INTERFACIAL STABILITY IN BINARY

LIQUID-LIQUID SYSTEMS

Thesis submitted for the Degree of

DOCTOR OF PHILOSOPHY

in the Faculty of Engineering of the

University of London
by

ELBA SUSANA PEREZ, M.Sc., D.I.C.

Department of Chemical Engineering and
Chemical Technology,
Imperial College of Science and Technology,

London S.W.7. July 1971



ABSTRACT

An attempt has been made to predict the onset of
‘'spontaneous Marangoni-type interfaéial convection in
binary partially miscible systems. The continuity
and energy eqguations were solved simultaneously
incorporating heat effects introduced by the heat of
solution accompanying mass transfer. A linearized
perturbation analysis was applied to the resulting
temperature and concentration profiles. The stability
criteria show that binary systems may be either stable
or unstable in both directions of transfer or unstable
in only one direction of transfer. They also suggest
that stationary instability is promoted when the heat
of solution and the rate of change of interfacial tension
with temperature are of opposite signs and that instabilities
of oscillatory character are most likely to occur for
mass transfer out of the phase of higher viscosity. Good
agreement was found with the experimental observations on

six selected systems.
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CHAPTER 1

INTRODUCTION

According to the simplest model of interface mass
‘transfer, solute is transferred between two phases
by processes of eddy diffusion, molecular diffusion
and adsorption and desonrption at the interface, all
connected in series. The diffusional steps are
normally rate controlling and the adsorption and
desorption processes are generally fast enough to be
neglected. However,the physical transfer across the
interface is not the only way in which the interface
can affect a mass transfer process. The interfacial
tension, which is the result of almost a step change
in the molecular fields of forces at the phase boundary,
may be subjected to local fluctuations as a result of
local variations in temperature or concentration. Such
a fluctuation will affect the balance of forces and
result in interfacial flow (Marangoni effect).

The Marangoni effect can affect a mass transfer process
in two ways - by influencing either the area of contact
of the phases or the mass transfer coefficients. The
first effect predominates if the depi;h of penetration
of interfacial movement is of the same order of magnitude
as the actual depth of the liquid layer (thin film effects).
The second effect is important if the depth of the liquid
layer is significantly greater than the depth of penetration
of interfacial movement. Under suitable conditions, the
interface then acts as a source of interfacial convection,
and appreciably higher mass transfer coefficients.are

obtained (surface renewal effect).



An experimental study of the effect of interfacial
convection on mass transfer coefficients requires the
availability of reference correlations obtained under
interfacially stable conditions. It was thought that
such conditions could easily be attained by investigating
the mass transfer characteristics of partially miscible
binary systems. Such systems not only yield individuwal
or "film" mass transfer coefficients, which are much
easier to handle than overall coefficients obtainable
from ternary s§stems but, in addition, they were expected
to be free of interfacial convection. This belief was
based on the assumptions that thermal effects in mass
transfer between partially miscible binary systems are
negligibly small and that equilibrium at the interface
is always attained instantaneously. Consequently,
according to the phase rule, the system should have no
degrees of freedom at the interface which precludes the
formation there of concentration gradients and thus
interfacial tension gradients.

The assumed freedom of partially miscible binary
systems from spontaneous interfacial convection of the
Marangoni type was not confirmed experimentally. It
indicates that the assumptions under which the phase
rule was applied to interfacial conditions may not be
valid. Thus, thermal effects due to heats of solution
may not be negligible but introduce the desired degree
of freedom and / or dynamic interfacial effects are
present resulting from compression and dilatation of
the surface layer or a finite rate of equilibrium of the
interface. In the latter case the phase rule would no

longer be applicable.



The purpose of the present work was an attempt
of thecretical prediction of the appearance of
spontaneous Marangoﬁi—type interfacial convection
in binary systems. It was assumed that interface
equilibration was instantaneous. This was considered
justified in view of the nature of the interface in
partially miscible binary systems. The compression
and dilation effect, although present in the basic
formulation,was neglected in the final analysis for
the same reason. It is therefore assumed that
instabilities are present in such systems only as
a result of interfacial tension fluctuations due to
temperature effects.

The magnitude of temperature gradients, that can
be theoretically expected from the heat of solution,
was first determined by solving the equations of
diffusion considering the presence of 'a heat source
at the interface due to the heat of solution and of
continuous heat production due to the heat of dilution
in the bulk. The development of the treatment is
presented in chapter 3.

A linearised stability analysis of the small
perturbation type is applied to the temperature,
concentration and velocity field in chapter 4.
Stability criteria are obtained from the characteristie
equation and in chapter 5 the derived predictions are
compared with experimental observations for a number of

selected systems.



CHAPTER 2 9.

LITERATURE SURVEY

The literature relevant to this work is classified
under two headings: experimental observations and
mathematical analysis of instability.

2.1 Experimental observations
(1)

In 1855, Thomson described spontaneoﬁs interfacial
movements in a paper entitled: "On certain curious
motions observable at the surface of wine and other
alcoholic liquours" and interpreted the phenomena in
terms of local changes of "the tensile force".

In 1865, Marongoni(z) published his observations on

the spreading of drops of one liguid on the surface of

(3) (4)

another. After Luedtge and Mensbrugghe reported

7/
similar observations without mentioning his work, Marangoni

(S)Iand

claimed priority for it in another publication
Thomson's work passed unnoticed. Since then the phenomena
of surface tension-driven movements are known as the
Marangoni effect.

Numerous observations and experiments an spontaneous
interfacial activity originated under different conditions
have been reported afterwards. Scriven and Sternling(G)
published a very interesting review on "The Marangoni
effects” covering the period 1855-1960 (81 references).

(7) were the first to describe in

Ward and Brooks
detail the interfacial agitation accompanying mass
transfer across the interface and explained it in terms
of the effect of the heat of solution on the physical
properties at the interface. In 1959, Sternling and
(8)

Scriven presented a mathematical analysis of the

interfacial instability originated by the transfer across
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the liquid-liquid interface of a ternary system., They
postulated in their model that the interfacial turbulence
was produced by surface tension gradients at the interface.
Since 1959 the investigation on interfacial movements
accompanying mass transfer has been orientated towards

the verification of Sternling and Scriven criteria of

(9)

instability. Sawistowski presented a comprehensive
review of Sternling and Scriven stability analysis and
discussed the more recent illustrative experimental work
on spontaneous interfacial convection in ternary systems.
He also included a detailed description of the qualitative
behaviour of the instabilities.

Ostrovskii et al(1o)

investigated experimentally the
oeccurrence of interfacial turbulence in mass transfer
unéer conditions of forced convection. They interpreted
the phenomena from the point of view of the relationship
between two energies: the free'energy of the interface (H)

and the.mass transfer energy (M) which they defined by:

H= o085
u o

M = RT(1 - Cz/mC1)

where o4 is the interfacial tension at a given total
concentration Co of the transferred substance in the two
phases at equilibrium, SO is the area occupied by one mole
of the transferred substance in a monolayer, C1 and C2

are the concentrations of the solute in the first phase
(original solution) and the second (receiving) phase when
interfacial turbulence appears, m is the distribution

coefficient, T the absolute temperature and R is the

universal gas constant.
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The, hypothesis put forward to account for the
appearance of free surface convection were:
(i) at the instant when turbulence arises the
determining resistance is the free energy of the
interface,
(ii) interfacial turbulence occurs when M/H > 1

The results for 19 ternary systems are in agreement

- with the two hypotheses.

A type of instability different from the Marangoni
effect may be originated by buoyancy forces. Sawistowski

and Austin(11)

analysed all the possible combinations of
density and direction of transfer and their effects on

the gravitational stability of the interface. Their
conclusions are presented in table 2.1, where £ is the
density, subscripts s, A and B refer to solute, upper

phase and lower phase respectively. In their experimental

work they found anomalous effects due to volume contraction

on mixing .

TABLE 2.1
GRAVITATIONAL STABILITY

Relative. value Direction of Side A of Side B of

of solute density transfer the interface the interface
A -+ B stable stable

S B+ A unstable unstable
A -+ B unstahle stable

P " Ps © B B+ A stable unstable
A+ B unstable unstable

A" PB ° Ps B + A stable stable
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The interaction between density gradients and
interfacial tension-driven instabilities was
investigated experimentally by Berg and Morig(12).
They concluded that "when density forces were
stabilising in a phase, interfacial convection was

confined‘to a narrow zone adjacent to the interface11).

When according to the Sternling - Scriven criteria of‘
stability convection patterns should have been present,
they appeared usually in form or roll cells which were
dampled and regenerated. When density forces were
de-stabilising in a phase the movements penetrated
deeply and the convection pattern could not be observed.

2.11Instabilities in binary systems
(13)

ﬁérson and Quinn studied mass transfer in binary
systems with solute diffusing into a radially moving
interface. In their experiments they worked with
unsaturated phases so that mass transfer occurred
simultaneously in both directions. They observed
structured turbulence in the interface of the system
ispbutanol—water. Presaturating the water phase with
isobutanol had no effect on tﬁe turbulence but saturation
of the alcohol terminated the activity. They interpreted
the phenomena in terms of the Marangoni effect and
suggested that the interfacial tension gradient could be
caused either by a concentration gradient or by a
temperature gradient. In a binary system a concentration
gradient independent of temperature could only exist if
the interphase was not at equilibrium and the temperature

gradient could be originated by thermal effects due to

the heat of solution. The authors considered this the
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more probable cause of the Marangoni instabilities.

(9)

Using the schlieren technique

(14)

, Austin, Ying

and Sawistowski investigated binary systems for

the presence of interfacial instability. The

schlieren object was a pendant drop of one phase

suspended in the other. The systems were classified

in three groups according to the intensity of the

movements:

{i) stable systems: the regime of mass transfer is

diffusional,

(ii) unstable systems - weak instabilities: rippling
and deformation of the diffusional layer are
observed, the movements in the interfacial
layers are slow,

(1ii) unstable systems - strong instabilities: violent
movements are observed at the interface (the inter-

facial turbulence is similar to that observed in

some ternary systems).

They suggested that equilibrium may not be established
instantaneously at the interface and consequently the
dynamic interfacial tension could be a critical variable
during the relaxation time of the interface. Heat
effects due to heat of solution were also considered a
possible cause of the phenomena. Sawistowski and Austin(11)
extended the investigations to 33 systems. In addition
they found that the systems ethyl acetate-water and
methyl acetate-water showed gravitational instability

due to volumecontraction on mixing of the organic phase

in the aqueous phase.
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Ying and Sawistowski(16)

investigated the behaviour

of a flat interface of 46 partially miscible binary
systems, shortiy after contacting the phases. The
observations were conducted in a schlieren field.

They employed a vertical cell for observations in a

plane normal to the interface and a horizontal cell

for observations in the plane of the interface. From
these inveétigations they reported a classification of

the systems into 5 cateéories according to the intensity

of the movements: a) interfacial turbulence, b) eruptions,
c) convection cells, d) streaks or stripes and e) diffusional
transfer, in decdreasing order of intensity. They also
found tﬁat the intensity of the interfacial turbulence in a
given system is proportional to the driving force. From
the 46 systems Ying and Sawistowski investigated 12 for
direétional effects by gresaturating one of the phases.

The results showed that directional effects exist in a
number of systems. The. system acetylacetone is a
remarkable example in that the most intense instability
sets in when acetylacetone is transferred to water and

the interface remains stable when water is transferred into
eipetylécebomLTheir study of dynamic interfacial tension
showed that the interfacial tensioﬁ at short times of
exposure in the system acetylacetone~water seemed to be
higher for the transfer of the organic liquid into water

than for no transfer or transfer of water inte acetylacetone.
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2.2 Mathematical analysis of stability

The literature on the mathematics analysis of

_ surface tension-driven instabilities may be divided
into two groups: stability analysis of thin liquid
layers under a vertical temperature gradient and
behaviour of the liquid-liquid interface when mass
transfer is taking place.from one phase to the other.
Since the present work is related to simultaneous:
heat and mass transfer the more representative papers

in each groups will be mentioned.

2.2.1 Temperature induced convective flows

Under certain conditions steady state cellular

- patterns may be observed in thin layers heated from
below or cooled from above by evaporation. The first
systematic experiments were carefully carried ocut by

Béhard(17’18)

who worked with open liquid layers of
spermaceti, about 1 mm. deep, heated from below.

Bénard found that a critical temperature gradient had
to be reached for the pattern to appear. Bénard cells

h(20) who

were first mathematically studied by Rayleig
employed a linearized stability analysis based on the
assumption that the surface movements were originated

by density stratification. Rayleigh's analysis
explained some characteristics of the motion and arrived
at the conclusion that a certain value of a dimensionless
group relating viscous to buoyancy forces (now known as
Rayleigh number) had to be exceeded before fluid motion

occurred. The theory was not in very good quantitative

agreement with Bénard's critical gradient.
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(21,22) (23)

Jeffreys and Low developed a similar
analysis using different boundary conditions. In

these early theoriés the cells were assumed, for
simplicity, rectangular. Later, Pellew and Southwell(24)
showed how to take into account other shapes of cell wall,
including the case of hexagonal cells. The theory seems
to be in good agreement with experimental results for

layers of about 1 cm.(46). A concise review of these

treatments is given by Lin(zs).

(26)

From his experimental work Block concluded that

cellular convection pattern could be induced by surface

tension forces. Later, Pearson(27)

studied the stability
of a thin liquid layer with a free upper boundary and a
fixed boundary heated from below. He applied to the
system a perturbation analysis similar to that developed

(

by Rayleigh(20) and Jeffreys 22) but assuming that surface
tension forces rather than buoyancy forces generated the
surface movements. He found that for instabilities to
set in a certain value of a dimensionless number relating
the destabilizing surface tension forces to the stabilizing
viscous forces has to be exceeded. The critical value
of this number, now called Marangoni number, is in good
agreement with Bénard's experiments. Pearson suggested
that in very thin layers the controlloing destabilizing
force is the variation of surface tension with temperature,
while in thickef layers buoyancy forces are more likely
to be the controlloing destabilizing factor.

In Pearson's analysis the upper surface was considered

(28)

rigid. . Scriven and Sternling extended the analysis

to include a flexible free boundary and surface viscosity.
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They found that flexible surfaces are unstable over a
wider rage of parameterc than it is found for a flat
interface. They also found that surface viscosity
exerts a stabilising influence.

Nield(zg) made a theoretical investigation of
convective stability in a fluid layer with a coupled

density and interfacial tension driving force. Cabelli
(30)

and de Vahl Davis solved numerically the equations of
mass, momentum and energy conservation for a linear
temperature profile incorporating density and surface
tension effects. They found that when both effects

are present there is a certain combination of Marangoni

and Rayleigh numbers that must be exceeded for instabilities
to set in and that surface tension effects encourage
density movements when the surface tension is a decreasing
funcfion of temperature.

