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ABSTRACT 

An attempt has been made to predict the onset of 

'spontaneous Marangoni-type interfacial convection in 

binary partially miscible systems. 	The continuity 

and energy equations were solved simultaneously 

incorporating heat effects introduced by the heat of 

solution accompanying mass transfer. 	A linearized 

perturbation analysis was applied to the resulting 

temperature and concentration profiles. 	The stability 

criteria show that binary systems may be either stable 

or unstable in both directions of transfer or unstable 

in only one direction of transfer. 	They also suggest 

that stationary instability is promoted when the heat 

of solution and the rate of change of interfacial tension 

with temperature are of opposite signs and that instabilities 

of oscillatory character are most likely to occur for 

mass transfer out of the phase of higher viscosity. 	Good 

agreement was found with the experimental observations on 

six selected systems. 
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6. 
CHAPTER 1  

INTRODUCTION  

According to the simplest model of interface mass 

transfer, solute is transferred between two phases 

by processes of eddy diffusion, molecular diffusion 

and adsorption and desorption at the interface, all 

connected in series. 	The diffusional steps are 

normally rate controlling and the adsorption and 

desorption processes are generally fast enough to be 

neglected. 	However,the physical transfer across the 

interface is not the only way in which the interface 

can affect a mass transfer process. 	The interfacial 

tension, which is the result of almost a step change' 

in the molecular fields of forces at the phase boundary, 

may be subjected to local fluctuations as a result of 

local variations in temperature or concentration. 	Such 

a fluctuation will affect the balance of forces and 

result in interfacial flow (Marangoni effect). 

The Marangoni effect can affect a mass transfer process 

in two ways - by influencing either the area of contact 

of the phases or the mass transfer coefficients. 	The 

first effect predominates if the depth of penetration 

of interfacial movement is of the same order of magnitude 

as the actual depth of the liquid layer (thin film effects). 

The second effect is important if the depth of the liquid 

layer is significaAtly greater than the depth of penetration 

of interfacial movement. 	Under suitable conditions, the 

interface then acts as a source of interfacial convection, 

and appreciably higher mass transfer coefficients.are 

obtained (surface renewal effect). 
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An experimental study of the effect of interfacial 

convection on mass transfer coefficients requires the 

availability of reference correlations obtained under 

interfacially stable conditions. 	It was thought that 

such conditions could easily be attained by investigating 

the mass transfer characteristics of partially miscible 

binary systems. 	Such systems not only yield individual 

or "film" mass transfer coefficients, which are much 

easier to handle than overall coefficients obtainable 

from ternary systems but, in addition, they were expected 

to be free of interfacial convection. This belief was 

based on the assumptions that thermal effects in mass 

transfer between partially miscible binary systems are 

negligibly small and that equilibrium at the interface 

is always attained instantaneously. Consequently, 

according to the phase rule, the system should have no 

degrees of freedom at the interface which precludes the 

formation there of concentration gradients and thus 

interfacial tension gradients. 

The assumed freedom of partially miscible binary 

systems from spontaneous interfacial convection of the 

Marangoni type was not confirmed experimentally. It 

indicates that the assumptions under which the phase 

rule was applied to interfacial conditions may not be 

valid. 	Thus, thermal effects due to heats of solution 

may not be negligible but introduce the desired degree 

of freedom and / or dynamic interfacial effects are 

present resulting from compression and dilatation of 

the surface layer or a finite rate of equilibrium of the 

interface. 	In the latter case the phase rule would no 

longer be applicable. 



The purpose of the present work was an attempt 

of theoretical prediction of the appearance of 

spontaneous Marangoni-type interfacial convection 

in binary systems. 	It was assumed that interface 

equilibration was instantaneous. 	This was considered 

justified in view of the nature of the interface in 

partially miscible binary systems. 	The compression 

and dilation effect, although present in the basic 

formulation,was neglected in the final analysis for 

the same reason. 	It is therefore assumed that 

instabilities are present in such systems only as 

a result of interfacial tension fluctuations due to 

temperature effects. 

The magnitude of temperature gradients, that can 

be theoretically expected from the heat of solution, 

was first determined by solving the equations of 

diffusion considering the presence of -a heat source 

at the interface due to the heat of solution and of 

continuous heat production due to the heat of dilution 

in the bulk. The development of the treatment is 

presented in chapter 3. 

A linearised stability analysis of the small 

perturbation type is applied to the temperature, 

concentration and velocity field in chapter 4. 

Stability criteria are obtained from the characteristic 

equation and in chapter 5 the derived predictions are 

compared with experimental observations for a number of 

selected systems. 

8. 



CHAPTER 2 	 9. 

LITERATURE SURVEY  

The literature relevant to this work is classified 

under two headings: experimental observations and 

mathematical analysis of instability. 

2;1 Experimental observations  

In 1855, Thomson(I) described spontaneous interfacial 

movements in a paper entitled: "On certain curious 

motions observable at the surface of wine and other 

alcoholic liqueurs" and interpreted the phenomena in 

terms of local changes of "the tensile force". 

In 1865, Marongoni(2)  published his observations on 

the spreading of drops of one liquid on the surface of 

another. 	After Luedtge(3) and Mensbrugghe(4) reported 

similar observations without mentioning his work, Marangoni 

claimed priority for it in another publication(5)  and 

Thomson's work passed unnoticed. 	Since then the phenomena 

of surface tension-driven movements are known as the 

Marangoni effect. 

Numerous observations and experiments on spontaneous 

interfacial activity originated under different conditions 

have been reported afterwards. 	Scriven and Sternling(6) 

published a very interesting review on "The Marangoni 

effects" covering the period 1855-1960 (81 references). 

Ward and Brooks() were the first to describe in 

detail the interfacial agitation accompanying mass 

transfer across the interface and explained it in terms 

of the effect of the heat of solution on the physical 

properties at the interface. 	In 1959, Sternling and 

Scriven(8) presented a mathematical analysis of the 

interfacial instability originated by the transfer across 
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the liquid-liquid interface of a ternary system. They 

postulated in their model that the interfacial turbulence 

was produced by surface tension gradients at the interface. 

Since 1959 the investigation on interfacial movements 

accompanying mass transfer has been orientated towards 

the verification of Sternling and Scriven criteria of 

instability. 	Sawistowski(9)  presented a comprehensive 

review of Sternling and Scriven stability analysis and 

discussed the more recent illustrative experimental work 

on spontaneous interfacial convection in ternary systems. 

He also included a detailed description of the qualitative 

loihaviour 	of the instabilities. 

Ostrovskii et al(10) investigated experimentally the 

occurrence of interfacial turbulence in mass transfer 

under conditions of forced convection. 	They interpreted 

the phenomena from the point of view of the relationship 

between two energies: the free energy of the interface (H) 

and the mass transfer energy (M) which they defined by: 

H = a S u o 

M = RT(1 - C2/mC1) 

where ai  is the interfacial tension at a given total 

concentration Co of the transferred substance in the two 

phases at equilibrium, So is the area occupied by one role 

of the transferred substance in a monolayer, C1  and C2  

are the concentrations of the solute in the first phase 

(original solution) and the second (receiving) phase when 

interfacial turbulence appears, m is the distribution 

coefficient, T the absolute temperature and R is the 

universal gas constant. 
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The hypothesis put forward to account for the 

appearance of free surface convection were: 

(i) at the instant when turbulence arises the 

determining resistance is the free energy of the 

interface, 

(ii) interfacial turbulence occurs when M/H 1 

The results for 19 ternary systems are in agreement 

with the two hypotheses. 

A type of instability different from the Marangoni 

effect may be originated by buoyancy forcep. 	Sawistowski 

and Austin(11) analysed all the possible combinations of 

density and direction of transfer and their effects on 

the gravitational stability of the interface. 	Their 

conclusions are presented in table 2.1, where fi is the 

density, subscripts s, A and B refer to solute, upper 

phase and lower phase respectively. 	In their experimental 

work they found anomalous effects due to volume contraction 

on mixing . 

TABLE 2.1  

GRAVITATIONAL STABILITY 

Relative. value 	Direction of Side A of 	Side B of 

of solute density transfer 	the interface the interface 

A + B 	stable 	stable 
P < P < P PS A B 

Ps < PB 

PA < PB < Ps 

B + A 	unstable 	unstable 

	

A 4 B 	unstable 	stable 

B 4 A 	stable 	unstable 

	

A 4 B 	unstable 	unstable 

B 4 A 	stable 	stable 



The interaction between density gradients and 

interfacial tension-driven instabilities was 

investigated experimentally by Berg and Morig(12) 

They concluded that "when density forces were 

stabilising in a phase, interfacial convection was 

conf i:ned  to a narrow zone adjacent to the interface
11) 

When according to the Sternling - Scriven criteria of 

stability convection patterns should have been present, 

they appeared usually in form or roll cells which were 

Ompled and regenerated. When density forces were 

de-stabilising in a phase the movements penetrated 

deeply and the convection pattern could not be observed. 

2.1.1Instabilities in binary systems  

M.erson and Quinn(13) studied mass transfer in binary 

systems with solute diffusing into a radially moving 

interface. 	In their experiments they worked with 

unsaturated phases so that mass transfer occurred 

simultaneously in both directions. They observed 

structured turbulence in the interface of the system 

isobutanol-water. Presaturating the water phase with 

isobutanol had no effect on the turbulence but saturation 

of the alcohol terminated the activity. They interpreted 

the phenomena in terms of the Marangoni effect and 

suggested that the interfacial tension gradient could be 

caused either by a concentration gradient or by a 

temperature gradient. 	In a binary system a concentration 

gradient independent of temperature could only exist if 

the interphase was not at equilibrium and the temperature 

gradient could be originated by thermal effects due to 

the heat of solution. 	The authors considered this the 

12. 
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more probable cause of the Marangoni instabilities. 

Using the schlieren technique(9), Austin, Ying 

and Sawistowski(14) investigated binary systems for 

the presence of interfacial instability. 	The 

schlieren object was a pendant drop of one phase 

suspended in the other. 	The systems were classified 

in three groups according to the intensity of the 

movements: 

Xi) stable systems: the regime of mass transfer is 

diffusional, 

(ii) unstable systems - weak instabilities: rippling 

and deformation of the diffusional layer are 

observed, the movements in the interfacial 

layers are slow, 

(iii) unstable systems - strong instabilities: violent 

movements are observed at the interface (the inter-

facial turbulence is similar to that observed in 

some ternary systems). 

They suggested that equilibrium may not be established 

instantaneously at the interface and consequently the 

dynamic interfacial tension could be, a critical variable 

during the relaxation time of the interface. 	Heat 

effects due to heat of solution were also considered a 

possible cause of the phenomena. 	Sawistowski and Austin(11) 

extended the investigations to 33 systems. 	In addition 

they found that the systems ethyl acetate-water and 

methyl acetate-water showed gravitational instability 

due to volumecontraction on mixing of the organic phase 

in the aqueous phase. 
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Ying and Sawistowski(16) investigated the behaviour 

of a flat interface of 46 partially miscible binary 

systems, shortly after contacting the phases. 	The 

observations were conducted in a schlieren field. 

They employed a vertical cell for observations in a 

plane normal to the interface and a horizontal cell 

for observations in the plane of the interface. From 

these investigations they reported a classification of 

the systems into 5 categories according to the intensity 

of the movements: a) interfacial turbulence, b) eruptions, 

c) convection cells, d) streaks or stripes and e) diffusional 

transfer, in dedreasing order of intensity. 	They also 

found that the intensity of the interfacial turbulence in a 

given system is proportional to the driving force. From 

the 46 systems Ying and Sawistowski investigated 12 for 

directional effects by Pre saturating one of the phases. 

The results showed that directional effects exist in a 

number of systems. 	The: system acetylacetone is a 

remarkable example in that the most intense instability 

sets in when acetylacetone is transferred to water and 

the interface remains stable when water is transferred into 

acetylacetone.Their study of dynamic interfacial tension 

showed that the interfacial tension at short times of 

exposure in the system acetylacetone-water seemed to be 

higher for the transfer of the organic liquid into water 

than for no transfer or transfer of water into acetylacetone. 
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2.2 Mathematical analysis of stability  

The literature on the mathematics analysis of 

surface tension-driven instabilities may be divided 

into two groups: stability analysis of thin liquid 

layers under a vertical temperature gradient and 

behaviour of the liquid-liquid interface when mass 

transfer is taking place.from one phase to the other. 

Since the present work is related to simultaneous 

heat and mass transfer the more representative papers 

in each groups will be mentioned. 

2.2.1 Temperature induced convective flows 

Under certain conditions steady state cellular 

patterns may be observed in thin layers heated from 

below or cooled from above by evaporation. The first 

systematic experiments were carefully carried out by 

Benard(17,18) who worked with open liquid layers of 

spermaceti, about 1 mm. deep, heated from below. 

Benard found that a critical temperature gradient had 

to be reached for the pattern to appear. 	Benard cells 

were first mathematically studied by Rayleigh(20)  who 

employed a linearized stability analysis based on the 

assumption that the surface movements were originated 

by density stratification. 	Rayleigh's' analysis 

explained some characteristics of the motion and arrived 

at the conclusion that a certain value of a dimensionless 

group relating viscous to buoyancy forces (now known as 

Rayleigh number) had to be exceeded before fluid motion 

occurred. The theory was not in very good quantitative 

agreement with Benard's critical gradient. 
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Jeffreys(21,22) and Low(23) developed a similar 

analysis using different boundary conditions. 	In 

these early theories the cells were assumed, for 

simplicity, rectangular. 	Later, Pellew and Southwell(24) 

showed how to take into account other shapes of cell wall, 

including the case of hexagonal cells. 	The theory seems 

to be in good agreement with experimental results for 

layers of about 1 cm.(46) 	A concise review of these 

treatments is given by Lin(25)  

From his experimental work Block(26) concluded that 

cellular convection pattern could be induced by surface 

tension forces. 	Later, Pearson(27) studied the stability 

of a thin liquid layer with a free upper boundary and a 

fixed boundary heated from below. He applied to the 

system a perturbation analysis similar to that developed 

by Rayleigh(20) and Jeffreys(22) but assuming that surface 

tension forces rather than buoyancy forces generated the 

surface movements. 	He found that for instabilities to 

set in a certain value of a dimensionless number relating 

the destabilizing surface tension forces to the stabililing 

viscous forces has to be exceeded. The critical value 

of this number, now called Marangoni number, is in good 

agreement with Mnard's experiments. Pearson suggested 

that in very thin layers the controlloing destabilizing 

force is the variation of surface tension with temperature, 

while in thicker layers buoyancy forces are more likely 

to be the controlloing destabilizing factor. 

In Pearson's analysis the upper surface was considered 

rigid. 	Scriven and Sternling(28) extended the analysis 

to include a flexible free boundary and surface viscosity. 



17. 

They found that flexible surfaces are unstable over a 

wider rage of parameters than it is found for a flat 

interface. 	They also found that surface viscosity 

exerts a stabilising influence. 

Nield(29) made a theoretical investigation of 

convective stability in a fluid layer with a coupled 

density and interfacial tension driving force. 	Cabelli 

and de Vahl Davis(30) solved numerically the equations of 

1iass, momentum and energy conservation for a linear 

temperature profile incorporating density and surface 

tension effects. 	They found that when both effects 

are present there is a certain combination of Marangoni 

and Rayleigh numbers that must be exceeded for instabilities 

to set in and that surface tension effects encourage 

density movements when the surface tension is a decreasing 

function of temperature. 

Vidal and Acrivos(31) extended Pearson's analysis to 

include non-linear temperature profiles. They postulated 

that the rate of growth of an unstable disturbance will be 

much greater than the time rate of change of the 

conductive temperature profile. 	In addition to this 

standard "frozen" assumption they approximated the non- 

linear profile by two straight lines. 	Their assumption 

that the velocity component normal to the surface vanishes 

at the effective thermal depth implies that the thickness 

of the thermal boundary layer is greater or equal to the 

thickness of the velocity boundary layer. 	Consequently, 

their model would not be adequate for liquids with Prandtl 

number greater than one. The results of the Vidal and 

Acrivos' analysis show that non-linear temperature 

profiles "can increase the magnitude of the Marangoni 
• • 	• 



number at the onset of instability by several orders 

of magnitude from that predicted by classical stability 

theory using a linear profile". 	They found good 

agreement with their experimental results. 

