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GENERAL INTRODUCTION AND ABSTRACT

Part One of this thesis is concemed solely with the
"strong" interaction of hadrons. The concept of '"resonance"
dominates the descriptions of all such processes. Though it
is debateable whether or not one can give the status of
"elementary particle" to a resonance, the resonances certainly
have sufficient identity to be detected as final or intermediary
states of different reactions. A dynamical resonance model
(originated by Veneziano) is used to describe antiproton-neutron

annihilation at rest into three pilons.

Part Two looks into recent ideas on gravitational effects
in elementary particle physics. It has often been thought that
the gravitational interaction is too weak to be of any consequence
in the subnuclecar world. However, it is now believed that gravity
is capable of causing a natural renormalization of infinite
quantities in field theory. It is shown how gravity-modified
hadron electrodynamics gives a finite and experimentally testable

value for the T7TT —T7T° mass difference.
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INTRODUCTION TO PART ONE

A dynamical model for strong interactions, based on one
originally suggested by Venezianol, is applied in the |“Fq+é1-‘73TT
decay channel., This enables the basic structure of this type of
model to be directly confronted with experimental data, leading
to insight into the phenomenological nature of both the theoretical
model and the observed production of pions and their resonances.
fndeed, one of the first successes of Vencziano's model was its
application by Lovelace2 to antiproton-neutron annihilation at
rest into three pions3. Doubts over the accuracy of this prediction
have led to alternative prescriptions for describing this process,
either within the Veneziano formalism or even by turning back to
non-Veneziano sums of resonances. A detailed investigation of the
relationship~between this experiment and the various Veneziano
prescriptions for it is carried out - including a new and more
accurate determination of the form of the relevant four-point
amplitude. Essential parameters are found by fitting the two-
dimensional surface of the Dalitz plot distribution directly. A
phenomenological interpretation is given - i.e. a description is

made in terms of pion resonances, which are directly or indirectly

observed in other processes.
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The Veneziano model has had success in being able to
correlate different particle reactions with few arbitrary paramecters.
Such "global'" predictions have not beenh very accurate, howaver.4
It has been hard to obtain really close agreement in any one particular
process because of the difficulties in implementing unitarity and
unambiguously fixing the coefficients of so-called "“secondary"
Veneziano terms. The accurate investigation of the low-energy Fn-; 3T

is thus especially relevant to these problems.

’

Section 2 outlines the features of the experimental data
on‘Fn—q 37, stressing the inconclusive results of Breit-Wigner
parameterizations. Section 3 is a brief statement of the kinematical
notation required for the description of the various PUFGT:1 channels,
and a brief derivation of some of the relations between the different
isospin amplitudes. These relations are important in choosing the
manner in which the Venezlano ansatz is introduced, and also in
evaluating its predictlive power. Sectlon 4 introduces the concepts
encountered in the Venezlano formalism and its extensions. Section S
firstly reviews the earlier Veneziano model descriptions of pn-» 317,
showing their detailed structure in a two-dimensional Dalitz plot
representation. Use of a technique for fitting directly to the Dalitz
plot surface, thus using all avallable information, shows a secondary
term structure contrary to earlier analyses, Agreement with data is

obtained using far fewer parameters than the phase-shift approaches.



Section 6 gives an account of the paftial—wave structure of the
amplitude so constructed.6 The major items of significance are

recalled in Section 7.

10
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EXPERIMENTAL AND PHENOMENOLOGICAL FEATURES OF pn—» 3T,

In the experimental Dalitz plot3 (Figures 1, 2) the out-
standing structural features are the central absence of events and
the strong enhancements near the s-axls. Such features have
their origins in the dynamics of the process since the kinematic
phase space is a constant aistribution over the arca of the Dalitz
plot. The details of the phase space are summarized in Figure 3.
Since thean system decays at rest in a 150 ., isospin T =1
skate it has the quantum numbers of a heavy pion; Mandelstam
variables 5,%u can be used, with s=(p"++Pﬂr}tkg(Pw++ﬁq;ygnd
w= (pm-+ b )"

One would expect to see bands across the Dalitz plot
corresponding to WU~ resonances, for example at s,k =MYI’ M—f-‘vmﬁl’
and no bands at U= constant, which would mean exotic T 1" resonances.
The expected band structure is drawn in Figure 43 though the
data is not inconsistent with this - for example, the major
enhancements correspond to some of the intersections of the bands -
band features are not clearly defined and an unambiguous resonance
interpretation is by no means immediate.

No satisfactory phenomenological explanation of the Fh
pion final state in terms of resonances has previously been given.
Attempts to fit the distribution using Breit-Wigner parameterizations
usually consider as candidate final-state resonances thosc particles

classifiable as Regge recurrences and their "daughters" (Figure 5).

o —— = e e = —

e g ——— i ot =t e

f e men
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Recurrences are particles whose spins and masses are approximately
linearly related - in pn—= 31T , for example, the f,'? and g
mesons (with spins 1, 2 and 3, respectively) lie on thejhf degenerate
trajectory:
@ (S) = 0.483 + 0.8855 — (2.1)

so that & (™M¢%) =1

X (me) =2

D((wnjt) =3
The daughters are those particles which have approximately the
same mass as a particle on the trajectory but lower spin values;
they will lie on lower trajectories parallel to the "leading" one.

It should be stressed that this is, for the purposes of this section,

only a classification - graced by hindsight. Thus one might expect

.the g,{- andjlnesons to be participants in this region of phase space

and also any of their daughters, though other possibilities are not
excluded. Thej-meson mass occurs close to the phase space boundary

so consideration of the gwfregion is usually stressed.

The Syracuse-Rome grOUp3 who carried out the experiment tried
fits with coherent sums of Breit-Wigner terms for the fg{,e and
an exoticT =2 resonance. Added background contributions were found
to be little help. Their results were inconclusive. The best fit
indicates that the g contribution is, surprisingly, consistent with
zero; also, the{ contribution is large, but presence of ather resonances

in theﬁ-region could not be ruled out.
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A more recent phase-shift analysis7 uses fourteen parameters to
effect a fit using more daughéers and no exotics. They agree with
the absence of ¢ , but support an S-wave ¢! particle in the § region -
indeed they indicate (but not conclusively) that the S-wave final
state resonances dominate. The hole in such formalisms is accounted
for by the cancellation of overlapping Breit-Wigner tails, though
no statistics are quoted for this.

To summarise the general attitude of the phenomenological
arialyses: there appears to be a "decoupling" of the higher spin
resonances, especially the.g, and a daughter contribution not easy

to handle using standard Breit-Wigner type parameterizations.
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3 KINEMATICS: SU(2) - SYMMETRIC AMPLITUDES FOR Nﬁﬁ?BTT PROCESSES
3-1 Following Shapiro's versic'm8 of the standard notation for

TP W scattering (see Figure 6) the S matrix is written:

s=1-1@mtst (Tl p)F. (3.1)
MICPA (g b u) = = ETRR (kW) (3.2)
lbw

where a,b,c and d are isospin components in a system of Cartesian

basis vectors and

s = (pa + pb)2
. 2
t = (pa + pc)
2
u = (pa + pd)
s+t +u=m 2 + m 2 +m 2 +m 2 (3.3)
a b c d

The physical particle states are

\Tt D = J—'z—( Im> + lT'—1>§

L — im
Ji‘( 2 lﬂ>> (3.4)

\lrey =\

1= -

The most general amplitude satisfying Bose statistics,.isospin

conservation and crossing symmetry is

MdCba (S,t,U) = A (S’t’U)Sah SCO{ + B (S,tyu) So\c S‘ad

+

C (s,tyu) §, Sio (3.5)
where A (s,t,u) = A (s,u,t) = B (t,s,u) = € (u,t,s).
If one works with the function defined as

A (t,u)= B (s,ty,u) + C (s,t,u) (3.6)
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which is symmetric in its two arguments, then it completely

.

determines the amplitude via
A s,t) =3[ AGE + Aluys ) ~ Afhu‘] (3.7)

The s-channel isospin -~ T amplitudes As are given in general

by 0
As = 3A (s,t,u) + B (s,t,u) + C (s,t,u)
As = B (s,t,u) - C (s,t,u)
A = B (s,t,u) + C (s,t,u) (3.8)

and so in terms of the s-channel T = 2 amplitude, which is

Ale,w) as defined in equation (3.6),

A‘; < .:3’__ [A(s,l:\-f- ﬂ(S.u)] -1 A (ku)

As' = ALY~ Alsn)
(3.9)

ASL = Aleun)

The Veneziano ansatz is usually written down for 4(&,@8’9
Though the most general form ofmhu\in terms of a possible symmetric
ansatz V(x,@ , having poles in x and y, is
A= ALY = g VIEuy+ £ [VIsn) « V(s.e\] (3.10)
one can use the condition that there be noTl resonances to set £=0.
Thus given a structure ofV from a dynamical Veneziano model, the
assumption of absence of exotics leads to the postulate that A(l:,u\'-’-‘-
SV(E,\A\.

In the decay channel X3 for a particle X having the
quantum numbers of a 7V meson, the matrix elements for the various

decays are picked out of the function Mof equation (3.5) as follows:
M= THTT,7)= Clwbs) + Blu, b g) = Als k)

where s = (PW*"" Pﬂ_'__y

k- (brr’r + Pﬂ'{\l
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M( X~ — T 11,7 ) = A (s,t,u)= E‘[A(“k)""q(l/‘\ sy -AlE, "‘\]
where s = (Pv‘,o + FW,LO)L
t= (P"'""‘ P*n-\L

M(Xoe T TT=T%) = A(s6,0) = 3 [A(s\k)+4(ws)"‘“-"“\]
where s = (pm+ + Prr'\l

. t= {Prﬁ* -+ P"-°Y‘
M(XO‘?W’”V’TO\ = A(S, e+ Bise,n)+ C.(S,E-,u.\
= L[AGE) + Als,w) + Alk,w) ]
where s = (Pn..la + Pﬂ'v.by-
€= (pm o+ pmo ) (3.11)
Hence the decay rates (proportional to the Dalitz plot densities)

for the different NN , channels are:

N A,

Q(?n—a -7 \

{1

R (pn— w12 1T°) L 1805, + Alsu) - Alk,u) |t

'T:_N [ AGE) + Als,u) + A(b,m\l-z

R(pp=mor 1i°)
ENJAGD + Alsul - Aleul”

R (pp- THm=Tr) o)

where N is the normalization constant.

This last paragraph will derive relationships between the total
decay rates of the processes in equation (3.12) resulting from the
various symmetries of the threce-pion final state. Especially useful

in later considerations will be the bounds on the ratio

P = Rtor (Frﬁ T+ T Te)

_ (3.13)
Ryor (Fn — Tt TT‘)
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given in equation (3.21). RTbT is obtained by integrating over the
available phase space, accounting for the symmetry of any identical
particles in the final state. The basic phase space is that for

a T+T-T° final state where s,t,u (subject to s + t + u =
Q4WN1+<%FP) take all values allowed by energy-momentum conservation
(see Figure 3); if there are two identical particles one must
divide the integral by two; 1if there are three one must divide by
six, corresponding to the six equivalent permutations of (s,t,u).

Thus one has immediately:

2 Roygr (pn—> T=T°1°) = Royor (Pp— mHar-me) (3.14)
‘with RTOT = j‘[) R(S,l:,u.) dsdk where D is the region of
Figure 3.

One may, obtain a second relation between these decay rates and
bounds on their ratios by exploiting the symmetry properties of the
amplitudes in the phase space integration, using a trick similar to
one used by Zemach in Reference 10.

