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ABSTRACT

In this thesis, the application of state variable theory to the analysis of
nonlinear networks is considered, with the aim of obtaining conditions for the
existence of the normal form for a broad class of nonlinear RLC networks con-
taining locally active and/or nonreciprocal coupled elements.

The problem of functional inversion of vector-valued functions, represen-
ting one of the key problems in the state variable formulation of nonlinear RLC
networks, is examined. A compact and easily’applicable criterion for the existen-
ce of a unique inverse of an import.cmf clags of vector valued-functions, reffered to
as globally regular functions, is derived.

The analysis is basgd on the characterization of network elements in
terms of fhé hybrid descriptions. A class of resistive, capacitive and inductive
positive network .elements, possessing all possible hybrid descriptions and
representing a very good model for a large clas; of locally active elements, is
introduced. It is shown that positive network elements possess mcmy. interesting
properties. A class. of positive definite network elements which are strongly
locally passive and form a subclass of positive definite network elements is
infroduced also. (n+1)-terminal network elements representing positive network
elements in all different orientations are discussed. Properties of series-parallel
interconnections of positive, positive definite and certain other network elements
“are studied. The existence of a unique solution of one-element—kind networks

containing locally active and/or nonreciprocal coupled elements is considered



and a topological cpprodch is taken.

The problem ‘of setting up the normal form equations for non‘linecr RLC
networks with the normal distribution of independent sources is excmined.
Sufficient conditions for the existence of a unique network response are given

for a broad class of nonlinear RLC networks.



ACKNOWLEDGEMENTS

The author wishes to express his deep gratitude to his supervisor Dr. R.
Spence of the Electrical Engineering Depariment, Imperial College, London for
his encouragement and guidance during the course of this work. He also wishes
-to thank Professor |. Vidav of the Department of Mathematics, University of
Ljubljana and Professor P. R. Bryant of the Department of Electrical Eﬁgineerin'{g,
University of Waterloo for their interest, sugéestions, and advice given during |
the course of this work and Dr. A. Suhadolc of the Depqrtmeﬁf of Mafhemafics;,
University of Ljubljana for helpful discussions. Thanks are also due to his many
colleagues in the Circuit Theory Laboratory, in particular Drs. E. J. Purslow
and V. Arandjelovié for their interest, encouragement and discussions .

Financial support provided by the Ministry of Technology in the form
of a research contract is gratefully acknowledged, as also is the scholarship
given by the University of Ljubljana and Bolris'K'idrié Foundation, Ljubljana,

Yugoslavia.



TABLE OF CONTENTS

TITLE

ABSTRACT ’
ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF PRINCIPAL SYMBOLS
LIST OF PRINCIPAL SUBSCRIPTS

LOCATION OF FIGURES

CHAPTER 1: =~ INTRODUCTION

1.1 MOTIVATION

1.2 THE CCNCEPT OF STATE

1.3 HISTORICAL BACKGROUND
1.4 AIMS AND LAYOUT OF THESIS
1.5  STATEMENT OF ORIGINALITY

1.6 REFERENCES

CHAPTER 2: PRELIMINARIES

2.1 INTRODUCTION -

2.2 NETWORK ELEMENTS

2.2.1  Characterization of network elements

2.2.2 Reciprocity, passivity and local passi-

vity of network elements

12

13

14

14
15
18

25

28

31

35

35

35

35

35



2.3 NETWORK TOPOLOGY

2.4  INTRODUCTION TO THE ANALYSIS OF
ONE~-ELEMENT-KIND NETWORKS

2.5 INTRODUCTION TO THE FORMATION OF
THE STATE EQUATIONS FOR NONLINEAR
RLC NETWORKS
2.5.1 Basic concepts
2.5.2 Selection of the complete set

2.6 REFERENCES -

CHAPTER 3: FUNCTIONAL INVERSION AND

GLOBALLY REGULAR FUNCTIONS

3.1 FUNCTIONAL INVERSION
3.1.1  Conditions for global reéulurity
3.1.2 Functions possessing "partial" inverses
3.1.3 Implicit functions

3.2 SOME CLASSES OF GLOBALLY REGULAR

FUNCTIONS

3.2.1 Class of strongly monotonic functions
3.2.2 Generalized quusili‘:near ft;néfions
3.2.3 Functions with uniformly Hadamard

Jacobian matrices

3.2.4 Two other classes of globally regular

functions

47

53

61

61

67 -

81

85

85

. 87

100

104 |

107

m

113

117

119



3.3

3.4 SUMMARY

3.5 REFERENCES

CHAPTER 4: POSITIVE NETWORK ELEMENTS

4.1 POSITIVE NETWORK ELEMENTS AND THEIR
PROPERTIES

4.2 EXTRAPOLATION OF NETWORK ELEMENT
CHARACTERISTICS

4.3 SPECIAL CLASSES OF POSITIVE NETWORK
ELEMENTS
4,3.1  (nt1)~terminal elements representing posi= -

tive network elements in all orientations

4,3.2 Positive definite network elements
4.3.3 Hadamard network elements o

4.4 SUMMARY

4.5 REFERENCES

5.1

5.2,

SIMULATION OF ALGEBRAIC EQUATIONS

BY DIFFERENTIAL EQUATIONS

CHAPTER 5: THE ANALYSIS OF ONE-ELEMENT=KIND

NETWORKS
INTRODUCTION
SERIES-PARALLEL INTERCONNECTION OF
NETWORK ELEMENTS |
5.2.1 vThe series-parallel interconnections resulting

in a positive network element

125
131

133

- 137

138

151

156

156

161

167

167

169

174

174

178

182



5.2.2 The series-paralle!l interconnections resul-
ting in a positive definite network element

5.2,3 Special cases of the series—parallel inter=-

connection
5.3 THE EXISTENCE AND UNIQUENESS OF SOLUTI-
ONS OF ONE=ELEMENT-KIND NETWORKS
5.4 EXAMPLES
5.5  SUMMARY
5.6 REFERENCES
CHAPTER 6: STATE VARIABLE DESCRIPTION OF
NONLINEAR RLC NETWORKS
6.1 INTRODUCTION
6.2 THE EXISTENCE OF A UNIQUE SOLUTION
6.2.1  Nonlinear RLC networks without
dependent sources
6.2.2 Nonlinear RLC networks containing
dependent sources |
6.3 REDUCED STATE VARIABLE FORMULATION
6.4 SUMMARY
6.5  REFERENCES
CHAPTER 7: CONCLUSIONS
7.1 GENERAL CONCLUSIONS
7.2 FUTURE RESEARCH

188
190

193
213
217

218

231

231

231

232

242
246
253

255

258
258

261



LIST OF .PRINCIPAL SYMBOLS

Much of the work of this thesis involves the use of matrix algebra and
it is necessary to distinguish between matrices, vectors and scalars. The general
rule used is that matrices are represented by capital letters, ve;cfor.s by lower
case letters which are underlined and scalars by lower case leftérs.Ano'ther
convention used is tHaf A.r is the tr;xnsbose of A.

An attempt has been made to keep the meaning of symbols constant
throughout the thesis. Where this has not beeh possible the meaning is obvious .

from context, and this is also to be true for symbols not in the list below.

Symbol Definition | ‘ . firsf used on ;laage.
B fundamental loop matrix | 48
b number of branches ' 49
@C ‘'set of capacitive branches 52
BE set of voltage sources } 52
3_, set of current sources 52
%L set ofl inductive branches 52
BR set of resistive branches | 52
C . incremental capacitance matrix 43
e vector of voltage sources } 53
E voltage source vector in a network . 52 .
i(') vector-valued function | 15



GQLF

[

N{ﬁq;ab}

PDNE
PNE

PSDNE

| X

inverse of a vector valued function
incremental 'conducfance’ matrix
indefinite incremental conductance
matrix

generalized quasilinear function
hybrid description

hybrid matrix

Hademard network element

current

current vector

identity matrix

vector of current sourc’es

current source vector in @ network
incremental inducfoﬁce matrix
network derived from .a network N

by contracting all the branches of

ﬁa and removing all the branches of ﬁb

positive definite network element

positive network element

positive semidefinite network element

charge

charge vector

fundamental’ cuf-sef‘ matrix
incremental resistance matrix

n~dimensional Euclidean space

10

85

42

157

113

37

41
167
36

36

" 50

53
52

42

52
161
139
175 .
19
9
’4_8
42

17



incremental elastance matrix
time

tree of a network

L-normcnl tree

normal tree

uniformly positive definite
uniformly Hadamard

UP (matrix)

voltage

voltage vector

inverse incremental inductance

mafrix

number of nodes in a network

flux~linkage

flux=linkage vector

43

11

15,

49

248

- 68

109
109
139

36

36

42

49
19

19



subscript

R

Q= ™

LIST OF PRINCIPAL SUBSCRIPTS
subscripts refer to

capacitive elements
voltage sources
inductive elements
current soﬁrces

resistive elements
capacitive links
resistive links

inductive links
capacitive tree-branches
resistive tree-branches

inductive tree~branches

12

first used on page

]O.
52

39.
52

36

'6\8

| 54

68

68
.54

- 68



Figure

2.1
2.2
2.3
2.4
2.5
3.1
4.1
4.2
4.3
4.4
4.5
4.6
5.1

5.2

LOCATION OF FIGURES

Page

83
83
83
84
84

136

171

171

172

172

173

173

219

219

Figure

5.3
5.4
5.5
5.6

5.7

5.8

5.9

5.10

5.12
5.13
5.14
5.15

6.1

Page

220

221

222
223
224
225
225
226
226 .
227
228
229
230

257

13

S =



14

Chapter 1

INTRODUCTION

1.1 MOTIVATION

Early investigations into nonlinear networks were limited to isolated
classes of networks. Some special methods were deyeloped to analyse sdcb
networks. The usual restrictions placed upon nonlinear networks were either
that nonlinear elements possessed characteristics with a small degree pf non=-
linearity, or that -the order of a system was very low. Much work was done
on the phase plane analysis of second order systems. The differénﬁal equations
of Van der Pol’s type, describing self-sustained or forced oscillaﬂons in .
nonlinear systems, received special attention. Frequen\;l'y the analysis, perfor-
med on very simple network models, was carried out in order to explain fEe
basis of operation of a nonlinear network, but the proper design of a network','
requiring.. a more complicated network model, was rendered impossible in most
cases.

The inherent difficulty, present in any nonlinear netv&ork‘cnqusis, is that
with small exceptions analytic solutions of .nonlinear differential equations, which
mathematically describe nonlinear dynamic systems, cannot be obtained; it is
therefore necessary to resort to numerical methods of some kind to calculate

. ' : l
network response. With the advent of digital computers, the numerical solution
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of differential equations presents no problem in most cases. This stimulated
active research in the field of nonlinear networks at large, definc;d by Liu
and Auth] as networks with an arbitrary degree of nonlinearity and no limi-
tation on the number of elements.

A fundamental problem in the computer aided analysis of nonlinear
networks is to find a suitable characterization. Contrary to the situation in li-
near network theory, where the analysis can be performed either in the frequ-
ency or the time domain, nonlinéar networks at large can only be analysed in
the time domain. It has now been generally recognizedz-5 that a basic step
in the resolution . of nonlinear network problems is to réduce the sysfém of
algebraic and differential equations, which govern the behaviour of the network
to the normal form differential equation, x = f(x,t), where x represents the
complete Sefs which uniquely defines all network variables.

The merits of the normal form characterization stem from the fact that
such a representation is most amenable to the study of the existence and
uniqueness of network response. Similarl{y some other qualitative properties of
network behaviour such as stability and boundedness of network responseé,
existence of self-sustained. oscillations, etc. can be deduced from this cha-
racterization.. As a matter of practical concern for computer aided analysis, most
numerical methods for solving differential equations assume that differential

equations are given in the normal form.

1.2 THE CONCEPT OF STATE
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State concepts which are fundamental in modern system theory evolved
from the classical. theory of dynamics of particles and rigid bodie;7. Intuitively,
the state of a system may be considered to be an independent set of system
variables, which must be specified at time t=t_ in order fo be able to predict

uniquely the future behaviour of the system. More formal definition of the state

7
4

of a system can be given as follows8.

The state of a system is a minimum set of numbers (called state varia-
bles) which contain sufficient information about the history of the system to allow
computation of future behqviour.

To express the definition of state in maﬂ'.nemofical form, some notation
is needed. Consider a system S and associate with it a set of il;\pr variables,
denoted by the vector u, and a set of output variables, denofea by the vector
- y. The input and output vectors are assumed fo be functions of time t. The set
of all possible values which the vector U can assume at time t is called the
input space. In a similar way, the output space is def.ined as the set of all
possible values which the vector y assumes at time t.

Let a set of n state variables be denoted by the vector x. The state
space. is then defined as the set of all possible values which the state vector
X assumes af time t.

We are now in a position to express a definition of state in terms of
the state vectorl X, the input vector u, and the output vector y. The definition

of state implies that the state vector x can be written in the general form

’

«0 = B gu) a.n-

where F (*) is a single valued . function of its arguments. Eqn. (1.1) is called
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the state equation of the system S and it indicates that the future state of a

system is uniquely determined by the state at time ty and the known input u(t)
for t» tr and is independent of values of the state and input before b

The output equation is defined abstractly as
y(t) = Gx(t), u(t)) (1.2)

where again G(*) is a single valued function of its arguments. Eqns. (1.1)
and (1.2) constitute the state equations of the system S.

Let a system S be described by a set of ordinary differential equations

in the normal form
% = f(x,u (1),1) R (1.3)

such that eqn. (1.3) possesses a unique: solution for given initial conditions
)-i(fo) and the excitation from A onward. Then the vector x in eqn. (1.3)
qualifies as the state vector and eqn. (1.3) is termed the state equation in
differ'enﬁal form9 of system S.

The state of a system at time t is characterized by a point x in an
n-dimensional state space. For any )i(to) and given u(t), the differential equa-
tion (1.3) defines trajectory in the state spacey the uniquéness of solution of eqn.
(1.3) ensures that there is only one trajectory passing through any point x, i. e.
given.any initial state ’.i(fo)' the fufure.ri(t) is uniquely determined in the future.

| A set of state variables of 6 given system .is not unique. Suppose that
an n-vector x from an n-dimensional Euclidean space R" is a state vector. We
may take an n-vector x| given by X3 - x; = X (x) as another state vector
provided that for every x) & R"  there corresponds a unique X € Rh and vice

versa.
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1.3 HISTORICAL BACKGROUND

Although the field of nonlinear system analysis has a Iong. history, it
has been only in relatively recent times that appreciable interest has been
shown in the formulation of a general theory for nonlinear electrical nefworkslo—w.

In 1957 BushkowjIé infroduced a new network characterization in terms of
the A matrix. He gave a method for the formulation of a minimal set of first
order differential equations for linear time invariant RLC networks. The method was
unnecessarily complicated as it required. the inclusion of an extra reactive element
for each excess® capacitor or inductor in order to simplify the elimination pro-
cedure.

In 1959 iBryanf]7 presented a'systematic treatment of the problem of the
state-variable characterization of linear passive RLC networks. He defined the
order of complexity of an electrical network as being equal fo the dimension o&’
the state vector. The approach is fopﬁlogical and is based on the selection of a
particular tree, usually referred to as normal freels.. It was shown that the sefl |
.of capacitor voltages associated with a normal tree and inductor currents
associated with the corresponding cotree always defines a state vector for networks

containing linear, passive, time invariant . RLC elements without coupling. Later

the explicit normal form was given for this class of networks

%
Any capacitors and inductors which prevent the formation of a proper tree

16 16 . -
are called excess ; a proper tree ~ of a network contains every capacitive
element of the network or every capacitive element plus resistive elements

(but no inductive elements).
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Subsequently Bryant’s approach has been extended to the case of linear,
active time invariant networks, linear time-varying networks and nonlinear
networks,

In regard to nonlinear network the first pclper2 to consider the problem
of the normal form characterization for networks containing two~terminal
elements appeared in 1963. Sufficient conditions for the existence of the normal
form were given for a class of networks containing nonlinear resistors with
strictly monotonic characteristics. Later the same authors treated nonlinear
networks with controlled sourceszo subject to certain topological constraintsy
Palais’ fheorem2] on global inverse mapping was applied to obtain a sufficient
condition for the existence of the normal form characterization of this class of
networks.,

Independently and almost simultaneously Sfern5'22, Desoer and Katze-
nelson4 and Chua and Rohrer3 have all proposed methods for the formulation of
normal * form equations for .differenf classes of nonlinear networks.

In Ref. 4 nonlinear RLC networks containing two-terminal elements were
treated and elem'enfs“ with nonmonotonic characteristics were allowed. The
-dependent- variables of the normal form were cut-set charges g and loop
flux=linkages ¥ defined with respect lto fundamental cut-sets through capacitive
branches of the normal tree and fundamental loops of inducfive branches in the
normal cotree. Sufficient conditions were s;fafed for a network to be determinate,
i. e. fo possess a unique response for arbitrary initial conditions and given

distribution of independent sources. Such conditions are of two kinds:

a) network elements with nonmonotonic characteristics have to satisfy

certain topological conditions and
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b) network element characteristics have to satisfy suitable Lipschitz
conditions.

Chua and Rohrer23 introduced parametric representation of nonlinear
network elements and gave a method for formulation of dynamic equclfions3 in
the normal form. The dependent variables appearing in the normal form equations
are a set of characteristic parameters associated with capacitors in the normal
tree and inductors in the normal cotree.

Stern5'22 studied the normal form description of nonlinear RLC networks
containing coupled elements. .The concept of the complete set of network varia-
bles, defined in this work, is an extention of Bryant’s complete set of dyna~
‘mically independent variables 7 containing only branch voltages and currents as
its elements. The class of quasilinear network elements = reciprocal and locally
passive elements*‘ - was infroduced With respect to a normal tree a sef of cut-
set charges g and loop flux-linkages ¥ was selected as a possible complete set
of network ’;/aricbles. In order to determine whether the set (g, y) is complete
or not it is necessa'ry to examine the existence and uniqueness of solufion of
three differenf one~element-kind networks: resistive, inductive and capacitive.
These three networks are described by three sets of algebraic equations referred to
as (R), (L) and (C) equations respectively. The question of the existence and
uniqueness of solutions for these sets of equations was resolved and some compu-

tational schemes were proposed for the following classes of networks:

*
Definitions of reciprocity and local passivity of nonlinear elements will be

given in Chapter 2.
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(i) networks containing quasilinear elements,
(ii) networks solvable by contraction mapping techniques and

(ifi) linearly reducible networks.

A significant result was obtained for networks containing resistive, capacitive
and inductive quasilinear elements only; it was provéd that this class always
possesses the normal form description regardless of network topology.

At approximately the same time Brayton and Moser24 investigated corﬁplete
networks = a special class of linearly reducible networks = using the concept of
mixed pof;ntial function. Some interesting stability results were obtained. In Ref.
25 the link between the parametric approach and the Brﬁyfon- Moser approach
was provided and in Ref. 26 criteria for the existence of the normal form of
complete networks were given.

Besides Stern’s work ’a number of papers treating the normal forh charac-
terization of nonlinear RLC networks containing coupled elements have appeared.
The tutorial paper by Kuh27 and the review paper by Kuh and Rohrer]8 were
devoted to the problem of setting up the normal form equations generally.
Holzmann and Liu28 extended the parametric represen;aﬁon to coupled elements

and combined techiques suggested in Refs.. 3-5 and 17. Two choices of the

dependent variables of the normal form were considered:

(i) the cut-set charges q and the loop flux-linkages ¥ 43
(ii) a subset of the characteristic paramefers. of the inductive and {

capacitive elements

For either of the two choices of the dependent variables a set of sufficient

conditions was proposed. These conditions, stated as main theorems, appear to
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be given in mathematical terms rather than network terms and are very diffi-
cult to apply to practical circuits even with extensive analysis. A corollary

of the main theorem expressed in network terms required that subsets of network
elements which are not reciprocal and strictly locally passive have to fulfil
cerfain topological conditions.

Varaiya and Liuz‘;> treated networks assuming the existence of a normal
tree such that there was no coupling between resisfive-link and tree-branches
and similarlyffor inductive and capacitive elements. Another assumption made
in this work was that all network elements were locally passive. Sufficient
conditfions were given for the existence of the normal form of this class of
networks. It will be shown in this fhésis that their conditions can be relaxed.
Two recent contributions in the field of the state variable approach "lfo nonli-
near networks were made by Mac Fczrlcme30 and Ohtsuki and Wﬁtaﬁabe3]. Nagrath
and Jcin32 studied problems of the state varible description for general classes
of nonlinear dynamical systems of lumped multiterminal components.

The difficulties encountered in an attempt to obtain the normal form
description of a network arise in two ways. First of all, a given network may
be impossiblé tqcharacterize in the normal form due to a dynamically incomplete
specification of the network model; as a consequence either the complete set of
network variables cannot be found or the complete set can be selected but the
normal form equations cannot be written in terms of this complete set. Secondly,
the given network may require an extensive but undesirable a priori computation
to test whether or not the network may be characterized in the normal form;
this difficulty is present in the class of networks where knowledge of the type f

’

of elements and the topology of network is not sufficient to determine whether

!
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the normal from description exists or not. Networks possessing this kind of
. . 33,34 T,
difficulty have been termed irregular networks . The class of irregular

networks comprises the following two disjoint subclasses:

(i) strictly irregular networks having the property that the set (q,2) is
not complete

(if) potentially irregular networks for which the network topology and
the type of elements is not sufficient to determine whether (q, ¢ ) is the
complete set or not and for which one has to resort to fhg algebraic relations
between branch variablves to answer this question.

A topological method was de\)eloped to identify irreéulcr networks containing
two~-terminal elements and a systematic procedure was proposed fo modify irreéular
networks by augmentation with small values of "stray" elements. The augmented
network can then be characterized in the normal form. The identification and
augmentation of; a more general class of irregular networks containing either
dependent sources or multifer.minal elements was studied in33.

Only the class of linearly reducible networks may be described by the
explicit normal form. For other networks* the normal form cannot be written -
explicitly and one generally obtains a constrained set of differential equations
of the Form35

X = f(t,x,p) )

0 = g(t,x,p) | " (1.4b)

*
Exception are networks for which the (R), (L) and (C) equations possess

an analytic solution
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where x represents a set of n dynamic variables, p a set of k auxiliary vari-
ables, eqn. (1.4a) a set of first order differential equations and c;qn. (1.4b) a
set of k constraint equations. An algorithm was developed35 to modify a network,
which is not necessarily irregular, into a linearly reducibl.e network. The
augmented network containing small stray elements is described by a stiff system
of differential equaﬁonssé; a computational method based on the approximate so-
lution of differential equations containing certain small parameters was proposed.

Thus it seems that the problem of the formulation of the state equations
for a general nonlinear RLC network still presents a difficult problem and no
simple, general approach is available to test whether a given network is determi-
nate or not. Nevertheless, before a computer analysis is attempted we must
consider the question of existence and uniqueness of the network solution. If the
network is not determinate, the computer might yield strange results that depend
on the particular algerithm and the particular program being used. For example,
if mofe' than one solution is ;:;ossible then, depending onl the algorithm or on
round=-off efrors, etc., ‘fhe computer might pick one of the solutions without
giving the user any indication that another solution exists and that something is
basically wrong with his problem or that the chosen model of the physical circuit
has been oversimplified. |

It is therefore useful to study sufffcient conditions ensuring that a given
RLC network is determinate. When 'these conditions are stated in mathematical form
(e. g. Theorem 1 Qf’Ref. 28) it is not easy to apply them to -pracﬁccl circuitsy
such "mcfhemaﬁccl" criteria require that certain conditions have to be fulfilled

for an infinite number of points in a multidimensional Euclidean space and this
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presents a serious difficulty for their application in general. Another kind of
such conditionsfor determinateness of a given RLC network repre.senf topologi~

cal conditions which have to be fulfilled for a given network containing different
classes of network elements; on the basis of these conditions a network can then
be checked by inspection. As has already been mentioned RLC networks containing
quasilinear elements only are determinate regardless of network topology, but
network elements which are not strongly locally pdssive have to satisfy certain

Y is that in an

topological condiﬁons4'5. For example, the usual assumption
RLC network each voltage-conirolled port of a resistive element (or a voltage-
conirolled two=terminal resistor) lies in a loop containing capacitors and/or
independent voltage sources only and dually the cut-set through each current-
controlled port of a resistive element (or a current-controlled two-terminal
resistor) contains inductors and/or independent current sources only. The main
aiml of this thesis is to develop Ies§ restrictive topological conditions regarding
locally active and nonreciprocal nonlinear coupled elements in an RLC network.

To this end new classes of nonlinear network elements will be defined and: their

properties and interconnections will be examined.

1.4  AIMS AND LAYOUT OF THE THESIS

The main aim of this thesis is to consider state variable theory as a means
of analysing nonlinear RLC networks containing coupled elements. The problems of
setting up the state equations for a fairly large class of RLC nefworks will be

considered. Since the key problem in the state variable characterization of a
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given RLC network is the analysis of certain capacitive, inductive and resistive
subnetworks, a particular emphasis will be given to the study of one-element-kind
nefworks containing nonreciprocal and/or locally active elements. Sufficient con-

ditions which ensure that a given one~-element-kind network possesses a unique

. (.
solution will be given for networks containing different .classes of nonlinear !

elements. These conditions will then be used in the study of the state variable
characterization of nonlinear RLC networks. The thesis will therefore be set ouf‘
in the following manner.

. Chapter 2 contains mésﬂy introductory work. Characterization of nonlinear
RLC network elements and fundamental topological concepts are discussed and then
different kinds of analyses of resistive networks are presented. An introduction
to the formation of the state equations for nonlinear RLC networks is given and |
the fundamental concepts and results, forming the basis for the later work, are
stated.

Chapter 3 represents the necessary mathematical background of the thesis.
A simple criterion ensuring that a given vector-valued function possesses an
inverse function is derived. This criterion which is based on the Jacobian of a
given function is used later in the study of the existence and uniqueness of solu-
tions of one-element-kind nefworks. The problem of "parﬁ'al” inversion, important
for the transformations from one hybrid description of a network element into .
another, is treated. Certain classes of invertible functions which appear in the
analysis of one-element-kind nefworl@ are examined. The concept of a genera.lized
quasilinear function' is introduced and the properties of these functions are examined.
Finally, some globally asymptotically stable differential equations that may be

associated with a given algebraic equation and whose singular pbints correspond
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to the solution of this algebraic equation are presented.

In Chapter I4 the concept of positive network elements is ‘introduced
and the properties of this class of elements are investigated. Posifive network
elements may be locally active and many transistor and other active devices can
be modelled as positive network elements. Positive definite network elements
forming a subclass of positive network elements and representing o generalization
of quasilinear elements ére introduced and their properties are shown. Two other
significant subclasses of positive network ‘elements are freated.

Chapter 5 is devoted to the analysis of one~element-kind networks. The
cless of p;ifive semidefinite elements = locally passive elements = is infroduced.
“Series=parallel interconnections of network elements are studied and sufficient
conditions ensuring fHat an interconnection of two network elements of one kind
results éifher in a positive network element or in a positive definite network
elemelnf are given. Different sets of sufficient conditions are presented enéuring
that one-element-kind networks containing positive and positive definite (and/or positive
semidefinite) network elements possess a unique solution. A number of examples s
provided to illustrate the theory developed in Chapter 5.

Chapter 6 is concerned mainly with the problem of uniqueness of solutions
of nonlinear RLC networks. An extention to RLC networks containing dependent
sources is presented.

Chapter 7 is a discussion of some of the conclusions which can be drawn
from the previous 6 chapters and a list of some suggestions of future work.

To make the reading of the thesis easier, each chapter contains a brief

introduction and, at the end, a summary discussion. Also to this end, the main
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results have been stated as theorems and corollaries.

1.5  STATEMENT OF ORIGINALITY

Since the commencement of this work a number of papers have appeared
considering similar problems to those of this thesis and a number of similar
results have been given. In particular, T. Ohtsuki and. H. Watanabe introduced
the concept of positive definite network element and studied RLC network contai-
ning this class of elements. While extending T. E. Sfernv's results for networks
containing quasilinear elements to the nohreciprocal case the author arrived
indepeﬁdenfly at a very similar concept of ne'fwork elements which are cha-
racterized by generalized quasilinear functions and which he initially termed
generalized qucsilinea_r network elements; since this class of elements fofms a
subclass of positive network elements (fo be discussed later) Ohtsuki and Watan-
abe’s term positive definite network element was adopted.

Except where reference is made to the published material, the results and
conclusions ‘reporfed in this thesis were obtained independently by the author, and
at the time of writing are believed to be original. A list of original contributions

to be presented is given below:

. )(1) the criterion for the global invertibility of vector-valued functions;
(2) the generalization of local implicit function theorem to consider
global behaviour;
(3) the concept of generalized quasilinear function and the properties of

generalized quasilinear functions;
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(4) the conditions for invertibility of the function

nl (51 [0 Fllaky

ol 1% - 0 gy(x,)

appearing in the analysis of on.el-.elemeni'-kind networks which contain locally
passive elements; |

(5) a globally asymptotically stable differential equation i$ presented
where the Euler method leads to the Newton Raphson method;

(6) the concept of the class of UP matrices and the result that all
"partial" inverses of a bounded UP matrix are themselves bounded UP matrices;

(7) tHe concept of positive network elements - possibly locally active
and/or nonreciprocal elements - is-introduced and the properties of this class .oF
elements are shown;

(8) the concept of positive definite network elements - strongly locally
passive and possibly nonreciprocal elements = is introduced and the properties of
positive definite elements are listed;

(9) the conditions ensuring that a three-terminal network represents a
positive network elgmenf in all three orientations

(10) the conditions that a series-parallel iﬁferconnecﬁon of two network
elements results in a positive network element;

(11) the conditions that a series—parallel interconnection of two network
elements results in @ positive definite network element;

(12) the result that an (nmtm-1)-port network element N formed from an
n-port positive network element N.l and an m-port network element N2 connecﬁng
one of the ports of N, to one of the ports of N2 in parallel (or in series) repre-

senfs a positive network element;
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(13) the result that a resistive network containing positive definite
network elements only always possesses a unique solution; similarl;/ RLC networks
containing posifive definite élements only possess a unique solution regardless of
network topologys

(14) the conditions ensuriﬁg the existence of a unique solution of one-
element-kind networks (Theorems 5.8 - 5.12)

(15) the conaifions ensuring the existence of a unique solufion for

nonlinear RLC networks (Theorems 6.1 - 6.3).
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Chapter 2

PRELIMINARIES

2.1 INTRODUCTION

Throughout this thesis, use will be made of the bc.é.ic properties of
network elemen‘fs, topological methods and the conventional methods of ana-
lysis of nonlinear networks. IQ or&gr to put our subsequent discussions on a
more figorous ground, we will define in this chapter some of the frequently
used ferms and introduce the basic definitions and results on v'v'hich' all the

later work is based.

2,2  NETWORK ELEMENTS

2.2.1  Characterization of network elemenfsl' 2,8, 4

The nonlinear networks considered in this thesis will c.onfcin resistive,
inductive and capacitive elements and voltage cnd.cUrrenf s’ources. Each
network element can be viewed dbstractly as a collection of coupled directed
branches, where each branch has cssoci.ofed with it the pair of b'rcnch' varia-
bles, i (current) and v (voltage). Integrals of these quantities [q (charge)
and‘ " (flux)] will also be referred to as b;'_cnch varicbles.

Schematically, a network element can be represented either as an
n-port = that is n-terminal pcir; element - or an (n+1)-terminal element having

n branches with one node in common. Each branch of an n-port {or (n+1)=



36

terminal) element will be referred to as a port as far as the characteristics of
this element are concerned.

At this point' we must delineate the class of network elements which will
be considered and for which the énalysis will be formulated. Network eleménfs
which exhibit hysteretic behaviour are excluded a priori since no satisfactory
means of mathematically describing this phenofnenon have been advanceds.
Furthermore it will be assumed that in order to describe a network element, a set
of n independent constraint equations, relating branch variables of an n-port
(or (r+1)~terminal) element, has to ‘be known. However n-port network elements,
characterized by a number of independent equations larger or. smaller than n,
have been considered 6. As fhe‘simplest n-port elements of this kind, the
r.wllafor, the resistive one-port element with v =0 and i = 0, and the nora-
tor, another resistive one-port with v and 1 afbifrary, were introduced. Tellegen
demonstrated that singular network elemeﬁts - the‘ nullator and the norator ~ are
mathematical concepts without physical content and have ;“o be regarded as
fictitious "mathematical® components. For this reason network elements of this
kind will be disregarded.

An n-port (or (n+1)-terminal) network element (possibly time varying)
will be termed resistive if its n independent consi'raiAnf equations can be wr'iﬂ'en
implicitly as

R Gig vpr =0 (2.1)
where ip, Yp ore n-vectors, representing resistor currents and voltages
respectively, -fR (*) is a vector-valued function of dimension n and t denotes

time. Eqn. (2.1) will be called the implicit description of a resistive element.

The function -ﬁR (*) is assumed to be single valued, continuous and differentiable.

P G—
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Egn. (2.1) could define sets of elements as well as individual resistive elements.
For example, a sef of n one-port resistors is a special case of an n-port in
which there is no coupling among any two ports.
Let the n-vectors ip and YR be partitioned as follows
<1 S|

iR =1 v, = ‘ (2.2)!
Lo Yy ‘

O

where i], v, are m=vectors representing currents and voltages of ports 1, 2, ...
«e, m and '_i_z, v, are (n-m)-vectors associated with branch variables of ports
m+ 1, m+ 2, ..., n. We can define a set of mixed variables
. AR I
Xe = Ygp = (2.3)
1o Yo
The n-vectors xp and yo include one and only one branch variable (voltage or
current) from each port.
The implicit description eqn. (2.1) can be rewriiten in ferms of mixed
varibles as
= ' 2.
In certain cases the implicit equation (2.4) can be solved for all Xp € R", giving
Yp = hp (xps 1) (2.5a)

or equivalently in component form

i =vi (vy, in, 1)
-1 1 Y12 2. 5b)
Yo T VYo vy, dos ).

In egn. (2.5q) hR (*) is a single-valued function of_>_k, t. A description
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such as that given in eqn. (2.5a) is called the hybrid description* of a

resistive element. We shall asume that an arbitrary resistive element to be
considered can be represented by at least one of the hybrid descriptions, and
that every vector-valued function —hR (+) belongs to class C(I). *k

When the independent vcric!ole in the hybrid description (2.5q) is
voltage, i . e . X; = Ves the i~th branch is said fo'be vol’rcge—confrolledl ’2,
similarly when in eqn. (2.5aq) x, = ii, the i~th vbronch is referred to as current-~

controlled. Two special hybrid descriptions which may or may not exist for a

given resistive element are

g = dp (e ) @2.5¢) |
vep = vp (ps 1) " (2.5d)
Eqn. (2.5c) describes a resistive element where all branches are voltage~
controlled and eén. (2.5d) characterizes an element with all current-controlled
branches.
The implicit description admits very general types of elements. For

example, a two-terminal resistive element implicitly described by the relation:

is neither voltage nor current-controlled; its characteristic in the iR’ R plane

is a circle and the hybrid description does not exist. Many physical resistive

*  The term hybrid descripfion3 is equivalent to the term explicit branch

relations us'ed in Ref. 4.

* %

A function f (x) is of class C<1) if it is a continuous function and if iis

Jacobian matrix d f/dx is continuous for all x.
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elements such as vacuum triodes, transistors, ideal transformes, gyrators,
dependent and independent voltage and current sources efc. ca.n be characte-
rized in terms of the hybrid desc;'ipﬁon bR ().