Morton(32) and Lick(33) studied the stability of 

liquid layers with time-dependent heating. 	They 

considered density-driven disturbances and assumed 

that the rate of change of the temperature profile is 

small compared with the growth rate of the disturbance 

(quasi-static assumption). 	This assumption is invalid 

near the onset of instability. 	Foster(34) avoided 

this assumption by using an initial-value approach. 

The range or validity of the quasi-static assumption 

was studied by Robinson(35) in a semi-infinite medium. 

His results are in good agreement with those 

calculated by Foster. 

2.2.2 Concentration induced convective flows  

Sternling and Scriven(8) were the first to apply 

stability analysis to the study of interfacial 

activity accompanying mass transfer in a ternary 

liquid-liquid system. 	They described the mechanism 

of interfacial convection in terms of the Marangoni 

effect and applied perturbation analysis to a model 

consisting of two non-equilibrated media in contact 

along a plane interface. 	The system was assumed to 

be in steady state and the interface a rigid plane. 

The concentration of solute in each phase was taken 

to be small enough for the fluid properties to be 

considered uriform and constant. 	Their analysis 

suggests that interfacial instability is usually 

promoted by: 

18. 
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"(i) 	Solute transfer out of the phase of higher viscosity, 

(ii) Solute transfer out of the phase in which diffusivity 

is lower, 

(iii) large differences in kinematic viscosity and solute 

diffusivity between the two phases, 

(iv) steep concentration gradients near the interface, 

(v) interfacial tension highly sensitive to solute 

concentration, 

(vi) low viscosities and diffusivities in both phases, 

(vii) absence of surface active agents, and 

(viii) interfaces of large extent. 

Marsh, Sleicher and Heideger(36) extended Sternling 

and Scriven's analysis to include time-dependent concentra- 

tion gradients. 	In their treatment they used Sternling 

and Scriven's solution for the equation of motion, which 

implies that the size and rate of growth of the disturbance 

are independent of time or that a quasi-static assumption 

is adopted. They do not establish any difference between 

the time after contacting the phases and the time after 

the onset of the perturbation. 	This implies the wrong 

assumption that the variation of concentration profiles 

with time does not affect either the size or the growth 

rate of the disturbance. Thdir results are in qualitative 

agreement with Sternling and Scriven criteria of 

stability, except for the influence of the relative value 

of diffusivity. 	They found that solute transfer out of 

the phase of higher diffusivity is a destabilising factor. 



Gross and Hixon(37) studied the Marangoni 

instability with unsteadydiffusion in the undisturbed 

state including an interfacial resistance to mass 

transfer. 	They present a solution in series for 

the time-dependent perturbed temperature profile. 

The infinite series representing the characteristic 

equation is truncated,-:. for long periods of contact. 

They found their criteria of stability to be the 

same as those of Sternling and Scriven(8) 	From 

numerical results for,conditions approaching steady 

state they reported a variation of the size and growth 

rate of the disturbance with time from the onset of 

perturbation. 

20. 
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CHAPTER 3 

TIME-DEPENDENT CONCENTRATION AND TEMPERATURE PROFILES 

IN BINARY SYSTEMS  

In most cases the process of mixing of two liquids is 

accompanied by release or absorption of heat. 	Consequently, 

when two liquids are gently brought into contact to form a 

horizontal interface, a temperature profile will be 

established in each phase in addition to a concentration 

gradient. 	Since the amount of heat evolved or absorbed 

depends on the amount of solute dissolved, the magnitude 

of the temperature gradient will be determined not only 

by the physical properties of the media involved but also 

by the magnitude of the mass flux. 	If the usual 

assumption is then made that the phases are in equilibrium 

at the interface, a change in temperature there will 

cause a corresponding change in concentration which, in 

turn, will produce a modification of the temperature profile. 

Therefore, heat and mass transfer are closely related and 

have to be considered simultaneously. 

3.1 	Description of the Model  

- The model to be studied consists of two semi-infinite 

media in contact along a plane interface. 	Equilibrium 

concentration exists at the interface and changes in 

temperature are followed instantaneously by corresponding 

changes in concentration. 	Mass and heat released by the 

mixing process are transferred through both phases in the 

direction normal to the interface. 

The concentration of the diffusing liquids is low and 

temperature gradients are small so that fluid properties 

may be considered constant and buoyancy effects, mass flux 
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due to thermal diffusion and Dufour energy flux can 

be neglected. 

3.2 	Mathematical Formulation 

Figure 3.1 shows a schematic representation of 

the system. According to the assumptions made in the 

model, the equation of conservation of mass reduces to 

Fick's second law of diffusion. 

a cA DA a7E 

1 2C 

3 t
A 

= 0 ; 	t > 0; x 	0 	(3.1) 2—  

aCB 	DB 3 

3 2c
B  

a t = 0 ; t > 0; x 	0 	(3.2) 

where CA is the concentration of the solute B in phase A, 

CB the concentration of solute A in phase B, DA is the 

diffusivity of liquid B in phase A and D
B 
is the 

diffusivity of A in B. 

The energy equation is: 

a T A  a 2T 	s A  	t> 0 ; x 	0 	(3.3) t
A 	KA 37E2 	pACPA 

a TB 	a 2T 	sB  
a t 	KB 3)-72.- 	pBCPB 	

t> 0 = x .<0 	(3.4) 

where SA and SB are the volumetric rates of production of 

thermal energy by solution of B in phase A and of A in 

phase B respectively. 	Figure 3.2 shows the enthalpy-

concentration diagram for a partially miscible system. 

If the solution were ideal, the isotherm relating enthalpy 

to concentration would be a straight line joining points 
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a and b. 	The difference between the values of 

the enthalpy of the solution on the real curve and 

that on the ideal straight line for a given 

concentration, is the integral heat of solution per 

mole of solution O. 	This system, like many other 

partially miscible systems, has positive heat of 

solution in one phase and negative in the other. 

The amount of heat released during the mixing 

process depends on the change in concentration. 	If 

C is the concentration at a plane x of the model 

under study and p is the corresponding integral heat 

of solution, the volumetric rate of heat production, 

positive or negative, at that plane will be: 

s = p(.12) 	aC (3.5) M aC c  at 

where p is the density of the solution at the concentra- 

tion C and M is the molecular weight of the solution 

at the same concentration. 

On substitution of equation (3.5) into equations 

(3.3) and (3.4): 

;11A 	a2TA 	1, 	aQAaC — A 
at 	

K
A axe MA CPA  aCA at — 

aTB 	a2TB 1 	3QB 	
a CB 

at 	KB T;7— BCPB aCB at 

(3.6) 

( 3 . 7 ) 

These equations cannot be solved analytically unless some 

simplifications are made. 	According to the characteristics 

of the model, not only K but also M and Cp  will be assumed 

independent of C. 	The second simplification to the right 

hand side of both equations concerns the variation of the 

heat of solution with concentration. 	Figure 3.3 shows 

24. 
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the integral heat of solution - concentration diagram 

for the same system. 	Since for partially miscible 

pairs the interval of possible concentrations in each 

phase is small at temperatures not too close to the 

critical solution temperature, it is justified to 

linearise the heat of solution vs. concentration curve 

over the solubility range. 	This assumption reduces 

the curve to the dotted straight line shown in Figure 

30 3.3, and the term T-c- to a constant. 	As the heat 

of solution at C = 0 is equal to zero, the equation of 

the straight line is:- 

Q = Qr C 	(3.8) 

where Qr  = aa-g = const. 

A 	aCg 
Except for 3  a.Ct  and rp all the terms on the right- 

hand side of equations (3.6) and (3.7) are now constant 

and analytical integration is possible. 

For further treatment it is more convenient to change 

the variables C and T to the following: 

A = C - Co 
	(3.9) 

= T - To 
	(3.10) 

where Co and To 
are the initial concentration and temperature 

respectively. 

Calling: 

E = Pr/MC0 	(3.11) 

and substituting equations (3.9), (3.10), and (3.11) 

into equations (3.1), (3.2), (3.6) and (3.7), the following 

expressions are obtained: 



DAA 
- DA 

- DB 

KA 

KB 
;B 320B 

D2AA  

= 0 

= 0 

= EA 

= EB 

aAA 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

3t 

;AB 

axe 

a2AB  

;t 

;2A  

-7Tc7  

amA  
-577- —Eat 

;AB 
3t W7-  ;t 

3.3 	Initial and boundary conditions 

The initial conditions are: 

(i)  AA = 0 ; x ?. 0 

(ii)  AB = 0 ; x •c 0 

t 0 
(iii)  0A = 0 ; x 0 

(iv)  2B = 0 ; x •c 0 

The boundary conditions at infinity are: 

(v). 	AA = 0 	x = co 

(VI) 	AB = 0 	; 	x = -- co 

(vii) 0A = 0 	; 	x = m 

(viii) C4B = 0 	; 	x = - m 

26. 



At the interface the two phases are at the same 

temperature: 

(ix) 	0A = B 	x = 0 

Since the expected temperature gradients are small, 

the variation R of interfacial concentration with 

temperature may be assumed linear between the initial 

and final temperatures at the interface: 

C elk 
= 	const ,)T 	Ti - To  - =  (3.16) 

where G is the saturation concentration at Ti, the 

temperature at the interface, and Co is the saturation 

concentration at the initial temperature. 	Hence 

boundary conditions (x) and (xi) become: 

(x) eA - RA&A +- C AO. 	&C) 	; x = 0 

(xi) = RBI 	+ Cgs  - CBO 
where 

- co 
The last boundary condition is obtained from conservation 

of heat at the interface. 	The amount of heat released 

at the interface per unit interfacial area and per unit 

time is 

 

QT = D aCA  A 3x 
x=o 

A 	B 
+ D 2SE 

ax Q°  B 0.17) 
x=o 

where Q
o 
= 0 11  -r M 

  

(3.18) 

is the heat of solution per mole of solute. 

The heat released at the interface is transferred to both 

phases. 	Hence, combining equation (3.17) with Fourier's 

law of heat conduction, boundary conditions (xii) is, in 
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terms of variables defined by expressions (3.9) and 

(3.10),: 

(xii) 	- D  	Oo + DB 	'c 	3 B 1° = - 	
aRA 	k 	. 

A ax 	a 	ax 	B ax 	' 

0 

where k is the thermal conductivity. 

3.4 	Solution of the diffusion equations  

'The four partial differential equations are solved by 

applying the Laplace transform method. 	The transformed 

• equations are: 

d2-,67  - AA(o) + s AA - DA 	dx 	
= 0 	, (3.19) 

,2— 
u AB - AB(o) + s TB - DB 77177  = 0 	(3.20) 

ftA - aA(o) + 	EA - KA 
d  —JR-7  = EA ('-' AA(o)  + s'6A) (3.21) 

- B(o) + s "ffB - KB ddx2 = EB  (- An(o) + sTB)(3.22) 

From initial conditions (i) to (iv), equations (3.19) to 

(3.22) become: 

,2— s 	T = 0  
dx2  DA H (3.23) 

d
dx  ,7- AB 0 	(3.24) 2 	uB 

52
2  12As — = 
dx2 	KA 

0
A 	KA 

EA AA  

d
2 

	

0 	E dx2  - KB B KB 	B 6;3 

(3.25) 

(3.26) 

The solutions of these equations are: 

28. 
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DA  =, C1  exp (Vs/DA  x) + C2  exp (-Vs/DA  x) 	(3.27) 

TB  = C3  exp (Vs/DB  x) + C4  exp (-VE758  x) 	(3.28) 

EA  KA = C5 exp (VT7KA  x) + C6 exp (-VE7Ec x) 1-KA/DA  A 

(3.29) 

B = C7 exp (Ifi717; x) + C8 exp 	x) + 	EB 	T 
1-KB/DB B 

(3.30) 
The transformed boundary conditions are: 

	

(v)DA  = 0 	X = 00 

(vi) 	= 0 	X = - 00  

= 0 X = 

(viii) 	= 0 	x = - 

x = 0 

(x) TA  = RA  UA  + (CAO - CAO)/s ; x = 0 

(xi) TB  = RB  KB  + (C130  - cB0)/s ; x = 0 

(xii) - DTA/dx)0°  + DB  (dXB 	'13 /dx)Q°  = - kA  (d 	-1- kB(diiB/dx); -A  

x = 0 

Using conditions (v), (vi), (vii) and (viii), equations 

(3.19), (3.20), (3.21) and (3.22) become: 

T = C2 exp (-Vs/DA x) 
	

(3.31) 

B = C3 exp (Vs/DB 	x) 	(3.32) 
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KA  = C6  exp 	+ (EA/(1-KA/DA)) eA 	(3.33) 

KB  = C7  exp (VS/KB  x) + (EB/(1-KB/DB)) TB 	(3.34) 

The constant C2,  C3, C6 and C7 are determined from the 

four remaining boundary conditions: 

C2 = .• 
(EB  FB  /m)(PA  ( OdL44  -C )-RB  (dIk: -C )) + r A(1+1/hm)(C D BO 	AO AO 	AO AU 

 

r 	(1/i7 (1 + 1/hm) - EA  RA  FA  ) 	EBRBFB/m A  

where L = 	(Lewis number) 	(3.35) 

F 
	1 + 2 VE:  

1 + If 

2 DA 
r  = 

h2 = I<A  KB 

p,,
za.

c_A 
m =pBCpB  

On writing equation (3.5) as 

1 	1 C2  = 	C s 	2 
(3.36) 

constants C4, C6 and Cs become: 

C
3 
= 	(C12 + RC 	BO - CBO) - (CAO 	CAO) ) 8  

= 
1 	Cl 

3 
	 (3.37) 

where R = R /R' C A S 
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C6 	= 	((1-EARA/(1-LA)C12 - 	AO -CAO ))/RA  = (3.38) - s 1 ' 	 S C16 

C7 = (1 - EBRB/ (1-LB) { C
12  + RC  (CBO - CBO) - C oA - CAO] 

PRRBs) - (C BO - 

B 
= 1  C17  exp ( 

CBO-P4  Bs 1  cl s 	7 
(3.39) 

(3.36) to (3.39) with equations (3.31) 

$/s/DA x) (3.40) 

/s/DB x) (3.41) 

(-/KA x) + EA/11-LA) 'A  (3.42) 

I/1KB  x) + EB/(1-LB) 	TB 	. (3.43) 

Combining equations 

to (3.34): 

T= 1 C12 exp (- 

TB s = 1 13 exp ( 

A = 1 
s C16  exp 

The inverse transform of these equations, on 

reverting to the original notation (equations (3.9) and 

(3.10) 	are 

CA 	CAO = C2
1 erfc (x/2117) 	(3.44) 

CB 	CBO = C
13  erfc (-x/24713t) 	(3.45) 

TA - TAO = C16 	/i-",‹.-J erfc (x/2) +(EA/(1-LA))Cli erfc (x/2147) 

(3.46) 

TB-TBO = C17  erfc (-x/21T-BT) +(TB/(1-LOC
13  erfc (-x/2/7517) 

(3-47) 
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The four constants in these equations involve the 

heat and mass transport properties together with the 

heat of solution in each phase, the rate of variation 

of equilibrium concentration with temperature, the density, 

the heat capacity, the equilibrium concentration at the 

initial temperature, and the initial temperature and 

concentration. 	Equations (3.44) and (3.45) are of the 

same form as the equation for the concentration profile 

when heat effects are absent except for the difference 

in the constants. 	When the change of equilibrium concentra-

tion with temperature over a small temperature interval is 

equal to zero in both phases, constants C
2
1 
 and C3

1 
become 

equal to CA0  -CA0  and CB0  -C130  respectively and equations 

(3.44) and (3.45) reduce to the solution of the diffusion 

equation for ideal solution. 	This means that mass transfer 

is affected "only by the heat flux through the change in 

interfacial concentration with temperature. 	As for the 

temperature profiles, which are a consequence of non-

ideality in .the mixing process, their dependence on mass 

flux is more complex. 	The terms containing constants 

C1
6 
and C1

7 express the departure from the initial 

temperature due to diffusion of the heat generated at 

the interface, at a point x after a time t. 	The terms 

affected by constants C1
2 
and C1

3 
account for the 

differential heat of solution released by the change of 

concentration at the same point. 