Defining

F(s, k) = Als,t) + Alt,u) + A(s,u), (3.15)

which is totally symmetric in s,t, and u, then

(FX(5,6) Als ey dsalt = [ FA(5,6)A () dlsdle

= | EX (5,6) Alt,u) dsdlt
b (3.16)

The complex conjugates of the three integrals in equation (3.16)
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are also equal. The decay rates of equations (3.11) may be
re-written in the form below:in order that the total decay

rates simplify, i.e.

M=) = %F(s,k)—%[R(E\M)+A(S,M)—Zg(ful‘\-}
() = 4 e - § (2800 - A6 - Als]

M (womem®) = L (st

M (TtTTe) = M(p-Toqre) (3.17)

In evaluating the phase space integrals, the interference
between the symmetric and non-symmetric parts vanishes in
view of equalities (3.16) and

Ryot (- WHTTw ) =

D S 16 (s, )\ dsalte +S | Ak W)+ A, u)- 25,6 O‘Wﬂ

OTTD —

Rror (Fr—T
& 6[ (Fls,0) [Pdsat . 12A06 ) ~Als) AL ) sl |

Rror(Fpa3r®) = B [ IFG.E)™ dsole

the integrals of the non-symmetric parts in the first and second

(3.18)

equation of equations (3.18) above are the same, so

RTOT(FP‘V mrm=me) = 2 Rpor (pn —> TT=Tre TT°>
= 2 [Rror(‘f;'\'*m"‘"‘y— Rror (Pp— 3"'0\):! (3.19)

The ratio

R = Ryer (qun‘*-n-'rw) / RTOT(F“—V rrHT-n-—)

SD [F(s,6)] % dsolt

= 2 1 - - 2
- fIF{s,a]’dsde +{ |Ak) £ Al 1) =2 Al D diat |, o
D D .

In this form it can be seen that whatever model predicts Q(ﬁ,l’\,

%SR a0 (3.21)
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VENEZIANO THEORY

Veneziano1 presented a model amplitude which is a crossing-
symmetric sum of narrow resonances having the correct Regge behaviour
in all channels. These resonances all lie on parallel linear Regge
trajectories ®(s) - a condition strongly supported by the mass
spectrum of the observed resonances. The form of this model relies
on the asymptotic behaviour of the -~ function (Stirling's formula)
for its Regge limit and the pole structure of thel’ —function to
represent resonances. The basic Veneziano-style amplitude for
9, 8 a

FTT scattering (presented in 1968 by Shapiro and Yellin nd

also Lovelacez) is, with the kinematical notation of section 3,

KECAWEEY
Cll~ v — ) (4.1)

A(S'k) = 9.

where & = "o, +&'S (4.2)
In making this ansatz, absence of exotic resonances has been assumed,
as explained in section 3-2. Strictly speaking the properties of
the model are valid in the narrow resonance approximation (Im& =0 ),
which violates unitarity. For any comparison of this theory with
experiment the poles in s and t at integer values of ¥ and 0
must be shifted off the real axis. This point will be dealt with in
paragraph 4-5,

That the amplitude is "dual"11 - either in the sense of being
a sum of poles simultaneously in the s and t channels or in the
sensc of Regge—resonancekduality - may be seen from the expansion

of the beta function:
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(- Ns) (- Q’l—}
(—us — 0({)

) i ( «E‘*j) )-,M,

jeo )

B (- ,- “k\ =

(4.3)
The symmetry in s and t of the beta function demonstrates that

sum of poles may be in the s or t channel. Duality may be
schematically indicated using quark "duality diagrams", the one
appropriate to MW scattering being shown in Figure 7.

Using the limit
lim bea  M{2+a)

200 Clz+ b) (4.4)
then in the complex t plane, for any fixed value of arqg k

other than zero, it can be shown8 that for large t and fixed s

Sin Troe(s) Plels))

o
As —> ,3{11'

'
As —» Ty -+ e~ s} [.M(&T _] (5)
- =

Sin T ¢ (5) Pl (s))

A —> O (4.5)
Equation (4.5) shows that the isospin amplitudes, related to A-(S.l')

by equations (3.9) have the proper Regge behaviour.

The expansion of & as a sum of poles (equation (4.3)
shows that in any finite region of phase space,ﬁ can always be
approximated by a finite set of poles in that region. Attempts
to fit data by parameterizing a set of poles whose positions are
indicated by Regge trajectories may violate duality, crossing
symmetry or even Regge behaviour. For this reason, the discussions
here on 'ﬁn—fiv do not consider such models (for example Boguta

and POkorski/Thomas13) especially in view of the accuracy of the



21

full Veneziano formula described later in Section S.

The existence of daugbter particles occurs naturally
in this formalism. The residue at a pole when ub\:j is
a polynomial in t of order.{j . The residue is thus
expressible as a sum of Legendre polynomials Q(CDsﬁﬁ) with
(:WD,l.nJ and represents a series of resonances with the same
mass but with spins 4= O,], ... _j' .

As an example, consider the S=MS'l (v‘.e. D((M{"'\= 1—) pole

for a real trajectory in (4.1). Using z Ffz)= M1+3)
Mr—og) Tft—s.)

Als,t) = 9
- 9 ! (1 —oc, )
! 'TL——S—' —_— near °<S < 1
§ rI(-V{:)
-9 ! '
o *5—_;-:—1 [ &, + M’EJ
) |
= % S—wgt [ao Po + a, P ] (4.6)

whered, and &, depend on the expression for (oS 9‘5=Mg1 ,'which

is linear in t. A detailed discussion of daughter structure

will be made with specific reference to pn->3T in section 6,

using complex trajectories to give physical, finite poles.

Equation (4.6) shows how the amplitude's pole at s= MSI‘ contains

both the gmeson and emeson with well-determined contributions.

It will be seen that this ability of Veneziano to specify daughter
contributions can be used to eliminate some of the guesswork

involved in fitting data, where with Breit-Wigners one has to choose all

the possible candidate resonances.
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Without altering any of the basic properties (crossing,
Regge &c.) the most general Veneziano—style amplitude is actually
Als,t) = Zn‘: Z’M;; Crm T (51€) (4.7)
where T, (5,6)= Mlns)n=sty) / Tlatm— ts—0cy) (4.8)
The addition of such secondary terms (or 'satellites") only
alters the residue structure at a pole i.e. it changes the relative
amounts of the various daughters at a pole. For example, for real
trajectories the residue at S-'-Ms?' is notx but Cip X + Cn
which simply has a different mixture ofg and€ .

Though the possibility of adding secondary terms 1s known
as "the satellite ambiguity" - interpreting the Cpm's as
ambiguity-constants - a more optimistic attitude (voiced for
example in Lovelace's review, Reference 4), treats the satellites
as occuring necessarily. Here, in some N-point function formalism
a basic amplitude would be unambiguous and the satellite coefficients
for all other processes could be specified by factorization of
the N-point amplitude.

A simple example to demonstrate the occurence of secondary
terms is to consider the Veneziano five-point function14 for scalar
particles, with identical trajectories in all channels. It has

poles in all five variables S¢ i (see Figure B) where
y

5'\,‘\1-1 = (Pn + Piw\l ¢=12..5
pro=1
Pe

P (4.9)
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Generalising the Beta function of equation (4.3), which has the

.

integral representation

] -
Blot, - ) = S i T (= W)

- F
the five-point function (Su, Sans S.“'n S%_‘ Sel \
. S‘ Sl Aag; du; u—o(nﬂu-btn-l S T R v
olo l*bq;u()' ' t W V‘q. Usg
vwhere — o,= ot( Si2)= 'S, + 8¢, , et cetera. The variables U

are not independent and all the W's can be expressed in terms of two
of them, The symmetric form (4.11) can thus be written, after

eliminating some of the variables,

-t~ - M,
—~ 8¢ - - 23 3
Fa fy o dhuy,u 7 T (A (l“wF ‘P
° 0 + ""U‘Uhr I“M\M\{,

-

Variables u, and Wy can approach the lower limits of integration at
the same time, and so the non-adjacent variables §, and 5, may
develop simultaneous poles, corresponding to Figure 9. The residue
at a pole in one of the variables, say S¢» May be evaluated:

first write

! — Xy T | =y -1 e My =
F - Lo‘um. (=) J Ay uy (I-u,)

o

X (l_uluq’sul'l'fv}u._u\s

So at a pole b(q.s :j \

=0y, —! - -
Res . F. - El Au, Uy w (\\w %a3- )
s =) o ’
X (—D) >’ ~M3y-1 N23+°{31+"’°(;s
h_-’l— ‘—) (‘_u‘-l- (l“ UWWy
\J' DM\*

u%:O

(4.10)

(4.11)

X ([ -wu ) st (4.12)

(4.13)

(4.14)
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It is now clear that the residue at j =0 is simply the four-point
function of enquation (4.10) .for four scalar particles, with S=5,
and k= S;3 « For higher values ofj y corresponding to recurrences
along the &, trajectory (Figure 10) this basic Beta function will
be multiplied by additlonal powers of 4, and polynomials in o,
and ;3 . Thus for a particle of high mass Mj ( &g (™) = )
on the fourth leqg of the four-point function, secondary terms will
accompany the basic Beta function. Note that the satellite
'stmcture obtained from evaluating (4.14) corresponds to the
particle mass Mj, spin)' plus all the daughters (massm;, spins (-—O,l..J' Ve
‘If one requires the satellites for a particular daughter, the spin {
component must be extracted. Thus the j:O ({z0) four-point
function has no satellites, and as the mass of this "excited leg"
increases,more and more satellites come in.

If the WT amplitude has few satellites then one would
expect to see many satellites for —pn-vg'n' in this approach, as one
of the external particles is a daughter. Since Regge trajectories
cannot depemd on the external masses,(only csdo ), extrapolation of the
formula (4.7) to X-»3T decays is permissible. (For Fn—y's‘Tr , 1A(s,e\]?

is proportional to the Dalitz plot density). The NRJ-T: "particle"

|

with pion quantum numbers is seen as a spin O daughter of a pion
T —

recurrence at s=lm, ; since gyt > E%" (~ 11 G:eV"'j, NN is

in the region where secondary terms are expected. An example of this

is the analysis of Squires, Rubinstein and Chaichan 15 which obtains
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five secondary 34 terms from two 55 terms for p,n,TH nLme

by mass extrapolation and extraction of the pion pole at N,(Qnu}B«aB
Further comments on this occur in section 5. However, since

physics is currently lacking a global theory as indicated above,

the Cam$ will be regarded as unknown structure constants in the

model.

To implement unitarity, or at least to obtaln a complex
amplitude to compare with experiment, the resonance poles in (4.7)
must be off the real axis. One approach, supported recently by
LovelacelG, treats the real Veneziano as a K-matrix. Here, the
Veneziano amplitude is projected into partial waves V((S) which
are interpreted as being the K-matrix - i.e. the T-matrix is given

by the formula

R{(SB

T}(f\ ’:

((Q)is used to carry the resonance properties. Unitarity determines
the imaginary part of 1}(§) on the right-hand cut. However, such
unitarization in one channel loses low-energy crossing symmetry.

Another, older, approach, which will be followed here, is to add an

imaginary part to the trajectory %g,

Tvauxis) = A (S—Lp/mﬂs 9‘(9-Q—/«n‘) B>o0

)

Twe is real below threshold.

L+ els) Rels) (4.15)

(4.16)

ARSI S e scesens e

B T U e LS AR

o v .

e e e e

e ——

e o e s e e~ sy e e e
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Lovelace? originally used the form (4.16) in his amplitude
for pn>37 , withB=1. The motivation for taking 8=} is that

the pole, for example at X[5)=| will then take the form

|
- 2
‘—N.(S) - .;{—’ . Mf‘l_s -+ (A/¢! '){5__ q_/u‘_\l/l

(4.16) roughly correlates with the Breit-Wigner form (Mg’_ 5_,;,"‘ r’)-'

Similar considerations probably led to the original Lovelace

estimate of A = 0.28 (GeV/ e® )_l

in looking at pn->3TW ,
since this roughly tallied with the €-width in the proposed
amplitude ﬂ,(s.l:).