Vidal and Acrivos(31)

extended Pearson's analysis to
include non-~linear temperature profiles. They postulated
that the rate of growth of an unstable disturbance will be
much greater than the time rate of change of the
conductive temperature profile, In addition to this
standard "frozen" assumption they approximated the non-
linear profile by two straight linés. Their assumption
that the velocity component normal to the surface vanishes
at the effective thermal depth implies that the thickness
of the thermal boundary layer is greater or equal to the
thickness of the velocity boundary layer. Consequently,
their model would not be adequate for liquids with Prandtl
number greater than one. The results of the Vidal and

Acrivos' analysis show that non-linear temperature

profiles "can increase the magnitude of the Marangoni
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number at the onset of instability by several orders

of magnitude from that predicted by classical stability
theory using a linear profile". They found good
agreement with their experimental results.

(32) .nd pnick33)

Morton studied the stability of
liguid layers with time-dependent heating. They
considered density-driven disturbances and assumed

that the rate of change of the temperature profile is
small compared with the growth rate of the disturbance
(quasi-static assumption). This assumption is invalid

(34) avoided

near the onset of instability. Foster
this assumption by using an initialwvalue approach.

The range or validity of the quasi-static assumption
was studied by Robinson(35) in a semi-infinite medium.
His resulté are in good agreement with those
calcﬁlated by Foster.

2.2.2 Concentration induced convective flows
(8)

Sternling and Scriven were the first to apply
stability analysis to the study of interfacial
activity accompanying mass transfer in a ternary
liquid-lidquid system. They described the mechanism
of interfacial convection in terms of the Marangoni
effect and applied perturbation analysis to a model
consisting of two non-equilibrated media in contact
along a plane interface. The system was assumed to
be in steady state and the interface a rigid plane.
The concentration of solute in each phase was taken
to be small enough for the fluid properties to be
considered urnform and constant. Their analysis
suggests that interfacial instabiiity is usually

promoted by:
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" (i) Solute transfer out of the phase of higher viscosity,

(ii) Solute transfer out of the phase in which diffusivity
is lower, "

(iii) large differences in kinematic viscosity and solute

diffusivity between the two phases,

(iv) steep concentration gradients near the interface,

(v) interfacial tension highly sensitive to solute
concentration,

(vi) low viscosities and diffusivities in both phases,

(vii) absence of surface active agents, and
(viii) interfaces of large extent.

(36)

Marsh, Sleicher and Heideger extended Sternling

and Scriven's analysis to include time-dependent concentra-
tion gradients. In their treatment they used Sternling
and Scriven's solution for the equation of motion, which
implies that the size and rate of growth of the disturbance
~are independent of time or that a quasi-static assumption
is adopted. They do not establish any difference between
the time after contacting the phases and the time after

the onset of the perturbation. This implies the wrong
assumption that the variation of concentration profiles
with time does not affect either the size or the growth
rate of the disturbance. Théir results are in qualitative
agreement with Sternling and Scriven criteria of

stability, except for the influence of the relative value

of diffusivity. They found that solute transfer out of

the phase of higher diffusivity is a destabilising factor.
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Gross and Hixon(37)

studied the Marangoni
instability with unsteadydiffusion in the undisturbed
state including an interfacial resistance to mass
transfer. They present a solution in series for

the time-dependent perturbed temperature profile.

The infinite series representing the characteristic
equation is truncated. for long periods of contact.
They found their criteria of stability to be the

same as those of Sternling and Scriven(g). From
numerical results for conditions approaching steady
state they reported a variation of the size and growth

rate of the disturbance with time from the onset of

perturbation.
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CHAPTER 3

TIME-DEPENDENT CONCENTRATION AND TEMPTRATURE PROFILES

IN BINARY SYSTEMS

In most cases the process of mixing of two liquids is
accompanied by release or absorption of heat. Consequently,
when two liquids are gently brought into contact to form a
horizontal interface, a temperature profile will he
established in each bhase in addition to a concentration
gradient. Since the amount of heat evolved or absorked
depends on the amount of solute dissolved, the magnitude
of the temperature gradient will be determined not only
by the physical properties of the media involved but also
by the magnitude of the mass flux. If the usual
assumption is then made that the phases are in equilibrium
at the interface, a change in temperature there will
cause a corresponding change in concentration which, in
turn, will produce a modification of the temperature profile.
Therefore, heat and mass transfer are closely related and

have to be considered simultaneously.

3.1 Description of the Model

- The model to ke studied consists of two semi-infinite
media in contact along a plane interface. Equilibrium
concentration exists at the interface and changes in
temperature are followed instantareously by corresponding
changes in concentration. Mass and heat released by the
mixing process are transferred through both phases in the
direction normal to the interface.

The concentration of the diffusing liquids is low and
temperature gradients are small so that fluid properties

may be considered constant and buoyancy effects, mass flux
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due to thermal diffusion and Dufour energy flux can

be neglected.

3.2 Mathematical Formulation

Figure 3.1 shows a schematic representation of
the systen. According to the assumptions made in the
model, the equation of conservation of mass reduces to

Fick's second law of diffusion.

2

BCA 3 CA
é-T - DAW =0 ; t > 0; x -2 0 (3.1)
3CB BZCB
5-—E'~ - DB{;—}_{T = 0 H t > 0; X < 0 (3-2)

where CA is the concentration of the solute B in phase 2,
CB the concentration of solute A in phase B, Dp is the
diffusivity of liquid B in phase A and DB is the
diffusivity of A in B.

The energy equation is:

3T 3T S, .
A A A .
~— = K o— = ; t>0 ; x4 0 (3.3)
3t A3Xx pACPA .
2
3T 3 T S
B B B
- = K = : t >0 = x &0 (3.4)
A 4 ~
3 t Box pBCPB

where SA and SB are the volumetric rates of production of
thermal energy by solution of B in phase A and of A in
phase B respectively. Figure 3.2 shows the enthalpy-
concentration diagram for a partially miscible system.

If the solution were ideal, the isotherm relating enthalpy

to concentration would be a straight line joining points
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a and b. The difference between the values of

the enthalpy of the solution on the real curve and
that on the ideal straight line for a given
concentration, is the integral heat of solution per
mole of solution Q. This system, like many other
partially miscikle systems, has positive heat of
solution in one phase and negative in the other.

The amount of heat released during the mixing
process depends on the change in concentration. If
C is the concentration at a plane x of the model
under study and Q is the corresponding integral heat
of solution, the volumetric rate of heat production,
positive or negative, at that plane will be:

s =& (g-g-)c = (3.5)

where p is the density of the solution at the concentra-

tion C and M is the molecular weight of the solution
at the same concentration.
On substitution of equation (3.5) into equations

(3.3) and (3.4):

' 2
L 1 20,  3C, 56
A _ 2= .
3t A 3% N.Cpp 3C, 3t
3T 3 2 1 30 aC
B 5 -"Zg = B B (3.7)
5T B 3% M.Cpp 9C, Ot

These equations cannot be solved analytically unless some

24,

simplifications are made. According to the characteristics

of the model, not only K kut also M and C, will be assumed

P

independent of C, The second simplification to the right
hand side of both equations concerns the variation of the

heat of solution with concentration. Figure 3.3 shows
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the integral heat of solution - concentration diagram
for the same system. Since for partially miscible
pairs'the interval of possible concentrations in each
phase’is small at temperatures not too close to the
critical solution temperature, it is justified ﬁo
linearise the heat of solution vs. concentration curve
over the solubility range. This assumption reduces
the curve to the detted straight line shown in Figure
3.3, and the term ;% to a constant. As the heat

of solution at C = 0 is equal to zero, the eguation of

the straight line is:-

0=9_ C (3.8)

9

O

where Qr = = const.

@
Q

Except for z§%~and %;%, all the terms on the right-
hand side of equations (3.6) and (3.7) are now constant
and analytical integration is possible.

For further treatment it is more convenient to change

the wariables C and T to the following:

A c - cO (3.9)

1]

]

T - TO (3.10)

where CO and TO are the initial concentration and temperature
respectively.
Calling:
E = Q./MC_ : (3.11)

and substituting equations (3.9), (3.10), and (3.11)
into equations (3.1), (3.2), (3.6) and (3.7), the following

expressions are obtained:
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The initial conditions are:

(1) »
(11)  °
(i11)

(iv)

The boundary conditions at infinity are:

(v,

(vii)

(viii)

Initial and boundary conditions

aZﬁB
ax2

94

3

@
>
s3]

Qo
‘o

54

A

A

B

A

!

0

-e

~e

~e

~e

~9

X

X

2

A

\\'4

A

(3.12)

(3.13)

(3.14)

(3.15)

26,



At the interface the two phases are at the same

temperature:

B
It
<)
"
I
o

(ix) A B

Since the expected temperature gradients are small,
the variation R of interfacial concentration with
temperature may be assumed. linear between the initial

and final temperatures at the interface:

= e = e O =
R N T T const (3.16)

where & is the saturation concentration at Ti, the
temperature at the interface, and Cg is the saturation
concentration at the initial temperature. Hence

boundary conditions (x) and (xi) become:

* ] " — . =
(x) & = R@, + C;:O, %o ; x =0
. & * _ . C -
(xi) AB = RBQB +- CBD CBO : x =0
where
A?; CJ‘g - Co

The last boundary condition is obtained from conservation
of heat at the interface. The amount of heat released
at the interface per unit interfacial area and per unit

time is

where Qo =

is the heat of solution per mole of solute.
The heat released at the interface is transferred to both
phases. Hence, comkbining equation (3.17) with Fourier's

law of heat conduction, boundary conditions (xii) is, in

27.
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terms of variables defined by expressions (3.9) and

(3.10),:

.. oA (0] 3A (0] IR IR
} - . 88n S4B = - 1} ONA o8B
(x1i) Pa " 3% 2 * P 3% % a5 kg 5
x = 0
i
where k is the thermal conductivity.
3.4 Solution of the diffusion equations

‘The four partial differential equations are solved by

applying the Laplace transform method. The transformed

equations are:

)
]

S~
o)
ol
ol
’iL
[
Q

- AA(O) + s 4, - D (3.19)

|
o
|
Jov

- AB(oi + =0 (3.20)

n
[>d
o]
t
-
os}
Q
»
|

|
o

DN
D]
>

- 8, (0) + Ep, (= 4a(0) + sp) (3.21)

n
=
»
I
=
b
Q‘j
s
It

1l

0]
B2
!

p - X g

|
Qu
N
X1

- @B(o) + EB (— AB(o) + sZﬁ)(3.22)

From initial conditions (i) to (iv), equations (3.19) to

(3.22) become:

a’x s 7

ax - BZ H= 0 (3.23)
o

d A - S T =

dzﬁ‘ S S re

- 2. g =-2~ E_A (3.25)

dx KA A KA A A

d2§ s - S

’_—‘5‘ - - R e E Z (3-26)
dax KB B B B "B

The solutions of these equations are:
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A, = C, exp (Ys/D, x) + C, exp (—/s/DA X) (3.27)

A, = C, exp (/s/Dp x) + C, exp (-/s/Dg x) (3.28)

B 3 4
— _ —— ) _ EA —_—
@A = C5 exp (/s/LA xX) + C6 exp ( /s7KA x) + T:RZ7BK Ap
(3.29)
R, = /s/K, ey _EB 7
QB C7 exp ( s/KB X) + C8 exp ( s/KB x) + 1"KB/DB AB
(3.30)
The transformed boundary conditions are:
(v) ZA =0 P X =
(vi) Ap =0 i X = - e
(vii) EA =0 ;i X = e
(Vlll) &B = 0 H ¥ = = o
(ix) @A = QB i X =20
(g) AA = RA QA + (CAO - CAO)/s : X =0
(xi) AB = RB QB + (FBO,— CBO)/S -; x = 0
. ; - o - AR — 1 Y 7Y .
(xii) - DA(dAA/dx)QA + DB(dAB/dx)QB = LA(dQA/dx) + kB(dQB/dx),
x = 0

Using conditions (v), (vi), (vii) and (viii), equations

(3.19), (3.20), (3.21) and (3.22) become:

KA = C, exp (-/s/D, x) (3.31)
Kﬁ = Cy exp (Ys/Dg  x) (3.32)



R, = C6 exp (--VS/KA g) + (EA/(1_KA/DA)) An (3.33)
§B = C, exp (/S/Kg x) + (Ep/(1-Kp/D.)) By (3.34)

The constant C2, C C,. and C7 are determined from the

3" 76

four remaining boundary conditions:

1. BgPg/m) (2 (&5 -cp0)-rp (e, 1)+ 1 VB (+1/mm) (o)

C2=1 BO "BO E""AC "AO
)
r (\/LA (1 + 1/hm) - E;R,F.) - EBRBFB/m
where L = % (Lewis number ) (3.35)
Pl t+2 /0
1+ /L
2 o A
DB
12 _ a
T K,
B
: thPA
m =ppCpp

= L .36
C, =3 c, . (3.36)
constants C4, C6 and C8 become:
1 1 _ - (cxE _
€377 (€75 + Re (éﬁb o) 7 Cro 7 Cao’?Re
1 1
=— C
s 3 {(3.37)

where RC = RA/RE
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_ ] r _ 1 > _1 1
Ce 712,((1 EpRy/(1-L))C 5 = (G Crg))/Ry= 5 C o (3.38)
1 * %
G, = (1 - EBRB/(1-LB){:C 2 ¥ Re (Cpp = Cpo) = Cpp = o
x 11
/(RgRgs) = (Clpy = Cpo¥Rps = S ¢’y
(3.39)

Combining equations (3.36) to (3.39) with equations (3.31)

to (3.34):

- _ 1 1 _ v
Bp= g Cc 5 ©XPp ( JB/DA %) (3.40)
~_1 1 —

Ap= < C 3 exp ( JS,DB X) (3.41)
= _1 1 e N -

g, =35 C ¢ S¥P ( /s/KA x) + EA/(1 LA) Ay (3.42)
= _ 1 1 e i _ -

R, = = C 7 €Xp ( sg/hB x) + hB/(1 Lp) A . (3.43)

The inverse transform of these equations, on

reverting to the original notation (equations (3.9) and

\

(3.10) °, are

Cp = Cpp = c21 erfc (x/2 /D,) (3.44)
Cp = Cpg = c13 erfc (-x/2/DE) (3.45)
_ 1 1.
TA - TAO = C 6 erfc (x/ZVKAt) +(EA/(1—LA))C 5 erfc (x/2¢DAt)
(3.46)
Ty=Th, = C' erfc (-x/2/EGE) +(By/ (1-Lg)c | erfe (-x/2/DgE)

(3<+47)
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The four constants in these equations involve the
ﬁeat and mass transport properties together with the
heat of solution in each phase, the rate of variation
of equilibrium concentration with temperature, the density,
the heat caéacity, the equilibrium concentration at the
initial temperature, and the initial temperature and
concentration. Equations (3.44) and (3.45) are of the
same form as the equation for the concentraticn profile
when heat effects are absent except for the difference
in the constants. When the change of eguilibrium concentra-
tion with temperature over a small temperature interval is
equal to zero in both phases, constants C ! and C ! become

2 3

o * _ . .
20 CAO and CBO CBO respectively and equations

(3.44) and (3.45) reduce to the solution of the diffusion

equal to C

equation for ideal solution. This means that mass transfer
is affected only by the heat flux through the change in
ihterfacial concentration with temperature. As for the
temperature prcfiles, which are a consequence of non-
idealify in the mixing process, their dependence on mass
" flux is more complex. The terms containing constants
'C16 and C17 express the departure from the initial
temperature due to diffusion of the heat generated at
the interface, at a point x after a time t. The terms
affected by constants C12 and C13 account for the
differential heat of solution released by the change of
concentration at the same point.