Figure 3.4(a) and (b) shows the temperature profiles 

for the system methyl ethyl ketone when water is transferred 

from the saturated water phase to pure methyl ethyl ketone. 
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FIG. 3.4 	CONCENTRATION AND TEMPERATURE PROFILES IN THE SYSTEM  

METHYL ETHYL KETONE - WATER  



The profiles have been calculated with equations (3.44), 

(3.46) and (3.47) at 30 seconds after contacting the 

phases. 	The physical properties of the system are 

presented in chapter 5 and Appendix B. 

34. 



CHAPTER 4.  35. 

   

STABILITY ANALYSIS  

The study of mass transfer with thermal effects 

discussed in Chapter 5 shows that temperature gradients 

of a certain magnitude can be expected on contacting two 

partially miscible liquids. 	The system methyl ethyl 

ketone-water for which, as an example, theoretical 

temperature and concentration profiles were calculated, 

may be considered a representative water-organic solvent 

system from the thermodynamic point of view. 	The 

theoretical temperature gradients obtained for this 

system are of the same order of magnitude as the critical 

temperature gradient: that is the gradient at the onset 

of convection, as measured by Vidal and Acrivos (31)  in 

their study of the stability of shallow evaporating layers 

of propyl alcohol. 	Ying and Sawistowski(10 investigated 

the stability of binary systems under conditions in which 

the thickness of the layers was too large to be considered 

a controlling variable. 	They found that unstable systems 

develop turbulence at the interface immediately after the 

phases are brought into contact, and the intensity of 

turbulence was a function of the mass transfer driving 

force. 	These observations suggest that although the thick-

ness of the layers may be large, instabilities set in when 

the penetration depth of the temperature profile is still 

small. 	According to Pearson(27); when the thickness of 

evaporating layers is "as small as 1 mm, the onset of 

cellular motion could confidently be attributed to surface 

tension rather than to buoyancy". 	In the case of binary 

liquids systems the equation for the temperature profile 

developed in Chapter 3 establishes that the temperature at 
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the interface does not change with time. 	Since the 

depth of penetration of the temperature profile increases 

with time, the temperature gradient decreases in 

absolute value. 	So, even when the thermal thickness 

of.the layers is large enough for buoyancy forces due 

to thermal effects to become important, the temperature . 

gradient is in general too small to produce instability 

of that type. 	There may be buoyancy forces produced by 

changes in specific volume of the solutions with mixing, 

but these forces do not depend on temperature gradients 

of the magnitude considered. 

The previous considerations lead to the conclusion 

that interfacial tension forces are more likely to produce 

instabilities at the interface of binary liquid systems 

than buoyancy forces. 	Therefore, the stability of the 

interface will be studied with respect to interfacial 

tension disturbances,only. 

4.1 	Qualitative description of the mechanism of instability 

In order to analyse the qualitative behaviour of the 

disturbed system mass transfer in only one direction,will 

be' considered. 	Figure (4.1a) shows schematically the 

system to be studied. 	Phase B is saturated with liquid A, 

so that mass transfer takes place only from phase B to 

phase A. 	The heat of solution is assumed positive, hence 

the temperature at the interface is higher than that in the 

bulk and the gradient of temperature is negative in phase A 

and positive in phase B. 	If the rate of change of inter- 

facial tension with temperature, aT, is negative, a positive 

perturbation in the interfacial temperature will generate 

a local area of lower interfacial tension. 	Figure (4.1h) 
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FI G. 4.1 	MECHANISM OF INSTABILITY  
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shows thel.disturbed system. 	The temperature at points 

1 is greater than the undisturbed interfacial temperature, 

therefore they are points of lower interfacial tension. 

The force system at the interface is now unbalanced and 

fluid at points 1 will expand according to the tlarangoni 

principle. 	The movements are first parallel to the 

interface and then turn away into the bulk as the flow 

from two points 1 meet at point 2. At the same time 

liquid from the bulk is supplied to points 1. 	This 

liquid is at a lower temperature than the interface in 

both phases and lean in solute in phase A. 	This diff- 

erence in temperature is a stabilising factor since a 

decrease in temperature at point 1 increases its inter- 

facial tension. 	But if an element of liquid from the 

bulk reaches point 1 at a lower concentration than the 

interfacial value, an increase in mass flux will take 

place there and consequently, as the heat of solution 

is positive, there will be an increase in the heat 

production. 	The net change in temperature at points 1 

is the balance between these two opposite effects. 

However, while the element of liquid is moving towards 

the interface, mass and heat transfer are taking place 

in order to restore the concentration and temperature 

profiles disrupted by the convection current. 	Since 

KA/DA  > 1 for most liquids, heat transfer is faster than 

mass transfer and the concentration of the liquid 

reaching the interface will be relatively further 

removed from interfacial conditions than the temperature. 

This means that the destabilizing force will be generally 

stronger than the stabilizing cooling effect. 	Apart from 

the two factors already mentioned, the ratio of the 
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kinematic viscosities in a given system also plays 

an important role. 	The higher the viscosity the 

deeper is the penetration of momentum and therefore 

the lower the temperature and concentration of the 

fluid arriving from the bulk. 	Hence, kinematic 

viscosity affects the rate of heat supply and, via mass 

transfer, the rate of heat production at the interface. 

The situation is thus similar to that discussed before 

and the opposing factors are again in evidence. For 

the case under consideration a higher viscosity of 

phase A is therefore expected to enhance the destabilizing 

effect. 	For mass transfer taking place in the opposite 

direction, that is with phase A saturated, the general 

behaviour of the system will be the same provided the 

heat of solution of A in B is also positive. 	However, 

if viscosity is higher in phase A, the heat transfer 

effect is controlled by phase A whereas phase B is 

responsible for heat generation. 	The net effect is 

thus difficult to predict qualitatively. 	The above 

analysis leads to the conclusion that systems with 

negative rate of change of interfacial tensions with 

temperature and with interface behaving as a heat source, 

are likely to be unstable. 

For mass transfer taking place in the opposite direction, 

but with a negative heat of solution of A in B, the 

temperature gradient in phase A will be positive and that 

in phase B will be negative. 	Figure (4.1c) shows the 

relevant temperature and concentration profiles. 	When the 

temperature at the interface is perturbed by positive 

disturbances,local areas of higher temperature and therefore 

of lower interfacial tension will be created. 	The same 
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Marangoni movements as described before will be 

produced but now the liquid supplied from the bulk 

will be at a higher temperature and lower concentration 

than the interface. 	Consequently, the element of 

fluid arriving from the bulk at point 1 will supply 

heat but the increase in mass flux at that point 

will increase the rate of heat production. 	As this 

is now negative, it will tend to decrease the 

temperature there. 	Since in phase B, KB/DB  is also 

greater than one, the arguments used previously apply 

again, that is the process is mass transfer controlled. 

Hence, the stabilizing effect of the increase in the 

mass flux will predominate causing the original disturbance. 

to be damped. 	This pattern of behaviour will be 

affected by viscosity effects in a manner previously 

discussed. 	It may be concluded that systems with 

negative rate of change of interfacial tension with 

temperature and with interface behaving as a heat sink, 

are likely to be stable. 

The reverse conclusions are obtained from the 

behaviour of systems with positive rate of change of 

interfacial tension with temperature. 	These systems 

are likely to be unstable when the interface acts as a 

heat sink and vice-versa. 

For mass transfer taking place in both directions, 

that is if none of the phases is saturated, the signs 

of the temperature gradients are controlled by the net 

rate of heat production at the interface. 	The same 

arguments as discussed for unidirectional mass transfer 

apply for each phase. 	The reaction of the system to 
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perturbations in interfacial temperature will depend 

on the balance of energy at the interface. 

The above qualitative analysis of the mechanism of 

instability suggests that the stability of the 

disturbed system depends on the s±gn of the temperature 

profiles, the sign of the rate of change of interfacial 

tension with temperature, the viscosity ratio and the 

direction of transfer. 

4.2 	Description of the model  

The different mathematical approaches to the stability 

of surfaces to surface tension forces have been discussed 

in Chapter 2. 	Since in the systems studied the thickness 

of the layers does not seem to be a critical variable for 

the onet of instability and because of the mathematical 

simplifications associated with boundary conditions taken 

at infinity, the system will be assumed to consist of semi-

infinite media. 

The stability analysis involves the solution of the 

perturbed heat and mass diffusion equations. 	For the 

type of velocity perturbation usually applied in hydro-

dynamic stability analysis, the perturbed diffusion equations 

for the profiles represented by equations (3.44) to (3.47) 

have to be solved numerically. 	The generalisation of the 

Sternling and Scriven's and Person's analysis to include 

unsteady state conditions have shown that the stability 

criteria for systems with time-dependent profiles is the same 

as for linear profiles, but the size and the growth constant 

of the disturbance depend on the shape of the profile. As 

the purpose of this work is to predict the conditions which 

promote, or hinder, the onset of instability, it is there- 
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fore sufficient to conduct stability analysis on the 

assumption of linear profiles. 

In accordance with the above discussion, it is 

assumed that the system consists of two semi-infinite 

partially miscible liquid phased in contact along an 

interface of infinite extent. 	The phases are in 

thermal and chemical equilibrium at the interface. 

In the undisturbed state the concentration and temperature 

profiles are linear, thus implying a steady transfer of 

mass and heat. 	The interfacial tension is assumed large 

enough to prevent the interface from deformations. 	The 

model has the same characteristics as that described in 

Chapter 3. 	The system is assumed to be initially 

undisturbed. 	Two-dimensional infinitesimal disturbances 

are then introduced and the stability of the system with 

respect to such disturbances investigated. 	If the 

disturbance decays the system is said to be stable; 

if it grows the system is unstable. 

4.3 	Outline of procedure  

The mathematical problem may be formulated by 

perturbing the quiescent medium with a disturbance of 

a suitable kind. 	The resulting equation of motion will 

form a set of non-linear equations that can be linearised 

for small disturbances. 	The linearised equations can be 

solved by separating the variables. 	Introducing a stream 

function, of a form * = O (x) exp (jo(y) exp (ft) into the 

linearised equation, the problem is reduced to finding the 

solution for x). 	The quantity c< is the wave number and 

fi is the growth constant. The boundary conditions of the 

resulting differential equation of perturbation require the 
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absence of the x-component of the disturbance velocity 

at the boundaries, therefore the differential equation 

is an eigerwalue problem for the determinations of the 

quantity B. The interfacial boundary condition specific 

to mass transfer with heat effects in binary systems 

will contain the variation of interfacial tension along 

the interface. 	Since interfacial tension is a function 

of temperature, the distribution of temperature along 

the y-axis has to be found for the perturbed system. 

This requires the solution of the perturbed heat and 

mass diffusion equations. 	On combining these solutions 

with the solution of the equations of motion, the 

characteristic equation of the system is obtained. 	This 

equation gives the relation between the growth constant, 

the wave number and various system properties. 	It 

establishes under which conditions the disturbance will 

decay or grow and which type and magnitude of instability 

may be expected. 

4.4 	Equations of motion: 

The mathematical procedure applied to the hydrodynamic 

study of the model is similar to that developed by Sternling 

and Scriven (g ) for the study of ternary non-equilibrated 

liquid-liquid systems. 

For the conditions of the model the equation of motion 

reduces to the two-dimensional Navier-Stokes equation. 	In 

the absence of body forces this equation becomes: 

Du  D2u 
at 	v  TS; = 	TX' 	d  ( 77  (4.1) 
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3vav 	3v 
at 	

u 
 ax 

v 
 ay = 

a, 	v ( a
2u • a

2u 
TR-2- 

- P 	ay (4.2) 

where P is the pressure, v the kinematic viscosity 

and u and v are velocity components in the-direction 

x:and y respectively. 	Eliminating the pressure term 

by cross-differentiation and assuming that the disturbance 

is so small that the terms of second order of smallness 

may be neglected (creeping flow), equations (4.1) and 

(4.2) simplify to the following linear equation: 

a2v 	a2u 	a
3
v 	a3v 	33u 	33u 

V 	+ 	 ) (4 3) atax 	atay 	3x--; 	a:0172 	ax2ay 	- • 

The continuity equation is: 

3u 4.  3v _ 0  
ax ' ay (4.0 

For a potential field of velocity, the velocities may be 

expressed in terms of- the stream function T in the following 

way: 

	

u=-3T/ay 	v = 3T/3x 	(4.5) 

It should be noted that in a stationary medium the steady- 

state velocity is zero so that u and v represent the 

velocity perturbations. 

A stream function of the form: 

T =r(x) exp (lay) exp (13t) 	(4.6) 

is assumed to represent a single oscillation of the 

disturbance. 	In this equation, a is a real quantity 

defined by the expression 

a 
	211 	(4.6a) 

where X is the wave length of the disturbance. 	The 

quantity 0 is complex: 
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0 = 0r + i0. 
	(4.6b) 

whereBr istheamplificationfactorandB.is the 

circular frequency of the partial oscillation. 	The 

amplification factor determines the degree of 

amplification or damping of the disturbance with time. 

If Sr is negative for all values of a, the system is 

stable. 	If it is positive for some values of a, the 

system is unstable. 	If/y0 and Si  = 0, the instability 

grol&s. in place. 	This type of instability is called 

stationary. 	If Bi  V 0 and Br>0, oscillatory instability 

sets in, exhibiting temporal periodicity with period 211/B.f. 

The case of 8r=0 indicates marginal or neutral stability: 

the disturbance neither grows nor decays with time. 	If 

in addition 8i=0, that is B =0, the regime is referred to 

as neutral stationary stability and will he denoted in 

the subsequent development by subscipts NS. 	On inserting 

the stream function, equation (4.6), combined with the 

expressions (4.5) for the velocities, the time independent 

Orr-Sommmerfeld equation for two dimensional flow is obtained: 

io  4111 - 2a20
"  

4(o 	B 	 ' 
+ 	.r = -N; 	-a2 0) (4.7) 

where the number of primes represents the order of the 

derivative of with respect to x. 	Introduction of the 

dimensionless variable: 

?(= ax 

into equation (4.7) leads to: 



(o ,,  -S°) (4.8) 
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the solution of this equation for f3 	0 is: 

= Al  exp (X) + A2  exp (-X) + A3  exp (icx) + A4  exp (- X) 

     

(4.9) 

(4.9a) where P =A + 

  

  

When f3 = 0, the solution is 

NS = A5  exp (X) + A6  exp (-X) + A7X exp (X) + A8X exp (-X) 

(4.10) 

The disturbance is assumed to vanish at large distances 

from this interface. 	There is no slip and there is 

continuity of tangential stress at the interface, which, 

besides, is a streamline. 	These assumptions lead to the 

following boundary conditions: 

(i), (ii) 
	

PA =rT A = 
	X = 

(iii), (iv) 	=r  ,B  = - 0 ;, X 

(v), (vi) 	P A = 5°B = ° 	X= 0 

(vii)  I A 	(161'13 	X = 0 

; 
(viii) YY 

XYB - 5(YA 	ay ' 	X = 0 



where G-  is the shear stress and 6- 
Y 
 is the y component 

Y 
of the longitudinal surface stress (dynamic intefacial 

tension). 