The Regge behaviour of ﬁ:, Equation (4.5), is gquaranteed
along the real axis now, since IMmX(Sy200 as S—» o0,

The major objection to the kind of parameterization given
in equation (4.16) is that besides particles on leading trajectories
and their da\;ghters, infinite numbers of "ancestor" particles arise.
An "ancestor" to a leading particle is one with the same mass but
higher spin. These appear since the residue at a pole, being a
polynomial inw, will contain terms no longer finite polynomials
in t. The power series expansion of (k- L)./u*\g in the residue
shows that the residue now is expressible as an infinite sum of

P (s )'s , with 4= O,l...c0 . For example, the residue in (4.6)

is °<\:' corresponding to ajand an € ifw is real.

. (4.17)
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With an imaginary part as in equation (4.16), the expansion
(-4 )o s :ZOD be Pe( w3 lszmene)) : (4.18)
will not only modify the contribution ofgenuiébut also introduce
an infinite sequence of ancestors. With complex trajectories it
is not easy to see what the partial-wave structure of the amplitude
is, and thus judge whether ancestors will be important in a
realistic situation. However, the partial-wave analysis of section 6
(in which the functions j_-IH As ) P{(bﬂe) Al ®) are
explicitly evaluated) will show that the ancestor contributions are

negligibly small. So in fact (4.16) may be used as a good phenomeno-

>logica1 smoo thing-mechanism.

To summarize briefly, the Veneziano model provides a sum
of narrow resonances satisfying duality. Tae daughter structure
is controlled by the secondary term composition. Ancestors arise in.
the attempt to have finite widths to the particles, though this is not

necessarily phenomenologically worrying.
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VENEZIANO SECONDARY TERMS FOR ﬁ'\-—) g

It has already been shown in section 3 that with a Veneziano
ansatz for Al5€) with full satellite structure (equations (4.7) and
(4.8)), the predicted decay rate for pn-»3T - and hence the Dalitz
plot density - is proportional to A, N (with s= ﬁﬂ’(vr*,rn‘B,
E:P4‘(n+,ﬂ3’\ ). To have a more physical understanding of the
relative importance of the secondary terms it is often better to think

~v
in terms of the coefficlents ¢,, which multiply individually -

. normalized rlm terms; i.e. Alst) may be written:

o0 LA
P,(g‘\—\ s E ?nw‘ — r‘nm (S‘k) )
2 /‘L
n=1 m=0 [fplﬁm(s.kﬂ dw‘t] (5.1)

The original attempt to explain this process using a Veneziano
amplitude was'Lovelace'sz. In the first part of his paper, he
constructs the [T scattering amplitude (70 (Equation 4.1). Then,
to judge the effect of mass extrapolation of one of the exéernal
pions, he recalls the r—meson "decoupling effect" indicated in the
earlier phenomenological analyses (see section 2). The only term
which contains poles at &= 1, 2 and 3 with no f—meson is r?. .

So by making this indirect appeal to the data he chooses to use a

single termfﬂJﬂkBiJe. ¢)=).0 and all other C,,'s zero.
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Ml —aeg ) O = &)
The form r'u(s\l‘\ s Mz —xg — ot ) (5.2)

contains only the €-meson, its recurrences, and their daughters.'
S -Regge behaviour is lost since the leading trajectory is
missing. The Regge trajectory used is
X5 = 0-483 + 0.8855 + i 0.28(5—tpt)* B(5— ) (5.3)

The value 0.28 is claimed to give the € a width of 280 MeV.

It is interesting to note that of all the individual s,
f'” shows closest agreement with the data, even though it 1s not
particularly good. The Dalitz plot distribution given by W is
shown in Figure 11 (a). The Lovelace model predicts a depletion
in the centre of the Dalitz plot but it is not steep enough to
satisfy experiment (Figures 12 (d), (e) and (f). In addition, the
experimental distribution shows concentiations of events along bands

of s and t, enhanced at some intersections. This model does not show

1 .

quite the same enhancements away from the two major ones (s=zk= wMe®

5= k= W“FLB

Altarelli and Rubinstein®’ (hereafter referred to as AR)
concluded that a single term in (5.1) is insufficlent to explain the
Dalitz plot distribution satisfactorily. Its most striking feature
is the hole in the middle which occurs at values of s and t such
that Re(otg + ) = 3 (5.4)
Due to the pole structure in P((H'M-O(S“Ny\, a large denominator

occurs in those terms of (5.1) for which Nmg 3 (5.5)
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So, motivated by direct considerations of the data, they proposed

A(s,BY= ¢, _‘1'—“;3"“-‘%) + <y r’(l"(s\r'(l—bqg).*_ G0 WZ—M;W’(?. -b{k)
M-seg —o¢ ) O(2-0¢s —0¢,Y Cl2—s — x,)

1 Gy M-\ (2 ) 4 €30 3%V M3 -0, )
Pyt~ o) ) (5.6)

They fit the two invariant (‘n‘*;'ﬂ"‘Band (T_T‘,TT"') mass-squared
histogram projections with the five coefficients (,,in (5.6). The
Regge trajectory used in each of the five terms is (5.3) - and,
in particular, the same imaginary part occurs in each. Their best
values obtained imply that the first two terms completely dominate
(Table 1).

Figure 11 (b) shows the .corresponding Dalitz plot distribution.
The "hole" in the centre is now more accurately fitted. But the
distribution shows a general depletion,in contradiction to experiment
oll along the line U~ 1.5 (GeV/er) - which corresponds to Re(as+oq Y=3
(sce Figures 12 (e) and (f). Moreover, the concentration close to the
btoundary at sa k= m;"(amund 1.7 (Gev/cr)t ) is present with a
density twice that in the experimental distribution (Figures 1 & 2).

In fact, the overall fit is worse than Lovelace's,

This failure of the AR analysis probably arises from the fact
that the parameters ¢, are determined by fitting the two experimental
M’-('n‘*,‘n'—\ and M*(T;7T-) histograms. Their method thus ignores the

strong correlation between these two variables.



31

Furthermore, the use of the form 0.28 (S—-lf-/u"‘\vz for the imaginary
part of the trajectory for each of the five terms is unduly
restrictive. The residue at a pole in s in the representation (5.6)
is a polynomial in t whose coefficients are functions of the five
Cam'S -« The partial wave decomposition of this residue implies
the presence of certain particles at this pole. The imaginary

part gives it a finite width which relates to the widths and masses
of the individual particles present. The width of the poles in the
overall amplitude (5.6) depend on the c,.'s and the form of Tms .
As such, the ¢,.s are related to the imaginary part of the trajectory.
The more general expression H(S-l{-/u“Be , with & and Bas variable
parameters, would treat this correlation in a better way.

To find the best parameters, we use the Dalitz plot M’-n-w-(zu)
vs. MY 'n'-1r+(=5)- The lower and upper limits of u and s, fixed by the -
plon mass and the total centre of mass energy, are used to define a
30 x 30 grid across the Dalitz plot. The experimental number of
events,N{, in ecach squarc !'.,with at least one corner within the houndary)
are determined. For a given set of values of the free parameters,
the predicted probability distribution P; over the significance squares
{;‘; is found by integrating the expression

b PR

s (5.7)
over the area of the square t within the boundary (¢ is the overall
normalization constant such that 2\-’ b;: |) . The predicted distribution

of events 1s simply /"\C = N F;‘(M:: é-N:,\ . As we are compelled to use
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a fine grid to retain the unique features of the experimental Dalitz
plot the conventional %* method 1is not applicable in view of the small
values of N{ encountered. Instead we directly maximise the likelihood
of the observation to find the best parameters. The probability of
the observation {NJ is |

n Ni '
P= TV W (5.8)
L=

wheren is the total number of significant squares (n = 561 in this

case). The likelihood is defined as

L

m

n
log P = Z Ni logp; (5.9)
L=

Maximization ofl is equivalent to maximizing the Polsson probability

@ , with means /‘-"i ,

" . ‘N\'
@ - o TN
=1 (ng)! (5.10)

The maximum likelihood with unrestricted probabilities pi is

given by

Lw\(ma%\;‘ Z N,:Loa (N;/N)
L (5.11)

and the ratio P(W\A»{)

b ey T §“ [Lan iy L o)

enables us to define an indication of goodness of fitGas
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Lm(mo\x} — L(max)

G =2

Number of degrees of freedom (5.12)

Equation (5.12) is consistent with the usual definition of goodness

of fit since, writing &;= [Mi~ NI WANE )

2 [Lw(MAﬂ— L(V"Wﬂ e - 2 Z Ny L“"{\("*éf) (5.13)

If &; is small, the right hand side of equation (5.13) becomes

' Z (pme = Ny )

T N (5.14)
which is simple the usual K32

With the above procedure the four free coefficients of

equation (5.6) are re-determined with the o;:iginal Lovelace form for
the trajectory as in equation (5.3). The best values of Cpa, (Or
equivalently 'E;m) obtained are given in Table I. No term or pair
of terms is dominant, as is indicated by the relative equality of the
first four 'E“M‘S and the important role of the destructive interference.
The interference term has an intensity roughly equal to that of the
direct contribution and its structure is complex since the relative
sign of the five terms varles over the Dalitz plot. Figure 11 (c)
shows the corresponding Dalitz plot distribution. The main defects
of the AR fit are remedied. The concentration of events along the
line Re (g + O(E\='5 is now reproduced correctly - see also Figures
12 (c), (d), (e), and (f). Furthermore, the central hole and the
concentration close to the boundary at s=¢= M_F" now have the correct

densities. Figure 13 compares two distributions in full 30x30 bin detail.
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These improvements are reflected in the values of (z compared with
those obtained using the Lovelace and AR amplitudes as shown in
Table I.

Using the more general representation, A(s~ ll-m,:')e for Tmi
we find that no value of & other than 0.5 glves any significant
improvement. However, a better value forRis found to be 0.33 with
some slight re-adjustment of the <,J¢ as expected from their
correlation to A, The corresponding distribution is shown in

Fig. 11(d) and the values of ¢,,and Gare shown in Table I.

The Lovelace and AR analyses were unable to explain all
the features of?nannihilation at rest into three pions because
the strong correlation between the two physical variables describing
this process were ignored. This has led to a belief that the
Veneziano model is inadequate for this process, but the excellent
agreement with experiment over the whole region of the Dalitz plot
shown by the fit described in section 5-3 provides ample evidence
to the contrary. It can be seen that all the sccondary terms
expected are in fact necessary to describe the data accurately.

That the five terms of equation (5.6) are the only five
needed is indicated by physical considerations. Owing to the
imaginary part of the trajectory, none of the five r;wCs are exactly
zero at R«Q{N;-M(Q:g y and the argument that one chooses only

those satellites with "holes" is not so straightforward.
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Indeed, the '"hole" obtained in our final amplitude is obtained from
the interference of the fivé terms. However, since r;M‘S with n>73
would only contribute small background tails the most terms allowed
in principle are rh ‘r?l\rko,r;'j rEO and also f;,, Fg,,
My \nqurgg . The extra terms withne3 only contribute in the small
q-meson region of the phase space and so the fit would be rather

insensitive to them, yielding inconclusive results. The only

significant term is|:1 , but since its value in the centre of the

‘Dalitz plot is so large, cancellation to produce a zero there could

only be effected by taking large values for Cy,, ¢, , C20,Cqy and &G0
i.e. a very small relative magnitude for ¢,. In other words,
especially in view of the accuracy of fit obtained, the data does
not require the existence of further secondary terms.

The skill of the Veneziano amplitude in specifying the
contribution of large numbers of parent and daughter resonances
with only a few parameters has been demonstrated. Full details
of the phenomenslogical conlent (i.e:,pnrticle structure) are glven

in Section 6.

