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ABSTRACT 

In this thesis, the application of state variable theory to the analysis of 

nonlinear networks is considered, with the aim of obtaining conditions for the 

existence of the normal form for a broad class of nonlinear RLC networks con-

taining locally active and/or nonreciprocal coupled elements. 

The problem of functional inversion of vector-valued functions, represen-

ting one of the key problems in the state variable formulation of nonlinear RLC 

networks, is examined. A compact and easily applicable criterion for the existen-

ce of a unique inverse of an important class of vector valued-functions, reffered to 

as globally regular functions, is derived. 

The analysis is based on the characterization of network elements in 

terms of the hybrid descriptions. A class of resistive, capacitive and inductive 

positive network elements, possessing all possible hybrid descriptions and 

representing a very good model for a large class of locally active elements, is 

introduced. It is shown that positive network elements possess many interesting 

properties. A class of positive definite network elements which are strongly 

locally passive and form a subclass of positive definite network elements is 

introduced also. (n+1)-terminal network elements representing positive network 

elements in all different orientations are discussed. Properties of series-parallel 

interconnections of positive, positive definite and certain other network elements 

are studied. The existence of a unique solution of one-element-kind networks 

containing locally active and/or nonreciprocal coupled elements is considered 
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and a topological approach is taken. 

The problem of setting up the normal form equations for nonlinear RLC 

networks with the normal distribution of independent sources is examined. 

Sufficient conditions for the existence of a unique network response are given 

for a broad class of nonlinear RLC networks. 
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Chapter 1 

INTRODUCTION 

1 .1 	MOTIVATION 

Early investigations into nonlinear networks were limited to isolated 

classes of networks. Some special methods were developed to analyse such 

networks. The usual restrictions placed upon nonlinear networks were either 

that nonlinear elements possessed characteristics with a small degree of non-

linearity, or that the order of a system was very low. Much work was done 

on the phase plane analysis of second order systems. The differential equations 

of Van der Pol's type, describing self-sustained or forced oscillations in 

nonlinear systems, received special attention. Frequently the analysis, perfor-

med on very simple network models, was carried out in order to explain the 

basis of operation of a nonlinear network, but the proper design of a network,. 

requiring., a more complicated network model, was rendered impossible in most 

cases. 

The inherent difficulty, present in any nonlinear network analysis, is that 

with small exceptions analytic solutions of nonlinear differential equations, which 

mathematically describe nonlinear dynamic systems, cannot be obtained; it is 

therefore necessary to resort to numerical methods of some kind to calculate 
f 

• 
network response. With the advent of digital computers, the numerical. solution 
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of differential equations presents no problem in most cases. This stimulated 
• 

active research in the field of nonlinear networks at large, defined by Liu 

and Auth
1 

as networks with an arbitrary degree of nonlinearity and no limi-

tation on the number of elements. 

A fundamental problem in the computer aided analysis of nonlinear 

networks is to find a suitable characterization. Contrary to the situation in li-

near network theory, where the analysis can be performed either in the frequ-

ency or the time domain, nonlinear networks at large can only be analysed in 

the time domain. It has now been generally recognized
25 
 that a basic step 

in the resolution i of nonlinear network problems is to reduce the system of 

algebraic and differential equations, which govern the behaviour of the network 

to the normal form differential equation, ic = f(xit), where x represents the 

complete set
5 

which uniquely defines all network variables. 

The merits of the normal form characterization stem from the fact that 

such a representation is most amenable to the study of the existence and 

uniqueness of network response. Similarly some other qualitative properties of 

network behaviour such as stability and boundedness of network response
6
, 

existence of self-sustained oscillations, etc. can be deduced from this cha-

racterization.. As a matter of practical concern for computer aided analysis, most 

numerical methods for solving differential equations assume that differential 

equations are given in the normal form. 

1.2 	THE CONCEPT OF STATE 
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State concepts which are fundamental in modern system theory evolved 

from the classical theory of dynamics of particles and rigid bodies. Intuitively, 

the state of a system may be considered to be an independent set of system 

variables, which must be specified at time t=t
o in order to be able to predict 

uniquely the future behaviour of the system. More formal definition of the state 
6 

of a system can be given as follows 

The state of a system is a minimum set of numbers (called state varia-

bles) which contain sufficient information about the history of the system to allow 

computation of future behaviour. 

To express the definition of state in mathematical form, some notation 

is needed. Consider a system S and' associate with it a set of input variables, 

denoted by the vector u, and a set of output variables, denoted by the vector 

x. The input and output vectors are assumed to be functions of time t. The set 

of all possible values which the vector u can assume at time t is called the 

input space. In a similar way, the output space is defined as the set of all 

possible values which the vector x assumes at time t. 

Let a set of n state variables be denoted by the vector x. The state 

space is then defined as the set of all possible values which the state vector 

x assumes at time t. 

We are now in a position to express a definition of state in terms of 

the state vector x, the input vector u, and the output vector Zr. The definition 

of state implies that the state vector x can be written in the general form 

x(t) = F (x(to); ID)) 	 (1 .1) 

where F (') is a single valued.function of its arguments. Eqn. (1.1) is called 

4 
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the state equation of the system S and it indicates that the future state of a 

system is uniquely determined by the state at time t
o and the known input u(t) 

for  t > t
o, and is independent of values of the state and input before t

o
. 

The output equation is defined abstractly as 

z(t) = G(x(t), u(t) ) 	 • (1.2) 

where again G(•) is a single valued function of its arguments. Eqns. (1.1) 

and (1.2) constitute the state equations of the system S. 

Let a system S be described by a set of ordinary differential equations 

in the normal form 

= f(x,u (t),t) 
	

(1.3) 

such that eqn. (1.3) possesses a unique • solution for given initial conditions 

x(to) and the excitation from t
o 

onward. Then the vector x in eqn. (1.3) 

qualifies as the state vector and eqn. (1.3) is termed the state equation in 

differential form
9 

of system S. 

The state of a system at time t is characterized by a point x in an 

n-dimensional state space. For any x(t
o) and given u(t), the differential equa-

tion (1.3) defines trajectory in the state space; the uniqueness of solution of eqn. 

(1.3) ensures that there is only one trajectory passing through any point x, i. e. 

given any initial state x(to), the future x(t) is uniquely determined in the future. 

A set of state variables of a given system is not unique. Suppose that 

an n-vector x from an n-dimensional Euclidean space Rn  is a state vector. We 

may take an n-vector x1  given by x1  = x- = X- (x) as another state vector 

provided that for every x. a Rn 
there corresponds a unique x e R

n 
and vice 

versa. 
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1.3 	HISTORICAL BACKGROUND  

Although the field of nonlinear system analysis has a long history, it 

has been only in relatively recent times that appreciable interest has been 

shown in the formulation of a general theory for nonlinear electrical networks 

In 1957 Bashkow
16 

introduced a new network characterization in terms of 

the A matrix. He gave a method for the formulation of a minimal set of first 

order differential equations, for linear time invariant RLC networks. The method was 

unnecessarily complicated as it required the inclusion of an extra reactive element 

for each excess*  capacitor or inductor in order to simplify the elimination pro- 

cedure. 

In 1959 Bryant
17 

presented a systematic treatment of the problem of the 

state-variable characterization of linear passive RLC nehno rks. He defined the 

order of complexity of an electrical network as being equal to the dimension of 

the state vector. The approach is topological and is based on the selection of a 

particular tree, usually referred to as normal tree
18. It was shown that the set 

of capacitor voltages associated with a normal tree and inductor currents 

associated with the corresponding cotree always defines a state vector for networks 

containing linear, passive, time invariant R LC elements without coupling. Later 

the explicit normal form was given for this class of networks
19

. 

Any capacitors and inductors which prevent the formation of a proper tree 

are called excess
16

; a proper tree
16 

of a network contains every capacitive 

element of the network or every capacitive element plus resistive elements 

(but no inductive elements). 
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Subsequently Bryant's approach has been extended to the case of linear, 

active time invariant networks, linear time-varying networks and nonlinear 

networks. 

In regard to nonlinear network the first paper
2 

to consider the problem 

of the normal form characterization for networks containing two-terminal 

elements appeared in 1963. Sufficient conditions for the existence of the normal 

form were given for a class of networks containing nonlinear resistors with 

strictly monotonic characteristics. Later the same authors treated nonlinear 

networks with controlled sources20 
subject to certain topological constraints; 

Palais' theorem
21 

on global inverse mapping was applied to obtain a sufficient 

condition for the existence of the normal form characterization of this class of 

networks. 

Independently and almost simultaneously Stern
5,22

, Desoer and Katze-

nelson
4 and Chua and Rohrer3 

have all proposed methods for the formulation of 

normal form equations for different classes of nonlinear networks. 

In Ref. 4 nonlinear RLC networks containing two-terminal elements were 

treated and elements with nonmonotonic characteristics were allowed. The 

dependent variables of the normal form were cut-set charges a  and loop 

flux-linkages P defined with respect to fundamental cut-sets through capacitive 

branches of the normal tree and fundamental loops of inductive branches in the 

normal cotree. Sufficient conditions were stated for a network to be determinate, 

i. e. to possess a unique response for arbitrary initial conditions and given 

distribution of independent sources. Such conditions are of two kinds: 

a) network elements with nonmonotonic characteristics have to satisfy 

certain topological conditions and 
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b) network element characteristics have to satisfy suitable Lipschitz 

conditions. 

Chua and Rohrer
23 

introduced parametric representation of nonlinear 

network elements and gave a method for formulation of dynamic equations
3 
 in 

the normal form. The dependent variables appearing in the normal form equations 

are a set of characteristic parameters associated with capacitors in the normal 

tree and inductors in the normal cotree. 

Stern
5
'
22 

studied the normal form description of nonlinear RLC networks 

containing coupled elements. The concept of the complete set of network varia-

bles, defined in this work, is an extention of Bryant's complete set of dyna-

mically independent variables
17 

containing only branch voltages and currents as 

its elements. The class of quasilinear network elements - reciprocal and locally 

passive elements* - was introduced. With respect to a normal tree a set of cut-

set charges a  and loop flux-linkages ,P was selected as a possible complete set 

of network variables. In order to determine whether the set (a, 2) is complete 

or not it is necessary to examine the existence and uniqueness of solution of 

three different one-element-kind networks: resistive, inductive and capacitive. 

These three networks are described by three sets of algebraic equations referred to 

as (R), (L) and (C) equations respectively. The question of the existence and 

uniqueness of solutions for these sets of equations was resolved and some compu-

tational schemes were proposed for the following classes of networks: 

* 
Definitions of reciprocity and local passivity of nonlinear elements will be 

given in Chapter 2. 
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(i) networks containing quasilinear elements, 

(ii) networks solvable by contraction mapping techniques and 

(iii) linearly reducible networks. 

A significant result was obtained for networks containing resistive, capacitive 

and inductive quasilinear elements only; it was proved that this class always 

possesses the normal form description regardless of network topology. 

At approximately the same time Brayton and Moser
24 

investigated complete 

networks - a special class of linearly reducible networks - using the concept of 

mixed potential function. Some interesting stability results were obtained. In Ref. 

25 the link between the parametric approach and the Brayton-Moser approach 

was provided and in Ref. 26 criteria for the existence of the normal form of 

complete networks were given. 

Besides Stern's work a number of papers treating the normal form charac-

terization of nonlinear RLC networks containing coupled elements have appeared. 

The tutorial paper by Kuh
27 

and the review paper by Kuh and Rohrer
18 

were 

devoted to the problem of setting up the normal form equations generally. 

Holzmann and Liu
28 extended the parametric representation to coupled elements 

and combined techiques suggested in Refs.. 3-5 and 17. Two choices of the 

dependent variables of • the . normal form were considered: 

(1) the cut-set charges a and the loop flux-linkages 9 4,5  

(ii) a subset of the characteristic parameters of the inductive and 

capacitive elements 
 

For either of the two choices of the dependent variables a set of sufficient 

conditions was proposed. These conditions, stated as main theorems, appear to 
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be given in mathematical terms rather than network terms and are very diffi-

cult to apply to practical circuits even with extensive analysis. A corollary 

of the main theorem expressed in network terms required that subsets of network 

elements which are not reciprocal and strictly locally passive have to fulfil 

certain topological conditions. 

Varaiya and Liu
29 

treated networks assuming the existence of a normal 

tree such that there was no coupling between resistive link and tree-branches 

and similarly for inductive and capacitive elements. Another assumption made 

in this work was that all network elements were locally passive. Sufficient 

conditions were given for the existence of the normal form of this class of 

networks. It will be shown in this thesis that their conditions can be relaxed. 

Two recent contributions in the field of the state variable approach to nonli-

near networks were made by Mac Farlane
30 

and Ohtsuki and Watanabe
31

. Nagrath 

and Jain
32 

studied problems of the state varible description for general classes 

of nonlinear dynamical systems of lumped multiterminal components. 

The difficulties encountered in an attempt to obtain the normal form 

description of a network arise in two ways. First of all, a given network may 

be impossible to characterize in the normal form due to a dynamically incomplete 

specification of the network model; as a consequence either the complete set of 

network variables cannot be found or the complete set can be selected but the 

normal form equations cannot be written in terms of this complete set. Secondly, 

the given network may require an extensive but undesirable a priori computation 

to test whether or not the network may be characterized in the normal form; 

this difficulty is present in the class of networks where knowledge of the type I 

of elements and the topology of network is not sufficient to determine whether 
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the normal from description exists or not. Networks possessing this kind of 

difficulty have been termed irregular networks
33,34. 

 The class of irregular 

networks comprises the following two disjoint subclasses: 

(i) strictly irregular networks having the property that the set (a,y ) is 

not complete 

(ii) potentially irregular networks for which the network topology and 

the type of elements is not sufficient to determine whether (g.,,) is the 

complete set or not and for which one has to resort to the algebraic relations 

between branch variables to answer this question. 

A topological method was developed to identify irregular networks containing 

two-terminal elements and a systematic procedure was proposed to modify irregular 

networks by augmentation with small values of "stray" elements. The augmented 

network can then be characterized in the normal form. The identification and 

augmentation of a more general class of irregular networks containing either 

dependent sources or multiterminal elements was studied in
33
. 

Only the class of linearly reducible networks may be described by the 

explicit normal form. For other networks* the normal form cannot be written 

explicitly and one generally obtains a constrained set of differential equations 

of the form
35

. 

	

= f(t,x,a) 
	

(1 .4a) 

	

0 = g(t,x,E) 
	

(1.4b) 

* 
Exception are networks for which the (R), (L) and (C) equations possess 

an analytic solution 
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where x represents a set of n dynamic variables, a a set of k auxiliary vari-

ables, eqn. (1.4a) a set of first order differential equations and eqn. (1.4b) a 

set of k constraint equations. An algorithm was developed
35 

to modify a network, 

which is not necessarily irregular, into a linearly reducible network. The 

augmented network containing small stray elements is described by a stiff system 

of differential equations
36

; a computational method based on the approximate so-

lution of differential equations containing certain small parameters was proposed. 

Thus it seems that the problem of the formulation of the state equations 

for a general nonlinear RLC network still presents a difficult problem and no 

simple, general approach is available to test whether a given network is determi-

nate or not. Nevertheless, before a computer analysis is attempted we must 

consider the question of existence and uniqueness of the network solution. If the 

network is not determinate, the computer might yield strange results that depend 

on the particular algorithm and the particular program being used. For example, 

if more than one solution is possible then, depending on the algorithm or on 

round-off errors, etc., the computer might pick one of the solutions without 

giving the user any indication that another solution exists and that something is 

basically wrong with his problem or that the chosen model of the physical circuit 

has been oversimplified. 

It is therefore useful to study sufficient conditions ensuring that a given 

RLC network is determinate. When these conditions are stated in mathematical form 

(e. g. Theorem 1 of Ref. 28) it is not easy to apply them to practical circuits; 

such "mathematical" criteria require that certain conditions have to be fulfilled 

for an infinite number of points in a multidimensional Euclidean space and this 
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presents a serious difficulty for their application in general. Another kind of 

such conditions for determinateness of a given RLC network represent topologi-

cal conditions which have to be fulfilled for a given network containing different 

classes of network elements; on the basis of these conditions a network can then 

be checked by inspection. As has already been mentioned RLC networks containing 

quasilinear elements only are determinate regardless of network topology, but 

network elements which are not strongly locally passive have to satisfy certain 

topological conditions
4,5

. For example, the usual assumption4'5  is that in an 

RLC network each voltage-controlled port of a resistive' element (or a voltage-

controlled two-terminal resistor) lies in a loop containing capacitors and/or 

independent voltage sources only and dually the cut-set through each current-

controlled port of a resistive element (or a current-controlled two-terminal 

resistor) contains inductors and/or independent current sources only. The main 

aim of this thesis is to develop less restrictive topological conditions regarding 

locally active and nonreciprocal nonlinear coupled elements in an RLC network. 

To this end new classes of nonlinear network elements will be defined and their 

properties and interconnections will be examined. 

1.4 AIMS AND LAYOUT OF THE THESIS 

The main aim of this thesis is to consider state variable theory as a means 

of analysing nonlinear RLC networks containing coupled elements. The problems of 

setting up the state equations for a fairly large class of RLC networks will be 

considered. Since the key problem in the state variable characterization of a 



26 

given RLC network is the analysis of certain capacitive, inductive and resistive 
• 

subnetworks, a particular emphasis will be given to the study of one-element-kind 

networks containing nonreciprocal and/or locally active elements. Sufficient con-

ditions which ensure that a given one-element-kind network possesses a unique 

solution will be given for networks containing different classes of nonlinear 

elements. These conditions will then be used in the study of the state variable 

characterization of nonlinear RLC networks. The thesis will therefore be set out 

in the following manner. 

Chapter 2 contains mostly introductory work. Characterization of nonlinear 

RLC network elements and fundamental topological concepts are discussed and then 

different kinds of analyses of resistive networks are presented. An introduction 

to the formation of the state equations for nonlinear RLC networks is given and 

the fundamental concepts and results, forming the basis for the later work, are 

stated. 

Chapter 3 represents the necessary mathematical background of the thesis. 

A simple criterion ensuring that a given vector-valued function possesses an 

inverse function is derived. This criterion which is based on the Jacobian of a 

given function is used later in the study of the existence and uniqueness of solu-

tions of one-element-kind networks. The problem of "partial" inversion, important 

for the transformations from one hybrid description of a network element into 

another, is treated. Certain classes of invertible functions which appear in the 

analysis of one-element-kind networks are examined. The concept of a generalized 

quasilinear function• is introduced and the properties of these functions are examined. 

Finally, some globally asymptotically stable differential equations that may be 

associated with a given algebraic equation and whose singular points correspond 
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to the solution of this algebraic equation are presented. 

In Chapter 4 the concept of positive network elements is introduced 

and the properties of this class of elements are investigated. Positive network 

elements may be locally active and many transistor and other active devices can 

be modelled as positive network elements. Positive definite network elements 

forming a subclass of positive network elements and representing a generalization 

of quasilinear elements are introduced and their properties are shown. Two other 

significant subclasses of positive network elements are treated. 

Chapter 5 is devoted to the analysis of one-element-kind networks. The 

class of positive semidefinite elements - locally passive elements 	is introduced. 

Series-parallel interconnections of network elements are studied and sufficient 

conditions ensuring that an interconnection of two network elements of one kind 

results either in a positive network element or in a positive definite network 

element are given. Different sets of sufficient conditions are presented ensuring 

that one-element-kind networks containing positive and positive definite (and/or positive 

semidefinite) network elements possess a unique solution. A number of examples is 

provided to illustrate the theory developed in Chapter 5. 

Chapter 6 is concerned mainly with the problem of uniqueness of solutions 

of nonlinear RLC networks. An extention to RLC networks containing dependent 

sources is presented. 

Chapter 7 is a discussion of some of the conclusions which can be drawn 

from the previous 6 chapters and a list of some suggestions of future work. 

To make the reading of the thesis easier, each chapter contains a brief 

introduction and, at the end, a summary discussion. Also to this end, the main 
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results have been stated as theorems and corollaries. 

1.5 STATEMENT OF ORIGINALITY  

Since the commencement of this work a number of papers have appeared 

considering similar problems to those of this thesis and a number of similar 

results have been given. In particular, 'T. Ohtsuki and H. Watanabe introduced 

the concept of positive definite network element and studied RLC network contai-

ning this class of elements. While extending T. E. Stern's results for networks 

containing quasilinear elements to the nonreciprocal case the author arrived 

independently at a very similar concept of network elements which are cha-

racterized by generalized quasilinear functions and which he initially termed 

generalized quasilinear network elements; since this class of elements forms a 

subclass of positive network elements (to be discussed later) Ohtsuki and Watan-

abe's term positive definite network element was adopted. 

Except where reference is made to the published material, the results and 

conclusions reported in this thesis were obtained independently by the author, and 

at the time of writing are believed to be original. A list of original contributions 

to be presented is given below: 

(1) the criterion for the global invertibility of vector-valued functions; 

(2) the generalization of local implicit function theorem to consider 

global behaviour; 

(3) the concept of generalized quasilinear function and the properties of 

generalized quasilinear functions; 
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(4) 	the conditions for invertibility of the function 

Z.1 [ {)1.11 [0 	F [gi(>1.1 ) 

)12 -FT 	0 g2(x2) 

appearing in the analysis of one-element-kind networks which contain locally 

passive elements; 

(5) a globally asymptotically stable differential equation is presented 

where the Euler method leads to the Newton Raphson method; 

(6) the concept of the class of UP matrices and the result that all 

"partial" inverses of a bounded UP matrix are themselves bounded UP matrices; 

(7) the concept of positive network elements - possibly locally active 

and/or nonreciprocal elements - is introduced and the properties of this class of 

elements are shown; 

(8) the concept of positive definite network elements - strongly locally 

passive and possibly nonreciprocal elements - is introduced and the properties of 

positive definite elements are listed; 

(9) the conditions ensuring that a three-terminal network represents a 

positive network element in all three orientations 

(10) the conditions that a series-parallel interconnection of two network 

elements results in a positive network element; 

(11) the conditions that a series-parallel interconnection of two network 

elements results in a positive definite network element; 

(12) the result that an (n+m-1)-port network element N formed from an 

n-port positive network element N1  and an m-port network element N2  connecting 

one of the ports of N1 to one of the ports of N2 in parallel (or in series) repre-

sents a positive network element; 
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(13) the result that a resistive network containing positive definite 

network elements only always possesses a unique solution; similarly RLC networks 

containing positive definite elements only possess a unique solution regardless of 

network topology; 

(14) the conditions ensuring the existence of a unique solution of one-

element-kind networks (Theorems 5.8 - 5.12) 

(15) the conditions ensuring the existence of a unique solution for 

nonlinear RLC networks (Theorems 6.1 - 6.3). 



31 

1.6 	REFERENCES 

1 	Liu, R. and Auth, L. V., "Applications of Liapunov's direct method 

to nonlinear networks at large", Report TREE-642, University of Notre 

Dame, Notre Dame, Ind., March 1964. 

2 	Liu, R. and Auth, L. V., "Qualitative synthesis of nonlinear networks", 

Proc. 1963 First Annual Allerton Conference on Circuit and System 

Theory, pp. 330-343. 

3 	Chua, L. 0. and Rohrer, R. A., "On the dynamic equations of a class 

of nonlinear RLC networks", IEEE Trans. on Circuit Theory, vol. CT-12, 

pp. 475-489, December 1965 

4 	Desoer, C. A. and Katzenelson, J., "Nonlinear RLC networks", Bell 

Sys. Tech. J., vol. 44, pp. 161-198, January 1965. 

5 	Stern, T. E., "On the equations of nonlinear networks", IEEE Trans. 

on Circuit Theory, vol. CT-13, pp. 74-81, March 1966. 

6 	LaSalle, J. and Lefschetz, S., "Stability by Liapunov's direct method 

with applications", New York, Academic Press, 1961, pp. 56-67. 

7 	Timothy, L. K. and Bona, B. E., "State space analysis", McGraw-

Hill, New York, 1968, p. 5. 

8 	DeRusso, P. M., Roy, R. J. and Close, C. M., "State variables for 

engineers", John Wiley and Sons, New York, 1965, p. 105. 

9 	Zadeh, L. A. and Desoer, C. A., "Linear system theory" McGraw-

Hill, New York, 1963 

10 	Duffin, R. J., "Nonlinear networks I", Bull. Amer. Math. Soc. vol. 

52, pp. 836-838, 1946. 



32 

11 	Duffin, R. J., "Nonlinear networks II", Bull. Amer. Math, Soc., 

vol. 53, pp. 963-971, 1947. 
	 • 

12 	Duffin, R. J., "Nonlinear networks lib", Bull. Amer. Math. Soc., 

vol. 54, pp. 119-127, 1948. 

13 	Millar, W., "Some general theorems for nonlinear systems possessing 

resistance", Phil. Mag., vol. 42, pp. 1150-1160, October 1951. 

14 	Cherry, E. C., "Some general theorems for nonlinear systems possessing 

reactance", Phil. Mag., vol. 42, pp. 1161-1177, October 1951. 

15 	Birkhoff, G. and Diaz, J. B., "Nonlinear network problems", Quat. 

Appl. Math., vol 13, pp. 431-443, January 1956. 

16 	Bashkow, T. R., "The A matrix, new network description", IRE Trans. 

on Circuit Theory, vol. CT-4, pp. 117-114, September 1957. 

17 	Bryant, P. R., "The order of complexity of electrical networks", Proc. 

IEE, vol 106, Mono 335, Pt. C, pp. 174-188, September 1959. 

18 	Kuhf  E. C. and Rohrer, R. A., "The state variable approach to network 

analysis", Proc. IEEE, vol. 53, pp. 672-686, July 1965. 

19 	Bryant, P. R., "The explicit form of Bashkow's A matrix", IRE Trans. 

on Circuit Theory, vol. CT-9, pp. 303-306, September 1962. 

20 	Auth, L. V. and Liu, R., "On the existence of the normal form for 

nonlinear networks at large with controlled sources", Proc. 1964 

Second Annual Conference on Circuit and System Theory, pp. 

288-292. 

21 	Palais, R. S., "Natural operations on differential forms", Trans. Amer. 

Math. Soc., vol.92 , pp. 125-141, July 1959. 



33 

22 	Stern, T. E., "Theory of nonlinear networks and systems", Reading, 

Mass., Addison-Wesley, 1965. 

23 	Chua, L. 0. and Roher, R. A., "On the characterization of nonlinear 

networks", Proc. of NEC, vol. 21, 1965, Chicago Illinois, pp. 

708-713. 

24 	Brayton, R. K. and Moser, J. K., "A theory of nonlinear networks", 

Quat. Appl. Math., vol. 22, pp. 1-33, April 1964. 

25 	Chua, L. 0., "On the choice of state variables for the potential 

functions in nonlinear networks", Proc.. IEEE, vol. 53, p. 2110, 

December 1965. 

26 	Chua, L. 0., "State variable formulation of nonlinear RLC networks in 

explicit normal form", Proc. IEEE, vol. 53, p. 206, February 1965. 

27. 	Kuh, E. C., "Representation of nonlinear networks", Proc. of NEC, 

vol. 21, 1965, Chicago, Illinois, pp. 702-707. 

28 	Holzmann, C. A. and Liu, R., "On the dynamical equations of 

nonlinear networks with n-coupled elements", Proc. 1965 Third Annual 

Allerton Conference on Circuit and System Theory, pp. 536-545. 

29 	Varayia, P. P. and Liu, R., "Normal form and stability of a class of 

coupled nonlinear networks", IEEE Trans. on Circuit Theory, vol. 

CT-13, pp. 413-418, December 1966. 

30 	MacFarlane, A. G. J., "Formulation of the state-space equations for 

non-linear networks", Int. J. Control, vol. 5, pp. 145-161, 

May 1967. 

31 	Ohtsuki, T. and Watanabe, H., "State-variable analysis of RLC networks 



34 

containing nonlinear coupling elements", IEEE Trans. on Circuit 

Theory, vol. CT-16, pp. 26-38, February 1969. 

32 	Nagrath, I. J. and Jain, V. K., "Formulation of state equations for 

general nonlinear systems of multiterminal components", Proc. IEE, 

vol. 114, pp. 1647-1651, November 1967. 

33 	Oh, S. J., "Analysis of nonlinear irregular networks", Tech. Report 

No. 96, Department of Electrical Engineering, Columbia University, 

New York, June 1966. 

34 	Oh, S. J., Stern, T. E. and Meadows, H. E., "On the analysis of 

nonlinear irregular networks", Proc. of the Symposium on Generalized 

Networks, Politechnic Press, New York, pp. 653-682, April 1966. 

35 	Stern, T. E., "Computer-aided analysis of nonlinear networks 

described by constrained differential equations", Proc. of the 

International Symposium on Network Theory, Belgrade, pp. 178-190, 

September 1968. 

36 	Sandberg, I. W. and Shichman, H., "Numerical integration of stiff 

nonlinear differential equations", Bell Sys. Tech. J., vol 47, pp. 

511-527, April 1968. 



35 

Chapter 2 

PRELIMINARIES 

2.1 	INTRODUCTION  

Throughout this thesis, use will be made of the basic properties of 

net-work elements, topological methods and the conventional methods of ana-

lysis of nonlinear networks. In order to put our subsequent discussions on a 

more rigorous ground, we will define in this chapter some of the frequently 

used terms and introduce the basic definitions and results on which all the 

later work is based. 

2.2 NETWORK ELEMENTS 

2.2.1 	Characterization of network elements 	
2
' 
 3

, 
4 

The nonlinear networks considered in this thesis will contain resistive, 

inductive and capacitive elements and voltage and current sources. Each 

network element can be viewed abstractly as a collection of coupled directed 

branches, where each branch has associated with it the pair of branch varia- 

bles, i (current) and v (voltage). Integrals of these quantities 	[q (charge) 

and p  (flux)] will also be referred to as branch variables. 

Schematically, a network element can be represented either as an 

n-port - that is n-terminal pair element - or an (n+1)-terminal element having 

n branches with one node in common. Each branch of an n-port (or (n+ 1)- 
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terminal) element will be referred to as a port as far as the characteristics of 

this element are concerned. 

At this point we must delineate the class of network elements which will 

be considered and for which the analysis will be form-ulated. Network elements 

which exhibit hysteretic behaviour are excluded a priori since no satisfactory 

means of mathematically describing this phenomenon have been advanced
5
. 

Furthermore it will be assumed that in order to describe a network element, a set 

of n independent constraint equations, relating branch variables of an n-port 

(or (n+1)-terminal) element, has to be known. However n-port network elements, 

characterized by a number of independent equations larger or smaller than n, 

have been considered 
6
. As the simplest n-port elements of this kind, the 

nullator, the resistive one-port element with v = 0 and i = 0, and the nora-

tor, another resistive one-port with v and i arbitrary, were introduced. Tellegen
7 

demonstrated that singular network elements - the nullator and the norator - are 

mathematical concepts without physical content and have to be regarded as 

fictitious "mathematical" components. For this reason network elements of this 

kind will be disregarded. 

An n-port (or (n+ 1)-terminal) network element (possibly time varying) 

will be termed resistive if its n independent constraint equations can be written 

implicitly as 

R  (.i.41, vR , t) = 0 	 (2.1) 

where iR'  vR  are n-vectors, representing resistor currents and voltages — 

respectively, fR  (•) is a vector-valued function of dimension n and t denotes 

time. Eqn. (2.1) will be called the implicit description of a resistive element. 

The function fR  (•) is assumed to be single valued, continuous and differentiable. 
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Eqn. (2.1) could define sets of elements as well as individual resistive,  elements. 

For example, a set of n one-port resistors is a special case of an n-port in 

which there is no coupling among any two ports. 

Let the n-vectors iR  and vR  be partitioned as follows 

1 

R 
	

R 
• 

(2.2) 

where i , yi  are m-vectors representing currents and voltages of ports 1, 2, ... 

m and i21  v2  are (n-m)-vectors associated with branch variables of ports - 

m + 1, m + 2, ..., n. We can define a set of mixed variables 

     

xR  
1 

12 

 

it  

Y2 

(2.3) 

     

     

     

The n-vectors >IR  and zit  include one and only one branch variable (voltage or 

current) from each port. 

The implicit description eqn. (2.1) can be rewritten in terms of mixed 

varibles as 

R 	R
t) = 0 	 (2.4) 

In certain cases the implicit equation (2.4) can be solved for all xR e Rn, giving 

v
a  = hR -R' 

(x 	t) 
-L   

or equivalently in component form 

i 1 	i  1 = 	(v ' i2' t) - - - 

= -v-2 (v1  ' 12' t).  

(2.5 

(2.5b) 

In eqn. (2.5a) FIR  (') is a single-valued function of 4z, t. A description 
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such as that given in eqn. (2.5a) is called the hybrid description* of a 

resistive element. We shall asume that an arbitrary resistive element to be 

considered can be represented by at least one of the hybrid descriptions, and 

that every vector-valued function h
R 
 (•) belongs to class C(1). ** 

When the independent variable in the hybrid description (2.5a) is 

voltage, i . e . x. = v., the i-th branch is said to be voltage-controlled
1,2

, 

similarly when in eqn. (2.5a) x. 	i., the i-th branch is referred to as current-

controlled. Two special hybrid descriptions which may or may not exist for a 

given resistive element are 

IR = IR (v 
 R , t) 

	
(2. 5 c) 

\LR = ZR 	t) 
	

(2.5d) 

Eqn. (2.5c) describes a resistive element where all branches are voltage-

controlled and eqn. (2.5d) characterizes an element with all current-controlled 

branches. 

The implicit description admits very general types of elements. For 

example, a two-terminal resistive element implicitly described by the relation: 

I
R
2 

+ v
R 	1 = 0 

is neither voltage nor current-controlled; its characteristic in the iR' vR 
plane 

is a circle and the hybrid description does not exist. Many physical resistive 

* 	The term hybrid description
3 
 is equivalent to the term explicit branch 

relations used in Ref. 4. 

** A function f (x) is of class C(1) if it is a continuous function and if its 

Jacobian matrix a f/cx is continuous for all x. _ _ 



39 

elements such as vacuum triodes, transistors, ideal transformes, gyrators, 

dependent and independent voltage and current sources etc. can be characte-

rized in terms of the hybrid description h
R 
 (•). 

Inductive and capacitive elements are characterized analogously to 

resistive elements. The implicit description of an n-port (or (n+1)-terminal) 

inductive element is given as 

fL (I
L' 	

L, 	= 0 
—  

(2.6) 

where ic 	LI  are n-vectors representing the branch variables of an in- 

ductive element and fL 
 (•) has the dimension n. A set of mixed variables 

yL  may be formed in the same way as in the case of a resistive element. 

[,2 
it  

(2.7) 

  

  

where y 1 , i / represent flux-linkages and currents of ports 1, 2 ...., m and 

y12, i 2  correspond to flux-linkages and currents of ports m+1, m+2, •• • , n. 

Vectors xL' xL 
 include one and only one branch variable (current or flux-

linkage) from each port. 

The hybrid description corresponding to the implicit description of an 

inductive element is given as 

.XL 
	t) 	 (2.8a) 

or equivalently in the component form 

(t.1 	t)  

)12 (i°1' 	t) 
	

(2.8b) 
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Flux-controlled and current-controlled branches of an inductive element are 

defined as in the case of resistive element. The two particular descriptions of 

inductive elements are 

=.y (i
L' 

 t) 
-L -L  

= 	L (Y-L' ) 

(2.8c) 

(2.8d) 

where the first equation describes an inductive element where all branches 

are current-controlled and the second equation characterizes the case of an 

inductive element with all flux-controlled branches. 

Similary the implicit description of an n-port (or (n+1)-terminal) capaci- 

tive element is 

fC 
(
-C' C 

q ,t) = 0 
= 	

(2.9) 

where yc,c3c,ic  are n-vectors associated with the branch variables of the ca-

pacitive element and f (•) is a vector-valued function with n components. A 

set of mixed variables is formed from vC  i
q
-C 

a1  

Y2 	 a2 

 

 

(2.10) 

  

  

where v 	q 	describe voltages and charges of ports 1,2,..., m and v 	q 
1 ' 	 2 '-2 

correspond to voltages and charges of ports m+1, m+2, 	n. The hybrid 

description of a capacitive element is given as 

zc = hC 	) 
	

(2.11 a) 

or equivalently 
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vl 
= Y-1 (alv2,t)  

a2 = a2 (al iv2,t)  

The two special hybrid descriptions 

ac = EdY_c,t)  

'zc = l'c(Eic,t)  

(2.11 b) 

(2.11 c) 

(2.11 d) 

areassociated with capacitive elements having all voltage-controlled branches 

or with capacitive elements having all charge-controlled branches. 

It will be assumed that functions h
C 

 (•) and h
L  (•) have the entire Rn  as 

their domain and that both are of class C(1). Furthermore, for each capacitive 

and inductive element to be considered it is assumed that at least one hybrid 

description exists. 

In the analysis of nonlinear networks the incremental parameter matrices, 

describing the small signal behaviour of network elements, play an important 

role. Certain classes of network elements will be defined in terms of their 

incremental parameter matrices. Also some significant concepts such as recipro-

city and local passivity of network elements are defined in terms of these 

matrices. 

