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GENERAL INTRODUCTION AND ABSTRACT 

Part One of this thesis is concerned solely with the 

"strong" interaction of hadrons. The concept of "resonance" 

dominates the descriptions of all such processes. Though it 

is debateable whether or not one can give the status of 

"elementary particle" to a resonance, the resonances certainly 

have sufficient identity to be detected as final or intermediary 

states of different reactions. A dynamical resonance model 

(originated by Veneziano) is used to describe antiproton-neutron 

annihilation at rest into three pions. 

Part Two looks into recent ideas on gravitational effects 

in elementary particle physics. It has often been thought that 

the gravitational interaction is too weak to be of any consequence 

in the subnuclear world. However, it is now believed that gravity 

is capable of causing a natural renormalization of infinite 

quantities in field theory. It is shown how gravity-modified 

hadron electrodynamics gives a finite and experimentally testable 

value for the Trt —Tro 
	

mass difference. 
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1 INTRODUCTION TO PART ONE 

1-1 	A dynamical model for strong interactions, based on one 

originally suggested by Venezianol, is applied in the Niqr=„1---'),311 

decay channel. This enables the basic structure of this type of 

model to be directly confronted with experimental data, leading 

to insight into the phenomenological nature of both the theoretical 

model and the observed production of pions and their resonances. 

Indeed, one of the first successes of Veneziano's model was its 

application by Lovelace
2 to antiproton-neutron annihilation at 

rest into three pions
3. Doubts over the accuracy of this prediction 

have led to alternative prescriptions for describing this process, 

either within the Veneziano formalism or even by turning back to 

non-Veneziano sums of resonances. A detailed investigation of the 

relationship between this experiment and the various Veneziano 

prescriptions for it is carried out - including a new and more 

accurate determination of the form of the relevant four-point 

amplitude. Essential parameters are found by fitting the two-

dimensional surface of the Dalitz plot distribution directly. A 

phenomenological interpretation is given - i.e. a description is 

made in terms of pion resonances, which are directly or indirectly 

observed in other processes. 



1,2 	The Veneziano model has had success in being able to 

correlate different particle reactions with few arbitrary parameters. 

Such "global" predictions have not been very accurate, however.
4 

It has been hard to obtain really close agreement in any one particular 

process because of the difficulties in implementing unitarity and 

unambiguously fixing the coefficients of so-called "secondary" 

Veneziano terms. The accurate investigation of the low-energy Tin.--,3-rr 

is thus especially relevant to these problems. 

17.3 	Section 2 outlines the features of the experimental data 

on pt---1' 31T , stressing the inconclusive results of Breit-Wigner 

parameterizations. Section 3 is a brief statement of the kinematical 

notation required for the description of the various NINI T=1 channels, 

and a brief derivation of some of the relations between the different 

isospin amplitudes. These relations are important in choosing the 

manner in which the Veneziano ansatz is introduced, and also in 

evaluating its predictive power. Section 4 introduces the concepts 

encountered in the Veneziano formalism and its extensions. Section 5 5 

firstly reviews the earlier Veneziano model descriptions of TA-, SIT , 
showing their detailed structure in a two-dimensional Dalitz plot 

representation. Use of a technique for fitting directly to the Dalitz 

plot surface, thus using all available information, shows a secondary 

term structure contrary to earlier analyses. Agreement with data is 

obtained using far fewer parameters than the phase-shift approaches. 
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Section 6 gives an account of the partial-wave structure of the 

amplitude so constructed.
6 

The major items of significance are 

recalled in Section 7. 
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2 	EXPERIMENTAL AND PHENOMENOLOGICAL FEATURES OF fr\--1, 311-. 

2-1 	In the experimental Dalitz plot
3 (Figures 1, 2) the out-

standing structural features are the central absence of events and 

the strong enhancements near the s-axis. Such features have 

their origins in the dynamics of the process since the kinematic 

phase space is a constant distribution over the area of the Dalitz 

plot. The details of the phase space are summarized in Figure 3. 

Since then system decays at rest in a 150 .  , isospin T =1 

state it has the quantum numbers of a heavy pion; Mandelstam 

2).L  variables s,,tA can be used, with s.,(1)n--013rro, ilkplr.1.111.17and 

eTri- 	)1. 
One would expect to see bands across the Dalitz plot 

% t 
corresponding to 11M -resonances, for example at 5,:rn1114)/A1l 

and no bands at tiir: constant, which would mean exotic Trir resonances. 

The expected band structure is drawn in Figure 4; though the 

data is not inconsistent with this - for example, the major 

enhancements correspond to some of the intersections of the bands - 

band features are not clearly defined and an unambiguous resonance 

interpretation is by no means immediate. 

2-2 	No satisfactory phenomenological explanation of the an 

rinn final state in terms of resonances has previously been given. 

Attempts to fit the distribution using Breit-Wigner parameterizations 

usually consider as candidate final-state resonances those particles 

classifiable as Regge recurrences and their "daughters" (Figure 5). 

11 
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Recurrences are particles whose spins and masses are approximately 

linearly related - in fin----311" , for example, the f,-f and 3 

mesons (with spins 1, 2 and 3, respectively) lie on the .fdegenerate 

trajectory: 

D((5) = 0.483 + 0.8855 	 (2.1) 

so that 0C. 	. 1 

0<cA L) = 2 

vAll  ) = 3 

The daughters are those particles which have approximately the 

same mass as a particle on the trajectory but lower spin values; 

they will lie on lower trajectories parallel to the "leading" one. 

It should be stressed that this is, for the purposes of this section, 

only a classification - graced by hindsight. Thus one might expect 

.the 	and) mesons to be participants in this region of phase space 

and also any of their daughters, though other possibilities are not 

excluded. The 	mass occurs close to the phase space boundary 

so consideration of the y-f regionis usually stressed. 

2-3 	The Syracuse-Rome group
3 
who carried out the experiment tried 

fits with coherent sums of Breit-Wigner terms for the f,.f,E and 

an exotic -r =2 resonance. Added background contributions were found 

to be little help. Their results were inconclusive. The best fit 

indicates that the y contribution is, surprisingly, consistent with 

zero; also, thei contribution is large, but presence of other resonances 

in the i• region could not be ruled out. 



A more recent phase-shift analysis7 uses fourteen parameters to 

effect a fit using more daughters and no exotics. They agree with 

the absence of S,  , but support an S-wave el  particlein the -f region 
indeed they indicate (but not conclusively) that the S-wave final 

state resonances dominate. The hole in such formalisms is accounted 

for by the cancellation of overlapping Breit-Wigner tails, though 

no statistics are quoted for this. 

To summarise the general attitude of the phenomenological 

analyses: there appears to be a "decoupling" of the higher spin 

resonances, especially they, and a daughter contribution not easy 

to handle using standard Breit-Wigner type parameterizations. 
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3 	KINEMATICS: SU(2) - SYMMETRIC AMPLITUDES FOR nIKi --311' PROCESSES 
"r.  1 

.. 

	

3-1 	 Following Shapiro's version of the standard notation for 

7nT-,7nr scattering (see Figure 6) the S matrix is written: 

S= 1 - i (2i 	E tf. 	L.1:, pi 	F . 
Mdcba 

(s,t,u) = - 	cc4e-bgt ( 5, 
 E, LA)  

where a,b,c and d are isospin components in a system of Cartesian 

basis vectors and 

14 

(3.1) 

(3.2) 

	

= (Pa 	Pb):
t 	

(Pa 	Pc
)2 

u = (pa  + pa)2  

s + t + u = m
a
2 + m

b
2 + m

c
2 + and 

 

The physical particle states are 

yrri- 	= 	( I 7rI> --1- 	W-27) 

( IT1r > 	171.2 
A57 

	

IN .7 	17r3> 

(3.3) 

(3.4) 

Th'-  most general amplitude satisfying Bose statistics,,isospin 

conservation and crossing symmetry is 

Mdcba 
(s,t,u) = A (s,t,u)gab col + B (s,t,u) &,,c 

+ C (s,t,u) ga,1 	 (3.5)  

where A (s,t,u) = A (s,u,t) = B (t,s,u) = C (u,t,$). 

If one works with the function defined as 

A (t,u) E B (s,t,u) + C (s,t,u) 	 (3.6) 



which is symmetric in its two arguments, then it completely 

determines the amplitude via 

A (s,t,u) 	sl(5,0 -t- A(ut,0 —  ANoA)1 
T The s-channel isospin - T amplitudes ns  are given in general 

by 0 
A5 	= 3A (s,t,u) + B (s,t,u) + C (s,t,u) 

ASS = 	B (s,t,u) - C (s,t,u) 

= 	B (s,t,u) + C (s,t,u) 

and so in terms of the s-channel T = 2 amplitude, which is 

defined in equation (3.6), 

[4(s10 + 	(s, EA)] — z A (,t,t1 

4(5,E) 	(s, (A) 

15 

as 

A °  3 

A si  

as1-  

(3.7) 

(3.8) 

(3.9) 

N)3 3-2 	The Veneziano ansatz is usually written down for 1(1 '19  

Though the most general form offi(tAin terms of a possible symmetric 

ansatz V(X,1), having poles in x and y, is 

A51.:-.:AR)v)= 1/(ElrA+ 	[V(5,t4)t V(SIO] 	(3.10) 

one can use the condition that there be noTlresonances to set -F=0. 

Thus given a structure of V from a dynamical Veneziano model, the 

assumption of absence of exotics leads to the postulate that Pi(6)1A -z-- 

45V(0A). 

3-3 	In the decay channel X-)3TT for a particle X having the 

quantum numbers of a T meson, the matrix elements for the various 

decays are picked out of the function (l of equation (3.5) as follows: 

M 	Tr.f. 	11-2—)=. 	C( 	s) + 	(ut, E-, s) 	A(5,0 

	

where s = 	(pert -+- pr-' 

	

t = 	
Tr+ -t 7r2 1 



MC 	TT7,0  71--) 	= A (s,t,u)5- 2  [11(510+ A(tAi -I3(  IA\ 

	

where s 	41 7r 0  + P ° Irs 

• rIr ° 	(011-11" (  

m(x°--,,R 11- (r o) = A (s,E,LA) = z [A-(s, 	i-A-(tAis)— A (6041 

	

where s= 	(pr-f- 	p,— 

)1- 

M (X°--711° 11- °7r°) --, 	A ( 1-0A1 + (S(s, F,0A) + Us, tA) 

	

where s = 	prrtov- 

	

t 
	

(r7r, 0 
	 (3.11) 

Hence the decay rates (proportional to the Dalitz plot densities) 

for the different NN A channels are: Tr 
R (17,A 	ir-t- Tr -Tr- 

R 	Tr -norT°) = LN I Af s, + 	— Aq,(A) 

R (hr __,Tro Tr. no) = 	N A(si0 + 	LA) + A (e, tAl 11  

R (1;13- -n-+71--rro) 	NI IAN, ) t  A(c,U\ - VE,tAT 	
(3.12) 

where N is the normalization constant. 

3-4 	 This last paragraph will derive relationships between the total 

decay rates of the processes in equation (3.12) resulting from the 

various symmetries of the three-pion final state. Especially useful 

in later considerations will be the bounds on the ratio 

(13F--). Tr* IT—  n-°) 

IS-ror ( Fri 	wt Tr- Tr—) 
(3.13) 
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given in equation (3.21). R-roT  is obtained by integrating over the 

available phase space, accounting for the symmetry of any identical 

particles in the final state. The basic phase space is that for 

a 7ri'lr- Tr°  final state where s,t,u (subject to s + 	+ u = 

IIRMNji.  3/0') take all values allowed by energy-momentum conservation 

(see Figure 3); if there are two identical particles one must 

divide the integral by two; if there are three one must divide by 

six, corresponding to the six equivalent permutations of (s,t,u). 

Thus one has immediately: 

R-rar (r,v, 	rr-TroTro) 
	

RToT (15 p—* rrtn. -Tr') 	(3.14) 

with gTor = JoK(51 1:7 1A) olse4E 	where pis the region of 

Figure 3. 