Figure 3.4(a) and (b) shows the temperature profiles
for the system methyl ethyl ketone when water is transferred

from the saturated water phase to pure methyl ethyl ketone.
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The profiles have been calculated with equations (3.44),
(3.46) and (3.47) at 30 seconds after contacting the
phases. The physical properties of the system are

presented in chapter 5 and Appendix B.



CHAPTER 4. 35.

STABILITY ARNALYEIS

The study of mass transfer with thermal effects
discussed in Chapter 5 shows that temperature gradients
of a certain magnitude can be expected on contacting two
partially miscible liquids. The system methyl ethyl
ketone-water for which, as an example, theoretical
temperature and concentration profiles were calculated,
may be considered a répresentative water-organic solvent
system from the thermodynamic point of view. The
theoretical temperature gradients obtained for this
system are of the same order of magnitude as the critical
temperature gradient: that is the gradient at the onset
.of convection, as measured by Vidal and Acrivos §31) in
Rtheir study of the stability of shallow evaporating layers
ofvprOpyl alcohol. Ying and Sawistowski(16) investigated
the stability of binary systems under conditions in which
the thicknegs of the layers was too large to ke considered
a controlling variable. They foupd that unstable systems
develop turbulence at the interface immediately after the
phases are brought into contact, and the intensity of
turbulence was a function of the mass transfer driving
force. These observations suggest that although the thick-
ness of the layers may be large, instabilities set in when
the penetration depth/of the temperature profile is still
small. According to Pearson(27); when the thickness of
evaporating layers is "as small as 1 mm, the onset of
cellﬁlar motion could confidently be attributed to surface
tension rather than to buoyancy". In the case of binary

liquids systems the equation for the temperature profile

developed in Chapter 3 establishes that the temperature at
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the interface does not change with time. Since the
depth of penetration of the temperature profile increases
with time, the temperature gradient decreases in
absolute value. So, even when the thermal thickness

of the layers is large enouch for kuoyancy forces due

to thermal effects to become important; the temperature
gradient is in general too small to produce instability
of fhat type. There may be buoyancy forces produced by
changes in specific volume of the sclutions with mixirg,
but these forces do not depend on temperature gradients
of the magnitude considered.

The previous considerations lead to the conclusion
that interfacial tension forces are more likely to produce
instabilities at the interface of binary liquid systems
than kuoyancy forces. Therefore, the stakility of the
intérface will be studied with respect to interfacial

tension disturbances.only.

4.1 Qualitative description of the mechanism of instability

In order to analyse the qualitative bkehaviour of the
disturbed system mass transfer in only one direction.will
be' considered. Figure (4.1a) shows schematically the
system to ke studied. Phase B is saturated with liquid A,
so that mass transfer takes place only from phase B to
phase A. The heat of solution is assumed positive, hence
the temperature at the interface is higher than that in the
bulk and the gradient of temperature is negative in phase A
énd positive in phase B. If the rate of change of inter-
facial tension with temperature, Ot is negative, a positive
perturbation in the interfacial temperature will generate

a local area of lower interfacial tension. Figure (4.1L)
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shows the'disturbed system. The temperature at points

1 is greater than the undisturbed interfacial temperature,
therefore they are points of lower interfacial tension.
The force system at the interface is now unbalénced and
fluid at points 1 will expand according to the Marangoni
principle. The movements are first parallel to the
interface and then turn away into the bulk as the flow
f;om two points 1 meet at point 2. At the same time
ligquid from the bulk is gupplied to points 1. This
liquid is at a lower temperature than the interface in
boﬁh phases and lean in solute in phase A. This diff-
.erence in temperature is a stabilising factor since a
decrease in temperature at point 1 increases its inter-
facial tension. But 1if an element of liquid from the
bulk reaches point 1 at a lower concentration than the
interfacial value, an increase in mass flux will take
placé there and consequently, as the heat of solution

is positive, there will ke an increase in the heat
production. The net change in temperature at points 1
is the balance ketween these two opposite effects.
However, while the element of liguid is moving towards
the interface, mass and heat transfer are taking place

in order to restore the concentration and temperature
profiles disrupted by the convection current. Since

K, /Dy > 1 for most liguids, heat transfer is faster than
mass transfer and the concentration of the liquid
reaching the interface will be relatively further

removed from interfacial conditions than the temperature.
This means that the destabilizing force will be generally
stronger than the stabilizing cooling effect. Apart from

the two factors already mentioned, the ratio of the
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kinematic viscosities in a given system also plays

an important réle. The higher the viscosity the

deeper is the penetration of momentum and therefore

the lower the temperature and concentraticn of the

fluid arriving from the bkulk. Hence, kinematic
viscosity affects the rate of heat supply and, via mass
transfer, the rate of heat production at the interface.
The situation is thus similar to that discussed before
and the opposing factors are again in evidence. For
the case under consideration a higher viscosity of

phase A is therefore expected to enhance the destalkilizing
effect. For mass transfer taking place in the opposite
direction, that is with phase A saturated, the general
behaviour of the system will be the same provided the
heat of solution of A in B is also positive. However,
if viscosity is higher in phase A, the heat transfer
effect is controlled by phase A whereas phase B is
responsible for heat generation. The net effect is
thus difficult to predict gqualitatively. The above
analysis leads to the conclusion that systems with
negative rate of change of interfacial tensions with
temperature and with interface behaving as a heat source,
are likely to be unstable.

For mass transfer taking place in the opposite direction,
but with a negative heat of solution of A in B, the
ﬁemperature gradient in phase A will be positive and that
in phasé B will be negative. Figure (4.1c) shows the
relevant temperature and concentration prbfiles. When the
temperature at the interface is perturked by positive
disturbances,local areas of higher temperature and therefore

of lower interfacial tension will be created. The same
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Marangoni movements as described before will ke .
produced but now the liquid supplied from the kulk

will be at a higher temperature and lower concentration
than the interface. Consequently, the element of
fluid arriving from the kulk at point 1 will supply
heat but the increase in mass flux at that point

will increase the rate of heat production. As this

is now negativé, it will tend to decrease the
temperature there, Since in phase B, KB/DB is also
greater than one, the arguments used previously apply
again, that is the process is mass transfer controlled.
Hence, the stakilizing effect of the increase in the
mass flux will predominate causing the original disturbance.
to be damped. This pattern of behaviour will be
affected by viscosity effects in a manner previously
discussed. It may be concluded that systems wikth
negative rate of change of interfacial tension with
temperature and with interface behaving as a heat sink,
are likely to ke stable.

The reverse conclusions are obtained from the
behaviour of systems with positive rate of change of
interfacial tension with temperature. These systems
are likely to be unstable when the interface acts as a
heat sink and vice-versa.

For mass transfer taking place in both directions,
that is if none of the phases is saturated, the signs
of the temperature gradients are controlled by the net
rate of heat produétion af the interface. The same
arguments as discussed for unidirectional mass transfer

apply for each phase. The reaction of the system to
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perturbations in interfacial temperature will depend
on the balance of energy at the interface.

The above qualitative analysis of the mechanism of
instability suggests that the stability of the
disturbed system depends on the s$gn of the temperature
profiles, the sign of the rate of change of interfacial
tension with temperature, the viscosity ratio ard the

direction of transfer.

4.2 Description of the model

The different mathematical approaches to the stability
of surfaces to surface tension forces have been discussed
in Chapter 2. Since in the sysﬁems studied the thickness
of the layers does not seem to be a critical variable for
the onSet of instabkility and because of the mathematical
simplifications associated with boundary conditions taken
at infinity, the system will be assumed to consist of semi-
infinite media.

The stability analysis involves the solution of the
perturbed heat and mass diffusion equations. For the
type of velocity berturbation usually applied in hydro-
dynamic stability analysis, the perturked diffusion equations
for the profiles represented by equations (3.44) to (3.47)
have to be solved numerically. The generalisation of the
Sternling and Scriven's and Person's analysis to include
-unéteady state conditions have shown that the stability
criteria for systems with time-dependent profiles is the same
as for linear profiles, but the size and the growth constant
of the disturbance depend on the shape of the profile. As
the purpose of this work is to predict the conditions which

promote, or hinder, the onset of instakility, it is there-
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fore sufficient to conduct stability analysis on the
assumption of linear profiles.

In accordance with the above discussion, it is
assumed that the system consists of two semi-infinite
partially miscible liquid phased in contact along an
interface of infinite extent. The phases are in
thermal and chemical equilibrium at the interface.

In the undisturbed state the concentration and temperature
profiles are linear, thus implying a steady transfer of
mass and heat. The interfacial tension is assumed large
enough to prevent the interface from deformations. The
model has the same characteiistics as that described in
Chapter 3. The system is assumed to be initially
undisturbed. Two-dimensional infinitesimal disturkances
are then introduced and the stability of the system with
resPéct to such disturkances investigated. If the
disturbance decays the system is said to ke stable;

if it grows the system is unstable.

4,3 Outline of procedure

The mathematical proklem may ke formulated by

perturbing the gquiescent medium with a disturbance of
a suitable kind. The resulting equation of motion will
form a set of non-linear equations that can.be linearised
for small disturkances. The linearised equations can ke
solved by separating the variables. Introducing a stream
function, of a form ¢ = P (x) exp (iky) exp (Bt) into the
linearised equation, the'problem is reduced to finding the
solution for P (x). The quantity(¥ is the wave number and

B is the growth constant. The lroundary conditions of the

resulting differential equation of perturkation require the
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absence of the x-component of the disturlkance velocity

at the boundaries, therefore the differertial equation

is an eigemwalue problem for the determinations of the
quantity B. The interfacial boundary condition specific
to mass transfer with heat effects in kinary systems

will contain the variation of interfacial tension along
the interface. Since interfacial tension is a function
of temperature, the distribution of temperature along

the y-axis has to be found for the perturbed system.

This requires the solution of the perturbed heat and

mass diffusion equations. On combkining these solutions
with the solution of the equations of motion, the
characteristic equation of the system is obtained. This
equation gives the relation between the growth constant,
the.wave number and various system properties. It
eéstakblishes under which conditions the disturbance will
decay or grow and which type and magnitude of instability

may ke expected.

4.4 Equations of motion:

The mathematical procedure applied to the hydrodynamic
study of the model is similar to that developed by Sternling
and Scriven (g ) for the study of ternary non-equilibrated
liquid-liquid systems.

For the conditions of the model the equation of motion
reduces to the two-dimensional Navier-Stokes equation. In

the absence of kody forces this equation becomes :

- ‘ 2 2
3u au su _ _ 1 3P, 3 u 3 u
5t U T Vsy T T TP lgzm t oy (4N
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3211 3211
+ v ( -3-—}-{-2 + '5';2’ ) (4-2)

e’
<15

v 1
WV i o ¥y &£ = -2
5t O b

where P is the pressure, v the kinematic viscosity

and u and v. are velocity components in the -direction
X:and y respectively. Eliminating the pressure.term

by cross-differentiation and assuming that the disturhkance
is so small that the terms of second order of smallness
may be neglected (creeping flow), equations (4.1) and

(4.2) éimplify to the following linear equation:

2%y 220 _ - acv . v 3du 23w
FYT

ax3 T xey? T Ix2ay

Ju IV _ \
-S{-'l'-s;— 0 (4.4)

For a poteﬁtial field of velocity, the velocities may be
expressed in terms of the stream function ¥ in the following
vay:

u= - 3y/sy v = 3¥/8x (4.5)
It should be noted that in a stationary medium the steady-
state velocity is zero so that u and v represent the
velocity perturkations.

A stream function of the form:

v =P (x) exp (iay) exp (Bt) (4.6)
is assumed to represent a single oscillation of the
disturbance. In this equation, o is a real quantity
defined by the expression

o« = 2L (4.6a)
A
where A is the wave length of the disturbance. The

quantity B is complex:
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B = B + iB; (4.6Db)

vhere Br is the amplification factor and Bi is the
circular frequency of the partial oscillation. The
amplification factor determines the degree of
amplification or damping of the disturbance with time.

If B.. is negative for all values of o, the system is
stable. If it is positive for some values of a, the
system is unstable. If16r>0 and Bi = 0, the instability
grow# in place. This type of instability is called
stationary. If By # 0 and Br>0, oscillatory instability
sets in, exhibiting temporal periodicity with period 2H/8i.
The case of 8r=0 indicates marginal or neutral stability:
the disturbance neither grows nor decays with time. If
in addition Bi=0, that is g =0, the regime is referred to
as neutral stationary stability and will ke denoted in

the suksequent development by subscipts NS. On inserting
the stream function, equation (4.6), combined with the
expressions (4.5) for the velocities, the time independent

Orr~Sommmerfeld equation for two dimensional flow is obtained:

2 Tt '
M - 2% +o(4.3°=% @ —a) (4.7)

where the number of primes represents the order of the
derivative of with respect tokx. Introduction of the

dimensionless variable:

X= ax

into equation (4.7) leads to:
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&pullﬂ,._ 2;0" + = .&.Z-J-)- (}7" -—}0) (4.8)

the solution of this equation for B # 0 is:

Y = A1 exp (X) + A, exp (=X) + A3 exp (px) + A4 exp (- X)

2
(4.9)
where p o=/ 2 . (4.9a)
a2
When B = 0, the solution is

?NS = AS exp (X) + A exp (-X) + A.X exp (X) + A_X exp (-X)

7 8

(4.10)
The disturbance is assumed to vanish at large distances
from this interface. There is no slip and there is
continuity of tangential stress at the interface, which,
besides, is a streamline. These assumptions lead to the

following boundary conditions:

(i)l (ii) }aA=F'A=O\; X = o

(iii), (iv) _wr . = v
}OB_PB"O (4 X =
(V). (vi) =Py =0 i X=0
(vii): Pla=P, i x=0
XN

(viii) Txyp “Txya T 3y
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oL

where ¢ is the shear stress and d&y is the y component
of the longitudinal surface stress {(dynamic interfacial
tension).