The shear stress is guven by: 

f  DU7k  + aVA  
xyA =PA 'ay 	 ax 

( ay 
"siB ) 

xyB B ay ax 

(4.11) 

(4.12) 

where // is the dynamic viscosity. 	For the dynamic 

interfacial tension the Boussinesq formulation is 

adopted which postulates that the departure of the 

tension from its steady-state value depends on the 

rate of deformation of the interface: 

(4.13) 6- 	= 6- -4-  /is  017PYI yy o 

where //S  is the composite surface viscosity, and 6-0  

is the equilibrium interfacial tension. 	Deriving 

equation (4.13) with respect to y, a suitable expression 

for the right-hand side of boundary condition (viii) 

is obtained): 

DCYY  = aGO +/us  (a2v/ay
2
) 	(4.14) a 

Since it is assumed in the model that the equilibrium 

concentration is reached instantaneously when changes in 

temperature are produced and since temperature and 

concentration are dependent variables in binary systems, 

the interfacial tension may be considered as a function 

of temperature only. As the temperature variations 
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along the interface are assumed to be small it may be 

written that: 

Dao _ du o aT 	3T 
dT ay 'T 9y y 

(4.15) 

where aT  = du o/dT. 

Combining equations (4.11), (4.12), (4.14) and (4.15) 

together with boundary condition (viii): 

aT' 	+/Os (92v/y2)= /V A  011A  + avA) -VJB(a B  + aVB  ) 
ay' 	ay 	ax 	ay 	;Mr -) 

X = 0 	(4.16) 

Use of boundary conditions (i) to (vi) gives for a 	0 

y3 A 	A2  (exp (-X) - exp (-FAX)) 	; X 	0 	(4.17) 

= - A2  (1 - TA)/(i-pB) (exp X - exp (TBX)) ; X 6 0 

(4.18) 

The substitution of equations (4.6) and (4.17) into 

equation (4.16) gives, for P, 	0: 

r. 2 
= A2  a /V

A 
 (1)

A 
 — 1) exp (lay) exp 03t) 

-'x=0 

Pb .(-- (1 + DB) 	(1 tpA) 	a/0/20 (4.19) 

Similarly, for 0 = 0 
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-X) X 

X 

,% 

.5. 

0 

0 

(4.20) 

(4.21) 

Xexp r NSA = A8 

= NSB A8  X exp X 

aT ay 
f a TN  

X=0 • 1-1 	= 2 A8  0.217s1.;1" exp Ganss y) (1 1- (P px) *N5/9/30) 

(4.22) 

To find out the temperature distribution along the 

interface, here assumed unidimensional, it is necessary 

to solve the perturbed equations of diffusion. 

4.5 Equations of diffusion  

The equations of heat and mass diffusion for the 

steady state are: 

TA = T
o + E

A 
x 	x > 0 

(4.23) 

TB = T
o eB x 	x 4 0 

CA = CA + EA x 	x > 0 

(4.24) 

where 

CB = C.*  + B 
x 	x 4 0 

dt c  = 
dx 

£ =do 
dx 

T° z: temperature at the interface 

and T°  and C°  denote the undisturbed temperature and 

concentration. 	The temperature and solute concentration 



are assumed to have been perturbed by the - amounts 

T (x,u,t) and C (x,y,t) respectively, so that their 

instantaneous value is 

T = To + T (x,y,t) 

C = Co + C (x,y,t) 
	(4.25) 

The perturbed temperature profiles are described by 

the two dimensional energy equation: 

at + u aX   + V 717 = K 	+ aT 	DT 	DT . 	D2T a2T 	(4.26) 

and the perturbed concentration profile by the two- 

dimensional diffusion equation: 

DC 	ac + Q  ac 
= 

at 	ax 	ay 
a2C 	D2C D 	+ 	) (4.27) 

Inserting expressions (4.25) into equations (4.26) and 

(4.27) and neglecting terms of second order of smallness, 

the following equations are obtained: 

;Tv f a 2T 	D2Tv- 	dTo  4_ v  
at 	- 	' ay2  ) = 	u  dx 

DCO 	a 2C 	D2T 	° 	dCo 

at + D 	+ 	u 

	

.a372—) 	dx 

Since the velocity, the temperature, and concentration 

perturbations must be of the same nature 

T = P (x) exp (iay) exp (fit) 
	

(4.30) 

C = H (x) exp (lay) exp (13t) 
	

(4.31) 

Inserting these two equations into equations (4.28) and 

(4.29): 

f3 P" - (1 + 	) P = - ie 	(x) 	(4.32) a2K 	aK 

11" - (1,  + -1--) H = - aD 0 
i£ 

	

/ (x) 	(4.33) a2D 

5a 

(4.28) 

(4.29) 
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Both the above equations are of the same form. 

Sternling and Scriven give the solution to the mass 

diffusion equation, and this also applies to the heat 

diffusion equation: 

P =
9 
 exp (gX) + A10  exp (-gX) - nJ 

	
(4.34) 

Al2 exp (-qX) - 1I H  = Al2 exp (qX) + 	(4.35) 

where: 

q = (1 + k4)1/2  
• eD  

g = (1 + _1 )1/2 
c; K 

1 = iE/(aD) 	n = is/(aK) 

I = exp (qX)fexp 

J = exp (gX)Jexp 

Equations 	(4.34) 	and 	(4.35) 

(-2qX)fexp 	(qX) 	(dX) 2  

(-2gX)fexp 	(gX) 	(dX)2  

for each phase are: 

PA  = A9  exp (gAX) + A10  exp (-gAX) - nAJA  (4.37) 

PB  = B9  exp (gBX) + Blo  exp (-gE  X) - - n
B
JB (4.38) 

HA = A11 exp (9AX) + Al2  exp (-'AX) - lAIA  (4.39) 

HB = B11  exp (gBX) B12 exp  (-gBX) 13IB (4.40) 

Eight boundary conditions are necessary to determine 

the eight constants in equations (4.37) to (4.40). 	The 

first four are obtained from the assumption that the 

temperature and concentration disturbances vanish at large 

distances from the interface. 	In combination with equations 

(3.30) and (3.31), this gives 

(ix), (x) 	PA = HA = 	; 	
x = co 

(xi), (xii) 	PB = HB = 0 
	

X 
	

CO 

The temperature of the two phases are assumed to be the 

same at the interface in both the undisturbed and the 

disturbed states. 	Therefore, the temperature disturbance 
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at the interface is the same in both phases: 

(xiii) T(0 v t) = T 	(o y t) A 	'' 	B 	' 	; x= 0 

According to the linear dependence of the equilibrium 

concentration on temperature assumed in the model, the 

concentration disturbances are: 

(xiv) C A  (o,y,t) = RAT'A(o,y,t) ; x = 0 

V 
(xv) C B  (o,y,t) = •RBT B  (o,y,t) ; x = 0 

where R is the constant defined by equation (3.16). 

The remaining boundary condition is the equation of 

conservation of energy at the interface, discussed in 

detail with respect to boundary condition (xii) in chapter 

5,: 

	

D 	v 	v 
C 
A  Qo + D 3

C 
 B o

T 
 A (xvi) - - D  

	

- D
A 3x 	Q - k 	+ 

	

A B x B 	A 9x 

T v  B 
B ax  ; x = 0 

Conditions (ix) to (xii) lead to: 

	

A = A11 = B10 = B12 = 0 	(4.41) 

From equation (4.41), equations (4.37) and (4.38) become: 

PA A10 exp (-gAX) 	nAjA 	(4.42) 

PB  = B9  exp (gBX) 	nBJB 	(4.43) 

Combining equation(4.30) and boundary condition (xiii): 

PA  = PB  • x = 0 	(4.44) 

Inserting equations (4.42) and (4.43) into equation (4.44): 

A10 = B9 	nBJB + nAJA 	x = 0 	(4.45) 

From equations (4.30), (4.31), and (4.44) using boundary 

conditions (xiv) and (xv): 

HA = RAPA 	x = 0 	(4.46) 

HB  = RBPA 	x = 0 	(4.47) 
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Constants A12 and B11 are obtained by inserting 

equation (4.41) into equations (4.39) and (4.40) and 

combining the resulting equations with equations (4.46) 

and (4.47): 

A12 = RAPA - 1A  IA 	x = 0 	(4.48) 

B11 = RBPA - 1BIB 	; 	x = 0 	(4.49) 

On substituting equations (4.48) and (4.49) into 

equations (4.39) and (4.40) the solution for the x-

components of the concentration disturbance in phases 

A and B are obtained: 

HA  = (RAPA(o) - lAIA(o)) exp (-1AX) 	lAIA(o); x ?. 0 (4.50) 

HB  = (RBPB(o) 	1BIB(o)) exp (9,0) 	1BIB(o), x 	0 (4.51) 

It only remains to determine the constants A10  and 

B9  to obtain the four solutions to the perturbed diffusion 

equations. 	Equation (4.45) relates the two constants, 

a second equation is obtained from boundary condition 

.(xvi). 	On combining equations (4.30) and (4.31), with 

equations (4.42), (4.43), (4.43), (4.50) and (4.51), 

the four derivatives in boundary condition (xvi) become: 

dHaC 	 A  A = exp (iay) exp (Ft) 	- 	(IA  (RAPA(o) 	lAIA(o)-1AI (o) 
ax 	 dx 

; x = 0 

(4.52) 

ac 	 (ill 
B  = exp (iay) exp (fit) - 	(RBPB(0) - 1 I B B(°)  - 1B D(°)  

ax 	 dx 
; x = 	0 

(4.53) 
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P 

T a A - exp (iay) exp (13t) 
dPA _ 	g A 	- n J

r 
 (o) ; x = 0 

ax 	 ,dx 	A 10 	A A 

(4.54) 

P 

aT 	 dPB 	c 
B  - exp (iay) exp (st) 	= aB  B9  - nBJ B(o) -  ax 	 cox 

x = 0 

On inserting the four above equations into boundary 

condition (xvi) and combining the resulting equation with 

equation (4.45), the followina expression for constant B9  

is obtained: 

B
9 = ABnBJB(0) 	

DA0°AIAA  DB 
Q
BIBB  )/(QAB  - kA  gA kBgB) 

+ kA(JAA  - gAnBJB(o)) - kBn-J_( )/(0 16 . --AB - kAgA 	kBgB)  

(4.55) 

where 	Q
AB = DA0

o
ARAgA 

+ DBQo RBqB  

AA 
= 1A  (9AIA(o) + I A(o)) 

BB = 1B 	(cjBIB(o) + I B(0) 

AA = nA  (uAJA(o) + J B(0)) 

(4.56) 

The expression for A10  is obtained by introducing 

equation (4.55) into equation (4.45). 	The values of 

the integral I and its derivative with respect to x are 

given by Sternling and Scriven. 	Since integrals I and 

J are of the same form, the values of J, as well as the 

values of its derivative, may be taken from the table 

presented by these authors for I. 	This table is 

reproduced in table 4.1, with a change in notation. 

The integral, which can be either I or J, has been 

denoted INT. 	The constant a denotes either q or g. 

On inserting the values of the integrals I and J and 

their derivatives given in table 4.1 into equation (4.55) 



TABLE 4.1  

QUANTITIES APPEARING IN EQUATIONS (4.17) to (4.55)  

Phase A x 0 	Phase B x  

r)(X) /A 	# 0 • 	exp (-X) - exp 	AX) 

INT (X) /A 	# 0 	
exp (-X) 	exp (-PAX)  
a- 1  A 	a4A  - AL 

INT (0) /A 	# 0 	v8 2 - 
1  

( aA2 	1)  (a.--A2 -1A2) 

1 - P A exp 	(X) - exp (1(-Y" 
1 - 	B  

1 - gyp, e)? (X) .A exp (PTIX 
1 - pB a B - 1  a2B 	B 

(1 - p)( 2B - 1)  
(1 	-P B) (a2B  - 1) ( a2B  -1) B2 



TABLE 4.1 (continuation) 

INT (o)/A 0 	(1 -PA)(a2A +PA)  

(a2A 
- 1)(a2

A - 2A 

(1 -PA) (a2B  

(a 	- 1) (a 2B  --9 /3) 

(X)/A 	= 0 	X exp (-X) 	 X exp (X) 

INT(X)/A 	= 0 	X(X + 1) exp (-X)/4 	X(X - 1) exp (-X)/4 

INT (o) /A 	= 0 	0 	 0 

INT'(o)/A 	= 0 	-1/4 	 -1/4 



and combining the resulting expression with equations 

(4.36), (4.43) and (4.44): 

for 13 	0: 

57. 

kAEA  	 -kBEB 
KA(gA+1)(gAtyp;A) ygn+1)(geloB) 

PA  (o) = 
i  (1 

TA) 	DA  0°A PAaA  + DEQ°33RsqB  kAgA  kBgB  4- 

Q
o 
A £A  

Oq £ 
" B -B 

(gA4-1)(7A4  PA) 	(c113-4-1)(9BtPii3)  

pAQ0  ARA1A  + DBeERB(IB  kAgA  

 

k73,-a  B 

(4.57) 
for 0= 0 

PA(0) = aNS DAc)
o
ARA + 

PBCPB€B no A £A 
4. no c 

B -B 

DBO
o
BRB - kA - kB 

i 	-(DACPA6A 

(4.58) 

Equations (4.57) and (4.58) give the x-component 

of the temperature disturbance at the interface. 

The aim of this analysis is to determine the 

temperature distribution along the. interface in the 

disturbed state. 	On inserting equation (4.30) into 

equation (4.25), the derivative of the perturbed 

temperature with respect to y at the interface is: 

aTA 
y 

iaPA(o) exp (iay) exp (1t); x = 0 	(4.59) 

Since the temperature at the interface is the same 

for both phases, 3T
A
/Dy is equal to aTB/ay. 



/gAA)  	(P C c /q  ) - 
pACPAcA  - (11,A) 	B PB B -BB 3T = 

3y zi  

Inserting equation (4.57), and (4.58), into 

equation (4.59): 

for 13 y 0: 

58. 

(Q°AEA/gAA) 
4.  (no D-c D

/c1DB) 
	

x = 0 (4.60) 
Z
1  

for (3 

3T _ pACPAcA 	pBCPBEB 	QoA£A  + QoDED 	; x = 0 (4.61): 
ay 4 (DA Q

o
A RA D Qo R - 	) B D B -A -B 

where 

gAA = (gA 	1) (gA + DA) 	gED 
	+ 1) (gp 	PE) 

(4'.61a) 

(IAA 	(cIA + 1)  (qA 
	 gBB  = (qB  + 1) (c1B  + DD) 

ZI  = DA  QoA RASA  + DB
oB  RBc1B  kAgA  - kBgB 	(4.61b) 

Equation (4.60) and (4.61) represent the desired temperature 

gradient at the interface. 

4.6 	Characteristic Equation 

Inserting equations (4.60) and (4.61) into equations 

(4.19) and (4.22), and rearranging into dimensionless form, 

the characteristic equation is obtained: 

for 0 	0 
(1/g AA)  - (1/sm gBB)  

	

M - 	 
Z
2 
Z
3 

(EA-AA) - EB/0
o
CBE) 

(4.62) 



for IS = 0 

59. 

NNS = 
1 (1/sm)  - (LA - LB Q°C) EA/ eA 

 

 

8 Z 	Z - 20 30 

 

(4.63) 

where: 

Z2 = NA qA + NB qB - gA  gB/h2m 

Z20 = NA + NB - 1 - 1/h
2
m 

z3  = 1 + pA  +.(1 + :pp) (l/B/pA) + act/s//021  

Z30 = 1  + (/S/PA) 	aNS f/S/2/6.A 

// AKA M = 	a
2 

GTEA 

(4.63a) 

NA  = EARA/LA 	 (4.63b) 

,„ NB  = EBRB/Q cr 2  LA  ; 	=EA/EB  ; Qoc  = o Afu
o 
 B 	(4.63c,d*,e) 

A' m, h
2 and  r2 are as defined in chapter 3. 	The 

temperature and concentration profiles in equations (4.62) 

and (4.63) are linked by the energy balance at the 

interface: 

DAEAQ A + DBEB B = - kAcA  + kBeB 	(4.64)  

Combining this equation with the terms containing the 

concentration profiles in equation (4.63), the following 

expressions are obtained for mass transfer taking place 

in one phase only: 

EAEA/cA = - LA(1 - 1/h
2sm) ; phase B saturated (4.65 

EA  EB /cA- 
Qo C = - LA r

2 (1 - 1/h2sm);phase A saturated 
(4.66 



for/3 = 0 
2 

1 - (1/sm - L2.7. (1 - 1/h sm) 
MNS - 8 Z20 Z30 

(4.69) 

NA + NB - 	V 1°A CPA  KA Tv 

00 D  Cv + Qo D Cv 
- AA A - BBB 

60. 