One may obtain a second relation between these decay rates and 

bounds on their ratios by exploiting the symmetry properties of the 

amplitudes in the phase space integration, using a trick similar to 

one used by Zemach in Reference 10. 

Defining 

f:(5,0 = A(s,t) + A(t,U) + A(s,u), 	 (3.15) 

which is totally symmetric in s,t, and u, then 

LF 	 Ns, E.) dsoq- = 16 F (s, 	(5,0) asde• 

S D  F 	(s, 	A(E, tA) pis 	
(3.16) 

The complex conjugates of the three integrals in equation (3.16) 



are also equal. The decay rates of equ'ations (3.11) may be 

re-written in the form below.in order that the total decay 

rates simplify, 

M(ri- rr-a-) F(s,k) 	[AN, ut) + ft (5, tit) - least 0-1 

(Tr-Trono) Ty,  P(s,t-\ -45 [2A(E,tA)- /Vs' 	- 	(s, tA)] 

(Tro noTro) F(s t E) 

M (TN- Tr-Tro) = M( 	no) (3.17) 

In evaluating the phase space integrals, the interference 

between the symmetric and non-symmetric parts vanishes in 

view of equalities (3.16) and 

Tor (Tin-, 
N 	I F 	1P(s, v)l'cisaN -5: L 

R-rar 	 12) -= 
N 	[c F(s  oitolgoq.+  If c 	AR-, in) - 46,6) - A Is , tA) 	s 

18 

• 
i.e. 

L ' 	 Ni t,)-t-A(s,m)— zivs, 

2 3 b 

R-ror (fp----,3Tro) = 	TN,  --LIT 	IF(5,b)(1- olsoq• 	
(3.18) 

the integrals of the non-symmetric parts in the first and second 

equation of equations (3.18) above are the same, so 

R TOT (Fry "W-Tr°) = 2  KroT (TA 	-Tr iT ° 7°) 

= 2, [ Rrar T'n 10-  "ri "Tr 	 37r°) 
	

(3.19) 

The ratio 

R = 	Ri-oT (r'r 	-7") 	R Tar  ( fin Tri-Tr-7-) 

3. 	  

itipf,,olicIsd+i IRNAt A (5, tA) -2 A 	Ofscil• 

,r IF(S, 	dCoN 

3.20) 

In this form it can be seen that whatever model predicts A(s1O, 

(3.21) 



	

4 	VENEZIANO THEORY 

	

4-1 	Veneziano
1 

presented a model amplitude which is a crossing- 

symmetric sum of narrow resonances having the correct Regge behaviour 

in all channels. These resonances all lie on parallel linear Regge 

trajectories DC(S) - a condition strongly supported by the mass 

spectrum of the observed resonances. The form of this model relies 

on the asymptotic behaviour of the (=function (Stirling's formula) 

for its Regge limit and the pole structure of the r -function to 

represent resonances. The basic Veneziano-style amplitude for 

Irff scattering (presented in 1968 by Shapiro and Yelling' 8  and 

also Lovelace
2
) is, with the kinematical notation of section 3, 

Pt! — tes  (4.1) 

where Oes =W0 4-0eS 	 (4.2) 

In making this ansatz, absence of exotic resonances has been assumed, 

as explainrd in sectlnn 	5trictly mroldnq the properties Of 

the model are valid in the narrow resonance approximation (=Me< = O ), 

which violates unitarity. For any comparison of this theory with 

experiment the poles in s and t at integer values ofee5  and o< 

must be shifted off the real axis. This point will be dealt with in 

paragraph 4-5. 

That the amplitude is "dual"
11 - either in the sense of being 

a sum of poles simultaneously in the s and t channels or in the 

sense of Regge-resonance duality - may be seen from the expansion 

of the beta function: 

19 

ro—Des r(1-0eL) A(5,0 = 9 • 



then in the complex 

20 

Pl— vs) FY—  ok)  
r( — Des — 

Jc0  ( 4.3 ) 

The symmetry in s and t Of the beta function demonstrates that 

sum of poles may be in the s or t channel. Duality may be 

schematically indicated using quark "duality diagrams", the one 

appropriate to IV-  scattering being shown in Figure 7. 

Using the limit 

64) 

r7 (1+ot  

r4-1- 	— 
t plane, for any fixed value of arl 

be shown
8 

that for large t and fixed other than zero, it can 

(4.4) 

(4.5) 

Derol '5)  
r( ot(s) ) 

E. ozal 
oc(s) 

rim (s1) 

1,1  
Pis 

A s  

1" 

23_ Tr 	I t e rrec(S) 
z_ 

Equation (4.5) shows that 

S i 	-rrm(s) 

t .e—orbeisl 

s;rcrr Ls) 

the isospin  amplitudes, related to Pr(s, t) 

by equations (3.9) have the proper Regge behaviour. 

4-2 

	

	The expansion of 4 as a sum of poles (equation (4.3) 

shows that in any finite region of phase space, Fi can always be 

approximated by a finite set of poles in that region. Attempts 

to fit data by parameterizing a set of poles whose positions are 

indicated by Regge trajectories may violate duality, crossing 

symmetry or even Regge behaviour. For this reason, the discussions 

here on 	do not consider such models (for example Boguta
12 

and Pokorski/Thomas
13) especially in view of the accuracy of the 



full Veneziano formula described later in Section 5. 

4-3 	The existence of daughter particles occurs naturally 

in this formalism. The residue at a pole when (X(51=--j is 

a polynomial in t of order4ci . The residue is thus 

expressible as a sum of Legendre polynomials VCOS60 with 

and represents a series of resonances with the same 

mass but with spins AL= 01 	j . 

As an example, consider the S=miL(f.e. K(e.y)= 1.) pole 

for a real trajectory in (4.1). Using 	MO= P(1-1-1--) 

A(s,t) = 
	r(2--0(1) 	r(f  _t4,) 

I— 	— — (se_ 

21 

5 rv,T  

	 [ P, ol 9 
,‹I S 

whereof()  and a, depend on the expression for 

= 	5 	1 	r(i — (4. ) 
°41 	Ai 1-  s 5 — 	11( — 64  ) 

,- 	9 	I 	[ No  + Q('  E i 

near 0(5  1 

, which 

(4.6) 

is linear in t. A detailed discussion of daughter structure 

will be made with specific reference to Fn-,)31r in section 

using complex trajectories to give physical, finite poles. 

Equation (4.6) shows how the amplitude'5 pole at 5= mit' contains 

both the s'meson and emeson with well-determined contributions. 

It will be seen that this ability of Veneziano to specify daughter 

contributions can be used to eliminate some of the guesswork 

involved in fitting data, where with Breit-Wigners one has to choose okli 

the possible candidate resonances. 



4-4 	Without altering any of the basic properties (crossing, 

Regge &c.) the most general Veneziano-style amplitude is actually 

22 

oo 
A(s,t) = Z, r1= t rvt = 0 Chi ripi„,,( si (4.7) 

where rnv.va(S,E)=  11(n--b<s)r(r1 —NO/ r(v1+71A—  s —6< 
	

(4.8) 

The addition of such secondary terms (or "satellites") only 

alters the residue structure at a pole i.e. it changes the relative 

amounts of the various daughters at a pole. For example, for real 

trajectories the residue at S=11111  is not shut CID 01( 1-  Cu 

which simply has a different mixture of 3 and . 

Though the possibility of adding secondary terms is known 

as "the satellite ambiguity" - interpreting the C,1,,'s as 

ambiguity-constants - a more optimistic attitude (voiced for 

example in Lovelace's review, Reference 4),treats the satellites 

as occuring necessarily. Here, in some N-point function formalism 

a basic amplitude would be unambiguous and the satellite coefficients 

for all other processes could be specified by factorization of 

the N-point amplitude. 

A simple example to demonstrate the occurence of secondary 

terms is to consider the Veneziano five-point function
14 

for scalar 

particles, with identical trajectories in all channels. It has 

poles in all five variables 5i,c1  (see Figure 8) where 

( 	e ''- c+ i 

= 

(4.9) 



X 	- 	WO 6(23 	13`f• 

b(4.5  =3  , 

(4.13) 

64(41ml
—tell—) 	 a23-1 

) 	\ X (-1) 	d
i N23-1.6134  -045 -1X311- I 

(1-U14) 	(I- ul tA --- 
4.)  (4.14) 

0 

so at a pole 

Res F 
-3 

Generalising the Beta function of equation (4.3), which has the 

integral representation 

	

— 	— I — 
t‘i ) 	atlA.IA 	 Vt) 

0 (4.10) 

the five-point function F(sft , sts,s3to s4cI srl ) is 

	

Am; 	ber.-
1
) _ e(34- I 	 6(S1'.".1 "1 	(AZ 	,43 	4. 0 0 	(AC 143 

(4.11) 

where DCmF- 	S,t)=  of 1512 	b<0  , et cetera. The variables MI. 

are not independent and all the MIS can be expressed in terms of two 

of them. The symmetric form (4.11) can thus be written, after 

eliminating some of the variables, 

23 

= . F:  , cAu4  0 04m 0 
	

1- lAg )-b<i3-1 

U, tri 

•-• eet.. (i 
•-•1111‘44.) 	15  

( I — 	'(3‘f•--1  

1- MI IA 4. I 

(4.12) 

Variables U1  and til,f can approach the lower limits of integration at 

the same time, and so the non-adjacent variables Sand Stomay 

develop simultaneous poles, corresponding to Figure 9. The residue 

at a pole in one of the variables, say %s, may be evaluated: 

first write 

F ., I' 6401 kA:- c(m-1  0 -01)7413-1  II 	. 	
(1-- 	

6(
34

-1 
0 vvvitt(A4 
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It is now clear that the residue at j =0 is simply the four-point 

function of equation (4.10).for four scalar particles, with 5=-.S,t  

and E=!;2, 3  . For higher values of 	, corresponding to recurrences 

along the Ovtrajectory (Figure 10) this basic Beta function will 

be multiplied by additional powers of U and polynomials in 0411  

and o43  . Thus for a particle of high mass n ( °e45 (vnI)=-3 

on the fourth leg of the four-point function, secondary terms will 

accompany the basic Beta function. Note that the satellite 

structure obtained from evaluating (4.14) corresponds to the 

particle mass evii, spinj plus all the daughters (massn , spins 	). 

If one requires the satellites for a particular daughter, the spin 

component must be extracted. Thus the j=0 ((= ) four-point 

function has no satellites, and as the mass of this "excited leg" 

increases,more and more satellites come in. 

If the filr amplitude has few satellites then one would 

expect to see many satellites for pn-a3IT in this approach, as one 

of the external particles is a daughter. Since Regge trajectories 

cannot. depemd on the external masses (only es do )1  extrapolation of the 

formula (4.7) to X 3 'Tr decays is permissible. (For 	37r , I WS, 

is proportional to the Dalitz plot density). The N f\iTr I "particle" 

with pion quantum numbers is seen as a spin 0 daughter of a pion 

recurrence at s=lfrim  ; since 	4leit,j1  > 71  (".. I. I Grektv), N j\T 	is 

in the region where secondary terms are expected. An example of this 

15 
is the analysis of Squires, Rubinstein and Chaichan 	which obtains 
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five secondary et+  terms from two 85 terms for 1:70A 1 1T+, 71;17 

by mass extrapolation and extraction of the pion pole at bt„.(461,71,....3 

Further comments on this occur in section 5. However, since 

physics is currently lacking a global theory as indicated above, 

the 	will be regarded as unknown structure constants in the 

model. 

4-5 	To implement unitarity, or at least to obtain a complex 

amplitude to compare with experiment, the resonance poles in (4.7) 

must he off the real axis. One approach, supported recently by 

Lovelace
16, treats the real Veneziano as a K-matrix. Here, the 

Veneziano amplitude is projected into partial waves Vt(s) 	which 

are interpreted as being the K-matrix - i.e. the T-matrix is given 

by the formula 

TT  (s) 
R.(  (s) 

 

vs) R (s) (4.15) 

c(S) is used to carry the resonance properties. Unitarity determines 

the imaginary part of -r(s)  on the right-hand cut. However, such 

unitarization in one channel loses low-energy crossing symmetry. 