The shear stress is guven by:

au 3V
= A 2UA
%'xyA A (ay toax ) - (4.1
- aupB IVRB
‘t'xyB /UB (ay + X ) (4.12)
where/U is the dynamic viscosity. For the dynamic

interfacial tension the Boussinesq formulation is
adopted which postulates that the departure of the
tension from its steady-state value depends on the

rate of deformation of the interface:
g‘yy = 6; + //S (3v/3y). (4.13)

where/US is the composite surface viscosity, and,J;

is the equilibrium interfacial tension. Deriving
equation (4.13) with respect to y, a suitahle expression
for the right-hand side of koundary condition (viii)

is obtained):

?_?Yl= %@. + g (3%v/ay?) (4.14)
y y

Since it is assumed in the model that the equilibrium
concentration is reached instantaneously when changes in
temperature are produced and since temperature and
concentration are depéndent variables in binary systems,
the interfacial tension may be considered as a function

of temperature only. As the temperature variations
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along the interface are assumed to be small it may be

written that:

30 do
e R -4 2 (4.15)
Iy Y y
where Op = dgo/dT.

Combining equations (4.11), (4.12), (4.14) ard (4.15)

together with koundary condition (viii):

2T

dy d ¥y %

X =0 (4.16)

Use of boundafy condifions (i) to (vi) gives for B # O

pa =B, (exp (-X) - exp (-ppX)) 1 X3 0 (4.17)
Py = " A, '(1 - ?A)/“"}’B) (exp X = exp (ppX)) i+ X s O
(4.18)

The substitution of equations (4.6) and (4.17) into

equation (4.16) gives, for B # O:

9&1(%%) = Aza%p% (pp = 1) exp (iay) exp (Bt)
0 *x=0
.(HE (1 + pp) + (1 4p,) + a/%éuh) (4.19)
Fa |

Similarly, for g = 0

2 2 dup vy  dup avp
+ P) ayT) = ( + ) + ( + )
oplag) THs (BTV/AYT)= M - Va: 3 —

4
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Y nsa = A8 X exp ( ~X) i X 20 (4.20)
YNSE = A8 X exp X 7 X 50 (4.21)

_ 2 - . -
0'4(—:-3--}-;)X=0 = 2 A5 q NS//A exp (iaye v) (1 + (Mp/45) 7gaNSA%PA))
(4.22)

To find out the temperature distrikution along the
interface, here assumed unidimensional, it is necessary
to solve the perturbed equations of diffusion.

4.5 Equations of diffusion '

The equations of heat and mass diffusion for the

steady state are:

o p— -
TA = T I + EA X : x>0
(4.23)
O _ O
o _ .
CA = CA + EA b'e H x> 0
0 (4.24) '
CB = CB + EB X H x 20
dt ;
where e = 'd—-x v
_ dac
E =3
TOI: temperature at the interface

and T° and C° denote the undisturhed temperature and

concentration. The temperature and solute concentration
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are assumed to have keen perturhbed by the amounts
v v
T (x,u,t) and C (x,y,t) respectively, so that their

instantaneous value is

O

=
i

v
= T" + T (x,vy,t)
(4.25)

7
c® + ¢’ (x,v,t)

0
h

The perturbed temperature profiles are descrilked by
the two dimensional energy equation:

aT aT 2p s T

8T - d
—a—-{:- + u -a-;c' + v ay = K (——-Zax + ——Zay (4.26)

and the perturked concentration profile by the two-

dimensional diffusion equation:

3

Q
@

PRI TR

13

) (4.27)

|
g
@
b
N

Inserting expressions (4.25) into equations (4.26) and
(4.27) and neglecting terms of second order of smallness,

" the following equations are obtained:

L. 22" ar® 4 o8

3t G+ 3327 = - v g (4.28)
v v

’Cc¥ L o (azc N 22’ ac® (4.29)

ot X2 PyZ-) == U 3x i

Since the velocity, the temperature, and concentration

perturkations must be of the same nature

7g
o

L4
Cc

P (xX) exp (iay) exp (Bt) (4.30)

H (x) exp (iay) exp (B8t) (4.31)

Inserting these two equations into egquations (4.28) and

(4.29):
"o 8 - - it
P (1 + °‘2K) P = = /& (4.32)
"o g — - i€
B = (L4 =) B= - = P (x) (4.33)

v
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Both the above equations are of the same form.
Sternling and Scriven give the solution to the mass
diffusion equation, and this also applies to the heat

diffusion equation:

P = Ag exp (gX) + Ayq exp (~gX) - nJ (4.34)
H = A12 exp (cIX) + A12 exp (—g]_X) - 11 (4.35)
where:
B_y% B %
q = (1 + 55) g= (1 + )
x2p ' K2g
1 = ig/(al) n = iﬁ/}uK)
= ; 2
I = exp (qk)ufexp (-2qX)J”exp (gX) (dx)
' 2

J = exp (gX)Ufexp (—2gX)J'exp (gX) (ax)

Equations (4.34) and (4.35) for each phase are:

P, = Ag exp (gpX) + Byg exp (-g,X) - n,J, (4.37)
EB = B9 exp (gBX) + By €xp (-gBX) - nBJB (4.38)
Hy = Ay, €Xp (gAX) + By, exp (—qAX) - 1L, I (4.39)
HB = B11 exp (gBX) + B12 exp (—gBX) lBIB (4.40)

Eight boundary conditions are necessary to determine
the eicht constants in equations (4.37) to (4.40). The
first four are obtained from the assumption that the
temperature and concentration disturkances vanish at large
distances from the interface. In combination with equations
(3.30) and (3.31), this gives

(ix), (x) P, =H, =0 : X =
‘(xi), (xii) Pp = Hp = 0 : X = ~ o
The temperature of the two phases are assumed to ke the

same at the interface in koth the undisturked and the

disturbed states. Therefore, the temperature disturbance
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at the interface is the same in both phases:

1 4 v
(xiii) T A (o,v,t) =T B (o,y.,t) ; x =0

According to the linear dependence of the equilibrium
concentration on temperature assumed in the model, the

concentration disturbhances are:

v
(xiv) c A (o,y,t) = RAT’A(o,y,t) ; o x =0

Il
(=)

. 4 | 4
(xv) C 5 (o,y,t) = RyT p (o,y,t) ; =x

where R is the constant defined by equation (3.16).
The remaining boundary condition is the eguation of
conservation of energy at the interface, discussed in

detail with respect to boundary condition (xii) in chapter

5,:
R r P o v
. . C C T
(xvi) - .- 3~ A o 3 B o 3° A
- * = e +
DA Ix Q A + DB X Q B kA X '
T
‘% 9 B =
+ B 3% i X 0

Conditions (ix) to (xii) lead to:

Ag = A11 = B?O = B12 =0 (4.41)

From equation (4.41), equations (4.37) and (4.38) become:

P, = Ay, ©Xp (-gAX) = n,J, (4.42)

Py = By exp (gBX) - ngdg (4.43)

Combining equation{4.30) and boundary condition (xiii):
P, =P, ; x=20 (4.44)
Inserting equations (4.42) and (4.43) into equation (4.44):

A =B J, + J

10 9 ~ Bp'p T DMaYa x =0 (4.45)

~e

From equations (4.30), (4.31), and (4.44) using boundary

conditions (xiv) and (xv):

H, = R,P x =0 (4.46)

A A
HB = R,P &2 X

bl

it

0 (4.47)
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Constants A and B11 are obtained by inserting

12
equation (4.41) into equations (4.39) and (4.40) and

combining the resulting equations with equations (4.46)

and (4.47):
A12 = RAPA - 1AIA : x =0 (4.48)
B11 = RBPA - lBIB : x =0 (4.49)

On substituting equations (4.48) and (4.49) into
equations (4.39) and (4.40) the solution for the x-
components of the concentration disturkance in phases

A and B are obtained:

H

Il

N (RpPy(0) = 1,T,(0)) exp (-q,X) - 1,I,(0); x 2 0 (4.50)

H

Il

B (RBPB(O) - 1BIB(O)) exp (qBX) - lBIB(O)' x < 0 (4.51)

It only remains to determine the constants A10 and
Bg to obtain the four solutions to the perturbed diffusion
equations. Eguation (4.45) relates the two constants,
a second equation is obtained from koundary condition
(xvi). On combining equations (4.30) and (4.31), with

equations (4.42), (4.43), (4.43), (4.50) ard (4.51),

the four derivatives in bkoundary condition (xvi) become:

v
aC A : dHA ,
= exp (iay) exp (Bt) —= = ~ q, (R,P,(0) = 1L,T,(0)-1,T (o)
9X dx
; o x =0
(4.52)
v
C 5 ' aHy .
X ax
P X = 0



3T A dPA v
= exp (iay) exp (Bt} g—w = - gAA10 - nAJ A,(O) i x =0
ax ax .
(4.54)
1 4
T B Py '
= exp (iay) exp (Bt) — = g B, - n_J _(0) T x =0
B9 B B
3x dx :

On inserting the four akove eqguations into boundary
condition (xvi) and combining the resulting equation with
-equation (4.45), the following expression for constant Bg

is obtained:

— ’ - o - o - -
Bg = (Qupnpdp(0) = D073 Tyn = DROpTpp)/(Qyp = kpg, - kpgp)
t kpTpan = 9anpIp(0)) = kpnpdp(0)/(Qag - ka9 = kgop)
(4.55)
_ (o) o)
where Qap = Da9 aRp9a + PpQ gRpip
]
Ta = 1, (quIa(0) + I (o))
: : (4.56)
IBB = 1B (qBIB(O) + I B(o))
JAA = n, (9AJA(°) + J'B(o))

The expression for As0 is oktained by introducing
equation (4.55) into equation (4.45). The values of
the-integral I and its derivative with resPect‘to X are
given by Sternling and Scriven. Since integrals I and
J are of the same form, the values of J, as well as the
values of its derivative, may ke taken from the talkle
presented by these authors for I. This table is
reproduced in table 4.1, with a change in notation.

The integral, which can ke ecither I or J, has been
denoted INT. The constant a denotes either q or gq.
On inserting the values of the integrals I and J and

their derivatives given in table 4.1 into equation (4.55)



TABLE 4.1

QUANTITIES APPEARING IN EQUATIONS (4.17) to (4.55)

(3 Phase A x> 0 Phase B x <0
P(x) /A 70 exp (-X) - exp (—jj aX) -1 -Pa exp (X) - exp (pA)
1-%, .
INT (X) /A 0 _exp (=X) _ exp (Fax _1-Pa exp (X) - ex (Pfx
w7 ? afy =1 a‘p = 1-ps a%p -~ 1 525—"8?5%5
INT (0) /A # 0 @2—‘1 G N TS

(ay? - 1) (a},} -P a2

(1 -P p) (a2 - 1) (a%p -P 2

]



TABLE 4.1 {continuation)

2 2 ‘
INT (o) /A £ 0 (12‘pn) (aJ; +PJ% %—PA) (azg +P§l
(a®y - 11 (@%y = %5 (a”p - N (@%g =P 7p)
Yx)/a =0 X exp (-X) | X exp (X)
INT (X) /A = 0 - X(X + 1) exp (-X)/4 (X - 1) exp (-X)/4
INT (o) /A =0 : 0 ’ 0
INT/ (o) /A =0 -1/4 -1/4

"9¢g
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and combining the resulting expression with equations

(4.36), (4.43) and (4.44):

for B # O:

Kn€an kp€p
Kalga 1) (9 +pp) Kplgp+1) (gptpy)

i
Pylo) == (1 - p,) o o - X -
A & AT DpO pRpqn + D0 pRpdp ~ Xp9n ~ Kpdp

o Q
Q°n Ea Qg £p
- +
(qA+1)(qupA) (qB+1)(foRB)
(o] (o]
P22 n"a%n * PpQ pRpdp T *a9x ~ Kp9p
(4.57)
for B= 0
P C & - p.Co €. -0° £ +0° ¢
p (o) = ~ i Capa®a ” °pCppfp A fat Qg Ep
AT %NS o o
PaQ aRp + D@ pRp — ki = kg
(4.58)

Equatiops (4.57) and (4.58) give the x-component
of the temperature disturbance at the interface.

The aim of this aralysis is to determine the
temperature d;stribution along the interface in the
disturbed state. On inserting equatibn (4.30) into
equation (4.25), the derivative of the perturbed

temperature with respect to y at the interface is:

aT
iaPy (0) exp (iay) exp (Bt); x =0 (4.59)
9y :

Since the temperature at the interface is the same

for both phases, BTA/By is equal to BTB/ay.
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Inserting equation (4.57), and (4.58), into

equation (4.59):

for é # 0
T PACPAEA/Inn) ~ (PpCppep/Ipp)
3 - (1"}>A) :
Yy z,
0% £, /q,,) + (©°_£_/q__) |
A a’9an B'/BB. . L _ o (4.60)
24
for g = 0 :
p.C__¢ p.C_...¢e OO £+ OO £
3T _ "ATPAA BPBB “AA “ DB o x =0 (4.61)
3y O o) _ -1
4 Dy Q7p By + Dp Q7 Ry =k = kp )
where
9an = (9a v 1) {9y + Pp) 9pp = Y9p * 1) (gp *+ pp)
(4.61a)
dap = (ap + 1) (qy +:pp) Ipe = (@p * 1) (qg + pp)
2z, =D, 0° R + D 0° R - k., g, = k.g : (4.61L)
1. “a ¥ a a9 B “ B "BiB ‘29 r9p -

Equation (4.60) and (4.61) represent the desired temperature

gradient at the interface.

4.6 Characteristic Fouation

Inserting equations (4.60) and (4.61) into equations
(4.19) and (4.22), and rearranging into dimensionless form,
the characteristic equation is obtained:
for g # 0O

(1/25,) = (1/sm g )
M=

(4.62)
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1T - (1/sm) = (g, = £5 0%) E/ ¢,

for g = 0
Mys =

where:

Z =

2 = Ny ay * Ngap -

= J J
Z20 I\.A + IvB

VA =

~ 1 - 1/h%m

3 =1 F Ryt en) W) o

230 = 1+ WA F agg M/

& 1Xa 2

M= o

Lo i
TA

Np = EpRp/Ly
. .0 2 .
Ny = EgR /0%.r°L, ;

EA, m, h2

and r2

temperature and concentration profiles in equations (4.62)

and (4.63) are linked by the energy kalance at the

interface:

- DAE

o]
29 a B

o = e
+ D EBQ B = k + kBe (4.64)

AfA B

Combining this equation with the terms containing the

concentration profiles in equation (4.63), the following

expressions are obktained for mass transfer taking place

in one phase only:

~ Epfp/ep = -

o _
EAEB/EAQ c

- L. r

LA(1 - 1/h25m) ; phase B saturated

A 2 (1 - 1/hzsm);phase A saturated

8 730 %30 (4-63)
- gB/th
(4.63a)
(4.63b)
éEA/aB 7 0% = 0%,/0% (4.63c,d,e)
are as defined in chapter 3. The

(4.65

(4.66
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Introducing equations (4.65) and (4.66) into equations

(4.62) and (4.63):
for(8 # 0

(1/g,,) = (1/sm g__)
M = AA BB

22 Z3
2
L, v (1/g,,) - ¥/h"sm g ‘
_ A AA BB (4.67)
Z2 %3
where T = 1 for phase B saturated
T = r? for phase A saturated (4.68)
for =0
F 2
1 - (1/sm - Lﬁﬁ (1 = 1/h sm)
My = (4.69)
8 230 %30 |

The dimensionless groups as defined by equation (4.63a)
is tﬁe inverse of the Marangoni number with the character-
istic linear dimension represénted by 1/a. As the character-
istic equation has been developed for semi-infinite media,
there is no other length scale to which this number could
be referred to. The Marangoni number may be interpreﬁed
as the ratio of the destabilising surface tension forces
to the stabilising viscous forces.

