe (°C) 

0.0200 62 1469.1 + 0.7 0.389 + 0.008 61.5 - 	104.5 

0.0400 82 1484.6 + 0.7 0.362 + 0.008 82 - 	127.5 

0.0500 82 1492.3 ± 0.7 0.301 + 0.008 81 - 	137.5 

0.0527 77 1494.8 + 0.9 0.264 + 0.012 76.5 - 	120 

0.0800 100 1511.3 + 0.8 0.264 + 0.008 99 - 	150.5 

0.0971 104 1520.5 + 0.8 0.236 + 0.008 104 - 	166.5 

0.050 118 1558.5 + 0.8 0.215 + 0.008 117 - 	194.5 

0.200 124 1592.8 + 0.8 0.222 + 0.008 123.5 - 	216 

0.250 132 1625.9 + 0.8 0.239 + 0.008 132 - 	230.5 

0.300 136 1658.3 + 0.8 0.255 + 0.008 136 - 	240.5 

0.350 148 1685.6 + 0.8 0.275 + 0.008 148 - 	257 

0.40o 163 1709.2 +.0.9 0.307 + 0.008 162.5 - 	268.5 

0.450 168 1734.1 + 0.9 0.305 + 0.008 167.3 - 	287 

0.500 182 1751.7 + 0.9 0.331 + 0.008 181.5 - 	275 

0.600 204 1782.7 + 0.9 0.325 + 0.008 203.5 - 	308 

0.700 242 1801.2 + 0.9 0.333 ± 0.008 241 - 	309 

0.796 27o 1814.6 + 0.9 0.327 + 0.008 269.5 - 	332%5 



Table 3.11 Sound Velocity in Mercury-Bismuth Alloys 

Fractional atomic 

concentration 

b of Bi 

Temperature 
(oc) 

c 

(m/sec) 

-(ac/at) 

(m/sec.deg
P 
 C) 

Temperature 

range (°C) 

0.0200 73 1456.9 + 0.7 0.393 + 0.012 73 - 	105.5 

0.0500 74 1482.8 + 0.7 0.331 + 0.010 74 - 	140.5 

0.100 88 1511.6 + 0.8 0.309 + 0.010 87.5 - 	167 

0.150 104 1535.1 + 0.8 0.251 + 0.010 103.5 - 	170.5 

0.200 120 1556.3 + 0.9 0.253 + 0.013 119 - 	215.5 

0.250 126 1577.6 + 0.8 0.243 + 0.010 126 - 	226 

0.300 129 1595.2 + 0.9 0.241 + 0.012 128.5 - 	234.5 

0.350 140 1606.4 + 0.8 0.215 ± 0.008 139.5 - 	249 

0.400 144 1617.3 + 0.3 0.199 + 0.008 143.5 - 	253 

0.450 161 1625.1 + 1.0 0.200 + 0.014 160 - 	261.5 

0.500 165 1630.4 + 0.9 0.164 + 0.012 164.5 - 	261 

0.600 196 1638.6 + 0.8 0.167 + 0.008 196 - 	305.5 

0.700 216 1642.5 + 0.8 0.136 + 0.008 215.5 - 	304 

0.893 271 1644.9 + 0.8 0.101 + 0.008 270.5 - 	310.5 
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3.10 Discussion of Sound Velocity Results for Mercury Alloys  

The results for dilute mercury alloys can be compared with the 

measurements of Golik et al.(1961) and Abowitz and Gordon (1963). 

Comparison of results for mercury-zinc and mercury- cadmium alloys are 

shown in Figs. 3.20 and 3.21. At 158°C the sound velocity extrapolated 

from the measurements due to Abowitz and Gordon is 1387.5 m/sec for 

mercury, in excellent agreement with the present result, whilst the 

measurements due to Golik et al. give 1400 m/sec. It is seen from 

Fig. 3.20 that the present results for dilute Hg-Zn alloys are in good 

agreement with the other investigations. However, for dilute IIg-Cd 

alloys, the results due to Golik et al. agree fairly closely with the 

present results, whilst Abowitz and Gordon find that the sound velocity 

increases more rapidly with at.% Cd (see Fig. 3.21). The results due 

to the latter are in good agreement with the present results for dilute 

Hg-Sn, Hg-Pb and Hg-Bi alloys (see Fig. 3.23, 3.24, and 3.25 respec-

tively) but are about 1% higher for dilute Hg-In alloys (see Fig. 3.22). 

This difference is outside experimental error and the reason is not 

readily apparent. 

When the variations of sound velocity with composition at low 

atomic concentrations for each mercury alloy system are compared, it is 

found that the addition of tin produces the largest increase of sound 

velocity. The measurements on Hg-K due to Abowitz and Gordon (1963) 
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show that the addition of potassium causes a slight decrease of sound 

velocity, opposite in direction to the other mercury alloys. Study 

of the variation of sound velocity across the entire composition range 

for each alloy system, at a fixed temperature, shows that with the 

exceptions of Hg-K and Hg-Zn, the sound velocity at a given composition 

is greater than the weighted mean of the sound velocities of the pure 

components. The variation of sound velocity with composition of alloy 

is discussed from a theoretical viewpoint in Section 4.6. 
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3.11 Sound Absorption in Mercury  

A. Sound Absorption Results  

The sound absorption in distilled water at room temperature was 

measured in order to test the apparatus and experimental procedure. 

It was found that the value for a/f2  of (24.6 ± 0.5) x 10'17  cm 1  sect 

at 22.3°C was in fair agreement with the value of (24.3 + 0.3) x 10-17  

cm-1  sect at the same temperature reported by Pinkerton (1947). However, 

greater difficulty was experienced in obtaining consistent sound ab-

sorption measurements in mercury, for which a/f2  is about 5.7 x 10-17  

cm-1  sect at room temperature. One of the difficulties was due to the 

depression of the base line of the oscilloscope caused by overloading 

of the electronic circuits, leading to uncertainty in the signal ampli-

tudes. In order to eliminate this effect measurements were made with 

both the I.F. and video outputs, together withthe use of a blanking 

pulse. The results obtained with these two techniques were found to be 

the same within experimental error. It was also found preferable to 

keep the comparison pulse in a fixed position, usually before the first 

reflected pulse. All the measurements were made at 68 MHz; the ultrasonic 

pulse was too small for a measurement to be made at 92 MHz. 

The present results for sound absorption in mercury are shown in 

Table 3.12 and a/f2  is plotted as a function of temperature in Fig. 3.26. 

It is seen from Fig. 3.26 that a/f2  increases approximately linearly with 
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temperature and the present results agree within experimental error 

with the measurements ofJarzynski (1963) and Hunter et al. (1963). 

Table 3.12 Sound Absorption Results for Mercury 

B. Error in Sound Absorption Results  

The sources of possible error in a/f2  are due to uncertainties in 

the absorption coefficient a and in the frequency, and to diffraction 

effects and non-uniform temperature in the specimen. These contributions 

are discussed below. 

a) A typical decrease in pulse amplitude for 2 cm. increase in 
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Fig. 3.26. Sound absorption as a function of temperature in mercury. 
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acoustic path length was about 7 db. Attenuator settings could be read 

to + 0.1 db. and the pulse heights aadjusted to equality to within 

+ 0.2 db. A plot of attenuator setting (db) against acoustic path 

length gave the absorption D in db/cm, from which the sound absorption 

coefficient a(cm-1) was calculated according to the relation 

a = D/8.68 	• 	(3.10) 

The measurements were taken with the reflector rod being raised and 

lowered and at least six absorption measurements were made at a given 

temperature. It was found that measurements of D were only reprodu-

cible to within 3 to 5%, accuracy of measurement improving at higher 

temperature since the total change in amplitude was greater. 

b) The measurement of frequency has already been discussed in 

Section 3.1B and was accurate to within 0.02%.. Thus the possible error 

in attenuation due to this cause was 0.04% and was negligible. 

c) When the present apparatus was operated at 68 11Hz the sound 

pulse could be considered to be propagating as a plane wave in the 

liquid (see Section 2.4e). Even within the Fresnel zone correction 

of the apparent absorption, which includes a diffraction loss, must be 

considered since the total sound absorption of the sample was small. 

This diffraction loss which is geometrical in nature due to the gradual 

spreading out of the ultrasonic beam has been studied by Seki et al. (1956). 
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They consider the case when the transducer vibrates as a piston and 

the source radiates into a semi-infinite medium. They assume that the 

amplitude of the received pulse is proportional to the maximum value 

of the pressure averaged over the surface of the receiving transducer 

at a given time. The decrease in amplitude of the pulse, due to 

diffraction, is a function of distance and is given approximately by 

1.7 db per unit of distance R2/X, where R is the transducer radius and A 

the sound wavelength. In addition, when the liquid is confined 

laterally by the walls of a container, as in the present apparatus, 

the diffraction pattern is influenced by reflection at the walls and 

depends upon the ratio R'/R of the radii of the transducer and container 

(R'), and on the acoustic impedances of the liquid and wall material 

see Carome and Witting (1961) and Carome et al. (1961). These authors 

find that for R'/R = 2, as is the case for the present apparatus, the 

diffraction loss is approximately 2 db per unit of distance R2/A. 

In the present measurements it was assumed that, at a particular 

temperature, the fractional decrease in amplitude due to diffraction 

in the delay rod remained constant. The possible error was considered 

to be that due to the additional diffraction which occurred when the 

acoustic path length was altered. For a change in path length of 3 cm 

the decrease in pulse amplitude due to diffraction was estimated from 

Carome and Witting (1961) to be about 0.02 db. The error in the measure-

ment of a/f2, due to diffraction, is therefore less than 0.2%. 
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d) It was also necessary to consider the errors which arose from 

thermal fluctuations and gradients within the mercury. The maximum 

variation in the thermocouple reading during the absorption measurements 

was 0.5°C. Since the change of a/f2  with temperature was about 0.03 

cm-1  sect deg C-1  the error due to a variation of 0.5°C in the tempera-

ture of the mercury was less than 0.3% at room temperature. A temperature 

gradient of 0.5 deg C/cm in the direction of sound propagation would 

result in an error of about 0.1% in the measured sound absorption. 

Error due to thermal expansion of the silica reflector rod was also 

negligible. Error in absorption measurements due to temperature 

gradients in the plane perpendicular to the direction of propagation 

was difficult to estimate. A temperature difference between the centre 

and outer edge of the ultrasonic beam would distort the plane wave-

front but the resultant effect on pulse amplitude could not be large 

since at all temperatures the pulse amplitude was found to decrease 

exponentially with path length. 

In conclusion it was found that accuracy in the measurements of 

the sound absorption in mercury was limited by the reproducibility of 

the measurements for a, which was between 3 to 5%andimproved transmitter 

detector circuits are required if greater accuracy is to be achieved 

and would necessarily require temperature control to within 0.1°C. The 

amplitude of the reflected pulse was too small for attenuation measure-

ments to be carried out on the other pure metals and alloys. 
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Table 3.13 Sound Attenuation Measurements in Mercury at 25°C 

Investigator and technique f 

MHz 

Observed attenuation 

a/f2  x 1017  cm71  sect 

Bar (1937), light diffraction: 

Reic1mann (1939), radiation pressure: 

Ringo et al (1947), continuous wave: 

Jarzynski (1963), pulse: 

Abowitz and Gordon (1962b), pulse: 

Hunter et al (1962), pulse: 

Hunter et al (1963), pulse: 

Webber (1965), pulse: 

6.6 

6.3 

6.4 

5.8 ± 0.5 

5.5 ± 0.5 

5.7 ± 0.5 

4.7 ± 1.0, 

6.o ± 1.o 

6.2 + 0.3 

6.2 + 0.3 

5.4 ± 0.5 

5.4 ± 0.3 

5.5 ± 0.2 

5.3 ± 0.1 

5.6 

5.4 

5.71+ 0.1 

5.72+ 0.1 

5.67+ 0.1 

5.6 + 0.3 

54 

21.5 

54.0 

152 

291 

390 

774 

996 

68 

92 

45 

65 

75 

115 

130 

270 

90 

150 

270 

68 
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C. Comparison with Other Investigations  

It has been seen from Fig. 3.26 that the present results for sound 

absorption are in fairly good agreement with the measurements of 

Jarzynski (1963) and Hunter et al. (1963). The ultrasonic attenuation 

in mercury has been measured by a variety of techniques over a large 

frequency range, as shown in Table 3.13. It is only recently that 

agreement has been found in the experimental values obtained from the 

use of pulse techniques. The present result at room temperature is 

in close agreement with that obtained by Hunter et al (1963) and it 

would appear that the value obtained by Jarzynski (1963) is slightly 

high. The results obtained by Abowitz and Gordon (1962b) are fairly 

close to the value of the classical sound absorption. Sound absorption 

measurements and the calculation of the ratio of bulk to shear vis-

cosities for mercury and other liquid metals are discussed in Sections 

4.1 and 4.2. 
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4. DISCUSSION OF SOUND ABSORPTION AND VELOCITY IN LIQUID METALS  

AND ALLOYS  

4.1 Structural Viscosity of Liquid Metals  

A. 	nB/n s  for Mercury 

Measurements of sound absorption in several types of liquid have 

shown the existence of a volume viscosity. Litovitz and Davis (1965) 

observe that the volume or bulk viscosity is usually of about the same 

magnitude as the shear viscosity. Molten metals are monatomic in 

character, and ultrasonic absorption measurements have shown that vi-

brational or rotational isomeric relaxation does not occur but that a 

structural relaxation similar to that in nonmetallic liquids does 

[Stephens (1963)]. 