Inductive and capacitive elements are characterized analogously to
resistive elements. The implicit description of an n-port (or (n+1)-terminal)

inductive element is given as

fLU g =0 W= 4 (2.6)
where Jy . g+ v are n-vectors reprgsenflng the branch variables of an in-
ductive element and _f_’_L() has the dimension n. A set of mixed variqbles
X\ s ¥y may be formed in the same way as in the case of a resistive element.
tan Ly

YL = @)
L) £9

where P _i_] represent flux-linkages and currents of ports 1, 2 ...., m and
Lor 12 correspond to flux-linkages and currents of ports m+1, m+2, ..., n.
Vectors x, + y, include one and only one branch variable (current or flux—_
linkage) from each port.

The hybrid description corresponding to the implicit description of cﬁ

inductive element is given as
Y =h (o t) ' (2.8q)
or equivalently in the component form

Iy =1y (e dpr 1)
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Flux~controlled and current-controlled branches of an inductive element are
defined as in the case of resistive element. The two particular descriptions of

inductive elements are
2 =2 () (2.8¢)
iL =_iL(ZL,f) (2.8d)

where the first equation describes an inductive element where all branches
are current-controlled and the second equation characterizes the case of an
inductive element with all flux-controlled branches.

Similary the implicit description of an n-port (or (nt1)-terminal) capaci~-

tive element is

fc(‘_’clﬂclf) = 9 _IC = gc (2.9)
‘ {
where XC’EC'i are n-vecférs associated with the branch varicble§ of the ca- |
pacitive element and _fc() is a vector-valued function with n components. A 3
!
set of mixed variables is formed from Mol /ol
9 g A
Yo ' b '

where Yy Q¢ describe voltages and charges of ports 1,2,....,m and Yo +9
correspond to vvolfcges and charges of ports m*l, m*2, ..., n. The hybrid

description of a capacitive element is given as

Yo = holeart) | (2.11a)

or equivalently
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vy =g (9yrvyit) (2.11b)
9 = 9y @)s¥yt)

The two special hybrid descriptions

9c = aclveit) . | 2.11¢)
ve = vclag | (2.114)

are associated with capacitive elements having all vol.fage—confrolled branches
or with capacitive elements having all charge-confrdlled branches.

It will be assumed that functions hc(‘) and hL(') have the entire R" as
their domain and that both are of class C(]). Furthermore, for each capacitive
and inductive element to be considered it is assumed that at least one hybrid
description exists.

In the analysis of nonlinear networks the incremental parameter matrices,
describing the small ;ignal behaviour of network elements, play an important
role. Certain classes of network elements will be defined in terms of their
incremental parameter matrices. Also some significant concepis such as recipro=
cify and iocal passivity of network elemenis are defined in terms of these
matrices. |

The incremental parameter matrices of resistive, inductive and capaci-
tive elements are the Jacobian matrices of the hybrid descriptions hR(')., hy ()
and hc('), associated with these elements. Since functions hR(), hL() and
hc() are assumed to be of class C(]) the Jacobian matrices of these functions
exist.

From the hybrid description of a resistive element (eqn. (2.5a) or

‘(2‘5b))HR’ the h&/brid incremental resistance mcm'ix‘_‘r or shortly the hzbr_id

- '3 (] -
matrix. , is defined as
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(2.124)

Two particular hybrid matrices may be obtained from the two special hybrid

descriptions (eqns. (2.5c) and(2.5d))where all branches of a resistive element

are either voltage or current-controlled. The incremental conductance matrix G

and the incremental resistance matrix R are defined as

oy

v

G(XR'f) = (2.12b)

L

Qs

.
;_R | (2.12¢)
R

and R(_iR,f) =

o

The hybrid m;:frices of inductive and capacitive elements are defined
from the corresponding hybrid descriptions. For inductive elements the h);brid
matrix HL., the incremental inductance matrix L and the inverse iﬁcremenfcl
inductance matrix " are from eqns. (2.8a) - (2.8d)

oh Blhyepy) My Mg

H, (x, ,t) = = —_ = .
L=’ X 0 s in)
-+ 172 Hop Hogp

(2.13q)

@

L(i, 1) = 5—? (2.13b)

all

a1
[x, 1) =%"-'—. | | (2.13¢)

For capacitive elements the hybrid ‘matrix HC' the incremental capacitance

matrix C and the incremental elastance matrix S are from eqgns. (2.11a) -

(2.11d)
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oh~  3(yy.q,) Hen Her
H(x~,t) = = = (2.14q)
S C=C ox a(ﬂ ' Vo)
= 17=2 Hepp o Hego
39
C(_\_/_C,f) = S7c (2.14b)
Jdv
Mg
S(g.,t) = 2.14

For the purpose of network analysis it is useful to introduce various
kinds of sources as a special class of network elements. ‘In principle, it is
possible to include all coﬁstanf (and time varying) independent voltage (and
current) sources into the class of resistive elemeni's4. However, an independent
volfage source may be viewed as a charge-confrolled capacitor with infinite
capacitancé;.similarly an independent current source can be considered as a
flux~controlled inductor with infinite inductance. It is for this reason that in
this thesis indépendenf sources will be considered as a special class of network
elements and will be freated separately.

Anofherl important class of network elements are controlled voltage and
current sources. The controlling variable of a controlled voltage (or current)
source may be voltage, current, charge or flux and thus RLC networks con-
taining controlled sources are much more general than networks containing
RLC elements only. In certain cases a network N of RLC elements and con- '
trolled sources can be transformed into an equivalent network N’ consisﬂng of
RLC elements only when exira branches are infroduced in N. For example, a
network containing a capacitor C and voltage-controlled voltage source
E= f(yc) in Fig. 2.1 can be transformed into a network containing the

capacitor C and a two-port resistor R when a resistive branch with i, =0

R1
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is introduced across the capacitor C. The hybrid description of R is

igp = 0

R = flvy)

2.2,2 Reciprocity, passivity and local passivity of network elements

In this section RLC network elements will be classified with respéc’r to
certain special properties. Reciprocity of a network ‘e‘lemen’r is related to the
symmetry of certain incremental parameter matrices. Passivity cné local passi=-
vity are concepts defiﬁed with respect to the ability of elements to dissipate

energy‘.

Definition 2.]4

A resistive element definéd by the hybrid description of the form of egn.

(2.5a), (2.5¢c) or (2.5d) is said to be reciprocal if the matrix '

HR]] . HRl2

or Gl(v,,t) or R( )
o n | -

R22 |

is symmetric.
An inductive element defined by the hybrid description of the form

of egqn. (2.8a), (2,8¢c) or (2.8d) is said to be reciprocal if the matrix

H H

L1l L12

or L( ,t) o ['(iL,f)

i Mo

is symmetric.

A capacitive element defined by the hybrid description of the form of
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eqn. (2.11a), (2.11c) or (2.11d) is said to be reciprocal if the matrix

H H

Cll "C12

.or C(xc,t) or S(ﬂc,t)

-H -H

C21

s symmetric.
Similarly to the reciprocity of network elements reciprocity of

one-element-kind networks (either. resistive or capacitive or inductive) can be

-
defined with respect to a selected set of ports. One-element-kind network or '

* its subnetwork will be said‘ to be reciprocal if it behaves like a reciprocal
element when viAewed from a selected set of poris.

Reciprocal elements and reciprocal one-element—kind networks have
‘the property that state i’uncﬁons4 may be obtained for these elements and
networks. These functions are energy like functions and are especially ‘important in
the stability analysis of networks. Since in this thesis we shall be interested in
nonreciprocal networks in particular we shall not make use of the concept of
state functions. |

Passivity and local passivity are properties associated with the ability of
resistive elements to dissipate power. Thése_ two concepts rﬁay be extended to
inductive and capacitive elemenfss. While passivity is defined with respect to
the large signal operation of a network element, local passivity is related to

the small signal operation..

Definition 2.2

A resistive element, defined by the hybrid description of egn. (2.5q),

is passive if



\_,RT_;R 20 (2.15q)

for all ?-ER#-Q- and all t.

An inductive element, defined by the hybrid description of eqn.

(2.8a), is passive if
T. » | | |
S5z 0 _ (2.15b)

for all >_5L=[=_Q.ond all t. .
A capacitive element, defined vby the hybrid description of eqn. (2.114q),
is pdssive if

ﬂchC 20 | | (2.15¢)

for all ic% 0 and all t. If in eqns. (2.16a) - (2.16¢) the qudnﬁﬁes on the 1.

h. s. are positive, then the corresponding network elements are strictly passive.

An element is said to be active if it is not passive.
| Accofding to this definition ideal transformers and gyrators are passive‘
but semiconducfdr aiodes with the exponenﬁui characteristic and transistors are
strictly passive. Note that vacuum diodes and triodes are active. There is an
interesting class of active resistive elements where it is possible to perform a
decomposition into a pussive.resisﬁvev element and a set of independent sources;
these network elements will be treated in Section 4.3.2.

'ln the case of small signal operation of network elements we are intere-
sted in their local passivity. For example, transistor is a passive resistive
eleme.rmf, but it is its local activity which makes it a useful element in electro-

nic circuits. We shall distinguish three different kinds of local passivity.
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Definition 2.3

A resistive (inductive, capacitive) element is said to be locally passive -

at a pomf ( >_<C) and time t if .its hybrid matrix HR(X—R'f)(HL(iL'f)'
HC(>_<C,r))is positive semidefinite at that point.

A resistive (inductive, capacitive) element is said to be strictly locally

passive at a point >_<R(>_<_L,>_<C) and time t if its hybljid matrix HR(ER’f)
(HL(>_§L,f), HC(>_<C,f)) is positive definite at that point.

A resistive (inductive, capacitive) element is said to be sfrongly focally

passive if an €>0 .exlsfs such that [HR(?—(R’f) € l]([ (iL -t l] ,

[H _C,f) ]) ls positive definite for all Xp (_L,x ) and all t.

A resistive (inductive, capacitive) element is said to be locally active

if it is not locally passive.

2.3 NETWORK TOPOLO GY4"9

A network can be viewed abstractly as a collection of directed brqnches.
The interconnection of network elements imposes certain constraints on branch
voltages and currents, constraints which are embodied in Kirchhoff’s voltage
and current laws. In order to analyse a given network it is necessary to obtain
three sets of independent equations, i. e. Kirchhoff’s voltage and current
laws and a set of constraint equations characterizing all network elements. In
general, the simultaneous use of all three sets of equations yields the required
network response for a given set of initial conditions and excitations at the

ports of the network. In order to express Kirchhoff’s voltage and current laws
L] - .

D
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in a systematic fashion the concepts of the fundamental loop matirix B and the
fundamental cut-set matrix Q will be employed.

However, before defining the fundamental loop matrix and the fundamental
cut-set matrix, a few additional concepts associated with a graph of a n.etwork
will be introduced. |

A loop is a closed path, along which any node is touched by exactly
two braches in the loop. | |

A network (or s‘ubnef‘work) is called a self-loop if it consists ofv a single
branch whose end=points are identified: it consists of one branch and one node] .

A network (or subnefwork) i; called an open branch if it conﬁisfs of a
single branéh whose end-points are not identified: it consists of one branch and
two nodes] .

A connected graph is a graph which consists of only one separate part.
In this thesis it will usual’ly be assumed that the network considered is connected.
When a network is not connected each part can be treated separately as far as
Kirchhoff’s laws are concerned.

A separable graph is a connected graéh which can be divided into more
than one separate pﬁrf by the removal of a single node. Otherwise the graph is
nonseparable.

A cut-set of a connected graph is a set of branches such that their
removal divides the graph into two separate parts and no proper subset of this
~set of branches has the same property.

A tree of a connected Qraph is a connected subgraph which contains all
the nodes of the graph but does not contain any loops. The branches_of a network

contained in a particular tree are called free-branches; those not contained in

[ WS
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that tree are called links or chords. When we refer to tree-branches and links
it is with respect to a chosen tree. It can be shown that a con.nected graph
having v nodes ;:nd b branches contains (v ~1) tree branches and (b-v+1)
links. Once a tree T of a connected graph is chosen a special class of loops
and cut-sets may be defined. If one link is added to a tree T, the resulting
graph contains a loop, called a fundamental loop. Each fundamental loop
contains exactly one link. Similarly it is possible to form a cut-set containing
only one tree branch of T and some links wifh respéct to the tree. Such a.
cut-set is called a fundamental cut-set. |

The fundamental loops of a connected directed graph with respect to a
tree T are the (b-v+1) loops formed by each link and the single path in the
tree between the nodes of the link. The fundcmentcl loop orientation is chosen
to agree with that of the defining link.

If T is a treée of a connected directed graph G, the fundamental
system of cut-sets with respect to T is the set of (V ;1) cut-sets in which
each cut-set includes only one branch of T. The fundamental cut-set orientati-
on is to agree with the orientation of the defining branch.

We are now in a position foiinfroduce the fundamental loop matrix and
the fundamental cut-set matrix of a connected graph. Consider a connected
graph G, having v noaes and b branches, and choose a tree T. Let the
branches of G be numbered consecutively, starting with the links of T. Now
we assign numbers 1,2,..., (b-v+1) to the fundamental loops s§ as to
coincide with the numbers of the defining links. Similarly, we assign numbers

b=V +2, b- v +3,...,b to the fundamental cut-sets so as to coincide with
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their defining tree-branches. Using this numbering system we may state the

following definition.

Definition 2.4

Given a graph G with tree T, the fundamental loop matrix B is defined

as follows: each column of B corresponds to a branch of G (ordered consecuti-

vely); each row corresponds to a fundamental loop (ordered consecutively); and

bii =1 . if the j~th branch is in loop it and their orientations coincide;
= =1 if the j~th branch is in loop i and their orientations do not coincide;
bii‘ =0 if the j=th branch is not in loop i.

Because of the way in which the branches are numbered, the matrix B

is 6*’ the form

8= [1,e]" o . (2.16)

‘where | is a (b=V+1) x-(b=v+1) identity matrix and F a (b-v+1) x (v -1)

matrix .

o Definition 2.5

Given a graph G with tree T, the fundamental. cut-set matrix Q s

defined as follows: each column of Q corresponds to a branch G (ordered
consecutively); each row corresponds to a fundamental cut-set (ordered consecu-

tively); and

q.. =1 if the j~th branch is in the cut-set corresponding to the i-th row of

Q, and their orientations coincide;



51

q.. = =1 if the j~th branch is in the cut-set corresponding to the i-th row
of Q, and their orientations do not coincide;
q,. = 0 if the j~th branch is not in the cut-set corresponding to the i-th

row of Q

Because of the way in which the branches are numbered, the matrix Q

is of the form.
Q= [Q.i] . (2.17)

where Qf is a '(v -1) x (b=V+1) matrix and | is a (v -1) x (V -1) identity
matrix. |

When the columns of the matrix B and the matrix Q are arranged in
the same order |

3@l =0 | (2.18)

where QT is the franspose' of Q. Thus substituting eqns. (2.16) and (2.17)

into egn. (2.18), Qf can be expressed in terms of F as |
Q = -F1 o - | o (2.19)
Cad Q@ =[-F 1] . (2.20)

Let v and i be b-vectors composed of the branch voltages and currents.

Kirchhoff’s voltage and current laws may be expressed as

By =

K=}

(2.21)
Q

[=
i
|©

(2.22)

Kirchhoff’s laws give a total of b independent equations in-2b variables. The
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remaining equations are supplied by the constraint equations characterizing the
network elements.

At this stage it is uséful to introduce some notation. Let @E gnd BJ
denote set of branches ‘containing the independent voltage sources E and
current sources J in a network. Similarly let ER’ 9L,V 8c correspond to a set
of all resistive, inductive and capacitive branches rc_aspecﬂvely. In addition,
let N{ﬁa; 9b{ be the network derived from a network N by contracting *

all the branches of ﬁq and removing all the branches of Bb

When a network contains a set of independent voltage sources E and
a set of independent current sources J, then Ver the set of voltages across bran-
ches of @E, and _i_J, the set of cUrrenfs.Flowing through branches of BJ is

known, i. e.

im

Ve

=
In such a case it is cor‘wenienf.fo rewrite Kirchhoff’s laws (egns. (2.21),
(2.22)) in the form where only unknown voltages and currents ap|.oear on the
left hand side. Assume that a connected network N has neither voltage-
source-only loops nor current-source-only cutsets or equivalently a subnetwork
N {BE.' be of N is connected and nonseparable. For such a network a tree

- T exists such that a>|| branches of 3E are tree-branches and all branches of

EJ are links. Let the total number of branches in N{@E; 3_,} be b, the

number of nodes v . The branch voltages and currents in N{BE; 9.]]' are

* Contraction of a brcmch.l‘I is the process of shrinking the branch to nothing .

and identifying the two terminal nodes as a single nodé‘, this process is

often loosely called shorf-circuiting.
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specified by v and i, respectively; for a specific tree they are partitioned as

follows:
v
v = [ . (2.23q)
A
and i
i= _l (2.23b)
4

where Y| and —il represent link voltages and currents, respectively, while A

and .lf represent tree-branch voltages and currents respectively. Kirchhoff’s

laws equations for the particular tree T of N are given by

By = [I,F][!l]=g ' (2.24)
vJ N . "

Qi = [-FT,IJ[_;l}=J‘_ | (2.25)
~t o

where B is the fundamental loop matrix of N{ EE; BJ}
| Q is the funglc:menrc:l cut-set matrix of N{ﬁE;gJi
e isan (b-V+1)—vector, the k=th component of which is the algebraic
sum of source voltagés which appear in the k=th fundamental loop
1 is an (V =1)=vector, the k-th component of which is the algrebraic

sum of source currents which appear in the k-th fundamental cut-set.

2.4 INTRODUCTION TO THE ANALYSIS OF ONE-ELEMENT-K IND

NETWORKS

As it has already been mentioned, in the process of the nomal form
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characterization of nonlinear RLC networks it is necessary to examine the
existence and uniqueness of solution of one-element-kind networks. These one=
element-kind networks are subnetworks of a given RLC network and will be
discussed in Section 2.5. In this section we shall formulate algebraic equations,
governing the behaviour of one-element-kind networks. The analysis of nonline-
ar resistive networks is almost identical with that of nonlinear capacitive
networks or nonlinear inductive nefworks; Since most of the commonly used
nonlineﬁr elements are resistive in nature we shall -develop the analysis in terms of
resistive networks.

It will be assumed that a resistive network N to be analysed satisfies

the following two conditions:

(i) network N is connected

(i) there are no loops of voltage sources only and no cut-sets of current
sources only.

When a network N satisfies these two conditions, N\{@IE; BJf is
nonseparable and connecfgd; a tree T can be chosen such that all voltage
sources in N are included in this tree and all current sources lié in its cor=-
responding - cotree. Let us choose a tree T and denote the. set of all resistive
branches of T as %R’ the set of all resistive links as 3‘3 and .fhe set of all
resistive tree-branches as %e , where ﬁR = ﬁﬁu‘iﬁ . Suppose that ﬁR' B{b
and B, contain bpsbp and be branches reépectively. With respect to the
tree T vectors Ye and —;R' associated with BR’ a‘re partitioned as follows

'!(5 lp‘
= = (2.26)

Ry R,
B i
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where Yo -i-(a represent link voltages and currents and v i, represent

¢’
tree-branch voltages and currents respectively. In order to deal ‘with a small
number of equations we shall not be particularly interested in iE' the currents
of voltage sources, and Yy the yolfages across current sources; however, -I_E
and Vg can be explicitly obtained as a linear combination of currents and volta=
ges of resistive branches. Thus the unknown quantities are vp and ip and the
number of unknown variables is ZbR', Hence a set of ébR independent equations
has to be specified in order to compute vo as functions of sources E and J.

The fundamental loop. matrix B of the network N{ BE" 8 Jj corresponds
to the fundamental loops, defined by all resistive links, and is an ibp X b

R

matrix. It has the form
B = [I,Fﬁe] | (2.274)

The fundamental cut-set matrix Q of the network N{ﬁE; 5 Jf corresponding to the
fundamental cut-sefs through all resistive tree-branches, is an bs x bR matrix

and is of the form
Q= [‘FﬁeT' l] | ‘ (2.27b)

The most general set of algebraic equations, govel;ning the behaviour of resistive
network, can be obtained as follows. Assume that resistive elements are described
impliéitly by the relation (2.1). Combining eqn. (2.1) and the topological
constraints, given by eqns. (2.24) and (2.25), and taking into account egns.
(2.270) and (2.2%), we arrive at the following set of 2bR implicit ‘equavﬁons

that determine Yar¥e rLlg o1,

B = x + F v = e . ‘ (2.280)

RTZp T Pe e " Zp
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. T. .. _.
Q_IR = -Fpe .l/‘)+l5 =J—€ (2.28b)

Ry Y e dgr 1) =0 -  @.28¢)

In egns. (2.28) s is an bg. -vector, the k-th component of which is the
algebraic sum of source voltages which appear in the k-th fundamental loop
and [ is an bg -vector, the k-th component of which is the algebraic sum
of source currents which appear in the k-th fundamental cui-set.

Since eqns. (2.28) represent 2bR equations in 2bR unknowns, it is
desirable to reducé tHese to a simpler form whenever possible. To perform such
a reduction, it is neceﬁsary fo find a smaller set of variables x, such that all
bmﬁch variables Ygr dp are uniquely expressible in terms of x and such that a

set of implicit equations

f(x) =0

can be formulated which define the equilibrium conditions of the network.
Several alternative forms of the above equation will be considered below.
If all resistive elements are current-controlled, loop analysis is appropriate.

The hybrid description of resistive elements has the form

Yo = !R(—IR) (2.29)
From eqn. (2.28b)
i | 0 0
1 = _Pz - H - = T' -
Egns. (2.29), (2.30) and (2.28a) can be combined to give4
T 0 : | |
Bra®i )+ |7 |=e (2.31)

il ™ |
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Eqn. (2.31) represents a set of loop equations for the network. Loop équaﬁons

contain a set of by equations and they can be solved for link currents i
Once _|_(5 is known, dp s determined by eqn. (2.30) and then g is calculated
using eqn. (2.29).

Similarly if all resistive elements are voltage-controlled, nodal analysis

can be used. The hybrid description of resistive elements is

From eqn. (2.28a) |
' -F, e ‘
A fit € e
A I B P i BV b 239
Yol |1 0] 9f |

Eqn. (2.28b) can now be combined with eqns. (2.32) and (2.33) to give4
RS A .| N
Q.iR(Q -!-E + [0 ]) —'L& (2.34)

which represents a set of node equations ' for the network. Eqn. (2.34) hes b,

equations and it can be solved for free voltages Ve which by eqns. (2.33) (
and (2.32) determine all other branch' variables.
If all resistive elements of N do not possess the hybrid description
~ with ip @S independént variable or with g @ independent variable,'nei’rher
loop nor nodal analysis can be performed. In such a case we shall try to

carry out a mixed analysis, resulting in a set of bR hybrid equations. Hybrid‘

equations are of two forms and one form can be solved for the hybrid set
(-Y-(* de ), the other for the hybrid set (i[s’le ); all other branch variables
are then expressible in terms of these two hybrid sefs.

Note that hybrid equations can always be obtained from eqns. (2.28).
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Namely, calculating Y from eqn. (2.28a) and i, from eqn. (2.28b) and

substituting Yo and i, info eqn. (2.28c), we have the following hybrid

equations

. T, .\ _
fR('Fp,E"_’.e+S{3'.Y.e 'l(.s'F{be ip g =0 (2.35)
which defines (-"-P'XE) as a function of (Ep'j_é)‘
There are another two forms of hybrid equations. The first form exists
when a tree T of N can be chosen such that all resistive links are current-
controlled and all resistive tree-branches are voltage-controlled. Thus, the

hybrid description of resistive elements is

v '
P (2.36)

Combining eqns. (2.28a), (2.28b) and (2.36) a .sef of hybrid equations is

obfcined4
. + -
VellprYe) * Foe ¥ =2p
. ' (2.37)
'Ffbe _'{b +ie(ipfle)=ie
The dual case of the above hybrid description (eqn. (2.36) occurs when

all resistive links of a tree are voltage-controlled and all resistive tree-branches
are current confrolled. There

ioo=i, (v, ,i.)

L i (2.38)
Ye= Ye(pids) -

’

From egns. (2.28a), (2.28b) and(2.38) the following hybrid equations result
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.Y.{a+F(58 -V-E(-v-{b’is)=2{~‘l i
h ©(2.39)
-F[be .Lp<.\.’_(5 ’_ie)+i£ = 1e

A special form of the above hybrid equations is obtained when there is no

coupling between links and tree-branches of N. Thus

=i, v ,) |
—p6 e . (2.40)

Ye=Ye (i)
and the corresponding hybrid equations have the f"orm8

.Y_(5+F(be Y_e(ie)’:e_{z, (2.41)
~Fpe Ti{oQ’_p) tie =1
In many cases the following method of partitioning reduces, still further,
the number of implicit equations governing the behaviour of a resisﬁvé nefworik
N. Branches of NiBE', 'BJ} are of three fypes: (i) self-loops, (ii) open-
- branches and (iii) nonseparable connected subnetworks with more than one
branch. Assume that the branches are pcrﬁﬁoﬁed according to types (i), (ii)
and (iii) info sets ‘ﬁ{gz, 282’ and .Bme 1= .3(” U -5&.1 with corresponding
branch variables (_\{_ﬂ 2,_2_132): (_V_Ezr iez) and (_\_l_p 1 'ipl Wenrle 1).‘ Order the

branches so that

_i(a] -2’_(5]- . -9_(51

I ={ ‘ .\.,. = . ’ E_ =

_{5_ L_I'{?’ZJ f .l{‘.’zd _ f _E@z
- - - . - (2.42)
te Yen Leq ’

i =|-, p v = ’ H =1,

¢ te 2 ¢ [Ye2] Le e 2

: 2,12 .
Then the matrix FPE , appearing in eqns. (2.27a) and (2.27b) has the form™’
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F{be S R + - - . (2.43)

It is easy to see.I2 that ﬂf”] contains all those resistive links of the tree T
associated with fundamental loops containing at least one resistive tree-branch,
and -2{52 contains all other resistive links, Similarly, '/361 contains all those
resistive tree-branches associated with fundamental cut-sets containing at least
one resistive link, aﬁd Eéz contains all other resistive tree-branches.

By substituting egn. (2.43) iﬁfo eqgns. (2.28a) and (2.28b) we have

Yp2 " Ep2
. _ (2.44)
-2  Lle2

and thus v and i are expressed explicitly as functions of sources E and

£2 €2

J; a unique solution in.a:network can be obtained only when resistive elements
in N have voltage-controlled branches belonging to the set -5{_52 and current=
controlled branches belonging to the set -362.
Hybrid equations, corresponding to eqns. (2.37), can be obtained wheﬁn
|

(_i.l(z,]'l_e]' .‘.’.(52'1};2) " is the independent variable in the hybrid description

of resistive el'er.nenfs. Then a set of (b(b'l+b8 'l) equations has the form !

YorlarYer8poied " Fpie1er = 20

T (2.45)
Fpe ip] +igl(_i.p1'l’.ex'9.(32'lez) “len

Similarly when (X{H s 1 '1/32’—i£2) may be taken as the independent vari-

able, the hybrid equations, corresponding to eqns. (2.41), have the form

Yer* FpeveiWpiderepole 2 = 2
(2.46)

T T . . . .
"Fpe Lg](lplllelvﬁpz'.l.ez) tigr Tl

-
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In order to examine the qgesfion of solvability of the above loop,
nodal and hybrid equations, a suitable mafhemoﬂc‘ol criterion 5 needed. We
shall develop such a criterion in Chapter 3 and it will then bé applied to
these equations in Chapter 5. Since these equations are nonlinear and their
number may be very large, we shall not be able to answer the question of the
existence and uniqueness of solution for an arbitrary nonlinear resistive network.
Therefore, sufficient conditions for the existence and ‘Uniqueness of solufion of
nonlinear one-element~kind networks, containing certain classes of network
elements, will be studied, and emphasis will be given to networks containing

locally active elements.

2.5 INTRODUCTION TO THE FORMATION OF THE STATE EQUATIONS

FOR NONLINEAR RLC NETWORKS

2.5.1 Basic concepts

As an introduction to the concepts involved and a foundation for later
work in Chapter 6, this section consists of a thorough presentation of the
formation of the state equations for nonlinear RLC networks. Before describing
the procedure for the normal forr'n characterization of a given RLC network we
have to introduce. certain concepts such as: solution ‘of an RLC network, determi-
.nafe network ,complete set etc. ’Since a number of similar concepts have evolved
in the literature we shall review them briefly and emphasize the differences

between them. | ' . r
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Definition 2.6

A solution of an RLC network will be called any set of voltages and
currents of resistive elements, charges and voltages of capacitive elements and
fluxes and currents of inductive elements, which satisfy the Kirchhoff’s laws
and the branch relations.

Note, that a solution of a nonlinear RLC network does not necessarily
determine currents of capacitive elements, _ic, voltages of inductive elements

v+ currents of independent voltage sources, i. and voltages of independent

E
current cources, V ;; if these branch variables are included to form a network
solution, the state-variable analysis of a nonlinear network becomes much more

involved since in general the number of the necessary equations to be conside-

red increases very much,

Definition 2. 7.I

A network N s said to be determinate if for any value of the initial
state x _, given at ;:ny initial time L and for any value of independent
sources E("), J(*), there exists one and only one solution for. t> t, on
some nonvanishing interval [fo,fl ).

For linear RLC networks the normal form differential equations can

be written in terms of a complete set of dynamically inciepedent variables
which by deFinifion” contains branch currents and branch voltages. For non-
linear networks the concept of a complete set of dynamically independent
variables may be extended to the concept of the complete set that may be

defined as follows. (
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Definition 2.8

A sef x of network variables will be called complete if. to every
value of X, there correspond, unique values of voltages and currents of all
resistive elements, charges and voltages of all capacitive elements and fluxes |
and currents of all inductive elements.

Let x &€ R", then our definition of the complete set x implies that
for any vallue‘of X, given at time Y fhe‘ solution of a network is uniquely
determined at that time. Our definition of the complete set fepresenfs a
modified version of the definition given in Ref. 12, where the complete set

is defined to determine all branch variables, i. e. currents of capacitive
branches, _ic, and voltages of inductive elements, Yy s s well. In fact in
" Refs. 4 and 12 the term complete set is used in accordance with Dei':iniﬁon 2.8.

The following example shows that, indeed, networks exist where the
complete set does not define unfquely capacitive currents —'C Consider fhe
network of two parallel nonlinear capacitors (Fig. 2.2) that are both voltage-
controlled and their hybrid descriptions are

3

Q=2 -
(2.47)

+ v

97 V2 T Vp

By definition the complete set for network of Fig. 2.2 determines uniquely

Ays Ao v]..and Vo Suppose that

¢

Ci =9 + 9 ' - (2.48)

is a potentially complete set. Since from Fig. 2.2

Y



vy =, - (2.49)

q=v =V, (2.50)
Thus v = q]/3
WY |
. _ (2.51)
1/3. .
q] 2q = q /
1/3

0
N
|
!
.
+
Q0

and q forms the complete set. The capacitive currents i, and i2 are

h =4 =Gy
(2. 52)
i, =4, = C2v2 -
. ‘ 2 v
-where C.I = dq.l/dv.l = 6v1 -1 ,
! | . (2. 53)
C2 = dqz/dv2 = -3v2 + 1
- Differentiating eqn. (2.49) with respect to time t gives
Vi =V, ‘ | (2.54)
From KCL i +i,=0 ‘ (2.55)

1 2
Substituting eqns. (2.52) and (2.54)‘ into eqn. (2.55) yields

(¢, + Cp) ¥, = 0 | O @.56)
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=0,C =—],C=]

1 2

1 is arbitrary and v

2 1

= \'/] is arbitrary as well; thus

If in eqn. (2.48) q = 0, it follows that v, = O, v
and from egn. (2.56) v 2
by eqn. (2.52) the caopacitive currents i] and %2 are not uniquely
determined.

Frequently we can obtain.fhe normal form characterization of a

. n
network in terms of the complete set x, x &€ R, as

x=fGt (2.57)

In general f(x) is not a necessarily continuous function of x with the

~ entire R" as its domain; _1:(5)’ may even be a multivalued function of x.
Thus, there are cas§$ when the complete set can be found, bu.t the function
appearihg in the r. h. s. of the corresponding normal form differential
equations 1§ no;‘ a confinuous.funcfion for all x € R".

The RC network, shown in Fig. 2.3a, has the property that the
complete set ca‘n be found, but f(x) in the normal form equation is not a
continuous Fpnéfion of x. Let the capacitor (Flg 2.3a) be linear cmdnlef its ?
c;:lpacifance be equal to C; let the resistor R in ‘Fig. 2,3a be curren’r-confroll_led, ;
VR T VR(ER), where the domain o;‘ vé(') is the gnfife R]. The incremental
resistance of R is zero at iR = iA and iR = 'iB (see Fig. 2.3b). The current
iR is the complete set, since Vg = vR(iR), Ve = e 9 = CvC, (iC = -iR).

The differential equation, written in terms of the complete set iR' has the

form

) i (2.58)
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Since clvR/cliR = 0 at iR = iA and iR = iB,

ar i A and iB; thus we cannot expect eqn. (2.58) to have a unique solution

F(iR) is not a continuous function

iR(f) for any initial value i

Ro’

In the sequel we shall say that the normal form exists when in the

differential equation A(2.57), written in terms of the complefe set x, flx,t)
is a confinuous function of x whose domain is the entire R". Note that

f(x) does not necessarily fulfil rhe-Lipshirz condition and thus even when
the normal form exists the solution of a network may not be unique. Therefore *
the existence of the normal form does not imﬁly that eqn. (2.57) is Th.e state
equation in differential form and the complete set is not necessarily a set of
state variaEles. Only when the normal form equations have ra unique solution
’i(f)l 1'0 <t ‘< i'.l , for any initial value x , & Rn, given at any initial time

fo’ does the complete set become a set of state variables* and eqn. (2.57)

represents the state equation.

In Ref. 13 the concept of a set of dynamic variables was

Xy

introduced. This concept is in a certain sense more general than the conéepf

of the complete set. A set of dynamic variables Xy X4 € R", has the

property that it defines uniquely all branch variables on a set S, which is

a subset of R”, S« R". Thus it is not necessary for a set of dynamic variables

)-S-d to determine all branch variables for any X, € 'Rn. The space R is

* . .
The term state variable is not used properly in Ref. 12, p. 75;

namely the term a set of state variables is more specific than the

complete set.
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called the dynamic space and a set of first order differential equations,

written in terms of x

a3

)] (2.59)

is termed a set of dynamic equations; the domain of the function -fd()—(d) is
: t
aset S, S’ ¢ R". When egn. (2.59) has a unique solution for any

initial value X 4o given at any initial time fo, dynamic variables become

R . ]
state variables a posteriori 3.

2,5.2 Selection of the complete sef]’z’”’w’m

The normal form equations describing a general RLC network are

formulated in two stages:

(i) the complete set x s selected for a given network
(i)  the normal form equations are formulated in terms of the

complete set x

We shall assume that a given RLC network N contains resistive,
’capacitive and indu;:five elements and in addition independent voltage
sources E and independent current sources J. Furthermore N s
connected and in N there are no loops of voltage sources only and
no cut-sets of current sources onlyy . thus the distribution of independent

. 1,2 e
sources is assumed to be normal ‘", Suppose that N has bR resistive

inductive branches, b_ voltage

E

branches, b. capacitive branches, b

C

-sources and b_] current cources.

