WIND TUANEL TESTS ON AN ATRCRHFT OD ODEL

FITMED YIMH A LIFTIIG FAN UNTI INSTALLED IN THE BODY

James Ernest Hackett B.Sc.(Eng.)

March 1964

A thesis for the Degree of Doctor of Philosophy in the Faculty of Engineering of the University of London.

This thesis describes an investigation into several earodynamic features of a wind tunnel model containing a lifting fan in its body. itost tests were performed in the Imperial College $5^{\text {t }}$ 种 ${ }^{\prime}$ wind tunnel. liany conflicting requirements defined model dimensions and the leading particulars of its 6.4" diameter, 23,200 RPM fan unit. Aerodynamic and Engineering design is discussed.

Lift, Drag and Pitching inoment were measured with and without wings at forward speeds between 15% and 65% of the $200 \mathrm{ft} / \mathrm{sec}$ jet velocity at incidences between $\pm 20^{\circ}$. The addition of underfins removed the initial decrease in lift increments, which amounted to about 10%, as formard speed was raised. Forces measured in the $11 \frac{1}{2} \times 8 \frac{1}{2}$ tunnel at R.A.E. were within 2 or 3 fir of the $5^{t} \times 4^{t}$ tunnel results except at high incidence and at the higher formard speeds with wings fitted.

The development of the jet plume into a trailing vortex pair was demonstrated using smoke and tuft methods and a flow structure is suggested. ith the exception of extreme incidences, surface flow patterns near the jet chenged little with forward speed or incidence.

Flow measurements behind the fan Jere analysed using a specially designed integrating device, which is described. The results showed that as forward speed increased the fan progressed down its characteristic total head rise curve, mainly because of increasing inlet total head. This caused a reduction in fan lift and an increase in momentum drag.

The initial reduction in incremental lift as forward speed is increased is shown to be partly due to a loss of lift on the fan unit, an effect not greatiy dependent upon incidence. Further loss of lift
is examined using a crude vortox. representation of the jet plume and some incidence effects are explained. It is tentatively proposed that, because of a decrease in the strength of the trailing vortex pair, the reduction of lift increment at the higher forward speeds is less than might be implied from the closer approach of the plume to the body.

Further experiments are required to achieve a better understanding of the jet plume. In particular the determination of trailing vortex strength over a speed rango appears to be most desirable.

ACHNOMLDGEMENS

The author is indebted to the late Professor H.B. Squire, who suggested the project, for his advice and encouragement during the early stages of the work. Grateful thanks are due to Dr.J. Williams and Dr. L.A. Gyatt of the RAE and to Mr. N. Gregory of the NPL with whom the author had valuable discussions, and to Mr. W.J.G. Trebble of the RAE for his help during tests there.

The fact that the fan unit worked properly straight away is a tribute to the workshop staff of the Aeronautics Department, in particular to lir.R.A. Lee who made the model. The hard work put into the electronics of the film reader by lir. B.J. Belcher and the staff of the electronics workshop is greatly appreciated. Hiost of the photography is due to Nir.J.F. O'Leary who al so gave considerable assistance during the third test series.

The author wishes to thank iir. w.J.G. Trebble, Mr. N. Gregory and Mr. G. Jackson for valuable criticism during the draft stage of this thesis, and the Kinistry of Aviation who supported the project financially.
2. 1 Introduction.
2.2 Fuselage design.
2.3 The fan and centrebody.
2.4 Model size and jet velocity.
2.5 Power unit.
2.6 Fan blade and stator design.
2.7 The design of wings and underfins.

3

3.

4 THE SCOPE, MEASULEMENT AND REDUCTION OF DATA
4.1
4.
4.

5

5.

5.2

6 FAN OFF TEST RESULTS AND STATIC PROPERTIES OF THE FAN
6.
6.2
6.3 Son
6.3 Some properties of the fan at zero forward speed.

FLOV OBSERVATIONS .2 Flow observations with the fan operating.

Introduction.
Tests with fan off.

SECTION	TITE
7	THE LIFTING-FAN MODEL AT POR ARD SPEED
7.1	Introduction
7.2	Internal Interactions. The fan unit.
7.3	lieasured Lift Increments and calculated forces on the Fan Unit.
7.4	External Interference. The jet plume.
7.5	The results of force tests.
7.6	Wind Tunnel Interference.
8	CONCIUSIIONS
	LIST OF REFERETICES
	APPENDICES
Appendix I	Find Tunnel Fan Design, by the late Professor H.B.Squire.
Appendix II	Centrebody diameter for maximum power.
Appendix III	Further details of the automatic data-reduction process.
Appendix IV	The interaction between the fan and non-uniformities in the upstream flow.
Appendix V	Tables 1 to 7.
Appendix VI	Illustrations.
Appendix VII	Further plots of the results of force measurements.

a, m a_{0}	Lift curve slope Sea level speed of sound under standard conditions.
$\left.\begin{array}{l} a_{2}, a_{3} \\ A_{1}, A_{2}, A_{3} \end{array}\right\}$	See Appendix IV
A	Interference coefficient for lift. See Figure 7.7.
${ }^{\text {c }}$ C	Area of motor coting intake.
$A_{\text {E }}$	Flow area at duct exit.
A_{F}	Fan annular area.
${ }^{\text {a }} \mathrm{J}$)	-
B	(In Chapter 2) fan boss : tip diameter ratio.
B	(In Chapter 8) Interference coefficient for drag.
c	Local fan blade chord.
c^{\prime}	See Appendix IV
${ }^{\text {c }}$	Lift coefficient
C_{D}	Drag coefficient
C_{M}	Nose up Pitching lioment coefficient measured about the axis of suspension of the model.
$A C_{p}$	Defined in Figure 5.15.
D	Drag
$\Delta \mathrm{D}$	Drag increment due to fan operation (datum with duct ends sealed.)
${ }_{\text {d }}$	Equivalent diameter of duct.
d, d_{t}	Fan tip diameter
${ }_{\text {d }}$	Diameter of fan motor stator.
H	Mean total head at central plane, measured above ambient static pressure.
$\Delta \mathrm{H}$	Total head rise through fan.
H_{0}	(In Chapter 2 and Appendix I) Total head of flow approaching fan.
H_{0}	(In Chapter 8) Free stream total head.
$\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{1}$	Mean total head of the flow leaving the fan.
H_{I}	Nean total head of the flow approaching the fan.

L	Lift.
I_{J}	Theoretical lift of fan unit (see equation 2.1).
$\Delta \mathrm{L}$	Lift increment due to fan operation (datum with duct ends sealed).
OL	Lift increment due to the aquition of underfins (datum with fan on).
m	(In Appendix IV.) Lift ourvo slope.
m	Hiass flow through fan.
${ }^{\text {in }}$	Nose up Pitching inoment measured about the axis of Suspension of the model.
$\Delta \mathrm{M}$	Pitching lioment increment due to fan operation (datum with duct ends sealed).
Mi_{T}	Fan tip peripheral Iiach Number.
N	(In 2.5) R.P.in. of fan and motor.
N	(In 2.6) Number of fan blades.
N	(In 7,2) Body normal force given by Equation 7.11.
$P \mathrm{P}_{\mathrm{J}}$	fir power of jet.
${ }^{\text {P }}$ I	Electrical power input to motor.
$\mathrm{P}_{\mathrm{I}_{\text {T }}}$	Elecirical power input to motor during static lift test.
p 。	Free stream static pressure.
$\mathrm{p}_{\text {I }}$	liean static pressure ahead of fan.
$\left.p_{2}, p_{2}^{\prime}, p_{3}\right\}$	hppendix IV.
$\left.\Delta \mathrm{P}_{2}, \quad \Delta \mathrm{p}_{2}\right)$	
R	Fan tip radius.
r	Radius of fan blade element.
$r_{b_{\text {min }}}$	lininimum permissiole fan boss radius.
$r_{t_{\max }}$	laximum permissible fan tip radius.
T	lieasured static lift.
V	Free stream velocity.
V_{E}	Duct exit velocity.
V_{F}	Axial velocity through fan
V_{J}	Jet velocity (in parallel duct).
$\mathrm{V}_{\mathrm{J}_{T}}$	Nominal efflux velocity defined by $T=\rho A_{J} V_{J_{T}}^{2}$
$\mathrm{v}_{\mathrm{J}_{\mathrm{MIN}}}$	Minimum possible design jet velocity.
$\mathrm{V}_{\mathrm{T} P_{M H X}}$	Maximum fan tip peripheral velocity.

$\mathrm{V}_{J_{\mathrm{RuIS}}}$	Root mean square jet velocity.
V_{S}	Swirl velocity imparted by siraighteners.
$\begin{aligned} & \left.\mathrm{v}_{2}, \mathrm{v}_{2}^{\prime}, \mathrm{v}_{3}, \mathrm{v}_{3}^{\prime}\right) \\ & \mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \end{aligned}$	See Appendix IV.
a, a_{3}	Body incidence.
α_{0}	(In Chapter 7) Wing setting angle. Fositive for wing leading edge above the oody axis.
$a_{0}, a_{1}, a_{2}, a_{3}$	(In Chapter 2) is defined by Figure 2.3.
a_{12}	Defined by Equation 2.6.7.
α_{w}	Wing incidence.
β	Fan blade angle from plane of rotation to section datum.
η	Fan stage efficiency.
p	Air density.
σ	(Appendix IV) Fan blade solidity.
ξ	Bendeman figure of merit (See Section 6.3)
ω	Angular velocity of outflom from fan.
Ω	Angular velocity of fan.

For many years heavier-than-air vehicles have flown which are capable of leaving the ground vertically, performing a mission, and then landing vertically. Until recently the presence in the mainstrean of large rotating lifting blades has kept cruise speeds low and in combination with mechanical complexity has made such transport more expensive than that using conventional take-off techniques.

Recent aircraft contain powered lift installetions which are enclosed by the structure and which are operated only when the aircraft wings will not sustain flight. One advantage of such a system is that the vertical lift capability ooiapromises the cruise case less, though 'dead' engines must be carried throughout the flight. Another possibility, the combined engine with tilting nozzles, avoids carrying some of this extra weight, but engine design must involve compromises between cruise and vertical lift requirements. It seems probable that some future aircraft will use more fully integrated lift/thrust systems which are in continuous use.

Current interost in the VIOL field focusses upon jet and fan lift. There is no sharp dividing line betreen these categories. The jet unit uses higher gas velocities and somewhat smaller areas than those needed by the fan unit with its lower outlet speeds. Dry weight considerations favour a jet-lift biës, but the higher Frouce efficiency of the fan unit tends to restore the balance since less fuel is used. The overall choice depends on the length of hover time as well as on many design consiaerations. These may include the volume of the units, noise, response to control, availability of emergency power, recirculation effects, starting in the air, interaction between the
unit and extcrnal flows, and the amount of aerodynamic interference present due to the intake and due to the sink effect around the periphery of the jet. These last aspects are of interest in the present work.

Chapters 2 and 3 will describe the aerodynamic and engineering design of a wind tunnel model intended to investigate several aspects of the aerodynamic interferences and interactions which may occur in VTOL installations.

In the autumn of 1961 three component force tests were carried out on the model in the Imperial College $5^{\prime} \times 4^{\prime}$ wind tunnel over a range of fomeard speeds and incidences. Surface flow visualisation was also carried out. In June 1962 the force measurements were repeated in the R.A.E. $11^{\frac{1}{2}}$ x $8 \frac{1}{2}^{\prime}$ wind tunnel using doubled incidence increments. These results are reported per se by Trebble and Hackett (1963) who also make appropriate comparisons with another model (see also Trebble and Williams (1961)). Such comparisons are therefore omitted from this thesis and the $11^{\prime}{ }^{\prime} \times 8 \frac{1^{\prime}}{}{ }^{\prime}$ tunnel results are presented only in an investigation of the effect of tunnel constraint on measured forces. (See Section 7.6)

Throughout both the preparatory and the experimental work a need was felt for a knoiledge of mean duct quantities, in order that forces associatcd with changing conditions at the fan could be investigated over the whole field of experiments. The labour involved in reducing by hand the necessary duct traverses was prohibitive and no solution was apparent initially. However early in 1962 the film reader described in Chapter 4 was devised which enabled the required data to be ootained. The results of this final series of tests are reported and discussed in Chapter 7.
2. AERODYNEMIC DESIGN OP HODEL

2.1 Introduction

This chapter deals with the overall design of the wind tunnel model and the ducted fan unit. Engineering design is dealt with in the next chapter. Because testing was to take place in the $5^{\prime} \times 4^{\prime}$ wind tunnel the fan unit required was only half the diameter of those then in use at the govermment research establishments. It was therefore necessary to develop a unit of new design. The jet diameter to tunnel proportions are very similar to those of several RAE and NPL experiments.

The design sequence which is outlined in this chapter somewhat idealises that used originally. In practice several project studies and many design cycles took place during the six months in which the model was designed.

The aim throughout the design was to avoid expensive "one off" proprietary items and to use conventional techniques wherever possible. Any other course would have resulted in the production of the fan unit becoming an experiment in itself, rather than the means of performing a series of experiments in aerodynamics.
2.2 Fuselage design (See Figure 2.1)

Gregory and Raymer (1958-9), Myatt (1959) and Melbourne (1960) have periormed experiments which demonstrate that it is inadvisable to mount jet lifting units across the thickness of wings because suction ahead of the intake and on the undersurface near the jet can lead to considerable nett loss of lift and large nose-up pitching moments as forvard speed increases. Because of this emphasis tended towards body-mounted lifting units (Irebble and Williams (1961),

Gregory (1961) and Wyatt (1961)). The work described here was carried out in parallel with these experiments. The object has been to reduce further the horizontal area around the exit of the lifting unit, and to investigate the nature of flows which are associated with lifting fans.

The smallest envelope around a ducted fan unit is the cylindrical duct itself. Further reduction leaves an open rotor which is not of interest at prosent. in American and a German aeroplane employ lifting units mounted at the wing tips which are rotated for propulsion in forward flight. (See Yaggy and Mont (1961)). As this system restricts the basic design of the aeroplane because of the need to rotate the duct, a more useful pod-type of unit has been tested.

In an attempt to achieve a low drag coefficient with fan-off the shape of the body was derived from the airship R101. The fan axis is at right angles to the body centreline. The duct cylinder has flat encis in order to reduce lateral velocity components which may affect the fan and which complicate traverses across the duct for the determination of mass flow. By building up the sides of the body to meet the end planes of the duct it is possible to make the body diameter only about 30% greater then that of the duct and to have only a small horizontal area around the outlet of the duct. . In order to promote attached flow over the intake lip this was given a generous redius (one fifth of fan diameter) on the upstream side of the inlet, reducing to 6% at the sides and rear of the duct (see Tigure 2.2). Table I gives a summary of model dimensions.

If the duat aerodynamics is to be fully represented it is desirable to employ some form of fan system rather than separate suction and
blowing. This ullows any inlet-outlet interference to make itself felt and in particular it allows the efects of high velocity air on the upstream side of the inlet to be felt by the fan and at exit. (See Gregory ot al (1962))

2.3 The Fan and Centrebody

Basic Design

Originally contra-rotating fans were considered because these made possible higher disc loadings then were attainable with a single fan. Rowever as the design progressed it became apparent that high rotational speeds were required by any fan system having the required output. It was decided that the combination of contra-rotation with high speed was unacceptable for engineering reasons. These included difficulties in providing adequate bearing support in the centrebody, in designing a small enough gearbox and in the leneth of time needed to manufacture the system. Therefore a single fan design vas used.

As the presence of the gearbox precludes central positions and the ends of the duct are unsuitable, the choice of axial position of the fan is limited to either one quarter or three quarters of a diameter from the inlet. The tests of Taylor (1958) show that the static thrust is approximetely the same for the two positions. When combined with the requirements of gearbox geometry and lubrication the tro possible fan positions give a choice between an inverted model with the fan domstrean, and a model 'right way up' with an upstream fan. The latter was somewhat arbitrarly chosen as three factors appeared to favour it.

Firstly the effects on possible separations from the forvard lip of the inlet are probably smaller for the upstream fan since the area of disturbed flow is less here. Gregory (1962) has shown that the
separation region probably contains vortices whose axes run dom the duct. It appears reasonable to arrange thet these shall not have developed to significant size bef ore the fan is encountered.

Secondly detailed design showed that with the fan in the upstream position the stator was best placed in the dowstream position, and vice-versa. Had the fan been placed downstream then a pre-smirl stator would have been needed. Because pre-stirl vanes increase the porrer required for a given lift these were not used. if relatively small number of large chord straightener blades were used in order to reduce the number of wakes encountered during traverses of the exit plane, Thirdly in the full-scale aircraft space will be limited and the fan may have to be placed high in the duct regardless of aerodynamic difficulties. In this respect the model may be more representative than some having long settling lengths before the fan.

By keeping fan blade angles moderate adverse effects due to nonaxial flow near the inlet can be reduced. In order to avoid stall effects it was decided to limit the swirl angle at the fan boss to about 30 degrees. This condition determines several features of the fan. For example a relationship is defined betireen jet velocity and fan R.P.M. The diameter of the fan boss and centrebody is affected by the need to keep blade root tangential speeds high enough to give sufficient jet velocity and lift for accurate measurements to be made readily.

A factor of considerable importance is the need for the centrebody to house either a motor or a gearbox. For the present design a gearbox was needed and at one stage it appeared that the size of the whole model might be determined by the size of the gears themselves.

Various nctural frequencies of vibration need to be checked (See 3,4). In particular the fan blade bending frequency may be
near to that imposed by the wakes of centrebody supports unless care is taken. The natural frequency may be raised either by raising the centrebody diameter to shorten the blades, or by tapering the blades, or by reducing the number of blades and increasing their chord to achieve the same solidity. Natural frequencies near to those imposed by the gear teeth also need to be carefully avoided. Centrebody Shape

The upstream end of the centrebody must be of streamlined shape but the shape of the domstream end is open to discussion. Contemporary models have blunt ends downstream which probably offer more resistance to the flow than necessary. An ellipsoidal rear end, similar to the intake end was therefore used. It was thought that this could only give less drag than a blunt-ended centrebody. The centrebody finally chosen was equivalent to a 2:1 ellipsoid with a length of circular cylinder inserted between the two ends to house the gearbox. (See Figure 2.2)

While the model was being manufacuurea some short qualitative tests were performed to investigate the properties of swirled flows round a 2:1 ellipsoid. Flow visualisation was carried out using smoke in the $3 \frac{1}{2}$ inch srirl tunnel at Imperial College.

It was thought that some benefit might accrue from allowing the flow behind the fan to expand before the swirl was removed as the vortex-type pressure distribution mieht aid the boundary layer on the centrebody. Althougin the body diameter was only one third that of the swirl tube, the separation point did move downstream as swirl was increased, eventually becoming completely atuached for swirl angles between 50 and 60 degrees. (See Figure 2.4) A vortex burst can be seen in one picture.

Although the expected effect was certainly present the swirl angles needed for significant movement of the separation point were higher than those likely to occur behind the ducted fan. It was decided to straighten the flow at full centrebody diameter.
2.4 Model size and jet velocity.

2.4.1 Introduction

In 2.2 and 2.3 the shape of the model has been fairly closely defined but no consideration has been given to model size, centrebody proportions, jet velocity, or matching a driving motor to the model dimensions. Before this can be done it is necessary to examine several aerodynamic and experimental factors which directly affect the size of the model. The way in which these restrict the design of the model is summarised by Figure 2.6
2.4.2 Limitations imposed by tunnel size

As no reliable corrections are known for the effect of tunnel constraint on rounc jet mocels it is desirable to keep the model smaller relative to the tunnel dimensions than is usual for aircraft mouels. Correction tables have been published by Fieyson but the mathematical model used is not very representitive of real flows.

Other work, which has become available since the model was designed, gives recommended model sizes for tolerable interference forces (Butler and williams (1959)). In the present work the experiments of Jordinson (1958) were used to predict free air jet penetration. An arbitrary criterion was adopted that the distance from the jet outlet to the tunnel wall opposite to it should be no smaller than the free-air jet penetration, at the lowest velocity ratio (i.e. V / V_{J}) of interest. For tests in the Imperial College $5^{\prime} \times 4^{\prime}$ wind tunnel the requirements of motor size and static lift
overrode this criterion which wes achieved only at and above velocity retios of 0.50. Later tests in the R. H. E. No. $11 \frac{1}{2}^{\prime} \times 8 \frac{1}{2}$ tunnel brought this value down to about 0.25 .

Recent work suggests that as the interference effect of the wind tunnel is substantially the same as that of the ground, one is representing real concitions by testing in a wind tunnel. while this mi,ht be used as an argument towards increasing the size of a model it should be remembered that ground clecrance ought to be increased with forward speed to represent a practical filight path.

In order that clearance between the rear end of the model and the tunnel floor and roof is adequate at high incicience it is necessary to restrict the model length aft of the pivot to about $20^{\prime \prime}$ and to place the model centrally in the tunnel. Both this and the previous requirement make small model size desirable.

2.4.3 fower, lift and jet velocity requirements

Before deciding on duct and model size it is necessary to determine the air power required by various combinations of duct size and through velocity, and to examine the corresponding theoretical values of static lift.

If lift L_{J} libs is produced by accelerating air from rest to $V_{J} f t / s e c$ in a duct having an equivalent diameter $d_{E} f t$ then:

$$
L_{J}=\rho \frac{\pi}{4} \partial_{E}^{2} V_{J}^{2}
$$

and the corresponoing air power is

$$
P_{J}=\frac{1}{2} L_{J} V_{J} \quad \ldots 2.2
$$

Figure 2.5 is the result of putting likely values of V_{J} and d_{E} into the above equations and gives values of air porer and static lift.

As the model motor ran at constant R.P.il. it was necessary to vary $\mathrm{V} / \mathrm{V}_{J}$ by altering the speed of the wind tunnel. As the range of $\mathrm{V} / \mathrm{V}_{J}$
from 0.2 to 0.6 hed to be produced in a wind tunnel heving speeds available from $40 \mathrm{ft} / \mathrm{sec}$ to $150 \mathrm{ft} / \mathrm{sec}$ it was clear thut V_{J} should lie between 200 and $250 \mathrm{ft} / \mathrm{sec}$. when combined with root blade angle requirements these values imply rotational speeds betreen about 20,000 and 30,000 R.P.IN.

In order that fan lift forces should be large compared with model alone forces it was decided thet the static lift of the fan unit should be at least 10 Ibs. This is consistent with the need to measure accurately interference forces of about 10 , of this with a belance which reads to 0.01 lb .

2.4.4 Limitation of tip Nach number of the fan

Because hich rotetional speeds were necessary the avoidance of compressibility effects at the fan blade tips became of importance. WacDougall (1951) gives performance figures obtained from propellors having Clark Y aerofoil section which was also employed for the model fan. These show thet it is desirable to keep down the value of peripheral tip liach number to 0.70 in order to avoid the compressibility drag rise. The 'Handbook of seronautics' Volume III was also consulted.
2.4.5 Centrebody diameter as a proportion of the fan tip diameter

The final value chosen for boss-tip diameter ratio is determined during final fan design in Section 2.6. In order to deteraine the poiver required by a fan of a given tip diameter it is necessary to estimate the range of centrebody dianeters which are likely to occur. For a given tip dianeter and through velocity maximum power is needed when the boss diameter is a minimum. As blade requirements place a minimum value on boss radius and tip liach number limitation creates a
maximum permissible tip radius, it is possible to determine a minimum value for r_{b} / r_{T} as follows:-

From Appendix I and 2.6.1

$$
\begin{aligned}
& r_{b_{M I N}} \Omega=\frac{2 / 3 V_{J M N}}{\left(\frac{\omega r}{V_{J}}\right)_{b}} \begin{array}{l}
\text { for pre-swirled } \\
\text { conditions }
\end{array} \ldots 2.4 \\
& \because \frac{r_{b_{M I N}}}{r_{t_{M A X}}}=\frac{2 / 3 V_{J_{M I N}}}{\left(\frac{\omega r}{V_{J}}\right)_{b}^{\bar{a}_{0} M_{M A X}}} \\
& \text { Eutting } V_{J}=200 \mathrm{ft} / \mathrm{sec} \text { (see 2.4.3) } \\
& \left(\frac{\omega r}{V_{J}}\right)_{b}=1 / 3 \quad(\sec 2.6 .2) \\
& \text { and } M_{T_{M A X}}=0.70 \quad \text { (see 2.4.4) } \\
& \text { yields } \frac{r_{b_{M I N}}}{r_{t_{M A X}}}=0.514
\end{aligned}
$$

We shall use this ficure rounded off to 0.50 . Results will also be quoted for 0.58 for comparison. It is unlikely that values greater than this will be of interest since the jet then has too annular a nature. The range of r_{b} / r_{t} values of interest includes that for maximum power required for the case with no pre-swirl. This is discussed in Appendix II.

2.5 Power Unit

2.5.1. Suitable types of power unit

The more likely possibilities included an air turbine or an electric motor within the model or a flexible drive from a motor outside the wind
tunnel. Since high rotational speeds mere required the latter was soon discarded. The air turbine appeared to be a possibility but the at the tine of initial design no suitable motor existed and published work concerning attempts to make small efficient air turbines was not promising (Ilevelyn-Davies et al (1952)) R.A.E. have since had developed successful units of this kind. Recently (lawherter (1962)) details have been published of a very powerful hydraulic motor using high pressure fluid.