From equations (3.11), (3.16), (3.35), and (4.63b, c, e),

the dimensionless numbers N, and Np may be written as:

O v
QA DpaCatQpgDyCiyp

v
£a Cop ¥a T

(4.70)



Physically, this group represents the ratio of the
change in the rate of heat production with temperature
to the heat flux in phase A associated with the
temperature perturkation.

Equations (4.62) and (4.63) estabklish the relation
Lbetween the wave length of the disturbance and the
amplification factor. Unfortunately equation (4.62)
is implicit and a trial and errcr technicue is
necessary to find éut the pair of values of o and B
for a given system. A detailed study of the behaviour
of equation (4.62) under diverse physical conditions
will lead to the understanding of the r8le played by
the physical parameté:s in the stability prollem.

.Since the amplification factor g always appears
divided by a2 in the equation (4.62), it is convenient

to define a new variable:

(4.71)

Combkining the dimensionless wave number, M, with ¢

another dimensionless group G is defined:

G = Y.M =M, 8/(0€,) (4.72)
The group G may be regarded as the dimensionless growth
constant. In terms of the new variable ¥ the groups
P, q and g, defined by equations (49a) and (4.36)

respectively, kecome:

ay = /T FY gy = Mo+ nPy
/1 o+ j2§” Pp = /ﬁ + ezjzf

V1 o+ LAY'

I

Py (4.73)

¢q~+ rZLAE/

=
It
o
I
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y . . 12 — ’d 2 __))
where: h™ = K, / Ky e’ = A/yB

i/j2 = )/A/ K, Prandtl number r2 = DA/DB

The four terms defined by expressions (4.61a)
comhined with equations (4.73) are:

(g, + 1)1 (gA+pA)—1 = (gp-1) / (gp + pA)3’

(gt D71 agtpg) T = lggm1)  / (ggipg) OV

=1 -1 . (4.74)
(gpt 1) 7 (qptp,) = (qu=1) / (ap+py) LpY

-1 i | 2 .
(agt 1) (ggtpg) = (ag-1) / (aptpg) r7 Lv

Inserting equations (4.75) into equation (4.62) and
combining with equation (4.73), the following expressions
for G are obtained:
for mass transfer in both directions:

2
G 1)/ (gytpy) = (gp=1) / smh” (gy + pg)

2y 24

£, (=1 / (@utpy) = &5 (1) / 1% 0O laptpy)] Bp/ine,

Zy 23

(4.75)

for mass transfer in one direction only:

(gy = 1) / (g,%p,) - (g = 1) / smh’ (g + pp)
G = -

Zy 24

LB (1 = 1/b%ns) (q - 1) / (q* p) (g + 9

Zy 23 (4.76)
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I
o

where subscript k for phase B saturated

k =B for phase A saturated.

Equation (4.63) is the limit of equation (4.62) for
B = 0,; that is for ¥ = 0. A study of ecuations (4.62)
and (4.75) in the vicinity of the point § = 0 and for
large values of ¥ will give information akout the kehavicur

of binary systems with respect to stationary and oscillatory

instabilities.

4.7 Limiting behaviour of the characteristic equation

The development of the expansions of equation (4.62)
for small and large values of y leading to the equations

presented in this,section are presented in Appendix A.

4.7.1. Small values of ¥y

_For y.+ 0 equation 4.62 beccmes:

: o
1 - (1/sm) - (EA—EB/Q C) EA/eA

M = . (1 - fy) (4.77)
8 2,0 %39
where:
2 . 2,0
o 1 - (h"/sm) - (EA - Epr /0 C)LAEA
= +
Zy €n
.2 2 2,0
L 3= @Prem) - iy - £ 0%0 |k, .
4 24 EA

0]
En (RA + Ry / 0 C)— 1 - 1/m .

2 220
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2 .2
1+ (e g/ya) 3
+ i 2 (4.78)
30
where:
— _ o - - o
z4 = 1 (1/sm) (EA EB/Q C) EA/EA (4.78a)

The first factor in equation (4.77) is, according to
equation (4.63), the dimensionless wave number for B = 0.
This is the wave number corresponding to the neufrél
stability regime and is denoted Ly MHB' Thus, equation
(4.77) may be written as:

M = MNS (1 - £y) : for y = 0 (4.79)

Eguation (4.79) may Le interpreted as the first two
terms of an.expansion of the function M(y) in a Maclaurin
series. Then the factor -f may ke regarded as the
derivative qf M(y) with respect to y at the point y = 0.
When mass transfer takes place in only one direction

the corresponding expression for M is given by equation

Ns
(4.69). Combining equation (4.78) with equations (4.65)

and (4.66), the expression for f for unidirectional mass

transfer becomes: _
1 - (h%/sm) - L.® (1 - 1/h%sm)

f = A +
Zg
.2 2 2 '
+ i® (1 - e"/sm) - LAb (1 = 1/h“ms)
4 Z5
L, (R, + R,/0°) - 1 = 1/m
+ A A B C +
2 Z20

(4.80)
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where T 1 and b = 1, for phase B saturated

i

n r2 and b = r2e2, for phase A saturated

Zg =1 - (1/sm) - Lyn (1 - 1/h%sm)

Inserting equation (4.79) into equation (4.72), the
dimensionless crowth constant becomes, for small values
of v:

G =M

ws (¥ = £1%) | (4.81)

4,7.2. Large values of Y

For v » o ; equation (4.62) becomes:
‘ [1/(1 + 3) - 1/smh (h+je).
M = .
ZG Z7 j VLA €a

r

£,/ (3 + VI - £,/0% © (Je + r /L) L,_z

Zg L7 3 Iy ey
[Ge + 117G+ 1) = (/smn2)] o 4
+ S g2 2 ,
6 ° 7 La
i [EA (e +/I) /(3 + YL,) - EB/QOCr]//B
52
26 27 I palata
) 2. o _2.¢
. 1 = [(h+3) /s @;+3e)] - £, (8,-E/0° %) €1,
7 72 52
6 27
1/(1+43) - 1/smh(h+ej)
+

7 .2 We
Zg Z 7 /VA

. — o] . N
_ EA/(3+/LA) ~Ep/0 pr (3e+r/LA) - ‘
2 g2 2 a Ws p Y
6 © 73 Fa VI /fL _

-5/2

A (4.82)
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where:

_ ! o
Zep = (R, + RB/QCIL) EA/LA -1 —1/h§ (4.82a)
Z70 = (e‘/yBébﬁ) + 1 (4.82h)

Combining equations (4.65) and (4.66) with equation
(4.82), the expressions for unidirectional mass transfer

are obtained:

(e/iy - h) (1 +3) - smh? (VEp - 1) (h + je)

M = ~2
M = Yy
7o 2, Zg (h + ie)
[ .2 :
|smn® (VT - 1) + 5+ 1J/2340A + 1 5
+ 5 : (e” - 1)
] Z6 4 Z8 (e + 1) 3
— a2 e— .
. (e/LA h) (1+3) smh® (V/L,-1) (h+je) o 7"5/2
z 0
Zg Z9° Zg I A 5
(4.83)
for phase B saturated .
where Zg = (1 + 3) (J + /f;) hZsm (4.83a)
and
(cvVE, - ) (1 +3) - smh? (x/L, - e) (h + je) _,
M = Y
Zp 24 Zg (je + r/LA)
02 : .
smh® (h + Je)//840A + 3 + 1 5
+ 5 - (e” - 1)
ze 2,7 Zg (e + 1) 3

(/L = h) (1 +3) - amh? (r/L, - e) (h +3&)

+ %Wg ©

7.
26 29 %o IMa

for phase A saturated,

~-5/2



67.

where Z, = (1 + 3) (h + je) : (4.84a)

Equations (4.82) to (4.84) have the form:

2 -5/2

M=ay “+by (4.85)

Combining this equation with equation (4.72), the
corresponding expressicn for B is:

-1 ~3/2

B = ayy '+ by (4.86)

4.8 Analysis of the characteristic eguation

When the values of the physical properties of a
given system are inserted into equation (4.75), equation (4.72)
determines the complex growth constant B for each wave
number a. Apart fromka and B, which have been defined

in equations (4.6a) and (4.6b) respectively, it is

interesting to introduce their ratio:

B/o = c, + ic;

i

c

Here 9f determines the velocity of damping or
amplification of the disturkance and cs denotes the
velocity of propagation of the wave in the y direction.
Table 4.2 shows possible combinations of values of 6%
and By When Br<0.and Br§ 0, the amplitude and

velocity of propagation of the disturbances decay with

time. Hence, case 1 describes a stable system,
Table 4.2
éase Br Bi C.. Cy Observations
1 ¢ 0 <0 <0 <0 Stable system.
2 -0 =0 >0 =0 Disturlkances grow in place.
3 _ =0 =0 =0 =0 Neutral stability regime.
4 =0 0 =0 >0 HNeutral oscillatory regime.
5 >0 >0 >0 >0 Disturlances grow and

translate.
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In cases 2 and 3 the velocity of propagation is
equal to zero. Tﬁerefore, £he disturkance remains
in place and the resulting regime of instability is
called stationary or convective. Cases 4 and 5,
in which the disturbance displays a propacation
velocity Cy >0, represent the oscillatory regime.
In both regimes, the case Br=0, vherein the disturkance
- neither grows nor decays, corresponds to the minimum
wave length for which the system is unstable. Therefore,
~the study of cases 3 and 4 is of special interest
because they mark the boundary lketween the stable and
the unstable state for a given system.

"Equation (4.72) may be written as:

(Mr + iMi) (Yiz +Yr2) =‘Gryr - GiYi +(Giyr - GrYi) i (4

Since M is the dimensionless wave numker, and this is
a reél parameter, the component Mi must e equal to zero.
This condition requires the imaginary component of the
right hand side of equation (4.87) to bhe equal to zero,
that is:

G.,y. — G_y. = 0 (4.88)

The three solutions of equation (4.88) are:

(a) for y_ # O:

r
i = 0 (and conseguently G, = 0) (4.89)
(k) for Y # 0:
Yy = Gr =0 (4.90)
(c) for Yy # 0 and Y. # 0

Givy = Gpvy _ (4.91)

.87)
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. Solution (a) corresponds to the stationary regime,
case 2, and solution (k) to the neutral oScillatory

regime, case 4.

4.8.1. Case (a): Y, # 0, Y, = 0. Stationary regime

The neutral stability regime (Br=0, Bi=0) represented
by equation (4.63) is a special case of the stationary
regime. | As stated before, the wave number of neutral
stability represents the minimum.wave length for which
a system shows stationary instakility. Disturkances
of larger waQe length will grow with time, that is yr=0
for’a<aNS. Hence, equation (4.63) establishes the
conditions for the onset of stationary instakility and
its analysis will lead to the stability criteria with

respect to the stationary regime.

Since the wave number must be real, and MNq contains

2
® Ns?

the same sign as Mg

the right-hand side of eqguation (4.63) must have
S According to equation (4.63a) the

sign of M depends on the signs of UT.and € On the

A.
right-hand side of equation (4.63), the values of the

rate of change of equilibrium concentration with temperature,
RA and RB’ vary from 0.01 to 0.1 ¢g mol/OC, the Lewis

number is around 100, and the values of EA range between

1 and 10 °c 1/g mol, these values being typical for most
binary liquid systems. Therefore, the values of the
dimensionless groups NA'and N, are smaller than one and

the denominat..or of equaﬁio% (4.63) is negative. The
equation for unidirectioﬁal mass transfer - equation (4.68) -
is more suitable than equation (4.63) to analyse the sign

of the numerator Lkecause it does not contain the concentration

profiles. Since s, the ratio of the temperature profilcs,
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is always negative, and all the other parameters are
positive, the two terms in the numerator of equation
(4.68) containing s are positive. Since r2 and h2
range between 0.5 and 5 for most pairs of liquids,
‘the negative term containing LA will be much larger
than the addition of the two positive terms and the
numerator will be negative. Conseacuently, the right-
hand side of equation (4.63) is positive for any
‘direction of transfer. Therefeore, for stationary
instability to be possible, M must be positive. If
M is negative, the system is stable with respect to
stationary instalkilities.

Thé dimensionless wave numker is positive when
ande, have the same sign and negative when their

T A

signs are ppposite. If the heat of soluticn of

()

the liquid A in B has the same sign as the heat of
éolufions of B in A, the sign of 5A'does not depend
on the direction of transfer. In such a case,

depending on the sign of o the system will be either

o
stable or unstable with respect to stationary instabilities
in both directions of transfer.

Taple 4.3A, B, and C contain the factors which defire
the signs of M., M; and G, in equations (4.79) and (4.81)
in their unidirectional transfer form, and equations (4.83),
(4.84) and (4.85). In the table, according to the

previous discussion, the sign of Z defined ky equation

20
(4.82a) is negative and the ratio s is presented in terms
of its absolute value: s = - |s|. In addition, to
simplify the forthcoming analysis, the term containing
%% has been neglected. This is equivalent to assuming

that the surface deformation term in the Boussinesq

approximation, equation (4.13), is srall compared with



TABLE 4.3

LIMITING BEHAVIOUR OF EQUATIONS (4.67) and (4.76)x

Part A: Mr
Y Y Direction of M
r i transfer r
0 =0 B+A
A+B |
= 1% (1/]sIm) =LA (1 + 1/h|sim)
=0 0 B+A
A~B
. .2 -2
=0 oo B+A -[1te/E; - M (1 + 3) + 0, - D (h + se)n’lsin] v,
A+B [T, - m1+ )+ (I, - er(h + je)nPlsin] y, 7
- . — .2 -2
Fo -0 B+A DB/LA - h)1 +35) + (/LA - 1)(1’1 + je)h }stm ]Yr
ALB [(r/i; ~ h) (1 + 3) + (/I - e) (h + je)h2|SImJYr—'2'
*

Inherent positive factors are omitted.

“LL



TABLE 4.3 (continuation)

Part B: Mi
Yr Y Direction of Transfer Mi
-0 =0 B+A
0
A-+B
=0 +0 B+A - - 2
' [1+ (/1sim) = 1,5 (1 + 1/n%isim) £y,
A-B ) .
=0 oo B+A {-1 + [j-+ 1 + hzﬁslm (1 ﬂf/fZ)]/%[Aéke2~1)yi—5/2
| A+B [5+ 1+ 0%sin (h + 3e) Mp/ty) (e - 1) y, /2
>0 =0 B+A
0
A-+B

‘CL




TABLE 4.3 (continuation)

[(r/fg - h) (1 + 35) + (r/fz'— e) (h + je Fz(s)ﬁ]yr—-

Part C:
Yy s Direction of transfer Gr
. +0 =0 B-+A . \ - 2
[1 + (1/s|m) — L0 (1 + 1/h Qs(m]yr
A+B .
=0 > B-+A '~ ‘ R
-[1+ (isim- 1A (1 + 1/mgsim) £y, 2
A+B .
=0 e B+A -{1»4‘}.}-{--1 + 1s] m h2 (1 ;-/qﬂ/UB//JA}(ez - 1)71‘3/2
A+B -[ﬁ + 1+ s m h? (h + je)/VBéuA] (e2 - 1)Yi_3/2
+o =0 B-+A [(e/I_;Z - h) (1.+ 5) + (r/I—,;; - e) (h + je)hzlsim]yr‘1 _
A+B- %

TL
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the change of interfacial tension with temperature.