The incremental parameter matrices of resistive, inductive and capaci-

tive elements are the Jacobian matrices of the hybrid descriptions hR  , (•) h (') 

and 
—C
h (•), associated with these elements. Since functions h (•) h{(•) and 

hc  (') are assumed to be of class C(1) the Jacobian matrices of these functions 

exist. 

From the hybrid description of a resistive element (eqn. (2.5a) or 

(2.5b))HR, the hybrid incremental resistance matrix
4 

or shortly the hybrid 

3 
matrix , is defined as 
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HR 
 
(x (x ,t) = a(11 '12)  

°(vi '12)  

HR11 	HR12 

 

(2.12 a) 
HR21 	

HR22., 

 

      

Two particular hybrid matrices may be obtained from the two special hybrid 

descriptions (eqns. (2.5c) and (2.5d))where all branches of a resistive element 

are either voltage or current-controlled. The incremental conductance matrix G 

and the incremental resistance matrix R are defined as 

aiR  
G(4,t) _ 

4-Rv  
(2.12 b) 

and 	R(iR  ,t) - -R 
(2.12 c) 

The hybiid matrices of inductive and capacitive elements are defined 

from the corresponding hybrid descriptions. For inductive elements the hybrid 

matrix HL' the incremental inductance matrix L and the inverse incremental 

inductance matrix P are from eqns. (2.8a) - (2.8d) 

3124_ 	a (il  y2) 
HL(x .,t) = zxL   

- W1777.1-2 

HL11 HL12 

HL21 HL22 

(2.13a) 

   

- 	 (2.13b) 

r04.,t 	 (2.13c) 

For capacitive elements the hybrid matrix HC, the incremental capacitance 

matrix C and the incremental elastance matrix S are from eqns. (2.11a) - 

(2.11 d) 



ahC  .Nv1 ,q2) 
H

C11 

HC21 

H
C12 

H
C22_ 
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(2.14a) 

(2.14b) 

(2.14c) 

agr  

a(21  ,v2) 

C(yc,t) - 
°Lc 

ayr  
S(cic,t) - .9C  

For the purpose of network analysis it is useful to introduce various 

kinds of sources as a special class of network elements. In principle, it is 

possible to include all constant (and time varying) independent voltage (and 

current) sources into the class of resistive elements
4. However, an independent 

voltage source may be viewed as a charge-controlled capacitor with infinite 

capacitance; similarly an independent current source can be considered as a 

flux-controlled inductor with infinite inductance. It is for this reason that in 

this thesis independent sources will be considered as a special class of network 

elements and will be treated separately. 

Another important class of network elements are controlled voltage and 

current sources. The controlling variable of a controlled voltage (or current) 

source may be voltage, current, charge or flux and thus RLC networks con-

taining controlled sources are much more general than networks containing 

RLC elements only. In certain cases a network N of RLC elements and con-

trolled sources can be transformed into an equivalent network N' consisting of 

RLC elements only when extra branches are introduced in N. For example, a 

network containing a capacitor C and voltage-controlled voltage source 

E = f(v ) in Fig. 2.1 can be transformed into a network containing the 

capacitor C and a two-port resistor R when a resistive branch with iRi  = 0 
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is introduced across the capacitor C. The hybrid description of R is 

IR' =0 

vR2 	f(vR1)  

2.2.2 Reciprocity, passivity and local passivity of network elements  

In this section RLC network elements will be classified with respect to 

certain special properties. Reciprocity of a network element is related to the 

symmetry of certain incremental parameter matrices. Passivity and local passi-

vity are concepts defined with respect to the ability of elements to dissipate 

energy. 

Definition 2.14 

A resistive element defined by the hybrid description of the form of eqn. 

(2.5a), (2.5c) or (2.5d) is said to be reciprocal if the matrix 

HR11 .H.21  
-HR21 -HR22 

 

or G(ya,t) or R(iR,t) 

  

is symmetric. 

An inductive element defined by the hybrid description of the form 

of eqn. (2.8a), (2,8c) or (2.8d) is said to be reciprocal if the matrix 

HL11 Ho2 

-HL21 -HL22 
or L(k,t) or r(14.,t) 

is symmetric. 

A capacitive element defined by the hybrid description of the form of 
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eqn. (2.11a) (2.11c) or (2.11d) is said to be reciprocal if the matrix 

HCl  HC12 

-HC21 -HC22 
•or C(y.c,t) or S(ac,t) 

  

is symmetric. 
• 

Similarly to the reciprocity of network elements reciprocity of 

one-element-kind networks (either• resistive or capacitive or inductive) can be 

defined with respect to a selected set of ports. One-element-kind network or 

its subnetwork will be said to be reciprocal if it behaves like a reciprocal 

element when viewed from a selected set of ports. 

Reciprocal elements and reciprocal one-element-kind networks have 

the property that state functions4  may be obtained for these elements and 

networks. These functions are energy like functions and are especially important in 

the stability analysis of networks. Since in this thesis we shall be interested in 

nonreciprocal networks in particular we shall not make use of the concept of 

state functions. 

Passivity and local passivity are properties associated with the ability of 

resistive elements to dissipate power. These two concepts may be extended to 

inductive and capacitive elements8. While passivity is defined with respect to 

the large signal operation of a network element, local passivity is related to 

the small signal operation.. 

Definition 2.2  

A resistive element defined by the hybrid description of eqn. (2.5a), 

is passive if 



46 

zR 
T. ,0 	 (2.15a) 

for all )ilz#0 and all t. 

An inductive element, defined by the hybrid description of eqn. 

(2.8a), is passive if 

52T. 
 - 0 -1. (2.15b) 

for all )14.  # SI and all t. 

A capacitive element, defined by the hybrid description of eqn. (2.11a), 

is passive if 

T > - 0 	 (2.15c) 

for all xc  0 and all t. If in eqns. (2.16a) - (2.16c) the quantities on the 1. -- — 

h. s. are positive, then the corresponding network elements are strictly passive.  

An element is said to be active if it is not passive. 

According to this definition ideal transformers and gyrators are passive 

but semiconductor diodes with the exponential characteristic and transistors are 

strictly passive. Note that vacuum diodes and triodes are active. There is an 

interesting class of active resistive elements where it is possible to perform a 

decomposition into a passive resistive element and a set of independent sources; 

these network elements will be treated in Section 4.3.2. 

In the case of small signal operation of network elements we are intere-

sted in their local passivity. For example, transistor is a passive resistive 

element, but it is its local activity which makes it a useful element in electro-

nic circuits. We shall distinguish three different kinds of local passivity. 
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Definition 2.3  

A resistive (inductive, capacitive) element is said to be  locally passive 

at a point xR  (4, k) and time t if its hybrid matrix HR (L<a,t)(HL()54.,t), 

Hc()1c,t)) is positive semidefinite at that point. 

A resistive (inductive, capacitive) element is said to be strictly locally 

passive  at a point )(1(4,k) and time t if its hybrid matrix HR(Ica,t) 

(FIL(k,t), Hc(k,t))is positive definite at that point. 

A resistive (inductive, capacitive) element is said to be strongly locally 

passive if an E>0 exists such that [HR().:ER,t) — E i]([HL(>&lt) 	I  

[Hc65c,t) 	i]) is positive definite for all xR  ()4,k) and all t. 

A resistive (inductive, capacitive) element is said to be locally active 

if it is not locally passive. 

2.3 	NETWORK TOPOLOGY4'9  

A network can be viewed abstractly as a collection of directed branches. 

The interconnection of network elements imposes certain constraints on branch 

voltages and currents, constraints which are embodied in Kirchhoff's voltage 

and current laws. In order to analyse a given network it is necessary to obtain 

three sets of independent equations, i. e. Kirchhoff's voltage and current 

laws and a set of constraint equations characterizing all network elements. In 

general, the simultaneous use of all three sets of equations yields the required 

network response for a given set of initial conditions and excitations at the 

ports of the network. In order to express Kirchhoff's voltage and current laws 
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in a systematic fashion the concepts of the fundamental loop matrix B and the 

fundamental cut-set matrix Q will be employed. 

However, before defining the fundamental loop matrix and the fundamental 

cut-set matrix, a few additional concepts associated with a graph of a network 

will be introduced. 

A loop is a closed path, along which any node is touched by exactly 

two braches in the loop. 

A network (or subnetwork) is called a self-loop if it consists of a single 

branch whose end-points are identified: it consists of one branch and one node
1
. 

A network (or subnetwork) is called an open branch if it consists of a 

single branch whose end-points are not identified: it consists of one branch and 

two nodes
"' 
. 

A connected graph is a graph which consists of only one separate part. 

In this thesis it will usually be, assumed that the network considered is connected. 

When a network is not connected each part can be treated separately as far as 

Kirchhoff 's laws are concerned. 

A separable graph is a connected graph which can be divided into more 

than one separate part by the removal of a single node. Otherwise the graph is 

nonseparable. 

A cut-set of a connected graph is a set of branches such that their 

removal divides the graph into two separate parts and no proper subset of this 

set of branches has the same property. 

A tree of a connected graph is a connected subgraph which contains all 

the nodes of the graph but does not contain any loops. The branches of a network 

contained in a particular tree are called tree-branches; those not contained in 
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that tree are called links or chords. When we refer to tree-branches and links 

it is with respect to a chosen tree. It can be shown that a connected graph 

having v nodes and b branches contains (V -1) tree branches and (b-v+1) 

links. Once a tree T of a connected graph is chosen a special class of loops 

and cut-sets may be defined. If one link is added to a tree T, the resulting 

graph contains a loop, called a fundamental loop. Each fundamental loop 

contains exactly one link. Similarly it is possible to form a cut-set containing 

only one tree branch of T and some links with respect to the tree. Such a 

cut-set is called a fundamental cut-set. 

The fundamental loops of a connected directed graph with respect to a 

tree T are the (b-v+1) loops formed by each link and the single path in the 

tree between the nodes of the link. The fundamental loop orientation is chosen 

to agree with that of the defining link. 

If T is a tree of a connected directed graph G, the fundamental 

system of cut-sets with respect to T is the set of (v -1) cut-sets in which 

each cut-set includes only one branch of T. The fundamental cut-set orientati-

on is to agree with the orientation of the defining branch. 

We are now in a position to introduce the fundamental loop matrix and 

the fundamental cut-set matrix of a connected graph. Consider a connected 

graph G, having v nodes and b branches, and choose a tree T. Let the 

branches of G be numbered consecutively, starting with the links of T. Now 

we assign numbers 1,2,..., (b-v+1) to the fundamental loops so as to 

coincide with the numbers of the defining links. Similarly, we assign numbers 

b- v +2, b- v +3,..., b to the fundamental cut-sets so as to coincide with 	• 
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their defining tree-branches. Using this numbering system we may state the 

following definition. 

Definition 2.4  

Given a graph G with tree T, the fundamental loop matrix B is defined 

as follows: each column of B corresponds to a branch of G (ordered consecuti-

vely); each row corresponds to a fundamental loop (ordered consecutively); and 

b.. = 1 	if the j-th branch is in loop i,  and their orientations coincide; 
II 

b.I. = -1 if the j-th branch is in loop i and their orientations do not coincide; 

b.. = 0 	if the j-th branch is not in loop i. 
II 

Because of the way in which the branches are numbered, the matrix B 

is of the form 

B = [ I, F] 	 (2.16) 

where I is a (b-V+1) x , (b-v+1) identity matrix and, F a (b-v+1) x (V -1) 

matrix. 

Definition 2.5  

Given a graph G with tree T, the fundamental cut-set matrix Q is 

defined as follows: each column of Q corresponds to a branch G (ordered 

consecutively); each row corresponds to a fundamental cut-set (ordered consecu-

tively); and 

q.. = 1 	if the. j-th branch is in the cut-set corresponding to the i-th row of 

Q, and their orientations coincide; 
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q... = -1 if the j-th branch is in the cut-set corresponding to the i-th row 

of Q, and their orientations do not coincide; 

q.. = 0 	if the j-th branch is not in the cut-set corresponding to the i-th 

row of Q 

Because of the way in which the branches are ,numbered, the matrix Q 

is of the form. 

Q = .[Qf,1 	 (2.17) 

where Q is a (v -1) x(b-V+1) matrix and I is a (V -1) x (‘.1 -1) identity 

matrix. 

When the columns of the matrix B and the matrix Q are arranged in 

the same order 

BQT  = 0 	 (2.18) 

where QT is the transpose of Q. Thus substituting eqns. (2.16) and (2.17) 

into eqn. (2.18), Qf  can be expressed in terms of F as 

Qf = -FT 	 (2.19) 

and 	Q = 	 (2.20) 

Let v and i be b-vectors composed of the branch voltages and currents. _ 

Kirchhoff's voltage and current laws may be expressed as 

By = 0 0 

Qi = 0 

(2.21) 

(2.22) 

Kirchhoff's laws give a total of b independent equations in 2b variables. The 
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remaining equations are supplied by the constraint equations characterizing the 

network elements. 

At this stage it is useful to introduce some notation. Let 5E and 5
J  

denote set of branches containing the' independent voltage sources E and 

current sources J in a network. Similarly let BR, SL, 5c  correspond to a set 

of all resistive, inductive and capacitive branches respectively. In addifion, 

let N{.5a; 81) be the network derived from a network N by contracting * 

all the branches of 13 a and removing all the branches of 8b. 

When a network contains a set of independent voltage sources E and 

a set of independent current sources J, then 4, the set of voltages across bran- 

ches of bE, and i
J1  the set of currents flowing through branches of 8

J 
 is 

known, i. e. 

vE  = E 

J = J. —— 

In such a case it is convenient to rewrite Kirchhoff's laws (eqns. (2.21), 

(2.22)) in the form where only unknown voltages and currents appear on the 

left hand side. Assume that a connected network N has neither voltage- 

source-only loops nor current-source-only cutsets or equivalently a subnetwork 

NfbE' •2)J  of N is connected and nonseparable. For such a network a tree 

T exists such that all branches of bE are tree-branches and all branches of 

j  are links. Let the total number of branches in N t2.E ; bjf be b, the 

number of nodes v . The branch voltages and currents in Nib E; Pijt are 

* Contraction of a branch
11 is the process of shrinking the branch to nothing 

and identifying the two terminal nodes as a single node; this process is 

often loosely called short-circuiting. 
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specified by v and i, respectively; for a specific tree they are partitioned as 

follows: 

and 

(2.23 a) 

(2.23 b) 

where v and i l  represent link voltages and currents, respectively, while tv 

and i
t  represent tree-branch voltages and currents respectively. Kirchhoff's - 

laws equations for the particular tree T of N are given by10 

By = [1,1Y-11= 
	

(2.24) 

Qi = [-FT  , 	= (2.25) 

where B is the fundamental loop matrix of N{ 2) • 2) } E' J 

Q is the fundamental cut-set matrix of 1\1{5E;15 

e is an (b-V+1)-vector, the k-th component of which is the algebraic 

sum of source voltages which appear in the k-th fundamental loop 

i is an (V -1)-vector, the k-th component of which is the algrebraic 

sum of source currents which appear in the k-th fundamental cut-set. 

2.4 	INTRODUCTION TO THE ANALYSIS OF ONE-ELEMENT-KIND  

NETWORKS 

As it has already been mentioned, in the process of the normal form 
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characterization of nonlinear RLC networks it is necessary to examine the 

existence and uniqueness of solution of one-element-kind networks. These one-

element-kind networks are subnetworks of a given RLC network and will be 

discussed in Section 2.5. In this section we shall formulate algebraic equations, 

governing the behaviour of one-element-kind networks. The analysis of nonline-

ar resistive networks is almost identical with that of nonlinear capacitive 

networks or nonlinear inductive networks. Since most of the commonly used 

nonlinear elements are resistive in nature we shall develop the analysis in terms of 

resistive networks. 

It will be assumed that a resistive network N to be analysed satisfies 

the following two conditions: 

(i) network N is connected 

(ii) there are no loops of voltage sources only and no cut-sets of current 

sources only. 

When a network N satisfies these two conditions, N is E' J 

nonseparable and connected; a tree T can be chosen such that all voltage 

sources in N are included in this tree and all current sources lie in its cor-

responding cotree. Let us choose a tree T and denote the set of all resistive 

branches of T as bR' the set of all resistive links as 513  and the set of all 

resistive tree-branches as 'Be  , where BR  = 	U; . Suppose that BR, ; 

and BE contain b R, 	and be  branches respectively. With respect to the 

tree T vectors Rv and i 	associated with .13R' are partitioned as follows 

2.26) 
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where v
A 
 , i 

A 
 represent link voltages and currents and v E  , i 	represent — 	 --E 

tree-branch voltages and currents respectively. In order to deal 'with a small 

number of equations we shall not be particularly interested in LE , the currents 

of voltage sources, and vJ, the voltages across current sources; however, i J' 	 E 

andcan be explicitly obtained as a linear combination of currents and volta-

ges of resistive branches. Thus the unknown quantities areRv  and iR  and the 

number of unknown variables is 2bR . Hence a set of 2bR independent equations 

has to be specified in order to compute vR  as functions of sources E and J. 

The fundamental loop matrix B of the network N 	E;. •
J
j.  corresponds 

to the fundamental loops, defined by all resistive links, and is an by x bR 

matrix. It has the form 

B 	= [I,Fpe  J 	 (2.27a) 

The fundamental cut-set matrix Q of the network N{2E' • 2' corresponding to the J 

fundamental cut-sets through all resistive tree-branches, is an b£   xbR matrix 

and is of the form 

Q= {-Fin  T , I 	 (2.27b) 

The most general set of algebraic equations, governing the behaviour of resistive 

network, can be obtained as follows. Assume that resistive elements are described 

implicitly by the relation (2.1). Combining eqn. (2.1) and the topological 

constraints, given by eqns. (2.24) and (2.25), and taking into account eqns. 

(2.27a) and (2.27b), we arrive at the following set of 2bR  implicit equations 

that determine v , v 	, i 
6   • —e 

v + F 	v = e 
—P 	—e 	 P 

(2.28 a) 
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QIR = -FrbE Tip+ie=ie 	 (2.28b) 

fR  (v v 	i 	6 ) = 0 	 (2.28c) — E  

In eqns. (2.28) e 	is an b1.6 -vector, the k-th component of which is the 

algebraic sum of source voltages which appear in the k-th fundamental loop 

and 1E  is an be  -vector, the k-th component of which is the algebraic sum 

of source currents which appear in the k-th fundamental cut-set. 

Since eqns. (2.28) represent 2b
R 

equations in 2b
R unknowns, it is 

desirable to reduce these to a simpler form whenever possible. To perform such 

a reduction, it is necessary to find a smaller set of variables x, such that all 

branch variables vR'  i are uniquely expressible in terms of x and such that a 

set of implicit equations 

f(x) = 0 

can be formulated which define the equilibrium conditions of the network. 

Several alternative forms of the above equation will be considered below. 

If all resistive elements are current-controlled, loop analysis is appropriate. 

The hybrid description of resistive elements has the form 

YR = Ya(!R) 	
(2.29) 

From eqn. (2.28b) 

0 

iR 
E 

I  [F
PE 

'-f] i 	+ 
= 	11.410d 

(2.30) 

Eqns. (2.29), (2.30) and (2.28a) can be combined to give4  

BvR  (B-ri (6  ) + [(1  
le  

= e 	 (2.31) 
-11  

i
f 
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Eqn. (2.31) represents a set of loop equations for the network. Loop equations 

	

contain a set of by equations and they can be solved for link currents i 	. 

Once i 	is known, i11  is determined by eqn. (2.30) and then y_R  is calculated _ 

using eqn. (2.29). 

Similarly if all resistive elements are voltage-controlled/ nodal analysis 

can be used. The hybrid description of resistive elements is 

iR  = iR (v-R  ) 	 (2.32) - - 

From eqn. (2.28a) 

y. 
= [LI 	v 	Tv  + [2 	

(2.33) 
131 

R  
- E 	0 Q  _ Ie 	I  0 

Eqn. (2.28b) can now be combined with eqns. (2.32) and (2.33) to give4  

Qi (QTv 
e (2.34) 

which represents a set of node equations for the network. Eqn. (2.34) has be  

equations and it can be solved for tree voltages v , which by eqns. (2.33) 

and (2.32) determine all other branch' variables. 

If all resistive elements of N do not possess the hybrid description 

with iR  as independent variable or with 	as independent variable/  neither 

loop nor nodal analysis can be performed. In such a case we shall try to 

carry out a mixed analysis, resulting in a set of bR  hybrid equations. Hybrid 

equations are of two forms and one form can be solved for the hybrid set 

(v 	i E  ),the other for the hybrid set (i v £ v )- all other branch variables _ 

are then expressible in terms of these two hybrid sets. 

Note that hybrid equations can always be obtained from eqns. (2.28). 
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Namely, calculating v ib  from eqn. (2.28a) and i a  from eqn. (2.28b) and 

substituting v 	and i 	into eqn. (2.28c))  we have the following hybrid 
—0 	—6 

equations 

fR 
(-F

Oe 
 v 

E 
 +e 	v i ,F

(be —1' -Le +i ) = 0 	 (2.35) 

which defines Li p,‘Le  ) as a function of (ep,L). 

There are another two forms of hybrid equations. The first form exists 

when a tree T of N can be chosen such that all resistive links are current-

controlled and all resistive tree-branches are voltage-controlled. Thus, the 

hybrid description of resistive elements is 

v =v —p 
i = I 	) e 	 E p v  —E 

(2.36) 

Combining eqns. (2.28a), (2.28b) and (2.36) a set of hybrid equations is 

obtained 
 

v (i ,v e 	e ) + F 	v - p 	—6 -= 2(b 

-F 	Ti 	+ i (i ,v 
Pe 	 p 	—e —(5  —E

) =€ 
 

(2.37) 

The dual case of the above hybrid description (eqn. (2.36) occurs when 

all resistive links of a tree are voltage-controlled and all resistive tree-branches 

are current controlled. There 

= 	) 

V = V (V 
- e 	—e 	—e 

(2.38) 

From eqns. (2.28a), (2.28b) and(2.38) the following hybrid equations result 



v+ F 	—e e v (i ) = e 
ta—  

-F
lbe 

 Ti  p (v 	+ 	is  
(2.41) 
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v 	+ F v (v 	) = e 
0 	P e — e 	-6 	 lb 

T. 
-Fpe 	 1E  

A special form of the above hybrid equations is obtained when there is no 

coupling between links and tree-branches of N. Thus 

-10 (1(b )  

v = v 	) 6 -E E 

and the corresponding hybrid equations have the form8 

(2.40) 

• (2.39) 

In many cases the following method of partitioning reduces, still further, 

the number of implicit equations governing the behaviour of a resistive network 

N. Branches of N .3E; hit are of three types: (i) self-loops, (ii) open-

branches and (iii) nonseparable connected subnetworks with more than one 

branch. Assume that the branches are partitioned according to types (i), (ii) 

and (iii) into sets 5302 , he2, and 3piE 1  = hp i  U 	with corresponding 

branch variables (2/ (3 	13 2), e  2, i e  2) and (\L 	,431 	e 1,16 i ) . Order the 

branches so that 

—E 

2"p 

-E 

-so 

E  

(2.42) 

Then the matrix Fpe  , appearing in eqns. (2.27a) and (2.27b) has the form 2,12 
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= 	4 	

(2.43)

1 plel 
Foe  

0 	0 

It is easy to see
12 

 that 
,A
/61 

 contains all those resistive links of the tree T 

associated with fundamental loops containing at least one resistive tree-branch, 

and hp2  contains all other resistive links. Similarly, Jae  1  contains all those 

resistive tree-branches associated with fundamental cut-sets containing at least 

one resistive link, and 42 contains all other resistive tree-branches. 

By substituting eqn. (2.43) into eqns. (2.28a) and (2.28b) we have 

1p2 = 2(52 

i —e2 —62 
(2.44) 

and thus v p2 	62 
and i 	are expressed explicitly as functions of sources E and 

—  

J; a unique solution in .a network can be obtained only when resistive elements 

in N have voltage-controlled branches belonging to the set -6P2  and current-

controlled branches belonging to the set .b E2*  
Hybrid equations, corresponding to eqns. (2.37), can be obtained whefl 

(611L' 	(3 21i 2 ) 	is the independent variable in the hybrid description 

of resistive elements. Then a set of (b pl+b  El ) equations has the form 

l'01(1(1'.\LE l'-e-0 VIE 2) +.Fo le 1-v-e1 = !pi 

-FOE
T 
 !i +  j-E1Qpi YE 	- (32de 2 ) 	1E1 

	(2.45) 

Similarly when (/(3.1 ,ie 1 ,4 vie 2) may be taken as the independent vari-

able, the hybrid equations, corresponding to eqns. (2.41), have the form 

	

Ip1 	F(be 81013111E  1f202'1E 2 )  = 201 

c  T. 

	

OE 	E 1%4 d. Eif,a(3 2a€ 2 ) 4. 	-LE 1 
(2.46) 	• 
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In order to examine the question of solvability of the above loop, 

nodal and hybrid equations, a suitable mathematical criterion is needed. We 

shall develop such a criterion in Chapter 3 and it will then be applied to 

these equations in Chapter 5. Since these equations are nonlinear and their 

number may be very large, we shall not be able to answer the question of the 

existence and uniqueness of solution for an arbitrary nonlinear resistive network. 

Therefore, sufficient conditions for the existence and uniqueness of solution of 

nonlinear one-element-kind networks, containing certain classes of network 

elements, will be studied; and emphasis will be given to networks containing 

locally active elements. 

2.5 INTRODUCTION TO THE FORMATION OF THE STATE EQUATIONS 

FOR NONLINEAR RLC NETWORKS  

2.5.1 	Basic concepts  

As an introduction to the concepts involved and a foundation for later 

work in Chapter 6, this section consists of a thorough presentation of the 

formation of the state equations for nonlinear RLC networks. Before describing 

the procedure for the normal form characterization of a given RLC network we 

have to introduce, certain concepts such as: solution of an RLC network, determi-

nate network,complete set etc. Since a number of similar concepts have evolved 

in the literature we shall review them briefly and emphasize the differences 

between them. 



62 

Definition 2.61  

A solution of an RLC network will be called any set of voltages and 

currents of resistive elements, charges and voltages of capacitive elements and 

fluxes and currents of inductive elements, which satisfy the Kirchhoff's laws 

and the branch relations. 

Note, that a solution of a nonlinear RLC network does not necessarily 

determine currents of capacitive elements, iC, voltages of inductive elements 

IL, currents of independent voltage sources, iE  and voltages of independent 

current cources, v j, • if these branch variables are included to form a network 

solution, the state-variable analysis of a nonlinear network becomes much more 

involved since in general the number of the necessary equations to be conside-

red increases very much. 

Definition 2.7.1  

A network N is said to be determinate if for any value of the initial 

state x , given at any initial time t
o
, and for any value of independent 

sources E('), J(•), there exists one and only one solution for. t > to  on 

some nonvanishing interval [ to, t1  ). 

For linear RLC networks the normal form differential equations can 

be written in terms of a complete set of dynamically indepedent variables  

which by definition
ll 

contains branch currents and branch voltages. For non-

linear networks the concept of a complete set of dynamically independent 

variables may be extended to the concept of the complete set that may be 

defined as follows. 
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Definition 2.8 

A set x of network variables will be called complete if to every 

value of x, there corresponcl,unique values of voltages and currents of all 

resistive elements, charges and voltages of all capacitive elements and fluxes 

and currents of all inductive elements. 

Let x E R
n
, then our definition of the complete set x implies that 

for any value of x, given at time t., the solution of a network is uniquely 

determined at that time. Our definition of the complete set represents a 

modified version of the definition given in Ref. 12, where the complete set 

is defined to determine all branch variables, i. e. currents of capacitive 

branches, i_CI 	 / and voltages of inductive elements, vL , as well. In fact in 

Refs. 4 and 12 the term complete set is used in accordance with Definition 2.8. 

The following example shows that, indeed, networks exist where the 

complete set does not define uniquely capacitive currents lc. Consider the 

network of two parallel nonlinear capacitors (Fig. 2.2) that are both voltage-

controlled and their hybrid descriptions are 

ql = 2v1 3 - v
l  

3 
	 2.47) 

q2 _ -v2 	v2" 

By definition the complete set for network of Fig. 2.2 determines uniquely 

ql, q2, vi  .and v2. Suppose that 

q = ql 	q2 
	 (2.48) 

is a potentially complete set. Since from Fig. 2.2 
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vl = v2 
	 (2.49) 

q may be expressed as 

q  = vl
3 =v23 	 (2.50) 

Thus v1 = q
1/3 

v2 = q
1/3 

1/3 .  
q1 	2q - q 

1/3 
q2 = -q q 

(2.51) 

and q forms the complete set. The capacitive currents it  and i2  are 

= ql  = C,c;t1  

12 = (12 	c2‘.12 

(2.52) 

where 
	C1  = dq1 /dv1  = 6v1

2 	
(2.53) 

C2 
= dq2

/dv
2 

= -3v
2 

Differentiating eqn. (2.49) with respect to time t gives 

1 = <,2 
	 (2 . 54) 

From KCL 	i
1 

+ i
2 

= 0 
	

(2.55) 

Substituting eqns. (2.52) and (2.54) into eqn. (2.55) yields 

(C1  + C2) vl  = 0 	 (2.56) 
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If in eqn. (2.48) q = 0, it follows that v1  = 0, v2  = 0, C1  = -1, C2  = 1 

and from eqn. (2.56) vl  is arbitrary and <,2  = vl  is arbitrary as well; thus 

by eqn. (2.52) the capacitive currents i1 and i2 are not uniquely 

determined. 

Frequently we can obtain the normal form characterization of a 

network in terms of the complete set x, x e Rn
, as 

= f (x, t) 	 (2.57) 

In general f(x) is not a necessarily continuous function of x with the 

entire R
n 

as its domain; f(x) may even be a multivalued function of x. 

Thus, there are cases when the complete set can be found, but the function 

appearing in the r. h. s. of the corresponding normal form differential 

equations is not a continuous function for all x E R
n
. 

The RC network, shown in Fig. 2.3a, has the property that the 

complete set can be found, but f(x) in the normal form equation is not a 

continuous function of x. Let the capacitor (Fig. 2.3a) be linear and let its 

capacitance be equal to C; let the resistor R in Fig. 2.3a be current-controlled, 

vR = vR(iR)' where the domain of vR(•) is the entire R
1
. The incremental 

resistance of R is zero at iR = iA and iR = i
B 

(see Fig. 2.3b)., The current 

iR is the complete set, since vR  = vR(iR), vc  = vR, qc 	Cvc, (ic  = -iR). 

The differential equation, written in terms of the complete set iR , has the 

form 

dvR  _1  

= 	0R)  = 	 ) 
(2.58) 
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Since dvR/diR  = 0 at iR  = iA  and TR  = iB, f(iR) is not a continuous function 

ar A  and • thus we cannot expect eqn. (2.58) to have a unique solution 

iR(t) for any initial value iRo. 

In the sequel we shall say that the normal form exists when in the 

differential equation (2.57), written in terms of the complete set x, f(x,t) 

is a continuous function of x whose domain is the entire Rn  . Note that 

f(x) does not necessarily fulfil the Lipshitz condition and thus even when — _ 

the normal form exists the solution of a network may not be unique. Therefore 

the existence of the normal form does not imply that eqn. (2.57) is the state 

equation in differential form and the complete set is not necessarily a set of 

state variables. Only when the normal form equations have a unique solution 

x(t), to 	t 	t1 , for any initial value x. e. Rn, given at any initial time 

to , does the complete set become a set of state variables* and eqn. (2.57) 

represents the state equation. 

In Ref. 13 the concept of a set of dynamic variables
dx 	

was 

introduced. This concept is in a certain sense more general than the concept 

of the complete set. A set of dynamic variables 	 dx , xd  e R
n
, has the 

property that it defines uniquely all branch variables on a set S, which is 

a subset of Rn, S c R
n
. Thus it is not necessary for a set of dynamic variables 

d 	 x  to determine all branch variables for any 	e 	R. The space R
n is 

d  

The term state variable is not used properly in Ref. 12, p. 75; 

namely the term a set of state variables is more specific than the 

complete set. 
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called the dynamic space and a set of first order differential equations, 

written in terms of x-1 	 • 

?lc! = 1.1('id,t) 
	

(2.59) 

is termed a set of dynamic equations; the domain of the function d  (xd  is 

a set S', S' c Rn. When eqn. (2.59) has a unique solution for any 

initial value dx o, given at any initial time to, dynamic variables become 

state variables a posteriori
13 

 . 

2.5.2 	Selection of the complete set1,2,11,13,14  

The normal form equations describing a general RLC network are 

formulated in two stages: 

	

(0 	the complete set x is selected for a given network 

	

(ii) 	the normal form equations are formulated in terms of the 

complete set x 

We shall assume that a given RLC network N contains resistive, 

capacitive and inductive elements and in addition independent voltage 

sources E and independent current sources J. Furthermore N is 

connected and in N there are no loops of voltage sources only and 

no cut-sets of current sources only; thus the distribution of independent 

sources is assumed to be normal
1,2

. Suppose that N has bR 
resistive 

branches, b
C 
 capacitive branches, 

b
L 

inductive branches
, 

b
E 

voltage 
• 

•sources and b J  current cources. 
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For a broad class of RLC networks the complete set may be obtained on 

the basis of a normal tree
13
'
14 

 T
N

. T
N 

is a complete tree which is chosen 

according to the set of rules given by Bryant
11 

 . A normal tree is formed by 

constructing a complete tree of the graph, derived from a given network, in 

the following manner. First, all voltage sources are included in the tree, then 

only capacitive branches are used wherever possible and the resulting subgraph 

is augmented, first with resistive, and then with inductive branches to form a 

complete tree. A normal tree contains all the independent voltage sources, the 

maximum number of capacitive branches, the minimum number of inductive 

branches, no independent current sources and it is completed with resistive 

branches. Note that for a network with normal distribution of independent sources 

a complete tree can always be constructed. 

Using the same procedure and subscripts employed by Bryant
11 

the branches 

of the network N, corresponding to RLC elements, can be classified in the 

following six disjoint subsets with respect to TN: 

: the capacitive links of TN  

So : the resistive links of T
N 

St.: the inductive links of T
N 

Scr  : the capacitive tree-branches of TN  

SE  : the resistive tree-branches of TN 

Sf : the inductive tree-branches of TN 

We shall denote the number of branches of Sg, ,Sp  ,Sr  ,Se  ,Se  and S1  by 

boe  , by  , bt  , b e  , be  and b1  respectively. 

Kirchhoff's laws of the network N have the form of eqns. (2.24) and 
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(2.25). According to the above classification the branch voltages and currents 

of N 	ZE;. ajf 	can 

v 

be 

v cr  

V 

Y1 

partitioned as follows 

i 
—t 

P 

—€ 

• 

(2.60a) 

(2.60b) 

where subsripts I and t denote links and tree-branches of T
N 

respectively. 

Similarly the sources e and I, appearing in eqns. (2.24) and (2.25) can be 

partitioned conformably as 

ea 	Id 

2.0 
	 (2.61) 

I f- 

Because of the way in which a normal tree is defined, the submatrix F, appearing 

in eqns. (2.24) and (2.25) may be represented in the following. formll  

Facr 0 

F= Fo‘ F166  0 (2.62) 

Ft( Fte  

Combining eqns. (2.24), (2.25), (2.60a,b), (2.61) and (2,62) we obtain 

Kirchhoff's laws in the form of eqns. (2.63) and (2.64) 



0 (2.65a) 

0 (2.65b) 
•••• 

0 (2.65c) 

(2.6.6a) 

(2.66b) 

f<6.1 	V cr 2. oc  124 t ) 

f (v ,v 	i 	i 	t) = 
E 1 t3 r  

4Sirif fZi• 	,t) = 

• 
C = 2c  

= 

-R 
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2/ 04  +Foe  d- 	ea 

v 0+F (3 er  NL6. +Fp E  v E = e 

-Fpe  T Tit+i e  

-Ftf T. . It  +21. = .  

v
du 	

v t(+F4.6  ve  +Fri  vi  = et  

r 	T. 	T. 	T. +. —rp, 13 	 „cc  

(2.63a) 

(2.63h) 

(2 .63c) 

(2.663d) 

(2.64a) 

(2.64b) 

where the number of equations is equal to (b
R
+b

L
+b

C
)

• 

The implicit branch relations of RLC elements can be expressed as: 

where eqns. (2.65a), (2.65b) and (2.65c) contain bC,bR  and bL  equations 

respectively. Since by definition the complete set determines 2(bebC
+b

L
) 

network variables Eic,L,c,A,11. ,y4z ,IR  it is sufficient to consider (2bR+bc+boe+bL+bf  ) 

eqns. (2.63a-d) and (2.65a-c) which contain only variables Eic,yc,4,11_ ,L,,RdR; 

when all these equations are independent, it is obvious that in principle (by..+b( ) inde-

pendent variables may be chosen and the complete set x has (brybe ) components, 
by,+bcf- 

x e R ° 	. The remaining equations (2.64a,b) and (2.66a,b) are then used to 

form the normal form equations *x = f(x,t). However, in order to be able to 

formulate  the normal form, x has to be chosen in such a manner that X may be 
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calculated. In the sequel we shall consider two choices of the complete set: , 

(i) the cut-set charges q and loop flux-linkages 	determined 

with respect to the tree TN 
1,2,8,12,14 

(ii) voltages viand  currents I,. 11 (or characteristic parameters 

a, 	and xd- of capacitive branches and inductive links of TN
2 
 ' 13 ). As will be 

demonstrated later, there are examples of networks for which the first choke 

gives the complete set, but not the second and vice versa. Thus both of the 

two choices are worth studying. 