The only available possibility which existed at the time of design in a proved form was the electric motor, which allowed conventional techniques to be used throughout.

It was decided that the best type of electric motor for the present purpose was an induction motor porered by a high frequency supply unit. For the model motor a range of stator and rotor units usually used in machine tools appeared promising. The frequency changer used gave constant output frequency, variable speed capability vould have doubled the cost. The Stator-Rotor units combined the advantages of rugged construction, cheapness and the possibility of building the motor into the model, which allowed a more compact design than the installation of a motor with its own casing and bearings.

The total cost of the Stator-Rotor unit and the associated
frequency changer was approximately the same as had been quoted for a specially manufactured D.C. Notor. One advantage of the chosen system was that 95% of the cost was the frequency changer, which was well protected by a thermal overload cut out. The model motor could therefore be over run if necessary and regarded as expendable.

However in the present case the motor was run below its quoted power rating.

2.5.2 Sizes of likely electric motors

Even using the high speed motors macie necessary by the fan blade and lift requirements it was very soon apparent that it was not possible to house a sufficiently powerful motor in the centrebody of the fan. The motor was therefore mounted in the rorebody. The detailed design is described in Chapter 3.

A range of motors suitable for the forebody installation was selected. Using data from the makers catalogue the following relationship, valid only over a limited range of sizes for this particular type, has been derived relating motor diameter to power and speed.

$$
\begin{aligned}
& N=\text { R.F.M. of motor. }
\end{aligned}
$$

The proportions of the model were such that the motor stator diameter could be no more than 70\% of the fan tip dianeter. Using this with the above formula it was possible to draw Figure 2.7 relating to rotational speed the maximum poier that could be associated with a given fan tip diameter for 50% and 58% bosses. A 1:1 gear ratio has been assumed throughout in the calculations. (See Chapter 3) The power required by the fan has been calculated assuming 100\% efficiencies throughout and zero pre-swirl.

2.5.3 Final choice of motor

From Figure 2.7 it is possible to determine further boundaries which modify Figure 2.6 by removing areas where motor size becomes excessive. Figure 2.8 shows the areas which remain if overall
efficiencies of $100 \%, 70 \%$ and 50% are assumed in combination with 50% and 58, bosses. 70% represents a possible figure for combined stage and gearbox efficiencies. 50% allows the same stage and gearbox efficiencies leaving adequate power for the addition of preswirl if required. It can be seen that the design possibilities which remain are very restricted.

In practice only two fan synchronous speeds, 24,000 R.P.i. and 27,000 R.P. i. within the design range were available using standard electrical equipment. The lower speed was selected for the following reasons:-
(i) Power to be transmitted through the gearbox is little more than half of that for the 27,000 R.P.I. case. (See Figure 2.5) The amount of heat to be dissipated will be less and cooling problems will be eased.
(ii) The motor will have substantial reserve power, allowing the possibility of 'stretch' either by installing pre-swirl vanes or by small increases in R.P.M. For the 27,000 R.P.M. case the whole system would be running at full capacity and little flexibility would be possible.
(iii) Tip liach number for the 24,000 R.P.N. configuration is Well clear of the drag rise.
(iv) 24,000 R.P.I. was the highest speed obtainable using frequency changer equipment. Higher speeds require a more complicated inductor-alternator set.
(v) Noise levels will be lower at lower speeds. Even at 24,000 R.P. M. it was found advisable to wear ear protectors during tests.

It follows that the design point lies on the 24,000 R.P.i. line between tip diameters of about $5.9^{\prime \prime}$ and $7.4^{\prime \prime}$.

2.6 Fan blacie and stator design

2.6.1. Theory

The design uses free vortex theory in the form given by the late Professor H.B. Squire in an unpublished note. The note is reproduced in full as Appendix I of this thesis.

In order to determine the advantages to be gained from introducing swirl to the flow bef ore the fan the method of Appendix I was extended to include a pre-swirl term. The relevant velocity diagrams are given in Figure 2.3.

The following development summarises the procedure:-

From $I_{.} 3\left(\frac{\mathrm{H}_{1}-\mathrm{H}_{0}}{\frac{3}{2} \rho V_{J}^{2}}\right)=\frac{\mathrm{P}_{J}}{A_{J} V_{J}{ }^{\frac{1}{2}} \rho V_{J}^{2}}=2\left(\frac{\Omega r}{V_{J}}\right)\left(\frac{\omega_{J}}{V_{J}}\right)$
$\left(\frac{\omega_{r}}{V_{J}}\right)_{b}$ will be chosen between $1 / 3$ and $1 / 2$ as recommended.

If Ω is known then $r_{b}=\frac{E_{J}}{2\left(\frac{\omega T}{\left.V_{J}\right)_{b}} \frac{1}{2} \rho V_{J}^{2} A_{J}\right.}$. ... 2.6 .2

In addition r_{t} may be determined from $r_{t}{ }^{2}=\frac{A_{J}}{\pi}-r_{b}{ }^{2}$

Hence $B=r_{b} / r_{t}$ may be determined.

Stator vanes

we shall investigate the arrangement in which the total swirl due to the fan is counteracted equally by pre-swirl vanes and straightener. The vanes will be untwisted and the angle of the straighteners will be such that they reduce to zero the total angular momentum.

Initial swirl velocity due
to the pre-swirl vanes $=-\frac{1}{2}\left(\frac{W r}{V}\right)_{b} V_{J} f t / \mathrm{sec}$

Swirl velocity imparted
by Gan at radius $r=\left(\frac{\omega_{r}}{V_{J}}\right)_{J} B\left(\frac{R}{r}\right)$ (Free vortex dist.)

Swirl velocity imparted
by straighthersis $=V_{S} f t / \mathrm{sec}$

Total swirl momentum $\left.=2 \pi R^{2} \rho V_{J}^{2} \int_{B}^{1}\left(\frac{\omega_{V}}{V_{J}}\right)_{b}^{B-1}\left(\frac{\omega_{D}}{V_{J}}\right)_{b}+\left(\frac{V_{S}}{V_{J}}\right)\left(\frac{r}{R}\right)\right\}\left(\frac{r}{R}\right)=0$

This yields $\quad \bar{V}_{S}=\tan \quad a_{3}=\left(\frac{10 r}{V_{J}}\right)_{b} \frac{1-32}{2\left(\frac{1}{1}+\frac{1}{D}\right)}$ with pre-swirl ...2.6.3

$$
\text { and } \frac{V_{S}}{\frac{V_{J}}{J}}=\tan a_{3}=\left(\frac{\omega_{r}}{\bar{V}_{J}}\right)_{b} \frac{-2 \mathbb{E}}{(1+\bar{B})} \text { without pre-swirl } \quad \ldots+2.6 .4
$$

Hence a_{3} with or without pre-swirl.
(i) flow angles (See Figure 2.3)

$$
\tan a_{1}=\left(\frac{\Omega I}{V_{J}}\right)+\frac{1}{2}\left(\frac{\omega_{I}}{V_{J}}\right)_{b}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { Blade } & \text { Pr- } \\
\text { station } & \text { Swirl }
\end{array} \quad \text { Fan Term } \\
& \tan a_{2}=\left(\frac{\Omega x}{V_{J}}\right)+\frac{1}{2}\left(\frac{\omega r}{V}\right)_{b}-\left(\frac{\omega_{D}}{V_{J}}\right)_{b} \cdot E \cdot\left(\frac{R}{r}\right)
\end{aligned}
$$

$\tan a_{12}=\frac{1}{2}\left(\tan \alpha_{1}+\tan \alpha_{2}\right)=\left(\frac{\Omega x}{V_{J}}\right)+\frac{1}{\sigma_{J}}\left(\frac{\omega_{J}}{V_{J}}\right)_{b}-\frac{1}{2}\left(\frac{\omega^{2}}{V_{J}}\right)_{b} \cdot B \cdot\left(\frac{R}{r}\right)$

Hence a_{1}, a_{2} and a_{12} with or without pro-swirl.
(ii) $C_{\text {L }}$ values and solidifies

From Equation 6 of Appendix I

$$
\begin{aligned}
C_{J} & =\frac{2}{S} \frac{\omega_{I}}{V_{J}} \cos \alpha_{12} \text { where } S=\text { solidity } \\
& =\frac{2}{S}\left(\frac{\omega_{N}}{V_{J}^{\prime}}\right)_{b} \cdot\left(\frac{R}{2}\right) \text { cos } \alpha_{12}
\end{aligned}
$$

Limiting tip C_{L} to 0.50 (See Appendix I) and substituting in the appropriate value of a_{12} obtained from above allows the tip solidity to be calculated. The use of parallel or slightly tapered blades then produces a design which is aerodynamically acceptable. 2.6.2 Determination of fan boss and tip diameters

In 2.5.3 the design point was shown to be between tip diameters of $5.9^{\prime \prime}$ and $7.4^{\prime \prime}$ at a through velocity of $200 \mathrm{ft} / \mathrm{sec}$. Neither the
overall efficiancy nor boas diemeter has yot been pacifiod. In order to complete the design some trial draivings had to be made in order to determine the nost suitable combination of the remaining variables. In what follows a 4.6" dianeter motor giving 6 H.P. at 24,000 R.P.i. has been assumed at the outset and it will be seen later that its size is consistent with the design conditions, Iteration between tip diameter and area was necessary to achieve this.

First determine P_{J} knowing $P_{L}=6 \mathrm{H} . \mathrm{P}_{\mathrm{C}}$.
Assume gear officiency of 85% and seals-plus-windage loss of $\frac{1}{2} H_{6} P_{\phi}$

Then input to fan $P=4.5 \mathrm{H} . \mathrm{P}$.

Assume stage officiency of 85%

Then $P_{J}=\eta P=3.8 \mathrm{H} . P_{.}$

Choose $A_{J}=0.15 \mathrm{ft}^{2} \quad \nabla_{J}=210 \mathrm{ft} / \mathrm{sec} \Omega=24,000 \mathrm{R} \cdot \mathrm{P}_{\mathrm{H}} \mathrm{H} .=800 \pi \mathrm{rad} / \mathrm{sec}$ (Note that ∇_{J} has been raised slightly to allow for R.P.il. quotation at synchronous rather than true speed.)

Following the method of ippendix I (Pre-swirl conditions)

$$
\left(H_{1}-H_{0}\right) \times \cdot 15 \times 210=3.8 \times 550
$$

$$
\text { giving } \frac{\mathrm{II}_{1}-\mathrm{H}_{0}}{\frac{1}{2} \bar{V}_{J}^{2}}=1.29=2\left(\frac{\Omega \mathrm{~V}}{\mathrm{~V}_{J}}\right)\left(\frac{\omega_{1}}{V_{J}}\right)
$$

Take $\left(\frac{u r}{V_{J}}\right)_{b}=1 / 3$ (boss condition) in order to reduce the
straightening needed. Hence at the boss $\left(\begin{array}{l}\Omega_{V_{J}}\end{array}\right)_{b}=\frac{3}{2} \times 1.29=1.935=\tan a_{12}$
if pre-swirl $=\frac{1}{2} \omega$. This figure gives reasonable blade angles at the boss. $\because r_{b}=1.935 \times \frac{210}{800 \pi}=0.154 \mathrm{ft}$.
$\left.\begin{array}{c}\text { joss diameter }=3.8^{\prime \prime} \\ \text { For } H_{J}=0.15 \mathrm{ft}^{2} \text { corresponding tip diameter }=6.4^{\prime \prime}\end{array}\right\} B=0.578$
Corresponding motor diameter $=0.70 \mathrm{~d}_{\mathrm{t}}=4.5^{11}$
2.6.3. Calculation of fan blade angles

Using equation 2.6.7 with and without the pre-swirl term
included gave the upper graph of Figure 2.9 which shows the distribution of swirl angle along the len th of the blade.

Solidity was determined by limiting C_{L} to 0.50 at the tip and applying equation 2.6.8 giving:-

$$
0.50=\frac{2}{S}\left(\frac{1}{3}\right) \quad 0.58 .1 \cdot \cos a_{12}
$$

This yields $S=0.252$ for pre-swirl and $N c=4.72^{\prime \prime}$
and $\quad S=0.266$ without pre-swirl, Nc $=4.98^{\prime \prime}$
$\mathrm{Nc}=5.00^{\prime \prime}$ covers both cases.
Three or five blades were likely possibilities. As the chord of the former would have been greater than the blade length that possibility was rejected. Later it was found necessary to taper the five blades slightly in order to relieve root bending stresses and to raise the natural frequency. (See Chapter 3) This raised the design value of C_{L} at the tip of the blade to 0.525 .

The centre diagran of Figure 2.9 was obtained by substituting into 2.6.8 the values of solidity and swirl angle appropriate to the $1.0^{\prime \prime}$ parallel blade with and without pre-swirl, and the tapered blade without pre-swirl.
10% Clark Y aerofoil section was chosen. The adaition to the swirl angle of the incidence required for the appropriate value of C_{L} Eave the blacie angle distributions of the lower graph of Figure 2.9.

It can be seen that, for a given total head rise, the adition of pre-swirl lowers the blade angles by only about 2 degreps although power is increased considerably and the manufacture is made more complicated. The idea of employing a stator at entry was therefore rejected. This allows the possibility of reducing the total head rise coefficient from 1.29 to little more than unity, which in turn permits either increased velocity or a larger diameter jet. The possibility was not used and the extra available total head rise was regarded as a safety margin. Under most conditions the fan should operate below its design point and should use less than the maximum power available. The safety margin allows inlet maldistributions or adverse pressure differences to be overcome with a reduced risk of stalling the fan blades.

2.6.4 Straightener design

The design follows the recommendations given in Appendix I. Twelve circular arc blades of $1.30^{\prime \prime}$ chord were employed. This gave unit solidity about half way along the blade and demanded lift coefficients no greater than 0.55 . The blade entry angle was determined using equation 2.6.4 which reduced to zero the total angular momentum. The blades were untwisted. Figure 3.2 shows the straightener ring before assembly. 2.7 The design of wings and Underfins. (sometimes called fences) Wings
Since both body-m unted ducted f ans and wings are likely to -28-
be positioned near to the aircraft centre of gravity, interferences between the two are of interest. In order to separate wing incidence effects from body effects wings were designed so that the angle relative to the body could be altered. wing area was determined by considering conditions before and after transition between jet- and wing-supported flight.

Fish intake momentun drag will probably preclude transition speeds greater then one third of the jet speed corresponding to static thrust. If the maximum safe wing lift coefficient and the available jet lift are known then a minimum wing can be found.

For the present model transition from 14 lbs of powered lift to 14 Ibs if wing lift at $C_{\bar{L}}=1.2$ needs wings 2 square feet in area for transition at a velocity ratio of one third. $\quad C_{L}=1.2$ represents the probable full scale value. This has been used to ootain a wing of representative size, even though this lift coefficient will not be achieved at model scale). A wing of this area was designed $\mathfrak{\text { for }}$ approximately elliptical load aistribution. It has 2:1 taper and an aspect ratio of 6 . The straight quarter chord line passes through the fan axis. The duct annular area is $7 \frac{1}{2}$ c of the wing area. It is unlikely that full scale aircraft will have ducis any larger than this. Underfins (abbreviated to 'fins' in some later chapters)

Following the recommendations of Gregory (1961) a pair of ventral fins was designed in order to investigate reported favourable interference effects. The fins were flat plates, one duct diameter deep and two long. They were situated one diameter apart and extended forwards to points one diameter ahead of the front of the duct exit. They were joined to the body along their upper edges.
'Perspex'was used to aid flow visualisation on the inside surfaces.

3 ENG INEERING DESIGN OF DODN

3.1 General layout (See fibR 6020, at end of thesis, and Figures $3.1 \& 3.2$)

In 2.3 we sair that a single fan design was preferable and in 2.6 it was shown that sufficient power could be obtained from a single motor. This is mainly a consequence of the high rotational speed which enables a motor of fairly high pomer density to be used.

The motor chosen was rated at 4 H.P. fully enclosed or 6 H.P. if ventilated. It was decided to air cool the motor using free stream air fed from air intake at the front of the model and exhausting at the sides as shown in Figure 2.1. This system produced little disturbance to the flow and made unnecessary the avoidance of balance constraints likely to be associated with an external cooling system. The obvious place to mount the motor was therefore ahead of the fan duct.

It was found that the motor shape best suited to the general outline had the highest length : diameter ratio of the range under consideration. The motor length was consistent with positioning the duct at the naximum thickness point 40% back from the nose.

Design studies showed that the best way of providing accurately positioned rigid mountines for the motor and bearings was to make the forebody and duct section from aluminium alloy castings. ARR 6020, the general assembly draving included with this thesis, shors the two main castings and the machined centrebody which is supported between two cast sipiders located at the ends of the duct. Photographs of the model and some of its components are given in Figures 3.1 and 3.2.

3.2. Gearbox design

The right-engled spiral bevel zears needed for high speed had
pitch-circle diameters of $1 \frac{1}{2}$ ". The size of the cylinder needed to house the gearbox was cietermined by the plan view of the gears. The possibility of using a motor rotating more quickly than the fan had some attractions due to the greater power density obtainable. However it was found that the centrebody dianeter became large compared with the size of the model if the gear ratio was chenged from 1:1. This ratio gave the smallest gearbox volume and resulted in a centrebody diameter which gave an acceptable solution to the problem of fan blade resonance. The gearbox diameter of $3.70^{\prime \prime}$ is 58% of fan tip diameter.

At zero incidence with the motor off the oil level in the gearbox Was just above the driven gear, leaving the majority of the driving gear exposed. For high positive incidences extre oil was added. This method gave adequate lubrication and heat transfer without undue churning losses. Molybdenised oil of S.A.E. 20 grade was used. Both shafts could be adjusted axially to correct the backlash of the gears.

Cooling calculations proved difficult owing to the three dimensional nature of the problem and the awkward shapes involved. The make ${ }_{h}^{p}$ quoted 96% efficiency for their spiral level gears but this was thought to be optimistic and 90% was used in calculations. Calculation of the heat transferred through the idealised outer cylinder of the gearbox to the duct flow gave an estimated temperature rise within the gearbox of $170^{\circ} \mathrm{C}$ for equilibrium. In practice $130^{\circ} \mathrm{C}$ was measured using a thermocouple. The difference probably combines the effects of axial heat flow, possible higher gear efficiency and the fact that power consumed was less than the total rating. The gearbox temperature fell as the gears became run-in. As a general safety measure the oil level in the gearbox was checked
frequently and running times were kept down to 20 minutes where possible. However little oil replenishment was found to be necessary and runs of 40 minutes were made without difficulty.

3.3 Vibrations and Resonances. (See table 2)

Because imposed frequencies as high as $7 \mathrm{kc} / \mathrm{s}$ were present in the rig it was necessary to conduct a careful survey of the natural frequencies of the major moving parts. In addition shaft whirling speeds had to be estimated.

Design philosophy was based on keeping most of the fundamental frequencies above the rotational frequency of $400 \mathrm{c} / \mathrm{s}$. Care was taken that no third harmonif coincided with the higher imposed frequencies. A resonance was noticed between 5,000 and 6,000 R.P. during commissioning at R.A.E. Bedford when the fan blade fundamental bending mode was excited. During tests at Imperial College no troubles of this description were encountered because speed was not variable and start up and shut down were very rapid. The motor speed reached 23,200 R.P.II in about a second.
in aspect of particular importance is the whirling speed of the motor shaft. Because of the motor length and the cantilevered gear this tended to be low. The diameter of the shaf't had to be increased above that of the original design in order to raise the whirling speed above the rotational speed. This fact accounts for the presence of the rather thick drive shaf't in the duct. Because of the small difference between the rotational and whirling speeds and the unknown amounts of constraint and damping, the calculation was checked independently.

As mentioned in the previous chapter the fan blades were tapered slightly in order to raise their natural frequency in bending.

Calculations for five parallel blades gave a funcamental of about $1600 \mathrm{c} / \mathrm{s}$ which is the frequency at which one fan blade passes the wakes of the four centrebody supports. Taper in thickness and planform raised the bending fundamental to $2100 \mathrm{c} / \mathrm{s}$.

The rotating parts were dynamically balanced to a standard similar to that applied to aircraft cold air units which rotate at 36,000 R.P.H. The need for careful assembly was emphesised by a trial calculation which showed that the omission of one gear key (on a $5 / 8^{\prime \prime}$ dia. shaf't) could produce a rotating force of about 25 lbs. Parts were therefore carefully marked before final assembly. 3.4. Detail Design

The forebody and duct section are castings in aluminium alloy, the afterbody being a simple fibreglass shell. The stator is mounted between webs in the forebody with the rotor between angular contact ball races fitted into housings which are part of the model. This type of bearing requires a spring preload to hold the balls against their seats. The general assembly drawing shows the sets of coil springs which tension the fan- and motor-sheffis in order to preload both sets of bearings. The front motor bearing and the lover fan shaft bearing are permitted to float axially in order to achieve this effect. Thermocouples were fitted to all bearings and in the gearbox while commissioning the model.

It was arranged that the motor shaft and the centrebody assembly could be removed from the model independently of each other. This involved fitting a removable seal plate which passes through the stator when the motor shaf't is withdrawn. The seals are of the rubbing type made from 'faco' flexible plastic. They run near to their maximum allowable rubbing speed and have proved effective and reliable.

Due to its hioh circulation the 7/8" diameter drive shaft would have produced more than 1 lb side force if left exposed to the duct stream. i shroud was therefore fitted round the shaft which prevented the associated flow distortions ahich otherwise would have resulted. The fan was made from an aluminium alloy casting, the blades being profiled on a copying and reducing machine. Stressing for fatigue was necessary since $1 \frac{1}{2}$ million revolutions occur per hour of running. Pessimistic loading assumptions for the tapered blade gave an upper surface peak compressive stress of about $8,0001 \mathrm{bs} / \mathrm{in}^{2}$ and a lower surface peak tensile stress of about $3,300 \mathrm{lbs} / \mathrm{in}^{2}$, chiefly due to bending. As the quoted limit for long life in Lid6 is about $7,000 \mathrm{lbs} / \mathrm{in}^{2}$ it can be seen that the thinner root of the parallel blade design would have been inadmissible due to fatigue limitation, as well as on a natural frequency basis. i'fetal-to-metal tip clearance was approximately .008". This was further reduced by applying coats of paint to the duct wall.

3.5 The design of the test rig.

The model was suspended from the three component balance in the $5^{\prime} \times 4^{\prime}$ wind tunnel at Imperial College, using the standard tunnel struts. These engaged either wing cleats or the cylindrical support struts shown in Figure 3.1. This figure shows slender lower struts which were later replaced by a stiffer version. Bracing wires were al so added which decreased the amplitude of sideways oscillations due to bufeting which occured with the fan and tunnel running.

Because undesirable interference effects have been reported between strut guards and wings, no guards were used. The resulting high strut drag values were less significant than usual since force increments were required from the present tests. Strut drag tests
were performed with a cylinder, similar to the body support cylinders, spenzine the struts. At $100 \mathrm{ft} / \mathrm{sec}$ with the body on struts at zero incidence 15 lbs of drag measured with fan on included 5.75 lbs of strut drag. The oylindur wis runoved for tho duturmintion of the strut corrcotion appropriate to the body-on-wing ocase. For fen-off tests covers could ba fitted flush at boths onds of the duct which were sealed with 'Selotape'.

Static thrust tests were conducted with the jet pointing through an $18^{\prime \prime}$ diameter hole in the tunnel floor. All possible doors and windows were left open in order to reduce further the adverse effect on lift of flow recirculation. (See Figure 3.3)

Three high purity aluminium wires arranged as in Figure 3.1 served both as tail wires and power supply wires. Power was fed to their outer ends by long free-hanging cables which gave negligible balance constraint. Because currents could be as high as 60 amps for the on-line start, wires of $0.10^{\prime \prime}$ diameter were needed. Running currents were between 15 and 20 amps at 160 line volts and $400 \mathrm{c} / \mathrm{s}$ (nominal).

3.6 Probes for duct flow investigation

Pitot-static investigation of the duct were carried out halfway between inlet and outlet using three radial rakes of tubes. These were attached to the straightener ring which could be rotated durin̄ a traverse. A small reversible electric motor drove a worm which engaged the ends of the straightener blades and thus rotated the rakes. (See Figure 3.4) The worm shaf't was also geared to a ten turn helical potentiometer which gave remote indication of the angular position of the traverse gear. Twenty three plastic tubes left the model through a $1^{\prime \prime}$ diameter cylinder suspended below the duct. (See Figure 3.3)

As the fan drive shaft was in the plane of the traverse the three rakes vere given unequal angular spacing, so that the drive shaft occupies at 140° interval between rakes, the other two spaces being 110°. In this way uniform coverage can be obtained without duplicating readings at the ends of the traverse.

Five total head tubes were spaced so as to represent equal annular areas. Static tubes were mounted between each of the inner and outer pairs of total head tubes. Four static pressure holes in the duct wall enabled the readings of the outer static probes to be checked.

Because of the swirl present between the fan and the straighteners all tubes were inclined at 15° to the axial direction. Errors in alignment which resulted are discussed in Section 4.2. 4. THE SCOFE, DEASURGENT IND PEDUCTION OF DITA

4.1 Test procedure and scope

Table 3 summarises the tests which were performed at Imperial College and at R.A.E. Farnborough during 1961 and 1962. The former tests were made at constant incidence, which avoided changes of balance zeroes during a run. At Farnborough the tunnel speed took too long to settle for this to be convenient. The absence of data at $100 \mathrm{ft} / \mathrm{sec}$ in the R.A. II . tests is due to a tunnel resonance at this speed. The model fan ran at approximately $23,000 \mathrm{RFI}$ in all tests.