Another, older, approach, which will be followed here, is to add an 

imaginary part to the trajectory b 

II/NA o4(5 = A (s-4./01-) 6  0- (S- 47011 	g > O 	(4.16) 

tot_ is real below threshold. 



Lovelace2 originally used the form (4.16) in his amplitude 

for ph_ 3Tr , with 6=1. The motivation for taking 64 is that 

the pole, for example at 000=1 will then take the form 

1 

—egs) 	Airt  —5 — ( A/04 ' )(s— 47tAi-VP2- 
(4.17) 

(4.16) roughly correlates with the Breit-Wigner form (reles-lyilsr) 

Similar considerations probably led to the original Lovelace 

estimate of A = 0.28 ( GeV/ 	)-1  in looking at Teri—, 311' , 
since this roughly tallied with the E-width in the proposed 

amplitude q,(s,t). 

The Regge behaviour of 71 5 , Equation (4.5), is guaranteed 

along the real axis now, since In1WS)--,00 as S-Ar an. 

The major objection to the kind of parameterization given 

in equation (4.16) is that besides particles on leading trajectories 

and their daughters, infinite numbers of "ancestor" particles arise. 

An "ancestor" to a leading particle is one with the same mass but 

higher spin. These appear since the residue at a pole, being a 

polynomial in t%twill contain terms no longer finite polynomials 

in t. The power series expansion of 	in the residue 

shows that the residue now is expressible as an infinite sum of 

P4 (6v5150'5 , with 4z 01 1. oo 	For example, the residue in (4.6) 

is t),(, corresponding to a 3  and an E ifkis real. 
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With an imaginary part as in equation (4.16), the expansion 

bt 	( (-An.6t(s- w,sz, r ) 
t=t, 

will not only modify the contribution of cand6but also introduce 

an infinite sequence of ancestors. With complex 'trajectories it 

is not easy to see what the partial-wave structure of the amplitude 

is, and thus judge whether ancestors will be important in a.  

realistic situation. However, the partial-wave analygis of section 6 

tl 
(in which the functions 	(51  r) ri.( terS6') (cArc 	are 

explicitly evaluated) will show that the ancestor contributions are 

negligibly small. So in fact (4.16) may be used as a good phenomeno-

logical smoothing-mechanism. 

4-6 	To summarize briefly, the Veneziano model provides a sum 

of narrow resonances satisfying duality. The daughter structure 

is controlled by the secondary term composition. Ancestors arise in, 

the attempt to have finite widths to the particles, though this is not 

necessarily phenomenologically worrying. 

(4.18) 



	

5 	VENEZIANO SECONDARY TERMS FOR fir\---,,37. 

	

5-1 	It has already been shown in section 3 that with a Veneziano 

ansatz for A(1,0 with full satellite structure (equations (4.7) and 

(4.8)), the predicted decay rate for Fv.-1,37r - and hence the Dalitz 
plot density - is proportional to 1A(S1011.  (with S= fri(Trt) Tri-) 

). To have a more physical understanding of the 

relative importance of the secondary terms it is often better to think 

in terms of the coefficients C, which multiply individually - 

normalized 

Pt1s,0= 

in terms; i.e. WSJ) may be written: 

co I'  r- 	rr,„„(5,0 	 2._ 	„., 
n-1 on 0 	[fD 	(5,011AsdEl liz  pir u,v, (5.1) 

5-2 	The original attempt to explain this process using a Veneziano 

amplitude was Lovelace's2. In the first part of his paper, he 

constructs the WiT scattering amplitude (10  (Equation 4.1). Then, 

to judge the effect of mass extrapolation of one of the external 

pions, he recalls the f-meson "decoupling effect" indicated in the 

earlier phenomenological analyses (see section 2). The only term 

which contains poles at oC= 1, 2 and 3 with no f-meson is r7, . 
So by making this indirect appeal to the data he chooses to use a 

single termirli Ae) i.e. Cp=).0 and all other CC'S zero. 
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—ecs  )rtl— °q)  
rtz 	— ce0 
	 (5.2) 

contains only the e-meson, its recurrences, and their daughters. 

S -Regge behaviour is lost since the leading trajectory is 

missing. The Regge trajectory used is 

bes  c O. 4.23 t 0. sgs 5 + i. O.VS(5—IfytAlY.  015-- Ij4r0.) 	(5.3) 

The value 0.28 is claimed to give theE a width of 280 MeV. 

It is interesting to note that of all the individual 	hM s , 

1', shows closest agreement with the data, even though it is not 

particularly good. The Dalitz plot distribution given by CI is 

shown in Figure 11 (a). The Lovelace model predicts a depletion 

in the centre of the Dalitz plot but it is not steep enough to 

satisfy experiment (Figures 12 (d), (e) and (f). In addition, the 

experimental distribution shows concentrations of events along bands 

of s and t, enhanced at some intersections. This model does not show 

quite the same enhancements away from the two major ones (5-==vvi 
5 ) 

5= E = yv,.F1-) 

5-2 	Altarelli and Rubinstein17 (hereafter referred to as AR) 

concluded that a single term in (5.1) is insufficient to explain the 

Dalitz plot distribution satisfactorily. Its most striking feature 

is the hole in the middle which occurs at values of s and t such 

that 	Re. (ocs 	3 	 (5.4) 

Due to the pole structure in rkfm—tes_bet,))  a large denominator 

occurs in those terms of (5.1) for which 	AA 	(5.5 ) 

The form 	rid 



So, motivated by direct considerations of the data, they proposed 

14(s, _,-. c,, NI —As)11(t —t/t-) 	c„ r(i—ks)r'(1-64.) 	cLo  rqz-u,11-7(z 
rib --005 	 (1(2.—ocs 	 r(t- beS 6e0 

4 	 cz, r(1-.esv7(z--to 	c30  r(3-6(s)  P(3 —c4) 
(5.6) be,c) 	r(3--escs  thee) 

They fit the two invariant OrfOr-)and(T1—,71—) mass-squared 

histogram projections with the five coefficients C„min (5.6). The 

Regge trajectory used in each of the five terms is (5.3) - and, 

in particular, the same imaginary part occurs in each. Their best 

values obtained imply that the first two terms completely dominate 

(Table 1). 

Figure 11 (b) shows the corresponding Dalitz plot distribution. 

The "hole" in the centre is now more accurately fitted. But the 

distribution shows a general depletiontin contradiction to experiment 

all along the line LA ,̂  5 (6.ev/c-q-  — which corresponds to gt.644.00=3 

(see Figures 12 (e) and (f). Moreover, the concentration close to the 

b()"rdnrY at 5r; 	NIT (aroun0 1.7 (60//tAt  ) is present  with a 

density twice that in the experimental distribution (Figures 1 & 2). 

In fact, the overall fit is worse than Lovelace's. 

5-3 	This failure of the AR analysis probably arises from the fact 

that the parameters care  determined by fitting the two experimental 

M1-(1rtjr-) and fv t(rr; Tr-) histograms. Their method thus ignores the 

strong correlation between these two variables. 
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Furthermore, the use of the form 0.2$(5--4-t"')

V.2. 
 for the imaginary 

part of the trajectory for each of the five terms is unduly 

restrictive. The residue at a pole in s in the representation (5.6) 

is a polynomial in t whose coefficients are functions of the five 

CAmIS . The partial wave decomposition of this residue implies 

the presence of certain particles at this pole. The imaginary 

part gives it a finite width which relates to the widths and masses 

of the individual particles present. The width of the poles in the 

overall amplitude (5.6) depend on the 	and the form of Trettc 

As such, the cy,„„s are related to the imaginary part of the trajectory. 

The more general expression A(S-tfp,1-)13  , with A and 3 as variable 

parameters, would treat this correlation in a better way. 

To find the best parameters, we use the Dalitz plot Nitn_r,-(=t4 

vs. Mi  Tr-r+ (= 5). The lower and upper limits of u and s, fixed by the 

pion mass and the total centre of mass energy, are used to define a 

30 x 30 grid across the Dalitz plot. The experimental number of 

events, N;,  in each square LIwith at least one corner within the 1-Noundary)  

are determined. For a given set of values of the free parameters, 

the predicted probability distribution ();. over the significance squares 

t;,15  is found by integrating the expression 

	

.9'10 	c. 	(5,-) 1 -4  

	

dsoA.A. 	 (5.7) 

over the area of the square i. within the boundary (c is the overall 

normalization constant such that 	9 . The predicted distribution 

of events is simply / AC = N 	(k):: 	As we are compelled to use 
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a fine grid to retain the unique features of the experimental Dalitz 

plot the conventional Xt methbd is not applicable in view of the small 

values ofNi encountered. Instead we directly maximise the likelihood 

of the observation to find the best parameters. The probability of 

the observation 11\41 is 

P= 	pz 
iri 

(5.8) 

wheren is the total number of significant squares (n = 561 in this 

case). The likelihood is defined as 

A 

L :-=_ L05  P 
	Ni t  lo p, 	 (5.9) 

Maximization ofL is equivalent to maximizing the Poisson probability 

, with means iof  
Ni 

7 Cr` /1‘. 	 
;. 	(14i) (5.10) 

The maximum likelihood with unrestricted probabilities pz is 

given by 

(vv)a)e) 	Log 	/N) 
(5.11) 

and the ratio P(vvi,v) 
EL.„ (tmekv) — L (1,160,1 

   

enables us to define an indication of goodness of fit as 
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= 1  - 	 
Number of degrees of freedom 	 (5.12) 

Equation (5.12) is consistent with the usual definition of goodness 

of fit since, writing Ecc f/Ac- NO /Pdi ) 

2 [ Lbw. (vv‘A/") — ( vvioiA — 2 
	Ni  6-1)(1-1-g e) 
	

(5.13) 

If E;.  is small, the right hand side of equation (5.13) becomes 

(et -  

Ni 
	

(5.14) 

which is simple the usual % 

With the above procedure the four free coefficients of 

equation (5.6) are re-determined with the original Lovelace form for 

the trajectory as in equation (5.3). The best values of C", (or 

equivalently C„) obtained are given in Table I. No term or pair 

of terms is dominant, as is indicated by the relative equality of the 

first four Cnrn% and the important role of the destructive interference. 

The interference term has an intensity roughly equal to that of the 

direct contribution and its structure is complex since the relative 

sign of the five terms varies over the Dalitz plot. Figure 11 (c) 

shows the corresponding Dalitz plot distribution. The main defects 

of the AR fit are remedied. The concentration of events along the 

line ke(b(s-4. 60=3 is now reproduced correctly - see also Figures 

12 (c), (d), (e), and (f).. Furthermore, the central hole and the 

concentration close to the boundary at s==r-fl now have the correct 

densities. Figure 13 compares two distributions in full 30x30 bin detail. 

L„,,(moqe) — (max) 
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These improvements are reflected in the values of6;compared with 

those obtained using the Lovelace and AR amplitudes as shown in 

Table I. 

Using the more general representation, WS.-11-t111; 	for Z6,04 

we find that no value off) other than 0.5 gives any significant 

improvement. However, a better value forAis found to be 0.33 with 

some slight re-adjustment of the crw:s as expected from their 

correlation to A. The corresponding distribution is shown in 

Fig. 11(d) and the values of cnri andGare shown in Table I. 

5-4 	The Lovelace and AR analyses were unable to explain all 

the features oft:in annihilation at rest into three pions because 

the strong correlation between the two physical variables describing 

this process were ignored. This has led to a belief that the 

Veneziano model is inadequate for this process, but the excellent 

agreement with experiment over the whole region of the Dalitz plot 

shown by the fit described in section 5-3 provides ample evidence 

to the contrary. It can be seen that all the secondary terms 

expected are in fact necessary to describe the data accurately. 