L
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For a broad class of RLC networks the complete set may be obtained on
13,14

the basis of a normal tree TN. TN is a complete tree wh;ch is chosen
according to the set of rules given by Bryc'nf”. A normal tree is formed by
constructing a complete tree of the graph, derived from a given network, in
the following manner. First, all voltage sources are included in the tree, then
only capacitive branches are used wherever possible and the resulting subgraph
is augmented, firéf with resistive, and then with inductive branches ro form a
complete tree. A normal tree contains all the independent voltage sources, the
max imum r;umber of capacitive branches, the minimum number of binducﬁve
branches, no independent current sources and it is completed with resistive

. branches. Note that for a network with normal distribution of independent sources
a complete .tree can always be constructed.

Using the same procedure and subscripts employed by Brycnt” the branches

of the network N, corresponding to RLC elements, can be classified in the

’following six disjoint subsets with respect to TN:

S ¢ the copacitive links of TN
Sp : the resistive links of TN
Saa,: the inductive Iinks of TN
Sg ¢ the capacitive tree-branches of TN
S¢ ¢ the resistive free-branches of T

Sj. : the inductive tree-branches of TN
" We shall denote the number of branches of 5, ,S(5 ’ST S¢ 1S¢ and Sf by
by « b(b , br , by, be and bf respectively.

Kirchhoff’s laws of the network N have the form of eqns. (2.24) and
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(2.25). According to the above classification the branch voltages and currents

of N{@E; BJf can be partitioned as follows

[V, 1
2 \_/‘{5 i = i[5 (2.60a)
Bre |y
L4 (i |
2 2-600
4] ]
where subsripts | and t denote links and.free-branches of Ty respectively.

Similarly the sources e and:j, appearing in eqns. (2.24) and (2.25) can be

partitioned conformably as

(e ]

=&

.e_p ‘
=1

Because of the way in which a normal tree is defined, the submatrix F, appearing

(2.61)

in eqns. (2.24) and (2.25) may be represented in the following'Form”

p—

Fo
Fp{

F
Al

0
Fpg

Fre

i

)

(2.62)

Combining eqns. (2.24), (2.25),(2.60a,b), (2.61) and (2,62) we obtain

Kirchhoff’s laws in the form of eqns. (2.63) and (2.64)
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Y g Y& Ten (2.63)
= ' {

l(&H:(btf XJ-H:{bE Ve = _e_p (2.63b) |

T, T. .. .
-F(be ..I.(b -FJ'-E -’-f'-ll& =-LE (2.63c)

T. . . )
_Fa._f ‘I'f-'lf _'Lf | ‘ (2.663d)
~15‘+F8""‘ _\_/_d-ql'Fy,e Ve +Fa‘_f Xf = _e_]._ ' (2.64q)

T, T, T. .. .
Twd TuFpe LpFpe dptie =iy (2.640)

where the number of equations is equal to (bR+bL+bC).

The implicit branch relations of RLC elements can be expressed as:

Folvp i grd gy =0 (2.654)
Rl rtedprgot) =0 : (2.65)
Hlpddg ppigy =0 (2.65¢)
Lo | (2.66a)
oo |
vi =% | (2.66b)

~ where eqns. (2.65a), (2.65b) and (2.65¢) contain bC'bR and bL equations

respectively. Since by definition the complete set determines 2(bR+bC+bL)
nefwork ;/aricxbles SC'XC'ZL'—iL'XR’i it is sufficient to consider (2bR+bC+b“+bL+bf)"
eqns. ‘(2.630-3) and (2.65a=-c) which contain only variables QC’XC'ZL'-EL'XR'-ER"
when all fhe;e equations are independent, it :is obvious that in principle-(bao.+b4- ) inde~ o
| peﬁdenf variables may be chosen and the complete set x has (bap+b4-) coméonem‘s, B
X € Rb r+b( . The remaining equations (2.64a,b) and (2.66a,b) are then used to

form the normal form equations X = f(x,t). However, in order to be able to

formulate the normal form, x has to be chosen in such a manner that x may be
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calculated. In the sequel we shall consider two choices of the complete set: ;

(i) the cut=set charges q and loop Flux-linkages ¥, determined

with respect to the free TN1,2,8,12,14

. .1 ...
(i) voltages vgand currents ig (or characteristic parameters

2,13
N

demonstrated later, there are examples of networks for which the first choice

). As will be

Xy and x » of capacitive branches and inductive links of T
gives the complete set, but not the second and vice versa. Thus both of the
two choices are worth studying.
Let us consider‘fhe first choice for the complete set where
. -
¢ ~Fud 9«

« =| |= ; (2.67)
R 2 S < |

o

Combining eqns. (2.63a), (2.65a-c) and (2.67) a set of 2(bR+bC+bL) equations
is obtained. However, these equations can be partitioned into three sets of

equations denoi*ed]2 by (C), (L) and R):

Vo fus Yo = eu
T
Fad 9,794 =9 | (C) (2.684q)

_FC(X“IXJ [ﬂ“,ﬂ.d-,f) =9'

L +ng.§ 'Zf =4

T. .. _. ' .
Frr s T L) (2.65)
.f]_(.i_rl_l_f ;.Za,. ’Zf ,f) = 9

Vp'Fpe Ye T2 Fas Y4
Fee Ti,ﬁig =1¢*Fye T_i,» R) | (2.68¢c)

Rlipigvgye =20

Ly
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Let x be an n-vector. Vector x represents the complete set only if the equations

(R), (L) and (C) possess a unique solution for any x =[§ €R". Because of the

form of the (R), (L), (C) equations it is not necessary to consider the whole set
of equations af once but these equations may be solved in three steps. At first

the eqns. (C) are solved to obtain ﬂc(ﬂ) and _!C(q)-, the solution of the egns.

(L) gives i’L(Z) and _IL(Z_) Finally the solutions and i, (#) are substituted on the

Yela) and
r. h. s. of the (R) equations which give \_/R(g_, _) ana —iR(-q—'Z)' '

Com'paring the (R) equations and the dc equations of resistive networks
with sources E and J (eqns. (2.28a-c)), we see that the 1. h.s. of these two
sets of equations are identical. Thus the (R) equations correspond to the resistive
network which can be obtained from N in the following manner: all capacitors iﬁ

N are replaced by a set of voltage sources E~, where -[::-C = v ., and all inductors

=C =C
in N are replaced by a set of current sources iL' where -J—L =_i_L. Similarly the

(C) equations represent the governing equations of the capacitive network
N {0; ﬁR' BL' BJ}; namely KCL equations o'f the hefwork N{O;ﬁR,ﬁL, BJ}
are obtained from eqn. (2.64b), setting i(5 =0,i=0, J‘_J.= 0, in the form
T. . | '
Fad 34%3,=0 (2.69)
Integrating eqn. (2.69) with respect to time t

Fod Tﬂx+9.( = q, | (2.70)

where 9, is the integration constant. Setting 9, = 9 and combining KVL equations
- |

Y

of N {O;ER"BL' BJ} and implicit branch relations of capacitive elements we
obtain the (C) equations. !

Analogously the (L) equations are the governing equations of the inductive

network N {'BE' EC'aR.'O} . The second equation of the (L) equations is obtained
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by integrating KVL equations of N R'ﬁC' 3R;0}

3_"’; F TZ’Z; =0 _ (2.71)
and ZT+FﬁT_§ff =9 o (2.72)
Setting ‘Z;) =Y and combining KCL equations of N{EE, 8C'8R.’0} and the
implicit branch relations of inductive elements gives the (L) equations.

Thus in order fo answer the question whether the set (q,) is complete or
not, we have to study the existence and uniqueness of solution in the ccpaciti.ve,
inductive and resistive subnetworks of N for any value of ge Rb‘r ~and any value
of Y € Rbf . For a general network N it is extremely difficult to resolve the
question of the exisfenc,;e and uniqueness of solution of these fhreg one-element-
kind subnetworks of N. Therefore, our main objective will be to find some
sufficient conditions ensuring the exis;fence and uniqueness of solution. Such
sufficient conditions will be given in Chapter 5.

If eqn.. (2.67) is differentiated with respect to t and then substituted in
eqns. (2.64a,b) the normal form equations of N are obtained in the following

form
31 | Fas g+ Frg i)+ |
q s Lp q.¥. Td' L As

?

: (2.73)
Fpevg@ - Frevelap) ey
Note that when eqn. (2.73) is integrated numerically the algebraic equations

(R), (L), (C) have to be solved at each sfep of integration to obtain

(b_o)lld'(ﬂ)l Lﬁ(ﬂr)ﬂ) and XE (qu)-

i
Ly | - |
Eqn. (2.73) will represent the state equation of N when it possesses o

. . . srs b +b . '
unique solution for any initial value x € R # Sand x is then the state vector.
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The example of the capacitive network given in Fig. 2.2 shows that the
complete set q ='q]+q2 does not define capacitive currents i .cnd ine However,
in certain practical cases currents of capacitive branches, ics and vdlfcges of
inductive branches, Y, + may be of considerable interest. It is therefore worth

studying how to defermine i and v, as functions of the complete set (q,¥) and

]
under what conditions iC(ﬂ’Z) and !L(ﬂ,z) are unique.

Taking into account that —'—C =4 and vy =Y and v, can be obtained

by differentiating the (C) and (L) equations respectively. The resulting equations

are:
) N
| Fog O 0 I e
T Yo | T
0 0 s | 1= 4 (2.74a)
T A T AR
La!“ S dv, o eg,, agd: i, ot
- v /]
[ Fpe O 0 =
T v [ e . '1
0 0 -F l —f b
7 N (2.74b)
on, o ah | |h] L
‘ 0 o1 oi : -1
haxf if -Lg" -Lf . lf L ot J
L .

where § and ¥ are given as functions of (g,9) from the normal form equations

and v, are uniquely

Igand y

determined for all (q,¥) when the square matrices in the above equations are

(eqns. (2.73)). From egns. (2.74a,b) it follows that

nonsingular for all (g, ¥).
It is noted that the set (g_,,z) was obtained through the normal tree TN.

Generally when there are loops of capacitive branches only and/or cut-sets of
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inductive branches only different normal trees may be formed. Let the set
(9*,¥*) be associated with another normal tree TN*. However, the set (q,y),
complete or not, is related to any other set (g%, y*)by a nonsingular linear
frunsformufionls-, thus when (q,y) is the complete set any other set (g*,¥*) is
complete and when (g_:b_ﬁ) does not form the complete set no such normal tree
TN* exists to give the complete set (g*,y*).

As the second choice* of the complete set x we shall consider voltages

Y and currents -lj' . Thus X

x = ' (2.75)

We shall assume that all capacitive elements are time invariant and voltage~
controlled and all inductive elements are time invariant and current=controlled.

The hybrid descriptions of capacitive and inductive elements have the form

rﬂ‘xq r-g-oé (lol ,xd_) |
9= [T aclvarvg) = (2.76
. 9.6' _ﬂ.d"(.\ia’ld') . c {
F ] | (v (i -
I £r Sty @.77)
i} ¢ HUgle iy . ' *.
1= | =f =1

It is easy fo see that(y . "I‘T) represent the complete set if (R) equations can be

v v
solved for all[iﬂ. Namely, from eqns. (2.63a) and (2.63d) vgand. i are

~f

** .
" The normal form decription with a more general choice, where the subsets

of x are the characteristic parameters x - and X of capacitive tree-

branches and inductive links, was treated in Refs. 2 and 13.

O -
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given in terms of Ve and _13, .

Ya© "Fold' Y.d‘+9_d

T (2.78) '
13 = Fgs Lyt 4
Thus ac andf_L are expressible explicitly in terms of (Y-d' ,ir)as
9 = gc(-F“; votegy o) - (2.79)
P = GG Fpg Tif*if) (2.80)

In order to form the normal form equations we have to’calculate

| v |
X = [{6]. If eqns. (2.79) and (2.80) are differentiated with respect to t we get
S | |
(i ] [Con(~Fugv +&,) + C eV
ic = Y= ML TS~ “f =4 (2.81)
_iﬂ Coraul-FugVvste, )t Cod vy S
'v] [Lppi. +L. (F 'lTi +i)
=—f= TT"T Tj Tf -T f 2.82)
Y . T- . (2.82)
v L iy *pp (Foug i 4] ) '
where  [Cay  Cus] 33y .s) (2.83)
[Cow Cqr) 3y avg)
L L opr, L5 )
Kb *L"L>a<1¢ A | (2.84)
L L o
Substituting egns. (2.81) and (2.82) into eqns. (2.44a,b)
Mev e = K¢
i (2.85)
Mplp = %¢
: A T T o o~
where My = CrotFud Cur fug ~ Fud G ~ Caxfas 2.36)

. T, T, T .
Ke= Lg *Fpel gtFae i ot Fag Cou Canley



T T
M= Lyt FapLer Fpp +FagleptlaFry 2.86)
Kp= op Fpe¥aTpe ve “Far b Hpp )L

v
When Mg and MT are nonsingular for all [_

} normal form equations

i

: =7

= -1 ‘ (2.87)
MT Ky

Y5
13'
exist. Thus, when (ld- ’i'(f') form the complete set the condition for the existence
of the normal form in terms of this complete set is the nonsingularity of certain matri-
ces formed from the incremental cpacitance and the incremental inductance matrices.
As mentioned before there are cases where ‘the normal form equations cannot
be written in terms of the set (q, y) but fhey'can still be written in terms of the set
(lg llf) and vice versa. Let us demonstrate this fact by a sihple example of a noﬁ-
linear RC network shown in Fig. 2.4a, where the resistor R is assumed to bé vol-
tage-controlled, 'i@ = i@ (V(g, ). If the capacitor C is charge controlled as shown

in Fig. 2.4b its hybrid description is
Ve = Vvalag) . (2.88)

and the cut-set charge q = q; forms the complete set; the corresponding

differential equation is : {

§ = =iy (vp) - (2.89)
pe o =ve (@

and the normal form exists as in eqn. (2.89) ip is a continuous function of
: ‘ -

q for all g &€ R . If the capacitor in Fig. 2.4a is voltage-controlled and

P is a 'sfri'ctly monotonic Funci'_ion of Ve o, s shown in Fig. 2.4c, the hybrid

description is

9@ = qd-\(vd-) o (2.90)
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and v, forms the complete set. The normal form equation is then

dqd. _-l' ' .
Vo= —) i, (v,) 2.91
Ve (dvd- e Ve - (2.91)

. Since dqy /dvs+0 for the strictly monotonic function of Fig. 2.4c the normal
form exists.

Note, that when the capacitor in Fig. 2.4a has the chdracferisric
shown in Fig. 2.4b, v, is not the complete set as qd- is not uniqu‘ely defined
as a function of vy . Similarly wEen the capacitor C is characterized by the
strictly monotonic function q4 (v4 ) shown in Fig. 2.4c, where the range of
qq s (Qi’QZ)’ q = q, is not the complefe set. It is therefore worth-
| while fto considér both (_cl,z) qnd (XJ ,_Lr) as a potentially complete set for
general networks.

| Although the sets (q,¢) or (vs,i ), which are both based on the

T

coﬁcepf of a normal tree, form the complete set for a large class of RLC

. networks, there are cases where neither (ﬂ,_y_ﬂ) nor (_v_; "i-Z") form the complete
set, but the complete set can still be found in terms of another set of network
varicbles. As an example consider fhe_RC network, shoWn in Fig. 2.5, which

“contains three linear capacitors with capacitances C], C2 and C, and two-

3
| 1

port resistor, described as ' |

Rl = rilvy) » S

= Ky

VR2 R

where K is a negative constant. A normal tree of this network is unique and

confaiqs branches C], C2, C3

_ - T . ]
or v.= (v] ,v2,v3) . It is easy to see that neither g nor v~ Forms the

7 the potentially complete sets are: _cl=(q] ,q2,q3)T

Qi
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complete set. Namely, from Fig. 2.5

Kv, + v2('l-K) - vy = 0

]
and \./1’ Vos Vg OF gys gy, qq are not independent.

However, if the free containing branches C'I’ C2, R2 is chosen, then
Ve S (vl,vz)T forms the complete set, the normal form equations'in terms of

this set exist and have the form

v, = —I—i (v -v)
1 (o RIV2 "1
a,, KG
- C2 + C3(] —K) (] + —CT—)IR.I<V2 - VI)

. \,/2
Note that the branch R2 is in fact a voltage-controlled voltage source whose

2

C; and C,. Since there is a loop of controlled-voltage source R, and capaci=-

controlling voltage is the difference of voltages Vi and v,, across capacitors

tors C] and C2, the KVL for this loop gives a contraint and thus voltages
v],vz,v:‘3 are not independenf. Thus the dimension of vector X representing the
complete set is 2 and not 3.

There are other networks with this kind of difficulty. Especially for
networks containing gyrators, ideal transformers and controlled sources of
different kinds, the sets (q, ) or <-\id' '-i-f)’ derived on the basis of a normql.
tree, may not form the complete set and the dimension of the complete set x
for such networks is frequently less than the dimension of vector } or [XJ}, .
In general, there is no systematic method, by which a pofenﬁcllyxcomplet';- set
could be selected for such nonlinear networks. Even for linear active networks,

containing passive two~terminal RLC elements and controlled sources, it is not

] 16 . . e .
easy to find the complete set . There is a class of linear passive time varying
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networks, containing two-terminal resistors, capacitors, coupled i‘nducfors and
gyrators, where the normal form equations can be ob'rainedw on the basis of
a nr.wdified normal tree*. However, when for a nonlinear RLC network (g, )
or (v ¢ "i'T) do nof form the complete set the question, whether the complete
set exists or not is even more difficult to answer than in the case of a linear
network. Thus we shall not try to find the complete set in such cases but Ol;.lr
efforts will rather be directed to find sufficient conditions for the existence

of the complete set and normal form characterization of a general nonlinear

network, confaing locally active elements.

A modified normal tree TM contains a maximal number of capacitors and
a minimal number of inductors subject to the condition that each gyrator

is either in TM or in its cotree.
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Chapter 3

FUNCTIONAL INVERSION AND GLOBALLY REGULAR FUNCTIONS

3.1 . FUNCTIONAL INVERSION

An important problem in the analysis of nonlinear networks is the
‘question of the existence of the inverse x = i-] (y) of a certain vector-
valued function y = f(x). An example is the coupled n-port resistor where a
characterization, say v = r(i), is given and the dual description, _i=1-](1),
is needed. A similar pr.oblem_arises in- the analysis of one-element-kind
networks (either resistive or capacitiye or inductive) where equations are
obtained .in a form that requires a functional im)ersion in order to express the
relation between sources and a set of network element variables. The unique-
ness of solution for such one-elemeni—kind networks is especially relevant1 2
in the state variable descripti‘on of nonlinear nerworks;,, where the usual
requirement3'4'5, related to the uniqueness of fhé network response,-is that
" the inverse function is of class C“). Bearing this motivation in mind, vector-
' (1)

- valued functions f (x) of class C(]) and having a unique inverse of class C

» will be studied.




Definition 3.1

Given a function y = f(x), where x and y are both n-vectors and

the domain of f is the entire Euclidean space R". A function

x=f(y

will be called an inverse of f if its domain is the entire R" and
-1 n
f(f (y)) =y for all yeR".

This definition implies that the inverse _f-] is defined in the whole

n =T\ . n
space R™. If f '(y) is defined only locally on an open set UeR" around some
~ point y, such an inverse is called a local inverse. A well known inverse

. 6 . a0 *
function theorem  gives conditions which guarantee the existence of a local

(1) (1)

inverse function _f-] of class C wheni is of class C' 7.

(0) is

A transformation of class C(O) which has an inverse of class C

called a‘homeomorphism of R" onto itself. A transformation of class C(l)

)

possessing an inverse of class is called a diffeomorphism of class C(]) of

R" onto itself. The term regular transformation is used in Ref. 7 for a

M

diffeomorphism of class

0

. Throughout this thesis a diffeomorphism of class

of R" onto itself will be called a globally regular function. In other

(M

words, a globally regular function i(ﬁ) is of class C

(1)

R LU .
entire R and it possesses an inverse of class C' °.

, its domain is the

The existence of an inverse of a function f(x) is related to the
question of existence and uniqueness of solution of the equation y = f(x).
When y = f(x) possesses an inverse the ﬁorresponding system of n equations,

written in component form

Yi=fi(x'|’x2’ ...,Xn) |=],2’ .-.,n

~
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can be solved for XpoXgr eees X in terms of Yyr Yoreer Y, for all ye R™.

3.1.1  Conditions for global regularity

Necessary and sufficient conditions which ensure global regularity of a
function have been stated by R. S. Palais (see Cor. 4.3 of Ref. 8). Palais’

theorem may be stated in our terminology as follows.

Theorem 3.18
Let .t(i) be a vector-valued function of class C(]) where x and f are

n-vectors and the domain of f is the entire R". Necessary and sufficient

conditions that f is a globally regular function are:

(i) detdf/dx+0 for all x and

(i) "5"—"00 implies “_f(ﬁ)"—v()o

The first condition implies the existence of a local inverse _f_-] (y) for
any y =i(>_<°), where X is an arbitrary poilnf in R". The second condition
requires that the Euclidean norm u-f-()i) " has to approach infinity for any point
on an n-dimensional ball with center at x = 0 and the radius approaching
infinity. In other words, the distance of the image f(x) in R" should approach
infinity as the distance "1(_ " approaches infinity. This property can be simply
described as radial unboundedness of f in all directions. |

Palais’ theorem is very important since it gives necessary as well as

(1)

sufficient conditions. For example, a function _f_()_(_) of class C''" whose Jacobian
" changes sign cannot be a.globally regular function. One could object that in

our network problems the second condition of Palais’ theorem is somewhat
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unphysical. However, to demonstrate the contrary, let us consider, as an |

example, the characteristic of a diode described by the exponential function

- Ale*VD - 1).

p = ipivp)

The first condition of Palais’ theorem is fulfilled for the function iD(vD) but
the second condition is not satisfied ‘when v~ = %- Yet the inverse function
of iD(vD) does not exist for any negative value of current iD.
Unfortunately it is very rarely that Palais’ theorem can be applied
directly to resolve the question whether a given function is globally reguiaf

or not. One the difficulties in its application is that the radial unboundedness

of a given function has to be checked in all directions in R". In the case of

nonlinear one-element-kind networks the governing equations depend upon topolo=-

gical structure and hybrid descriptions of network elements. For complex one-
element-kind networks it is. virtually impbssib!e.to check whether the second
condition of Palais’ theorem is fulfilled or not. If the hybrid matrices of all
network elements in a network are known ft is frequently a .simple matter to
express the Jacobian mairix of the governing set of equations by the hybriﬂ
mafric;*.es. In order to satisfy the first condition in Palais’ theorem the Ja-
cobian has to be different from zero for all values of the independent
variable. It would clearly be very useful, if a sufficient condition, ensuring
the fulfillment of condition (ii) in Palais’ theorem, can be stated in terms of
the Jacobian of f(x) only. We shall show that such a criterion on the Jacobian
can indeed be obtained. In order to derive this criterion we shall start with

the one-dimensional case and then generalize it to the n-dimensional case.
/

-

existence of the inverse F-] (y) of class C(]) is that

When y = f(x) and f(*) is of class C(]), a sufficient condition for the
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Idf/dxl >e>0 for all x e R] (3.1)

and ¢ does not depend upon x. When this condition is extended to the
n-dimensional case an ambiguity arises about its meaning. The condition
(3.1) has the following possible interpretations when generalized to the

n=dimensional case:

(1) [a_f/ai - al] is positive definite for all X € R" and £> 0

(in) Ide'r a_F/BilZ€>0 for all x € R".

The explanation (i) is related to quasilinear Funcfions3 and their extentions to
be mentioned later. The condition (ii) can be interpreted geometrically as
follows. Let P be an n-dimensional differential cube whose edges are

dx; = dx2 = ... = dxn =@ and let P’ be the .image of P under transforma-
tion f(x). Then the ratio between vol P’, the vollume of P/, and vol P, t'he

volume of P,

VO“ !
VOIP —'€>0

Hower, the condition (ii) is not a sufficient condition for a function f(x) to

be globally regular. This can be demonstrated with the aid of the following
2

counterexample. Let f: 'R2—+ R

. X1
[ e

= f = -x]
Y, f(x) X

(3.2)

then

D_f/a>1= ‘ v_ e'x] X1

e
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and - det 9 f/9x = 1. everywhere in R2. Yet, the function f(x), -
defined by eqn. (3.2) is not globally regular. Clearly, the in.verse function
does not exist for any y;<0 and the function f is not radially bounded for
Xy =0, xy—> =00, An additional condition is necésscry to ensure global
regularity. We shall show that for functions with bounded Jacobian” matrices
the condition ‘det of/dx 1290 fs sufficient to ensure global regularity.

This result is stated formally in the form of the following theorem9.

Theorem 3.2

Given a function

Y = f&)
(1)

and it is defined for all

1

where x, f and y are n-vectors, f is of class C

x €R". Sufficient conditions for i(i) to be globaily regular are:

(i) |detdf/ox[2€>0  for all xeR"  (3.3)

and ¢ does not depend upon X
(ii) the Jacobian matrix a_vai is bounded, i. e. there exists

a value M> 0 such that
|a§/aﬁ1s:w ~ for all xeR" (3.4)

In addition a_f—]/a Y, the Jacobian matrix of the inverse of f, is

bounded for all Y€ R™.

-~

Proof] 0

Before carrying out the proof of Theorem 3.2 some preliminary remarks
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will be given and then three useful lemmas will be stated.
In the following let R)r: denote a Euclidean space such that x € Rxn cmd‘
let. Ryn be the space of the images Z=i(i)e Ryn. Furthermore, let
jﬁ(t) =[y’] (t), 5?2(1'),..., yon(t)]T' : be a differentiable function of the real
variable t, @ £ t < 3, whose values are points in the space Rxn. Then
x = ¥(t) represents a rectifiable cur;/e]] in Rxn. The length of this curve between
two points corresponding to the value; t =a and t = T , is equal to
s(T) =4ﬁ|32(f)/c) fn dt. If s(c)sast—=p, we shall say fhaf the length of
the curve x = p(t), « £ t <@, is infinite. The corresponding curve y =i[}i(f)] =

= y(t) in the space Ryn is also differentiable.

Let dx = [dx],dxz, cees dxn]T be a differential of x. Then the arc
length differential ds which is equal to the distance of points x and (x + dx)

in Rxn on the curve .)i(t) ‘is :
ds = a0 = [ogonT agsot] ar 3.5)

The images of points x and {x + dﬁ) are points y = f(x) and y + dy = f(x + dx).
The arc length differential ds’ with respect to the curve y = 1) =i[f (I')] s
ds’ = (c.:lx.rdx)]/2 = [(QZ/&_f)T( o f/o i)T of/ox Jp/d f] dt
(3:6)
The ratio ds”/ds is a function of the vector x and the direction of the differen-
tial dx. We shall study such functions where
ds’'/ds 2 m>0 (3.7)

-

for all x and all directions of differentials dx. When the condition (3.7) is

fulfilled, then given an arc in R: the arc length of its image in R is not
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. smaller than  times the arc length of the original arc. Thus when the arc
length of an arc in R: approaches infinity, so does the arc length of its
image in R;, In the first lemma we show that a function f(x) satisfying

conditions (i) and (ii) of Theorem 3.2 obeys the inequality (3.7).

Lemma 3.1

The ratio ds’/ds for a function y = f(x) which satisfies both conditions

of Theorem 3.2 has a lower bound

ds’/ds>————> 0 ' (3.8)
' (nM)

Proof: From egn. (3.6) ds’/ds is equal to

ds'ds) ”dx" / "d n = [d)_(_T(a_i*/ai)T af/ox d§] /ddei

Since 9f/dx is nonsingular, (a_f/af_)T of/ox is positive definite. Thus using

the result given in Ref. 12.
de(B_f/ax)T of/ax dx > A\ de dx (3.9)
- ~ - =="min = = :

‘where /\min is the smallest eigenvalue of (a_f/ai)Ta_f/ai. Writing the
determinant as the product of its eigenvalues and taking into account egn.
(303) \ n
' ) = oA 2e? |
det [bfox). 3f/0x] = 1} A 2¢ (3:10)

The application of Gresgorin’s theorem 3 about approximate location of the
eigenvalues of a mairix and the inequality (3.4) yield the following upper
. | T ] |
o
bound for the largest elgenyalue /\max of [( f/o >_<_)\ df/ox 1

A < n2m? . | (3.11)

max
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Combining egns. (3.10) and (3.11)

\A >' £2

“*min /(nM)2 (n=1) (3.12)

The inequality (3.8) follows from the expression for (ds'/ds)z, eqn. (3.9)
and (3.12),

Q. E. D.

For the proof of Theorem 3.2 we need two additional lemmas where
fiR> R; isa ¢l map satisfying both conditions of Theorem 3.2
Lemma 3.2

. n _
Let X, be any point of Rx’ Yo =

its image in R;, and y = ¥ (1),
)

x)

0<t <1, an arbitrary arc of class in the space R; with the initial point

Yo ¥(0) = Yo Then there exists in the space R:: one and only one arc

x= L), 0t =1, of class C(]), with the initial point X whose map

by f is the given arc y = ¥ (1), hence

(3.13)

X
-0 -

Epe] =, 20 =

Proof: It is sufficient to find a continuous function x = ¢(t) satisfying
eqn. (3.13). The differentiability of ¥ (f) follows from the differentiability of
the map f and the function ¥ (), and the’ uniqueness follows from the inverse
fur;cffon theorem.

Since Yo =_F_(§o), there exists a neighbourhood U0 of X which is mapped
.by_f homeomofphically onto a neighbourhood V0 of Yo The inverse mqp g_o(z),

<M

defined on Vo, is also of class and is uniquely determined by the initial
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condition go(xo) =X If £ > 0 is sufficiently small, the arc y = t(f),
0g t¢ tye lies in the neighbourhood Vo. Hence we have ¥ (;) =g, [z(f_)]

f;)r t € [O,fl] .

If Lemma 3.2 does not hold, there exists a number f;‘, 0<t*g 1,

such that the function ¢ (t) satisfying eqn. (3.13) is deﬂ;ned in the half-open
interval [0, t*), but cannot be defined in any closed interval [0, 0<] with
xX>t*. Now, take any increasing seﬁuence of poéiﬁve numbers F converging
to t*, so that lim tr; = t*. Write x = Z(tn), so that Y, =_F(x_n) The
continuity of y(t) implies lim'xn =y (t*) = y*. Consider now the sequence
| {)_c_n} If it is not bounded, then the length of the arc x = ¥(t) between the
points X, and X tends fo infinity as n-» oo . The image of this arc is the

arc y = 'x(f) between the points Y-o and Y The length of the laﬂer arc is

less thqn the arc between the points Yo and y* which is finite. Hence, the
assumption that the sequence {x_n}» is not bounded contradicts the condition
(3.8). Thus {-)En} is bounded and it has at least one limit point x*. A
“subsequence converging to x* can be extracted From{in } Without loss of
generalify'we may assume that this subsequence is {En} . Hence we have

y* = lim Y, = lim i(’in) = f(x*). Lef V* be a neighbourhood of y*, where

the inverse map x = g*(y)s g*(y*) = x*, of the map f exists. Since g*(V*)=U*
is a neighbourhood of x*, and since i* = lim X r We have iné U*-for suffici-
ently large n, say for n> n. Then g_*(zn) =x_ i n2 no.. The function

g* ['t(t)] is defined in a neighbourhood of t*. It follows from the uniqueness
of the inverselmap g* (y) in the neighbourhood V* that #(t) =_g_*[1'(t)] for all t<t*, ‘

where both functions are defined. If we put #*(t) = 2(t) Fof 0< t<t* and

»rt) = g* [‘K(t)] , t > t*, we gef a continuous function Z*(t) satisfying eqn.
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(3.13) and defined in an interval [0,0(1'wifh «>t*, This contradicts the choice
of t*,

Q. E. D.

The point Y= ¥ (1) is the image of the point Xy = g(1) e R:. Since
Y, can be joined to any othef' point y; of R; by a differentiable arc, it
follows that a map f: R:—- R;y satisfying both conditions of Theorem 3.2 is
onto.

The compactness of the interval [O, 1] implies the existence of a finite
sequence of real numbers b= 0< t]'< ty o<t q<t = 1 with the following
property: if Y = z(fk), there exists an open:neighbourhood Vk’ of Yy where the
inverse map x =.gk(x), gk(xk) =X of the map f is defined. The arc Z=_V_(t),v
RSt €t g, belongs to Vk and we haye L(t) = gk[ t(r)] for t€ [tk' tk+1]

-and k = 0,1, . n-1.

Lemma 3.3
Let x € R: be arbitrary and Y, =_f_(§°). If the function y_ =¥ (t,u),
0<t,u £ 1, whose values are points of R;, is of class C(]) and 1’(0,0) =Yy

v . . . n
then there exists a continuous function x = #(t,u), 0 £ t,u<l, Y(t,u)e Rx' such

that
fletu)] =), 90,00 =x (3.14)
Proof: "According to Lemma 3.2 there exists a unique arc
x=6(), 0susxl, Q(u)eR:, 9(0) = X s whose map by f is the arc

y =¥(0,u), 02 u-£1, in the space R;.
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We shall now define the function #(t,u) as follows. The equation
y = z(t,u), 0<t<1, represents for a fixed ue [O, 1] , an arc of class
C(]) in R;. Since _f_[ﬂ_(u)] = ¥(0,v), there exists a unique arc X = y’ (t) of

C(l), depending upon v, such that f [ (f)] ¥ (t,u) and 5" 0) = ( ).

class
If we put ¥ (t,u) = _j{’u(f), O € ty,u< 1, then ¢(t,u) evidently satisfies eqn.
(3.14). It must be verified that it is a continuous function of the variables

t, u. For this purpose take any number o(e[O, 1] and write x* = @ («),

y* = ¥ (0,) = f(x*). The curve x = P (t,o¢) has the initial point $(0,«) =

= @(x) = x* and is mapped onto y = y(t,« ). We can now find, as described
above, a sequence of numbers i'o = O;fl' . .<fn = 1, and a corresponding
sequence of o'pen balls Vo,Vl,...,Vn_]' oF. 'R; ;uch that the arc y =Y(f,&),
<t IRy belongs to Vk' and such that the inverse map x = g (x) of f
exists for erk The branch g _k(x) is determined by g (x ), where | }’(tk,v(),
Y = 7_’(fk,o£). Since V|< is open and ¥ (t,u) continuous, there exists a d'l'<> 0
so that 1L(r,u)e\/k for te [fk,fl&]] , ue[ ~d ot d‘k]n [0, 1} . Let d= min(d,

e o reces o 1) W we write %'(r,u) =g, [«L(t,u)] for te [rk,tkﬂj,],'
vele-d,«+6N[0, 1] =S, then the function Y (r,u) is defined and
continuous on the strip 0 t<1, u € S. We have 2, (0,¢) = x*. It follows
that ¥ (0,0) = 8(u) = $(0,u) for u € S. Since f [y ()] .= £ [260)]

we conclude by Lemma 3,2, that y (t, u) = (i' u) in the rectangle

te [0, l] » U€S. Hence the function ¥ (t,u) is conl'inuous there. The nhumber

«xel0, 1 Being arbitrary, ¢ (t,u) is continuous everywhere in the square
ye 4 yw

- 0s<tusl,
Q. E. D.
(1)

Remark: Since +(t,u) is of class'C'’, it is obvious that $(t,u) is
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(1)

also of class C* 7.