For the first test series it was possible to work single handed. The model fan was switched on as the tunnel speed approached its test value. Tests were nade at even hundreas of tunnel fan RPM. It was found that measurement of lift, drag and pitching moment at six forward speeds took 10 to 15 minutes. Zeroes were checked after each run. For some tests it was found necessary to run the tunnel and
repeatability of pitching moment zeroes.
Although power measurement and speed control were added for the R.A.E. tests the time per run was similar since three people took part.

In the third group of tests measurements were made of forces, model power and speed, tunnel speed and duct flow at one speed and incidence in 6 to 10 minutes, care being taken to ensure that the manometer readings had settled. One operator took photographs of the manometer for various rake positions, and controlled the traverse gear, While the author made the remaining measurements. As the films of manometer photoeraphs were to be read automatically special care was taken with the photography. (See the following sections)
4.2 Methods of measurement (Imperial College results)

Force measurements were made using the overhead three-component balance. Zeroes were recorded before and after every run. The pitching moment balance was less reliable than the force balances. In the third series of tests forces were measured with the traversing rakes in the same position every time.

Tunnel speed was determined from the pressure drop across the tunnel contraction indicated by a Betz manometer. A vertical rake of pitot and static tubes showed no change in centreline distributions upstream of the model when the model fan was run. However tunnel RPMi for a given working section speed changed considerably if model incidence was changed with f an on.

Fan R.P. M. Since fan thrust depends on the square of model fan R.P.M. this must be held constant and measured accurately. For the first series of tests the supply frequency was fixed and the variation of speed with load was assumed small. Subsequent checks
justified this assumption, the speed variation over the range of test parameters being less than $\frac{1}{4} \%$.

Variable input frequency on the Farmborough rig made close speed control necessary. inost speed measurements were made by measuring the frequency of the fan noise, which produced a substantial signal from a microphone placed in the tunnel roof above the model. Since the $2 \mathrm{kc} / \mathrm{s}$ fan blade frequency was combined with a strong $4 \mathrm{kc} / \mathrm{s}$ component, the signal from the microphone was red to an oscilloscope where the output from an oscillator was arranged to form a Lissajous figure. The oscillator frequency was then measured using a counter. The results outained agreed with those given by a stroboscope. When fine speed control was available at R.A.E. it was found possible to adjust the fan speed to give a noise frequency within 1 or $2 \mathrm{c} / \mathrm{s}$ of the $1950 \mathrm{c} / \mathrm{s}$ standard.

Power Input to Fans. The "two wattmeter" method was employed at Imperial College, though in fact a single wattmeter with a changeover switch surficed. In a few tests voltage and current were also measured in order to estimate the power factor of the motor.

Duct Flow Investigation. (See Figure 4.3)

With the traverse gear described in Chapter 3 it was possible to make 165 total head and 66 static head measurements between the fan and straighteners at a plane half way down the duct. By this choice of traverse plane difficulties due to the presence of wakes were reduced. This was important because automatic data reduction was to be employed. (See 4.3)

Because of the swirl in the flow behind the fan it was necessary to incline the pitot and static tubes at 15° to the axial direction.

Calculeted misalignment was $\pm 3^{\circ}$ for the end tubes, giving acceptable accuracy. The effect of changes of forward speed and incidence on flow direction is not known but the measurements by Gregory (1962) indicate that errors of significant sizes are likely to be confined to relatively small areas.

Pressure tubes from the model were lead to a vertical multitube manometer containing Carbon Tetrachloride. Special scales were attached which were used during data reduction. After considerable experiment the photographic and alignment details of Table 4 were devel oped. Calibration marks which reduced to $0.002^{\prime \prime}$ on the 35 mm negative were sharply defined. Further details are given in 4.3.3.

Photographs of 15 total and 8 static pressure manometer readings Were taken at 10° intervals (See Figure 4.3), giving 11 frames of film for each of 35 test conditions. This was repeated for two configurations.

4.3 Methods of data reduction

With the exception of strut-drag corrections to fan-off data no wind tunnel corrections of any kinả were applied (see 2.4, 5.2 and Chapter 7)

4.3.1. Reduction of forces and moments

Neasurement of Lift, Drag and Pitching Foment were made at the incidences of Table 3 both with the duct ends sealed and with the fan running, wind tunnel R.P. $\mathrm{H}_{\text {I }}$ and reference pressure being noted throughout.

Required quantities are increments of measured forces and moment due to fan operation under various conditions. The formation of dimensionless groups will be discussed in the section which follows. In order to find the increments the

Ran-off forces are needed which correspond to the forward speed in the appropriate Fan-on condition.

Reduction may be based either on tunnel R.P.I readings or on reference pressure, both of which were calibrated against the centreline velocity upstream of the model. The former gives Fan-off forces at the Reynolds number corresponding to the Fanon case. In the absence of large Reynolds No effects a at the same dyrumier hood comparison of forces on in the present case. It is necessary to bear in mind the possibility of a change in tunnel calibration factor if reference pressures are used. However for the present tests the errors due to assuming constant calibration factor turned out to be less than 1% of fan static thrust. This implies that fan-off forces may be plotted against reference pressure and the forces corresponding to the fan-on case determined from the fanon reference pressure directly.

The calculations for the body-on-struts case (first test series) were performed using both this and the true airspeed method and the agreement was satisfactory.

4.3.2 Calculation of Jet Velocity Ratio

A dominant parameter in the present work is the ratio of mainstream velocity to jet velocity. (See equations 4.3 and 4.4) This is also important because it is the main parameter by which the development of the jet plume may be described.

For the tests of Chapters 7 and 8 mean jet velocity was measured and a genuine velocity ratio could be formed. For tests in which no jet velocity was available, the nominal duct efflux velocity is frequently used as in Equation 4.4. In $-40-$
this case either the static thrust must be measured for each test or the true tunnel velocity must be determined. This is necessary because the fan runs at constant RPL and the equivalent airspeed of the jet, and the static lift, alter with ambient conditions.

As before either tunnel fan $R=1$ or reference pressure may be used in reduction, since tumel velocity calibrations were made in terms of both of these quantities. l'he reference pressure was used in preference to tunnel RPI: firstly because it was a 'speed squared' measurement and secondly because it was not easy to obtain exact tunnel R.P.I settings because of an insensitive control. Checks showed fair agreement between the two methods. 4.3.3 Reduction of duct flow measurements usinf the Film Reader (See Iigures 4.1 and 4.2)

In the previous section the need for measurements of both mass and momentum flux is made apparent. As the distribution of velocity changes with forward speed and incidence it is not possible to calibrate the duct in any simple manner. Because of this a data processing device was made which could read and integrate the data contained on manometer photographs. The principle of operation will now be described.

Consider a rake of pitot and static tubes which is connected to a multitube manometer traversed so that each point investigated represents the same area normal to the flow. The summations are of local static and total heads, local velocities and functions of local velocity required in boundary layer or statistical calculations.

Special scales are attached to the manometer which have
alternate black and white divisions spaced according to the required functions. One scale is needed for each function. is series of photographs is taken with the rake at equally spaced posiiions, the tubes and scales being parallel to the length of the film.
fifter development the whole negative film is placed in the reader in which an image is projected onto a screen. (See Figure 4.1) The image moves continuously in a howizontal direotion, the top of the manometer appearing first. A photosensitive cell placed in line with the image of a tube reading static pressure gives an increase in output when the lighter image of the nanometer liquid is reached. For linear measurements this signal is used to start a counter fed by pulses from a photocell which reads the linear scale. The count is stopped by a signal from a photocell placed opposite to the image of the appropriate total head tube and is displayed on a counter.

Por non-linear scales it is necessary to allow for the variation of zero point, due to the presence of differing static pressures on one photograph. A 'transfer counter' is used in the manner illustrated by Figure 4.2. This figure gives the sequence of operations used to read one pair of tubes on one frame.

Integration is carried out by alloring the output counter to sum. the signals from every frame. The process is repeated ror each pair of manometer tubes and is made easier by using a continuous loop of film. The integration of each scale quantity is carried out separately. The results of checks on the accuracy and repeatability of the reader are given in Appendix 3.

Application of the reader to the results of Chapters $7 \& 8$ (See Figure 4.3)
For the determination of the sums of local velocities and their powers the readings of the outer three total head tubes were subtracted
from that of the outer static fube. The reacings of the two inner total tubes were combined with those of the inner static tube. The use of only two static tubes in the rake assumed small variation of static pressure along any radius. Experiment showed that the assumption was justified.

Unfortunately the static tubes of rake 2 were damaged early in the test series. Wall static pressures have been used in this region. The following quantities we:e summed over the duct
(i) to (iv) local velocity, its square, cube and fourth powers,
(v) total head, measured above atmospheric pressure.

The sums were determined for the 35 speed/incidence combinations and two configurations given in Table 3.

No rake calibration corrections were applied since these were within approximately 1% of each other, which is comparable with the probaule errors due to flow misalisnment.

4.4 Reduction Parameters

The presence of the fan-mainstream interaction and induced circulation over the forebody, as well as the sink effects around the emerging jet, makis the choice of reduction parameters difficult.

The ratio of forward speed to fan tip or jet velocity is a fairly obvious speed parameter. Because of the differing natures of the effects which combine to give the nett incremental forces, a compromise is likely to result when this reduction parameter is chosen. Consideration must also be given to possible experimental difficulties in the determination of certain parameters, particularly those associated with the duct flow.

Table 5 gives three alternative systems which rill now be
discussed in turn.
(a) Reduction using duct flow quantities

For non-uniform auct flow, in the absence of external interference:-

$$
\begin{aligned}
\Delta I & =\rho A_{J} \overline{V_{J}^{2}} \cos \alpha \\
\Delta D & =\rho A_{J} \bar{V}_{J} V+\rho A_{J} \overline{V_{J}^{2}} \sin \alpha
\end{aligned}
$$

giving the dimensionless groups-:

$$
\frac{\Delta I}{\rho A_{J} \overline{V_{J}^{2}}}=\cos \alpha \text { and } \frac{\Delta D}{\rho A_{J} \overline{V_{J}^{2}}}=\frac{V}{\bar{V}_{J}}+\frac{\overline{V_{J}^{2}}}{\bar{V}_{J}^{2}} \sin \alpha \ldots 4.3
$$

The mean velocity parameter has been used for the drag increment because at low incidence the inlet momentum term dominates the equation. Since incremental moments are strongly dependent on the moment of intake momentum, the mean velocity parameter is appropriate here too.

The duct flow measurements described in Chapter 7 were originally intended for use on the above basis. However it was found that large interference forces were present which obscured the effects caused by changes in duct conditions.
(b) Reduction on the basis of installed static lift T and nominal efflux velocity $\quad V_{J_{T}}$

This approach was used both in the author's preliminary report and by Trebole and Hackett (1963). The nominal efflux velocity is defined by the equation $T=\rho A_{J} V_{J_{T}}^{2}$, where ${ }^{A_{J}}$ is the fan annul us area, the equations corresponding to 4.3 are:-

It can be seen that experimental momentum drag will be greater then that of 4.4 since the increase in jet velocity has not been taken into account. Although the method is convenient and readily applied, difficulties can arise if tunnel interference affects the measured static lift. (See 6.3) Because of this comparison of forces measured in the $5^{\prime} \times 4^{\prime}$ and $11 \frac{1}{2}^{\prime} \times 8 \frac{1}{2}^{\prime}$ tunnels has been made on the basis of fan tip speed parameters. (See 7.6)

(c) Reduction using fan tip speed parameters

As rotational speed can be measured accurately and since the model dimensions are known, these groups are least susceptable to experimental error. As vefore no allowance is made for interaction or interference. However the system is compatible with that usually employed in fan performance calculations and automatically compensates for experimental variations in fan R.P. ${ }^{\text {I. }}$.
5. IMNESTITFION OF FLOM PEST THE LODEL
5.1 Surface flows with the duct sealed

Surface flow patterns were produced using 'Dayglo' pigment and
parafoin and illuminating the model with ultra-violet light after the stream had dried off most of the paraffin. (See halthy and Keating (1960)) Iests were made with the mein duct sealed at both ends and included an investigation of the effect of a transition wire and of the flow pettern chenges due to the motor cooling system.

As the nodel hā e gooci surface rinish laminar flow was maintained at zero incicence as far back as the plane of the motor cooling outlet for all forward speeds. Fiere the emerging cooling air and the raised shoulders ahead of the main duct caused transition to turbulent flow. (The highest test speed was $140 \mathrm{ft} / \mathrm{sec}$, giving $R e_{1}=3 \times 10^{6}$. Transition caused by mociel geometry at $R e_{x}=0.9 \times 10^{6}$). At hish inciciences a small separation bubble appeared on the top $l_{i p}$ of the cooling intake, giving rise to a turbulent boundary layer over the top of the body. This improved the flow pattern just ahead of the main duct inlet.

Figure 5.1 shows side views of the model on struts at zero incidence with and without the transition wire. It was found difficult to promote transition at positions ahead of the wire shown. Since the transition wire affected the flow pattern only as far back as the cooling outlet, its use kas discontinued.

By taping up one cooling outlet interference effects could be demonstrated. The smooth flow over the side of the body was then interrupted only by the wake of the support struts. Figure 5.2 shows that for the winged configuration some alleviation of the root stall occurred at the sicie with the cooling outlet left open. The effect was similar with both outlets uncovered. It seems probable that the cooling air delayed the root stall by
acting as a fillet. No attempt was made to optimise the small plesticene fillets employed.

It can be seen from Figure 5.3 (a) that the surface flow pattern with the body on struts at high incicence resenble those of similar axisymmetric bodies. (See Thraites (1960) and Werlé (1960)) the use of a tuft vand at positive incidences shomed additional vortices springing from the edges of the flat areas round the main inlet. (Which was sealed)

At zero incicence the flow over the wings was nearly all laminar and spanwise flow associated with root effects was present. During natural transition ahead of the trailing edge surface streamines kinked back towards the mainstream airection. Figure 5.3(b) shows a region of reversed flow associated with the wing stall. 5.2. Flow observations with the fan operating
2.2.1 Flow into the duct

As explained in 2.2 a 20% radius on the forward side of the intake decreased steadily to 6, of jet diameter, at the sides and rear of the duct. The Dayglo and paraffin technique gave indistinct patterns on the lips and inside the duct entry. However the discernable features were consistent with a record of unsteady man meter tubes kept during the pitot-static traverses of Chapter 7 .

Figure 5.4 sumarises the observations of oscillating manometer readings. The shaded areas should not be interpreted as regions of separateu flow. The total head tubes, approximately $0.10^{\prime \prime}$ from the outer wall, $4^{\prime \prime}$ dow the duct, showed only small oscillations about a mean little lower than the readings of adjacent tubes. It maybe inferred that, half way down the duct, reversed flow regions
could have occupied a maximum of z of the duct cross-sectional area. ruft ouservations showed no separations on the radiused lip. Faraffin techniques indicated small separated regions just beyond the end of the radius at the positions incicated in Fi, ure 5.4.

The very small seperations present would probably have been avoided if lip radii had been larger in the regions 45° each side of the forward centreline. The upstream lip radius was adequate.
5.2.2 The development of the jet plume

This sub-section deals with medium and high forward speeds. The low-speed cases, in which tunnel floor ef:ects were large, are discussed in Section 5.3. In order to avoid confusion with the wing vortex system, observations were limited to the case with the body on struts.

Jordinson (1958) shows that as a round jet emerges normally from a flat plate into a strean it is bent over, its cross section being distorted into a kidney-- and then into a horseshoe-shape. Figure 5.5(a) shows the downstream cross-section of the jet produced by the present model. The picture was taken using a "smoke screen" technique with the light slit approximetely 6.2 diameters downstream of the jet exit. A small canister, suspended inside the wind tunnel ahead of the model supplied the smoke, which all passed through the duct, almost filling it. The "smoke screen" iechnique and the canisters are described by lialtby and Keating (1960). The imace of the model was produced by switching on the tumel lighis for a brief period during the 10 seconcs exposure required to photograph the snoke. Even with the tumel speed almost half that of the jet, the plume approaches floor level at this section.

The tuft photo, raphs of Pigure 5.6, taken from the downstream
side of the grid, indicate flow directions at a cross-section 4.2 diameters downstream of the jet exit. (bee also inures 5.7 and 5.8). At the lower tunnel speeds of Figures $5.6(\mathrm{a})$ and (b) patterns indicating a vortex pair can be seen. Vortex motion was al so observed while taking the smoke photographs. The vortex on the left-hand side of the tuft pictures is less clearly derined. Figure 5.1i (b) indicates that this vortex may have been weaker, probably due to assymetry caused by the drive-shaft wake. (See rigure 7.2) The fact that the camera was mounted off-centre may also have made the left hand vortex less obvious. Figure 5.6 (d) indicates the tuft positions with the model fan switched off.

Figures 5.7 and 5.8 are sketiches which combine information obtained from earlier photographs. The eage of the region of disturbed flow in Figure 5.7 is adequately clear of the floor only in the high forward speed case. It appears likely that the path and shape of the plume in the other cases is distorted by floor constraint. Unfortunately no similar observations were made in the R.A.E. $11 \frac{1}{2} \mathrm{r} \times \frac{1}{2}$ t tunnel to confirm this.

A possible plume structure, deduced from the limited flow observaiions above, will now be described. The edges of a viscous jet directed downords in still air may be represented by a series of co-axial vortex rings. As the speed of a horizontal mainstream is increased the downscream sides of the vortex rings are carried away, leaving a trailing vortex system. The process is analogous to vortex shedding by an accelerating wing. Figure 5.8 shows the resulting flom structure in which the vortex sheet towards the back of the jet rolls up as it is stretched and convected downstream to form the vortex pair of figures 5.5 to 5.7 .

As the presence of downsiream vortices was demonstrated for most test conaitions, it is uset ul to consider further their possible upstream origins. In the development above it is implied that the upstream elenentary vortices remain wrapped around the front of the jet cylinder. A further possibility is that some vortices may end at a model surface, rather than loop within the fluid. The surface flow patterns, described in the section which follows, showed the extent of vortex rooting on the model.
5.2.3. Surface flows due to the jet

In the previous section the devel opment of the vortex pair was described. In addition to the associated downwash field over the rear of the body, local effects existed near the jet which combined the flow around the jet cylinder with suctions due to mixing. The flow characteristics around the front of the jet in Figure 5.9(c) are similar to those to be expected on the equivalent cylinder-body junction. However the flow to the rear was strongly affected by jet suction since it was shielded from the mainstream. This was particularly marked with underfins added which delayed closure of the mainstream behind the jet. (Note the reversed flow on the inside of the fins in Figure 5.14(c))

The Forward Speed Effects

The flow patterns proauced at zero incidence (Figure 5.9) show a general resemblance to the corresponding patterns around a jet issuing normally from a flat plate. (See Vood (1963)) Comparison in Figures 5.9, 5.12 and 5.13 between the medium and high forward speed cases shows that the local influence of jet suction was only slightly less marked at the higher mainstream speed. In regions of the afterbody less subject to local jet-suction effects the
surface flow angles varied little with forward speed. Since clearance between the jet and the body decreased with forward speed it may therefore be inferred that there was a simultaneous reduction in the strengths of the vortices. It can be seen from Figure 5.6 that the vortex helix angles decreased as forward speed increased.

The Incidence Effects

(a) body on struts

Figure 5.10 illustrates that at negative incidences the flow patterns become more complicated, particularly at the lower forward speeds. Because of difficulties in obtaining good photographs of the flow patterns for speeds below $80 \mathrm{ft} / \mathrm{sec}^{\mathrm{Fr}}$, a careful sketch was drawn for a typical condition. (Figure 5.10(c)). Five singular points could be seen in the vicinity of the jet at 75 ft sec tunnel speed and -20° incidence. When the paraffin was still wet the small vortices near the jet were seen to be rotating in the directions which correspond to positive lift on the model. Oil seeping from the gearbox over the centrebody showed small vortex roots there too. However these may have been associated with a separation bubble on the centrebody. It is thought that small vortices may also extend a short way up inside the duct. The saddle points denoted in Figure $5,10(\mathrm{c})$ are also apparent in Figures 5.10 (a) and (b) and 5.9 (c). Slight indications of vortex rooting are also present in the latter.

At high positive incidences there was extensive vortex rooting behind the jet at all forward speeds at which patterns could be

3 At negative incidences paraffin tended to accumulate in the region of interest behind the jet, where surface velocities tended to be low anyway. This made the drying time unacceptably long.

Because larger gravity effects were present extra care was requịed in the interpretation of these flow patterns.
produced. (See Figure 5.11) Ho:ever force measurements showed that the patterns were accompanied by tunnel constraint forces. (See Section 6.5) Unfortunately no visualisation was carried out at RhE which might have indicated whether tunnel effect was solely responsible or not. The asymmetry of Figure 5.11 is provably associated with the fact that, due to distortion between the fan and the straighteners, the drive shaft wake was off-centre. (See Figure C.S T. Tests rith one cooling outlet sealed showed little change in the vortex pattern behind the jet.
(b) body on wings

As in the case above flow patterns were affected more by changes in incidence than in forward speed. (Compare the difference between Figure $5.13(\mathrm{a})$ and $5.12(\mathrm{~b})$ with the differences between the other photocraphs of Figure 5.12) It can be seen that the flow close to the sides of the jet is similar to that with the body on struts. At zero incidence patterns with and without wings were very similar. At positive incidences flow behind the jet closed more readily, probably due to positive pressures below the wing. Simple flow patterns resulted right up to $+20^{\circ}$ incidence. (Compare Figure 5.12 (e) with $5.11(b))$ The reversed flow region above the wing of Figure 5.12(e) resembles that with the fan off in Figure 5.3(b).

When the wing stalled negatively parts of the body in its wake became strongly affected by jet suction. Figure $5.12(\mathrm{a})$ shows that there was extensive reversed flow behind the jet at -20° incidence. (c.f. Fiछure 5.10(a))
(c) Surface flows on underfins (Figure 5.14)

In view of their beneficial effect on lift under forward
speed conciitions (see Chapter 7.) flow over the perspex underfins was investigated.

It was found that with the fan off and the duct sealed at zero incidence the flow over the fins was uniform on both sides with no bubbles or edge separations.

With the fan on surface flow patterns showed that the sides of the jet wecame attached to the inside of the fins. This caused mainstream air to be cieflected dommards between the fins, (See Figure 5.14(b)) leaving a region of slow moving air on the undersurface of the body just ahead of the jet.

Figure 5.14(c) was obtained by allowing the pisment in paraffin applied to the outside of the fins to be carried to the cleaned inner surface. The outside pattern was then rubbed off. The reversed flow region on the fins behind the jet is demonstrated. There was a corresponding reversed flow region on the body, with saddle points but no vortex roots.

An edge vortex outside the lower edge of the fin can be seen in Figure 5.14(a) which was not obvious at zero and negative incidences. Although no evidence is available to support the view, it seems likely that this became an alternative starting point for the vortex system found earlier. (See 5.2.2) If this was so the displacement of the trailing vortices away from body surfaces could have reduced adverse dommash effects.
5.3 Interaction between the jet and the $5^{\prime} \times 4^{\prime}$ wind tunnel

As mentioned in 2.4 .2 corrections aplicable to lifting wings cannot be used in the present case. No suitable mathematical model yet exists which represents the jet plume as described in 5.2.2.

Upsirean static pressure measurements and floor wool tuft observations were made over the range of test parameters. These gave indicetions of conditions under which the flow near the model might be noticably different from that in free air. Later tests in the RAE $11^{\frac{1}{2}} \mathrm{x} \times \frac{1}{2}^{\mathrm{r}}$ tunnel allowed the corresponding changes in forces and moment to be estimated. (See section 7.6)

The overall picture of conditions in the smaller tunnel will now be described. At low forward speeds stagnation occurred when the jet hit the tunnel floor and a region of separated flow there increased in eatent as the model incidence was raised. This accompanied a rise in static pressure at the standard tunnel static holes at the beginning of the working section. The effect was superimposed on an existing pressure gradient present due to lack of area compensation for tunnel boundary layers. Except in the floor stagnation cases the size of this gradient was reduced by fan operation. As the pressure rise was only a few millimeters of water the resulting horizontal buoyancy forces on the model were small. However Figure 5.15 shows that the static pressure rise due to fan operation was a large proportion of tunnel dynamic pressure and was strongly related to the extent of separation on the tunnel floor. As B orward speed increased floor stagnation disappeared but the static pressure rise ahead of the model continued to increase. However the forces on the model due to changes in pressure gradient were still less than 1% of fan static lift. It is apparent that local effects caused by floor stagnation at low forward speeds are more significant than the longitudinal pressure gradient. A rise in static pressure below the forebody may be expected to increase all the measured increments at positive inoidences. The extent of
the floor separation (Figure 5.15) corresponds closely to differences between increments measured in the $5^{\prime} \times 4^{\prime}$ and $11 \frac{1}{2} \prime^{\prime} \times 8 \frac{1}{2} \prime^{\prime}$ tunnels. Although at the lowest tunnel speed only 6% of the working section flow passed through the model, the rate of flux of kinetic energy was $2 \frac{1}{2}$ times that through the tunnel working section. The drag caused by removing horizontal monentum from the stream was equivalent to a model having $C_{D} A=0.3{ }^{V_{J}} / V$, giving an increase in tunnel power factor of 0.07 at $\mathrm{V} / \mathrm{V}_{J}=0.20$. It is unlikely that this would cause serious trouble at the tunnel fan or in the return circuit. With the tunnel fan set at 400 RPM the working section velocity was 40 ft/sec. Switching on the model fan reduced this to $30 \mathrm{ft} / \mathrm{sec}$ approximately. The corresponding effects at 1400 RPM are illustrated in Figure 5.16.