Let us consider the first choice for the complete set where 

T 
a( - Fab a et 

(2.67) x = 
.524  + F

tI  
c 

I 

Combining eqns. (2.63a), (2.65a-c) and (2.67) a set of 2(bR+bC+bL) equations 

is obtained. However, these equations can be partitioned into three sets of 

equations denoted
12 

by (C), (L) and (R): 

v 04  +Fa  v d- = eoc 

'Fa (
T
act+acr = a 

f (v ,v ,qj 	=2' —c 	—6 —64  

+Ftj ttf  = 

-Ft I T. 	=1f  

di  „frit  ,t) 0 o 

(C) 	 (2.68a) 

(L) 	 (2.68b) 

v +F 	v = e -F 	v 

	

OE 6 	 (3cr cr 

Ti
p

-FOE . 	
,. 
	= ie  +Fr e  Tit  (R) 

f
R 

 (i 1
31  e ,v01 v e 

 ,t) = 0 

(2.68c) 
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Let x be an n-vector. Vector x represents the complete set only if the equations 

[a 
(R), (L) and (C) possess a unique solution for any x = 	E R

n
. Because of the 

— 	 , 
form of the (R), (L), (C) equations it is not necessary to consider the whole set 

of equations at once but these equations may be solved in three steps. At first 

the eqns. (C) are solved to obtain cic(q) and yc(q); the solution of the eqns. 

(L) gives 	(y) and IL(1). Finally the solutions yc(q) and 4.(y) are substituted on the 

r. h. s. of the (R) equations which give 4(q, y) and IR(q,t). 

Comparing the (R) equations and the dc equations of resistive networks 

with sources E and J (eqns. (2.28a-c)), we see that the 1. h.s. of these two 

sets of equations are identical. Thus the (R) equations correspond to the resistive 

network which can be obtained from N in the following manner: all capacitors in 

N are replaced by a set of voltage sources 	 , E 	where cE = 	 and all inductors _c  

in N are replaced by a set of current sources J 	where JL  = iL• Similarly the 
— — 

(C) equations represent the governing equations of the capacitive network 

N {0; 13R' L' .bJ  ) • namely KCL equations of the network N {0;fiR' 
 23 

L' 2J 

are obtained from eqn. (2.64b), setting i 	= 0, if  0, is.= 0, in the form 

T. 
-Fad 	e= 0 	 (2.69) 

Integrating eqn. (2.69) with respect to time t 

-Fa6 
T
ace +ad" = 
	

(2.70) 

where q is the integration constant. Setting q = q and combining KVL equations 

{  of N 0;.2) h 	4) 	and implicit branch relations of capacitive elements we 
R' L' J 

obtain the (C) equations. 

Analogously the (L) equations are the governing equations of the inductive 

{network N iE,Sc,SR;0 . The second equation of the (L) equations is obtained 



by integrating KVL equations of N 
C' 

73' 

and 

4 +F11 T-1 - 0 

+F Ty, = y t -f -0 

(2.71) 

(2.72) 

Setting Yo = ..y9 and combining KCL equations of N{21E, .5c,i3 R;01 and the 

implicit branch relations of inductive elements gives the (L) equations. 

Thus in order to answer the question whether the set (g,y) is complete or 

not, we have to study the existence and uniqueness of solution in the capacitive, 

inductive and resistive subnetworks of N for any value of ae R bd. and any value 

of 	E R
b
t . For a general network N it is extremely difficult to resolve the 

question of the existence and uniqueness of solution of these three one-element-

kind subnetworks of N. Therefore, our main objective will be to find some 

sufficient conditions ensuring the existence and uniqueness of solution. Such 

sufficient conditions will be given in Chapter 5. 

If eqn. (2.67) is differentiated with respect to t and then substituted in 

eqns. (2.64a,b) the normal form equations of N are obtained in the following 

form 

   

[t] 

T. 	 . 
F c 

T
J.0 (2.4) + 	

T. 
	+ 

2/6 (2) 	F tE (q,~) + et 

(2.73) 

   

Note that when eqn. (2.73) is integrated numerically the algebraic equations 

(R), (L), (C) have to be solved at each step of integration to obtain 

r(.52),I d. (a), L (2.,e) and ve (q,A. 

Eqn. (2.73) will represent the state equation of N when it possesses a 

unique solution for any initial value x E Rbt +b(and x is then the state vector. o 
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The example of the capacitive network given in Fig. 2.2 shows that the 

complete set q = q1-1-q2  does not define capacitive currents iI  and i2. However, 

in certain practical cases currents of capacitive branches, icf  and voltages of _ 

inductive branches, y4., may be of considerable interest. It is therefore worth 

studying how to determine iC 	vL 
and 	as functions of the complete set (a,y) and 

under what conditions _i_c(a,t) and 111.(a,t) are unique. 

Taking into account that is  = 	and !L.  = 	lc  and y4.  can be obtained 

by differentiating the (C) and (L) equations respectively. The resulting equations 

are: 

Fad 	0 
	

0 

0 	0 	-F T 	I cgs 
D f 	3 f 	af  

'cic.4 	3as 

• 

q 
	

(2.74a) 

  

t 

   

I 	F
all 	

0 	0 

a -FlT  0 	0 	 I 

a f 	aiL 	31:L. 	3._f_i_  --L 
3;ea, 32.1  bit  3i -1 

    

    

(2.74h) 

  

= 

 

a--Lf 1, 
3t 

 

      

      

where sEi and So are given as functions of (q,2) from the normal form equations 

(eqns. (2.73)). From eqns. (2.74a,b) it follows that i andL
v 
 are uniquely 

determined for all (Bit) when the square matrices in the above equations are 

nonsingular for all (q,y). 

It is noted that the set (3.,y) was obtained through the normal tree TN. 

Generally when there are loops of capacitive branches only and/or cut-sets of 
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inductive branches only different normal trees may be formed. Let the set 

(a*,..0*) be associated with another normal tree TN*. However, the set (a,y,), 

complete or not, is related to any other set (a*, .e)by a nonsingular linear 

15 
transformation ; thus when (alt) is the complete set any other set (a*,f) is 

complete and when (a,y) does not form the complete set no such normal tree 

TN exists to give the complete set (a*,z). 

As the second choice* of the complete set x we shall consider voltages 

v d. and currents 1 Thus x 

X = 

 

(2.75) 

   

We shall assume that all capacitive elements are time invariant and voltage-

controlled and all inductive elements are time invariant and current-controlled. 

The hybrid descriptions of capacitive and inductive elements have the form 

   

_ga(v0'vd 

(Ice Y_ds) 

(!rif ) 

—I` 1 

  

—ad  

 

= 2c(v ,v ) = 

 

(2.76 

     

     

       

    

= 4Littif  

 

(2.77) 

  

1_ 

  

     

It is easy to see that(vd- 	t) represent the complete set if (R) equations can be 

[ 
solved for all 	. Namely, from eqns. (2.63a) and (2.63d) v ocand • i f  are 

it,  

The normal form decription with a more general choice, where the subsets 

of x are the characteristic parameters xe  and x r  of capacitive tree-

branches and inductive links, was treated in Refs. 2 and 13. 
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v Oe  = -Fad- vic -Fea  

. 	. = 	
TIt 
 + 

Thus Ec  and 	are expressible explicitly in terms of (v 	)as 

ac = 2c(-Fadvi+eoc ,vd-) 

. 	. 
= 4 	

T 
.(it ̀Fri -11" 111-1 )  

(2.78) 

(2.79) 

(2.80) 

In order to form the normal form equations we have to'calculate 

{il 
X = : . If eqns. (2.79) and (2.80) are differentiated with respect to t we get 

   

. - Caa  (-F04 	+ 	vd- 

Ct.&  (-Fa( \*/ (+ea  )+ Ccid-  N/r 

 

= —04 

i
d' 

 

(2.81) 

     

     

 

+L T.  )— 
FIlt 01 al I -Lfr 

,Lit jt  +Lff  (Fri  lit  +if  

 

 

(2.82) 

  

where C0" 

Ltfl_  

Lir 	Lif 

(cla 
3(va ,vd) 

into eqns. Substituting eqns. (2.81) and (2.82) 

(2.83) 

(2.84) 

2.64a,b) 

where 

Md v d  = Ko- 

M 	= Kt  

MG(' = CcreFoarCocoe Fad 	FceSTCod CcrotFoccr 
. T 	T. K6  = 1d  + Fibcr  0+ F0,.4- 1 3,..-1-(F,taCaa-Ccro )eoe  

(2.85) 

(2.86) 



Lit+ Fin L.11 rail"1",_ r 
rtf Lit 	rrf  

T  

Kt  = et  -Fp. v cr-Fte  2/ e  -(Ftf  Lff. +Ltf  )If  
(2.86) 

 

v d  

 

When Mc  and M t  are nonsingular for all normal form equations 

   

 

-1 
M Kd  

-1 
M 

 

(2.87) 

  

exist. Thus, when (vd- t) form the complete set the condition for the existence 

of the normal form in terms of this complete set is the nonsingularity of certain matri-

ces formed from the incremental cpacitance and the incremental inductance matrices. 

As mentioned before there are cases where 'the normal form equations cannot 

be written in terms of the set (q, lo) but they can still be written in terms of the set 

(v5 	B") and vice versa. Let us demonstrate this fact by a simple example of a non- 

linear RC network shown in Fig. 2.4a, where the resistor R is assumed to be vol-

tage-controlled, io  = io  (vo ). If the capacitor C is charge controlled as shown 

in Fig. 2.4b its hybrid description is 

= 	vd- (qd. ) 	 (2.88) 

and the cut-set charge q = q d- forms the complete set; the corresponding 

differential equation is 

q = 	(1, (v )1 v 	(q) 	 (2.89) 

and the normal form exists as in eqn. (2.89) 	is a continuous function of 

q for all q F R
1
. If the capacitor in Fig. 2.4a is voltage-controlled and 

ci d. is a strictly monotonic function of vd- , as shown in Fig. 2.4c, the hybrid 

description is 

(2.90) 



78 

and ve  forms the complete set. The normal form equation is then 

dqe  
- 	• ( a'  )-1  i 	 (2.91)  

dvd- 	(b v(. vr  

Since dqo. /dvd-*0 for the strictly monotonic function of Fig. 2.4c the normal 

form exists. 

Note, that when the capacitor in Fig. 2.4a has the characteristic 

shown in Fig. 2.4b, vd. is not the complete set as qd.. is not uniquely defined 

as a function of vd- . Similarly when the capacitor C is characterized by the 

strictly monotonic function cid- (vd- ) shown in Fig. 2.4c, where the range of 

qd- is (Q1 ,Q2), q = qi  is not the complete set. It is therefore worth- 

while to consider both (q, ) and (v s 	r) as a potentially complete set for 

general networks. 

Although the sets (q,)0) or (v 	c ), which are both based on the 

concept of a normal tree, form the complete set for a large class of RLC 

networks, there are cases where neither (q, y') nor (vs- ,it) form the complete 

set, but the complete set can still be found in terms of another set of network 

variables. As an example consider the RC network, shown in Fig. 2.5, which 

contains three linear capacitors with capacitances C1, C2 and C
3 and two-

port resistor, described as 

TR1 	IR1(vR1)  

vR2 KvR1 

where K is a negative constant. A normal tree of this network is unique and 

contains branches C1 , C2, C3;, the potentially complete sets are: q=(q1 ,q2,q3) 

or y. = (v1  ,v2,v3)
T
. It is easy to see that neither q nor vr  forms the 
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complete set. Namely, from Fig. 2.5 

Kvi  + v2(1-K) - v3  = 0 

and v1 , v2, v3  or ql, q2, q3  are not independent. 

However, if the tree containing branches C1,  C2, R2 is chosen, then 

= (v1 ,v2)
T 

forms the complete set, the normal form equations in terms of 

this set exist and have the form 

1 
Cl 	iR1 (v2 - vl ) 

KC 
C2+ C3(1 -K)

-1 
(1 + c 3

) 1111 (v2 - v1 )  1 

Note that the branch R2 is in fact a voltage-controlled voltage source whose 

controlling voltage is the difference of voltages v
1 

and v
2 

across capacitors 

C1 and C2. Since there is a loop of controlled-voltage source R2 and capaci-

tors C1 and C2, the KVL for this loop gives a contraint and thus voltages 

v1  ,v2,v3  are not independent. Thus the dimension of vector x representing the 

complete set is 2 and not 3. 

There are other networks with this kind of difficulty. Especially for 

networks containing gyrators, ideal transformers and controlled sources of 

different kinds, the sets (g, y) or (va 	t ), derived on the basis of a normal 

tree, may not form the complete set and the dimension of the complete set x 

for such networks is frequently less than the dimension of vector al or I . 

In general, there is no systematic method, by which a potentially complete set 

could be selected for such nonlinear networks. Even for linear active networks, 

containing passive two-terminal RLC elements and controlled sources, it is not 

easy to find the complete set
16

. There is a class of linear passive time varying 
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networks, containing two-terminal resistors, capacitors, coupled inductors and 

1 7 	• 
gyrators, where the normal form equations can be obtained 	on the basis of 

a modified normal tree*. However, when for a nonlinear RLC network (q, p) 

or (v s si t ) do not form the complete set the question, whether the complete 

set exists or not is even more difficult to answer than in the case of a linear 

network. Thus we shall not try to find the complete set in such cases but our 

efforts will rather be directed to find sufficient conditions for the existence 

of the complete set and normal form characterization of a general nonlinear 

network, containg locally active elements. 

A modified normal tree TM  contains a maximal number of capacitors and 

a minimal number of inductors subject to the condition that each gyrator 

is either in TM  or in its cotree. 
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E = f(vc) 
	

iRl = ° 

vR2 f(v  

Fig. 2.1. Example of Section 2.2.1. 

Fig. 2.2. 	Example of Section 2.5.1 

Fig. 2.3. 	Example of Section 2.5.1. 
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(a) 
	

(b) 
	

(c) 

Fig. 2.4. 	Example of Section 2.5.2. 

Fig. 2.5. 	Example of Section 2.5.2. 



Chapter 3 

FUNCTIONAL INVERSION AND GLOBALLY REGULAR FUNCTIONS 

3.1 	FUNCTIONAL INVERSION 

An important problem in the analysis of nonlinear networks is the 

question of the existence of the inverse x = 1
(x) of a certain vector-

valued function Y= f(x). An example is the coupled n-port resistor where a 

characterization, say v = r(i), is given and the dual description, i = r-1(v) 

is needed. A similar problem arises in the analysis of one-element-kind 

networks (either resistive or capacitive or inductive) where equations are 

obtained in a form that requires a functional inversion in order to express the 

relation between sources and a set of network element variables. The unique-

ness of solution for such one-element-kind networks is especially relevant1,2 

in the state variable description of nonlinear networks, where the usual 

requirement3,4,5, 
 related to the uniqueness of the network response, is that 

the inverse function is of class C(1). Bearing this motivation in mind, vector-

valued
. 

 functions f (x) of class CO) and having a unique inverse of class C(1) 

will be studied. 

85 
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Definition 3.1 

Given a function z = f(x), where x and z are both nIvectors and 

the domain off is the entire Euclidean space Rn. A function 

x = f
1
(z) 

will be called an inverse off if its domain is the entire Rn  and 

f(f-1(z)) = Zr for all YE Rn. 

This definition implies that the inverse f-1 
is defined in the whole 

space Rn. If f-1
(z) is defined only locally on an open set Uc Rn 

around some 

point .yo  such an inverse is called a local inverse. A well known inverse 

function theorem6 
gives conditions which guarantee the existence of a local 

inverse function r1 
of class C(1) when f is of class C

(1)
. 

A transformation of class C(0) 
which has an inverse of class C(0) 

is 

called a homeomorphism of Rn  onto itself. A transformation of class C(1) 

possessing an inverse of class C(1) is called a diffeomorphism of class C(1) 
of 

Rn  onto itself. The term regular transformation is used in Ref. 7 for a 

diffeomorphism of class C(1). Throughout this thesis a diffeomorphism of class 

C(1) of Rn 
onto itself will be called a globally regular function. In other 

words, a globally regular function f(x) is of class C(1)
, its domain is the 

entire Rn 
and it possesses an inverse of class C(1). 

The existence of an inverse of a function f(x) is related to the 

question of existence and uniqueness of solution of the equation z.= f(x). 

When Zr = f(x) possesses an inverse the corresponding system of n equations, 

written in component form 

yi  = fi(xi  ,x2, 	, xn) 	i = 1,2, ...,n 
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can be solved for x x2' ...,xn in terms of y y2' ...' yn for all / e Rn. 
• 

3.1.1 	Conditions for global regularity  

Necessary and sufficient conditions which ensure global regularity of a 

function have been stated by R. S. Palais (see Cor. 4.3 of Ref. 8). Palais' 

theorem may be stated in our terminology as follows. 

Theorem 3.18 

Let f(x) be a vector-valued function of class C(1) where x and f are 

n-vectors and the domain of f is the entire Rn. Necessary and sufficient 

conditions that f is a globally regular function are: 

(i) det 	x 	0 	for all x and 

(ii) implies 	f (x) —•• 00 . 

The first condition implies the existence of a local inverse f
1
(x) for 

any 	= f(%), where )10  is an arbitrary point in Rn. The second condition 

requires that the Euclidean norm Il_f(I)11 has to approach infinity for any point 

on an n-dimensional ball with center at x = 0 and the radius approaching 

infinity. In other words, the distance of the image f(x) in Rn should approach 

infinity as the distance II x II approaches infinity. This property can be simply 

described as radial unboundedness of f in all directions. 

Palais' theorem is very important since it gives necessary as well as 

sufficient conditions. For example, a function f(x) of class C(1) whose Jacobian 

changes sign cannot be a.globally regular function. One could object that in 

our network problems the second condition of Palais' theorem is somewhat 
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unphysical. However, to demonstrate the contrary, let us consider, as an 

• 
example, the characteristic of a diode described by the exponential function 

i
D 

= i
D

(v
D

) = A(e
A v

D - 1). 

The first condition of Palais' theorem is fulfilled for the function i
D

(v
D

) but 

the second condition is not satisfied when vD--,-oo. Yet the inverse function 

of iD(vD) does not exist for any negative value of current iD. 

Unfortunately it is very rarely that Palais' theorem can be applied 

directly to resolve the question whether a given function is globally regular 

or not. One the difficulties in its application is that the radial unboundedness 

of a given function has to be checked in all directions in R
n

. In the case of 

nonlinear one-element-kind networks the governing equations depend upon topolo- 

gical structure and hybrid descriptions of network elements. For complex one- 

element-kind networks it is virtually impossible• to check whether the second 

condition of Palais' theorem is fulfilled or not. If the hybrid matrices of all 

network elements in a network are known it is frequently a simple matter to 

express the Jacobian matrix of the governing set of equations by the hybrid 

matrices. In order to satisfy the first condition in Palais' theorem the Ja- 

cobian has to be different from zero for all values of the independent 

variable. It would clearly be very useful, if a sufficient condition, ensuring 

the fulfillment of condition (ii) in Palais' theorem, can be stated in terms of 

the Jacobian of f(x) only. We shall show that such a criterion on the Jacobian 

can indeed be obtained. In order to derive this criterion we shall start with 

the one-dimensional case and then generalize it to the n-dimensional case. 

When y = f(x) and f(•) is of class C(1) , a sufficient condition for the 

existence of the inverse r1 
(y) of class C(1)  is that 
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and E does not depend upon x. When this condition is extended to the 

n-dimensional case an ambiguity arises about• its meaning. The condition 

(3.1) has the following possible interpretations when generalized to the 

n-dimensional case: 

0) [31/3x - El } is positive definite for all x e Rn  and E> 0 

(ii) Idet 	x 	0 for all x E Rn. 

The explanation (i) is related to quasilinear functions3 and their extentions to 

be mentioned later. The condition (ii) can be interpreted geometrically as 

follows. Let P be an n-dimensional differential cube whose edges are 

dxi  = dx2  7- 	= dxn = (4. and let. P' be the .image of P under transforma-

tion f(x). Then the ratio between vol P', the volume of P', and vol P, the 

volume of P, 

volr >E0 volP 

Hower, the condition (ii) is not a sufficient condition for a function f(x) to 

be globally regular. This can be demonstrated with the aid of the following 

counterexample. Let f: R
2
--0- R

2 

1 	 exl 

Y2 = f(x) = 
x2e  

(3.2) 

  

then 
exl 	0 

-x2e 1.,e x "x1 
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and 	det 	ffax = 1 everywhere in R2. Yet, the function f(x), • 

defined by eqn. (3.2) is not globally regular. Clearly, the inverse function 

does not exist for any y1  <0 and the function f is not radially bounded for 

x2  = 0, xl—fr -03. An additional condition is necessary to ensure global 

regularity. We shall show that for functions with bounded Jacobian.  matrices 

the condition I det afiax I>_ E>0 is sufficient to ensure global regularity. 

This result is stated formally in the form of the following theorem
9
. 

Theorem. 3.2 

Given a function 

= f(x) 

where x, f and > are n-vectors, f is of class C
(1) 

and it is defined for all 

x eRn. Sufficient conditions for f(x) to be globally regular are: 
MOM 	 Im•M dma• 

(i) I det o Vax 	E > 0 	for all x e Rn 	 3.3) 

and g does not depend upon x 

(ii) the Jacobian matrix 3il3x is bounded, i. e. there exists 

a value /VI> 0 such that 

I 	f./Z x. I 	M 	 for all x e Rn 	 (3.4) 

In addition 31
-1
/3 x, the Jacobian matrix of the inverse of f, is 

bounded for all YE  Rn. 

Proof
10  

Before carrying out the proof of Theorem 3.2 some preliminary remarks 
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will be given and then three useful lemmas will be stated. 

In the following let Rn denote a Euclidean space such that x e R n  and 
x 	 — x 

let. R n  be the space of the images z. = f(x)E R 
Y  n

. Furthermore, let 

y(t) = [NO, 	 . yon(t)] 	be a differentiable function of the real 

variable t, 	t < 	, whose values are points in the space Rxn . Then 

x = VW represents a rectifiable curve
11 i

n R. The length of this curve between — — 

two points corresponding to the values t =ac and t = r , is equal to 
er 

s(r) = j 113y(t)/Z t 	dt. If s(r)4.0oas r A , we shall say that the length of 
a — 

the curve x = p(t), 	t <13 , is infinite. The corresponding curve z. = f{y(t)] = 

= p(t) in the space Ry is also differentiable. 

Let dx = [dx1  , dx2, 	dxn]
T be a differential of x. Then the arc 

length differential ds which is equal to the distance of points x and (x + dx) 

in Rxn  on the curve f(t) is 

ds = (dxTdx)1/2  = [(,) wa T alva t] dt 	(3.5) 

The images of points x and (x + dx) are points Zr = f(x) and z + dy.  = f(x + dx). 

The arc length differential ds' with respect to the curve z = ip(t) = f[y• 	is 

ds' = (difdD1/2  = {())zyc)t)T( a f/a x)T  of/cox c).2/a dt 

(3.6) 

The ratio •ds'/ds is a function of the vector x and the direction of the differen- 

tial dx. We shall study such functions where 

ds'/ds 	> 0 	 (3.7) 

for all x and all directions of differentials dx. When the condition (3.7) is 

fulfilled, then given an arc in R n the arc length of its image in R' is not 

ct 
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smaller than .1 times the arc length of the original arc. Thus when the arc 

length of an arc in R: approaches infinity, so does the arc length of its 

image in R n. In the first lemma we show that a function f(x) satisfying 

conditions (1) and (ii) of Theorem 3.2 obeys the inequality (3.7). 

Lemma 3.1  

The ratio ds'/ds for a function Y= f(x) which satisfies both conditions 

of Theorem 3.2 has a lower bound 

ds'/ds- 	0 
(nm)n-i 

(3.8) 

Proof: From eqn. (3.6) ds'/ds is equal to 

(ds'ds)2 	2/  ljdx  112 	[d....xT(aya)L)T .II D 	-   i/a x dx] /dxl.dx 

Since a yax is nonsingular, ( a/a x)T  al/ax is positive definite. Thus using 

the result given in Ref. 12. 

dxT(a flax)T
affax dx >- min  A 	dx

T 
dx 

- 	 - - 
(3.9) 

whereA  min 
the smallest eigenvalue of (a fiax) 	/ax. Writing the 

mm 	 - - 

determinant determinant as the product of its eigenvalues and taking into account eqn. 

(3.3) 	 n  

det [(ailax)T  Wax] = i, A. >62 
	

(3.10) 

The application of Gresgorin's theorem
13 

about approximate location of the 

eigenvalues of a matrix and the inequality (3.4) yield the following upper 

bound for the largest eigenvalue Amax 
of f(ayax)T  ayad 

. Amax S n
2
M

2 	 (3:11) 
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Combining eqns. (3.10) and (3.11).  

• e 2 

•11Smin 
(nM)2 (n-1) 

(3.12) 

The inequality (3.8) follows from the expression for (ds'/ds)2 , eqn. (3.9) 

and (3.12). 

Q. E. D. 

For the proof of Theorem 3.2 we need two additional lemmas where 

n 	n  
f : R 

x 
 -->R

y 
 is a CO) map satisfying both conditions of Theorem 3.2 

Lemma 3.2  

Let x
-o 	 01 

be any point of R
n

, y_ = f(x 
o

) its image in Rn,  and z = 	(t), 
'-- 	- - 

0 	t 5:1, an arbitrary arc of class C(1) in the space R with the initial point 

: iP(0) = zo. Then there exists in the space Rnx  one and only one arc 

x = 9'(t), 0 5 t 	1, of class C(1) , with the initial point x
o 

 whose map 

by f is the given arc z.  = 	(t), hence 

f [[(t)] = x(t), 	P(0) = x (3.13) 

Proof: It is sufficient to find a continuous function x = t(t) satisfying 

eqn. (3.13). The differentiability of y,  (t) follows from the differentiability of 

the map f and the function (t), and the' uniqueness follows from the inverse 

function theorem. 

Since zo  = f(x ), there exists a neighbourhood U
o 
 of x

o 
 which is mapped 

--o 	 - 

by f homeomorphically onto a neighbourhood V
o 

of 4. The inverse map g (z), 

defined on V
o' 

is also of class C(1) and is uniquely determined by the initial 
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condition po(zo) = )50. If t1 > 0 is sufficiently small, the arc z = y(t), 

0 4 t < t1 , lies in the neighbourhood Vo. Hence we have y (t) = go  it(tA 

for t E [0,ti] . 

If Lemma 3.2 does not hold, there exists a number t*, 0 4 t*  1, 

such that the function y(t) satisfying eqn. (3.13) is defined in the half-open 

interval CO, t', but cannot be defined in any closed interval [0,0] with 

cx.>,t*. Now, take any increasing sequence of positive numbers t converging 
n 

to t*, so that lim to  = t*. Write ?5.n  = yl(tn), so that xii  = f(4). The 

continuity of t(t) implies lim zn  = x (t*) = z,. Consider now the sequence 

f
xn . If it is not bounded, then the length of the arc x = y(t) between the 

points x
o 
 and x tends to infinity as n.-r. ea . The image of this arc is the 

- 	-n 

arc z.  =1(0 between the points 	and zn. The length of the latter arc is 

less than the arc between the points 
Yo 

 and z*, which is finite. Hence, the 

{assumption that the sequence x n  is not bounded contradicts the condition 

(3.8). Thus -(x
1- 

is bounded and it has at least one limit point x*. A 

subsequence converging to x* can be extracted from x
n 
 . Without loss of 

generality we may assume that this subsequence is {,} . Hence we have 

z* = lim zn  = lim f(x) = f(x*). Let V* be a neighbourhood of z*, where 

the inverse map x = g*(z), g*(z*) = x*, of the map f exists. Since g*(V*)=U* 

is a neighbourhood of x*, and since x* = lim x , we have xn  U*• for suffici-   - 

ently large n, say for n > n
o

. Then g*(zn) = x
n 
 if n> n

o
. The function 

g* [t.(t)] is defined in a neighbourhood of t*. It follows from the uniqueness 

of the inverse map g* (z) in the neighbourhood V* that y(t) = g* [!(t)] for all t<t*, 

where both functions are defined. If we put y*(t) = y(t) for 0 < t < t* and 

z*(t) -T- g* [t(t)] , t > .t*, we gel" a continuous function )*(t) satisfying eqn. 
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(3.13) and defined in an interval [0,0C with a> t*. This contradicts the choke 

of t*. 	 • 

Q.E. D. 

The point 4  = y,(1) is the image of the point x1  = f(1) E R. Since 

Yo can be joined to any other point > of R
n 

by a differentiable arc, it 

follows that a map f: Rn
—. Rn 

satisfying both conditions of Theorem 3.2 is — x y 

onto. 

The compactness of the interval [0, 1] implies the existence of a finite 

sequence of real numbers to  = 0< tl< t2
n-1 < t

o  = 1 with the following 

property: if yk  = y(tk), there exists an open neighbourhood Vk  of zk  where the 

inverse map x = gk(z), ak(zk) = 4, of the map f is defined. The arc z.= yi(t), 

tk  t t tk+1 
I  belongs to V

k 
and we have f(t) = 9kPiA for tE 	tk+1] 

and k = 0,1, . n-1. 

Lemma 3.3 

Let x0  6 R
n 

be arbitrary and zo  = f(x ). If the function 	= 	(t,u), - 	x 	 - -0 

o < t, u 	1, whose values are points of R
n
, is of class C(1) and 	(0,0) =zo , 

, 
then there exists a continuous function x = 	0 1,5 t,u <1, Y'(t,u)ER

n 
 such 

that 

	

f [f(t,q = f(t,u), 	9(0',0) = 	 (3.14) 

Proof: According to Lemma 3.2 there exists a unique arc 

x = 0(u), 0 5 u 5 1, D(u)e Rn, 0(0) = x9, whose map by f is the arc 
— — 	 — 	x — 	— 

Zr = 1,1(0,u), 0 '5. u .5.1, in the space Rn. 
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We shall now define the function y(t,u) as follows. The equation 

= '(t,u), 0 < t 	1, represents for a fixed ue CO,1, , an arc of class 

C(1) in Rn. Since f[0(u)] = Y(0,u), there exists a unique arc x = —u  (t) of 

class el), depending upon ut  such that f 	= 	(t,u) and 4.1' (0) = e(u). 

If we put P (t,u) = 	0 5 t,u < 1, then y'(t,u) evidently satisfies eqn. 

(3.14). It must be verified that it is a continuous function of the variables 

t, u. For this purpose take any number 0(E  t0, 1] and write x*= 0 (ae), 

y* = y (0,a) = f(x*). The curve x = 	(t,ce) has the initial point ,f (0,a) 

= 61(0)= x* and is mapped onto z =z(t,ee ). We can now find, as described 

above, a sequence of numbers to = 0< tI ...<t = 1, and a corresponding 

sequence of open balls Vo,Vi,...,Vn_1  of Ryn  such that the arc z. = y(t,a), 

to t tk+1, belongs to Vk , and such that the inverse map x = .g.k(z.) of f 

exists for zEVk . The branch ak(z) is determined by 9k  61k  ) , where >/k  =,(tk ,oe), 

zk  = y(tk,01). Since Vk  is open and ! (t,u) continuous, there exists a die 0 

so that t(t,u) E Vk  for tE 	, uE {IX -di, as+ (kin [0, 1]. Let cr= min( cro, 

cf2 ,..., crn...1 ). If we write .4  (t,u) = 9,  [t(t,u)] for tE [tk  ,tk+.1  j, 

u E [3/ - d, of +cln[0, 1, = S, then the function 	(t,u) is defined and 

continuous on the strip 0 5 t 	u E S. We have 	(0,k) = x*. It follows 

that 	(0,u) = 0(u). y (0,u) for u e S. Since f [4(t,q = f [9(t,u 

we conclude by Lemma 3,2, that ,  (t,u) = i(t,u) in the rectangle 

tE [0, 	, ue S. Hence the function 	(t,u) is continuous there. The number 

ate [0, 1] being arbitrary, y (t,u) is continuous everywhere in the square 

0 	t,u 	1. 	 •, 

Q. E. D. 

Remark:  Since y(t,u) is of class .C(1), it is obvious that Y(t,u) is 
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also of class C(1). 

Let us return to the proof of the theorem. Assume that .a C(1) map 

satisfies conditions (i) and (ii) of Theorem 3.2. Then we already know that f 

is onto Rn. Suppose that x o , x, E Rx are mapped into the same point - 

zoe 	Rn hence f(x o equation x = x + t(x1  ) = f(x,) = zo. The 	 - x o) = 	(t), -- 1 o - - 

0 5 t 1, represents the line segment betwen the points xo  and x1 . The image 

of this segment is the closed curve Y = f [9(0} = •y (t), since t(0) = f().5.0) 

= f(xi) = 	(1). Let 

.f.(t,u) = zo  + 	- u) 	(t) - zo] 	 (3.15) 

By Lemma 3.3 there exists a continuous function y (t,u), 0 5 t, u <1, such 

that f [/(t,u)} = itilt,u) and y) (0,0) = 1(0. For u = 0 we have 	(t,0) = 

Since z = 	(t) is the image of x = 	(t) =1(0  + t(xi  - ?50) and of x = Y(t,0), 

and since )P(0) = )0(0,0) = xo  , we conclude that 

y(t,o) = 	“xi  - x) 	 (3.16) 

Furthermore, y/ (0,u) = zo, so that the arc Y = 1'(0,u) is reduced to the point 

Yo, Since 9(0,0) = x and since the inverse image is uniquely determined by -o 

the initial point, we have 9(0,u) = )10. Hence y(0,1) = Is°. We obtain from 

eqn. (3.15) that 3(t, l) = zo. This implies 9(t,1) = !so. On the other hand, 

we have t(1,u) = zo  from eqn. (3.15), and y(1,a) = xi  from eqn. (3.16). It 

follows that 9(l,u) = xi. 	Now we get yom = ).5.0  from )9  (t,1) = xx 

and y (1,1) = xi  from 9 (1,u) = xi. Hence xi  = ›co. Therefore, the map f 

, has the property that any zoe Rn  is the image of one point x only. We -o 

know already that f is onto Rn. Thus f exists, is everywhere defined, and 

1 as f is a CO) map, the same holds for f . 
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It remains to show that 	x  is bounded. The Jacobian matrix 

3 f 1/a 	(ailax) 1 -1 
I x = f (Zr) (3.17) 

The boundedness off/c)x ensures the boundedness of adj 	fAx, the adjoint 

matrix of ay x, a nd taking into account the inequality (3.3) it follows that 

N 
the Jacobian matrix 0 f /a x  is bounded for all KeRn. This completes the proof 

of Theorem 3.2 

The following corollary concerning the functional inversion of a function 

= f(x,t) where t is an additional scalar parameter has useful applications in 

network analysis. 

Corollary 3.1  

Given a function x = f(x,t) where f, x and 

and f is defined for all )i. ERn+1 . Suppose that 
[t 

(i) f c CO) in x and le C
(0) 

in t 

(ii) Idetayax I> e> 0 for all 1)It  

(iii)a 	 . fpx is bounded for all 11 
t 

are n-vectors, t is a scalar 

- 
Then the inverse function x = f 

1 
 (z,t) = g(,t), defined for 

- 
moreover f 

1 
 is of class C(1) in y.  and it is of class C

(0) 
i 

- 
Jacobian matrix a f 1

/ci 
	

is bounded for all 	. 
t 

Proof: Since the function f(x,t) satisfies the conditions of Theorem 3.2 

all 	, exists; 
t 

t. n addition the 
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for all t, clearly,the inverse function x = f 1((,t) exists for all t, it is of 

• . class C
(1) 

in 	and a r1/,5 = tar is bounded for all t  . It remains 

to show that f 1(„t) is continuous in t. 

We want to show that for every E> 0 there exists a cr> 0 such that 

)1011 	ilk°, to  +.6 t) - a(zo, t0)ilc E 	(3.18a) 

for all points {°1 for which 

1   

{tH t•+,„,t1 o, 

  

< (1- (3.18b) 

  

  

Let f()1,to) = x0  and f()10,t0+6,t) - 	=Az. Then Lo=g(z0+6y, to+6 t). 

Since f(x,t) is continuous in t then for every el> 0 there exists a d.1 > 0 

such that 

z.  II = z - Yo ii = 116i0,t0+4 t) - f(.5.0,t0)11 < ai 	(3.19a) 

for all points [-°] for which 
t 

    

[4 
	Yo 

t +A tl 	t
0 	0 

   

 

<  dl  (3.19b) 

   

   

The difference Ix- x 0J 1 can be recast in the form 
L— — 

x - x
o 
 = g(y,t 

o
+At) - g(z0+4x,t

o
+Llt) --0  

Using the mean-value theorem
14 

for scalar functions of vector variables and 

denoting the i-th component of g by gi  we have 
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A z 

gn/ 	I 

where zi  z2, 	, zn  are points lying on the line segment with endpoints 

zo  and zo  +4z. Applying inequality (3.18a) and taking into account that 

agoz  = (1
/Dz is bounded the following relation is obtained 

A  IA Z•11 < 	- x.o11 < 
(3.20) 

where A is a positive value. Therefore the condition 0x - x
ou  < E implies — 

that 

114z1 < E/A. 