Let us return to the proof of the theorem. Assume that a C(]) map
satisfies conditions (i) and (ii) of Theorem 3.2. Then we already know’ that f
is onto R;. Suppose that X Xy € R: are mapped info the same point

Yo € R;: hence flx ) = f(x;) = y_. The equation x = x_ + tx; =

)=Z(t)l

X
w
0 < ts1, represents the line segment betwen the points X, and x,. The image
of this segment is the closed curve y = f [y_(t)] = _1((1“), since ¥(0) = f(x )

Hx,
= fix) = ¥ (1). Let

B =y (=0 [2 ) - ] (3.15)
By Lemma 3.3 there exists a continuous function ¢ (t,u), 0 < t, u<1, such
that f [Z(f,u)] = ‘Z(f,u) and ¥ (0,0) = X For u = 0 we have ¥ (t,0) = ¥(t).
Since y =¥ (1) is vfhe image of x = ¥ (1) = X, + f(i] - 3_(0) and of x = #(t,0),

and since #(0) = #(0,0) = X s we concludevthat
P(4,0) = x_ + tlxy =x ) | (3.16)

Furthermore, ¥ (0,u) = Yo .50 that the arc y = ¥(0,u) is reduced to the point
Yo Since Z_(Q,O) = X and since the inveﬁe image is uniquely determined by
the initial point, we have ¥(0,u) = X . Hence ¥(0,1) = X . We obtain from
eqn. (3.15) that ¥(t,1) = Y This implies Z(f,l') = >_<°L On the other hand,
we have ¥(1,u) = Y, from eqn. (3.15), and ¥(1,0) = X from egn. (3.16). It
follows that ¥(1,u) = Xqe " ok Now we get ¥(1,1) = X, from ¥ (t,1) = X

and ¥ (1,1) = X) from ¥ (1,0) = Xy - Hence X) = X - Therefore, the map f
has the prope.rty that any Y, € R; is the Image of one point X, only. We

know already that f is onto R". Thus _f_-] ekists, is everywhere defined, and

c;s fisa C(]) map, the same holds for _f-]. _
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It remains to show that af]/a y is bounded. The Jacobian matrix
ai-]/ y is

28 /oy = Gi/ox)” Al @.7)
. x=f (y)

The boundedness of 3f/dx ensures the boundedness of adj O f/0x, the adjoint
matrix of a_f/a x, and taking into account the inequality (3.3) it follows that |
the Jacobian matrix a_ff]/az is bounded for all Y€ R;. This completes the proof
of Theorem 3.2

The following corollary concerr'\‘ing the functional inversion of a function
y =_f(§,f) -.where t is an additional scal.ar parameter has useful applications in

network analysis.

Corollary 3.1

Given a function y =i<’i'f) where f, x and.y are n-vectors, t is a scalar

and f is defined for all [i]e R . Suppose that

f

(i) f e C(]) in x and fe C<O) int

|

X
(111) 9 £/9x is bounded for all [_] .
- t

(i) Ide’ra_f/&i >e>0 for all

Then the inverse function x =i_] (y,t) = gly,t), defined for all [X'J , exists;y

t
t (O)-in t. In addition the

—

moreover i-l is of class C' 7/ in y and it is of class C

Jacobian matrix a_f-]/c)z is bounded for all I'Z] .
’ ‘ t

Proof: Since the function _f(i,’r) satisfies the conditions of Theorem 3.2
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. . -1 . .
for all t, clearly,the inverse function x = f (y,t) exists for all t, it is of

class C(])

in y and é_f_—]/éx_ = 9g/dy is bounded for all [{'} . It remains
to show that _f_-] (y,t) is continuous in t.

We want to show that for every g> 0 there exists a &> 0 such that
[ - %] = 8l tan - gyt il<e  (3.18)

for all points lxol for which
t

N}

Let _f(io-,to) =Y, and _f(io,to-i-A t) = Yo =Ay. Then %19(10+AZ' fo'*'A t).

Xo:

<d (3.18b)
|‘°'+Af ‘

f

Since _f(_)i,t) is continuous in t then for every €,> 0 there exists a tf]> 0 !

1

such that
lx[ =12 - x| flli(x_orfo+éf) -fx )< € (3.1%)
for all points 50] for which
L f

<d (3.19b)

“ 7, [xo
_fo'*'Af

t
o

The difference [x - x,] can be recast in the form
x = x = gly st rAn - gy +Ay,t +At)

. ]4 . i - ) .
Using the mean-value theorem = for scalar functions-of vector variables and

denoting the i-th component of g by g, we have
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P12 L| vy,
agz/a ZI =Yy

dg /3y | =
L N z' z_an
where Yyr Yor -+ Y, OFe points lying on the line segment with endpoints

%o and Y, +Ay. Applying inequality (3.18a) and taking into account that

og/dy = a_f-]/az is bounded the following relation is obtained
A “A[“<“§'§o“<€ . (3.20)

where A is a positive value. Therefore the condition |x - §OH<8 implies

that
lax] < €/A.

If in egn. (3.1%) € is chosen as € = €/A then by conditions (3.19a)
and (3.19b) for any l(to +At) - to|< g, the norm [By| < & = €/A and
by eqn. (3.20) Ix - x <€ - Thus 4 in eqn.‘ (3.18b) is equal to o"] defined

in eqn. (3.19b).

3.1.2  Functions possessing "partial" inverses

" In network analysis it is often desirable to fransform a given hybrid
description of, say, a resistive n-port into another hybrid description with a
different set of independent variables. When a set of independent variables
x iny ¥i(§) is replaced by a set of.dependenlL varigbles y in the new hybrid

description it is necessary to perform a functional inversion. Similarly when

-
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in the new description only a subset of dependent variables is replaced by
the corresponding subset of independent variables the necessary. operation fto
be performed will be called “partial" funcﬂonal inversion. We would like
to find criteria which ensure the existence of a "partial” inverse. The problem
may be formulated mathematically ;:s follows.

Given a function y = f(x), partition n=vectors x,y and f conformably

in the following manner,

X Yy 5
X = y = : f = . (3.210)
X2 Yo _fz

where X1 Y and _f] are m=vectors, Xor Yo and -f2 are (n=-m)-vectors. The .

~function y = f(x) can then be written as

Yy = 5l )

(3.21b)
Yo = Bylxy rxp)
Define n-vectors w and z,
DA X .
g=[’} z =|7] (3.22)
a) L
The function z = g(w), (3.23a)
which may be written as
X T g (.Y_1 'ﬁz)
' (3.23b)

Yo = lyy %))

and whose domain is the entire R", is then defined as a "partial" inverse of

f(x). Sufficient conditions for the existence of a "partial™ inverse are given
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in the following theorem.

Theorem 3.3
(1)

Suppose a function y =_F_(2<_) of class C'' 7 is written in the form

1y =5y )

. 3.24
Yo = _fz(i] 'iz) .( :

where X1 Y and _F] are m-vectors and XorYg and F2 are (n-m).-vecfors. Suppose
that

|det 35,/9x, |20 (3.25)

is fulfilled for all x ¢R" and
(i1) the Jacoblan matrix Q(F], 2)/cD (x] _2) is bounded. Then

(a) the parhal" inverse

9( Ix) ‘
[il} } [ 93\ 1%y ] (5.26)
Yo &2(11 'iz)_ ' o
(1) -

exists and is of class C''7 in Yy and Xo in addition

(b) the Jacobian matrix a(gl, 92)/ d (Z-'I' ) may be expressed ln

terms of off. /8 ],X
[NIJI ;‘[ai}-]aﬁ
. RS 1| x ox
{9y +9,) R A I
ST C Y K
axlrﬁz o f af ] | 3_{2_3_1_:_2 P"F’] ] af
ox [3xy ] Ry Ooxqox | ¥
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Proof

Part (a) follows from Theorem 3.2. Regarding X, G5 d parameter

it is evident that all conditions of Theorem 3.2 are fulfilled for function

(1)

Yy = f (x]'iz)' Thus X] =i] -l (x.l ,i2) exists, is of class C'' / and is defined

Lk el
x‘]e R,
X2

for all w =

Let &, _Xz, Z] and Z2 represent vectors related by linear approxima-
tion for .f.(?f.] ,52) and g_(x.l ,3(_2) qround the points ()il ’52) and (x] ' 352) respecti=~

vely. Then from eqn. (3.21b) and (3.23b) respectively

[ ofy 1 o8 ]
- ax; | 9% | | o
{Iq R L A (3.28a) |
Iz 3_f2 :a_fz [ﬁ . e g
[oXy 9%y
EENEEN
X1 |Pw tex |y
I . (3.28b)
XQ 29 : 99 )—<2 |
3y 1 9% |

When the set of eqns. (3.28b) is solved for )—(l' \:2 in terms of ‘_/], )_(2 the

result of part (b) follows.

Q. E. D.

When x and y are n-vectors related by Y =.£(i)' there are 2" possible
different selections of independent variables. Theorem 3.3 can easily be extended

to give conditions Under which any of (2" -1) different "partial™ inverses exist.
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.Corollary 3.2 |
Given a vector valued function y = f(x), where X € Rn; y € R" and
fe C(]) Suppose ‘thal' |
(i) the Jacobian matrix 9 f/d x is bounded and
(ii) for all principal minors of 9 f/dx of order m,

m=1,2,...,n

ldef (b_f_/c))i)(p)(P)lz em s 0 (3.29)

where (p) denotes a subset of m rows and columns not deleted from df/ax.
Then all (2" -1) possible different "partial” inverses of class C(l') can be

obtained from f(x).

3.1.3 Implicit functions

Frequently the relation between an n-vector x and an m-vector y is
given implicitly in the form

flxy) =0 | (3.30)

where f is an n-vector. Let _F(x_o,zo) = 0. The Aimplicil' function ’rheorem]
yields conditions Fof the existence of ‘@ unique function x = Q.(Z)' definedv
locally in o neighbourhood of Yo In the analysis of oae-elemgnt-kind nef;/vorks
the resulting algebraic equations may have the form of eqn. (3.30) where
the components of y are independent sourceS and the components of x

. are the unknown network element variables. In order to solve such a nefwork
it is necessary fo express x = gly) where y s not rgstricfed to a small
region in R™. Thus it appears fo be FrUiH’ul. if the conditions for the

existence of a unique function x =gly) forall y ¢ R™ can be obtained. A
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direct application of Theorem 3.2 yields the following result.

Theorem 3.4
1
Suppose a function i(i,z) is of class C( ), x and i are n-vectors, y

is an m-vector and f is defined for all [i] ERn+m_. Suppose that f(x,y) =0 g
’ Y

and

(i) 9£/9lx,y) is bounded and

X

—

(i) |det Df/Dx[2€ >0 for all Me R, (3.31)

(1)

Then there exists a unique function x = g()_l_) of class C

with values in

R" and defined for all y & R™ such that
faly)y) =0  forall y € R™ . (3.32)

and moreover Bg/az is bounded for all ZERm.

Proof |

Using Theorem 3.2 the proof can be given along the lines of the proof
of the implicit function theorem

Define the function E(i,'x) | .

[ = Flx,y) = (3.33)
w r ‘
The Jacobian mcfrix of F is
af  of
2F %X By (3.34)
alx,y o | .



106

From eqn. (3.34) and the inequality (3.31)
|det 9F/ 3 (x,y)| = |detDf/Dx|2e>0 (3.35)

and f_(i,x) satisfies the first condition of Theorem 3.2. Since ai/a(i,x) is
bounded, the Jacobian matrix of F is bounded. Thus, F(x,y) satisfies all {

conditions of Theorem 3.2 and hence, F is a globally regular function. There-

fore the inverse of F '¥

(3.36)

(1)

exists and is of class C' 7,

From the definition of the inverse -

flozw), w] =z For all l ile R (3.37)

w

If we now define

gly) = “f)(orz) for all y € R™ (3.38)

then setting z = 0 in eqn. (3.37) and taking into account y = w (eqn.
(3.33)) we obtain eqn. (3.32). The uniqueness of g(y) follows from the fact

that {‘2(5\:;‘1):] is the inverse of F(x,y). The Jacobian matrix dg/dy can be

obtained from eqn. (3.32) as

og _of of
A U

Applying conditions (1) and (ii) to the above expression it is easy to see that

(r)_f/&)i)-.l is bounded and thus dg/dy is bounded.
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We shall state a useful corollary of Theorem 3.4; it yields conditions
that guarantee the global regularity of the function x = g{y) which is the

solution of implicit equation i()i,x) = 0.

Corollary 3.3 {
(1)

Suppose f(x,y) = 0 where f, x and y are n-vectors, f € C''* and it is
X !
defined for all |~ eRzn. Suppose df/ d(x,y) is bounded, |det a_F/aile] >0
x ' .
and | det af/ax|3€2> 0. Then there exists a globally regular function

X = gly) such that
flaly)y) =0 for all y& R. (3.39)

Proof: In order to prove the global regularity of g(y) then using
Theorem 3.2 it is necessary to show that 9g/dy is bounded and that

€,> 0 exists such that |det 3 g/9y|> £, From eqn. (3.39)
d3g/0y = -(af/0x)" 3ty . (3.40)

Since a__f/a(i, ) is bounded, |detd f/d X|>€q ‘> 0, it follows.fhcn‘ |
(0£/d _>_<_)-] is bounded and it is clear from egn. (3.40) that 9g/dy is

bounded. Similarly, the boundedness of o f/d x impiies the existence of a

value M]> 0 such that |det (3 /9 Zc_)-][z M]. Therefore |det & g/d Y|
-1 ' ,
= ldef(éi/éb_c_) ] ldefé_‘f/&x,;M]gz cut\d € > M] € 5

Q. E. D.

3.2 SOME CLASSES OF GLOBALLY REGULAR FUNCTIONS

In this section we shall study some classes of globally regular functions
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that occur frequently in network problems. When the Jacobian matrix associated
with a given function is bounded Theorem 3.2 may be applied'. A subclass of
globally regular functions containing functions with unbounded Jacobian matrices
will be mentioned as well. Before proceeding further three useful definitions

- will be stated. The terminology introduced by Minry]6 will be used in Defini- -

tion 3.2.

Definition 3.2

A function £ R"— R" is called monotonic provided, for any X) X0 € Rn, ,

we ‘have
[ £6x)) 'i(ﬁ)]T [’iz - ’i]] 2 0. (3.41a)
I [fe) = f)] [y - x)]> 0 (3.41b)

£ is strictly monotonic.

I [f) = ) [ = xboely =5, | % xytxp (3410)

with p>0, f is strongly monotonic.

Let us now extend the definition of a uniformly positive definite matrix

to the nonsymmetric case.

Definition 3.3*

A square n x n matrix A(x) is said to be uniformly positive definite

*
The same definition appeared in Ref. 17.
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(u.p.d.) in x if there exists a u>0 such that
2 [AW-@i]z>0 zho ' (3.42)

for all x and M does not depend upon x.

Definition 3 .43 '

A square n x n matrix A(x) is said to be uniformly Hadamard (u. H.)

in x if it is continuous and bounded and if there exists a (>0 such that
n .

a. = Zloiip(u’ for all x and all i (3.43)
! |
i

Lemma 3.4

Suppose A(x) is u. p.d. Then

det A>" > 0 forall x o (3.49) o

Proof9: Le_i' ' ’

B =[AKx) - @l]. | | | |
The determinant det A can be written in the form
: -1
det A = det [ 1+8] = det [p] [det 1+(u” 18] (3.45)

Using the diagonal éxponsion of a mcxrrix]8 and taking into account that B
~ is positive definite
' -1
det [ 1+ (x71B] > 1. (3.46)

The inequality (3.44) follows from eqns. (3.45) and (3.46).
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Lemma 3.5

Suppose A(x) is a u. H. matrix. Then

| det A] > > 0 for all x (3.47)

. i 13 - P
Proof: Using Gresgorin’s theorem 3 it follows from eqn. (3.47) that any

eigenvalue Ai of A is bounded away from zero,

| Al > #>0 i=1,2,...,n (3.48)

n
Since [ det A|= El)\il , | det Al>u” > 0.

Lemma 3.6

(1)

A necessary and sufficient condition for a function f(x) € C

strongly monotonic is that the Jacobian matrix If/dx of fis u.p.d.

Proof of sufficiency: Consider a one~dimensional arc x(6),

0< @51, given by

x(0) = x; + (x5 =x,)6 . (3.49)
Then | ‘
Ox/98 = (x, = x;) . ‘ (3.50)
and (>_<é =X )T[ i(@)"i(il)]'—‘
(xp = %)) f X, )48 %, -1"
5=£@)'

where the last inequality follows from the fact that f/dx is u. p. d.
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Thus f is strongly monotonic*.

Proof of necessity: From the definition of a strongly monotonic

function

=)' [Feg) - fex)] >y =] w00 35)

X, Sl

Let X = Xy = X cmdﬂ>_<_2 - 5]]]—' 0. Then from §qn. (3.51)

and thus 3f/dx has to be u. p. d.

The first result will be concerned with strongly monotonic functions

(1)

of class C* 7,

. 3.2.1  Class of strongly monotonic functions

Theorem 3.5%*

Suppose a function f: R"—R" is a strongly monotonic function of

(1)

class C*' 7. Then f is a globally regular function.

Proof |

By Lemma 3.6 a strongly monotonic function has a u. p. d. Jacobian

*
Similarly for _F_(>_<_)e C(]) positive definiteness of 9f/dx for all x ensures strict

monotonicity of f and positive semidefiniteness of df /3 x implies monotonicity.

* % . }
The_same result appeared in Ref. 17
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matrix 6_{_:/65. According to Lemma 3.4 detf/dx > (u.n > 0 and the first
condition in Palais” theorem is fulfilled. |
Applying the Schwartz inequality to the criterion for strong monoto-

nicity (eqn. (3.41¢)) yields
| £xp) = )] %0 - %] (3.52)

Let x, = const. and Xy = x. Then |x|=oco in eqn. (3.52) implies | £6x) “-»Oo ‘
and the second condition in Palais’ theorem is fulfilled. Hence f is a globally

regular function,

Note that in Theorem 3.5 there is no requirement for df/2x to be
bounded. Since by Lemma 3.6 strong monotonicity is equivcleﬁf to a v. p. d.
Jacobian matrix a_f/ai, a funcfior; _f.(i) Wherei € C(]) and its Jacobian
matrix is u. p. d. is a globally regular function.

The inverse _f-](x) of a sfronglf monotonic function _f.(ﬁ) of class C(])
is a strictly monotonic function of class C(]). Namely, u. p- d. Z-)_f/a>_<_
implies that 9f/dx is positive definite and therefore (3i/3§)-] = ai-]/ax
is positive definite. However, the function i-] (x) is not necessarily strongly
monoforﬁc or equivdlenfly its Jacobian matrix is not necessarily u. p. d. This
can be demonstrated by the following one-dimensional exumf:le.

Let y = f(x) be defined in the following manner:

y =x +1 x € 0

y = & x> 0 (8.53)

As the derivative dy/dx is continuousiat x = 0 this function is of class C(l)

and furthermore it is evident that df/dx is u. p. d. The inverse function
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X = f_](y) is from eqgn. (3.53)

x=y -1 Ays\ -
- (3.54)

X
it

Iny y > 1.

Since dx/dy = 1/y, y > 1 and dx/dy — 0 as y-»oo, the Jacobian matrix

-1 - :
of f (y) is not u.p.d. and f ](y) is strictly monotonic only. The function

given in eqn. (3.53) is a counferexample]9 for the second part of Theorem

3 in Ref. 17. In order to ensure a strongly monotonic inverse of a strongly

(1)

monotonic function of class C''* an additional restriction has to be placed
upon f. Strongly monotonic functions possessing strongly monotonic inverse

will be termed generalized quasilinear functions.

3.2.2 Generalized quasilinear functions

Definition 3.5

A strongly monotonic function f(x): R"— Rn, where f e C(]), will

" be said to be a generalized quasilinear function (GQLF) if its Jacobian

M

mairix is bounded for all x. Equivalently a GQLF is a function of class C
and has a u. p. d. and bounded Jacobian mairix.

GQLFs are an extention of quasilineqr funcé’rionsz. If « GQLF
f(x) has a symmetric Jacobian matrix for all X, it is a quasilinear function.
GQLFs that serve as a basis for the definition of positive definite network

elements, to be introduced in next chapter, have the following properties:

Property 1
The sum of two GQLFs is a GQLF. . ' 'g
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Proof The proof given in Ref. 3, p. 576 for the sum of two

quasilinear functions is applicable.

Property 2
If f(x) is a GQLF and given function g(v) = AT_f_(Ay_+ b) where f, x

and b are n-vectors, v is an m=vector (m £ n) and A is a constant n x m matrix

of rank m, then g is a GQLF.

- Proof  The proof given in Ref. 3, pp. 576-577 for an equivalent
property of quasilinear functions is appropriate.

Note that GQLFs have all the pro;:;erﬁes3 of quasilinear functions
except that a state funcfions associated with a GQLF may not exist if a GQLF
has a nonsymmetric Jacobian matrix. However, the following property of GQlLFs
does not hold for quclsilinéar functions.

ProEerrz 3

Suppose a function f: R"— R" is a GQLF. Write i'in the form

: Yy = £0x0%5) |
Yy = fplxy %))
where x and y are partitioned arbitrarily but conformably and Xys Yy ore

m=-vectors and Xor Yo OFe (n=m)-vectors, m = 1‘, 2, ..., n. Then a "partial®

inverse g_(x] ’)12) ;, written in component form
X _ 9 (X] ".5.2) . ' (3.56)
Y el |

exists and moreover g_(x] ,x_2) is a GQLF. Consequently, all (2n - 1) different
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"partial” inverses of a GQLF f exist and are themselves GQLFs.

Proof:  The existence of a "partial” inverse g(x_] ,52) follows from
the fact that f has a u. p. d. and bounded Jacobian matrix df/dx. Any
principal submatrix of order m (m = 1,2...,n) of 3f/9x is itself v.p.d. and
its determinant has by Lemma 3.4 a lower bound Hm > 0. Therefore all condi-

tions of Corollary 3.2 are fulfilled and g_()_'_] ,52) exists.

{
To prove that Q.(Z.]'iz) is a GQLF we have to show that a {&2 >0

exists such that [ag/ é(z_] ,);2) - (uzl] is Posifive definite for all [2] € R?
Let >-(|' 2_(2, _\_’], 1’2 represent vectors related by linear approximation for' f(x)

« _
or g_(x_],§2) around points [::J and z . Then from eqn. (3.55) and (3.56)
. | xal- Xo | -
RY Y
L "'2 ' —2
[
.>_(] l,]
= Agy,9,) Olyyix,) (3.58)
v 9199 17%9) |

[ =2 =2
As 3f/dx is u. p. d. it follows from eqn. (3.57)

T
20 140 (5] | % %

7 for| |0 (3.59)
% Ya) |%2] | %2 X u

The scalar product on the left of eqn. (3.59) can be recast in the form
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Y X X X
LT B TR
> ‘ . (3.60)
X Y2 1 Z2] | 2
Substituting eqn. (3.58) into eqn. (3.60)
T T .
Y v, P2, 29 29 o8
S oeg) TN e Xl e Bt sy, Ko
Xy ] @ (yy %) >_(2. X, X,
(3.61)

The r. h. s. of eqn. (3.61) may be writien as a quadratic form

T
X

=1 DTD )_(l where
Y ) Y :

AY 12
D= |~ — (3.62)
Q4! X2
0 !

From Theorem 3.3 (eqn. (3.27))

dg. a_f_] —]‘
3x] = 351
- and C9g _[B-FI} P

9% oy

The boundedness of 3i1/3£1 implies the existence of a lower bound €,> 0

1

is bounded. Thus an ey> 0 exists such that for Amin' the smallest eigenvalue

such that det D >&€,. Since f is a GQLF, the matrix D as well as ag/a(x] ,52)
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of the positive definite matrix DT D,

A>£2>0

min

and using the result in Ref. 12.

1" 5 (%], KIT&} {’-‘1+
DD 2 for all 0
Ys Yo Nl 1Y Y

(3.63)

Combining eqns. (3.61), (3.62) and (3.63) it follows that [Bg/b(zl ,52) - 5*521]

is positive definite and (g 2 Eg-

3.2.3 Functions with uniformly Hadamard Jacobian matrices
The next result is concerned with functions f: R" — R"  where
df/ox is u. H. It is shown in Ref. 3 that the equation f(x) = O has a unique

solution when 9f/dx is u. H. In fact y = f(x) is a globally regular function

under this condition. ‘ ' f

Theorem 3.6

Suppose the Jacobian matrix @f/dx (or its transpose) of a function

f: Rn_-> R" is u. H. Then f is globally regular..

Proof

Since a_g/ai is u. H., it is bounded, fe .C(]) and by Lemma 3.5 .
ldef a_f/a§[> ‘un > 0. Hence all conditions of Theorem 3.2 are fulfilled and

therefore f is globally regular.
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Some properties of functions with u. H. Jacobian matrices are listed

below.

Proeerfz ]

" Suppose that functions £ R"~R" and . R"—~ R" have u. H. Jacobian

2

mairices. Then the function f = f

- =

+_f2 is a globally regular function.

Proof: Since the sum of two u. H. matrices is itself u. H., the

Jacobian matrix of f is u. H. and Property 1 follows.

ProEer’rz 2

Suppose a function f: R"—R" has @ u. H. Jacobian matrix. Then

(1)

all posible (2n -1) different "partial” inverses of class C' * exist.

Proof: For @ u. H. matrix all principal submatrices are themselves

v. H. and thus by Lemma 3.5 all principal minors of 9 f/3 x have a positive
fower bound. Therefore all conditions of Corollary 3.2 are satisfied and Pro?erfy
|

2 follows.

Q. E. D.

Property 3
Suppose the Jacobian matrix 9 f/9x and its transpose {a_f/é) i]T of

a function f: R™—»R" are both u. H. Then f is a GQLF.
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Proof: If Qf/dx and [3_{/5_)5_]]. are both u. H. then 9f/9x is
u. p. d. and bounded. Namely, the quadratic form of a_f/aé is equal to

the quadratic form of its symmetric part, i. e.

2’ 3f/oxz = 5z [01/0x + (3/04] z.
The matrix [a_f_/ai+ (&_f_/é))_(_)T] is u. H. and the matrix P
P =[-3_F_/D§+ (E)_f/&)_(_)T - al] is u. H. for some ¢> 0.

Hence by Lemma 3.5 all principal minors of P are positive, therefore P is .

positive definite and .9f/3x is u. p. d.

A special case of Property 3 are functions with u. H. and symmetric

Jacobian matrices. These functions belong to the class of quasilinear functions.

3.2.4 Two other classes of globally regular functions

In this section two special classes of functions that ‘cppear frequently
in the analysis of one-element-kind networks will be treated. Our interest is
to find sufficient conditions that ensure global regularity of these functions. In
order to discuss these conditions the following lemma and definition will be

. -introduced first.

Lemma 3.7
Let Q and R be two n x n real constant positive semidefinite (not

necessarily symmetric) matrices. Then

et [ 1+ @Rz
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if (a) R is positive definite (not necessarily symmetric) or

(b) R is symmetric positive semidefinite.

Proof: If R is positive definite we can write
-1
det [ 1+ QR ] =det [R7 + Q] det R

. -1 . - _ . .. 20
The matrix [R + Q] is positive definite. From the inequality = that relates
the determinant of a positive definite nonsymmetric matrix to the determinant of

its symmetric part it follc;ws that
det [R'l +Q ] > det [(R-I)s *Q ]

and det R > 'olef Rs

where subscript s denotes th'e symmetric part of a matrix. Hence
det [x + QR ] > det {x + QS(R—])S]?.I

The last inequality follows from Assertion 2 iﬁ the Appendix of Ref. 5.

Let R be symmetric. Since every reai symmetric matrix R is orthogonally
similar to a diagonal matrix2] (whose diagonal elements are l;\ecessarily the cha-
lracferisfic roots of R), R may be written in the foom R = PA PT, where A s

f

a positive semidefinite diagonal matrix and PPT = |. Therefore
det [l"‘QR] = det [I+QP/\_PT] = det [l+‘PTQP/\]. !

The matrix PTQP is pdsifive semidefinite and applying Assertion 1 of the Appendix

of Ref. 5 yjeldé: _det [l + QR ] 2 1.
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Definition 3 .622

Let A be a real constant square matrix. A belongs to the class of

matrices denoted by P if all principal minors of A are positive.

If all principal minors of A are nonnegative, A belongs to the class

of matrices denoted by P..

Among other matrices the class P contains pesitive definite and row
(or columns)domingnt matrices. The class Po contains positive semidefinite
matrices.

The first function y = f(x) to be considered in this section is of the

form

Y X 0 Flleky) |
o i 1 (3.64)

2| %] |- 0] [hbxp)

where X1 Y and g are mi-vectors, Xor Yo and h are (n-m)-vectors and F
is o constant m x (n-m) matrix. This function has the form of eqn. (2.41)
appearing in mixed analysis of one-element-kind networks and has been

studied by Varayia and Liu5. Sufficient conditions for f, defined by eqn.(3.64),

to be a globally regular function may be stated as follows.

Theorem 3.7

If the functions g and h satisfy conditions C1 and C2 or they satisfy
conditions C1 and C3, then f defined by eqn. (3.64) is a globally regular
function.

(C1) g and h are of class C(l) and the Jacobian matrices {

2 a | L !
G()_g_]) = Sg/ai] and H(iz) = 3_11/35_2 are positive
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semideﬁni’re and bounded 1;'or all xy and x, respectively.
(C2) Either G(il) is a positive definite matrix (not hecessqrily

symmetric) for all Xy o H(iz) is a positive definite matrix

(not necessarily symmetric) for all X
(C3) Either G(’i]) is symmetric for all Xy or H(iz) is symmetric

for all Xo

Proof

The Jacobian matrix of f (eqn. (3.64))

| Pz (3.65)

df/ ax =

—FTG(il) |

~

is bounded as G and H are bounded. Applying Theorem 3.2 it is necessary to
show that the inequality (3.3) is fulfilled.

Using Lemma 15 of Ref. 23

det Bf_/ai det [I + FH(£2)FT(3(§])] =

(3.66)
det [l + FTG(x])FH(iz) ]

T and FTG(i'I)F are positive semidefinite, a

Since the matrices FH(§_2) F
direct application of Lemma 3.7 fo eqn. (3.66) shows that det [3_1’_/3)1]2 1
if the conditions (C1) and (C2) or (C1) and (C3) are satisfied.

Q. E. D.

Note. The condition (C1) only is not sufficient for f (eqn. (3.64))
to be globally .regular. When both G and H are positive semidefinite and

nonsymmetric, det 9 f/9 x is not nécessarily different from zero. This may be
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demonstrated by the following example. Let

1
5 -1 0 -1
G()-i]):: : Ol H(i2)= : .._]..’ F=1.
e . 2

Then detdf/ox =det '[ 1+ GH] = 0

Varayia and Liu5 gave sufficient conditions for f, defined by eqn.
(3.64), to be globally regular. The conditions on G(’il) and H(iz) were more
stringent than C2 and C3 but boundedness of G and H was not required.
However, their proof is not very convincing*.
The second function that has received considerable c:ﬂ“enfion24-26 is

of the form

y = f) = Ax + gk) (3.67)

where A is a constant n x n matrix, g: R"— R" and the Jacobian matrix 8&/&1

is diagonal for all x. Eqn. (3.67) describes, say, a linear resistive n-port with con-

ductance matrix A where two~terminal resistive voltage controlled elements are
connected in parallel to each port. Eqn. (3.67) plays a central role in the dc
- analysis of transistor networkszs when the hybrid description of the transistor has

the form

* At one point they state in the proof of Theorem 1.1 (in our notation):
det 9 f/9x 21 implies that !!i(’i) - Zu-.mas | % |00 - The counterexample

given in Section 3.1.1 shows that this conjecture is generally not correct.

However, it was not shown in Ref. 5, that this is correct in the specific

case of function eqn. (3.64).
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In egn. (3.68) i] and i2 are the port currents, vi and v, are the port voltages;

it is assumed, as is the case for the usual large signal model of a physical transistor,

that 0 < «,, < 1, 0 <o

12 27 < 1, and that both of the functions 9 and _9_2 are

continuous and monotonic. The equivalent circuit of a transistor described by the
hybrid description (3.68) is shown in Fig. 3.1. The conditions for global regula=-

rity of the function y = Ax + g(x) are given in the following theorem.

Theorem 3.8

If f(x) defined by eqn. (3.67) satisfies condition (C1) or (C2), then f is
globally regular. |

(C1) A is a matrix of class P and ag/a>_<_ is continuous, bounded and
diagonal positive semidefinite mcfrix.. |

(C2) A is a matrix of class Po and ag/a;i is continuous, bounded and

diagonal = u. p. d. matrix.

Proof

From egn. (3.67)

det 3f/dx = det [ A+ 3g/dx ] (3.69)

Suppose that condition (Cl1) is satisfied. Since A € P, ag_/ai is diagonal
~ positive semidefinite, the diagonal expcmsion]8 of det 9 f/Ox yields finally:
det a_{/ai > -det A > 0. Hence by Theorem 3.2, f is globally regular.
Let condition (C2) be fulfilled. Since A € Po' ) g/&)_(_ is diagonal

and v. p. d., i.e. [Bg/a>_<_ - (ul ] is positive definite, it follows that

det dF/dx 2 (u.” > 0
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and f is globally regular. _ i

In Ref. 25 the uniqueness of solution of eqn. (3.67) was considered
under less stringent conditions where the boundedness of 9g/®x was not
required. However, Theorem 3 in Ref. 25 does not guarantee that f is a
globally regular function.

The classes of functions, treated in Section 3.2, embrace the most
important functions occuring in dc analysis of nonlinear networks for which the
.existence and uniqueness of solution can be guaranteed. There is another point
‘that is worth fnenﬁoning. Global regularity of di_FFerenf classes of functions,
that were treated before each by a different method, has been established in

a rather simple and unified manner, employing both conditions of Theorem 3.2.

3.3 SIMULATION OF ALGEBRAIC EQUATIONS BY DIFFERENTIAL

EQUATIONS

Once it is established that a given function y = f(x) is globally
regular a question arises how to calculate its inverse. It is not er purpose to
consider the problem of finding algorithms to compute inverses of globally regular
functions in too much detail. The aims of this section will be to show that many
existing clgorifhrﬁs are based on or may be deduced from an appropriate diffe-

rential equation

[ W
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%= Ex, y) (3.70)

associated with a given function y = f(x). Differential eqgn. (3..70) has the
property that for a given y ifs singular point x = X2 is the solution of the
equation y = f(x) and hence the problem of computing the inverse _f_-] (y) is
transformed to the problem of finding a singular point of eqn.. (3.70). Even
when E(i' y) = 0 admits one sgluﬁén only for any y € Rn, there is no
guarantee that travelling along the trajectory defined by eqn. (3.70) the singular
point will be reached. Namely, the sir;gular point x_ may be unstable or
differential eqn. (3.70) may have a limit cycle. It is therefore important to
search for functions F(x,y), Iassociated with a given function y = f(x), such that
differential eqn. (3.70) represents a globally asymptotically s’rable3'5 differential
equation. The necessary criterion for global aymptotic stability of a given diffe-
;'enﬁal equation is given in Ref. 27 (see also Theorem'-8.5 of Ref. 3).