The solid blockage effect of the model alone gave calculated. local velocity increases of about $\frac{1}{2} \%$ which rose to almost 1% when a jet cylinder extending to the floor was assumed. Because the volume and shape of the jet plume were variable and unknown in general, no attempt could be made to estimate wake blockage.

Fortunately the tunnel calibration factor was little changed by fan operation (see Figure 5.16) and pitot-static rake measurements on a vertical centreline ahead of the model showed the same uniformity of flow fan-on as fan-off.

6. FAN-OFF TEST RESULITS AND STATIC PROPERTIES OF THE FAN

6.1 Introduction

Before examining the interaction between fan- and model aerodynamics and the effects of the jet plume, it is desirable to establish the respective base conditions apon which these interactions are superimposed. This chapter therefore deals with characteristics of the model fan and the free-stream acting separately. For the fan-off tests both ends of the duct were sealed with flush covers. 6.2 Tests with fan off

The main purpose of these tests was to determine the base condition above which force increments due to fan operation could be measured.

Figures 6.1 to 6.3 show the fan-off force characteristics of the model for all test configurations except those in which wing datum angle was varied. No tunnel corrections have been applied, though strut drags have been subtracted.

The effect of a transition wire

Since Reynolds Numbers between 10^{5} and 10^{6}, at which transition is likely to occur naturally, inply a movement of the transition line over the forward part of the body of the model within the range of test speeds, a transition wire was considered. Later flow visualisation showed that the transition point was fixed by model geometry (see Chapter 5). The use of the wire was therefore discontinued.

The lift and pitching moment coefficients were hardly affected by the wire. The drag coefficient was increased on average by about $10,$.

Cooling air which enters the nose of the model through area A_{c} and which has free-strean total head, is ultimately ejected with only transverse momentum. The theoretical incremental drag coefficient is therefore $2 A_{c} / A_{R E F}$. In practice this is modified by interference effect both at inlet and at exit.

In order to determine the cooling penalty with the body on struts and fan duct sealed, drag measurements were made with a nose-cap fitted and with the cooling exit taped over. It was found that at zero incidence there was negligible change in drag when the cooling duct was opened. At 20° incidence there was additional drag of about two third of the value predicted above. (See comments concerning flow pattern in Chapter 5).

These findings imply favourable interference between the cooling system and the body on struts.

Drag with the fan duct open, fan off
The following incremental drag coefficients, based on body area, were found to vary little between 40 and $160 \mathrm{ft} / \mathrm{sec}$.

Increases in $C_{D} \quad$ Open side facing

$$
a=0^{\circ} \quad|a|=20^{\circ}
$$

First cover renoved $\left\{\begin{array}{lll}0.04 & 0.06 & \text { rearwards } \\ & 0.02 & \text { forwards }\end{array}\right.$
Second cover removed 0.05 no measurements due to buffet.

6.3 Sone properties of the fan at zero forward speed

 The results of static lift measurenents (See Table 6)Early static lift readings with the body on struts were more than 11 lb lower than the design value, even though all the doors and windows of the $5^{\prime} \times 4^{\prime}$ tunnel had been opened. (The tunnel floor was 3.2 diameters below the jet exit.) Inclining the model to $\pm 20^{\circ}$ incidence did little to reduce the recirculation and ground effect which probably caused the deficit. An $18^{\prime \prime}$ diameter hole was therefore cut in the tunnel floor to allow the jet to escape. The static lift with the body on struts was then close to the predicted value.

Table 6 shows that, according to measurements made at
Imperial College, the presence of wings reduced the static lift by nearly 2\%, probably due to ground effect. This agrees with sinilar measurements by Wyatt (1961). The addition of underfins caused a further reduction of about 4%.

The static lift results of the third series of tests show the effects of successively adding the traverse rakes and pressure tubes to the plain body configuration tested earlier. The apparently large reduction in static lift caused by adding the plastic pressure tubes is probably mainly caused by the impingement of the jet on the tubes which were carried laterally to the manoneter. (See Figure 3.3). The effect could not occur with the floor closed in the forward speed cases.

Table 6 includes values of the thrust coefficient $T / \rho(\Omega R)^{2}{ }_{A} j$ obtained from measurements in the $5^{\prime} \times 4^{\prime}$ and $11^{\frac{1}{2}}{ }^{\prime} \times 8 \frac{1}{2}{ }^{\prime}$ tunnels with closed and with vented working sections for the body on struts.

Bearing in mind the greater distance to the floor and the longer recirculation path, one would expect the thrust coefficient in the closed working section of the larger tunnel to be close to the vented value in either tunnel. While the observed agreement between the vented tunnel results is to be expected, it is difficult to explain the change due to closing the lerger tunnel. Possibly the complete absence of wall venting was in some way responsible.

It is clear that when measuring static lift great care is necessary to vent the working section adequately. Because of the above unexplained features, fan tip-speed parameters have been used to reduce force increnents for comparisons between the two tumels in Chapter 7.

Measurements in the duct
Fith the single exception of the exit traverse at zero forward speed (Figure 6.5), all flow measurements were made at the central plane. Here two factors complicate the reduction and interpretation of data:-
(i) Measurements were in a flow with distributed swirl. Although tube readings were probably little affected (see 3.5) the additional assumption when reducing data, that swirl was constant at 15° probably resulted in an underestinate of boss velocities and an overestimate of velocities near the duct wall. The overall error which resulted was probably small since the errors at the extremes are likely to be only $1, \ldots$
(ii) The smoothing effect of the fan, described in Appendix IV, caused disturbance velooities due to forward speed effects to become small compared with those caused by the fan drive shaft
ghroud, which was in the traverse plane. Had the traverse been made any further upstreain then tube readings would have been suspect because of the proximity of the fan. Jallis (1961) Page 294, shows that unless the traverse plane is carefully chosen, false high values of total head rise coefficient will be indicated by the probes. This is due to mixing losses within the blade wakes and to intermittincy effects. Figure 6.6 shows that this difficulty has probably been avoided.

Figures 6.4 and 6.5 show the distribution of axial velocity at the central and exit planes respectively. The uniformity of the flow in the central plane is good away fron the drive shaft, which also creates a large wake at the exit plane. The rotation and twisting of this wake between the central plane and the straighteners is close to that predicted using design figures.

At the exit plane static pressure decreased from atmospheric at the edge of the jet to about 1 " water suction near the centrebody $\left(C_{p} \simeq-0.10\right)$. No residual swirl could be seen using a tuft grid though, on the basis of calculations made after completion of testing up to 5° underturning might be expected.

The static pressure indicated by both wall holes and the static probes at the central plane was atmospheric, showing that the diffuser and straightener pressure rises were nullified by losses.

The calculated Total Pressure rise characteristic
The method given by Wallis (1961) has been used to determine the theoretical mean total head rise coefficients for the experimental range of jet velocities. Calculations were performed
for five radii using design blade angles and included allowances for profile and secondary losses not taken into account in the original design. Tip losses were considered negligible (see 3.4). The calculated radial distribution of lif't coefficient and total head rise coefficient are given in Figure 6.6.

Experimental points added to Figure 6.6 show that the measured total head rise coefficients were slightly low. This may be because fan blade angles were below the design values. Measurements showed a probability of $\frac{1}{2} 0$ difference fron design values but were not sufficiently reliable for use in calculations because of a slight bow on the undersurface which caused uncertainty.

Figure 6.6 shows the change in mean radial total head distribution between the central and exit planes. The drop in total head beneath the blade tip is thought to be due to an ac cumulation of blade and duct boundary layer air, rather than tip loss, since tip clearance is small. A tip hach number of 0.6 should give no drag rise penalty and a lif't coefficient expected to be 0.6 should not cause stalling.

The calculation of static lift from flow measurements
Integration of flow quantities over the central and exit planes yielded the following results:-

Gross Thrust computed fron total head and nass flow neasurements at the central plane corrected to 23,200 RPFi
15.701 bs

Nett Thrust computed from flow at the exit plane 13.451 ls Corresponding measured thrust $\quad 13.65 \mathrm{lbs}$

Of the 15.70 lbs gross lift measured at the central plane 0.58 lbs has still to be recovered by the straighteners. Because of the low straightener blade Reynolds number and underturning, it is estimated that half of this is lost.

The agreement between the force on the air at the exit plane and the measured thrust is probably fort uitous, since total head neasurements herc are suspect due both to turbulence and to flow inclinations. (See Wood and Higginbottam (1954)).

Probable breakdown of losses
Straightener penalty (see above)
Calculated drag of drive shaft shroud $\left(C_{D} \simeq 1.0\right.$, confirmed by exit traverse)

Estimated drag on centrebody due to interference with the drive shaft wake (estimate from exit traverse) 0.30 Ibs

Calculated drag of centrebody supports 0.35 Ibs
Calculated turbulent skin friction of duct walls and centrebody. (Not included in traverse results) 0.30 Ibs

Suction on rear of centrebody (fron exit plane measurements)

Gross Thrust 15.70 Ibs
-• Expected nett thrust from combined flow traverses and drag calculations
13.48 lbs

This is 99, of the measured thrust.

The measured static thmust is 87, of the gross value calculated from the central plane neasurements using the formula

$$
\left.\mathrm{T}_{\text {GROSS }}=P A_{J} V J \sqrt{2 C_{p} T\left(1-\left(1+\frac{H}{p_{O}}\right)^{\frac{1-\gamma}{\gamma}}\right.}\right)
$$

Figure of merit

The Bendeman coefficient, $\quad \xi=\frac{T}{\left(\frac{\pi}{2} p\right)^{\frac{1}{3}} d^{\frac{T}{3}} p^{\frac{2}{3}}}$ has been calculated from the static lift and electrical power measurements of the third test series. The fan tip diameter was used in the calculation. An experimental ξ value of 0.90 should be compared with $\xi=2^{\frac{1}{3}}\left(A_{E} / A_{j}\right)^{\frac{1}{3}}=1.44$, the theoretical value for expansion to full area.

The neasured figure of merit is 62 of the theoretical one. An estimated breakdown of this figure is given belon:Estineted electrical efficiency Estinated efficiency of gearbox etc. ffeasured thrust efficiency of duct and straighteners

90%	
90%	63%
87%	
90%	

Calculated fan rotor efficiency 90\%

Note that if the diffuser had worked perfectiy the fan would have worked further down its total head rise characteristic curve, using less power. At the same time, however, because of the steepness of the characteristic curve, the static lift decreases with increase in diffusion. For example if the fan total head rise characteristic was vertical the nass flow through the unit would be unchanged by changes in pressure rise and would thus be independent of the diffuser ratio. The lift is then proportional to the duct exit relocity, which decreases with increase in diffusion. It follows that although diffusion improves the figure of merit, the static lift produced by a fan of given diameter can be decreased.

7. The lifting-fan nacelle model at forward speed

2. 1 Introduction

In this Chapter an attempt will be made to give a qualitative and where possible a quantitative picture of the interactions and interferences betmeen the model and the free stream.

In section 7.2 the interaction between the fan unit and the mainstream will be investigated. The results of duct flow measurements will be substitute己 into a theoretically derived expression for lift on the fan and shroud. These values will be compared with measured lift increments in 7.3 in order to demonstrate the remaining unexplained losses in lift.

Section 7.4 will extend the observations of 5.2 .2 to provide a vortex model of the jet plume. This nodel will be used to explain the variation of jet interference forces with incidence, though the model is not yet sufficiently detailed to allow the accurate calculation of these forces.

The forces and moments not discussed in the earlier sections will then be summarised in section 7.5, while section 7.6 will deal with wind tunnel interference. That section will compare the results of tests performed in the R.A.E. No. $111 \frac{1}{2}{ }^{\prime} \times 8 \frac{1}{2}{ }^{\text {r }}$ wind tunnel with those of the $5^{\prime} \times 4^{r}$ tunnel.
7.2 Internal interactions. The fan unit.
7.2.1. General discussion. The total head-rise characteristic curve.

The progression of the fan down its total-head rise characteristic curve will now be explained and illustrated by experimental results from the third test series.

Some reservations should first be noted. Since intake turning is achieved in the present model without the aid of turning vanes, the
flow entering the fan will not be ideal. There will be a high velocity region below the upstream lip of the intake and cross flow. (See Gregory et al (1962)). Either can reduce the efficiency of the fan. In Appendix IV it is shown that the band of velocities which may arrive at the fan is quite narrow if fan blade or duct wall separation is to be avoided. Turner (1962) has demonstrated that a reduction in efficiency can be caused by cross flow, though with the high tip speed of the present fan the penalty may not be severe. The above considerations should be borne in mind during any simplified analysis based on the means of quantities across the duct, such as the treatment which follows.

Two assumptions are necessary in order to proceed. Firstly inlet losses are assumed to be negligible. This is acceptable provided that there is no lip separation, such as may occur at high forsard speeds. As a first approximation the exit static pressure will be assumed to be atmospheric. Later it will be seen that the arguments which follow remain valid when exit conditions are affected by the interaction between the jet plume and the mainstream.

Consider two extreme shapes of fan characteristic total head rise curve based on tip speed parameters. For a characteristic which is horizontal the pressure difference across the fan is constant. At a given fan RPM the throughput adjusts itself so that the jet dynamic pressure is increased above the value without forward velocity, by an amount equal to the free stream dynamic pressure. Although the fan thrust is constant, the lift force on the shroud will increase. (See 7.2.3.).

At the other extreme, when the fan characteristic is vertical, there is no change in jet flow rate as forward speed is increased and the increased inlet total head is felt as an increase in static pressure ahead of the fan. The fan thrust is reduced as forward speed rises, while the shroud force remains constant.

It has been shown that the change in lift on the fan system as forward speed increases can be either positive or negative, depending on the slope of the fan characteristic. A fan system whose total head rise falls only slowly with increasing mass flow might be capable of producing additional lift force at constant R.P. F. to compensate for exit interference as forward speed increases.

7.2.2 Duct Flow ineasurements

The most striking aspect of the results of flow measurements was that the mean velocity and total head downstream of the fan only varied by about 10% throughout the range of test conditions. (See Figure 7.2) Generally this small spread of results made trends difficult to identify when scatter was present.

Although all the tests conoerning duct flow were analysed (using the film reader) test results will be quoted mainly for one incidence, since duct conditions varied little with this parameter, particularly with underfins added to the model. As the results for zero incidence are incomplete, $a=-6^{\circ}$ will be used as an example.

The variation with forward speed of mean static pressures in the duct will be considered first. (See Figure 7.1) Curves (1) show that the static pressure at inlet rises with forward speed as
would be expected from previous arguments. ${ }^{\ldots}$ This rise is less than the dynamic head of the forward stream because of the slight increase in jet velocity. (4) is the inlet static pressure which would result if the jet velocity was unchanged by changes in the pressure difference across the fan, i.e. if the total head rise characteristic was vertical.
(2) is the measured static pressure in the swirled flow at the traverse plane. There was some correlation between these static pressures and measured lift increments. In calculating the pressure rise through the straighteners to obtain curve (3) allowance has been made for the decrease in swirl as the fan moves down its characteristic curve.
*Although trends are correctly illustrated the static pressures at inlet calculated from central plane measurements should not be expected to yield a gross pressure rise which agrees with the total head rise, which can be determined with more certainty. This is because the dynamic head maldistribution at inlet cannot be determined from measurements below the fan. The use of mean jet velocity in the expression $\mathrm{p}=\mathrm{H}_{0}-\frac{1}{2} p V_{J}^{2}$ would lead to a static pressure which is too high. Because of this $V_{J_{\text {RiIS }}}$ has been used for lines (1) in Figure 7.1, though there is no justification for the implied assumption that the distortion index is the same at both planes.

The decrease in static pressure at exit as forward speed increases is caused by interaction between the mainstream and the emerging jet, and will be discussed in 7.3. The result is a lower pressure difference across the fan, which progresses even faster down its characteristic total head rise curve than was assumed in 7.2 .1 , where the fan exhausted to ambient static pressure. The progression of the fan down its sloping characteristic is also reflected by the difference between curve (4) and curves (1), which is caused by the increasing jet velocity.

Figure 7.1 shows that the addition of underfins each side of the duct exit very much reduces the suction at exit under forward speed conditions. The fan experiences a greater pressure difference at a given forward speed and therefore has progressed down its characteristic more slowly than without fins.

The predicted operating points in Figure 7.3 are based on the assumption that $\Delta H / \frac{1}{2} \rho V_{J}{ }^{2}=1-V^{2} / V_{J}{ }^{2}$, which assumes ambient exit static pressure. The total head rise given by the interaection of this expression with the characteristic curve is generally between 10% and 15% above the experimental measurements.

The fan-mainstream interaction also affects the power supplied to the fan. Figure 7.2 shows the decrease in power as the fan moves down its characteristic. The increased pressure difference across the fan with fins added is reflected by an increase in power required. 7.2.3 Theoretical forces on the lifting unit

As mentioned in 7.2.1. the force on the lifting unit is divided between the fan itself and the shroud. The force on the fan is readily obtained as

$$
L_{F A N}=A_{J} \Delta H \quad \ldots 7.1
$$

However the calculation of the lift force on the shroud is less straightforward. It will be seen in the analysis which follows that the momentum arcuments used at zero forward speed may not be extended to the case with a fresostream. Necessary assumptions concern forfe-aft symmetry of the model about the duct axis and the superposition of fan alone and free-siream alone flow fields without mutual interference.

Theoretical Shroud Force, (a) Zero Forward Speed
For this case the flow field is symetrical about the duct axis. Consider the three-dimensional circular intake shown below:-

Area of spherical surface $A E D=2 \pi r^{2}(1-\cos \theta)$

$$
\therefore v=\frac{A_{J} V_{J}}{2 \pi x^{2}(1-\cos \theta)} \cdots \text {, by continuity. }
$$

Vertical momentum flux through an elementary ring of fluid

$$
=(2 m r \cdot r d \theta \cdot p \nabla) \cdot v \sin \theta
$$

Total Vertical liomentum - Flux entering through AED

$$
\begin{aligned}
& =\operatorname{Lin}_{r \rightarrow \infty} \quad \int_{0}^{\theta} 2 \pi r^{2} \rho v^{2} \sin \theta d \theta \\
& =\operatorname{Lim}_{r \rightarrow \infty} \frac{2 \pi r^{2} \rho\left(A_{J} V_{J}\right)^{2}}{4 \pi^{2} r^{4}(1-\cos \Theta)^{2}}[-\cos \theta]^{\theta} \\
& =\operatorname{Lin}_{r \rightarrow \infty} \frac{\rho\left(A_{J} V_{J}\right)^{2}}{2 \pi r^{2}(1-\cos \theta)} \\
& =0
\end{aligned}
$$

Notice that the above result is independent of
Θ) and is thus true for an intake in a flat surface and for a shroud ring, provided that this has sufficient frontal area to sustain the lift: given by Equation 7.5, below. The fore-aft cross section of the model is similar to the flat plate case, while the transverse section is more like a shroud ring (and has adequate thickness). It therefore appears reasonable to assume that the above result is true for the intake of the nacelle model. A small loss of lift might occur because the surfaces do not extend to infinity.

In view of (7.2), the total momentum flux through the . control volume $\operatorname{EABCDE}=-\rho A_{J} V_{J}^{2}$

From Bernoulli equation $\left(p_{o}-p_{J}\right)=-\frac{1}{2} \rho V_{J}{ }^{2}$
\therefore pressure force on fluid along $B C=-\frac{1}{2} \rho V_{J}{ }^{2} A_{J} \quad \ldots 7.4$
\therefore force on air along $A B$ and $C D=(7.3)-(7.4)=-\frac{1}{2} p V_{J}^{2}{ }^{2} J$
Hence the reaction on the shroud $=+\frac{1}{2} \mathrm{pV}_{J}^{2} \mathrm{~A}_{J}$

(b) Shroud Lift at Forward Speed V

Because the axial symmetry of the zero forward speed case can no longer be invoked, it is dangerous to use a momentum argument similar to that above. Momentum integrals over the part of the bounding surface at infinity are of ten different from zero in these cases.

In what follows the static pressure acting on an element of surface at a point A will be determined without and with the fan operating, the free stream being present throughout. In order to allow for the case without radial symmetry the velocity induced by the fan operating alcas has been assumed to be at an angle to a radius

$\mathrm{P}=$ static pressure corresponding to kV .
$\phi=$ angle between the free stream direction and $k V$
$V^{\prime}=$ vector resultant of $k V$ and v
$\mathrm{P}^{\prime}=$ corresponding static pressure.
we are interested in the change of static pressure caused by operating the fan with the free-stream on, i.e. ($P^{\prime}-P$)

Now $P_{a}=H_{0}-\frac{1}{2} \rho k_{a}^{2} V^{2}$

$$
P_{a}^{t}=H_{o}-\frac{1}{2} p V_{a}^{t^{2}}
$$

and $v_{0}^{i 2}=k_{a}^{2} v^{2}+\nabla_{a}^{2}+2 k_{a} V v_{a} \cos \left(\theta_{a}-\phi_{a}\right)$
$\therefore P_{a}^{Y}-P_{a}=-\frac{1}{2} p v_{a}^{8}+\frac{1}{2} p k_{a}^{2} v^{2}$

$$
=-\frac{1}{2} \rho v_{a}^{2}-\rho k_{a} V \nabla_{a} \cos \left(\theta_{a}-\phi_{a}\right) \quad \ldots 7.6
$$

The first term is the depression caused when the fan is operated witrout the free-stream, while the second concerns the interaction between the flow fields. It is implied in the above argument that v and $k V$ may be added victorially without mutual interference.

Consider now a model which has fore-aft symmetry about $X X$. Apart from the enlarged radius on the upstream side of the intake, the model approximates closely to this. Compare the values of static pressure at points A and B which are mirror images in $X X$. If the flow fielas also have the expected symmetry then:-

$$
\begin{aligned}
v_{a} & =v_{b} \\
k_{a} & =k_{b} \\
\pi-\phi_{a} & =\phi_{b}-\pi \\
\theta_{a}-\pi & =2 \pi-\theta_{b}
\end{aligned}
$$

$$
\begin{align*}
& \text { adding, } \theta_{a}-\phi_{a}=\pi-\left(\theta_{b}-\phi_{b}\right) \\
& \therefore P_{b}^{\prime}-P_{b}=-\frac{1}{2} \rho v_{b}^{2}-\rho k_{b} V v_{b} \cos \left(\theta_{b}-\phi_{b}\right) \\
&=-\frac{1}{2} \rho v_{a}^{2}-\rho k_{a} V v_{a} \cos \left(\pi-\left(\theta_{a}-\phi_{a}\right)\right) \\
&=-\frac{1}{2} \rho v_{a}^{2}+\rho k_{a} V v_{a} \cos \left(\theta_{a}-\phi_{a}\right)
\end{align*}
$$

As before the first term is the depression due to the fan alone, and is equal to the first term in \#quation 7.6 because of the assumed symmetry. However although equal in magnitude the interaction term has the opposite sign to that in Equation 7.6. It follo:sj that the nett lifting force on symmetricaily disposed elements will be equal to that of the fan acting alone.

Therefore, at forvard speed V, Shroud Force $=\frac{1}{2} V_{J}{ }^{2} A_{J} \ldots 7.8$
The induced terms in Equations 7.6 and 7.7 will also result in a nose up pitching moment due to fan operation which is proportional to formard speed and jet velocity and which depends on model geometry. This is part of the moment which turns the air into the duct. The remainder is supplied by the vertical part of the duct valls. 7.2.4 Forces on the lifting unit derived from flow measurement, using the above results.
From (7.8) Shroud $\operatorname{lift}=\frac{1}{2} \mathrm{pV}_{J}^{2} /{ }_{\mathrm{I}} \mathrm{J}$
From (7.1) Fan Iift $\quad=\Lambda_{j} J H$
Force on duct items,
including diffuser $=k \frac{1}{2} \rho_{J}{ }^{2} A_{J}$
k will be determined from static lift tests.
In practice the mean axial velocity $V_{i I}$ at the traverse plane will be available. Writing Equation 7.9 in terms of V_{M}-:

Shroud lift $=\frac{1}{2} \rho \bar{\rho}_{\bar{i}}\left(\frac{A_{\mathrm{II}}}{\mathrm{A}_{\mathrm{J}}}\right)^{2} \mathrm{~A}_{\mathrm{J}}=0.86 \times 0.15 \times \frac{1}{2} \rho \overline{\mathrm{~F}}_{\mathrm{iL}}{ }^{2}$
Fan lift $=A_{J} \Delta H \quad=0.15 \Delta H$
$\begin{aligned} & \text { Force on } \\ & \text { duct items }\end{aligned}=k \frac{1}{2} \rho \bar{V}_{\mathrm{i} i} 2\left(\frac{A_{\mathrm{LI}}}{\mathrm{A}_{\mathrm{J}}}\right)^{2} A_{\mathrm{J}}=k \times 0.86 \times 0.15 \times \frac{1}{2} \rho \bar{V}_{\mathrm{Di}}{ }^{2}$
Nett lift on
unit $\quad=\mathbb{N}=0.15 \Delta H+0.129 \frac{1}{2} \overline{\mathrm{~V}}_{\mathrm{M}}{ }^{2}(1+\mathrm{k})$
The substitution of static lift results into Equation 7.10 yields

$$
\begin{aligned}
& k=-.341 \text { with rakes installed, no underfins } \\
& k=-.230 \text { no rakes, no underfins. }
\end{aligned}
$$

In both cases the drag loss is dominant, as was seen in Chapter 6. The first k value is appropriate to the tests under consideration.

$$
\text { Finally } \begin{align*}
\mathbb{N} & =0.15 \Delta \mathrm{H}+0.129 \frac{1}{2} \mathrm{p} \overline{\mathrm{~V}}_{\mathrm{i}}^{2} \times .659 \\
& =0.15 \Delta \mathrm{H}+0.085 \frac{1}{2} \overline{\mathrm{p}} \overline{\mathrm{~V}}_{\mathrm{Mi}}^{2}
\end{align*}
$$

Figure 7.4 shows the components and the nett force(Equation 7.11) on the lifting unit for $\alpha=-6^{\circ}$, plotted against forward speed parameter. The rising shroud- and falling fan lift can be seen clearly. The gross lift fell slightly with forward speed. The fall was increased when the drag of duct items was subtracted to obtain the nett lift.