There has been an attempt to predict the satellite structure
for ﬁn,from mass extrapolation in a higher-point formalism as described
in Section 4. Chailchan, Rubinstein and Squiresls construct an
amplitude for F'ﬂ’Trﬁ T, =~ which is a sum of only two basic five-

point functions (F ). As they point out, it is not possible to
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consider purely mesonic processes (e.g. WO— T TWT ) and project
out the £=0 state at $= YMy" since one would have to assume that
factorization was valid to obtain the 'ér\ amplitude. Daughter
dec_;ene‘fracies18 (where each mass and spin value corresponds to a

number of particle states of the ‘formalism) prevent factorization

being true. So by going to NNTIT directly, factorization is not
required. An added advantage is that no angular momentum projection

is needed, since the process is at physical threshold. There is however

no satisfactory theoretical framework available for treating spin %

but they are led to adopt the following procedure:- taking Syg=< (PF"'P"\J;
and noting the important fact that " (gmyt)~3  ,AlS=S5,y ke 5233

is given by the non-exotic terms in the residue of the pole at 0(1‘:5_=3_
The full details of the arguments that lead to the expression adopted

are not relevant here. Assuming real trajectories,

_ Res 'S g 5 8 v 8 )
A(s, k) = N [ w { F(of, , Bgg— 1, D('Sq—‘/z’ % s M‘5—3/z

B w 8
R Y O RS BT AN A ST RS | B

where »® refers to either theNor A trajectory (Ref.15 says the results
turn out to be essentially the same whichever is used) and € is an

arbitrary constant.

Als,k) derived in this way can indeed be put into the form
of equation (5.1) with  Cu5, €y, Cq5, €, , €3, all functions of

¢ and the Regge trajectory parameters, and all other Cam= O
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Unfortunately these are not compatible with the data, since

demanding €,,= 0 (to eliminatec ) gives (o= 1 (normalization)

Cuz 1LB0D, €= 0.26, €4,=0 There is no A=3term. It is

not easy to lay the blame in any particular area (spin—% treatment,
unitarity etc.). Certainly this shows how the satellite "arbitrariness"
of one level can be reduced by going to a higher-point formalism.

As reference 15 reminds us, the qualitative results are not trivial
since if uwiqwh:} had been other than 3,quite different rlwss

would have appeared. The general problems of this approach are not

’

yet fully understood.

At first sight, it would appear that an immediate prediction
of the A@Y) determined previously is that of the T=1 » pp  decay
into three pions, for which data exists. These are however large
errors involved in the separation of singlet and triplet states. The
only experimentally accessible quantity is the ratio of the total rates

+ 1.1

- R($Fm1—7“+n’ﬁ“) —
R= — 1.6 - 0.2 (5.16)

—

R(Pn—y T+T-T")

(The numerical value and errors are those quoted in AR17)

Since SWU(2) alone demands

Y { RS2 (5.17)

as derived in section 3-4 (equation 3.21) then any model is bound

to get an answer within the range ofR quoted in (5.16).
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On evaluating this ratio (from equations (3.12) or equivalently
(3.20) one obtains Rsh13 for the fit with A=0.28 and R=<l.O4
for A=.33 . This is not significantly different to the AR
amplitude(R‘-‘LI‘?} though the lovelace M, term alone gives K= D.69
This would indicate that Ris insensitive to the detailed satellite
structure though sensitive enough to '""reject" F:| alone. Table II
gives corrésponding values for the ratios K(PP\’; 3o ¢

R(F“.v‘n"fﬁ"ﬂ’—): R(FPT=|"7WW‘U°) evaluated using equqtions (3.12).
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6 PARTIAL WAVE STRUCTURE OF pn—» 37T

6-1 The Veneziano amplitude with real trajectories is a sum
of infinitely narrow resonances (i.e. poles of the form "S‘_—'V'“‘{')
To avoid these infinities in the comparisons with experiments
discussed earlier, complex trajectories enabled the poles to be
moved off the real axis. The structure is now no longer a sum of
simple poles, nor explicitly a sum of Breit-Wigner amplitudes.
'However, the resonances will still be shown by the energy-dependence

of partial wave amplitudes a,(5) given by

+
A (3) = L.‘ Alsik) b (“'S&S) o cos 65 (6.1)

The integration is effectively over the range of t available at that

s-value, with for the case of X — 37

s [26+ (s=M -32) ]
{(s-qﬂt) [5- (Mw\zl[f—(ﬂ—/ﬂ)l]}’/l (6.2)

QT$GE(E)=

where for pa-y 3m, M= Lm%

This aq corresponds to the partial wave expansion:

Al = i (u”) A(8) Pl LosG; (1))
(=0

Z (6.3)
for s fixed.
Partial wave cross sections 0'2 are defined as follows:
2 -
ig‘ o )A(S.t)l (s fixed)
(A.4)

4.0
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them
o = T ZO_( .
4
' (6.5)
2
witn &, o (224 1) [ (6.6)

Consideration of resonance structures by putting Tmg= O
and examining the polynomial in t at a pole in s is only a

rough.guide to the possible resonances present (as described

,in section 4). Even assuming the validity of its approximation

to the complex amplitude used for fitting, there is no way of
making comparison with Breit-Wigner or any other resonance
parameterization without specifying the phase. (An example

of use of this method for —‘;Y\ -» 31 is Pokorski and Thomas's
analysis13 of Lovelace, AR and their own amplitudes). All that
one can determine are the relative magnitudes of the numbers

CR(W\&\ in the expansion

<= (2d+1) cqpls) P([U"SGS) + (S(——?E)
Afs, &) = Zg, S —~ Mg? (6.7)

giving restricted information about relative widths and phases
of parents to daughters. Table II gives these ratios for the

secondary term structure determined, with T ¢ = 0.
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In an Argand plot of Re ay(s) vs Imays) an anticlockwise
loop (with respect to incree;sing s) 1s usually taken as evidence
for the existence of a resonance19 (a Breit-Wigner gives anticlock-
wise loops). Argand plots of the partial waves for the amplitude
Als€) for pn—=37 (equation (5.6) with ITmiX= H(S—Ll-/uz Yy A:O-’SZ)
are shown in Figures 14 onwards (there is little difference between
A=0.33 and A=0.28). The strongest resonances may be expected

to show peaks in the la((S\\?’ but to interpret less well-defined

)

‘bumps and shoulders, the Argand diagram must be consulted; even the

peaks should be checked in the complex-a; plane since it is not
impossible for interference of resonances to produce freak peaks.
Around the loop, the positlons where $= me_"‘ should come near,
the maximum or minimum in Ivv\al_ « More.exact criteria for
resonances consider maxima i Id“(! and also maxima in the
s
angular velocity around the loop,but these are not considered
here.

From a preliminary inspection of  ag(s) (€= 0,1, ... & )
the existence of four major resonances may be inferred. Figure
14(a) shows three well-defined peaks in 0p=|dp(s)]? at 5=0.49
1.67,2.73 GeV™ (note that experimentally M(‘ = O.S“l) ™ ,\,O.S'
Mt 6D, wmyts 2.77)-

The Argand plot of @,(S) , Figure 14(b), has an anticlockwise
sense for s close to each of these s values, confirming that these

peaks are indeed resonances. Figure 15(a) shows only one well-defined
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~peak in |a|(5“1 near s= 67 which corresponds to a tight anti-

clockwise loop in the Argané plot (Figure 15 (b). pgr the two
shoulders in 1a,($)% |, Hae Arsand qoo.p show& gentle resonance
curvature Lt &= Mgt' oancd” 8= M‘ﬂl‘ ' Thus the possibility
ijﬂg'is not ruled out, though they have very diminished intensities.
Details of the positions of these resonances are in Table IV.

Figure 16(a) has a "freak peak" in (a,fs)|* at 's= .96 -

the Argand plot (Figure 16 (b) showing a large clockwise loop.

*The intensity of this peak is much less than any of the others.

_Higher partial waves show bumps of ever-decreasing magnitude, with

no anticlockwise loops in &{$) .Specifically, (=3 and (=} show gently
clockwise spirals, with no maximum in either la¢(s)]? exceeding
13.0 (arbitrary) units - compare this with' the 50.0 units of the
freak peak in loh,\" and the typical 700.0 units of the resonance
peaks of lay 12 and laol? .

Relative intensities are given in Table V, but it should be
pointed out that "backgmund" or "overlapping tails" offects have
not been taken into account. Further, no attempt is made to infer
the exact couplings (partial widths) of the particles indicated.
The general trend of these results is in qualitative agreement with

the residues of the poles in the zero width amplitude (Table II).

It is interesting to note that a similar analysis of the
Lovelace and AR amplitudes shows them to be quite different in

Phenomenological structure. This is what might be expected from
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the differing goodnesses of fit to experiment, despite the fact that

they have poles in almost the same places. For examble, the

Lovelace amplitude contains essentially only thee ande' mesons«(Table 5)

Since none of these other amplitudes correspond closely to the

data, no details of their partial waves are considered here.

"Ancestors" do not arise with any significant intensity,-
though the higher partial waves are not without structure. It
would be very difficult to isolate any effect and attribute it
unambiguously to an ancestor particle. (They are not in evidence
in any of the other Veneziano versions either). Certainly as far
as deciding on the physical content of either the amplitude or the

data is concerned, ancestors are as good as, absent.

The reésults described in (6-3) on the basis of the fit of
5-3 seem to confirm the "decoupling effect". The f,f andS mesons
nll appear to be absent, or, at least, seriously diminished, Most
of their daughters appear to be present in varying intensities:
the S-wave ¢, €', and €' and gqual contribution of f' with little g‘{
Inspection of the experimental Dalitz plot supports this; whereas
along a line S:rMS‘ the density of cvents remain constant
(corresponding to @ ), along S=wA4‘ the density increases (corresponding
to significant amount of %_). Thus the effect would appear, rather
than "S-wave dominance" for example, to be a decoupling of the

leading trajectory.
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SUMMARY

The satellite structure of the general Venezlano amplitude,
though not completely specified by the current state of the
formalism as a whole, nevertheless agrees well with the fn.4,37f
experiment, needing to use only a few free parameters. (Compare
the four used here with the fourteen of the most recent phase
shift analysis7). The use of a dual amplitude, describing low-
energy resonances in terms of Regge trajectories proves successful.
Incorporation of unitarity remains an unsolved problem - the
Veneziano amplitudes in the narrow resonance limit can only be
regarded as a first-order contribution of some more comprehensive
peturbative scheme.zo Despite this, the .method of smoothing the
infinitely narrow poles employed here - though probably a crude
approximation to whatever should be done - has proved to be
quite satisfactory physically. The main theoretical problem with
the H(S——QTA”\8 form for Imuo(s) , namely the existence of '
ancestors, turns out to be less serious than might at first sight
be thought. The results of section 6 show that the amplitude used
to fit the data does not correspond to a significant contribution
from any ancestors. Also the relative parent/daughter contributions

are not drastically altered at a qualitative level.
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Apparently, all the secondary Veneziano terms allowed are
necessary to be able to h;ndle the inclusion of all the Ww-Tr
resonances and their daughters. No term, or few terms, dominate.
These conclusions contradict those of Lovelace and AR, whose
analyses were unable to explain the features of'fn annihilation
probably because strong correlations between the two physical
variables describing the process were ignored. Attempts to
predict this satellite structure using a naive reduction of the
five-point function using mass extfapolation15 though giving a
qualitative explanation, are not yet in quantitative agreement
with the fit presented here.