Introducing equations (4.65) and (4.66) into equations 

(4.62) and (4.63): 

for r 0 

(1/g 
M = 	 

- (1/sm gBB) 

 

LA 

Z2 Z3 

1T (1/c1AA) 1/h2sm  

22 Z3 

(IBB (4.67) 

   

where 1.1. = 1 for phase B saturated 

= r2 for phase A saturated 
	

(4.68) 

The dimensionless groups as defined by equation (4.63a) 

is the inverse of the Marangoni number with the character- 

istic linear dimension represented by 1/a. 	As the character-

istic equation has been developed for semi-infinite media, 

there is no other length scale to which this number could 

be referred to. 	The Marangoni number may be interpreted 

as the ratio of the destabilising surface tension forces 

to the stabilising viscous forces. 

From equations (3.11), (3.16), (3.35), and (4.63h, c, e) 

the dimensionless numbers NA and NB may be written as: 

('4.70) 



6 1 . 

Physically, this group represents the ratio of the 

change in the rate of heat production with temperature 

to the heat flux in phase A associated with the 

temperature perturbation. 

' Equations (4.62) and (4.63) establish the relation 

between the wave length of the disturbance and the 

amplification factor. 	Unfortunately equation (4.62) 

is implicit and a trial and error technique is 

necessary to find out the pair of values of a and $ 

for a given system. A detailed study of the behaviour 

of equation (4.62) under diverse physical conditions 

will lead to the understanding of the role played by 

the physical parameters in the stability problem. 

Since the amplification factor f3 always appears 

divided by a2 in the equation (4.62), it is convenient 

to define a new variable: 

= 	 (4.71) 
0( KA 

Combining the dimensionless wave number, M, with q 

another dimensionless group G is defined: 

(4.72) G = Y,M .ity/(creA) 
The group G may be regarded as the dimensionless growth 

constant. 	In terms of the new variable Y.  the groups 

P, q and g, defined by equations (49a) and (4.36) 

respectively, become: 

aA 	gB = )1 +Y 	= )1 + h2 

= A +3 Y- 
17 

2.2 pB  = 1 + e 3 If (4.73) 

gA  = 	+ LAY 	qB  = Al + r2LAY- 



62. 

where: 	h2 = KA / KB 	e2 =VA/)' B 

i/j2 = PA/ KA Prandtl number r
2 = DA/DB 

The four terms defined by expressions (4.61a) 

combined with equations (4.73) are: 

(gA 	
1
)
-1 (

gA4-PA
)-1 
 = (gA -1)  

(ge 	
-1  

1) 	(ge 	
-1

PB ) 	= (ge-1 ) 

(gA + PA )  

(cIA+  1) 
-1 

 (cIA+PA)  —1= ((If" 	/ (c1A+PA) LAY  

(cle 1) -1 (q13+PB 1= (c1B-1) 	/ (c1B+PB) r2  

(4.74) 

Inserting equations (4.75) into equation (4.62) and 

combining with equation (4.73), the following expressions 

for G are obtained: 

for mass transfer in both directions: 

(gA G - 
- 1)/(gA+pA) - (gB-1) / smh2  (gB  + pB) 

 

Z2 Z3 

Z2 Z3 
(4.75) 

for mass transfer in one direction only: 

(gA  - 1) / (gA+pA) - (a-13  - 1) / smh
2 (a + p ) 

-B 	B  G - 
Z2 Z3 

LA11 (1 - 1/h2  ms) (qk  - 1) / (qk+ Pk)  ( qk  + 1) 

Z2 Z3 (4.76) 



where subscript k = A 	for phase B saturated 

k = B 	for phase A saturated. 

Equation (4.63) is the limit of equation (4.62) for 

R. = 0„ that is for ZS" = 0. 	A study of equations (4.62) 

and (4.75) in the vicinity of the point 	= 0 and for 

large values of Y will give information about the behaviour 

of binary systems with respect to stationary and oscillatory 

instabilities. 

4.7 Limiting behaviour of the characteristic equation  

The development of the expansions of equation (4.62) 

for small and large values of y leading to the equations 

presented in this,section are presented in Appendix A. 

4.7.1. Small values of y  

For y 	0 equation 4.62 becomes: . 

63. 

M = 
1 - (1/sm) 	(EA-EB/ec) EA/EA 

(1 - fy) 	(4.77) 

  

8 Z20 Z30 

where: 

f = 
1 - (h2/sm) - (EA  - E r

2/0o 
C A  

Z4 cA 

, - 	(e2/sm) 	(EA  - EB e
2  /Q ) EA  

4 Z4 EA 

EA  (RA  + RB  / Q°C  )- 1 - 1/m 

2 Z20 
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1 + (e2p B/i0A) 7 2  

4 Z30 
	 (4.78) 

where: 

Z4  = 1 - (1/sm) - (EA  - EB/Qoc) EA/EA (4.78a) 

The first factor in equation (4.77) is, according to 

equation (4.63), the dimensionless wave number for 6 = 0. 

This is the wave number corresponding to the neutral 

stability regime and is denoted by N. 	Thus, equation 

(4.77) may be written as: 

M = MNs (1 - fy) 	; 	for y -9- 0 	(4.79) 

Equation (4.79) may he interpreted as the first two 

terms of an expansion of the function M(y) in a Maclaurin 

series. 	Then the factor -f may be regarded as the 

derivative of M(y) with respect to y at the point y = 0. 

When mass transfer takes place in only one direction 

the corresponding expression for MNs is given by equation 

(4.69). 	Combining equation (4.78) with equations (4.65) 

and (4.66), the expression for f for unidirectional mass 

transfer becomes: 

f - 1 
	(h

2
/sm) - LA7 (1 - 1/h

2sm) 

Z5 
2 
D (1 	e2/sm) - LAb (1 - 1/h

2ms) 

4 Z5 

EA (RA.+  RB/0
o
C) - 1 - 1/m 

2 Z20 

. (1 + e2 	2pB/pA) 3 

4 Z30  (4.80) 
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where r = 1 and b = 1, for phase B saturated 

r = r2 and b = r2e2, for phase A saturated 

Z5 = 1 - (1/sm) - LAn (1 - 1/h
2sm) 

Inserting equation (4.79) into equation (4.72), the 

dimensionless growth constant becomes, for small values 

of y: 

G = MNS 
	

f Y
2
) 	 .(4.81) 

4.7.2. Large values of Y  

For y 	. 	, equation (4.62) becomes: 

[1/(1 + j). 	1/smh (h+je)7  

	

Z6  Z7  j 	A EA 

£A/ (j + 	EB/ec  r (je + r11.c)-  

Z Z j if-  EA  

[(je 	

7 	A A 

Rje + 1)/(j + 1) - (1/smh2)]/1  B  
22 Z6  Z 7  j t, A 

[£A (je +/-c)/(j 	/171i) 	2B/CfcrIPB 
2 .2 Z6  Z 7  3,0ALAEA  

1 	[(h+j)/sra](i +je)1 - EA  (EA  -EB  /0
o 
cr

2 ) C
ALA 

2.2 Z6 7 Z 3 

1/(1+j) - 1/smh(h+ej) 

2.2 	a/Ls Z Z 3 4/ 6 	7 / A 

EA/(j+iLA) -EB/Q°Br (je+riLA) -5/2 

 

2 .2 Z Z 3 6 7 EA 

 

(4.82) 

M 

Y
-2 



where: 

Z60 	= (RA  + RB • /Qo ) EA  /L A 	1 -1 /Fun 
	(4.82a) 

Z70  = (e 	B//P) + 1 
	

(4.82b) 

66. 

Combining equations (4.65) and (4.66) with equation 

(4.82), the expressions for unidirectional mass transfer 

are obtained: 

(ei/T7A-  - h) (1 + j) 	smh2  (1/LA  - 1) (h + je) 	-2  
M - 	  

Z6 Z7 Z8 (h + je) 

r[srth2 	- 1) + j+ 111/13/pn  + 1 
2 Z8 (e + 1) j 	

(e2 - 1) 
Z6 Z7 

 

(eiLA  -h)(1+j) 	smh2 	A 
r-- -1) (h+je) 

at/ Z6  Z7 2  Z8  3 BA 	r S 
--5/2 

 

 

  

(4.83) 

for phase B saturated 

where Z 8  = (1 + j) (j + /T-) h2sm A 

and 

(4.83a) 

(riLA  - h) (1 + j) - smh2  (rifi - e) (h + je) 
M - 	  

Z6 Z7 
Z9 

(je + r/LA) 

smh2 (h + je)/) B/A/A 	j + 1 

Z6 77
2 Z9 (e + 1) j 

A 	 A  - h) (1 + j) 	smh2  (rIT- 	e) (h 	j;a )  
a-5/2 

2  Z6  Z7. 79  jiJA  

for phase A saturated, 

(e2 - 1) 
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where Z9 = (1 + j) (h + je) 
	

(4.84a) 

Equations (4.82) to (4.84) have the form: 

M = a y-2 + b y-5/2 
	

(4.85) 

Combining this equation with equation (4.72), the 

corresponding expression for B is: 

B = aMy
-1 	b y-3/2 
	

(4.86) 

4.8 	Analysis of the characteristic equation 

When the values of the physical properties of a 

given system are inserted into equation (4.75), equation (4.72) 

determines the complex growth constant 13 for each wave 

number a. Apart from a and 3, which have been defined 

in equations (4.6a) and (4.6b) respectively, it is 

interesting to introduce their ratio: 

c = P/a = cr + ici  

Here c determines the velocity of damping or 

amplification of the disturbance and c
i denotes the 

velocity of propagation of the wave in the y direction. 

Table 4.2 shows possible combinations of values of Pr 

and Pi. 	When 13r<0 .and 13r< 0, the amplitude and 

velocity of propagation of the disturbances decay with 

time. Hence, case 1 describes a stable system. 

Table 4.2 

Case Sr Si  cr c. Observations 

1 <0 0 <0 “) Stable system. 

2 >0 =0 >0 =0 Disturbances grow in place. 

3 =0 =0 =0 =0 Neutral stability regime. 

4 =0 > 0 =0 >0 Neutral oscillatory regime. 

5 >0 > 0  > 0  >0 Distur)ances crow and 
translate. 
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In cases 2 and 3 the velocity of propagation is 

equal to zero. 	Therefore, the disturbance remains 

in place and the resulting regime of instability is 

called stationary or convective. 	Cases 4 and 5, 

in which the disturbance displays a propagation 

velocity ci  >0, represent the oscillatory regime. 

In both regimes, the case 0r=0, wherein the disturbance 

neither grows nor decays, corresponds to the minimum 

wave length for which the system is unstable. 	Therefore, 

the study of cases 3 and 4 is of special interest 

because they mark the boundary between the stable and 

the unstable state for a given system. 

Equation (4.72) may be written as: 

(Mr 	+ iM.) (yi2  +y r2) = G r yr 	G.y +(G.yr 	G r
y.) i (4.87) 

Since N is the dimensionless wave number, and this is 

a real parameter, the component Mi  must he equal to zero. 

This condition requires the imaginary component of the 

right hand side of equation (4.87) to be equal to zero, 

that is: 

G.yr 	G 
r
y. 	= 0 	 (4.88) 

The three solutions of equation 	(4.88) 	are: 

(a) for yr 	
0: 

(b)  

yi = 0 
	(and consequently Gi  = 0) 

for yi 	0: 

(4.89) 

yr = Gr = 0 
(4.90) 

(c)  for yi  # 0 and yr  0 

Giyr  = Gryi (4.91) 
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. Solution (a) corresponds to the stationary regime, 

case 2, and solution (h) to the neutral oscillatory 

regime, case 4. 

4.8.1. Case (a): yr 	0, yi  = 0. 	Stationary regime 

The neutral stability regime (P.r=0, f3i=0) represented 

by equation (4.63) is a special case of the stationary 

regime. 	As stated before, the wave number of neutral 

stability represents the minimum wave length for which 

a system shows stationary instability. 	Disturbances 

of larger wave length will grow with time, that is yr=0 

for a "NS. 	Hence, equation (4.63) establishes the 

conditions for the onset of stationary instability and 

its analysis will lead to the stability criteria with 

respect to the stationary regime. 

Since the wave number must be real, and MNS contains 

a2NS, the right-hand side of equation (4.63) must have 

the same sign as MNS. 	According to equation (4.63a) the 

sign of M depends on the signs of Clip andA' 	On the 

right-hand side of equation (4.63), the values of the 

rate of change of equilibrium concentration with temperature, 

RA and RB, vary from 0.01 to 0.1 g mol/
oC, the Lewis 

number is around 100, and the values of FA range between 

1 and 10 °C 1/g mol, these values being typical for most 

binary liquid systems. 	Therefore, the values of the 

dimensionless groups NA  and NB  are smaller than one and 

the denominator of equation (4.63) is negative. 	The 

equation for unidirectional mass transfer - equation (4.68) -

is more suitable than equation (4.63) to analyse the sign 

of the numerator because it does not contain the concentration 

profiles. 	Since s, the ratio of the temperature profiles, 
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is always negative, and all the other parameters are 

positive, the two terms in the numerator of equation 

(4.68) containing s are positive. 	Since r2 and h2 

range between 0.5 and 5 for most pairs of liquids, 

the negative term containing LA  will be much larger 

than the addition of the two positive terms and the 

numerator will be negative. 	Conseauently, the right-

hand side of equation (4.63) is positive for any 

direction of transfer. 	Therefore, for stationary 

instability to be possible, M must be positive. 	If 

M is negative, the system is stable with respect to 

stationary instabilities. 

The dimensionless wave number is positive when 

aT  andEA have the same sign and negative when their 

signs are opposite. 	If the heat of solution of 

the liquid A in B has the same sign as the heat of 

solutions of B in A, the sign of A  does not depend 

on the direction of transfer. 	In such a case, 

depending on the sign of aT, the system will he either 

stable or unstable with respect to stationary instabilities 

in both directions of transfer. 

Table 4.3A, B, and C contain the factors which define 

the signs of Mr, Mi  and Gr  in equations (4.79) and (4.81) 

in their unidirectional transfer form, and equations (4.83), 

(4.84) and (4.85). 	In the table, according to the 

previous discussion, the sign of Z20 defined by equation 

(4.82a) is negative and the ratio s is presented in terms 

of its absolute value: s 	is . 	In addition, to 

simplify the forthcoming analysis, the term containing 

/1  has been neglected. 	This is equivalent to assuming 

that the surface deformation term in the I3oussinesq 

approximation, equation (4.13), is small compared with 



TABLE 4.3 

LIMITING BEHAVIOUR OF EQUATIONS (4.67) and (4.76)
* 

Part A: Mr 

Yi 	Direction of 	Mr Yr transfer 

40 =0 B4A 

A4B 

- 1 '+ (1/islm)-LAA(1 + 1/h
2
Islm) 

=0 4-0 B4A 

A4-B 

=0 	B.+A E"e1/7/T -"."""/";-"4- je".12/slildY*-2  
A-*B 

BrILA 	h)(1 + 	+ (r/E; - e),  (h + je)Otsirti.] Yi  -2 

4-0 	B-i.A 	De/ LA  - h)(1 + j) + (/ LA  - 1)(h + je)h2 lstm Mer-2  

A-03 	[(r/LA 	h) (1 + j) + (r/LA  - e) (h + je)h2 isimIer-2  

Inherent positive factors are omitted. 



TABLE 4.3 (continuation) 

Part B: M. 