In Figure 7.5 the forces are shown which would be experienced by the two idealised lifting units mentioned earlier. In colculating the nett thrust the losses of Equation 7.11 have been assumed. As forvard speed rises gross and nett thrust both rise for the unit with the horizontal characteristic, but fall for the unit with the vertical one. It is important to note that the horizontal characteristic refers to constant $\Delta H / \frac{1}{2} \rho(\Omega R)^{2}$ and not to $\Delta H / \frac{1}{2} V_{J}{ }^{2}$. It is not possible to match the variation of observed pressure difference across the fan to a constant value of the latter.

As woll as the variations aith forvard speed noted above it can be seen from Figure 7.5 that a decr ase in exit static pressure from the ambient to the measured value gives an increase in total lift for the horizontal characteristic but a decrease for the vertical one. For the former the increase in nett thrust inth for:ard speed could offset loss of lift due to jet interference. If the shroud areas mere lorge and the areas around the jet exit were small a desirable increase in lift with forrard speed might result. The essential feature of the unit with the horizontal characteristic is that, because the pressure difference across the fan is constant, any decrease in exit static pressure is reflected at the inlet, and the fan force is unchanged. As can be seen from Figure 7.5(a) this is accomanied by an increase in shroud force.

The lifting characteristics of the model fan unit can be regarded in terms of the two extreme cases. The fact that nett thrust decreased with formard speed is unsatisfactory, especially in view of the additional loss due to jet plume interforence. Howover it is difficult to see hou the slope of the total head rise characteristic can be decreased without alteration to fan geometry or blade angle as mass flow increases. Variable pitch could be used to give a characteristic which effectively has a positive slope, which is unstable for fired geometry devices. In the interests of simplicity fixed geometry is clearly desirable. Although the slope of the charactoristic is reduced as the fan approaches the stall, any solution using this effect would be artificial since static lift nould be capable of improvement. A fan or blower is needed whose elements are insensitive to incidence.
7.3 Measured Force Increments and Calculated Forces on the Fan Unit.

In Figures 7.6 and 7.7 measured force increments and forces on the fan unit, calculated using Equation 7.11, are compared for tests at various incidences.

The first observation is that the decrease in measured lift increment with forward speed was only of order 10%. This is some measure of the success of paring anay the area around the jet exit to reduce the domnard force due to suction. For a jet issuing from a flat surface, such as a wing, the corresponding fisure might reach 50\%. Trebble and Hackett (1963) demonstrate how this loss is reduced further for bodies which are truncated behind the jet. However these would suffer from high oruise drag if their use was contemplated for lifting engine nacelles.

Secondly the initial loss of lift is not due entirely to undersurface effects. To these are added a lats of lift due to the progression of the fan down its total head rise characteristic, which would occur solely due to intake effects with rising forward speed, but which is accentuated by exit suction. Duct losses, the drag of straighteners etc., also increase with forward speed and are probably subject to scale effect.

However it can also be seen that the loss of lift, beyond that due to fan effects, increases :ith incidence. This is to be expected since the tail of the model then approaches the vortices in the jet plume. (See Chapter 5 and Section 7.4). Also included in the difference between the broken and full lines of Figure 7.6 are the forces due to intake assymetry in the fore-aft sense not allowed for in deducing Equation 7.8, lift forces on the duct walls with the model at incidence and the effects of maldistribution of the duct flow.

The recovery of measured lift increment above $V / \Omega \mathbb{R}$ of about 0.10 is not associated with the fan interaction. With underfins added the additional loss is eliminated completely. It is suggested that some of this benefit arises from an increase in static pressure on the underside of the model betreen the underfins. Surface flow visualisation indicated that air here was slow moving. These increased surface pressures ahead of the jet would also be consistent with observed increases in nose up pitching moment which the fins cause. Further lift benefit probably results because the underfins move the vortices in the jet plume array from the body surfaces.

Figure 7.7 is a comparison betr:een the measured drag increments and values calculated from duct flow measurements. The latter comprise the drag due to the removal of free-stream momentum from the measured mass flow plus the stream:ise component of the normal force N, calculated from Equation 7.11.

It can be seen that the differences betrieen the measured and the calculated incremental drag values are of the same order as those for incremental lift. The suctions on the sloping surfaces behind the jet probably contribute both to lift and drag interference effects. However it seems likely that the variations of static pressure on the duct walls has a more significant effect on drag- than on lift-increments.

Figure 7.7 also shows that estimated drag increments based on the nominal efflux velocity $V_{J_{T}}$ can be considerably in error. A better estimate is given by measured values of mass flow. Failing this estimates based on the operating points predicted as in Figure 7.3 are to be preferred to those based on $V_{J_{T}}$. Note should also be taken
of the increase in drag due to tunnel constraint, illustrated for $\propto=+12^{\circ}$ in Figure 7.7. Corresponding high values of incremental lift were also measured in the smaller tunnel. (See Section 7.6 and Table 7).

To conclude this section we turn to Figure 7.8 , based on the same data as Figure 7.6, which shows the difference between the measured lift increments and the calculated forces on the fan unit. Points at positive incidences should be considered bith care, since tunnel interference effects were present. It was not considered legitimate to combine lift increments from the $11 \frac{1}{2} \times 8 \frac{1}{2}$ t tunnel tests with the fan unit forces obtained in the smaller tunnel since the fan operating point was probably also affected.

There remains for negative incidences a clear downard trend in the interference force 'A'. This force varies less with forward speed than might be expected considering that the vortices in the jet plume approach the body more closely at the higher forward speeds. Possible reasons for this, and further explanations of the interference effects due to the jet plume will be investigated in the following section.
7.4 External Interference. The jet plume.
7.4.1 The Vortex Model

In this section and in Figures 7.9 and 7.10 a vortex model is proposed which is consistent with the observations of Section 5.2.2 and Figure 5.8. However further detailed measurements are required to verify the detailed structure of the proposed model. This model should be regarded as a basis for further research and is used here mainly to demonstrate the nature, rather than the magnitude, of lift interference. With the body on struts the observed interference
forces were never more than about 10 of static lift.
The formation of vortex rings
In the vortex model shown in Figure 7.9 vortex rings leave tho jet exit at half the speed of the jet and are stretched and distorted while being convected downstream. Two such rings are shown. The parts of the rings which originated at the downstream side of the jet have progressed further than those from the upstream side. In order to understand this it is necessary to consider the nature of threedimensional shear layers.
(component proportional to free-stream velocity)

Common components

Shear components
axes of vortex filaments

The axes of the vortex filaments are normal to the direction of relative shear between the two streams. In the case of the jet in free air the shear is streamoise and plane vortex rings are produced. However as soon as a mainstream is added the axes of the vortex filaments at the sides of the jet become inclined as shown by the above diagram. Only those at the front and rear of the jet remain horizontal.

Consider now the necessity for vortex element to be continuous. The vortex element which has just emerged on the upstream side of the jet can only be linked to one on the downstream side which emerged
earlier. The rings are therefore distorted from the outset.
The transverse components of the vortex rings
In Figure 7.9 it can be seen that the downstreall sides of the vortex rings may be parallel to the upstream sides of rings which were shed earlier, forming vortex doublets. At positions of interest on the body the velocities induced by these doublets are likely to be very small. Although distinct rings have been postulated for the purpose of explanation, the overall process has a continuous nature.

Transverse vortices are shed during the starting process without pairins to form doublets, so that the forward acceleration of a lifting jet leaves starting vortices in the same way as does an accelerating wing .

Vortex stretching

In addition to the distortion mentioned above the vortex rings are probably stretched by convection. It is important to note that, although the strength K of any individual filament is unchanged by stretching, overlapping of filaments can increase the strength of a trailing vortex. Therefore vortex strength may vary along the path of the trailing vortices, without the need for further transverse vortex filaments. 7.4.2 The idealised model for the calculation of interference effects

The model proposed above has been simplified to the form shown in Figure $7.10(\mathrm{a})$ in which vortices are assumed to spring from the streamwise edges of the duct in a fully rolled-up condition. Their paths lie in planes which diverge at a total angle of 10°. A hyperbolic cosine form has been assumed for the shape in side view, the
constants being determined from the flow observations of Chapter 5. The further assumption has been made that the paths shown are not affected by change of incidence. Some support for this is given by the fact that, away from the stall, the increase in lift increment caused by adding wings is almost independent of incidence.

Vortex strength

The assumptions concerning vortex strength are the weakest feature of the present analysis and further experimental evidence is needed before accurate predictions of interference force can reasonably be expected. However since, in the present case, these foroes are only about 10% of static lift, some insight may be obtained from the following approach.

Firstly the effect at the body of the transverse vorticity in the trailing sheet has been assumed negligible. In spite of the formation of transverse vortex doublets this is probably unjustified for the real flow. However when used to predict forces due to cross-flow over the afterbody, the consequences may not be serious. Any nett lift due to vortices spanning the jet will be a function of the rate of change of area along the body, rather than body area per se. However downwash at the wing quarter chord may be incorreotly predicted.

Secondly assumptions must be made about the strength of the trailing vortices. One possible approach might be to determine the distribution of strength along one vortex needed to produce the observed slope or curveature of the other. This would involve the solution of a number of simultaneous equations equal to the number of control points selected. An attempt to use this approaoh failed at an early stage because of difficulties concerning the jet and free stream components of the velocity at the control points.

At the jet exit and far downstream velocity components probably have their full respective values. .However at points in between viscous effects are probably important. Vertical velocity falls due to viscous mixing while the free stream component probably has a more wake-like character. As both effects are inportant in the region of interest it was not possible to make reasoned assumptions about typical velocities within the combined fields, upon which vortex-induced effects could be superposed.

The method finally used to determine trailing vortex strength returned to the observations of flow patterns. Control points were chosen on the near fuselage along the horizontal line of maximum diameter. Flow directions were measured on photographs taken at zero incidence and are presented in Figure 7.11. The induced domwash at the control points was taken as trice that calculated at the model centreline. The streamwise components comprised an induced component and a fan-off component calculated from the pressure distributions meesured on a model of the R101, reported in R and 11169.

In Figure 7.12 values of vortex strength are presented, based on the above assumptions. The values are strictly an apparent vortex strength because of the assumptions which have been made. In addition to velocities induced by the trailing vortices in the real flow the downash includes components due to local mixing near the outlet, bound vorticity and upper surface intake effects, all of which have been ascribed to the trailing vortex pair. It is likely that at least part of the variation of apparent strength along the vortex is due to the above effects. (Since the contributions to dommash at a given control point arise very largely from a short
length of vortex just below it, it may be inferred that the vortex strength has the value indicated by the control point having the same x coordinate.)

It can be seen that, subject to the above reservations, the vortex strength is approximately inversely proportional to forward speed. Since, in addition, $q_{V} /_{K}$ is found to be directly proportional to forward speed, there results a down:osh velocity which varies little over the speed range considered.

7.4.3 The induced flows and associated interference forces.

Figures 7.13 to 7.15 show the downwash distributions produced by trailing vortices having constant strength. The calculation of induced velocities was carried numerically, using desk machine methods since integrals along the vortex proved intractable.

The load gradings were calculated on the assumption that the rear of the body lay in a cross flow equal to the induced velocity at the model centreline. A circular cylinder cross-flow drag coefficient if unity vas assumed. All cross-flow Reynolds numbers were subcritical.

The lower part of Figure 7.15 shows the variation of interference force with incidence. The force has been plotted relative to that at zero incidence because the loads calculated in the duct region are unrealistic, and the zero incidence case encompasses most of this effect. The main interest attaches to the variation of interference force :ith incidence, which is seen to be of the same sort and size as that found in model tests and plotted in Figure 7.8. At $\alpha=18^{\circ}$ a change of flow structure probably reduced the lift interference. It is not clear to what extent this was due to tunnel constraint.

Figure 7.16 shows velocitios induced at the wing querter chord by the constant strength trailing vortices postulated above. Since the choice of vortex strength cannot be justificd as previously and as bound vortices in the jet plume are ignored, the lift on the iang which results will not be quoted.

However it is instructive to consider the way in which the lift induced by the trailing vortices varies with formard speed. (Since the shape of the jet plume has been assumed to be unaffected by change of incidence, there will be no variation with this parameter).

It can be seen from the lover diegram of Figure. 7.16 thet, although allowance has been made for the diminution of trailing vortex strength as forvard speed increases, the interference lift changes fron negative to positive. The calculations allow for both horizontal and vertical velocities induced at the wing quarter chord.

Force tests show that the addition of the wings both deepens the "lift bucket" and steepens the subsequent recovery of lift increnent as forvard speed is raised. (See Figure 7.19) If it was legitinate to assume the same vortex strengths as were used in the calculation of domwash over the body, then the greater part of both effects could be explained. qualitatively

7.5 The results of force tests

7.5.1 Summary of Sections 7.2 to 7.4

After the derivction of the forces on the fan unit in Section 7.2 it was seen that the subtraction from the measured lift increments of the vertical component of the normal force on the fan unit, renoved much of the initial variation of interference lift with forward speed. (See Figure 7.8) The vortex fodel of Figure 7.9 was then proposed and described in detail. The subsequent simplification and further
investigation of this model involved several assumptions which are difficult to justify. However the simplified model gave several results which are consistent with meesured variations of lift increment. For example the changes of downward force on the rear fuselage were of the right order, and if neesured vortex strengths were available, it appears likely that the extra interference in the presence of wings could be explained.

The observation that domwash over the fear fuselage varies little with forward speed, arises directly from the flow observations, which have also been used to determine vortex strength. It must be noted that, because the wodel was designed for low interference forces, these amount to only 10\% of static lift. The combined scatter of force and duct flow observations may amount to one quarter or one third of this. However, subject to the reservations above and to those expressed in the appropriate sections, the following conclusions may be dram:-

1. ith the body on struts at low forward speeds variations in lift interference with formard speed are due mainly to the fanmainstrean interaction, which is not greatly affected by change of incidence (see Figure 7.2). At higher forwerd speeds induced circulation effects probably account for the rise in incremental lift. 2. The observed loss of lift et positive incidences is a consequence of the closer approach of the rear fuselage to the trailing vortex pair within the jet plume. (See Figures 7.3 and 7.14) Flow observations indicate that the downwash which is responsible probably changes little in velocity between forvard speeds of 35% and 65% of the jet velocity (See Section 7.4.2).
2. Force tests show that tho sdition of wings amplifios both the initial fall-off and the subsoquent riso of incromontal lift as forward speod is raisod (soc Figurc 7.19). : Calculations which assume a jot plume modol with constant strongth trailing vortices can prodict both of theso offects.
3. Although the exporimental evidenco is limited it appoars that within tho abovo spood range, tho trailing vortox strongth is inversoly proportional to forward spoed. Cloarly tho strongth must return to zoro forward speed, so this rosult must bo kopt strictly within the present contcxt.

Furthor exporimonts aro roquired to dotormino values of trailing vortox strongth over the whole forward spood range.

7.5.2 Additional forco data

The rosults of forco tosts givon so far (Figures 7.6 and 7.7) havo boon quoted only as requircd to illustrate the discussions about the intoraction procosses. Tablos 7A to 7D, Figures 7.17 to 7.22, aro intonded to provido a fullor description of incromental forces and momonts over the comploto rangos of configuration, attitude and forward spoed. Only major points of intorost will bo dealt with horo. Hackett (1962) and Trobblo and Hackott (1963) give comprohensivo rosults of tests in the $5^{\prime} \times 4^{\prime}$ and $1 l^{\frac{1}{2}}{ }^{\prime} \times 8 \frac{1}{2}{ }^{\prime}$ wind tunncls rospectively. The comparison betwoen rosults moasurod in the two tunnols will be givon in Soction 7.6.

Figure 7.20 is derived from tosts in the larger tunnel. Tho romaindor of Figuros 7.17 to 7.22 portain to the $5^{\prime} \times 4^{1}$ tunnol, in which the forces on the model wore incroased at high incidonco by tunnol constraint. Similarly, bocausc of the floor stagnation montioned in Soction 5.3, the low forward speod rosults aro suspect.

With the body on struts the "lift bucket", which occurs as forward spood is raisod, almost disappoars at largo nogativo incidoncos. The incroments aro gonerally moro dopondent upon incidence than upon forward spocd. (Sce Figure 7.17). With the oxception of casos whore the wing was stalled, all drag increments werc close to those in Figurc 7.7.

Tho prosonco of wings introducos an additional componont of lift incromont which is almost wholly spocd dopondont (soc Figure 7.19). At the onds of the incidonco range stall offocts aro apperont on incromontal plots. (Soo Figuros 7.17 and 7.18). Howovor tho total lift on tho modol shows a loss violont variation.

Teblos 7C and 7D show that tho chiof virtuc of undorfins lios in the romoval of the "lift buckot" with tho body on struts and its roduction with wings sddod. The undirfins probably both roduco ontrainmont noar tho jot and by moving tho vorticos awny from tho body, docroaso tho downwsh over it. In combination with a crude "jot flap" offoct botwoon tho fins, thoso can rosult in significant gains in lift as forward spood risos.

Figuro 7.20 shows tho lift incroasos which rosult from the addition of undorfins. Thosc include fan off gains, sinco the significant incroment is that in total lift, tho undorfins boing extonded only during flight with diroctly powered lift. Thoro is loss bonofit in tho prosoncc of wings. Although the drag incromont is littlo affoctod tho incromontal pitching momonts aro incroasod at nogativo and docroasod at positivo incidoncos.

Figure 7.21 shows that curvos of pitching momont incromonts collapso quito woll whon plottod against incromontal drag minus tho stroamwiso thrust componont. This is partly bocauso tho romoval of froc stroam momontum from a plano abovo tho modol gives riso to a forco, proportional to forward spood, which lics abovo tho intako. This appoars in balanco muasuromonts as a combination of drag and noso-up pitching momont incromonts. Thoro aro furthor contributions to both from suctions bohind tho jot oxit.

7.6 Wind Tunnol Intorforonco (See Tables 7 and Appandie VII)

In this soction the forcos mossured in the $5^{\prime} \times 4^{\prime}$ wind tunnol aro comparod with those moasurod in the RAE No.l ll $\frac{1}{2}$ ' $x 8 \frac{1}{2}{ }^{\prime}$ tunnol at Fernborough. In ordor to romove tho uncortsintios about the moasuromont of static lift, montionod in 6.3, tho rosults havo boon roducod using tip-spood paramotors, as proviously in this Chaptor. Tip spood was dotorminod from tho fan noiso froquoncy. All of tho tost rosults woro plottod and the veluos givon in

Tablos 7A to 7D woro road off at convoniont intorvels of forward spood ratio so that diroct comparison could bo mado botwoon tunncls. Rosults aro quotod only from tho immodiato vicinity of oxporimental points.

Body on Struts
(a) Lift Incromonts

Tablo 7A givos the rosults of the sccond and third tost sorios. Allowanco has boon mado for tho proscnco of the travorsc rakos in tho third sorios by applying a 3% corroction to lift incromonts. Tho assumption of static lift dopondonco involvod is justificd for tho small corroction noodod.

With tho oxcoption of tho oxtromo incidoncos most discropancios botwoon the rosults obtaincd in the two tunnols wore loss than 2% with tho body on struts. With undorfins addod the RAE lift incromonts woro botwoon 0% and 4% highor than thoso moasurod at Imporial Collogo. (Soc Tablo 7C).

At high positive incidenco tho lift incroment rose stoadily as forward spood incroasod in the $5^{\prime} \times 4^{\prime}$ tunnol but docroasod slowly in the $11 \frac{1}{2} ' \times 8 \frac{1}{2}$ ' tunnol. At the highost forward spood tho difforonco was 15%. A rising charactoristic wes obteincd at all incidonces with fins addod and the high incidonco discrepancy did not appoar.
(b) Drag and Pitching Moment Incroments

Agroomont botwoon drag incromonts was good up to $+6^{\circ}$
incidoneo whore the incroments in tho smallor tunnol started to riso from tho linoar charactoristic obtaincd in the $11 \frac{1}{2}{ }^{\prime} \times 8 \frac{1}{2}$ ' tunncl. It is though that floor stagnation is chicfly rosponsiblo at low spoods (sco Chaptor 5) and that doviations at highor spocds ot high incidonco aro associatod with the lift discropencios mentionod abovo.

Thoro was considorablo scattor in pitching moment incromonts in both tunncls. Howover the incromonts moasurod at RAE woro gonorally lowor and variod loss with incidoncc. Tho incidenco offocts occurrod undor tho samo conditions zs did tho lift and drag discropancios, but tho roason for a slight ovorall shift is not apparont.

Body on Wings

Tablo 7B compares the results of the first and socond series without fins, sinco no tests woro performod on wings in the third scrios. The configuration with fins and wings (soo Tablo 7D) was not tostod at Imporial Collogo.

Considor first somo offocts which aro likoly to load to difforoncos botwoon tho rosults obtaincd in tho two tunnols. As shown in 7.4.3 a proportion of oach lift incromont is associatod with changos in wing incidonco inducod by the jot. Tunnol constraint in the $5^{\prime} \times 4^{\prime}$ tunnol with fan off is sufficiont to mako convontional corroctions dosirable. With tho fan on tho tunnol constraint may influonco tho mount of inducod incidonce to a groetor oxtont, in a mannor which cannot bo prodictod using standard tunnol corroction tochniquos. As with the body on struts, constreint which changes with jot inclinction may ma bo oncountored at high incidoncos.

A furthor offoct mich mey influcnce tho comprison is tho vingtion of wing stalling angl with tunnol constionint, forward spood and turbulonce lovol. Any of thosomy influonco tho oxtont of soparation inducod on tho wing by a particular jot configurotion. In incromontal plots this might appone as difforoncos botwoon tunnols in tho conditions noodod to produco rapid changos in lift incromont, duo to tho stell.

In viow of thoso considorations worso agroomont is to bo oxpoctod botwoon tunnols than for tho body on struts casc. Table 7B shows this to bo so. Agrocment is good only at low spocds and at low incidoncos. At most incidoncos lift rocovory with forward spood starts soonor giving up to 15% moro lift incromont in tho smallor tunnol. Agrocmont was within $=3 \%$ at modorato inoidoncos for $\frac{\Omega}{\Omega}$ up to 0.10.
Summary of 7.6
ON STRUTS (NO FINS)
In a tunnol which was about 7 jot diemotors high and of usual proportions, crrors in lift incromont were loss then 2% at incidencos bolow 15°, at all forward spoods betwoon 20% and 65% of the jot volocity, the range in which tosts woro mado.

Errors worc loss than 3% at spoods bolow $\frac{V}{\Omega R}=0.10 \quad$ (i.o. $V / V_{J} \simeq 0.30$). At highor spoods difforoncos of up to 15% woro mainly associatod with tho oarlior rocovory of lift incromont in tho smallor tunncl. Thoso orrors aro important bocauso small tunnol rosults tond to bo optimistic.

8. CONCLUSIONS

A nacollo-shapod modol containing a lifting ductod fan has boon dosignod for uso in tho $5^{\prime} \times 4^{\prime}$ wind tunnol at Imporisl Collogo. Tho driving motor and fan unit are an intogral part of tho modol. Bnginooring and dosign probloms havo boon discussod. Wings having an aroa about thirtcon timos that of tho duct could bo fittod with tho quartor chord lino intorsocting tho duct controlino halfway botwoon inlot and outlot. Thoir setting anglo could bo variod. Undorfins, ono duct diamotor doop and two long, could bo attachod oach sido of tho duct oxit oxtonding in a stroamwiso diroction to points ono diamotor nhond of tho front of the duct.

Mcasuromonts of Lift, Drag and Pitching lioment havc boon made for four modol configurations at forward spoods botwoon 15% and 65% of tho jot volocity and incidoncos botwoon -20° and $+20^{\circ}$. In addition comperisons havo boon mado with forcos monsurod in tho RAE No.l $11 \frac{1}{2}^{\prime} \mathrm{x}_{8} 8 \frac{1}{2}^{\prime}$ wind tunnol.