If in eqn. (3.19a) El  is chosen as El  = E/A then by conditions (3.19a) 

and (3.19b) for any l(to 	t) - t o  l< of1  the norm 11441 < el  = E/A and 

by eqn. (3.20) Ix - )401< E . Thus d in eqn. (3.18b) is equal to 	CI  defined 

in eqn. (3.19b). 

Q. E. D. 

3.1.2 	Functions possessing "partial" inverses  

In network analysis it is often desirable to transform a given hybrid 

description of, say, a resistive n-port into another hybrid description with a 

different set of independent variables. When a set of independent variables 

x in z = f(x) is replaced by a set of dependent variables z in the new hybrid 

description it is necessary to perform a functional inversion. Similarly when 
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in the new description only a subset of dependent variables is replaced by 

the corresponding subset of independent variables the necessary operation to 

be performed will be called "partial" functional inversion. We would like 

to find criteria which ensure the existence of a "partial" inverse. The problem 

may be formulated mathematically as follows. 

Given a function L.  v = f(x), partition 

in the following manner, 

)11- 

n-vectors x, Zr and f conformably 

_ fl 
X =  

)12  Z2  
(3.21a) Y. f= 

2 

where x1 ' 1 and f1  are m-vectors, x 	and f2  are (n-m)-vectors. The 

function 	= f(x) can then be written as 

E1 = (L1 'L2)  

X2 = ±2(11''-i2)  

Define n-vectors w and z, 

(3.21b) 

[ Z.1 	. 	'.5...1 
w  = 	 . _ 

L2i 	X2i 

The function z = g(w), 

which may be written as 

1< 1 	a1(E1 

9-2(Z1'L2)  

and whose domain is the entire Rn, is then defined as a "partial" inverse of 

f(x). Sufficient conditions for the existence of a "partial" inverse are given 

(3.22) 

(3.23a) 

(3.23b) 
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in the following theorem. 

Theorem 3.3  

Suppose a function 	= f(x) of class C(1) is written in the form 

f1 ()(1')i2)  

	

K2 = 12(?!1'2i2) 
	 (3.24) 

where xi, z.1  and fl  are m-vectors and x2, z2  and f2  are (n-m)-vectors. Suppose 

that 

(i) I det c7 fi/a xi  ik El> 0 	 (3.25) 

is fulfilled for all x eRn  and 

(ii) the Jacobian matrix a(fi  ,f2)/a (xi  , x2) is bounded. Then — 

(a) the "partial" inverse 

r11 . { al (K1 dL2)  
(3.26) 

	

K2 	2-2(K1')i2)  

	

exists and is of class C(1) in 	and 12; in addition 

(b) the Jacobian matrix a (g1 , g2)/ a (z.1, x2) may be expressed in 

terms of a y1  1' f2)/a (x1  ,x2) as 

[ 

	

-1 	. a fl  	, { 	f 	-1 	f., 	 ., 

B !.1 	71 L1 J 	c-.2 

	

a (91 'g2) 	
, .., 

	

, 	= 

	

a (x4 '!-2) 	 :.) ; 	-1  	-_, ; 	.- ; 	:., ; 	-1  

	

12 	-.1.1 	: a '2 _ ' '2 ' 1 1 	fl 

	

z?i.1 	b x1 	, 2, x-2  Dx1  bxi 	b x — 	1 	— 	 2 

(3.27) 
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Proof 

Part (a) follows from Theorem 3.2. Regarding x2 
 as a parameter 

it is evident that all conditions of Theorem 3.2 are fulfilled for function 

Yl =11 6.54 ,x2). Thus xl  = fl -1 (z1 ,12) exists, is of class C(1) and is defined 

for all w =114Rn. 

Let Xi, X2, Yi  and y2  represent vectors related by linear approxima- 

tion for 	d12) and a(4 	around the points (x1 ,x2) and (4, )12) respecti- 

vely. Then from eqn. (3.21b) and (3.23b) respectively 

     

 

fl 	
c7fl 

).12 

f2 	f2 

?S-1 	)1-2 

   

 

21 

 

 

(3.28a) 

 

—2 

   

    

     

     

2 

; 	agi  

Y —1 

)32 

(3.28b) 
)(2 

d92  

When the set of eqns. (3.28b) is solved for Xi, Y2  in terms of Y1 , X2  the 

result of part (b) follows. 

Q. E. D. 

When x and Yare n-vectors related by Y = f(x), there are 2n  possible 

different selections of independent variables. Theorem 3.3 can easily be extended 

to give conditions Under which any of (2n  -1) different "partial" inverses exist 
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Corollary 3.2  

Given a vector valued function L.  v = f(x), where x E Rn
; Zr e Rn  and 

(1 ) f 	C . Suppose that 

(i) the Jacobian matrix aya x is bounded and 

(ii) for all principal minors of 	yax of order m, 

m = 1,2,..., n 

I det (6.f/c))1)(p)(p)la 	> 0 
	

(3.29) 

where (p) denotes a subset of m rows and columns not deleted from ayax. 

Then all (2n  -1) possible different "partial" inverses of class C
(1) 
 can be 

obtained from f(x). 

3.1.3 Implicit functions 

Frequently the relation between an n-vector x and an m-vector 	is 

given implicitly in the form 

f(x,x) = 0 	 (3.30) 

where f is an n-vector. Let f(x o4-o  ,v ) = 0. The implicit function theorem -- 	— 
15 

yields conditions for the existence of a unique function x = g(>), defined 

locally in a neighbourhood of zo. In the analysis of one-element-kind networks 

the resulting algebraic equations may have the form of eqn. (3.30) where 

the components of Y  are independent sources and the components of x 

are the unknown network element variables. in order to solve such a network 

it is necessary to express x = g(L) where 	is not restricted to a small 

region in Rm. Thus it appears to be fruitful if the conditions for the 

existence of a unique function x = g(z) for all Zr E.  Rm  can be obtained. A 
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direct application of Theorem 3.2 yields the following result. 

Theorem 3.4 

Suppose a function f(x,x) is of class C(1), x and f are n-vectors, 

is an m-vector and f is defined for all x— E Rn+m. Suppose that f(x,D = 0 

and 

0) al/a(2i,z) is bounded and 

(ii) Idet 	x I £ > 0 for all FIE Rn+m. 	(3.31) 

Then there exists a unique function x = g(x) of class C(1) with values in 

Rn  and defined for all Zr E Rm  such that 

f(g( ) ,y) = 0 
	

for all 	E Rm 	 (3.32) 

and moreover 6ilaz.  is bounded for all xERm. 

Proof 

Using Theorem 3.2 the proof can be given along the lines of the proof 

of the implicit function theorem
15

. 

Define the function F(x,x) 

 

f(x,x) .  
= F(x,x) = 

 

z 

w 

 

(3.33) 

   

The Jacobian matrix of F is 

a F 	_ 
'f 	af 

ax 
0 

(3.34) 
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From eqn. (3.34) and the inequality (3.31) 

I det 	F/ a (x,z)1 = Idet kfpxl?.:  E>0 	(3.35) 

and F(x,z) satisfies the first condition of Theorem. 3.2. Since 	f/a(x,z) is 

bounded, the Jacobian matrix of F is bounded. Thus,F(x,z.) satisfies all 

conditions of Theorem 3.2 and hence, F is a globally regular function. There-

fore the inverse of F 

frl 

(3.36) 

exists and is of class C(1)  . 

From the definition of the inverse 

z 
f [(z,w), wi = z 	for all 	e 	(3.37) 

w 
If we now define 

g(z) = 95(0,z) 
	

for all z e Rm 	(3.38) 

then setting z = 0 in eqn. (3.37) and taking into account z = w (eqn. 

(3.33)) we obtain eqn. (3.32). The uniqueness of g(z) follows from the fact 

that 1321  is the inverse of F(x,z). The Jacobian matrix a g/az can be 

obtained from eqn. (3.32) as 

g 	f 

F27 = 

Applying conditions (i) and (ii) to the above expression it is easy to see that 

(afiDx)-1  is bounded and thus )gidz is bounded. 

Q. E. D. 
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We shall state a useful corollary of Theorem 3.4; it yields conditions 

that guarantee the global regularity of the function x = g(D which is the 

solution of implicit equation f(x,y) = 0. 

Corollary 3.3 

Suppose f.()(2 ) = 0 where f, x and x are n-vectors, f e C(1) and it is 

{  1 2n defined for all — E R . Suppose a v a (x ,z) is bounded, Idet a VD x12:61 > 0 

and . I det kfiD xl>E 2  > 0. Then there exists a globally regular function 

x = g(Y) such that 

f(g(D,D = 0 
	

for all Y  E Rn. 	 (3.39) 

Proof: In order to prove the global regularity of g(D then using 

Theorem 3.2 it is necessary to show that 8g/a Y  is bounded and that 

eo> 0 exists such that I det a 	eo. From eqn. (3.39) 

ea z = -( aya x)-' a f/@ z 	 (3.40) 

Since ay a (x ,x) is bounded, I det 3f/a xi> 1  > 0, it follows that 

(al/8 x)-1  is bounded and it is clear from eqn. (3.40) that a g/az.  is 

bounded. Similarly, the boundedness of a f/3 x implies the existence of a — — 

value M1 > 0 such that  det (8 f/0 x)-1 I?. M1 . Therefore I det a g/a 	= 

= idet(8 f/D x)-11 J det 8 	1 E 2  and 60  ?; M1  E 2. 

Q. E. D. 

3.2 	SOME CLASSES OF GLOBALLY REGULAR FUNCTIONS 

In this section we shall study some classes of globally regular functions 
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that occur frequently in network problems. When the Jacobian matrix associated 

with a given function is bounded Theorem 3.2 may be applied. A subclass of 

globally regular functions containing functions with unbounded Jacobian matrices 

will be mentioned as well. Before proceeding further three useful definitions 

will be stated. The terminology introduced by Minty16 
will be used in Defini-

tion 3.2. 

Definition 3.2  

	

A function f: 	Rn  is called monotonic provided, for any x1 ,x2e Rn, , 

we have 

	

f(x2) 	f(x1 )] T  [x2 	0. 	 (3.41a) 

If 
	

[ f(12) 	f(x1 )1 T  [x2 -> 0 	 (3.41b) 

f is  strictly monotonic.  

If f(x2) 	f(x1 )) T x  - —2 

with u>0, f is strongly monotonic.  

-).54  i
l
l 2 	x2  (3.41c) 

Let us now extend the definition of a uniformly positive definite matrix
2 

to the nonsymmetric case. 

Definition 3.3* 

A square n x n matrix A(x) is said to be uniformly positive definite 

The same definition appeared in Ref. 17. 
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(u.p.d.) in x if there exists a 1tk>0  such that 

z
T 

[A(x) - 	z > 0 	z 0 
	

(3.42) 

for all x and ft does not depend upon x. 

Definition 3.43 

A square n x n matrix A (x) is said to be uniformly Hadamard  (u. H.) 

in x if it is continuous and bounded and if there exists a itk>0 such that 
n 

a.. -Efa.I.1>tt 	for all x and all i 	(3.43) I, 
1=1  
1#i 

Lemma 3.4 

Suppose A(x) is u. p. d. Then 

det A >Ian. > 0 
	

for all x 	 (3.44) 

Proof
9
: Let 

B = [A(x) - 	I] 

The determinant det A can be written in the form 

det A = det [ ltt I+ BJ = det [Ltd] [clef I+ (itt-1 1)13] (3.45) 

Using the diagonal expansion of a matrix18 
and taking into account that B 

is positive definite 

det [ 1 + (i-1  1)B1 > 1. 	 (3.46) 

The inequality (3.44) follows from eqns. (3.45) and (3.46). 

Q. E.' D. 
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Lemma 3.5 

Suppose A(x) is a u. H. matrix. Then 

det Al >tIn  > 0 
	

for all x 
	

(3.47) 

Proof: Using Gresgorin's theorem
13 

it follows from eqn. (3.47) that any 

eigenvalue A. of A is bounded away from zero, 

i= 1 , 2, • • • , (3.48) 

Since 1 det Al= 	, I det A >iv.n > 0. 

Q. E. D. 

Lemma 3.6 

A necessary and sufficient condition for a function f(x) E C(1)  to lie 

strongly monotonic is that the Jacobian matrix 3ilax off is u.p.d. 

Proof of sufficiency: 
	

Consider a one-dimensional arc x(e), 

0 < e 1, given by 

x(0  = xi + (x2 -x1)8 	
(3.49) 

Then 

ax//G= (x2  -xi) 
	

(3.50) 

and 
	

612 	"r[ f(I2)-f(x1 )1=  

= (x2 - L1)1-  fax  (x2 - x  Ode >112 1(-111 2  
0=0 — 

x =x (0) 

 

where the last inequality follows from the fact that 21/3x is u. p.. d. 
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Thus f is strongly monotonic*. 

Proof of necessity: From the definition of a strongly monotonic 

function 

((2 	)!1 
)T 

[±(12) 	-f-(S1 )1 >la  11 )12 )-(-1111
2 	(3.51) 

Let X = x 2 	and 11).5_2  - 	0. Then from eqn. (3.51) 

XT Df./3x X>rXT
X 

and thus of cox has to be u. p. d. 

Q. E. D. 

The first result will be concerned with strongly monotonic functions 

of class C(1). 

3.2.1 	Class of strongly monotonic functions  

Theorem 3.5** 

Suppose a function f: Rn—w R
n 

is a strongly monotonic function of 

class C(1). Then f is a globally regular function. 

Proof , 

By Lemma 3.6 a strongly monotonic function has a u. p. d. Jacobian 

* Similarly for f(x)e C(1) positive definiteness of of/Ox for all x ensures strict 
m.• •••• 

monotonicity off and positive semidefiniteness of of/ax implies monotonicity. 

** 
The.same result appeared in Ref. 17 
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matrix Oyax. According to Lemma 3.4 det aya x (an  > 0 and the first 

condition in Patois' theorem is fulfilled. 

Applying the Schwartz inequality to the criterion for strong monoto-

nicity (eqn. (3.41 c)) yields 

II f(x2) -t(1(-1 )11>td11 X2 -X111 

Let x1  = const. and x2 x. = Then 11x11,00 

(3.52) 

in eqn. (3.52) implies 11 f(x)11-froo 

and the second condition in Patois' theorem is fulfilled. Hence f is a globally 

regular function. 

Note that in Theorem 3.5 there is no requirement for aybx to be 

bounded. Since by Lemma 3.6 strong monotonicity is equivalent to a u. p. d. 

Jacobian matrix 	a function f(x) where f E C(1) and its Jacobian 

matrix is u. p. d. is a globally regular function. 

The inverse f
-1

(D of a strongly monotonic function f(x) of class C(1) 
UNIM •••• 

is a strictly monotonic function of class C(1). Namely, u. p. d. Dfja x 

implies that 3 f/x is positive definite and therefore (;f/Dx)--1  = 3f 1/a  x 

is positive definite. However, the function f
1
(z) is not necessarily strongly 

monotonic or equivalently its Jacobian matrix is not necessarily u. p. d. This 

can be demonstrated by the following one-dimensional example. 

Let y = f(x) be defined in the following manner: 

y = x 1 	x < 0 

y = ex 	x > 0 
	 (3.53) 

As the derivative dy/dx is continuous)at x = 0 this function is of class C(1) 

and furthermore it is evident that df/dx is u. p. d. The inverse function 



x = f
1
(y) is from eqn. (3.53) 

x = y - 1 	Y < 1  

113 

(3.54) 
x= In y 	Y > 1  • 

Since dx/dy = 1/y, y > 1 and dx/dy 	0 as y-woo, the Jacobian matrix 

of f 	is not u.p.d. and f-1(y) is strictly monotonic only. The function 

given in eqn. (3.53) is a counterexample19 
for the second part of Theorem 

3 in Ref. 17. In order to ensure a strongly monotonic inverse of a strongly 

monotonic function of class C(1) an additional restriction has to be placed 

upon f. Strongly monotonic functions possessing strongly monotonic inverse 

will be termed generalized quasilinear functions. 

3.2.2 	Generalized quasilinear functions  

Definition 3.5 

A strongly monotonic function f(x): R 	Rn, where f 6 C(1) , will 

be said to be a generalized quasilinear function (GQLF) if its Jacobian 

matrix is bounded for all x. Equivalently a GQLF is a function of class C(1) 

and has a u. p. d. and bounded Jacobian matrix. 

GQLFs are an extention of quasilinear functions
2
. If a GQLF 

f(x) has a symmetric Jacobian matrix for all x, it is a quasilinear function. 

GQLFs that serve as a basis for the definition of positive definite network 

elements, to be introduced in next chapter, have the following properties: 

Property 1  

The sum of two GQLFs is a GQLF. 
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Proof The proof given in Ref. 3, p. 576 for the sum of two 

quasilinear functions is applicable. 

Property 2  

If f(x) is a GQLF and given function g(v) = ATf(Av + b) where f, x 

and b are n-vectors, v is an m-vector (m 5_ n) and A is a constant n x m matrix 

of rank m, then g is a GQLF. 

Proof The proof given in Ref. 3, pp. 576-577 for an equivalent 

property of quasilinear functions is appropriate. 

Note that GQLFs have all the properties3 of quasilinear functions 

except that a state function3  associated with a GQLF may not exist if a GQLF 

has a nonsymmetric Jacobian matrix. However, the following property of GQLFs 

does not hold for quasilinear functions. 

Property 3  

Suppose a function f: Rn-÷ Rn  is a GQLF. Write f in the form 

Z-1 = .11 (x1 '12) 
	

(3.55) 

= 12(x-1 '12)  

where x and are partitioned arbitrarily but conformably and N, Xlare 

m-vectors and x2, x2  are (n-m)-vectors, m = 1, 2, ..., n . Then a "partial" 

inverse g(4 ,x2), written in component form 

al (X1 . (3.56) 

[Y2 	92(X1 

exists and moreover g(4 ,?5,2) is a GQLF. Consequently, all (2n  - 1) different 
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"partial" inverses of a GQLF f exist and are themselves GQLFs. 

Proof: 	The existence of a "partial" inverse g(4,)12) follows from 

the fact that f has a u. p. d. and bounded Jacobian matrix @13x. Any 

principal submatrix of order m (m = 1,2... , n) of &f/Dx is itself u.p.d. and 

its determinant has by Lemma 3.4 a lower bound /A m  > 0. Therefore all condi- 

tions of Corollary 3.2 are fulfilled and g(zi,x2) exists. 	
f 

To prove that g(z..1 ,?i2) is a GQLF we have to show that a lug > 0 

[ t`21111 is positive definite for all Zi e  Rn . 
x2  

, Y2  represent vectors related by linear approximation for' f(x) 

exists such that [ 3.91%.1 ,?12) - 

Let Xi, X2, —Y1 

or 9(x1,12) 
[xi- 

around points 
)12.  

and Then from eqn. (3.55) and (3.56) 

     

1 

 

Z( f1  f2)" 	) 
X4  

X2 

(3.57) 

2. 

  

   

  

X 

	

1 	 —1 
Z(91 ,92)/ (z.1  d12) 

X 

	

—2 	 —2- 

(3.58) 

 

 

As Z_Vax is u. p. d. it follows from eqn. (3.57) 

    

T 

    

        

       

  

Y —1 X1  

X2  
for 3.59) X2 

 

Y2 

 

       

       

       

        

The scalar product on the left of eqn. (3.59) can be recast in the form 



Dal  gl (3.62) D = 

[_ Yll 
T
r, 

T X 	X1  

X2 	

1 

X 	X 2 	 2_ 
> 
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. (3.60) 
X 	Y —2 —2 

Substituting eqn. (3.58) into eqn. (3.60) 

T zz. y  + a_1.9_, x  
T 

1 

Y  [Dal 4.z 

 
D91 

3(9-11-g2 )   -1  > -fi-  ‘-(1 	)-T -X2 
X2 (Z-1'12)  X22 	X 

{ 

2 	e. .• 	
X 

.g_, -1 
	z x 	—2 

2 —2  

(3.61) 

The r. h. s. of eqn. (3.61) may be written as a quadratic form 
T 1

—X11 
DTD 	where 

Y2 	 YX121 

(u- 

From Theorem 3.3 (eqn. (3.27)) 

agi fl  -1 

f, -1 
a_t1  g, 

x2  xi  x• 

The boundedness of 'a fi/axi  implies the existence of a lower bound Ei  > 0 

such that det D >E./ . Since f is a GQLF, the matrix D as well as .9./a(z.1 ,x2) 

is bounded. Thus an e 2 > 0 exists such that for Amin, the smallest eigenvalue 

and 



• of the positive definite matrix DT D, 

Amin 
	£2 > 0 

and using the result in Ref. 12. 

117 

T 

DTD 
{y 

 T v  
?Si > E   
y 	2 Y

1 	
Y1 for all [ 

—2 	{ 21 { 2 

X 

Y2 +2 

(3.63) 

—2 

  

Combining eqns. (3.61), (3.62) and -(3.63)' it follows that [ail 'a (z./  ,x2) 
	

P21] 
is positive definite and .t42 	tv.e2. 

Q. E. D. 

3.2.3 	Functions with uniformly Hadamard Jacobian matrices  

The next result is concerned with functions f: R
n

—iP R
n 

where 

of/ax is u. H. It is shown in Ref. 3 that the equation f(x) = 0 has a unique 

solution when .f16x is u. H. In fact Y= f(x) is a globally regular function 

under this condition. 

Theorem 3.6 

Suppose the Jacobian matrix DS/3x (or its transpose) of a function 

f: Rn--+Rn  is u. H. Then f is globally regular. 

Proof 

Since of/fix is u. H., it is bounded, f E C(1) and by Lemma 3.5 

I det a _va x > tun > 0. Hence all conditions of Theorem 3.2 are fulfilled and 

therefore f is globally regular. 

Q. E. D. 
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Some properties of functions with u. H. Jacobian matrices are listed 

below. 

Property 1  

Suppose that functions f1: Rn -.-Rn  and f2: Rn, Rn  have u. H. Jacobian 

matrices. Then the function f = f1  + f2  is a globally regular function. — — 

Proof: Since the sum of two u. H. matrices is itself u. H., the 

Jacobian matrix off is u. H. and Property 1 follows. 

Q. E. D. 

Property 2  

Suppose a function f: Rnn has a u. H. Jacobian matrix. Then 

all posible (2n  -1) different "partial" inverses of class C
(1) 

exist. 

Proof: For a u. H. matrix all principal submatrices are themselves 

u. H. and thus by Lemma 3.5 all principal minors of a f/a x have a positive 

lower bound. Therefore all conditions of Corollary 3.2 are satisfied and Property 

2 follows. 

Q. E. D. 

Property 3  

Suppose the Jacobian matrix 213x and its transpose [kfla x T  of 

a function 1: Rn-0 Rn  are both u. H. Then f is a GQLF. 
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Proof: If ayax and RD), T  are both u. H. then .Df/ax is 

u. p. d. and bounded. Namely, the quadratic form of aiox is equal to 

the quadratic form of its symmetric part, 	e. 

zT x z = 2'T  [a/ax + ( Vax)1.1 z. 

The matrix [a va x 	( vb x)T] is u. H. and the matrix P 

P =pf/ax + (af/ax)T  - E I] is u. H. for some e' 0. 

Hence by Lemma 3.5 all principal minors of P are positive, therefore P is 

positive definite and .Z.flax is u. p. d. 

Q. E. D. 

A special case of Property 3 are functions with u. H. and symmetric 

Jacobian matrices. These functions belong to the class of quasilinear functions. 

3.2.4 	Two other classes of globally regular functions  

In this section two special classes of functions that appear frequently 

in the analysis of one-element-kind networks will be treated. Our interest is 

to find sufficient conditions that ensure global regularity of these functions. In 

order to discuss these conditions the following lemma and definition will be 

introduced first. 

Lemma 3.7 

Let.  Q and R be two n x n real constant positive semidefinite (not 

necessarily symmetric) matrices. Then 

det { I + QR 	1 



if (a) R is positive definite (not necessarily symmetric) or 

(b) R is symmetric positive semidefinite. 

Proof: If R is positive definite we can write 

det [ I+ QR J= det [ R -1  + Q J  det R 

The matrix [R-1  + Q] is positive definite. From the inequality
20 

that relates 

the determinant of a positive definite nonsymmetric matrix to the determinant of 

its symmetric part it follows that 

det {R-1  + Q > det [(R-1)s  + Qs 

and 	det R > det Rs 

where subscript s denotes the symmetric part of a matrix. Hence 

det [1 + QR 	> det [ I  + Qs(R-1)s  ?, 1 

The last inequality follows from Assertion 2 in the Appendix of Ref. 5. 

Let R be symmetric. Since every real symmetric matrix R is orthogonally 

similar to a diagonal matrix
21 

(whose diagonal elements are necessarily the cha- 

racteristic roots of R), R may be written in the form R = PA P
T, where A is 

a positive semidefinite diagonal matrix and PP
T 

= 1. Therefore 

det 	[ 1 + QR = det [1 + QPA.P
T 
 ] = det [1 + P

T 
 QPA

1  

The matrix PTQP is positive semidefinite and applying Assertion 1 of the Appendix 

of Ref. 5 yields: det [ 1 + QR > 1. 

Q. E. D. 

120 
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Definition 3.6
22 

Let A be a real constant square matrix. A belongs to the class of  

matrices denoted by P if all principal minors of A are positive. 

If all principal minors of A are nonnegative, A belongs to the class 

of matrices denoted by Po. 

Among other matrices the class P contains positive definite and row 

(or columns)dominant matrices. The class P
o 

contains positive semidefinite 

matrices. 

The first function z = f(x) to be considered in this section is of the 
01 

form 

Li 

[X2 

II 0 

-FT 	0 

-g(xi) 

h(x ) 2 

(3.64) 

where x1, z.  and g are rri-vectors, x2, z2  and h are (n-m)-vectors and F 

is a constant m x (n-m) matrix. This function has the form of eqn. (2.41) 

appearing in mixed analysis of one-element-kind networks and has been 

studied by Varayia and Liu5. Sufficient conditions for f, defined by eqn.(3.64), 

to be a globally regular function may be stated as follows. 

Theorem 3.7  

If the functions g and h satisfy conditions Cl and C2 or they satisfy 

conditions Cl and C3, then f defined by eqn. (3.64) is a globally regular 

function. 

(C1) 	g and h are of class C(1) and the Jacobian matrices 

G(x1 ) = aeaxi  and H(x2) = 	h/Ox2  are positive 
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semidefinite and bounded for all x1  and x2  respectively. 

(C2) Either G(x1 ) is a positive definite matrix (not necessarily 

symmetric) for all xl  or H(x2) is a positive definite matrix 

(not necessarily symmetric) for all x2. 

(C3) Either G(x1 ) is symmetric for all x1  or H(x2) is symmetric 

for all L2. 

Proof 	• 

The Jacobian matrix of f (eqn. (3.64)) 

1 	FH(x2) 
al ax 

-FTG(xi) 	I 
(3.65) 

 

is bounded as G and H are bounded. Applying Theorem 3.2 it is necessary to 

show that the inequality (3.3) is fulfilled. 

Using Lemma 15 of Ref. 23 

det 
	

f/3 x = det [1 + FH(x2)FTG(x1 ) 

 

(3.66) 
= det 11 + FTG(x1 )FH(x2) 

  

Since the matrices FH(x2) FT and FTG(x1  )F are positive semidefinite, a 

direct application of Lemma 3.7 to eqn. (3.66) shows that det [zi/ax ]?. 

if the conditions (C1) and (C2) or (C1) and (C3) are satisfied. 

Q. E. D. 

Note. 	The condition (C1) only is not sufficient for f (eqn. (3.64)) 

to be globally.  regular. When both G and H are positive semidefinite and 

nonsymmetric, det aila x is not necessarily different from zero. This may be 
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demonstrated by the following example. Let 

1 
2 

   

   

-1 

 

0 	-1 

    

G(x 1 ) = 	 H(x2 ) =
1 
 p F = I. 

0 	 1 

Then det 	x = det [ I + GH = 0 

Varayia and Liu
5 
 gave sufficient conditions for f, defined by eqn. 

(3.64), to be globally regular. The conditions on G(x1) and H(x2) were more 

stringent than C2 and C3 but boundedness of G and H was not required. 

However, their proof is not very convincing*. 

The second function that has received considerable attention
24-26 

is 

of the form 

= f(x) = Ax + g(x) 	 (3.67) 

where A is a constant n x n matrix, g: Rn R
n 

and the Jacobian matrix a g/a x 

is diagonal for all x. Eqn. (3.67) describes, say, a linear resistive n-port with con- _ 

ductance matrix A where two-terminal resistive voltage controlled elements are 

connected in parallel to each port. Eqn. (3.67) plays a central role in the dc 

analysis of transistor networks
25 when the hybrid description of the transistor has 

the form 

-0C12 

1 

gi  (vi  ) 

92(v2)  

(3.68) 

* At one point they state in the proof of Theorem 1.1 (in our notation): 

det aya x .1 implies that II f(x) - 	
• 

The counterexample 

given in Section 3.1.1 shows that this conjecture is generally not correct. 

However, it was not shown in Ref. 5, that this is correct in the specific 

case of function eqn. (3.64). 
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In eqn. (3.68) 11 and i2 are the port currents, v
1 

and v2 are the port voltages; 

it is assumed, as is the case for the usual large signal model of a physical transistor, 

that 0 < "412 < 1, 	<°‘21 < 1, and that both of the functions g1  and g-2  are 

continuous and monotonic. The equivalent circuit of a transistor described by the 

hybrid description (3.68) is shown in Fig. 3.1. The conditions for global regula-

rity of the function / = Ax + g(x) are given in the following theorem. 

Theorem 3.8  

If f(x) defined by eqn. (3.67) satisfies condition (C1) or (C2), then f is 

globally regular. 

(C1) A is a matrix of class P and Deax is continuous, bounded and 

diagonal positive semidefinite matrix. 

(C2) A is a matrix of class Po 
and a 9/ax is continuous, bounded and 

diagonal u. p. d. matrix. 

Proof 

From eqn. (3.67) 

det kf/3 x = det A + a gja x 
	3.69) 

Suppose that condition (C1) is satisfied. Since A E  P, a g/a x is diagonal 

positive semidefinite, the diagonal expansion
18  of det @I/0x yields finally: 

det 	> det A > 0. Hence by Theorem 3.2, f is globally regular. 

Let condition (C2) be fulfilled. Since A E Po, a ea x is diagonal 

and u. p. d., i. e. 	- Icy. I 	is positive definite, it follows that 

det 	x 	(u.n  > 0 
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and f is globally regular. 

• Q. E. D. 

In Ref. 25 the uniqueness of solution of eqn. (3.67) was considered 

under less stringent conditions where the boundedness ofg/bx was not 

required. However, Theorem 3 in Ref. 25 does not guarantee that f is a 

globally regular function. 

The classes of functions, treated in Section 3.2, embrace the most 

important functions occuring in dc analysis of nonlinear networks for which the 

existence and uniqueness of solution can be guaranteed. There is another point 

-that is worth mentioning. Global regularity of different classes of functions, 

that were treated before each by a different method, has been established in 

a rather simple and unified manner, employing both conditions of Theorem 3.2. 

3.3 	SIMULATION OF ALGEBRAIC EQUATIONS BY DIFFERENTIAL 

EQUATIONS 

Once it is established that a given function x = f(x) is globally 

regular a question arises how to calculate its inverse. It is not our purpose to 

consider the problem of finding algorithms to compute inverses of globally regular 

functions in too much detail. The aims of this section will be to show that many 

existing algorithms are based on or may be deduced from an appropriate diffe-

rential equation 
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= F(x, z) 	 (3.70) 

associated with a given function z = f(x). Differential eqn. (3.70) has the 

property that .for a given z.  its singular point x = x• is the solution of the 
—o 

equation z.= f(x) and hence the problem of computing th.e inverse f
1
(z) is 

transformed to the problem of finding a singular point of eqn. (3.70). Even 

when F= 0 admits one solution only for any E 	R
n
, there is no 

guarantee that travelling along the trajectory defined by eqn. (3.70) the singular 

point will be reached. Namely, the singular point x may be unstable or 
—o 

differential eqn. (3.70) may have a limit cycle. It is therefore important to 

search for functions E(I,z), associated with a given function Zr = f(x), such that 

differential eqn. (3.70) represents a globally asymptotically stable3'5  differential 

equation. The necessary criterion for global aymptotic stability of a given diffe-

rential equation is given in Ref. 27 (see also Theorem 8.5 of Ref. 3). 

There are two globally asymptotically stable differential equations that 

can be associated with any globally regular function z = f(x) and they are given 

in the form of the next two theorems. 

Theorem 3.9 

Differential equation 

= --( f/@x)T  [ f(x) - x 	 (3.71) 

where f: 	R
n is a globally regular function, is a globally asymptotically 

stable differential equation and for given E its singular point corresponds to 

the solution of equation z.= f(x). 



Proof3  

Since f is globally regular, by Poloist theorem: 

ikoo and (ii) det c7 Vax 4 . 

Choosing Liapunov function W 
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as 

we have 

w = [f(x) (3.72) 

[ f(x) 	x ].11.  „3Fia x  W = 2 	 = 

= -2 { f(x) -Y,T  Zf/x ( Wax)1*  1f(x) - ]. 

By condition (1) W-4-0,3 as 111d--oo . By condition (ii) W must be negative 

except at a singular point. Hence the conditions for global asymptotic stability27  

are fulfilled and all trajectories approach a singular point of the differential eqn. 

(3.71). But by condition (ii) a singular point must be a solution of the equation 

= f(x). 

Q. E. D. 

Theorem 3.10  

Differential equation 

= 	x)-1  [ f(x) - 

 

(3.73) 

 

where f: Rn. Rn is a globally regular function with bounded Jacobian matrix, is 

a globally asymptotically stable differential equation and for a given z.  its singular 

point corresponds to the solution of equation z.  = f(x). 

Proof 

Let Liapunov function W be the same as in the proof of Theorem 3.9 
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(eqn. (3.72)). Then from eqn. (3.73). 

W = -2 { f(x) - 	[f(x) z] = - 2 W. 

W is negative everywhere except at a singular point. As in the proof of Theorem 

3.9 W-4- 00 as Ilx11--.00. Thus all conditions for global asymptotic stability 
 

f 

are fulfilled and differential eqn. (3.73) is globally asymptotically stable. Since 

f is globally regular and iJ f/3 x is bounded it follows that ( f/3 x)-1  is 

nonsingular and a singular point of eqn. (3.73) must be the solution of the 

equation z = f(x). 

Q. E. D 

Simpler differential equations, leading to the solution of algebraic 

equations, may be found for specific globally regular functions. The following 

theorem is valid for strongly monotonic functions of class C(1). 

Theorem 3.11 

Differential equation 

= - [ f(x) -Y 1 	 (3.74) 

where f: 	re is a strongly monotonic function of class C(1), is globally 

asymptotically stable and for given z its singular point corresponds to the 

solution of equation z = f(x). 

Proof3 

Since f is strongly monotonic, of/cox is u. p. d. Choosing 

L iapunov function W = 	f(x) - z ji*  [f(x) - xi the proof is straightforward. 

Q. E. D. 
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Application of Eulers'method to differential eqn. (3.74) gives • 

.4+1 = xlc - h  {-t(4)  Z-] 	
(3.75) 

and the singular point of eqn. (3.74) which is the solution of the equation 

v = f(x) is given as _- 

x = lim xk  
k-000 (3.76) 

Eqn. (3.75) is identical to the algorithm3  proposed for the computation of the 

inverse of a quasilinear function. Note, that the algorithm given in eqn. (3.75) 

is appropriate for calculation of the inverse of GQLFs. When Sandberg's Theorem 

1 in Ref. 28 is applied to functions f: 	Rn 
an interesting relation can be 

found between the iteration process, described in his theorem, and the algorithm 

of eqn. (3.75). It is shown in28  that for a strongly monotonic function x=f(x), 

satisfying eqn. (3.41) by definittion, and in addition possessing the property 

f((2) 	11 2 
	C1112 -

x l U 
2 

 

 

(3.77) 

 

for any xl, x2  6 R
n 

a unique inverse function exists and it may be calculated 

1(4  
by the algorithm of eqn. (3.75), which is convergent for step size 

The inequality (3.77) represents the Lipschitz condition. It is interesting 

to note that GQLFs satisfy the inequality (3.77). Namely, GQLFs have bounded 

Jacobian matrices and thus fulfil the condition (3.4). Let xl, x2 6  Rn  and 

consider one-dimensional arc defined by eqn. (3.49). Then 

1 
- fi(x1 )1 =j 

cox 
 
1  zf T 

 

P-2 - 	I dO < 

x - x -2 	 1 dr3 

Applying the condition (3.4) 



 

<Mn1 /2  
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fi(>i2 ) 	fr(ls.1 )1 

  

x x 2 	 1 

 

    

    

    

• 
and finally 

Il f(x2. 	1(11 ) 	Mn >12 

 

 

(3.78) 

   

Comparing eqns. (3.77) and (3.78) gives E = Mn. Thus the algorithm of eqn. 