There are two globally asymptotically stable differential equa’rfons that
can be associated with any globally regular function y =i(>£) and fhey‘ are given

in the form of the next two theorems.

Theorem 3.9

Differential equation

%= - (/30 [f -y ] (3.71)

where f: R"— R" is a globally regular function, is a globally asymptotically
stable differential equation and for given y its singular point corresponds to

the solution of equation y = f(x).
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. Proof3

Since f is globally regular, by Palais’ theorem: (i) ”iu—aoo as

"5 |+c0 and (ii) det df/dx =F 0.

Choosing Liapunov function W

W = [f(x) - Z]T [i(i) - x] | (3.72)

we have

W

]

2 [fx) - x]T of/ox %=

_ T T

= -2 [f) - y] 3f/3x (3F/ax) [fx) -y ]
By condition (i) W->osas |x |->co . By condition (ii) W must be negative
-except at a singular point. Hencé the conditions for global asymptotic stability2'7

~.are fulfilled and all trajectories approach a singular point of the differential egn.

(3.71). But by condition (ii) a singular point must be a solution of the equation

Y. = £
Q. E. D
Theorem 3.10
Differential equation
x = -(aj/aﬁ)-l' [fx) -y ] (3.73)

where f: R+ R" is a globally regular function with bounded Jacobian matrix, is
a globally asymptotically stable differential equation and for a given y its singular |

point corresponds to the solution of equation y = f{x).

Proof

Let Liapunov function W be the same as in the proof of Theorem 3.9
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(gqn. (3.72)). Then from eqn. (3-.73). '
Wo=-2 [f0 - yJ [f -y ] = -2 w.

W is neg‘aﬁve everywhere except at a singular point. As in the proof of Theorem
3.9 W—+ o0 as [xf—>oo. Thus all conditions for global asymptotic sfabilityzz
are fulfilled and differential eqn. (3.73) is globally asymptotically stable. Sir:ce
£ is globally regular and df/dx is bounded it follows that (9£/d i)-l is

nonsingular and a singular point of eqn. (3.73) must be the solution of the

equation y = f(x).

Simpler differential equations, ‘Ieading to the solution of algebraic
equations, may be found for specific globally regular functions. The following

C(I).

theorem is valid for strongly monotonic functions of class

Theorem 3.11

Differential equation

== [fx)-y] (3.74)

'l ‘
‘where f: R— R" isa strongly monotonic function of class C( ), is globally
. asymptaotically stable and for given y its singular point corresponds to the

solution of equation y = f(x).

Proof3

Since f s strongly monotonic, a.f/a’i is u. p. d. Choosing
"Liapunov function W = [_f(’i) - Z]T [i(’i) - Z} the proof is straightforward.

Q. E. D.
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Application of Eulers’method to differential eqn. (3.74) gives

B "5 7R [ 1) -y (.79
and the singular point of eqn. (3.74) which is the solution of the equation
y =i(’i) is given as

X =

- C (3.76)
Egn. (3;75) is identical to the clgorifhm3 proposed f§r the computation of the
inverse of a quasilinear funcfion. Note, that the algorithm given in egn. (3.75)
is appropriate for calculation of the inverse of GQLFs. When Sandberg’s Theorem
1in Ref. 28 is applied to functions f: R™— R" an 'inferesfing relation can be
found between the iteration process, descriged in his' theorem, and the algorithm
of egn. (3.75). It is shown in28 that for a strongly monotonic function Z_=i(x_),
satisfying eqn. (3.41) by definittion, and in-addition possessing the property
[ fop) = ) |2 <]y - ]2 (3.77)

for any Xjr Xo € R" a unique inverse function exists and it may be calculated
by the algorithm of eqn. (3.75), which is convergent for step size hS_EI“—'

"'he inequality (3.77) represents the Lipschitz condition. It is interesting

to note that GQLFs satisfy the inequality (3.77). Namely, GQLFs have bounded

Jacobian matrices and thus fulfil the condition (3.4). Let X1r Xo € R" and

consider one-dimensional arc defined by eqn. (3.49). Then

]
i) - Fixy)] =fl';<5 22 %] | 9© 3
9
/ afi f ﬂ Xy = X de

=

Applying the condition (3.4)
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- X

| 1) - Fitey)] <2 %%

=2

and finally
" _f.(ﬁz) "_f(ﬁ])E < Mn n Xo = 3(_][{ (3.78)

Compar%ng eqns. (3.77) and (3.78) gives & = Mn. Thus the algorithm of egn.
(3.75) is convergent for a GQLF when h £ #/Mn.

Generally different methods of numerical integration are expected to
be convergent when (i) a differential equation associated with a given algebraic
equation is globally asymptotically stable, (ii) it satisfies the Lipschitz condition,
which guarah‘rees the uniqueness of solution and (iii) step size h is small enough.
Thus, globally asymptotically stable differential equations may be used to generate
a large number of algorithms just by choosing different methods of numerical
infegration. Further discussion about this problem would exceed the scope of
this thesis.

There is another point that is worth mentioning. When the Euler

method is applied to differential eqn. (3.73) we have

o
Mol T 5 h[?x— [ .79

X 1=
;l—’l'f,

It is interesting fo observefhcf.by sefﬂng h =1, eqn. (3.79) represents the
Newton-Raphson formula for ‘compuf.ing the solution of algebraic equation y=f(x).
The step size in the Newton-Raphson method can be too large for some globally
regular functions; thus, the iteration process will not always be convergent.

However, the reduction of the step size may result in a convergent procedure.
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3.4 SUMMARY

This chapter presents fhé necessary mathematical background of the
thesis. In order to study fhe properties of one-element-kind and RLC networks
the problem of functional inversion of vector-valued functions has been treated.
Theorem 3.2, giving a new criterion for- global regularity of functions, has been
derived. The globc“y regular property of certain classes of vector-valued
- functions, corresponding either to hybrid descriptions of network elements or
to dc équcfions of nonlinear networks, has been established on the basis of
Theorem 3.2 rather than using a different approach for each separate class as
was done previously. Hence, it has been demonstrated that this theorem has
useful applications in the field of nonlinear networks. However, being very
general, it may succesfully be used in solving other problems where the
existence and uniqueness of solutions for a set of algebraic equations is in
question.

The question of the existence of "partial" inverses of vector-valued
functions, related to the transformations of one hybrid descrfptions to another,
hds been examined. The conditions ensuring the existence of a unique solution
of a set of implicit equations, which may correspond to the governing equation
of an one-element-kind network, have been given in Theorem 3.4. Some other
results, related to Theorem 3.2 and useful in the subsequent treatment, have
. been stated.

Finally, it has been demonstated that certain existing algorithms for



132

cpmpuﬁng the inverse of a globally regular function can bé considered as a !
numerical method for solving a differential equation which is'as.socia'red with
a given function; the question of convergence of an algorithm for computing
the inverse is related to the properties of such a differential equation. A glo-
bally asymptotically stable differential equation has been found where the
Euler method gives the Newton-Raphsoﬁ formula. -

The results of Chapter 3 will be used throughout the rest of this thesis.
In order to study the properties of RLC networks containing locally active
elements, the concept of positive network elements will be infroducéd in the

next chapter; properties of positive network elements and certain interesting

subclasses of positive network elements will be examined.
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Chapter 4

POSITIVE NETWORK ELEMENTS

P

When, say, resistive networks are analysed it is significant that the
resulting equations may be written in one of the forms, described in
Section 2.3, where the number of equations is much smaller than for fEe basic
set of 2 (br{&'*- bé) equations. Suppose, as an example, that loop analysis is
desirable. If a resistive element NR in a network is described by a hybrid
description hR(zg_) where the independent variable is not the current vec':for, it

is necessary to transform a given hybrid description h,(x) into another hybrid

2r

description hR(i) with the current vector as the independent variable; this can

be done only if the resistive element is current-conirolled. When N_ is nonli-

R

near, in general hR(_I_) cannot be expressed explicitly in terms of hR(i)' but it
is still important to know whether bR(l) exists or not if for example, numerical
method is used to calculate _P_wR(_l_) for a given value of x. Since hR(l) is gene~"

¢
rally a "partial™ inverse of hR(’i)' criteria given in Section 3.1.2 may be

2r

Nevertheless, it may happen that for a given network it is impossible to perform

applied fo establish the existence of a unique h,(i) in every particular case.

either loop or nodal or mixed analysis. It is therefore useful to delineate a
class of network elements that possess all hybrid descriptions and thus either of

the three analyses may be carried out for a network consisting solely of these
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elements. A set of network elements possessing the above mentioned property ,.
will be termed as positive network elements] .

As will be shown later, positive network elements are a very general
class of network elements and they embrace many locally active as well as lo=
cally passive network elements. Many practical nonlinear devices such as
transistors, vacuum tubes and some other locally active devices may be modelled
as positive network elements. There is another significant point that is worth
mentioning; by introducing positive network elements we shall be able to analy~
se a large class of one-element=kind and RLC networks containing locally active
elements.

In this lchapi'er positive network elements will be defined and their
properties will be studied and then some important subclasses of positive network
elements, having certain special properties, will be discussed. Series-parallel
interconnections of positive network elements and some other network elements
together with the existence of a unique solution of one-element-kind networks,

containing positive network elements, will be investigated in the next chapter.

¢

4.1 POSITIVE NETWORK ELEMENTS AND THER PROPERTIES]

Before stating a formal definition of a positive network element we need
the following definition, representing a generalization of matrices of class P. (See

1

Definition 3.6).

Definition 4.1
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Let A(x) be a real n x n matrix, depending upon the vector variable
X € Rk. Denote an arbitrary principal minor of A(x) by det A(§)<P)(p) where

(p) denotes a set of m rows and columns not deleted from Alx) and m =

1,2,..., n. Then, A(x) belongs to the class of matrices denoted by UP if

there exists an &> 0, independent of x, such that for all principal minors of

A(x)

det A(i)(P)(P)z g > Ov for all x € Rk (4.1)

Among other matrices the class of u.p.d. matrices belongs to the class
of UP matrices. Since any principal submatrix of a u.p.d. mairix is itself v.p.d.,

then by Lemma 3.4 for any principal minor of order m, m =1,2 ..., n
det A >r™ >0 . 4.2
et Akpyp) > I 4.2

and egn. (4.1) is satisfied. A similar reasoning shows that u. H. matrices are

a subclass of UP matrices.

~ Definition 4.2

. A resistive (or capacitive or inductive) n-port (or (m+1)-terminal) network

element, possessing a hybrid description
Y. = h&)

is defined to be positive network element (PNE) if

(i) the hybrid matrix H =3dh/dx is bounded for all x € R" and
(if) H belongs to the class of UP mairices.
Note that in the definition of a PNE there is no requirement for local

passivity since matrices of class UP are not necessarily positive semidefinite. The

b
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boundedness of the hybrid matrix H is not a severe restriction; namely, when

h(x) is a hybrid description, it is of class C(]) and H is boundéd everywhere except
possibly for [[x]l-=oo . Thus the condition (i) in the definition of a PNE is concer-
ned only with the behaviour of H at ”i |0, where the characterization of a
network element has no pEysical significance. Therefore many practical network -
elements may be modelled as PNEs as will be demonstrated in Section 4.2.

PNEs have many interesting })ropérﬁes that are listed below.

Property 1
All possible hybrid descriptions of an n-port (or (nt1)-terminal) PNE

exist.

Proof:  Property 1 follows from the definition of a PNE and Corollary

3.2.

The following two lemmas will be useful in the proof of Property 2.

Lemma 4. ]2 . 1

Suppose that A is an (ntm) x (ntm) matrix

where P is n x n and nonsingular, Qis nxm, Ris mxn and S is

m x m and nonsingular, Then
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det A = det| .
R S

det S det [ P - QS-TR]
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det P det [ S - RP-]Q] =

(4.3)

Proof: Since P and S are nonsingular A can be rewritten in the form

Inn Plas”!| [ 0
A= nn

0 I R ! 0 S|,

mm mm

Applying Lemma 15 of Ref. 3 to eqn. (4.4) yields

il

det A = det P det [1 - P"‘QS"‘R] det S

|l

= det P det [ | —rp”! Qs"] det S
mm

(4.4)

= det[P - QS"]R] det S = det P def[S - RP—]Q] (4.5)

Lemma 4.2

Suppose that A is an (ntm) x (n;l-m) matrix

where P is nx n and nonsingular, Q is nxm, Ris mxn and S is

m x m and nonsingular. Then

Pooalt [e-asTR
-1 :

AT = o=
R 5 (S -rp~! Q)'] rp™!

where A-] is partitioned conformably to A.

Q. E. D.

—p-as Ry

s-re~'@)”!

QS

-1
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Proof: Lemma 4.2 may be proved by carrying out multiplication

Property 2
Any of the 2" different hybrid matrices of an n-port (or (n+1)-terminal)

PNE is UP and bounded.

A
h* (+) = [EE() defined as

Proof: Suppose that y = h(x) is a given description of a PNE. Then

_ (4.7)
VL)

3 Ry )
| J B E*Q(X] .'iz)

may represent an arbitrary hybrid description if some rows of x and y are

at first interchanged conformably and then the necessary partitioning is performed.
In egn. (4.7) Xy, Yy are m-vectors and Xgr Yp are r-vectors where

r = n-m. Denote by H and H* the hybrid matrices associated with h(*) and

_Pl*(’)'res;pecﬁvely. H and H* can be partitioned. conformably in the following

manner.
/2y /0% iy Fy
H = = (4.8)
ohy/ x| dhy/dx, Hor '-'_’;2
hy/2y| ki " Mgl
" = (4.9)
hy/ axll 3h*o/ dxy | Hy  Hyy

Then Property 2 implies that
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M 2 det H* >E>0 ' . 0
o 2 det HYpy 7 &> (4.10)

where p is an arbitrary subset of s rows and columns and s = 1,2 ... n.
It can be shown that any principal minor in H* is expressible as a ratio of

two principal minors in H. Using the relation of egn. (3.27), H* can be
'expressed as

H* = B (4.]])

HaHyy o Hyp = HypHyy THy

s’ _ | - {

H* may be recast further in the form

Inn 0 H” 0 lnn ‘—H]2

W =

H21 lrr 0 H22 0 lrr

(4.12)
Let the following notation be introduced. Divide the set of the first m rows
(and columns) of H and H* (eqns. (4.8) and (4.9)) into-two disjoint subsets Sc
and Sb where Sc contains i rows and Sb confcins j rows, i+ | = m;similarly
let the set of the remaining r = n-m rows (and columns) of the same matrices
be divided into two disjoint subsets Sc and Sd where Sc contci;qs k rows, Sd A
contains | rows where k +1 = r. An arbitrary principal minor of H can be

written as

et e, c)a,e)

where H* is a principal submatrix obtained from H* by de‘efing the
(a,c)a,c) |
rows corresponding to Sb and S-d. Since the rows and columns of det H*(G ), c)
’ 7

may be interchanged, there is no loss of generality when taking SCI as the first
i rows of H¥, Sb as the next | rows of H*, then the next k rows of H* qs_Sc

and the last | rows as Sd. T]’mus
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and when H is partitioned conformably

iy
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Denote

H]2 .

22

K

aa

Hba

H

ca

da

ad

ba

ab

By

ch

db

K

ab

Kb

ad
bd

cd

dd-

144

(4.13)

(4.14) -

(4.15)

where K is partitioned conformably to H”. Using eqn. (4.12) the principal

submatrix H (a,¢)a, <)

is

After the multiplication of the r. h. s.

of eqn. (4.16) we get

[ Kca ch 0 ° 7 aa ac
Kba Kbb 0 0 0 -Hbcl
0 0 Hcc Hcd 0 I_cc

L 0 0 Hdc Hdd~ L O 0

(4.16)
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H
) ac
K —[K K ]
ada aa ab
H
H* = . be
(a,c)a,c) K.q TH
[Hca ch] K Hcc -[Hcc ch] K H
i bal ' bel |
(4.17)

By Lemma 4.1

* - ; _ _ ‘ -1
det H (a,c)(a,c)_def Kaa det [ Hcc ch(Kbb KbaKaa Kab>Hbc]
(4.18)
Applying Lemma 4.2 to eqn. (4.15)
- Haa Hab
K = H-l-l = =
Hba ‘be
K K K,k )7 Cioak KKk Tk )k kT
_ aa ab bb ba i aa ab bb ba’ “ab bb
. -1, -1 -1, -1 -1
_(Kbb_KbaKaa Kab) KbaKaa S (Kbb-KbaKaa Kab)
| (4.19)
and from eqn. (4.19)
K, -K K k,)=h (4.20)
bb ba aa db bb )

Substituting eqn. (4.20) in eqgn. (4.18)

-1

det H*  ya,e) = 9t Kgq det [ Ho ~H Hyp Hbc] (4.21)
By Lemma 4.1

H, H ]

bb " be det H
- -1 1 < (b,c)b,c)
d - = _
et [Hoe=Hphy Hyl dor B o det H

bb ch H_. bb

. (4.22)
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‘Applying Lemma 4.1 to eqn. (4.15)

_ =1
det H” = det Kaadei’[ Kbb KbuKua ch] (4.23)
and from éqn. (4.23) and using eqn. (4.20)
det H
_ bb
det Kaa i (4.24)

11

Egn. (4.24) is equivalent to the result on minors of the inverse matrix4. . Substitu-
ting eqns.(4.22) and (4.24) into eqn.(4.21) gives finally

det H -

% _ (b,c)b,c)
det H (@,c)a,c) det I‘T” - (4.25)

Since H(b,c)(b,c) and H.” are principal submatrices of a bounded UP matrix H

M., > det H

L2 "2 eMs 0 | (4.26)

M itk

2 det H

> 0 (4.27)

tv

b,c)b,c) &

and from eqns. (4.25), (4.26) and (4.27)

M, itk
-;-;?_det H @,c)a,c) 2 —_M] > 0 (4.28)

Therefore eqn. (4.28) satisfies the condition (4.10). Since subsets Sa and Sc
are arbitrary and H* may represent arbitrary hybrid matrix of a PNE, it follows
from egn. (4.28) that all hybrid matrices of a PNE are UP and bounded.

Q. E. D.

Since eqn. (4.28) is valid for principal minors of order one, all diagonal

entries of any arbitrary hybrid matrix of a PNE are positive and bounded below
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and above. Hence all incremental driving point conductances (or capacitances or
inductances) of a positive resistive (or capacitive or inductive) e.lemenf are posi-;
tive. |

Property 3 which is a consequence of Property 2 will be stated For resistive

elements, although a similar property holds for capacitive and inductive elements.

Property 3

Choose an arbitrary set of m ports of an n-port positive resistive element,
N_; and divide the set of remaining (n-m) ports into two disjoint subsets PE and
PJ. ‘Connect constaﬁf voltage sources to ports PE and constant current sources to
porfs PJ. Let the chosen ports of .Nn define a new: m-port Nm. The m-port Nm,
defined in such a manner, is then a positive resistive element.

A special case of Nm is the case when m = 1 and the network N] is a
one-port positive resistive element, i. é. the relation between v and ii' the

voltage and current of port Pi' is a quasilinear function for arbitrary values of

constant sources at all other (n-1) ports.

Property 4

Any reciprocal PNE is strongly locally passive.

Proof:  For any reciprocal* PNE the hybrid matrix Hn corresponding

. . « S
to the one of of the two “nonmixed branch relationships" is

* .
Reciprocal PNEs form a subclass of positive definite network elements

——

defined in Section 4.3.2

[ W
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- symmetric**. In order to show strong local passivity it is necessary to prove

that Hn is u.p.d.
Since Hn is a symmetric UP matrix, all of its principal minors are posi-

tive and thus Hn is positive definite. From the UP property
n

det H = T xi>e” > 0 | (4.29)
| i=1

where Ai, i=1,2,...,n, are eigenvalues of Hn'and all )\i are real and positive.

The boundedness of Hn implies that any entry of Hn '(hn)i [l < M for all i and j

and hence by Gresgorin’s rheorem5 /\qu, the largest eigenvc’tlue of Hn'
M. <nM (4.30)
From eqns. (4.29) and (4.30) Amin' the smallest eigenvalue of Hn

€ o 4
)‘min> W >0 . : » (4.31)

Using the result of Ref. 6

_g_THg_>)\ zz>0,z%0 (4.32)

n min

From eqn. (4.32)

N
\'’4
o

L | |
£ (Hn B )\min) - . o
-
and Hn is a u. p. d. matrix.

*%
For, say a resistive. element these two "nonmixed branch relation-

ships" are given by egns. (2.5c) and (2.5d)
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An important conclusion may be obtained from Property 4. Namely, any

reciprocal PNE is strongly locally passive and thus a necessary condition for a

PNE to be locally active is that it is nonreciprocal. However, nonreciprocity is not

sufficient for local activity and among nonreciprocal PNEs there are network
elements where the symmetric parf of the hybridAmcfrix is u. p. d.y these PNEs,
as well as all reciprocdl PNEs, are strongly locally passive and will be treated
in Section 4.3.2,

- Property 5 will be stated for resistive elements, although analogous property

may be proved for capacitive and inductive elements.

ProEerfx 5
Let an n-port (or (n+1)-terminal) positive resistive element NR with the
hybrid description
. i=holv) (4.33)

be locally active at some-point v = Y, Then a set of linear (or nonlinear)
gyrators may be found such that not all hybrid descriptions of the composite
element, consisting of NR and gyrators connected in parallel to the ports of

NR, will exist.

.

Proof: Denote the hybrid matrix H = ab_R/ dv at v = v, as Ho’ the
T

o ), and the skew-symmetric |

1
. H = —(H + H
symmetric part of Ho as Hos' os 5 ( o

] T I . . _
= —2—-(H° Ho ). Since NR is locally active at v

4

part of H as H , H
) oss’  oss

<

at least one principal minor of Hos is negative.

Let (Hos)(p)(p) be the negative principal minor of Hos of order m,

Do -
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det (Hodipyp) < 0 (4.34)

where (p) denotes a subset of m rows and columns not deleted from Hos and
'Ief_ip and Y be m-vectors, formed from i and v by deleting all components
except those that correspond to the subset (p). If the set of gyrators possessing

skew=symmetric incremental conductance matrix G] = -H is connected in

0OSss

parallel with NR' then G, the incremental conductance matrix of the composite

element, Is

G=H +G,=H ' (4.35)

o 1 os

and det G(p)(p) = dei'(Hos)(p)(p) <0

Thus for G] = -Hoss' the principal minor det G(p)(p) is negative, but for

G

=0, det G > 0. Since det G is a continuous function of entries
L P)P) . P)p) |

~ of Gy. @ skew=symmetric matrix G] = Go exists such that

det G = det [H + (Go) =0 (4.36)

) ©e) " Gl
By Palais’ theorem, applied to the "partial™ inversion, the hybrid description
with -l-p as independent variable does not exist for the composite element since

G(p)(p) is singular for G] = Go'

In a similar manner it is possible to create negative incremental conduc-
tances by connecting a set of appropriate gyrators to an n-port positive resistive
element which is locally active. For example, suppose that a positive resistive

element NE satisfies conditions of Property 5 and in addition det Hos < 0 and

' . . . . 1)
det (Hos)(r)(r)> 0, where det (Hos)(r)(r-) is a principal minor of order(n=1); if

|

set of gyrators with the incremental conductance matrix G] = _Hoss is connected

[

in parallel to the ports of HE a negative incremental conductance is obtained
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at some port of the composite element.

4.2 EXTRAPOLATION OF NETWORK ELEMENT CHARACTERISTICS

The concept of a PNE can be successfully applied in the analysis of
practical circuits if the existing devices can be modelled reasonably well as
PNEs. Since, say, resistive PNEs have the property that an arbitrary incremen-
tal driving point conductance is positive and they may be locally active, it
is reasonable to expect that many practical resistive devices, such as transistor
and vacuum triode, can be modelied in this manner. We shall try to establish
the relation between PNEs and some impo:;fanf representatives of three=terminal
'resisi'ive devices such as the transistor and vacuum ’rridde.Bef;are going int
details certain useful observations, concerning the device models on one side

and the analysis and design of practical circuits on the other, will be presented.

(i) Let y = h(x) be a hybrid description determined from a chosen
physical model of an n-port resistive device. Models are not valid ou’rside.
some bounded domain S] < R"; however, b;/ défini‘rion a hybrid description
h(*) has to be defined for all x.

(ii) In practice devices cannot be used outside some bounded domain
52 c Rn-, namely, for every device thére is a limitation on maximal voltage
‘and/or current or power dissipated in the device etc. These values must not be
exceeded in a préperly designéd circuit.

(it1) Device'charccferisﬁcs cannot be measured outside some bounded

. n . . . .
domain S3c R, otherwise maximum permissible values for voltage, current or
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power are exceeded.

Regardless of these facts it is still convenient in network analysis or
design to have a hybrid description of an n-port network element so that the
domain of h(*) is the entire R". Let us demonstrate the usefulness of the network
element characterization in terms of a hybrid bdescripﬂon through few examples.

(i) Assume that a resistive network is analysed where for given values
of independenf sources a‘unique solution is guaranteed but, say, a resistive
element NR in the network is not characterized for all values of independent
variable. 1f an iteration method (e. g. Newton-Raphson) is used to solve the
governing equation, y =_f(’i)' of the network, a proper initial value X has to
be chosen. However, even when a proper starting value X, is chosen, it may
happen that an intermediate result falls outside the domain of the characteri-
zafionAof NR‘and the computation of the solution cannot be continued.

(ii) Assume that it is necessary to design a resistive nework NR where
values of certain elements are adjusted in such manner that the network has the
required perfo‘rmcmce. Furthermore, suppose cht in the initial stage of design
a chosen network NE does noivL possess the required performance. When all
network elements in N[’{ are not characterized for all values of independent va-
riable it may easily happen that NE possesses no solution for the branch varia-
bles. If we can find a solution for Na, a decision can be made, at least in
princilale, how to alter some parameters of Nl’{ in order to obtain the required
performcncé. However, if the network Ng possesses no solution, no such deci-
sion is possible.

(iii) When characteristics of network elements are not specified for all

values of the independent variable it is very difficult to check the existence
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and uniqueness of solution in a nonlinear RLC network at lcn.'ge for given values
of inde.pend.ent sources. However, as mentioned before, we ho\;e to be sure
that there is a unique solution of a network befQ're its analysis is left to the
computer. '

We can conclude from the above discussion that it is very helpful to
have a nefwork.elemenf - representing a device model - which is characterized
for all values of independent variable. Thus the idea of a (hybrid description
of a network element is very useful. However, it is important to point out that
outside the region S-.l where the m9del is valid (or outside the region 52 whe-
re the device can be used or outside the-region 53 where the device can be
measured) ‘the device can be modelled arbifrarily. Accepting this poihf of view
it is easy to see that for PNEs the boundedness of the hybrid matrix H is not
a severe restriction; since for any hybrid description the function _I:\_() is of cléss
C(]), the hybrid matrix H may become unbounded only for || x |-+ o , where

!
the characterization of a network element has. no physical significance.

Let us consider the frequently used Ebers~-Moll static model of the tran-

sisfor7 possessing the hybrid description of the form

1
2
. The above hybrid description can be obtained from eqn. (3.68) by substituting

)\V2 .
-1) and 92(v2) = 02(e -1). The function h(vl,vz) satisfies

A
! %2 [°ﬁe v]'l)l (4.37)

= h(v],vz) = [ S az(e)‘ V2 -1)

A
gy(vy) = aple” ]

the first condition of Palais’ theorem, namely, det ah(v],vz)/ 3(v1,v2) >0
for alil [ Vi 'YZ]T' Since [ I] ,i2]T remains bounded for Vim0, Vo—r =00

the second condition of the same theorem is not satisfied and fhe‘ function
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h(v],vz) is not globally regular. As det ah(v],vz)/ E—)(v],vz)—»o when

V]— =90, V= =00 the hybrid -matrix H = ah(v],vz)/a(v],vz) does nof. belong

to the class of UP matrices and in addition H is not bounded. Thus the Ebers-Moll
model does not satisfy the definition of a PNE. However, the Ebers-Moll model
can be transformed into a PNE] by performing a slight modification for large

./\‘V.I

|v]| and IVZl . Namely, when the exponential functions g](v]) = c](e ~1)

d gylv,) = a(eM2 I ing i 7 lated linearl
and g,(v,) = ayle -1), appearing in eqn. (4.37) are extrapolated linearly
outside an interval [-N,N] , where N is an arbitrarily large positive value,
and in addition dg]/dv] and dgz/dv2 are continuous at points =N and N, -
g](v]) and QZ(VZ) become quasilinear functions. The modified Ebers-Moll model
then corresponds fo a PNE. Since N is arbitrary, the Ebers~Moll and the modified

Ebers=Moll model agree on an arbitrarily large square defined by -Ng¢ vis N,

- < .
N < vzs N
A frequently used static model of a vacuum triode, with grid current

equal to zero and a three-halves-power law for plate currenf8, is described by
eqn. (4.38)

“ . T 0

i = Klpvyrv) Y2 (4.38)

where K is a constant and  is the voltage amplification factor of the triode.
The inverse of the function defined by eqn. (4.38) does not exjst. Thus, this
mode!l does not correspond to a PNE, but it may be transformed into a PNE in
the following manner: én arbitrarily small p;:rosi’ric conductance G g1 is inserted
between grid and cathode, another arbitrarily small parasitic conductance GEZ

is inserted between anode and cathode and in addition the function ('u‘v] + v2)3/2



is extrapolated linearly outside the region 0 ¢ mvy * vy s M, where M is

2

an arbitrarily large positive value. The hybrid description corresponding to the

triode model, modified in this manner, can be expressed as

W =G

i2=(.?v&2v2 t&v1+v2<0

. 3/2

iy = K (Hv1+v2) + (3,6_2v2 0 ,<_(u.v]+v2gM

. 1/2 NS -

iy = KM (‘ILV1+V2) + G A ‘u.v]+v2> M
(4.39)

As G €1 and G g9 ore arbitrarily small, the difference between the original
and the modified model can be made arbitrarily small in a large region
0 < vy + vy < M.
* In a similar manner some other n-port resistive device models that are
characterized by the hybrid description Yo = bRb—(R) and whose hybrid matrix
HR is of class Po or P for all values of Xp s €aN be transformed into PNEs
by slight modifications. There are other n-port resistive eiemenfs that are characte=-
rized by a function Y = h°(>_<R) but where the domain of _}_1_0() is a subset .
S ¢ R" and the "hybrid matrix" H

is of class Po or P for-all c S. It is

R %R
frequently possible to transform such elements into positive resistive elements

by extending the domain of bo(x_R) to the entire R” and then augmenting them

with arbjtrarily small parasitic resistances or conductances.



156

4.3  SPECIAL CLASSES OF POSITIVE NETWORK ELEMENTS

It will be shown that special classes of PNEs, possessing additional pro-
perties, can be defined. Using these properties it is then possible to study
inferconnections of different classes of PNFEs and also to establish some sufficient

conditions for the existence of a unique solution for one-element-kind networks.

4.3.1  (ntl)-terminal elements representing positive network elements

. . . 9
in all orientations

(n#+1)=terminal elements may be characterized in terms of any of n diffe~
rent orientations. Let us start with the three-terminal resistive network element,
shown in Fig. 4.1 and assume that a given resistive fhree-termiﬁol element
corresponds to a PNE when the terminal 3' is common. The choice of the common
terminal is arbitrary and the orientation with the common terminal 1 or 2 might
be useful in.nefwork applications. Generally, the hybrid description with the
common terminal 1 or 2 will not satisfy the requirement for @ PNE. A question
arises; what are sufficient conditions that a three-terminal network element,
representing a PNE in orientation with common terminal 3, corresponds to a
PNE in the other two orientations?. This problem can be easily resolved with
the aid of the concept of the indefinite admittance motrixlo.

Suppose that a given three=terminal resistor is chorocteri.zed in the
orientation with the common terminal 3 and it is a PNE in this orientation.

LY .

Then the following description exists

- i-I (V'I IV2)

. 4.40
iy = |2(v] ,v2) ( )
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with the incremental conductance matrix G3

1 %12
G, = (4.41)
821 922 .
where the subscript 3 indicates the common terminal 3. The matrix G3 is bounded
and it belongs to the class UP. Thus an €3> 0 exists such that
2
911>€ 9op>e 1 det G3> € (4.42)
The indefinite conductance matrix Gin is obtained from G3 and has the form
91 92 B CTR AP
G = | 9 922 ~991%95p) | (4-43)
'(9] ]".'92] ) '(g] 2+922), Zgik
where Zgik = g”+g]2+92]+922 (4'.43b)

Denote the incremental conductance matrix for the orientation with the common
terminal 1 by G, and the incremental conductance matrix for the orientation
with the common terminal 2 by G2' The matrix G] (or GZ) is a principal
submatrix of the indefinite conductance matrix and is obtained from Gin

by deleting the first (second) row and the first (second) column.

999 ~lag1*995) .
G, = (4. 44q)
o Lleygteyy)  Ee |
911 (9y1%919) |
' G2 = (4.44b)
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It is interesting to observe that in Gin all principal minors of order 2 have

the same value, thus

det G3 = det G] = det G2 (4.45)

From the expressions for G] and G2 and taking info account egns. (4.42) and

(4.45) it follows that G] and G2 will be of class UP when
Zgp2z ¢ >0 (4. 46)

This result is stated for all three kinds of PNEs - resistive, capacitive and
inductive - in the following corollary where Cate denotes an entry of the
incremental capacitance matrix agc/ a-!C and Tk denotes an entry of

the incremental inverse inductance matrix 3_|L/ a_fL.

Corollary 4.1
[ d

If a three-terminal resistive (or capacitive or inductive) network element
is a PNE in a given orientation and in addition Zgik> &y > 0
. N K X 1 .
> . Ll L H
(or Zcik € > 0 or ZTik > &> 0) then it is a PNE in the other two |
orientations. _

One of the properties* of PNEs satisfying the conditions of Corollary |

4.1 is the following.

ProEerfz 1

When a two-terminal network element N2 is formed from a three-terminal

network element either by connecting the two ports of N3 in parallel (see Fig.

* Some other properties of this class of elements will be mentioned in Section

5.2.1.

[ WS
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4.20) or by connecting the two ports of N_ in series (see Fig. 4.2b) then the

3

hybrid description of N2 is a quasilinear function.

Proof: When both ports of a three~terminal resistor N3 (Fig. 4.2a) ore
connected in parallel the incremental conductance g of the resulting two-terminal

resistor N2 is equal to
g = di/dv = Zgik > E.] >0

and g is bounded.

The incremental resistance r of N2 (Fig. 4.2b) is equal to

r=dv/di = Zgik/dét G3.'
From eqn. (4.46) and the boundedness of G3 it follows that an €y > 0 can
be found such that r > €y > 0 and r is bounded.

Q. E. D.

Note that the transistor model defined by eqn. (3.68) corresponds to a
three-terminal resistor that is a PNE in all orientations if g](vl) and 92(v2) are .
quasilinear functions and 1 - 04]2> Oand 1 - o, >0, Thus the modified
Ebers=Moll model, described in Section 4.2 possesses the s;:lme prOperfy.. Similarly
the modified triode model, described by eqn. (4.39) is a PNE in all three
orientations. | |

Let us now consider the (n+1)-término| PNE. The resistive case will beif
discussed although analogous results can be obtained fo.r capacitive and inductive
elemenis. Denote by Gi the incremental conductance matrix with the common i

terminal i and assume that the hybrid description with the common terminal (n*1)

is given. The indefinite conductance matrix Gin can be expressed in terms of
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: G(n+1) as

G. =P G

» (n+1 )P | (4.47)

where P is an n x (nt1) matrix having all entries in the (n+1)-th column
equal to -1.

l-].