That the five terms of equation (5.6) are the only five 

needed is indicated by physical considerations. Owing to the 

imaginary part of the trajectory, none of the five rpirit'S are exactly 

zero at Re(ots+04)=3 , and the argument that one chooses only 

those satellites with "holes" is not so straightforward. 
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Indeed, the "hole" obtained in our final amplitude is obtained from 

the interference of the five terms. However, since rrie0 with A -3.3 

would only contribute small background tails the most terms allowed 

in principle are r PP 
" 1 to p ti 	3o 	 and also 

. 	The extra terms with n=3 only contribute in the small 

1-meson region of the phase space and so the fit would be rather 

insensitive to them, yielding inconclusive results. The only 

significant term is ;2. , but since its value in the centre of the 

'Dalitz plot is so large, cancellation to produce a zero there could 

only be effected by taking large values for Clo , c4  cio,c1.1  and c30  

i.e. a very small relative magnitude for cit. In other words, 

especially in view of the accuracy of fit obtained, the data does 

not require the existence of further secondary terms. 

The skill of the Veneziano amplitude in specifying the 

contribution of large numbers of parent and daughter resonances 

with only a few parameters has been demonstrated. Full details 

of the phonolmnological content (i.e.Nrticle ntructure) ore given 

in Section 6. 

5-5 	There has been an attempt to predict the satellite structure 

for iin I from mass extrapolation in a higher-point formalismHas described 

in Section 4. Chaichan, Rubinstein and Squires
15 

construct an 

amplitude for T))  0)  TT+ 11— )  TT-  which is a sum of only two basic five-

point functions (F ). As they point out, it is not possible to 
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consider purely mesonic processes (e.g. TT Y 	-rr Tr Tr ) and project 

out the t•=0 state at 	4.r 	since one would have to assume that 

factorization was valid to obtain the 1)11 amplitude. Daughter 

degeneracies18 (where each mass and spin value corresponds to a 

number of particle states of the formalism) prevent factorization 

being true. So by going to NWITIrrr directly, factorization is not 

required. An added advantage is that no angular momentum projection 

is needed, since the process is at physical threshold. There is however 

no satisfactory theoretical framework available for treating spin 3 

but they are led to adopt the following procedure:- taking sto:.- (i4.4.1)„)3; 

and noting the important fact that bC1r (1-1-MNI")"- 3 	 s23 ) 

is given by the non-exotic terms in the residue of the pole at c* 45= 

The full details of the arguments that lead to the expression adopted 

are not relevant here. Assuming real trajectories, 

Res 
Pr(st 	= 

6 71.5 "<3 
4 - 

F( cer 	bc 5  — 	tx — 1/2. 	DC 	c)( — 3i_) ) ZS 	) 	 45 $ 15 

 

+ 	C. (K 6  —72) 	t)(1 1'Z1 i3 — 
11  0( g  — 112 c<" -1 04 s—'2 

)1  $  (5.15) 

where b(6 refers to either the Nor trajectory (Ref. 15 says the results 

turn out to be essentially the same whichever is used) and C is an 

arbitrary constant. 

Pt (5,0 derived in this way can indeed be put into the form 

of equation (5.1) with 	C.11:71 C)' I 20 
	C.21  , C 2%  all functions of 

c. and the Regge trajectory parameters)  and all other 
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Unfortunately these are not compatible with the data, since 

demanding Cia= 0 (to eliminate c ) gives Cib r. 1 (normalization) 

c.":. 1.80, c.10  .z. 0.2(, )  cti  = 0 	There is no n.3 term. It is 

not easy to lay the blame in any particular area (spin-4 treatment, 

unitarity etc.). Certainly this shows how the satellite "arbitrariness" 

of one level can be reduced by going to a higher-point formalism. 

As reference 15 reminds us, the qualitative results are not trivial 

since if tx04.yvvit) had been other than 3,quite different 	;1„, S 

would have appeared. The general problems of this approach are not 

yet fully understood. 

5-6 	At first sight, it would appear that an immediate prediction 

of the A(S,1/4:\ determined previously is that of the T.: 1 , -pp 	decay 

into three pions, for which data exists. These are however large 

errors involved in the separation of singlet and triplet states. The 

only experimentally accessible quantity is the ratio of the total rates 

(15  ?-7=1 	-Tr Ti —Tr b) 

R. CFA 	Ir.+ Tr— n — ') 
(5.16) 

(The numerical value and errors are those quoted in AR17) 

Since StA(2..} alone demands 

R 
	

(5.17) 

as derived in section 3-4 (equation 3.211 then any model is bound 

to get an answer within the range of R quoted in (5.16). 
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On evaluating this ratio (from equations (3.12) or equivalently 

(3.20) one obtains Rci.13 for the fit with 4=0.2.9 and g. I. oil- 

for 	. This is not significantly different to the AR 

amplitude (g, i. ico though the Lovelace 11, term alone gives g= a 41 

This would indicate that R is insensitive to the detailed satellite 

structure though sensitive enough to "reject" PI, alone. Table II 

gives corresponding values for the ratios 	(Tp 	37ro) : 

(rin-virtir—ir): k (TTI„., 	irtlirr 0) evaluated using equations (3.12). 



	

6 	PARTIAL WAVE STRUCTURE OF frn -4 3Tr 

	

6-1 	 The Veneziano amplitude with real trajectories is a sum 

of infinitely narrow resonances (i.e. poles of the form 5-wit ) 

To avoid these infinities in the comparisons with experiments 

discussed earlier, complex trajectories enabled the poles to be 

moved off the real axis. The structure is now no longer a sum of 

simple poles, nor explicitly a sum of Breit-Wigner amplitudes. 

However, the resonances will still be shown by the energy-dependence 

of partial wave amplitudes clf(S) given by 

cl a  (s> = S+ ' /4(si)P<  ( cers60 durs05 	 (6.1) 

The integration is effectively over the range of t available at that 

s-value, with for the case of X 	375' 

ors 0-s (0 = 
[ + 

{(s-tfro-)[5-(LAI4,,r}[s-(m_ix71Y1 (6.2) 

where for pr% 	3 rr, M2.= 14.r1,,,1-. 
Thi s ck(  corresponds to the partial wave expansion: 

oO 

Acs,o). 	(
2L 	

cie (s) ()tit-To5 w) 
(=o 

For s fixed. 

Partial wave cross sections 01 are defined as follows: 

(6.3) 

oc )11(5,0 12 
	

(s fixed) 

(6.4) 
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then 

= Tr L,, cr(  
(6.5) 

with 	z: 	1.) at ( 
	

(6.6) 

6-2 	Consideration of resonance structures by putting mot= 0 

and examining the polynomial in t at a pole in s is only a 

rough. guide to the possible resonances present (as described 

, in section 4). Even assuming the validity of its approximation 

to the complex amplitude used for fitting, there is no way of 

making comparison with Bre-it-Wigner or any other resonance 

parameterization without specifying the phase. (An example 

of use of this method for iin-,31T is Pokorski and Thomas's 

analysis13 of Lovelace, AR and their own amplitudes). All that 

one can determine are the relative magnitudes of the numbers 

A(s, 	= 

in the expansion 

(Z4+1)  CA (S) PCIOr5 L9S) t  (s 
S me' (6.7) 

giving restricted information about relative widths and phases 

of parents to daughters. Table II gives these ratios for the 

secondary term structure determined, with Tim oe= 0. 



6-3 	In an Argand plot of Re MS) vs 1w106) an anticlockwise 

loop (with respect to increasing s) is usually taken as evidence 

for the existence of a resonance19 (a Breit-Wigner gives anticlock-

wise loops). Argand plots of the partial waves for the amplitude 

/1(-) for 171A-3ir (equation (5.6) with roAdt-= A(5-414A2 )VC) Az 033) 

are shown in Figures 14 onwards (there is little difference between 

4=0.33 and 4=-01.2g). The strongest resonances may be expected 

to show peaks in the 	at(011.  , but to interpret less well-defined 

'bumps and shouldersi the Argand diagram must be consulted; even the 

peaks should be checked in the complex-at  plane since it is not 

impossible for interference of resonances to produce freak peaks. 

Around the loop, the positions where S=roe should come near, 

the maximum or minimum in "mixt  . More.exact criteria for 

resonances consider maxima ;IA 1014( 	and also maxima in the 

angular veloCity around the loop,but these are not considered 

here. 

From F1 prcliminnry tnnpcction of 

the existence of four major resonances may be inferred. Figure 

14(a) shows three well-defined peaks in 6l5= lact(S) I z at s=0.49, 

1.67,2.73 Git\/1  (note that experimentally 	me 	0.51)  

k2- I. 6(x, vinit 	2.77). 
The Argand plot of 00(s) , Figure 14(b), has an anticlockwise 

sense for s close to each of these s values, confirming that these 

peaks are indeed resonances. Figure 15(a) shows only one well-defined 
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peak in OM' near s,-.1.‘7 which corresponds to a tight anti-
clockwise loop in the Argand plot (Figure 15 (b).pdi the two 

shoulders in 1m t(S)11  , Hie Aryivid +loop 	show gentle resonance 

curvature at 	S = MI,L  cAnci.  S = 00 9. 
	' Thus the possibility 

off,s is not ruled out, though they have very diminished intensities. 

Details of the positions of these resonances are in Table IV. 

Figure 16(a) has a "freak peak" in (02.(011- 	at 'S= 1, q4 	- 

the Argand plot (Figure 16 (b) showing a large clockwise loop. 

'The intensity of this peak is much less than any of the others. 

Higher partial waves show bumps of ever-decreasing magnitude, with 

no anticlockwise loops in GO) .Specifically,(:3 and trip show gently 

clockwise spirals, with no maximum in either /0&011  exceeding 

13.0 (arbitrary) units - compare this with'the 50.0 units of the 

freak peak in 1.50t  and the typical 700.0 units of the resonance 

, 
peaks of 1 0(111 	and 100  11  

Relative intensities are given in Table V, but it should be 

pointed nut that "background" or "overlapping tails" effects have 

not been taken into account. Further, no attempt is made to infer 

the exact couplings (partial widths) of the particles indicated. 

The general trend of these results is in qualitative agreement with 

the residues of the poles in the zero width amplitude (Table II). 

6-4 	It is interesting to note that a similar analysis of the 

Lovelace and AR amplitudes shows them to be quite different in 

Phenomenological structure. This is what might he expected from 
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the differing goodnesses of fit to experiment, despite the fact that 

they have poles in almost the same places. For example, the 

Lovelace amplitude contains essentially only thee- and E' mesons .(Table 5) 

Since none of these other amplitudes correspond closely to the 

data, no details of their partial waves are considered here. 

6-5 	"Ancestors" do not arise with any significant intensity,. 

though the higher partial waves are not without structure. It 

would be very difficult to isolate any effect and attribute it 

unambiguously to an ancestor particle. (They are not in evidence 

in any of the other Veneziano versions either). Certainly as far 

as deciding on the physical content of either the amplitude or the 

data is concerned, ancestors are as good as. absent. 

6-6 	The results described in (6-3) on the basis of the fit of 

5-3 seem to confirm the'"decoupling effect". The r ,f and3 mesons 

n11 appear to he absent, or, ant lenst, seriously diminished, Most 

of their daughters appear to be present in varying intensities: 

the S-wave 6 , , and E" and equal  contribution off/  with little s," 

Inspection of the experimental Dalitz plot supports this; whereas 

along a line C.rnAct  the density of events remain constant 

(corresponding to ea ), along s= w14:1  the density increases (corresponding 

to significant amount of PL ). 	Thus the effect would appear, rather 

than "S-wave dominance" for example, to be a decoupling of the 

leading trajectory. 



7 	SUMMARY 

The satellite structure of the general Veneziano amplitude, 

though not completely specified by the current state of the 

formalism as a whole, nevertheless agrees well with the 	37r 

experiment, needing to use only a few free parameters. (Compare 

the four used here with the fourteen of the most recent phase 

shift analysis
7  ). The use of a dual amplitude, describing low- 

, energy resonances in terms of Regge trajectories proves successful. 