The Stokes-Kirchhoff classical attenuation coefficient a
o is given 

by the addition of the viscous as  and thermal-conduction aT  attenuation 

coefficients, such that 

a
o 

= a
s .4- aT 

2N2  4 	c2a2kTT 
= 	(—n + —P---) f2, 3 3 s 	(320. pc 

for ac/f<<1 	(4.1) 

where ns is the shear viscosity, kT  the thermal conductivity, C the 

specific heat at constant pressure, J the mechanical equivalent of heat 

and f the frequency of the sound wave. The excess absorption coefficient 
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is formally attributed to a volume viscosity n, defined by 

aB = a  - ao 

2IT2738f2 	

(4.2) 
pc3 

where a is the experimental attenuation coefficient. The bulk viscosity 

nB can therefore be calculated from 

a a 
nB 3 ns(  a 

0) 
• (4.3) 

The values of the classical sound absorption for mercury at 

various temperatures are shown in Table 4.1, together with the values 

of nB/ns. The physical data used are shown in Table A.7. The estima- 

ted error in as/f2  is about 1%, mainly due to error in ns, and the 

error in aT/f2  is about 2%, mainly due to the uncertainty in kT. It 

is seen that nB/ns is constant within experimental error. The probable 

value of nB/nsis 0.86 + 0.3, which is slightly higher than the value 

of 0.45 + 0.1 estimated by Hunter et al. (1963). Unfortunately Hunter 

et al. incorrectly use the thermal expansion equation due to Beattie 

et al. (1940) which resulted in their using higher values for a , also 

their values of sound velocity c are low. Correction of the data used • 

by Hunter et al. results in their sound absorption measurements yielding 
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Table 4.1 Sound Absorption and Ratio of Bulk to Shear Viscosity for 

Mercury 

t 

(°c) 

as/f2  x 1017  

(cm-1  sect) 

al/f2  x 1017  

(cm-1  sect) 

a/f x 1017 

(cm-1  sect) 

nB/ns 

22.5 0.99 4.26 5.6 0.48 + 0.4 

23.5 0.98 4.28 5.6 0.45 + 0.4 

52.5 0.91 5.17 6.7 0.93 + 0.4 

66 0.89 5.61 7.1 0.90 + 0.6 

76.5 0.87 5.97 7.4 0.86 + 0.6 

137.5 0.84 7.82 9.4 1.19 + 0.6 

141 0.84 7.93 9.5 1.17 + 0.6 

156 0.83 8.42 9.8 0.88 + 0.6 
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a value for nB/ns of 0.62 + 0.1. The sound absorption measurements of 

Jarzynski (1963) and Abowitz and Gordon (1962b) yield values for nB/ns  

of 1.3 + 0.3 and 0.17 + 0.2 respectively. The experimental values for 

n...11/ns  in mercury are compared with theoretical values derived from a 

dense-gas formulation applied to liquid metals in Section 4.2. 

B. 	nB/ns for Various Liquid Metals 

The reported experimental sound absorption 	a/f2  for various 

liquid metals are shown in Table 4.2, taken from Webber and Stephens 

(1968), together with the calculated classical absorption and nB/ns. 

The required physical data are recorded in Table A.8. The thermal 

conductivities of zinc, cadmium, gallium and indium are calculated from 

the modified Wiedermann-Franz law, evaluated by Ewing and associates 

(1957), which is reliable to within 12%. Errors shown for nB/ns  are 

calculated from the experimental errors alone. Letcher and Beyer (1963) 

take a higher value for the expansion coefficient to calculate yns  < 1 

for sodium, whilst Jarzynski and Litovitz (1964) calculate the ratio 

of bulk to shear viscosity as 2.6. For potassium Letcher and Beyer 

(1963) and Jarzynski and Litovitz (1964) calculate nB/ns  to be 1.7 and 

<1.9 respectively. Less emphasis must be placed on the exceptional 

values of nB/ns  for zinc and cadmium since Plass (1963) reported greater 

experimental difficulties with these two metals. At the same tempera-

tures, Gitis et al. (1968) recently report values for a/f2  of 4.6 x 10-17 
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Table 4.2 Sound Absorption and Ratio of Bulk to Shear Viscosities in 

Liquid Metals 

Metal t 

(°C) 

as  /f2  x 1017  

(cm-1  sec2) 

aT/f2  x 1017  

(cm-1  sec2) 

a/f2  x 1017 

(cm-1  sec2) 

nBins 

Na 100 1.24 8.31 11.5 	+ 0.3a  2.0 + 0.5 

K 75 2.41 26.9 29.9 	+ 0.9a  0.4 + 1 

Zn 450 0.75 3.48 3.7 	+ 0.6
13  

-0.9 + 2 

Cd 360 0.48 10.8 14.5 	+ 2.9b  9.0 + 9 

Hg 25 0.98 4.29 rz. 71 + 0.1c  ._ 0.6 + 0.8 

Ga 30 0.37 1.04 1.58 + 0.03d 0.6 + 0.2 

In 200 0.51 3.60 5.9 	+ 0.6e  4.7 + 1.6 

Sn 240 0.49 3.84 5.63 + 0.3b 3.5 + 1 

Pb 340 1.13 6.44 ;.4 	+ 0.3b 2.1 + 0.5 

Bi 280 1.07 4.66 8.05 + o.3b 2.9 + 0.5 

a Jarzynski and Litovitz (1964) 

• Plass (1963) 

• Hunter et al (1963) 

d Hunter and Hovan (1964a,b) 

e Gitis et al (1968) 
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and 12.0 x 10-17  cm-1  sect for zinc and cadmium respectively, from 

which we calculate the corresponding values of nB/ns  to be 0.7 and 2.0. 

Using the experimental value of 4.7 x 10-17  cm-1  sec2  for a/f2  measured 

in tin by Litovitz and Jarzynski (1965) gives a value of 1.9 for nins  

For tin these investigators take smaller values for the expansion co-

efficient and the thermal conductivity to estimate 2.3 x 10-17  cm-1  sect 

for aT/f2' which results in the value of 5.1 for nB/ns•  Jarzynski and 

Litovitz [see Litovitz and Davis (1965)] estimate a value of nB/ns  < 0.4 

for lead because of their higher estimation of aT/f2  and their smaller 

observed value for a/f2  of 8.9 x 10-17  cm-1  sec2  at 357°C. Gitis et al. 

(1968) measured a/f2  in lead to 340°C to be 10.0 x 10-17  cm-1  sec2, 

from which we calculate the value of nB/ns  as 2.9. For bismuth, 

Jarzynski (1963) calculated nB/ns  to be 4.2. Recently, Smirnow and 

Jarzynski (1967) have reported the value of nB/ns  for antimony to be 4.2. 

It is seen that the excess sound absorption is less than 10% of 

the total observed absorption in potassium, mercury, gallium and is 

between 20 and 40% in indium, tin and bismuth. In general, nB/ns  is 

of the order of unity, sodium, cadmium, indium, tin, lead and antimony 

having higher values, between 2 and 5. The structural rearrangements 

in bismuth and antimony close to their melting points which results in 

a non-linear variation of sound velocity with temperature suggests the 

existence of a large bulk viscosity in these metals. Study of the 

temperature dependence of the sound absorption in sodium, potassium, 
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mercury, gallium and bismuth has shown that the bulk viscosity decreases 

with increasing temperature and that 1113/ns  is independent of temperature 

within the small temperature ranges of the experiments. This indicates 

that the excitation enthalpies for shear and for structural viscosity 

mechanisms are closely related. However, the recent sound absorption 

measurements by Gitis et al. (1968) on zinc, cadmium, indium and lead 

over a wider temperature range up to 850°C would appear to give con-

flicting evidence for the temperature variation of bulk viscosity. 

According to their experimental observations.of a/f2  and estimations 

of a°/f2, their results show that a - ao increases with temperature, 

rather than decreasing, and this would give nE  increasing with tempera-

ture, contrary to the expected physical behaviour. Their experimental 

results and calculations of classical absorption require further examina-

tion. 

Jarzynski and Litovitz (1964) considered the possibility of a 

relaxation of the electronic specific heat, giving rise to the excess 

sound absorption in sodium. They found that this effect is several 

orders of magnitude smaller than the excess absorption, which cannot 

be attributed to a slow transfer of thermal energy from the liquid 

lattice to the free electrons. It appears that the excess ultrasonic 

absorption in liquid metals is due to a structural relaxation, in which 

there is a slow structural rearrangement of the liquid lattice following 

the temperature and pressure fluctuations produced in the liquid by 
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by the ultrasonic wave. Litovitz and Jarzynski (1965) suggest that 

a correlation exists between pB/ns  and the co-ordination number of the 

liquid metal. The liquid metals with low co-ordination numbers, such 

as tin and bismuth, generally have a larger value of nBins  and the 

relatively more closely packed metals with a number of nearest neigh-

bours of about 12 have the smallest values for the ratio, see Table 4.3. 

4.2 Dense-Gas Formulation for Ultrasonic Absorption in Liquid Metals  

Sharma (1968) discussed the excess ultrasonic absorption from a 

viewpoint in terms of a dense-gas formulation when the behaviour of the 

system is dominated by collisions. Ascarelli and Peskin (1968) use 

a dense-gas formulation to calculate the values of the self-diffusion 

coefficient in liquid metals and obtain good agreement with experimental 

data. These authors use the van der Weals concept in the Eniskog 

theory for dense gases. The van der Waals concept of a fluid considers 

the particles as having a potential made up of a hard-core plus a 

weak long-range attractive force. Particles are assumed to move in 

straight lines between core collisions. The attractive potential energy 

or cohesive energy term is through  of as a uniform negative potential 

which does not affect the basically hard-sphere collisions. 

From the Enskog theory the expression for the bulk viscosity nB  

derived in Hirschfelder et al. (1964) may be written as 

nB  = x 16z2  (MkIBT)/10/202, 	(4.4) 



151. 

where M is the atomic mass, z the packing factor, a the hard-sphere 

diameter and x the Enskog high-density correction. In terms of the 

hard-sphere pressure ph, the factor x can be expressed by 

1h 
z AB  

Hence the bulk viscosity (c.g.s. units) is given by 

P 

JJ 	1.3i2a2 
( n 

- 	m  1)(3kg)  . 
 

(4.5) 

(4.6) 

Guggenheim (1965) proposes that the equation of state for non-

interacting rigid-spheres is given by 

-a 	1  -  
NkBT NkBT11 (1 - z)4  

(4.7) 

At atmospheric pressure the hard-sphere pressure has to be balanced 

almost completely by an attractive van der Waals term, such that at 

the melting point 
NkBTmnm  

a - 	 
(1-zm)4  

(4.8) 

If a is assumed to be independent of temperature and pressure, then 

phi` 	T n m 

 

(4.9) NkBT 
TQ(1 zm)4  
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Hence from equation (4.6), the bulk viscosity at any temperature is 

given by 

B 
4z  

inm 	 1] (Ny) i. 	(4.10) B 7r2/302 [ 	

T 

T0(1 	zm)14  

The value of the packing fraction zm  is taken to be 0.45 for all simple 

metals. The variation of z with temperature is derived from equation 

(4.8) and Guggenheims' equation of state for hard-spheres and is simply 

z = 1 - (1 - zm  )(T 02-)4 
	

(4.11) 
mm 

The Enskog theory for dense hard-sphere systems includes considera-

tion of collisional transfer of momentum and energy and of an increased 

number of collisions over that in dilute gases, but does not include 

the effect of correlating the successive hard-sphere collisions. The 

principal correlation effect can be ascribed to the backscattering 

caused by the high probability of the reversal of the velocity of a 

particle upon collision with the nearest neighbours. Alder and 

Wainwright (1967) find from molecular dynamics calculations of hard-

spheres that the effect of this backscattering correction is to divide 

x by a factor of 0.73zm/z. The bulk viscosity n' corrected for the 

effect of backscattering is thus given by 
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5.48z2 	Tma  
nB 

= 	 ra 	11(nkBT)i. 
w2/302zm [Tn(1 z

m
)4. 

(4.12) 

Sharma (1968) uses equation (4.10) to calculate values of nB  for 

several liquid metals and those values are compared with experimental 

values in Table 4.3. The experimental values for nB/ns  are taken from 

Section 4.1. Although there are considerable variations in the esti-

mates of nB/11s from experiment, it is seen that the dense-gas formula-

tion gives reasonable estimates for ndns. Inclusion of the correction 

for the effect of backscattering would have increased the estimate for 

nB by about 30%. 

Hirschfelder et al. (1964) show that the ratio ndns  derived from 

the dense-gas formulation can be written as 

where 

nB 	H2 
ns 	1 + 0.811 + 0.761114  

Pha H = 	1. NkBT 

(4.13) 

(4.14) 

The theoretical value of nBths corrected for the effect of back-

scattering is simply given by 

 

n' 1.88H2z2  

 

(4.15) 
ns 	z2  + 1.10Hzzm 1.43H2z2  
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Table 4.3 Comparison of Theoretical and Experimental Bulk Viscosities 

near the Melting Points of Various Liquid Metals 

Metal Theory 

iiB 
( cP) 

nB 
(cP) 

Experiment 

nB/ns Co-ordination 

Number a  

Na 0.52 1.4 2.0 9.5 
K 0.42 0.20 0.4 9.5 
Zn 2.27 2.6 0.7 10.8 

Cd 2.29 2.9 2.0 8.3 
Ng 1.72 0.95 0.6 10.0 

Ga 1.2 0.6 11.0 

In 7.8 4.7 8.0 

Sn 1.76 3.6 1.9 8.5 

Pb 2.34 7.4 2.9 8.0 
Sb 4.2 6.1b  

Bi 2.9 7-8 

a Waghorne et al (1967) b Wilson (1965) 
and 

Table 4.4 Comparison of Theoretical/Experimental Bulk Viscosities 

as a Function of Temperature for Mercury 

t 
(00) 

Theory 

nB/ns 	ntB/n s 

Experiment 

nB/ns 

1.21 

1.15 
	

0.62 

1.04 
	

0.62 

0.94 
	

ft,0.62 

-39 

25 

128 

204 

1.17 

1.11 

1.02 

0.95 
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Sharma (1968) assumes that H can be evaluated from equation (4.9) 

with zis  = 0.45. In Table 4.4 the theoretical values for nB/ns and 

WBins for mercury calculated by Sharma are compared with experimental 

values taken from our correction of the data due to Hunter et al. (1963). 

It is seen that the theoretical values of nB/ns  and n'Bins  are about 

twice the experimental values and decrease more rapidly with temperature 

than values obtained by experiment. The correction to the ratio of 

bulk to shear viscosity for the effect of backscattering is found not 

to be too important. 

From equations (4.13) and (4.15) we find that at the melting points 

of simple liquid metals nB/ns  and nyns  are 1.17 and 1.21 respectively. 

If H is calculated by using the Percus and Yevick hard-sphere equation 

of state given by equation (1.11) we find that the values for nB/ns  and 

n'B/ns  at the melting point are 1.16 and 1.20 respectively, showing that 

the choice of equation of state for hard-spheres is not critical. 