=1
P=|1". (4.48)

nn,

[}
1)
)
1
.

[ -1

Eqn. (4.47) can be proved by carrying out the multiplication. Since the sum of

all elements in a row (or column) i equal to zero, Gin is singular. The incres
i
mental conductance matrix with common terminal i can be obtained from Gin as
T

G. = Pi

G(n+1)Pi i=1,2,...,n (4.49)

where Pi is given from P by deleting the i-th column

[ ' vo=1 ]
R T s I R
Pi= _Q S | __0 ______ " _—1 . (4.50)
' P =1
L ) (e L
| 0 I L1

As det P‘i ==1for i=1,2,...,n it follows from eqn. (4.49) that

det Gi = det G i=1,2,...,n (4.51)

A\
\

(nt1)
A. resistive (nt+1)-terminal PNE represents a PNE in all orientations if

all (n+1) different principal submatrices of order n of the incremental indefinite

conductance matrix’ Giln (eqn. (4.47)) belong to the class UP. Since by egn.

(4.51) the determinants of incremental conductance mairices are equal to each
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other the additional condition Zgik > €y 0 is sufficient for a three-terminal
resistor to represent a PNE in all orientations. In the case of (nt1)-terminal PNE
certain other conditions, ensuring the UP property of all (n+1) different principal

submatrices of Gin' are necessary.

4.3.2 Positive definite network elements -

Strongly locally passive network elements with bounded hybrid matrices

form an important class of PNEs with many interesting properties.

Definition 4.3

{
!

4
A resistive (or capacitive or inductive) n-port (or (n+1)-terminal) network

element with hybrid description y = h(x) is defined to be a positive definite .

network element (PDNE) if the hybrid matrix H, associated with a given

. description, is continuous = bounded and u.p.d. for all x € R".

It follows from the definition of a PDNE that its hybrid description
corresponds fo a GQLF. The above definiﬂoﬁ of a PDNE dif’r’e;s : from the
definition of a PDNE as given in Ref. 11, where boundedness of the hybrid
matrix H is not required. The reasons for the more specific definition of a
PDNE, used throughout this thesis, are the following:

.(i) PDNEs as defined in this fhesi_s form a subclass of PNEs

' (n) all hybrid matrices that are associated with 2" different hybrid
descriptions ofy'an n-port PDNE are u.p.d. and

(i.ii) all 2" different hybrid descriptions satisfy the Lipshitz condition.

PDNEs represent a generalization of quasilinear network elemenfss to .fhe

nonreciprocal case. Their special property is that they are strongly locally

Dpm
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passive. In the resistive case a fairly complex network containing not only
quasilinear resistors but gyrators (linear or nonlinear), idedl transformers and
diodes may appear .as a resistive PDNE when viewed from an appropriate set of
ports. Gyrators and ideal transformers must fulfil some topological restrictions in
such resistive network.

Some properties of PDNEs are stated below, others, concerning the

interconnections of PDNEs, are given in Chapter 5.

Property 1
All 2" different hybrid descriptions of an n-port (or (n*1)-terminal) PDIjE

are GQLFs and all 2" hybrid matrices are bounded and u.p.d.

Proof:  Property 1 is a direct conséquence of Property 3 of GQLFs, .

Q. E. D.

“This property can be given the following physical interpetation. Let an

n-port resistive PDNE, NR, be described by the hybrid description

vy = ho(i,,v,)
o (4.52)
iy = hylly,vy)

where _i] 4 correspond to ports P] ’ P2,. .o ,Pm apd _i2,_v_2 correspond to ports

P P . Since the hybrid matrix H = 3(_h_I ,hz)/ 2 (_iI ,y_z) is u.p.d. the

m+] TR N 4 n
network must remain strictly locally passive, when series resistances of value

(&), €>0, are connected to the ports P]’PZ”"’Pm and parallel conductances

of value (- €) are connected to the ports Pm+],...,Pn. According to Property 1
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_any hybrid matrix is u.p.d.; hence the network, obtained by connecting

series resistances (- E]) to an arbitrary set of ports of N_ and parallel con-

R
ductances (- 81) to the remaining ports of NR’ is locally passive for some
€,> 0. Note that not all hybrid matrices of an n-port PDNE, satisfying the
definition of Ref. 11, are u.p.d.; namely, the second part of Theorem 3 in
Ref. 11 is not corre‘ci']z.

Consider an n-port resistive PDNE which is generally not passive. Since
the hybrid description of a PDNE is a GQLF, which is strongly increasing, it
is possible to extract a series voltage source or a parallel current source at each
port of a PDNE in such a way that the rer.nclining n-port is strictly passive.
Similarly for a capacitive PDNE a passive capacitor and a set of voltage sources
connected to each port of the passive capacitor is obtained. Dually for an
inductive PDNE the extraction of a set of current sources, that are parallel to

each port, leads to a passive inductive PDNE. The following property will be

stated formally for the n-port resistive PDNE.

ProEeer 2

Let an active n=-port resistive PDNE, NR' be described in the form

Iy = hylyydy)

vy = by iy (4.53)

where 2 ,i] are associated with ports P] ,P2,... 'Pm and !2’i2 are associated
with ports Pm+1""'Pn' A passive resistor NR (see Fig. 4.3) can be obtained

from NR by extraction of a set of parallel current sources —'-Ll = b_] (0,0) at ports

P] 'P2'.""Pm .and a get of series voltage sources _I_E_2 = b-2(9’(—)) at ports Pm+'l’

O
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Pm+2""'Pn; N[’{ is a PDNE and its hybrid description has the form

i. = h,(v,,i,) = h.(0,0)
47 4 ] (4. 54)
Yo © hz(h '12) - hz(p.'g)

Proof: Choose an m=-vector S, and an n-vector &y Since b_(\_/_1 ’i2)

in eqn. (4.53) is a strongly monotonic function

T Ty, ' LT T
(" =5 b8y * Gy -5 Meghy(g ) > 0
- (4.55)
for all (X]T' _i_2T)T=?e ( ?_1.-1, qL)T. Setting ¢ = 9, &y = 0 and taking into

account eqn. (4.54) it follows from eqn. (4.55) that

vt 5w >0 forall (v, w0 (4.5)

Thus Né is strictly passive.

Note that the hybrid description (eqn. (4.53)) can be any of 2" different
hybrid descripﬁoné of an n-port resistive PDNE; thus the set of all ports can be -

divided arbitrarily info fwo disjoint subsets P_ and PJ and then the proper extraction

E
. of series voltage sources at ports PE and parallel current sources at ports PJ leads

- .to a strictly passive n-port resistor.

- Property 3 is analogous to Propérfy 3 of PNEs.

ProEerfz 3

Choose an arbitrary set of m ports of an n-port resistive PDNE, Nn' and

divide the set of remaining (n-m) ports of Nn into two disjoint subsets PE and
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PJ' Let the chosen ports of Nn-define G new m-port Nm. The m-port Nm,

defined in such a manner, is then a resistive PDNE,

ProE erty 4

Given an n-port PDNE, Nn' form a (n=1)-port Nn-l by connecting
ports Pi and Pi of Nn in parallel (or in series). The (n-1)-port Nn-l is then

a PDNE.

Proof:  Consider the resistive case. Assume that ports P.l and P2 are

connected in parallel as shown in Fig. 4.4. The following description exists

for N,
n

i= hiv) | C as)

Let e and | be (n-1)-véctors of port-voltages and port=-currents of Nn_]. The

relation between ¢ and v and j and i is from Fig. 4.4

v =Ae
1Ak (4.58)
where
1 .
o |
A= 0 i | | (4.59)
n-2
Hence i= ATh(Ae) | ~ (4.60)

Since A is of rank (n=1) by Property 2 of GQLFs, ile) is a GQLF and thus
N _; is a PDNE. A similar proof, based on the hybrid description of N with

1 as independent variable, may be given for the case of the series connection

of two ports.
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This procedure can be extended to arbitrary series-parallel connection
of ports of Nn. From a (n-1)-port Nn-]’ an (n=2)~-port Nn-—2’ representing a
PDNE, can be formed by connecting two ports of Nn-'l in series or in parallel;

the process may be then continued further.

ProEerfz 5

Any (nt1)-terminal PDNE represents a PDNE in all different orientations.

Proof:  Consider an (nt1)-terminal resistive PDNE and assume that the
orientation with common terminal (nﬂ), Nn+1’ is transformed into the orienta-
tion with common terminal i, Ni (Fig. 4.5). Denote port-voltages and port-
currents of Nn+1 by v and i, and port-voltages and port-currents of NI by e
and . Let

1=htw) - (4.61)
be a given hybrid description of Nn+'l and let

be the unknown hybrid description of Ni' The relation between port-yoltages

e and v and port-currents i and | is from Fig. 4.5

y="Pe
1= P;'Ti (4.63)
where Pi is defined in egn. (4.50). Thus
. T
1 =P, hoPe) (4.64)

Since P, is of rank n, by Property 2 of GQLFs j(e) is a GQLF.
The capccifi\)e and inductive case can be proved analogously.

Q. E. D.
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4.3.3 Hadamard network elements

Since @ u. H. matrix belongs to the class UP, it is apparent that a

network element where one of the hybrid matrices is u. H. is a PNE.

Definition 4.4

A resistive (or capacitive or inductive) network element is defined to

be a Hadamard network element (HNE) if at least one of its hybrid matrices
is u. H. |

Note that nonreciprocal - HNEs may be locally active. Reciprocal HNEs
are strongly locally passive and represenf a‘subclass of PDNEs. It is significant
to point out that the inverse mairix of a u. H. matrix is not itself u. H. Thus,
contrary to the property of an n-port PDNE, where cn)" of 2" aifferenf hybrid
matrices is u. p. d., not all hybrid matrices of a HNE are u. H.

The coﬁcepf of a HNE will be useful in the study of the interconnections

of network elements, treated in the next chapter.

4.4 SUMMARY

In this chapter the concept of PNE has been introduced and the properties
of this class of elements have been examined. One of the significant results is that
a PNE can be locally active only if it is nonreciprocal. It has been shown that
many localiy active practical resistive devices where all possible incremental dri-
ving point resistances are nonnegative can be modelled as PNEs. This justifies

the infroduction of the concept of PNE in the nonlinear nefwork‘fheory from the
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point of practical application.

PDNEs, HNEs and (n+1)-terminal network elements where all diFFerent
orientations correspond to a PNE form three special classes of PNEs. The
properfies of these three classes of PNEs, which are not disioint,.have been
investigated. The relations between various classes of PNEs can easily be
summarized with the cidl of the diagram of Fig. 4.6, where the set of all PNEs
is divided into 5 disjoint subsets A, B, C, D and E. A contains all PNEs that
are locally active at least at one point, E contains all reciprocal PNEs, the
~ set DUE contains all strongly locally passive PNEs, the set CUDUE embraces
all strictly locally passive PNEs, the set BUCUDUE contains all locally
pcssi-ve PNEs. All PDNEs are contained in the set DUE and all HNEs form
a subset of .the set AUBUCUDUE.

Note that the terminology, introduced for different classes of PNEs, is
in close relationship with the properties of the hybrid matrices, cs;socicted with
these classes of PNEs. Name‘ly, PNEs possess UP  hybrid matrices, PDNEs have
u. p. d. hybrid matrices and one of the hybrid matrices of a HNE is v. H.

The properties of interconnections of different classes of PNEs of one
kind (either resistive or capacitive or induc’rive)'will be studied in the next cha-

pter.
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Fig. 4.2,  lllustration of Property 1 in Section 4.3.1.
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Fig. 4.4.

IHlustration of Property 4 in Section

4.3.2,
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Fig. 4.5.  llustration of Property 5 in Section 4.3.2.
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Fig. 4.6. Classif;icaf_ioﬁ of positive network elements.
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Chapter 5

THE ANALYSIS OF ONE~-ELEMENT-KIND NETWORKS

5.1 INTRODUCTION-

As has already been mentioned, in the state-variable analysis of nonli-
near RLC networks, it is necessary to perform the: analysis of three one'-element-
kind networks: resistive, capacitive and inductive. In this chapter one-element-
kind networks will be studied. At first series~parallel interconnections of two' n-
ports will be discussed. In this context a problem of special interest is to deter-
mine the classes of elements of one kind that, when interconnected, result in
a PNE or PDNE. The reczson. for studying interconnections resulting in a PNE or .
PDNE lies in the fact that one may replace an interconnection o.Fl two or more
network elements of one kind by a PNE or a P.DNE. lr'r this way compléx
one-element-kind networks may frequently be reduced to a singlé element and
the existence and uniqueness of .soluﬁons can be more easily studied.

The idea of finding an equivalent network element for an interconnection
of two or more network elements is quite old. However, it is important to point -
out the difference between the linear and nonlinear <‘:qse. For this purpose consi=
der an example of a parallel-parallel connection of i'wo-;-port resistive elements
N, and N, shown in Fig. 5.1. In the linear case it is relatively easy to
express explicitly the conductance matrix G of the equivalent network element

N from a given description for N] and N2' provided that the given matrices
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of N.l and N2 can be transformed into corresponding conductance matrices G.!

1
and (_32. [n the nonlinear case, when N] and N2 are nonlinear, it is generally
not possible to obtain an explicit hybrid description for N from given hybrid
~descriptions of N, and N2, unless N, and N2 are both voltage~-controlled.

"Nevertheless in the study of one=element-kind networks it is helpful to know

i) whether the hybrid description for the equivalent network element,
obtained by an interconnection of two or more network elements of one kind,

can be obtained in principle and, more specifically,
it) whether the equivalent network element is a PNE or PDNE.

We shall 'sfudy series~parallel interconnections of an m-porf and an
n-port network element; thus a series-pcrclI‘eI interconnection of .'rwo n-port network
elements is but a special case of sQ_ch interconnection. For the purpose of studying
interconnections of network .elemenfs it is nece;scry to introduce the concept of

a positive semidefinite network element that may be defined as follows.

Definition 5.1

A resistive (or ccpceifive or inductive) n-port (or (n+1 )—’rerminc~l) network
element wifh the hybrid description y = h(x) is defined to be a positive semide-
finite network element (PSDNE) if the hybrid matrix H(i) associated with a given
hybrid description is continuous, bounded and positive semidefinite for all x ¢ Rn;

When the hybrid matrix of an n-port PSDNE, N, is'dicgoncl,’ there is
no couplfng between any pair of ports of N and N is called an uncoupled |

PSDNE. PSDNE may be considered as an extention of a monotonically increasing
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two-terminal resistor (or capacitor or inductor) to an n-port network element
that may be nonreciprocal in general. It is important to stress that PSDNEs do
not necessarily possess all hybrid descriptions and that PSDNEs do not belong to

the class of PNEs.

There are many network elements that belong fo the class of PSDNEs,

For example the diode model with exponential characteristic, the ideal transfor-

mer, where both existing hybrid matrices are skew-symmetric, and the gyrator,
)
where the conductance and resistance matrices are skew-symmeiric, all belong to

the class of PSDNEs. Some properties of PSDNEs are listed below.

ProEer'rz 1 .
Assume that X.; h{x) is the hybrid description of a PSDNE. Then b.<§)

is a monotonic function.

Proof: Consider a one dimensional arc _(6 ), 05O =1, given by

x(0) = x; + (x5 = x)® - (5.1)
Then di/de =% =X (5.2)
| | | B
and ey [hey) = b)) = o] / by Gy de =
' OX | _
0 “=|x=x(8) :
1
T dh
- /[iz “xlar| BT (3-3)
0 * | xx(6)
T oh

As dh/3x is positive semidefinite, (5_2 - >_<_.l)

for all 040 < 1 and

Qe



177 !

b = )" [hixg) - hixy)] 2 0 (5.4

The following three properties of PSDNEs are similar to Properties 2,3

and 4 of PDNEs and can be proved analogously.

ProEertx 2

Let an active n-port resistive PSDNE, NR, be described in the form

i. = h,(v,,i,)
B = Yy (5.5

v

-2 b2( 1° 2) _
where vy _i_] are associated with ports 'P], P2, ...,Pm and XZ’. _12 are associated

with ports P +2""'Pn' A passive resistive PSDNE N;ﬁ (see Fig. 5.2)

m+l’ Pm
can be obtained from NR by the extraction of a set of parallel current cources
Ele h] 0, 0) at ports P

17 PZ"' "Pm and a s‘ef of series voltage sources
5 = hz(g,g_) at ports Pm+] ’Pm'+2""'Pn' Né is é PSDNE and its hybrid.
description has the form

iy = byl dg) - 0.0

= (5.6)
__2 - 2(_] 1_12) - b_ ( __)_ .

Property 3
Choose an arbitrary set of m ports of an.n=port resistive PSDNE, Nn’
and divide the set of remaining (n-m) ports of Nn into two disjoint subsets PE

and PJ. Connect constant voltage sources to ports PE and constant currenf sources
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to ports PJ. Let the chosen ports of Nn define a new m=-port 'Nm. The m=-port

Nm, defined in such a manner is then a resistive PSDNE.

ProE erty 4

Given an n-port PSDNE, Nn' form the (n-1)-port Nn-'l by connecting
ports Pi and Pi of Nn in parallel (or in series). The (n-1)-port Nn-'l is a

PSDNE.

Property 5

Suppose that s different hybrid descriptions of an n-port PSDNE exist.
Then all hybrid matrices that are associated with the existing hybrid descriptions
belong to the class Po. Thus, for example, all incremental driving point conduc-

tances, if they can be defined, are nonnegative for a resistive PSDNE.

Proof  For a PSDNE the hybrid matrix belongs to class Po' since H

~is positive definite. From proof of Property 2 of PNEs Property 5 follows.

Q. E. D.

L4

5.2  SERIES-PARALLEL INTERCONNECTIONS OF NETWORK ELEMENTS

A series-parallel interconnection of two network elements is shown in
Fig. 5.3, where N] is an n-port and N2 is an m-port. The resistive case
will be treated throughout this chapter, although the capacitive and inductive

case can be dealt with analogously. A set of i ports, Pi' of N] and N2 is
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connected in parallel and a set of | ports, denoted as Pi' of the same
network elements is connected in series; a set of k ports, Pk' o;’ N] and a
set of | ports of N2, Pl’ are identical for constituent and interconnected
network. In this way a (i+j+k+!|)-port network element N is formed. Without
loss of generality we may assume that the directions of the components of

v, are the same as for the components of e, and similarly the components of
i have the same directions as the components of iy (see Fig. 5.3). Note
that the interconnection shown in Fig. 5.3 is fairly general; when N] and
N, are two=ports, then the interconnection in Fig. 5.3 may représenf either

the parallel~parallel, series~series, series-parallel or cascade interconnection

of two=-ports.

The following theorem gives sufficient conditions for the existence of

the hybrid description of network element N obtained by the series-parallel

interconnection.

Theorem 5.1
Assume that resistive elements N] and N2 in Fig. 5.3 have the

following hybrid descriptions:

¥y = hy&x) | (5.7)

z = hy(w) (5.8)
where Iy i

x = |12 y=|% . (5.9)

&



180

& d
w = z=| g | - (5.10)

~and _i_] r Vyr &y -i-'l are i-vectors, Vor —i2' Y -i-2 are i—vectqrs; k=-vectors
Xar zaond l-vectors >_<4, x4 contain a combination of port voltages and port
currents of Pk and Pl respectively. Then the hybrid description of the network

element N obtained by the series-parallel interconnection of N] and Nz,qs

shown in Fig. 5.3, exists.

Proof

Define vectors s and u, corresponding to the interconnected network, as

ER Y
v L
s= |72 v=|2 (5.11)
% %
LZ4J b§44

- The relation between s and u is the unknown hybrid description of N

s = h(y) o (512)

From Fig. 5.3 the following relations are obtained

' T T .

3=A] y + Az.E. | (5.13)
x = Ay (5.14)
w=Au (5.15)

where A] is an (i+jtk+l) x (i+{+k) matrix and A2 is an (itjtk+l) x (i+j+p)

maftrix:
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A= |0 L, 00 '(5.16)
o 0o I, 0
., 0 0 -0
I
A,= |0 L. 0 0 5.17
2 i (5.17)
o o0 o0 |

Combining eqns. (5.7)~(5.15) the hybrid description of N is

s =hi) = A 'h (A1) + A)h (A ) (5.18)

Q. E. D.

Note that according to Theorem 5.1 the hybrid description of N (egn.

L3

(5.18)) exists when N] and N2 are voltage-controlled with respect to ports
Pi which are connected in parallel and current-controlled with respect to
ports Pi which are connected in series. When the hybrid descriptions hl() and
hz(') are arbitrary, the hybrid descriptions, other than _h_(g) (eqn. (5.18)) may
not exist for N. The following three corollaries may easily be derived from

Theorem 5.1.

Corollary 5.1

Assume that N] and N2 are n-port voltage-conirolled resistive elements.
Then the parallel interconnection of all corresponding ports of N.I and N2

results in a voltage-conirolled n-port N.
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Corollary 5.2

Assume that N] and N2 are n-port current-conirolled resistive elements.
Then the series interconnection of all corresponding ports results in a current-

controlled n=port N.

Corollary 5.3

Assume that N, is an n-port PNE and N2 is an m=port PNE. Then the
hybrid description of a network element N obtained by any series-parallel inter-

connection, as shown in Fig. 5.3, exists.

5.2.1. The series-parallel interconnections resulting in a PNE

It is easy to show that the series-parallel interconnection of two PNEs
does not necessarily result in a PNE. Consider, as an example, a parallel-

parallel interconnection of 2 linear two~-port resistive PNEs N, and N2 with

conductance matrices G] and Gz:

10 1 0 1

The conductance matrix G of the interconnected network N

2 10]
G:G + G, = K
T "2 1y 2

and det G < 0. Thus the equivalent network element N is not a PNE. Even
when N, is a reciprocal PDNE and N, is a PNE the series-parallel interconnection

of Ny and N, does not necessarily result in a PNE. As an exdmple consider the

O
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case where N.l is a linear resistive two-port representing a PNE, and its

conductance matrix G.l is
1 0
G] =
-20 1 {

and N2 is a linear reciprocal resistive two=port representing a PDNE, and its
!
conductance matrix G2 is

The parallel-parallel interconnection of N, and N2 results in a network element

N with conductance matrix G

G=0G, +G. =
T2 1 3

and det G < 0. Since the parallel-parallel interconnection is but a special

case of the series=parallel interconnection, sHown in Fig. 5.3, we have proved that
the series-parallel interconnection of an n-port PNE and an m-port reciprocal PDNE
does not necessarily result in a PNE.

1 is

a PNE and N, is a reciprocal PDNE can be explained by the fact that N.l may

The reason that the resulting network N may not be a PNE when N

be |loca||y active and N2 represents a nonlinear feedback network with respect to.
N]; thus even when N2 is locally passive and reciprocal it is still possible for

N to have multivalued characteristics with respect to a certain selection of
independent variables at the ports of N. We can expect that a PNE will be

obtained by the series-parallel interconnection when N2 does not present any



184

feedback for N]. The following two theorems give sufficient conditions that a

special series-parallel interconnection of two resistive elements results in a PNE.

Theorem 5.2

prpose'N] is an n-port resistive PNE and N2 is an m-port uncoupled

- resistive PSDNE, where m < n. Divide the set of m ports of N2 into two
disjoint subsefs\ Pi and Pi containing i and | ports respectively and suppose that
N2 is voltage=controlled with respect to ports Pi and current-controlled with res-
pect to ports Pi. The series-parallel interconnection (Fig. 54) where the ports

Pi of N, are connected in parallel and the ports Pi of N, are connected in

series with the corresponding ports of N.( results in an n-port PNE.

Proof

From eqns. (5.7) and (5.8) the corresponding hybrid matrices of N, and
N2 are

H

1 ahl/ai ‘ (5.19)

H2 =. abz/?)vi (5.20)

where H‘] is of class UP and H2 is positive semidefinite and diagonal. It is
necessary to show that the hybrid matrix H of the network element N in Fig.

5.4 is UP and bounded. From eqn. (5.18)

.

T T ’
| HA A HA, _ (5.21)

H= ah/2u = A

Since all ports of N2 are connected either in series or' in parallel to the

corresponding ‘ports of N], PI is an empty set and from eqns. (5.16), (5.17)

and (5.21)
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H=H, + (5.22)
{
, |
Application of the diagonal expansion of determinant to all principal minors of H

shows that H is a matrix of class UP. Since H, and H2 are both bounded, H is!

1
bounded and N is a PNE.

It follows from Theorem 5.2 that when a current~controlled monotonically
increasing resistor with‘bounded incremental resistance is added in series to a
port of a resistive’ PNE the interconnected network is a PNE; similarly when a
voltage~-controlled monotonically increasing resistor with bounded incremental
conductance is added in parallel to a port of a resistive PNE the interconnected

network is a PNE.
2 -
The following theorem™ regarding the properties of three~terminal resistive

elements which represent a PNE in all 3 different orientations has useful applica-

tion in the dc analysis of nonlinear transistor networks.

'll'heorem 5.3*

If a two~terminal voltage~-controlled resistive PSDNE N2 is connected to

any two terminals of a three-terminal resistive element N] representing a PNE in all .

orientations, the resulting resistive three-terminal element N (Fig. 5.5a) is a PNE

in all 3 orientations.

*
It is conjectured that Theorem 5.3 is valid for (nt1)~terminal resistive element

which is a PNE in all (n+1) orientations.

Qe
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Similarly, if a two-terminal current-controlled resistive PSDNE N'2 is connected
in series with any port of a three~terminal resistive element N1 representing a
PNE in all 3 orientations, the resulting resistive network element N’ (Fig. 5.5b)

is a PNE in all three orientations.

Proof

It is sufficient to show that N in Fig. 5.5a and N’ in Fig. 5.5b

represent a three-terminal resistive element whiéhvis a PNE in all 3 orientations.

Suppose that the incremental indefinite conductance matrix of a three-terminal
element N.l is given by eqn. (4.43a) and denote the incremental conductance
of N2 (Fig. 5.5a) by g and the incremental resistance of Né (Fig. 5.5b) by

r; g and r are bounded and nonnegative. Then Gin’ the incremental indefinite

conductance mafrix of N (Fig. 5.5a), is . : {
: |
911" 912 ~(917%91,5"9)
Cin = | %21 922 “loyrtay) | O-B)

-(91119,1t9)  =lgy,t900)  Zgyte

Since _N] is @ PNE and g is bounded and nonnegative it is easy to see that all
principal submatirices of order 2 in Gin are UP and bounded; thus N in Fig.
5.5a is a PNE in all 3 orientations.

Similarly, Giln' the incremental indefinite conductance matrix of N’

in Fig. 5.5b is

' - ]
911 912 (9y7%9;2)
r o 1 -
Gin = __]+r9” 991 922+r det G3 (921+922+r det G3)
-(g] ]+921) —(g]2+922+r det GS) Zgik'!-r- de'rG3 |

(5.24)

-V
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where G3 is the incremental conductance mgfrix of N] in the orientation with
the common terminal 3. As N1 is a PNE and r is bounded and ‘nonnegative,
clearly, all principal submatrices of order 2 in Gi’n. are UP and bounded.
Therefore N’ in Fig. 5.5b is a PNE in all 3‘orienfaﬁons.

Q. E. D.

A PNE can be obtained by the series-parallel infterconnection of two

HNEs provided certain hybrid matrices of HNEs are u. H.

Theorem 5.4
Assume that resistive elements N] and N2 in Fig. 5.3 are HNEs with

the hybrid description given by eqns. (5.7) and (5.8) respectively. If the hybrid

matrices H; = ah-]/ai and H, = Bb_z/(-)v_v of N, and N, are u. H. the

[ 2

series-parallel interconnection of N, and N2 shown in Fig. 5.3 results in a

2

3

resistive element N which is a PNE.

Proof

Partition the (i+jtk) x (i+jtk) matrix H] as

H. = ‘  (5.25)

and similarly partition the (i+j+l) X (i+j+l) matrix H2 as

H2c1 H2b

H, =| | (5.26)

Hye  Hog

where H'la and HZO are (i+{) x (i+{) matrices. Substituting egns. (5.16), (5.17),
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(5.25) and (5.26) into eqn. (5.21) the hybrid matrix H of N is obtained as

H10+H2a H]b H2b
H = ch H]d 0 (5.27)
LH2c 0 H2dJ

It is easy to see that H is u. H. since both Hy and H2 are u. H.

5.2.2 The series-parallel interconnections resulting in a PDNE

As the class of PDNEs has many important properties it is helpful to
study interconnections resulting in PDNE. It will be shown that the series- T
parallel interconnection of 2 PDNEs or of a PDNE and a PSDNE results in a

PDNE. These two results are stated formally in the following two theorems.

Theorem 5. 53

Let N] and N2 in Fig. 5.3 be resistive PDNEs. Then any series-parallel

interconnection, as shown in Fig. 5.3, results in a resistive PDNE N.

Proof

Since N'l and N2 are PDNEs the hybrid descriptions given by eqns.
(5.7) and (5.8) exist. From egns. (5.7) and (5.8) the hybrid matrices of Nl
and N2,. H,
eqn. (5.18)'fhe hybrid matrix H of N is equal to

= 9h,/3x and H, = ahé/av_v, are u. p. d. and bounded. From

Th A +A.TH.A (5.28)

H= 0dh/ou = A "HiA +A, HA,

and we want to show that H is bounded and u. p. d.; thus @ > 0 exists such
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that the quadratic form
for all z¢ 0 (5.29)

Since H] and H2 are u. p. d., (H1 - ,((]I) and (H2 - ,«21) are positive definite

with some (u1> 0 and (uz> 0 and

T

. T T, T
EA] H]A]E > M2 A] A]E (5.30)
T T, T
z A2H2A2£ > Moz A2 AZE (5.31)
From egn. (5.28)
T, _ T, T T, T
z Hz = z A] H]A2£+ z A2 HZAZE (5.32)

Combining egns. (5.30) - (5.32) and calculatin A]TA] and AZTA2 yields

(gt mo)ly; 0 0 0
0 (Mt @), 0 0
2'Hz> 2! R z (5.33)
0 0 g 0
L0 0 0 |
#2%p

The diagonal matrix on the r. h. s. of eqn. (5.33) is positive defihife and

therefore for all z £ 0

ETHE > [ :z_T_z_ if 0 <u<Min( [y (&2) (5.34)

Thus H is u. p. d. and since H1 and H2 are bounded H is bounded as well.

Q. E. D.

Theorem 5.6

Suppose that in Fig 5.4 N, is an (i+j+k)-port resistive PDNE and N, is
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an (i+j)-port resistive PSDNE. Let ports Pi of N2 be voltage-controlled and let
ports Pi of N2 be current-conirolled. Then the series-parallel interconnection of N.l

and N2 shown in Fig. 5.4 results in an (i+jtk)~port resistive PDNE N.

Proof

Let H; and H, be the hybrid mairices of N] and N2, obtained from the

hybrid descriptions of eqgns. (5.7) and (5.8); the matrix Hy is u. p. d. and

" bounded and H2 is positive semidefinite and bounded. From eqn. (5.22)

H 0 :
H=H,+ (5.35)

where the second matrix on the r. h. s. of eqn. (5.35) is positive semidefinite.

Since a sum of a u. p. d. and a posifive semidefinite mairix is u. p. d. the

matrix H is u.p.d. As H] and H., are bounded H is bounded and N is a PDNE.

2
Q. E. D.

5.2.3 Special cases of the series-parallel interconnection

As will be demonstrated in this section a special parallel or series inter-
connection of two resistive PNEs N, and N2 results in a PNE when one of the ports
of N], Pc’ is connected in parallel with one of the ports of N2, Pd’ as shown in
Fig. 5.60:, the same result is obtained when PC cmd'Pd are connected in series as
shown in Fig. 5.6b. This property is very useful in the dc analysis of transistor

networks. -

Theorem 5. 72

Suppose N] and N2 are resistive PNEs where N1 is an n=-port and N2
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is an m=-port. Let PC be an arbitrary port of N] and let Pd be an arbifrary port

of N2. Then a parallel connection of ports Pc and P, (Fig. 5.6aq) (or a series

d
connection of ports PC and Pd (Fig. 5.6b)) results in an (ntm=1)=port network

element N (or N’) which is a PNE.

Proof

We shall prove Theorem 5.7 for the case of the parallel connection of

the ports PC and P ; the case of series connection of the same ports can be

d'v
proved analogously.

Without loss of generality we can assume that Pc is the port number n

of N1 and Pd is the port number 1 of N

N.l and N2 exist.

o The following hybrid descriptions of

& =5 yv)
o (5.36)
- dn _-'n(x-k'vn)
and " i-l = i](e] IEI ) .
(5.37)

-_i-l %_[,(3],_91)

T

_ . T
where v = (v.l., v2'.'”'.vn_'|)T: _'k = (i], 12, ceey in—]) , $=(e2,¢3,...,e})
|

and -Ll = (12, i3,..., il)T. The incremental conductance matrices.

G] =B(_'|_k,in)/3 <-!k'vn) and G2 = B(i],_i_l)/a (e.l,e) of N] and N2 can be !

partitioned as follows.

’—Gaa Gab Gac
G1 = Gba be Gbc (5.38)
G G G
| ca cb cc |

JLy—
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Gdd Gde GdF
G2 = Ged Gee GeF . (5.39)
G G G

fd fe ff
where G isan axa matrix, G, isa bxb matrix, G isa 1 x1
aa bb cc
mairix and (atb+1) = n; Gdd is a dxd matrix, Gee is'an e x e matrix,
GFF isa 1 x1 matrix and (dretl) = m. -

From Fig. 5.6a the incremental conductance matrix G of the resulting

network element N is obtained in the form

- Gca Gab Gcc 0 0
o Cbb Cbe 0 O
G- |6, G, G _+G, G, G| (540
o 0 ed e Cof
Lo o o G, Cgl

Since G'l and G2 are bounded mairices G is bounded. Thus in order to prove

that N is a PNE it is necessary to show that G is UP. L.ef G

(bicie)(b‘,C,e)
denote the following principal submatrix of G
®b  Cbe 0
Clo,crebrere) = | Ccb CecCaq Cao| (54D
0 G G
' Ed ee

Since the partitioning of vG] (egn. (5.38))and G2 (egn. (5.39)) .is arbitrary

except that G and G, , are 1 x 1 matrices, G is a UP matrix if
: cc dd

det G ,€b+e+'l > 0. By Lemma 4.1

(b,c,e)(b,c,e) =
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det G(b,c,e)(b,c,e) = det Gee det |-~ " 3- 77" "7 7777 a- |

where (Gcc+Gdd—GedGee-]Gde) isa 1x1 mcm'ix.. Thus

G G
bb Tbe -1
det G(b,c,e)(b,c,e) = det Gee det G . + (Gdd'GedGee Gde)der G
. c cc
(5.43)
Applying Lemma 4.1 once more
Cad Cde a0
det G G = (Gdd-GedGee Gde) det Gee (5.44)
ed e v
Substitution of eqn. (5.44) into eqn. (5.43) yields -finally
Cad Cde Cpy Che
det G(b,c,e)(b,c,e)=def be det G . G +def,Geedet G G
ed ee cb T cc
(5.45) .

Since G] and G2 are UP matrices, it is obvious from eqn. (5.45) that G is a

UP matrix.