The only immediate prediction of the Fn amplitude is
the ratio .K'ror (Fp-rev —> 3m)

Rror (FV‘ — 3"’)

Though the~value given is reasonable, the ratio is insensitive
as a test since the éxperimental errors involved in éxtracting
information about the T=l, Pp state are so large. Until one
has a formalism which specifies the secondary terms for a wide
range of processes, it is of course impossible to exploit the
crossing symmetries of Veneziano with anything better than
qualitative accuracy, since satellite structure will be different
in each casec.

The preliminary analysis of the partial wave structure of
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the Veneziano amplitude for qu?ﬂ‘ (described in section 6)
indicates that, with the form for ImX as used, the amplitude does
contain resonance structures. The as give strong evidence for
the supposition that in the final 3w final state, the resonances
on the leading Regge trajectory (f,{-euuignmsons)are in fact
absent, or at least very much diminished. There would seem to
be a large contribution from the f’resonance, and the S-wave.
daughters.

The Venezlano approach, in addition to its theoretical
skills (especially in incorporating duality), is also then,
useful phenomenologically. The resonances of its dual sum of
poles are by no means unphysical. Though Veneziano is not the
only possible dual formalism, nor completely debugged, it points

a way to a correct understanding of the hadrons.
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TABLE I

A comparison of the Veneziano versions for Pn— 3W.
The ¢'s are the un-normalized coefficients of Eq. (4.7), the s
multiply the physically normalized contributions in Eq. (5.1).
One parameter Is always fixed by overall normalization and- the
errors on the others do not exceed 8%. G is the goodness -of

fit defined by Eq. (5.12).

Lovelace Altarelli- A = 0.28 A = 0.33

Rubinstein

c - 1.00 1.00 1.00

10
1.00 1.89 2.55 2.90

€11

C - 0.00 2.96 2014
20 .

c - 0.00 7.80 7.31
21 .

c - 0.57 -4.52 -3.74
30

] - 1.00 1.00 1.00
10

] 1.00 0.78 1.05 1.18
11 .

T - 0.00 0.70 0.53
20

T - 0.00 1.04 1.02
21 ,

< - 0.00 -0.23 -0.19
30

2([hn(mnx)—L(mnx)) 1244 1458 606 592

G ?2.24 2.62 1.09 1.07
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TABLE II

Relative magnitudes of parents and daughters at each

pole in AE) with Tw=0O

for A(S.E): Cio r:o‘f' C"nu
t C‘LOP‘ZO + ¢y r,'u t Cq P’!O’

The magnitudes are defined by

AN = (244 1Y e () 0 [ o B5)

+ (s 1:)
R S—MR"
€0 Cny € b Ca, o mgl Relative Cp's
1 : 2.55 : 2.96 : 7.80 : -4.52 me* € ¢ = LO: OS5
™Mt CenpriCe s 101 2.00 =03
1% 2.90 : 2.14 : 7.31 : -3.74 mMe? Ce:C = 1O : DY
M,;_.!‘ C"‘.Csl: C-c = ('D: S'O : _0.2
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TABLE III

Ratios of the NNy| decay rates predicted from the

— o
four Veneziano amplitudes. The ratio K= Krot (PP‘hul —> nfr 7 )

is also given. R‘rm- (an n"f‘ﬂ"TT‘)

Rror (Fp ~‘73'n'°) Rror (B> THr-T-) Km(ﬂ’r:f’ 377) R

Lovelace 1 1.53 1.05 0.69
AR 1 2.47 2.95 1.19
A=0.78 1 2.30 2.61 1.13

A=0.33 1 1.95 2.03 1.04




52

TABLE 4

Location of resonant effectsin the partial waves ﬂL(S)

(1=0,1,2,3,4) of Ast) determined for pn-—y T+E-717

Partial Resonance o (S) Curvature of
Wave Position { ‘ ks ag (5)
= e MAX ANTI-
CLOCKWISE
¢! MAX AT
kN
=M
e MAX *= MR
_ SHOULDER ANTI-
{=1 S CLOCKHISE
f’ MAX ] AT
3
f" SHOULDER 5=Mge
_ L SLIGHT CLOCKWISE
{=2 $= M SHOULDER - MOTION
o THROUGHOUT
£ NOTHING LOOP :
=196 MAX
£! NOTHING
£ =3,4 SMALL EFFECTS UNRELATED CLOCKWISE
TO RESONANCE MASSES MOTION
THROUGHOUT

LOQP
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TABLE 5

Relative Intensities of Resonances in pn—y wfIm=m=
A) is for the A(s,t) determined as described in text.
B) is for the Lovelace ternlfa-for comparison.
The intensities of gp are evaluated at the mass of the
resonance given by the Regge trajectory. Spin 2 and 3

resonances are absent.

Veneziano Spin-0 Spin-1
Model

H

€ e ¢ s g 5

A 1.0 0.97 0.96 0.12 0.66 0.14

B 1.0 1.14 0 0 0.16 0
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FIGURE CAPTIONS

Figure 1.

Figure 2.

‘Figure

Figure

Figure

Figure

Figure

Figure

3.

4.

5.

7.

8.
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. . -\
Experimental (Mp-7-) vs. (Mntu )
Dalitz plot for pwn -» 3W. ’

There are two entriles per event.

Experimental Dalitz plot general features.
The contour numbers represent the number of
events per (0.098 x 0.098) (GeV / c')* area
of the Dalitz plot. The number in the centre
of the contour graph glves the density at the
poslition of the central "hole".

Phase space for pn (at rest) —> 3T
The axes may represent any palr of s, t or u.

Resonance band structure for pn-—» 3T

The ¢-¥ degenerate trajectory and the daughter
trajectories.

Kinematics for the TN scattering amplitude.
a,b,c,d represent the isospin components in
a Cartesian basis.

Duality diagram for pseudoscalar meson-meson
scattering.

Five-point function kinematic notation.



Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.
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Possible excitations in five-point function.

The Regge trajectory “15¢;)

(Mr-w-Y" vs (Mren=)* Dalitz plots;

(a) Lovelace's distribution

(b} Rubinstein - Altarelli distribution

(c) Dalitz plot distribution given by Veneziano
secondary terms determined as described
in text with A= 0.28,

(d) Secondary terms as in text with A = 0,33,
The contours are labelled as for Filg. 2.

The histograms show the density of events as

a function of M'TT | FEach histogram averages
over a 0.294 (GeV/c *)' - wide slice of Mn-p-?
the dotted, broken, and full lines describe
contour figures 11 (a), 11 (b) and 11 (c)
respectively.

Histograms again showing the density of
events as a function of Ma+w-* |

However, there 1s no averaging, and each of
the 30 ‘histograms correspond to a one-bin
slice (0.098 (GeV/c*)- of Mmu-m-1.

Thus each histogram in Fig. 12 is the average
of 3 histograms here. The broken and full
lines correspond to contour figures 11 (b)
and 11 (¢) respectively.

{ = 0 partial waves;

(a)  Ou (5) vs. &.

Pcaks occur at 2
s = 0.49, 1.67, 2.73 (Gev/c')

(b) Argand diagram ksI‘MGo(S) VS.kSRqu(S)
Rs  is proportional to [ S—-qut)Vz
The dots are equispaced in s.



Figure 15.

Figure 16.

- ERRATUM:

(-1 partial waves;
(a) 3la(s)?=067 vs. s.

(b) Argand plot RIma,fs) vs.

Peak

£ = 2 partial waves;

(a) 02(%) vs. s. Peak
a resonance mass). Note
(b) Argand plot kImq, Vs

57

occurs at s = 1.67 (GeV/ct )}

k Reaus).

occurs at s = 1.96 (not
the small intensity.

k Reaz .

The vertical axes in Fig.l4(a)18{a)Fig.16(a) should

‘be labelled O, =(z(+1)|q'c|‘and not |apl® .

Bl e s



EJ o]
[ %0'-.:0‘.
€7 s o? * . ™,
v
s
y’
fal
M
o)
e lr >
c"" :{. —
e
e
o’... .
e
m > » ”
.
V’ .-‘. '
[} $
Te
~ | v A,
SN e d s
g\i’ ’g\‘,“ :“3‘;’5
» e @ Py
> » F o AT PYY ) N
g3 : ( ‘;
ik - "
e R L Y o
N ee . N ‘\
i L .
~ . Mot 'V, R
’ : R} '\3'. 2o * N
g . o:..n.. a0 Y
’ . N e, LN [ )
{2 . B ‘o‘ $. .l :. “~ ',.‘
~ [ 1] ', t} l' * Lee e ® .
[~) .o " . o. ‘.‘ ‘ . l. :.::\:‘. Py ‘.
vl o] . et t .. * :. ..
=al . iyt s e .
o=f * . . .‘.9 ...0‘o~‘-~’ v ".~\
: ST AL A A,
o ..{ R ALY Y RS L TR T
. . U (3 . [N »
: Wi Sy ! '-'.::-. < .-o:.'-... PR iy ., "N
] :_...0'- ‘. [ - o .;0.4‘}6.:&. '.“ o . ..
. wet ."...';‘O 0. ‘.f.‘ .-.l‘ "_ S’ ‘;:. P I . .‘.
:‘n.. J-‘:-:~ SEIPAY .;,’ ‘:.’-!1;;:{"!.‘ « N
0 :%f;,-‘:’i:t:gvs.s. P3RS e Ty
c;r-n (".'1:?. '1. ':"_.:. ~, :\'.’:.:p:(\..'. o.:\‘..":'.f . '\.
. he il - * . o« s . .
P 7’.?3’23'&,?5",:_:? ;:,'1,\.‘-.3" . ";L 3 sd.f.!':"; ': .{ ! .'-
i L TR T O E
REXEXY ',__‘3'\ o8 @y 0 PYRLAR PT I3 A AN T )
AR SRR K L SR ML I 9.1 v} FRA -
\.'l'.'\-. J,\'{‘.'f‘.‘ ',."ET_.‘?‘",:’("?':,'.’ %‘:%-":.:f: { . .{a." ’c‘ 1'3&.: .'-
) .A‘f{u.«\rgf,; . ::‘,‘o‘{g‘fv‘:‘p :_4;1:,14.'..%-";_\. ;:__‘.. . ( i ot
i et % N2 Sate et [ { o .‘.-.....u
rpﬁ':fihf‘%‘:‘qat‘-ﬂﬁ%e\o.‘u.::.o\ovc "Ot‘:"
f.. ) a A
fe%® 104 Jeb . .92.‘53 2.5 R.0
3 > - —
L5 07 ) (SRYsCT) .

58

ﬁ-—“-..-“-'-

FIG. |



59

A
3.0t
2’0}
v
3
e
3
Erob
E
Z
. | 1
O'OQ.O . 10 , 2.0
(M, m.) =5 (GeV/c?)
. Experimental Features
FG.2 :



2.0

1.0

60

S= (Pn’-f + PTT,'\‘L
k= (Pﬂ'f + P-n-;_ \1'
u= (Pnl- + P'ﬂ‘; )1' .

Boundary
definedr by

‘C.O'SG'(W-.UTT‘o\‘ < 1

L < s,k u < (2my=p )

S+e+u = Ym* 3/M1




M?— ( Trl—) Tr2->

u
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INTRODUCTION TO PART TWO

Over the last few yeaés there have been important
developments in the techniques for dealing with non-polynomial
Lagrangians - in particular, Lagrangians which are rational or
exponential functions of the fieldsl’2. These advances have
enabled the gravitational interaction to be treated as a
universal non-polynomial couplingB. Physically this corresponds
to exchange of not one, two or any finite number of gravitons but
to an indefinite number, whose propagation is described by a
"superpropagator",

In Auantum electrodynamics, inclusion of gravity has
the effect of removing the ultra-violet divergences of the
theory. The conventionally infinite quantities: self-mass (3m )

and self-charge ( §¢ ) turn out to have finite, computable valuesd’s.