(3.75) is convergent for a GQLF when h S1-4/Mn. 

Generally different methods of numerical integration are expected to 

be convergent when (i) a differential equation associated with a given algebraic 

equation is globally asymptotically stable,. (ii) it satisfies the Lipschitz condition, 

which guarantees the uniqueness of solution and (iii) step size h is small enough. 

Thus, globally asymptotically stable differential equations may be used to generate 

a large number of algorithms just by choosing different methods of numerical 

integration. Further discussion about this problem would exceed the scope of 

this thesis. 

There is another point that is worth mentioning. When the Euler 

method is applied to differential eqn. (3.73) we have 

-1 
f 

4+1 = 4 - TY;Ti 

  

---k 
x= x k 

(3.79) 

   

It is interesting to observe that by setting h = 1, eqn. (3.79) represents the 

Newton-Raphson formula for computing the solution of algebraic equation L=f(x). 

The step size in the Newton-Raphson method can be too large for some globally 

regular functions; thus, the iteration process will not always be convergent. 

However, the reduction of the step size may result in a convergent procedure. 



3.4 	SUMMARY 

This chapter presents the necessary mathematical background of the 

thesis. In order to study the properties of one-element-kind and RLC networks 

the problem of functional inversion of vector-valued functions has been treated. 

Theorem 3.2, giving a new criterion for global regularity of functions, has been 

derived. The globally regular property of certain classes of vector-valued 

functions, corresponding either to hybrid descriptions of network elements or 

to dc equations of nonlinear networks, has been established on the basis of 

Theorem 3.2 rather than using a different approach for each separate class as 

was done previously. Hence, it has been demonstrated that this theorem has 

useful applications in the field of nonlinear networks. However, being very 

general, it may succesfully be used in solving other problems where the 

existence and uniqueness of solutions for a set of algebraic equations is in 

question. 

The question of the existence of "partial" inverses of vector-valued 

functions, related to the transformations of one hybrid descriptions to another, 

has been examined. The conditions ensuring the existence of a unique solution 

of a set of implicit equations, which may correspond to the governing equation 

of an one-element-kind network, have been given in Theorem 3.4. Some other 

results, related to Theorem 3.2 and useful in the subsequent treatment, have 

been stated. 

Finally, it has been demonstated that certain existing algorithms fo.r 
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computing the inverse of a globally regular function can be considered as a 

numerical method for solving a differential equation which is associated with 

a given function; the question of convergence of an algorithm for computing 

the inverse is related to the properties of such a differential equation. A glo-

bally asymptotically stable differential equation has been found where the 

Euler method gives the Newton-Raphson formula. 

The results of Chapter , 3 will be used throughout the rest of this thesis. 

In order to study the properties of RLC networks containing locally active 

elements, the concept of positive network elements will be introduced in the 

next chapter; properties of positive network elements and certain interesting 

subclasses of positive network elements will be examined. 
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Chapter 4 

POSITIVE NETWORK ELEMENTS  

When, say, resistive networks are analysed it is significant that the 

resulting equations may be written in one of the forms, described in 

Section 2.3, where the number of equations is much smaller than for the basic 

set of 2 (b + b€ ) equations. Suppose, as an example, that loop analysis is 

desirable. If a resistive element N
R in a network is described by a hybrid 

description h
R  (x) where the independent variable is not the current vector, it — — 

is necessary to transform a given hybrid description h
—R 

 (x) into another hybrid 

description hR— (I) with the current vector as the independent variable; this can 

be done only if the resistive element is current-controlled. When N
R 

is nonli-

near, in general h
R  (i) cannot be expressed explicitly in terms of h

R 
 (x), but it 

is still important to know whether hR— (i) exists or not if for example, numerical 

method is used to calculate h
—R  (i) for a given value of x. Since h (i) is gene-

rally a "partial" inverse of h
R  (x), criteria given in Section 3.1.2 may be — — 

applied to establish the existence of a unique 12R(i) in every particular case. 

Nevertheless, it may happen that for a given network it is impossible to perform 

either loop or nodal or mixed analysis. It is therefore useful to delineate a 

class of network elements that possess all hybrid descriptions and thus either of 

the three analyses may be carried out for a network consisting solely of these 

137 
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elements. A set of network elements possessing the above mentioned property 

will be termed as positive network elements
1
. 

As will be shown later, positive network elements are a very general 

class of network elements and they embrace many locally active as well as lo-

cally passive network elements. Many practical nonlinear devices such as 

transistors, vacuum tubes and some other locally active devices may be modelled 

as positive network elements. There is another significant point that is worth 

mentioning; by introducing positive network elements we shall be able to analy-

se a large class of one-element-kind and RLC networks containing locally active 

elements. 

In this chapter positive network elements will be defined and their 

properties will be studied and then some important subclasses of positive network 

elements, having certain special properties, will be discussed. Series-parallel 

interconnections of positive network elements and some other network elements 

together with the existence of a unique solution of one-element-kind networks, 

containing positive network elements, will be investigated in the next chapter. 

4.1 	POSITIVE NETWORK ELEMENTS AND THEIR PROPERTIES1  

Before stating a formal definition of a positive network element we need 

the following definition, representing a generalization of matrices of class P. (See 

Definition 3.6). 

Definition 4.1 
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Let A(x) be a real n x n matrix, depending upon the vector variable 

x E R
k
. Denote an arbitrary principal minor of A(x) by det A(X)(1

3)
, 
 ,(P) 

, where 

(p) denotes a set of m rows and columns not deleted from A(x) and m = 

1,2,..., n. Then, A(x) belongs to the class of matrices denoted by UP if 

there exists an €> 0, independent of x, such that for all principal minors of 

A(x) 

det 
A(x)(p)(p)  e

m
> 0 	for all x e Rk 

— 

Among other matrices the class of u.p.d. matrices belongs to the class 

of UP matrices. Since any principal submatrix of a u.p.d. matrix is itself u.p.d., 

then by Lemma 3.4 for any principal minor of order m, m = 1,2 ..., n 

det A(x)
(p)(p) 

> 	> 0 	 (4.2) 

and eqn. (4.1) is satisfied. A similar reasoning shows that u. H. matrices are 

a subclass of UP matrices. 

Definition 4.2 

A resistive (or capacitive or inductive) n-port 	n+1)-terminal network 

element, possessing a hybrid description 

h(x) 

is defined to be positive network element (PNE) if 

(i) the hybrid matrix H = 3h/ax is bounded for all x e Rn  and 

(ii) H belongs to the class of UP matrices. 

Note that in the definition of a PNE there is no requirement for local 

passivity since matrices of class UP are not necessarily positive semidefinite. The 

(4.1) 
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boundedness of the hybrid matrix H is not a severe restriction; namely, when 

h(x) is a hybrid description, it is of class C(1) and H is bounded everywhere except 

possibly for 11 x j1..00 . Thus the condition (i) in the definition of a PNE is concer-

ned only with the behaviour of H at II x 11+00, where the characterization of a 

network element has no physical significance. Therefore many practical network 

elements may be modelled as PNEs as will be demonstrated in Section 4.2. 

PNEs have many interesting properties that are listed below. 

Property 1  

All possible hybrid descriptions of an n-port (or (n+1)-terminal) PNE 

exist. 

Proof: 	Property 1 follows from the definition of a PNE and Corollary 

3.2. 

Q. E. D. 

The following two lemmas will be useful in the proof of Property 2. 

Lemma 4.1
2 

Suppose that A is an (n+m) x (n+m) matrix 

P 	Q 
A= 

R 	S 

where P is n x n and nonsingular, Q is n x m, R is m x n and S is 

m x m and nonsingular. Then 
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P 	Q 
det A = det 

R 	S 
= det P det [S - 	 Q]  

= det S det [ P - QS-TR] (4.3) 

 

Proof: Since P and S are nonsingular A can be rewritten in the form 

    

P QS -1 -1 

mm 

   

       

       

A 
P 	0 

0 	I mm 

 

Inn 

R 

 

Inn 0 

0 	S 
(4.4) 

      

        

        

Applying Lemma 15 of Ref. 3 to eqn. (4.4) yields 

det A = det P det 	Inn - P-1QS-1RI det S 

= det P det [ I 	-RP-1QS-1) det S = 
mm 

= det P - QS-1  R det S = det P det[ S - RP-1Q] (4.5) 

Q. E. D. 

Lemma 4.2 

Suppose that A is an (n+m) x (n+m) matrix 

P Q 
A= 

R 	S 

where P is n x n and nonsingular, Q is n x m, R is m x n and S is 

m x m and nonsingular. Then 

P 	Q 	-1 (P QS:1R)-1 	-(P-QS-1R)-}  QS-1  

A-1 

R 	S 	-(S - RP Q)1 -1  RP-1 	(S - RP-1  Q)-1  

(4.6) 
-1 

where A 	is partitioned conformably to A. 



Proof: Suppose that z = h(x) is a given description of a PNE. Then 
)1  

h*  (') defined as 
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Proof: Lemma 4.2 may be proved by carrying out multiplication 

Property 2  

Any of the 2n  different hybrid matrices of an n-port 

PNE is UP and bounded. 

n+1)-terminal) 

 

(z1 ?i2 

[ 122(4 , i2).1 

 

(4.7) 

 

may represent an arbitrary hybrid description if some rows of x and z.  are 

at first interchanged conformably and then the necessary partitioning is performed. 

In eqn. (4.7) x1  zi  are m-vectors and x2, z.2  are r-vectors where 

r = n-m. Denote by H and H* the hybrid matrices associated with h(.) and 

h*(.) respectively. H and H* can be partitioned conformably in the following 

manner.  

Ph /x 
1 	 1  Dh /ax 1 	 2  

H11 	H12 
H - 

3h /3x 2 	 1  Ph /@x 2 -2  H21 	H22 

(4.8) 

 

ah
1/ h* 1/ 3x2  - H* 	H* 11 	12 

H21 H22 21 	22_ 

 

H* - 

     

(4.9) 
ZhV 34 Ph* / 3x 2 2 

 

       

       

       

Then Property 2 implies that 
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M > det 
H*(p)(p)

?E >0 
0 

(4.10) 

where p is an arbitrary 

It can be shown that any 

two principal minors in 

expressed as 

H* = 

H* may be recast further 

H* = 

subset of 

principal 

H. 	Using 

H
11

-1  

-1 
H21H11 

in the 

I
nn 	

0 

H21 	I
rr, 

the 

form 

s rows and columns 

minor in H* is 

relation of eqn. 

	

-H 	
-1 

 11 	H12 

H22 - H21H11 

-1 

	

-
H11 	

0 

0 H
22 

-1 

and 

expressible 

s 

(3.27), 

H12 

I
nn 

0 

= 	i,2 	• • • n. 

as a ratio of 

H* can be 

(4.11) 

-H12 

rr 

(4.12) 

Let the following notation be introduced. Divide the set of the first m rows 

(and columns) of H and H* (eqns. (4.8) and (4.9)) into,  two disjoint subsets Sa 

and Sb where Sa contains i rows and Sb contains j rows, i + j = m; similarly 

let the set of the remaining r = n-m rows (and columns) of the same matrices 

be divided into two disjoint subsets S
c 

and S
d 

where S
c 

contains k rows, Sd 

contains I rows where k +1 = r. An arbitrary principal minor of H can be 

written as 

det H*
(a,c)(a,c) 

where H*(a,c)(a,c) 
is a principal submatrix obtained from H* by deleting the 

rows corresponding to Sb  and Sd. Since the rows and columns of det H* (a,c)(a,c) 

may be interchanged, there is no loss of generality when taking Sa  as the first 

i rows of H*, S
b 

as the next j rows of H*, then the next k rows of H* as Sc 

and the last I rows as S
d. 

Thus 
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H* 

and when H is 

H 

Denote 

H* 	= 11 

*11 	
, 	14 

H* 	H* 21 , 	22 

partitioned conformably 

H1.1 	H12 

H21 	H22 

-1 
 = K H11 = 

Kaa 

Kba 

H* 

H 

H* 

aa 

ba 

ca 

H* da 

Haa 

Hba 

Hca 

Hda 

H* 	H* 
ab 	ac 

H* 	H* bb 	be 

H* 	H* cb 	I 	cc 

H* 	H* 
db 	dc 

Halo I 	 ac 

Hbb 	Hbc 

Hcb 	HCC 

Hdb 	Hdc 

Kab 

Kbb 

H* ad 

H* bd 

H* cd 

H* dd 

Hbd 

Hcd 

Hdd 

ad 

(4.13) 

(4.14) 

(4.15) 

where K is partitioned conformably to H11. Using eqn,. (4.12) the principal 

submatrix H*( al c)(at c) is 

H* (a,c)(a,c) 

l 	0 as  

Hca Hcb 

0 

I 
CC 

0- 

0 
- 

- Kaa 

Kba 

Kab 

Kbb 
0 

0 	- 

0 

I 
as 

0 

- H ac 

-Hbc 

0 

0 

0 

0 

Hcc 

Hdc 

Hcd 

Hdd 

0 

0 

CC 

0 

(4.16) 

After the multiplication of the r. h. s. of eqn. (4.16) we get 



(a,c)(a,c)  

Kaa - [ Kaa 	Kai/ 

H 
PC 

Hbc.. 

[ Hca 	Hcbj 

K  

Kba.. 

Hcc - [ Hca Hcb] 
• 

K 

Hac 

Hbc 

(4.17) 
By Lemma 4.1 

det H*(a,c)(a,c)=det  Kaa  det [ H cc -Hcb (Kbb -Kba K  aa-1  K )H ab bc 

(4.18) 
Applying Lemma 4.2 to eqn. (4.15) 
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-1 K 	= H11 

Haa Hab 

Hba Hbb  

(Kaa-KabKbb-1Kba)-1 

-(Kbb-KbaKaa Ka 

-1 	-1 -(K aab  -K K, ,b  K, a) Ka, K„ -1 
b_b 

-1 K K 	(K -K K -1K )-1 
a aa 	bb ba aa 	ab 

(4.19) 

and from eqn. (4.19) 

(Kbb KbaKaa-1Kab) = Hbb-1 

Substituting eqn. (4.20) in eqn. (4.18) 

det H* 	= det K det (a,c)(a,c) = det Kaa det 

(4.20) 

-1 
Hcc-Hcb  Hbb Hbc ] 	(4.21) 

By Lemma 4.1 

   

    

det rH -H Hbb-1H  1 	- 	det L cc 	cb 	 det 1 Hbb 

Hbb Hbc 

 

det H(b,c)(b,c) 
Hcb Hcc 

 

det Hbb 

   

    

4.22) 



Applying Lemma 4.1 to eqn. (4.15) 

det H11 
= det K

aa 
det 	

1 
K
bb

-KbaKaa Kab 

and from eqn. (4.23) and using eqn. (4.20) 

det H
bb det K

aa 
— 

det H11 

(4.23) 

(4.24) 

Eqn. (4.24) is equivalent to the result on minors of the inverse matrix
4 
 . Substitu-

ting eqn s . (4.22) and (4.24) into eqn.(4.21) gives finally 

det H
(b,c)(b,c) 

det H11 

Since H(b,c)(b,c) 
and  H11 are principal submatrices of a bounded UP matrix H 

M1  > det H11  > Etn> 0 

M2 	det H(b,c)(b,c) > 61+k  > u  

and from eqns. (4.25), (4.26) and (4.27) 

AA
2

i4-1( 
E > det H* 	 > 0 

Ern 	(a,c)(a,c) = M1 

(4.26) 

(4.27) 

(4.28) 

Therefore eqn. (4.28) satisfies the condition (4.10). Since subsets Sa and S
c 

are arbitrary and H* may represent arbitrary hybrid matrix of a PNE, it follows 

from eqn. (4.28) that all hybrid matrices of a PNE are UP and bounded. 

Q. E. D. 

Since eqn. (4.28) is valid for principal minors of order one, all diagonal 

entries of any arbitrary hybrid matrix of a PNE are positive and bounded below 
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det H*
(a,c)(a,c) 

 (4.25) 
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and above. Hence all incremental driving point conductances (or capacitances or 

inductances) of a positive resistive (or capacitive or inductive) element are posi-

tive. 

Property 3 which is a consequence of Property 2 will be stated for resistive 

elements, although a similar property holds for capacitive and inductive elements. 

Property 3  

Choose an arbitrary set of m ports of an n-port positive resistive element, 

N
n, and divide the set of remaining (n-m) ports into two disjoint subsets PE  and 

P j. Connect constant voltage sources to ports . PE  and constant current sources to 

ports P j. Let the chosen ports of N
n 

define a new m-port N
m

. The m-port N
m

, 

defined in such a manner, is, then a positive resistive element. 

A special case of Nm 
is the case when m = 1 and the network N1 

 is a 

one-port positive resistive element, i. e. the relation between vi  and i., the 

voltage and current of port Pi, is a quasilinear function for arbitrary values of 

constant sources at all other (n-1) ports. 

Property 4  

Any reciprocal PNE is strongly locally passive. 

Proof: 	For any reciprocal* PNE the hybrid matrix H
n 

corresponding 

to the one of of the twononmixed branch relationships"
5 is 

* 
Reciprocal PNEs form a subclass of positive definite network elements 	

i
f 

defined in Section 4.3.2 
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symmetric**. In order to show strong local passivity it is necessary to prove 

that Hn is u.p.d. 

Since Hn is a symmetric UP matrix, all of its principal minors are posi-

tive and thus H
n 

is positive definite. From the UP property 

> e 	> 0 
	

(4.29) • det Hn  

where A., i = 1,2,...,n, are eigenvalues of H
n 

and all A. are real and positive. . A. 

The boundedness of H
n implies that any entry of H I (h ). .i < M for all i and j Hn 

	n 1,1i 

and hence by Gresgorin's theorem5 
A 

A 	< nM 	 (4.30) 
max - 

From eqns. (4.29) and (4.30)Amin, the smallest eigenvalue of H
n 

En  Amin> 	> 0 
(nM)n"" 

Using the result of Ref. 6 

zTH z > A zTz > 0 , — n— min— 

From eqn. (4.32) 

(4.31) 

(4.32) 

- 	. ) z > 0 mn 

and H
n 
 is a u. p. d. matrix. 

Q. 

* * 
For, say a resistive, element these two "nonmixed branch relation- 

ships" are given by eqns. (2.5c) and (2.5d) 

max 
the largest eigenvalue of Hn, 

zI(  
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An important conclusion may be obtained from Property 4. Namely, any 

• reciprocal PNE is strongly locally passive and thus a necessary condition for a  

PNE to be locally active is that it is nonreciprocal. However, nonreciprocity is not 

sufficient for local activity and among nonreciprocal PNEs there are network 

elements where the symmetric part of the hybrid matrix is u. p. d.; these PNEs, 

as well as all reciprocal PNEs, are strongly locally passive and will be treated 

in Section 4.3.2. 

Property 5 will be stated for resistive elements, although analogous property 

may be proved for capacitive and inductive elements. 

Property 5  

Let an n-port (or (n+1)-terminal) positive resistive element N
R with the 

hybrid description 

i = h
R 

 (v) 
- (4.33) 

be locally active at some-point v = v . Then a set of linear (or nonlinear) 
- -o 

gyrators may be found such that not all hybrid descriptions of the composite 

element, consisting of N
R and gyrators connected in parallel to the ports of 

N
V 

will exist. 

Proof: Denote the hybrid matrix H = ahR/av at v = va  as Ho, the 

symmetric part of H
o 

as H 
os 

 , H os = -2- (Ho  + HoT), and the skew-symmetric 

part of H
o 

as H 
oss 

 , H
oss 	2 

= 	
(Ho - H

T  ). Since NR  is locally active at v = v 
o
, 

at least one principal minor-of H
os 

 is negative. 

Let (Hos)
(p)(p) 

be the negative principal minor of H
Os 

 of order m, 
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det (H
os

)
(p)(p) 

< 0 
	

(4.34) 

where (p) denotes a subset of m rows and columns not deleted from H and os 

let i and v 	be m-vectors, formed from i and v by deleting all components- 	- -p 	-p 

except those that correspond to the subset (p). if the set of gyrators possessing 

skew-symmetric incremental conductance matrix G1 	is connected in 
= oss 

 parallel with NR, then G, the incremental conductance matrix of the composite 

element, is 

G = H
o 

+ G
I 

= H
os 	

(4.35) 

and 	det G(p)(p)  = det(Hos)(00 < 0 

Thus for G1  = 'Hoss' the principal minor det 	
(PAP)is 

 negative, but for 

G1  = 0, det G(p)(p)  > 0. Since det G(p)(p)  is a continuous function of entries 

of G1, a skew-symmetric matrix G = Go 
exists such that 

det G(p)(p)  = det [ H(p)(p)  + (G0)(p)(01 = 0 
	

(4.36) 

By Patois' theorem, applied to the "partial" inversion, the hybrid description 

with ip  as independent variable does not exist for the composite element since 

G(p)(p) is singular for 01 = Go
. 

Q. E. D. 

In a similar manner it is possible to create negative incremental conduc-

tances by connecting a set of appropriate gyrators to an n-port positive resistive 

element which is locally active. For example, suppose that a positive resistive 

4 	element N* satisfies conditions of Property 5 and in addition det Hos 
 < 0 and 

det (H
os

)(r)(r)
> 0, where det (Hos)(r)(r) 

is a principal minor of order(n-1); if a 

set of gyrators with the incremental conductance matrix GI = -H 
oss 

 is connected 

in parallel to the ports of H* a negative incremental conductance is obtained 
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at some port of the composite element. 

4.2 	EXTRAPOLATION OF NETWORK ELEMENT CHARACTERISTICS 

The concept of a PNE can be successfully applied in the analysis of 

practical circuits if the existing devices can be modelled reasonably well as 

PNEs. Since, say, resistive PNEs have the property that an arbitrary incremen-

tal driving point conductance is positive and they may be locally active, it 

is reasonable to expect that many practical resistive devices, such as transistor 

and vacuum triode, can be modelled in this manner. We shall try to establish 

the relation between PNEs and some important representatives of three-terminal 

resistive devices such as the transistor and vacuum triode. Before going int 

details certain useful observations, concerning the device models on one side 

and the analysis and design of practical circuits on the other, will be presented. 

(i) Let > = h(x) be a hybrid description determined from a chosen 

physical model of an n-port resistive device. Models are not valid outside 

some bounded domain S1 c Rn; however, by definition a hybrid description 

h(•) has to be defined for all x. 

(ii) In practice devices cannot be used outside some bounded domain 

S2 c Rn;. namely, for every device there is a limitation on maximal voltage 

'and/or current or power dissipated in the device etc. These values must not be 

exceeded in a properly designed circuit. 

(iii) Device characteristics cannot be measured outside some bounded 

domain Sac R
n
, otherwise maximum permissible values for voltage, current or 



152 

power are exceeded. 

Regardless of these facts it is still convenient in network analysis or 

design to have a hybrid description of an n-port network element so that the 

domain of h(•) is the entire Rn . Let us demonstrate the usefulness of the network 

element characterization in terms of a hybrid description through few examples. 

(0 Assume that a resistive network is analysed where for given values 

of independent sources a unique solution is guaranteed but, say, a resistive 

element NR in the network is not characterized for all values of independent 

variable. If an iteration method (e. g. Newton-Raphson) is used to solve the 

governing equation, 	= f(x), of the network, a proper initial value xo 
 has to 

be chosen. However, even when a proper starting value x is chosen, it may -o 

happen that an intermediate result falls outside the domain of the characteri-

zation of NR and the computation of the solution cannot be continued. 

(ii) Assume that it is necessary to design a resistive nework NR where 

values of certain elements are adjusted in such manner that the network has the 

required performance. Furthermore, suppose that in the initial stage of design 

a chosen network N* does not possess the required performance. When all 

network elements in N*R 
 are not characterized for all values of independent va-

riable it may easily happen that N* possesses no solution for the branch varia- 

bles. If we can find a solution for 	 ' N*R 	a decision can be made, at least in 

principle, how to alter some parameters of N* in order to obtain the required 

performance. However, if the network N* possesses no solution, no such deci-

sion is possible. 

(iii) When characteristics of network elements are not specified for all 

values of the independent variable it is very difficult to check the existence 
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and uniqueness of solution in a nonlinear RLC network at large for given values 
• 

of independent sources. However, as mentioned before, we have to be sure 

that there is a unique solution of a network before its analysis is left to the 

computer. 

We can conclude from the above discussion that it is very helpful to 

have a network element - representing a device model - which is characterized 

for all values of independent variable. Thus the idea of a hybrid description 

of a network element is very useful. However, it is important to point out that 

outside the region S1 where the model is valid (or outside the region S2 whe-

re the device can be used or outside the region S
3 

where the device can be  

measured) the device can be modelled arbitrarily. Accepting this point of view 

it is easy to see that for PNEs the boundedness of the hybrid matrix H is not 

a severe restriction; since for any hybrid description the function h(') is of class 

C(1), the hybrid matrix H may become unbounded only for x 	, where 

the characterization of a network element has, no physical significance. 

Let us consider the frequently used Ebers-Moll static model of the tran-

sistor
7 
 possessing the hybrid description of the form 

 

1 

,21 	

-

1

°121 	[al(eA v1 	1)1 

1. °2(e)"2  ) 

 

it  
= h(vl' v2  ) = 

'2 

 

(4.37) 

   

   

The above hybrid description can be obtained from eqn. (3.68) by substituting 

X vl 	 A v 

gl(v1 )  = a1(e 	

2 
-1) and g2(v

2
) = a2(e 	-1). The function h(v1  ,v2 

 ) satisfies 

the first condition of Palais' theorem, namely, det 	h(v1 ,v2)/ . (v1 ,v2) > 0 

for all [ 	. Since [11,12 1T remains bounded for v1-«-oo, v 
1 	 °° ' 

the second condition of the same theorem is not satisfied and the function 
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h(vi  ,v2) is not globally regular. As det Dh(vi  ,v2)/ 	(vi  ,v2) 	0 when 

v1,00 , v2--,.-oo the hybrid • matrix H = 	,v2)/Z(vi  ,v2) does not belong 

to the class of UP matrices and in addition H is not bounded. Thus the Ebers-Moll 

model does not satisfy the definition of a PNE. However, the Ebers-Moll model 

can be transformed into a PNE
1 

by performing a slight modification for large 
A vi  

Ivil and I v2I . Namely, when the exponential functions g1 (v1 ) = al  (e 	-1) 

and g2(v2) = a2(e Av2  -1), appearing in eqn. (4.37) are extrapolated linearly 

outside an interval [ -N,N] , where N is an arbitrarily large positive value, 

and in addition dg1/dv1  and dg2/dv2  are continuous at points -N and N, 

gi(vi) and g2(v2) become quasilinear functions. The modified Ebers-Moll model 

then corresponds to a PNE. Since N is arbitrary, the' Ebers-Moll and the modified 

Ebers-Moll model agree on an arbitrarily large square defined by -N < v1  < N, 

-N E v2  5 N. 

A frequently used static model of a vacuum triode, with grid current 

equal to zero and a three-halves-power law for plate current
8 
  , is described by 

eqn. (4.38) 

ii = 0 

i2 	= K( Ft.vi+v2)
3 2 	

(4.38) 

where K is a constant and ix. is the voltage amplification factor of the triode. 

The inverse of the function defined by eqn. (4.38) does not exist. Thus, this 

model does not correspond to a PNE, but it may be transformed into a PNE in 

the following manner: an arbitrarily small parasitic conductance G E  i  is inserted 

between grid and cathode, another arbitrarily small parasitic conductance GE2 

is inserted between anode and cathode and in addition the function (u.v
1 
 + v2)3/2 
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is extrapolated linearly outside the region 0 < µ v1  + v2  < M, where M is 

an arbitrarily large positive value. The hybrid description corresponding to the 

triode model, modified in this manner, can be expressed as 

= G e lvl 

i2  = G 2v2 	
tAvl + v2< 0  

`2 = K (t4v1+v2)V2 GE 2v2 	0 

Km /2  
12 = 	`1"1

v 	G
4- '2' 	E 2v2 

5twi+v2 

ehvi+v2' 
(4.39) 

As G E 1 	£ 2 and G 	are arbitrarily small, the difference between the original 

and the modified model can be made arbitrarily small in a large region 

0 5 	+ v2  S M. 

In a similar manner some other n-port resistive device models that are 

characterized by the hybrid description zR  = ./R(4) and whose hybrid matrix 

HR is of class P
o or P for all values of xR , can be transformed into PNEs 

by slight modifications. There are other n-port resistive elements that are characte- 

rized by a function zR  = h 
o 

 (xn) but where the domain of ho(') is a subset - 	 — 

S c R
n 

and the "hybrid matrix" H
R 

is of class P
o 

or P for•all
R

x c S. It is 

frequently possible to transform such elements into positive resistive elements 

by extending the domain of h 
o

(Xr, ) to the entire Rn and then augmenting them 

with arbitrarily small parasitic resistances or conductances.. 
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4.3 	SPECIAL CLASSES OF POSITIVE NETWORK ELEMENTS  

It will be shown that special classes of PNEs, possessing additional pro-

perties, can be defined. Using these properties it is then possible to study 

interconnections of different classes of PNEs and also to establish some sufficient 

conditions for the existence of a unique solution for one-element-kind networks. 

4.3.1 	(n+1)-terminal elements representing positive network elements  

in all orientations 
 

(n+1)-terminal elements may be characterized in terms of any of n diffe-

rent orientations. Let us start with the three-terminal resistive network element, 

shown in Fig. 4.1 and assume that a given resistive three-terminal element 

corresponds to a PNE when the terminal 3 is common. The choice of the common 

terminal is arbitrary and the orientation with the common terminal 1 or 2 might 

be useful in network applications. Generally, the hybrid description with the 

common terminal 1 or 2 will not satisfy the requirement for a PNE. A question 

arises; what are sufficient conditions that a three-terminal network element, 

representing a PNE in orientation with common terminal 3, corresponds to a 

PNE in the other two orientations?. This problem can be easily resolved with 

the aid of the concept of the indefinite admittance matrix
10
. 

Suppose that a given three-terminal resistor is characterized in the 

orientation with the common terminal 3 and it is a PNE in this orientation. 

Then the following description exists 

i1 	i1 (v1,v2) 

i2 = i2(vl'v2) 
	 (4.40) 



[ 911 	912 
G3 

=1 

921 	922 
(4.41) 

	

922 	 - -a 21a+-22) 
G1 = 	• 

911 
G2 = 

-(911+921)  

-(912+922)  

(4.44a) 

(4.44b) 

with the incremental conductance matrix G3 
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where the subscript 3 indicates the common terminal 3. The matrix G3 
is bounded 

and it belongs to the class UP. Thus an E> 0 exists such that 

911 > E r 
	

922 > 6 
	det G3 

> E
2 	

(4.42) 

The indefinite conductance matrix G.in 
 is obtained from G3 

and has the form 

Where 

G. 

gik = 

911 	912 

921 	922 

-(911t921) 	-(912+922)  

911+912+921+922 

4g11+912)  

-(921+922)  

Zgik 

(4.43a) 

(4.43b) 

Denote the incremental conductance matrix for the orientation with the common 

terminal 1 by G1  and the incremental conductance matrix for the orientation 

with the common terminal 2 by G2. The matrix G1  (or G2) is a principal 

submatrix of the indefinite conductance matrix and is obtained from G. in 

by deleting the first (second) row and the 'first (second) column. 
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It is interesting to observe that in G.in 
 all principal minors of order 2 have 

the same value, thus 

det G3 = det G1 = det G2 
	 (4.45) 

From the expressions for G1 and G2 
and taking into account eqns. (4.42) and 

(4.45) it follows that G1  and G2  will be of class UP when 

gik 
	"' 0 	 (4.46) 

This result is stated for all three kinds of PNEs - resistive, capacitive and 

inductive - in the following corollary where cik denotes an entry of the 

incremental capacitance matrix a gc/ avC  and 
Pik 

 denotes an entry of 

the incremental inverse inductance matrix alipi 

Corollary 4.1  
• 

If a three-terminal resistive (or capacitive or inductive) network element 

is a PNE in a given orientation and in addition Zgik  > 	> 0 

(or Zcik  > el  > 0 or K  > 	
> 0) then it is a PNE in the other two 

orientations. 

One of the properties* of PNEs satisfying the conditions of Corollary 

4.1 is the following. 

Property 1  

When a two-terminal network element N2 is formed from a three-terminal 

network element either by connecting the two ports of N3 
in parallel (see Fig. 

* Some other properties of this class of elements will be mentioned in Section 

5.2.1. 
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4.2a) or by connecting the two ports of N
3 

in series (see Fig. 4.2b) then the 

hybrid description of N2 
is a quasilinear function. 	 • 

Proof: When both ports of a three-terminal resistor N3 
(Fig. 4.2a) are 

connected in parallel the incremental conductance g of the resulting two-terminal 

resistor N2 is equal to 

g = di/dv = 2gik >E1  > 0 

and g is bounded. 

The incremental resistance r of N2 
(Fig. 4.2b) is equal to 

r = dv/di 	gik/det G3.* 

From eqn. (4.46) and the boundedness of G3  it follows that an 62 > 0 can 

be found such that r > 62 > 0 and r is bounded. 

Q. E. D. 

Note that the transistor model defined by eqn. (3.68) corresponds to a 

three-terminal resistor that is a PNE in all orientations if g1 (v1 ) and g2(v2) are 

quasilinear functions and 1 -(3412> 0 and 1 - ot21> 
 0. Thus the modified 

Ebers-Moll model, described in Section 4.2 possesses the same property. Similarly 

the modified triode model, described by eqn. (4.39) is a PNE in all three 

orientations. 

Let us now consider the (n+1)-terminal PNE. The resistive case will be( 

discussed although analogous results can be obtained for capacitive and inductive 

elements. Denote by G. the incremental conductance matrix with the common 

terminal i and assume that the hybrid description with the common terminal (n+1) 

is given. The indefinite conductance matrix Gin  can be expressed in terms of 



G.in = PTG(n+1)P 	 (4.47) 

where P is an n x (n+l) matrix having all entries in the (n+1)-th column 

equal to -1. 

P= Inn  
• 

(4.48) 

   

Eqn. (4.47) can be proved by carrying out the multiplication. Since the sum of 

all elements in a row (or column) i equal to zero, G, is singular. The incre7  in 

mental conductance matrix with common terminal i can be obtained from G. as in 

i = 1,2,...,n 	 (4.49)  

where P. is given from P by deleting the i-th column 

   

P.= 

1 	i 

	

-1.1 	0 	
i 

0 	i 	
Jr_ 

0 	 1 _ 
-1 1(n-i) (n-i) 	i 	. 

	

I 	 I 

0 	i •1 	 i 1 	-1 

(4.50) 

   

As det P. = -1 for i = 1,2,...,n it follows from eqn. (4.49) that 

det G. = det G(n+1) 
	= 1,2,...,n 	 (4.51) 

A resistive (n+1)-terminal PNE represents a PNE in all orientations if 

all (n+l) different principal submatrices of order n of the incremental indefinite 

conductance matrix' G. (eqn. (4.47)) belong to the class UP. Since by eqn. in 

(4.51) the determinants of incremental conductance matrices are equal to each 
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G. = P TG 	P i 	(n+1) i 
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other the additional condition Zg
ik  > E 1 > 0 is sufficient for a three-terminal 

resistor to represent a PNE in all orientations. In the case of (n+1)-terminal PNE 

certain other conditions, ensuring the UP property of all (n+1) different principal 

submatrices of G. , are necessary. 
in 

4.3.2 	Positive definite network elements  

Strongly locally passive network elements with bounded hybrid matrices 

form an important class of PNEs with many interesting properties. 

Definition 4.3  

A resistive (or capacitive or inductive) n-port (or (n+1)-terminal) network 

element with hybrid description Zr = h(x) is defined to be a positive definite  

network element (PDNE) if the hybrid matrix 11, associated with a given 

description, is continuous bounded and u.p.d. for all x e R
n
. 

It follows from the definition of a PDNE that its hybrid description 

corresponds to a GQLF. The above definition of a PDNE differs 	from the 

definition of a PDNE as given in Ref. 11, where boundedness of the hybrid 

matrix H is not required. The reasons for the more specific definition of a 

PDNE, used throughout this thesis, are the following:. 

(i) PDNEs as defined in this thesis form a subclass of PNEs 

(ii) all hybrid matrices that are associated with 2n  different hybrid 

descriptions of an n-port PDNE are u.p.d. and 

(iii) all 2n  different hybrid descriptions satisfy the Lipshitz condition. 

PDNEs represent a generalization of quasilinear network elements
5 

to the 

nonreciprocal case. Their special property is that they are strongly locally 
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passive. In the resistive case a fairly complex network containing not only 

quasilinear resistors but gyrators (linear or nonlinear), ideal transformers and 

diodes may appear as a resistive PDNE when viewed from an appropriate set of 

ports. Gyrators and ideal transformers must fulfil some topological restrictions in 

such resistive network. 

Some properties of PDNEs are stated below, others, concerning the 

interconnections of PDNEs, are given in Chapter 5. 