In ordor that tho intoraction botwoon tho fan unit and tho mainstroam should bo bottor undorstood, static and total hoed travorsos havo boon mado immodiatoly bohind tho fen. The rosults, rocordod on film, woro roducod using a spocially dosignod film rondor, which has boon doscribod. Tho forcos on tho fan and shroud hevo boon ostimntod using tho rosults of these duct flow moasurcmonts.

The structure of the jet plume has also boon discussod and a crude vortox modol has boon sugg st. d which is consistont with surfaco flow and smoko obsorvetions. This modol has providod tontativo oxplanations of somo of tho obsorvod intorforonco offocts. Tho loss of lift at forward spood

Many tosts involving fan or jot systoms, including the prosont onos, havo shown that tho total lift on tho modol may docroasc as forward spood incroasos. For tho oxtrome casc of a small fan in a largo wing this loss can oxcood 50% of tho static lift. Thoro is somotimos a subsoquont rocovory which may start at forward spoods botwoon 30% and 50% of the jot volocity, loading ovontually to
lift groator than the static valuc. For the prosent modol the sizo of tho maximum loss incroasod with incidonco and was groator with wings fitted。

Much of the prosent work has boen diroctod towards undorstanding tho roasons for tho loss of lift and towords a roduction in its megnitudo. In ordor to roduce tho advorso offocts of jot plumo intorforonce, tho normal arca around tho jot oxit was mado as small as was consistont with tho dosirod stroamlinod shapo of tho nacollc. By this moans tho maximum loss of lift at zoro incidonco, including tho loss causod by tho fan - mainstroam intoraction, was kopt down to 10%. Trobblo and Hackott (1963) havo shown that, by truncating tho body bohind tho jot, furthor roduction of tho loss is possible. Howovor groator bonofit rosultod from tho addition of tho undorfins doscribod above. With undorfins but without wings fittod tho incromontal lift on tho body roso continuously with forward spocd. Considcrablo roduction in the lift loss also occurrod whon wings wore addod. Tho lift gains duo to undorfins appore to bo significantly groator than would bo oxplainod by a roduction of ontrainmont and inducod downwash associatod with the jot. It is thought that whon constrainod botwoon undorfins, the lifting jot acts as a crudo jot flap.
The roduction of lift on tho plain body by Fan-Mainstroam Intcractions and by Jet Plume effects

Bocauso somo succoss had boon achioved in tho roduction of the loss of lift, the study of the various contributions to the Loss was not oasy sinco tho variations in tho moasuromonts concornod amountod only to about 10%. Howovor, using tho rosults of tho duct flow oxporimonts it has boon possible to cstimato tho loss of lift duc to the intoraction botwoon the fan and tho meinstroam. Tho calculations concorning tho forcos which rosult from flows induced by the jot plume wore of a more qualitative nature sinco no mossuroments wore mado within the oxtornal flow fiold.

The nott change with forward spood or incidonce in tho lift sustainod by an olomont of body surf nco is affectod by distinct
contributions from tho fan and jot-plume systoms which, howovor, cannot bo soparatod mochanically. It is instructivo novortholoss to consider soparatoly tho major contributions to lift intorforonco.

Exporimonts havo shown that tho fan-mainstroam intoraction offocts vary mainly with forward spoed. Tho fan is caused to progross down its charactoristic total hoad riso curve as forward spood incroascs and thero rosults a docroaso of total lift on tho fan-shroud combination. The loss of lift could bo ovorcomo if tho flow through the lifting unit incronsed sufficiontly rapidly with docrossing prossuro riso.

In contrast, tho jot plume intorforenco appoars to bo moro dopondont upon incidence than upon forward spocd ovor the range considorod. This is associatod with the closor approach of the roar fusolago to tho jot plumo at highor incidonco, rosulting in loss of lift. It is thought thet, within tho limitod spoed range considcrod, the movoment of the jot plumo towards the body as forwsrd spocd is incronsod is accompanicd by a complomontery roduction in tho strongth of tho trailing vorticos within tho plume.

Although it is difficult to justify the uso of the crude vortex model for the prodiction of induced flows over the wings, it has boon found possiblo to prodict the steepening of both the initial fall off and the subsequent rise in incremental lift which occurs whon wings arc addod to tho plain body.

Somo allovistion of advorso lift intorforonce can probably bo obteinod by roducing tho surface aroa bohind tho jot and by chenging tho slope of tho fan charactoristic. Howovor tho increaso in lift ceusod by the doploymont of undorfins probably hes the groator practicnl significanco.

Pitching Momont and Drag

It has boon shown thet about half of tho difforonco botwoon moasurod drag incroments and ostimatos besod on nominal offlux volocity, is the nott rosult of an incroaso in mass flow through the fan and the accompanying docrosso in normal forco on tho unit. Tho aifforonco which romeins is probably associatod with the samo suctions aft of tho jot which load to loss of lift. With
tho oxcoption of cases in which the wing bocnmo stallod, tho drag incromonts woro tho samo for all configurations.

It has boon shown that pitching momont incromonts aro strongly rolatod to the romoval of froo strom momontum from above the modol. Additional contributions rosult from incrossos in static prossuros ahoad of the jot and docronsos bohind it. Tho offoct is probrbly incronsod considorably whon undorfins aro addod,

If the uppor surfaco intako was considorod for use in tho body of on aircraft thoro would bo a largo variation of noso up pitching momont which would be approximetoly proportional to forward spood. At $\frac{V}{V}=0.4 \quad$ a high transition spood, a control jot plncod at the aircroft tril, sny four dinmotors bohind tho jot, would require a thrust oqual to 20% of the totel lift. Howovor if tho plein nacollo was mountod on a pylon bolow tho wing of a largor aircraft, tho control momont roquirod might be reduced by placing the inlet planc of tho unit slightly bolow tho vorticel c.g. of the aircraft.

Tunncl Intorforcnce

Probably the most importont rosult was that with tho
$5^{\prime} \times 4^{\prime}$ tunncl closod, the stetic lift was 7% bolow that obtrinod aftor cutting a hole in tho tunnol floor to allow the jet to oscope and oponing all the doors and windows. The tunnol floor was 3.2 diamotors bolow the jot oxit.

Floor stegnstion occurrod bolow the model in the $5^{\prime \prime} \times 4^{\prime}$ wind tunnol bolow volocity ratios $\mathrm{V} / \mathrm{V}_{J}$ ronging from approximatoly 0.20 at an incidonce of -20° to 0.40 at $+20^{\circ}$. Then floor stagnation was absent the operation of the model fan did not noticeably alter the flow distribution ahead of the model on a vertical centreline, but there was a marked decrease in tunnel speed for given tunnel fan R.P.M., particularly at low speeds.

A comparison of forcos moasurod in tho $5^{\prime} \times 4^{\prime}$ and in the

(i) With the body on struts at 18° incidonco an apparont lift boncfit in tho smallor tunncl incroascd with forward spood to 10% of static lift at a volocity ratio: of 0.60 . Somowhat
surprisingly this high incidonco offoct disappoarod whon undorfins wore addod.

At lowor incidoncos lift incromonts agrood to within $\pm 2 \%$ (ii) With wings addod tho lift incromont rocovorod, aftor tho initial fall, at a lowor forward spood in tho smallor tunnol. This gavo non appront lift bonofit which roso from 3% at ono third of tho jot valocity to 15% at a volocity ratio of 0.60 . Tho sbovo difforoncos aro importent bocauso rosults tond to bo optimistic if tho tunnol is too small.
(iii) Tho above npparont iff bonofits in tho smollor tunnol woro usually accompaniod by corrospondingly gentor drag and pitching momont incromonts.

Author (s)	Date	Sitlo otc.
Butler, S.F.J. Willims, J.	1959	Furthor commonts on High-lift tosting in Wind Tunnols, with particular roference to Jot Blowing Models. NATO AGARD Report 304
Collar, A.R.	1940	Tho Dosign of Wind Tunnol Fans A.R.C. R.\&M. 1889
Goldamith, R.H. Hickoy, D.H.	1963	Chornctoristics of Aircraft with Lifting-Prn Propulsion systems for $V / S T O L$.
Grogory, N . Roymor, W.G.	1958-9	```Wind Tunncl Tosts on the Boulton- Paul Roctengular Wing (Aspoct Ratio 2) with a Lifting Frm. 1958 Sorios I A.R.C.20,356 1959 Serios II A.R.C.21,127```
Grogory, N.	1961	Porsonaf communicrtion.
Grogory, N. Lovo, Tdna M.	1962	Tho Effect of Forward Spoed on tho Inlet Flow Distribution and Porformanco of a Lifting Fon installod in a Wing NPL Roport Aor 1018 (ARC 23, 839)
Hrckott, J.E.	1962	Somo Proliminary Rosults of Forco Tosts on a Fan-Lift Modol. Imporial Colloge Dopertmont of Acronmutics TN2O.
Heyson, H.H.	1960	Jot Boundary corroctions for Lifting Rotors contorod in Roctengular Wind Tunnols. N.A.S.A. TR R-71
Hoyson, H.H.	1962	Lincarisod theory of Wind Tunncl Jot-Boundery Corroctions and Ground Effoct for VTOL-STOL Aircraft.
Jordinson, R.	1958	Flow in a Jot Dircotod Normal to tho Wind. A.R.C. R.\& M. 3074.
$\begin{aligned} & \text { Llowolyn-Davios, } \\ & \text { D.I.T.P. } \end{aligned}$	1952	Tho Dosign and Installetion of Smell Comprossod Air Turbinos for Tosting
Tyc, W.D.		Poworod Dynamic Modols in tho Royal
MacPheil, Doc.		Aircraft Establishmont Soaplenc Tank. A.R.C. R.\& M. 2620 .

Author (s)	Date	Title etc.
Melbourne, W. H .	1960	Experiments on a Delta wing with Jet-assisted Lift. Imperial College Ph.D. thesis (See also A.R.C. R.\& M. 3288)
NicCluney Gallagher Raktham, K.	1960	The Prediction of Lift and Pitching inoment characteristics on the S.C. 1 during Transition Flight. Short Bros and Harland Ltd. $A D / T N / 52$
MacDougall, A.R.C.	1951	Revised High-Speed Lift and Drag Data for Clark Y Sections for Propellor Performance Calculations. A.R.C. R.\& M. 2474.
Wowherter	1962	VTOL Wind Tunnel Techniques and Facilities B.P. Air No. 24 page 25.
Preston, J.H.	1950	The Effect of a Wind Tunnel Fan on Irregularities in the Velocity Distribution A.R.C. R.\& M. 2307
Taylor, R.T.	1958	Experimental Investigation of the Effects of some shroud Design Variables on the Static Thrust Characteristics of a Small-Scale Shrouded Prophlor Submerged in a iving. N.A.C.A. TN. 4126
Thwaites, B.	1960	Incompressible Aerodynamics, Oxford University Press. Page 413
Trebble, W.J.G. Hackett, J.E.	1963	Low Speed wing Tunnel Tests on a Streamlined Body Containing a Ducted Lif'ting Fan. R.A.E. TN Aero. 2893
Turner \& Sparkes	1962	Preliminary notes on some fan tests with inlet maldistribution
Vogler, R.D.	1963	Surface Pressure Distributions Induced on a Flat Plate by a Cold Air Jet Issuing Perpendicularly from the Plate Normal to a LowSpeed Free-Stream Flow N.A.S.A. TN D-1629

Author(s)	Date	Title etc.
Worle	1960	Separation on Axisymmetrical Bodies at Low Speed. Ia Recherche Aeronautique No. 90 Sept-Oct 1960.
Wallis	1961	Axial Flow Fans Newnes
Wood, Charles C. Higginbotham, James T.	1954	Effects of Diffuser and Centrebod Length on Performance of Annual Diffusers with Constant Diameter Outer :alls and with Vortex Generator FIow Controls.
Wood, M.	1963	Personal communication
Wyatt, L.A.	1959	Preliminary note on wind tunnel tests of a wing fitted with Multiple Lifting Fans. R.A.E. Tech-Note Aero 2643 (A.R.C. 21,377)
Wyatt, L.A.	1961	Tests on tandam-mounted lifting fans in a nacelle (Not yet published)
Yaggy, P.F.	1961	A Wind Tunnel Investigation of a Four Foot Diameter Ducted Fanmounted at the Tip of a Semi-span Wing. NASA TN D-776.

APPENDIX I

Ind Tunnel Fan Desien by the late Professor H.B. Squire

Introduction

The object of this note is to draw attention to an existing method of fan design ${ }^{1}$ for wind tunnels which, with some slight improvements, is sufficient for all requirements. This method is simple because it assumes that the flow ahead or the fan is axial and uniform and that the flor behind has an axial velocity which is uniform and swirl velocity inversely prosortional to the distance from the axis. This flow corresponds to uniform circulation along the blades and a uniform increase in total head across the fan. Under ideal conditions the straightener vanes transf orm the swirl energy behind the fan into pressure energy.

Attempts to modify this simple procedure to allow for nonuniform velocity distribution ahead of the fan or to obtain a preferred total head distribution behind the fan have often been proposed. These are based on the assumption that 'strip theory' may be applied to the fan blade elements at any radius. It is extremely unlikely that a theory of this kind is even qualitatively correct. For example in an analogous situation of a wing spanning a closed-working-section wind tumnel which has a wall boundary layer, the use of strip theory to determine the variation of wing lift near the wall is completely erroneous. It is also well known that the application of strip theory to calculate the effect of wing twist is unreliable. For fans there is, presumably a tendency for the circulation distribution along the blades to become nearly uniform in the same way that the effect of wing twist is reduced by trailing vortices.

It follows from what is stated above that, for a single stage consisting of a fan and a set of straightener vanes, for ideal conditions, the losses of porer are entirely due to the profile drag of the fan blades and vanes: for calculation of stage efficiency the profile arag power losses can be easily calculated and some estimate of the losses due to secondary flow should be made. But no elaborate calculation from thrust and torque distributions can be expected to give more reliable results.

Since the losses are profile drag losses these are reduced by reducing the fan tip speed, providing the blades remain unstalled and an increase in the number of stages is not required. This was pointed out by Glauert but has not been emphasised in some recent papers.

A further point in relation to the general design of subsonic wind tunnels is that the axial velocity at the fan should not be too small propertion a proportion of the working section speed. In other words the expansion between working section and fan section should preferably not be more than 3 .

Some assumption must be made about lift curve slope and maximum lift of the fan blade sections. The work of Himmelscamp ${ }^{2}$ and :Teske ${ }^{3}$ has shown that root maximum lift coefficients up to 3.0 are obtainable but that $C_{L_{\text {i.AX }}}$ at the tip will not be more than 0.7. This is due to the centlifugal flow in the boundary layer of the fan blades. There are some corresponding variations in lift curve slope between root and tip. The tip $C_{L_{i A X}}$ is therefore likely to be the limiting condition of the design.

It often happens that a fan has to work under more severe conditions than expected in the original design. Some allowance
should be made for this possibility.

Conditions determinin the design

Consider the work done on a mass of fluid ρ of unit volume at radius \mathbf{r} as it passes through the fan. The increase in energy is $\mathrm{H}_{1}-\mathrm{H}_{0}$. Work is done by the blades which, while moving with angular velocity Ω impart on angular momentum $\rho \omega r^{2}$ to this unit volume and hence the work done on unit volume is $\rho \Omega\left(r^{2}\right.$ so that

$$
\begin{equation*}
H_{1}-H_{0}=\rho \Omega \omega r^{2} \tag{1}
\end{equation*}
$$

Part of this increase in total head is in the form of an increase of pressure and part is in the form of an increase of kinetic energy. The increase in pressure is found by applying Bernoullis equation to the flow relative to the fan blades; the relative angular velocity decreases from Ω to $(\Omega-\omega)$ on pas:age through the fan (Figure 2.3) and hence

$$
\begin{align*}
p_{1}-p_{0} & =\frac{1}{2} \rho\left[\Omega^{2}-(\Omega-\omega)^{2}\right] r^{2} \\
& =\rho\left(\Omega-\frac{1}{2} \omega\right) \omega r^{2} \tag{2}
\end{align*}
$$

The swirl kinetic energy is $\frac{1}{2} p \omega^{2} r^{2}$ and the sum of this and the above increase in pressure gives the increase in total head (1) ${ }^{\text {mir }}$.
*The function of the straightener blades is to transform this swirl into pressure energy so that downstream of them a uniform increase of pressure is obtained equal to the increase of total head (1).
inso domstream of the fon ωr^{2} is constent and hence the florr corresponds to a free vortex flow with a tancential velocity wr inversely proportional to redius r.

Lquation (1) may be written

$$
\begin{equation*}
\frac{H_{1}-H_{0}}{\frac{1}{2} \rho V^{2}}=2\left(\frac{\Omega r}{V}\right)\left(\frac{\omega r}{V}\right) \tag{3}
\end{equation*}
$$

The flow reaching the straighteners approches them it an angle $a_{3}=\tan ^{-1}\left(\frac{\omega r}{V}\right)$ to the axial dircction and leaves at zero ingle. (Sec Figure 2.3) Thus the inele of aeflection imparted by the straighteners is $\tan -1\left(\frac{\omega r}{V}\right)$ and a recsoncble upper limit for this is $26 \frac{1}{2}^{\circ}$ corresponding to $\left(\frac{\omega r}{V}\right)=\frac{1}{2}$. ie shall adopt this as a standird vilue for the blade root radius. If cicsired, however, a lower vialue, say $\left(\frac{\omega r}{V}\right)=\frac{1}{3}=\tan ^{-1} 18^{\circ}$ may be tiken but this would require a larger boss diameter. Putting $\left(\frac{\omega r}{V}\right)_{b}=\frac{1}{2}$ obe obtain from (3)

$$
\left(\frac{\Omega r}{V}\right)_{b}=\frac{H_{1}-H_{0}}{\frac{1}{2} \rho V^{2}} \quad \text { where suif'ix } \quad b \text { refers to the boss. }
$$

This fixes the blade rotational speed at the root and hence determines the boss radius r_{b} if anguler velocity Ω is knorm.

The lift coesficient C_{L} of the fan blide section bised on the resultant mean velocity is given by ${ }^{5}$

$$
C_{L}=2 \frac{s}{c}\left(\tan \alpha_{1}-\tan \alpha_{2}\right) \cos \alpha_{12} \text { where } s=\frac{2 \pi r}{N} \text { is the gap }
$$

between the blade elements in the equivalent cascade. Now tan $\alpha_{1}=\frac{\Omega r}{V}$
and $\tan \alpha_{2}=\frac{(\Omega-\omega) r}{V}$ we obtain

$$
C_{L}=2\left(\frac{S}{\mathrm{~L}}\right)\left(\frac{\omega r}{y}\right) \cos \alpha_{12}
$$

If, for example, at the blade roots $\left(\frac{S}{C}\right)_{b}=1.0,\left(\frac{W^{M}}{V}\right)_{b}=\frac{1}{2}$ we o sain from (4) $\frac{\Omega \mathrm{I}}{\mathrm{V}}$ and hence $\alpha_{1}=45^{\circ} \quad \alpha_{2}=26 \frac{1}{2}^{\circ} \quad \alpha_{12}=37^{\circ}$
the tips if $\frac{\Omega r}{V} \gg 1$ we have $\alpha_{1} \simeq \alpha_{2} \simeq \alpha_{12}, \cos \alpha_{12} \in \frac{V}{\Omega}$ and hence $\quad C_{L_{t}} \simeq 2\left(\frac{s}{c}\right) \frac{\omega r}{V} \frac{\Omega r}{V} \simeq 2\left(\frac{S}{c}\right)\binom{H_{1}-H_{0}}{-\frac{V^{2}}{}}\left(\frac{\Omega r}{V}\right)^{2}$

It seems desirable (see section 1) to keep the design lift coefficient at the blade tips dorm to 0.5.

Example

Power input $\eta \mathrm{P}=100 \mathrm{H} . \mathrm{P}$.
(After allowance has been made for fan stage efficiency $\eta=0.90$)
Fan disc area $=31$ sq. ft.
axial velocity at fan $=100 \mathrm{ft} / \mathrm{sec}$.
Angular velocity $\Omega=100$ radians $/ \mathrm{sec}$.
Thus $\left(\mathrm{H}_{1}-\mathrm{H}_{0}\right) 31 \times 100=100 \times 550$

$$
\frac{\mathrm{H}_{1}-\mathrm{H}_{0}}{\frac{1}{2} \rho \mathrm{~V}^{2}}=\frac{550}{31 \times 11.89}=1.493
$$

Ye take $\left(\frac{\omega r}{V}\right)=\frac{1}{2}$ and hence from (4) $\left(\frac{\Omega r}{V}\right)_{b}=1.493$. Thus re get a boss radius of 1.493 ft . e round this off and take $r_{b}=1.5 \mathrm{ft}$. Also $\pi\left(r_{t}{ }^{2}-r_{b}{ }^{2}\right)=31$ so that $r_{t}=3.38 \mathrm{ft}$.

If we suppose the fan to have 6 blades of constant chord with gap chord ration 1.5 at the root, then the chord is

$$
c=\frac{2 \pi r_{0}}{6 \times 1.5}=1.048 \mathrm{ft} .
$$

The results of the calculations are given below.
AAN $c=1$ foot 6 blades

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1.5	1.5	0.498	1.002	$56.3{ }^{4}$	45.1°	11.2°	$51.4{ }^{\circ}$	0.624	1.5	0.93
2.0	2.0	0.393	1.627	$63.5{ }^{\circ}$	$58.4{ }^{\circ}$	5.1°	61.1°	0.483	2.0	0.72
2.5	2.5	0.299	2.201	68.2°	$65.6{ }^{\circ}$	$2.6{ }^{\circ}$	67.0°	0.391	2.5	0.58
3.0	3.0	0.249	2.751	$71.6{ }^{\circ}$	70.0°	1.60	70.8°	0.329	3.0	0.49
3.38	3.38	0.221	3.159	$73.5{ }^{\circ}$	$72.4{ }^{\circ}$	1.1°	73.0°	0.292	3.38	0.44
(1)	rft	$\frac{\Omega r}{\text { v }}$	(3)	(4)	$\frac{(\Omega}{\bar{v}}$	(5)	$\alpha_{1}=$	-1		
(6)	$\alpha_{2}=t$	$\stackrel{(\Omega-\omega)}{r}$	(7)	α_{1}	(8)	2	-os)	
(11)	$\mathrm{C}_{\text {L }}$									

The table shows the blade lift coefficient for the example chosen and the inflow and outflow angles α_{1} and α_{2} for the equivalent cascade. The selection of blade sections and angles has not yet been made.

Straightener design

The form of straightener proposed by Collar ${ }^{5}$ consists of untwisted blades set along the wind. There is some risk that these will be stalled at the root if the swirl angle is $26 \frac{1}{2}^{\circ}$ as is proposed. It seems preferable to use cambered blades designed to remove the mean swirl or the swirl at the root. It is unlikely that untwisted blades of kniform chord set to remove the mean rotation will be satisfactory. Previous experience suggests that the removal of swirl at all radii is not easy and that adjustable trailing edges are a desirable feature.

Sheet metal trailing edges, which can be bent, should be satisfactory for this purpose. The complication of twisted vanes should not be accepted if it can be avoided. The best way of selecting vanes for the mean section is probably the cascade theory of Canter ${ }^{4}$. If
there is a residual swirl in the outgoing strean but the angular momentum is zero, then mixing in the diffuser downstream will eventually eliminate this swirl.

Example (continued)

STRAIGHTENIRS. Gap-chord ratio $=1.0$ at root

r	$\frac{\omega}{V}$	$\alpha_{3}=\tan ^{-1}$	$\frac{\omega}{\mathrm{~V}}$	$\frac{S}{\mathrm{~V}}$	α_{34}	$\cos \alpha_{34}$
1.5	0.498	26.5°	1.00	14.0°	0.970	C_{I}
2.0	0.373	20.5°	1.33	10.0°	0.985	0.98
2.5	0.299	16.65°	1.67	8.5°	0.989	0.99
3.0	0.249	14.0°	2.20	7.1°	0.992	0.99
3.38	0.221	12.5°	2.25	6.3°	0.994	0.99

Note

Outflow angle a_{4} for straighteners is zero

$$
2 \tan a_{34}=\tan a_{3}
$$

Reforences

1. Glatert Aerodynamic Theory Volt 4 pp. 338-341
2. Himmelscamp
3. Weske
4. Carter
5. Collar R and M 1885

Centrebody diameter for muximum power
As mentioned in 2.3 .1 the contrebody diameter is strongly affected by the limitution on α_{10}. If axial velocity is constant over the unulus* and a fan of given tip diumeter and rotational speed is considered, then for constant root swirl ungle the cixiul velocity may be increused as centrebody dimeter is increased, thus increasing the energy output per unit annular area. Since the annular area decreases with increwing centrebody dimeter there is is stige wt which the total power output starts to fall. This muy be demonstrated as folloms:-

$$
\begin{aligned}
& V_{T}^{2}=V_{J}^{2}+\Omega^{2} r_{t}^{2} \text { for zero pre-swirl } \\
& \left(\frac{V_{T}}{V_{J}}\right)^{2}=1+r \cot ^{2} \alpha_{1 b} \text { where } \quad R=\left(\frac{r_{t}}{r_{b}}\right)^{2} \\
& P_{J}=\frac{1}{2} \rho A_{J} V_{J}^{3}=\frac{1}{2} \rho \pi r_{b} 2(R-1) \frac{V_{T}^{3}}{\left(1+R^{2} \cot \alpha_{1 b}\right)} \\
& \frac{d P}{d R}=\text { const } x \frac{\left(1+\operatorname{Rcot} 2 \alpha_{1 b}\right)^{\frac{1}{2}}\left\{1+\operatorname{Reot}^{2} \alpha_{1} b-3 / 2(R-1) \cot ^{2} \alpha_{1 b}\right\}}{\left(1+\operatorname{Rcot}^{2} \alpha_{1}\right)^{3}}=0 \\
& \left(1+\operatorname{Rcot}^{2} \alpha_{1 b}\right)^{3} \\
& \because\left\{1+3 / 2 \cot ^{2} \alpha_{1 b}-R\left(3 / 2 \cot ^{2} \alpha_{1 b}-\cot ^{2} \alpha_{1 b}\right)\right\}^{a t}=0 \\
& \begin{aligned}
R & =\frac{1+3 / 2 \cot ^{2} \alpha_{1}}{2 \cot ^{2} \alpha_{1} b} \\
& =2 \tan ^{2} \alpha_{1 b}+3
\end{aligned}
\end{aligned}
$$

This uppeurs desirable for a fan of good static efficiency. It hus been sugcested thet a lower velocity sleeve on the outside of the cinnulus may reduce interference effects under forvard speed conditions. \wp This is necessary because of limitations on tip ihach Number.