Incorporation of unitarity remains an unsolved problem - the 

Veneziano amplitudes in the narrow resonance limit can only he 

regarded as a first-order contribution of some more comprehensive 

peturbative scheme.
20 Despite this, themethod of smoothing the 

infinitely narrow poles employed here - though probably a crude 

approximation to whatever should be done - has proved to be 

quite satisfactory physically. The main theoretical problem with 

the VS—tfea  form for IWIN(5) f  namely the existence of 

ancestors, turns out to be less serious than might at first sight 

be thought. The results of section 6 show that the amplitude used 

to fit the data does not correspond to a significant contribution 

from any ancestors. Also the relative parent/daughter contributions 

are not drastically altered at a qualitative level.. 
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Apparently, all the secondary Veneziano terms allowed are 

necessary to be able to handle the inclusion of all the 71---7T 

resonances and their daughters. No term, or few terms, dominate. 

These conclusions contradict those of Lovelace and AR, whose 

analyses were unable to explain the features of PH annihilation 

probably because strong correlations between the two physical 

variables describing the process were ignored. Attempts to 

predict this satellite structure using a naive reduction of the 

five-point function using mass extrapolation
15 though giving a 

qualitative explanation, are not yet in quantitative agreement 

with the fit presented here. 

The only immediate prediction of the FYI amplitude is 

the ratio 	kTor (ppr.► 	310  

trr (FYI 	3  r 
Though the value given is reasonable, the ratio is insensitive 

as a test since the experimental errors involved in extracting 

information about the 7r=1,iip state are so large. Until one 

has a formalism which specifies the secondary terms for a wide 

range of processes, it is of course impossible to exploit the 

crossing symmetries of Veneziano with anything better than 

qualitative accuracy since satellite structure will be different 

in each case. 

The preliminary analysis of the partial wave structure of 
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the Veneziano amplitude for FA --1.371" (described in section 6) 

indicates that, with the form for Toy(as used, the amplitude does 

contain resonance structures. The cys give strong evidence for 

the supposition that in the final 31r final state, the resonances 

on the leading Regge trajectory (f,.1 anci3 mesons)are in fact 

absent, or at least very much diminished. There would seem to 

be a large contribution from the f resonance, and the S-wave. 

daughters. 

The Veneziano approach, in addition to its theoretical 

skills (especially in incorporating duality), is also then, 

useful phenomenologically. The resonances of its dual sum of 

poles are by no means unphysical. Though Veneziano is not the 

only possible dual formalism, nor completely debugged, it points 

a way to a correct understanding of the hadrons. 
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TABLE I 

A comparison of the Veneziano versions for T3 01 --IP 37r. 

The Cs are the un-normalized coefficients of Eq. (4.7), the c'S 

multiply the physically normalized contributions in Eq. (5.1). 

One parameter is always fixed by overall normalization and.the 

errors on the others do not exceed 8%. Gc is the goodness-of 

fit defined by Eq. (5.12). 

Lovelace Altarelli- 
Rubinstein 

A = 0.28 A = 0.33 

c10 
- 1.00 1.00 1.00 

c11 
1.00 1.89  2.55 2.90 

c
20 

- 0.00 2.96 2.14 

c21 
- 0.00 7.80 7.31 

C30 - 0.57 -4.52 -3.74 

c10 
- 1.00 1.00 1.00 

C.
'11 

1.00 0.78 1.05 1.18 

C20   
- 0.00 0.70 0.53 

C21 
- 0.00 1.04 1.02 

c30 - 0.00 -0.23 -0.19 

2(1.(max)-1,(max)) vn 
1244 1458 606 592 

G 2.24  2.62 1.09 1.07 
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TABLE II 

Relative magnitudes of parents and daughters at each 

pole in A6,0 with IWK=0 	for A (s, )= c FL, t CII 

czonLo 	 cio 130 • 

The magnitudes are defined by 

cs, 
	(It+ I) Cg ( 	( cn  as) 

• 

5- Yoe 

Cl o  CI  C/y : 	C /I • C3 • o rt4R Relative CE 

1 	: 2.55 : 2.96 	: 7.80 	: -4.52 o f ;CS 1.O ; 	a S 

vvc/ Ce; cs, -z 1.0 : 2. o • - 0.3 

1. 2.90 : 2.14 	: 7.31 	: -3.74 04c 

rV14 1- 

Cc  

cs 	: 

0 	D. If- 

3. 	: 	-0.2 
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TABLE III 

Ratios of the N n, 1  decay rates predicted from the 

four Veneziano amplitudes. The ratio R =-• 	1?-roT (fi) Tv. 1  ---l Trt-T-r-Tr °) 

is also given. 	 ?TOT (13,1 —3? a +ri ---tr -) 

RT oT (p p --_, 3Tr 0) RibT  (Fy),_), irtir_71-) cr(rer=i,,, 31r) 
R 

Lovelace 1 1.53 1.05 0.69 

AR 1 2.47 2.95 1.19 

A.0.28 1 2.30 2.61 1.13 

A.0.33 1 1.95 2.03 1.04 
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TABLE 4 

Location of resonant effectsin the partial waves 04(5) 

(4=0,1 ,2,3,4) of Pf(s,k) determined for (3.4 	Tr+ IT-  71-: 

Partial 	Resonance 
Wave 	Position 

o-t  (S) Curvature of 

ks  A € (s) 

L=o 	 MAX 	ANTI- 
CLOCKWISE 

	

/ 	MAX 	AT 

	

E PI 	MAX 	
5= rivi 

t=1 

J " 

SHOULDER 

MAX 

SHOULDER 

ANTI- 
CLOCKWISE 
AT 

s=vv1R  

t=2 SLIGHT 	CLOCKWISE 
S= mr 	SHOULDER 	MOTION 

THROUGHOUT 

-F 	NOTHING 	LOOP 	• 

S 	9 6 	MAX 

/ 	NOTHING 

4 =3,4 	SMALL EFFECTS UNRELATED 
	

CLOCKWISE 
TO RESONANCE MASSES 
	

MOTION 
THROUGHOUT 
LOOP 
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TABLE 5 

Relative Intensities of Resonances in FA 	7T TT'TT 

A) is for the A(s,t) determined as described in text. 

B) is for the Lovelace termill for comparison. 

The intensities of Qt  are evaluated at the mass of the 

resonance given by the Regge trajectory. Spin 2 and 3 

resonances are absent. 

Veneziano 	Spin-0 	Spin-1 
Model 

E e Eli 	 f' 1 

A 1.0 0.97 0.96 0.12 0.66 0.14 

B 1.0 1.14 0 0 0.16 0 
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FIGURE CAPTIONS 

Figure 1. 	Experimental WT-77-)1" 	vs. ( 	•-71.  
Dalitz plot for To 	371% 
There are two entries per event. 

Figure 2. Experimental Dalitz plot general features. 
The contour numbers represent the number of 
events per (0.098 x 0.098) (GeV / ct)4  area 
of the Dalitz plot. The number in the centre 
of the contour graph gives the density at the 
position of the central "hole". 

Figure 3. 	Phase space for in (at rest) 	371. 

The axes may represent any pair of s, t or u. 

Figure 4. 	Resonance band structure for TA-4 3w 

Figure 5. 	The 5'4 degenerate trajectory and the daughter 
trajectories. 

Figure 6. 	Kinematics for the TIT scattering amplitude. 
a,b,c,d represent the isospin components in 
a Cartesian basis. 

Figure 7. 	Duality diagram for pseudoscalar meson-meson 
scattering. 

Figure 8. 	Five-point function kinematic notation. 
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Figure 9. 	Possible excitations in five-point function. 

Figure 10. 	The Regge trajectory Q-(54.5) 

Figure 11. (M•rr -tr-)1-  vs (11 trit-rr-)z Dalitz plots; 
(a) Lovelace's distribution 
(b) Rubinstein - Altarelli distribution 
(c) Dalitz plot distribution given by Veneziano 

secondary terms determined as described 
in text with A= 0.28. 

(d) Secondary terms as in text with A = 0.33. 
The contours are labelled as for Fig. 2. 

Figure 12. The histograms show the density of events as 
a function of M1n41*-  . Each histogram averages 
over a 0.294 (GeV/c z  )1" - wide slice of fm-n-n-1  
the dotted, broken, and full lines describe 
contour figures 11 (a), 11 (b) and 11 (c) 
respectively. 

Figure 13. Histograms again showing the density of 
events as a function of Mir -I- r- • 
However, there is no averaging, and each of 
the 30.histograms correspond to a one-bin 
slice (0.098 (GeV/c%)' 	of rM*7-w- 
Thus each histogram in Fig. 12 is the average 
of 3 histograms here. The broken and full 
lines correspond to contour figures 11 (b) 
and 11 (c) respectively. 

Figure 14. 	= 0 partial waves; 
(a) GO (5) 	vs. S. 
Peaks occur at 
s = 0.49, 1.67, 2.73 (GeV/c1) 

(b) Argand diagram IsTA,\0,0(5) vs.ksRecRo  (s ')  
ks 	i s proportional to ( 5- 47,4111/7.. 

The dots are equispaced in s. 
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Figure 15. 1 partial waves; 
(a) ncii(S)12::Cri vs. s. Peak occurs at s = 1.67 (GeV/c1  ) 1. 

(b) Argand plot krwicii (s) vs. k keti t(s). 

Figure 16. = 2 partial waves; 

(a) 6'2  (5) 	vs. s. Peak occurs at s = 1.96 (not 
a resonance mass). Note the small intensity. 

(b) Argand plot kTrileft  vs. 1 Reci2  

ERRATUM: 	The vertical axes in Fig.14(a)15-tit)Fig.16(a) should 

be labelled crt  42t+1) We lland not. 	Cte I Z . 

r. 
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1 	INTRODUCTION TO PART TWO 

	

1-1 	Over the last few years there have been important 

developments in the techniques for dealing with non-polynomial 

Lagrangians - in particular, Lagrangians which are rational or 

exponential functions of the fields
1
'
2
. These advances have 

enabled the gravitational interaction to be treated as a 

universal non-polynomial coupling
3
. Physically this corresponds 

to exchange of not one, two or any finite number of gravitons but 

to an indefinite number, whose propagation is described by a 

"superpropagator". 

In quantum electrodynamics, inclusion of gravity has 

the effect of removing the ultra-violet divergences of the 

theory. The conventionally infinite quantities: self-mass (S r4 ) 

and self-charge ( ge ) turn out to have finite, computable values 
 

The gravitational interaction has altered the small scale behaviour 

of the system such that the divergence encountered Wm 
13-4o 

in x-space ; 	(131-A 	in p-space) is damped out. 

A typical example of a matter-field in curved space-time 

is (ForP a spin-zero field) 

4rylat+er. 9 1" 

 

c 	q5 cA6 3  v 

 

   

 



The metric tensor is conventionally parameterized as 

h-3  C r'"' 

(1. 2 ) 

with 
	t ITMv 

	

(I 
	

-1 -1 	
(1.3) 

Alternative non-polynomial co-ordinates for the gravitons 

are exponential, e.g. 

r9" [ e) ;10 
a 6 

( 1 . 4 ) 

 

where ab are 4 x 4 pseudosymmetric matrices. With 

as In (1.4) above, 

det 9ry = exp ( X.3  014A ) 	 (1.5) 

The coupling constant Ic9 (nt  is 87 times (‘ the Newtonian 

gravitational constant) which enters the theory, determines the 

numerical values of Ee and StiA . The regularizion induced by 

gravity provides an effective cut-off mass equal to X) 

.1-2 	Conventional electrodynamics, of course, treats the 

infinities in be and Eim as unmeasurable. Just as the physically 

observable masses and charges are thus blind to the infinities, 

the numerical values predicted by gravity modifications are equally 

unobservable. In hadron physics, however, the existence of internal 
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symmetry breaking enables these quantities to be tested. 

The electromagnetic breaking of SU(2) (isospin) symmetry 

in pions will be considered here. It will be shown how 

inclusion of gravity removes the infinity occuring in a 

calculation of the Trt— Tro 	mass shift from a physically 

reasonable Lagrangian. This model will also be used to 

investigate the hypothesis of "strong" gravity
6. Here, 

hadrons do not couple directly to gravitons, but only 

'through their mixing with a massive spin-two meson in 

analogy with vector dominance (g -photon mixing). 