Yr 	Y. Direction of Transfer M. 1 

+0 	=0 	B+A 

A+B 

=0 	B+A 

A+B 

=0 	B+A 

A+B 

4co 	=0 	B4-A 

A÷B  

0 

[ 1 + (10 s km) - LAn (1 + 1 /h2  Is Im) fyi  

11 /1,11(e2_1.,_ 
T1-5/2 
. + [j + 1 + h21s1 m (1 -1.1LA)

1 

rh/PA 	I 

+ 	1 	+ h21slm (h + 	 /vB///Al /,A  (e
2 - -- 1) Y- 

-5/2 

0 



Y r 

+ 	i s, 	m h2(1 e2 	1)y.-3/2 WLAPB/PA 

+ isl 	m h2 	(h + je)/U B/pid (e2 	1)y.-3/2 

h) (1 .+ 	j) + (r/LA  - e) 	(h + je)h2 isimlir-/  

h) (1 + j) (riLA  - e) 	(h + je 112  (s)ml 

-[j + 1 

Be/LA  - 

[(r/LA  - 

TABLE  4.3 (continuation) 

Part C: G
r 

Direction of transfer 	Gr 

-*0 	=0 	B+A 

A÷B 

=0 	+co 	B÷A 

11 /2.+B 

=0 	+co 	B+A 

A+B 

+w 	=0 	B-0A 

A+B 

[1 + (1 /is( m) 	LAB (1 + 1/h2 (slmlyr  

—El + (11s1m)— LAri (1 + 1/h2ist14.1fi, 2'  



the change of interfacial tension with temperature. 

It must be noticed with respect to the values of M 

or G for y = 0 that they may correspond either to 

= 0 or a -4- co. 	The first possibility corresponds 

to aNS. 	In both cases G, which is equal to yN, 

is equal to zero and the stationary disturbance does 

not grow with time. 	There may be other possibilities 

of G = 0 for y
r 0 when the numerator of equation 

(4.75) is equal to zero. 	It may be seen in table 

4.3 (C) that the sign of Gr  will, in general be 

positive for both yi  = 0, yr+ 0 and yi=0,yr4co. 	Con- 

sequently, there may be none or an even number of 

eigenvalues of Gr. 	Since the parameters appearing 

in the numerator of equation (4.75) are numerous, 

an analytical determination of the conditions for 

G = 0 when tyr 	0, is not possible. 

4.8.2 Case (b): yr  = Gr  = 0 

Since yi 	0, this case represents the neutral 

oscillatory regime. 	As before, the analysis will be 

carried out for mass transfer taking place in one 

direction only. 	From table 4.3(C), it can be seen 

that for the limit yr  = 0, yi4.0 the sign of Cr  is 

positive in both directions of transfer, for the 

ranges of magnitude of the parameters j = 1/1707A  is 

in general smaller than one. 	Since LA»1, in the 

limit yr=0,yi.4., Gr  has the same sign as (e2-1) for 

transfer from phase B to phase A, and the sign of 

(e
2
-1) for the opposite direction of transfer. 	It 

may be concluded that if e241 there is at least one 

value of 	for which Gr = 0. Yi For mass transfer 

74. 
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in the" direction A B, if e2>1 there is at least 

one eigenvalue of Gr, but there may be an odd number 

of them. 	Therefore, binary systems are always 

unstable with respect to oscillatory instabilities 

when mass transfer takes place out of the phase of 

higher viscosity. 

4.8..3 Case (C): yrGi  = y.G r, y. 	
0, y

r 	
0 

This case represents the oscillatory regime and 

corresponds to case 5 in table 4.2. 	Since this is 

a general solution of equation (4.88), it is interesting 

to find out under what conditions cases (A) and (B) 

are particular solutions of this general case. 	The 

analysis of case (B) showed that there is always 

one unstable direction of transfer with respect to roll 

cells. 	Consequently, case (B) is a particular solution 

of case (C). 	For stationary instability to be possible, 

case (A), at  and EA  must have the same sign. 	Therefore, 

stationary instability is not a particular solution of 

case (C), when the signs of aT  and EA are  not the same.  

4.8.4 Summary  

The conclusions of the stability analysis suggest a 

criteria of stability that can be summarised as follows: 

(i) Stationary instabilities are promoted by positive 

heat of solution, i•e• negative temperature gradient 

in the upper phase, in systems with a negative change of 

interfacial tension with temperature and by negative heat 

of solution, i.e. positive temperature gradient in the 

upper phase, in systems with a positive change of inter-

facial tension with temperature. 

(ii) Oscillatory instabilities are most likely to occur 



when mass transfer takes place out of the phase of 

higher viscosity. 

(iii) Systems may be stable in both directions of 

transfer when the heat of solution and the change 

of interfacial tension with temperature are of the 

same sign, provided the ratio of viscosities is equal 

to one. 
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CHAPTER 5  

STABILITY ANALYSIS OF SELECTED SYSTEMS  

The equations developed in chapters 3 and 4 are 

applied in this chapter to the stability of six 

liquid pairs selected from the 46 systems investigated 

by Ying and Sawistowski(16) 

Since binary systems exhibiting instabilities in 

one direction of transfer are also unstable when mass 

transfer takes place in both directions simultaneously, 

the stability analysis will be carried out for uni-

directional mass transfer only. 

In order to solve the characteristic equation for 

mass transfer in only one direction, equation (4.67), 

the temperature profiles were developed for unsteady 

conditions. 	They are, therefore, non-linear, and 

the profiles obtained from equations(3.46) and (3.47) 

have to be linearised. 	In section. 5.3 the concentration 

and temperature profiles for the selected systems at 

an initial temperature of 25 °C are computed and the 

temperature profiles are linearised using a standard 

technique. 

The determination of and the literature sources for 

the values of the physical parameters appearing in 

equations (4.67), (3.46) and (3.47) are described in 

section 5.2. 

The stability analysis of the six selected systems 

is reported in section 5.4. 
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5.1 	Selection of systems  

The systems selected were: ethyl acetate water 

acetylacetone-water, isobutanol-water, methyl ethyl 

ketone water, cyclohexanol-water and hexane-aniline. 

The choice was made on the basis of the following 

considerations: 

(i) The system should belong to different categories 

in Ying and Sawistowski ts(16)  classification of 

binary systems according to the intensity of the 

interfacial activity. 

(ii) The liquid pairs should be representative of the 

following cases: unstable in one direction of 

transfer only, unstable in both directions of 

transfer and stable in both directions of transfer. 

(iii) It is desirable for the systems to cover a wide 

range of values of the physical parameters. 

Table 5.1 summarises the results obtained by Ying 

and Sawistowski on intensity of interfacial convection 

and directional effects for the selected systems. 	The 

results of the observations for simultaneous mass transfer 

in both directions are reported in decreasing order of 

intensity inthe column labelled "Intensity of interfacial 

convection". 	The system acetylacetone-water shows 

instabilities of the most intense type when acetylacetone 

is transferred from the water saturated acetylacetone 

phase to pure water and is stable in the reverse direction. 

A schlieren photograph of the plane interface of this 

system after two minutes of contacting the phases is 

shown in figure 5.1(a)(9 ). 	The systems cyclohexanol- 

water and ethyl acetate-water belong to the same category, 



TABLE 5.1 

CLASSIFICATION OF THE SELECTED SYSTEMS(16) 

Liquid A Liquid B Intensity of inter- 
facial convection 

Observations for direction of transfer 

A 	B 	-B -0- A 

acetyl acetone water interfacial turbulence turbulence dirfusional 

cyclohexanol water convection cells stationary cells stationary cells 

ethyl acetate water convection cells streaks drifting cells 

hexane aniline streaks streaks streaks 

isobutanol water diffusional diffusional diffusional 

methyl ethyl ketone mater diffusional OP. 
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showing convection cells when mass transfer takes place 

in both directions simultaneously. 	For mass transfer 

in only one direction the system ethyl acetate-water 

is less active when ethyl acetate is transferred into 

water, while the cyclohexanol-water pair exhibit the 

same intensity in both directions. 	Figures 5.1(b) 

and (5.1(c)(16)  show the interface of the systems ethyl 

acetate-water and cyclohexanol-water. Compating the 

two interfaces the difference between roll cells and 

drifting cells can be realised immediately. 	The system 

isobutanol-water is stable in both directions of transfer 

and the pair methyl ethyl ketone-water was not investigated 

for directional effects. 

5.2 	Physical properties  

The physical properties appearing in equations (3.44) 

to (3.47) and (4.67) were taken from experimental data 

reported in the literature. Whenever possible when 

data were not available they were either calculated with 

approximate equations or measured experimentally. 

The heat capacity and the heat diffusivity of all the 

saturated solutions and the viscosity of the saturated 

solutions in the systems cyclohexanol-water and methyl 

ethyl ketone-water were estimated assuming a linear 

variation of their value with molar fraction. For 

example, the heat capacity of the saturated phase A was 

assumed to be:- 

C*pA = xA
* CpA + (1 - xA*) CpB 

	(5.1) 



where xA
* = molar fraction of A at saturation. 

CpA and CpB = heat capacity of the pure liquids 

A and B. 

Table B1, appendix B contains values ofparamettrs 

p, C 
P'  
,P,Liand K for the pure liquids and tables B2 

and B3 contain the same properties for the saturated 

solutions. 

5.2.1 Density  

All data for the pure liquids at 25 °C were taken 

from experimental data reported in the literature. 

For the saturated solutions density measurements were 

made using a 50 ml. standard specific gravity bottle. 

The weighings were performed using an automatic 

+ 
balance reading - 0.0001 g. 	The densities of the 

saturated solutions were measured at 22, 25 and 28 °C. 

The data at 22 and 28 °C were needed for the calculation 

of interfacial tensions. 	The results for saturated 

liquids presented in figures 5.2 to 5.7 are the average 

of at least two determinations. 

5.2.2 Heat capacity 

The data for pure acetylacetone and cyclohexanol were 

not available in literature. They were calculated with 

the help of the additive contribution method of Johnson 

and Huang(39). 	The method predicts the heat capacity 

of organic liquids with 5 and 14 per cent average and 

maximum errors. The data for the saturated solutions 

were estimated using equation (5.1). 
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5.2.3 Viscosity 

The data on dynamic viscosities for pure and 

saturated ethyl acetate-water,isobutanol-water, and 

hexane-aniline pairs were determined by Austin(" 

and the data for pure and saturated acetylacetone- 

water by Atagiindiiz(42), all at 25 oC. 	The data 

for pure cyclohexanol and methyl ethyl ketone were 

reported in the literature and the corresponding 

values for the saturated organic and aqueous solutions 

were calculated with the help of equation (5.1). 

5.2.4 Thermal diffusivity 

Data available in literature are reported as 

thermal conductivity. 	The thermal conductivity of 

pure acetylacetone and cyclohexanol were calculated 

using Vargaftik's modification of Palmer's expression 9): 

k = 1.034 C p4/3/a M1/3 
	

(5.2) 

where k is expressed in Btu/hft deg F, Cp  in Btu/lb deg F 

and p in g/cm3, and a is an abnormality factor at 30 oC 

which is defined by: 

a = AHvb/21Tb 	(5.3)  

where AHvb  = latent heat of vaporization at the normal 

boiling point, (cal/g mol) 

Tb = normal boiling point, °K. 

For temperatures other than 30 °C a may be assumed to 

vary linearly between the value given by equation (5.3) 

and 1 at the critical temperature. 	Since for both 

liquids C has been estimated by an approximate equation 

and a is very close to one, as 'shown in table 5.2, the 

temperature correction has not been applied. 	Equation 
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(5.2) gives an average and maximum deviation of 8.7 

and 31.6 per cent for 28 liquids tested(39) 	Table 

5.2 contains the parameters appearing in equation 5.2 

and the results of the calculations for the two liquids. 

TABLE 5.2  

ESTIMATED THERMAL CONDUCTIVITIES AT 25°C 

Solvent 
,
H
vb b 

(cal/gmorjK) 

a kx103 

(cal/s cm °C) 

Cyclohexanol 	25 	1.19 	0.337 

Methyl ethyl ketone 	21.7 
	

1.03 	0.407 

The data for all the other pure liquids are experimental 

measurements reported in literature. 

The values of the thermal diffusivities were calculated 

from its definition: 

K = k/PC p  

5.2.5 Mass diffusivity 

Austin and Sawistowski(11)  reviewed the semi-empirical 

correlations for the prediction of diffusion coefficients. 

They concluded that Sitaraman's(47)  correlation is the 

most consistent of those investigated in that the predicted 

values of DJJ/T at infinite dilution are in reasonable 

agreement with literature values. 	Consequently, Sitaraman's 

correlation was adopted in the present work. 	The 

correlation fits the data with a standard deviation of 

26% by: 

-8 
1/3  

MB 4HVBXMB) 	T 	0.93 

JUB (411VA/NA) 	vA1/2_1 
DAB = 5.4 x 10 0.3 

1  
(5.4) 



91. 

where vA = molecular volume of the solute A
(49)  

DAB = diffusivity of A in B, cm2/s 

Garner and Marchant
(48) 

have shown that DpT for 

the diffusion of isobutanol in water is virtually 

independent of concentration. 	In the absence of 

experimental data the other systems were assumed 

to have the same property. 	The results of the 

computations made with equation (5.4) are contained 

in table B4, appendix B. 

5.2.6 Equilibrium concentration and its variation with 

temperature 

The literature was searched for solubility data as a 

function of temperature for the selected systems and the 

results are plotted in appendix B, figures B1 to B6. 

Solubility data at 25 °C and rate of change of equilibrium 

concentration with temperature are estimated from these 

curves and presented in table B5, appendix B. 

5.2.7 Heat of solution  

In the absence of experimental data on heats of 

solution of water in ethyl acetate, acetyl acetone, 

isobutanol and cyclohexanol, they were measured by 

the Imperial College Analytical SerVices Laboratory. 

The heats of solution of aniline into hexane and 

hexane into aniline were measured as well because the 

data reported by Keyes and Hildebrand
(50) are, in the 

authors' own words, "rough determinations". 
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INTEGRAL HEATS 

TABLE 5.3 

OF SOLUTION 

Solvent Solute T Qo  

cal/gmol 
solute 

standard 
deviation 

ethyl acetate water 25 -1150 18.9 

acetylacetone water 25 -1018 23.8 

isobutanol water 25 -295 14.8 

cyclohexanol water 25 -234 4.76 

hexane aniline 19 -1320 21.1 

aniline hexane 25 -1170 19.3 

The results presented in table 5.3 are the quantity 

of heat absorbed by the solution when the amount of 

solute necessary to get a saturated solution is added 

to the pure solvent. 	The results are the average 

of three determinations. 

5.2.8 Interfacial tension 

Except for the system isobutanol-water no data on 

the effect of temperature on interfacial tension were 

found in the literature. 	Consequently, the equilibrium 

interfacial tensions at different temperatures were 

measured. The determinations were made by the drop-

weight volume method. Figure 5.8 shows a diagram of 

the apparatus. 	It consists of a capillary U-tube ACD 

with a bulb at B and a detachable tip T at D which is 

projected into a glass vial F. 	The tip is attached 

to the capillary tube by means of a cone and socket 

joint. 	The volume of the bulb and of the capillary 

joining it to the graduated sections of capillary tube, 

AB and BC, was accurately known to be 2.338 ml. 
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A 

FI G. 5.8 	THE PENDENT DROP APPARATUS 
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The heavier phase was sucked up into the capillary 

until the level reached the graduated section AB and 

.the clip was tightened. 	The lighter phase was poured 

into the vial so that the tip was just covered when 

the vial was clamped in position. The apparatus was 

supported vertically, by means of a support rod s, 

in a thermostat both controlled at 22, 25 or 28 

0.05 °C. 	The interface was adjusted to the plane 

of the tipland the level noted in the graduated capillary 

AB. 	Drops were formed until the level was positioned 

in the lower capillary BC, the interface was again 

adjusted to the plane of the tip and the level in BC 

noted. The drops were formed at a rate of about one a 

minute, the last 10% of the drops being delivered very 

slowly to ensure that the drop detached under the influence 

of gravity alone. 