Modification of the dense-gas formulation as applied to liquid metals 

would appear to be necessary to account for experimental values of nB/ns  

which differ significantly from unity, see Table 4.3. In conclusion 

it is seen that the dense-gas formulation provides reasonable estimates 

for ndns, but further accurate sound absorption measurements over a 

wide range of temperature are required to evaluate nB/ns  from experiment. 
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4.3 Compressibilities of Pure Liquid Metals  

A. Mercury  

Knowledge of density, expansion coefficient and specific heat as 

a function of temperature enables the isothermal compressibility OT  to 

be calculated from the present acoustic measurements by the use of the 

following thermodynamic relationship 

T = Y/Pc2  

c2a2T 
= (1 1  C j 

p 	pc2  
(4.16) 

where y is the ratio of the principal specific heats. The most 

reliable data have been used for the computations of Ss and 0T shown 

in Table 4.5. The values of C are taken from Douglas et al. (1951) 

who used an ice calorimeter to measure the heat evolved in cooling 

samples of mercury from a given temperature to 0°C. They estimate 

the probable error in C as 0.3%. The values of a are those of Beattie 

et al. (1940). Cook (1956) considers that Beatties' expansion formula 

is correct to 1 part in 106. Density values are taken from Bigg (1964), 

who used the most recent determination of the density of mercury at 

o  20 C, in conjunction with Beatties' expansion formula to determine p 

as a function of temperature to within 4 parts in 106. The estimated 



Table 4.5 Adiabatic and Isothermal Compressibilities as a Function of Temperature for 

Mercury 

t 
(°C) 

p 

(gm/cm4,  ) 

a 	x 104  
P (deg C-1) 

C 
P 

(cal/g-atom.deg C) 
c 

(m/sec) 

y 0s x 1012  
(cm2/dyne) 

$T x 1012  
(cm2/dyne) 

1 

-39 13.6910 1.824168 6.7578 1478.7 1.1208 3.341 3.744 
-20 13.64456 1.819121 6.7272 1470.0 1.1289 3.391 3.829 
-10 13.61978 1.816779 6.7120 1465.5 1.1331 3.419 3.874 

0 13.59508 1.814643 6.6967 1460.9 1.1373 3.447 3.920 
10 13.57045 1.812714 6.6825 1456.3 1.1415 3.474 3.966 
20 13.54588 1.810999 6.6683 1451.7 1.1456 3.503 4.013 
30 13.52139 1.809492 6.6551 1447.2 1.1496 3.531 4.060 
40 13.49695 1.808200 6.6419 1442.6 1.1537 3.560 4.107 
50 13.47257 1.807121 6.6298 1438.0 1.1577 3.589 4.155 
60 13.44825 1.806259 6.6176 1433.5 1.1617 3.619 4.204 
70 13.42398 1.805616 6.6065 1428.9 1.1656 3.649 4.253 
80 13.39977 1.805190 6.5954 1424.3 1.1696 3.679 4.303 
90 13.37560 1.804987 6.5853 1419.7 1.1735 3.709 4.353 

100 13.35148 1.805006 6.5752 1415.2 1.1774 3.740 4.403 
110 13.3274 1.805249 6.5662 1410.6 1.1813 3.771 4.455 
120 13.3034 1.805711 6.5571 1406.0 1.1852 3.802 4.507 
130 13.2793 1.806420 6.5491 1401.5 1.1890 3.834 4.559 
140 13.2554 1.807336 6.5410 1396.9 1.1929 3.866 4.612 



Table 4.5 continued 

t 

(°C) 

p 

(gm/cm3) 

a 	x 104  
P 
(deg C-1 ) 

C 
P 

(cal/g-atom.deg C) 

c 

(m/sec) 

Y 14
s 
 x 1012  

" 
(cm2/dyne) 

0T 
x 1012  

fcm2/dyne) 

150 13.2314 1.808499 6.5340 1392.3 1.1967 3.899 4.666 

160 13.2075 1.809885 6.5270 1 387.7 1.2006 3.932 4.720 

170 13.1836 1.811509 6.5210 1383.2 1.2044 3.965 4.775 

180 13.1597 1.313371 6.5150 1378.6 1.2083 3.998 4.031 

190 13.1359 1.015459 6.5100 1374.0 1.2121 4.032 4.888 

200 13.1120 1.817802 6.5050 1369.4 1.2160 4.067 4.945 
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standard errors in y, Os  and OT  are 0.04, 0.07 and 0.08% respectively. 

The compressibilities as  and $T  are plotted as a function of tem-

perature in Fig. 4.1. These estimates of compressibilities are in very 

close agreement with Davis and Gordon (1967) who used the same physical 

data together with their sound velocity measurements. Seemann and 

Klein (1965) used different physical data and their estimates of as  

and $T differ from the present estimates by about 0.05%. Since Seemann 

and Klein (1965) found that the sound velocity decreased linearly with 

o_,  temperature in the interval between -35 and 48and Hill and Ruoff 

(1965b) found that this was also true between 30°  and 197°C, then it is 

reasonable to extrapolate the present acoustic measurements to cover 

the interval -39 to 200°C. 

Several investigations have been made on the isothermal compressi-

bility of mercury. The measurements of Carnazzi (1903) on the change 

of volume with pressure yield isothermal compressibilities which are 

low by between 3 to 8%. Bridgman (1911) used a piezometer method to 

measure the compression of mercury in terms of the compressibility of 

water. Bett et al. (1954) analysed Bridgmans' results and, using the 

Hudleston relationship for liquid compression, calculated the isothermal 

compressibilities to be 3.926 x 10-12  and 4.036 x 10-12  cm2/dyne at 0 

and 22°C respectively. It is seen from Fig. 4.1 that these measure-

ments are about 0.2% higher than $T  calculated from sound velocity 

measurements. Richards and Bartlett (1915) used a piezometer method 



a 

0 	40 	" 80 	120 
	

160 
	

200 
Temperature CC) 

Fig.4.I. Adiabatic and isothermal comp re ssibil it les 
as a function of temperature for mercury. 
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in which the level of mercury in a capilliary tube was determined 

by a pointed platinum wire which completed an electrical circuit. When 

the steel piezometer was compressed a known weight of mercury was 

added in order to remake the electrical contact and thus the difference 

between the compressibility of mercury and the soft steel was determined. 

The authors took Bridgmans' value for the compressibility of steel and 

found the isothermal compressibility of mercury at 20°C to be 3.96 x 

10.'12 cm2 /dyne. 

Smith and Keyes (1934b) used a nickel dilatometer to measure the 

mean compressibility aT of mercury up to 300C, where ST
is given by 

sT  - 1 An =  
no  tip 

(4.17) 

and 0o is the volume at 0
°C. The isothermal compressibilities calcula-

ted from their results are seen from Fig. 4.1 to be high, particularly 

at 200°C. Measurements above 200°C were considered as less reliable 

due to amalgamation of nickel with mercury. It is also of further 

interest that Bowlinson (1959) pointed out that the direct measurements 

of ST for water made by Smith and Keyes (1934a) were about 8% lower 

than values calculated from as for water. Diaz Pefla and McGlashan 

(1959) used a piezometer method to measure the compressibilities of 

water and mercury and verified Rowlinsons' statement. Their compres-

sibilities for mercury are in fairly close agreement with the present 
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evaluation. Recent accurate density measurements on mercury as a 

function of temperature and pressure by Postill et al. (1968) using 

an Archimedes method enables $T 
to be calculated from equations of 

isochores, such that 

= a  aT1  
PT 	p

f
‘813 112 (4.18) 

Their values agree within experimental error with those of Beatt et 

al. (1954). 

B. 	Pure Metals 

There have been no published work on the direct measurement of the 

isothermal compressibility of liquid metals other than mercury. The 

compressibilities $s  and $T  have been calculated as a function of 

temperature from the present sound velocity measurements for zinc, cadmium, 

indium, tin, lead and bismuth and are shown in Figs. 4.2 to 4.7 res-

pectively. The relevant physical data are compiled in Tables A.9 to 

A.14. Different values for the expansion coefficients taken from 

various density investigations give estimated errors of a few percent 

in 0T. It is seen that both 0s and $T increase smoothly with temperature, 

in a similar manner to the alkali metals. Other acoustic measurements 

on these metals by Gitis and Mikhailov (1966a,b,c), Pronin and Filippov 

(1963a) and Kazakov et al. (1964) show that Os  continues to increase 

smoothly with increasing temperature. 
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It is of interest to contrast the above behaviour of 8s and ST 

for the metals discussed with the variation of the compressibilities 

with temperature in antimony and in tellurium, shown in Figs. 4.8 and 

4.9 respectively. The relevant physical data are collected in Tables 

A.15 and .A.16. In antimony both 0s and 8T exhibit a minimum at about 

800°C. This behaviour has been suggested by Gitis and Mikhailov 

(1966c) as being due to the presence of two structures of different 

co-ordination number. One structure corresponds to the structure of 

antimony in the solid state and the other to a close-packed structure. 

As the temperature increases the increase in volume is expected to 

lead to an increase in compressibility, whilst an increase in the 

relative number of atoms in the close-packed structure would lead to a 

decrease of ST uith increasing temperature, which may be sufficient to 

account for the observed behaviour. In tellurium the adiabatic and 

isothermal compressibilities decrease rapidly with temperature at 

first and then decrease more slowly above 800°C. Tellurium is reported 

to be a semiconductor in the liquid state which becomes more metallic 

as the temperature is increased. The compressibility of tellurium 

does not seem to show a typical metallic behaviour below 700°C. 

In order to calculate the adiabatic and isothermal compressibilities 

for further metals it is necessary to review the sound velocity data 

available for them. The various published measurements are collected 
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in Table 4.6, and are discussed briefly below. 

a) Sodium. Six investigations agree to within 1 m/sec for the 

sound velocity and are in fairly close agreement for --(8c/8t) p. The 

measurements due to Kleppa and Trelin et al. are seen to be inconsis-

tent with a preferred value for sound velocity of 2527 m/sec at the 

melting point. 

b) Potassium. There is fairly close agreement between three of 

the investigations. The measurements due to Kleppe and Trelin et al. 

differ considerably from those due to Abowitz and Gordon, which are 

taken for the calculation of compressibilities. 

c) Rubidium. The recent measurements due to Jarzynski et al. 

are in fairly close a6reerent with those due to Kleppa, and are used 

in further calculations. 

d) Caesium. This has only been investigated by Kleppa so far 

and the sound velocity may be somewhat in error. 

e) Copper. The measurements of Gitis and Mikhailov have been 

seen in Section 3.3 to be generally more reliable than those due to 

Pronin and Filippov. 

f) Silver. The measurements of Gitis and likhailov, and Uagel 

are in fairly close agreement, Nagel's measurements have been shown in 

Section 3.3 to be generally in better agreement with results in other 

metals. 



Table 4.6 Comparison of Published Values for Velocity of Sound in Pure Metals 

Metal t 

(°C) 

c 

(m/sec) 

-(3c/at) 
P 

(m/sec.deg C) 

Technique Temperature 

range (°C) 

Investigator 

Na 93 2395 ± 25 0.3 A 98 - 235 Kleppa (1950) 

93 2524 + 5 0.524 + 0.003 B 93 - 272 Pochapski (1951) 

100 2533 0.66 D 100 - 180 Ilgunas & Yaronis (1953) 
93 2653 + 27 0.577 D Trelin & Vasil'ev (1961) 
100 2526 + 5 0.524 + 0.003 B Abowitz &.Gordon (1962a) 
104 2523 + 13 0.50 D 104 - 154 Jarzynski & Litovitz (1964) 
110 2521 C Beyer & Coppens (1965) 
98 2526 0.523 93 - 315 Ying & Scott (1965) 
93 2631 + 27 0.542 D 100 - 300 Trelin et al. (1966) 
93 2527 ± 1 0.530 C 109 - 140 Coppens et al. (1967) 

K 64 1320 + 20 0.5 A 44 - 160 Kleppa (1950) 
64 1080 0.52 D 64 - 140 IlgUnas & Yaronis (1953) 
100 1369 ± 5 0.53 + 0.03 B Abowitz & Gordon (1962a) 
74 1857 + 10 0.53 D 74 - 150 Jarzynski & Litovitz (1964) 
100 1922 + 20 0.539 D 100 - 000 Trelin et al. (1966) 

Rb 39 1260 + 10 ru0.4 A 39 - 160 Kleppa (1950) 
56 1253 ± 2 0.399 D 56 - 260 Jarzynski et al. (1969) 

Cs 29 967 + 10 '1,0.3 A 29 - 130 Kleppa (1950) 



Table 4.6 continued 

Metal t 

(°C) 

c 

(m/sec) 

-(3c/at) 
P 

(m/sec.deg C) 

Technique Temperature 

range (°C) 
Investigator 

Cu 1083 3270 + 49 0.978 A 1053 - 1400 Pronin & Filippov (1963b) 
1100 3450 + 7 0.46 D 110'0 - 1490 Gitis & Mikhailov (1966a) 

Ag 961 2770 + 32 0.466 A 961 - 1540 Pronin & Filippov (1963b) 
970 2710 ± 6 0.41 D 961 - 1220 Gitis & Mikhailov (1966a) 
961 2693 0.293 B Nagel (1966) 

Al 660 4673 + 15 0.468 + 0.022 B 660 - 1000 Seemann and Klein (1965) 
660 4730 + 25 0.16 D 700 - 1000 V'y►ugov & Gumenyuk (1966) 

Ga 30 2740 + 50 A 30 - 	50 Kleppa (1950) 
30 2380 + 14 0.18 D 57 - 438 Jarzynski (1961) 

29:5 2871 + 1 0.3 D 20 - 	41 Proffit & Carone (1962) 
30 2873 0.3 30 - 	30 Hunter & Hovan (1964b) 
75 2770 ± 40 0.25 A 750 - 	950 Kazakov et al. (1965) 
30 2572 + 6 0.225 D 30 - 	850 Gitis & Mikhailov (1966b) 
40 2760 ± 60 N40 Shapira (1967) 

Ti 302 1625 + 15 A 302 - 	310 Kleppa (1950) 
305 1660 + 4 0.231 D 302 - 	850 Gitis & Mikhailov (1966b) 

Sb 650 1980 + 30 0 A 650 - 1000 Kazakov et al. (1964) 
650 1900 + 4 -0.25 D 640 - 1100 Gitis & Mikhailov (1966a) 

Te 451 913 ± 5 -1.0 D 451 - 	900 Gitis & Mikhailov (1966b) 
451 930 -0.75 D 451 - 	710 Murphy et al. (1967) 
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g) Aluminium. The investigation due to Seemann and Klein is 

considered to be more accurate than that due to Irlyugov and Gumenyuk. 

h) Gallium. The sound velocity results due to Proffit and 

Carome, Hunter and Hovan, and Gitis and Nikhailov agree to within a 

few m/sec. 

i) Thallium, Antimony and Tellurium. The investigations due to 

Gitis and Nikhailov are considered the mose reliable for these metals. 

The preferred values for sound velocity and -(3c/at) for pure 

liquid metals, at their melting point tm, are shown in Table 4.7. It 

should be noted that within each valency group, the sound velocities 

decrease with increasing atomic weight. This point will be discussed 

later in Section 4.4. Also the values of -(8c/at) become smaller for 

higher valency metals. 

The computed compressibilities and ratio of principal specific 

heats, at the melting point of various liquid metals, are shown in 

Table 4.8, and the required physical data are collected in Table A.17. 