It must be noticed with respect to the values of M

or G for vy 0 that they may correspond either to
B =0 or a + =, The first possibility corresponds
to NS In both cases G, which is equal to «vM,
is equal to zero and the stationary disturbance does
not grow with time. There may be other possibilities
of G = 0 for Y # 0 vhen the numerator of equation
(4.75) is equal to zero. It may be seen in takle
4.3 (C) that the sign of G. will, in ceneral te
positive for koth Yy = o, Yo 0 and Yi=0,yr+w. © Con-
sequently, there may be nore or an even number of
eigenvalues of Gr' Since the parameters appearing
in the numerator of equation (4.75) are numerous,

an analytical determination of the conditions for

G = 0 when # 0, is not possible.’
Yy P

Since y; # 0, this case represents the neutral
oscillatory regime. As before, the analysis will be
carried out for mass transfer taking place in one
direction only. From takle 4.3(C), it can be seen
that for the limit Yy = 0, y;+0 the sion of G, is
positive in both directions of transfer, for the
ranges of magnitude of the parameters j = /FZZZR is
in general smaller than one. Since LA>>1, in the
limit Yr=0,yi+m, Gr has the same sign as (e2—1) for
transfer from phase B to phase A, and the sign of
(e2—1) for the opposite direétion of transfer. It
may be concluded that if e2<1 there is at least one

value of Yi for which Gr = 0. For mass transfer
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in the direction A > B, if e%>1 there is at least
one eigenvalue of G.r but there may be an odd number
cof them. Therefore, binary systems are alwayé
unstable with respect to oscillatory instabilities
when mass transfer takes place out of the phase of

higher viscosity.

4.8.3 Case (C): YrGi = YiGr' Yy £ 0, " # 0

This case represents the oscillatory regime and
corresponds tc case 5 in table 4.2. Since this is
a general sclution of equation'(4.88), it is interesting
tc find out under what conditions cases (A) and (B)
are particular solutions of this general case. The
analysis of case (B) showed that there is always
one unstable direction of transfer with respect to roll
cells. Consequently, case (B) is a particular sclution
of case (C). For stationary instability to be possible,

case (&), oy and e, must have the same sign. Therefore,

A
stationary instability is not a particular solution of

case (C), when the signs of op and e, are not the same.

4.8.4 Summary

The conclusions of the stability analysis suggest a
criteria of stability that can be summarised as follows:
(i) Stationary instabilities are promoted by positive
heat of solution, i.e. negative temperature gradient
in the upper phase, in systems with a negative change of
interfacial tension with temperature and by negative heat
of solution, i.e. positive temperature gradient in the
ﬁpper phase, in systems with a positive change of inter-

facial tension with temperature.

(ii) Oscillatory instabilities are most likely to occur



when mass transfer takes place out of the phase of
higher viscosity.

(1ii) Systems may be stablé in both directions of
transfer when the heat of solution and the change

of interfacial tension with temperature are of the
same sign, provided the ratio of viscosities is equal

to one.

76.
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CHAPTER 5

STABILITY ANALYSIS OF SELECTED SYSTEMS

The equations developed in chapters 3 and 4 are
applied in this chapter to the stability of six
liquid pairs selected from the 46 systems investigated
by Ying and Sawistowski(16).

Since binary systems exhibiting instabilities in
one direction of transfer are also unstable when mass
transfer takes place in both directions simultaneously,
fhe stability analysis will be carried out for uni-
directional mass transfer only.

In order to solve the characteristic equation for
mass transfer in only one direction, equation (4.67),
the temperature profiles were developed for unsteady
conditions. They are, therefore, non-linear and
the profiles obtained from equations (3.46) and (3.47)
have to be linearised. In section 5.3 the concentration
and temperature profiles for the selected systems at
an initial temperature of 25 ©c are computed and the
temperature profiles are linearised using a standard
technique.

The determination of and the literature sources for
the values of the physical parameters appearing in
equations (4.67), (3.46) and (3.47) are described in
section 5.2.

The stability analysis of the six selected systems

is reported in section 5.4.
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5.1 Selection of systems

The systems selected were: ethyl acetate = water
acetylacetone-water, isobutanol-water, methyl ethyl
ketone water, cyclohexanol-water and hexane-aniline.
The choice was made on the basis of the following
considerations:

(1) The system should belong to different categories
in Ying and Sawistowski's(15) classification of

. binary systems according to the intensity of the
interfacial activity.

(ii) The liquid pairs should be representative of the
following cases: unstable in one direction of
transfer only, unstable in both directions of
transfer and stable in both directions of transfer.

(iii) It is desirable for the systems to cover a wide

range of values of the physical parametérs.

Table 5.1 summarises the results obtained by ¥Ying
and Sawistowski on intensity of interfacial convection
and directional effects for the selected systems, The
results of the observations for simultaneous mass transfer
in both directions are reported in decreasing order of
intensity in:the column labélled "Intensity of interfacial
convection". The system acetylacetone-water shows
instabilities of the most intense type when acetylacetone
is transferred from the water saturated acetylacetone
phase to pure water and is stable in the reverse direction.
A schlieren photograph of the plane interface of this
system after two minutes of contacting the phases is

(9)

shown in figure 5.1 (a) . The systems cyclohexanol-

water and ethyl acetate-water belong to the same category,



TABLE 5.1

CLASSIFICATION OF THE SELECTED SYSTEMS(TG)

Liguid A Liquid B Intensity of inter- Observations for direction of transfer
facial convection A+ B EB > 2
acetyl acetone water interfacial turbulence turbuieﬁcé dirfusional
cyclohexanol water convection cells stationary cells stationary cells
ethyl acetate water convection cells streaks drifting cells
hexane aniline streaks streaks streaks
isobutanol water diffusional diffusional diffusional
methyl ethyl ketone .water diffusional - -

"6L
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showing convection cells when mass transfer takes place
in both directions simultaneously. For mass transfer
in only one direction the system ethyl acetate-water

is less active when ethyl acetate is transferred into
water, while the cyclohexanol-water pair exhibit the
same intensity in both directions. Figures 5.1 (b)
and (5.1(c)(16) show the interface of the systems ethyl
acetate-water and cyclohexanol-water. Comparing the
two interfaces the difference between roll cells and
drifting cells can be realised immediately. The system
isobutanocl-water is stable in both directions of transfer
and the pair methyl ethyl ketone-water was not investigated

for directional effects.

5.2 Physical properties

The physical properties appearing in equations (3.44)
to (3.47) and (4.67) were taken from experimental data
reported in the literature. Whenever possible when
data were not available they were either calculated with
approximate equations or measured experimentally.

The heat capacity and the heat diffusivity of all the
saturated solutions and the viscosity of the saturated
solutions in the systems cyclohexanol-water and methyl
ethyl ketone-water were estimated assuming a linear
variation of their value with molar fraction. For
eample, the heat capacity of the saturated phase A was

assumed to be:-

- S L%
C pA = Xp CpA + (1 Xp ) CpB (5.1)



where xAﬁ = molar fraction of A at saturation.

CpA and CpB = heat capacity of the pure liquids
A and B.

Table B1, appendix B contains values ofabhfaﬁeééfg“
P, prU,Lland K for the pure liguids and tables B2

and B3 contain the same properties for the saturated

solutions.

5.2.1 Density
All data for the pure liquids at 25 °c were taken

from experimental data reported in the literature.
For the saturated solutions density measurements were
made usiﬁg a 50 ml. standard specific gravity bottle.
The weighings were performed using an automatic
balance reading t 0.000{ g. The densities of the
saturated solutions were measured at 22, 25 and 28 %c.

The data at 22 and 28 °©

C were needed for the calculation
of interfacial tensions. The results for saturated
liquids presented in figures 5.2 to 5.7 are the average
of at least two determinations.

5.2.2 Heat capacity

The data for pure acetylacetone and cyclohexanol were
not available in literature. They were calculated with
the help of the additive contribution method of Johnson
and Huang(39). The method predicts the heat capacity
of organic liquids with 5 and 14 per cent average and

maximum errors. The data for the saturated solutions

were estimated using equation (5.1).
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5.2.3 Viscosity

The data on dynamic viscosities for pure ana
saturated ethyl acetate-water,isobutanocl-water, and
hexane-aniline pairs were determined by Austin(11),
and the data for pure and saturated acetylacetone-

(42, all at 25 °c. The data

water by Atagunduz
for pure cyclohexanol and methyl ethyl ketone were
reported in the literature and the corresponding

values for the saturated organic and aqueous solutions

were calculated with the help of equation (5.1).

5.2.4 Thermal diffusivity

—Data avallable in literature are reported as
thermal conductivity. The thermal conductivity of
pure acetylacetone and cyclohexanocl were calculated

using Vargaftik's modification of Palmer's eXpression‘39):

k = 1.034 Cpp4/3/a u'/3 (5.2)
where k is expressed in Btu/hft deg F, Cp in Btu/lb deg F
and p-in g/cm3, and a is an abnormality factor at 30 °c

which is defined by:

a = AHvb/21T (5.3)

b
where AH , = latent heat of vaporization at the normal
boiling point, (cal/g mol)

Tb = normal boiling point, °k.

For temperatures other than 30 °c a may be assumed to
vary linearly between the value given by equation (5.3)
and 1 at the critical temperature. Since for both
liquids Cp has been estimated by an approximate equation

and a is very close to one, as shown in table 5,2, the

temperature correction has not been applied. Equation

1
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(5.2) gives an average and maximum deviation of 8.7
and 31.6 per cent for 28 liquids tested(39). Table
5.2 contains the parameters appearing in equation 5.2

and the results of the calculations for the two liquids.

TABLE 5.2

ESTIMATED THERMAL CONDUCTIVITIES AT 25°¢

3
Solvent H _,/T a kx10
. B o
(cal/gmoloK) (cal/s cm ~C)
Cyclohexanol 25 1.19 0.337
1
Methyl ethyl ketone 21.7 1.03 0.407

The data for all the other pure liquids are experimental
measurements reported in literature.

The values of the thermal diffusivities were calculated
from its definition:

K = k/FC
/ P

5.2.5 Mass diffusivity

Austin and Sawistowski(11) reviewed the semi-empirical
correlations for the prediction of diffusion coefficients.
They concluded that Sitaraman's(47) correlation is the
most consistent of those investigated in that the predicted
values of DVY/T at infinite dilution are in reasonable
agreement with literature values. Consequently, Sitaraman's
correlation was adopted in the present work. The
correlation fits the data with a standard deviation of
26% by:

1/3
g | My QB /M) T 0.93

DAB = 5,4 x 10

AT RIEERY; (5.4)
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where Vap = molecular volume of the solute A‘4Q,
— S LI 4 w (3 '2
Dpp = diffusivity of A in B, cn“/s

(

Garner and Marchant 48) have shown that Qﬂ/T for
the diffusion of isobutanol in water is virtually
independent of concentration. In the absence of
experimental data the other systems were assumed

to have the same property. The results of the

computations made with equation (5.4) are contained

in table B4, appendix B.

5.2.6 Equilibrium concentration and its variation with

temperature

The literature was searched for solubility data as a
function of temperature for the selected systems and the
results are plotted in appendix B, figures B1 to B6.
Solubility data at 25 °C and rate of change of equilibrium
concentration with temperature are estimated from these

curves and presented in table B5, appendix B.

5.2.7 Heat of solution

In the absence of expefimental data on heats of
solution of water in ethyl acetate, acetyl acetone;
isobutanol and cyclohexanol, they were measured by
the Imperial College Analytical Services Laboratory.
The heats of solution of aniline into hexane and
hexane into aniline were measured as well because the
data reported by Keyes and Hildebrand(SO) are, in the

authors' own words, "rough determinaticns".
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TABLE 5.3

INTEGRAL HEATS OF SOLUTION

O

Solvent Solute T 0 standard
o . deviation
C cal/gmol
solute
ethyl acetate water 25 -1150 18.9
acetylacetone water 25 -1018 23.8
isobutanol water 25 -295 - 14.8
cyclohexanol water 25 -234 4.76
hexane aniline 19 -1320 21.1

aniline hexane 25 -1170 19.3

The results presented in table 5.3 are the quantity
of heat absorbed by the solution when the amount of
soiute necessary to get a saturated solution is added
to the pure solvent. The results are the average

of fhree determinations.

5.2.8 1Interfacial tension

Except for the system isobutanol-water no data on
the effect of temperature on interfacial tension were
found in the literature. Consequently, the equilibrium
interfacial tensions at different temperatures were
measured. The determinations were made by the drop-

. weight voluméhmethod. Figure 5.8 shows a diagram of
the apparatus. It consists of a capillary U-tube ACD
with a bulb at B and a detachable tip T at D which is
projected into a glass vial F. The tip is attached
to the capillary tube by means of a cone and socket
joint. The volume of the bulb and of the capillary
joining it to the graduated sections of capillary tube,

AB and BC, was accurately known to be 2.338 ml.
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The heavier phase was sucked up into the capillary
until the lecvel reached the graduated section AB and
.the clip was tightened. The lighter phase was poured
into the vial so that the tip was just covered when
the vial was clamped in position. The apparatus was
supported vertically, by means of a support rod s,
in a thermostat both controlled at 22, 25 or 28 ¥
0.05 °c. The interface was adjusted to the plane
of the tip:and the level noted in the graduated capillary
AB, Drops were formed until the level was positioned
in the lower capillary BC, the interface was again .
adjusted to the plane of the tip and the level in BC
noted. The drops were formed at a rate of about one a
minute, the last 10% of the drops being delivered very
slowly to ensure that the drop detached under the influence
of gfavity alone.

The mean‘droé value was calculated from the total
volume and the number of drops. The interfacial tension was

then calculated from the equation:

Vieg = ep) 9

(s} =

o )
where: V = mean drop volume (cm3)
PaPp = densities of the lighter and heavier phases

respectively (g/cm3)
g = acceleration due to gravity (cm/sz)
r, = wetted radius of the tip (cm).

f(r/V1/3) = correétion factor(51).
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The correction factor is applied to allow for the
fact that the ligquid forming the drop does not
completely leave the tip. This factor is a
function of the wetted radius of the tip and the
cube root of the drop volume (figure 5.9) and is

accurately known for 0.3 < rtV1/3< 1.2, Two tip

diameters were chosen so that the resulting values

of rtV1/3

limits. The tips were made from Veridia precision

for the systems fell within the above

tubing and ground flat and square using the method of
Harkins and Brown(sz).