The mean drop value was calculated from the total 

volume and the number of drops. 	The interfacial tension was 

then calculated from the equation: 

cr 0 

V(pB  - pA) g 

211 rt f(r/V
1/3) (5.4) 

where: V = mean drop volume (cm3) 

pApB = densities of the lighter and heavier phases 

respectively (g/cm3) 

g = acceleration due to gravity (cm/s
2) 

rt = wetted radius of the tip (cm). 

(51) f(r/V1/3) = correction factor 
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The correction factor is applied to allow for the 

fact that the liquid forming the drop does not 

completely leave the tip. 	This factor is a 

function of the wetted radius of the tip and the 

cube root of the drop volume (figure 5.9) and is 

accurately known for 0.3 < rtV
1/3,  1.2. 	Two tip 

diameters were chosen so that the resulting values 

of rtV
1/3 for the systems fell within the above 

limite. 	The tips were made from Veridia precision 

tubing and ground flat and square using the method of 

Harkins and Brown (52) 

Before use the capillary, tip and vial were soaked 

in chromic-sulphuric acid, washed vith distilled water 

and acetone and finally air dried. 	The readings are 

tabulated in table B6, appendix B, and the results 

presented in Figures 5.10 and 5.11. 	Table 5.4 contains 

the experimental results obtained for the system 

isobutanol-water and also data from literature. There 

is not much difference between the results of the 

present work and the data measured by Austin(11  ) 

Silbereisen 5) measured the interfacial tension with 

the de Noily method and this could be the explanation 

of the greater difference between his results and this 

work. 	However, there is agreement in the sign of the 

variation of interfacial tension with temperature, which 

is the main purpose of the experimental determinations 

in this work. 
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EFFECT OF TEMPERATURE ON INTERFACIAL TENSION IN THE 

SYSTEM ISOBUTANOL-WATER 

This work 	Literature Reference 

 

°C dyn/cm 

a
i  

dyn/cm 
17 1.78 (15) 
22 2.15 1.85 (15) 
25 2.17 2.2 (1J) 
28 2.18 86 0.5) 

5.3 Temperature and concentration profiles 

The time dependent temperature and concentration 

profiles were calculated with equations 3.44 to 3.47 

using the Imperial College CDC 6400 system. 	The 

results after 30 seconds of contacting the phases 

initially at 25 °C are plotted in figures 5.14 to 

5.25 (a) and (b). 	Figure 5.13 shows the temperature 

and concentration profiles in the system methyl ethyl 

ketone-water at intervals of 20 seconds after contact-

ing the phases when water is transferred from the 

saturated water phase to pure methyl ethyl ketone. 

In order to apply the characteristic equation to 

the study of the selected systems, the profiles have 

to be linearised. 	The validity of this procedure is 

discussed in section 5.4. 	Since the stability of 

the systems will be analysed in turn with respect to 

each direction of transfer separately, equation (4.67) 

will be used and only the temperature profiles need be 

linearised. 
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The standard technique of linearization (Vidal 

and Acrivos(3°, 1ick(33)) is to approximate the 

actual profile with a straight-line segment, figure 

5.12, so that the area under the curve in figure 

5.12(a) is the same as 

0.5 

0.4 
E 

0.3 

0.2 

0.1 

   

 

dtA 

0- 

 

t1 1 11  

25.0 	 26.0 
Temperature (°C) 

    

25.0 26.0 
Temperature (°C) 

(a) 
	

(b) 

FIG. 5.12 DEFINITION OF APPROXIMATE TEMPERATURE PROFILE  

the area of the triangle in figure 5.12(b). 	Then, the 

effective thermal depth is: 

2 r
d
oA TA(x't) dxA dtA = 	µo 	P 	 x;› 0 	(5.5) 
Ti  - To  

dt 13 

2  f 
TB(x,t)dxB  

x < 0 	 (5.6) 
Ti  - To 

 

where do is the adopted depth of the phase. For the case 

under consideration the value of do was arbitary, being 

governed by only one condition that the points x = OA 

and x = doB were at T = To
. 

The integrals in equations (5.5) and (5.6) were 

calculated at t = 30 seconds for doA = oB = 1 cm. 
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Figures 5.14 to 5.25 show that at a depth of 1 cm 

from the interface, the temperature in both phases 

is 25 oC. 	The integrals were calculated with the 

trapezoidal quadrature formula with error control, 

which is the more adequate to integrate the error 

function in equations (3.46) and (3.47). 

The linear temperature profiles are calculated by: 

E = (To  - T2)/dtA 	(5.7) 

B 
= 	(T

o - T.)d tB 
	

(5.8) 

The linearised temperature profiles are shown in 

figures 5.14 to 5.25 (c). 
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5.4 Stability analysis  

5.4.1 Qualitative analysis  

According to the criteria of stability stationary 

instabilities may be expected when the sign of the 

temperature gradient- and the rate of change of inter-

facial tension with temperature are the same and 

oscillatory instabilities may set in when mass transfer 

takes place out of the phase of higher viscosity. 

These two criteria are applied to the six selected 

systems in each direction of transfer. The results 

are summarized in table 5.5. 	Comparing the predicted 

stability with the experimental observations of Ying 

and Sawistowski(16T presented in table 5.1, agreement 

is found for the systems ethyl acetate-water and 

acetylacetone-water in both directions of transfer 

and for transfer of methyl ethyl ketone and cyclo- 

hexanol into water and aniline into hexane. 

For the case of transfer of hexane into aniline 

and water into cytlohexanol, which are predicted stable 

contrary to the experimental observations, possible 

explanations are that transient effects could be 

responsible for the onset of stability or that there 

is an even number of values of (i for which the real 

part of equation 4.76 is equal'to zero, as was discussed 

in section 4.8.2. 

For the system isobutanol-water there is disagreement 

in both directions of transfer. 	The system has been 

reported unstable during the transfer of water into the 

(13) organic phase under dynamic conditions. 
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TABLE 5.5.  

PREDICTION OF STABILITY BEHAVIOUR FOR SELECTED SYSTEMS.  

Liquid A Liquid B Direction e2 aT CA Stability predicted with respect to:- 
• of transfer 

Stationary dist. oscillatory dist. 

ethyl acetate 	water 	B+A 	<1 	- 	+ 	stable 	unstable 

A+B 	- 	unstable 	stable 

acetyl acetone 	water 	B+A 	<1( 1) - 	+ 	stable 	stable 

A+B 	+ 	stable 	unstable 

isobutanol 	water B+A >1 + + unstable 	stable 

A+B 	- 	stable 	unstable 

methyl ethyl ketone water 	B+A 	<1 	+ 	+ 	unstable 	unstable 

A+B 	- 	stable 	stable 

cyclohexanol 	water B+A »1 - + stable 	stable 

A+B 	- 	unstable 	unstable 

hexane 	aniline B+A <1 - + stable 	unstable 

• A+B 	+ 	stable 	stable 
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Since the variation of interfacial tension with 

temperature in this system is very small, as may be 

seen in figure 5.10, the system could be stable for 

a relatively wide range of wave lengths. 	In order to 

determine the instability curve of all the predicted 

unstable systems, the characteristic equation has to 

be solved to yield values of c,‹ and p at the onset of 

instability. 

5.4.2 	Numerical results  

The characteristic equation was solved for 

stationary instability for the systems ethyl acetate-

water, isobutanol-water, methyl ethyl ketone-water and 

cyclohexanol-water. 	Since only stationary instability 

is to be considered, the imaginery component of the 

growth constant, S, was made equal to zero. 	The 

calculations were 	done using the Imperial College 

CDC 6400 computer. 	The value ofa NS  was obtained by 

making the value of 13 r  equal to zero in equation (4.6.2). 

Then, the values of f3 within the interval a= a 	to 
NS 

a = 0 were calculated by trial and error. 

A value DIF was defined as: 

DIF =a 2 G 
2 
a 
C 

(5.9) 

where a is the value of a obtained from equation (4.62) 

for an arbitrary value of Or  and an assumed value of 

is denoted by a G. 	Instead of solving the equation 

DIF (a, 	= 0, which would have led to probleTs of 

multiplicity and a substantial amount of computation, 

a "chasingt! method was adopted. 	The procedure consisted 

of computing equation (5;2.9) on a mesh of 300.000 points 
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in the strip a = 0 to a and instructing the "NS'  

computer to print only the values where a change of 

sign in two consecutive values DIF occurred. 

In this way it was possible to determine a narrow 

band in which the curve ,DIF (a,a) = 0 was contained 

in the interval a  = 0 to a=aNS. From these values 

an iterative process was applied to refine the data 

already obtained until the pairs a,a  satisfied equation 

(5.9) with an error smaller than one per cent. 

The instability curves calculated with the linearised 

temperature profiles at a time equal to 30 seconds are 

shown in figures 5.26 to 5.29. 	The curves are similar 

to those determined by Sternling and Scriven(8) for 

concentration induced convective flows in ternary systems. 

The value of aNS demarcates stable and unstable wave 

numbers. 	Since the systems remain stable for a aNS' 

the wave length of neutral stability is the minimum 

wave length for the onset of instability to be possible. 

Disturbances of larger size will grow and the smaller ones 

will be damp.ed by the viscous shear forces opposing: the 

motion at the interface. 	This explains why instabilities 

of small wave length grow least rapidly. 	The curves have 

a maximum corresponding to the size of the disturbance 

that grows most rapidly and ultimately dominates the system. 

The numerical results obtained for the dominant wave length, 

AD' the dominant growth constant, aD  and the aNS for the 

four studied systems are shown in table 5.6. 
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Since in the unstable systems instabilities set 

in a very short time after the phases are brought 

into contact(16) the instability curves were calculated 

at 5 and 15 seconds of contact for the system cyclo- 

hexanol-water. 	The object of this calculation was to 

investigate the dependence of the instability curve on 

the magnitude of the temperature profile, which is a 

function of time. 

TABLE 5.6  

RESULTS OF CALCULATIONS  

(*) 
Liquid B Direction 	ANSDrD of transfer (cm) 	(cm) 	(s-1) 

ethyl. acetate A-4-13 15.621 0.167 0.222 

isobutanol B-+A 0.214 0.74 '0.0094 

methyl ethyl ketone B-ON 0.130 0.349 0.0455 

cyclohexanol A-+B 0.421 1.26 0.004 

()Liquid A is water in all the systems. 

The three instability curves are shown in figure 5.29 

and the values of the corresponding temperature gradients, 

XNS' XD'  AD are presented in table 5.7. 	For this system 

an increase of ten times the value of the temperature 

gradient, increased the growth in almost the same proportion 

and decreased the dominant wave length by three times. 
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TABLE 5.7 

t cA (oc/cm)  

	

AD 	0-  

	

NS 	rD 

	

(cm) 	(cm) 	Xs-1) 

5 -3.5 0.133 0.392 0.034 

15 -1.7 0.188 0.628 0.017 

30 -0.36 0.421 1.26 0.004 

5.4.3 Discussion of results  

The numerical results show that ethyl acetate-water 

is the most unstable system of the four analysed with 

respect to stationary instability since itsc<'Ns  is the 

lowest. 	This means that disturbances of wave length 

larger than 0.06 cm will be amplified. 	This is in good 

agreement with experimental results. 	In the other three 

systems much larger disturbances are required to induce 

instabilities. 	In the case of transfer of water into 

isobutanol, the maximum wave length of the disturbance 

for which the system 'still remains stable is about 4 times 

the wave length corresponding to the system ethyl acetate- 

water. 	This could explain the stable behaviour reported 

in experimental observations. 	The same argument applies 

to the system methyl ethyl ketone-water. The transfer 

of cyclohexanol into water is the most stable of the four 

unstable directions studied since it has the highest wave 

length of neutral instability. 	But this system is 

unstable with respect to oscillatory instabilities in the 

same direction of transfer. 	The oscillatory instability 
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may be expected to be considerably strong since the ratio 

of viscosities in this system, e2, if of the order of 40. 

Comparing the experimentally established values of 

the densities of pure waier and of water saturated with 

acetylacetone, table B.1 and B.3 respectively, it can be 

seen that there is a volume contraction on mixing. 	The 

density of the saturated solution is 1.0044 while the 

density of water is 0.9971. 	The increase in density near 

the interface creates a destabilising density gradient 

which in accordance with the work of Berg and Morig(12) 

will create density-driven convective instability. 

This behaviour, rather than oscillatory instabilities may 

explain the strong interfacial activity found experimentally 

in this system. 
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CHAPTER § 

CONCLUSIONS 

The conclusions of this work can be summarised as 

follows: 

1. Temperature effects accompanying mass transfer in 

binary liquid-liquid systems are of sufficient 

magnitude to produce Marangoni type instabilities. 

2. The linearised analysis of stability shows that 

binary systems may be either stable or unstable 

in both directions of transfer. 

3. The criteria of stability suggest that stationary 

instabilities are promoted by: 

a) positive heat of solution in systems with a 

negative change of interfacial tension with 

temperature. 

b) negative heat of solution in systems with 

positive change of interfacial tension with 

temperature. 

Oscillatory instabilities are most likely to occur 

for mass transfer out of the phase of higher 

viscosity. 

4. Binary systems will be stable in both directions of 

transfer when the heat of solution and the change of 

interfacial tension with temperature have the same 

sign and the viscosities of the two phases are equal. 

5. Predictions obtained from the stability criteria 

are in good agreement with experimental observations. 

Individual cases of lack of agreement can be explained 

in terms of size of perturbation. 



Recommendations for future work 

1. The numerical results were computed only for 

stationary instability for a set of systems. 

Further study of the effect of the magnitude 

of various parameters such as viscosity,ratio, 

ratio of thermal diffusivity, etc., would enable 

a more precise prediction to be obtained for the 

conditions at the onset of instability. 

2. A similar analysis to that performed in the 

present work should be performed by for the 

oscillatory regime. 

3. In order to allow for the effect of density-driven 

flows, the presence of density gradients should be 

incorporated in the model. 

4. An attempt should be made to develop stability 

criteria for transient conditions of mass transfer. 
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LIMITING BEHAVIOUR OF THE CHARACTERISTIC EQUATION 

A.1. 	Small values of y  

The six radicals in equations (4.62) and (4.75) have the 

form = /1 + x. 

They can be expanded in binomial series of the form: 

• (1 -x 	= 1 + nx + n(n-1) x2/2! + 	(A1) 

The series (A1) converges for x<1 when n>0. 	For 

small values of the variable the terms of second and 

higher order may be neglected. 	The expansion of p, q and 

gr equation 	(4.73) 	become: 

qA = 1  + 	y/2 aB  = 1 + h
2y/2 

PA = 1  
.2 + 3 y/2 PB = 1  + 

.2 D 2 e y/2 

(IA = 1  + -I,Ay/2 cIB = 1  + r
2 liy/2 

The four terms in the numerator of equation (4.62) 

combined with expansions (A2) become:.  

(A2) 

(gel) 
-1 
 (gePA) 

(gB+1)-1(gB+pB)-1  

(gel) 
-1 
 (gA-EPA)  

[(2 + 32) y + 

[(2h2  + e D 2.2. ) 

p2LA + j2) Y  

(1 + j2)y/41/16 

.0412(h24.e2.27.  y224 ]/16 

+ LA (LA  + j2)y2/4]/16 

-1 	-1 (qB+1) (qB+pB) . 
= 1/4 - ['(2r2LA  + e2 32  )y + . 2 	. 1 

r2LA(r2LA+e2  D )y2/41 

1(6 

(A3) 

Inserting equation (A3) into equation (4.62), the 

following expression for the numerator of eauation (4.62) 

is obtained: 

1 
N111 = if 1 - (1/sm) - EA (EA - - 	 LB / Q°C) /CA] 

2 + j2  [ (2h2  2.2 + e 3 ) /sr] 	EAEA (2LA+j
2)feA 
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+ EA LB (2r
2 LA + e

2.2  ) / no 
Cc 

I- 
1.  (1 + j2)/4 

[h 2(h 2+e 3 2.2 )/4sm] - EAEA(LA+j
2)74E2\ 

+ E
A EBr

2 (r2LA+e
2.2  ) /4Q°  c 	y2 

• A 

This equation has the form: 

NM1 = aN1  + bNIy + CN1
y2 

Combining equations (A2) with equation (4.62), the 

denominator of equation (4.62) becomes, 

DM1 = 2 Z20 Z30 „rz 1,  20 (1 + e2/1B/iii) j
2 

(A4)  

(A5)  

(RA +RB/- 0°C  ) - 1 - 1/m] z3  

. 
RB/ec) - 1 - 1/mi (1 + e

2 
itIBOA)3 y 2/4 

(A6) 

where: 

Z20  = 
[ E

A  (RA  + RB" in°C  h2 )/LA] - 1 - 1/h2m 

Z30 = 1 + (1./ AuA  ) 7  131-. Ilk  S/2  A 

as defined in chapter 4. 