Different values for the expansion coefficients taken from various 

density investigations give estimated errors of a few percent in the 

isothermal compressibilities. The following points revealed by Table 

4.8 are significant: 

1) With the exceptions of aluminium and the pentavalent metals, 

the compressibilities within each valency group increase with increa-

sing atomic volume. The variation of OT  with rs  for each valency group 
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Table 4.7 Sound Velocities at the Melting Points of Various Liquid 

Metals 

Metal tm  
(oc)  

c 
(m/sec) 

-(3c/3t) P 
(m/sec.deg C) 

Na 98 2527 0.E30 

K 64 1888 0.53 

Rb 39 1260 0.399 
Cs 29 967 ,̂0.3 
Cu 1083 3458 0.46 
AG 961 2693 0.293 
Zn 420 2852 0.400 
Cd 321 2242 0.376 
Hg -39 1479 0.457 
Al 66o 4673 0.468 
Ga 30 2873 0.30 
In 156 2318 0.293 
Ti 303 1660 0.231 
Sn 232 2474 0.223 
Pb 328 1819 0.259 
Sb 631 1893 -0.23 
Bi 271 1649 0.078 

Te 451 913 -1.0 
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Table 4.8 Computed Compressibilities and Ratios of Principal Specific 
Heats at the Melting Points of Various Liquid Metals 

Metal tm 
(°C) 

8s x 1012  
(cm2/dyne) 

0T x 1012  

(cm2/dyne) 
Y 

Na 98 16.9 18.6 1.10 
K 64 34.1 38.2 1.12 
Rb 39 42.7 49.3 1.15 
Cs 29 58.1 68.8 1.18 
Cu 1083 1.03 1.50 1.45 
Ag 961 1.47 2.14 1.45 
Zn 420 1.87 2.30 1.23 
Cd 321 2.48 3.07 1.24 
Hg -39 3.34 3.74 1.12 
Al 66o 1.93 2.42 1.25 
Ga 30 1.99 2.19 1.10 
In 156 2.65 2.96 1.12 
Ti 303 3.10 3.67 1.18 
Sn 232 2.34 2.69 1.15 
Pb 328 2.83 3.35 1.19 
Sb 631 4.32 4.81 1.12 
Bi 271 3.66 4.19 1.15 
Te 451 20.7 21.1 1.019 
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is shown in Fig. 4.10. 

2) The compressibilities of the alkali metals and tellurium are 

an order of magnitude larger than those of the noble and polyvalent 

metals. 

3) The compressibilities may be compared with values obtained 

from sound velocity measurements in the solid metals near their melting 

points [Schramm (1962a)]. The increase in isothermal compressibility 

through the melting point is generally about 5 to 20%. Schramm (1962b) 

used acoustic data and Birch (1942) used the hydrostatic data given by 

Bridgman (1931) to estimate the values 53.0 x 10-12and 71.0 x 10-12  

cm2  /dyne for the isothermal compressibilities of rubidium and caesium 

respectively at room temperature. Jarzynski et al. (1969) found by 

taking different density data together with their sound velocity data 

on liquid rubidium that the calculated isothermal compressibility is 

between 46.2 and 49.4 x 10-12cm2/dyne, which is smaller than Bridgman's 

value. Further hydrostatic and acoustic measurements are required to 

confirm the decrease in isothermal compressibility through the melting 

point for rubidium and caesium. 

4) The ratios of the principal specific heats of the metals 

are not widely different when compared at the same temperature. The 

liquid semiconductor tellurium is seen to have a value for y which is 

very close to unity. 
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4.4 Comparison of Theoretical and Experimental Compressibilities of  

Liquid Metals  

A. Free-Electron Compressibility  

The Bohm-Staver sound velocity and the free-electron compressibil- 

ity were derived in Sections 1.3D and 1.3E, and the expression for the 

compressibility is given by equation 11.24.) A comparison between the 

theoretical and experimental compressibilities of various liquid metals 

at their melting points is shown in Table 4.9. The free-electron 

value of the Fermi energy is used. It is seen that the free-electron 

compressibilities a(eL) are in close agreement with experiment for the 

alkali metals. In the case of the two noble metals the comparison 

shows that the presence of a strong repulsive force between the ions 

drastically reduces their compressibility. As the valency in the poly-

valent group of metals increases, then the theoretical compressibility 

(e2) 
0,2 	becomes progressively smaller than the experimental compressib-

ility. Within each valency group, the theoretical and experimental 

compressibilities decrease with increasing atomic weight, aluminium 

and antimony being exceptions. It is seen from equation (1.28) that 

a(  e2)  is proportional to rS and ST  is plotted as a function of r-  in 

Fig. 4.10, in which a family of curves is produced according to valency; 

the behaviour of the pentavalent metals would appear to be exceptional. 

It was mentioned in Section 1.3E that Harrison (1966) included a 

correction in the dielectric function, e(q), due to exchange interaction 
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and he derived the expression for the isothermal sound velocity, a
(H), as 

[c(11)]2 = fc(13s)pD. — 0.2119 
	

(4.19) 

where c(Hs) is the Bohm-Staver sound velocity. This correction reduces 

the sound velocity to 8 and 70% of the Bohm-Staver velocity in sodium 

and in aluminium respectively, showing that a correction for exchange 

alone is more drastic for the alkali metals. Thus the exchange inter-

action does not offer an explanation for the required correction:to the 

theoretical sound velocity in the polyvalent metals. 

We reported in Smith et al. (1967) and Webber and Stephens (1968) 

that a fairly good correlation appeared to exist between the experimental 

compressibility and the compressibility 0(14)  defined by the empirical 

relation 

(W) 	(el) s(w)  = Z T (4.2o) 

where Z is the valency. It is seen from Table 4.9 that agreement is 

poorer for antimony, bismuth and tellurium. To account for this relation 

it would be necessary for N(EF) to be increased by a factor of Z, 

which has not been confirmed by any other physical measurement. Rice 

(1963) has calculated that the electron-electron Coulomb interaction 

and the virtual phonon interactions increase the density of states 

N(EF) in solids by up to 10 and 30% respectively. The inclusion of 
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Table 4.9 Isothermal Compressibilities at the Melting Points of 

Various Metals 

Metal Z 
0(e4)  x 1012  T 

(cm2/dyne) 

Theoretical 
Z 0(et)  x 1012  T 

(cm2/dyne) 

Ascarelli 

8(A) T 	x 1012  

(cm2/dyne) 

Experimenta: 

0T x 1012  

(cm2/dyne) 

Na 1 12.5 12.5 19.9 18.6 

K 1 37.2 37.2 47.2 38.2 

Rb 1 51.9 51.9 64.1 49.3 

Cs 1 69.9 69.9 78.9 68.8 

Cu 1 1.86 1.86 1.95 1.50 

Ag 1 3.54 3.54 3.34 2.14 

Zn 2 0.87 1.74 2.57 2.30 

Cd 2 1.53 3.06 4.23 3.07 

Hs 2 1.66 3.31 5.65 3.74 

Al 3 0.55 1.65 2.02 2.42 

Ga 3 0.56 1.67 2.32 2.19 

In 3 1.01 3.02 3.93 2.96 

T1 3 1.13 3.38 3.94 3.67 

Sn 4 0.67 2.68 2.77 2.69 

Pb 4 0.83 3.33 2.98 3.35 
Sb 5 0.54 2.70 1.78 4.81 

Bi 5 0.64 3.21 2.64 4.19 

Te 6 0.41 2.49 1.80 21.1 
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these factors would increase the compressibility 
0(et) by several 

percent but not to the extent of the factor Z. It has been seen in 

Section 1.3F that the pseudo-potential approach to the calculation of 

compressibility can successfully account for the compressibility of 

solid metals, where the free-electron compressibility differs signifi-

cantly, and therefore it may be that the factor Z is a fortuitous 

numerical factor and not physically significant. The application of the 

pseudo-potential approach to the calculation of compressibilities of 

liquid metals will be discussed in the next Section 4.14B. 

B. Pseudo-Potential Approach  

The pseudo-potential approach for the calculation of total energy 

and compressibility of simple solid metals has been discussed in Section 

1.3F, where it was seen that Ashcroft and Langreth (1967a) obtained 

excellent agreement between theory and experiment. Since the structure 

factors S(A) and a(q) are no longer delta functions, but are continuous 

functions of q, see Fig. 4.11, it is necessary to develop expressions 

for the total energy and compressibility of simple liquid metals. We 

may start with the total energy expression for simple solid metals 

given in equation (1.67) and we must consider the Fuchs and band-'structure 

energies which are both structure dependent and therefore different 

for liquid metals. It can be seen from equation (1.53) that the Fuchs 
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term E..11/Z, in atomic units, is given by 

E.. 11 = 1 r 4nZ r 	9 
Latcl, 	lj 4wq-dq 

80 Jo q2  

2Z 	[a(q) - ljdq. 	(4.21) 
0 

Ashcroft and Langreth (1967a) numerically integrated this expression 

using the hard-sphere structure factor of Ashcroft and Lekner (1966) 

and found that for simple liquid metals the Fuchs term (ryd/electron) 

is given by 

Eii 	-1.73 z2/3  (4.22) Z 	rs 

In order to calculate the band-structure contribution Ens/Z to 

the total energy of the liquid metal we may start with the expression 

for EBs  given in equation (1.47). If we use the relationship between 

S*(A)S(A) and a(q) given in equation (1.49) and replace the sum by an 

integral, then the band-structure energy (per electron), written in 

atomic units, is given by 

EBS 	R 1 2Q2  11;12(1- 1)a(q) 4nq2dq Z 	8n3Z 0 16rN2 q Eq 

n2  f elwC2(1.- 1)a(q)dq. 
32TOZN2  0 	

qi c  (4.23) 
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Using the definition of V given in equation (1.51), the above ex-

pression may be written as 

co 
EBS - 1 	cpv2 1)a(q)dq. 

32n3Z /o 	q  
(4.24) 

If we use the simple form for Vq  proposed by Ashcroft (1966), given 

by equation (1.61), then equation (4.24) becomes 

EBS 	-2Z 	cos2(qr c 	e 
)[-:-.11a(q)dq. 	(4.25) 

The total energy E(AL'0 of the simple liquid metal may therefore be 

written in the form 

E(AL,L) = 2.21 11216 (0.115 - 0.03156nr ) + 3ft  
rs 	rs 8  4nr3  

1.- 	 73
s
g/3  2Z j  COS-9kqrc 	c la(q)dq. r  (4.26) 

'We now proceed to the calculation of the band-structure contribu-

tion to the compressibility of liquid metals, for which it is necessary 

to know the volume dependence of Em. The volume dependence of a(q) 

is not known accurately from experiment. However, the hard-sphere 

structure factor due to Ashcroft and Lekner (1966) could be used for 



EBS = zitga r- co, 
) 0 

a(x, rs)dx. 	(4.27) 
c(x, rs) - 1] 

c(x, rs r 
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the evaluation of EBs  and its volume dependence. If we put q in units 

of 2kF, see equation (1.59), then the structure factor a(q) may be 

written as a(x, rs). Using the definition of y given in equation (1.63), 

the band-structure energy given by equation (4.25) becomes 

The first derivative of the band-structure energy given in equation 

(4.27) with respect to rs  at constant x is found to be 

a 	As. 	{aysin2y  (c-1)a cos 2y + pa  cosZY rs
171)

dx = ars Z 	 ars o 	3 	rs 	(4.28) 

where e(x, rs) is given by equation (1.56). The second derivative is 

found to be 

a2  (EbS) 	I fgEL (sin  2y + y cos2y) 
r 

r cr 
1 a as 

) Gin  RY ars 

(4.29) 

art z  7r 	2 
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When we calculate the isothermal compressibility by the more accurate 

procedure of eliminating A from equation (4.26) by using the zero-

pressure condition 3E/Drs  = 0, then we require the expression for 

4 a EBS 	3 
2  
2  EBS 

	

57.- 	+ —ar 	
It follows from equations (4.28) and (4.29) 

s s 
that 

L a 
r 3r 

(EBs)  a2 ( $S) -2.44z  r {2ay(sin2y y cos2y) Z 	2 

	

s s 	Dr2 	r o 

	

rte 1 	3a gr. - 2r 	- -- nysin2y + 2cos2y] s er 	ars 

	

+ r21
c -1 

	

	c -1 3a 	32al 2 e -1 2()2a - 	+ 	cos y1(----)dx 

	

crs  Bra are  s Ers 	 cr 

(4.3o) 

-2.44Z  G'(r ) 
	(4.31) 

r2 

where Gqrs) is defined by the integral in equation (4.30). It is 

seen that the first term of G'(rs) corresponds to G(rs){2y(sin2y - ycos2y)}, 

obtained for a solid metal. The further terms in Gl(rs) come from the 

consideration of the volume depenlence of a(x, rs) and (1:1r1), the con- s c 

tribution due to the latter being negligible in the case of the solid 

metal. 

(AL,21 
The isothermal compressibility OT 	for a simple:liquid metal 
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can be calculated in the manner outlined in Section 1.3F and is found 

to be given by 

(AL,Z) 
OT 	 22.1 

17(2727  E0.093r: + 2(0.916 + 1.73Z2/3)rs  - 4.42 - 2.44Zr:Gt(rs)] 
(4.32) 

The evaluation of this expression for isothermal compressibility 

requires the knowledge of Gt(rs), which could be evaluated numerically. 

Since the increase is isothermal compressibility through the melting 

point is generally about 5 to 20% it is expected that the band-structure 

contribution to the compressibility does not change significantly. In 

conclusion it is seen that the pseudo-potential approach to the cal-

culation of compressibility of liquid metals requires further knowledge 

of the volume dependences of pseudo-potentials and structure factors. 

C. 	Semi-Phenomenological Model due to Ascarelli  

The theoretical approach to the calculation of the sound velocity 

in liquid metals proposed by Ascarelli (1968) has been described in 

Section 1.3G. Ascarelli calculated the theoretical sound velocity 

Ec  (A )3 
m from equation (1.87) and those values are compared with the 

Bohm-Staver and experimental sound velocities for various liquid metals, 

at their melting points, in Table 4.10. Slightly different values of 

[c(A)1m would be obtained if experimental values of y for each metal 
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Table 4.10 Comparison of Theoretical and Experimental Sound Velocities 

at the Melting Points of Various Metals 

Metal tm  

(°C) 

Theoretical 

Bohm-Staver 
c(BS) 

(m/sec) 

Ascerelli 

LC (A),Ini  
(m/sec) 

Experimental 

c 

(m/sec) 

Ha 98 2940 2500 2527 

K 64 1810 1720 1888 

Rb 39 1140 1103 1260 

Cs 29 880 890 967 

Cu 1083 2580 2700 3458 

Ag 961 1740 1920 2693 

Zn 420 4180 2610 2852 

Cd 321 2850 1840 2242 

Hg -39 2100 1220 1479 

Al 66o 8750 4900 4673 

Ga 30 5430 2850 2873 

In 156 3760 2041 2318 

Ti 303 2750 1580 1660 

Sn 232 4630 2440 2474 

Pb 328 3350 1900 1819 

Sb 631 5340 3150 1893 

Bi 271 2940 2080 1649 

Te 451 6450 3320 913 
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were used rather than the common value of 1.15 chosen by Ascarelli. 