Before use the capillary, tip and vial were soaked
in chromic-sulphuric acid, washed with distilled water
and acetone and finally air dried. The readings are
tabulated in table B6, appendix B, and the results
preéented in Figures 5.10 and 5.11. Table 5.4 contains
the experimental results obtained for the system
isobutanol-water and also data from literature. There
is not much difference between the results of the
present work and the data measured by Austin 17,

Silbereisen(19

measured the interfacial tension with
the de Nqﬁ@ method and fhis could be the explanation

of the greater difference between his results and this
work. However, there is agreement in the sign of the
variation of interfacial tension with temperature, which

is the main purpose of the experimental determinations

in this work.
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EFFECT OF TEMPERATURE ON INTERFACIAL TENSION IN THE

SYSTEM ISOBUTANOL-WATER

This work Literature Reference
T g, o
i i
Oa dyn/cm dyn/cm
2 : 2,15 1.85 (15)
25 2.17 2.2 11)
28. . a - 2.18 - - - 1-.86 - {15)

5.3 Temperature and concentration profiles

The time dependent temperature and concentration
profiles were calculated with equations 3.44 to 3.47
using the Imperial College CDC 6400 system. The
results after 30 seconds of contacting the phases
initially at 25 °c are plotted in figures 5.14 to
5.25 (a) and (b). Figure 5.13 shows the temperature
and concentration profiles in the syétem methyl ethyl
ketone~water at inter&als of 20 eseconds after contact-
ing the phases when water is transferred from the
saturated water phase to pure methyl ethyl ketone.

In order to apply the characteristic equation to
the study of the selected systems, the profiles have
to be linearised. The validity of this procedure is
discussed in section 5.4. Since the stability of
the systems will be analysed in turn with respect to
each direction of transfer separately, equation (4.67)
will be usgd and only the temperature profiles need be

linearised.
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The standard technique of linearization (Vidal
and Acrivos(3ﬁ), Lick(33)) is to apﬁroximate the
actual profile with a straight-line segment, figure
5.12, so that the area under the curve in figure

5.12(a) is the same as
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FIG. 5-12 DEFINITION OF APPROXIMATE TEMPERATURE PROFILE

the area of the triangle in figure 5.12(b). Then, the

effective thermal depth is:

dOA
: 2 f Tp (x,t) dx,
d v o

tA ' x> 0 (5.5)
Ti ha TO
5 fudoB
_ v O T (x,t)dx .
ey T B B x < 0 (5.6)
T, - 7T
i o)

where do is the adopted depth of the phase. For the case
under consideration the value of dO was arbitary, being

governed by only one condition that the points x = dOA

and x = 4 were at T =T .
oB o

The integrals in equations (5.5) and (5.6) were

=d ., =1 cm.

calculated at t = 30 seconds for do oB

A



Figures 5.14 to 5.25 show that at a depth of 1 cm

from the interface, the temperature in both phases
is 25 °c. The integrals were calculated with the
trapezoidal quadrature formula with error control,
which is the more adequate to integrate the error

fﬁnction in equations (3.46) and (3.47).

The linear temperature profiles are calculated by:

Ea = (Tg - T,/ (5.7)

tA
eg = (Ty ~ Ty)dyy (5.8)

The linearised temperature profiles are shown in

figures 5.14 to 5.25 (c).
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5.4 Stability analysis

5.4.1 Qualitative analysis

According to the criteria of stability stationary
instabilities may be expected when the sign of the
temperature gradient-and the rate of change of inter-
facial tension with temperature are the same and
oscillatory instabilities may set in when mass transfer
takes place out of the phase of higher viscosity.

These two criteria are applied to the six selected
systems in each direction of transfer. The results
are summarized in table 5.5. Comparing the predicted
stability with the experimental observations of Ying

and Sawistowski(16r

presented in table 5.1, agreement
is found for the systems ethyl acetate-water and
acetylacetone~water in both directions of transfer
and for transfer of methyl ethyl kgtone and cyclo-
hexanol into water and aniline into héxane.

For the case of transfer of hexane into aniline
and water into cyc¢lohexanol, which are predicted stable
contrary to the experimental observations, possible
explanations are that transient effects could be
responsible for the onset of stability or that there
is an even number of values of Ki for which the real
part of equation 4.76 is equalito zero, as was discussed
in section 4.8.2,

For the system isobutanol-water there is disagreement
in both directions of transfer. The system has been
reported unstéble during the transfer of water into the

organic phase under dynamic conditions.(13).



TABLE 5.5.

PREDICTION OF STABILITY BEHAVIOUR FOR SELECTED SYSTEMS

Liquid A Liquid B Direction e2 Stability predicted with respect to:-
~of transfer
Stationary dist.| oscillatory dist.
ethyl acetate water B-A <1 ' stable unstable
A->B unstable stable
acetyl acetone water B+A <1( 1) stable stable
A+B stable unstable
isobutanol water B+A >1 unstable stable
A~+B stable unstable
methyl ethyl ketone  water B-+A <1 unstable unstable
A+B stable stable
éyclohexanol water B-+A >>1 stable stable
A+B unstable unstable
hexane aniline B+A <1 stable unstable
- A+B stable stable

‘91l
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Since the variation of interfacial tension with
temperature in this system is very small, as may be
seen in figure 5.10, the system could be stable for
a relatively wide range of wave lengths. In order to
determine the instability curve of all the predicted
unstable systems, the characteristic equation has to
be solved to yield values of < and 8 at the onset of

instability.

5.4.2 Numerical results

The characteristic equation was solved for
stationary instability for the systems ethyl acetate-
water, isobﬁtanol—water, methyl ethyl ketone-water and
cyclohexanol~-water. Since only stationary instability
is to be considered, the imaginery component of the
growth constant, %, was made equal to zero. The
calculations wece done using the Imperial College

CDC 6400 computer. The value of @ was obtained by

NS
making the value of B equal to zero in equation (4.6.2).
Then, the values of g within the interval <1=<!NS to

& = 0 were calculated by trial and error.

A value DIF was defined as:

DIF =a2 -« (5.9)

G c
where % is.tpe value of @ obtained fr?m equation (4.62)
for an arbitrary value of % and an assumed value of
is denoted by<1G. Instead of solving the eguation
DIF @, Br) = 0, which would have led to problells of
multiplicity and a substantial amount of computatioﬁ,

a "chasing" method was adopted. The procedure consisted

of computing equation (59 on a mesh of 300.000 points
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in the strip « = 0 to a = LAY and instructing the
- computer to print only the values where a change of
sign in two consecutive values DIF occurred.

In this way it was possible to determine a narrow
band in which the curve DIF (a,é) = 0 was contained

in the interval =0 to 4, = From these wvalues

o oNs®

an iterative process was applied to refine the data
.already obtained until the pairs d'B satisfied equation
(5.9) with an error smaller than one per cent.

The instability curves calculated with the linearised
tempefature profites at a time equal to 30 seconds are
shown in figures 5.26 to 5.29. The curves are siﬁilar
to those determined by Sternling and Scriven(g) for
concentration induced convective flows in ternary systems.
The value of oNS demarcates stable and unstable wave
numbers. Since the systems remain stable for o > aNS?
the wave length of neutral stability is the minimum
wave length for the onset of instability to be possible.
Disturbances of larger size will grow and the smaller ones
will be damp .ed by the viscous shear forces opposing. the
motion at the interface. This explaing why instabilities
of small wave length grow least rapidly. The curves have
a maximum corresponding to the size of the disturbance
that grows most rapidly and ultimately dominates the system.
The numerical results obtéined for the dominant wave length,

XD' the dominant growth constant, BB' and the tNs for the

four studied systems are shown in table 5.6.



B (s

024
022
0-20~
018 i~
016 (-
014 -
012 i~
110 -
008
0-06
004

0:02 R

¢ B | I i | | | | ] |
0 10 20 30 40 50 60 70 80 90 100 Gy =109-6
a (em™)

6Lt

FIG. 526 GROWTH. CONSTANT vs. WAVE NUMBER FOR TRANSFER OF ETHYL ACETATE INTO WATER




0-011
0010}
0009
0-008
0-007
0006

0-005

B (s™")

0004

0-003

O 1 | | ] 1 >
0 5 10 15 20 25 Ung=2830 =

a (cm.f')

*0Z

FIG. 5-27 GROWTH CONSTANT vs. WAVE NUMBER FOR TRANSFER OF WATER INTO ISOBUTANOL




(s

20 30 ‘ 40 o =4839
may

a (ecm™")

—

F1G. 5-28 GROWTH CONSTANT vs. WAVE NUMBER FOR TRANSFER OF WATER INTO METHYL ETHYL KETONEN




‘050

0-40

0-30

010

-35

0] EA =

A EA = -0-36

FIG. 5-29

10 C(stw% 20 30 aNS =33-39 40
: a (cm."')

GROWTH CONSTANT vs WAVE NUMBER FOR TRANSFER OF CYCLOHEXANOL

QNS:[G7'22

INTO WATER AT

DIFFERENT TEMPERATURE PROFILES

*Zel



123,

Since in the unstable systems instabilities set
in a very short time after the phases are brought

(16) the‘instability curves were calculated

into contact
at 5 and 15 seconds of contact for the system cyclo-

hexanol-water. The object of this calculation was to
investigate the dependence of the instability curve on

the magnitude of the temperature profile, which is a

function of time.

TABLE 5.6

RESULTS OF CALCULATIONS

Liquid B(ﬁ) Direction ANs Ap BrD
of transfer (cm) (em) (s=1)
ethyl- acetate A+B 0.0621 0.167 0.222
isobutanol B+A 0.214 0.74 0.00%4
methyl ethyl ketone B-+A 0.130 0.349 0.0455
cyclohexanol A-+B 0.421 1.26 0.004

(x)

Liquid A is water in all the systems.

The three instability curves are shown in figure 5.29
and the values of the corresponding temperature gradients,
ANS’ iD’ A, are presented in table 5.7. For this system
an increase of ten times the value of the temperature
gradient, increased the growth in almost the same proportion

and decreased the dominant wave length by three times.
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TABLE 5.7
t oA “ns *p frp
(°c/cm) (cm) (cm) (s~
5 -3.5 0.133 0.392 0.034
15 -1.7 0.188 0.628 0.017
30 -0.36 0.421 1.26 0.004

5.4.3 Discussion of results

The numerical results show that ethyl acetate~water
is the most unstable system of the four analysed with
respect to stationary instability since itSO¢NS is the
lowest. This méans that disturbances of wave length
larger than 0.06 cm will be amplified. This is in good
agreement with experimental results. In the other three
systems much larger disturbances are required to induce
instabilities. In the case of transfer of water into
isobutanol, the maximum wave length of the disturbance
for which the system'still remains stable is about 4 times
the wave length corresponding to the system ethyl acetate-
water. This could explain the stable behaviour reported
in experimental observations. The same argument applies
to the system methyl ethyl ketone-water. The transfer
of cyclohexanol into water is the most stable of the four
unstable directions studied since it has the highest wave
length of neutral instability. But this system is

unstable with respect to oscillatory instabilities in the

same direction of transfer. The oscillatory instability
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may be expected to be considerably strong since the ratio
of viscosities in this system, ez, if of the order of 40.
Comparing the experimentally established values of
the densities of pure water and of water saturated with
acetylacetone, table B.1 and B.3 respectively, it can be
seen that there is a volume contractibn on mixing. The
density of the saturated solution is 1.0044 while the
density of water is 0.9971. The increase in density near
the interface creates a destabilising density gradient
which in accordance with the work of Berg and Morig(12)
will create density-driven convective instability.
This behaviour, rather than oscillatory instakilities may
explain the strong interfacial activity found experimentally

in this system.
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CHAPTER 6

CORCLUSIONS

The conclusions of this work can be summarised as

follows:

1. Temperature effects accompanying mass transfer in
binary liquid-liquid systems are of sufficient
magnitude to produce Marangoni type instabilities.

2. The linearised analysis of stability shows that
binary systems may be either stable or unstable
in both directions of transfér.

3. The criteria of stability suggest that stationary
instabilities are promoted by:

a) positive heat of solution in systems with a

- negative change of interfacial tension with
temperature.

b) negative heat of solution in systems with
positive change of interfacial tension with
temperature.

Oscillatory instabilities are most likely to occur

for mass transfer out of the phase of higher

viscosity.

4. Binary systems will be stable in both directions of
transfer when the heat of solution and the change of
interfacial tension with temperature have the same
sign and the viscosities of the two phases are equal.

5. Predictions obtained from the stability criteria
are in good agreement with experimental observations.
Individual cases of lack of agreement can be explained

in terms of size of perturbation.
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Recommendations for future work

1.

4.

The numerical results were computed only for
stationary instability for a set of systems.
Further study of the effect of the magnitude

of various parameters such as viscosity,ratio,
ratio of thermal diffusivity, etc., would enable
a more precise prediction to be obtained for the

conditions at the onset of instability.

A similar analysis to that performed in the
present work should be performed by for the
oscillatory regime.

In order to allow for the effect of density-driven

flows, the presence of density gradients should be

incorporated in the model.

An attempt should be made to develop stability

criteria for transient conditions of mass transfer.
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LIMITING BEHAVIOUR OF TELE CHARACTERISTIC IQUATION

A.1. Small values of ¥

The six radicals in eguations (4.62) and (4.75) have the
form = /1 + x.
They can be éxpanded in binomial series of the form:
(1 -xf™ = 1 + nx + n(n-1) x2/21 + ... (A1)
The series (A1) convergés for x¢1 when n>0. For
small values of the variakle the terms of second and
higher order may be neglected. The expansion of p, g and

g, equation (4.73) become:

_ = 2
qp = 1+ v/2 gg = 1 + h“y/2
. .2 2
Py =1+ 3°v/2 pp =1+ 3%%y/2  (a2)
’ 2
dp = 1 +’LAy/2 dp = 1 + ¢ gAy/z

The four terms in the numerator of eqﬁation (4.62)

combined with expansions (A2) become:
-1 -1 ’ : 25 .2 7
(gt gptp) T =178 < [2 + 3% v+ (1 + 3Dvz4a | /16

- - 2, 2,27
(ag+D) " tggtpp) T = 174 - [ (207 + e23%) yan?(nPee®3% v2/a /16

-1

(qA+1)—1(qA+pA) 1/4 - [(2LA + 325 v+ Ly (L + j2)72/4]/16

-1

- . 2, 2.2 .7
(ag*+1) " (ag+py) 174 = [2r’r, + 5%y + P, (ePryre?i®y v/

As
(A3)
Inserting equation (A3) into equation (4.62), the
following expression for the numerator of equation (4.62)
is obtained:
Nuq = %»[1 - (1/sm) - Ep (E) - E5 / ro) /EA]

.%3‘{:2 + j2 - [(th + ezjz)/sﬁ] - B £, (2LA+j2%ax+



129.