The dgravitational interaction has altered the small scale behaviour

of the system such that the divergence encountered b /_L
R o R

v
in x-space ;3 Ao 0 )Jq in p-space) is damped out.
A typical example of a matter-field in curved space-time

is (f0r¢ a spin-zero field)

Lo = 37 PP 0P

(1.1)



-1-2

| 9" ["”‘P(K% ¥ ‘%‘5“3]”\)

The metric tensor is conventionally parameterized as

AT = T4 g 17
(1.2)

1=
with
(1.3)
Alternative non-polynomial co-ordinates for the gravitons

are exponential, e.g.

(1.4)

where Xab are 4 x 4 pseudosymmetric matrices. With 5f~
as in (1.4) above,
v a
det gf = exp ( Kq P a ) (1.5)
The coupling constant ky (Ky* is8r times G, the Newtonian
gravitational constant) which enters the theory, determines the

numerical values of §¢ and %M . The regularizion induced by

-
gravity provides an effective cut-off mass equal to Kb .

Conventional electrodynamics, of course, treats the
infinities in de¢ and 3¥m as unmeasurable. Just as the physically

observable masses and charges are thus blind to the infinities,

the numerical values predicted by gravity modifications are equally

unobhservable. In hadron physics,_however, the existence of internal
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symmetry breaking enables these quantities to be tested.
The electromagnetic breakiné of SU(2) (isospin) symmetry
in pions will be considered here. It will be shown how
inclusion of gravity removes the infinity occuring in a
calculation of the Wt-T° mass shift from a physically
reasonable Lagrangian. This model will also be used to
investigate the hypothesis of "strong" gravityG. Here,
hadrons do not couple directly to gravitons, but only
‘through their mixing with a massive spin-two meson in

analogy with vector dominance (f -photon mixing).

Section 2 reviews the techniques involved in using
non-polynomial Lagrangians. The applications to gravitation
are sketched in Section 3. This includes the regularization
of aquantum électrodynamics naturally induced by gravity,
"strong" gravity and aﬁ outline of the general procedure
for including gravity Into any given Lagrangian. Section 4
describes the calculation of the pion mass difference using
a gravity-modified Lagrangian of pions, photons, vector and

7
axial-vector mesons . In the absence of gravity this

Lagrangian gives a reasonable value for the pion mass difference

only for massless pions; for physical pions, a logarithmic

ultra-violet divergence occurs.
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The numerical results of this calculation are
presented and discussed in section 5. A mass difference
of 6.9 MeV is obtained for massive pions - compared to the
experimentally established value of 4.6 MeV. Extrapolation
of coupling constant Kk to tensor meson values gives a

significantly lower value (between 4.0 and 6.0 MeV).
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2 NON-POLYNOMIAL LAGRANGIAN THQQRIES

This section will give an introduction to Non-Polynomial

Lagrangian methods, sufficient only to motivate the computational

technique used later. TFull details of the technical problems

encountered will be found in references 1, 2, 3 and 8.

Examples of non-polynomial Lagrangians of physical interest

are not restricted to gravitational theories. Two popular

examples are: firstly, the chiral SU(2)C) SU(2) Lagrangian

g
& ([+-f-¢7’)1 | (2.1)

in Weinberg's representation. The second is the intermediate-boson

"
mediated weak” Lagrangian with Stuckelberg variables A, B8 for the

W-mesons

_ A
Wi s Ap m"/—*g (2.7)

This can he shown to lead to a non-polynomial parameterization.

The gravitational Lagrangian 1is

__M
] (2.3)

\ A
) {" J
9/ (T af =T, Uiy )

Einskein ~

It J- det (g/v)

N Ar (2.4)
2 9 (a/“‘juf -+ 3v 3/“f ~§]a g/«\)>
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v
If r is the fundamental field, the covariant gquantit
y q Y 9

is intrinsically non-polynomial and vice-versa.

v

The general form of such theories is

4. ()= g3 v (@) :

fgi 1%
. n »
~ 3 s—':* » ¢ (X\o *
nzo n‘ (2.5)
"
vhereV is some function and U, is proportional to —F ’

£ being the "minor" coupling constant. As Efimov points outl
a calculation of the peturbation series in the "major" coupling

constant 9 s

0
s = 1+ & 9° AW (2.6)

n=»

is not so easy since the usual concept that the small peturbation
changes slightly the states of a free field is not relevant.

Any formalism developed- to use these Lagrangians must be able to
cope both with the non-renormalizable infinities arlsing from
£ ¢“ interactions in the expansion in minor coupling constant
for NP 4 , and possible unnacceptable high-energy behaviour.
The first difficulty may be tackled by completely summing the
-peturbation series in {" for any fixed order 3’0 by a direct
summatinn method, for example, Borel summation.

The second difficulty may be seen in second order, taking elastic

scattering via a superpropagator as an example.
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The S-matrix
e (( dvno, T (v(goa)) V( pfm))

S?.
] “ (2 ¢ ) ¢Mz(*‘«-\:
-Z_”d"xd XIZF (4-%) ¢ i .y

y
S

i

(2.7)
™My M =0
with
n
wn
Fm (x\-xq_\ Z -“_*’“lLi‘_"z_"Lz[A (%~ x,,]
l
=0
" (2.8)
Ac is the causal function,
¥ CFX
A (x) = : ) j oA *p =
2 ) o 1_R2
" ME-pt-lg (2.9)
The Fourier transform
~(2) . Cpex (2)
F (P‘LB: \ Jd”-xe F FW‘IMZCX) (2.10)

MIML

for elastic scattering is F?.?. (s ,5‘—‘}3 (Fig. 1).
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The high-energy behaivour of the discontinuity across the
branch cut at 5= Ym*

La

22() = Twm F sy (2.11)

enables field theories to be classified as "localizable" or

h T
"non-localizable" if f(P'L) falls faster or slower than e Pl
respectively. For example, ‘(—W‘r of the form 9 : ¢h €+¢ .

or g (;\}/A)ef9‘: are localizable, whereas
] —w or g: (CWAY+£8) ™" (

9 : @ (l—f—.pgb\) 2 w>o)

are not. A physical consequence of localizability is that,

provided a solution exists, on-mass-shell S-matrix elements from

localizable Lagrangians are expected to show Froissart high-energy

boundedness (see Ref. 9).

The definition of the Fourier transform (2.10) is made

2
difficult by the singularity at X =o in p:ql' ()(3 . The
1y,

Gelfand-Shilov procedure for evaluating the Fourier transform of

n
a distribution like (1/x2) may be illustrated by considering

£cxp: 3 (efP_ 1) (2.12)

for which the '"superpropagator" ST)() is

S"‘"P(ﬂ = <T< {WP( ¢(x\) i&(P (¢(°)>>> (2.13)
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Formally

Sﬁxp (x) = gt :°§ (-i’?“ [A(x}]n

(2.14)

with A(X) = <T ¢(x\¢(o)> = e ' (2.15)

for massless particles. Take the Sommerfeld-Watson transform,

namely
Smp(x\ . j | Y £ D0x) lt
) Tm c |’(2-+1_) bvant (2:16)

The contour C encloses the positive real axis (¢ 1 too0 ).

Rotating the contour parallel to the imaginary axis, the Fourier

transform may be carried out to give

~

3 (e (e feyr (YT M) )
P P 5 (P‘B M) Miz+1) bomrra 21

o<kex<|
Fourier transforms are generally considered in Euclidean metrics
( p*< © ) and the transition to the physical region made by

analytic continuation.

For a rational (non-localizable) Lagrangian,

P9 .
Lear = l+£d ° (2.18)
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Senc ()= qv 2.~ (£28060)

(2.19)
f The Borel summation method uses the relation
00
- "
n) = S AT e SS (2.20)
o
to formally write
Spae (V) = 3LZ f dlg € (.C‘/_}.(XBSB
n=o °°
. (= | -3
= f e atg
o l—-F’A(x\E (2.21)

To define a physical superpropagator, this approach takes the

principal value of the integral in the g—plane. The Gel'fand-Shilov

"

Ld
method for OSggr then goes through in a similar way to  Sgyp

(equations (2.14) to 12.17).

\al
The use of distributions like (‘/x‘3 leads to ambiguities

coming into the above-mentioned techniques. For a full discussion,

see Refs. 3,8. The resulting "b-ambiguity" means that in (2.17) one

should really replace I ] by [‘_wi‘ + Bl—?\] where

Fora mx

b is arbitrary. Lehmann and Pdhlmeyer10 have shown that there
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exist criteria by which one carr satisfactorily eliminate such
ambiguities from localizable theories. In rational Lagrangians,
such as the one in (2-4), the "Borel ambiquity" in the principal
value further complicates matters to prevent these criterlia from
being applied. The difficulty in the rational case is ascribed
to normal ordering, 3 but not yet solved.

In the rational co-ordinates taken for the gravitational
figld in the following sections the non-locallzability is taken
as only apparent since exponential co-ordinates could just as
weil have been taken and the results expected to be equivalent.
The rational form is taken in most the early gravitation work
(e.g. References 4,5,6) since this arises most naturally out
of the requirements of general relativity, but exponential co-
ordinates (e.g. eguation (1.4) are becoming increasingly popular.
(e.g. Ref. 3). However, no rigorous equivalence theorem exists,
though the mechanism for removal of infinities to be described later
is bhasically the same. In either exponential or rational cases,
the numerical results of preliminary calculations which estimate
the magnitudes of gravitational effects are pretty much the same.

Specifically, b is taken as zero.

R e e T U .
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QUANTUM GRAVITY AND INFINITIES

The recent revival of the idea that the non-polynomial
coupling of gravity to matter may proviée a damping of the infinities
in field theory started with a demonstration of gravity-modified
quantum electrodynamics by Isham, Salam and Strathdee4’5. As they
point out, even classically, the electron self-mass ( om ) is
infinite. TIorentz's calculation gives Sm = e/ R (R is
éhe radius of the electron). For a point electron (R—>» 0), &m
is linearly infinite. Ref. 4 traces the subsequent history of this
singularity. Using quantum electrodynamics Wallerll showed

Dirac's equation to give a quadratic infinity, but this was improved

on by Weisskopfl2 using positron theory, which gave (to second

order)
Sy, bt Gam oy =
- 4w R—>D Rm + finite terms  (3.1)
.
(&— yv

The logarithmic infinity in (3.1) led him to suggest a critical

length Rcﬁ& where the theory would need alterations

Raie 2 7',\ exp (" '/o(,x X107 ! (3.2)
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Subsequently, the well-known Feynman-Dyson procedure confirms
this result, further introducing another infinite quantity
self-charge (3€ }— but de and ®m are seen to be unmeasurable
quantities, so however unpalateable, their presence need cause
no trouble. 1In hadron physics, though, electromagnetic breaking
of internal symmetries opens up a way in which the infinite

mass shifts are observable and measurable.