-1 
There is a fairly close agreement between Lc

(A)  jm and experimental 

values, and the decrease of sound velocity with increasing atomic 

mass within each valency group is obtained. This approach is a sig-

nificant improvement over the Bohm-Staver result for the polyvalent 

metals. With the exceptions of copper, silver, antimony, bismuth and 

tellurium the calculated [c(A)3m 
agree generally to better than 20% of 

the experimental value. For copper and silver an extra contribution to 

the energy due to overlap between electron shells of neighbouring atoms 

is probably needed. For antimony and bismuth CpC41.3m  is 40 and 20% 

respectively smaller than the experimental value and modification of 

this theory would appear to be necessary to account for the discrepancy. 

Gitis and Mikhailov (1966c), previously mentioned in Section 4.48, 

suggest that structural changes occur in these two metals near their 

melting points since their temperature dependence of sound velocity 

differ considerably from the other liquid metals. 

This simple model of hard-spheres in a uniform background potential 

yields values for sound velocity which are in close agreement with 

experiment and is a noticeable improvement over the free-electron 

approach to compressibility. In order to improve the agreement between 

calculated and measured sound velocity a better understanding of the 

interatomic forces and their volume dependence in liquid metals is 

probably needed. In this connection, it is of interest to note that 
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Ashcroft (private communication) has found that the Boar Mayer inter-

action is important in mercury. 

4.5 Adiabatic Compressibility of Mercury Alloys  

It is of interest to calculate the adiabatic compressibility of 

the mercury alloys studied here and to compare the variations of com-

pressibility with concentration for these alloys with the behaviour 

for mercury-thallium alloys. The density data at fixed temperatures 

were calculated from the volume contraction measurements due to Kleppa 

et al. (1961) and Davies (1966). Density, sound velocity and adiabatic 

compressibility data are given as a function of composition for the 

Hg-Zn, Hg-Cd, Hg-In, Hg-Sn, Hg-Pb and Hg-Bi alloy systems, at a fixed 

temperature in Tables All to A.6. Adiabatic compressibility at a fixed 

temperature is plotted as a function of concentration for six mercury 

alloy systems in Figs. 4.12 to 4.14, from which it is seen that the 

addition of zinc, cadmium, indium, tin, lead, or bismuth produce a 

rapid decrease in the compressibility. This behaviour is in agreement 

with the dilute alloy measurements due to Abowitz and Gordon (1963). 

For concentrations up to 40 at.% the variation of adiabatic compres-

sibility with concentration for these six mercury alloy systems is 

similar to the behaviour of the mercury-thallium system. In the mercury-

lead and mercury-bismuth systems the adiabatic compressibilities exhibit 

minima at about 70 at.% Pb and 40 at.% Bi respectively. 
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The measurements of isothermal compressibility on mercury-tin 

alloys by Lussana [see Bridgman (1958), page 1471 indicated also that 

a minimum occurred in compressibility. Since specific heat data are 

not available for this alloy system it is not possible to calculate 

isothermal compressibility from these sound velocity measurements. 

However, the specific heat C has been determined for mercury-thallium 

alloys and therefore the ratio of principal specific heats y and iso-

thermal compressibility can be calculated from the sound velocity 

measurements due to Abowitz and Gordon (1963). The data for p, ap t ep, 

c and calculated values of y, $8  and 8T  for mercury-thallium alloys are 

given in Table A.18. The ratio of specific heats is found to increase 

between 0 and 5 at.% Ti and then decreases towards the extrapolated 

value of y for pure Tl (see Fig. 4.15). Using these values for y it is 

found that the specific heat at constant volume Ca  increases smoothly 

with increase in concentration of thallium. The physical reason for 

the peak in y is not readily apparent. Isothermal compressibility is 

seen from Fig. 4.16 to decrease smoothly with increasing concentration 

of thallium and deviates from linearity with concentration by up to 

9%. A comparison between the theoretical and experimental variation 

of compressibility with alloy composition is discussed in the following 

Section 4.6. 
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4.6 Comparison of Theoretical and Experimental Compressibilities for  

Mercury Alloys  

A. Bohm-Staver Sound Velocity  

The author decided to formulate the Bohm-Staver sound velocity 

for alloys and to compare it with the present alloy results. The 

derivation of the Bohm-Staver sound velocity for pure metals has been 

given in Sections 1.3D and 1.3E, and can be simply extended to include 

alloy systems. For an alloy of metals of ionic masses Mo'  M1 and 

valencies Z0, Z1 respectively, the number of electrons/unit volume for 

an alloy of atomic fraction b is simply given by 

iz 	pbEZ1  b + Zo(1 v  b)1 

4  ai b 	[Mi b + Mo(1 - 1:)] 	' (4.33) 

where pb  is the density of the alloy. Hence the pressure pb  of the 

electron gas at T = 0 is found to be 

2 (31.2)2/3  fpb[Zib + Z0(1 --b)1)5/3  pb  

140(1 b) I 	
(4.34) 

From the differentiation of pb  with respect to density it is found 

r et)." that the isothermal compressibility Las, lb  for atomic fraction b is 

given by 

(4.35) 
3CHib + M0(1 - b)] [0,(rek)]b 

 = 2[EF1b EZib + Zo(1 - blpb  
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where [EFL)  is the free-electron Fermi energy for an alloy of atomic 

fraction b. 

The theoretical isothermal compressibilities of the pure components, 

which are obtained by putting b equal to zero or unity in equation (4.35), 

have been seen in Section 4.4A to be much smaller than experiment for 

the polyvalent metals. In a similar manner to the empirical relation 

for the compressibilities of pure metals defined by ZOT, which was 

discussed in Section 4.4A, it is possible to define an empirical 	

r

com- 

pressibility 	jb for alloys of atomic fraction b by [Zib + Zo(1 b)] 

r ( 
T
a), jb' so that 

( 	3[Mlb + Mo(1 b)] 111  
4b 2[Elbbb  

(4.36) 

Equation (4.36) gives fair agreement with experiment for the pure metal 

compressibilities [OT]o  and [ST]1. This expression for the variation 

of compressibility with alloy composition at a fixed temperature was 

first derived in Webber and Stephens (1968). Later, Enderby and March 

(private communication) pointed out that equation (4.35) can be re-

written by substituting for Zoand Z1  from the Bohm-Staver relation. At 

a fixed temperature, the variation of isothermal compressibility 

tanb  with alloy composition is then given by 

( 	Mlb MO(1  vb) 
T 	aMlb 	MO(1  - b) 	

. 	(4.37) 

[PA LEA P1 + EM04[EF]o Poi [EF]b°13 
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This approach has the advantage over equation (4.36) of fixing the end 

points to the known pure component compresaibilities and then it is 

possible to readily compare the theoretical compressibility with 

experiment for the alloys. 

The corresponding sound velocity cc 	]b  for the alloy of atomic (E'4)  

fraction b, at a fixed temperature, 

[c(EM)12  = b 

rm 
L"Fib 

found from equation 

ribcf 	Mo(1 	b)cil 

(4.37) 	is 

(4.38) 

+  
[EF1 1 	[Fl 0 

iMfb + Mo(1-b)] 

with the assumption that yi ti  yi x y'. This theoretical sound velocity 

is compared with the experimental sound velocity for mercury alloys in 

Figs. 3.8 to 3.13, where it is seen that this approach gives the correct 

graphical curvature for the variation of sound velocity with composition 

for mercury-zinc, mercury-lead and mercury-bismuth. For mercury-cadmium, 

mercury-indium and mercury-tin alloys theory gives the oppostie graphi-

cal curvature for the variation of sound velocity with composition to 

that found experimentally. 

It was decided to apply this theoretical approach for sound 

velocity to alloy systems of the same valency and experimental data 

were available for sodium-potassium lAbowitz and Gordon (1962a)] and tin-

lead alloys Gordon (1961)]. The theoretical variations of sound 

velocity with composition for these two alloy systems are shown in 

Figs. 4.17 and 4.18 respectively, and are seen to be in fairly close 
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agreement with experiment, particularly for tin-lead. A further 

system antimony-zinc was examined [see Fig. 4.19]. Although theory 

gives the correct graphical shape for the variation of sound velocity 

with composition, the deviation from linearity is not as great as 

that found experimentally by Kazakov et al. (1964). We conclude that 

the Bohm-Staver sound velocity for alloys generally agrees fairly 

well with experiment but exceptions occur amongst mercury alloys. 

The theoretical variations of adiabatic compressibility with 

composition calculated from equation (4.37) for six mercury alloy 

systems are compared with experiment in Figs. 4.12 to 4.14, where it 

is seen that the theory gives the correct graphical shape for the 

variation of compressibility across the whole alloy system for these 

mercury alloys. The deviations from linearity with composition of 

experimental values for adiabatic compressibilitiesJare greater than 

predicted theoretically. It is of interest that for the mercury-

bismuth alloy system theory predicts a minimum in compressibility, 

but the minimum occurs at about 60 at.% Bi rather than at 40 at.% Bi 

found experimentally. 

Abowitz and Gordon (1963) attempt to explain the rapid decrease 

of compressibility on alloying mercury as being due to the presence of 

more effective electrons than given by the valence electrons. Although 

this idea has some support from one interpretation of Hall coefficient 

data for mercury alloys by Matthews (1966), which indicates an increase 
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in the effective number of electrons, a strict theoretical account for 

Hall coefficient values in liquid alloys has not been carried out. 

It has been seen that for mercury alloys the free-electron com-

pressibility for alloys does not successfully account for the large 

decrease of compressibility on alloying. In the following Section 

4.6B we shall examine the pseudo-potential approach, which includes 

energies due to electron-electron, electron-ion and ion-ion interac-

tions, to the calculation of compressibility for alloys. 

B. Pseudo-Potential Approach for Alloys  

Ashcroft and Langreth (1967a) showed that the pseudo-potential 

approach to the calculation of compressibility agreed satisfactorily 

with experiment for simple solid metals. In Section 4.48 the pseudo-

potential approach to compressibility for liquid metals was discussed 

and we shall extend that approach to alloys. We need to consider the 

Fuchs and band-structure energies which are structure dependent. The 

partial structure factor ass, see Faber and Ziman (1964), is defined by 

a
a$
(4) = 1 	 ( " -1 - 1] r2 22-12-"I  Was(r) 	 dr, 

qr (4.39) 

where gaa(r) represents the average distribution of type $ atoms 

observed from an a atom at the origin. Here a and $ are dummy suffices 

which may take the values 0 or 1 for a binary alloy. There are therefore 
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three independent structure factors involved; a11(q), a00(q), and  a10(q); 

it is easily seen that a10(q) and an(q) are identical. Then Faber 

and Ziman (1964) show that 

Ilexp 	-r) =E16(r -r) +1 	exp ig.(r -r) 

roc 
r 	r r 	r Or s 	-s 	-s -u 

N 
= Nca6a$ + lorca$ 0

2 fp r- - 1] r2 gi
qr
osim dr 

0 
1.66,30  

= Nc
a
6a$ + Ncc0(aa0  - 1), 
	(4.4o) 

where ca and c0 
 are the concentrations of the two species. The initial 

6-function is needed to cover the case where a and B happen to describe 

the same species, so that r and y...0  can refer to the same ion. 

The expression for the ion-ion interaction (per ion) in a pure 

metal of valency Z is given in equation (1.53), which may be rewritten 

in the form (atomic units) 

t 

4.1r E.. = — 	Z(q)2  exp ig.(r. 	r.), 11 N 

	

	-2  
q iOj 

where Z(q) = Zig. 

If we multiply Z(q) by its complex conjugate and define the 

functions 

(4.41) 

(4.42) 

Za(q) = Za/q 

and 
	

Z
0 
 (q) = Z

0 
 /q ' 	(4.43) 



4n E 1  D20. - b)2(100  - 1) + z1b2(all  - 1) + 2Z1Z0b 
q q2 

(1 - b)(0.10 - 1)]. 	(4.44) 
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where Za and Z0 
 are the valencies of species a and S respectively, then 

the ion-ion interaction for an alloy is given by 

[E..11]alloy =II  in 1 	
13 
 Z (q)Z 	

r 
(q) 	I exp ig.(r 

q r  Or -a -a -$ 
I 

- 	EEE N Za (q)Z0  (q) Nc acO (aa0 - 1) -  q a 0 

= 4n 	Eza(q)2o(aaa  - 1) + Z8(q)2c(a00  - 1)  + 2 Za(q) 

Z
0 
 (q)c 

a  c0 (aa0 - 1)] 

Here b is the atomic fraction of species 0 or 1, Z0 and Z1 are the 

valencies of the two species. If Z* is an effective valency determined 

from the ratio of the electron density to the ion density, the Fuchs 

term (per electron) becomes on replacing the sum by an integral 

E.. 11 2 - 	J N(1 _ b)2(a00  _ 1) z/b2( 	- 1) + 2Z0Z1b(1 b) Z* 	nZ* 	 •all 

(8.10 1)Idq. 	(4.45) 

The Fuchs terms for the pure components of the alloy are obtained when 

b equals 0 or 1. As expected, the evaluation of the Fuchs term depends 
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upon knowledge of the -martial structure factors a00(q), a11(q)  and  a10(q), 

which are not available experimentally for mercury alloys. However, 

Ashcroft and Langreth (1967b, 1968) have extended the Percus-Yevick 

equation for a system of hard-spheres to binary systems and their 

partial structure factors could be used to evaluate the Fuchs term. 

The band-structure energy EBS  (per ion) for a pure metal has been 

discussed in Section 1.3F and is given in equation (1.54), which may 

be written in the form 

EBS =16TcN i q2 V(q)2(E 1) exp igkri  - 
q j 

(4.46) 

where V(q) is the qth Fourier component of the bare interaction of an 

electron with a single ion. If we multiply V(q) by its complex con-

jugate and label Va(q) and VS(q) as the qth Fourier components of the 

bare interactions of an electron with ions of species a and B, then the 

band-structure energy for an alloy becomes 

	

[EBS]alloy = 140 I I E q2(1,  - 1) 17,(0110(0 E 	exp ig(r -
13
) 

q a 	ra re 	a  

E eq..- 1) E vcsovo(q) cma,60  licacoca,0  - 13 
a B 

= 	2(!. INNT '-‘2- 	u 	u (n12c2(a 	- 1) 
16wQ 	

.L/Lvax%i, a .0"1, 	a. as 

+ V
0 
 (q)2c2(a

00 
 - 1) + 2Va(q)VB(q)cac0(aaB - 13 0  
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= 1  6 	(12(i- - 1)N0( 01,) ( 1 	
24 b) (q)2b vo (02(1 - b)2 

(a00  1) vi(02b2(all  - 1) + 2V0(q)V1(q)b 

(1 - b)(a10 - 1)]. 	(4.47)  

Here Vo(q) and V1(q) are the Fourier transforms of the bare electron-

ion interactions for species 0 and 1, respectively, immersed in the same 

screening cloud of electrons. Replacing the sum by an integral, the 

band-structure energy Ens/Z* (per electron) becomes 

EBS 	1 	
co 

1)N(020.- b) V1(q)2b 1/0(020.  b)2 
O 3270Z* J Z  

- 1) + 2IT0(q)V1(q)b (a00 - 1) 	V1(q)2b2(a11 

(1 - b)(a10 	1)]dq . 	(4.48) 

This expression reduces to the pure component values for the band-

structure energies when b equals 0 or 1. Evaluation of the band-structure 

energy depends upon knowledge of Vo(q), V1(q), 40(0, a11(q) and alo(q), 

which are not available experimentally for mercury alloys. 