5.3  THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF ONE-ELEMENT-

KIND NETWORKS

The most important reason for studying one-element-kind networks lies in

bb
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the role they play in the analysis of dynamic nonlinear networks. Very often

the solution of a dynamic network N can be obtained only by first analysing

related networks: the capacitive network N { 0; @R, 91_, ﬁJf , the ?nducﬂv?

network N {9E, %C' ) RY Of and the resistive network obtained by replacing

all capacitive and inductive elements in N by a set of voltage sources and

current sources respectively. Another practical reason for studying resi'sfive

networks lies in the fact that the steady-state behaviour of many dynamic non-
linear networks is determined by analysing a resistive subnetwork obtained by
replacing all capacitive and inductive elements in the dynamic network by open -
circuits and short circuits, respectively. Indeed, the set of equilibrium states

of any dynamic network is simply the solution of this resistive network. Such

a resistive network is fermed a multivalued memoryless nefwork4 if it admits
more than one solution.

There is no general method for dé’rermin_ing all solutions of a multivalued
memoryless network. The problem of finding solutions is especially difficult if -
three-terminal nonlinear resistors are present in a resistive network. If, for
example, we use the Newton-Raphson algorithm for computing the solution of
a multivalued resistive network it may happen that the procedure is not
convergent since the differential eqn. (3.73) is not globally asymptotically
stable in such a case. Nevertheless, when a multivalued resistive network NR

contains two-terminal resistors with piecewise linear characteristics, independent

and controlled sources, and linear two-port elements (such as gyrators, ideal
transformers, etc.) all solutions of NR can be obtained by the iterative
T 4

picewise linear method proposed by Chua .

For the purpose of the state-variable analysis of an RLC network N it
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is necessary to check the existence and uniqueness of solutions of the resistive,
capacitive and inductive subnetworks of N. The resistive case will be studied

in this section; analogous results can be obtained for the capacitive and inductive

case as the (R), (C) and (L) eqns. (eqns. (2.68a)-(2.68c)) have a similar form. If
a one-element=kind network possesses a unique solution for any value of independent
sources it will be termed a single valued one-element-kind network.

Several Form; of the géverning equations of resistive networks ha.ve been
developed in Section 2.3. In principle, Palais’ theorem may be used to establish
the existence and uniqueness of solutions for these equations. However, for a
nonlinear resistive network af large the number of algebraic equations, n, is
very large and even with the use of a computer it is virtually impossible to
test whether the two conditions in Palais’ theorem are fulfilled in R". When the
hybrid matrices of all resistive elements are bounded'and continuous, Theorem
3.2 is cpplicablé;; in such a case there is only- one condition on the Jacobian

" of the governing. equations that has to be .fulfilled; In this manner we obtain a
set of ve;'y general conditions for a resistive network to be single valued., These

conditions are summarized in Theorem 5.8 for the different kinds of analyses

treated in Section 2.3. In the following we shall denote

» 0 F L
= pe (5.46)
R S
| Fre

Theorem 5.8
(a) A resistive network described by a set of egns. (2.28) is single valued

if the Jacobicuj matrix B_fR/B ('Y'P Ve '-E-P '-i-c ) is bounded and continuous Idnc'l
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[ 1 Fae O 0 ]
| det 0 0 -FpgT | ’ZE>0 . (5.47a)
i-f_R af; oy ¥k
L a.\.,.[b a.\-,..E a_i.p aia d

for all l’-{b'le'lp’le-'

b) A resistive network described by the loop equations (eqns. (2.31))
is single valued if the incremental resistance matrix R = SXR/ a—iR is bounded

and continuous and

| det [ BRBT]|2£>0 for all i (5.47b)

dn-
(c) A resistive network described by the node equations (eqns. (2.34))

is single valued if the incremental conductance matrix G = i / o Vo

bounded and continuous and

ldet[@GQT2'¢> 0 forall v, (5.47¢)

(d) A resistive network described by the hybrid equations (2.37) is
single valuéc! if the hybrid matrix H] p,l )/a 'VE ) is bounded and
- continuous and

+ FR)lZDO' for all i ,v

arYe (5.47d)

|det (H,

(e) A resistive network described by the hybrid equations (2.39) is
single valued if the hybrid mafrlx H a(.ﬂ,v /a(v {b,l ) is bounded and
continuous and ‘

|det (I+ FH,)l2e>0 forall vy, 1 (5.47¢)

€

) Proof

A direct application of Theorem 3.2 to the corresponding dc equations
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of a resistive network gives Theorem 5.8

An interesting point related to the condition of eqn. (5.47¢) is
worth mentioning. Namely, if Y;p and —i-e are calculated from eqns. (2.28a)
and (2.28b) and substituted into eqn.. (2.38) the hybrid equations are obtained

in the following implicit form

1
j©

: T
T =i (_F v _+te_ ,F i+ ) =
- —p ‘(5& —_E =p " PE _.pl .|.£‘ (5.48)

’ To - . . ’
Ye "V (Fpe Y vy Fpe iptie =0

From eqgn. (5.48) i{b and v _ are given as functions of ¢ , and i, » and

€

~eqn. (5.48) is equivalent to eqn. (2.39). Using Theorem 3.4 sufficient
- conditions for a resistive network to be s;ingle valued is boundedness and con-
tinuity of the hybrid mai'rix’ H2:=”a(_i_(b ’_!E /o (!b '-i-s) and

ldet (I + H2FR)IZE> 0 for all v (5.49) .

ple
Note that the conditions (5.47¢) and (5.49) have different forms and hence a
question arises whether these two conditions are identical or not. In fact it
can be shown that

det (I + HZFR) =det (I+F (5.50)

rH)

singe F_ is skew-symmetric. As skew=-symmetric matrices are normal * and any

R

[ . - » * v . | . 5
normal matrix is unitarily similar to a diagonal matrix™, F, can be expressed as

R

Fo=PAP - | (5.51)

where A is a diagonal matrix containing characteristic roots of FR and

* — - -_— '
A matrix A is normals if ATA = AAT, where A is the matrix obtained

from A by replacing each element by its conjugate.

O
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PP=1 (5.52)
Using eqns. (5.51) and (5.52) we have

det (1 Hofp) = det [ P(1+ HPAP) =
det [ 1+ PHzﬁh (5.53)

and det (I+ FyHy) = det [P(+FA PH,) P1] =

= det[I+ A PHZFT] (5.54)

Applying the diagonal .expanﬁon of determinant ar;nd taking into account
the fact that any principal minor of ( A PHZI’-T) is equal to the corresponding
principal minor of (PHZETA ) we arrive at eqn. (5.50). Therefore the condition
(5.49) is identical to the condition (5.47e).

The conditions imposed in Theorem 5.8 have a rather "mathematical”
form and thus it is not easy fo test them. We shall aim at developing .a set
of more specialized criteria that . ensure the existence ond.uniqueness of solution
in a resistive network containing certain classes of elements and/or satisfying
certain topological restrictions. | )

The following theorem can be stated for resistive networks containing

PDNEs and independent sources only.

Theorem 5.9
If a resistive network consists of PDNEs only it is a single valued

resistive network regardless of the network topology.

Proof

Since all resistive elements in a network are PDNEs the hybrid equations
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can always be expressed in the form of eqn. (2.37) and the hybrid matrix
H= 3(!(5 e Va(i(b’!a ), associated with the hybrid descriptio.n of eqn.
(2.36), is u. p; d. and bounded. The Jacobian matrix of eqn. (2.37)

JN = a(_gp e Va(—ip’le)‘is equal to

=(H+F (5.55)

IN R/

Iy is ve ped. because Fo s skew-symmetric, and it is bounded because H

e i .
is bounded. Thus in egn. (2.37) [_'1 is a GQLF of [—ﬂ] and by Property 3
de Ve ,

of GQLFs it possesses a unique inverse function.
Q. E. D.
Theorem 5.9 is a generalization of the result in Ref. 6 to the nonreci-
“procal case; a similar result appeared as Theorem 5 in Ref. 7. The conditions
imposed in Theorem 5.9 are very stringent as only PDNEs are allowed fo be
contcinéd' in a resistive network, but the topology is arbitrary. When not all
elements in a network belong to the class of PDNEs, the elemer;fs which are-
" not PDNEs have to satisfy certain topological conditions. To express the
conditions ensuring that a given resistive network N is single vcllu'ed all
branches of N{@E; ‘ﬁJf are separated fnto three disjoint subse_fs7 as follows:
Subset S]: sef .of all branches of N{ﬁE; .'BJf- forming nonséparable connected
subnetworks with more than.one branch. .S1 is further partitioned
into two disjoint subsets S{“ and‘SEi with respect to a chosen
tree of N, |
Subset S,: S, =S, ,U S_, where

2° %2 = 582Y 3¢ i
Shz is a set of branches which gre self-loops of N{ﬁE; ﬂJ‘ and
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whose voltages appear as independent varicbles in the hybrid dgs-
“cription,

Sgoisa set o.f branches which are open branches of

N{BE; BJ} and whose currents appear as independent variables in
the hybrid description, |

S, =S5, US

Subset $3: 3 £ 3 €3 where

S(b3 is a set of branches which are self-loops of N{BE; ﬁchnd
whose currents appear as independent variobles in the hybrid
description,
S é3 is a set of branches which are open branches of
N{3 EY BJ‘ and whose voltages appear as independent variables
in the hybrid description.

According fo the ab9ve séparaﬁon the hybrid description corresponding

to all resistive elements can be written in the following partitioned form

"

20 N L SRIESY
Yo | = |hofyrxprxg) (5-)
Yal LAty
where i - .
_ | <e2 _ | Lp2
2 7. X (5.57a)
| Le2l . Yeo
i 1 | v
[ ia3 ' Yp3 5.57)
- = 5.5
| e 3. 1les

and X17 Y1 .confain v b1’ ii” 'Yy i& 1° The hybrid m;:trix corresponding

to the above hybrid description is partitioned in accordance with the dbove se-
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paration in the form

My Hiz Mg | -
Myrprty) H. H 5,58
A0y ixyrXg) Myt Fpp Mg (.58)
Hyp  Hyp  Hyg

The following theorem ensuring that a given resistive network is single

valued can be stated in terms of the hybrid matrix given in egn. (5.58).

Theorem 5.10

A resistive network containing resistive elements with the hybrid -
description of eqn. (5.56) is single valued if
(i) the corresponding hybrid matrix H (eqn. (5.58)) is bounded
(i1) |det H33|;e>0 for all Xy XpXg and

-1 .
(iii) (H”-H]3H33 H3]) is u. p.d.

Proof

By Theorem 3.3 the following hybrid description of resistive elements

exists
2 hy by %o ryg)
Yol = |holxyroeyg)| (5.59)
33 halxy xgrvg)

IThe hybrid matrix H’ = 3(h;, hé, hé)/ 3 (51 ’i2'x3) is bounded and its

submatrix H{] = 3}1]'/8 X s expressible by H as

1

0 H,. - H]3H33 H (5.60)

11 31
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Partition vectors g{a and . in accordance with the partitioning of resistive

branches
.g{g,]- . iE]
& |&p2 Ie = |ie2
€43 L¢3

Because of the partitioning of all resistive branches into subsets S., 52 and

53 the matrix Fae - appearing in eqns. (2.27a) and (2.27b) has the form

Farer © O
FPE;-. 1o 0 0 (5.61)
0 o o]

and by substituting eqn. (5.61) into eqns. (2.28a) and (2.28b) we have

Yp2=&p2  lepTlen
| (5.62)
3T %p3 0 2e3 les
and using eqns. (5.57a) and (5.57b)
Zp2 2p3
Xp =1 3= | (5.63)
le 2 le 3
Therefore
b4 = .ll'i(i] 'Ep 2'152'2{53'163) (5.64)

and the relation between x, and y, is a GQLF for all gpzlj_ez, a3 Lleg

By Property 3 of GQLFs eqn. (5.64) can be tfransformed into the following

fqrm ' {

v =V (i ’V 'e ’. Ie Ii )

Yp1  LpeiMpi1rXerrEpoile2:E8p37de3

. : ¢ ¢ (5.65)
l — - . [ 1l

~e1 -'81(1151’161'Epz'iez'sﬁs’is 3
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where H'” =8(X_6.|,_i_e ])/c)(_if”rle ]) is u. p. d. and bounded. The set

of hybrid equations. corresponding to eqn. (2.45) has the form

) +

!‘@1(—'{5]’161’2{62’%2’ 3{53'153 Fp]s]le]=ip1

(5.66a)
-F L T ' i) =1
pre1lpr LerdpirlerZpaile 2:8p3tle’ T Len

The .{acobian matrix JN = a(sm,j_e ])/a (ip]’l’.s 1) of eqn. (5.66a) is.

0 FPI‘EI

JN = H” + I . (5.66b)

"F{b 1€ 1

As H“ is u. p. d. and bounded and the second matrix on the r. h.s. of
[2p1 e

eqn. (5.66b) is skew-symmetric |. is a GQLF of for all e . ~;
| i v ep2

. _ -€ 1 -1

162’ 3{53,_]_&'3 "and thus the resistive network in single valued.

Q. E.D.

The result of Theorem 5.10 can be giyén the following interpretation in
network terms. If there are bR resistive branches in a network N, the set of
all resistive elements represents a bR-porf NR. Let all ports of NR be classified
into six disjoint subsets P p1’ l:"5 2,Pl3 3,P€ ]'PE 2’PE 3 in accordance with the
clcssificcﬁqn of all resistive branches into subsets S], 32 and 33 (Fig. .5.7).
Connect independent voltage sources o ports Pay and'Pb 3 and independent
current sources fg ports P, 9 and P 3, in NR;’ then choose ports P(z, ]'Pe s
ports of an (b{b ]+ba 1)—porf resistive element Né (Fig. 5.7). When NR is
voltage-controlled with respect to ports P, and P@3 and is current-
controlled with respect to ports P 9 and P 37 then the resistive network N

[4

is single valued if in addition Np represents a PDNE.
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A useful corollary of Theorem 5.10 is concerned with a resistive

 network which contains PDNEs and PNEs.

Corollary 5.4

Suppose that a resistive network N contains PDNEs, PNEs and
independent sources. Then, N is single valued if there is not more than one
branch of each PNE in any connected nonseparable subnetwork of N{BE; BJS
which contains more than one branch*.

Let us assume that all branches which are self-loops in N{?E; BJf are
volfaée—confrolled and all branches that are open loops in NiBE; 9J§ are

current-controlled and thus the subset S_ is empty. If there is no coupling

3

between branches Sr_b'] and S the conditions of Theorem 5.10 may be relaxed

€1

in the sense that the subnetwork Né in Fig. 5.7, derived from a given resistive

network, is not necessarily a PDNE,

Theorem 5.11

Assume that in a resistive network N the resistive branches are coupled

and
(i) the branches of set S{bé are voltage-controlled

(ii) the branches of Se , are current=controlled

(i) i,4,, V.. are expressed as: o
-p1’ =€l T

_i(g.] = hm(lp]’lpZ’—ie 2)

h_.(

(5.67) .
Ve =heilleqYpode)) |

. %

In other words the subset S, in N must not contain more than one branch

of each PNE.
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where h and he] are of class C(])

L1

Then the resistive network N is single valued if in additton conditions

(C1) and (C2) or (C1) and (C3) are satisfied simultaneously:

(c1) ab_m/ay_m and Bb_e 1/3_‘51 are positive semidefinite (not
necessarily symmetric) and bounded

(C2) a_}]_r“/é) Ypy o oh, 1/9161 are positive definite (not necessa-
rily symmetric) o

(C3) a_}]_@ ]/8 Ypy o ahe ]/c)_i_u are posi‘ﬁve semidefinite and

symmetric.

Proof

Using eqn. (5.67) the hybrid equations of the resistive network N are

obtained from eqn. (2.46) in the form

Y1 T Feretherlerrepader) = 2p

T (5.68)

Fpie1 hpiprrepode z)fiu =leq

where ep2’ 1e o may be considered as parameters, Eqn. (5.68) has the same
form as eqn. (3.64) and application of Theorem 3.7 gives the result of Theorem

5.11,

Theorem 5.11 may be viewed as an extention of Theorem 1.1 in Ref. 8
with respect to conditions (C2) and (C3). In Ref. 8, instead of condition (C2),
ab_M/a Ypy O .ah&]/‘)isl are required fo be positive definite symmetric
matrices, and instead of condition (C3) these Jacobian matrices are required to

be diagonal positive semidefinite matrices; yet in Ref. 8 there is no requirement
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for ah(b‘l/al{ﬂ and dh . ]/a_iE] to be bounded.

In order to interpret the result of Theorem 5.11 in netv:/ork terms
two resistive subnetworks of N will be identified. Let the resistive network
when viewed from ports P{J] with ports P(5 2 connected to independent
voltage sources and ports Pe 9 connected to independent current sources be

termed .N(5'| (Fig.. 5.8a); the conditions at ports P may be arbitrary as

€1

branches Pﬂ,  are not coupled to branches P 1’ Similarly, let_the resistive
network when viewed from ports Pe'] with ports P'ﬂ’2 connected to independent
voltage sources and ports P, 2 connected to independent current sources be

termed N& i (Fig. 5.8b). By the condition (C1) imposed in Theorem 5.11

N and Ne.‘ are required to be PSDNEs. When both networks N{“ and

P1

Nel are nonreciprocal the resistive network N is single valued if at least
one of them is strictly locally passive. WHen at least one of the networks N{&]
.and"N ¢, is reciprocal N i single valued even when Nﬁ:] and N , are.
both locally passive.

An interesting conclusion can be derived from Theorem 5.11 for’
resistive networks containing gyrators. Such networks may not be single valued
even when both branches of each gyrator lie in a tree or in its cotree. An

example of a singular linear network is shown in Fig. 5.9, where a gyrator

0 g} is connected in parallel’

NR with the conductance matrix Gl:[-g 0

rs

to a gyrator NR with the conductance matrix G2 = -G]. Thus the conduc-

0 O
and the

tance matrix of the interconnected network is G =G]+GZ=[
‘ 0 O

network in Fig. 5.9 is singular.
Our next result is concerned with a resistive network N containing

PDNEs and different kinds of PSDNEs where PSDNEs satisfy certain topological
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conditions. PNEs can be included as well if there is not more than one

branch of each PNE in any connected nonseparable subnetwork of N{ﬁE; ?»’Jf' ‘1
containing more than one branch. It is assumed that a tree TR exists in N such that
all voltage controlled PSDNEs, denoted as Nﬁb' lie in the cofree‘of TR and

lie in T.. Thus the hybrid

all current=controlled PSDNEs, denoted as N&b' R

descriptions of ‘N b and N L, ore

Iob " hpppy) (5.69)
Yeb = hepliey) (5.70)

For the third kind of PSDNE, denoted as Nu' we assume that the following

three conditions are satisfied:

fa R

is equal to bea' the number of branches. of Na lying in TR, bﬂq = b

(i) b, , the number of branches of Nu lying in the cotree of T

&a'

(i) Na is voltage-=controlled with respect to its tree branches and is

current=controlled with respect to its links,

(v .)

v
—€a

)

Ypa = Mpa

(5.71)

—-cta -~sa—'-pa

(iii) Ha' the hybrid matrix of Na' is skew-symmetric

. 0 Ku
Ha - ‘a(h-pa'be a)/'a(—i-pu'x-eu) = [—KOT 0 J

(5.72)

| ~ _ T
where Ka ~a-}lpa/a\—,—eu = -.(a,'}lfu/gipa) (5.73)

and Ku is a square matrix.
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Note that when No is linear it corresponds to a bank of ideal
transformers.
There are no topological restrictions in N for PDNEs, denoted as Ncﬁ

with respect to the free T finks of NC are denoted by N and tree branches

fc
of N are denoted by N .
c : Ec

If the resistive branches in N are numbered consecutively, starting with

links. ch and following with ﬁﬁb' ﬁﬁc and then tree branches ﬁé‘a’ Be b’

36 c then F{&e , the submatrix of the fundamental foop matrix B, can be

partitioned into the following 9 submatrices

'cheq ' F{baeb Fpoec floF F3
foe = | Fobea Tpbeb Fpbec| = T4 s T
F(bcec cheb F{?rcecJ F7 F8 F

(5.74)

In eqn. (5.74) both matrices are partitioned conformably; the last form will
be used in the sequel for the sake of simplicity in notation.
The following theorem gives sufficient conditions for a resistive network,

described above, to be single valued.

Theorem 5.12

Suppose that a resistive network' N contains PDNEs, Nc, and PSDNEs, -
pr, N b’ and No with the hybrid descriptions given by eqns. (5.69),
(5.70) and (5.71), respectively and that the hybrid matrix Ho of No (eqn.
(5.72)) is skew-symmetric. Furthermore, assume that a tree TR exists in N such that

all branches of N and all voltage-controlied branches of Na lie in Tp but
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all branches of pr and all current-controlled branches of Na lie in its

cotree. Then, N is single valued if ) : ' (

(i) the hybrid matrices of all resistive elements are bounded I
!

4 0 F.l | "

(i) det | H_+ _F]T o | lpe>o (5.75)

(iii) either pr or N& b is reciprocal or N b °F N, b is strictly -

P

locally passive.

Proof

As N_ is a PDNE, the hybrid description

)

Y pc(—i-pc’-\-,-e c

(i

i i v
—EC —8c-—(5c_'—-€c

v
be ) (5.76)

exists. Substituting eqn. (5.74) and the hybrid descriptions of Na’ pr:

N b and Nc (eqns. (5.69)-(5.71),(5.76) into eqns. (2.24) and (2.25) the

following set of hybrid equations of N is obtained

_ r T
hpa(le a) Fl F2 F3 Yea Spo
Yab AR Fs Fol | hepliep)| = | g
-Y-{bc(-i-[bc'x-e c)J F7 F8 F9 | Yec | L 2{30

(5.77)
LT LT LT T h G 1
R B i heallpe)  [llea
T T _T . i
"1 Fa Fs Fg| [ happp)| t ey =leb
To.T .1 |, B .
L F3 F<S F9 lpc 4 | Le c(-l(bc'le c)-i e e
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where 1¢ and 3(5 are partitioned conformably to i and v . Denote

P
the incremental conduc.:tcmce matrix of N(bb by G{:) b= éhp'b/ay_pb and

3

the incremental resistance matrix of N b by R eb = ahe b/ LI similarly
let Hc be the hybrid matrix associated with the description of eqn. (5.76)

Kpp  Kpe
Ke[h KEE

Hc B a(l@ c'-i-ec)/a(—iﬁc'le c) -

} (5.78)

Using the notation for the Hybrid matrices of Nq, Nﬂ»b' N and Nc,

Eb

the Jacobian matrix JN associated with eqn. (5.77) may be recast in the

form

R S N Lo T L
-KGT-FlTE 0 -FJGPb:O -'!-F7T' "0

I SR el Fé .
SRR iy YA A
S s FeRenKps ' Kpe*F
L-F3T A -FéTpr:O 'iK&.P-FS,TIKEE

(5.79)

As all hybrid matrices appearing in JN are bounded, JN is bounded and,

applying Theorem 3.2, N is single valued if det JNg €, > 0. Since

by condition (ii) in Theorem 5.12

Lemma 4.1 can be applied to det JN. Hence we have
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| iR O R ]
. T - ' /T f
, F5 Gy ! | IR
det J.. = det(K +F.)° det |"=-"" "~ - b mele s e L
N @ O FRenl Ree Mty
e o S
L 6 T pb | Ep 9! TeE
(5.81)
S e e e T T
where F5 = F5 F4(Ka +F].) F2
P T Tl
Fo = Fg = FiK +F ) Fy (5.82)
7 l T T—]
Fg = Fg - FK *F ) Fy
’ _‘ - T T—]
Fo = Fo = FK_4F, )T F,

Using condition (iii) it follows from the proof of Theorem 3.7 that

l _ F5R£b
T > 1 (5.83)

det ’
-F5 pr 0

Applying Lemma 4.1 to the determinant on the extreme right of egn. (5.81)

we have
.2 [ l F5Reb}' |
det J. , = det (K +F,)" det ,T det M
N a 1 F5 G/bb |- lf
(5.84)
where M s
’ VR . ’ -1 \ 7
“o . Fo 0 L Fa Gﬁbl.o 1 ,FSReb} [.O-_.fé
M=H + ---n.“- +—-,T_|._’- _.--.—“ ::T-F-:— i R :

P W
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A close inspection of eqn. (5.85) reveals that M is u. p. d. since Hc is
u. p. d. and (M - Hc) is positive semidefinite. Thus det M > 'e] > 0 and
from eqn. (5.84) and using the inequalities (5.80) and (5.83)
det Jy, > Eze >0
© N 1
Therefore the condition (i) in Theorem 3.2 -is fulfilled and eqn. (5.77) has
a unique solution. Hence N is single valued. |
Q. E. D.
Remark: Similarly to Theorems 5.10 and 5.11, Theorem 5.12 can be extended
to be applicable to a resistive network N’ confoinving network elements that are
not PDNEs or PSDNES; assume that N'{ D £ 9_]& consists of subsets

5, = S{“U S and S, = 5(52U S€2 whereas subset S

€1l 2 is empty. As ‘linlf

3

voltages Y52 and tree branch currents —iEZ are determined directly by indepen-

dent voltage and'curre.nt sources respecﬁ'vely, only N’%= N”{ EE’ szi ﬂ_)"af 2§,

which is a subnetwork of N’ and where Y42 and i, are paramefers, has to

be solved. The set of all resistive elements in N’forms an n’-port Né. The set

of all resistive elements in N’"-Forms an n’’-port N which can be obtained

* from Né as shown in Fig. 5.10. Only N’/ has to obey conditions imposed in

Theorem 5.12 for N’ to be single valued.\ PNEs can obviously be included in

N’ provided not more than one branch of each PNE belongs to the set S.I formed

in N'. |
Ac‘cording to Theorem 5.12 locally passive nonreciprocal PSDNEs such

as gyrators may n§’r lie both in the tree and the cofree. However by an

additional topological constraint locally passive nonreciprocal PSDNEs may

be placed both in the tree and the cotree.
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Corollary 5.5

Assume that in Theorem 5.12 the condition (iii) is replaced by the

following condition (iv ):

(iv) F4=00ndF5.=0 orF2=00ndF5=O.

Then the result of Theorem 5.12 holds.
Note that the condition (iv). implies that in the fundamental loop
associated with any branch of 3{“) ‘there is no branch of ﬁea and ﬂeb' or that

in the fundamental cut-set associated with any branch of ﬁEb there is no branch
of ﬁ/bu and ﬁﬁb'

So far some results concerning networks of PDNEs, PSDNEs and PNEs
have been stated. However, Theorems 5.9 = 5.12 can be combined with the
results on interconnections of network elements, as given in Section 5.2; in
such a way it is frequently possible first to reduce»u subnetwork Ni in a given
resistive network N into @ PNE or PDNE or PSDNE and then apply one of the
fheofems' or corollaries of Section 5.3. Another approach which is often useful
is to reduce a given resistive network N into a PNE or PDNE with respect fo
the ports corresponding to voltage and current sources of N, and fhen.prove

that N is single valued going in the reverse direction from the reduced network to

the original one.

5.4  EXAMPLES

In this section we shall present some examples to illustrate the usefulness

of the theory developed in this chapter. Resistive networks containing PNEs’
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that may be locally active will be of special interest. Throughout this section
we shall assume that each transistor represents a locally active three-terminal

resistive element which corresponds to @ PNE in all three orientations.

Example 1:

Consider the direct current regulafor9, N, shown in Fig. 5.11a. Assume
that Zener diode D is a two~terminal voltage~controlled resistor with monotonic
characteristic and Ry~ R, and RL are two-terminal linear positive resistors. By
Theorem 5.3 R, end the transistor T can be subsfitufea by a three~terminal
resistive element N’ which is connected to nodes 1,2 and.5 and it is a PNE
in all .%hree orientations. Then N’ and D are reduced to a three~-terminal resis=
tive element N’’ which is positive in all three orientations. R, and N’" form
a three-terminal positive resistive element N’’’ Wh'en R, is added to N7 q
three-terminal resistive element ¥ (Fig. 5.'|'|b) which is posiﬁvé in all three
orientations is obtained.

Since a hybrid description with vy i2' as independent variables exists

‘For S, i], v, (Fig. 5.11b) are defined for ¥, Retracing the steps from &

o

to N we see that voltages and currents at both ports of N**’, N’’ and N’

are uniquely defermined and N in Fig. 5.11a is single valued for all values

of E.

Example 2:
Consider the multistage dc coupled transistor amplifier N consisting of |
n identical stages as shown in Fig. 5.12a. We can show that N has u unique

solution for any value of sources e, E'I' E2,. . .,En. Applying Theorem 5.3
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several times the i-th stage Ni of N, i=1,2, ..., n, can be reduced to

a three-terminal resistive element ;/V; which is positive in all three orienta-

ﬁons and is connected to nodes 1i,i+1 and nt2. In this way the network

shown in Fig. 5.12b is obtained. By Theorem 5.7 tW] and JV2 form a 4-terminal
PNE JV‘]’2; \/V]’2 and \/Vé represent a S-terminal PNE and continuing this
procedure we finally arrive at (nt2)-terminal positive resistive element

JI/]”2I ot =4/ shown in Fig. 5.12c. Following the same argument as in
example 1 we conclude that the network in Fig. 5.12a is single valued for all

values of independent sources; this conclusion represents an interesting network

theoretic result.

Example 3:

The resistive network N in Fig. 5.13a is a dc differential amplifier.
Let RI,R2,...,R7 be two-terminal linear éosiﬁve resistors. Using Theorem
5.3 Rx,R2,R3 and T] can be replaced by a three-terminal resistive element
./V] which is connected to nodes 1,4 and 9 and which is po.siﬁve in all
three orientations; R4'R5’R6 and T2 can be reduced to a three-terminal resistive
element ‘/Vé that is connected to nodes 4,8 and 9 and which is positive in
all three orientations. Thus N can be replaced by N’ shown in Fig. 13b.
Theorem 5.9 can be applied to N’ to prove that N’ is single valued. Note
that all rlesisﬁve elements in N’ belong to the set S] . In NI{EE;’ E'Jf both
ports of \/1/; are connected in parallel and this parallel interconnection can
be replaced by a two-terminal resistor ,/1/1"1 using Property 1 of three-terminal

resistive elements which represent a PNE in all three orientations we conclude

that JV{ is quasilinear. Similarly L/V‘2 can be replaced in N’ BE; %J} by a
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quasilinear resistor \/V:?’ In this way N’ { ﬁE;éJf consists of 3 q.ucsilinecr
resistors \/Vil, t/VZI and R7 and by Theorem 5.9 N’ is single vc-lued.

Example 3 is interesting from the following point of view: frequently
theorems of Sections 5.3, ensuring that a network N is §ingle valued, cannot
be applied directly; but the network has to be reduced at first on the basis of

the properties of the series-parallel interconnections until one of Theorems

5.9 - 5.12 is applicable.

Example 4:

The resistive network N, shown in Fig. 5.14, appears in the dynamic analy-
sis of the flip-flop obtained if voltage sources e and e, are replaced by two
capacitors. Léf R],R2,-

one branch of each transistor is a self-loop of N {ﬁE;EJ; - N is single valued

. "Ré be two-terminal linear positive resistors. Since

by Corollary 5.4.

Example 5:
Consider resistive network N, shown in Fig. 5.15a, where Na is a linear
ideal transformer, N eb is a linear gyrator, D is a diode with voltage-controlled

(1)

monotonic characteristic of class C° and of bounded slope, R, and R2 are ’n{'vo-

terminal linear positive resistors. By Property 3 of PNEs subnetwork N] containing
T] and E] represents a quasilinear two=-terminal resistor Nsc (Fig. 5.15b) between
nodes 1 and 6. Applying Theorem 5.3 T2, R] and R2 can be reduced to a

4

three-terminal resistive network N2 connected to nodes 5,6 and 2 and it is a

PNE in all three orientationsy N‘,'2 and J can then be reduced to a quasilinear

resistor N be between terminals 5 and 6 (Fig. 5.15b). Resistive network N’shown
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in Fig. 5.15b corresponds to N in Fig. 5.15a. A tree containing branches
BE2' bEd’ 3£b.|, 2£b2' Bcc can be chosen in N’ and thus Theorem

5.12 is applicable for N’. Analysing the subnetwork N {Z}Eb'ﬁe c;B{bb'ﬁ/bci

it is easy to see that the inequality (5.75) is fulfilled. Since in addition N pb

is reciprocal, N’ is single valued and thus N in Fig. 5.15a is single valued.

5.5 SUMMARY
In this chapter the problem of the existence and uniqueness of solutions in
one-elemenf-kind' networks has been considered. The emphasis has been laid on
resistive networks containing locally active mulﬁferminal- elements.

In orde;' to analyse such networks it is helpful to study the properties of
the series-parallel interconnections of nonlinear resistive elements such as PNEs,
PDNEs and PSDNEs. Particularly interesting results have been obtained for series
(or parallel) interconnections of a three~terminal resistive element which is a
PNE in all three orientations and certain two-terminal resistors with monotonic
characteristics. In this way transistor networks can be reduced to a much simpler
form where the existence and uniqueness is more easily studied.

Sufficient conditions ensuring that a given resistive network is single valued
have be.;,en sf;:tecl for networks containing different classes of elements and /or
satisfying certain fopological constraints; thus such conditions are given in network
terms rather than in "mathematical™ terms and are applicable to many practical
networks. A number of transistor networks is presented to illustrate the applicabi-

lity of the theory developed in this chapter.
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Fig. 5.3. Series parallel interconnection of an n-port N.I and an
m=-port N2.
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Fig. 5.4. ~ Hlustration 6F Theorem 5.2.
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Chapter 6 ' - {

6.1 INTRODUCTION

The formulation of the .normal form equations for a general nonlinear
RLC network is discussed in Section 2.5 and is based on the concept of a
. . 9 v
normal free; two choices of potentially complete sets - LJ and [ ;j-
are considered. In this chapter we shall aim at developing criteria which
ensure the existence of a unique solution of a nonlinear RLC network.
Recenily, a considerable attention has been paid to the problem of
the reduced state variable formulation for nonlinear .RLC networks. i'he idea
is to reduce the order of the normal form differential equations which have
to be integrated and in such a way the time necessary for thecomputation

of the network response may be shortened. We shall discuss the reduced state

variable formulation at the end of this chapter.

6.2  THE EXISTENCE OF A UNIQUE NETWORK SOLUTION

q vy -
In" the study of RLC network we shall consider |~|and | =¥ as a poten-
b4 i '
tially complete set in order to be able to use the criteria” developed in Section

5.3. A number of workers have studied the problem of the state equations for

nonlinear RLC networks, Some of them]_é investigated nonlinear RLC networks

A
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containing two-terminal elements only. thers7_9 placed severe restrictions
upon the positioning of network elements which are not locally passive;

- namely, it is assumed for resistive elements that a normal tree exists such
that (i) each voltage-controlled port of a. resistive element forms a link and,
the fundamental loop formed with respect to this link contains independent {
voltage sources and/or capacitive elements only and (ii) each current-
,confrolled port of a resisfive.element forms a tree-branch qnd the fuﬁdamenfc:'l
cut=set defined By this tree-branch contains independent current sources and/dr
inductive elements only. Applying the results of Chapter 5 to the study of
RLC networks we shall be able to remove the restrictions. of this kind for a

large class of -nonlinear networks containing locally active and/or nonrecipro-

cal elements.