2 2.2 o |
+ E, £ (2r L, +e"3%) /0 CEAJY

1 [ 2 2,.2,.2.2
- TE‘L(1 + 37V /4 - [h (h™+e™j )/4sm] - EAEA(LA+j2)/4eA

. 2 2 2.2 o 2
+ LA Epr (r Late™] ) Z4Q c eAi}y (a4)
This equation has the form:
= 2
Nuq = @yq F bgy * Cgqy (A5)

Combining equations (A2) with equation (4.62), the

denominator of equation (4.62) becomes,

_ 2 2
D1 = 2 2,54 Z3p +Lzzo (1 + e Jp/pn) 3

+ [EA (R, + RB/QOC) -1 - 1/m] z3é} y

- '2 ¢
+lmy Ry Ry/%0) - 1 - am] (1 x e2M 3% P

(A6)
where:
o o 2 _ _ 2

Zzo—[EA (RA+RB/QCh)/LZJ 1 - 1/h°m

230 = 1+ Wpipn) +o g/2
as defined in chapter 4.

Equation (A6) has the form:
- 2
Dyq = 8pq * bpp ¥ * Cpp v (A7)

Expanding the inverse of equaticen (A6) for small
values of vy:

-1 -1 2 -1
Dy = 1V -apy  (bppy +cppy) any (A8)

and multiplying equation (A5) by equation (A8), equation
(4.62) is obtained for small values of y%
~ q 2
M =%:aN1 = (byq *oagy Ppgdy +13hN1 bp1 = 2y Cp/apy CN1HY
+ |(c b../a + b \c /a_.) 3 + (c..c_./a )Y4} / a
NT D1/ %Dg N1-D1/%D1’ Y N1°D179D1 D1

-t

(A9)
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Combining equations (A4), (A5), (A6) and (A7)
with equation (A9) and neglecting the terms of

higher order than one:

1 - (1/sm) - (£, - £_/0° ) E, /¢
[ A B> ¢’ A é} (1 = £v) (A10)
8

M=

220 %30
where
_ 2 - _ 2 ,.0 :
‘- 1 (h™ /sm) (EA EBr /0 C) LAEA
—1 - +
Zy ep
.2 2 . 2,0
3 1 - (¢7/sm) - (£, - £E_e"/0° ) E
+ A B C A +
4 Z4 €a
o
. E, (Ry + Rp/0°.) -1 = 1/m .
2 Zy
2y 2
. 1 + (e B4o%) 3
4 Z30 | | (A11)
where:

Zy= 1 = (1/sm) = (E,-£./0°) Ep/e,,
as defined in chapter 4.

Equations (A10) and (A11) are equations (4.77) and
(2.78) in chapter 4.

The first factor in equation (A10) is the dimensionless
wave number of neutral stability represented by equation
(4.63). Thereéfore, combining‘equation (A10) with equation
(4.63):

M= Mo (1 - fy) ; ¥y >0 (A12)

On combining equations (4.65) and (4.66) with eguation
(A11),-the expression for f for unidirectional mass transfer,
equation (4.80), is obtained, The expressions of M for
mass transfer in one direction only are obktained by
substituting the corresponding expressions for Myg and f

into equation (A12).
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A.2 Large values of Y

In this case it is again desirable to expand in
series the six different radicals.in equation (4.62).
Since the binomial series (A1) converges for x £ 1,

~

it is convenient to write p, ¢ and g in the following

form: . ‘
gy = AT T/ gy = h /v /1 am%y
Y N AR . R
Pp = 1YY 1%1/5%y pp = e Vv M1+ 173%e%y
= Vi /T F 7L ¢« = /T 4+ 1l L

(A13)
Expanding these expressions and neglecting terms of

higher order than one:

Ip = Yy (1 + 1/2y) ggp = h Yy (1 + 1/2h27)
Pp = iy (1% 1/2j27) Pp = €] N1+ 1/2j2e27)
ay =/ Tpy (1 + 1/2 Lpy) ag =t VInv (1 + 1/2r°L,7)

(A14)

Theni < - - -

1"7’1/2~ [(j+1)v 1+Y 3/2+Y 3/2} /23
( -1 -1_
ga*t1) Gptea) =

(1+3) vy
» g 16T 2 e [ (hted)y 4y 324472 /2n) 72en%3
(ggt1) (gptPy) =

h(h+ei) Y

IR TRV

-1 A .
(@y+1) (gptpa) = =

Ui L S

2 Ly 3 (3 + /L)y
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-1 -1 1 - 7—1/2/r #LA
(g,+1) " {q.tpg) =
dp ap*Pp

r/L, (ej + r /L)y

(r/LA + ej)y"1 + y-3/2 + Y"Z/ZrJQA

2 . .
2 er” Ly j (ej + r/LA) Y

Combining these equations with equation (4.62) and

neglecting terms of smaller order thanY—B/2

, the
following expression for the numerator of equation (4.64)

is obtained:

NMZ ={ 1/(1+5) - [1l/smh(h+ej)] - EAEA/EA /I:K (5 + /f;)

. O ; -1
+ Epfp/e,07c r VI (el + r/fz)} Y

- {1/(1+j) = [1/Smh2(h+je)] - EAEA/EAJE—Z: (j+/ITA—)

o _2 . -3/2
+ EAEB/EAQ XLy (ej + r/f;) } Y

(A16)

'This equation has the form:

-1 -3/2

N = ay,Y + bN2 Y {A17)

M2

The expression for the denomination of equation (4.62) is:

_ . _ 1/2
Dy = %g 27 Iy + Zg Z,5 Y

Zyq 27 3 + Zg T, 3/2

7 Y-1/2

Zyq 242

. =1/2
+Z11 Z7 JY /
(A18)

where:
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z6 = [EA (RA + RB/ QOC r)/ /EZ] -1 - 1/hm, as defined

in chapter 4.

Zg = 1 + e /%nyA' as defined in chapter 4.
(A19)
Zy, = [EA (R, + Ry/ @°, r3)/LA3/2] -1 - 1/b°n
Zeg = 1+ FRHp) oS5
Equation (A18) has the form
Puz = 3p2 Y + by Y2 4o, va, v P, v (@20)

The inverse of equation (A20) is, after making use
of the adequate expansions:

-1/2 -1 -3/2 -2
p2 ¥ tCpp ¥ tdpy Y + vy ¥ ) ap,

M2 Y
. aD2

1 - (b

1
D
(A21)
Multiplying equation (A17) by equation (A21),
combining the resulting expression with equations (A16)
and (A18) and neglecting terms of smaller order than

'Y~5/20 the equation for M for large values of y is

obtained:

[1 / (1 +3) - [1/smh (h + je)]
M—

YL EA

Zg %9 3 VL

£,/ (3 + /) - £,/ Q% r (Je + x /L;)] L
y

[Ge+ 1/ 5+ 1) = (a/smn®y T W

73
2g 27 I Ma

B




134.

[ea Ge + /B /7 (5 + T ~ £,/0° x|

a:

2 .2
Ze 29 3 Mp Lp €p

1 - [(h+3) 7 smn® (h+ 30)] - B, (5, - g5 / 0% ) /e,p1,

1/(1 + 3) - [1/smh (b + e3)]
2 s

.2
Zg 29 37 Ma

2 2

BEYEE D) - /00, x (e + r VI . //a}v"s/z
. A
26 27 3 eplpta S

(a22)

Equation (A22) is equation (4.82) in chapter 4.
The expressions of M for unidirectional transfer are
obtained combining eguation (A22) with equations (4.65)

and (4.66).



TABLE B1

PHYSICAL PROPERTIES OF PURE LIQUIDS AT 25 O¢c

Liquid A S c, y Y x10% K x 103
(g/1) (cal/g®c)  (cP) (cm?/s)  (cm®/s)
ethyl acetate 0.8948'¥1 4 478 0.4320 M) g 482 0.236
acetylacetone 0.9971( 420 0.54 0.726'42 7 0.728  0.76s
isobutanol 0.7978¢ 1 o670 3.40¢ M) 4270 0.697
methyl ethyl ketone 0.7995 0.549 0.3980 o 0.498 . 0.801
cyclohexanol 0.9418 0.41 38. 40.3 0.86
aniline 1.0165¢17 ) 0,503 3.74117 ) 3685  0.81
hexane 0.6630411 ) 0.527 0.329%9 ) 0.497  0.958
water 0.99707 0.99892  0.894 0.898  1.463
Unreferenced data obtained from standard physical data textbooks(38 - §1).

*SeEl
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TABLE B2

- PHYSICAL PROPERTIES OF SATURATED PHASE A(x) at 25 °c

System P Cp V4 2 x10%  gx10° XK
(g/1) . (cal/ (cP) cmz/sec (cmz/sec)
o
g C)
ethyl acetate-water 0.9012 0.551 0.474 0.526 0.410¢ 0.140
acetylacetone-water 0.9732 0.65 0.7948 0.818 0.942 0.250
isobutanol-water 0.8324 0.820 3.20 3.98 1.046 0.456

methyl ethyl ketone-water 0.8325 0.684 0.5498 0.661 . 0.9996 0.300
' cyclohexanol-water '0.9507" 0.66 0.2257 0.237 0.111 0.416
hexane-aniline 0.6743 0.525 0.350 0.519 0.946 0.078

(x) Phase A is the organic phase in the organic liquid-water systems and the hexane

phase in the system hexane-aniline.

‘9gl



TABLE B3

PHYSICAL PROPERTIES OF SATURATED PHASE B(x) AT 25 oC
2 3

System e C . M Y10 K210

, 1% : 2 2 DCB

(g/1) (Cgl/ {cP) cm“/ (cm“/

g C) secy sec)

ethyl acetate-water 0.9958 0.990 1.07 1.075 1.442 0.0164
acetylacetone~water 1.0044 0.98 1.184  1.178  1.442 0.0300
isobutanol-water 0.9849 0.992 1.27 1.29 1.447 0.0210
methyl ethyl ketone-water 0.9621 0.947 0.868  0.903 1.4167 0.070
cyclohexanol-water 0.9967 0.99 1.164° 1.169 1.4588 0.007
hexane-aniline 0.9809 0.505 2.61 2.61 0.8220 0.081

()

phase in the system hexane-aniline.

Phase B is the water phase in the organic liquid-water systems and the

*LEL

aniline



TABLE B4

DIFFUSIVITIES AT 25 °C

Liquid A Liquid B DAx105 DBx105
cm2 cm2
ethyl acctate water 3.31 0.93
acetylacetone water 2.18 0493
isobutanol T water 0.25 0.82
methyl ethyl ketone water 5.25 1.09
cyclohexanol water 0.728 0.89
hexane aniline 2.73 3.60

*8El



TABLE :B5

EQUILIBRIUM CONCENTRATION AND RATE OF CHANGE OF EQUILIBRIUM CONCENTRATION WITH TEMPERATURE

—eals

*® ®

Phase A Phase B CTa C'g Ra Rp
(gmol/C) (gmol/l) : (gmolzi®c) (gmol/1°C)

ethyl acetate water 1.64 0.844 0.021 ~0.008
acetyl acetone water 1.71 1.66 ~0.189 ~0.026
isobutanol water 7.8 1.064 0.035 -0.010
methyl ethyl ketoﬁe water 4.5 3.0 0.014 0.028
cyclohexanol ' water 6.0 0.37 0.031 -0.004

. hexane | aniline 0.60 0;83 0.020 0.024

‘6t



TABLE B6

INTERFACIAL TENSTION MEASUREMENTS

B R e s e s e o i

System T wetted drop PpPp r/v1/3
(°c) radius vol. (gr/1)
(cm) (ml)
ethyl acetate~ 22 .331 0.0932 0.0931 .0.733
water 25  .331 0.0909  0.0946 0.739
28 .331 0.0895 0.0957  0.741
acetylacetone~ 22 .331 .201 0.0299 0.565
water 25 .331 .190 0.0312 0.579
28 .331 77 0.0325 0.689
isobutanol- 22 0.101 0.00573 0.1516 0.560
water 25  0.101 0.00575  0.1525 0.559
28 0.101 0.559

0.00574

0.1536

£

0.605
0.604
0.604

0.630 "

0.628
0.626

0.632
0.632

0.632

4]

2.18. «

0(5. T
(dgn/ (dyn/cm)
cm) OC
6.74
6.70 ~0.03
6.68
. 4.50
4,46 ~-0.023
4,36
2515
2.17 0.005

‘0l
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TABLE B6 (continuation)

methyl ethyl ketone

water

cyclohexanol-water

hexane-aniline

22
25
28

22
25

28

22
25
28

.101

- .101

.101

0.331
0.331

0.331

0.101
0.101
0.101

ML) T A A s ST e AT 3 s

0.00275
0.00294
0.00303

0.108
0.101

0.977

0.003322
0.00301

0.00270

0.1259
0.1296
0.1332

0.0448
0.0460

0.0475

0.3106
0.3066

0.3025

0.713
0.698
0.691

6.97
7.12
7.19

0.678
0.692
0.720

0.602

0.602

0.603

0.608
0.606
0.60

0.612
0.603

0.602

0.90
0.99
1.05

3.75

2.56
2.39
2.12

0.025

~0.023

-0.07

A’
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NOMENCLATURE

Ay 5 ' constants of integration
b parameter defined by equation 4.80
B1 constants of integration.
C1 2 constants of integration.

14
Cc concentration
c wave velocity
Cp heat capacity
dt penetration of temperature profile
D mass diffusivity
E = Qr/MCp
e = vA/vB

= factor defined by equation 4.78.
G==}¥76T€A
g=V1 +7
H = X part of the concentration perturbation.
h = VK, /K, |
I = integral defined by equation 4.36
J = integral defined by equation 4.36
J = VR Wy
K = thermal diffusivity
k = thermal conductivity
L = KA/DA
£ = undisturbed concentration profile
1 = ie&D

_ 2
M o= faKpx oy
M = molecular weight
m

= CaPa/PECoB

148.



Ny = EARA/LA

o 2
B = EBRB/Q G r° L

=
|

A

P = X component of the temperature perturbation

p
Q = heat of solution per mole of solution.
e}

heat of solution per mole of solute.

0., = total heat produced by heat of solution.
T p Y

R = 4C™ /4T
Rc = RA/RB
r =Q DA/DB

T = temperature
Greek letters
X = wave number
@ = growth constant
= P/V\z Kp
€ = unperturbed temperature profile
A = wave length
J = dynamic viscosity g
}S== composite surface viscodsity
= kinematic viscosity

= density

Il

equilibrium interfacial tension
= 0Gq
o/a'l‘
= component of the fluid sheer stress
= x part of the stream function

= stream function

149.



Subscripts

A = phase A,x > 0

B = phase B,x < 0

D = dominant unstable disturbance
N = neutrally stable disturbance
O = oscillatory disturbance

S = stationary disturbance

i = imaginary part

r = real part

Superscripts

Ol= value in the undisturbed state
v = perturbation

primes = differentiation with respect to x.
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