The total energy Eb  for the alloy of atomic fraction b may there-

fore be written in the form 
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= 2.21 0.916 _ 	N 	3A (0.115 - 0.0312,nred + 

	

-b  r2 r
s 	

47m3 

+ 2 f N(1 - b)2(a00 - 1) + Z11:12(a11 - 1) + 24Z1b(1 b) 

- b) 1 	(q)20.~(q)2b(a10 - 1)]dq + 	1)['yo 
321:3Z* o 

+ Vo(q)2(1 - b)2(a00 	1) + 171(02b2(a11 -. 1) + 214(q)111(q)b 

	

(1 	b )(a10 - 1)Jdq. 
	 (4.49) 

Here the value of rs is calculated from the electron density of the 

alloy. In order to calculate the isothermal compressibility in the 

usual manner it is necessary to know the volume dependences of the 

pseudo-potentials and partial structure factors, which are not known 

experimentally or theoretically for alloys. 

C. 	Hard-Sphere Model  

Ashcroft and Langreth (1967b) have derived the isothermal com-

pressibility for a binary mixture of hard-spheres of atomic fraction b, 

[(STh)lb. For binary systems equation (1.13) must be modified in the 

following manner:- 
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c4h)313  = 	nio  (1 zb)4 

nbiaBTE(3. + 2zb)2  _  
(4.50) 

where Ab  is given by the expression 

3b(1 - b)zb(1 f)2  3zbf 
[f2  (1 b) + 1311. pb  = S (2 + zb)(1 + f) + 

b + f3(1 b) b + f3(1 - b) 

(4.51) 

Here b is the atomic fraction of species 1 with the largest hard-

sphere diameter, and f is the ratio of the hard-sphere diameter of 

species 0 to that of species 1. The value of f is therefore 

f = a /a1 7  (0 	f 	1). 	(4.52) 

It is usual to calculate the value of the packing fraction zb for 

atomic fraction b, at a fixed temperature, by using a linear inter-

polation between the two pure component values, z0  and zl, such that 

zb 
= zlb + z0(1 	b). 	(4.53) 

Jarzynski et al. (1969) use this approach to calculate the isothermal 

compressibilities of sodium-potassium alloys. They find that the hard-

sphere compressibilities are in good agreement with experiment when 

the value of f is taken to be 0.72. For polyvalent metals, however, 
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the hard-sphere compressibilities are considerably smaller than experi-

mental compressibilities and therefore this approach is not readily 

applicable to polyvalent alloys. 

D. Semi-Phenomenological Hard-Sphere Model  

The isothermal compressibilities for liquid metals calculated 

on the basis of the semi-phenomenological model proposed by Ascarelli 

(1968) are in good agreement with experiment (see Sections 1.3F and 

4.4c) and we decided to extend this model to alloys. For liquid metals, 

Ascarelli proposed that the total pressure is due to the sum of the 

pressure derived from the total energy of the system, expressed by 

equation (1.82), and the pressure of a hard-sphere fluid. In a 

similar manner, we propose that the total pressure for an alloy system 

is due to the sum of the pressure derived from the total energy of the 

alloy system and the pressure for a mixture of hard-spheres of atomic 

fraction b, [13hb. We must first calculate rph]b and this may be 

derived from equations (4.50) and (4.51). Ashcroft and Langreth (1967b) 

define the total packing fraction for the mixture by 

zio  = cCuoag + 	 (4.54) 

= Db/0.101  , 
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where there are No hard-spheres of diameter Go and N1 with diameter 

a1 (in the volume nb). For simplicity, Db  is defined from equation 

(4.54). From equations (4.50) and (4.54) it can readily be shown that 

the variation of the hard-sphere pressure with packing fraction, at 

constant temperature, (3ph/az)T  , is given by 

ap 
(5eAT = libkg r(i  2zb)2 _ 

Abi  

Db 	L. 1 - zby+ j (4.55) 

Ne may rewrite Db  given by equation (4.51) in the form 

where 

and 

Ab  Hbzb  + Fbzt 

6b(1 - b)(1 f)2(1 + f)  
m 	b + f3(1 - b) 

(4.56) 

(4.57) 

3b(1 - b)(1 	f)2[(1 + 4f)b + (4f3  + f4)(1 b)]  
F  m 	b

(4.58) 

	

[15 + f3(1 	b)12  

Integration of equation (4.55) with respect to packing fraction gives 

the pressure [IDhb due to a mixture of hard-spheres of atomic fraction 

b, at a fixed temperature T, in the following manner:- 

= 

Nbkg f 
9 	12 	+ 	4 -  	 + Fb) 

Eigla 	Db 	jf(1 	z  )4 	(1 	zb)3 	(1  _ zb)2 	(1  _ zb)4 
b 

(lib  2Fb) Fb  
	 dz 

	

1.. zb)3 	(1 - zb)2  / b 
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"bkg 
Db 

1 - 2zb  4at +G b(1-zb)3+ 	-2F13) + (6% -3%)% 6Fbzb1/6) 

(1 - zb)3 	4.59)  

Here Gb  is a constant of integration. For a single component system 

of hard-spheres Lb = Hb  = Fb  = 0 and equation (4.59) reduces to the 

usual hard-sphere pressure, see equation (1.11), when Gb  takes the 

value -1. The equation of state for a mixture of hard-spheres of 

atomic fraction b is therefore expressed by 

rp, 01 	zb  .1  (mb  - 2Fb)  (6Fb  3.0.b  -  6Fbzip/6%) 

LaBTjb 	(1 - zb)3  

This expression for the pressure due to a mixture of hard-spheres 

reduces to the usual hard-sphere pressure when b equals 0 or 1. 

The volume dependences of the interactions which contribute to 

the total energy of the alloy system are the same as those discussed 

in Section 1.3G for pure metals. With the same approximations as 

assumed by Ascarelli (1968) for pure metals, the total energy (E(Mjb  

of the alloy system at temperature To  may be written in the form 

Cc-f• Eq. (L82)1 	(A) 
gbfE 3b 317bZgEllab 	a , 

- 	 3, // (..s.A1/3 
I 

	

kBT0 	5kBT0 	-b (4.61) 

where CE-]b  is the free-electron Fermi energy for an alloy of atomic 

(4.6o) 
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fraction b, at temperature To, no  the volume of the system at tempera-

ture To and zero pressure, Zt the effective valency and Cb a dimen-

sionless constant. The subscripts b indicate that the physical quantities 

are evaluated for atomic fraction b. On the free-electron model, if 

Zo and Z1 are the valencies of species 0 and 1 respectively, then the 

effective valency is simply 

Z*b  = Z1  b + Zo(1 b) . 
	(4.62) 

In this semi-phenomenological model, the total pressure for the alloy 

of atomic fraction b, at a fixed temperature To, is assumed to be given by 

11.21LJ 2ZUEF]b 	11%1/3 
rte—  ^ 5kBT0  

l + zb  + 7.12)  + ({(11b - 2Fb) + (6Fb  - 3Hb)zb  6Fbzp/6zb) 

(1  - zb)3  
.(4.63) 

 

When the alloy system is under an ambient pressure of one atmosphere 

and at a fixed temperature To, we may approximate the pressure to zero 

and hence determine Cb from equation (4.63). Thus 

2zt[E]b  1 + zio  + z123  + (((Hb  2Fb) + (6Fb - 3Hb)zb  6Fbz12)1 /6zb) 
Cb 	 b 5kBT0  

(1 - zb)3  

(4.64) 
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r Ck) The isothermal compressibility IfiT  lb  for the alloy of atomic 

fraction b, at a fixed temperature To, may be calculated from equation 

(4.63) in the usual manner and is given by 

1 	iii.kBT0 ro. 
2zb)2 - Au  mg(Eilb  

u 	(4.65) 
ab 	L 	- zbrt 	3kET0 	3 

Substitution of the value of Cb 
given by equation (4.64) into equation 

(4.65) gives 

1 	EbkBTo 

(lb 

[f4a13  + 12q + 12zb 
1 + ({(4Fb-2Hb) (16Fb-8Hb)zb  + (24Fb-15Hb)q 

21Fbzp/3z6)//3(1 zb)4  

27b - 

 [N! lb  

-7 I  15kBT0  4 (4.66) 

Therefore in this semi-phenomenological model the isothermal compres-

sibility for the alloy of atomic fraction b, at temperature To,may be 

written in the form 

NbkBTo  [4q 12z12)  E 12zb  - 1 + 6b 
	  + 	u 

27,![EFIb 	
(4.67) 

 
04A)11, 	ab 	3(1 - zb)4 	

15kBT0 
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where 

db {(4Fib  - 2Hb) (16Fb v  8Hb)zb  + (24Fb  15Hb)zt 21Fbzip"3%). 

(4.68) 

This expression reduces to the expression for the isothermal compres-

sibility of a pure metal given by equation (1.87) when 6b  = 0 and 

zb = 0.45. This theoretical variation of isothermal compressibility 

with alloy composition would be useful to compare with experiment for 

alloys since the pure component isothermal compressibilities are 

reproduced fairly well. The sound velocity [c(A)]b for the alloy of 

atomic fraction b, at temperature To, can be obtained from equations 

(4.67) and (4.68), and is given by 

y'k_To  	rag + 12zt + 12zb-l+V 	2zigE0b [o  (A)  12'b 
pfb + 140(1-b)] 	 + 15kTD_ 3(1 - zb)4 	o 	

. (4.69) 

Here y' is the theoretical ratio of principal specific heats for the 

alloy, /40 and 141 the atomic masses of species 0 and 1 respectively. 

Numerical calculations of the theoretical sound velocity [c(A)]b for 

alloys are not yet available to compare with experimental values of 

sound velocity. 

4.7 Conclusion  

The ratio of bulk to shear viscosity for mercury has been measured 
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to be 0.86 + 0.3 and within experimental error is independent of 

temperature in the temperature range of the experiment. Correction 

of the data due to Hunter et al. (1963) gives the most reliable value 

for nB/ns 
as 0.62 + 0.1. A review of the values of nB/ns for various 

liquid metals shows that mercury has a comparatively low value for this 

ratio. Potassium, zinc, mercury and gallium appear to have values of 

n
B
/n
s 
less than unity, whilst indium and antimony have values greater 

than four for this ratio. The dense-gas formulation for ultrasonic 

absorption in liquid metals is found to give reasonable estimates for 

bulk viscosity and nB/ns. Modification of the theory would appear to 

be necessary to account for experimental values of nB/ns  which differ 

significantly from unity. It should be possible to extend this theory 

to alloys, where comparison can be made with sound absorption measure-

ments which are already available for sodium-potassium, tin-lead, silver-

tin, and mercury-thallium alloys. Abovitz and Gordon (1962b) have 

found that relaxation phenomena occur in mercury-thallium alloys and 

therefore it would be of interest to perform sound absorption measure-

ments on other mercury alloy systems. 

The present investigation of the sound velocity and adiabatic 

compressibility of six mercury alloy systems has shown that the 

adiabatic compressibility decreases rapidly with increasing concentra-

tion of solute. These measurements confirm the decrease of adiabatic 

compressibility in dilute mercury alloys found by Golik et al. (1961) 
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and Abowitz and Gordon (1963). The present study of these alloys over 

the whole range of concentration shows that for concentrations up to 

40 at.% solute the variation of adiabatic compressibility with concen-

tration is similar to the behaviour of the mercury-thallium system. 

In the mercury-lead and mercury-bismuth systems the adiabatic compres-

sibilities exhibit minima at about 70 at.% Pb and 40 at.% Bi respec-

tively, whereas theory predicts a minimum at about 60 at.% Bi. The 

free-electron compressibility for alloys gives the correct graphical 

shape for the variation of compressibility across the whole alloy 

system for these six mercury alloy systems but the deviationsfrom 

linearity with composition of experimental values for adiabatic com-

pressibility are greater than predicted theoretically. 

When applied to the six mercury alloy systems the Bohm-Staver 

sound velocity for alloys gives the correct graphical curvature for 

the variation of sound velocity with composition only for mercury-zinc, 

mercury-lead and mercury-bismuth alloys. For sodium-potassium and 

tin-lead alloys the theoretical variation of sound velocity with 

composition is in fairly close agreement with experiment. The 

theoretical deviation of sound velocity from linearity with composition 

in antimony-zinc alloys is not as great as that found experimentally. 

The pseudo-potential approach to the compressibility of simple 

solid metals and the semi-phenomenological model for liquid metals due 

to Ascarelli have been seen to give fairly good agreement with experiment. 
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These two theoretical approaches to compressibility have been extended 

to liquid alloy systems and further numerical calculations are required 

before comparison can be made with experiment. Calculation of isother-

mal compressibility using a pseudo-potential approach requires more 

theoretical and experimental knowledge of the volume dependences of 

pseudo-potentials and partial structure factors. The isothermal 

compressibility derived by considering a mixture of hard-spheres in a 

uniform background potential is simpler to evaluate and further work 

is being carried out in this direction by the author. 

It has been seen that sound velocity measurements provide a means 

of calculating the adiabatic and isothermal compressibilities of high 

melting point metals where direct measurements of isothermal compres-

sibility are difficult to perform. Fused silica can be used as the 

material for the acoustic delay rod and container up to temperatures 

of about 1050°C and therefore it would be possible to investigate the 

propagation of sound in liquid gold and germanium. It is also of 

interest to investigate the propagation of sound in liquid metals and 

alloys subject to applied pressure in order to gain further knowledge 

of the equation of state of these materials. FUrther investigations 

of the effect on sound velocity and compressibility of the addition 

of solutes, with different valencies, to a particular metal are re-

quired in order to make comparison with theory. 
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Table A.1 Comparison of Theoretical and Experimental Values for Sound 

Velocity and Adiabatic Compressibility at 158°C for the 

Mercury-Zinc Alloy System 

Atomic fraction 

of Zn 

b 

p
a 

(gm/cm3) 

Expt. 

c 

(n/sec) 

Theory 

r (m  Le 	b 
(m/sec) 

Expt. 