Property 1  

All 2n  different hybrid descriptions of an n-port (or (n+1)-terminal) PD E 

are GQLFs and all e hybrid matrices are bounded and u.p.d. 

Proof: 	Property 1 is a direct consequence of Property 3 of GQLFs. 

Q. E. D. 

This property can be given the following physical interpetation. Let an 

n-port resistive PDNE, NR, be described by the hybrid description 

Y1 = }21 (1-1 ‘12)  (4.52) 

= 	'12) 

 

where i ,v1  correspond to ports P1 , P2,...,Pm  and i2,v2  correspond to ports 

P
m+1

P . Since the hybrid matrix H = 	(h./  ,h2)/ 	(i1  ,v2) is u.p.d. the 
I • • • I n 

network must remain strictly locally passive, when series resistances of value 

> 0, are connected to the ports P1 ,P2,...,Pm and parallel conductances 

of value (- E ) are connected to the ports Pm+1 
 ..,Pn. According to Property 1 
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any hybrid matrix is u.p.d.; hence the network, obtained by connecting 

series resistances (- el) to an arbitrary set of ports of N
R 

and parallel con-

ductances (- el) to the remaining ports of NR, is locally passive for some 

e 1 > 0. Note that not all hybrid matrices of an n-port PDNE, satisfying the 

definition of Ref. 11, are u.p.d.; namely, the second part of Theorem 3 in 

Ref. 11 is not correct 

Consider an n-port resistive PDNE which is generally not passive. Since 

the hybrid description of a PDNE is a GQLF, which is strongly increasing, it 

is possible to extract a series voltage source or a parallel current source at each,  

port of a PDNE in such a way that the remaining n-port is strictly passive. 

Similarly for a capacitive PDNE a passive capacitor and a set of voltage sources 

connected to each port of the passive capacitor is obtained. Dually for an 

inductive PDNE the extraction of a set of current sources, that are parallel to 

each port, leads to a passive inductive PDNE. The following property will be 

stated formally for the n-port resistive PDNE. 

Property 2  

Let an active n-port resistive PDNE, NR, be described in the form 

= 12-1 (Y4'12)  

Y2 = 122(11'12) 

	 (4.53) 

where y4 ,11  are associated with ports P1 ,P2,...,Pm  and z2,12  are associated 

with ports Pm+1 ,...,Pn. A passive resistor NR  (see Fig. 4.3) can be obtained 

from NR  by extraction of a set of parallel current sources J1  = h1 (0,0) at ports 

Pi  ,P2,...,Pm 
.and a set of series voltage sources .E2  = 	at ports Pm+1' 



Pm+2" P  nR • N' is a PDNE and its hybrid description has the form 

'12) 	(2/9) 
	

4.54) 
Y2 = i22(Y-1 '12)  - 122(9-''2.1 )  

Proof: 	Choose an m-vector c1  and an n-vector 	 2 . Since h(v1 1i2  ) 

in eqn. (4.53) is a strongly monotonic function 
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(v 
T . 1T - 	 ,6-2)) 1 —1-h  — —  (12

T -
E2T )(12-h-2(E1.V) 

 > 0 

(4.55) 

for all (vi
T
, i2

T
)
T T TT 6:2) . Setting G1  = 0, 	s2  = 0 and taking into 

account eqn. (4.54) it follows from eqn. (4.55) that 

T., 	+ 
1•2X2  

T  ' > 0 	for all (v1 ' 2v 1.)T4 0 
	

(4.56) 

Thus N" is strictly passive. 

Q. E. D. 

Note that the hybrid description (eqn. (4.53)) can be any of 2n  different 

hybrid descriptions of an n-port resistive PDNE; thus the set of all ports can be 

divided arbitrarily into two disjoint subsets P and P and then the proper extraction 

, of series voltage sources at ports PE  and parallel current sources at ports P leads 

to a strictly passive n-port resistor. 

Property 3 is analogous to Property 3 of PNEs. 

Property 3  

Choose an arbitrary set of m ports of an n-port resistive PDNE, Nn
, and 

divide the set of remaining (n-m) ports of Nn into two disjoint subsets PE and 
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PJ• Let the chosen ports of N
n define a new m-port Nm

. The m-port N
m

, 

defined in such a manner, is then a resistive PDNE. 

Property 4 	• 

Given an n-port PDNE, Nn
, form a (n-1)-port Nn-1 

by connecting 

ports P. and P. of N
n 

in parallel (or in series). The (n-1)-port Nn-1 
is then 

a PDNE. 

Proof: 	Consider the resistive case. Assume that ports P
1 and P2 are 

connected in parallel as shown in Fig. 4.4. The following description exists 

for Nn
, 

i = h(v) 	 (4.57) 

Let e and i be (n-1)-vectors of port-voltages and port-currents of Nn-1. The 

relation between e and v and i and i is from Fig. 4.4 

v = Ae 

T = A.  
(4.58) 

where 

  

 

1 
1 	0 

A= 
0 	In-2 

(4.59) 

   

Hence 	1 = ATh(Ae) 	 (4.60) 

Since A is of rank (n-1) by Property 2 of GQLFs, i(e) is a GQLF and thus 

Nn-1 is a PDNE. A similar proof, based on the hybrid description of Nn with 

i as independent variable, may be given for the case of the series connection 

of two ports. 

Q.E. D. 
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This procedure can be extended to arbitrary series-parallel connection 

of ports of N
n. From a (n-1)-port Nn-1 ' an (n-2)-port 

Nn-2, representing a 

PDNE, can be formed by connecting two ports of N
n-1 in series or in parallel; 

the process may be then continued further. 

Property 5  

Any (n+1)-terminal PDNE represents a PDNE in all different orientations. 

Proof: 	Consider an (n+1)-terminal resistive PDNE and assume that the 

orientation with common terminal (n+1), Nn+i , is transformed into the orienta-

tion with common terminal i, N.
!  (Fig. 4.5). Denote port-voltages and port-

currents of N
n+1 by v and i, and port-voltages and port-currents of N. by e 

and I. Let 

i = hR  (v) 	 (4.61) — — — 

be a given hybrid description of N
n+1 and let 

= 11 /2*z(e) 	 (4.62) 

be the unknown hybrid description of N.. The relation between port-voltages 

e and v and port-currents i and 1  is from Fig. 4.5 

v = P.e 
I— 

= PiT  . 	 (4.63) 

where P. is defined in eqn. (4.50). Thus 

I = PiThR(Pie) 	 (4.64) 

Since P. is of rank n, by Property 2 of GQLFs i(e) is a GQLF. 

The capacitive and inductive case can be proved analogously. 

Q. E. D. 
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4.3.3 	Hadamard network elements 

Since a u. H. matrix belongs to the class UP, it is apparent that a 

network element where one of the hybrid matrices is u. H. is a PNE. 

Definition 4.4  

A resistive (or capacitive or inductive) network element is defined to 

be a Hadamard network element (HNE) if at least one of its hybrid matrices 

is u. H. 

Note that nonreciprocal HNEs may be locally active. Reciprocal HNEs 

are strongly locally passive and represent a subclass of PDNEs. It is significant 

to point out that the inverse matrix of a u. H. matrix is not itself u. H. Thus, 

contrary to the property of an n-port PDNE, where any of 2
n  different hybrid 

matrices is u. p. d., not all hybrid matrices of a FINE are u. H. 

The concept of a FINE will be useful in the study of the interconnections 

of network elements, treated in the next chapter. 

4.4 SUMMARY 

In this chapter the concept of PNE has been introduced and the properties 

of this class of elements have been examined. One of the significant results is that 

a PNE can be locally active only if it is nonreciprocal. It has been shown that 

many locally active practical resistive devices where all possible incremental dri-

ving point resistances are nonnegative can be modelled as PNEs. This justifies 

the introduction of the concept of PNE in the nonlinear network theory from the 
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point of practical application. 

PDNEs, HNEs and (n÷1)-terminal network elements where all different 

orientations correspond to a PNE form three special classes of PNEs. The 

properties of these three classes of PNEs, which are not disjoint, have been 

investigated. The relations between various classes of PNEs can easily be 

summarized with the aid of the diagram of Fig. 4.6, where the set of all PNEs 

is divided into 5 disjoint subsets A, B, C, D and E. A contains all PNEs that 

are locally active at least at one point, E contains all reciprocal PNEs, the 

set DUE contains all strongly locally passive PNEs, the set C U DU E embraces 

all strictly locally passive PNEs, the set B UCU DUE contains all locally 

passive PNEs. All PDNEs are contained in the set DUE and all HNEs form 

a subset of the set AU BUCUDUE. 

Note that the terminology, introduced for different classes of PNEs, is 

in close relationship with the properties of the hybrid matrices, associated with 

these classes of PNEs. Namely, PNEs possess UP hybrid matrices, PDNEs have 

u. p. d. hybrid matrices and one of the hybrid matrices of a HNE is u. H. 

The properties of interconnections of different classes of PNEs of one 

kind (either resistive or capacitive or inductive) will be studied in the next cha-

pter. 
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Vi 
1/1 

Fig. 4.1. 	Representation of a resistive three-terminal element 
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(a) • 
	

.(b) 

Fig. 4.2. 	Illustration of Property 1 in Section 4.3.1. 
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Fig. 4.3. Illustration of Property 2 in Section 4.3.2. 

Fig. 4.4. 	Illustration of Property 4 in Section 4.3.2. 
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n.#1 

Fig. 4.5. 	Illustration of Property 5 in Section 4.3.2. 

 

nonreciprocal 

 

reciprocal 

   

locally active 	 'strongly locally passive 

shictly locally passive 

locally passive 

Fig. 4.6. 	Classification of positive network elements. 	 4: 



Chapter 5 

THE ANALYSIS OF ONE-ELEMENT-KIND NETWORKS 

5.1 	INTRODUCTION. 

As has already been mentioned, in the state-variable analysis of nonli-

near RLC networks, it is necessary to perform the: analysis of three one-element-

kind networks: resistive, capacitive and inductive. In this chapter one-element-

kind networks will be studied. At first series-parallel interconnections of two n-

ports will be discussed. In this context a problem of special interest is to deter-

mine the classes of elements of one kind that, when interconnected, result in 

a PNE or PDNE. The reason for studying interconnections resulting in a PNE or 

PDNE lies in the fact that one may replace an interconnection of two or more 

network elements of one kind by a PNE or a PDNE. In this way complex 

one-element-kind networks may frequently be reduced to a single element and 

the existence and uniqueness of solutions can be more easily studied. 

The idea of finding an equivalent network element for an interconnection 

of two or more network elements is quite old. However, it is important to point 

out the difference between the linear and nonlinear case. For this purpose consi-

der an example of a parallel-parallel connection of two-port resistive elements 

N1 and N2 shown in Fig. 5.1. In the linear case it is relatively easy to 

express explicitly  the conductance matrix G of the equivalent network element 

N from a given description for N1  and N2, provided that the given matrices 
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of N1 
and N

2 can be transformed into corresponding conductance matrices G1' 
 

and G
2. In the nonlinear case, when N

1 
and N

2 are nonlinear, it is generally 

not possible to obtain an explicit hybrid description for N from given hybrid 

descriptions of N1  and N2, unless N1  and N2  are both voltage-controlled. 

Nevertheless in the study of one-element-kind networks it is helpful to know 

1) whether the hybrid description for the equivalent network element, 

obtained by an interconnection of two or more network elements of one kind, 

can be obtained in principle and, more specifically, 

ii) whether the equivalent network element is a PNE or PDNE. 

We shall study series-parallel interconnections of an m-port and an 

n-port network element; thus a series-parallel interconnection of two n-port network 

elements is but a special case of such interconnection. For the purpose of studying 

interconnections of network elements it is necessary to introduce the concept of 

a positive semidefinite network element that may be defined as follows. 

Definition 5.1 

A resistive (or capacitive or inductive) n-port (or (n+1)-terminal) network 

element with the hybrid description 	= h(x) is defined to be a positive semide-

finite network element (PSDNE) if the hybrid matrix H(x) associated with a given 

hybrid description is continuous, bounded and positive semidefinite for all xE•Rn. 

When the hybrid matrix of an n-port PSDNE, N, is diagonal, there is 

no coupling between any pair of ports of N and N is called an uncoupled 

PSDNE. PSDNE may be considered as an extention of a monotonically increasing 
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1 
two-terminal resistor (or capacitor or inductor) to an n-port network element 

that may be nonreciprocal in general. It is important to stress that PSDNEs do 

not necessarily possess all hybrid descriptions and that PSDNEs do not belong to 

the class of PNEs. 

There are many network elements that belong to the class of PSDNEs. 

For example the diode model with exponential characteristic, the ideal transfor-

mer, where both existing hybrid matrices are skew-symmetric, and the gyrator, 

where the conductance and resistance matrices are skew-symmetric, all belong to 

the class of PSDNEs. Some properties of PSDNEs are listed below. 

Property 1  

Assume that z  = h(x) is the hybrid description of a PSDNE. Then h(x) 

is a monotonic function. 

Proof: 	Consider a one dimensional arc x(e ), 0 s O 5.1, given by 

x(e) = x1  + (x2  - L.de 	 (5.1) 

Then 	dx/d4 = x2  - xl 	 (5.2) 

and 

  

(x2 - xi)  d° 
x=x (G ) 

(5.3) 

   

Ash/ x is positive semidefinite, 

for all 0-i0 < 1 and 

T 	h (x2  - x1 	x ) 	(x2  - x1) is nonnegative 
— — a   

r  , 
(L2 - ' 	12()1-1)] =-{1(-2 h (x2 -X1  

x=x(e) 

de =- 
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12(x1 )1 > 0 	 (5.4) 

Q. E. D. 

The following three properties of PSDNEs are similar to Properties 2,3 

and 4 of PDNEs and can be proved analogously. 

Property 2  

Let an active n-port resistive PSDNE, N_, be described in the form 

it = I21 ( 
	

(5.5) 

v2 = 122(11,!2) 

where v1 ' 1 i are associated with ports P1' 
P
2' 

...,P
m and v2' —2 are associated 

—  

with ports Pm÷i , Prn+2,...,Pn. A passive resistive PSDNE N 	(see Fig. 5.2) 

can be obtained from NR 
by the extraction of a set of parallel current cources 

Ji  = 111 (0, 0) at ports Pi, P2,•••,Pm  and a set of series voltage sources 

E2  = 112(0,0) at ports Pm+i ,Pm+2,...,Pn. NR' is a PSDNE and its hybrid 

description has the form 

11' = 11(ivi2) - 

= 122(11 ,12) 	122  (o,o) 
	 (5.6) 

Property 3  

Choose an arbitrary set of m ports of an n-port resistive PSDNE, Nn, 

and divide the set of remaining (n-m) ports of Nn 
into two disjoint subsets PE 

and P J. Connect constant voltage sources to ports PE  and constant current sources 
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to ports P j. Let the chosen ports of Nn  define a new m-port Nm. The m-port 

Nm, defined in such a manner is then a resistive PSDNE. 

Property 4  

Given an n-port PSDNE, N
n
, form the (n-1)-port N

n-1 
by connecting 

ports P. and P. of N
n in parallel (or in series). The (n-1)-port Nn-1  is a 

PSDNE. 

Property 5 

Suppose that s different hybrid descriptions of an n-port PSDNE exist. 

Then all hybrid matrices that are associated with the existing hybrid descriptions 

belong to the class P. Thus, for example, all incremental driving point conduc-

tances, if they can be defined, are nonnegative for a resistive PSDNE. 

Proof 	For a PSDNE the hybrid matrix belongs to class Po
, since H 

is positive definite. From proof of Property 2 of PNEs Property 5 follows. 

Q. E. D. 

5.2 SERIES-PARALLEL INTERCONNECTIONS OF NETWORK ELEMENTS  

A series-parallel interconnection of two network elements is shown in 

Fig. 5.3, where N1 is an n-port and N2 is an m-port. The resistive case 

will be treated throughout this chapter, although the capacitive and inductive 

case can be dealt with analogously. A set of i ports, P., of N1  and N2 is 
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connected in parallel and a set of j ports, denoted as P., of the same 

network elements is connected in series; a set of k ports, Pk , of N1  and a 

set of I ports of N2, P / , are identical for constituent and interconnected 

network. In this way a (i+j+k+l)-port network element N is formed. Without 

loss of generality we may assume that the directions of the components of 

v1  are the same as for the components of e
1  and similarly the components of 

12  have the same directions as the components of 
12 

 (see Fig. 5.3). Note 

that the interconnection shown in Fig. 5.3 is fairly general; when N
1 

and 

N2 are two-ports, then the interconnection in Fig. 5.3 may represent either 

the parallel-parallel, series-series, series-parallel or cascade interconnection 

of two-ports. 

The following theorem gives sufficient conditions for the existence of 

the hybrid description of network element N obtained by the series-parallel 

interconnection. 

Theorem 5.1 

Assume that resistive elements N
1 
 and N

2 
in Fig. 5.3 have the 

following hybrid descriptions: 

(5.7) 

(5.8) 

     

where 

X = 

vl  

(5.9) 

    



= 

and i1' 

12 

--4- 

are i-vectors, 

•(5.10) 

2-2' 1
2 are j-vectors; k-vectors 
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11 

e2 

1(3, z3and 1-vectors 	z4  contain a combination of port voltages and port 

currents of P
k 

and P
I 

respectively. Then the hybrid description of the network 

element N obtained by the series-parallel interconnection of N1  and N2 ,as 

shown in Fig. 5.3, exists. 

Proof 

Define vectors s and u, corresponding to the interconnected network, as 

   

 

—2 

x4 

(5.11) 

  

  

The relation between s and u is the unknown hybrid description of N 

s = h(u) 	 (5.12) 

From Fig. 5.3 the following relations are obtained 

s = A1
T
z + A2 

T
z 

x = A u 1—  

w= A u 2—  

(5.13) 

(5.14) 

(5.15) 

where Al 
is an (i+j+k+1) x (i+j+k) matrix and A

2 
is an (i+j+k+I) x (i+j+p) 

matrix: 



I.. 	0 	0 
	

0 - 

0 I_ 0 0 

0 0 Ikk 0 

I.. 	0 	0 	0 

0 	I.. 	0 	0 

0 	0 

Combining eqns. (5.7)-(5.15) the hybrid description of N is 

1 = 12(H) = AlT121  (Al2) + A2Th2(A2u) 
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Al  = 

A2= 

*(5.16) 

(5.17) 

(5.18) 

Q. E. D. 

Note that according to Theorem 5.1 the hybrid description of N (eqn. 

(5.18)) exists when N1 and N2 are voltage-controlled with respect to ports 

P. which are connected in parallel and current-controlled with respect to 

ports P. which are connected in series. When the hybrid descriptions h1 
 (•) and 

h2  (•) are arbitrary, the hybrid descriptions, other than h(u) (eqn. (5.18)) may 

not exist for N. The following three corollaries may easily be derived from 

Theorem 5.1. 

Corollary 5.1  

Assume that N1 and N2 are n-port voltage-controlled resistive elements. 

Then the parallel interconnection of all corresponding ports of N1 and N2 

results in a voltage-controlled n-port N. 
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Corollary 5.2  

Assume that N
1 
 and N

2 
are n-port current-controlled resistive elements. 

Then the series interconnection of all corresponding ports results in a current-

controlled n-port N. 

Corollary 5.3  

Assume that N
1 

is an n-port PNE and N
2 

is an m-port PNE. Then the 

hybrid description of 	a network element N obtained by any series-parallel inter-

connection, as shown in Fig. 5.3, exists. 

5.2.1. The series-parallel interconnections resulting in a PNE  

It is easy to show that the series-parallel interconnection of two PNEs 

does not necessarily result in a PNE. Consider, as an example, a parallel-

parallel interconnection of 2 linear two-port resistive PNEs N1 
and N

2 
with 

conductance matrices G., and G2: 

G
1 

= 

1 

10 

0.•  

1 

G2 = 

rl 

.0 

10" 

1 

The conductance matrix G of the interconnected network N 

	

{ 2 	10 
G = G1 + G2 = 

	

10 	2 

and det G < 0. Thus the equivalent network element N is not a PNE. Even 

when N2  is a reciprocal PDNE and N1  is a PNE the series-parallel interconnection 

of N1 and N2 
does not necessarily result in a PNE. As an example consider the 
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case where N1 is a linear resistive two-port representing a PNE, and its 

conductance matrix G is 

G
1 

= 

[ 1 	0 

-20 	1 

  

and N
2 is a linear reciprocal resistive' two-port representing a PDNE, and its 

conductance matrix G2 is 

	

2 	-1 

	

-1 	2 

The parallel-parallel interconnection of N1 and N2 results in a network element 

N with conductance matrix G 

G = GI + G2 = 
3 	-1 

-21 3 

 

and det G < 0. Since the parallel-parallel interconnection is but a special 

case of the series-parallel interconnection, shown in Fig. 5.3, we have proved that 

the series-parallel interconnection of an n-port PNE and an m-port reciprocal PDNE 

does not necessarily result in a PNE. 

The reason that the resulting network N may not be a PNE when N1 
is 

a PNE and N2  is a reciprocal PDNE can be explained by the fact that N1  may 

be locally active and N
2 

represents a nonlinear feedback network with respect to 

• thus even when N2 is locally passive and reciprocal it is still possible for N1' 

N to have multivalued characteristics with respect to a certain selection of 

independent variables at the ports of N. We can expect that a PNE will be 

obtained by the series-parallel interconnection when N2 does not present any 

G
2 

= 
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feedback for N1 . The following two theorems give sufficient conditions that a 

special series-parallel interconnection of two resistive elements results in a PNE. 

Theorem 5.2 

Suppose .N1 
is an n-port resistive PNE and N

2 is an m-port uncoupled 

resistive PSDNE, where m < n. Divide the set of m ports of N2 
into two 

disjoint subsets P. and P. containing i and j ports respectively and suppose that 

N2 is voltage-controlled with respect to ports P. and current-controlled with res-

pect to ports P.. The series-parallel interconnection (Fig. 5.4) where the ports 

P. of N2  are connected in parallel and the ports P. of N2 are connected in 

series with the corresponding ports of N1 
results in an n-port PNE. 

Proof 

From eqns. (5.7) and (5.8) the corresponding hybrid matrices of N1 
and 

N2 are 

H1  = 	hl/  Dx 
	

(5.19) 

H2  = ah2  /aw 
	

(5.20) 

where H1 
is of class UP and H

2 
is positive semidefinite and diagonal. It is 

necessary to show that the hybrid matrix H of the network element N in Fig. 

5.4 is UP and bounded. From eqn. (5.18) 

H = ah/au = 	1 A2TH2A2 	 (5.21) 

Since all ports of N2 are connected either in series or in parallel to the 

corresponding ports of N1 , P1  is an empty set and from eqns. (5.16), (5.17) 

and (5.21) 
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{ H2 	0 

H = H
1 

+ 	 (5.22) 
0 	0

kk 

i
t 

Application of the diagonal expansion of determinant to all principal minors of H 

shows that H is a matrix of class UP. Since H1 and H2 are both bounded, H is' 

bounded and N is a PNE. 

Q. E. D. 

It follows from Theorem 5.2 that when a current-controlled monotonically 

increasing resistor with bounded incremental resistance is added in series to a 

port of a resistive PNE the interconnected network is a PNE; similarly when a 

voltage-controlled monotonically increasing resistor with bounded incremental 

conductance is added in parallel to a port of a resistive PNE the interconnected 

network is a PNE. 

The following theorem regarding the properties of three-terminal resistive 

elements which represent a PNE in all 3 different orientations has useful applica-

tion in the dc analysis of nonlinear transistor networks. 

Theorem 5.3* 

If a two-terminal voltage-controlled resistive PSDNE N2 
is connected to 

any two terminals of a three-terminal resistive element N1  representing a PNE in all 

orientations, the resulting resistive three-terminal element N (Fig. 5.5a) is a PNE 

in all 3 orientations. 

* 
It is conjectured that Theorem 5.3 is valid for (n+1)-terminal resistive element 

which is a PNE in all (n+l) orientations. 

2 
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Similarly, if a two-terminal current-controlled resistive PSDNE N' 2  is connected 

in series with any port of a three-terminal resistive element N1 representing a 

PNE in all 3 orientations, the resulting resistive network element N' (Fig. 5.5b) 

is a PNE in all three orientations. 

Proof 

It is sufficient to show that N in Fig. 5.5a and N' in Fig. 5.5b 

represent a three-terminal resistive element which is a PNE in all 3 orientations. 

Suppose that the incremental indefinite conductance matrix of a three-terminal 

element N1 is given by eqn. (4.43a) and denote the incremental conductance 

of N2  (Fig. 5.5a) by g and the incremental resistance of N2 (Fig. 5.5b) by 

r; g and r are bounded and nonnegative. Then G.in,  the incremental indefinite 

conductance matrix of N (Fig. 5.5a), is 

Gi  n = 

911+9  

921 

-(911+921+9)  

912 

922 

-(912+922)  

-(911+912+9)- 

-(921+922)  

19ik+9  

(5.23) 

Since N1 
is a PNE and g is bounded and nonnegative it is easy to see that all 

principal submatrices of order 2 in Ginare UP and bounded; thus .N in Fig. 

5.5a is a PNE in all 3 orientations. 

Similarly, Gin, the incremental indefinite conductance matrix of N' 

in Fig. 	5.5b 

G: - in 

is 

1 
911 

921 

-(911+921)  

912 

g22+r det G3 

-(912+922+r det G3) 

-(911+912)  

-(9214-922+r det G3) 

Zgik+r det G3  
1-Frgi  1 

(5.24) 
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where G3 is the incremental conductance matrix of N1 in the orientation with 

the common terminal 3. As N1 is a PNE and r is bounded and 'nonnegative, 

clearly, all principal submatrices of order 2 in G: 	are UP and bounded. 
In 

Therefore N' in Fig. 5.5b is a PNE in all 3 orientations. 

Q. E. D. 

A PNE can be obtained by the series-parallel interconnection of two 

HNEs provided certain hybrid matrices of HNEs are u. H. 

Theorem 5.4 

Assume that resistive elements N1  and N2 in Fig. 5.3 are HNEs with 

the hybrid description given by eqns. (5.7) and (5.8) respectively. If the hybrid 

matrices H1  = hi/ax and H2  = W-12/ ,,v of N1  and N2  are u. H. the 

series-parallel interconnection of N1  and N2 shown in Fig. 5.3 results in a 

resistive element N which is a PNE. 

Proof 

Partition the (i+j+k) x (i+j+k) matrix H1  as 

 

(5.25) 

 

and similarly partition the (i+j+I) x i+1+1) matrix H2  as 
• 

I-12a2b' 

H2c H2d 

H2 
(5.26) 

where Hla and  H2a are (i+j) x (i+j) matrices. Substituting eqns. (5.16), (5.17), 
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(5.25) and (5.26) into eqn. (5.21) the hybrid matrix H of N is obtained as 

Hla+H2a 	Hlb 	H2b 

H = H
lc 	

H
ld 	

0 

H2c 	0 	H2d 

(5.27) 

It is easy to see that H is u. H. since both H1  and H2  are u. H. 

Q. E. D. 

5.2.2 	The series-parallel interconnections resulting in a PDNE 

As the class of PDNEs has many important properties it is helpful to 

study interconnections resulting in PDNE. It will be shown that the series-

parallel interconnection of 2 PDNEs or of a PDNE and a PSDNE results in a 

PDNE. These two results are stated formally in the following two theorems. 

Theorem 5.5
3 

Let N1 and N2 in Fig. 5.3 be resistive PDNEs. Then any series-parallel 

interconnection, as shown in Fig. 5.3, results in a resistive PDNE N. 

Proof 

Since N1  and N2 are PDNEs the hybrid descriptions given by eqns. 

(5.7) and (5.8) exist. From eqns. (5.7) and (5.8) the hybrid matrices of N1  

and N2, H1  = ah1  /ax and H2  = ah2 	are u. p. d. and bounded. From 

eqn. (5.18) the hybrid matrix H of N is equal to 

H = 3120 u = Al  THiAi  +A2TH2A2 	 (5.28) 

and we want to show that H is bounded and u. p. d.; thus a th> 0 exists such 
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that the quadratic form 

zTHz > 	zTz 	for all z # 0 	 (5.29) 

Since H1  and H2  are u. p. d., (H1  - / tip and (H2  - iu21) are positive definite 

with some (Lt./  > 0 and (142 > 0 and 

T 14 A 	 T A  T A  Z Al8- 1z 

A2H2A21  > itt 2zTA2  A21 

From eqn. (5.28) 

zTHz = zTA1  TH1 A2—  z + zTA2  TH2 A2— z — — —  

(5.30) 

(5.31) 

(5.32) 

Combining eqns. (5.30) - (5.32) and calculatin A1TA1  and A2
T
A2 yields 

zTHz >-  

( (hi+  i'2)1ii 

0 
0 0 

 

(ct1+("2)lii 

0 

0 

(4.4.11kk 

0 

0 

0 

0 

t(421pp 

z (5.33) 

The diagonal matrix on the r. h. s. of eqn. (5.33) is positive definite and 

therefore for all z 	0 

zTHz > Ft zTz 	if 0 <(4.<Min( (.1.1  , t4 2) 	 (5.34) 

Thus H is u. p. d. and since H1  and H2  are bounded H is bounded as well. 

Q. E. D. 

Theorem 5.6  

Suppose that in. Fig 5.4 Ni  is an (i+j+k)-port resistive PDNE and N2  is 
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an (i+j)-port resistive PSDNE. Let ports Pi  of N2  be voltage-controlled and let 

portsP. of N2 be current-controlled. Then the series-parallel interconnection of N1 

and N2 shown in Fig. 5.4 results in an (i+j+k)-port resistive PDNE N. 

Proof 

Let H1  and H2  be the hybrid matrices of N1  and N2, obtained from the 

hybrid descriptions of eqns. (5.7) and (5.8); the matrix H1  is u. p. d. and 

bounded and H2 
is positive semidefinite and bounded. From eqn. (5.22) 

H = H1  + 
H2 0 

0 	0
kk 

(5.35) 

  

where the second matrix on the r. h. s. of eqn. (5.35) is positive semidefinite. 

Since a sum of a u. p. d. and a positive semidefinite matrix is u. p. d. the 

matrix H is u.p.d. As H1  and 1-12  are bounded H is bounded and N is a PDNE. 

Q. E. D. 

5.2.3 Special cases of the series-parallel interconnection 

As will be demonstrated in this section a special parallel or series inter-

connection of two resistive PNEs N1 and N2 results in a PNE when one of the ports 

of N1, Pc, is connected in parallel with one of the ports of N2, Pd, as shown in 

Fig. 5.6a; the same result is obtained when Pc  and 'Pd 
are connected in series as 

shown in Fig. 5.6b. This property is very useful in the dc analysis of transistor 

networks. 

Theorem 5.72  

Suppose N1  and N2  are resistive PNEs where N1  is an n-port and N2 



191 

is an m-port. Let Pc  be an arbitrary port of N1  and let Pd  be an arbitrary port 

of N2. Then a parallel connection of ports Pc 
and Pd  (Fig. 5.6a) (or a series 

connection of ports Pc and Pd 
(Fig. 5.6b)) results in an (n+m-1)-port network 

element N (or N') which is a PNE. 

Proof 

We shall prove Theorem 5.7 for the case of the parallel connection of 

the ports Pc  and Pd; the case of series connection of the same ports can be 

proved analogously. 

Without loss of generality we can assume that Pc 
is the port number n 

of N1  and Pd  is the port number 1 of N2. The following hybrid descriptions of 

N1 and N2 exist. 

i 	= i (v v n) 
-k --k  

= 1,1(4 ,vn) 
(5.36) 

and 
	

) 

Jl -I-14(21,24) 
	 (5.37) 

T T 
where _kv = (v , v2, • • • 1 	) , k  	, i2  , • • • 	n-1 )  ' 2-1-(e2,  

and .1./  = (12, 13,...,11 )
T
. The incremental conductance matrices .  

= bqk,inVZ (yvvn) and G2  = a (11 ,14 )/b (e1  ,24) of N1  and N2 can be 

partitioned as follows. 

G aa 
G

ab 
G

ac 
' 

G1  Gba 
Gbb Gbc 

(5.38) 

ca 
Gcb G 

cc 

,•••,e1 , 
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G2 

G
dd 

Ged 

Gfd 

G
de 

G
ee 

Gfe 

G
df 

G
ef 

G
ff 

5.39) 

where Gaa  is an a x a matrix, Gbb  is a b x b matrix, Gcc  is a 1 x 1 

matrix and (a+b+1) = n; Gdd  is a d x d matrix, G
ee is an e x e matrix, 

Gff is a 1 x 1 matrix and (ci+e+1) = m. 

From Fig. 5.6a the incremental conductance matrix G of the resulting 

network element N is obtained in the form 

G
aa 

G
ab 0  ac 

Gba Gbb Gbc 	
0 0 

G= G
ca G

cb 
G

cc
÷G

dd 
G

de Gdf (5.40) 

0 0 G
ed 	Gee G

ef 

0 0 Gfd 	Gfe Gff 

Since G
1 and G2 are bounded matrices G is bounded. Thus in order to prove 

that N is a PNE it is necessary to show that G is UP. Let G(b,c,e)(b,c,e) 

denote the following principal submatrix of G 

G(b,c,e)(b,c,e) 

Gbb 

G cb 

0 

Gbc 

G 
cc 

Ged 

dd 

0 

Gde 

G
ee 

(5.41) 

Since the partitioning of G/  (eqn. (5.38))and G2  (eqn. (5.39)) .is arbitrary 

except that Gcc  and Gdd  are 1 x 1 matrices, G is a UP matrix if 

b+e+1 
det G(b,c,e)(),c,e) 	

> 0. By Lemma 4.1 
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Gbb Gbe 

Gcb Gcc+Gdd-GedGee Gde 
= det Gee 

det dot G
(b,c,e)(b,e,e) 

 

   

(5.42) 

where (G  cc 
G

dd -Ged 
G  ee -1Gde ) is a 1 x 1 matrix. Thus 

Gbb bc 
det G(b,c,e)(b,c,e) 

= det G
ee 

det
-Geb Gee 

+ (G
dd

-G
ed

G
ee

-1G
de

)det Gbb  

(5.43) 

Applying Lemma 4.1 once more 

det 

Gdd Gde 

G
ed 

Gee_ 
det Gee 

(5.44) 

    

Substitution of eqn. (5.44) into eqn. (5.43) yields-finally 

 

Gdd Gde 

Ged Gee 

 

Gbb Gbc- 

Gcb Gee- 
= det Gbb det det G(b,c,e)(b,c,e) 

+ det Gee  det 

  

    

(5.45) . 

Since G. and G2 
are UP matrices, it is obvious from eqn. (5.45) that G is a 

UP matrix. 

Q. E. D. 

5.3 THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF ONE-ELEMENT- 

KIND NETWORKS 

The most important reason for studying one-element-kind networks lies in 
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the role they play in the analysis of dynamic nonlinear networks. Very often 

the solution of a dynamic network N can be obtained only by first analysing 

related networks: the capacitive network N 	0; 	a, 5L , 	j  f , the inductive 

network N 5 E , q5 c, 5 a; Of and the resistive network obtained by replacing 

all capacitive and inductive elements in N by a set of voltage sources and 

current sources respectively. Another practical reason for studying resistive 

networks lies in the fact that the steady-state behaviour of many dynamic non-

linear networks is determined by analysing a resistive subnetwork obtained by 

replacing all capacitive and inductive elements in the dynamic network by open 

circuits and short circuits, respectively. Indeed, the set of equilibrium states 

of any dynamic network is simply the solution of this resistive network. Such 

a resistive network is termed a multivalued memoryless network
4 
 if it admits 

more than one solution. 

There is no general method for determining all solutions of a multivalued 

memoryless network. The problem of finding solutions is especially difficult if 

three-terminal nonlinear resistors are present in a resistive network. If, for 

example, we use the Newton-Raphson algorithm for computing the solution of 

a multivalued resistive network it may happen that the procedure is not 

convergent since the differential eqn. (3.73) is not globally asymptotically 

stable in such a case. Nevertheless, when a multivalued resistive network NR 

contains two-terminal resistors with piecewise linear characteristics, independent 

and controlled sources, and linear two-port elements (such as gyrators, ideal 

transformers, etc.) all solutions of N
R 

can be obtained by the iterative 

picewise linear method proposed by Chua
4
. 

For the purpose of the state-variable analysis of an RLC network N it 
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is necessary to check the existence and uniqueness of solutions of the resistive, 

capacitive and inductive subnetworks of N. The resistive case Will be studied 

in this section; analogous results can be obtained for the capacitive and inductive 

case as the (R), (C) and (L) eqns. (eqns. (2.68a)-(2.68c)) have a similar form. If 

a one-element-kind network possesses a unique solution for any value of independent 

sources it will be termed a single valued one-element-kind network. 