1-3 	Section 2 reviews the techniques involved in using 

non-polynomial Lagrangians. The applications to gravitation 

are sketched in Section 3. This includes the regularization 

of quantum electrodynamics naturally induced by gravity, 

"strong" gravity and an outline of the general procedure 

for including gravity into any given Lagrangian. Section 4 

describes the calculation of the pion mass difference using 

a gravity-modified Lagrangian of pions, photons, vector and 

axial-vector mesons
7
. In the absence of gravity this 

Lagrangian gives a reasonable value for the pion mass difference 

only for massless pions; for physical pions, a logarithmic 

ultra-violet divergence occurs. 
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The numerical results of this calculation are 

presented and discussed in section 5. A mass difference 

of 6.9 MeV is obtained for massive pions - compared to the 

experimentally established value of 4.6 MeV. Extrapolation 

of coupling constant N. to tensor meson values gives a 

significantly lower value (between 4.0 and 6.0 MeV). 



4,Eirtsbein, 	Or') (Prs' pvx f 	1-17-,)' 11>s 5)  
— 	e- (9,0v) 

or(  

(2.3) 

( 2.4 ) 

where 

	

2 	NON-POLYNOMIAL LAGRANGIAN THEORIES 

This section will give an introduction to Non-Polynomial 

Lagrangian methods, sufficient only to motivate the computational 

technique used later. Full details of the technical problems 

encountered will be found in references 1, 2, 3 and 8. 

	

2-1 	Examples of non-polynomial Lagrangians of physical interest 

are not restricted to gravitational theories. Two popular 

examples are: firstly, the chiral SU(2) 	SU(2) Lagrangian 

(a 0)1.  

(1+4- 0s)t 
	 (2.1) 

in Weinberg's representation. The second is the intermediate-boson 

mediated weak- Lagrangian with Stuckelherg variables 04,6  for the 

W-mesons 

This can he shown to lead to a non-polynomial parameterization. 

The gravitational Lagrangian is 
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If 1 	is the fundamental field, the covariant quantity 9 
 /' 

is intrinsically non-polynomial and vice-versa. 

2-2 	The general form of such theories is 

	

(X) :: 	V (93(X)) 

CO

p   

IAA 

	

= 	n  
n= (2.5) 

o* A  

where V is some function and LAA  is proportional to 4 9 

f- being the "minor" coupling constant. As Efimov points out1 

a calculation of the peturbation series in the "major" coupling 

constant 0 , 
op 

S 	S 	 (2.6) 
PA.M ,  

is not so easy since the usual concept that the small peturbation 

changes slightly the states of a free field is not relevant. 

Any formalism developed.to use these Lagrangians must be able to 

cope both with the non-renormalizable infinities arising from 

V51‘ interactions in the expansion in minor coupling constant 

for rt7 9. , and possible unnacceptable high-energy behaViour. 

The first difficulty may be tackled by completely summing the 

peturbation series in 41' for any fixed order 1 N  by a direct 

summation method, for example, Sorel summation. 

The second difficulty may be seen in second order, taking elastic 

scattering via a superpropagator as an example. 



The S-matrix 

Sz  = =Z 
	orFxi dtifx2 	( v(q5(x)) V( r56e-2.1)) 

ovix,c14x.,Z F 
(2) Ofv116(1) 0 264) • 

"11012 	wit! 	rvi 
(2.7) 

wit=0 

85 

with 

F (1) = 
1,411W1 

 

Unfr gt  A 

  

 

$1! 
(2.8) 

Lc 	is the causal function 

ci*I5  (2rr)4.  

1.1"-x 

 

611.... 13% 	g 

(2.9) 

The Fourier transform 

et, (2.)  
omt 

dvx e `P.' F (2)  GO 
l ei 

 

(2.10) 

 

1̂1  
for elastic scattering  is F vz.

)  
(s) )  5= r 	(Fig. 1). 



The high-energy behaivour of the discontinuity across the 

branch cut at Sc 4,m1- 

2.2. (s) -4 F ( (5) 
az 

(2.11) 

enables field theories to be classified as "localizable" or 

"non-localizable" if f(137-) 	falls faster or slower than e 

respectively. For example, kiwi- of the form 9  : 	+ e 95  : 

9 	(CFk.fril)ef: 
	are localizable, whereas 

1 
	

cb" 
	 or 	(PliA )(i+495 )—hi  (tvo) 

are not. A physical consequence of localizability is that, 

provided a solution exists, on-mass-shell S-matrix elements from 

localizable Lagrangians are expected to show Froissart high-energy 

boundedness (see Ref. 9). 

2-3 	The definition of the Fourier transform (2.10) is made 

difficult by the singularity at X -43 in P7(i) 	The 
w1, rv1L  

Gel'fand-Shilov procedure for evaluating the Fourier transform of 

a distribution like (1 42-T may be illustrated by considering 

exp 	( e" — 1) 
	

(2.12) 

for which the "superpropagator" Si) is 

stx0(x) <1-( 575(x) (0(0)) (2.13) 
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Formally 

s,„1, (x) (4-1-r [A(x) r 
p,. (2.14) 

with 
	A(x) 	< T 16(x193(0) 

	
(2.15) 

for massless particles. Take the Sommerfeld-Watson transform, 

namely 

f
04 + 	

6(x)1 
c 	t) ant (2.16) 

The contour C encloses the positive real axis (qr< 1 to o0  ). 

Rotating the contour parallel to the imaginary axis, the Fourier 

transform may be carried out to give 

f"t 
o<e< I 

\z-1 	  
) 	r(.01-7(-4-)) 1-ew1-rr 

(2.17) 

Fourier transforms are generally considered in Euclidean metrics 

( 	o ) and the transition to the physical region made by 

analytic continuation. 

2-4 	For a rational (non-localizable) Lagrangian, 

S  
14495 (2.18) 



o 1— -r-t(x) i

co 
	 e-5 0t5 

(2.21) 

SR~r lxJa 	J1 	^1 .(4zA(por 
o 

The Borel summation method uses the relation 

n! 	00otc 	
e-

5 S 
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(2.19) 

(2.20) 

to formally write 

00 

9t- 
At: 0 I

00 

cA 
e --5 (-c2Mg1SY 

To define a physical superpropagator, this approach takes the 

principal value of the integral in the c-plane. The Gel'fand-Shilov 

method for 3RAT then goes through in a similar way to %Icp 

(equations (2.14) to 12.17). 

2-5 	The use of distributions like (1/x4 leads to ambiguities 

coming into the above-mentioned techniques. For a full discussion, 

see Refs. 3,8. The resulting "b-ambiguity" means that in (2.17) one 

iT 

should really replace 	I 

1.1,14.171- 

by 	[-En4,1/ Tr. 	(4•\ 	where 

10 is arbitrary. Lehmann and Pohlmeyer have shown that there 
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exist criteria by which one can satisfactorily eliminate such 

ambiguities from localizable theories. In rational Lagrangians, 

such as the one in (2-4), the "Sorel ambiguity" in the principal 

value further complicates matters to prevent these criteria from 

being applied. The difficulty in the rational case is ascribed 

to normal ordering, 
3 
 but not yet solved. 

In the rational co-ordinates taken for the gravitational 

field in the following sections the non-localizability is taken 

as only apparent since exponential co-ordinates could just as 

well have been taken and the results expected to be equivalent. 

The rational form is taken in most the early gravitation work 

(e.g. References 4,5,6) since this arises most naturally out 

of the requirements of general relativity, but exponential co-

ordinates (e.g.- equation (1.4) are becoming increasingly popular. 

(e.g. Ref. 3). However, no rigorous equivalence theorem exists, 

though the mechanism for removal of infinities to be described later 

is basically the same. In either exponential or rational cases, 

the numerical results of preliminary calculations which estimate 

the magnitudes of gravitational effects are pretty much the same. 

Specifically, o is taken as zero. 

r
! 



	

3 	QUANTUM GRAVITY AND INFINITIES 

	

3-1 	The recent revival of the idea that the non-polynomial 

coupling of gravity to matter may provide a damping of the infinities 

in field theory started with a demonstration of gravity-modified 

quantum electrodynamics by Isham, Salam and Strathdee
4,5

. As they 

point out, even classically, the electron self-mass ( orrq ) is 

infinite. Lorentz's calculation gives 	jleki e e.1,-/ fZ 	( 	is 

the radius of the electron). For a point electron (R.--", 0), Erin 

is linearly infinite. Ref. 4 traces the subsequent history of this 

singularity. Using quantum electrodynamics Waller
11 

showed 

Dirac's equation to give a quadratic infinity, but this was improved 

on by Weisskopf
12 

using positron theory, which gave (to second 

order) 

s 	6x 
- 	4-TT R D 	g Ps1 + finite terms 	(3.1) 

 

The logarithmic infinity in (3.1) led him to suggest a critical 

length 	where the theory would need alterations 

90 

R co(~  (3.2) 
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Subsequently, the well-known Feynman-Dyson procedure confirms 

this result, further introducing another infinite quantity 

self-charge Cie 	but k and Elm are seen to be unmeasurable 

quantities, so however unpalateable, their presence need cause 

no trouble. In hadron physics, though, electromagnetic breaking 

of internal symmetries opens up a way in which the infinite 

mass shifts are observable and measurable. 

3-2 	The standard way of introducing gravity into any theory 

is by the requirement that the equations of the theory be 

invariant under general coordinate transformations. In Lagrangian 

language this means that the action integral PWX/(x) must be 

invariant under this group, implying that the Lagrange function 

must be constructed so that it transforms as a scalar density 

with weight-1. The "weight" W of a quantity 	transforming 

as a tensor density under general co-ordinate transformation X--"Xi  

is defined by 
I ely 1W 	)( 1 /4  

v... 	eAx/I 	.)).( 

t 

v  

where INci)dis the Jacobean of the transformation. Tensors are 

tensor densities of weight zero. 

A Lagrangian of weight -1 can be generated from any Lorentz 

invariant one by the following rules. Firstly, replace the Minkowski 

metric, ii.Pv 	otisots (1, -17  -17  -1) 	, wherever it appears in the 

Lagrangian, by the Einstein metric, 5/"(g) 	. Secondly, replace 
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the ordinary derivatives of the fields by the standard covariant 

derivatives of general relativity. Finally, adjust the total 

weight of each term in the Lagrangian to -1 by adjoining to each 

a factory icke, Opt, which transforms as a Lorentz scalar 

with weighttv . The crucial point about this last step is that 

it renders the new Lagrangian automatically non-polynomial. To 

the Lagrangian generated by means of these rules it is of course 

necessary to add a purely gravitational term. The graviton 

field 0"7X) is defined by 

k Orb() 	5/"(x) PIP' 

so that 3r0 reduces to the flat space metric, kr , as 

It has been established
5 that the scalar gravity replacement 

(3.3) 

0 

  

It" 0 (3.4) 

  

and so I  
ote or) I 	(1+k 0)7' 

(3.5) 

gives numerical results essentially the same as tensor gravity, 

and use of the scalar field ON) is a very convenient simplification. 

Denoting the fields in the original Lagrangian by 

the overall modification now reads: 

Ack afdlp 

   

   

( 	(1+1.c ib)-2 
	

brilp + ic c/5 -21̂ ip h  vr,i÷  

k(gravity) 	 (3.6) 



Wye is the weight of the field k, Dr  is the appropriate 
covariant derivative. 

3-3 

	

	The calculation of a finite k and grAwith a graviton-

electron-photon Lagrangian was partly motivated by the results 

of Glimm and Jaffe
13

, whose field-theory models suggested that 

some of the infinities could well be intrinsic to the type of 

Lagrangian considered, and not just ascribed to technicalities 

involved in an expansion about e = O . If this were generally 

true, it would he essential to introduce a fundamental interaction 

effective at small distances ( 	t crib 	). It is an old idea 

to propose gravity to remove light-cone singularities since 

zero-point field functuations of quantum gravity might cause 

a smearing of the light-cone, the definition of which is gravity-

dependent in any theory of light and matter propagating in a 

gravitational field. 