1012  as x  
(cm2/dyne) 

Theory 

[a(Em)] 	x 1012  s 	b 
(cm2/dyne) 

0 13.21 1389 1389 3.92 3.92 

0.0201 13.17 1421 1404 3.76 3.35 

0.0503 13.08 1468 1420 3.55 3.75 

0.100 12.92 1535 1470 3.29 3.53 

0.150 12.74 1498 1510 3.07 3.44 

0.200 12.54 1655 1554 2.91 3.30 

0.250 12.33 1712 1601 2.77 3.16 

0.300 12.07 1770 1650 2.64 3.04 

0.350 11.81 1329 1702 2.53 2.92 

0.400 11.53 1887 1757 2.44 2.31 

0.500 10.94 2003 1880 2.27 2.59 

1 6.740 2957 2957 1.70 1.70 

a Kleppa et al. (1961). 
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Table A.2 Comparison of Theoretical and Experimental Values for Sound 

Velocity and Adiabatic Compressibility at 1580C for the 

Mercury-Cadmium Alloy System 

Atomic fraction 

of Cd 

b 

Pa 

(gm/cm3) 

Expt. 

c 

(m/sec) 

Theory 

[c(M1)]b 
(m/sec) 

Expt. 

Ss x 1012  

(cm2/dyne) 

Theory 

WsEM)1 x 1012  

(cm2/dyne) 

0 13.21 1339 1339 3.92 3.92 

0.0200 13.15 1416 1403 3.79 3.86 

0.0500 13e05 1454 1424 3.63 3.78 

0.100 12.82 1513 1459 3.41 3.67 

0.150 12.68 1566 1A96 3.22 3.52 

0.200 12.47 1617 1535 3.07 3.40 

0.250 12.26 1666 1574 2.94 3.29 

0.300 12.04 1713 1613 2.83 3.19 

0.350 11.82 1757 1654 2.74 3.09 

0.400 11.59 1001 1696 2.66 3.00 

0.50o 11.09 1383 1702 2.54 2.84 

0.600 10.55 1963 1073 2.46 2.70 

0.700 9.977 2040 1969 2.41 2.50 

1 0.134 2303 2303 2.32 2.32 

aKleppa et al. (1961). 
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Table A.3 Comparison of Theoretical and Experimental Values for Sound 

Velocity and Adiabatic CompreEstility at 1600C for the 

Mercury-Indium Alloy System 

Atomic fraction 

of In 

b 

p
a  

(gm/cm3) 

Expt. 

c 

(m/sec) 

Theory 

(EM ..  (EM31
b 

[c 

(m/sec) 

Expt. 

13s  x 1012  

(cm2/dyne) 

Theory 

W Elt
b 
 x 1012  s 

(cm2/dyne) 

0 13.21 1388 138 3.93 3.93 

0.0060 13.13 1399 1392 3.80 3.92 

0.0100 13.15 1405 1395 3.85 3.91 

0.0150 13.13 1411 1399 3.83 3.39 

0.0200 13.10 1419 1403 3.79 3.88 

0.0200 13.10 1419 1403 3.79 3.83 

0.0500 12.94 1464 1424 3.61 3.01 

0.0800 12.73 1504 1447 3.46 3.74 

0.0946 12.70 1524 1450 3.39 3.70 

0.140 12.44 1570 1492 3.23 3.61 

0.181 12.19 1622 1524 3.12 3.53 

0.250 11.78 lea 1577 2.97 3.42 

0.300 11.47 1739 1617 2.38 3.33 

0.350 11.16 1731 1659 2.33 3.26 

0.400 10.04 1322 1700 2.78 3.19 

0.500 10.20 1904 1707 2.71 3.07 

0.600 9.564 1931 1377 2.66 2.97 

0.725 3.731 2030 2002 2.63 2.34 

1 7.062 2317 2317 2.64 2.64 

a Davies (1966). 
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Table A.4 Comparison of Theoretical and Experimental Values for Sound 

Velocity and Adiabatic Compressibility at 240°C for the 

Mercury-Tin Alloy System 

Atomic fraction 

of Sn 

b 

p
a 

(gm/cm3) 

Expt. 

c 

(m/sec) 

Theory 

[c(M1)1b 
(m/sec) 

Expt. 

R 	x 1012  's 
(cm2/dyne) 

Theory 

ra
s

(Em)1b  x 1012  L  
(cm2/dyne) 

0 13.02 1351 1351 4.21 4.21 

0.0200 12.90 1405 1370 3.93 4.13 

0.0500 12.73 1463 1398 3.67 4.02 

0.130 12.44 1531 1446 3.43 3.85 

0.142 12.19 1587 1436 3.26 3.72 

0.200 11.85 1652 1543 3.09 3.55 

0.250 11.54 1710 1592 2.97 3.42 

0.300 11.23 1764 1642 2.86 3.30 

0.400 10.62 1370 1744 2.69 3.10 

0.499 9.909 1960 1346 2.50 2.93 

0.598 9.372 2066 1957 2.50 2.79 

0.748 3.455 2213 2134 2.42 2.60 

0.399 , 
7:5E2 2369 2329 2.36 2.44 

1 6.902 2472 2472 2.34 2.34 

a Davies (1966). 
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Table A.5 Comparison of Theoretical and Experimental Values for Sound 

Velocity and Adiabatic Compresibility at 158°C for the 

Mercury-Lead Alloy System 

Atomic fraction 

of Pb Pa 

(gm/cm3) 

expt. 

c 

(m/sec) 

Theory 

ic(EM) I b 
(n/sec) 

Expt. 

$s x 1012  

(cn2/dyne) 

Theory 

1$(Em) 1 b  x 1012  

(cm2/dyne) 

0 13.21 1389 1389 3.92 3.92 

0.0200 13.20 1432 1401 3.70 3.36 

0.0400 13.17 1457 1414 3.53 3.30 

0.0500 13.15 1469 1419 3.52 3.73 

0.0527 13.15 1473 1420 3.50 3.77 

0.0300 13.11 1496 1436 3.41 3.69 

0.0971 13.08 1503 1440 3.36 3.65 

0.150 12.97 1550 1473 3.21 3.53 

0.200 12.06 1585 1505 3.10 3.43 

0.250 12.74 16 20 1531 2.99 3.35 

0.300 12.61 1653 1557 2.90 3.27 

0.350 12.40 1603 1531 2.83 3.20 

0.400 12.34 1711 1605 2.77 3.14 

0.450 12.21 1737 1629 2.71 3.09 

0.500 12.09 1760 1652 2.67 3.03 

0.600 11.34 1793 1697 2.61 2.93 

0.700 11.61 1629 1741 2.57 2.04 

0.796 11.39 1351 1730 2.56 2.77 

1 10.97 1063 1863 2.63 2.63 

a Kieppa et al. (1961) 
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Table A.6 Comparison of Theoretical and Experimental Values for Sound 

Velocity and Adiabatic Compressibility at 158°C for the 

Mercury-Bismuth Alloy System 

Atomic fraction 

of Bi Pa 

(gm/cm3) 

Expt. 

c 

(m/sec) 

Theory 

Ic(EM) l b  

(m/sec ) 

Expt. 

as  x 1012  

(cm2/dyne) 

Theory 
(EM) ll3s 	lb  x 1012  

(cn2/dyne) 

0 13,21 1339 1339 3.92 3.92 

0.0200 13.15 1424 1399 3.75 3.39 

0.0500 13.05 1455 1411 3.62 3.85 

0.100 12.07 1490 1437 3.50 3.76 

0.150 12.70 1522 1460 3.4o 3.70 

0.200 12.53 1547 1477 3.34 3.66 

0.250 12.36 1570 1496 3.23 3.62 

0.300 12.20 1586 1513 3.25 3.53 

0.350 12.03 1602 1523 3.24 3.56 

0.400 11.86 1615 1543 3.23 3.54 

0.450 11.71 1626 1557 3.23 3.53 

0.50o 11.54 1632 1570 3.25 3.52 

0.600 11.23 1645 1592 3.29 3.51 

0.700 10.92 1650 1611 3.36 3.53 

0.393 10.37 1656 1643 3.52 3.57 

1 10.07 1655 1655 3.62 3.62 

a Kieppa et al. (1961). 



Table A.7 Physical Data for Mercury used in Table 4.1 

t 

(°C) (gm/cm3) 

a; x 104  

(deg C-1) 

a,d Cb 

(calgm71deg C-1) 
ns 

(ep) 
"T 

(calsec-ldeg C-lcm-1) 

c
e 

(m/sec) 

22.5 13.54 1.811 0.0332 1.55 0.0202 1450.6 

23.5 13.54 1.010 0.0332 1.54 0.0202 1450.2 

52.5 13.47 1.807 0.0330 1.33 0.0218 1436.9 

66 13.43 1.306 0.0330 1.33 0.0225 1430.7 

76.5 13.41 1.005 0.0329 1.29 0.0230 1425.9 

137.5 13.26 1.807 0.0326 1.15 0.0244 1393.0 

141 13.25 1.007 0.0326 1.15 0.0244 1396.4 

156 13.22 1.809 0.0326 1.12 0.0247 1309.6 

a 
Bigg

, 0.964) 

b Hultgren et al. (1963) 

Erk (1928) 

d Powell and Tye (1961) 

e Webber 

WN 



Table A.0 Physical Data used in Table 4.2 

Metal t 

(°C) 

P
a 

(gm/cm3) 

as  x 104  
P 

(des C-1) 

a 
C 
P 

(cal 	"ides C-1) 
ns 

(cP) 

kT  

(calsec-ldes C-Icm-1) 

e
n 

(m/sec) 

Na 100 0.927 2.43 0.331 0.705b 0.2061 2526 

K 75 0.024 2.91 0.195 0.503b 0.1141 1332 

Zn 450 6.54 1.40 0.1153.70 ° 0.121]  2700 

Cd 360 7.99 1.46 0.0632 1.44 d  0.117 2150 

Hs 25 13.5 1.31 3.0334 1.53 e  0.020k 1449 

Ga 30 6.10 1.26 0.0954 2.06 f 0.073j 2873 

In 200 7.00 1.16 0.0613 1.666  0.073]  2305 

Sn 240 6.96 1.09 0.0595 1.92 h  0.0311 2462 

Pb 340 10.7 1.17 0.0352 , h 2.56 0.034m  1772 

Bi 230 10.1 1.23 0.0364 1.33 ° 0.026n  1645 



References for Table A.0 

Same references as in Tables A.7, A.9 to A.14 & A.17. 

Ewing et al. (1951). 

Ofte and Wittenberg (1963). 

"Liquid Metals Handbook" (1952). 

Erk (1928). 

Gutman and Simmons (1952). 

Culpin (1957). 

Rothwell (1962). 

Ewing et al. (1955). 

Ewing et al. (1957). 

Powell and Tye (1961). 

Powell (1949). 

Powell and Tye (1956). 

Webber and Stephens (1960). 
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a 

b

e  

f 

h 

k 

n 



Table A.9 Adiabatic and Isothermal Conpressibilities as a Function of Temperature for Zinc 

t 
(°C) 

Pa 
(gm/cm3) 

as x 104 
P 
(deg C-1 ) 

eb 
p 

(cal/gon.deg C) 

c
c 

(n/sec) 

Y os  x 1042  

(cm2/dyne) 

OT  x 1012  

(cn2/dyne) 

420 6.569 1.40 0.115 2351.0 1.23 1.37 2.30 

430 6.560 1.40 0.115 2347.3 1.23 1.08 2.32 

440 6.551 1.40 0.115 2343.8 1.24 1.39 2.33 

450 6.542 1.4o 0.115 2339.3 1.24 1.90 2.35 
460 6.533 1.41 0.115 2035.0 1.24 1.90 2.37 

470 6.523 1.41 0.115 2331.0 1.25 1.91 2.36 

4E0 6.514 1 1.41 0.115 2327.0 1.25 1.92 2.40 

490 6.505 1.41 0.115 2823.3 1.25 1.93 2.42 

500 6.496 1.41 0.115 2019.3 1.26 1.94 2.43 

510 6.407 1.42 0.115 2315.3 1.26 1.94 2.45 
520 6.473 1.42 0.115 2311.3 1.26 1.95 2.47 

a Thresh (1965)- 
Hultgren et al. (1963).. 
Webber. 



Table A.10 Adiabatic and Isothermal Compressibilities as a Function of Temperature for 

Cadmium. 

t 

(°C) 

Pa 

(gm/cm3) 

ge.a x 104 
P 

(deg C-1) 

b e 
P 

(cal/gm.deg C) 

cc 

(n/sec) 
Y as x 1012  

(cm2/dyne) 

0T x 1012  

(cm2  /dyne) 

321 0.031 1.45 0.0632 2242.1 1.211. 2.46 3.07 

330 3.021 1.46 0.0632 2238.7 1.24 2.49 3.09 

340 6.009 1.46 0.0632 2234.9 1.25 2.50 3.11 

350 7.993 1.46 0.0632 2231.2 1.25 2.51 3.14 

360 7.906 1.46 0.0632 2227.4 1.25 2.52 3.16 

370 7.974 1.46 0.0632 2223.7 1.26 2.54 3.19 

380 7.963 1.47 0.0632 2219.9 1.26 2.55 3.22 

390 7.951 1.47 0.0632 2216.0 1.27 2.56 3.24 

400 7.939 1.47 0.0632 2212.4 1.27 2.57 3.27 

410 7.928 1.47 0.0632 2203.6 1.27 2.59 3.29 

a Greenaway (1940). 

b Hultgren et al. (1963), 

Webber. 