Several forms of the governing equations of resistive networks have been 

developed in Section 2.3. In principle, Palais' theorem may be used to establish 

the existence and uniqueness of solutions for these equations. However, for a 

nonlinear resistive network at large the number of algebraic equations, n, is 

very large and even with the use of a computer it is virtually impossible to 

test whether the two conditions in Palais' theorem are fulfilled in R . When the 

hybrid matrices of all resistive elements are bounded and continuous, Theorem 

3.2 is applicable; in such a case there is only one condition on the Jacobian 

of the governing equations that has to be fulfilled. In this manner we obtain a 

set of very general conditions for a resistive network to be single valued. These 

conditions are summarized in Theorem 5.8 for the different kinds of analyses 

treated in Section 2.3. In the following we shall denote 

{0 (31 

-F136 	0 
(5.46) 

Theorem 5.8  

(a) A resistive network described by a set of eqns. (2.28) is single valued 

if the Jacobian matrix a fR.  /a (v ' v e ' p 	) is bounded and continuous and -   
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I 	FpE 	0 	0 

	

0 	0 	-r
, 
 pE

T  

	

kfA 	a fR 	31R  — 

	

Zv 	av - 	 P 	—e 	aid 	a i - 	—6  

for all v
0 
 , v 

6 
 , i , i 	. —6 - 

I det ZE>0 	(5.47a) 

(b) A resistive network described by the loop equations (eqns. (2.31)) 

is single valued if the incremental resistance matrix R = —R jai12 is bounded — 

and continuous and 

det [ BRBT]la e >0 for all 	i . R (5.47b) 

(c) A resistive network described by the node equations (eqns. (2.34)) 

is single valued if the incremental conductance matrix G = aiR 	v  /a is R  

bounded and continuous and 

T, 
det [QGG .WE' > 0 for all. Rv  (5.47c) 

(d) A resistive network described by the hybrid equations (2.37) is 

single valued if the hybrid matrix H1  = 3(v p e  )/a 15  ,v E  ) is bounded and 

continuous and 

Idet (H1  + FR)Ite>0 	for all i
'  v € 	

(5.47d) 

(e) A resistive network described by the hybrid equations (2.39) is 

single valued if the hybrid matrix 112  = Z(it, ,y„ )/aCy d e  is bounded and 

continuous and 

Idet (I + FRH2)I?e> 0 
	

for all v
0  i 
	

(5.47e) 

Proof 

A direct application of Theorem 3.2 to the corresponding dc equations 
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of a resistive network gives Theorem 5.8 

• Q. E. D. 

An interesting point related to the condition of eqn. (5.47e) is 

worth mentioning. Namely, if v 	and i E  are calculated from eqns. (2.28a) - 
and (2.28b) and substituted into eqn., (2.38) the hybrid equations are obtained 

in the following implicit form 

. 	. 
6  i

foP (-FOE v a
T  +e ,F 	+1 )= 0 

— 	— -13 	— 
vE  -ve (-FPE  v 6 +e (5 ' 	TiF+1E  = 0 — 	—  

(5.48) 

From eqn. (5.48) i 0  and v E are given as functions of e and I E 	and 

eqn. (5.48) is equivalent to eqn. (2.39). Using Theorem 3.4 sufficient 

conditions for a resistive network to be single valued is boundedness and con-

tinuity of the hybrid matrix H2  = a cia  Eva (via  ,ie) and 

Idet (I + H2FR)I? e > 0 	for all y0 ,ie 	(5.49) 

Note that the conditions (5.47e) and (5.49) have different forms and hence a 

question arises whether these two conditions are identical or not. In fact it 

can be shown that 

det (I + H2FR) = det (I + FRH2) 	 (5.50) 

since FR  is skew-symmetric. As skew-symmetric matrices are normal * and any 

normal matrix is unitarily similar to a diagonal matrix5, FR can be expressed as 

— FR = PTA P (5.51) 

Where A is a diagonal matrix containing characteristic roots of FR and 

* 	
— A matrix A is normal5  if A—T  A = AAT  , where A is the matrix obtained 

from A by replacing each element by its conjugate. 
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Using eqns. (5.51) and (5.52) we have 

det (I + H2FR) = det [ P(I + H2FA P) PTJ  = 
 

det [ I+ PH2I3TA 

and 	det (I+ FRH2)= det [ P(+ PTA PH2) FT] = 

= det[I+ A PH2FT] 

(5.53) 

(5.54) 

Applying the diagonal expansion of determinant and taking into account 

the fact that any principal minor of ( A PH2PT   ) is equal to the corresponding 

principal minor of (PH2P
T  .A. ) we arrive at eqn. (5.50). Therefore the condition 

(5.49) is identical to the condition (5.47e). 

The conditions imposed in Theorem 5.8 have a rather "mathematical" 

form and thus it is not easy to test them. We shall aim at developing .a set 

of more specialized criteria that ensure the existence and uniqueness of solution 

in a resistive network containing certain classes of elements and/or satisfying 

certain topological restrictions. 

The following theorem can be stated for resistive networks containing 

PDNEs and independent sources only. 

Theorem 5.9  

If a resistive network consists of PDNEs only it is a single valued 

resistive network regardless of the network topology. 

Proof 

Since all resistive elements in a network' are PDNEs the hybrid equations 



199 

can always be expressed in the form of eqn. (2.37) and the hybrid matrix 

H = a (v 	)/a(i vve  ), associated with the hybrid description of eqn. 

(2.36), is u. p. d. and bounded. The Jacobian matrix of eqn. (2.37) 

JN = a(e
6 
 )/a(i ,v—  ) is equal to 

J
N 

= (H + F
R
) 
	

(5.55) 

JN is u. p. d. because FR  is skew-symmetric, and it is bounded because H 
{e 

is bounded. Thus in eqn. (2.37) 7 is a GQLF of --1  and by Property 3 
_LE 	 v -E 

of GQLFs it possesses a unique inverse function. 

Q. E. D. 

Theorem 5.9 is a generalization of the result in Ref. 6 to the nonreci-

procal case; a similar result appeared as Theorem 5 in Ref. 7. The conditions 

imposed in Theorem 5.9 are very stringent as only PDNEs are allowed to be 

contained in a resistive network, but the topology is arbitrary. When not all 

elements in a network belong to the class of PDNEs, the elements which are 

not PDNEs have to satisfy certain topological conditions. To express the 

conditions ensuring that a given resistive network N is single valued all 

branches of N {BE; 	J  f are separated into three disjoint subsets7 
 as follows: 

Subset S • set of all branches of N {,3E' • 21. forming nonseparable connected 
J 

subnetworks with more than one branch. S1 is further partitioned 

into two disjoint subsets S and SE 1 with respect to a chosen 

tree of N, 

Subset S2: S2 = S p 2 U SE 2 where 

S p 2  is a set of branches which are self-loops of N f  hE; jf and 



(5.56) 

i02 " 
 

(5.57a) 
6 2- 

(5.57b) 

E 3 

where 

Z.2 

43 

 

Z2 

Z3 

- E 2 

3 

1E 3. 
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whose voltages appear as independent variables in the hybrid des-

cription, 

S 2 is a set of branches which are open branches of 

N RE; Bit and whose currents appear as independent variables in 

the hybrid description, 

	

Subset S3: S3 
	 3 	3 
=S US where 

S  3 is a set of branches which are self-loops of N {_be di and 
16   

whose currents appear as independent variables in the hybrid 

description, 

S 3 is a set of branches which are open branches of 

	

N 	E; bji and whose voltages appear as independent variables 

in the hybrid description. 

According to the above separation the hybrid description corresponding 

to all resistive elements can be written in the following partitioned form 

and 	)1.1  , > contain x ia 1  , — 1  , v e  , _ler  The hybrid matrix corresponding 

to the above hybrid description is partitioned in accordance with the above se- 



paration in the form 

201 

H= 3(K1q2q3)  

H11 H12 H13 
 

1121 H22 H23 

H31 H32 H33_ 

(5.58) 

The following theorem ensuring that a given resistive network is single 

valued can be stated in terms of the hybrid matrix given in eqn. (5.58). . 

Theorem 5.10  

A resistive network containing resistive elements with the hybrid 

description of eqn. (5.56) is single valued if 

(i) the corresponding hybrid matrix H (eqn. (5.58)) is bounded 

(ii) Idet H331e>0 	for all xi,12,)13  and 

(iii) (H11 H13H33
-1 

H31) is u. p. d. 

Proof 

By Theorem 3.3 the following hybrid description of resistive elements 

exists 

  

121 (I1 '12 '3).  

h2(x1 ' x2'3 ) — —— 

h3 —(11x2 /X3  ) —— - 

 

Yl  

z2 

  

 

(5.59) 

   

The hybrid matrix H' = at(hc, 1-1, 1-4)/ a (>14 ,12,4) is bounded and its 

submatrix Hi1  = al-i/a ll  is expressible by H as 

= H - H H 	 H 1 	11 	13 33 H31 (5.60) 
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Partition vectors e 	and i 	in accordance with the partitioning of resistive 

branches 

    

ep lE  1E 2 

1E 3 

  

Because of the partitioning of all resistive branches into subsets Si' S2 and 

S3 the matrix Foe.  , appearing in eqns. (2.27a) and (2.27b) has the form 

Fp  1 e 1 0 0 

E 
= 0 0 0 (5.61) 

0 0 0 

and by substituting eqn. (5.61) into eqns. (2.28a) and (2.28b) we have 

Iro 2 	 le 2 =
1E

2 
(5.62) 

(3 3 =2_ i 	I.  —E3 E3 

and using eqns. (5.57a) and (5.57b) 

e 0 2"  

?(2 =  
E 2 

ap 
(5.63) 

1 a 3 

(5.64) 

Therefore 

'.211. 211  211  0  3 d-E3)  

and the relation between xi  and xi  is a GQLF for all e 02,1e 2, e 3, 1,3. 

By Property 3 of GQLFs eqn. (5.64) can be transformed into the following 

form 

Y01 = Y01(10 li`Le 1'2132de 2'9(33'IE 	
(5.65) 

1E1 = 	 /2.1321E2/1 133de 3 ) 
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where H'11 = (lis 	e 1 )  is u. p. d. and bounded. The set 

of hybrid equations, corresponding to eqn. 	(2.45) has the form 

Y-(31(101 'lel 'Ep2d-e 2 ' 2-(3 Vie 3)  + Fr E 1 ICI 	-e-p 1 
(5.66a) 

-Fp 1e 1 IN 	-Le 1V-P l'Y-E 1 1-S(32de 2'2133'1E3) 	1e1 

The Jacobian matrix JN 	(b1 = 	a (e 	e1)/ca 	
(i 	 el(i 	,v 	) of eqn. (5.66a 

Fp 1 e 1 
JN  = H" + 11 

[ID 

-Fib le .1
T 	0 

(5.66b) 

As H11  " is u. p. d. and bounded and the second matrix on the r. h. s. of 

Q.E.D. 

The result of Theorem 5.10 can be given the following interpretation in 

network terms. If there are bR 
resistive branches in a network N, the set of 

all resistive elements represents a bR-port NR. Let all ports of NR  be classified 

into six disjoint subsets P r6 1 , P p  2 ,P 13  3,P e 1 ,Pe  2,PE 3 in accordance with the 

classification of all resistive branches into subsets S1' S2 and S3 (Fig. 5.7). 

Connect independent voltage sources to ports Pp 2  and 'Po 3  and independent 

current sources to ports Pe 2  and P e 3  in NR; then choose ports 1313 	e  .1  as 

ports of an (bp 1+b e 1
)-port resistive element N' (Fig. 5.7). When NR 

is 

voltage-controlled with respect to ports PA 2  and PO3 and is current- 

controlled with respect to ports Pe 2  and P a 3, then the resistive network N 

is single valued if in addition NR represents a PDNE. 

eqn. (5.66b) is skew-symmetric e 13 I] is a GQLF of [1161 for all ets2, 
1 	 -6 

ie 2' e 036 3 :and thus the resistive network in single valued. —  
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A useful corollary of Theorem 5.10 is concerned with a resistive 

network which contains PDNEs and PNEs. 

Corollary 5.4  

Suppose that a resistive network N contains PDNEs, PNEs and 

independent sources. Then, N is single valued if there is not more than one 

branch of each PNE in any connected nonseparable subnetwork of N {2E; 

which contains more than one branch*. 

Let us assume that all branches which are self-loops in N PE; 2jt are 

voltage-controlled and all branches that are open loops in N 2E; 2 di are 

current-controlled and thus the subset S
3 

is empty. If there is no coupling 

between branches SO1 
and S e 1  the conditions of Theorem 5.10 may be relaxed 

in the sense that the subnetwork N' in Fig. 5.7, derived from a given resistive 

network, is not necessarily a PDNE. 

Theorem 5.11 

Assume that in a resistive network N the resistive branches are coupled 

and 

(i) the branches of set S 02  are voltage-controlled 

(ii) the branches of S E 2 
are current-controlled 

(iii) i 1 61  v e 1  are expressed as: 

101 =1-1  (616LP11v (32'ie2) 
	

(5.67) 

=12 e1(1€1'Y-0 2'1•E2)  

* 
In other words the subset SI in N must not contain more than one branch 

of each PNE. 
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where h 
P1 	E I and h 	are of class CO). 

Then the resistive network N is single valued if in addition conditions 

(C1) and (C2) or (C1) and (C3) are satisfied simultaneously: 

(C1) h pl /avgl and 	61 	1 /a i 	are positive semidefinite (not 

necessarily symmetric) and bounded 

(C2) ah /ay pi 	 pi or DI- e1glei  are positive definite (not necessa- 

rily symmetric) 

(C3) a h i /av 	or ah /c)i el  are positive semidefinite and pi 	l — 
symmetric. 

Proof 

Using eqn. (5.67) the hybrid equations of the resistive network N are 

obtained from eqn. (2.46) in the form 

Y-(61 ÷ F (6 1e11 61(islif-(24E2)  = Ei61 

-F A le 1 ap 
/ 
Y-(lis-Spvie2)+1-ei =ie 1 

(5.68) 

where e 	IE  2  may be considered as parameters, Eqn. (5.68) has the same 

form as eqn. (3.64) and application of Theorem 3.7 gives the result of Theorem 

5.11. 

Q. E. D. 

Theorem 5.11 may be viewed as an extention of Theorem 1.1 in Ref. 8 

with respect to conditions (C2) and (C3). In Ref. 8, instead of condition (C2), 

h l 	 1 	al 	el /a v 	or ah /a i 	are required to be positive definite symmetric 
—is    

matrices, and instead of condition (C3) these Jacobian matrices are required to 

be diagonal positive semidefinite matrices; yet in Ref. 8 there is no requirement 
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for 	/av
1 
 and 	el 	i i 	to be bounded. 

In order to interpret the result of Theorem 5.11 in network terms 

two resistive subnetworks of N will be identified. Let the resistive network 

when viewed from ports PA 1  with ports P 
2 

connected to independent 

voltage sources and ports PE 2 
connected to independent current sources be 

termed N
1 
 (Fig.. 5.8a); the conditions at ports P E  may be arbitrary as 

branches PP 1 
are not coupled to branches P a v  Similarly, let.  the resistive 

network when viewed from ports P
E 1 	P 2 with ports P 	connected to independent 

voltage sources and ports P E 2 
connected to independent current sources be 

termed NE 1 
(Fig. 5.8b). By the condition (C1) imposed in Theorem 5.11 

N1 	a 1 and N 	are required to be PSDNEs. When both networks N P1 
and 

N C 1 
are nonreciprocal the resistive network N is single valued if at least 

one of them is strictly locally passive. When at least one of the networks N0  
1 

and N E 1 
is reciprocal N h single valued even when N

1  16 	
and N E 1 are 

 

both locally passive. 

An interesting conclusion can be derived from Theorem 5.11 for 

resistive networks containing gyrators. Such networks may not be single valued 

even when both branches of each gyrator lie in a tree or in its cotree. An 

example of a singular linear network is shown in Fig. 5.9, where a gyrator 

NR with the conductance matrix 	go.] is connected in parallel 

to a gyrator NR" with the conductance matrix G2  = -G1 . Thus the conduc- 
0 0 

tance matrix of the interconnected network is G =G1 
 +G

2 	
and the 

0 0 
network in Fig. 5.9 is singular. 

Our next result is concerned with a resistive network N containing 

PDNEs and different kinds of PSDNEs where PSDNEs satisfy certain topological 



H = 3(h ,h 	(i , 	) a 	—fta —Ea 	—pa v —ea 

0 

[-K
a
1   0 

(5.72) 

(5.73) where K 	/av 	-(ah 	)T 
Ka 
	 pa ea 	 ea —fta 
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conditions. PNEs can be included as well if there is not more than one 

branch of each PNE in any connected nonseparable subnetwork of Ni5E' • 2) f 

containing more than one branch. It is assumed that a tree T
R 

exists in N such that 

all voltage controlled PSDNEs, denoted as N 
a b

, lie in the cotree of TR 
and 

all current-controlled PSDNEs, denoted as N E b'  lie in T
R' 

Thus the hybrid 

descriptions of •N b  and Ne 
b  are 

!ft b = 11P b(Yp 

v 	= h 	(i 	) 
Eb —Eb—sb 

(5.69) 

(5.70) 

For the third kind of PSDNE, denoted as N
a
, we assume that the following 

three conditions are satisfied: 

(i) 	b pa, the number of branches of N
a 

lying in the cotree of TR , 

is equal to b
E 
 , the number of branches of N

a 
lying in T

R' 
 b 

a 
= b 

E a
, 

•  

(ii) N
a 

is voltage-controlled with respect to its tree branches and is 

current-controlled with respect to its links, 

v= h 	(v 	) 
—fta —a—Ea 

i 	= h 	(i 	) 
—Ea —Ea—pa 

(5.71) 

(iii) H
a
, the hybrid matrix of N

a
, is skew-symmetric 

and Ka is a square matrix. 



Note that when N
a 

is linear it corresponds to a bank of ideal 

transformers. 

There are no topological restrictions in N for PDNEs, denoted as N 

with respect to the tree TR 
links of N

c 
are denoted by N 

c 
 and tree branches 

of Nc are denoted by N 
E c

. 

If the resistive branches in N are numbered consecutively, starting with 

links 	and following with2) 	and then tree branches •
pa 	 pb' Pc 	 e a' e b' 

E c 
then Foe  , the submatrix of the fundamental loop matrix B, can be 

partitioned into the following 9 submatrices 

paea F (h a s 
, F 

(6 a e c 
F

1 
F
2 

F
3 

F 	= 
PE 

F
ibbea 

F
ObE b 

F
pipe c 

F
4 

F
5 

F
6 

F
OcEa 

F
pce

b 
 Fpccc 

F
7 

F
8 

F
9 

(5.74) 

In eqn. (5.74) both matrices are partitioned conformably; the last form will 

be used in the sequel for the sake of simplicity in notation. 

The following theorem gives sufficient conditions for a resistive network, 

described above, to be single valued. 

Theorem 5.12  

Suppose that a resistive network N contains PDNEs, Nc
, and PSDNEs, • 

•

N fib, N Lb, and Na  with the hybrid descriptions given by eqns. (5.69), 

(5.70) and (5.71), respectively and that the hybrid matrix Ha of Na 
(eqn. 

(5.72)) is skew-symmetric. Furthermore, assume that a tree TR 
exists in N such that 

all branches of N b  and all voltage-controlled branches of Na  lie in TR  but 
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(ii) det [H + I 	T Ha 
	-F

1 F

1 

0 
	e> 0 	 (5.75) 

0 
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all branches of N
PID and all current-controlled branches of N

a 
lie in its 

cotree. Then, N is single valued if 

(i) the hybrid matrices of all resistive elements are bounded 

(iii) either N 	or NE 
b  is reciprocal or Np b or N e b is strictly 

locally passive. 

Proof 

As N
c is a PDNE, the hybrid description 

—pc 	—pc—pc —6 c 

= i 	,v 	) —6c —Ec —Ec 
(5.76) 

exists. Substituting eqn. (5.74) and the hybrid descriptions of Na, N obi 

Nand N
c (eqns. (5.69)-(5.71),(5.76) into eqns. (2.24) and (2.25) the eb  

following set of hybrid equations of N is obtained 

      

h (v ) —(3a —e a 

Ypb 

V 
,v 	) ec- 

     

F
1 

F
2 

F
3 

F
4 

F
5 

F
6 

F
7 F8 F9 

 

—Ea 

h 	) 
eb—eb 

c 

 

—pa 

END  

e
—pc 

  

   

     

(5.77) 

F1
T 
 F4 F7

F7
T  

F2
T  F5T  F8I  

F3 F6F6
T F9

T
- 

    

    

    

    

 

h 	) —ea-0 a  
+ 

de b   

i 	,v 	) --e c—pc —E C 

 

le a 

ie. b 

C 
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where ie  and e p  are partitioned conformably to i a  and v p  . Denote 

the incremental conductance matrix of Np b by G 	1.1 • 	v 
(3 b = . --p b/  -pip and 

 

the incremental resistance matrix of N E
by R 	= D 

E b 
h 	/ ai • U similarly 

b 	Eb 	— 	— E 

let He be the hybrid matrix associated with the description of eqn. (5.76) 

KT KEE 

Using the notation for the hybrid matrices of Na, N b, N E b  and N
c
, 

the Jacobian matrix JN associated with eqn. (5.77) may be recast in the 

form 

H = a(v)/ 	,v ) = 
c 	 —Pc — ec 

{K
IT 

K 
(5.78) 

0 	
- - - 

-K a 
 T
-F

1 T 

- 
K +F _ 	 a 	1_ 

0 

0 F4 J
N 

- - - 
-F2

T  
0 

-4 	- - - 
0 

_ _ . 
F7 

-F 
3

T 0 

0 	F2Rcb: 0 F
3 

-F4
T
G

p b
:0 	1-F

7 	0 

1 	:F
5  R 	1  0 	F6 

•. _ 1 	eb , _ . 	___ _ - 	-I 

-F 
 T

G 1 
	T 

5 	ft b I 1 	1-F 	0 8 _ 

_0 
	

1  FA  RE oi  K  is (3 	
KPe +F9 . 	J _ 	_  _ 

-i-  - 	• 1 	
- __ 

-F6  Gob ; 0 	; Ke p y  — F—T  K EE 

(5.79) 

As all hybrid matrices appearing in JN  are bounded, JN  is bounded and, 

applying Theorem 3.2, N is single valued if det JN  > 
	> 0. Since 

o 

by condition (ii) in Theorem 5.12 

     

     

  

OF  F1  

0 

 

det H
a 

+ 

 

     

      

      

(5.80) 

Lemma 4.1 can be applied to det JN. Hence we have 



[1 	FR 
5 a b 

> 1 	 (5.83) det -F /TG 	0 
5 	13 b 
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det JN = det (Ka+F1 )
2 	

det 

:FiR 5 	el? 

-F ,5TG 	b 	
-• 	• 

I'J 

-0 
-F6

T
GP b'  0 

0 	:F' 6 • - 	- - 

8
T *  -F' 	• 	:0 

!pc? 	 1<te+F9' 

K6fh-F9  I K EE, 

(5.81) 

where F' = F 	F4  a  T+F T)-1F 
5 	5 4 a 1 	2 

F' = F6  - F4 a  T+F T)-1F 
6 	4 a 1 	3 

F' = F8 - F7 
a  T+F T)-1 F2 

	

7 a 1 	2 

F' = F - F (K 
T
+F 

T
)
-1

F 9 	9 	7 a 1 	3 

(5.82) 

Using condition (iii) it follows from the proof of Theorem 3.7 that 

Applying Lemma 4.1 to the determinant on the extreme right of eqn. (5.81) 

we have 
F'R 
5 E. b 

det JN = det (K +F a 1 det ,T -F G 5 Pb 

  

det M 

(5.84) 

where M is 

     

-1-
0  

T: -  -F' 0 8' 

      

     

R 
pi 
reb 

TG  
5 t31:i 

  

0 	-F' 
8 

+ 
_F6 	

0 

 

G 	I  0 

R e0   b. 
M'= Hc + 

0 	9 

T: -F9 0 

 

  

    

     

      

(5.85) 
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A close inspection of eqn. (5.85) reveals that M is u. p. d. since Hc 
is 

u. p. d. and (M - Hc) is positive semidefinite. Thus det M > el  > 0 and 

from eqn. (5.84) and using the inequalities (5.80) and (5.83) 

det JN > e2E
1 
> 0 

Therefore the condition (1) in Theorem 3.2 is fulfilled and eqn. (5.77) has 

a unique solution. Hence N is single valued. 

Q. E. D. 

Remark: Similarly to Theorems 5.10 and 5.11, Theorem 5.12 can be extended 

to be applicable to a resistive network N' containing network elements that are 

not PDNEs or PSDNEs; assume that N' 	E; 	consists of subsets 

S1 = S usE1 and S2 
	2 	E 
=S 	US

2  whereas subset S3 
is empty. As I ink 

voltages v2 	 E2 and tree branch currents i 	are determined directly by indepen- 

dent 	

— 

voltage and current sources respectively, only N"= N'i 2)E, .5152;. Brbe. 

which is a subnetwork of N' and where 	
and i 

E 
2 are parameters, has to —  

be sokied. The set of all resistive elements in N'forms an n'-port NR. The set 

of all resistive elements in N" forms an n"-port N" which can be obtained 

from N' as shown in Fig. 5.10. Only N" has to obey conditions imposed in 

Theorem 5.12 for N' to be single valued. PNEs can obviously be included in 

N' provided not more than one branch of each PNE belongs to the set Si  formed 

in 1•11 . 

According to Theorem 5.12 locally passive nonreciprocal PSDNEs such 

as gyrators may not lie both in the tree and the cotree. However by an 

additional topological constraint locally passive nonreciprocal PSDNEs may 

be placed both in the tree and the cotree. 
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Corollary 5.5  

Assume that in Theorem 5.12 the condition (Hi) is replaced by the 

following condition ( iv ): 

(iv) F4 
= 0 and F5 = 0 or F2 = 0 and F

5 
---- O. 

Then the result of Theorem 5.12 holds. 

Note that the condition (iv) implies that in the fundamental loop 

associated with any branch of .01.3b  there is no branch of 	 a 3 and beb, or that 

in the fundamental cut-set associated with any branch of BE I) there is no branch 

of h and 
pa 	Ob.  

So far some results concerning networks of PDNEs, PSDNEs and PNEs 

have been stated. However, Theorems 5.9 - 5.12 can be combined with the 

results on interconnections of network elements, as given in Section 5.2; in 

such a way it is frequently possible first to reduce a subnetwork Ni  in a given 

resistive network N into a PNE or PDNE or PSDNE and then apply one of the 

theorems or corollaries of Section 5.3. Another approach which is often useful 

is to reduce a given resistive network N into a PNE or PDNE with respect to 

the ports corresponding to voltage and current sources of N, and then prove 

that N is single valued going in the reverse direction from the reduced network to 

the original one. 

5.4 EXAMPLES  

In this section we shall present some examples to illustrate the usefulness 

of the theory developed in this chapter. Resistive networks containing PNEs 
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that may be locally active will be of special interest. Throughout this section 

we shall assume that each transistor represents a locally active three-terminal 

resistive element which corresponds to a PNE in all three orientations. 

Example 1:  

Consider the direct current regulator
9
, N, shown in Fig. 5.11a. Assume 

that Zener diode D is a two-terminal voltage-controlled resistor with monotonic 

characteristic and R1, R2 and R
L 

are two-terminal linear positive resistors. By 

Theorem 5.3 R1 and the transistor T can be substituted by a three-terminal 

resistive element N' which is connected to nodes 1,2 and 5 and it is a PNE 

in all three orientations. Then N' and D are reduced to a three-terminal resis-

tive element N'' which is positive in all three orientations. R2 and N" form 

a three-terminal positive resistive element N"'. When RL is added to N"' a 

three-terminal resistive element ✓V (Fig. 5.11b) which is positive in all three 

orientations is obtained. 

Since a hybrid description with v1 , i2  as independent variables exists 

for at, ill v2  (Fig. 5.11b) are defined for ✓ft. Retracing the steps from tift 

to N we see that voltages and currents at both ports of N''', N'' and N' 

are uniquely determined and N in Fig. 5.11a is single valued for all values 

of E. 

Example 2: 

Consider the multistage dc coupled transistor amplifier N consisting of , 

n identical stages as shown in Fig. 5.12a. We can show that N has u unique 

solution for any value of sources e, E1 , E2,...,En. Applying Theorem 5.3 
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several times the i-th stage N. of N, i = 1, 2, ..., n, can be reduced to 

a three-terminal resistive element Jr. which is positive in all three orienta- 
1 

tions and is connected to nodes i,i+1 and n+2. In this way the network 

shown in Fig. 5.12b is obtained. By Theorem 5.7 J1/ and %/If
2 
 form a 4-terminal 

PNE 	,2  and 43  represent a 5-terminal PNE and continuing this 

procedure we finally arrive at (n+2)-terminal positive resistive element 

,2,...,n+1 -`shown in Fig. 5.12c. Following the same argument as in 1  

example 1 we conclude that the network in Fig. 5.12a is single valued for all 

values of independent sources; this conclusion represents an interesting network 

theoretic result. 

Example 3: 

The resistive network N in Fig. 5.13a is a dc differential amplifier. 

Let R1 ,R2'.  .,R  7  be two-terminal linear positive resistors. Using Theorem 

5.3 R1 ,R2,R3  and T1  can be replaced by a three-terminal resistive element 

r1 which is connected to nodes 1,4 and 9 and which is positive in all 

three orientations; R
4'  R5 

 ,R
6 
 and T2 can be reduced to a three-terminal resistive 

element tAr2  that is connected to nodes 4,8 and 9 and which is positive in 

all three orientations. Thus N can be replaced by N' shown in Fig. 13b. 

Theorem 5.9 can be applied to N' to prove that N' is single valued. Note 

that all resistive elements in N' belong to the set 51 . In N'IbE; 	jf both 

ports of v/Ir are connected in parallel and this parallel interconnection can 

be replaced by a two-terminal resistor aY • using Property 1 of three-terminal 

resistive elements which represent a PNE in all three orientations we conclude 

that 	is quasilinear. Similarly ti2  can be replaced in NVE; PJ j; by a 
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quasilinear resistor X2. In this way N' {13 Ea) jf consists of 3 quasilinear 

resistors Xi'  ,./ri2  and R7  and by Theorem 5.9 N' is single valued. 

Example 3 is interesting from the following point of view: frequently 

theorems of Sections 5.3, ensuring that a network N is single valued, cannot 

be applied directly; but the network has to be reduced at first on the basis of 

the properties of the series-parallel interconnections until one of Theorems 

5.9 - 5.12 is applicable. 

Example 4: 

The resistive network -N, shown in Fig. 5.14, appears in the dynamic analy-

sis of the flip-flop obtained if voltage sources el and e2 
are replaced by two 

capacitors. Let R1 ,R2,...,R6  be two-terminal linear positive resistors. Since 

one branch of each transistor is a self-loop of N 	
E
;.5

J
f 	N is single valued 

by Corollary 5.4. 

Example 5: 

Consider resistive network N,- shown in Fig. 5.15a, where Na  is a linear 

ideal transformer, N 6 b  is a linear gyrator, D is a diode with voltage-controlled 

monotonic characteristic of class C(1) and of bounded slope, R1 and R2 are two-

terminal linear positive resistors. By Property 3 of PNEs subnetwork N1 
containing 

T1 and E1 represents a quasilinear two-terminal resistor N c 
 (Fig. 5.15b) between 

nodes 1 and 6. Applying Theorem 5.3 12, R1  and R2  can be reduced to a 

three-terminal resistive network N2 connected to nodes 5,6 and 9 and it is a 

PNE in all three orientations; N2 and J can then be reduced to a quasilinear 

resistor N 	between terminals 5 and 6 (Fig. 5.15b). Resistive network N'shown 
c 
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in Fig. 5.15b corresponds to N in Fig. 5.15a. A tree containing branches 

*E2' 	E1)-1 1  ';'1321 
 'ecc can be chosen in N' and thus Theorem 

5.12 is applicable for N'. Analysing the subnetwork N'Pe b, Be  c; 8(6b,-8/3c1 

it is easy to see that the inequality (5.75) is fulfilled. Since in addition N 	b  

is reciprocal, N' is single valued and thus N in Fig. 5.15a is single valued. 

5.5 SUMMARY 

In this chapter the problem of the existence and uniqueness of solutions in 

one-element-kind networks has been considered. The emphasis has been laid on 

resistive networks containing locally active multiterminal elements. 

In order to analyse such networks it is helpful to study the properties of 

the series-parallel interconnections of nonlinear resistive elements such as PNEs, 

PDNEs and PSDNEs. Particularly interesting results have been obtained for series 

(or parallel) interconnections of a three-terminal resistive element which is a 

PNE in all three orientations and certain two-terminal resistors with monotonic 

characteristics. In this way transistor networks can be reduced to a much simpler 

form where the existence and uniqueness is more easily studied. 

Sufficient conditions ensuring that a given resistive network is single valued 

have been stated for networks containing different classes of elements and/or 

satisfying certain topological constraints; thus such conditions are given in network 

terms rather than in "mathematical" terms and are applicable to many practical 

networks. A number of transistor networks is presented to illustrate the applicabi-

lity of the theory developed in this chapter. 
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Fig. 5.1. 	A parallel-parallel interconnection of two-port resistive 
elements. 

Fig. 5.2. 	Illustration of Property 2 in Section 5.1. 
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Fig. 5.3. Series parallel interconnection of an n-port N
1 and an 

m-port N2. 
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Fig. 5.4. 	Illustration of Theorem 5.2. 
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Fig. 5.5. 	Illustration of Theorem 5.3. 
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Fig. 5.6. 	Illustration of Theorem 5.7. 
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Fig. 5.7. Illustration of Theorem 5.10. 
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Fig. 5.8. 	Illustration of Theorem 5.11. 
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Fig. 5.9. 	Example of Section 5.3. 
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Fig. 5.10. 	Illustration of Theorem 5.12. 
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Fig. 5.11. Example 1 of Section 5.4. 
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Fig. 5.12. 	Example 2 of Section 5.4. 
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Fig. 5.13. 	Example 3 of Section 5.4. 
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. 5.14. Example 4 of Section 5.4. 
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Fig. 5.15. 	Example 5 of Section 5.4. 



Chapter 6 

STATE VARIABLE DESCRIPTION OF NONLINEAR RLC NETWORKS 

6.1 	INTRODUCTION  

The formulation of the normal form equations for a general nonlinear 

RLC network is discussed in Section 2.5 and is based on the concept of a 

1  
normal tree; two choices of potentially complete sets - 

[21 
 and 	

y_cr 

_14  

are considered. In this chapter we shall aim at developing criteria which 

ensure the existence of a unique solution of a nonlinear RLC network. 

Recently, a considerable attention has been paid to the problem of 

the reduced state variable formulation for nonlinear RLC networks. The idea 

is to reduce the order of the normal form differential equations which have 

to be integrated and in such a way the time necessary for the computation 

of the network response may be shortened. We shall discuss the reduced state 

variable formulation at the end of this chapter. 

6.2 THE EXISTENCE OF A UNIQUE NETWORK SOLUTION 
v 

In the study of RLC network we shall consider 	and ^t as a poten- 

tially complete set in order to be able to use the criteria developed in Section 

5.3. A number of workers have studied the problem of the state equations for 

nonlinear RLC networks. Some of them
1-6 i

nvestigated nonlinear. RLC networks 

231 
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containing two-terminal elements only. Others7-9 
placed severe restrictions 

upon the positioning of network elements which are not locally passive; 

namely, it is assumed for resistive elements that a normal tree exists such 

that (i) each voltage-controlled port of a resistive element forms a link and,  

the fundamental loop formed with respect to this link contains independent r 

voltage sources and/or capacitive elements only and (ii) each current-

controlled port of a resistive element forms a tree-branch and the fundamental 

cut-set defined by this tree-branch contains independent current sources and/or 

inductive elements only. Applying the results of Chapter 5 to the study of 

RLC networks we shall be able to remove the restrictions,of this kind for a 

large class of nonlinear networks containing locally active and/or nonrecipro-

cal elements. 

6.2.1 	Nonlinear RLC networks without dependent sources 

The first result concerning the existence of a unique solution will be 

stated in the mathematical form and Corollary 3.1 will be applied to the 

(C), (L) and (R) equations. It is interesting to observe that Theorem 6.1 

gives certain conditions which ensure not only the uniqueness of the network 

solution but the existence of a unique value of i 	currents through all 

capacitive elements, and vL ,  voltages across all inductive elements, in a 

network. 

Theorem 6.1  

Given an RLC (possibly time-varying)network f with the normal 

distribution of independent sources, a normal tree T
N and the implicit 



description of RLC elements in the form of eqns. (2.65a) - (2.65c), if the 

following conditions are satisfied: 

(i) the functions f 	i 	v 	v t) f (ii. i 13 , 	I ....Er I 	 f  

..f.c(v ae  ,vs  ,aot  ,qe,t) are of class C(o)  in t and of class C(1) in all the 

remaining independent variables, 

•Ze 

(ii) the Jacobian matrices 0 	 ) 3 	0 R/a 	v  v  e 	f —L/ a t ,i  

) and kfc/D (v ,v ,ace  ,q cr ), associated with the functions IR(•), 

f (•) and fc  (•) respectively, are bounded for all values of independent 

variables, 

(iii) the Jacobian det JC'  det JL' det JR associated with the (C), 

(L) and (R) equations (eqns. (2.68a) - (2.68c))respectively satisfy the following 

inequalities for all values of the corresponding independent variables: 

Foie  0 
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f 
,t) and 

det Jc=det ). 	> 0 	(6.1) 0 	0 	I 	-F„a- 

_c f 	f 	f _c __c  
v 	Dv,/  -6q j 	a 204  -04 

det J. =det 0 	0 	I 	-F 

34. 	alL  

T > e 	o 	(6.2) 
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• 

I0 F(3
8  

det JR = det 0 	0 	I 	-F 

J:1z  --R 
Dv av Di 

—€ 	--€ 

>63 •0 (6.3) 

  

(iv) all independent sources are continuous functions of t. 