The standard way of introducing gravity into any theory
is by the renquirement that the equations of the theory be
invariant under general coordinate transformations. In Lagrangian
language this means that the action integral jd'*xi[x) must be
invariant under this group, implying that the Lagrange function
must be constructed so that it transforms as a scalar density
with weight =1. The "weight" W of a quantity :S:C transforming

as a tensor density under general co-ordinate transformation x— %’

is deflneldﬂf).y. ] f{_}i W _a_)(_’/s‘.” ..a..ﬁ.r . ,:),)-,
BRI b e Ix§ Ix” R
where [dﬁdx'lis the Jacobean of the transformation. Tensors are
tensor densities of weight zero.
A Lagrangian of weight -1 can be generated from any lorentz
invariant one by the following rules. Firstly, replace the Minkowski

metric, PL/“" = o(a'ag (1, -1, —I,—l) , wherever it appears in the

Lagrangian, by the Einstein metric, 9/MY(x) . Secondly, replace
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the ordinary derivatives of the fields by the standard covariant
derivatives of general relati;ity. Finally, adjust the total
weight of each term in the Lagrangian to -1 by adjoining to each
a factory | dee A pv I-':.'! which transforms as a Lorentz scalar
with weight w . The crucial point about this last step is that
it renders the new Lagrangian automatically non-polynomial. To
the Lagrangian generated by means of these rules it is of oourse
necessary to add a purely gravitational term. The graviton
field P/V(X) is defined by

< PO = gy = WY

(3.3)

so that 9/“"’ reduces to the flat space metric, Vk/'“’ , as ?S/N_) (o}

It has been established5 that the scalar gravity replacement

B/ — e ) (3.4)

/ (3.5)
(141 g1

and so

\(Ael: g/wl —

gives numerical results essentially the same as tensor gravity,
and use of the scalar field ¢(X} is a very convenient simplification.
Denoting the fieclds in the original Lagrangian by ch(xg '

the overall modification now reads:
veo
'L(Ax)aﬂﬂﬁ)q ) 7

L (A lpY ™™ DAg (4 B) 8 ¥ g) )

+ f (gravity) (3.6)
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Wy 1is the weight of the field R, D/M is the appropriate

covariant derivative.

The calculation of a finite 3¢ and dmwith a graviton-
electron-photon Lagrangian was partly motivated by the results
of Glimm and Jaffe13, whose field-theory models suggested that
some of the infinities could well be intrinsic to the type of
Lagrangian considered, and not just ascribed to technicalities
involved in an expansion about e= O . If this were generally
true, it would be essential to introduce a fundamental interaction
effective at small distances ( Rcﬁb ). It is an old idea
to propose gravity to remove light-cone singularities since
zero-point field functuations of quantum gravity might cause
a smearing of the light-cone, the definition of which is gra?ity—
dependent in any theory of light and matter propagating in a
gravitational field.

The minimal modificatlon to the Dirac Lagrangian

'-(D= Q\PK/“\PA/«

(3.7)
(\k and ﬂr are electron and photon fields respectively) taken
in refevence 4 is

_VEATY

[det (Mt kg @/) |

{G( = € (3.8)

The tensor gravity calculationS gives essentially the same results

as o simplified treatment with

¢+

do- e Tty v (3.0)
(1+ Kgq P(%B)



94

The corresponding Feynman graphs are shown in Fig. 2.
Evaluating this with the non-polynomial techniques described
in section 2 - namely the Borel summation of paragraph 2-4,
with (- ‘(3 - one obtains

w ——
(5"'\3 o €‘j A02) §0{§
e o X4 ‘<j1§ (3.10)

Without gravity one would have had the logarithmic infinity

) dm o et e d tx
vy R—>0 (xz)‘- (3.11)
Ix| 2R
In fact,
(Et_ﬁ = é—o-( &-3&’3 + terms of order & and K&
" G Y ke viA
~ Z
1\ (3.12)

with i, :((z.z)x !o;”') m™!

With an eye to possible more fundemental developments, it
is often noted that the cut-off appears to come at a length
related to the Schwarzschild radius of the electron, RS(;,,,\,.,E%
since cut-off A Y AL Ksohwarl-:z /Ml( . No real discussion”

of any reason for this has yet been put forward.
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"Strong gravity" is an extension of the concepts discussed
so far, and thought to be more applicable to strong interactions,
The separation of hadron from lepton electrodynamics occurs in
the vector dominance model. The photon interacts directly with
leptons but only indirectly with hadrons through a mixing of ¥
with the f-—hh-¢ combination. It has been hypothesised6 that
analogously, the graviton couples only indirectly with hadrons,
through a mixing of gravitons with massive spin-two strongly-
interacting mesons. ©One would obtain cut-offs for ultra-violet
infinities in a similar manner to that described already - with
the role of Einstein's gravity played by the massive tensor mesons.
The coupling constantk,, , analogous to Kj y would now be much
larger - to within an order of magnitude, equal to the inverse
of the mass of the tensor meson. In this case the cut-off comes
at Km ' 2" a few BeV - similar to that used arbitrarily in
strong interaction physiés. However, the terms of order K and km |
tan small to he considrered in the "weak" gravity case, will now
not be negligible for such a large kK .

The implications of this hypothesis go further than just
damping infinities. 1In strong interaction physics, a theory is
envisngcd6’14 in which tensor mesons universally cnuple to the

hadronic stress tensor (based on Einstein's equation for weak

gravity:

= ! - k
G‘/«v‘" /‘V'/ZG/““R = "‘1 —’;Av (3.13)
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&
where K= 9/ R/u-v ) K/\,\, is the contraction R /u,(\)

of the curvature tensor

F P
K/\M(V F/,..,(

PE AT -CET. e

1V— /vy &8 v o

and Tm, is the energy-momentum tensor.) Spec:ulations3 range
from using strong gravity to work out general relativity geometry
inside hadronic matter, to the prevention of "gravitational

collapse" in objects on a cosmological scale.

The possibility of a "strong coupling" for gravity is

considered in addition to ordinary gravity in the following.
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THE TTHT°® MASS DIFFERENCE WITH GRAVITY

The internal SU(2) symmetry of pilons is broken by the
electromagnetic interaction. A physically reasonable theory
of this mass shift exists, but which nevertheless gives an
infinite result. The Lagrangian into which gravity will be
inserted is that of Lee and Niehls. Whereas for soft pions
they obtain a result close to that observed experimentally,
,for massive pions the mass difference becomes logarithmically
divergent. The same result was obtained independently by
Wick and Zumino16 and is the same as that from current
algebra17.

Lee and Nieh15 construct a phenomenological Lagrangian
appropriate to the group SU(2) X SU(?2) which includes pions,
f mesons and. axial vector mesons (A, mesons). The Wt— T°
mass difference is then calculated to order et by considering
all the tree diagrams for the process T 1T+ _f"-——v'”""-t‘ fo
and closing the f’°-‘3-:f” loop as shown in Fig. 3. The

relevant vertices are given by
L= -9 Fp (mx3n)
+ J'ig (,J—Z—’MY)-I(()/,f\;“ bv:?f.y'a/u_rl X a\)l-T

+ ';q’(;f,xly

~|=

9 (IJ?MIY,( » A \y—dy 2{2 )-{a/u]e\,_av]eﬁ) X T

= L9 (Rm)” (f’r’fv‘avfry'(g‘—/*'“@‘ﬂv'“vlf}
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g ) (gm g ) e T
T (6/63 Mgl S/u A'/-A

(4.1)

where fq/.,, , T ,_§/M and _@_’/M denote the photon, pion,
Y -meson and A| fields respectively; MY is the mass of the

€ -meson,
For zero mass pilons (/m__; 0), the answer is finite and
in reasonable agreement with experiment

' ,'A'L(TT-}-B_/V‘-L(-,TD)E g/“?- = % . M\r1 . 22 (4.2)

which gives the mass difference lez 5.0 MeV, the experimantally-
determined value being 4.6 MeV. When the pions are massive,

however, (/\,‘11‘:0) the calculated mass shift is logarithmically

divergent. To order (/'v\/rv\g\’L

1 1 M,
e Zom 9 2la s {“;SL[AM 7“&1- + gl«,\z_

-f.-—’-\M_A_z
8 W\SI

(4.3)

where /\ is the ultra-violet cut-off momentum. This relation may

be expressed in the form

3w i A
- Va4 — —
g/"‘ = 6.0 MeV+ uﬁ% me (4.4)

Nln

—— e o e e pm——

et w g m — p ————— o=
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It is this logarithmic infinity which it is hoped will be removed

by introduction of gravity.

4-2 The inclusion of gravity is carried out by modifying the
Lagrangian of Lee and Nieh using the techniques of Section 3.
The most convenient co-ordinates for the calculation are those
in which the weights of 3ll1 the fields are equal to zero. The

Lagrangian of equation (4.1) now becomes

{= “9% (j_rxa/.,r_rywkqﬁY'
¥ -’%. q (IJ?MS)..I(a/A;v— avf-/»)' afalr X 39_71

+ 4 6"‘<@f¥lf\1 O+ kg)”!
(J'i'ms\"(a al, v._/“)( ) fy -a,,je YxIr

—%(fm\ (G gy =ov g )2 %01 ~a) x 4

)
) w (e )™ [W fv-f’vff}x_tfj’“

(4.5)

ul)
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Covariant derivatives qr (vhich would involve couplings

to %ﬁ¢>) do not appear in the above since 18

D Vv - bv _\{ = a/m_\_/v — dv .\-//u (4.6)

DT - 3.1 (4.7)

for r a scalar field. Note that only the rho-photon and some

of the rho-pion vertices are changed. Those involving A;
mesons remain the same. These modifications correspond
diagrammatically to the inclusion of superpropagators between
some of the vertices in the diagrams of Fig. 3 as shown in

Fig. 4. However, the explicit calculation of diagrams involving
more than one superpropagator is at the present time an unsolved
technical problem, and we make the approximation of including
only ona superpropagator in each graph as shown in Fig. 5.

Since only one superpropagator per diagram is sufficient to make
the theory finite, this approximation still retains the main
features of the gravitational regularization. The originally
divergent diagrams have only onc superpropagator anyway (Fig.

4 (c), (e) and (f)), and diagrams in which superpropagators are
neglected gave finite‘contributions. The inclusion of the otheor
superpropagators would serve only to modify slightly this already

finite answer.
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The calculation is performed by the standard Volkov-Salam-
Strathdee momentum-space method for non-polynomial Langrangians,
as outlined in section 2 and reference 8 (Volkov, Salam/Strathdee).

The superpropagator in configuration space is given by

G(x) = < T[V [¢0)] v [ p(0)] ] >° (4.8)

where

v[p] - Z (qﬂzﬂ (4.9)

which gives in momentum space the (massless) superpropagator

Ap)s mv\‘T” do [E]" ot
P z e banme Sivira
A-ie
X (=p?)F (x+)) (4.10)
- P Y Mz -1)

where -)<ad 0

The pion mass difference may now be computed from the diagrams of

Fig. 5,

. 2tk d ¥ 1
OLE % ! (;g/» /w(k)D (1, )\G( k“ﬂ,)) (4.11)

vhere (with b1=/”1 and the A|mass “szﬁf?’my )R

M () = [ } ( <~ (— —
ko] L5 ""sz (p-k) =

[(p—k)x h«s ¥ Fu (["k}g + (P“kx\{})‘ k\p t P“‘P{S]
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[Mew 185 = (M B Y (gg RE =g ko )
() (g V¥ (s ke b kY g Ko ki |
¥ ’l'tS —(ng?)"'(qT.g k? — k,t_ks)

- (————\(m o K= kp ke
((P L y Y )

(‘l"(ﬁ _ (j:k3:\([:~k;)§)(‘158 kz—- k@ kg\

(5 - kst )

S (4.12)

and Br“,(%’,):> is the photon propagator. It will be

instructive to work in an arbitrary covariant gauge parameterized

by >\:

2 3 - ku by \ L
D/w(k ) >‘3- (’Uw-' A —#ET X k2

(4.13)
In equation (4.11) the internal integral around the photon-

graviton loop may be carried out first and the rsult written in

terms of a "modified photon propagator" D }M,(k1)

. et [ Atk k2D (k*
S/w = %—- (ZTTY" M/"“’( ) /vlv( )

(4.14)

where
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/ 1 dt 2 = al
() [ D ()E((e))

Explicitly, using equations (4.10) and (4.13)

at+ioo
. 1x (
o (k)= 7 (4 f dz (-
r ’ A=t 00 (q:n'\ bra sin 2

M(2) Ay ( N a
At [y 2pge\
F(%\r’('-t—'\j (2m)t 17 4 )17-
X [-(mﬂ‘] .