Limiting $\alpha_{1 b}$ to 30° yields a centrebody diameter of 53.4% of the fan tip diameter for zero pre-swirl. The diameter varies only slowly with C_{10}. If the corresponding calculation is made for the case with pre-swirl then a centrebody dimmeter of 77.5% of fan tip diameter is obtained for maximum power.

APFENDIX III

Further details of the automeitic data reduction process

The special scales

Scales of velocity, its square, cube and fourth powers, were made in addition to a velocity scale calibrated in $f t / s e c$ for a vertical alcohol manometer. (This scule is referred to in Figure 4.2 as the "conventional scale")。

The scales were engraved on 'Trefolite' which is a plastic sheet having alternate black and white laminations. A minimum graduation size of $.030^{\prime \prime}$ was imposed by film definition. It was arranged that the smallest graduation on each $26^{\prime \prime}$ scale was approximately 0.040".

The scale factors for V^{3} and V^{4} were chosen to be convenient whole numbers of $\mathrm{ft}^{3} / \mathrm{sec}^{3}$ and $\mathrm{ft}^{4} / \mathrm{sec}^{4}$ respectively when used with a verticul ulcohol manometer. The choice was influenced by the $0.040^{\prime \prime}$ minimum gruduction sizes which occurred at high velocities. The lineur V^{2} scale is $\dot{\mathrm{i}}$ so the transfer scule. A constant griduation size of $0.040^{\prime \prime}$ was chosen. (i.e. $0.040^{\prime \prime}$ of bluck, then $0.040^{\prime \prime}$ of white, etc.)

Small graduations occur at low velocity on the V scale and a factor of almost $12 \mathrm{ft} / \mathrm{sec}$ per count mould occur if a $0.040^{\prime \prime}$ step wàs placed here. To overcome the courseness of scale which would have resulted a lineur section Weis introduced at the low velocity end of the scile which blended into a non linear scale haviné a factor of $1 \mathrm{ft} / \mathrm{sec}$ per count on a vertical alcohol manometer. This made necessiry the introduction of an added constant in the calibrution. (See Table next page). Only the
first $\frac{3}{4}$ " of scale was affected.

SCIE FHCTORS

$C=$ Total count on decade counter $\quad N=$ number of frames scanned. V's in $\mathrm{ft} / \mathrm{sec}$ units throughout

$\begin{gathered} \text { MANOLETER } \\ \text { FLUID } \end{gathered}$	$\begin{gathered} \overline{\mathrm{V}} \\ \left(=\mathrm{m}_{1}\right) \end{gathered}$	$\begin{gathered} \overline{\mathrm{V}}^{2} \\ \left(=\mathrm{m}_{2}\right) \end{gathered}$	$\begin{gathered} \overline{\mathrm{V}^{3}} \\ \left(=\mathrm{m}_{3}\right) \end{gathered}$	$\begin{gathered} \overline{\mathrm{V}}^{4} \\ \left(=\mathrm{m}_{4}\right) \end{gathered}$
$\begin{aligned} & \mathrm{ALCOHOL} \\ & \mathrm{S.G}_{0}=0.80 \end{aligned}$	$29+\frac{C}{N}$	$139.91 \frac{C_{2}}{\frac{N}{N}}$	$75,000 \frac{\mathrm{C}_{3}}{\mathrm{~N}}$	$25 \times 10^{6} \frac{C_{4}^{4}}{N}$
$\begin{aligned} & \text { WATER } \\ & S_{.} G_{0}=1.00 \end{aligned}$	$32.4+1.118 \frac{\mathrm{C}}{\mathrm{N}}$	$174.89 \frac{C_{2}}{N}$	104,710 $\frac{C_{3}}{\mathrm{~N}}$	$39.06 \times 10^{6} \frac{C_{4}}{N}$
$\begin{aligned} & \text { CARBON } \\ & \text { TERRA- } \\ & \text { CHLORIDE } \\ & \text { S.G. }=1.52 \\ & (\text { WITH DYE) } \end{aligned}$	$40.0+1.378 \frac{\mathrm{C}}{\mathrm{~N}}$	$265.82 \frac{C_{2}}{N}$	$196,360 \frac{C_{3}}{N}$	$90.25 \times 10^{6} \frac{C_{4}}{\mathrm{~N}}$

Should the reader output be used to operate a tape punch only a linear scale would be required since individual results could be recorded and the sums of powers of velocity could be obtained using an appropriate computer programme.

At present individual points are obtained by running the reader slowly and recording individual totals, Figure 7.1 was obtained in this way. At full speed the summing of five quantities over 15 tubes x 11 frames took 30 minutes.

Before taking photographs it is necessary to make a check on manometer and scale zeroes. This is needed because the electronic circuits accept signals in one sequence only. Starting from the top of the manometer, one should see:-
(i) Static Head
(ii) The zero of the non-linear scales
(iii) Total Head
(iv) A distance below the total head tubes greater than that between (i) and (ii). -109-

It is possible to employ Simpson's rule for integration if end points either of the traverse or outside the rakes are known to have zero velocity. For the former it is necessary to take two similar photographs for the 'odd' traverse positions. For zeroes at the ends of the rake all that is necessary is to sum the "odd" tubes twice. Calculation is then as for the normal Simpson integration. Some results of reader repeatability and accuracy tests

The results given in the following table give the film reader output counts obtained from a film having five frames. The measurements correspond to the difference between the readings of one pair of manomet r tubes on this film. Each frame corresponds to a different rake position. For comparison hand measurements are given which were made using dividers to transfer the appropriate column lengths to the "conventional scale". Their accuracy is unlikely to be better than $\pm 1 \%$, consequently powers greater than V^{2} will not have been obtained with adequate accuracy using hand methods.

Since the film reader 'sees' coarser scales for the higher powers of V it is unlikely that counting difficulties will occur. Over a range of tubes and frames the errors due to the relative coarseness of the graduations for higher powers should be smoothed out in a statistical manner. The size of graduations corresponding to the quaitic scale at the speeds of the present example is $0.10^{\prime \prime}$ in $10^{\prime \prime}$ scale length.

The figures in the table are successive readings on the decade counter and are therefore cumulative totals (thus exclude the added constant in the case of the velocity scale)

			REPEATED		READINGS	OF	SAME	FILM		
	\checkmark	\sim	m	\pm	1 n	6	N	∞	0	
V	151	152	150	151	150	150	151			151
	295	296	294	295	293	293	295			294
	432	433	429	432	428	427	432			432
	575	576	571	574	571	569	575			575
	718	718	714	717	713	713	717			718
v^{2}	233	232	230	231	230	229	233	234	233	233
	448	44	446	447	444	441	451	449	449	448
	644	644	645	644	637	637	647	647	646	651
	857	856	859	857	852	845	863	862	861	866
	1069	1068	1073	1070	1059	1059	1075	1076	1077	1081
v^{3}	82	84	83	83	84	83				
	156	157	156	155	158	157				
	221	222	221	222	223	222				
	293	295	295	295	295	295				
	366	368	369	368	368	368				
v^{4}	53	53	53	5398367924						
	98	98	98							
	136	136	136							
	180	180	180							
	224	224	223							

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 1
Frame 2
Frame 3
Frame 4
Frame 5
Frame 1
Frame 2
Frame 3
Frame 4
Frame 5

The switching pulses were monitored on an oscilloscope. With experience it became obvious when the occasional spurious count came through as the decade counter did not then 'lock in' solidly. In case of doubt for either observation the count was repeated until a constant answer appeared and the switching pulses were sharp.

The interaction between the fan and non-uniformities in the upstream flow
(a) Velocity deviations at constant static pressure
(1)
(2)
(3)

FAR UPSTREAM
(Uniform Static Pressure)

FAR DOWNSTREAM
(Uniform Static Pressure)

Preston (1950) derives the following result relating small local velocity deviations downstream of a fan to those upstream:-
$\frac{v_{3}}{v_{1}}=\frac{2-C^{\prime}}{2+C^{\prime}}$ where $C^{\prime}=\frac{a}{2} \frac{\sigma}{\lambda}$, the symbols being those of Coller(1940)

At the centre of the annular area, under static lift conditions, $C^{\prime}=2.40$. At both the upstream and downstream stations of Preston's analysis the static pressure is constant and non-uniformities in total head exist.

It can be hown that $\frac{v_{2}}{v_{1}}=\frac{2}{2+C^{\prime}}$ and $\frac{v_{3}}{v_{2}}=\frac{2-C^{\prime}}{2}$ where v_{2}
is the velocity deviation at the fan plane. For the model fan in the static lift condition $\frac{v_{2}}{v_{1}}=0.455$ and $\frac{v_{3}}{v_{2}}=-0.20$ giving
$\frac{\mathrm{V}_{3}}{\mathrm{~V}_{1}}=-0.091$. The inversion is characteristic for $C^{\prime}>2.00$. It
is clearly desirable that C^{\prime} should be close to 2.0 if large damping is recuired. Notice that Preston's solution needs sufficient settling length both upstream and downstream of the fan for the static pressure to become uniform across the duct. (b) Complementary dynamic and static head deviations at constant total head

Flows upstream of VIOL fans with well shaped flush intakes which avoid separation on the upstream lip and which have no turning devices within the stream tend to have constant total head across the duct since air is taken directly from the mainstream with very small losses. Weasurements made by Gregory and Love (1962) show a high velocity region just belon the upstream intake lip, associated with the pressure gradient across the flow which turns it into the duct.

A characteristic of a disturbance at constant total head is that if allowed sufficient settling length, the flow will become uniform of its own accord. This is not so in the case above in which, in potential flow, the disturbance would persist.

An attempt has been made to estimate theoretically the effect of the fan on non-uniformities of the present type. This has not been successful for the upstream part of the flow. Al though an upstream effect similar to that of 7.3 .1 will probably be present, it is not clear whether the upstream influence of the fan will change the natural rate of settling。

The development of disturbances arriving at the fan plane is dealt with below. It is assumed that duct area is constant and that the outlet static pressure, p_{3} and in inlet total head H_{2} are constant across the duct, as in the static lift case. Velocity deviations of finite size and area have been assumed. Actuator
disc theory has been employed.
In subtracting incremental pressures in the analysis which follows it is necessary to make the assumption that the effects are confined to one radius, or that the twist of the fan blades is small. The effect of the straighteners has not been considered.

$$
\mathrm{p}_{2}+\mathrm{p}_{2} \mathrm{p}_{2}-\cdots-\cdots--\mathrm{A}_{2}
$$

Equating axial momenta between (2) and (3)
$i_{2}\left(p_{2}+\Delta p_{2}\right)+\rho h_{2} V_{2}^{2}+a_{3}\left(p_{2}^{\prime}+\Delta p_{2}^{\prime}\right)=\Delta p_{3}+\rho h_{3} V_{3}^{2}+\rho a_{3} V_{3}^{\prime 2}$

This may be written, after applying Bernoullis equation between planes (2) and (3) and rearranging:-
$\frac{1}{2} \rho V_{2}{ }^{2} A_{2}+\frac{1}{2} \rho V_{2}^{\prime 2} d_{2}-\frac{1}{2} \rho V_{3}^{2}{ }_{A}=\left(2 A_{3}-A_{2}-A_{1}\right) \Delta p_{2}+\left(2 a_{3}-d_{2}\right) \Delta p_{2}^{\prime}$
using continuity and area relationships the RHS becomes

$$
\mathrm{H}_{5}=\mathrm{a}_{2}\left(2 \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{3}}-1\left(\Delta \mathrm{p}_{2}-\Delta \mathrm{p}_{2}\right)\right.
$$

Put $\Delta p=\frac{\rho N C i \Omega 2 C L}{4 i}$ and $C_{L}=m\left(\beta-\tan ^{-1} \frac{\square}{\Omega r^{2}}\right)$

$$
\operatorname{IHS}=\frac{1}{2} p(\Omega r)^{2} a_{2}\left(2 \frac{V_{2}}{V_{3}}-1\right)\left(\frac{C^{T}}{r} \cdot\left(\frac{m}{2 \pi}\right)\left(\tan ^{-1 V_{2}} \frac{-\tan ^{-1 V_{1}}}{\Omega r}\right)\right.
$$

Dividing by $\frac{1}{2} p(\Omega r)^{2} \mathcal{K}_{2}$ and writing $\frac{V}{\Omega r}=\tilde{V}$ and $\frac{a}{A}=\tilde{d}$ etc. we obtain $-\sigma_{3}^{2}+\tilde{V}_{2}^{2} \tilde{A}_{2}+\tilde{V}_{2}^{2}{ }^{2 \sim} a_{2}=\tilde{a}_{2}\left(\frac{\tilde{V}_{2}}{\tilde{v}_{3}}-1 / \frac{\pi}{r}\right)\left(\frac{m}{2 \pi}\right)\left(\tan ^{-1} \tilde{v}_{2}-\tan ^{-1} \tilde{V}_{2}^{\prime}\right)$ If quantities at (2) are stated then $\tilde{\mathrm{V}}_{3}$ is the only dependent variable which remains and the equation may be rewritten in the form

$$
\tilde{\mathrm{V}}_{3}^{3}+D \tilde{\mathrm{~V}}_{3}+\mathrm{E}=0
$$

Inserting conditions at $R / R=0.8$ for the static case $\left(\tilde{V}_{2}=0.40\right)$ and assuming: that $\tilde{a}_{2}=0.10$, gives the following results:-

$\tilde{\mathrm{V}}_{2}^{\prime}$	D	E	$\tilde{\mathrm{V}}_{3}$	$\tilde{\mathrm{p}}_{3}$	$\mathrm{C}_{\mathrm{L}}{ }^{\prime}$	$\tilde{\mathrm{H}}_{3}{ }^{\prime}$	$\tilde{\mathrm{V}}_{3}^{\prime}$	$\tilde{\mathrm{a}}_{3}$
0.32	-.1678	+.01086	.373	1.941	1.025	3.440	1.224	0.0262
0.36	-.1637	+.00526	.388	1.929	0.810	2.755	0.909	0.0397
0.44	-.1657	-.00526	.412	$>\mathrm{H}_{3}$	-	-	-	-
(See below)								

The last result is not valid because $\mathrm{p}_{3}>\mathrm{H}_{3}$ is implied. This would cause separation which invalidates the area assumptions of the above analysis. Cross plotting showed that $\tilde{p}_{3}=\tilde{H}_{3}$ at $\tilde{\mathrm{v}}_{2}=0.41$. Note that for $\tilde{\mathrm{V}}_{2}{ }^{\prime}=0.32, \mathrm{C}_{\mathrm{L}}{ }^{\prime}$ is approaching the maximum normally allowed in blade element calculations. It can be seen that, for the assumed conditions, disturbances which arrive at the fan are changed in sign and amplified. At the same time the disturbed area is reduced for $\tilde{\mathrm{V}}_{2}^{\prime}<\tilde{\mathrm{V}}_{2^{\prime}}$. The band of velocities which may arrive at the fan without producing either duct or fan blade separation appears to lie between 8% below and 2% above the mainstream velocity. as deviations upstream of the fan, produced by turning, are likely to be considerably more than this (see Gregory and Love (1962)) and since downstream measurements in the present tests indicate no velocity deviations of significant size below the fan under any
test conuition and no serious separations, it is apparent that further examination is needed.

The theoretical treatment has the following weaknesses:-
(i) N 'sharp edged' deviation has been assumed. In practice this would be 'smeared' by viscous effects and by the tendency for the edges of a step in the blade loading profile to be smoothed out as on a finite wing.
(ii) Super-velocities found at the exit plane in the theoretical solution would be dissipated by viscous forces. It seems unlikely that the disturbed area would contract very much.
(iii) Actuator disc theory assumes the fan to be negligibly thin. This is not a good assumption since the discances from the fan to which interest attaches are comparable with its thickness.

Doubts about the present experimental comparisons are as follows:-
(i) The contraction effect caused by the fan drive shaft may have suppressed velocity deviations and/or separations. .
(ii) An upstream lip radius of 10 , of san diameter in Gregory's experiment produced local velocities of 150% of the static value when $\mathrm{V} / \mathrm{V}_{\mathrm{J}_{\mathrm{T}}}=0.55$. The lip of the present model had 20% radius and would have produced less pronounced supervelocities.

It is an experimental fact that even the hich velocities found by Gregory and Love (1962) were heavily damped and no regions of total head decrease through the fan were found.

Further experimenial and theoretical effort is required to obtain an understanding of the mechanisms of the attenuation of disturbances which fans can cause.

APPENDIX V
Tables 1 to 7

Length

Maximum width
Maximum depth
Maximum cross sectional area
Distance from nose to wing quarter chord
Distance from nose to duct axis (Which is at right-angles to the body centre line)

DUCT + CENTREBODY
Duct length
Duct diameter ($=\mathrm{d}$)
8.0"

Distance from inlet to fan plane
Annular area of duct ($7 \frac{1}{2} \%$ of wing 1)
Distance from inlet to straighteners
Inlet radius on upstream side of duct ($=20 \%$ d)
Inlet radius on downstream side of duct ($=6 \% \mathrm{~d}$)
No radius on duct outlet
Centre body length
9.0^{11}
Maximum centrebody diameter
Length of cylindrical portion of centrebody (ends are ellipsoidal)

FAN and STRAIGHTENERS
Tip diameter ($=$ d)
Boss diameter ($=58 \% \mathrm{~d}$)
TAN
5 Blades 10% Clark Y section
Root Blade Angle
Tip Blade Angle
Mean Chord
SIRAIGHTENERS
12 Blades, Thin cambered plates
Blade Chord
$1.3^{\prime \prime}$

VING 1

Span	$34.0^{\prime \prime}$
Area	$2.0 s q . f^{\prime t}$.
Aspect Ratio	6.0
Taper Ratio	2.0
Unswept quarter chord	
Aerofoil Section	NACAO012
Wing-Body angle adjustment between	$\pm 30^{\circ}$

STRUTS
Diameter
Distance between outer ends
1.0^{11}
Distance from nose of body
16.4"

TYPE OF RESONANCE	FORCES	$\begin{gathered} \text { ROTATIONAL } \\ \text { FREQUENCY } \\ =f \end{gathered}$	ONE FAN BIADE CROSSING FOUR SFIDER WAKES $=4 \mathrm{f}$	FAN BLADES PASSING A FIXED POINT $=5 \mathrm{f}$	$\begin{aligned} & \text { GEAR TOOTH } \\ & \text { IRPOSED FORCES } \\ & =18 \mathrm{f} \end{aligned}$	FIVE FAN BLADES CROSSING FOUR SPIDER WAKES $=20 \mathrm{f}$
OS CILLATI ON OF BEARINGS AGAINST SERINGS	10 s	$\begin{gathered} 600 \mathrm{RPN} \\ (1800 \mathrm{RPM}) \end{gathered}$	LITTLE COUPLING	$\begin{aligned} & \text { LITTLE } \\ & \text { COUPLING } \end{aligned}$	$\begin{gathered} 33 \mathrm{RPM} \\ (100 \mathrm{RPM}) \end{gathered}$	$\begin{gathered} 30 \mathrm{RPM} \\ (90 \mathrm{RPM}) \end{gathered}$
FAN BLADE BENDING	2,120 \%	$M_{\square}>1 \quad \neq$	31,800 RED	25,400 RPM	$\begin{array}{r} 7,100 \mathrm{RPM}{ }^{*} \\ (21,300 \mathrm{RPM}) \end{array}$	$\begin{array}{r} 6,350 \mathrm{RPM} \\ (19,100 \mathrm{RPM}) \end{array}$
FAN BLADE TORSION	9,600 \% APPR OX.	${ }_{\mathrm{T}}>1 \quad \neq$	$\mathrm{W}_{\mathrm{T}}>1 \quad \neq$	$M_{\mathrm{M}_{\mathrm{D}}}>1 \quad \neq$	31,900 RPM	28,800 RPM
MAINSHAFT WHIRL	490 \%	29,400 RPM ${ }^{\text {¢ }}$	NORMAL ROTATIONAL SE EED IS $23,200 \mathrm{RPM}(387 \mathrm{c} / \mathrm{s}$ THIRD HARMONICS EXCITED AT RPM SHOWN IN BRACKETS * RESONANCES OBSERVED BETWEEN 5,000 AND 6,000 RPH $\not 027,000$ RPM PRODUCED NO WHIRL \neq UNIT TIP MACH NUMBER OCCURS AT 36,500 RPM			
CANTILEVER WHIRL	615%	36,950 RPM				
FANSHAFT WHIRL	615%	36,950 RPM				

WIND TUNNEL AND TEST DATE	Imperial College $5^{\prime} \times 4^{\prime}$. Late 1961
CONFIGURATIONS	On Struts, On Wings, (without underfins)
VARIABLES	$V, 30 \mathrm{ft} / \mathrm{sec}$ to $130 \mathrm{ft} / \mathrm{sec} . \quad 20 \mathrm{ft} / \mathrm{sec}$ intervals $\alpha,=-20^{\circ},-18^{\circ}$, to $+18^{\circ},+20^{\circ}$. 3° intervals $\alpha_{0},-10^{\circ}$ to $+20^{\circ} . \quad 5^{\circ}$ intervals consistent with $\mid \alpha_{W}^{\prime}<20^{\circ}$
MEASUREIENTS AND TESTS	Lift, Drag and Pitching Moment. Surface Flow Visualisation. Determination of Floor Stagnation Regime. Pitot-statio traverse of duct exit in the statio- lift condition.

WIND TUNNEL AND TEST DATE	
CONFIGURATIONS	On Strukts, On Wings, with and without underfins.
VARTABLES	$\begin{aligned} & \mathrm{V}, 20 \mathrm{ft} / \mathrm{sec} \text { to } 80 \mathrm{ft} / \mathrm{sec} \text { and } 120 \mathrm{ft} / \mathrm{sec} .20 \mathrm{ft} / \mathrm{sec} \\ & \text { intervals } \end{aligned}$
ITEASUREMENTS	Lift, Drag and Pitching Moment.

WIND TUNNEL AND TEST DATE	Imperial College $5^{\prime \prime} \times 4^{\prime}$. October 1962.
CONFIGURATIONS	On Struts with and without underfins
VARIABLES	V, $30 \mathrm{ft} / \mathrm{sec}$ to $110 \mathrm{ft} / \mathrm{sec}, 20 \mathrm{ft} / \mathrm{sec}$ intervals $\alpha,-18^{\circ}$ to $+18^{\circ}$. 6° intervals
$\begin{gathered} \text { MEASUREI ENTS } \\ \text { IIND } \\ \text { TESTS } \end{gathered}$	Lift, Drag and Pitohing Moment Electrical Power Input Fan RPM Duct FICN Measurements $\quad\left\{\begin{array}{r}\text { Simultaneously } \\ \text { (Series 3a) }\end{array}\right.$ Flon Visuclisation on Fins Check force tests with pressure tubes disconnected (Series 3b)

TABEE 3 Summary of Tests on Lifting Fan Model, with Fan Running

ChEERA	ALFHA Model 6 1:1.8/50 lens. (35 mm single lens reflex, focal plane shutter)
PILM + EXFOSURE	PAIT F (50 A.S.A) $1 / 5 \mathrm{sec}$ at f. 8 Developed in Contrast FF for $2 \frac{1}{2}$ minutes at $70^{\circ} \mathrm{F}$
LIGHTING	Two 100w household bulbs $18^{\prime \prime}$ above the top of the manometer. White reflector below manometer. :hite paper behind tubes Methyl Violet dye in $\mathrm{C}_{\mathrm{Cl}} \mathrm{Cl}_{4}$ fluid.
SETTING UP	Distance from film-plane to tubes $=43^{\prime \prime}$ Camera opposite mid height to within $\pm \frac{i^{\prime \prime}}{}$ Tilt in film plane less than $\pm 1 / 10$ decree Scale zero to satisfy conditions of Appendix 3.