Then, 	(a) [ S.  is the complete set 

(b) 	the normal form equation (2.73) written in terms of the complete 

[

set EL , exists and it possesses a unique solution for all t and all initial 

conditions. 

if conditions (ii) and (iv) are replaced by conditions (v) and (vi) 

respectively, 

(v) _V') and Ic(•) are of class C(1) in all independent 

variables, 

(vi) all independent sources are continuously differentiable functions • 

of t, 

then, in addition, 	currents through all capacitive branches, and 11, 

voltages across all inductive branches of the network ir are uniquely determi-

ned for all t. 

Proof 

From conditions (i) and (ii) it follows that the Jacobian matrices Jc, 

JL and JR associated with the eqns. (C), (L) and (R) are continuous and bounded; 

by condition (iii) det Jc  ''e > 0, det JL  > E 2  > 0 and det JR  E3  > 0. 

Thus all conditions of Corollary 3.1 are fulfilled and the equations (C), (L) 
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and (R) possess unique solutions for all values of vector [:1 , and all values 

of independent sources; moreover by Corollary 3.1 and condition (iv) the 

solutions of the (C), (L) and (R) equations are continuous functions of t and 

they have bounded partial derivatives with respect to q and F 	for all 

(a, y, t). Therefore all conditions of Theorem 1 of Ref. 7 are fulfilled and 

the differential equation (2.73) possesses unique solutions for all t and all 

initial conditions; these solutions may be continued indefinitely forward and 

backward in time, i. e. solutions with "finite escape time" are ruled out. 

When conditions (v) and (vi) are satisfied, clearly, ; 04  , 

I. bfc 	1 /a t, 	, 	f, /t 	are defined in eqns. 	(2.74) 
i- 

for 
i 

all 	I. 	Since by 

condition (iii) Jc  and JL  are both nonsingular, lc= -"x [ is determined from 
I(  

eqn. (2.74a) and ...,L  = 'Li' [ is defined from eqn. 	( 7.74b). 
p. 

(Q. 	E. 	D. 

Although Theorem 6.1 admits a' very general class of nonlinear RLC 

networks it is stated in an not easily applicable - mathematical -`form. From 

the point of view of the network theorist, it is desirable to express constraints 

on the existence of the network response in terms of the classes of network 

elements and the network topology. Using the results of Chapter 5 we arrive 

at the next two theorems. 

Theorem 6.2  

An RLC network ur containing (i) resistive, inductive and capacitive 

PDNEs and (ii) independent sources which are continuous functions of time and 
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are normally distributed is always determinate regardless of the topological 

[

structure. The set a 	is the state vector in I and given any initial state 

the network solution is uniquely determined in the future for all t. 

Proof 

Let us show that 
al 	

forms the complete set in ar 	The (R) 

equations can be written in the form similar to eqn. (2.37) 

v 	(i
Ar  v e 

 ) + F
Pe 

 v = 9 (1(t) - Fo6  v 

—Fibe 
Ti

(4 
+ i
-E 

 (i ,v e ) = i c (t) + FteT i t  — 
(6.4 

where the resistive elements in dr are characterized by the hybrid description 

(2.36). From Theorem 5.9 it follows that eqn. (6.4) has a unique solution 

1(5  = i 	(e p (t) - Fp 	v d ,le (t)+FteT T t )  

(6.5) . v = 1,e e 	(6 0) •••Fps y_ 	de  (t) + FreT  ,r) 

and 	is a GQLF of 2-(b(t) 	F(6cr v‘  . Therefore the Jacobian matrix, 

— e • 	 i e  (t) - FteT 

associated with the solution of the (R) equations, 

a - 	(e 0(0 - Foci  v 4- ,ie  (t)+ Frei.; e.) 

is u. p. d. and bounded. 

Since the capacitive and inductive elements are PDNEs, the following 

hybrid descriptions exist 



v = v (q ,v —a —ix — 
(6.6) 
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q 	= q (q 	v ) — cf 

(6.7) 
ji 	= 1, (i ,f—I  ) —  

l aot 	[ .2t  
where 

v 	
is a GQLF of 	and 

[a6 	 vi 	if  

The (C) and (L) eqns. can be recast in the form 

v ce(q ,v d ) + FS -- vcr ea(t) ——oe 	FS  
-F (Tq +q (q ,v 	= de az 	—0e 0 

y
t 	

,y )+ Fti  
- 

T. -Ft/ It  +.4 (i,i  ) =i(t 

 

is a GQLF of 

 

(6.8) 

(6.9) 

where analogously as in eqn. (6.4) [1°1 	(t)  is a GQLF of —0e and 
q [ 11_ d- 

and similarly 
[11 

can be obtained from eqn. (6.9) as a GQLF of[2. 	;.- 
..t.1 	 if(t) 

hence the functions 16  , v e  , i t, y cr  , appearing in the normal form equation 

(2.73), have bounded first partial derivatives with respect to q and Y' are 

continuous in t for all (q, y, t). Therefore all conditions of Theorem 1 of Ref. 

7 are fulfilled and given any initial state {a(to)] "(to) the state [ q(t) )9(t) is deter- 

mined uniquely in the future' for all t. 

Q. E. D. 

is a GQLF of 	V . Using the arguments of the proof of Theorem 
• 

-21 
5.9 it follows that [14.  can be obtained from eqn. (6.8) as a GQLF of -2.(t)  



238 

Bryant showed that an RLC network containing linear positive two- 
. 

v, 
terminal RLC elements is always determinate with 	7° as the state vector. [ 

It_ 

Theorem 6.2 may be viewed as a fairly general extention of Bryant's result to 

nonlinear RLC networks containing multiterminal (and possibly nonreciprocal) 

network elements. At the same time it is a generalization of Stern's result ' 

concerning RLC networks of quasilinear elements to the nonreciprocal case. 

An RLC network % which satisfies the conditions imposed in Theorem 

6.2 has the following additional properties which are worth mentioning: 

{ 
(i) the vector 	---v  e 	represents the complete set, 

it   
— 

(ii) if •independent sources in ,yr are differentiable functions of t, 

the normal form equation (2.87) exists, i. e. its r. h. s. is a continuous 

, 
function of v [ —° for all { " 	and 

-r 
(iii) i

C' 
 representing the currents through all capacitive branches, and 

vL , representing the voltages across all inductive elements, are uniquely determined 

if in addition independent sources in JP  are continuously differentiable functions 

of t. 

These properties can be shown in the following manner. Since the 

capacitive and inductive elements in I are PDNEs, the hybrid descriptions 

given in eqns. (2.76) and (2.77) exist and sic  and 4  are defined explicitly 

v 
in terms of 	—° 	(eqns. (2.79) and (.2.80)). From eqn. (6.5) i 	and v - E 

v 
are uniquely determined as functions of 

2/
1and thus 	represents 

the complete set. 	
ir 

 
( 

In order to show that the normal from equation (2.87) exists we havei 

-1 	 -1 
to prove that the functions Mt Kr  and Md- Kt/ , appearing in eqn. 
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[ 
(2.87), are continuous functions in 	. Analysing the expressions for 

—t- 
and Kd- which are given in eqn. (2.86) we conclude that Kt  and 

v 
K6 	are continuous functions of 	--"u and are continuous functions of t 

because a ot  (t) and i (t) are continuously differentiable functions of t. Mt  

is the Jacobian matrix of the function 

i  = [ I Fel] 4 (f 	T1 	r ) 	(6.10) 
Fti 

which is formed from 4(i t 	) (eqn. (2.77)). Since 4(i 3,i ) is a GQLF 

and 
 [

i] is of rank bt  , 	
o 

(i ,) is a GQLF of the vector i 	by Property 
Fty 	 —  

2 of GQLFs and 

	

= ach /a 	f 	 (6.11) t 	— 	— 

is u. p. d. 	and bounded; Ma.-
-1 	

is 	u. p. d. and bounded and thus 	M
-1

0 t) t- 
is a continuous function of i

0
,. . 	Similarly Mcr 	is the Jacobian matrix of the function 

Q (vs-) = [ 	I] 
—F4,1 

v 	) 	(6.12) 
1 

—cr 

which is formed from qC (v oe  v 1) 	(eqn. (2.76) and 

Md  	= aQ13 (v d ) 	 (6.13) 

is u. p. d. and bounded; Mil  is u. p. d. and bounded and thus it is conti- 

nuous in v 	. Therefore we may conclude that the functions M
1
K3. and 

Mcc 
-1

Kd- are continuous in [ 	for al I [ 11-1 and thus the normal form 
—t 

equation (2.87) exists. The existence of 	and v  can be deduced from __ --L  

eqns. (2.81) and (2.82) . 

However, there is another interesting point concerning RLC networks 

containing PDNEs only. The normal form equation (2.87) does not necessarily 
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fulfil the Lipschitz condition. This can be demonstrated by the following example. 

Consider an RC network, shown in Fig. 6.1, where the resistor R is linear and 

positive and the capacitor C is a nonlinear PDNE and its incremental capacitance 

Se  is given as: 

Co  (v6  ) = 1 + vd
1/3  

Cif  (vi) = 1. + (1/2)
1/3 

Co- (yd ) = 1 + (-1/2)1/3 

1 
For the network in Fig. 6.1 Ms- is equal to 

Mi 
-1

= Cd(yd.- )
-1 

= (1 + v d- 1/3
)
-1 

-1 
Differentiating Mcf 	with respect to ver. we have 

-2/3  
v 

dM -1
/dvi 

3(1+ ve 
1/3

)
2 

-1/2 	of  s 1/2  

vd. > 1/2 

v < -14 

-1/2 5 v s 1/2 . 

and dM4- 
-1

/dvo--.00 as v6-1. 0. Thus the normal form equation (2.87) written 

for the network in Fig. 6.1 does not fulfil the Lipschitz condition. 

When an RLC network kA(  contains network elements which are not 

PDNEs we can frequently use the results of Chapter 5 to test whether K is 

determinate. Since the (C) and (L) equations for the capacitive subnetwork 

Xi 0; 53R , Si., Bd l and the inductive subnetwork `
'I E' 

c, R;0 f 	are 

analogous to the governing equations of resistive networks the criteria of Chapter 

5 can be modified to be applicable for the capacitive and inductive case. However, 

for most networks of practical interest capacitive and inductive elements are 

PDNEs or even linear positive two-terminal capacitive and inductive elements; 

for this class of networks the only problem is the uniqueness of solutions of 

the resistive network urR which is formed from K (i) by replacing all its 
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capacitive elements by a set of independent voltage sources 	and (ii) by 

replacing all its inductive elements by a set of independent current sources 

A . As mentioned before the hybrid equations of J1 are the (R) equations. We 

shall therefore state the following theorem for RLC networks where capacitive and 

inductive elements are restricted to PDNEs for the sake of simplicity. 

Theorem 6.3 

Given an RLC network DIY if 

(i) capacitive and inductive elements in mare PDNEs, 

(ii) independent sources are distributed normally and they are 

continuous functions of time t and 

(iii) the resistive network tirR of tht  satisfies the conditions of one 

of Theorems 5.10 — 5.12 or Corollary 5.4 

then 	(a) J is determinate and its solutions are defined in the future for 

all t and 

represents the state vector. 

Proof 

Condition (iii) implies that the (R) eqns. have a unique solution 

described by eqn. (6.5)• i , v 	are functions of class CO 
E 	

). in e 	v , 

le  , i t  and have bounded partial derivatives with respect to els 	, 	. 
Since, in addition, the capacitive subnetwork tAff0; R , L, B.11 

and inductive subnetwork APE, SC'R; 	satisfy the conditions of 

Theorem 6.2 	forms the complete set and the normal form equations 

(2.73) exist. Using the arguments of the proof of Theorem 6.2 we conclude 
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that the solutions of eqn. (2.73) are uniquely defined in the future for all t. 

•Q. E. D. 

Note, that the condition (iii) of Theorem 6.3 can be replaced by the 

following condition: (i) ‘.irR  is single valued and 

(ii) i (3 , v 6  given in eqn. (6.5) satisfy the Lipschitz 

condition with respect to e ,v cf. ,j z 	t  . Thus, in the study of the existence 

of a unique network response of nonlinear RLC networks we may combine the properties 

of interconnections of resistive networks, described in Section 5.2, together with the 

results of Section 5.3. This method, although not systematic, could often be 

successfully applied. 

6.2.2 	Nonlinear RLC networks containing dependent sources 

The problem of the state variable description of nonlinear RLC networks 

containing dependent sources is more general and more difficult than the state 

variable characterization of nonlinear RLC networks without dependent sources. The 

difficulty present in the state variable formulation of nonlinear RLC networks con- 

taining dependent sources may be explained as follows. When 	is selected 

as a potentially complete set then in the case of networks without dependent 

sources the set of the (C), (L) and (R) equations has the property that the (C) 

equations represent an independent set of equations which can be solved 

separately; similarly the (L) equations form an, independent set of equations. The 

r. h. s. of the (R) equations depends upon v cr  and i 
3" 

 which are the solutions 

of the (C) and (L) equations respectively. Thus, speaking in physical terms, the 

analysis of an RLC network without dependent sources is reduced to the analysis 
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of its capacitive, inductive and resistive subnetworks. However, if controlled 

ai 
sources are present and  [ 	is chosen as a potentially complete set then, 

in general, the (R), (L) and (C) equations have to be considered together as 

one set of 2(b
R
+b

L
+b

C
) equations. For example, if there is a controlled 

voltage source E(x
R) and a controlled current cource J(xR)' where x

R 
is a 

voltage or current associated with a resistive branch, and E(x
R
) lies in a loop 

defined by a capacitive link and J(xR) lies in a cut-set defined by an inducti-

ve tree-branch, then the (C) equations and the (L) equations become "coupled" 

to the (R) equations and these two sets of equations are not independent any 

more. The analysis of sets of 2(bR
+b

L
+b

C
) equations becomes complicated 

and for nonlinear RLC networks with depedent sources it is more difficult to 

find topological conditions which ensure the determinateness of a given 

network than for nonlinear RLC networks without depedent sources. 

Nevertheless, conditions obtained for RLC networks without. dependent 

sources can be applied to RLC networks with dependent sources provided the 

positioning of dependent sources is restricted in such a manner that the inde-

pendence of the (C) and (L) equations is preserved
10,11. 

 NetWorks containing 

RLC coupled elements and dependent sources will be considered in this section. 

It will be shown that Katzenelson's results
11 

obtained for nonlinear RLC 

networks containing two-terminal elements and dependent sources can be 

extended to RLC networks containing coupled elements and dependent sources. 

It is reasonable to assume
3,10,12 

that dependent sources are not 

controlled by capacitive currents, lc, and inductive voltages, 4.. Furthermore, 

the set of all voltage sources 3E is partitioned into three disjoint subsets 

'$ E1' 3E2'*E3 and similarly the set of all current sources is partitioned 
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into three disjoint subsets hJ1' J2' J3 as follows*: 

'13E1 ( 3.31 ): the set of independent voltage (current) sources 

E2 ( J2 • )• the set of dependent voltage (current) sources 

which are controlled by the branches of the sets •Oc, -e l_  and 
3E1 only 

bE3 ( .J3): the set of dependent voltage (current) sources which 

are controlled by the branches of the sets .b
C' L' 

.13 and 0E2' El 

The following theorem gives sufficient conditions for a nonlinear RLC network 

containing dependent sources to be determinate. 

Theorem 6.4 

Let K. be a nonlinear RLC network containing independent and dependent 

sources where all sources are normally distributed. The network is determinate if 

the following conditions hold: 

(i) the network X* derived from dr by replacing each dependent 

source by an independent one satisfies the conditions of one of Theorems 

6.1 - 6.3, 

(ii) with respect to a normal tree TN 
of Jr dependent sources satisfy 

the following: 

(a) the fundamental cut-set defined by any _tree branch of the 

set .i 	
contains no capacitors and the fundamental cut-set defined by any 

tree-branch of the set 
..bE3 

contains inductors and current sources only, 

(b) the fundamental loop defined by any link of the set 3 J2  

This method of partitioning is very similar to the partitioning of sources 

used in Ref. 11. 
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contains no inductors and the fundamental loop defined by any link of the set 
• 

h contains capacitors and voltage sources only, J3 

. (iii) the dependent sources E
2' 

J
2' E3' J3 

 are functions of class 

with respect to the controlling variables, they have bounded first partial 

derivatives with respect to the controlling variables and are continuous functions of 

t; the independent sources El  and Ji  are continuous functions of t. 

Proof 

Since the sources are normally distributed a normal tree TN 
exists 

such that all voltage sources lie in T
N 

and all current sources form the links 

with respect to TN. We can now consider that the vectors eGe  ,e 	, 

appearing on the r. h. s. of the (C), (L) and (R) equations and e 	j 

appearing in the normal form equations(2.73), represent the effect of the 

independent as well as dependent sources. Using the topological condition 

(a) it is easy to see that e cx  depends upon the independent voltage sources 

Ei  only and e p dependes upon sources Ei  and E2. From the condition (b) 

it 	follows that If  depends upon the independent current sources J1  and 1E 

depends upon sources Ji  and J-.2.  However, the vector e , may depend upon r  
E i  , E2  and E3  and similarly the vector je• may depend upon J1 , J2  and J3. 

Therefore 	Lc  id , ie 	and if  can be expressed in the form 

= e oe  (E1 ) 
	

(z_11) 

(t1 
	

le =le (-'1'-12) 
	

(6.14) 

= 214 (El '!2'!,3) 
	

id = I( 	'12'13)  



246 

Since only the independent sources appear in e Oe  and i 	, the (C) 

and (L) equations do not change if controlled sources satisfying the conditions (a) 

this solution is substituted into the expressions for E2  and
4. 
 J2, these two sets 

of controlled sources are defined and thus the r. h. s. of the (R) equations is 
v 

[ determined. By condition (i) the (R) equations have a unique solution -11  . If 

the values for y , irc, IL, y4.1  vim, IR  are substituted into the expressions 

for E
3 
 and J

3'  e 
	and id- are defined and the r. h. s. of the normal form t 

equation (2.73) is determined. Since the differential equation (2.73) satisfies 

the Lipschitz condition, tAr is determinate. 

Q. E. D. 

6.3 	REDUCED STATE VARIABLE FORMULATION 

Let us assume that an RLC network possesses the normal form characteri-

zation 

= f (x,t) 	 (6.15) 

where x is the state vector containing n components. From the viewpoint of 

practical computation, however, it is much desirable for a set of differential 

equations, which has to be integrated, to have lower order than n if the same 

solution can be obtained. Such a set of lower order differential equations can 

indeed be obtained provided the function f(x,t) has certain properties to be 

specified in the sequel. 

and (b) are introduced in 	II . E2' 13  E3' $J2' 5J3 ' by condition (i) the (C) 

and (L) equations possess a unique solution -C1  and I  IL 	respectively. When [ 



Partition vectors x and f conformably as follows 

 

f1 

  

f  

 

(6.16) 

 

2. 

 

  

   

where x1 ' f1  are m-vectors and x
2'  f2  are (n-m)-vectors. Then eqn. (6.15) 1  — 

can be written in the partitioned form 

247 

.11 =;f1()!112,t)  

=±2(111121t)  

If the function f2  does not depend upon x1  and x2, 	e. 

x2 = f2(t)  

x2  (t) is obtained directly by the integration of eqn. (6.19) and 

?52(t)  = x2(0) 4-  jf2 (t)dt  
0 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

where x2(0) is the initial value. In general this integration is simple and would 

not require much computing time; frequently even analytic expressions available 

for 	f f
2  (t)dt. When the function x2  (t) is substituted into eqn. (6.17) we have 

the gollowing normal form equations 

?<1 =11(!1 ,x2(t),t) 
	

(6.21) 

and eqn. (6.21) represents the reduced state variable formulation13. It is now 

necessary to integrate the set of m first order differential equations. Thus, when 

f is' of a special form, such that f2  depends upon t only, we can expect 

that less computer time is required to integrate the normal form equations (6.21) 

of order m than the original state equations (6.15) of order n. However, it is 
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worth pointing out that x1  is not the state vector and eqn. (6.21) is not 

the state equation; x2(0) has to be specified together with x1 (6) to determine 

the network solution uniquely. 

It turns out that the reduced state variable formulation is possible for 

nonlinear networks containing capacitor and current-source-only cut-sets 

and/or inductors and voltage-source-only loops. The problem of the reduced 

state variable formulation for nonlinear RLC networks was considered by Ohtsuki 

and Watanabe
9 

and in more generality by Cahill
14

. Namely, in Ref. 9 it was assumed 

that there was no cut-set containing capacitors and current sources only and no loop 

of inductors and voltage sources only, but capacitor-only-cut-sets and inductor- 

only-loops were allowed. It is interesting to observe that in both papers
9,14 

 the 

initial value for the vector x2  in our notation was taken x2(0) = 0 and 

vector x1  was termed the state vector. 

,The reduced state variable formulation of an RLC network f is easily 

derived using the concept of the L-normal tree
9 

T
L 

where all voltage sources 

plus as many inductors as possible are branches of TL 
and all current sources plus 

as many capacitors as possible are linksof IL 
For a given RLC network Li/vectors 

1 and x
2 
 appearing in eqn. (6.21) can be obtained in the following manner 

First the normal tree TN 
(termed C-normal tree in Ref. 9) is selected in Le. 

Then a particular L-normal tree TL is chosen
9 

such that all inductive tree-branches 

of TN  are tree-branches of TL  and all capacitive links of TN  are links of TL. 

With respect to T
N 

and TL  all capacitive branches in I can be partitioned into 

three disjoint subsets: 

Sct  : the capacitive links of TN  

S 1 : capacitive branches forming tree-branches in TN  and 



S  t 2' the  
• inductive links both of TN and T 

S f : the inductive tree-branches in TN. 

Denote by boz  , bd- 	b 2, br 1 , b t2, bf  

respectively. Then9 	is equal in S S (1, Si 2, Sr 1 , Sit 2  and Sf  

the number of branches 
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capacitive links in TL  

Si. 2: the capacitive tree-branches both in TN  and TL. Similarly, all 

inductive branches in 	can be partitioned with respect to T
N 

and T
L 

into the 

following three disjoint subsets: 

S j_
1•• 

 the inductive branches forming links of T
N 

and tree-branches 

of T
L 

to the number of independent inductor and current sources only cut-sets PL , bt2  

is equal to the number of independent inductor and voltage sources only loops 

(A L , 104.2  is equal to the number of independent capacitor and current sources 

only cut-sets f c  and bce  is equal to the number of independent capacitor and 

voltage sources only loops (cc  in S. 

Kirchhoff's current law based on the fundamental cut-sets through capa-

citive branches S 01-2  in TL  can be written in the form 

[ I 	A d-1 
	

AJ (6.22) 

where A di , A a  are the submatrices in the fundamental cut-set matrix 

determined with respect to IL 
and 

1*cr2 
 is an 	bcf 2 -vector, the k-th 

component of which is the algebraic sum of source currents which appear in I 

the k-th fundamental cut-set through S4-2  in T
L
. Integrating eqn. (6.22) and 

introducing the variable q**(t) we have 



y0 **(t) = aL,2 +  A  ?,1.11-i + A 1 
=  f e*04 2 (t)dt+30**(0) - 

0 

t 

o fi*cr 2(t) dt + q** (0) 

0 	

.(6.23) 

250 

q**(t) a62  + A (rig 	+ Ace  

Where q**(0) is the constant of integration. It follows from eqn. (6.23) that 2.**(t) 

is a known function of time t. 

Dually, Kirchhoff's voltage law based on the fundamental loops of 

inductive links t2 in T.  can be expressed in the form 

[I A
tl 

  

= f2(t)  (6.24) 

 

   

    

where 
A3-1,  A 

	are the submatrices in the fundamental loop matrix determined 

with respect to TL  and e*
72 

is an b 
t2

-vector, the k-th component of which 

is the algebraic sum of sources voltages which appear in the k-th fundamental 

loop of S
7.2 in TL. Integrating eqn. (6.24) and introducing the variable s0**(t) 

we have 

(6.25) 

where e*(0) is the constant of integration and .9**W is defined by eqn. 

(6.25) for any. value of t. Note, that q** is the vector of cut-set charges 

and 9** is the vector of loop flux-linkages determined with respect to TL. 

According to the partitioning of sets Scr  = S 6  1  U S d2  and 

S 	= S
i 
 U Sf2' Fced- and F 	' representing the submatrices of the 

fundamental loop matrix which is determined with respect to TN, can be 

partitioned as follows: 
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Foed- 	= 

Fr7 	= 

Potentially complete sets [2E11 

{F,u8-1  

Fe"1 f 
- Fa-2 

and [--1 

F 62] 

contain 

(6.26a) 

(6.26b) 

(bc+bi.-1 	-bf  ) compo- 

nents. In order to derive the reduced state variable formulation of an RLC 

network the following set is selected as a possible state vector 

q* 

X = 

e.* 
** (6.27) 

where 

* 

a* = 	6. 1 - 'Tea laa 

yhk = 	+ 	if  Y24  

(6.28a) 

(6.28b) 

and q** and ,t** are given by eqns. (6.23) and (6.25) respectively. Thus a potenti-

ally complete set x contains: 

0) cut-set charges q* which are based on the fundamental cut-sets 

through blanches of Sol- and where the fundamental cut-sets are determined 

with respect to TN, 

(ii) loop flux-linkages .9* which are based on the fundamental loops 

formed by branches of S 	and where the fundamental loops are determined 

with respect to TN, 

(iii) cut-set charges a** determined with respect to all capacitive 

tree-branches in T
L 
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(iv) loop flux-linkages 2** determined with respect to all inductive 

links in TV 

Note, that all components of the vectors q* and sys* are contained in the 

vector 

 

T 
q s  - Fot q 

+ F y f 
and .y,**(t) can be calculated in advance from eqns. 

 

Because a** (t) 

(5.23) and (6.25) we can consider .that the vector x2  appearing in eqn. 

(6.21) is• 

  

2 (6.29) 

    

In order to obtain the reduced state variable formulation it is necessary to 

express all network variables in terms of the vector x given in eqn. (6.27) 

and then calculate 

xl = 

in terms of a*, 	q**, ** and t. Combining Kirchhoff's laws given 

in eqns. (2.63), the implicit description of network elements given in eqns. ,i  

(2.65) and (2.66), eqns. (6.23), (6.25), (6.28a) and (6.28b) and suitably 

partitioning the submatrices F.. appearing in eqns. (2.63), the following set 

of (C*), (L*) and (R*) equations which correspond to the (C), (L) and (R) 

equations is obtained 

q 6 1  - FIc0. 1 q0z  = q* 

2d2 1-,Acciq 61 	qoe = q** 
	

(C*) • 	(6.30a) 

voe  + Foe cr v 6-1  + Fucr 2NL 62  = .104  

fC(Ioe 'Id 1 	62' -9-o 'a or 1 'El or211")  = 0- 
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F3,9* 
g" lY  

I A atiZel yt2 	g A f = y** 	(L) 	• (6.30b) 

—Ft 1/2.11 ••' Fl.t 214'2 ÷if = 

flAti t2 f tZt 1 / 	,r5Z f y 

-Fpe v E = 	Fps- ‘,cf... 

-FL 4+ i e = 	FTate. 	(R)* 	(6.30c) 

fR (v 	13 ,v —e ,t) = 0 -  

Note, that the (R*) eqns. are identical to the (R) eqns. Once (C*), (L*) and (R*) 

eqns. are solved 4.,(92,2**), z.d..(a*,a**), 14.6 (2*,21**,a*,a**) and v e (p*,z2**, 

q*,a**) are, obtained; differentiating eqns. (6.28a) and (6.28b) with respecto to t 

and using eqns. (2.64a) and (2.64b) we finally get the reduced state variable formu- 

lation 	

A* = cr + FTp cf. 	+ 'r cr 
2* = 4e, d y cr 	Ftl~ v c 

	 (6.31) 

Note that the normal form equations (6.31) are of order 

d = (bc+bi.-b04 -bf -bt 2-b d _ 2) 

which corresponds to the order of state equations as defined in Ref. 9. The redu-

ced state variable formulation is useful when (b t2+bd. 2) is appreciable compa-

red to the number of components of the state vector q . 

6.4 SUMMARY 

In this chapter the existence of a unique network response has been 
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considered for a large class of nonlinear RLC networks containing coupled 

(and possibly locally active and/or nonreciprocal) elements. The results have 

been extended to a class of RLC networks containing dependent sources. 

Finally, the reduced state variable formulation has been discussed for a 

very broad class of nonlinear RLC networks. 



255 

6.5 	REFERENCES 

1 	Liu, R. and Auth, L. V., "Qualitative synthesis of nonlinear networks", 

Proc. 1963 First Annual Allerton Conference on Circuit and System 

Theory, pp. 330-343. 

2 	Desoer, C. A. and Katzenelson, J., "Nonlinear RLC networks", 

Bell Sys. Tech. J., vol. 44, pp. 161-198, January 1965. 

3 	Chua, L. 0. and Rohrer, R. A., "On the dynamic equations of a 

class of nonlinear RLC networks", IEEE Trans. on Circuit Theory, vol. 

CT-12, pp. 475-489, December 1965. 

4 	Brayton, R. K. and Moser, J. K., "A theory of nonlinear networks", 

Quat. Appl. Math., vol. 22, pp. 1-33, April 1964. 

5 	MacFarlane, A. G. J., "Formulation of the state-space equations for 

non-linear networks", Int. J. Control, vol. 5, pp. 145-161, May 1967. 

6 	Oh, S. J., Stern, T. E. and Meadows, H. E., "On the analysis of 

nonlinear irregular networks", Proc. of the Symposium on Generalized 

Networks, Politechnic Press, New York, pp. 653-682, April 1966. 

7 	Stern, T. E. "On the equations of nonlinear networks", IEEE Trans. 

on Circuit Theory, vol. CT-13, pp. 74-81, March 1966. 

8 	Holzmann, C. A. and Liu, R., "On the dynamical equations of 

nonlinear networks with n-coupled elements", Proc. 1965 Third Annual 

Allerton Conference on Circuit and System Theory, pp. 536-545. 

9 	Ohtsuki, T. and Watanabe, H., "State-variable analysis of RLC networks 

• containing nonlinear coupling elements", IEEE Trans. on Circuit Theory, 

volt• CT-16, pp. 26-38, February 1969. 



256 

10 	Auth, L. V. and Liu, R., "On the existence of the normal form 

for nonlinear networks at large with controlled sources"; Proc. 1964 

Second Annual Allerton Conference on Circuit and System Theory, pp. 

288-292. 

11 	Katzenelson, J., "AEDNET: A simulator for nonlinear networks", ProF.  

IEEE, vol. 54, pp. 1536-1552, November 1966. 

12 	Oh, S. J. "Analysis of nonlinear irregular networks", Tech. Report 

No. 96, Department of Electrical Engineering, Columbia University, 

New York, June 1966. 

13 	Hakimi, S. L. and Kuo, N., "The rank of .a Bashkow-Bryant A-matrix 

and a network characterization of the interdependence of the state 

variables", IEEE Trans. on Circuit Theory, vol. CT-13, pp. 331-332, 

September 1966. 

14 	Cahill, L. W., "On the selection of state variables for nonlinear 

RLC networks", IEEE trans. on Circuit Theory, vol. CT-16, pp. 

553-555, November 1969. 



257 

Fig. 6.1. 	Example of Section 6.2.1. 
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Chapter 7 

CONCLUSIONS 

7.1 	GENERAL CONCLUSIONS  

In this thesis, the formulation of the state equations for nonlinear 

RLC networks containing coupled elements has been considered from the point 

of view of analysis. The aim of the research has been to develop the criteria 

for the existence of a unique network response requiring only the knowledge 

of the network topology and the distribution of network element types. A 

particular emphasis has been given to the study of nonlinear networks containing 

coupled locally active and nonreciprocal elements. 

Since the crucial problem in the state variable formulation of non-

linear RLC networks is the existence of a unique inverse function of certain 

vector-valued functions the problem of functional inversion was considered in 

a great detail. Palais' theorem gives necessary and sufficient conditions for the 

existence-of the global inverse of continuously differentiable vector-valued 

functions. Unfortunately, it is not easy to apply Palais' theorem in nonlinear 

network problems. An easily applicable criterion ensuring global invertibility 

of a large class of vector-valued functions and based on the Jacobian of a 

given vector-valued function was proposed. This criterion was then used to 

establish global regularity of few classes of vector-valued functions, important 
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in nonlinear network theory, in a very simple manner. The concept of a genera-

lized quasilinear function possessing bounded and possibly nonsymrpetric u. p. d. 

Jacobian matrix and leading to the concept of a positive definite network element 

was introduced. 

It was assumed that network elements are characterized by the hybrid 

descriptions. The problem of transformations from one hybrid description into 

another was examined. The concept of a positive network element possessing all 

possible hybrid descriptions was introduced. It was shown that positive network 

elements, which may be locally active, represent a very good model for many 

practical active devices such as transistors and vacuum triodes. One of the 

significant properties of positive network elements is that they can be locally 

active only if they are nonreciprocal and another is that all possible hybrid 

matrices of a positive network element belong to the bounded matrices of class UP. 

Positive definite network elements, representing an extention of the 

concept of quasilinear elements to the nonreciprocal case and forming the most 

general passive counterpart of a one-to-one two terminal element, were introdu-

ced. These elements, representing a subclass of positive network elements, are 

strongly locally passive and all possible hybrid matrices of a positive definite 

network element are u. p. d. Series-parallel interconnections of network 

elements were studied and sufficient conditions were stated ensuring that the 

series-parallel interconnection of two network elements results either in a positive 

or positive definite network element. It was shown that the cascade interconnection 

of two two-port positive network elements results in a positive network element. 

The results obtained for interconnections of network elements have useful applica-

tions in the dc analysis of transistor networks. 
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Since the analysis of resistive, capacitive and inductive networks plays 

an imporant role in the analysis of RLC networks, the problem of the existence 

of a unique solution for one-element-kind networks was thoroughly studied. Seve-

ral theorems regarding the conditions for the existence of unique solutions of 

resistive networks which contain different classes of elements have been presented. 

It was shown that a resistive network with the normal distribution of independent 

sources and containing positive definite resistors only possesses a unique solution 

regardless of the network topology. The applicability of the results obtained in 

the study of one-element-kind networks was illustrated on a number of examples 

of transistor networks. 

Bryant's method of writing Kirchhoff's laws has been adopted. A potenti-

ally complete set of network variables was selected on the basis of a normal tree. 

Several criteria concerning the existence of a determinate response of nonlinear 

RLC networks and based on the network topology have been derived. It was shown 

that these criterial are applicable for a class of nonlinear RLC networks with 

dependent sources provided dependent sources satisfy certain topological restricti-

ons. The problem of the reduced state variable formulation was considered for a 

general class of nonlinear RLC networks. 

The work carried out in this thesis has led to better understanding of 

resistive as well as RLC networks containing nonlinear locally active elements and 

the network theoretic results obtained have justified the introduction of positive 

and positive definite network elements. 
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7.2 	FUTURE RESEARCH 

A number of points in this work could be extended for future research. 

(a) Theorem 5.3 'in Chapter 5 is concerned with interconnections 

of a three-terminal resistive element representing a positive network element in 

all 3 orientations and a two-terminal voltage (or current) controlled resistor with 

a monotonic characteristic. It is conjectured that the result of Theorem 5.3 

can be extended to (n+1)-terminal resistive elements which are positive network 

elements in all (n+1) different orientations. 

(b) Algorithms for dc analysis of nonlinear resistive networks are usually 

restricted to networks containing quasilinear elements only. For the purpose of 

the state-variable analysis of nonlinear RLC networks it appears to be useful to 

develop efficient algorithms for dc analysis of resistive networks allowing•  

different types of network elements. 

(c) Several topological criteria for the existence of a unique 

solution for one-element-kind and RLC networks have been presented in this 

thesis. By combining the results concerning the properties of interconnections 

of network elements and the topological criteria a very large class of nonlinear 

networks can be tested by inspection regarding a unique network solution. 

However, it appears to be useful to develop a systematic method for checking 

uniqueness of network solution using computer. 

(d) In this thesis it was proved that an RLC network containing 

positive definite elements is always determinate regardless of the network topo-

logy. It may be useful to introduce the class of positive definite RLC n-port 

networks possessing the property that an arbitrary interconnection of the networks 
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of this class results in a determinate RLC network. 

(e) The author has not succeeded in proving Theorem 3.2 using 

Palais' theorem. It should be possible to prove that the conditions of Theorem 

3.2 imply the radial unboundedness of a function f(x). This could lead to a 

simpler proof of Theorem 3.2 than the proof reported in this thesis. 

(f) Study of stability of nonlinear RLC networks containing positive 

network elements could be of a great interest. 
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