(4.16)

Here we have changed the order of integration, the contour integral
will always be performed last in accordance with usual non-polynomial

techniques. Evaluating the:bintegral,

z 8! 3'% z-l
o (k) = EE I de (k2 / Vb (_,ﬂ
) Sinre tommz T(2)

1 '(I.,A_%_\_.A &_‘&()- 2z
i 2(2+1) ke s (4.17)
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Substituting this expression into equation (4.14) and performing

the momentum integration, to .order (/v«"'/ m\s'L ) one obtains:

aioo " 3%
-1 *
Sfa" = }-O_" . _L S Az (W\g K / T
g 7 aisd Sy, bt r’(a-)

T
I (z%_,\”n [(i; 2P 2T+ 43 ) 2

— (32 437 2 Cl=in)(y X]
(7'%+ g) Ff”(eﬂ}

) — A3
2(z+1)

(4.18)

which is linear in >\ . The contour along which the integral

in equation (4.18) is taken stands to the left of z = O, where

the integrand has a double pole. Collapsing the contour around
the positive r“eal axis also picks up the singularities at

7z = 1,2,3 ... which are tripoles. The full expression for 6}.,.7-
will be given at the end of this section (Equation (4.25) for

reference purposes. With N\ =0,

5.7\ 1 o( E Calk) Kt )
= 1 + _——
( o L 4w 6 T (4.19)

n=|

TIINGETT TN LTI R T s~

e e sy
P T

Lttt

s S ]

-~y

TP ataataanet

A —
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where

(51\_ =§&ms 2w2+,aﬁ_{wr_ng.+_’zﬂlmz
i ™

8 K met (4.20)

and the power series coefficients are:

CalR)- ("‘L\" [{2.(2"-|3+ (). bk a
n-—\y |

“2pln) bt = 2 W) bn2a 4 2 ln) w{za)}
“L{(m Sn +ll:)2 L 3’/3)

- 2(1“.(n-‘>'/23~ 32 ) ¢n) + 27 B0

+ (z('ﬁg* 3%;) \Hn)—zwv\)) bl a

— (B« ) PIn) Wntan 4 ( (2n-5) ¢ (n)

=2 (tnt = 5, — 4% ) Pin) ) 2" bn2a

e e e

(4.21)
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where a = MS‘K" /'é. e
Pz WA = PR
W 2 M
Pn) 2 b h-\]%m

M. 9
W(n\. ¥z L}/(x\lh“

Note that 8/\4\"‘: ’?-/\A‘E/“

It has been pointed out in Reference 5 that computation with
only one superpropagator is not a gauge-invariant procedure. In
this calculation, the gauge-dependence ofJ/L. is made manifest by
the explicit appearance of the gauge parameter /\ in equation (4.17).
As a multipl'}erf of l@/wku /k"‘ it 1s harmless: after integrating
over R this part will vanish by symmetric integration. As a

multiplier of 2 tl pmv_ , however, it exhibits the non gauge
Z{z+1)

invariance of the result, since,as can be seen by equation (4.18),
A still remains in the expression for S/u" even after the momentum
integrations have been carried out. However, on evaluating

equation (4.18), the coefficient of A 1is only 0.005 MeV when

22Me_1 ) and still

-1
only 0.01 MeV when K=, of tensor meson theory (~~1 BeV 7).

k= k? of graviton theory (~2 x 10~
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The smallness of such gauge dependent effects increases
optimism that the problem of gauge invariance is not as serious
as one might first expect. All numerical results in SS are

quoted with )\ =0.

In the calculation described in paragraph 4-3 the weights
of the fields were all taken to be zero. A more general approach
should be able to take arbitrary weights and still obtain a uninue

result. This would involve a concept called "k -renormalization"

> which may be illustrated in the context of the pion mass difference.

It should be stressed that no rigorous proof of enquivalance
under field re-definitions is being attempted.

If the fields in the Lagrangian (4.1) are taken with
non-zero weight, then the powers of ( |+ K¢ ) at the various
vertices will be quite different to those of (4.5). The
approximations involved in taking one superpropagator per diagram
(Fig. 3) would then not be the same. However, for the purposes
of this illustration, we will take one superpropagator per
diagram as before - but field re-definitions will be generally

represented by taking for the form of the superpropagator,

l |
G (%) =
¢ <('+‘<¢(ﬂ\£ (1+ x pron )¢ -2

L is an arbitrary integer. G((%\ replaces G(X) of the

previous calculation. The massless superpropagator in momentum
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space is
a+io0 % -2
. 2 (= p*)
G‘(P-L\: {lﬁﬂ Ir Az ( K P
2 (¢ ] kuwanrz sinmz
A~ic0
X M{z+1)
M) P(x-1)
X P(4+%)
Pleer) OO
(4.23)
which reduces to (4.10) for{ =1. The net result of using
ax(b“'\ to evaluate
Sl et | dtk v(_@M ) (ZA\G 2
M= = g__, v (k-q)
CEdem ey T /“ ! ( k (4.24)

is that the integrand of cquation (4.18) acquires an extra

factor of [ L+ 1‘) *
M) O

This factot will introduce an < -dependence into the residues

of the singularies at % =0,1,2... in this Integrand.

Poth (S/A"\%:o and cn(K\ of equation (4.19) become

{ dependent.
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The full expression for ?ﬁn as a function of { and
the gauge parameter A is given below in equation (4.25)

et seq. Equation (4.19) may be obtained by setting {=1 and

N =0.

SF‘(K’)«,L\= SN;:O(K,A,L)

ol I e} 1h
4 L3% . m2 . ff:"‘_-.‘). KM Y salie, X £)
L S [ty (e=iyiad |\ tew?

Ne|
(4.25)

The term at the origin is

S 2 = LK\ L (24400 - 3 ()

16 162
(4.26)
and the power series coefficients are
N0 L A" (kL
S, ), £) = AL (kL) - A‘jzm " )
(2) ‘
b AL (k) = L , B
(n+) (n+1 (4.27)
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The quantities A(l), A(g) and B are

B, = 2(2"-1) *l(nr_5n19\2" (3 3—'1)
cel(Eee -Gy !
(0 (x,4) = 2 Cn(K,L\ D. + B, [(C“(K’OYL +

-]

A(:?(K't\ < CV\ (K, (.3 6,\ + DV\

(4.28)

where D, = 2".“ 2 + -/\A— 2" 2 gV\ + — 19
n MS 2 >ty

-3 4 2" (n-2) ]
Cnik, )= W (ELIV% L 2 W)= 2 () = W)

E. = 2" [7_%"‘2 + _’M’; {Z\A«\'Z (n- ')..3.‘. 1

q
-+ \M"Z ! )} :l (1.29)
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NUMERICAL RESULTS AND CONCLUSIONS

When K is put equal to Ky of graviton theory

=22 1

(Kj - 4.3 x 10 (MeV) ™~ ) the power series contribution

of the tripoles (equation 4.21) is negligible—2 x 10—35MeV.
The contribution of the leading dipole (equation (4.20) clearly
reproduces the ordinary zero gravity result (equation (4.3)

except that there remains a dependence onkK in the form of an

effective cut-off:

N ~ 47 (5.1)
K
The important point is that the ultra—viélet infinity in the
old theory has disappeared via the mechanism of the induced
cut-off. The ultra-violet infinity still leaves its mark
as a singularity in the K-plane and re-appears if the limit

K —> O is taken. Equation (4.20) gives
E/v\ = 6.9 MeV (5.2)

for massive pions. Thus gravity-modified hadron electrodynamics
produces a finite pion mass difference not much greater than

that observed.
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A rigorous calculation of the effects of tensor
meson dominance of gravity'is not possible at the present
time since the analytic form of the massive superpropagator
is unknown. Also the effects of the approximations in neglecting
superpropagators become more serious, However, if one assumes
that the behaviour of the zero mass propagator provides a good
approximation to the massive case, the effects of strong gravity
may be estimated by extrapolating to large values of WK .
For values of k of the order of one (BeV)—1 the contribution
of the tripeles is no longer negligible and the whole of
equation (4.19) must be taken. Taking as a typical tensor
meson mass that of the £(1260) , Figure 6 (4 =1) shows Skn as
a function of g . The variable on the axis is the quantity G

defined hy

-

Km = — (5.3)

The range of ( typical of tensor meson theory is

o' < G < IO (5.4)

It can be seen from Fig. 5 that the value of @M decreases
from atout 5.7 MeV to about 4.1 MeV in this range, thus

enclosing the physical value 4.6 MeV, The curve does not
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start to rise appreciably towards the weak gravity result
until G ~10"% and so this cannot be drawn in. (As

G—o, S/‘"" %o logarithmically.)

If one wished to estimate the value of k in a tensor
meson theory, then the decay channel of the approprlate meson
would enable a direct physical evaluation to pe pade. In the
representation of field re-definitions taken in section 4-5,
a naive physical argument implies that since the relevant
meson —» 27T term in the total Lagrangian originates from

the expansion

OuTT O, TV
U W S I S
Y PTOMTT) ) — (k) P+ (5.5)

then the coupling at the vertex is proportional to k:€ -

Thus, approximately,‘one would expect that the physical
coupling constant K”\wns "renormalized" by field re-definitions.
In a full tensor theory, the dependence of k, on ¢ will be

very complicated. In this scalar example, roughly one expects

Kaml4) ~ K. L (5.6)

Since a detailed spin-two meson calculation was not
performed for the pion mass diffecrence, an accurate text of
a "k -renormalization" effect or comparison with an experiment

like {._9 217 is not possibie. However, it is very interesting
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to note that with the inclusion of Eﬂ(p‘\ as described in
section 4-5, in the region’ (5.4) Sfa(KyL\ shows approximate
dependence on the single variable k4., Figure 6 shows S/A as
a function of ("bare") k for various values of { and Figure 7
shows S}A as a function of the variable K, = k.{ for
the same { values. All the curves in the latter lie close
together in the strong gravity region, though there is no explicit
k& dependence in the expression evaluated. This indicates that,
within the model taken, a renormalization of coupling could be
occuring.

The effect also happens for weak gravity, where the
power series in k is negligible and only the log terms survive.
Then, since K{/(L\ behaves like (o-jﬂ (especially for large £ )

the typical combination [‘013-{; —-LF’(fz] will behave as

Lw) (kL) -

To summarize briefly, the pion mass difference provides
a quantifiable test of gravity-modified hadron electrodynamics.
"Weak" gravity gives numerical results - though finite - a
little too high (6.9 MeV). That weak gravity is not completely
unsuitable to regularizing strong interactions stems from the
hadron model whose logarithmic ultra-violet divergence is

proportional ﬂ)fﬁl . However, extrapolation of ¥ to values
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representative of "strong'" gravity for which
g’ g Y

lo=' < k. mg < 1D

gives 5. TMev 7 S/u 7 Gl MeV (5.7)

indicates that a complete tensor meson theory would give a

more physically reasonable prediction.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.
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~o [2)

Schematic representation of FZ?. (5)

(a) Electron self-mass graph.

(b) Modification to (a) with graviton
exchanges.

Feynman graphs from the chiral Lagrangian.
The wavy line, double line, and thick

line represent the photon, pion, rho and
A , respectively. (a), (b) and (c¢)
differ by the powers of momenta at the
vertices; similarly for (d) and (e).

Full gravity-modified graphs. The dotted
line represents the multi-graviton
propagator.



Figure 5.

Figure 6.

Figure 7.-

Single-superpropagator graphs evaluated.

$}AL as a function of "bare" coupling
constant K . G = ke™Myp | with
values between 0.0 and 10.0 for strong
gravity. The curve rises below & = 0.01
and eventually becomes infinite for

G = 0.0. The weak gravity result is
indicated.

Sf“- as a function of "renormalized" k{
fee. GA( = Kk, -wig ).
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Fig. 5
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