TABLE 4. PARIICULARS OF MGNOLTGR PICIURES

REDUCTION OF	DIVISORS		
	(a)	(b)	(c)
FORUARD SFEED	$\overline{\mathrm{V}}_{J}$	$\mathrm{V}_{\mathrm{J}_{\mathrm{T}}}$	ΩR
LTPT INCRETENT	$\rho^{A}, \bar{V}_{J}^{2}$	T	$\rho_{J}(\Omega R)^{2}$
DRig INCmbrinet	$\rho \dot{A}_{J} \overline{\mathrm{~V}}_{J}^{2}$	T	$p A-(\Omega R)^{2}$
FITCHING: OMiFNT INCREMENT	$\rho^{A} \bar{J}^{2}{ }_{J}^{\mathrm{a}}$	Td	$\rho A_{J}\left(\Omega R{ }^{\prime} / a_{0}\right.$

TABLE 5. SOIGE 1OC IBLE REDUCTION PURATEERS

$\frac{V}{\Omega R} \quad a^{\circ}$
$.030-18$
-12
$-\quad 6$
0
6
12
18
$.060-1$
$\begin{array}{rrr}.0879 & -.0058 & .0252 \\ .0893 & +.0038 & .0260 \\ .0886 & .0135 & .0328 \\ .0830 & .0226 & .0296 \\ .0849 & .0335 & .0300 \\ .0714 & .0430 & .0372 \\ .0795 & .0520 & .0355 \\ .0788 & .0060 & .0420\end{array}$
.090
I-

- 6
. 08
(1):
$(1) *$

TIST SUMIIS 1 ($5^{\prime} \times 4$ ' TUNTN)

$\frac{\mathrm{V}}{\Omega}$	a°	(1)	(2)	(3)
. 030	- 18			
	-12			
	- 6			
	6			
	12			
	18			
. 060	-18	. 0792	$-.0078$. 0173
	- 12	. 0852	+.0080	. 0270
	- 6	. 0840	+.0163	. 0307
	0	. 0830	. 0263	. 0342
	6	. 0817	.0340	. 0360
	12	. 0830	. 0440	. 0360
	18	. 0910	. 0522	. 0332
. 090	- 18	. 0680	0	. 0320
	- 12	. 0838	.0178	. 0470
	- 6	. 0200	. 0270	. 0525
	0	. 0782	. 0352	. 0562
	6	. 0790	. .0432	. 0568
	12	. 0790	. 0544	. 0523
	18	. 0918	. 0619	. 0493
.120	- 18	. 0558	.0053	. 0459
	- 12	. 0850	. 0287	. 0686
	- 6	. 0862	. 0380	. 0748
	0	. 0790	. 0458	. 0760
	6	. 0790	. 0540	. 0762
	12	. 0744	. 0669	. 0710
	18	. 0920	. 0727	.0690
.150	- 18	. 0460	. 0090	. 0546
	-12	. 0980	. 0388	. 0850
	- 6	. 0986	. 0489	. 0925
	0	. 0948	. 0567	. 1029
	6	. .0862	. 0660	. 0993
	12	. 0718	. 0813	. 0905
	18	. 0920	.0840	. 0890
.180	-18	. 0368	. 0090	. 0620
	- 12	.1145	.0493	. 1032
	- 6	.1107	. 0603	. 1172
	0	.1106	. 0670	. 1272
	6	. 0932	. 0770	. 1260
	12	. 0702	.1000	.1100
	18	. 0912	.0943	.1100

TEST SERTES $2\left(11^{\frac{1}{2}} \times 8 \frac{1}{2}\right.$ TUNNEL $)$

(1)	(2)	(3)	
. 0878	-. 0183	-. 001	
. 0900	-. 0083	+. 0060	
. 0930	+.0020	. 0030	
. 0930	. 0094	. 0102	
. 0930	. 0193	. 0049	
. 0918	. 0293	. 0160	
. 0895	.0360	. 0184	
. 0780	$-.0085$. 0180	
. 0832	+.0039	. 0261	(1) ΔL
. 0838	. 0133	. 0292	$(1)=\frac{L}{}$
. 0826	. 0215	.0315	$\rho(\Omega R)^{2} A_{J}$
. 0806	. 0307	. 0260	
. 0812	. 0392	. 0214	
. 0826	.0455	. 0260	
. 0640	-. 0008	. 0326	$(2)=\frac{\Delta D}{}$
. 0796	+.0150	. 0462	$\rho(\Omega R)^{2} A_{J}$
. 0790	. 0244	. 0539	
. 0767	. 0335	. 0520	
. 0750	. 0412	. 0490	
.0743	. 0490	. 0400	$(3)=\Delta N$
. 0795	.0548	. 0433	$(3)=\frac{}{\rho(\Omega R)^{2} A_{J} J^{2}}$
. 0504	. 0055	. 0466	
. 0792	. 0255	.0602	
. 0790	.0350	. 0738	
.0750	. 0434	. 0740	
. 0720	. 0520	. 0714	
. 0728	. 0620	. 0640	
. 0798	. 0634	. 0630	OBTAINED AS
			CROSS-PLOTS

TEST SERTUS 30 ($5^{\prime} \times 4^{\prime}$ TUNISL)
V
$\bar{\Omega}$
(1) ${ }^{*}$
(2) (3)
$.030-18$
-12
-6

| 0 | N O TMSTS |
| :--- | :--- | :--- | :--- |
| 6 | TM |

12 18

$$
\begin{array}{rrrr}
.060 & -18 & .0659 & -.0070 \\
-12 & .0893 & .0040 & .0312 \\
-\quad .0395 & .0140 & .0322 \\
0 & .0903 & .0237 & .0370 \\
6 & .0883 & .0320 & .0355 \\
12 & .0878 & .0416 & .0380 \\
18 & .0834 & .0495 & .0360
\end{array}
$$

$$
.090-18 \quad .0890 \quad .0018 \quad .0520
$$

$$
-12 \quad .0930 \quad .0142 \quad .0540
$$

$$
\begin{array}{rrrr}
-6 & .0923 & .0244 & .0563 \\
0 & .0947 & .0339 & .0585
\end{array}
$$

$$
6 \quad .0912 \quad .0420 \quad .0580
$$

$$
12.0893 \quad .0550 \quad .0564
$$

$$
\begin{array}{llll}
18 & .0863 & .0559 & .0509
\end{array}
$$

$$
\begin{array}{rrrrr}
.120 & -18 & .0949 & .0150 & .0755 \\
-12 & .0995 & .0249 & .0790 \\
-6 & .0982 & .0350 & .0805 \\
0 & .1034 & .0440 & .0810 \\
6 & .0969 & .0522 & .0759 \\
12 & .0932 & .0600 & .0738 \\
& 18 & .0907 & .0640 & .0660
\end{array}
$$

$$
.150-18 \quad .1044 \quad .0249 \quad .1025
$$

$$
\begin{array}{rrrr}
-12 & .1117 & .0350 & .1058 \\
-6 & .1093 & .0463 & .1043 \\
0 & .1150 & .0544 & .1043 \\
6 & .1056 & .0622 & .0959 \\
12 & .1024 & .0693 & .0920 \\
18 & .0982 & .0738 & .0820 \\
& & & \\
-180 & .1128 & .0320 & .1308 \\
-12 & .1262 & .0453 & .1373 \\
-\quad 6 & .1236 & .0558 & .1300 \\
0 & .1273 & .0650 & .1270 \\
6 & .1150 & .0725 & .1190 \\
12 & .1130 & .0792 & .1113 \\
18 & .1100 & .0836 & .1000
\end{array}
$$

TEST SERISS $2\left(11 \frac{1}{2}^{*} \times 8^{\frac{1}{2}}{ }^{\prime}\right.$ TUNVEL $)$
(1)
(2)
(3)

ERFORM』D
$\begin{array}{lll}.0914 & .0055 & .0490 \\ .0915 & .0143 & .0520 \\ .0929 & .0227 & .0492 \\ .0914 & .0340 & .0470 \\ .0918 & .0407 & .0483 \\ .0899 & .0468 & .0482 \\ .0834 & .0532 & .0420 \\ .0986 & .0160 & .0710 \\ .0987 & .0253 & .0750 \\ .0982 & .0340 & .0800 \\ .0985 & .0440 & .0820 \\ .0973 & .0520 & .0790 \\ .0946 & .0593 & .0740 \\ .0890 & .0660 & .0660\end{array}$
$(2)=\frac{\Delta D}{\rho(\Omega R)^{2} A_{J}}$
$(3)=\frac{\Delta M i}{\rho(\Omega R)^{2} A_{J} d}$

VALUES SHOWN
OBTAIINED AS
CROSS-PLOTS
\triangle INCRHMENTS ARE WEASURED ABOVE A DATUN :ITH FINS.
※ INCLUDING 3%
CORILCRION FOR DRAG OF TRAVERSE RAKES
(c) BODY ON STRUTS WITH FINS.

		($5_{1} \times 24^{\prime}$ tunnuilu)	test sis	ITES 2	(11 $\frac{1}{2}^{\prime} \times 88^{\frac{1}{2}}$	' tundel)
$\frac{V}{\Omega R}$	a°	(1) (2) (3)	(1)	(2)	(3)	
. 030	- 18		. 0842	-. 0180	. 0085	
	- 12		. 0876	-. 0080	. 0075	
	- 6		. 0892	+.0007	. 0053	
			. 0890	. 0117	. 0130	
	6		. 0876	. 0208	. 0115	
	12		,0876	. 0290	. 0095	
	18		. 0840	.0369	. 0097	
. 060	-18		. 0754	-. 0080	. 0220	
	- 12		. 0822	. 0047	. 0260	
	- 6		. 0852	. 0120	. 0280	$(1)=\Delta L$
	0 6		. 0840	.0215 .0303	.0317 .0284	$\overline{\rho(\Omega R)^{2} A_{J}}$
	12		. 0830	. 0370	. 0317	
	18		. 0820	. 0442	. 0273	
. 090	- 18		. 0672	-. 0008	. 0360	$\text { (2) }=\frac{\Delta D}{\rho(\Omega R)^{2} A_{J}}$
	- 12		. 0878	. 0140	$.0475$	
	- 6		. 0882	.0234 .0320	$\begin{aligned} & .0530 \\ & .0530 \end{aligned}$	
	6		. 0870	. 0409	. 0530	
	12		. 0880	. 0470	. 0547	$(3)=\frac{\Delta M}{\rho(\Omega R)^{2} A_{J} d}$
	18		. 0850	. 0520	. 0467	
. 120	- 18		. 0602	. 0043	. 0520	
	- 12	\%	. 0940	. 0250	. 0740	
	- 6		. 0934	. 0349	. 0750	
	0		. 0904	. 0434	. 0762	
	6		. 0870	. 0515	. 0760	
	12		. 0950	. 0584	. 0730	
	18		. 0904	. 0608	. 0710	OBTAINED AS
. 150	- 18					CROSS-PLOTS
	-12 -66					
	0					
	6					
	12					
.180	18					INCPBMENTS ARMEASUPED ABOV A DATM WITH FIVS.
	- 18			. 0124	. 0940	
	- 12		. 1056	. 0483	. 1240	
	- 6		. 1060	. 0580	. 1320	
	0		. 1070	. 0660	. 1280	
	6		. 1040	. 0760	. 1238	
	12		. 1126	. 0845	. 1210	
	18		. 11112	. 0808	. 1078	

APPENDIX VI

Illustrations

(A decimal numbering system is used. The first figure is that of the appropriate chapter)

YELOCMY DIAGRAMS FOR ELOW THROUGH A FAN UNIT

FIGURE 23
(SEE SECTION 2.6 AND APPENDIXI)

(i) $\phi=0^{\circ}$

SEPARATION
ALMOST AT
FULL DIAMETER

(iii) $\phi_{\text {max }} \bumpeq 40^{\circ}$

SEPARATED REGION
FURTHER DECREASED
SEPARATED REGION
FURTHER DECREASED
(ii) $\phi_{\text {max }} \bumpeq 20^{\circ}$

SLIGHTLY
SMALLER
SEPARATED
REGION

(iv) $\phi_{\text {max }} \bumpeq 60^{\circ}$

ATTACHED FLOW
FOLLOWED BY
VORTEX BURST

FLOW PHOTOGRAPHS USING TITANIC CHLORIDE SMOKE OF A $2: 1$ ELLIPSOID IN THE $3^{\prime \prime}$ SWIRL TUNNEL

EXPONENTIAL VORTEX SWIRL DISTRIBUTION SCALE APPROXIMATELY FULL SIZE

FIG. 2.4
(SEE SECTION 2.3)

DESGiP OSUNDARIES ARISING FZOM TECNOT JAMIC CONSIDERATIMNS. FICORE 2.6

COMPRRIDON AF NOUE \＆REOUSED JITHTHE SPACE－LITATEL PO 2ESGVALLAULE．

DESIGN UADNOARIES VICLUDISAZ COMSIOERATION AF MOTCR SIZE.

Flaste 2.8
(SEE SECTION, 2.5 ANO 2.6)

DESiAN FEATUGES OE FANS BLADES.
Flicyee <1

VIEW SHOWING INTAKE OF DUCT

VIEW SHOWING DUCT OUTLET

GENERAL VIEWS OF FAN-LIFT MODEL

FIG. 3.2

(SEE SECTIONS $3.5,3.6,6.2,7.1$)

THIS IS A VIEW OF THE BOTTOM OF THE MODEL WITH THE REAR SHELL REMOVED

THE TRAVERSE GEAR DRIVE + POSITION INDICATOR

FIG. 3.4

FIG. 4.1 SCHEMATIC DIAGRAM OF FILM READER

NUMGERS indicate the order OF TAKING MANAMETES

CENTICAL PLATNE, SEEN FKOM ABOVE, APPIROX. FILI SIZE.

143

(b) $\quad \alpha=0^{\circ} \quad 134 \mathrm{ft} / \mathrm{sec}$ WITH TRANSITION WIRE

SURFACE FLOWS WITH THE BODY MOUNTED ON STRUTS.
(FAN OFF)

FIG. 5•I.
(SEE SECTION 5.1)

delay of the wing stall by opening the motor cooling outlet (fan off)

FIG. 5.2
(see section 5.1)

(a) ON STRUTS AT $\alpha=+20^{\circ} \quad 136 \mathrm{ft} / \mathrm{sec}$

(b) ON WINGS AT $\alpha=+18^{\circ} \quad 136 \mathrm{ft} / \mathrm{sec}$

SHOWING STALL EFFECTS

SURFACE FLOWS AT HIGH INCIDENCE.
(FAN OFF)

FIG. 5.3
(SEE SECTION 5.1)

TRAVERSES WERE MIDNAT BETWEGN INLGTANOEXIT PLANES．

＂／léた BODY ON STROTS
NWNO GOLY CH ST：WhrH UNDERFRS．
AT ZERO FORNARE SPEEC ALL RENDUNS OSCILLATED．
WIIHIN THE REMALNUER OF THG TEST KANGE THE SHADED AREAS INCREASEL OHA SLIABTLY WITH FORUARD SPEED．
THIS PLANE IS $1 \frac{1}{2}$＂APPEOK，DNOUSTEGKM OF FAN．

AREAS IN WHICH MAANOMETER READINGS OここにシATED．

FlGuaE 5．4

(a)
"smoke screen" technique 40 " behind duct

(b)

SMOKE PHOTOGRAPHS AT $\alpha=0^{\circ} V=92 \mathrm{ft} / \mathrm{sec}$

$$
\left(\mathrm{V} / \mathrm{V}_{\mathrm{J}_{\mathrm{T}}}=0.47\right)
$$

FIG. 5.5
(SEE SECTION 5.2)

(t)

$92 \mathrm{ft} / \mathrm{sec}$

$V / V_{J_{T}}=0.470$
Approx height
of vortex centres

Floor level

(c)
$130 \mathrm{ft} / \mathrm{sec}$
$V /_{V_{J}}=0.065$

Floor level
TUFT GRID $27^{\prime \prime}$ BEHIND DUCT $\mathcal{E} \alpha=0^{\circ}$
(TUFTS ON I"MESH EACH I"LONG WHOLE GRID $25^{\prime \prime}$ WIDE $2 I^{\prime \prime}$ HIGH)

$52 \mathrm{ft} / \mathrm{sec}$
FAN OFF

TO BE COMPARED WITH FIG 5.6 (a) (b) and (c)
FIG. 5.6 (cont.)

FIGURES are values of $\mathrm{V}_{/} \mathrm{V}_{J_{T}}$

INFORMATION DERIVED FROM FIG. 5.6
(SEE SECTION 5.2)
FIG. 5.7

$$
\begin{aligned}
& \alpha=0^{\circ} \\
& V=924+1 \mathrm{sen} \\
& \frac{V}{V_{T}}=0.47
\end{aligned}
$$

BIML TUY:JEL FLOO?

(a)

(b)

SIDE VIEW

(c)

VIEW FROM BELOW

BODY ON STRUTS $\alpha=0^{\circ}$ (FAN ON)

$93 \mathrm{ft} / \mathrm{sec}$
 $\mathrm{V} / \mathrm{J}_{\mathrm{J}_{\mathrm{T}}} 0.475$

(b)

VIEW FROM BELOW
SADDLE POINT

developed view of region around the jet outlet. (taken from a sketch drawn from the flow pattern)

$$
\text { BODY ON STRUTS } \alpha=-20^{\circ} \text { (FAN ON) }
$$

FIG.5.IO
(SEE SECTION 5.2)

Wake of drive shaft is situated this side of centre at up stream side of duct (see Fig. 6.5)
(b)

VIEW FROM BELOW
BODY ON STRUTS $\alpha=+20^{\circ} 90 \mathrm{ft} / \mathrm{sec}$ (FAN ON)

$$
\mathrm{V} / \mathrm{V}_{J_{T}}=0.46
$$

SHOWING ATTACHMENT OF TRAILING VORTICES AT HIGH INCIDENCE
N.B. TUNNEL CONSTRAINT FORCES WERE NOTICEABLE IN THIS CONDITION. CLOSING THE COOLING OUTLET DID NOT NOTICEABLY AFFECT THE VORTEX PATTERN

FIG. 5.1I

$$
\mathrm{V} / \mathrm{v}_{J_{T}}=0.70
$$

FIG. 5.12
(SEE SECTION 5.2)

(a)

SIDE VIEW

BODY ON WING $93 \mathrm{ft} / \mathrm{sec}$ (FAN ON)

$$
\mathrm{v} / \mathrm{v}_{\mathrm{J}_{T}}=0.48
$$

FIG. 5.13
(SEE SECTION 5.2)

SHOWING REVERSED FLOW REGION INSIDE FIN
(SEE TEXT)

FLOWS OVER PERSPEX UNDERFINS (FAN ON)

$$
\begin{gathered}
93 \mathrm{ft} / \mathrm{sec} \quad \alpha=+10^{\circ} \\
\mathrm{V} / \mathrm{V}_{\mathrm{J}_{\mathrm{T}}}=0.49
\end{gathered}
$$

FIG. 5.14
(SEE SECTION S.2)

FIW) EE こ. F

CENTRELING DYNAMIC HEAD - 3 FEET UPSTREAM OF MODEL. INCHES OF WATER 5.0 $]^{5 \frac{1}{x} 4^{\prime} \text { WINDTUNNEL }}$ 4.0 1AOORIPM. $\alpha=-20^{\circ}$ FAN
empty tunnel FAN $\left\{\begin{array}{l}+\alpha=-20^{\circ} \\ 0 \alpha=0^{\circ} \\ 0 \alpha=+20^{\circ}\end{array}\right.$ FRN $\left\{\begin{array}{l}x \alpha=-20^{\circ} \\ \text { ON } \alpha=0^{\circ} \\ \Delta \alpha=+20^{\circ}\end{array}\right.$

Gu EN uY Trsisei keference porrsts.
ABLHE二 of EJATE*。

$$
\left(0=\frac{\text { FiGMGE }=16}{\operatorname{sectinN}-3)}\right.
$$

				-	\square						WITh	undeiza	is	E))
				-	1%										
											Solowa	deran	5 (RAE		
	+				\pm	\square		-							
		i			-	\square									
	$+$				-6		4			-					
	+1						1								
								ans		(x_{0}	$0_{0}=0^{\circ}$				
			H1		-		6.6	\square		1					
			+1		0						+				
							9								
			17		1.		11			+	$1+$	-			
							\%				-				
					\square		$0 \square$				+				
					0.2		ng 5 Te	Sors			WITH U	nderifi	${ }_{5}$ (R)		
	\square						\square				noun	derfi			
							063								
	$\pm \square$		$+$				0				χ°				
					\square						20°				
					0										
					1										
					10					1					
							1201	<a			matery.				
					I/		No 0.0			602	zection				
					1		USEEFLC	ceit	635	sedo	an win				
					9 -					1					
										-	-				
					-0.4										
				d	\square										
				,											
				16	-										
				1	-0.6										
				$1 \square$,										
							-								
								\pm		-					
					-0.8										
				+	H +					-		-			
	\#	LIEt chazaterstics oith the onct sezled ar geth ends.													
				-											
						-						Fic	ure		
						$1001+$									

DISTEUSUTNN GEANAL VELOATY GETUEEN FAN AND STRAIGHTENERS (TUNNEL SPEES ZESA)

163

164
的

Not to SLALE

THE VABIGTLON OF USCR STATLE PGESJMES 31TH FODUAGO SPEED

ALL INCIDENCES WITNIA $\pm 1 \%$ ExCEPT $\pm 13^{\circ}$

ALL bucioteres SLTHINE 1% ExCEPT $\mathrm{E} 13^{\circ}$

EAOHONSTETS, $=-\operatorname{SO}^{\circ}$

FiGu施 7.2

GODY CN OTROTS
 AT YAEVOリ WCILESCES.

$$
\text { Fi, } \leq 53
$$

(SEG SECTION 7.2.2)

$$
\begin{aligned}
& 0.32 \quad 0.3 \div \quad \therefore \quad 0.3 \div 0.3 \div 0.34 \quad 0.36 \frac{\bar{V}_{3}}{\Omega R} \\
& \alpha=-1<^{\circ} \quad \therefore=-6^{\circ} \quad \therefore=0^{\circ} \quad \alpha=+0^{\circ} \quad \alpha^{\prime}=+i 2^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\text { FORCE }}{2^{(2 R E)^{2} A_{2}}} \\
& 0.12]
\end{aligned}
$$

$$
\begin{aligned}
& =(N+0-\operatorname{DEAG} \text { OF } \quad \text { DUGTEEMS }=N
\end{aligned}
$$

$$
\begin{align*}
& \text { FAN THRUST }=A, \Delta H \tag{1}
\end{align*}
$$

BODY ON STRUTS, $\alpha=-6^{\circ}$

BREAKDON:S OF FORCES ON THE LIFTING UNIT

FIGuRE 7. A (SEE SECTION 7.2.4)
(5ROCE
(a) HOGIZOWTAL TOTAL HENO EISE CHARACTERLST $\left(\frac{A}{2} \frac{4}{2(-2+8)^{2}}=\right.$ COHSTANT $)$

- - - ExIT STATIC PRESSORE = PO
-...............TT STATIL OEESSURE $A S$ AEASUREO (CURVE(3) FIG 7.1)

(b) VERTICTL TOTAC $\frac{\text { HEAD KS E }}{\text { LHACTCTERSTIC. }}$ CHAETHCTERISTIC.

HERSUREO CONOITRONS AT $\frac{2}{2} 2^{2} 0$ USED AS DATMA TKROJGHONT.

BREAKDONN OF EOSES OU TNO IDEALISE LIFTENG JNITA.
(FORCGS AGTING DA THE SURFAKE AZOUND TVE GXIT RLG EXCGUDED.)

$$
\frac{\text { ElGuet } 7.5}{(\text { SEE Section } 7.2 .4)}
$$

Fn＜ce
$0.09]\left[(\angle C)^{2} A\right.$, HEASURED LIFT UJCREMENT CALCULATED FORE ON FAS UNIT． BASED ON DUCT MEASUAEEMENT

$$
\alpha=-18^{\circ}
$$

$$
\text { Mensuce } \frac{\Lambda_{i}}{(-211)^{2} A_{3}}
$$

ive．
THE VERTICAL SLALG IS TWICG THIAT OF pRGitous FIGUKE＇．
$\frac{3}{36}$
 ひスはひーコヒTER。

BCORON ST－STS．
 FA\＆AES OHTAE－LETIUM دN：

Sooy cus ST:1\%

Ficise 7 ?

FIANSTREAM

$\frac{\text { Fisine } 7.7}{(s e 6 \sec 71017.4 .1)}$
(x)

PATAS OF DOSTEX GEATHES:

(B)

$$
r^{2}=\left(1-x_{1}\right)^{2}+(j-2)^{2}+(-2)^{2}
$$

Flimbe 7.19

$$
(\text { SEE SEST.ON } \because, 0,:)
$$

$K t^{2} / \cos$
S MEASOREO

$$
180 \quad\left(\% \frac{5,36 \in-3.15}{5 \operatorname{sen}+7.4 .2}\right)
$$

in $\triangle L / E(S R)^{2} A$,

GAINS IN INCEMENTSLLETDUETOTHE
ASDITONOF W:NG TOTEE PLAN CODY.

Flavee 7.19
(seE SECTION 7.5.1)

the efrect of underfins.
increases ia TOTAL lift due to the addition of underanis bith Fall on

FIGURE 7.20

APPENDIX VII

Further plots of the results of force measurements. (In the following diagrams equivalent values of $\frac{\Delta I}{T}$ and $\mathrm{V} / \mathrm{V}_{\mathrm{J}_{T}}$ have been quoted in addition to the values based on tip speed divisors. The static lift coefficients measured in the Imperial College $5^{\prime} \times 4^{\prime}$ tunnel, with the working section ventilated; have been used throughout.)
"