The minimal modification to the Dirac Lagrangian 

(3.7) 

(1' and Ar  are electron and photon fields respectively) taken 

in referr'nce 4 is 

e 	  
ote 	(Pit"" -t- lc 	/") 

(3.8) 

The tensor gravity calculation
5  gives essentially the same results 

as a simplified treatment with 

\-7 	\fr  

()(-) 

(3.9) 
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The corresponding Feynman graphs are shoos in Fig. 2. 

Evaluating this with the non-polynomial techniques described 

in section 2 - namely the Borel summation of paragraph 2-4, 

with 41= K9  - one obtains 

94 

rvs 

t r Pi(X2)  <!— C  04S Cee.„ 
JO 	-X 2" + Kft  

(3.10) 

Without gravity one would have had the logarithmic infinity 

(3.11) 

In fact, 

(LA.1 	 c.t.n  (1-71- 
k vte,  G 4'11 k  

+ terms of order DC and k oC 

(3.12) 

with kl 	2.) X i 0 	nit -) .  

With an eye to possible more fundemental developments, it 

is often noted that the cut-off appears to come at a length 

related to the Schwarzschild radius of the electron, R Stt,,„,„tkl 

since cut-off ek, K ••••., KSattuarE-z. /44k: 	. No real discussion 

of any reason for this has yet been put forward. 
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3-4 	"Strong gravity" is an extension of the concepts discussed 

so far, and thought to be more applicable to strong interactions. 

The separation of hadron from lepton electrodynamics occurs in 

the vector dominance model. The photon interacts directly with 

leptons but only indirectly with hadrons through a mixing of 

with the f—tA-1-75 combination. It has been hypothesised
6 

that 

analogously, the graviton couples only indirectly with hadrons, 

through a mixing of gravitons with massive spin-two strongly-

interacting mesons. One would obtain cut-offs for ultra-violet 

infinities in a similar manner to that described already - with 

the role of Einstein's gravity played by the massive tensor mesons. 

The coupling constanticm  , analogous to K5  , would now be much 

larger - to within an order of magnitude, equal to the inverse 

of the mass of the tensor meson. In this case the cut-off comes 

at 	a few BeV - similar to that used arbitrarily in 

strong interaction physics. However, the terms of order Kand KAI 

Inn 	to be conniderr'd in the "weak" nrnvity cFlse, Will now 

not he negligible for such a large K . 

The implications of this hypothesis go further than just 

damping infinities. In strong interaction physics, a theory is 

envisaged
6,14 

in which tensor mesons universally couple to the 

hadronic stress tensor (based on Einstein's equation for weak 

gravity: 

(3.11) 
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where 
	grv  Re„,, 	 is the contraction 	MTV 

of the curvature tensor 

-rfi 	r' _Fr r 	(3.14) 

and Tr)  is the energy-momentum tensor.) Speculations3 range 

from using strong gravity to work out general relativity geometry 

inside hadronic matter, to the prevention of "gravitational 

Collapse" in objects on a cosmological scale. 

The possibility of a "strong coupling" for gravity is 

considered in addition to ordinary gravity in the following. 



	

4 	THE Tri"--11.°  MASS DIFFERENCE WITH GRAVITY 

	

4-1 	The internal SU(2) symmetry of pions is broken by the 

electromagnetic interaction. A physically reasonable theory 

of this mass shift exists, but which nevertheless gives an 

infinite result. The Lagrangian into which gravity will be 

inserted is that of Lee and Nieh15. Whereas for soft pions 

they obtain a result close to that observed experimentally, 

for massive pions the mass difference becomes logarithmically 

divergent. The same result was obtained independently by 

Wick and Zumino16 and is the same as that from current 

algebra 

Lee and Nieh
15 construct a phenomenological Lagrangian 

appropriate to the group SU(2) X SU(2) which includes pions, 

f mesons and. axial vector mesons (A l  mesons). The Tit— T O  

mass difference is then calculated to ordere by considering 

all the tree diagrams for the process 7It÷ r---v 7r t-tr e  

and closing the f,°.-g-..s°  loop as shown in Fig. 3. The 

relevant vertices are given by 

- 9  4 -• (1"` - c"71)  
t + (mc )_t 	 Tr). 	Tr x 3v7r 

(4, 

97 

7. (1,fi'vv)s)-1 ( c)ria'1, 

9 ( AR 



- 4 5s (Aril mcr [(()/A4v—  c)v{r} x 11-

(e/t5) vvIc t S ;A A.(  

(4.1) 

where 
ttir ' 7:1 	and a / AA  denote the photon, pion, 

c

-meson and AI  fields respectively; 1 is the mass of the 

s
, -meson. 

For zero mass pions (f  AT-..., 0), the answer is finite and 

in reasonable agreement with experiment 

(4.2) 

which gives the mass difference Err,  5.0 MeV, the experimentally-

determined value being 4.6 MeV. When the pions are massive, 

however, (m4/0) the calculated mass shift is logarithmically 

diverornt. To order (NrAc 

3cc / LA2. — ;tAz 	Yost 	z i„„ 	 11.1-21—t• (i_tr 	
51 	r't  

(4.3) 

where A is the ultra-violet cut-off momentum. This relation may 

be expressed in the form 

r. 	6, D ;A/k,V 
	11g 

L„ A 	
(4.4) 
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It is this logarithmic infinity which it is hoped will be removed 

by introduction of gravity.. 

4-2 	The inclusion of gravity is carried out by modifying the 

Lagrangian of Lee and Nieh using the techniques of Section 3. 

The most convenient co-ordinates for the calculation are those 

in which the weights of all the fields are equal to zero. The 

Lagrangian of equation (4.1) now becomes 

-`1.fr  • tr x arr._ )(1-1- c 

ie 	(Art' roc  nar,4, - ays-r ) • 

1- k  57- (cr  y 	lc )  

Ar27 	( or  a 	c)v 2kr' 	v - 	Lrf 

(5-7 P-1 c)-1  (are 	— av s7)•(e_ir' 	-rr 

X Tr 

( e/°)) Wict  rr° 	(11-  1.1.  0)-1  

(4.5) 



Covariant derivatives Dr  (which would involve couplings 

to ?,.31  ) do not appear in the above since 18 

100 

(4.6) 

for V a vector (or axial-vector) field, and 

DI, Ir. 	 (4.7) 

form a scalar field. Note that only the rho-photon and some 

of the rho-pion vertices are changed. Those involving AI 

mesons remain the same. These modifications correspond 

diagrammatically to the inclusion of superpropagators between 

some of the vertices in the diagrams of Fig. 3 as shown in 

Fig. 4. 	However, the explicit calculation of diagrams involving 

more than one superpropagator is at the present time an unsolved 

technical problem, and we make the approximation of including 

only one nuperpropngntor in each graph an nhown in Fig. 5. 

Since only one superpropagator per diagram is sufficient to make 

the theory finite, this approximation still retains the main 

features of the gravitational regularization. The originally 

divergent diagrams have only one superpropagator anyway (Fig. 

4 (c), (e) and (f)), and diagrams in which superpropagators arc 

neglected gave finite contributions. The inclusion of the other_ 

superpropagators would serve only to modify slightly this already 

finite answer. 
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4-3 	The calculation is performed by the standard Volkov-Salam-

Strathdee momentum-space method for non-polynomial Langrangians, 

as outlined in section 2 and reference 8 (Volkov, Salam/Strathdee). 

The superpropagator in configuration space is given by 

G(x) z < T [v {0()C)] V [ c6(0A (4.8) 

 

where 

v 951 = 9b 

00 

A=o 

(4.9) 

which gives in momentum space the (massless) superpropagator 

el-Fice) 

-,(1,,-,),-. 1 ogrr f 	of. fiLl 
41T 

2-1' 	1 
6241-1,-..1._siv171% 

el — • c0 

(-132) -2  
	 (4.10) 

where 
	<01<0 

The pion mass difference may now be computed from the diagrams of 

Fig. 5, 

ti 

6 024( m v(le)D
" 

($1, ),) ( 
- 	(z4. (iryt 	( 4 	I 

where (with 	and the Al  massMa.= /17144c ), 

h  

[1,31— 	1t1" 	 (P—kl- )—rt s 

[(1)—k)0( 1? rs 	13.,4 (r —Op 	(p— ktz )(p_ 	pbcf3(37 

(4.11) 



rvic 	 ke( )(J.' ps kl— kir kocA7 

	

4- 	—611 AF0-7. 
	 k ) 

(( 	vv‘0,7, 	(01y5-1)-1 (1 14 ICI-- 	k be.  ) 

(11 eqj 	k)e< (p —k)3)  (11 RS 	 k g 

rvN GA 

( Pt 3 	ics k v 

(4.12) 

	

and 
	

(V) 	is the photon propagator. It will be 

instructive to work in an arbitrary covariant gauge parameterized 

by 

kflee 	k 
A ley 

 

(4.13) 

In equation (4.11) the internal integral around the photon-

graviton loop may be carried out first and the rsult written in 

terms of a "modified photon propagator" 	(kt) 

E e-T o1  `ale   M v(k l )b l  (le) 
- 	(2Tryi- r 	riv (4.14) 

where 
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103 

Dr/ v 	(6121.7%r) bp%) (17) a ((k-ett)t)
f 
	 (4.15) 

Explicitly, using equations (4.10) and (4.13) 

eitt:o0 

b' (ki-) 	(Orr 
pv 

ek—ico 

   

ot 

  

tfir 
7 n lr~ Sivx rrl- 

 

r7(I)  

(7-Tr) 	tf4 	 etz 

)c Hz_41,5-p-1 
(4.16) 

Here we have changed the order of integration, the contour integral 

will always be performed last in accordance with usual non-polynomial 

techniques. Evaluating thelintegral, 

7r 

	

(kz ei 1671.1 	
l of 	  (—k) 

	

Si HTr~ 1-0(AA-rt- 	r7() 

(4.17) 



vl(k (4.19) 
16 Trt rt=1 

op 

F. 

Substituting this expression into equation (4.14) and performing 

the momentum integration, to order ) one obtains: 

atico 

8 t 2.-. 
1-1.7r 

a -ioo 

(me 
S ;A Tr-t, 1-cwc7'r , 
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{ 
2vm2 ce--1)tri 	— 2/41 t tf 3/0 21- 

(4- 	37/s) 	11(1—. 14.)  (11.g. 
1-71 -t- 	viAs7  

(4.18) 

which is linear in >% . The contour along which the integral 

in equation (4.18) is taken stands to the left of z = 0, where 

the integrand has a double pole. Collapsing the contour around 

the positive real axis also picks up the singularities at 

z - 1,2,3 ... which are tripoles. The full expression for E t 

will be given at the end of this section (Equation (4.25) for 

reference purposes. With X 



where 
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(syts) 	= = 0 
3x. mit' [ Inn + 'Z1  
(PT 	 VI4c 2. 

 

IC Trz 
ict vvIct  

 

 

(4.20) 

and the power series coefficients are: 

(n-1) ! 
R2..(2A_I) t 	kfr(1̂ ) • L" G1 

- 	64) tAr,' 
A4-2 

Z 	 AtI  (PI) IA"1" (2a) 

(4.21) 
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where 

	

	rMsliKt ( 6 it: 

rt(1,t) z 4/7"(A) ti(") 

r 

T(vt) 	k-)/(y. 
6 -t 

Note that ~Mt 2tA 

4-4 	It has been pointed out in Reference 5 that computation with 

only one superpropagator is not a gauge-invariant procedure. In 

this calculation, the gauge-dependence oat,. is made manifest by 

the explicit appearance of the gauge parameter A in equation (4.17). 