Table A.11 Adiabatic and Isothermal Compressibilities as a Function of Temperature 

for Indium 

t 

00 

Pa 

(Gm/cm3) 

aa  x 104  
P 
(deg C-1 ) 

Cu 
P 

(cal/gm.deg C) 

c
c 

(m/sec) 

Y Os  x 1012  

(cn2/dyne) 

OT  x 1012  

(cn2/dyne) 

156 7.033 1.16 0.0614 2317.7 1.12 2.65 2.96 

160 7.030 1.16 0.0614 2316.5 1.12 2.65 2.97 

100 7.013 1.16 0.0614 2310.7 1.13 2.67 3.01 

200 6.997 1.16 0.0613 2304.8 1.13 2.69 3.05 

220 6.961 1.16 0.0613 2299.0 1.14 2.71 3.06 

240 6.965 1.17 0.0612 2293.1 1.14 2.73 3.12 

260 6.948 1.17 0.0611 2237.2 1.15 2.75 3.16 

250 6.932 1.17 0.0611 2231.4 1.15 2.77 3.20 

300 6.916 1.10 0.0610 2275.5 1.16 2.79 3.24 

326 6.399 1.10 0.0609 2269.7 1.17 2.61 3.20 

340 6.603 1.13 0.0609 2263.8 1.17 2.33 3.32 

360 6.567 1.15 0.0600 2257.9 1.18 2.06 3.36 

a  "Liquid Metals Handbook" (1952) 

b  Hultgren et al. (1963) 

Webber 



Table A.12 Adiabatic and Isothermal Conpressibilities as a Function of Temperature 

for Tin 

t 

(°C) 

Pa 

(5m/cm3) 

as  x 104  
P 

(des C-I) 

b c 
P 

(cal/Gm.des C) 

cc 

(m/sec) 

Y 5s x 1012 
 

(cm2/ayne) 

0T x 1012 
 

(cm2/dyne) 

232 6.969 1.09 0.0593 2473.9 1.15 2.34 2.69 

240 6.963 1.09 0.0595 2472.1 1.15 2.35 2.70 

260 6.943 1.08 0.0503 2467.6 1.16 2.36 2.73 

230 6.933 1.06 0.0503 2463.2 1.16 2.30 2.76 

300 6.910 1.03 0.0501 2453.7 1.17 2.39 2.79 

320 6.903 1.0 0.0579 2454.2 1.17 2.41 2.02 

340 6.000 1.07 0.0570 2449.6 1.13 2.42 2.04 

360 6.873 1.07 0.0573 2445.3 1.10 2.43 2.37 

380 6.058 1.07 0.0577 2440.6 1.13 2.45 2.90 

400 6.044 1.07 0.0577 2436.4 1.19 2.46 2.92 

Ubelacker and Lucas (1962) 
b  IiultCren et al. (1963) 

Webber 



Table A.13 Adiabatic and Isothermal conpressibilities as a Function of Temperature 

for Lead 

t 

(0C) 

a 
P 

(i/cn3) 

as  x 104  
P 

(deg C-1) 

b 
C 
P 

(cal/gm.deg C) 

c 
c 

(r./sec) 

Y r 
 

a 	x 1012  
s 

(cm2/dyne) 

a 	x 1012  

(cm2/dyne) 

328 10.63 1.17 0.0353 1310.9 1.19 2.33 3.35 

337 10.67 1.17 0.0353 1016.6 1.19 2.04 3.37 

347 10.66 1.18 0.0353 1814.0 1.19 2.05 3.40 

357 10.65 1.13 0.0352 1811.4 1.19 2.36 3.42 

367 10.63 1.1e 0.0352 1008.8 1.20 2.87 3.44 

377 10.62 1.18 0.0352 1306.2 1.20 2.09 3.47 

307 10.61 1.18 0.0351 1003.6 1.20 2.90 3.49 

397 10.60 1.18 0.0351 1801.0 1.21 2.91 3.51 

407 10.53 1.13 0.0351 1798.5 1.21 2.92 3.54 

417 10.57 1.19 0.0350 1795.9 1.21 2.93 3.56 

427 10.56 1.19 0.0350 1793.3 1.22 2.95 3.58 

a Strauss et al. (1960) 

Hultsren et al. (1963) 

Webber 



Table A.14 Adiabatic and Isothermal Compressibilities as a Function of Temperature 

for Bisnuth 

t 

(0C) 
Pa  

(gm/cm3) 

as  x 104 

eg C-1) (deg C-1) 

b 
C 

(cal/gm.deg C) 

cc 

(m/sec) 
Y Os  x 1012  

(cm2/dyne) 

OT  x 1012  

(cm2/dyne) 

271 10.06 1.23 0.0364 1649.0 1.15 3.66 4.19 

275 10.05 1.23 0.0364 1643.7 1.15 3.66 4.20 

280 10.05 1.23 0.0364 1640.3 1.15 3.66 4.21 

290 10.04 1.23 0.030; : 1647.4 1.15 3.67 4.23 

300 10.02 1.23 0.0364 1646.5 1.16 3.63 4.25 

310 10.01 1.23 0.0364 1645.6 1.16 3.69 4.27 

320 9.993 1.24 0.0364 1644.6 1.16 3.70 4.29 

330 9.936 1.24 0.0364 1643.6 1.16 3.71 4.31 

340 9.974 1_24 0.0364 1642.6 1.17 3.72 4.34 

350 9.961 1.24 0.0364 1641.5 1.17 3.73 4.36 

360 9.949 1.24 0.0364 1640.3 1.17 3.74 4.30 

370 9.937 1.24 0.0364 1639.1 1.10 3.75 4.4o 

300 9.924 1.25 0.0364 167.9 1.13 3.76 4.43 

390 9.912 1.25 0.0364 1636.5 1.13 3.77 4.45 

400 9.900 1.25 0.0364 1635.2 1.13 3.73 1.47 

410 9.007 1.25 0.0364 1633.8 1.19 3.79 4.50 

a Strauss and Richards (1962) 

Hultgren et al. (1963) 

Webber 



Table A.15 Adiabatic and Isothermal Compressibilities as a Function of Temperature 

for Antimony 

t 

(CC) 

a s  

(02/a13) 

x 104 
P 

(deb C-1) 

b C 
P 

(cal/sm.des C) 

c
c y Os  x 1012  

rcm2/dyne) 

k x 1012  

(cm2/dyne) 

631 6.464 0.957 0.0616 1393 1.12 4.32 4.31 

650 6.452 0.955 0.0616 1900 1.12 4.29 4.30 

700 6.422 0.951 0.0616 1913 1.13 4.26 4.79 

75o 6.391 3.947 3.0616 1925 1.13 4.22 4.73 

Coo 6.361 0.943 0.0616 1935 1.14 4.23 4.70 

350 6.332 0.939 0.0616 1933 1.14 4.21 4.01 

900 6.301 0.935 3.0616 194D 1.15 4.22 4.35 

950 C.273 0.931 0.0616 1939 1.15 4.24 4.90 

1000 6.244 0.926 0.0616 1937 1.16 4.27 4.95 

1050 6.219 0.921 0.0616 1935 1.16 4.29 5.00 

1100 6.1E7 3.917 0.0616 1931 1.17 4.33 5.36 

a Lucas and Urbain (1962a) 

Hultsren et al. (19(3) 

Gitis and Mikhailov (1966a) 

0 • 



Table A.16 Adiabatic and Isothermal Conpressibilities as a Function of Temperature for 

Tellurium 

t 

(°C) 

p
a 

(gn/cn3) 

a 	4 a
P 
 x 10 

(deg C-I) 

C b 
P 

(cal/ 	.deg C) 

c
c 

(m/sec) 
Y 5s  x 1012  

(cm2/dyne) 

ST  x 1012  

(cm2/dyne) 

451 5.797 0.957 0.0705 913 1.019 20.69 21.03 

460 5.792 0.956 0.0705 920 1.019 20.40 20.79 

475 5.704 0.954 0.0705 927 1.020 20.12 20.52 

500 5.770 0.952 0.0705 950 1.021 19.20 19.61 

525 5.757 0.950 0:0735 930 1.023 13.09 13.51 

550 5.743 0.947 0.0705 1012 1.026 17.00 17.44 

575 5.729 0.945 0.0705 1040 1.026 16.14 16.59 

600 5.716 0.943 0.0705 1050 1.029 15.87 16.33 

650 5.639 0.933 0.0705 1330 1.032 15.07 15.55 

700 5.662 0.933 0.)705 1100 1.034 14.60 15.10 

750 5.636 0.920 0.0705 1120 1.037 14.15' 14.67 

000 5.610 0.922 0.0705 1120 1.039 14.01 14.56 

650 5.504 3.917 0.0705 1133 1.041 13.95 14.52 

900 5.559 0.912 0.0705 1140 1.043 13.04 14.44 

a 
Lucas and Urbain (1962b) 

b Kubaschewski (1950) 

Gitis and Hikhailov (1966b) 



Table A.17 	Physical Data at the Melting Point used in Table 4.8 

Metal 	.. P 
(gra/cm3) 

a 	x 104  
p 

(deg C-1) 

Ep  

(cal/gm.deg C) 

Na 

K 
Rb 

0.92698  
0.3237b  

1.475 c  

2.428  

2.90b  

3.301  

0.3311  

0.196 
0.0877 

Cs 1.34 	d 3.95J  0.0573 
Cu 0.090 e  1.17e  0.113 

Ag 9.333 f  1.19E  0.0677 

Al 2.374 c  1.16c  0.260 

Ga 6.0956  1.266  0.0954.  

Ti 11.70 1.30h  0.03521  

a Thomson and Garelis (1954) 
b "Liquid Metals Handbook, Sodium-Potassium Supplement" (1955) 

c  "Liquid Metals Handbook" (1952) 

a  Gering and Sauerwald (1935) 
e El-Mehairy and Ward (1963) 

• Lucas (1961) 

• Hoather (1936) 

h Schneider et al. (1954) 
1 Hultgren et al. (1963) 
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Table A.13 Adiabatic and Isothermal Compressibilities at 20°C as a Function of 

Concentration b in the Mercury-Thallium Alloy System 

Atomic fraction 

of Ti 

b 

a 
P 

(g/cm3) 

a 	-4 a 	x lu 
P 

(deg C-I) 

cb 
P 

(cal/gm.deg C) 

a 
c 

(m/sec) 

Y R
s 
 x 1012  " 

(cm2/dyne) 

8T x 1012  

(cm2/dyne 

0 13.546 1.32 3.0334 1450 1.145 3.511 4.02 

0.05 13.319 1.00 0.0342 1492 1.148 3.348 3.84 

0.1 13.314 1.77 0.0349 1521 1.145 3.247 3.72 

0.15 13.2J3 1.72 0.0355 1547 1.140 3.164 3.61 

0.2 13.115 1.63 0.0360 1570 1.135 3.093 3.51 

0.25 13.022 1.64 0.0364 1592 1.131 3.030 3.43 

0.3 12.081 1.62 0.0360 1610 1.129 2.995 3.33 

0.35 12.007 1.60 0.0371 1622 1.127 2.960 3.35 

0.4 12.703 1.59 0.0374 1633 1.126 2.952 3.32 

1 12.157 1.25 0.0352 1726 1.093 2.762 3.02 

a Abowitz and Gordon (1963) 

b Richards and Daniels (1919) 
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Principal Symbols  

For alloy systems, subscript b means that the physical quantity is 

evaluated at atomic fraction b. 

A 	defined in equation (1.52) 

a(q), a(x,rs) structure factors 

aa$ 	
partial structure factors 

C 	constant defined by equation (1.84) 

Cb 	constant defined by equation (4.64) 

Cp 	specific heat at constant pressure 

c 	sound velocity 

c
(A) theoretical sound velocity defined in equation (1.87) 

c
(BS) theoretical sound velocity defined in equation (1.23) 

[s(E/1)]  theoretical sound velocity defined in equation (4.38) 

ca, 	0  c 	atomic fractions of species a and respectively 

EBS 	band-structure energy 

Elos 	
band-structure energy 

c 	
correlation energy 

Ed 	
energy due to direct interaction betueen ions 

Ee 	
potential energy of uniform electron cloud in Coulomb field 

of ions 

Eec 	
potential energy of uniform electron cloud in field w° core 

 of ion. 
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Eee 
	electron-electron interaction 

Eel-et electron-electron interaction 

EF 
	Fermi energy 

E 	binding energy 

E..11 	Fuchs energy 

E(k) 	electron energy 

su 	
Coulomb self energy of a uniform negative charge distribution 

Ex 	exchange energy 

e electronic charge 

Fb 	defined in equation (4.58) 

F(q) 	energy atravenumber characteristic defined in equation (1.71) 

f frequency 

f ratio of hard-sphere diameters 

f(x) 	defined in equation (1.57) 

G(rs) 	defined in equation (1.65) 

G'(rs) 	defined in equation (4.31) 

g(r) 	radial distribution function 

ga$
(r) radial distribution function for alloy of species a and $ 

H defined in equation (4.14) 

Rio 	defined in equation (4.57) 

Planck's constant /2n 

J mechanical eouivalent of heat 

kB 	Boltzmann's constant 



kF 	Fermi vector 

kT 	thermal conductivity 

atomic mass 

electron mass 

id 	number of atoms in volume SI 

Avogadro's number aV 

N(EF) 	density of states at the Fermi level 

n 	number of atoms per unit volume 

nq 	Fourier components of n'(r) 

n'(r) 	-oscillatory component of electron density 

p 	pressure 

ph 	hard-sphere pressure 

R 	universal gas constant 

R  defined in equation (1.74) 

r 	position vector 

rc 	
radius defined in equation (1.60) 

rs 	
radius defined by equation (1.26) 

S(.9) 	structure factor 

S*(g) 	complex conjugate of S(s) 

T 
	absolute temperature 

t 
	

temperature in deg. C 

ri 	temperature of melting point in degl C 

bare potential 

246. 
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u(r) 	pair potential 

Vd(r) 	direct interaction between ions 

Veff(R) effective interaction between ions 

Vind(  R) indirect interaction between ions 

Vq 	defined in equation (1.61) 

Va(q), Vs(q) qth. Fourier components of the bare interaction of an 

electron with ions a and B 

Ar 	Fermi velocity 

11( r) 	total pseudo-potential 

WI(r) 	potential due to conduction electrons 

Up(r) 	sum of potentials due to the ions 

W4(q) 	Fourier components of Wi(r) 

113(q) 
	

Fourier components of W(r) 

w 	ionic pseudo-potential 

local potential 

x 	ratio of q to 2kF  

y 	defined by equation (1.63) 

Z 	valency 

Z* 	effective valency 

Za(q), Zs(q) defined in equation (4.43) 

z 	packing fraction 

zm 	value of packing fraction at the melting point 

a 	(4/9101/3 



a 	observed sound attenuation coefficient 

ao 	classical attenuation coefficient 

4B 	excess absorption coefficient 

a 	volume expansion coefficient 

as 	sound attenuation coefficient due to shear viscosity 

aT 	sound attenuation coefficient due to thermal-conduction 

Os 	adiabatic compressibility 

B
(BS) Bohm-Staver compressibility 

B
(A) theoretical compressibility defined in equation (1.85) 

(ek) 
BT 	free-electron compressibility 

[B(EM)] compressibility of alloy system defined by equation (4.37) 

b RTh) 	hard-sphere compressibility 

(W) 
T 	empirical compressibility defined by equation (4.20) 

ratio of principal specific heats 

Y1 	theoretical value for y 

Ab 	
defined by equation (4.51) 

b 	defined by equation (4.68) 

E(q) 	dielectric function 

rte 	bulk viscosity 

n' 	theoretical value for nB 
corrected for backscattering 

ns 	shear viscosity 

A 	sound wavelength 

L 	
defined in equation (1.57) 

248. 
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p 	density 

a 	hard-sphere diameter 

X 	Enskog high-density correction 

0 	volume of system 

gram-atomic volume 

nm 	volume of system at the melting point 

Glossary 

The Born Mayer interaction is due to the interaction between closed 

electron shells and is written in the form V(r) = A exp(- 	in which 

A and p are constants. 

A Canonical Ensemble consists of a large number of systems, each a 

replica of the system of interest, which can exchange energy but not 

particles, and whose total energy remains constant. 
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