6.2.1  Nonlinear RLC networks without dependent sources

The first result conc‘erning'rhe exfsfence of a ;.mique solution will be
stated in the mathematical form and Corollary 3.1 will be applied to the
(C), (L) and (R) equations. It is interesting to observe that Theorem 6.1
gives certain condifion§ which ensure not only the uniqueness of the network
solution but the.exwfence of a umque value of_c, currents through all

COPOCIflve elements, GNd A volfages across all inductive elemenfs, in a

' network.

Theorem 6.1
Given an RLC (possibly time-varying)network ¥ with the normal

. distribution of independent sources, a normal tree TN and the implicit
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description of RLC elements in the form of eqns. (2.65a) ~ (2.65c), if the
following conditions are satisfied:

(i) the functions —fR(i{b'ie Yo, ,y_a,t), -EL (12~ 'if ,J_ﬁa‘_,if ,t) and
© )

_fc(xo( Y 19y ,ﬂd.,f) are of class C t and of class C' ' in all the

remaining independent variables,

(ii) the Jacobian matrices QER/b(ip,_iE ¥l ), E)_fL/ o (—I('f'"l'f ’
‘ZJ‘ '-'ff ) and a_fC/D(!a‘ 'Y r9a ;ﬂd')’ associated with the functions -f-R()'
_fL(') and _fc() respectively, are bounded for all values of independent

variables,
(iti) the Jacobian det JC, det JL' det JR associated with the (C),
(L) and (R) equations (eqns. (2.68a) - (2.68c))respectively satisfy fhe.Following

inequalities for all values of the‘correspondihg independent variables:

C Fe O o 1
det Jo=det | 0 0 1 Fgl|>e >0 ()
o e A A
| 9V, OYs 04, 9 |
1
|
| 0 k
| Feg 0 T | )
det JL=det 0 0 | ‘ _F(T'f >'C'2 >0  (6.2)

of o f of of;
Latz‘ aJ_pf alf alf J
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[ 7
] Fﬁ& 0 0 |
. T .
det JR =det | O 0 | 'F{%E >63 >0 (6.3)
of O % ok
D!_(b‘ ax_e B_i_e a_i_ﬂ |

(iv) all independent sources are continuous functions of t. =

» 9
Then, (a) [y] is the complete set

(b) the normal form équation (2.73) written in terms of the complete
sef["} , exists and it possesses a unique solution for all + and all initial
conditions.

“If conditions (ii) and (iv) are replaced by conditions (v) and (vi)
respectively,

in all independent

(v) _fR(-), _fL(') and _fc(-) are of clc.:ss
variables, |
_(V.I) all independent sour.ces are: éontinuously di_Fferénfiable functions
of t, |
then, in addition, ies currents through all capﬁciﬁve branches, and L
voltages across all inductive branches o% the network ¥~ are uniquely determi-

ned for all t.

Proof

From conditions (i) and (ii) it follows that the Jacobian mdtrices JC,
JL and JR associated with the eqns. (C), (L) and (R) are continuous and bounded;
, ,> 0 dnddetJR> £4> 0.
Thus all conditions of Corollary 3.1 are fulfilled and the equations (C), (L)

by condition (iii) det JC >gy > 0, det J > ¢
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and (R) possess unique solutions for all values of vector [-q- , and all values
of independent sources; moreover by Corollary 3.1 and condition (iv) the
solutions of the (C), '(L) and (R) equations are continuous functions of t and
they have bounded partial derivc;fives with respect to ¢ and ¥  for all
(9, Y, t). Therefore all conditions of Theorem 1 of Ref. 7 are fulfilled and
the differential equation (2.73) possesses Uniéue solutions for all t and all
initial conditions; these solutions may be continued indefinitely forward and
backward in time, i. e. solutions with "finite escape time" are ruled out.
When conditions (v) and (vi) are satfisfied, clearly, & ,

oL

E)_fc/c) t, j‘f , a_FL/af are defined in eqns. (2.74) for all t. Since by

f

' i
®, see ' . - - = —q - .
condition ('ul_) JC und JL are both nonsingular, Ic LJ is c!efermmed from |
eqn. (2.74a) and v = [131 is defined from evqn. ( 2.74b). . r

~f . (@. E D.

Although Theorem 6.1 admits a véry general class of nonlinear RLC
networks it is stated in an not easily applicable - mathematical -‘form. From
.fhe point of view of the network ﬂ‘1eoris'.f, it is desirable to express constraints
;m the existence of the network response in terms of the classes of network
elements and the network f'opology. Using the results of Chapter 5 we arrive

at the next two theorems.

Theorem 6.2
An RLC network containing (i) resistive, inductive and capacitive

PDNEs and (ii) independent sources which are continuous functions of time and
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are normally distributed is always determinate regardless of the topological
it . . . s
structure. The set is the state vector in and given any initial state

¥

the network solution is uniquely determined in the future for all t.

Proof

q
Let us show that [

4

J forms the complete set in N . The (R)

equations can be written in the form similar to eqn. (2.37)

ARy (.i_(y.‘ie)'*'F(&e Ve =.e_(3(f)' (53 Ay
T ' T (6'4) .
Foe Tptie (pove) =1 (1) +Fliy
where the resistive elements in ¥ are characterized by the hybrid description
(2.36). From Theorem 5.9 it follows that eqn. (6.4) has a unique solution
. | E . WE T, »
ip =ip(epl) -Fag vy, (FFpeiy)

: (6.5)
Ve= Ve le o) Fagy s e 0+ Fpelip)

i1 [ept) - Fagve .
and | =P| is a GQLF of [ . Therefore the Jacobian matrix,
Yei

v ie® - Fa‘ﬁT iy

associated with. the solution of the (R) equﬁfions,
Dlip¥e )/ 3 (ealh) = Fog vgde O Fpeip)

is v. p. d, “and bounded.

Since the capacitive and inductive elements are PDNEs, the following -

hybrid descriptions exist
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Vo S¥ala vy 6.6)

9 =g;(g“,xd-)

Lyt gy
.'_f =.'_)= (.'_f 'Zf)

6.7)
| i
L] ond [£4] & o caLr of |
ve lf ' -Z/c
. The (C) and (L) eqns; can be recast in the form

\J

-#] is a GQLF of

where [

Vola e )t Rs ve= e , :

I 6.8)
Fusay Ta5rvg) = g
P +F =
N Gpo2,) = 1.0) e
_ P (i =), ,
gf — Ty Spede! T L0
where analogously as in eqn. (6.4) - is a GQLF of €| and
a s
£ i |
D) is a GQLF of [;J] . Using the arguments of the proof of Theorem
—f : < § . ' ()
5.9 it follows that [ﬂq{] can be obtained from egn. (6.8) as a GQLF of [_e_q }
ig e | | g 12
and similarly[ ] can be obtained from egn. (6.9) as a GQLF of [T } ;
£y | Le(t)

hence the functions _i_ﬁ ' Ve -i-zf” Vi appearing in the normal form equation
(2.73), have bounded first partial derivatives with respect to g and ¥ are

continuous in t for all (g, ¥, t). Therefore all conditions of Theorem 1 of Ref.

' . [alto) t
7 are fulfilled and given any initial state [Z(::))] the state [ 9}((:)] is deter-

. mined uniquely in the futuré for all t.

Q. E. D.
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Bryant showed that an RLC network containing linear positive two-

: ' v
terminal RLC elements is always determinate with ,:l_{] as the state vector.
-7

Theorem 6.2 may be viewed as a fairly general extention of Bryant’s result fo
nonlinear RLC networks containing multiterminal (and possibly nonreciprocal)
network elements. At the same time it is a generalization of Stern’s result
concerning RLC networks of quasilinear elements to the nonreciprocal case.
An RLC network " which satisfies the conditions imposed in Theorem

6.2 has the following additional properties which are worth mentioning:

| v
(i) the vector [

] represents the complete set,
i

(i1) if independent sources in W are differentiable functions of t,.

the normal form equation (2.87) exists, i. e. its r. h. s. is a continuous

\" v .
function of [ “JJ for all [_{} and
<7 =7

(iit) ic, representing the currents ‘.through all capacifive branches, and
v representing the voltages across all inductive elements, are uniquely determined
if in addition independent sources in A are continuously differentiable functions
of t.

These properties can be shown in the following manner. Since the

1 -

capacitive and inductive elements in & are PDNEs, the hybrid descriptions

given in egns. (2.76)‘0nd (2.77) exist and. g~ and are defined explicifly‘

¢ and ¥

Y .
in terms of = (eqns. (2.79) and (.2.80)). From eqn. (6.5) _i_@~ and v
i v v :
are uniquely determined as functions of l J} and thus [‘J} represents
i i
the complete set. _ -7 =7

In order to show that the normal from equation (2.87) exists we havel

to prove that the functions M-.'f' -]Ka,. and Mg -]K( , appearing in eqn.
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\4

(2.87), are continuous functions in [—

. . Analysing the expressions for
: .

KT and Ky which are given in eqn. (2.86) we conclude that Ka;. and
v ,

K¢ are continuous functions of ~d
i

becausg €4 (t) and -Lf (t) are con-f_inuously differentiable functions of t. M.?"

and are continuous functions of t .

is the Jacobian matrix of the function

|

PG )= [1 F 2, ({ -
A R ,
whichlis formed from ZL(-'-a" "I'f) (egn. (2.77)).» Since ZL(la"’lf
and [ ]Zl is of rank ba‘_, <£ (lr) is a GQLF of the vector i

F 5
2 of GQLFs and

] ip) | (6.10)

) is a GQLF

by Property

A

M =a<g/a(_;_r) ~ o 6an

1

is u. p. d. and bounded; Mf- is_ u. p. d. and bounded and thus- Mr_](ir')

is a continuous function of_ia,,. Similarly My is the Jacobian matrix of the function

= -F
Qlvy )= [-FWT I] gc([ Io«r] vy (612)

which is formed from SC(-Y-‘V’\-’-J) (eqgn. (2.76) an.d

C Mg =3Q/9(vy) . (6.13)

is u. p. d. and bounded; MJ_] is u. p. d. and bounded and fhbs it is conti-

. a4
nuous in v o . Therefore we may conclude that the functions M Kf and

1

v R,
Kg are continuous in [ : }For ‘all [7;] and thus the normal form
I -

equation (2.87) exists. The existence ofic and v, can be deduced from

Mg~

n
eqns. (2.81) and (2.82) .

However, there is another interesting point concerning RLC networks

containing PDNEs only. The normal form equation (2.87) does not necessarily
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fulfil the Lipschitz condition. This can be demonstrated by the following example.
Consider an RC network, shown in Fig. 6.1, where the resistor R is linear and
positive and the capacitor C is a nonlinear PDNE and its incremental capacitance
Cis inen as:

Cylvg)=1+v, '3 A2 5 v 212
Cs vp) =1+ (/273 vy s 12

Cslvy)=1+ (123 | v < =12

For the network in Fig. 6.1 MA-] is equal to

-

-1 -1

My =g v = v B J/2 sv s l/2.

. . e -1 ‘
Differentiating M¢ ~ with respect to v~ we have

-2/3
s

M, Jdvg —— 7
+ve 77
‘and dM ¢ -]/dv‘;—-ao as_vs:-as 0. Thus the normal form equation (2.87) written |
for the network in Fig. 6.1 does not fulfil :the Lipschitz condition.
When an RLC network W contains network elements which are not (

PDNEs we can frequently use the results of Chapter 5 to test whether W s _
determinate. Since the (C) and (L) equations for the capacitive subnetwork !
JV‘{O', ﬁR'gL' 3.]9 and the inductive subnetwork \//{BE, BC,BR; Of are
analogous to the governing equations of resistive networks the criteria of Chapter

5 can be modified to be applicable for ‘the capacitive and inductive case. However*,.
for most networks of practical interest capacitive and inductive elements are

PDNEs or even linear posifive fwo-termiﬁal capacitive and inductive 'elemenfs;

for this class of networks the only problem is the uniqueness of solutions of

the resistive nefwork uf’R which is formed from W (i) by replacing all its
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capacitive elements by a set of independent voltage sources

EC and (ii) by
replacing all its inductive elements by a set of independent curfent sources
._JL. As mentioned before the hybrid equations of \/rR are the (R) équaﬁons. We

shall therefore state the following theorem for RLC networks where capacitive and

inductive elements are restricted to PDNEs for the sake of simplicity.

Theorem 6.3 '

Given an RLC network W if -

(i) capacitive and induc;five elements in V" are PDNEs,

(i1) independent sources are distributed nommally and they ‘are
continuous funéﬁor-ws of time t and

(i1i) the resistive network \/VR of W satisfies the conditions of one
of Theorems 5.10 = 5.12 or Corollary 5.4
then (a) V4 is detéfminate and its solutions are defined in .the future for
all t and
(b) [ﬂ] represents the state vector.

b4

Proof

Condition (iii) implies that the (R) eqns. have a unique solution

1
, V. are functions of class C(

described by eqn. (6.5); i ¢ + in ep Yy

@
i¢ '13‘" and have bounded partial derivatives with respect fo enrYg ,J'_& '—i(T .

Since, in addition, the capacitive subnetwork '/V{O-, ﬂR' BL' BJf

and inductive subnetwork J(‘[-EE, 3C'BR" 0} satisfy the conditions of
q

b4

Theorem 6.2, [ ] forms the complete set and the normal form equations

(2.73) exist. Using the arguments of the proof of Theorem 6.2 we conclude
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that the solutions of eqn. (2.73) are uniquely defined in the future for all t.

"Q. E. D.

Note, that the cohdific‘m (iii) of Theorem 6.3 can be replaced by the
following condition: (i) ‘A/R is single valued and
G —i-(b 'Y given in eqn. (6.5) satisfy the Lipschitz
- condition with respect to 9_(3 Y4 ’-i-a ,ia,_. Thus, in the study of the existence
of a unique network response of nonlinear RLC networks we may combine the properties
of interconnections of resistive networks, described in Section 5.2, together with the
results of Section 5.3. This method, although not systematic, could often be

’

successfully applied.

6.2.2 Nonlinear RLC networks containing dependent sources

The problem of the state variable description of nonlinear RLC networks
containing dependent sources is more gener§| and more difficult than the state
variable ch‘aracferizoti§n of nonlinear RLC networks without dependent sources. The
difficulty present in the state variable formulation of nonlinear RLC networks con-
‘taining dependent sources may be explained as follows. When [ ~ 1 is selected
as a pofenﬁall.y complete set then in.the case of networks without dependent
sources the set of the (C), (L) and (R) equat‘ions has the property that the (C)
equations represent an independent set of equations which can be solved
separately; similarly the (L) equations form an. independent set of equations. The
r. h. s. of the (R) equations depends upon 0 “and _l'_a,,, which are fhé solutions
of the (C) and (L) equations respectively. Thus, speaking in physical terms, the  °

analysis of an RLC network without dependent sources is reduced to the analysis
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of its capacitive, inductive and resistive subnetworks. However, if controlled
sources are present and {_] is chosen as a potentially complete set ‘then,
in general, the (R), (L) and (C) equations have to be considered together as
one set of 2(bR+bL+bC) equafions. For example, if there is a controlled

is a

voltage source E(xR) and a controlled current cource J(xR), where X

voltage or current associated with a resistive branch, and E(x lies .in a loop

R
defined by a copccifivg link and J(xR) lies in a cut-set defined by an inducti~
ve tree-branch, then the (C) equations and the (L) equations become "coupled"
té the (R) equations and these two sefs of equations are not independent any
more. The analysis of sets of 2(bR+bL+bC) equations becomes complicated
and for nonlinear RLVC networks with depedent sources it is more difficult to
find fopologi‘c_c':ll conditions which er‘lsure the determinateness of a given
network than fo.r nonlinear RLC networks without depedent sources.

| Nevertheless, conditions obtained for RLC networks without dependent
sources can be applied to RLC networks with dependent sources provided the
positioning of dependent sources is restricted in §uch a manner that the inde—.
pendence of the (C) and (L) equations is ‘preserve—dlo'”. Networks containing
RLC coupled elements and dependent sources will be considered in this section.
It will be shown that Katzenelson’s resulfs” obtained for nonlinear RLC
networks containing two-terminal elements and dependent sources can be

L)

extended to RLC networks containing coupled elements and dependent sources.

3,10,12

It is reasonable to assume that dependent sources are not

controlled by capacitive currents, —;C’ and inductive voltages, v, . Furthermore,

A

the set of all voltage sources BE is partitioned into three disjoint subsets

BEI’ BE2' '3E3 and similarly the set of all current sources BJ is pa'rhnoned
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J'll 3.]2, -5.13 as fO”OWS*:

into three disjoint subsets B
'DE] ( .EJ]): the set of independent voltage (current) sources
3E2 (BJz): the set of dependent voltage (current) sources

which are controlled by the branches of the sefs -BC' BL and 3E] only
3E3 ( BJ3): the set of dependent voltage (current) sources which

are controlled by the branches of the sets ﬁC’ EL’ 5E1 and 2E2' |

The following theorem gives sufficient conditions for a nonlinear RLC network

containing dependent sources to be determinate.

Theorem 6.4

Let VI be a nonlinear RLC network containing independent and dependent
sources where all sources are norﬁally ::{isrributed. The network is determinate if "
the Following conditions hold:

(i) the network ™ derived from ¥ by replacing each depeqdenf
source by an independent one satisfies tﬁé conditions of one of Theorems

6.1 = 6.3,

(ii) with krespect to a normal tree TN of \/Vdependenf sources satisfy

the following: )

(a) the fundamental cut-set defined by any tree branch of the
set ﬁE2 contains no capacitors and the fundamental cut-set defined by any
tree-branch of the set B _. contains inducfors c;\d current sources‘only,

E3
(b) the fundamental loop defined by any link of the set .3_12

*
This method of partitioning is very similar to the partitioning of sources

used in Ref. 11.
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contains no inductors and the fundamental loop defined by any link of the set

BJS contains capacitors and voltage sources only,

. (ifi) the dependent sources E2’ i2’ 53, i3 are functions of class

with respect to the controlling varicbles, they have bounded first partial

"0

derivatives with respect to the controlling varicbles and are continuous functions of

t; the independent sources E] and i] are continuous functions of .-

Proof

Since the sources are nomally distributed a normal tree Ty exists

such that all voltage sources lie in T, and all current sources form the links

N

with respect to TN. We can now consider that the vectors €y 5y 'ig'-j-f

appeoring on the r. h. s. of the (C), (L) and (R) equations and 2'.3“ ie¢v
-a;;pedring in the normal form eguaﬁons(2.73), represent the effect of the
_independent as well as dependent sources. Using the topological condition
(a) it is easy to see that e depends upon the independent voltage sources

' E'l only and e o dependes upon sources E_] and E,. From the con&iﬁon (b)
it follows that -Lf depends upon the independent current sources i] and j . -
depehds upon sources i] and i2. However, the4ve.cfor e may depend upon
E,. 52 and EB and similarly the vector g may depend upon i], ;1_2 and i3.

Therefore €, 7 epr Sf’ id’ ; ie and J‘f can be expressg& in the form

S ~ Su (E-]) 'Lf' =J.j. (i])
= e, E/E) - ie =1 Uyedy) (6.14)

Eaau = 3{@]"52'53) ié‘ = i; (i] 'iz’is)

[, W——
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Since only the independent sources appear in e, and _i.f , the (C)

and (L) equations do not change if controlled sources satisfying the conditions (a)

and (b) are introduced in- ,V{.B B } 7 by condition (i) the (C)

8 . B
E2" E3" J2" T U3 i
. _ N : .
and (L) equations possess a unique solution l:"c} and [—L} respectively, When
ol Lc 2
this solution is substituted into the expressions for E2 and J2, these two sets

of conirolled sources are defined and thus the r. h. s. of the (R) equations is

v

determined. By condition (i) the (R) equations have a unique solution [_R] . If
' i

the values for Yer ¢ —iL’ _)fL, Y _IR are substituted into the expressions

for 53 and i3, Ef and -i-d' are defined and the r. h. s. of the normal form

equation (2.73) is determined. Since the differential equation (2.73) satisfies

the Lipschitz condition, N is determinate.

6.3 REDUCED STATE VARIABLE FORMULATION

Let us assume that an RLC network possesses the normal form characteri=
zation

)'i :i( ’f) . (6.]5)

where x is the state vector containing n components. From the viewpoint of
practical computation, however, it is mucAh desirable for a set of differential
equations, which has to be integrated, to have lower order than n if the same
solution can be obtained. Such a set of lower order differential equations can
indeed be obtained provided the function _f(i,f) has c;ertcin‘properﬁes to be

specified in the sequel.

[
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Partition vectors x and f conformably as follows

X A .
= . . f= (6.16)
B -3 I 5

{

w_here Xy i] are m-vectors and X _F2 are (n-m)-vectors. Then eqn. (6.15)'

can be written in the partitioned form

Xy =,_F_](§] ,52,1“) ‘ ' o L {6.17)
Xo = folkqx50t) | | (6.18)
If the function f, does not depend upon x, and Xor 1. e
xy = £ | e
ﬁz(f) is obtained directly by fhé integration of eqn. (6.19) and
f -
o0 = x,0 + [  62)
o .

where ﬁZ(O) is the initial value. In generdal this integration is simple and would

not require much computing time; frequently even analytic expressions available
t . .

for fiz(f)df. When the function 52(1“) is substituted into eqn. (6.17) we have

the 90|Iowing normal form equations

)i-l =i-|(>i~l l)iz(f)lf) T ' (6.21)

and eqn. (6.21) represents the reduced state variable Formqlaﬁo.nm. It is now
necessary to integrate the set of m first order differential equations. Thus, when
f is"of a special form, such that 5 depends upon t only, we can e)épect
that less computer time is required to integrate the normal form equations (6.21)

of order m than the original state equations (6.15) of order n. However, it is
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worth pointing out that Xy is not the state vector and eqn. (6.21) is not
the state equation; 52(0) has to be specified together with X3 ©) to defermine‘.
the network solution uniquely.

It turns out that the reduced state variable formulation is possible for
nonlinear networks containing capacitor and current~source-only cut=sets
and/or inductors and voltage-source~only loops. The problem of the reduced
state variable formulation for nonlinear RLC networks was considered by Ohtsuki
and Wafanabe9 and in more generality by CahillM. Namely, in Ref. 9 it was assumed
that there was no cut-set containing capacitors and current sources only and no loop
of inductors and vol tage sources only, but capacitor-only-cut-sets and inductor-

4

only=loops were allowed. It is interesting to observe that in both papers the
binirial value for the vector X, In our notation was taken 52(0) =0 and
vector Xy was termed the state vector.

_The reduced state variable formulation of an RLC network K ois easily
‘ where all voltage sources

L

plus as many inductors as possible are branches of TL and all current sources plus

. : 9
derived using the concept of the L-normal tree” T

as many capacitors as possible are links of TL. For a given RLC network o vectors

x; and x, appeaﬁng in eqn. (6.21) can be obtained in the following manner ’

First the normal tree TN (termed C-normal tree in».Ref. 9) is selected in A,
Then a particular L=normal tree TL is chosen9 such that all inductive tree-branches
of TN are tree-branches of TL and all capacitive links of T-N are links of TL.

With respect to T,, and T

all capacitive branches in W can be partitioned into

N

three disjoint subsets:

L

Se @ the capacitive links of TN

Sy x capacitive branches forming tree-branches in TN and
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capacitive links in T

L
SJ' o} the capacitive tree-branches both in TN and T[.' Similarly, all
inductive branches in W can be partitioned with respect to T,, and T, into the

N L

following three disjoint subsets:

‘ST]: the inductive branches forming links of TN and tree-branches

of T

N and TL

Sf : the inductive tree-branches in TN.

53.,2: the inductive links both of T

Denote by b, , bd- 17 bcf2' by], bfZ’ bi the number of branches
in S, . S Iy S¢ 97 5(7.~ > 5(7,‘ 9 and Sf reSpecﬁvely. Then9 bf is equal
to the number of independent inductor and current sources only cut-sets FL'bz"Z
is equal to the number of independent inductor and voltage sources only loops
‘uL' b(,,2 is equal to the number of independent capacitor and current sources
only cut-sets f and‘ by s eqﬁal to the number of independent capacitor and
voltage sources only loops fc in A,

Kirchhoff’s current law based on fhe.. fundamental cut-sets through capa-‘

citive branches Sd'2 iﬁ TLlcan be written in the form

[V Agr AJ[ dg]= LW (6.22)
a¢q
| 9]

where Ad’]' A, . are the submatrices in the fundamental cut-set matrix
. ~ - .* - - -
determined with respect fo TL c.nd iy, 1 an bd'2 vector, the k-th

component of which is the algebraic sum of source currents which appear in

{

)

|
the k-th fundamental cut-set through . Sd'2 in TL. Integrating eqn. (6.22) and

introducing the variable 3**(1‘) we have i
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t .
ﬂ**<f)=ﬂdz+AJlﬂd] +A0[3_°( = ﬁ*dr.z(f) df‘*‘ﬂ** (O)

0 .
(6.23)

Where g**(0) is the constant of~infegra’rion; It follows from egn. (6.23) th_a’r q**(t)

is a known function pf time t.

Dually, Kirchhoff’s voltage law based on the fundamental loops of

inductive links sz in TL can be expressed in the form
I A A o ] = et 5.
[ A M) fee| =g 62
21
| 7 .

where AT]' Af are the submatiices in the fundamental loop matrix determined
. _ * . - - H
with respect to TL and e ?.2 is an b¢2 vector, the k-th <‘:omponen’r of which
is the algebraic sum of sources voltages which appear in the k-th fundamental
loop of 59,_2 in TL. Integrating eqn. (6.24) and introducing the variable Y**(t) .
we have .
_ ¥
* % = + o+ = * G R
PLH*(t) gak?_ AZ‘]Z(TI Af;_oi \0/-38"2“)‘“ 2**(0)
(6.25)

b

where ¢**(0) is the constant of integration and p**(t) is defined by eqgn.
(6.25) for any. value of t. Note, that q** is the vector of cut-set charges .
and Z_*’; is the veétor of loop flux-linkages determined with respect to TL.
According to the partitioning of sets Sp =S ¢ U Sy, ond
Sa,. = S'(]“'l v Szv2, Fye and F?f , representing the submafi‘iceg of the
fundamental loop matrix wh‘ich is determined with respect to TN' can be

partitioned as follows:
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Fold' = [Fucf'l Fq ) 2] (6.260)

Fog = |F

g 1

a [ Fff f } (6.26b)
- T2

: 9 v
Potentially complete sets {;} and [Iﬂ contain (b_C+bL-b°< -bf ) compo-

nents. In order to derive the reduced state variable formulation of an RLC

network the following set is selected as a possible state vector

- gt ]
z*
x = '9-** (6.27)
{ f.*‘kJ
where | g* = .5-61 - FLJ]Q. _ (6.28a)
$* = ‘20\1 + F(f‘lf fo (6.28b)

and g** and y** are given by egns. (6.23) and (6.25) respectively. Thus a potenti-

ally complete set x contains:

(i). cut=set charges g* which are based on the fundamental cut-sets
through bfanches of Sd.']' and where the fundamental cut-sets are determined

with respect to TN’

(i1) loop flux-linkages ¥* which are based on the fundamental loops
formed by branches of Sa"l" and where the fundamental loops are determined

with respect to TN’

(ifi) cut-set charges g** determined with respect to all capacitive

tree~branches in TL
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(iv) loop flux-linkages ¥** determined with respect to all inductive

Iipks in TL.
Note, that all components of the vectors g* and ¢* are contained in the

vector
T
a 9¢ ~Fud 9¢

Because g**(t) and »**(t) can be calculated in advance from eqns.

(5.28) and (6.25) we can consider that the vector x

X5 appearing in eqn.

6.21) is . | .

%5 =7 . (6.29)

In order fo obtain the reduced state variable formulation it is necessary to
express all network variables in terms of the vector x given in eqn. (6.27)

and then calculate
q*

X1 = g

P
g**, #** and t. Combining Kirchhoff’s laws given

in terms of g%, ¢*,
in eqns. (2.63), the implicit description of network elements given in egns.
(2.65) and (2.66), eqns. (6.23), (6.25), (6.28a) and (6.28b) and suitably
partitioning the submatrices Fii appearing in eqns. (2.63), the following set i
of (C*), .(L*) and (R*) equations which correspond to the (C), (L) and (R) "

equations is obtained

T _
¢1 ~ Fo(d']ﬂoc =g~

G tAs1907 F Axde =8 (€ (6.300)

Yo T Fo(J].!d‘] + Fo:d'zlcfz = &

el a1y gy Qa8 g 1:8g21 = 2

[e g
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EptFpgty =2 *

Aa‘l-b-pa‘l + fﬁ + Aﬁy_f = gH* (L) ° (6.30b)
Tl - Fpapigatis =

FLG‘J” '_ile_ijc 'Loaq 'J_’fz'j_pf 1) =0

Yp ~ Fﬁed\ig “Ep " Fag Yo |

Fhe lgtle =i Fpely RS (6.300)

fR(l{b dpr¥ede A) =0

Note, that the (R*) eqns. are identical to the R) egns. Once {C*), (L*) and (R*)
eqns. are solved _i,J.(g*,g**), v lat g™ i, (g*, 7°*,q%,q") ond v (g%, 5,

é*, **) are obtained; differentiating .eqns. (6.28a) and (6.28b) with respecto to t

and using eqns. (2.64a) and (2.64b) we finally get the reduced state variable fqr{nu-'

Icﬁon" g e T o T o [
T =1la1*Fpoipt Frgily

o = : (6.31)
N2 *'FD'-NXJ 'Fg-ls Ye +ib“‘ -

Note that the normal form equations (6.31) are of order
d = (bcth by by by, )

which corresponds to the order of state equations as defined in Ref. 9. The redu-

ced state variable formulation is useful when (b 3’*2+bd' 2) is appreciable compa-

red to the number of components of the state vector {q—] .

7

6.4 SUMMARY

In this chapter the existence of a unique network response has been
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considered for a large class of nonlinear RLC networks containing coupled
(and possibly locally active and/or nonreciprocal) elements. The results have
been extended to a class oF_ RLC networks coﬁfcining dependent sources. .
Finally, the reduced state variable formulation has been discussed for a

very broad class of nonlinear RLC networks.
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Chapter 7

CONCLUSIONS

7.1 GENERAL CONCLUSIONS

In this thesis, the formulation of the state equations for nonlinear
RLC networks containing coupled elements has been considered from the point
of view of analysis. The aim of. the research has been to develop the criteria
for the existence of a unique network response ‘requiring only the knowledge
of the network topology and the disfribuﬁoﬁ of network element types. A
particular emphasis has been given to the study of nonlinear networks containing
coupled locally active and nonreciprocal elements.

Since fhe crucial problem in the state variable formulation of non-
linear RLC networks is the existence of a unique inverse function of certain
vector=valued functions the problem of functional inversion wds considered in
a great detail. Palais’ theorem gives necessary and sufficient conditions for the
existence~of the global inverse of_conﬂhuousl)‘/ differentiable vector-valued
functions. Unfortunately, it is not easy to apply Palais’ theorem in nonlinear

{
network problems. An easily applicable criterion ensuring global invertibility

S o

of a large class of vector-valued functions and based on the Jacobian of a
given vector~valued function was proposed. This criterion was then used to

establish global regularity of few classes of vector-valued functions, important
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in nonlinear network theory, in a very simple manner. The concept of a genera-
lized qua;ilinear function possessing bounded and possibly nonsymmetric u. p. d.
Jacobian matrix and leading to the'concepf of a positive definite network element
was introduced.

It was assumed that network elements are characterized by the hybrid
descriptions. The problem of transformations from one hybrid description into
another was examined. The concept of a positive network element possessing all
possible hybrid descriptions was introduced. It was shown that positive network
elements, which may be locally active, represent a very good model for many
practical active /devices such as fransistors and vacuum triodes. One of the
significant properties of positive network elements is that they can be locally
active only if they are nonreciprocal and another is that all possible hybrid
matrices of a positive network element belong to the bounded matrices of class UP.

Positive definite nefwork elements, representing an extention of the
concept of quasilinear elements to the nonréciprocal case and forming the most
general passive counterpart of a one-to-one two terminal element, were introdu-
ced. These elements, representing a subclass of positive network elements, are‘
strongly locally passive and all possible hybrid matrices of a posi-five definite
network element are u. p. d. Series-parallel interconnections of network f
~ elements were studied and sufficient cc.;ndifiohs were stated ensuring that the
series-parallel interconnection of two network elements results either in a posi’r%ve
or positive definite network element. It was shown that the cascade interconnection
of two two-port positive network elemenfs results in a positive network element.

The results obtained for interconnections of network elements have- useful applica-

tions in the dc analysis of transistor networks.

L
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Since the analysis of resistive, capacitive and inductive networks plays
an imporant role in the analysis of RLC networks, the problem of the existence
of a unique solution for one-element-kind networks was thoroughly studied. Seve-
ral theorems regarding the conditions for the existence of unique solutions of
resistive networks which contain different classes of elements have been presented.
It was shown that a resistive network with the normal distribution of independent
sources and confaining positive définife resistors only possesses a unique solution
regardless of the network topology. The applicability of the results obtained in
- the study of one-element-kind networks was illustrated on a number of examples
of transistor networks.

Bryant’s mefhod of writing Kirchhoff’s laws has been adopted. A potenti-
ally complete set of network variables was selected on the basis of a normal tree.
Several criteria concerﬁing the existence of a determinate response of nonlinecr'
RLC networks and based on the network topology have been derived. It was shown
that these criterial are applicable for a class of nonlinear RLC networks with
dependent sources provided dependent sources scfiisfy certain topological restricti-
ons. The problem of the reduced state variable formulation was considered for a
general class of nonlinear RLC networks.

The work carried out in this thesis has led to better understanding of
-resistive as well as RLC networks confainfng nonlinear locally active elements and
the network theoretic results obtained have justified the infroduction of.posiﬁve

and positive definite network elements.
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7.2 FUTURE RESEARCH

A number of points in this work could be extended for future research.

(@) Theorem 5.3 in Chapter 5 is concerned with ir.mterconnecﬁons
of a three~terminal resistive element representing a positive network element in
all 3 orientations and a two-terminal voltage (or current) controlled resistor with
a monotonic characteristic. It is conjectured lef the result of Theorem 5.3
‘ccn be extended to (n+1)-terminal resistive elements which are positive network

elements in all (n+1) different orientations.

(b) Algorithms for dc analysis of nonlinear resistive networks are usually

restricted to networks containing quasilinear elements only. For the purpose of
the state-variable analysis of nonlinear RLC networks it appears to be useful to
develop efficient algorithms for dc analysis of resistive networks allowing

different types of network elements.

(c) Several topological criteria for the existence of a unique
solution for one-element-kind and RLC networks have been presented in this
thesis. By combining the results concerning the properties of interconnections
of network elements and the topological criteria a very large class of nonlinear
networks can be tested by inspection regcrding a unique network solution.
However, it appears to be useful ‘fo develop a systematic method for }checking

uniqueness of nefwork solution using computer.

(d) In this thesis it was proved that an RLC network containing
positive definite elements is always determinate regardless of the network topo-
logy. It may be useful to introduce the class of positive definite RLC n-port

networks possessing the property that an arbitrary interconnection of the networks

Op—
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of this class results in a determinate RLC network.

(e) The author has not succeeded in proving Theorem 3.2 uﬁing
Palais’ theorem. It should be possible to prove that the conditions of Theorem
3.2 imply the radial unboundedness of a function f(x). This could lead to a

simpler proof of Theorem 3.2 than the proof reported in this thesis.

(f) Study of stability of nonlinear RLC networks containing positive

network elements could be of a great interest.
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