As a multiplier of k
tA 

k / k z it is harmless: after integrating 

over k this part will vanish by symmetric integration. As a 

multiplier of 'Z My , however, it exhibits the non gauge 

invariance of the result, since,as can he seen by equation (4.18), 

)% still remains in the expression for V even after the momentum 

integrations have been carried out. However, on evaluating 

equation (4.18), the coefficient of A is only 0.005 MeV when 

k-1c
3 	of graviton theory (n-2 x 10-2200-1) and still 

only 0.01 MeV when K=hy,A of tensor meson theory (1"--, 1 BeV-1). 
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The smallness of such gauge dependent effects increases 

optimism that the problem of gauge invariance is not as serious 

as one might first expect. All numerical results in gs are 

quoted with =0. 

4-5 	In the calculation described in paragraph 4-3 the weights 

of the fields were all taken to be zero. A more general approach 

should be able to take arbitrary weights and still obtain a unique 

result. This would involve a concept called "K-renormalization" 

which may be illustrated in the context of the pion mass difference. 

It should be stressed that no rigorous proof of equivalence 

under field re-definitions is being attempted. 

If the fields in the Lagrangian (4.1) are taken with 

non-zero weight, then the powers of ( I 1-.K 	) at the various 

vertices will he quite different to those of (4.5). The 

approximatfons involved in taking one superpropagator per diagram 

(Fig. 3) would then not be the same. However, for the purposes 

of this illustration, we will take one superpropagator per 

diagram as before - but field re-definitions will be generally 

represented by taking for the form of the superpropagator, 

Gt(,,c) 

   

(4.22) 
1-1-1c ,p64)).(- 	(I -I- K  95(0))€ 

L is an arbitrary integer. VA replaces 6(X) of the 

previous calculation. The massless superpropagator in momentum 



Si bout 1 

atieo 

61t(131.) 	(tilrY 
(-0'2  

1-01.AnTr 

space is 
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(4.23) 

which reduces to (4.10) fort 	The net result of using 

to evaluate 

S t_ ez oefk 0_21, M „101) ,(6112. ) ) 	( (1e-1,y)
(27i)tt ,M 	r 	(4.24) 

is that the integrand of equation (4.18) acquires an extra 

rfactor of 

Lr1(1--t-1) 
This factor will introduce an 4!--dependence into the residues 

of the singularies at t =0,1,2... in this integrand. 

Path (iVW1V_ o 	and C,(K) of equation (4.19) become 

dependent. 



[(t+r 	r(f211s,(Klx).1.) .Soc yv12 

	 (n -1)! (t 	n! 

The full expression for if.4A as a function of t and 

the gauge parameter >1/4  is given below in equation (4.25) 

et seq. Equation (4.19) may be obtained by setting t=1 and 

-0. 
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ni 

The term at the origin is 

Siv''Llr. (1<` N)t) 	
1C)i nos [2- k" 	1- 
y.7r 

(4.25) 

14,2 
wis 	/AL 	I+ 

	

tIT 	 / g (2 4k(t) -- 3qd(1))] -5; 	, 	\ it,Trz  
(4.26) 

and the power series coefficients are 

s,(K ) ),, 	pl (v.?(K,4.)— 	[ y14.'11  A() (tc,t) 

(2) nr, 	-€) — (0+1) 	 (Ati)3 (4.27) 
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The quantities A
(1), A

(2) 
and B are 

6, 	2. (2"-0 	 tit1% ;)2.  (1 ÷ ,1)1 
2  

(k, 	z Cn (Krt) 	gn  [(c, (k)-(12.  

2k111(4-1- n) — 2 Li/tryi-i)- 4.,'($.1)] -t- Eh 

tot ti,)  (K,c) 
	

c.„ (K, t) 6, 

(4. 28) 

where 2"+' try, 2 + -g-,z.  [2." IA,I. (11
2. 	-

_ 5A +14- 1 ) 
rv, s 	 2-  

1 —3 .1. 2."(A-2.) 
7i.  

4. 2 ki/(4-1- 1A)- 2 kNA-{.1) - 4(0) 

E, = 2." {2 1,.,,1" 2 + 	 1 
vvIs  

-4 k"A7-2 (1'11_5211+19 )" (4.29 ) 



	

5 	NUMERICAL RESULTS AND CONCLUSIONS 

	

5-1 	When K is put equal to kl  of graviton theory 

(X1  - 4.3 x 10-22  (MeV)-1  ) the power series contribution 

of the tripoles (equation 4.21) is negligible---2 x 10-35MeV. 

The contribution of the leading dipole (equation (4.20) clearly 

reproduces the ordinary zero gravity result (equation (4.3) 

except that there remains a dependence on K in the form of an 

effective cut-off: 

.L 	°1.e••••.-, 	4-1r 
1.< 

(5.1) 

The important point is that the ultra-violet infinity in the 

old theory has disappeared via the mechanism of the induced 

cut-off. The ultra-violet infinity still leaves its mark 

as a singularity in the k-plane and re-appears if the limit 

0 is taken. Equation (4.20) gives 

6.9 MeV 
	

(5.2) 

for massive pions. Thus gravity-modified hadron electrodynamics 

produces a finite pion mass difference not much greater than 

that observed. 
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5-2 	A rigorous calculation of the effects of tensor 

meson dominance of gravity is not possible at the present 

time since the analytic form of the massive superpropagator 

is unknown. Also the effects of the approximations in neglecting 

superpropagators become more serious. However, if one assumes 

that the behaviour of the zero mass propagator provides a good 

approximation to the massive case, the effects of strong gravity 

may be estimated by extrapolating to large values of IS . 

For values of k of the order of one (BeV)
-1 

the contribution 

of the tripoles is no longer negligible and the whole of 

equation (4.19) must be taken. Taking as a typical tensor 

meson mass that of the -c(abo) , Figure 6 (4. =1) shows ben as 

a function of K  . The variable on the axis is the quantity Ch' 

defined by 

- Gt 
	

(5.3) 

The range of CA typical of tensor meson theory is 

io-1  < G < 10 

It can be seen from Fig. 5 that the value of 4Sym decreases 

from about 5.7 MeV to about 4.1 MeV in this range, thus 

enclosing the physical value 4.6 MeV. The curve does not 

(5.4) 



start to rise appreciably towards the weak gravity result 

until 	and sd this cannot be drawn in. (As 

0, 	S'it4.--t, eQ 	logarithmically.) 

5-3 	If one wished to estimate the value of k in a tensor 

meson theory, then the decay channel of the appropriate meson 

would enable a direct physical evaluation to be made.  In the 

representation of field re-definitions taken in section 4-5, 

a naive physical argument implies that since the relevant 

meson -I 2ir 	term in the total Lagrangian originates from 

the expansion 

 

-rr a 11 
 = (f)/^Tr 3tiTr)[) 	kt) 	• • • 

 

 

(5.5) 

 

  

then the Coupling at the vertex is proportional to ke. . 
Thus, approximately, one would expect that the physical 

coupling constant Kol was "renormalized" by field re-definitions. 

In a full tensor theory, the dependence of k  on e will be 

very complicated. In this scalar example, roughly one expects 

K. 	 (5.6) 

Since a detailed spin-two meson calculation was not 

performed for the pion mass difference, an accurate text of 

a "K-renormalization" effect or comparison with an experiment 

like 	.1_, 2-ir is not possible. However, it is very interesting 
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to note that with the inclusion of 1(111) as described in 

section 4-5, in the region (5.4) 3/1,A(PCIL) shows approximate 

dependence on the single variable Kt. Figure 6 shows SC  as 

a function of ("bare") k for various values of Land Figure 7 

shows S'CA as a function of the variable kt  -,-. kl 	for 

the same t values. All the curves in the latter lie close 

together in the strong gravity region, though there is no explicit 

kt dependence in the expression evaluated. This indicates that, 

within the model taken, a renormalization of coupling could be 

occuring. 

The effect also happens for weak gravity, where the 

power series in k is negligible and only the log terms survive. 

Then, since q/v) behaves like lilt (especially for large £ ) 

the typical combination [Lo-a3 11,c  -- 40 9 	will behave as 
1 

5-4 	 To summarize briefly, the pion mass difference provides 

a quantifiable test of gravity-modified hadron electrodynamics. 

"Weak" gravity gives numerical results - though finite - a 

little too high (6.9 MeV). That weak gravity is not completely 

unsuitable to regularizing strong interactions stems from the 

hadron model whose logarithmic ultra-violet divergence is 

proportional to /1  . However, extrapolation of 1c to values 
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representative of "strong" gravity for which 

10-1  < If. vvl.p < 10 

gives 	5.7 YvkV'7. 5/- > ci_. s el/k.kl 

indicates that a complete tensor meson theory would give a 

more physically reasonable prediction. 

(5.7) 



116 

REFERENCES 	(PART 2) 

1. See, for example, "Review on Methods in Non-Linear Quantum 
Field Theory" G. V. Efimov: Cern preprint TH 1087 (1969) 

2. See, for example, the review talk "Non-Polynomial Lagrangian 
Theories" A. Salam: Proc. Miami Conference, Coral Gables 
(1970) 

3. See, for example, the review talk "Computation of Renormalization 
Constants" A. Salam: Proc. Miami Conference, Coral Gables 
(1971) 	Trieste Preprint IC/71/3 (1971) 

4. A. Salam, J. Strathdee: Nuovo Cimento Letters 4, 101 (1970) 

5. C. J. Isham, A. Salam, J. Strathdee: ICTP Trieste preprint 
IC/70/131 (1970); to be published in The Physical Review 

6. C. J. Isham, A. Salam, J. Strathdee: ICTP Trieste preprint 
IC/70/108 (1970); to be published in The Physical Review 

7. Sections 4 and 5 contain material also appearing in M. J. Duff, 
J. Huskins, A. Rothery: I.C. preprint ICTP/70/17 (1971) 

8. A. Salam, J. Strathdee: Phys. Rev. D1, 3296 (1970); 
and 
M. K. Volkov: Annals of Physics (NY) 49 202 (1968) 

9. H. Epstein, V. GlaSer and A. Martin: Comm. Math. Phys. 13, 257 
(1969) 

10. Ldmimn, K. Vohlmtyet! DEgY prpritit 70/26 (1970) 

11. I. Waller: Zeits. Phys. 62 673 (1930) 

12. V. Weisskopf: Zeits. Phys. 89, 27 (1934); Phys. Rev. 56 
72 (1939) 

13. A. Jaffe, J. Glimm: Commun. Math. Phys. 11, 9 (1968) 

14. A. Salam: (Kiev Conference) ICTP Trieste preprint IC/70/106 
(1970) 

15. B. W. Lee and H. T. Nieh: Phys. Rev. 166, 1507 (1968) 

16. G. C. Wick and B. Zumino: Phys. Letters 25 B, 479 (1967) 

17. I. S. Gerstein, B. W. Lee, H. T. Nieh, H. J. Schnitzer: 
Phys. Rev. Letters 19, 1064 (1967) 

18. See,for example, J. L. Anderson: "Principles of Relativity 
Physics" (Academic Press, London, 1967). 



FIGURES FOR PART TWO 

117 



118 

FIGURE CAPTIONS 

Figure 1. 	Schematic representation of F22
(2)  
(s) . 

Figure 2. 	(a) Electron self-mass graph. 

(h) Mbdification to (a) with graviton 
exchanges. 

Figure 3. Feynman graphs from the chiral Lagrangian. 
The wavy line, double line, and thick 
line represent the photon, pion, rho and 
AI , respectively. (a), (b) and (c) 
differ by the powers of momenta at the 
vertices; similarly for (d) and (e). 

Figure 4. 	Full gravity-modified graphs. The dotted 
line represents the multi-graviton 
propagator. 



Figure 5. 	Single-superpropagator graphs evaluated. 

Figure 6. Set as a function of "bare" coupling 
constant k 	Gt == k"14* , with 
values between 0.o and 10.0 for strong 
gravity. The curve rises below (A = 0.01 
and eventually becomes infinite for 
G = 0.o. The weak gravity result is 
indicated. 

Figure 7.- 
	

./1.̂(  as a function of "renormalized" k, 
i.e. 	( = 1.<4  vo.k ). 
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