Equation (A6) has the form: 

DM1 = a
Di  + bDI y + cDI y2 

	
(A7) 

Expanding the inverse of equation (A6) for small 

values of y: 

	

M1-1 
	-1 1 - aDI 	(bDIY + cDIy2) aDI

-1 	(A8) 

and multiplying equation (A5) by equation (A8), equation 

(4.62) is obtained for- small values of y4i 

	

M =f.. aN1 	(bN1 	aN1 bD1)Y -1-[N1 1 D1 	aN1cD 1/aD1-cN11)(2  

(cNT bD1/aDI + bN1 cD1 /aD1 )y
3 + (oN1cD1/aD1 )y

4 / aD1 

(A9) 
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Combining equations (A4), (A5), (A6) and. (A7) 

with equation (A9) and neglecting the terms of 

higher order than one: 

- (EA - EB/Cfc)  FA/EA1  II (1 - fy) 	(A10) 
8 Z20 Z30 20  

1 - (1/sm) 
rz = 

where 

1 - (h2/sm) - A  - EBr2/0oc)LAE, 
f = 	  

Z4 

32 1 	(e2/sm) ." (EA  - EBe2/0oc) EA 
.  

4 Z4 eA 
EA (RA  4- 	RB/Q°c)  - 	-  1/ra  

2 Z20 
2 	.2 

(e 
0 

 B/PA) 3  

4 Z30 (A11) 

where: 

Z4= 1 - (l/sm)-E /0°  ) E /c B C A A' 

as defined in chapter 4. 

Equations (A10) and (A11) are equations (4.77) and 

(4.78) in chapter 4. 

The first factor in equation (A10) is the dimensionless 

wave number of neutral stability represented by equation 

(4.63). 	Therefore, combining equation (A10) with equation 

(4.63): 

M = MNS  (1 - fy) ; y 	0 (Al2) 

On combining equations (4.65) and (4.66) with equation 

(A11), the expression for f for unidirectional mass transfer, 

equation (4.80), is obtained, The expressions of N for 

mass transfer in one direction only are obtained by 

substituting the corresponding expressions for MNS and f 

into equation (Al2). 

1 + 
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A.2 	Large values of Y 

In this case it is again desirable to expand in 

series the six different radicals.in equation (4.62). 

Since the binomial series (A1) converges for x 	1, 

it is convenient to write p, q and g in the following 

form: 

gB  = h ; 11 	1/h2y 

pB  = ej / 	11 + 1/j2e2y 

qB  = 	+ 1/r2  LAY 

(A13) 

gA = 171(1 + 1/y) 

PA  = 	A 4'1/52Y 

clA = 117,7 /1 + 1/LAy A 

Expanding these expressions and neglecting terms of 

higher order than one: 

gA  = VT (1 + 1/2y) 
	gB = h / (1 + 1/242y) 

pA = j/ 	(1 + 1/2j21) 
	PB = ej V (1 + 1/2j2e2y) 

qA  =1-cT (1 + 1/2 LAY) 
	qB = r /177 (1 + 1/2r

2
Ay) 

(A14) 

Then: 
-1 	-1 1-Y741/2-  [(j+1)Y-14-Y-3/24-Y3/2] /2j 

	

(gA41) (gA+PA)  - 	(1+j)Y 

	

(g +1)-1(g +p ) - 	  
-1 1-(y+1/2/h- [(h+ej)y

-1+y-3/2+y
-2/2h)/2eh2j 

B 	B 
 

B) 	
h 

-1/2 
1 - Y 	/ ir'.-A- -1 	-1 - 

(qA+1) (c1A+PA)  

	

VI-4Z(j+  /Li)? 	
(A15) 

	

-1 	-3/2 	''.2/2:1E; 
(Sft; 	j) Y 	+ y 

2 LA  j (j + 1LA)y 
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-1 	-1 	1 - y-1/2/r 
(clel) (clePB)  = 

(ej + r 

(r/17-  + ej)y-1  + y-3/2 	y-2/2rif- A 	 -A 
2 er2 LA  j (ej + ric) Y 

Combining these equations with equation (4.62) and 

neglecting terms of smaller order than Y-3/2, the 

following expression for the numerator of equation (4.64) 

is obtained: 

NAM  = 1/(1+j) - [1/smh(h+ejfl 	EAEA/EA (j + /17;) 

+ EAEB/eAQ°c  r ic(ej + rVE77,47)/ Y 

{ 1/(1+j) 
	

[1/smh2(h+je)] + EAEA/cAlc (j+/E7p) 

+ EA£B/cAQ
o
Cr

2LA (ej + ri1A7) I 
-3/2 

(A16) 

This equation has the form: 

NM2 = aN2y
-1 + bN2 y

-3/2 	(A17) 

The expression for the denomination of equation (4.62) is: 

1/2 DM2 = Z6  Z7  jyz6 Z
12 

Z11 Z7 j + Z6 Z7 j/2 

-1/2 Z11 Z12 Y 	+ Z
11 

Z7 JT 
(A18) 

where: 
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Z
6 
 = [EA  (RA  + RB - / 0°C 	A r)/ 71:-] - 1 - 1/hm, as defined 

in chapter 4. 

Z7 = 1 + e ?r3 0.A, as defined in chapter 4. 
(A19) 

Z11 = [EA (RA RB/ 0°C r3)/LA3/2
J - 1 - 1/h3m 

Z12 = 1 	(PB//1/A)  

Equation (A18) has the form 

DM2  = aD2 y + bD2 y
1/2  + 0D2 + dD2 y

-1/2 
+ wD2 Y

-1 (A20) 

The inverse of equation (A20) is, after making use 

of the adequate expansions: 

1 	1  - (bD2 Y-1/2 + cD2 y
-1 + dD2 y-3/2 + wD2 Y-2)/ aD2 

M2 - aD2Y  

(A21) 	• 

Multiplying equation (A17) by equation (A21), 

combining the resulting expregsion with equations (A16) 

and (A18) and neglecting terms of smaller order than 

y-5/2, the equation for M for large values of y is 

obtained: 

{.I / (1 + j) - {1/smh (h + je)] 
M = 	  

Z Z j 	e 

	

6 7 	A A 

£A/ (j + 	- 	ec  r (je + r 

Z6 Z7  j 1E- 7 	A A 

[(je + 1)/ (j + 1) - (1/smh.2)1/VB  

Z6 Z27 32 pA 

-2 
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tEA  (je +./c) / (j + 

2.2 Z6  Z 7  3 /iA  LA  

 

n0 
Bii  C r] 

PB CA 

 

1 	[(h + j) / smh2  (h + je)j  - EA  (EA  - B / e r2)/cALA 

22 
Z6 7 Z j 

1/(1 + j) - [1/smh (h + ej)J 
2 .2 	a/18 z6 	7  3 /'A 

1 

R 	/17A  A / (j + 	).1 - £B/0°B  r (je + r A) 	-5/2 
2 .2 	Ekly Y 

Z6  Z 7  3 	cA  LA I/A 

(A22) 

Equation (A22) is equation (4.82) in chapter 4. 

The expressions of M for unidirectional transfer are 

obtained combining equation (A22) with equations (4.65) 

and (4.66). 



TABLE B1  

PHYSICAL PROPERTIES OF PURE LIQUIDS AT 25 °C 

Liquid 

(g/i) 

Cp  

(cal/g°C) 
P 
(cP) 

ii x102  
(cm2/s)  

K x 103  
(cm2/s)  

ethyl acetate 

acetylacetone 

isobutanol 

methyl ethyl ketone 

cyclohexanol 

hexane 

water 

aniline 0.503 

	

0.8948(11' 	) 

	

0.9971( 	42)  

	

0.7978( 	11)  

0.7995 

0.9418 

	

1.0165(11 	) 

	

0.6630(11 	) 

0.99707 

0.478 

0.54 

0.670 

0.549 

0.41 

0.527 

0.99892 

	

0.432( 	41)  

0.726(42 ) 

	

3.40( 	11)  

0.3980 

38. 

	

3.74(11 	) 

	

0.329(11 	) 

0.894 

0  

0.482 

0.728 

4.270 

0.498 

40.3 

3.685 

0.497 

0.898 

0.801  

0.236 

0.768 

0.697 

0.86 

0.81 

0.958 

1.463 

El  
X

I C
IN

ad
d l

i 

Unreferenced data obtained from standard physical data textbooks(38  41) 



TABLE B2  

PHYSICAL PROPERTIES OF SATURATED PHASE A(*)  at 25 °C 

(g/l) (cal/ 

g°C) 

-(cP) 
-P x102 	Kk103  
cm2/sec (cm2/sec) 

XA 

0.9012 0.551 0.474 0.526 0.410' 0.140 

0.9732 0.65 0.7948 0.818 0.942 0.250 

0.8324 0.820 3.20 3.98 1.046 0.456 

0.8325 0.684 0.5498 0.661 , 	0.9996 0.300 

0.9507" 0.66 0.2257 0.237 0.111 0.416 

0.6743 0.525 0.350 0.519 0.946 0.078 

System 

ethyl acetate-water 

acetylacetone-water 

isobutanol-water 

methyl ethyl ketone-water 

cyclohexanol-water 

hexane-aniline 

(*) Phase A is the organic phase in the organic liquid-water systems and the hexane 

phase in the system hexane-aniline. 



TABLE B3  

PHYSICAL PROPERTIES OF SATURATED PHASE B(*) AT 25 
oC  

System C . ij  
(g/l) (cal/ Icp) 

g °C) 

Ac102 

cm2/ 
sec)  

A 103  

(cm2/ 
sec)  

X B  

ethyl acetate-water 0.9958 0.990 1.07 1.075 1.442 0.0164 

acetylacetone-water 1.0044 0.98 1.184 1.178 1.442 0.0300 

isobutanol-water 0.9849 0.992 1.27 1.29 1.447 0.0210 

methyl ethyl ketone-water 0.9621 0.947 0.868 0.903 1.4167 0.070 

cyclohexanol-water 0.9967 0.99 1.164 1.169 1.4588 0.007 

hexane-aniline 0.9809 0.505 2.61 2.61 0.8220 0.081 

(*) Phase B is the water phase in the organic liquid-water systems and the aniline 

phase in the system hexane-aniline. 



TABLE B4 

oC DIFFUSIVITIES AT 25 

Liquid A Liquid B DAx10
5 DBx10

5 

2  cm 2  cm 

ethyl acetate water 3.31 0.93 

acetylacetone water 2.18 0i-93 

isobutanol . water 0.25 0.82 

methyl ethyl ketone water 5.25 1.09 

cyclohexanol water 0.728 0.89 

hexane aniline 2.73 3.60 



TABLEB5 

EQUILIBRIUM CONCENTRATION AND RATE OF CHANGE OF EQUILIBRIUM CONCENTRATION WITH TEMPERATURE 

Phase A Phase B * 
CA 

* 
B C RA RB 

(gmol/C) (gmol/li (gmol/j°C) (gmol/i°C) 

ethyl acetate water 1.64 0.844 0.021 -0.008 

acetyl acetone water 1.71 1.66 -0.189 -0.026 

isobutanol water 7.8 1.064 0.035 -0.010 

methyl ethyl ketone water 4.5 3.0 0.014 0.028 

cyclohexanol water 6.0 0.37 0.031 -0.004 

hexane aniline 0.60 0.83 0.020 0.024 



TABLE B6  

INTERFACIAL TENSION MEASUREMENTS 

System T 

(0C) 

wetted 

radius 

(cm) 

drop 

vol. 

(ml) 

PB-PA.  
(gr/l) 

r/v1/3 ad  
(dyn/ 

cm) 

Q
T 

(dyn/cm) 

oC  

ethyl acetate- 22 .331 0.0932 0.0931 

_ 

•0.733 0.605 6.74 
water 25 .331 0.0909 0.0946 0.739 0.604 6.70 -0.03 

28 .331 0.0895 0.0957 0.741 0.604 6.68 

acetylacetone- 22 .331 .201 0.0299 0.565 0.630 .4.50 
water 25 .331 .190 0.0312 0.579 0.628 4.46 -0.023 

28 .331 .177 0.0325 0.689 0.626 4.36 

isobutanol- 22 0.101 0.00573 0.1516 0.560 0.632 2.15 
water 25 0.101 0.00575 0.1525 0.559 0.632 2.17 0.005 

28 0.101 0.00574 0.1536 0.559 0.632 2.18.  



TABLE B6 (continuation) 

methyl ethyl ketone 22 .101 0.00275 0.1259 0.713 0.602 0.90 

water 25 .101 0.00294 0.1296 0.698 0.602 0.99 0.025 

28 .101 0.00303 0.1332 0.691 0.603 1.05 

cyclohexanol-water 22 0.331 0.108 0.0448 6.97 0.608 3.75 

25 0.331 0.101 0.0460 7.12 0.606 3.67 -0.023 

28 0.331 0.977 0.0475 7.19 0.60 3.61 

hexane-aniline 22 0.101 0.003322 0.3106 0.678 0.612 2.56 

25 0.101 0.00301 0.3066 0.692 0.603 2.39 -0.07 

28 0.101 0.00270 0.3025 0.720 0.602 2.12 
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NOMENCLATURE 

A1,2 	constants of integration 

b 	parameter defined by equation 4.80 

B1 	constants of integration. 

C1,2 	constants of integration. 

C 	 concentration 

c 	wave velocity 

Cp 	heat capacity 

dt 	penetration of temperature profile 

D mass diffusivity 

E = Q /MC r p 

e -4)0 B 

f = factor defined by equation 4.78. 

• ic)(76-T E A 

g = VI +1- 

H = X part of the concentration perturbation. 

h = VKA/KB  

• = integral defined by equation 4.36 

J = integral defined by equation 4.36 

j = KA/bIA 

K = thermal diffusivity 

k = thermal conductivity 

L = KA/DA 

£ = Undisturbed concentration profile 

1 = iE/eD 

M = i1JAKx2/00-EA  

M = molecular weight 

m  (DACPA/CBCpB 



fr( = 
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= EARA/LA 

NB = EBRB/Q
o r2 LA 

P = X component of the temperature perturbation 
2 ' p =1(1 +0/0( Ji) 

Q = heat of solution per mole of solution. 

Q0 = heat of solution per mole of solute. 

QT  = total heat produced by heat of solution. 

no = no /n0 
C 	B 

q 	+PA2K 

R = dC*/dT 

Rc = RA/RB 

r =q DA/DB  

T = temperature 

Greek letters 

wave number 

growth constant 

p/,,,c2 KA  

E = unperturbed temperature profile 

X = wave length 

= dynamic viscosity s  

= composite surface viscosity 

.11 = kinematic viscosity 

r  = density 
c = equilibrium interfacial tension 

= z6-0 /aT 

XY 	component of the fluid sheer stress 

r = x part of the stream function 

= stream function 
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Subscripts 

A = phase Ai x > 0 

B = phase B,x < 0 

D = dominant unstable disturbance 

N = neutrally stable disturbance 

0 = oscillatory disturbance 

S = stationary disturbance 

i = imaginary part 

r = real part 

Superscripts  

0 = value in the undisturbed state 

v = perturbation 

primes = differentiation with respect to x. 
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